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Abstract

Traditionally, seismic data processing considers data composed mainly of compressional

waves. In recent years, we have witnessed the rapid development of multicomponent seis-

mic exploration in the oil and gas industry. Multicomponent seismic data contain both

compressional (P) and shear (S) wave modes permitting improving processes associated

with lithology identification, fluid discrimination and fracture-stress characterization. Un-

fortunately, deficiencies of land multicomponent seismic data, such as the low-quality of

horizontal components, inadequate spatial sampling of the elastic wavefield and misalign-

ment of time-domain PP-wave and PS-wave images, pose unique challenges for conventional

seismic processing and interpretation workflows. This thesis addresses several essential pro-

cessing steps for multicomponent seismic data. Multilinear (tensor) algebra is proposed as a

means to denoise and regularize onshore multicomponent data. For this purpose, I adopted

the Candecomp/Parafac (CP) tensor decomposition to represent seismic prestack volumes.

The decomposition is used for denoising and 5D tensor reconstruction. Randomization tech-

niques are utilized to reduce the computational cost of the CP decomposition and making it

an efficient noise attenuation tool for large multi-dimensional seismic datasets. The process

of aligning PS-wave events to their corresponding PP-wave responses is called registration

which is also studied in this thesis. Registration is posed as a non-linear constrained opti-

mization problem. I also proposed a processing flow where 5D reconstruction via low-rank

tensor completion is applied to prestack PP-wave and PS-wave data independently to en-

hance the data quality before registration.

In the second part of my thesis, I proposed a new method for least-squares reverse time
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migration. Inspired by techniques associated to matrix and tensor completion, I approximate

the Hessian matrix of the least-squares reverse time migration problem as the superposition

of Kronecker products. The latter leads to an efficient least-squares reverse time migration

algorithm that operates in the image domain.
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CHAPTER 1

Introduction

Seismic surveys play a critical role in oil and gas exploration and development. The general

principle of the seismic exploration method is to send waves, usually generated by a surface

source such as a dynamite explosion or a mechanical device, into the Earth. The layer

interfaces of the Earth reflect a portion of the down-going wave energy to the surface.

These reflected waves are recorded by receivers, which can detect the ground motion and

convert this motion into an electrical signal. After a series of seismic data processing steps,

we can produce detailed images of the subsurface by mapping the surface-acquired reflected

wave energy to the location of interfaces. These images assist in determining the location

and size of oil and gas reservoirs.

The real Earth is too complicated to be precisely described by any mathematical model.

Traditionally, an acoustic Earth model is an approximation that assumes the Earth behaves

as a fluid and only supports the propagation of compressional (P) waves. This approximation

simplifies the seismic data processing workflow significantly (Yilmaz, 2001).

Exploration seismology adopts the physics of wave propagation and statistical signal process-

ing methods to estimate images of the subsurface. The main steps in exploration seismology

involve data acquisition, data preconditioning, imaging, inversion, and interpretation. My

work focuses on preconditioning multicomponent seismic data with a particular interest in

defining new methods, and data processing flow to improve the quality of seismic images

acquired via PP and PS seismic reflections. Specific challenges in exploration seismology

are those associated with multi-channel seismic data denoising, reconstruction, and data

registration. A goal of my research is to obtain high-quality subsurface images of PP and

PS reflectivity estimates that can facilitate subsurface parameter estimation and geological

interpretation. As part of my research, I also delved into seismic imaging by adopting tools

of multilinear algebra that I have developed to process converted-wave data.

1



CHAPTER 1. INTRODUCTION 2

Exploration seismology centers on the utilization of compressional waves (P-waves). How-

ever, recent acquisition multicomponent seismic recording systems can also record shear

wave modes (S-wave). Techniques developed for subsurface imaging via P waves have domi-

nated exploration seismology. For the last 50 years, efforts in signal processing have focused

on adopting scalar wavefield seismology methods to denoise and enhance the quality of

seismic records before imaging (Yilmaz, 2001). A challenge today is to formulate new tech-

niques, and processing flows that are suitable for vector field seismic data processing and

imaging. In other words, we want to fully exploit the richness of vector field measurements

(P and S-waves) to improve the detection and characterization of reservoirs of gas and oil

(Stewart et al., 2002, 2003; Farfour and Yoon, 2016).

Processing and interpreting converted wave data is challenging (Granli et al., 1999; Gaiser,

1999; Stewart et al., 2002, 2003). In the classical PP and PS processing flow, one often

needs to run registration algorithms to transform PS data to its equivalent image in PP-

wave traveltime (Gaiser, 1996; Fomel, 2007; Compton and Hale, 2014). The latter allows us

to compare 3D volumes of PP data with their associated PS volumes. One difficulty is the

difference in the quality of pre-stack PP and PS volumes. In my research, I also investigate

a 5D reconstruction flow that enables us to correctly preconditioning pre-stack PP and PS

volumes before registration (Liu and Sacchi, 2004; Zwartjes and Sacchi, 2006).

1.1 Review of seismic data denoising

Random noise attenuation is a critical step in the field of seismic data processing. We can

broadly categorize denoising methods into five groups:

• Methods that adopt linear prediction theory, also occasionally referred to as autore-

gressive modelling techniques

• Transform-based methods

• Reduced-rank matrix filtering techniques

• Methods based on multilinear (tensor) algebra

• Approaches that adopt machine learning techniques.

Methods that adopt linear prediction theory

Traditional methods inspired by linear prediction theory can be applied in the frequency-

space (f -x) domain (Canales, 1984; Gülünay, 1986; Chase, 1992; Gülünay, 2000) or in the
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time-space (t-x) domain (Abma and Claerbout, 1995). These methods utilize the auto-

regressive (AR) (Akaike, 1969) signal model to estimate, from noisy observations, a filter

capable of predicting the signal embedded in the seismic record. Prediction filters could

introduce artifacts such as signal leakage into the estimated noise. These artifacts are a

consequence of adopting the AR formulation, which is unable to model the additive noise

term correctly. The noise term in AR modelling is an innovation rather than additive

noise (Sacchi and Kuehl, 2001). Several authors have addressed this inconsistency. For

instance, Soubaras (1994, 1995) not only discussed the inconsistency mentioned above but

also proposed to alleviate signal leakage via f -x projection filtering.

Methods that adopt transforms and sparsity promoting techniques

Transform-based techniques often used in conjunction with sparsity constraints have become

a popular option for seismic data denoising and reconstruction. First, one estimates the

coefficients that model the clean signal by procedures that promote sparsity. Then, the

calculated coefficients can synthesize the denoised signal. Linear transforms, which define

basis functions for this type of methods, include the Fourier transform (Sacchi et al., 1998;

Liu and Sacchi, 2004), the Radon transform (Sacchi and Ulrych, 1995; Trad et al., 2002;

Wang et al., 2010; Ibrahim and Sacchi, 2013) and the curvelet transform (Starck et al., 2002;

Herrmann et al., 2007).

Methods based on rank-reduction of matrices

Incoherent noise removal can also be formulated as a matrix rank-reduction problem (Trick-

ett, 2003) in the f -x domain. This method is called f -xy eigenimage filtering. Similarly,

random noise reduction and seismic data interpolation can be formulated via rank-reduction

methods that operate on block Hankel matrices in f -x domain (Trickett et al., 2010a;

Oropeza and Sacchi, 2011a; Gao et al., 2011).

Methods based on multi-linear algebra

There is no ambiguity on the definition of the rank of a matrix. Conversely, low-rank

tensor approximations require attention. First of all, there is no unique form in which a

tensor can decompose into smaller structures because the definition of tensor rank is non-

unique (Kolda and Bader, 2009a). A tensor can be decomposed via the CP decomposition

(Rokhlin and Tygert, 2008; Comon et al., 2009; Wang et al., 2015a; Battaglino et al., 2018).

In this particular decomposition, a rank-one tensor is a volume computed via the multi-

dimensional outer product of vectors. Similarly, one can decompose a tensor in terms of the
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superposition of matrices and a small core tensor by adopting the high-order SVD (HO-SVD)

. Kreimer and Sacchi (2011, 2012a) adopted the HO-SVD for seismic data denoising and 5D

seismic data reconstruction. Alternatively, one can utilize the Parallel Matrix Factorization

(PMF) method to represent a tensor with low-rank unfoldings (Xu et al., 2015; Sacchi et al.,

2015). Sidiropoulos et al. (2017) provided a thorough overview of the applications of tensor

techniques to signal processing, statistical data analysis, data mining, and machine learning.

Methods that adopt Machine Learning technqiues

Machine learning techniques have recently been proposed to remove additive Gaussian noise

(Zhang et al., 2017). Machine learning methods are capable of achieving excellent results

when applied for natural image denoising. Similar ideas can apply to seismic noise attenua-

tion and the removal of interferences in simultaneous source seismic acquisition (Wang and

Nealon, 2019; Wang and Chen, 2019; Richardson and Feller, 2019).

1.2 Review of seismic data regularization

Multicomponent seismic data reconstruction can be achieved via vector-field signal process-

ing techniques. For instance, Stanton and Sacchi (2013) integrated quaternion Fourier trans-

form into a Projection onto Convex Sets (POCS) algorithm to allow for the reconstruction

of radial and transverse recordings in the offset-azimuth domain. These authors demon-

strated an improvement in reconstruction quality by employing vector field techniques. Hou

et al. (2016) proposed a method based on K-SVD to reconstruct multicomponent data of

ocean bottom survey (OBS) simultaneously. Given the large travel time difference between

PP- and PS-wave events, the proposed flow independently reconstructs PP and PS-wave 5D

pre-stack volumes via a rank-reduction tensor completion method (Gandy et al., 2011; Liu

et al., 2013; Xu et al., 2015).

Reconstruction methods based on reduced-rank techniques are divided into two categories.

In the first category, the multi-dimensional data are rearranged into a multi-level block

Hankel matrix, and a rank reduction algorithm is used to improve the SNR and to recon-

struct the data. Methods in this category are often named Cadzow reconstruction methods

(Trickett et al., 2010b) or multichannel singular spectrum analysis (MSSA) reconstruction

(Oropeza and Sacchi, 2011b; Gao et al., 2013). The second category of rank reduction

methods encompasses techniques based on dimensionality reduction of multilinear arrays or

tensors. Multi-dimensional seismic data are viewed as multilinear arrays, and dimensional-

ity reduction techniques are directly applied to the multilinear array (Kreimer and Sacchi,
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2012b; Kreimer et al., 2013; Gao et al., 2015). My work builds on recent efforts on simulta-

neous seismic reconstruction and denoising via tensor completion techniques. Specifically,

I have adopted a tensor Higher-Order SVD rank-reduction in conjunction with an imputa-

tion algorithm (Kreimer and Sacchi, 2012b) to reconstruct and denoise PP and PS-wave 5D

volumes. After denoising and regularizing the data via 5D tensor completion, the data are

ready for signal registration and the subsequent estimation of subsurface parameters.

1.3 Review of multicomponent seismic data registration

Multicomponent seismic data registration is an important step before quantitative seismic

data interpretation and joint AVO analysis (Lu et al., 2015). Registration involves mapping

PS seismic reflections to the position of the corresponding PP reflections. It is well-known

that the Vp/Vs ratio can be estimated as a by-product of the registration process (Fomel

et al., 2005). The Vp/Vs ratio is a critical indicator for lithology and fluid properties (Stewart

et al., 2003). In addition, the Vp/Vs ratio has been also used for improving the characteri-

zation of unconventional reservoirs (Lines et al., 2005; Guliyev and Davis, 2007; Zuleta and

Lawton, 2012).

Multicomponent seismic data registration is typically performed by methods based on cross-

correlation functions. For instance, Gaiser (1996) introduced a correlation-based method

to determine the long-wavelength components of the Vp/Vs ratio. Geis et al. (1990) used

both P- and S-wave VSP information, combined with a suite of well-logs, for the proper

correlation of seismic markers in both time and depth. Van Dok and Kristiansen (2003)

discussed different tools for obtaining and refining the Vp/Vs ratio. These authors also

studied methods to include seismic data registration in processing workflows to improve the

quality of seismic images. Fomel (2007) defined an attribute named local correlation and

applied it to multicomponent seismic image registration of a nine-component land survey. In

the context of time-lapse seismic, Hale (2009) described a registration method to calculate

the local correlation between two data sets. Liner and Clapp (2004) proposed a modified

Needleman-Wunsch algorithm, a global optimization method developed for aligning amino

acid sequences in proteins, to match PS-wave traces to their corresponding PP-wave traces.

Similarly, Yuan et al. (2008) adopted a global optimization approach via Simulated An-

nealing to minimize the normalized cross-correlation between PP-wave data and warped

PS-wave data. Yuan et al. (2008) also accounted for frequency-domain differences by in-

troducing time-variant spectrum whitening. Last, we also mention the work of Compton

and Hale (2014) who proposed to use dynamic warping to align PS-wave traces to its cor-

responding PP-wave traces.

Registration algorithms map PS-wave data to its equivalent in PP-wave travel time. The
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latter assists seismic data interpreters in correlating 3D volumes of PP-wave data with their

associated PS volumes. Joint PP-, PS-wave pre-stack inversion can be applied to predict

reservoir parameters, such as lithology and presence of fluids (Avseth et al., 2010).

1.4 Review of least-squares reverse-time migration

Reverse-time migration (RTM) is a two-way wave-equation based imaging technique first

introduced for post-stack data migration (McMechan, 1983; Baysal et al., 1983; Whitmore,

1983). The technique was also adopted for imaging vertical seismic profiling (VSP) data

using the excitation-time imaging condition (Chang and McMechan, 1986). Various nu-

merical and real data examples demonstrated that RTM is well suited for imaging complex

structures because it imposes no limitations on the dip angle of reflectors (Buur and Kühnel,

2008).

Conventional RTM is susceptible to strong migration artifacts (Etgen et al., 2009; Zhang

and Sun, 2009). Linearized seismic imaging can be adopted to suppress migration artifacts

and enhance the quality of seismic images. Lailly and Bednar (1983) and Tarantola (1984b)

formulated seismic imaging as a linearized, least-squares inverse problem to estimate velocity

perturbations from seismic data. Similarly, Bourgeois et al. (1989) explored the conditions

for which the linearization is justifiable and observes that linearized inversion yields sub-

stantially sharper images than pre-stack migration. Lambaré et al. (1992) demonstrated

that a linearized least-squares inversion, implemented via iterative methods, is capable of

improving the spatial resolution of seismic images. Migration artifacts (footprint) may arise

from incomplete data with limited recording aperture, coarse sampling and acquisition gaps

in the data. Nemeth et al. (1999) coined the name least-squares migration (LSM) to iden-

tify imaging methods that adopt demigration operators to model the data. Nemeth et al.

(1999) demonstrated the ability of LSM to attenuate acquisition footprint noise. Kühl and

Sacchi (2003) introduced an imaging principle that extracts common image gathers (CIGs)

in the ray-parameter domain and provide an LSM migration algorithm based on one-way

wave-equation operators. Clapp (2005) used a regularized form of LSM to compensate

amplitudes in inadequately illuminated regions of the seismic image. Kaplan et al. (2010)

derived the forward and adjoint operators for shot-profile, one-way wave-equation LSM and

also accounted for lateral migration velocity variations via the split-step approximation.

Contrary to the methods mentioned thus far, least-squares reverse-time migration (LSRTM)

utilizes the two-way, rather than the one-way, wave-equation to construct the forward and

adjoint operators used for imaging. By iteratively minimizing the difference between the

observed and synthetic data, LSRTM delivers a ”true amplitude” image and sharpens the

reflectivity of subsurface reflectors (Dong et al., 2012). Østmo et al. (2002) developed a
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frequency-domain formulation for LSRTM that solves the constant-density acoustic wave-

equation using finite-difference methods. The large computational overhead of LSRTM hin-

ders its implementation in 3D seismic exploration. To alleviate the computational burden,

researchers have explored data compression algorithms centred around simultaneous-source

data and regularized inversion (Dai et al., 2012; Xue et al., 2015; Cheng et al., 2016). Reg-

ularized LSRTM has also been used to attenuate crosstalk artifacts that arise when surface-

related multiples are incorporated into the migration process (Zhang and Schuster, 2013;

Wong et al., 2015; Tu and Herrmann, 2015). As an alternative to the standard least-squares

data misfit, Zhang et al. (2014) proposed a generalized LSRTM method that maximizes the

cross-correlation between the simulated and observed seismic data.

The LSM problem can be formulated in the image domain. Chavent and Plessix (1999)

studied the Hessian matrix associated with image domain LSM and show that an optimal

matrix of weights can be designed to restore the correct amplitudes of migrated events.

Hu et al. (2001) applied a deblurring filter to the migrated image to reduce migration

artifacts and to improve spatial resolution. Sjoeberg et al. (2003) adopted a similar approach

through a 2D deconvolution technique. By assuming a 1D layered velocity model, Yu

et al. (2006) introduced pre-stack migration deconvolution to approximate the inverse of

the Hessian matrix. Guitton (2004) approximated the inverse of the Hessian matrix with

a bank of non-stationary matching filters that partially captures the effects of least-squares

inversion. Rickett (2003) compensated for uneven illumination in subsurface images through

a normalization scheme that is appropriate for wave-equation migration algorithms. The

scheme estimates weights from the ratio between the synthetic migration result and an

initial reference model. Plessix and Mulder (2004) proposed amplitude-preserving migration

weights based on the Born approximation of the acoustic wave equation. An advantage of

LSM in the image domain, compared to the data domain, is that the problem can be posed

in a target-oriented manner. Valenciano et al. (2006) introduced a target-oriented strategy

that estimates a wave-equation least-squares inverse image. Target-oriented approaches are

particularly useful when targeting localized reservoir targets under complex overburdens

(Fletcher et al., 2016).

1.5 Contributions of this thesis

The main contributions of this thesis are summarized as follows:

• My research developed an algorithm where the randomized CP decomposition is used

to attenuate incoherent noise of multicomponent seismic data in the pre-stack domain.

The over-determined least-squares subproblem associated with CP decomposition can



CHAPTER 1. INTRODUCTION 8

be solved efficiently using a random sketching technique. The improved efficiency

stems from the reduced size of the subproblems. The proposed algorithm shows supe-

riorities in handling seismic data with static shifts and multi-dimensional seismic data

when compared to traditional algorithms.

• I propose a new registration method to match PS-wave images to PP-wave images by

minimizing the difference between the PP-wave and the warped PS-wave envelope. I

adopt a parameterization of the Vp/Vs ratio to reduce the number of unknowns, and

guarantee is positiveness. This reparameterization represents Vp/Vs ratio using cubic

spline basis functions. Furthermore, I extend the conventional single-trace matching

process to multi-channel registration using the Kronecker product.

• Techniques in the field of matrix and tensor completion that I developed for processing

converted wave has inspired my work in the field of imaging. I propose an efficient

algorithm for the least-squares reverse time migration (LSRTM) in the image domain.

The Hessian matrix is approximated as the superposition of Kronecker products, and

the Kronecker factors are estimated from preferential samples of the Hessian matrix.

The efficiency of LSRTM can be improved significantly as the inversion process only

involves operations of matrices of small size.

Overall my work contributes to the field of exploration seismology and to the subfields of

multicomponent seismic data processing and seismic imaging. My thesis contributes to mul-

ticomponent seismic data processing by proposing denoising, regularization and registration

methods for prestack PP and PS-wave dataset. My thesis contributes to seismic imaging

by developing a new fast iterative method where the Hessian of the least-squares migration

problem is approximated by the sum of Kronecker products.

1.6 Thesis overview

In Chapter 2, I first provide notations used for tensor algebra and introduce the definitions

of several linear operators, such as Hadamard product, Kronecker product and Khatru-Rao

product. Secondly, by drawing the connection to the rank of a matrix, the definition of

the rank of a tensor is discussed. I also introduce tensor decomposition and three low-rank

tensor models commonly used for seismic data processing, specifically, CP decomposition,

high-order SVD and parallel matrix factorization.

In Chapter 3, I investigate the application of the CP decomposition to random noise

attenuation in the t-x domain for pre-stack multi-dimensional seismic volumes. First, I

discuss the alternating least squares method for CP decomposition (CP-ALS). I observe that
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the CP-ALS method can be efficiently solved using a randomized technique which uniformly

samples the rows of matrices tied to an over-determined subproblem. The solution is a

reasonable approximation to the original problem. The latter leads to the fast randomized

CP decomposition (Rand-CP-ALS) algorithm. I apply the proposed algorithm to synthetic

and field seismic data volumes and compare their results against the ones obtained via

traditional denoising methods. My analysis also considers random noise attenuation in the

presence of statics, where the CP decomposition offers better noise attenuation performance

than traditional f -x domain methods.

In Chapter 4, I propose to attenuate noise of pre-stack seismic data via 5D interpola-

tion/reconstruction. I adopted a tensor completion method to reconstruct and enhance

pre-stack PP and PS-wave data independently. Missing traces are successfully recovered

and random noise are attenuated. To demonstrate the effectiveness of the proposed work-

flow, we test it on a 3D land multicomponent seismic data acquired in Central Alberta,

Canada.

In Chapter 5, I formulate multicomponent seismic data registration as a non-linear opti-

mization problem. I expand previous contributions in the field of seismic data registration

in several ways. First, I parameterize the model of Vp/Vs ratio in terms of splines. This

reparameterization can reduce the number of unknowns and alleviate the nonlinearity of

the optimization problem. Secondly, by adopting Kronecker products, the proposed algo-

rithm extends the standard single-trace matching to multi-channel registration. It enforces

smoothness constraints on the model of Vp/Vs ratio along the spatial direction. The misfit

function (the difference between PP-data and PS-data after warping) is minimized with

respect to spline coefficients that represent the model of Vp/Vs ratio. I solve the non-linear

optimization problem using the Gauss-Newton method. Tests on synthetic and field data

sets demonstrate the effectiveness and robustness of the proposed algorithms.

In Chapter 6, I propose a new and efficient LSRTM method formulated in the image

domain. In the first part, I outline the problem of LSRTM based on the theory of Born

approximation, which linearizes the seismic imaging problem. I observe that the Hessian ma-

trix associated with LSRTM can be properly approximated as a superposition of Kronecker

products. I describe two procedures for performing the Kronecker-based factorization: (1)

a direct decomposition method when the full Hessian is known (2) by solving a low-rank

matrix completion problem from a sparse set of elements from the Hessian. Once the Kro-

necker factors are obtained, the original LSRTM problem can be readily solved with the

conjugate gradient (CG) method. Operations involving small, compact matrices replace ex-

pensive migration and demigration operations resulting in fast CG iterations. The increased

computational efficiency stems from approximating the Hessian matrix as a superposition of

Kronecker products. In the final section, I present numerical examples to evaluate the per-
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formance of our proposed method against conventional LSRTM. I observe that our method

is able to produce migration images comparable to LSRTM, but at a drastically reduced

computational cost.

Chapter 7 includes the conclusion of this thesis. I summarize the main content of this

thesis and, more importantly, point out the limitations of the proposed method and discuss

potential research directions to overcome these limitations.



CHAPTER 2

Multi-dimensional tensor algebra

2.1 Introduction

Tensor decomposition can be regarded as a generalization of matrix decomposition to ten-

sors, which has been widely applied in statistics, signal processing, psychometrics and chemo-

metrics in the last decades and shown advantages in the analysis of large datasets. A tensor

is a multidimensional or N-way array. Recently, the application of tensor algebra has be-

come a subject of study for seismic data processing. Excellent results have been achieved in

the field of random noise attenuation and 5D seismic data interpolation. To facilitate the

discussion of the next chapter, I provide the notation of tensor algebra, definitions of several

common tensor operations and review three low-rank tensor decomposition algorithms that

have been applied in the seismic data processing.

2.2 Notations

The following notations and definitions are from Kolda and Bader (2009a). See also Kreimer

and Sacchi (2012a) where the same notation is adopted in a seismic processing context.

Scalars, vectors and matrices are represented by lower-case, lower-case bold, upper-case

bold letters, e.g., d , d and D , respectively. We denote the N -dimensional seismic data

as a tensor D with element D[i1, . . . , iN ] . The dimension of a multi-dimensional array is

referred as the order denoted by N . The first dimension represents time and the remaining

dimensions indicate the spatial coordinates. For instance, in a post-stack 3D seismic volume,

the spatial dimensions could represent in-line and cross-line number. Dimension sizes are

indicated by the set {I1, · · · , IN}. A mode-n fiber of a tensor is defined by fixing all the

11
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indices of the tensor except the nth index. Fibers are the high-order analogue of columns

and rows of a matrix. For example, a mode-2 fiber of a third order tensor is designated as

D[i1, :, i3].

2.3 Definitions

2.3.1 Tensor folding and unfolding

The mode-n unfolding or matricization of a tensor aligns the mode-n fibers as the columns

of an In ×
∏
m 6=n Im matrix D(n) where n = 1, 2, · · · , N and the tensor entry D[i1, . . . , iN ]

maps to the entry (in, j) of the matrix D(n) via the relation:

j = 1 +

N∑

k=1,k 6=n
(ik − 1)Jk where Jk =

k−1∏

m=1,m 6=n
Im . (2.1)

The reverse operation of unfolding or matricization is called folding or unmatricization.

Those two operations along mode-n are designated as follows

D(n) = unfoldn(D),

D = foldn(D(n)), n = 1, . . . , N .
(2.2)

Figure 2.1 shows the schematic representation of unfolding and folding for a third-order

tensor (Kolda and Bader, 2009a; Sacchi et al., 2015).

2.3.2 Tensor multiplication

We can perform the multiplication between the n-mode tensor unfolding and a matrix. The

n-mode product of a tensor D ∈ RI1×I2×···×IN with a matrix M ∈ RJ×In is denoted as

D ×n M is of size I1 · · · × In−1 × J × In+1 × · · · IN . The element-wise representation is

(D ×n M)i1···in−1jin+1···iN =

In∑

in=1

di1i2···iNmjin . (2.3)

It is equivalent to each mode-n fiber is multiplied by the matrix M. So the idea can also

expressed with unfolded tensors as

Y(n) = MD(n), (2.4)

where Y(n) is the nth-mode unfolding of the resultant tensor Y .
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Figure 2.1: Schematic representation of unfolding and folding for a third-order
tensor D with size of I1 × I2 × I3.

2.3.3 Hadamard product

The Hadamard product is defined as the element-wise product of two matrices of the same

size. Given A ∈ RI×J and B ∈ RI×J , their Hadamard product is denoted by A~B ∈ RI×J .

This operation can be extended to N matrices, and we simplify the Hadamard product via

the following expression

~
n
A(n) = A(1) ~A(2) ~ · · ·~A(N). (2.5)

2.3.4 Kronecker product

The Kronecker product of the matrix A ∈ RI×J and the matrix B ∈ RK×L is a block

matrix size of IK × JL, denoted by A ⊗ B. Each block is obtained by multiplying the

matrix B by one element of the matrix A.
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2.3.5 Khatru-Rao product

The Khatri-Rao product of matrices A ∈ RI×K and B ∈ RJ×K is a matrix of size I J ×K,

defined as the matching column-wise Kronecker product and denoted by A � B. Mathe-

matically it is defined via the following expression

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · ak ⊗ bk

]
,

where⊗ represents theKronnecker product. Similar to theHadamard product, theKhatri-

Rao product of a set of matrices can be simply denoted as

�
n
A(n) = A(N) �A(N−1) � · · · �A(1) . (2.6)

2.4 Tensor rank and decompositions

Tensor decomposition was first proposed by Hitchcock (1927) and later by Cattell (1944).

The early applications of tensor decompositions appeared in psychometrics and chemomet-

rics. Since then, tensor algebra has become extremely popular in these fields (Harshman,

1970; Carroll and Chang, 1970; Henrion, 1993; Smilde et al., 1994). In the last decade,

we have seen interests in tensor decomposition expanded to other fields include signal pro-

cessing (De Lathauwer and De Moor, 1998; Sidiropoulos et al., 2000; De Lathauwer and

Vandewalle, 2004), computer vision (Vasilescu and Terzopoulos, 2002, 2003) and data min-

ing (Liu et al., 2005; Sun et al., 2005, 2006) and more. In the remaining sections of this

chapter, I review the CANDECOMP /PARAFAC (CP) (Carroll and Chang, 1970; Harsh-

man, 1970) and Tucker (Tucker, 1966) tensor decompositions, which can be considered as

a higher-order generalization of the matrix singular value decomposition (SVD). Another

decomposition algorithm called Parallel matrix factorization (Xu et al., 2015; Gao et al.,

2015) is also commonly implemented for seismic data reconstruction will be briefly reviewed

in this chapter for the completeness of discussion.

2.4.1 Canonical polyadic decomposition

The CP decomposition represents a tensor into a superposition of rank-one tensors, which

can be written as the outer product of vectors. For example, a 3rd order rank-one tensor

D = a(1) ◦ a(2) ◦ a(3). (2.7)
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Figure 2.2: Schematic diagram of Candecomp / Parafac decomposition.

The symbol ”◦” indicate the vector outer product. One element of the tensor can be

obtained as the product of the corresponding vector elements:

di1i2i3 = a
(1)
i1
a

(3)
i2
a

(3)
i3
. (2.8)

With the definition of a rank-one tensor, the CP decomposition approximate a 3rd order

tensor as

D =

R∑

r=1

a(1)
r ◦ a(2)

r ◦ a(3)
r , (2.9)

Where R is the target rank. Figure 2.2 show the schematic representation of the CP decom-

position of 3rd order tensor. Different to the rank of matrix, there is no unique concept of

tensor rank. For example, the rank of a tensor can be different over real or complex domains

or sometimes the rank cannot even be determined (Kolda and Bader, 2009b). Once we know

the value of the target rank R, many algorithms estimate factors alternatively to find the

ones that fits the tensor best. The alternating least squares (ALS) method is one of the

most commonly used and reliable algorithms (Carroll and Chang, 1970; Harshman, 1970).

We refer readers to section 3.2 in Chapter 3 for more details about this method.

2.4.2 Tucker decomposition

The Tucker decomposition is a form of a high-order singular value decomposition (SVD). A

tensor is represented as a core tensor multiplied by a matrix along each mode (Tucker, 1966).
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We still take a 3rd-order tensor D as an example. A 3rd-order tensor can be factorized as

D = C ×1 A
(1) ×2 A

(2) ×3 A
(3) =

R1∑

i=1

R2∑

j=1

R3∑

k=1

cijka
(1)
i ◦ a

(2)
j ◦ a

(3)
k , (2.10)

where Ri is the target rank along the ith mode, C ∈ RR1×R2×R3 is the core tensor, A(i) ∈
RIi×Ri is the factor matrix along the ith mode and a

(i)
j is the jth column of A(i). Element-

wise, the Tucker decomposition in equation (2.10) can be expanded as

dpqr =

R1∑

i=1

R2∑

j=1

R3∑

k=1

cijka
(1)
pi a

(2)
qj a

(3)
rk . (2.11)

CP decomposition can be considered as a special case of the Tucker decomposition when

R1 = R2 = R3 and the core tensor C is superdiagonal (Kolda and Bader, 2009a). I introduce

the definition of Tucker decomposition in the context of a 3rd order tensor for simplification,

the Tucker model can be generalized to an Nth order tensor

D = C ×1 A
(1) ×2 A

(2) · · · ×N A(N). (2.12)

Tucker (1966) introduced the first method for computing the Tucker decomposition and this

method is known as the higher-order SVD (HOSVD), which is considered a generalization

of the matrix SVD (De Lathauwer et al., 2000). However, HOSVD is not optimal in terms

of minimizing the fitting error. Kroonenberg and De Leeuw (1980) developed an ALS

algorithm to refine the decompositions obtained by HOSVD for 3rd order tensors. The

algorithms initially designed for 3rd order tensor can be extended to Nth order tensors

straightforwardly.

2.4.3 Parallel matrix factorization

Xu et al. (2015) proposed a model to reconstruct a low-rank tensor by simultaneously

applying low-rank matrix factorization to the matricization of a tensor along each mode.

They aim to recovering a low-rank tensor M from its partial observations D = PΩ(M).

Where Ω is the set of observed elements. They solved the following optimization problem

to recover M

minimize
X(n),Y(n),Z

N∑

n=1

αn||X(n)Y
T
(n) − Z(n)||2F , subject to PΩ(Z) = D (2.13)

where X(n),Y(n) are matrix factors along the nth mode, Z is a common variable introduced

to relate these matrix factorizations. The parameters αn are weights placed on each mode
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and satisfying the condition
∑N
n=1 αn = 1. The cost function represented in equation 2.13

can be solved via an alternating minimization method. In this case, one updates X(n), Y(n)

and Z alternatively using the following expression

Xk+1
(n) = Zk(n)

(
Yk

(n)

)T (
Yk

(n)

(
Yk

(n)

)T)†
, n = 1, · · · , N

Yk+1
(n) =

((
Xk

(n)

)T
Xk

(n)

)† (
Yk

(n)

)T
Zk(n) , n = 1, · · · , N

Zk+1 = PΩc

(
N∑

n=1

αnfoldn

(
Xk+1

(n) (Yk+1
(n) )T

))
+ D

(2.14)

where the symbol ”†” is the Moore-Penrose pseudo-inverse, Ωc is the complement set of Ω.

The final recovered low-rank tensor can be obtained from the estimated matrix factorizations

using

M =

N∑

n=1

αnfoldn

(
Xk+1

(n) (Yk+1
(n) )T

)
(2.15)

Topics in the area of tensor algebra discussed in this chapter have received significant at-

tention from the seismic data processing community as they enable us exploiting the high-

dimensional structure of seismic data. For instance, regularly sampled noise-free seismic

data can be represented by a low-rank tensor. Missing traces and random noise increase the

rank of the tensor. Hence we can formulate multi-dimensional seismic data denoising and

reconstruction as a low-rank tensor decomposition or completion problem.



CHAPTER 3

Random noise attenuation via the CP decomposition1

3.1 Introduction

Tensor algebra provides a powerful framework for multidimensional seismic data processing.

A noise-free seismic volume can be represented by a low-rank tensor. Noise will increase the

rank of the tensor. Hence, random noise attenuation can be attained via low-rank tensor

filtering.

Traditional methods for random noise attenuation adopt prediction filters in f − x domain

(Canales, 1984; Gülünay, 1986) or in t−x domain (Abma and Claerbout, 1995). Incoherent

noise removal can also be formulated as a matrix rank-reduction problem (Trickett, 2003)

in f − x − y domain. Similarly, random noise reduction and seismic data interpolation

can be implemented via rank-reduction methods that operate on block Hankel matrices in

frequency-space domain (Trickett et al., 2010a; Oropeza and Sacchi, 2011a). There is no

ambiguity in the definition of the rank of a matrix (Kolda and Bader, 2009a). However,

the decomposition of tensors in terms of low-rank tensors requires some attention. First of

all, there is no unique form in which a tensor can be decomposed in terms of a tensor of

lower rank because there is no unique definition of tensor rank (Kolda and Bader, 2009a).

For instance, one can decompose a tensor in terms of the superposition of matrices and

a small tensor by adopting the high-order SVD (HO-SVD). This approach was used for

interpolation of 5D seismic volumes Kreimer and Sacchi (2011, 2012a). Similarly, one can

adopt Parallel Matrix Factorization (PMF) to represent a tensor for one with low-rank

unfolding (Xu et al., 2015; Sacchi et al., 2015). Similarly, a tensor can be decomposed

via the CP decomposition (Hitchcock, 1927; Harshman, 1970; Carroll and Chang, 1970). In

1A version of this chapter is published in Gao. W., and M. D. Sacchi, 2019, Random noise attenuation
via the randomized CP decomposition, Geophysical Prospecting, early view.

18
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this particular decomposition, a rank-one tensor is a volume computed by multi-dimensional

outer product of vectors.

My work investigates the application of the CP decomposition to random noise attenuation

in the t-x domain. First, I discuss the CP decomposition via the alternating least squares

(CP-ALS) method. The CP-ALS can be efficiently solved by a randomized method that

uniformly samples the rows of matrices associated with a least-squares subproblem (Rokhlin

and Tygert, 2008; Wang et al., 2015a; Battaglino et al., 2018). The solution is a reasonable

approximation to the original problem. The latter leads to the fast randomized CP decom-

position (Rand-CP-ALS) algorithm. Finally, I apply the proposed algorithm to synthetic

and field data volumes and compare their results against the ones obtained via traditional

denoising methods. My analysis also considers random noise attenuation in the presence

of statics, where the CP decomposition offers better noise attenuation performance than

traditional f -x domain methods. The effectiveness of the proposed algorithm is also tested

on a 3D multicomponent seismic dataset from the Western Canadian Basin.

3.2 Theory

3.2.1 Candecomp / Parafac Tensor Decomposition

The CP decomposition aims to approximate a N th-order tensor as the sum of R rank-one

tensors

D ≈
R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (3.1)

where R is called tensor rank. The factor vector along the nth mode is given by the vector

a
(n)
r of length In. The symbol ◦ represents multi-dimensional outer product. Figure 2 shows

the CP decomposition for a third-order tensor (N = 3). We can collect the factor vectors

for a given mode and organize them into a factor matrix

A(n) =
[
a

(n)
1 a

(n)
2 · · · a

(n)
R

]
∈ RIn×R, (3.2)

where A(n) is called the factor matrix for mode-n. The mode-n unfolding of the tensor D(n)

are related to the factor matrices via the relationship

D(n) = A(n)Z(n)T , (3.3)



CHAPTER 3. RANDOM NOISE ATTENUATION VIA THE CPD 20
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Figure 3.1: Schematic diagram of Candecomp / Parafac decomposition.

where D(n) is the mode-n unfolding of the tensor D. The matrix Z(n) is computed via the

Khatri-Rao product of all factor matrices after excluding A(n)

Z(n) = �
k 6=n

A(k) = A(N) � · · ·A(n+1) �A(n−1) · · · �A(1) . (3.4)

The standard algorithm for finding each factor matrix A(n) adopts the alternating least

squares (CP-ALS) method (Harshman, 1970; Kolda and Bader, 2009a; Comon et al., 2009).

The method entails a loop over all modes, fixing every factor matrix but A(n). According

to equation (3.3), the factor matrix A(n) can be updated by minimizing the following cost

function

A(n) = argmin
A(n)

||D(n) −A(n)Z(n)T ||2F , (3.5)

where || ||F is the Frobenius norm of a matrix. The system of normal equations (3.5) is

given by

A(n)
(
Z(n)TZ(n)

)
= D(n)Z

(n), (3.6)

where the A(n) is an In×R matrix. The size of Z(n) is
∏
m6=n Im×R. Therefore, the size of

Z(n)TZ(n) is R×R. The right hand side of equation (3.6), D(n), is a In ×
∏
m 6=n Im matrix

and, consequently, the size of D(n)Z
(n) is In × R. The factor matrices can be updated

alternatively via the following expression

A(n) = D(n)Z
(n) / Z(n)TZ(n) = D(n)Z

(n) × inv(Z(n)TZ(n)), (3.7)

where the operator inv denotes matrix inversion. By taking advantage of the properties of
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Khatri-Rao product, one can write

(
A(i) �A(j)

)T (
A(i) �A(j)

)
= A(i)TA(i) ~A(j)TA(j) . (3.8)

which leads to a fast way to compute the term Z(n)TZ(n) in equation (3.7)

Z(n)TZ(n) = ~
m 6=n

A(m)TA(m) . (3.9)

Algorithm 1 summarizes the CP-ALS technique.

Algorithm 1 CP-ALS Algorithm

Inputs:

full tensor D, target rank R, number of iterations N .

Initialize:

factor matrices A(2), · · · ,A(N).

while termination criteria is not satisfied do

for n=1 : N do

X = ~
m 6=n

A(m)TA(m)

Z(n) = �
m 6=n

A(m)

Y = D(n)Z
(n)

A(n) = Y/X

end for

end while

return factor matrices {A(n)}.

The input to Algorithm 1 is the observed data volume D and the target rank R. The

factor matrices of the CP-ALS method are typically initialized with random matrices. Al-

ternatively, we can chose A(n) as the R leading left singular vectors of mode-n unfolding

D(n). The latter is named the higher-order SVD (HO-SVD) initialization. None of the

initialization methods can guarantee convergence to a global minimum or even to a station-

ary point of the cost function. The iteration converges to a solution where the objective

function ceases to decrease. In general, there is often little advantage of using leading sin-

gular vectors as initial factor matrices because it might lead to a local minimum (Kolda

and Bader, 2009a). Global convergence of the CP decomposition cannot be guaranteed. A

common practice to appraise convergence entails running the algorithm multiple times (with

different random initializations) and evaluate if it leads to the same solution (Phan et al.,

2015). My experiments did not encounter problems associated with convergence. In this

article, I set the maximum number of iterations to 50. I also include a stopping criterion
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that evaluates the difference of the cost function between consecutive iterations.

The expression in Line 7 of Algorithm 1 can be computationally demanding because it is

associated with products of unfolded tensors and Khatri-Rao products of all factor matrices

except one. These products account for most of the computation time of the CP-ALS

algorithm. The direct computation of tensor unfolding is relatively slow as it involves the

permutation of the elements of a tensor. Phan et al. (2013) proposed an ingenious method

to reorganize the computation of Line 7; their technique only needs to perform one tensor

unfolding along a specific dimension to obtain Y for each mode.

In contrast, Battaglino et al. (2018) take advantage of the over-determined nature of the

problem expressed by equation 9 to propose an efficient CP-ALS solver. The new algo-

rithm samples a specified number of rows from Z(n) and the corresponding rows from DT
(n)

to obtain a new linear system of reduced size. Furthermore, the technique avoids tensor

unfolding and Khatri-Rao products of factor matrices. The next section discusses this algo-

rithm, which I designate as randomized CP-ALS (RAND-CP-ALS) decomposition.

3.2.2 An efficient CP Decomposition by Random Sketching: Ran-

domized CP-ALS Decomposition

The intrinsic highly over-determined character of the cost function in equation (3.5) becomes

more clear when it is expressed in its transposed form

A(n) = argmin
A(n)

||Z(n)A(n)T −DT
(n)||2F . (3.10)

The system is illustrated schematically in Figure 3.2, Z(n) is denoted by the tall rectangle

on the left, then the factor matrix A(n)T , on right side is DT
(n). In general, the number of

rows
∏
m 6=n Im of Z(n) is much larger than the tensor rank R, in other words, the number

of constraints is more than the number of unknowns. The task is to reduce the workload of

the CP-ALS algorithm drastically without sacrificing its accuracy. To achieve this purpose,

I introduce a randomized CP-ALS algorithm, which uniformly samples a specific number of

rows from Z(n) and the corresponding rows from DT
(n) to make a new linear system with

much smaller size. Sketching is a technique for solving linear algebra problems where one

constructs a smaller problem with a solution that is a reasonable approximation to the

solution of the original problem (Rokhlin and Tygert, 2008).

The sampled rows can be formed without explicitly forming Z(n) and unfolding the tensor

D along the nth dimension. Clearly, the latter does not involve products and sums, only

permutations of a N -D tensor. We should not dismiss the cost of the permutations. In fact,
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∏
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Ii

R
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A(n)T

=

In

∏
i6=n

Ii
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(n)

j j

A(2)

A(3)

i2
i3

i2

i3

D
Figure 3.2: The over-determined linear equations of the alternating least squares
method. I take the first mode of a third order tensor as an example. The sampled
rows of Z(1) correspond to the Hadamard product of the corresponding rows of the
factor matrices (indicated by dashed lines on factor matrices). Similarly, sampled
rows of DT

(1) correspond to mode-1 fibers of D (solid line inside cube), this sampling

strategy can avoid explicitly forming Z(1) and tensor unfolding operations.
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the unfolding and folding steps usually take more than half of the total computation time

of the CP-ALS algorithm for a moderate size third-order tensor (Phan et al., 2013). The

jth row of Z(n) is the Hadamard product of the corresponding rows of the factor matrices.

Then, the jth row can be computed as follow

Z(n)[j, :] = A(N)[iN , :] ~ · · ·~A(n+1)[in+1, :] ~A(n−1)[in−1, :] ~ · · ·~A(1)[i1, :], (3.11)

where the mapping between j and [i1, · · · , in−1, in+1, · · · , iN ] is expressed as

j = 1 +

N∑

m=1
m6=n

(im − 1)Jm, where Jm =

m−1∑

k=1
k 6=n

Ik .

Similarly, the fiber D[i1, · · · , in−1, :, in+1, · · · , iN ] corresponds to the jth row of DT
(n). Figure

3.2 schematically shows the updating of the mode-1 factor matrix of a third-order tensor.

The jth row corresponding to the Hadamard product of the ith2 row of A(2) and the ith3 row of

A(3). The jth row of DT
(1) is the mode-1 fiber D[:, i2, i3]. I assumed that the desired number

of sampled rows is ns, which is greater than max{I1, · · · , IN , R}. S is used to denote the

samples from the set {1, 2, · · · ,∏i 6=n Ii}. Battaglino et al. (2018) pointed out that a sample

size ns = 10R log(R) is sufficient for most applications. The randomized version of the

CP-ALS algorithm is shown in Algorithm 2 and named Rand-CP-ALS. Line 2 determines

the number of sampled rows from the target tensor rank and line 6 specifies the selected set,

which is denoted by S. Line 7 and line 8 represent forming the sampled rows of Z(n) and

DT
(n) from the corresponding factor matrices {A(n)} and the observed multi-dimensional

array D, respectively.
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Algorithm 2 Rand-CP-ALS Algorithm

Inputs:

full tensor D, target rank R, number of iterations N .

Initialize:

factor matrices A(2), · · · ,A(N).

ns = 10R log10(R)

while termination the criteria is not satisfied do

for n=1 : N do

Define sample set S ∈ {1, . . . ,∏i 6=n Ii}
Zs ← Sketch(S,A(1), · · · ,A(n−1),A(n+1), · · · ,A(N))

DT
s ← Sketch(S,D)

A(n) = argmin
A(n)

||ZsA(n)T −DT
s ||2F

end for

end while

return factor matrices {A(n)}.

The benefits provided by the random sketching technique are two-fold. Firstly, the algorithm

avoids memory-intensive operations required by tensor unfolding. I achieve this goal by

extracting the corresponding mode-n fibres directly from the N -D tensor. Secondly, the

size of each linear least-squares subproblem is shrunk significantly by random sampling.

The computational complexity for updating each factor matrix also reduces.

I compare the efficiency of CP-ALS and Rand-CP-ALS by applying them to two synthetic

tensors designed to have rank 20. The tensors are contaminated with 50% random noise; one

is a third-order tensor size of 500× 300× 300. The second example is a fourth-order tensor

size of 200× 80× 80× 80. I conducted numerical experiments with an algorithm written in

Julia 1.1 and run on an Intel i5 3.2 GHz machine with 8GB memory. Julia is a high-level

dynamic programming language devised for numerical analysis and computational science

(Lubin and Dunning, 2015). The target rank is also chosen to be 20. Figure 3.3 shows the

convergence rate versus computation time for CP-ALS and Rand-CP-ALS. The vertical axis

indicates the signal-to-noise ratio (SNR) is defined as

SNR = 10 · log10

(
||D||2F

||D̃ −D||2F

)
, (3.12)

where D is the clean tensor and D̃ indicates the recovered tensor obtained by applying

low-rank CP decomposition to the contaminated tensor.

In Figure 3.3, stars and triangles indicate 5 iterations of CP-ALS and Rand-CP-ALS, respec-
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a) b)

Figure 3.3: Convergence rate versus computation time. (a) Third-order tensor size
of 500× 300× 300. (4) Fourth-order tensor size of 200× 80× 80× 80.

tively. In this comparison, I set the maximum number of iterations for the two algorithms

to be 50. Both of them reach a SNR around 10 dB. One can observe that Rand-CP-ALS is

5 times faster than the CP-ALS algorithm for the third-order tensor. For the fourth-order

tensor, the speed-up is even more significant (about 15 times). It is worth noting that the

computation time of Rand-CP-ALS for both third-order and fourth-order tensors are almost

the same. This is because I uniformly sampled the same number of rows for both cases.

Therefore, the total computation workload for the two tensors is nearly identical.

3.2.3 Relation to other low-rank tensor decompositions

Higher-order SVD, which is also called Tucker decomposition, decomposes a tensor as a core

tensor multiplied by a matrix along each mode, it can be expressed as

D ≈ C×1A
(1)×2A

(2) · · ·×NA(N) =

RN∑

rN=1

· · ·
R2∑

r2=1

R1∑

r1=1

cr1r2···rNa(1)
r1 ◦a(2)

r2 ◦· · ·◦a(N)
rN , (3.13)

where C is the core tensor, the symbol ×n represent tensor-matrix multiplication along nth

mode. The matrix A(n) is the factor matrix in the nth mode. The CP decomposition can

be considered as a special case of the Tucker decomposition when the core tensor C is a

diagonal tensor with elements equal to 1 (Kolda and Bader, 2009a).
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The Parallel Matrix Factorization (PMF) method decomposes a N th-order tensor via the

following sum

D ≈
N∑

n=1

foldn

(
U(n)V(n)T

)
, (3.14)

where the symbol foldn represents matrix folding into a tensor along the nth mode. Tensor

folding includes two steps: reshaping a matrix into a multi-dimensional array, then followed

by permutation of entries of this array. The matrices U(n) and V(n) are factor matrices and

usually tall matrices (more rows than columns).

3.3 Examples

3.3.1 Synthetic data examples

To illustrate the performance of the proposed algorithms, I generate a synthetic 3D vol-

ume (t-xy) that includes 5 seismic events affected by static shifts. Figure 3.4a shows the

uncorrupted data. The 5 events were first designed to have linear, parabolic, hyperbolic

trajectories. Then, I applied smooth random temporal shifts to simulate long wavelength

statics. Smoothness in static shifts was introduced by convolving random shifts with a 2D

Gaussian kernel with a width of 5 traces (standard deviation).

I corrupted the clean data with additive band-limited (3-100 Hz) Gaussian noise (Figure

3.4b) with a SNR equal to −2.4. The size of the data volume is 500×200×200, and the time

sampling rate is 4 ms. To assist the visualization of the synthetic data cube, Figures 3.4c-e

display clean slices extracted from the data cube in Figure 3.4a. Yellow dash lines in Figure

3.4a indicate the extraction location of the slices mentioned above. Figures 3.4f-h display

the corresponding noisy sections. I also compare the proposed method against three other

commonly used denoising techniques. Specifically, they are f -xy prediction filtering (Chase,

1992), f -xy eigenimage filtering (Trickett, 2003) and MSSA (Oropeza and Sacchi, 2011a). I

adopted windowing strategy for all denoising tests. The three comparison methods operate

in the frequency-space domain. Therefore, I partitioned the data cube in its two spatial

dimensions with a sliding window of size 250 × 32 × 32, the overlap between neighbouring

windows is a quarter of the window width (8 traces). The working frequency band ranges

from 1 to 50 Hz. The proposed method (Rand-CP-ALS) operates in the time domain. I

partitioned the data cube both in time and space. The window size is 32× 32× 32. Once I

defined the window size and window overlap, only one parameter requires selection for each

technique. They are the length of prediction filters (f -xy prediction filtering), the number of

eigenimages (f -xy eigenimage filtering), the target rank of the block Hankel matrix (MSSA)

and the target rank for the CP decomposition. These parameters are chosen to give the
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Figure 3.4: (a) Synthetic clean seismic cube. (b) Noisy data volume contaminated
by band-limited Gaussian noise. (c-e) Frontal, lateral and time slices of the clean
seismic cube. (f-h) The corresponding noisy slices.
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Table 3.1: Comparison of different denoising methods, the first column indicates
the method, the second column show the parameter selected for each algorithm.
The third column indicates the SNR of processed results. The fourth column is the
computation time for one window.

Algorithm parameter SNR CPU Time (s)
f -xy eigenimage 3 3.82 1.02

MSSA 12 7.08 3.03
f -xy prediction 3 8.71 0.83
Rand-CP-ALS 11 8.93 0.26

best denoising performance in terms of SNR improvement. Table 1 summarizes the selected

parameters, the SNR of the denoised data and the computational time for each method.

Frontal sections of denoised data are in Figure 3.5. The first row shows the clean data

(Figure 3.5a), the contaminated data (Figure 3.5b) and the additive noise (Figure 3.5c).

The remaining rows display the denoised data and estimated noise in conjunction with tags

indicating the algorithm. By comparison, f -xy eigenimage is the least capable of removing

the band-limited Gaussian noise with statics, then followed by MSSA. Rand-CP-ALS yields

a slightly better SNR over f -xy prediction filtering. The MSSA algorithm performance

deteriorates by the presence of statics because the technique assumes data composed of a

finite superposition of constant dip events (Oropeza and Sacchi, 2011a). To examine my

results in more detail, I magnified the part indicated by the yellow frames in Figure 3.5a

and plotted them in wiggles in Figure 3.6. I arranged the amplified parts using the layout

of Figure 3.5. A careful comparison of my results (panels in the second column) indicates

that Rand-CP-ALS generate the best denoising result, and this observation is consistent

with the SNR reported in Table 1. Through this synthetic example, I observe that the CP

decomposition performs better than the other 3 methods at preserving events with curvature

and static time shifts.

Another advantage of the low-rank tensor filtering is its efficiency. I summarize the selected

parameters, the SNR of the denoised cube and the computational time of the methods tested

by my experiment in Table 1. The first column indicates the implemented algorithm; the

second column shows the selected parameter, the third column is the SNR of the results, and

the fourth column is the computational time in seconds. The Rand-CP -ALS method takes

the least computational time. The SNR of the result obtained via the CP decomposition is

higher than that of the three comparing methods.
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Figure 3.5: Denoising results of one frontal slice. (a) Clean synthetic data. (b)
Noisy data. (c) Band-limited Gaussian noise. (d-e) The results of f -xy eigenimage
and its removed noise. (f-g) The result of MSSA and its removed noise. (h-j) The
results of f -xy prediction and its removed noise. (k-l) The results of Rand-CP-ALS
and its removed noise.
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Figure 3.6: Magnified part of the frontal slice. (a) Clean synthetic data. (b) Noisy
data. (c) Band-limited Gaussian noise. (d-e) The results of f -xy eigenimage and its
removed noise. (f-g) The result of MSSA and its removed noise. (h-j) The results
of f -xy prediction and its removed noise. (k-l) The results of Rand-CP-ALS and
its removed noise.
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3.3.2 Field data examples

I also test the proposed method on a land 3D post-stack data cube and on a prestack

multicomponent pre-stack 4D volume.

3D Seismic volume from the Western Canadian Basin

The data cube corresponds to a seismic survey in Central Alberta (Figure 3.7a). The size

of the data cube is 750× 180× 120 samples and the time sampling rate is 4 ms. To test the

performance of the proposed method on random noise attenuation, I contaminated the data

with band-limited Gaussian noise. Figure 3.7b shows the manufactured noisy data cube.

The original sections and their slices are displayed in the second row (Figures 3.7c-e), and

the noisy counterparts are shown in the third row (Figures 3.7f-h).

The technique f -xy eigenimage filtering is omitted from the comparison because its perfor-

mance was weak compared to MSSA and f -xy prediction filtering. Similar to the synthetic

data example, a windowing strategy was implemented. The length of the prediction filter is

7. I choose the target rank R = 6 and R = 15 for the MSSA method and the CP decompo-

sition, respectively. I show the denoised sections in Figures 3.8a-c and the removed noise in

Figures 3.8d-f. From the left side, the results of MSSA, f -xy prediction and Rand-CP-ALS

are displayed sequentially. These 3 algorithms achieve similar results because the geological

structures of the exploration area are relatively flat. The seismic events present low spatial

complexity, and hence, they can be handled equally well by the 3 methods. This dataset

includes paleo-channels and their preservation after denoising could become a challenge for

noise attenuation methods. Time slices, which are indicated by the yellow dash lines in

Figure 3.7, are shown in Figure 3.9. Figures 3.9 a-c display the results after processing,

and the corresponding removed noise is plotted in the second row (Figure 3.9d-f). I found

that MSSA and f -xy prediction filtering tend to over-smooth the features of the paleochan-

nel. The CP decomposition can better preserve the boundaries of the paleochannel. My

argument is also supported by examining the noise sections (Figures 3.9d-f). Signal leak-

age associated with the paleochannel, which is marked by a yellow arrow, is observable in

Figures 3.9d and e.

Denoising of a pre-stack volume

The previous two examples demonstrate the noise attenuation capability of the CP decom-

position on 3D seismic cubes. Rand-CP-ALS are also capable of processing higher dimension

seismic data. My last example is a 3D pre-stack multicomponent dataset acquired in Cen-

tral Alberta, Canada. This dataset was acquired over a mature oil field in order to better
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Figure 3.7: 3D land seismic volume. (a) Original seismic cube with a small amount
of noise. (b) Synthetically contaminated volume by band-limited Gaussian noise.
(c-e) Frontal, lateral and time slices of the original data. (f-h) The corresponding
noisy slices.
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b)
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f)

Figure 3.8: Denoising results through different approaches. (a) MSSA, (b) f -xy
prediction filtering (c) Rand-CP-ALS. (d-f) The noise sections removed by each
method.
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Figure 3.9: Denoising results through different approaches. (a) MSSA, (b) f -xy
prediction filtering (c) Rand-CP-ALS. (d-f) The noise sections removed by each
method.
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understand the characteristics of a waterflood operation (Perz et al., 2016). I cut out part

of the dataset for testing the proposed algorithm. The time sample interval is 4 ms. The

time length of PP-wave and PS-wave records is 2.4 s and 4.4 s, respectively. The reason for

choosing a different record length for PP-wave and PS-wave data is that PS-wave reflections

arrive at the surface later than PP-wave events. The data are binned on a 20× 20m CDP

grid; each PP-wave CDP gather includes 56 traces which are arranged from near to far off-

set. On the other hand, the PS-wave data are sorted into common conversion point (CCP)

gathers, and each gather includes 36 traces. Seismic events were flattened via the NMO

correction. The pre-stack PP-wave data is a fourth-order tensor of size 600×56×150×260.

The PS-wave data is represented by a tensor of size 1100× 36× 150× 260. The dimensions

correspond to time, offset, cross-line number and in-line number. The proposed method is

also implemented with a windowing strategy, and each window includes all the traces with

different offset. In other words, I only partition the fourth-order tensor along time, cross-line

number and in-line number directions. The window length is 36 for the three dimensions. I

choose target ranks of 16 and 12 for the PP-wave and PS-wave data, respectively. The rel-

atively smaller rank for PS-wave data is selected because the converted-wave data is noisier

than the corresponding PP-wave data.

Figure 3.10 shows the result of PP-wave data. The post-stack cube before denoising (Figure

3.10a) and after denoising (Figure 3.10b) are obtained by stacking the offset dimension. To

facilitate the examination of the results, I display the sections before and after processing

in the second and third row of Figure 3.10, respectively. The locations of these sections

are indicated by the yellow dash-lines in Figure 3.10a. The random noise is attenuated

after processing, especially for the portion of the data between 1.0 s and 1.5 . The flat

events are barely seen from Figures 3.10c-d and the strong noise is successfully removed

after processing (Figures 3.10f-g).

Figure 3.11 shows the processing results of two PP-wave CDP gathers. The (in-line, cross-

line) number of these two CDP gathers are (30, 30) and (120, 200), respectively. Start from

left side, the panels in the first column display the traces before processing, panels in the

second column show the gathers after processing and panels in the third column show the

removed noise.

Figure 3.12 shows the result of PS-wave data. The post-stack cube before denoising (Figure

3.12a) and after denoising (Figure 3.12b) are obtained by stacking over the offset dimension.

Similar to the PP-wave data, I display the sections before and after processing in the second

and third row of Figure 3.12, respectively. The yellow dash-lines indicate the locations

of these sections in Figure 3.12a. Comparing the panels in the second and third rows, I

observe that seismic events appear much cleaner after denoising. The proposed algorithm

can attenuate high amplitude noise at the deeper part of the record (> 3.0s) while preserving
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Figure 3.10: 3D PP-wave land data volume. (a) Post-stack volume before denoising.
(b) Post-stack volume after denoising. (c-e) Inline, crossline sections and time slice
of the post-stack PP-wave volume before denoising. (f-h) Inline, crossline sections
and time slice of the post-stack PP-wave volume after denoising.
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Figure 3.11: CDP gathers of NMO-corrected PP-wave data. (a) PP-wave CDP
gather before denoising. (b) The same PP-wave CDP gather after denoising. (c)
The removed noise. (d-f) The denoising result of another PP-wave CDP gather.
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weak signals. Also, the amplitude map becomes more continuous after processing (Figure

3.12h).

Figure 3.13 shows the processing results of two PS-wave CCP (common conversion point)

gathers. The in-line and cross-line numbers of these two CCP gathers are also (30, 30) and

(120, 200), respectively. One important feature of converted-wave data is that near-offset

reflections are weaker than mid and far offset reflections. This feature is observable from

the CCP gathers after processing in Figures 3.13 b and e.

3.4 Discussion

Other tensor decomposition algorithms, such as HO-SVD and PMF, have been applied for

seismic data processing in the f−x domain. In essence, 4D spatial tensors are extracted for

each frequency as discussed by (Kreimer and Sacchi, 2012a; Gao et al., 2015). The current

method based on CP decomposition operates in time domain and I stress that was developed

as a means to perform SNR enhancement rather than seismic data reconstruction.

One disadvantage of tensor-based algorithms is the potentially high computational cost,

which mainly originates from tensor unfolding and folding operations. To avoid this issue,

the algorithm Rand-CP-ALS randomly selects a small number of rows from the original

large over-determined linear system, and in this way, it can reduce the computational cost

significantly and make CP decomposition suitable for seismic noise attenuation problems.

One shortcoming of the proposed method is that the random sketching technique used by

Rand-CP-ALS are unsuitable for the seismic data reconstruction problem, which formulates

seismic data as incomplete tensors with missing values. In this case, the least-squares

problems solved for updating factor matrices are no longer highly over-determined. Other

tensor decomposition methods which are free of random sampling can be used for seismic

data reconstruction.

My work addresses random noise attenuation. However, one must realize that problematic

seismic noise is never entirely random. During processing, the coherency of seismic noise

can be broken up by sorting the seismic data into a suitable domain. Then random noise

attenuation techniques can be implemented. For example, interferences introduced by si-

multaneous source seismic acquisition are coherent in common shot domain but spatially

incoherent in common-receiver and common-offset domains (Berkhout, 2008). Another ex-

ample is marine swell noise attenuation and cavitation noise attenuation. This type of noise

typically has strong amplitude and can contaminate a large number of neighbouring traces

of a given shot gather. Swell and cavitation noise can also be made incoherent by sorting

the data into common-offset or common-mid point domains (Elboth et al., 2010). These ex-
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Figure 3.12: 3D PS-wave land volume. (a) The post-stack volume before denoising.
(b) Post-stack volume after denoising. (c-e) Inline, crossline sections and time slice
of the post-stack PS-wave volume before denoising. (f-h) Inline, crossline sections
and time slice of the post-stack PS-wave volume after denoising.
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Figure 3.13: CCP gathers of PS-wave data. (a) PS-wave CCP gather before denois-
ing. (b) The same PS-wave CCP gather after denoising. (c) The removed noise.
(d-f) The denoising result of another PS-wave CCP gather.
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amples provide scenarios where random noise attenuation techniques such as Rand-CP-ALS

can be utilized to reduce coherent noise.

3.5 Conclusions

In this chapter, I have presented a random noise attenuation method for multi-dimensional

seismic data via low-rank CP decomposition, a randomized version of the alternating least

squares algorithm is also introduced to speed up the algorithm without sacrificing quality.

For random noise problems, I demonstrate the performance of the proposed algorithms

via experiments on synthetic and field 3D data volumes. My examples pertain 3D post-

stack and pre-stack cases. I have also compared the method with traditional algorithms

like MSSA and f -x prediction filtering. My research indicates that CP decomposition

techniques implemented via randomized sketching algorithms are a viable fast alternative

to conventional methods.



CHAPTER 4

Regularization of multicomponent seismic data using

low-rank tensor completion

4.1 Introduction

Mapping post-stack PS-wave data to the PP-wave time domain is a critical step before

joint interpretation and inversion. Registration techniques are often constrained by having

access to a known Vp/Vs ratio. When an accurate Vp/Vs ratio is not provided, one can

solve the problem of seismic data registration by minimizing the difference between the

PP-wave and the warped PS-wave data with a smoothing constraint applied on the warping

function. However, one possible limitation of the applicability of registration algorithms on

field multicomponent seismic data is the low signal-to-noise-ratio (SNR) of the PS-wave

data. To deal with this issue, I propose to attenuate the noise of the pre-stack seismic

data via 5D interpolation/reconstruction. In our processing flow, we recommend adopting

a tensor completion method to reconstruct and enhance pre-stack PP and PS-wave data.

The proposed flow independently reconstructs PP and PS-wave 5D pre-stack volumes via a

rank-reduction tensor completion method. Reconstruction methods based on reduced-rank

techniques are divided into two categories. In the first category, the multidimensional data

are rearranged into a block Hankel matrix, and a rank reduction algorithm is used to improve

the SNR and to reconstruct the data. Methods in this category are often named Cadzow

reconstruction methods (Trickett et al., 2010b) or multichannel singular spectrum analysis

(MSSA) reconstruction (Oropeza and Sacchi, 2011b; Gao et al., 2013). The second cate-

gory of rank reduction methods encompasses techniques based on dimensionality reduction

of multilinear arrays or tensors. Multidimensional seismic data are viewed as multilinear

arrays, and dimensionality reduction techniques are directly applied to the multilinear array

43
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Figure 4.1: Schematic diagram of 3D seismic data acquisition. (a) One trace repre-
sented in source-receiver domain. (b) The trace expressed in CMP-offset-azimuth
domain.

(Kreimer and Sacchi, 2012b; Kreimer et al., 2013; Gao et al., 2015). Our work builds on

recent efforts on simultaneous seismic reconstruction and denoising via tensor completion

techniques. Specifically, we have adopted a tensor Higher-Order SVD rank-reduction in

conjunction with an imputation algorithm (Kreimer and Sacchi, 2012b) to reconstruct and

denoise PP and PS-wave 5D volumes. To demonstrate the effectiveness of the proposed

workflow, I test it on a 3D land multicomponent seismic data acquired in Central Alberta,

Canada.

4.2 Theory

5D seismic data reconstruction can be posed as a low-rank tensor completion problem

(Kreimer and Sacchi, 2012b; Kreimer et al., 2013; Gao et al., 2015). Figure 4.1a shows

a schematic diagram of a 3D seismic data acquisition. The red star denotes a source with

coordinates sx, sy and blue triangle is a receiver with spatial coordinates rx, ry. A sin-

gle trace can be represented by d(sx, sy, rx, ry, t). After binning and sorting the data in

midpoint-azimuth-offset domain, the seismic trace can be represented with the following

coordinates: inline (il) and crossline number (cl) of the CDP gather, azimuth (α), offset

(h) and time (t) (Figure 4.1b).

In my case, the input PP data was sorted in common-middle-point (CMP ) gathers and

normal moveout (NMO) corrected. Similarly, the PS pre-stack volume was sorted into
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common-conversion-point (CCP ) gathers and then NMO corrected (Chung and Corrigan,

1985; Stewart et al., 2002).

The pre-stack volume in inline-crossline-azimuth-offset-time domain is transformed to the

frequency domain and, the tensor completion problem is posed as a fourth-order tensor

completion problem for each temporal frequency. The problem is described as

Φ = ||S ◦Z −D||2F + µ||G ×1 A
(1) ×2 A

(2) ×3 A
(3) ×4 A

(4) −Z||2F , (4.1)

where S denotes the sampling operator, Z is the desired complete low-rank tensor, D is

the observed data, the symbol ◦ is element-wise multiplication. The symbol || ||2F represents

Frobenius norm for tensors. The second term is the low-rank constraint. In this case,

we represent the low-rank tensor via the Tucker model also called the High-order SVD.

The small tensor G is called the core tensor and A(i) are orthogonal factor matrices along

each dimension. The symbol ×n represents tensor-matrix multiplication with n = 1, · · · , 4
(Kolda and Bader, 2009a). The minimization of the cost function 4.1 leads to the iterative

algorithm described in (Kreimer and Sacchi, 2012b). The algorithm requires one trade-off

parameter µ that controls the reinsertion of data and the size of the core tensor. The size

of the core tensor controls the smoothness of the reconstruction.

Algorithm 3 summarizes the HO-SVD technique. The input to this algorithm includes

observed data D, sampling operator S, target rank for each mode r1, r2, r3, r4 and an add-

back parameter α which controls the amount of reinsertion of the original data into the final

solution. The parameter α is related to the trade-off parameter µ in equation 4.1 given as

α = µ
N+µ . The stopping criteria include two conditions: maximum number of iterations

maxiter and tolerance tol of relative change rel between two successive iterations. The

relative change used in this chapter is defined as

rel =
||Zk+1 −Zk||2F
||Zk||2F

(4.2)

The final output of this algorithm is the reconstructed low-rank tensor Zk+1. The initial

guess of factor matrix A(i) can be obtained as the first ri left singular vectors of tensor

unfolding D(i). I is a 4D tensor has same size as observed data. The symbol ◦ represents

element-wise multiplication.
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Algorithm 3 HO-SVD Algorithm

Inputs:

Observations D, Sampling operator S, target rank r1, r2, r3, r4,

tolerance tol, imputation parameter α.
Initialize:

factor matrices A(2),A(3),A(4) as orthogonal matrix, Z0 = D

for k = 0 : maxiter do

U(1) = Zk ×2 A
(2)H ×3 A

(3)H ×4 A
(4)H

update A(1) with the r1 left singular vectors of U(1)

U(2) = Zk ×1 A
(1)H ×3 A

(3)H ×4 A
(4)H

update A(2) with the r2 left singular vectors of U(2)

U(3) = Zk ×1 A
(1)H ×2 A

(2)H ×4 A
(4)H

update A(3) with the r3 left singular vectors of U(3)

U(4) = Zk ×1 A
(1)H ×2 A

(2)H ×3 A
(3)H

update A(4) with the r4 left singular vectors of U(4)

compute core tensor C = Zk ×1 A
(1)H ×2 A

(2)H ×3 A
(3)H ×4 A

(4)H

update low-rank tensor Zk+1 = C ×1 A
(1) ×2 A

(2) ×3 A
(3) ×4 A

(4)

data add-back insertion: Zk+1 = αZk+1 + (I − αS) ◦D

if rel ≤ tol then

break

end if

end for

return low-rank tensor Zk+1.

4.3 Examples

We investigate the effectiveness of the proposed workflow by implementing the algorithms

on a 3D land multicomponent seismic data acquired in Central Alberta, Canada. The data

corresponds to the Washout Creek 3D survey (He et al., 2015; Perz et al., 2016). The

acquisition geometry is shown in Figure 4.2a, where orange lines denote receiver lines and

blue lines are source lines. The data are binned on 20× 20m CDP grid, and a 45◦ × 180m

azimuth-offset grid prior to 5D reconstruction.The fold-map of binned PP-wave and PS-

wave seismic data are shown in Figure 4.2c,d. The average number of the folds for PP-wave

is about 65 and the folds for PS-wave is increased to 85. Limited by the computation power,

I only take a swath of the data for testing the algorithm and the location of the data are



CHAPTER 4. MULTICOMPONENT SEISMIC DATA REGULARIZATION 47

indicated by the black boxes in the fold maps.

Seismic events were flattened via the NMO correction. The 5D interpolation algorithm

is implemented in overlapping sliding windows of size of 16 × 16 × 8 × 15. The latter

corresponds to patches of 16 × 16 midpoints, 8 azimuths and 15 offset sectors. For each

temporal frequency, the target rank (size of the core tensor) is (8, 8, 4, 8) for the PP-wave

data. Figure 4.3 shows the results of the PP-wave interpolation for one CDP gather, the raw

PP-wave data with missing traces are shown in Figure 4.3a, and the reconstructed result is

shown in Figure 4.3b. Each section is divided into 8 panels corresponding to the azimuth

index, for one azimuth segment, the traces are displayed with the increasing of offset from

left to right.

Similarly, For the PS-wave data, we use the same binning but a core tensor of size (5, 5, 4, 5).

My experiments indicate that smaller core tensors are required for the PS-wave. The re-

construction result for one PS-wave gather is shown in Figure 4.4. The 5D interpolation

algorithm preserves the weak reflection amplitudes of the converted waves at near-offset

(Figure 4.4b).

Figures 4.5a and b show the raw and reconstructed stacks of PP-wave data. The PS-wave

counterparts are shown in Figures 4.5c and d. The SNR of the post-stack cube is improved

significantly via 5D interpolation.

4.4 Conclusions

5D interpolation formulated as a tensor completion problem is efficient in attenuating ran-

dom noise in pre-stack land multicomponent seismic data. I have formulated a new registra-

tion flow where we first run 5D reconstruction on PP and PS-wave data to produce stacked

cubes with enhanced SNR. 5D interpolation allows us to denoise pre-stack volumes, and

consequently, it yields optimal input data for subsequent processes such as PP/PS registra-

tion.
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a) b)

c) d)

Figure 4.2: Washout-creek seismic data. (a) Acquisition geometry of the 3D seismic
data set, orange lines denote receiver lines and blue lines indicate source lines. (b)
Location of the seismic survey. (c) The fold-map for PP-wave data, (4) the fold-map
for PS-wave data. The black box indicates the area of the data used for testing the
proposed algorithm.
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Figure 4.3: One PP-wave gather before (a) and after (b) reconstruction.
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Figure 4.4: One PS-wave gather before (a) and after (b) reconstruction.
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Figure 4.5: (a) and (c) are the PP and PS-wave cubes before interpolation. (b) and
(d) cubes after interpolation.



CHAPTER 5

Multicomponent seismic data registration1

5.1 Introduction

Mapping PS-wave data to PP-wave time domain is a critical step before joint interpretation

and pre-stack inversion. Multi-component seismic data registration is usually performed

with provided Vp/Vs ratio, however, accurate information of velocity ratio is absent in most

cases. One can solve the registration problem by minimizing the difference between PP-wave

and warped PS-wave data with the constraints of a smooth Vp/Vs ratio field. In order to

avoid undesirable foldings and rapid changes in warped PS-wave image, we generally require

the warping function to be monotonic with respect to PP-wave travel time and smooth in

both time and spatial direction, those requirements are extremely difficult to satisfy in

common registration methods.

Multi-component seismic data registration is typically performed by cross-correlation. For

instance, Gaiser (1996) introduced a correlation-based method to determine the long wave-

length components of Vp/Vs ratio. It can be applied to any pair of PP-wave, PS-wave traces.

Fomel and Backus (2003) showed how one can warp PS-wave events to match PP-wave

events by minimizing the differences between PP-wave data and warped PS-wave data. The

latter can improve the correlation of seismic volumes obtained by manual interpretation

and registration. Seismic data registration by least squares techniques is a highly non-

linear problem. All the gradient-based algorithms may easily get trapped in a local minima

before converge to global minimum. In order to alleviate this problem, Fomel et al. (2005)

proposed a multi-step registration method which consists of initial interpretation, amplitude

and frequency balancing, registration scan, and least-squares optimization. As we mentioned

1A version of this chapter is published in Gao. W., and M. D. Sacchi, 2017, Multicomponent seismic
data registration by nonlinear optimization, Geophysics, 83, V1-V10.

52
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above, local minima pose a big challenge to optimization-based registration methods. In

order to avoid this problem, Yuan et al. (2008) use Simulated Annealing to minimize the

normalized cross-correlation between PP-wave image and warped PS-wave image. They

also account for frequency-domain differences by time-variant spectrum whitening. Hale

(2013) use dynamic warping to align PS-wave traces to its corresponding PP-wave traces.

The sequence of time shifts estimated by this method are a globally optimal solution to the

non-linear optimization problem.

All the previous mentioned methods try to invert time shifts by minimizing the difference

between PP-wave and warped PS-wave data, then estimating the Vp/Vs ratio from the

inverted sequence of time shifts. However, rapid changes may occur in the estimated Vp/Vs

ratio. In this chapter, I propose a new method which inverts the Vp/Vs ratio directly. To get

ride of some of the rapid changes in the inverted Vp/Vs ratio, the cost function is constrained

by a smoothing operator. I alleviate the non-linearity problem by decreasing the number

of unknowns. The latter is achieved by adopting cubic B-spline functions to model the

Vp/Vs ratio. This leads to a non-linear optimization problem that is solved using the Gauss-

Newton method (Wright and Nocedal, 1999). Last, by adopting Kronecker products, one is

able to extend the single-trace case to multi-channel registration.

5.2 Theory

5.2.1 Preliminaries

If I denote the PP-wave image by P (t, x) and the converted wave (PS-wave) image by S(t, x),

the registration process entails finding the warping function w(t, x) such that

P (t, x)− S(w(t, x), x) ≈ 0 . (5.1)

In the proposed algorithm, I have preferred to estimate the warping function directly from

the envelope of the data rather than the data themselves

eP (t, x)− eS(w(t, x), x) ≈ 0 . (5.2)

In the last equation eP (t, x) and eS(t, x) denote the envelope of P (t, x) and S(t, x), respec-

tively. The envelope of the seismic data is given by

eu(t, x) =
√
u2(t, x) + u2

H(t, x), (5.3)
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where u(t, x) and uH(t, x) are the seismic data and its Hilbert transform, respectively. Notice

that equation 5.2 is insensitive to any potential polarity mismatch that could exist between

PP and PS reflections. The estimation of w(t, x) from eP (t, x) and eS(t, x) is posed as a

non-linear inverse problem where I minimize the following cost function

J =

∫∫
(eP (t, x)− eS(w(t, x), x))

2
dt dx+

∫∫
µt

(
∂2w(t, x)

∂t2

)2

+ µx

(
∂2w(t, x)

∂x2

)2

dt dx .

(5.4)

The first term of J is the quadratic error function that measures the proximity of warped S-

image to the target P-image. The remaining terms penalize non-smooth warping functions.

In my algorithm, I have utilized second order quadratic regularization in time and space but

bear in mind that other regularization techniques could have also been adopted. The scalars

µt and µx are trade-off parameters that control the relative weight between the quadratic

error function and the penalty term.

5.2.2 Parameterization of the warping function

First, γ(t, x) denotes the Vp/Vs ratio. Following Fomel and Backus (2003), for migrated

data, the relationship between the Vp/Vs ratio and the warping function is given by

γ(t, x) = 2
∂w(t, x)

∂t
− 1 . (5.5)

Appendix A provides a simple derivation of equation 5.5.

A discretized version of equation 5.5 is given by

γ(tn, x) = 2
w(tn + ∆t, x)− w(tn, x)

∆t
− 1 , (5.6)

where ∆t is the time sampling interval of the PP-wave data and tn = (n − 1) ∆t is time

corresponding to the sample n. After a few mathematical derivations I arrive to the following

expression

w(tn + ∆t, x) =
γ(tn, x) + 1

2
∆t+ w(tn, x) . (5.7)

In addition, I will denote w(tn, x) = w[n, x] and γ(tn, x) = γ[n, x]. If I assume that the time

of the first time sample (n = 1) is zero for both PP-wave and PS-wave data, then t1 = 0
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and w(0, x) = w[1, x] for all x. Consequently,

w[2, x] =
γ[1, x] + 1

2
∆t

w[3, x] =
γ[2, x] + 1

2
∆t+

γ[1, x] + 1

2
∆t

w[n, x] =
γ[n− 1, x] + 1

2
∆t+

γ[n− 2, x] + 1

2
∆t+ . . .+

γ[1, x] + 1

2
∆t

. (5.8)

Let us first consider the 1D case. In other words, the registration is performed on a pair of

PP-wave and PS-wave traces. One can easily reorganize equation 5.8 in matrix form




w[2, x]

w[3, x]

w[4, x]
...

w[n, x]




= ∆t




1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1







γ[1,x]+1
2

γ[2,x]+1
2

γ[3,x]+1
2
...

γ[n−1,x]+1
2



, (5.9)

furthermore, last equation can be simplified via the following expression

w = Ap , (5.10)

where w is the discrete warping function for a single trace, m is the number of samples of

the PP-wave trace and A indicates the integration matrix. Similarly, p is a intermediate

parameter related to the Vp/Vs ratio via the following expression

p(t, x) =
γ(t, x) + 1

2
.

Equation 5.10 is valid for one spatial position x. I can generalize equation 5.10 to the multi-

channel case. For this purpose, I define time t as the first dimension and x as the second

dimension. The 2-D warping function w(t, x) for all traces are discretized and reshaped

column-wise into a vector w. Similarly, p(t, x) is reshaped into a vector p. The integration

matrix A is extended to the multi-channel case by adopting the Kronecker product (⊗)

w = (In ⊗A)p = Gp . (5.11)

In the last expression In is an identity matrix of dimension n × n where n is the number

of traces. Similarly, G = In ⊗A is a matrix of size mn×mn. The warping function must

be monotonic in time. A non-monotonic warping function will create mispositioned warped

PS-wave reflections as shown in the following example. Figure 5.1a shows a monotonic

warping function. Figure 5.1b illustrates PS-wave, warped PS-wave and PP-wave traces. In
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this case, the registration was carried out with the monotonic warping function. The black

arrows indicate the correspondence between original PS-wave and warped PS-wave traces.

Clearly, PS-wave events are mapped to the correct position in PP-wave time without altering

the sequence in which PS-wave reflections have occurred. Conversely, Figure 5.1c portrays

a non-monotonic function and Figure 5.1d the associated PS-wave, warped PS-wave and

PP-wave traces. It is clear that the PS-wave reflection has been incorrectly mapped to the

PP-wave time. Specifically, the PS-wave event at around 0.6 s mapped to a correct position

and to two erroneous positions that are marked by red arrows. A non-monotonic warping

function will also introduce a physically invalid, non-positive, Vp/Vs ratio.

The warping function obtained via equation 5.11 is monotonic as long as the elements of

p are positive. In addition, I will assume a lower bound for the Vp/Vs ratio, γ(t, x) > γl.

In my examples I have adopted γl = 1.4. The auxiliary parameter p(t, x) must satisfy the

condition p(t, x) > pl = (γl + 1)/2. After introducing a new variable u(t, x) such that

p(t, x) = pl + eu(t,x), one can adopt an unconstrained non-linear optimization solver in

terms of the new unknown u(t, x). This parameterization guarantees that γ > γl. The

multi-channel warping function can be expressed as follows

w = (In ⊗A)p = G(pl 1 + eu) . (5.12)

where 1 represents a column vector with ones in all its elements and eu is a column vector

with elements eui . I also propose to decrease the number of unknowns of the problem by

parametrizing u(t, x) in terms of 2D cubic B-splines, which has an advantage for recon-

structing continuous smooth model (Hill et al., 2001; Maintz and Viergever, 1998; Klein

et al., 2010).

u(t, x) =

p1∑

j1=1

p2∑

j2=1

cj1,j2b
j1(t)bj2(x) , (5.13)

where cj1,j2 indicate the nodal points of the cubic B-splines, p1 and p2 indicate the number

of nodal point in time and space, respectively. Similarly, bj1(t) and bj2(x) are the cubic B-

spline basis functions. By re-parameterizing the unknowns in terms of splines, the number

of unknowns of my problem are reduced from mn to p1 p2. The number of nodal points in

time is chosen as p1 = bns/nwc where ns is the number of samples per PS-wave trace and

nw is the length of the wavelet of the PS-wave data. The symbol b.c is used to indicate the

integer part of its argument. The length of the wavelet (nw) is estimated from the dominant

frequency of the PS-wave data. The number of nodal points in space is computed such that

the distance between two consecutive spline nodal points is 2nw.
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Figure 5.1: a) Monotonic warping function. b) Registration with the monotonic
warping function. PS indicates the PS-wave trace and PS’ is the warped PS-wave
trace after registration, PP denotes the corresponding PP-wave trace, the black
arrow indicates the correspondence between PS-wave and warped PS-wave traces.
c) Non-monotonic warping function. d) Registration via the non-monotonic warping
function. The events marked by red arrows are repeated by the warping process
and they appear at wrong positions.
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I can also write equation 5.13 in matrix form as follows

u = Bc , (5.14)

where c is a vector of size (p1 p2 × 1) containing the spline coefficients in vectorized form.

The matrix B of size (mn × p1 p2) is formed by the cubic B-spline basis functions (Klein

et al., 2010). Therefore, the final warping function is expressed as follows

w = G(pl 1 + eBc) . (5.15)

I also need to compute the derivative of warping function w with respect to spline coefficients

c, a quantity that will be needed by my optimization algorithm,

S =
∂w

∂c
= BT diag(eBc)GT , (5.16)

where the symbol diag means to form a diagonal matrix from the vector with elements

e[Bc]i .

5.2.3 Time domain interpolation

In order to evaluate the misfit, I need to evaluate S(w(t, x), x) at discrete time samples that

coincide with those of eP (t, x). This is solved by expressing eS(t, x) in terms of 1D cubic

splines (Philippe et al., 2000)

eS(t, x) =

m∑

j=1

αj(x)φj(t) , (5.17)

I can estimate and save the coefficients of the expansion in terms of splines for each envelope

trace. Then, whenever one needs to estimate eS(w(t, x), x) , I use equation 5.17 to synthesize

data by evaluating the sum at t = w(t, x). In my optimization code I will need to compute

derivative of the form ∂eS(w(t,x),x)
∂w(t,x) which can be easily computed in terms of the spline basis

functions via the expression

∂eS(w(t, x), x)

∂w(t, x)
=

m∑

j=1

αj(x)φ
′

j(w(t, x)) (5.18)

where φ
′

j(w(t, x)) is the derivative of the 1-D spline basis function. When working with

multi-channel data the PP-wave image eP (t, x) is reshaped as a column vector eP of length of

mn. Accordingly, the envelope of the warped PS-wave image eS(w(t, x), x) is also vectorized

and represented by eS(w) of length mn. The partial derivative of the envelope of the warped
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PS-wave image with respect to the warping function can be represented in terms of a diagonal

matrix

D = diag(
∂eS(w)

∂w
) . (5.19)

The argument of diag(.) is a vector with the derivatives of the PS-wave envelope with respect

to the warping function at a given time. The vector is conveniently deployed in the main

diagonal of D and it will be used in the optimization code in next subsection.

5.2.4 Optimization

The Gauss-Newton method (Wright and Nocedal, 1999) is used to minimize the objective

function of the problem. I am now in condition of writing equation 3 in discrete form

J(c) = ‖eP − eS(w)‖22 + µ2
x‖Lxw‖22 + µ2

t‖Ltw‖22 . (5.20)

Where eP and eS are PP-wave and PS-wave multi-channel data in vector form. Similarly, Lt

and Lx are matrices of second order derivatives in time and space, respectively (Appendix

B). To proceed with my algorithm, I first approximate the cost function J in terms of a

second order expansion

J(c) = J(c0) + gT∆c + ∆cTH∆c , (5.21)

where is the gradient g is given by

g = −2SD(eP − eS) + 2µxSL
T
xLxw + 2µtSL

T
t Ltw . (5.22)

The gradients points in the direction of maximum rate of change of the objective function.

The Hessian, after ignoring higher order derivatives of the misfit with respect to model

parameters, can be written as follows

H = 2SDDTST + 2µxSL
T
xLxS

T + 2µtSL
T
t LtS

T . (5.23)

It is well-known that the Hessian matrix describes the local curvature of the objective

function. The Gauss-Newton step can be expressed as

∆c = −H−1g (5.24)

with update given by

ck+1 = ck + α∆c (5.25)
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Figure 5.2: a) P-wave velocity model. b) S-wave velocity model. These models were
used to generate synthetic data and to test the proposed registration algorithm.

where ck+1 is the vector of B-spline coefficients at the k + 1th iteration. Similarly, ck

represents the vector of B-spline coefficients at kth iteration. The scalar α is a step-size that

is determined by Armjio’s line search method (Nocedal and Wright, 2006).

5.3 Examples

5.3.1 Synthetic example

To demonstrate the performance of the proposed method, I applied my algorithm to a

synthetic and to a real data set. At first, the method is tested on a synthetic data set.

Figure 5.2a shows a P-wave velocity model. The P-wave velocity increases from 1.8 km/s

to 3.6 km/s with depth. At a depth of about 0.45 km, a rapid P-wave velocity decrease is

designed to simulate a gas-bearing layer. The latter is well known for producing sharp P-

wave velocity decrease and P-wave energy attenuation (Barkved et al., 2004). On the other

hand, the reduction of S-wave velocity caused by gas-bearing layer is much less than on the P-

wave velocity. Figure 5.2b shows a S-wave velocity model which increases from 0.55 km/s to

1.6 km/s. I can observe that there is no sharp velocity decrease at the corresponding location

of the gas-bearing layer. I point out that this model was extracted from the Marmousi-2

velocity model (Martin et al., 2002).

I used the models in Figure 5.2a-b to compute their associated reflectivity sequences in
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time. Then, I computed synthetic seismograms via the convolutional model. Figures 5.3a-

b show the post-stack synthetic PP-wave and PS-wave sections, respectively. I have used

a zeros-phase Ricker wavelet with a central frequency of 25 Hz to simulate the PP-wave

section and the central frequency for PS-wave section is 12.5 Hz. The upper boundary of

the gas-bearing layer generates an event with negative reflection coefficients on the PP-wave

section. Positive standard polarity and a zero-phase wavelet were applied for generating

synthetic seismic data. Under this convention, I expect a trough at the upper boundary of

the gas-bearing layer on the PP-wave section. The event is marked by a black arrow that is

positioned at about 0.4 s in Figure 5.3a. However, I can see a peak of the corresponding event

(marked by a black arrow in Figure 5.3b at a time about 0.9 s) on the PS-wave section. This

polarity flip could adversely affect registration algorithms. Another visible discrepancy is the

strong reflection from the lower boundary of the gas-bearing layer in the PP-wave section.

The latter is missing in the PS-wave data. This extra event in the PP-wave data behaves

like a coherent noise signal for the registration algorithm. Both sections were contaminated

by band-limited Gaussian noise. Figures 5.3c-d show the sections contaminated with noise.

The noise corresponds to an snr = 2 where snr is defined as the ratio of the mean square

amplitude of the noise-free signal to the variance of the noise. Each PP-wave trace is

composed of 258 time samples and the sample interval is ∆t = 0.004 s. Similarly, each PS-

wave trace is composed of 528 time samples with same sample interval. There are 300 traces

in each section. Finally, I mention that I plot every 10 traces for visualization purposes.

I utilized the proposed non-linear optimization method to solve the registration problem.

My algorithm requires an initial Vp/Vs ratio model. The initial model affects the accuracy

of the final estimate of the Vp/Vs ratio as the convergence to the global minimum cannot

be guaranteed. To alleviate the problem, I decrease the number of model parameters by

representing them with cubic B-splines and I ensure that the inverted Vp/Vs ratio honors

a predefined lower bound. By taking this special parameterization, the proposed algorithm

relaxes the requirement of an accurate initial guess. To explore the sensitivity to the initial

Vp/Vs model, a linearly decreasing Vp/Vs model is used as the initial guess for this synthetic

data example. The initial 1D Vp/Vs ratio model, which is far away from the true model, is

shown in Figure 5.4a. Figure 5.4b is the smoothed true velocity ratio model. A normalized

Gaussian filter with length of 40 samples was used to smooth the true velocity ratio model.

I choose to show the smoothed version of the Vp/Vs ratio model because only its long-

wavelength components can be recovered by the proposed registration procedure. I have

tested the algorithm under different scenarios to examine the influence of the number of

spline nodal points (p1, p2) and the trade-off parameter on the inverted Vp/Vs ratio. For

this purpose, I choose µ = µx = µt. I also define a scalar R as the ratio of the data misfit

to the regularization term with the given initial guess. The value of µ is adjusted to yield

a user defined value of R. This ad-hoc procedure has enabled us to explore a user-friendly
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Figure 5.3: a) PP-wave seismic data associated with the velocity model in Figure
5.2a. b) PS-wave seismic data associated with the velocity model in Figure 5.2b.
c) and d) PP-wave and PS-wave sections after contamination with random noise,
respectively.
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procedure for trade-off parameter selection. I have run examples under different scenarios

by varying the values of the parameters (p1, p2, R). Figure 5.4c shows the estimated smooth

Vp/Vs model with parameters (20, 10, 100). Figure 5.4d shows the Vp/Vs model inverted

with parameters (20, 10, 10). Comparing Figure 5.4c with Figure 5.4d, the high-frequency

perturbations in Figure 5.4c are suppressed by the smoothing constraint and the low Vp/Vs

ratio zone at about 0.4 s is correctly retrieved. The inaccurate low Vp/Vs ratio bands at the

top of Figures 5.4c-d are caused by the lack of strong reflections near the surface.

To investigate the influence of the number of spline nodal points on the estimated Vp/Vs

ratio, I also explore parameters (10, 5, 100) and (10, 5, 10) in Figures 5.4e and 5.4f, respec-

tively. The low Vp/Vs ratio zone is barely identifiable from Figures 5.4e and 5.4f. My results

show that decreasing p1, p2 may lead to overly-smooth solutions.

I also compared results obtained with parameters (20, 10, 10) and (10, 5, 10) in Figure 5.5.

I denoted test1 the solutions with parameters (20, 10, 10). Similarly, test2 designates

solutions with parameters (10, 5, 10). Figure 5.5a shows the initial, the true and inverted

models for test1 and test2. The results correspond to the central column in the Vp/Vs

ratio model, I can see that the inverted model expressed with large number of spline nodal

points is capable of capture more details of the true Vp/Vs model. Figure 5.5b shows the

convergence curve for test1 and test2. The horizontal axis represents iteration number k

and the vertical axis expresses the normalized data misfit at iteration k, J [k]/J [1]. The non-

linear optimization algorithm stops when | J [k] − J [k−1] |/| J [1] | < ε with ε = 0.02 or when

the number of iterations reaches a user supplied maximum of 50 iterations. As anticipated,

increasing the number of nodal points improves data fitting. The value of the warping

function for the central trace in the section is shown in Figure 5.5c for both test1 and

test2. The differences between the estimated and true warping functions for both models

are minor. Differences in msecs for test1 and test2 are shown in Figure 5.5d.

My exploratory analysis of trade-off parameters leads to adopting the set (10, 5, 10) for

the remaining test with synthetic data. The Vp/Vs ratio and the warping function are

determined from the envelopes of the PP-wave and PS-wave sections. However, the warping

function is finally applied directly to the PS-wave section. For completeness, I compared

warping functions estimated directly from the data and the envelope. Figure 5.6a shows the

PP-wave synthetic section. Figure 5.6b shows the warped PS-wave section with warping

function estimated from the envelope. Similarly, Figure 5.6c shows the warped PS-wave

section with warping function estimated from seismic data. All the events are correctly

shifted to the right location in PP-wave time domain except for the reflections associated

with the upper boundary of the gas-bearing layer. These reflections are indicated via black

arrows at about 0.4 s. The warping function estimated from the seismic data improperly ties

the event associated with the upper boundary in the PS-wave section to the event associated
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Figure 5.4: a) The initial Vp/Vs ratio adopted by my registration algorithm. b)
The smoothed synthetic Vp/Vs ratio. c) The estimated Vp/Vs ratio with parameters
(p1, p2, R) = (20, 10, 100). d) The estimated Vp/Vs with parameters (20, 10, 10). e)
The estimated Vp/Vs with parameters (10, 5, 100). f) The estimated Vp/Vs with
parameters (10, 5, 10). The number of nodal points in time and space is given by
p1 and p2, respectively. The scalar R is the ratio of the misfit function to the
regularization term in the first iteration. The trade-off parameter µ is adjusted to
yield a user-defined R.
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a) b)

c) d)

Figure 5.5: a) The central columns of Vp/Vs ratio model, the red line indicates the
true Vp/Vs ratio. The black line indicates the initial Vp/Vs ratio. The green line
is the Vp/Vs ratio for test1 which corresponds to using parameters (p1, p2, R) =
(20, 10, 10). The blue line is the Vp/Vs ratio for test2 estimated with parameters
(10, 5, 10). b) The relative misfit versus iterations. c) The true and estimated
warping functions for test1 and test2. d) Warping function error associated to
test1 and test2.
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with the lower boundary in PP-wave section. I also provided a trace-by-trace comparison

in Figure 5.6d where I portray registered traces for traces 5, 100, 173 and 280. The figure

compares traces registered directly from the seismic data versus traces registered from the

envelopes. The black circles in Figure 5.6d highlight differences between envelope based and

seismic data based registration. The warping function computed using the envelope yields

a registered PS-wave reflection with correct polarity.

Figure 5.7 shows the frequency spectrum of the PP-wave data, the PS-wave data and the

warped PS-wave data, respectively. The high-frequency components of the PS-wave data

are boosted by warping the PS-wave data set to PP-wave time. The PS-wave traces are

squeezed when the PS-wave time is transformed to PP-wave time by the registration process.

Therefore, the high-frequency components of the PS-wave data are boosted. Ursenbach

et al. (2013) pointed out that the latter does not necessarily mean that the resolution of the

warped PS-wave data has been improved. The resolution is determined by the wavelength

of the wavelet of the seismic data. To improve the resolution one needs to incorporate a

deconvolution process that truly expands the bandwidth of the PS-wave data as proposed

by Gao and Sacchi (2016).

5.3.2 Field 2D data example

The proposed method was also tested on a field data set from East China. The data are

shown in Figure 5.8. The PP-wave, warped PS-wave and raw PS-wave data are shown in

Figure 5.8a, b, c, respectively. The data set consists of 400 traces. Each PP-wave trace has

600 samples. Similarly, the PS-wave data consist of traces of 1200 samples. The time sample

interval is 0.004 s. In this example, I use p1 = 30 and p2 = 15 B-splines nodes to represent

the Vp/Vs ratio. The initial model of Vp/Vs is obtained from an initial interval PP-wave

and PS-wave velocity model. The trade-off parameter µ was computed such that the misfit

to regularization ratio in the first iteration is R = 10. Preprocessing was performed to

normalize the amplitude of PP-wave and PS-wave data prior to registration. Preprocessing

involves an amplitude scaling method that includes four steps (Margrave, 2007): 1) I first

compute the envelope of each trace, 2) the envelope is convolved with a Gaussian smoothing

filter of length 15 points, 3) the input traces are divided by the smoothed envelope and 4)

the output traces are normalized by dividing each trace by its maximum absolute value.

I also show a small portion of the PP-wave and the warped PS-wave images in Figures 5.9a

and 5.9b. These windows are indicated via the black boxes in Figures 5.8a and 5.8b. The

dashed lines in Figures 5.9a and 5.9b indicate the joint guided geological interpretations of

PP-wave and PS-wave data. Evaluating seismic registration can be problematic given the

differences in the spectral content of PP-wave and PS-wave data. I apply a band-pass filter
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5 100 173 280

Figure 5.6: a) PP-wave synthetic traces. b) Registered PS-wave traces with warp-
ing function estimated from the envelope of the seismic data. c) Registered PS-
wave traces obtained with the warping function estimated from the seismic data.
The black arrows in Figures 5.6a,b,c mark the reflectors associated with the up-
per boundary of the gas-bearing layer. d) Trace-by-trace comparison between the
PP-wave and the warped PS-wave data. Traces at four locations (5, 100, 173 and
280) are extracted for comparison. Each group (separated by two empty traces)
consist of 3 traces, from left to right, they are PP-wave data, registered PS-wave
data with warping function estimated from the envelope and registered PS-wave
data with warping function estimated from seismic data directly. The black circle
in Figure 5.6d mark the difference between envelope based and seismic data based
registration.
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Figure 5.7: Average normalized power spectral density (PSD) of the synthetic data
used to test the proposed registration algorithm. The black line is the PSD of the
PP-wave section (Figure 5.6a). The green line is the PSD of the PS-wave section
(Figure 5.3d). The blue line is the PSD of the PS-wave data after registration
(Figure 5.6b).
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Figure 5.8: Field data example. a) PP-wave section. b) PS-wave section after
registration. c) The original PS-wave section before registration.

to the PP-wave data to mimic the bandwidth of the warped PS-wave data. The filtered

PP-wave data is shown in Figure 5.9c. The spectra of the PP-wave, warped PS-wave,

band-pass filtered PP-wave data are included in Figure 5.9e. Finally, Figure 5.9d shows the

difference between band-pass filtered PP-wave data and warped PS-wave data. All images

were plotted using the same scale. To further examine the registration in detail, I provided a

trace-by-trace comparison between band-pass filtered PP-wave and warped PS-wave traces

in Figure 5.9f. These traces were extracted from 3 locations with trace number 230, 260 and

290. The PP-wave trace and warped PS-wave trace from an identical location were plotted

side-by-side, traces for different location are separated by one empty trace.

Figure 5.10a shows the initial Vp/Vs ratio model. Figure 5.10b shows the estimated final

smooth Vp/Vs model via the proposed non-linear optimization method.

5.3.3 Field 3D data example

I also extended the proposed algorithm to a 3D multicomponent seismic data acquired

in central Alberta basin. Figure 5.11a-b show the PP-wave and registered PS-wave cube

respectively. After registration, the PS-wave events are shifted to the location of their

corresponding PP-wave events. To examine the result of the registration, I will compare the

time slice, inline sections PP-wave and warped PS-wave cube.

Figure 5.12 shows the time slices of PP-wave data and warped PS-wave data at time about

1.9 s, the location of these two time slices are indicated by the yellow dash lines in Figure

5.11. The main pattern of the amplitude of PP-wave time slice is very similar to the one of

the warped PS-wave data.
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Figure 5.9: Window of the data displayed in Figures 5.8a and b. a) The PP-wave
seismic section. b) The warped PS-wave seismic section. The dashed lines in a,b
show my interpretations of the PP-wave and warped PS-wave data. c) The band-
pass filtered PP-wave section with the same frequency bandwidth as the warped PS-
wave data. d) The difference between the warped PS-wave data and the band-pass
filtered PP-wave data. All images were displayed with the same scale. e) Average
spectrum of the PP-wave data (solid line), the warped PS-wave (dashed line) and
the band-pass filtered PP-wave (dotted line) data. f) Trace-by-trace comparison
between the band-pass filtered PP-wave and the warped PS-wave data.
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Figure 5.10: Field data example. a) The initial Vp/Vs ratio. b) The estimated
Vp/Vs ratio obtained via the proposed registration technique.
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Figure 5.11: 3D seismic cube. a) PP-wave data. b) Registered PS-wave cube.
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Figure 5.12: a) Time slice of PP-wave data. b) Time slice of registered PS-wave
data.
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Figure 5.13: a) Inline section of PP-wave data. b) Inline section of registered PS-
wave data. c) wiggle plot of PP-wave and registered PS-wave traces.

Figure 5.13a,b show the inline sections of post-stack PP-wave and warped PS-wave data,

respectively. All the main events in the PP-wave and the warped PS-wave data are aligned.

To examine the details of registration, I plot 4 traces of PP-wave data and 4 corresponding

traces of PS-wave data side-by-side in Figure 5.13c. The location of the 4 traces are indicated

by the yellow dash lines in Figure 5.13a,b.

5.4 Conclusions

I have presented a new algorithm for multicomponent seismic data registration. The al-

gorithm inverts for a smooth Vp/Vs ratio. The velocity ratio is represented by splines.

Parametrization via splines provides two benefits: the number of unknowns is reduced and

the smoothness of the estimated Vp/Vs ratio is guaranteed. The proposed algorithm for seis-

mic data registration entails minimizing a non-quadratic cost function via the Gauss-Newton

method. The multi-channel registration case adopts a Gauss-Newton algorithm with sparse

matrix-times-vector products, making it computationally efficient and applicable for the

registration of a large number of traces. The proposed algorithm was tested via synthetic

and field data sets. The synthetic data example demonstrates that this registration method

is capable of overcoming polarity flips between PP-wave and PS-wave data. The algorithm

is also capable of recovering the long wave-length components of Vp/Vs ratio model. Finally,
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the applicability of the proposed method was investigated via a field data example. My field

test shows PP-wave and warped PS-wave sections that agree with my preliminary geological

interpretations of the sections. A smooth Vp/Vs ratio model was obtained as an important

by-product of multi-component seismic data registration.



CHAPTER 6

Kronecker least-squares reverse-time migration1

6.1 Introduction

Reverse-time migration (RTM) is a two-way wave-equation based imaging technique which

is suitable for imaging complex structures (McMechan, 1983; Baysal et al., 1983; Whitmore,

1983). however, strong migration artifacts have been observed in seismic images generated

by this method (Etgen et al., 2009). Least-squares RTM (LS-RTM) has been proposed to

estimate images with enhanced resolution and to suppress acquisition and migration related

artifacts (Lailly and Bednar, 1983; Tarantola, 1984b). LS-RTM minimizes the difference

between the observed data and the synthetic data and can deliver the so-called true ampli-

tude images with sharper reflectors (Dong et al., 2012). Researchers have also implemented

LS-RTM to reduce the crosstalk noise associated with the blended shot gathers (Dai et al.,

2012). The least-squares migration (LSM) problem can be alternatively formulated in the

image-domain. By studying the Hessian matrix associated with LSM, we can estimate an

optimal weight matrix to restore the true amplitude of the migrated events (Chavent and

Plessix, 1999) and design deblurring filters to improve the spatial resolution of images (Hu

et al., 2001).

One shortcoming of LS-RTM is its prohibitive computational cost which has been the main

obstacle preventing LS-RTM from being used in industrial production. In each iteration,

one needs to run forward finite-difference modelling, and its adjoint operator for all common

shot gathers (Xu and Sacchi, 2017).

In this article, I propose a new and efficient LSRTM method formulated in the image domain.

The increased computational efficiency stems from approximating the Hessian matrix as a

1A version of this chapter is published in Gao. W., Gian. M. and M. D. Sacchi, 2019, Fast least-squares
reverse-time migration via a superposition of Kronecker products, Geophysics, accepted

75
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superposition of Kronecker products. This paper is structured as follows. In the first section

I outline the theory of image-domain LSRTM before introducing the factorization of the

Hessian as a superposition of Kronecker products (Van Loan and Pitsianis, 1993). I describe

two procedures for performing the Kronecker-based factorization: (1) a direct decomposition

method when the full Hessian is known (2) by solving a low-rank matrix completion problem

from a sparse set of elements from the Hessian. Once the Kronecker factors are obtained, the

original LSRTM problem can be readily solved with the conjugate gradient (CG) method.

Operations involving small, compact matrices replace expensive migration and demigration

operations resulting in fast CG iterations. In the final section, I present numerical examples

to evaluate the performance of my proposed method against conventional LSRTM. I observe

that my method is able to produce migration images comparable to LSRTM, but at a

drastically reduced computational cost.

6.2 Theory

6.2.1 Least-squares reverse-time migration

My exploration of KLSRTM is limited to the 2-D case to simplify discussions; extensions to

3D are a topic for future research. The forward modeling operators are based on the Born

approximation and are expressed in terms of Green’s functions. A velocity perturbation at a

subsurface point x = (z, x) is denoted by m(x). The terms image and velocity perturbation

are used interchangeably throughout this article. The seismic data d(xr|xs;ω) acquired at

receiver position xr = (zr, xr) resulting from a source at position xs = (zs, xs), can be

expressed by the following linear equation in the frequency domain (Plessix and Mulder,

2004):

d(xr|xs;ω) = ω2
∑

x

fs(ω)G(xr|x;ω)G(x|xs;ω)m(x), (6.1)

where ω is the angular frequency, fs(ω) is the source signature, and G(x|xs;ω) is the Green’s

function for an impulsive point source at xs. To find the model that optimally fits the

observed data, I formulate the inverse problem in data space and minimize the following

cost function (Lailly and Bednar, 1983; Tarantola, 1984a; Nemeth et al., 1999; Kühl and

Sacchi, 2003):

J(m) =
1

2

∑

ω

∑

xs

∑

xr

||d(xr|xs;ω)− dobs(xr|xs;ω)||22, (6.2)

where dobs(xr|xs;ω) indicates the observed data recorded at the surface, and ‖ · ‖2 is the

L2 norm. The model vector m is the discretized form of m(x). The Born approximation

operator in equation 6.1 can be represented more compactly as a linear operator L. The
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least-squares cost function can be simplified to

J(m) = ‖Lm− dobs‖22, (6.3)

where dobs represents the data, for all time steps, sources and receivers, concatenated into

a long vector. The cost function is quadratic in terms of the model parameter m. The

minimum of equation 6.3 can be computed by setting the derivative of J(m) with respect

to the model parameter m to zero. The resultant normal equation can be expressed as

LTLm = LTdobs, (6.4)

where LT denotes the adjoint operator of the Born approximation (Xu and Sacchi, 2017).

The normal equations can be reformulated by first substituting the migrated image LTdobs

by m′ (Baysal et al., 1983; Levin, 1984; Chang and McMechan, 1986). The term LTL

corresponds to the Hessian matrix H of LSRTM. Elements of H are second-order derivatives

of the objective function J(m) with respect to the model parameter m. Using the two

substitutions, equation 6.4 can be written compactly as

Hm = m′. (6.5)

The linear system in equation 6.5 is known as the image-domain formulation of LSRTM

(Fletcher et al., 2016). The true image m = H−1m′ can be estimated by minimizing the

following least-squares problem:

argmin
m

‖Hm−m′‖22. (6.6)

The minimizer of the above optimization problem is an approximation to the solution of the

normal equations expressed in equation 6.4.

6.2.2 Superposition of Kronecker products

My efficient LSRTM algorithm is formulated by approximating the Hessian matrix as a

superposition of Kronecker products. Before introducing the approximation, I examine

the structure of the Hessian matrix for a small homogeneous velocity model with constant

density; the complete matrix is displayed in Figure 6.1a. The model is discretized on a

regular grid of size nz=50 × nx=101. The model vector (image) m and the Hessian matrix

in equation 6.6 have dimensions of nz · nx × 1 and nz · nx × nz · nx, respectively. The

model vector can be represented as an nz × nx matrix M after a reshaping operation.

Lexicographical column-wise ordering is adopted for the vectorization of matrices and vice
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versa. Figure 6.1b shows a windowed portion of the Hessian matrix (indicated by the red

box in Figure 6.1a). The top-leftmost block of the window is displayed in Figure 6.1c.

Figure 6.1 depicts the block-band structure of the Hessian matrix where each block has

dimensions nz × nz. The number of blocks is nx in both vertical and horizontal directions.

The block-band structure is characteristic of the LSRTM Hessian and is a consequence

of the finite-frequency nature of seismic data and the lexicographical ordering used when

discretizing multi-dimensional model spaces into vectors (Pratt et al., 1998).
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Figure 6.1: Block-band structure of the Hessian matrix. (a) Upper left crop of the
full matrix (0.2nz ·nx×0.2nz ·nx). (b) Windowed portion of the Hessian (5nz×5nz,
dashed red square in (a)). (c) Single nz × nz block of the Hessian matrix (dashed
red square in (b)).

Low-rank approximations are one of the most prevalent forms of matrix approximation and

can be obtained from a truncated singular value decomposition (SVD). For a highly struc-

tured, diagonally-dominant matrix such as the LSRTM Hessian, low-rank approximations

may not be ideal. I observe that a superposition of Kronecker products can approximate the

Hessian matrix more compactly than a superposition of rank-one matrices obtained by the

SVD (Van Loan and Pitsianis, 1993; Van Loan, 2000). The approximation can be expressed



CHAPTER 6. KRONECKER LEAST-SQUARES REVERSE-TIME MIGRATION 79

as follows:

H ≈
k∑

i=1

Ai ⊗Bi, (6.7)

where the Kronecker factors Ai and Bi are square matrices of size nx × nx and nz ×
nz, respectively. The symbol ⊗ and k denote the Kronecker product and the number of

factors, respectively. Replacing the Hessian matrix in equation 6.6 with the Kronecker-based

approximation, I obtain

argmin
m

‖
(

k∑

i=1

Ai ⊗Bi

)
m−m′‖22. (6.8)

The size of H (nz ·nx × nz ·nx) makes it prohibitively expensive to store in memory. As the

approximation
∑k
i=1 Ai⊗Bi has the same dimensions as H, it is also too large to store. The

storage requirement can be vastly reduced by utilizing the following property of Kronecker

products (Van Loan and Pitsianis, 1993)

(A⊗B)m = vec(BMAT ), (6.9)

where the operator vec represents the vectorization of a matrix (e.g., m = vec(M)). Equa-

tion 6.8 can be converted to

argmin
M

‖
k∑

i=1

BiMAT
i −M′‖2F , (6.10)

where M′ is the migrated image in matrix form and ‖ · ‖F denotes the fmatrix Frobenius

norm. The Frobenius norm has been used to ensure that equations 6.8 and 6.10 are equiv-

alent. Equation 6.10 indicates that we only need to save the Kronecker factors to solve the

image-domain LSRTM problem. The Kronecker factors are small matrices relative to the

size of the full Hessian. I solve equation 6.10 via iterative algorithms such as the CG method

(Paige and Saunders, 1982; Shewchuk et al., 1994). These iterative methods require the ad-

joint operator of the Kronecker-based Hessian approximation. By definition, the adjoint

operator satisfies

〈
(

k∑

i=1

Ai ⊗Bi)m,m′
〉

=

〈
m, (

k∑

i=1

Ai ⊗Bi)
Tm′

〉
,

=

〈
m, (

k∑

i=1

(Ai ⊗Bi)
T )m′

〉
,

=

〈
m, (

k∑

i=1

AT
i ⊗BT

i )m′
〉
, (6.11)
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where 〈, 〉 represents the dot product between two vectors. Using equation 6.9, it is evident

that the adjoint of the Kronecker-based Hessian approximation maps from the space of

migrated images to the model space via vec(
∑k
i=1 B

T
i M

′
Ai) (Schacke, 2004).

The Kronecker factors can be estimated by solving the following optimization problem

argmin
Ai ,Bi

‖H−
k∑

i=1

Ai ⊗Bi‖2F . (6.12)

Pitsianis (1997) solved equation 6.12 by converting it into a low-rank matrix decomposition

problem

argmin
Ã ,B̃

‖H̃− B̃ÃT ‖2F , (6.13)

where Ã =
[
vec(A1) vec(A2) · · · vec(Ak)

]
, B̃ =

[
vec(B1) vec(B2) · · · vec(Bk)

]
f,

and H̃ is the rearranged Hessian. The rearranged Hessian is defined as H̃ = R(H), where R
is a rearrangement operator that reorders the elements of a matrix. A complete description

of R is provided in Appendix C. The size of H̃ is nz ·nz × nx ·nx, the size of Ã is nx ·nx×k
and the size of B̃ is nz · nz × k. The solution to equation 6.13 is given by the SVD of H̃

followed by a reshaping of the first k singular vectors into square matrices. Algorithm 6 in

Appendix C describes how to estimate the Kronecker factors using an SVD of the rearranged

Hessian.

Figure 6.2 compares the relative approximation error (in the Hessian) as a function of the

number of factors (k) used for the matrix approximation. In the low-rank case, the term

factor refers to the singular vectors of H, whereas in the Kronecker-based approximation it

refers to the pair {Ai,Bi}. The relative matrix approximation error is defined as

E1(k) =
‖H−∑k

i=1 λiuiv
T
i ‖2F

‖H‖2F

for the low-rank approximation and

E2(k) =
‖H−∑k

i=1 Ai ⊗Bi‖2F
‖H‖2F

for the Kronecker-based approximation. fHere, λi, ui and vi are the singular value and

vectors obtained via SVD decomposition. For a fixed number of factors, the Kronecker

factorization produces considerably lower relative approximation errors than the low-rank

approximation. For instance, for k = 50 factors the error E1 = 0.43 for the low-rank approx-

imation compared to E2 = 0.037 for the Kronecker-based approximation. The Kronecker

factorization naturally results in block-band matrices and can therefore approximate the

Hessian with a small number of factors (see Appendix E for more on this). In contrast,
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the low-rank approximation requires a large number of singular vectors in order to capture

the block-band structure of the Hessian. The interpretation of this result is that while the

original Hessian may not necessarily be low-rank, the rearranged Hessian is. The error E2(k)

approaches 0 as k approaches the rank of H̃.
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Figure 6.2: Relative approximation error as a function of the number of factors k.
For the low-rank approximation, the term ‘factor’ refers to a singular vector, whereas
for the Kronecker factorization it refers to a pair of Kronecker factors ({Ai,Bi}).
The blue line corresponds to the error E1 incurred when we approximate the Hessian
with a truncated SVD. The orange line corresponds to the error E2 associated with
the Kronecker-based approximation of the Hessian.

6.2.3 Kronecker factor estimation using sparse Hessian samples

For problems of typical size, it becomes infeasible to compute the full Hessian explicitly

thus making Algorithm 6 impractical. Fortunately, only the Kronecker factors Ai and

Bi, not H, are required to solve image-domain LSRTM (equation 6.10). The final stage

in my development of KLSRTM tackles the challenge of estimating the Kronecker factors

without forming H explicitly. To do this, I proceed from my observation that the rearranged

Hessian H̃ is approximately low-rank (Figure 6.2). Recent advances in the field of matrix

completion have shown that a few randomly extracted elements of a low-rank matrix can

be used to reconstruct the entire matrix (Candès and Recht, 2009; Cai et al., 2010; Candès

and Tao, 2010; Jain et al., 2013). The problem of estimating Kronecker factors can thus be

reformulated as a matrix completion problem. The estimation problem posed in equation
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6.13 becomes

argmin
Ã∈Rnx2×k, B̃∈Rnz2×k

‖PΩ(H̃− B̃ÃT )‖2F , (6.14)

where Ω represents the set of observed samples of H̃. Wang et al. (2015b) propose an efficient

and scalable low-rank matrix completion algorithm that extends the orthogonal matching

pursuit method from the vector case to the matrix case. Their algorithm is implemented

to estimate the matrices Ã and B̃ from random samples of H̃; the factors Ai, and Bi

are extracted from the columns of Ã and B̃, respectively. Algorithm 5 in Appendix D

details the matrix completion algorithm. The completion algorithm requires samples from

the Hessian, a potentially expensive task. In the following section, I devise a preferential

sampling strategy that exploits fa priori knowledge about the characteristic structure of the

Hessian. In doing so, I limit the computational cost of the sampling step.

6.2.4 A preferential sampling strategy for Hessian samples

In terms of Green’s functions, an arbitrary element of the Hessian can be expressed as

(Plessix and Mulder, 2004; Valenciano et al., 2006; Tang, 2009)

H(x,y) = R

{∑

ω

ω4|f(ω)|4
∑

xs

G(x|xs;ω)G∗(y|xs;ω)×
∑

xr

G(x|xr;ω)G∗(y|xr;ω)

}
,

(6.15)

where R denotes the real part of a complex value and x and y represent two image points

in the subsurface. Adjoint Green’s functions are denoted with the symbol ∗. The Green’s

function is computed by solving the acoustic wave-equation in the frequency domain using

the mixed-grid finite-difference method (Hustedt et al., 2004). Given the size of H, even

10% of the elements of H can take a large amount of memory. Previous studies have

established that the Hessian is a banded, diagonally-dominant matrix with elements that

decay away from the diagonals (Pratt et al., 1998; Chavent and Plessix, 1999; Plessix and

Mulder, 2004; Valenciano et al., 2006). To avoid sampling small values that have a negligible

contribution to the Hessian, I adopt a preferential sampling scheme that confines samples

to predetermined regions.

To restrict sampling to a subset of Hessian elements, I only consider points x+ r within the

vicinity of a point x. The “offset” r = (rz, rx) satisfies |rx| ≤ rwinx and |rz| ≤ rwinz . The

values rwinx and rwinz are user-defined half-lengths of the horizontal and vertical windows,

respectively (demonstrated by the bounding grey box in Figure 6.3a). With this restriction,
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I replace equation 6.15 with

H(x,x + r) = R

{∑

ω

ω4|f(ω)|4
∑

xs

G(x|xs;ω)G∗(x + r|xs;ω)×
∑

xr

G(x|xr;ω)G∗(x + r|xr;ω)

}
.

(6.16)

Elements outside of the user-defined window are ignored as their magnitudes are assumed

to be small. I define nrx and nrz as the number of discrete grid points for the half window

lengths rwinx and rwinz , respectively. After restriction, the number of Hessian samples con-

sidered reduces by a factor of (nz nx (2nrz + 1) (2nrx + 1))/(nz nx)2. This sampling strategy

is equivalent to imposing a block-band structure on the Hessian where elements outside of

the designated band are zero (instead of small, non zero elements). Schematic diagrams

displayed in Figure 6.3 illustrate the physical interpretation of equation 6.16 and how it

imposes block-band structure on the Hessian. Mathematically, the sampling restriction can

be enforced by constraining the Kronecker factors Ai and Bi to be band matrices with

bandwidths nrx and nrz , respectively. For details about how this constraint restricts the

Hessian samples, see Appendix E. The original factor estimation in equation 6.12 becomes

a constrained optimization problem of the form:

argmin
Ai∈Mnrx

nx ,Bi∈Mnrz
nz

‖H−
k∑

i=1

Ai ⊗Bi‖2F , (6.17)

where Mnrx
nx represents a set of square band matrices of size nx × nx and bandwidth nrx . In

other words, for a square matrix A ∈Mnrx
nx , an element aij = 0 if |i−j| > nrx . Equation 6.17

can be converted to an unconstrained low-rank matrix decomposition problem expressed as

argmin
Â, B̂

‖QT
b R(H)Qa − B̂ÂT ‖2F , (6.18)

where Â = QT
a Ã and B̂ = QT

b B̃ for projection matrices Qa and Qb. The band Kronecker

factors (Ai,Bi) are obtained by reshaping the columns of QaÂ and QbB̂ into square ma-

trices. Thorough descriptions of the sampling strategy and the constrained optimization

problem are provided in Appendix E. The (constrained) Kronecker factors can be estimated

by converting equation 6.18 into a matrix completion problem analogous to equation 6.14,

argmin
Â, B̂

‖PΩ(QT
b R(H)Qa − B̂ÂT )‖2F . (6.19)

To supplement the development in this section Appendix E discusses the constrained Kro-

necker factor estimation problem, Appendix D outlines the matrix completion algorithm

and Appendix F explains the connection between H and QT
b R(H)Qa.
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Algorithm PDE solves Memory cost

RTM (I. Compute LTd) 2Ns + Ns NfN + NfN
LSRTM 4Niter ·Ns + Ns NfN + NfN
KLSRTM

II. Compute G(x |xs;ω), G(x |xr;ω) Ns + Nr 3× 9N + 2N
III. Compute PΩ(H) - 3N · (2nrz + 1) · (2nrx + 1) · sr
IV. Solve MC - 3k · (nz · (2nrz + 1) + nx · (2nrx + 1))

Table 6.1: Computational cost summary. The numbered stages are identified in the
image-domain LSRTM branch of Figure 6.3. Requirements are provided for a single
frequency.

6.2.5 Computational cost

At this stage I compare the computational resource requirements for the proposed algorithm

and LSRTM. To aid the comparison, I provide a simplified workflow (Figure 6.4) that de-

scribes only the essential, most resource intensive stages of each algorithm. Since KLSRTM

using the SVD is not practical for large problems, I do not explore its resource require-

ments. The computational cost and memory requirements of RTM, LSRTM and KLSRTM

are summarized in Table 6.1. Computational cost is evaluated in terms of partial-differential

equation (PDE) solves for a single frequency; other operations are neglected as their costs

are minimal in comparison. Memory costs are evaluated by counting the number of floating

point allocations required.

For Ns sources in a survey, RTM performs 3Ns PDE solves. In my implementation, I

pre-compute the source-side wavefield for each source location and the save the boundary

values of each snapshot to disk. The boundary values are used to reconstruct the source-side

wavefield on-the-fly during migration to reduce the overhead of large disk IO (Dussaud et al.,

2008). The three PDE solves consist of computing the source and receiver side wavefields

along with reconstruction of the background wavefield. I allocate memory for snapshots

of the source- and receiver-side wavefields comprised of Nf components (e.g. pressure,

velocity components); Nf is used to provide a more implementation-independent cost. In

my application Nf = 8 following Xu and Sacchi (2017). For a 2D model, the total number

of discrete grid points is N = nz · nx. Memory costs in Table 6.1 are for a single shot and

scale linearly for parallel computations. For RTM and LSRTM, memory costs are split into

source and receiver-side wavefield contributions.

While the memory cost of LSRTM is similar to that of RTM, the computational cost differs

due to the use of iterative solvers to solve equation 6.3. Each iteration requires the applica-

tion of the forward and adjoint operators at a cost of two PDE solves each. For a maximum
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number of iterations Niter, the total number of PDE solves becomes 4Niter · Ns + Ns.

The additional Ns PDE solves compute the boundary values of the background source-side

wavefield.

I divide the computational cost analysis of KLSRTM into three parts: Green’s function

computation, evaluation of the Hessian samples and matrix completion (MC). Green’s func-

tions are obtained by solving Ns + Nr PDEs, where Nr is the number of receivers. The

Helmholtz operator for given frequency is a complex sparse matrix with 9N non-zero ele-

ments (Hustedt et al., 2004). To simplify the discussion of memory cost, I assume only the

non-zero elements are saved, along with the corresponding row and column indices, resulting

in a cost of 3× 9N . The memory cost can be potentially reduced with other sparse-matrix

formats (e.g., compressed sparse column). A further 2N complex numbers are allocated for

the wavefield and source term. In KLSRTM, the largest memory cost stems from saving

preferential samples of the Hessian matrix. If I consider a sampling rate sr and a window size

(2nrz + 1)× (2nrx + 1) about each image point, the total number of floating point numbers

stored is 3N ·(2nrz +1)×(2nrx +1)·sr. After the samples of the Hessian matrix are obtained,

I estimate the Kronecker factors Ai and Bi. Both are also saved in sparse matrix format

and the memory cost of each Ai is 3nx ·(2nrx +1) and Bi is 3nz ·(2nrz +1). For k Kronecker

factor pairs, the final memory cost of the factors is 3k · (nz · (2nrz + 1) + nx · (2nrx + 1)).

While I have not verified them, approximate memory costs for elastic or 3D extensions of

KLSRTM can be gauged by either adjusting the number of field variables, factors and/or

increasing the dimensions of the grid and windows. The number of PDE solves should be

the same although each PDE will be more expensive to solve.

6.3 Numerical Examples

I use a series of numerical examples to test aspects of the proposed method. The examples

can be separated into two primary categories. The first set examines KLSRTM when the

Kronecker factors are estimated using an SVD of the rearranged Hessian. Examples in this

category explicitly compute the entire Hessian; I refer to this category as KLSRTM-SVD.

Examples from the second category do not compute the full Hessian, only a small percentage

of its samples. In this group, the Kronecker factors are computed using a matrix-completion

algorithm; this category is referred to as KLSRTM-MC. The first set of examples (KLSRTM-

SVD) are designed as proof of concepts for the Kronecker factorization and KLSRTM. The

second set of examples (KLSRTM-MC) demonstrate applications of KLSRTM for larger

models using a more efficient and scalable algorithm to estimate the Kronecker factors. For

examples that perform LSRTM, data are generated using a constant-density, acoustic wave-

equation solver implemented using the staggered-grid, finite-difference time-domain method
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(Virieux, 1986). A summary of the numerical parameters and algorithmic categories for

each example are presented in Table 6.2.

6.3.1 KLSRTM-SVD

Example 1

The first example presents Kronecker factors computed using an SVD of the rearranged

Hessian. The factors are used to evaluate the merits of a Kronecker-based factorization

compared to a low-rank decomposition of the Hessian. The Earth model used for modeling

is a cropped version of the Marmousi model discretized on a regular 2D grid with dimensions

nx = 200 and nz = 100. The true and smooth models are displayed in Figure 6.5. The

smooth velocity model is obtained by convolving the true model with a 2D Gaussian kernel

with a standard deviation of 50 m. Selected Kronecker factors Ai and Bi are displayed in

Figures 6.6 and 6.7. For this model, Ai and Bi have sizes of 200 × 200 and 100 × 100, re-

spectively. The Kronecker factors are band matrices with elements that decay away from the

diagonals. The complexity of the factors appears to increase for larger factor numbers. The

factors appear to be a mixture of (approximately) symmetric and antisymmetric matrices.

Example 2

The second example demonstrates the feasibility of KLSRTM and compares it against con-

ventional LSRTM. I only examine the dependency of the inversion on the number of Kro-

necker factors used to approximate the Hessian. I do not assess performance gains for this

example since the Kronecker factors are computed with the SVD.

The target perturbation model consists of regularly spaced point scatterers and is displayed

in Figure 6.8a. The true migration image Hm exhibits low-frequency artifacts and unbal-

anced amplitudes that can be observed in Figure 6.8b. Figures 6.8c-h display the approx-

imate migration image achieved by replacing H with a superposition of Kronecker prod-

ucts (
∑k
i=1 BiMAT

i ). The similarity between the true (Figure 6.8b) and the approximate

(Figure 6.8c-h) migration images increases as more Kronecker factors are included in the

approximation.

Figure 6.9 compares the results of conventional LSRTM and KLSRTM. The result of data-

domain LSRTM appears in Figure 6.9a and is obtained from 50 CGLS iterations. The

KLSRTM results for k = 1, 4, 8, 16 and 32 factors are shown in Figures 6.9b-f. Figures 6.9b-f

,which are obtained by solving equation 6.10 with 50 CGLS iterations. In all cases, migration

artifacts have been attenuated and the scatterers are better focused when compared to the
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corresponding migration image. The more Kronecker factors that are used to approximate

the Hessian, the closer the similarity between the LSRTM and KLSRTM results. For k > 32,

the KLSRTM image is largely indistinguishable from the LSRTM one. This example verifies

the viability of KLSRTM when the Hessian and Kronecker factors are computed directly.
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Figure 6.3: Schematic representation of (a) two point scatterers in a 2D acoustic
model. The interaction of two scatterers at a particular set of locations produces
a single element of the Hessian. Only considering interactions within a (2nrz +
1) × (2nrx + 1) local window (grey box) around a point scatterer equates to only
considering a subset of the elements of the Hessian. Schematic representations of
(b) the full Hessian and (c) the subset of elements that are used for preferential
sampling of the Hessian. For (b) and (c), the insets represent a single block from
the Hessian (red square). The dashed blue lines mark the bandwidth in relation to
the local window in (a). The preferential sampling neglects elements that are small.
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KLSRTM (Image domain) LSRTM (Data domain)

I. Compute LTd

IV. Compute Ai, Bi via MC
(e.q. 13, 18)

II. Compute G(x |xs; ω),
G(x |xr; ω)

III. Compute samples
PΩℛ(H) (e.q. 14, 15)

Small problems 
SVD MC

Large problems 

V. Solve with CGLS: arg min
M

∥
k

∑
i=1

BiMAT
i − M′�∥2

F

Compute H (e.q. 14)

Compute Ai, Bi

via SVD(H̃)

Compute H̃ = ℛ(H)

I. Solve with CGLS:
arg min

m
∥Lm − dobs∥2

2

Estimated model mest

Observed data dobs, Initial model m0

Figure 6.4: Simplified workflows of LSRTM (data domain) and KLSRTM (image
domain). KLSRTM-SVD computes the exact Hessian and is only suitable for small
problems (e.g. Examples 1 and 2). KLSRTM-MC estimates the Kronecker fac-
tors using a matrix completion algorithm and is designed for larger problems (e.g.
Examples 3-5). The workflows are composed of distinct computational steps; red
coloured boxes indicate the most resource intensive stage of each algorithm. The
computational resource requirements of the numbered boxes are explored in Table
6.1.
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Figure 6.5: Cropped Marmousi model. (a) True velocity model. (b) Smooth velocity
model used for testing Kronecker factor estimation.
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Figure 6.6: The Kronecker factor matrices Bi (size nz × nz) for (a) i = 1, (b) i =
4, (c) i = 8, (d) i = 16, (e) i = 32, and (f) i = 64.
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Figure 6.7: The Kronecker factor matrices Ai (size nx × nx) for (a) i = 1, (b) i =
4, (c) i = 8, (d) i = 16, (e) i = 32, and (f) i = 64.
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Figure 6.8: Point scatterer experiment. (a) The true image M consisting of evenly
distributed point scatterers. (b) Migration image obtained by applying the Hessian
H to m. The remaining panels depict approximate migration images obtained via
the sum of the first k Kronecker products

∑k
i=1 BiMAT

i for (c) k = 1, (d) k = 4,
(e) k = 8, (f) k = 16, (g) k = 32, and (h) k = 64.
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Figure 6.9: A comparison of LSRTM results for the point scatterer experiment.
(a) Conventional LSRTM image obtained by solving ‖Hm−m′‖22. The remaining

panels depict the KLSRTM images obtained by solving ‖∑k
i=1 AiMBT

i −M′‖2F for
(c) k = 4, (d) k = 16, (e) k = 32, and (f) k = 64.
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6.3.2 KLSRTM-MC

The final three examples present applications of KLSRTM for which the Kronecker factors

are estimated using low-rank matrix completion. Elements of the Hessian matrix are com-

puted using Green’s functions calculated using a frequency-domain finite-difference solver

(Hustedt et al., 2004). The LU decomposition (Davis, 2004) solves the frequency-domain

wave equation. I consider frequencies between 1 Hz to 30 Hz at 0.5 Hz intervals; the range of

frequencies, for Examples 3-5, is selected based on the frequency band of the source wavelets

(Table 6.2). The total number of forward-modeling operations is equal to Nf×(Nrec+Nsrc)

where Nf , Nrec and Nsrc are the number of discrete frequencies, sources and receivers, re-

spectively. A pseudo-Hessian preconditioner is used to accelerate the convergence of the

CGLS iterations (Shin et al., 2001). References to window size follow the definition in equa-

tion 6.16; a schematic representation is displayed in Figure 6.3. The purpose of the following

examples is to demonstrate the gain in performance that is achieved when using a practical

implementation of KLSRTM over conventional LSRTM.

Example 3

The third test is conducted using the ANON velocity model displayed in Figure 6.10. The

Kronecker factors are estimated by solving the matrix completion problem specified in equa-

tion 6.19. For the sake of discussion, I define the reduced Hessian Ĥ = QT
b R(H)Qa (from

equation 6.19). The reduced Hessian represents the subset of Hessian elements after enforc-

ing banded structure constraints. In practice, the entire reduced Hessian is not computed;

however, it is computed for Figure 6.11 to assess the reconstruction error. Figure 6.11 dis-

plays a comparison between parts of the true and reconstructed reduced Hessian. For this

2D model, the size of the reduced Hessian is 17300 × 41770. Considering its size, only parts

of the reduced Hessian are displayed in the comparisons. Figure 6.11 demonstrates that the

reduced Hessian matrix can be recovered via large-scale matrix completion methods. I reit-

erate that the reduced Hessian itself is not used for KLSRTM; rather, the band Kronecker

factors are used.

Figures 6.12a-c depict migration images obtained via RTM, LSRTM and KLSRTM. In all

cases, a Laplacian filter is applied to the migration images to remove low-frequency artifacts

(Youn and Zhou, 2001). Data-domain LSRTM and image-domain KLSRTM solutions are

produced after 50 CGLS iterations. To reiterate the procedure for KLSRTM, I describe the

step-by-step process for this example. I first specify window sizes of 61 × 61 grid points for

any given image point (as demonstrated in Figure 6.3). This limits Hessian samples to select

elements clustered around the diagonals of the block elements; the matrix containing all the

elements from this subset is the reduced Hessian (Figure 6.3). For the matrix completion
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problem, I randomly sample 20% of the reduced Hessian (0.31% of the full Hessian). 100

Kronecker products are obtained through the solution of the resultant matrix completion

problem (equation 6.19). Qualitatively, the LSRTM and KLSRTM images are virtually

indistinguishable from one another. The computational costs for LSRTM and KLSRTM

are summarized in Figure 6.13. Sampling of the reduced Hessian constitutes the most

compute-intensive component of KLSRTM, requiring 1.3 hours. Estimating the Kronecker

factors requires 10 minutes and solving the image-domain LSRTM problem only requires an

additional 3 minutes. The fast CG iterations are a result of replacing costly applications of

migration/demigration operators, with matrix multiplications involving small matrices.

Example 4

Example 4 repeats the tests from Example 3 using the Marmousi velocity model (Martin

et al., 2006). The true and smooth velocity models are presented in Figure 6.14. The images

obtained via RTM, LSRTM and KLSRTM are displayed in Figures 6.15a-c, respectively.

The window size implemented for KLSRTM is 41 × 41. As in the previous example, the

outputs of each method are essentially identical; however, KLSRTM achieves the result at a

significantly reduced computational cost (compared to data-domain LSRTM). A summary

of the computational resource usage is displayed in Figure 6.16.

Example 5

The final example is performed on the BP 2004 velocity model to explore the scalability of the

algorithm to a larger model. The true velocity and density models, presented in Figure 6.17,

are used to generate synthetic data. The observations are modeled without a free surface

boundary condition therefore multiples are not present in the data. Imaging is performed in

a constant density medium with a smoothed version of the true velocity model. The RTM,

LSRTM and KLSRTM images are displayed in Figures 6.18a-c, respectively. The window

size implemented for KLSRTM is 31 × 31. A summary of the computational resource usage

is displayed in Figure 6.19. The results are consistent with earlier examples, the speedup is

not as significant in this example still good though.

6.4 Discussion

The extension of KLSRTM to the 3D case is possible; however, this requires adapting

the proposed framework. In 3D, the Hessian matrix is a 3-level block matrix that can be
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approximated as a superposition of Kronecker products between three square matrices

H =

k∑

i=1

Ai ⊗Bi ⊗Ci, (6.20)

where Ai,Bi and Ci are Kronecker factors of size nz×nz, nx×nx and ny×ny, respectively.

To compute the Kronecker factors, the Hessian H needs to be rearranged into a third-order

tensor of size n2
z × n2

x × n2
y. The Kronecker factors would be obtained by solving a tensor

completion problem, using samples of the Hessian, to find the optimal Canonical-Parafac

decomposition (Liu et al., 2013). The tensor analog to equation 6.10 leads to the 3D form

of image-domain KLSRTM:

argmin
M

‖
k∑

i=1

M×1 Ci ×2 Bi ×3 Ai −Mmig‖2F , (6.21)

whereM is the discretized 3D model represented as a tensor andMmig is the tensor-form of

the migration image volume. The interaction between the model tensor and the Kronecker

factors is in the form of tensor-matrix multiplications (Kolda and Bader, 2009b). In this

study, I compute source and receiver Green’s functions in the frequency domain; however,

this poses a memory challenge in 3D applications (Operto et al., 2007). For 3D, a more

viable strategy would be to compute the Green’s functions in the time domain. Computing

samples of the Hessian in the time domain requires storing the Green’s function volumes for

all time steps. The storage cost can be reduced by saving a selection of discrete frequency

representations of the wavefield using the discrete Fourier transform (Nihei and Li, 2007;

Sirgue et al., 2008). The use of source and receiver encoding during the computation of the

Green’s functions can further reduce computational cost (Tang, 2009).

Elastic forms of KLSRTM are readily achievable after replacing equation 6.14 with an anal-

ogous expression for the multi-parameter Hessian (in terms of source and receiver Green’s

functions e.g., Chen et al. (2007)). In 2D, the multi-parameter Hessian has dimensions

np · nx · nz × np · nx · nz, where np denotes the number of independent physical parameters.

The increased size may necessitate computing a greater proportion of Hessian samples to

suitably solve equation 6.19.

Sparsity promotion is a common strategy used to suppress migration artifacts and im-

prove image quality. Sparsity-constrained optimization problems can be solved via iterative-

reweighted least-squares (IRLS) or the iterative-thresholding algorithm (Daubechies et al.,

2010, 2004). Compared to the original non-constrained least-squares problem, the number

of iterations required for solving sparsity-constrained imaging problem is much higher. For

conventional LSRTM, the computational cost becomes formidable as the number of itera-

tions increases. In KLSRTM, sparsity-promoting regularization is more accessible due to
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the fast CG iterations. In a similar vain, the fast CG iterations facilitate more efficient

testing of regularization hyperparameters in regularized forms of KLSRTM.

For large 3D imaging problems, the proposed algorithm requires a large amount of memory

to save even a small portion of the Hessian samples. A potential solution that alleviates the

memory burden, would be to formulate the imaging problem as a target-oriented inversion

problem (e.g., Valenciano et al. (2006); Tang (2009)). Another limitation of the proposed

algorithm stems from the block-band structure assumed for the Hessian matrix. If the action

of the Hessian on a point scatterer is not local i.e. if significant contributions occur outside

a small window about the scattering point, then the bandwidth of the Kronecker factors

must increase. This increases the proportion of Hessian samples that need to be considered

in the matrix-completion stage and increases the computational cost. This situation may

occur if the data is sparsely sampled or the frequency band of the data is narrow.

The Kronecker-based Hessian approximation can be incorporated into full waveform inver-

sion to accelerate convergence. In the simplest use case, the diagonal of the approximated

Hessian can be used as a preconditioner for first-order, gradient-based optimization methods.

Alternatively, the Hessian approximation can be used in inexact second-order optimization

schemes such as the Truncated-Newton method (Métivier et al., 2013). Truncated Newton

methods iteratively solve a linear system of equations, similar to the image-domain LSRTM

problem, to estimate the FWI update direction at each iteration. The internal solution of

the linear system is expensive due to added wave equation solves associated with computing

Hessian-vector products. In principle, the Kronecker-based Hessian approximation could be

used for fast Hessian-vector products. Unlike LSRTM, in FWI the velocity model updates

at each iteration thus changing the Hessian. Recomputing the Kronecker-based Hessian ap-

proximation at each iteration makes the approach less attractive. Heuristic strategies that

only estimate the Hessian every n iterations may be beneficial; however, I have not explored

them. Source-encoding strategies (e.g. Anagaw and Sacchi (2014); Castellanos et al. (2015))

or stochastic second-order optimization strategies (Matharu and Sacchi, 2019) provide more

flexible approaches to second-order optimization in FWI.

6.5 Conclusion

We propose a fast method for image-domain LSRTM based on approximating the Hessian

matrix as a superposition of Kronecker products. I first demonstrate how to estimate Kro-

necker factors through an SVD of the rearranged Hessian for cases when the full Hessian is

known. For more practical implementations, I devise an efficient scheme to estimate Kro-

necker factors without explicitly forming the Hessian. The approach preferentially samples

elements of the Hessian and solves a matrix completion problem to estimate the Kronecker
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factors. Hessian samples are computed using source and receiver Green’s functions com-

puted in the frequency domain. A series of numerical examples validate various stages of

the proposed algorithm. Ultimately, I observe the KLSRTM yields near identical images to

LSRTM, but at substantially reduced computational cost. The bulk of the computational

cost associated with KLSRTM arises from the computation of Hessian samples. Solution of

the subsequent matrix completion problem along with the iterative solution of the LSRTM

problem are comparatively fast. Using the Kronecker-based approximation, I replace ex-

pensive migration/demigration operations with small matrix multiplications resulting in fast

CG iterations. While sampling of the Hessian results in increased memory requirements for

KLSRTM, the increases are manageable for typical 2D problems. The extension of KL-

SRTM to 3D or elastic applications is, in principle, possible with some modifications to

the algorithm; however, this is a topic for future research. The primary challenge in 3D

extensions is the memory cost associated with computing Hessian samples.
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Figure 6.10: ANON velocity model (a) True velocity model. (b) Smooth velocity
model used for imaging.
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Figure 6.11: A comparison of the (a, e, j) true reduced Hessian, (b, f, k) randomly
subsampled reduced Hessian (20% of full Hessian), (c, g, l) restored reduced Hessian
and (d, h, m) the reconstruction error for three distinct windows. Locations of the
Hessian windows are displayed in the schematic diagram (top right).
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Figure 6.12: Migration results for the ANON velocity model. The images are
computed using (a) RTM, (b) LSRTM, and (c) KLSRTM. For (b) and (c), 50
CGLS iterations are performed.
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2D	300-by-700 acoustic	model,	50	iterations,	100	factors,	48	cores

LSRTM KLSRTM

Memory	 25.3	M 394.5	M

CPU time
(Hours)

Hessian - 1.3

Kronecker - 0.16

CGLS 23.5 0.05

Total 23.5 1.51

Figure 6.13: A comparison of the memory and computational requirements for
LSRTM and KLSRTM in the ANON velocity model.
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Figure 6.14: Marmousi velocity model. (a) True velocity model. b) Smoothed
velocity model used for imaging.
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Figure 6.15: Migration results for the Marmousi velocity model. Migration images
computed using (a) RTM, (b) LSRTM, and (c) KLSRTM. The images are obtained
after 50 CGLS iterations in either case.



CHAPTER 6. KRONECKER LEAST-SQUARES REVERSE-TIME MIGRATION 107

2D	451-by-1001 acoustic	model,	50	iterations,	100	factors,	48	cores

LSRTM KLSRTM

Memory	 53.8	M 848.1	M

CPU time
(Hours)

Hessian - 4.3	h

Kronecker - 0.5

CGLS 37.5 0.1

Total 37.5 4.9

Figure 6.16: A comparison of the memory and computational requirements for
LSRTM and KLSRTM in the Marmousi velocity model.

a)

b)

Figure 6.17: BP 2004 velocity model. (a) True velocity model. b) True density
model.
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a)

b)

c)

Figure 6.18: Migration results for the BP 2004 velocity model. Migration images
computed using (a) RTM, (b) LSRTM and (c) KLSRTM. The images are obtained
after 50 CGLS iterations in either case.
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2D	1350-by-3051 acoustic	model,	50	iterations,	100	factors,	48	cores

LSRTM KLSRTM

Memory	 61.3	M 2.9 G

CPU time
(Hours)

Hessian - 18.0

Kronecker - 1.2

CGLS 91.6 0.2

Total 91.6 19.4
Figure 6.19: A comparison of the memory and computational requirements for
LSRTM and KLSRTM in the BP 2004 velocity model.
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Conclusions

Multicomponent seismic surveys have gained significant attention and demonstrated sub-

stantial growth in the last decade. They contribute supplementary information to help

reduce drilling risk when, for instance, assessing new plays. However, PS-wave data often

suffer from considerable noise contamination and the absence of high-frequency components.

Another challenge of a multicomponent seismic survey is associated to the interpretation of

PP-wave and PS-wave volumes. The time migrated PS-wave volume bear little resemblance

to the corresponding PP-wave volume due to velocity differences between P and S waves.

The registration process, which aligns PS-wave events to their PP-wave events, is largely

driven by the availability of dipole sonic logs. These dipole sonic are not as common as stan-

dard sonic due to their high costs. In this thesis, I first develop an efficient method based on

a novel tensor decomposition algorithm to attenuate the random noise of both PP-wave and

PS-wave data in the pre-stack domain. Secondly, I introduce a robust registration method

to match PP-wave and PS-wave events without the need of a known vp/vs velocity ratio.

My work also contributes to imaging. I have developed an efficient LSRTM method by

compressing the Hessian matrix as the superposition of Kronecker products. The proposed

method has the potential to be extended to elastic cases and realistic 3D survey.

In Chapter 1, I review the topics of multicomponent seismic data acquisition, processing

and interpretation. Afterwards, I point out the challenges associated with converted-wave

data.

In Chapter 2, I discuss the notations of multi-dimensional tensor algebra utilized in this

thesis and briefly review three low-rank tensor decomposition algorithms commonly used in

the seismic data processing.

In Chapter 3, I demonstrate that tensor algebra can provide a robust framework for multi-

110
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dimensional seismic data processing. A low-rank tensor can represent a noise-free seismic

data volume. An additive random noise will increase the rank of the tensor. Hence, tensor

rank-reduction techniques can be used to filter random noise. My filtering method adopts

the Candecomp / Parafac (CP) decomposition to approximates an N-dimensional seismic

data volume as the superposition of rank-one tensors. Similar to the Singular Value De-

composition (SVD) for matrices, a low-rank CP decomposition can capture the signal and

exclude random noise in situations where a low-rank tensor can represent the ideal noise-

free seismic volume. The alternating least squares (CP-ALS) method is adopted to compute

the CP decomposition with a provided target rank. This method involves solving a series

of highly over-determined linear least-squares subproblems. To improve the efficiency of

the CP-ALS algorithm, I uniformly randomly sample equations of the linear least-squares

subproblems to reduce the size of the problem significantly. The computational overhead

is further reduced by avoiding unfolding and folding large dense tensors. I investigate the

applicability of the randomized CP decomposition (RAND-CP-ALS) for incoherent noise at-

tenuation via experiments conducted on a synthetic dataset and field data seismic volumes.

I also compare the proposed algorithm (RAND-CP-ALS) against multi-dimensional singular

spectrum analysis (MSSA) and classical f −xy prediction filtering. I conclude the proposed

approach can achieve slightly better denoising performance in terms of signal-to-noise ratio

enhancement than traditional methods, but with a less computational cost. The proposed

algorithm in this chapter is implemented in t-x domain. In the future, the method can be

extended to f -x domain, which enjoy particular advantages over t-x domain. For example,

1) I can apply 4D tensor decomposition to each frequency component of 5D pre-stack seis-

mic data independently. It is convenient for designing high-performance algorithms which

are parallel over frequencies. 2) The low-rank properties of linear and parabolic events are

preserved naturally in the frequency domain as their time delay can be represented as the

outer product of phase-shift terms in the frequency domain.

In Chapter 4, I formulate the problem of multicomponent seismic data interpolation in the

framework of low-rank tensor completion. Specifically, high-order SVD is implemented inde-

pendently to NMO-corrected PP-wave and PS-wave to recover missing traces and attenuate

random noise. Windowing strategy is utilized to enhance the performance of low-rank com-

pletion algorithm. The effectiveness of the proposed method is demonstrated on a dataset

from West-Canadian sedimentary basin.

In Chapter 5, I map PS-wave data to PP-wave time domain, which is a critical step before

joint PP-wave and PS-wave data interpretation and inversion, by minimizing the difference

between PP-wave and warped PS-wave data. Registration techniques are often constrained

by having access to a known Vp/Vs ratio. When an accurate Vp/Vs ratio is not provided,

one can solve the problem of seismic data registration by minimizing the difference between

the PP-wave and the warped PS-wave data with a smoothing constraint applied on the
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warping function. To avoid undesirable foldings or rapid changes in the warped PS-wave

image, I require a warping function that is monotonic and smooth. I propose to invert the

Vp/Vs ratio directly from PP and PS-wave data instead of estimating it from the warping

function. Seismic data registration is posed as a constrained non-linear optimization prob-

lem. Furthermore, I propose to represent the Vp/Vs ratio by spline functions and to adopt

a parameterization that guarantees monotonic warping functions. My parameterization in

terms of splines significantly reduces the number of unknowns of my problem and the con-

vergence to a smooth monotonic solution is guaranteed. The proposed registration method

requires a close initial solution as the starting point of the non-linear optimization solver. I

can estimate the initial solution with dynamic image warping method (Compton and Hale,

2014) and refine the registration result iteratively with the proposed method. One difficulty

hinders the application of joint pre-stack inversion is the relatively narrow band of registered

PS-wave data with respect to PP-wave data. In the future, I will explore a collaborative

deconvolution method to enhances the resolution of PS-wave data.

In Chapter 6, I propose an efficient least-squares reverse-time migration (LSRTM) method,

which has become increasingly popular for complex wavefield imaging due to its ability

to equalize image amplitudes, attenuate migration artifacts, handle incomplete and noisy

data, and to improve spatial resolution. The major drawback of LSRTM is the consider-

able computational cost incurred by performing migration/demigration at each iteration

of the optimization. To ameliorate the computational cost, I introduce a fast method to

solve the LSRTM problem in the image domain. The proposed method is based on a new

factorization that approximates the Hessian using a superposition of Kronecker products.

The Kronecker factors are small matrices relative to the size of the Hessian. Crucially, the

factorization can honour the characteristic block-band structure of the Hessian. I introduce

a computationally efficient algorithm to estimate the Kronecker factors via low-rank ma-

trix completion. The completion algorithm utilizes only a small percentage of preferentially

sampled elements of the Hessian matrix. Element sampling requires the computation of

source and receiver Green’s functions but avoids explicitly constructing the entire Hessian.

The proposed Kronecker-based factorization leads to an imaging technique that I name

Kronecker-LSRTM (KLSRTM). The iterative solution of the image-domain KLSRTM is

fast because I replace computationally expensive migration/demigration operations, with

fast matrix multiplications involving small matrices. I first validate the efficacy of the pro-

posed method by explicitly computing the Hessian for a small problem. Subsequent 2D

numerical tests compare LSRTM with KLSRTM for several benchmark models. I observe

that KLSRTM achieves near-identical images to LSRTM at a significantly reduced computa-

tional cost (∼5-15× faster); however, KLSRTM has an increased, yet manageable, memory

cost. Future research can extend the proposed method to a more practical 3D LSRTM prob-

lem in which the Kronecker factors are estimated using low-rank tensor completion (Kolda
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and Bader, 2009b). The main challenge of 3D KLSRTM is the high memory cost associated

with saving the tremendous amount of samples of the Hessian matrix. Researchers need to

design algorithms to reduce the memory cost. One way to achieve this goal is to estimate

Kronecker factors on-the-fly, which does not require the storing of Hessian samples. For

example, the Green’s function can be easily obtained based on the known travel time table

in least-squares Kirchhoff migration, so as the Hessian samples. At last, I would like to

emphasize that the least-squares reverse time migration, which is based on the two-way

wave equation, is used as an example in this chapter. However, the proposed factorization

method is not limited to the Hessian matrix associated with this particular case. Instead, it

can be extended to other least-squares migration methods, such as one-way wave equation

migration and Kirchhoff migration.
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Kühl, H., and M. D. Sacchi, 2003, Least-squares wave-equation migration for AVP/AVA

inversion: Geophysics, 68, 262–273.

Lailly, P., and J. Bednar, 1983, The seismic inverse problem as a sequence of before stack

migrations: Conference on inverse scattering: theory and application, Siam Philadelphia,

PA, 206–220.
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APPENDIX A

Relationship between the Vp/Vs ratio and warping function

To derive equation 5.5, I use a simple three-layer model with two reflectors. I assume that

thickness of first two layers in PP-wave time is ∆t, so the two-way PP-wave travel time

for the first and second reflections are ∆t and 2∆t, respectively. The P-wave and S-wave

velocities in the first two layers are denoted by vp1, vs1, vp2 and vs2. The corresponding

PS-wave travel time can be expressed as

w(∆t) =
vp1 ·∆t/2

vp1
+
vp1 ·∆t/2

vs1
, (A.1)

and

w(2∆t) =
vp1 ·∆t/2

vp1
+
vp2 ·∆t/2

vp2
+
vp2 ·∆t/2

vs2
+
vp1 ·∆t/2

vs1
. (A.2)

With this simple derivation, one can write the following expression

w(2∆t)− w(∆t)

2∆t−∆t
=

1

2
+

1

2

vp2

vs2
, (A.3)

which for the continuous case is equivalent to equation 5.5.
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APPENDIX B

Discrete second derivative operator

I enforce smoothness on the warping function by applying a regularization formed with

second order derivatives (equation 5.20). In this section, I describe a simple technique to

specify sparse discrete second derivative operators Lx and Lt. I start defining second order

discrete derivatives in time and space

∂2w(t, x)

∂t2
≈ w(t+ ∆t, x)− 2w(t, x) + w(t−∆t, x)

∆t2
,

∂2w(t, x)

∂x2
≈ w(t, x+ ∆x)− 2w(t, x) + w(t, x−∆x)

∆x2
,

(B.1)

without loosing generality we can consider both ∆t = ∆x = 1 and write

∂2

∂t2
≈ Lt = In ⊗D2 ,

∂2

∂x2
≈ Lx = D2 ⊗ Im ,

(B.2)

where In is an identity matrix of size n× n, n is the number of traces, similarly Im is also

an identity matrix of size m ×m, m is the number of samples per trace. D2 is the matrix

form of second order derivatives, and ⊗ indicates Kronecker product

D2 =




−1 1

1 −2 1

. . .
. . .

. . .

1 −2 1

−1 1



. (B.3)
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Now, Lx and Lt are sparse operators that can be directly applied to a vectorized 2D warping

function to express second order smoothing in space and time, respectively.



APPENDIX C

Direct estimation of Kronecker product

Direct estimation refers to estimating the Kronecker factors when the complete Hessian

matrix is known. In this scenario, the factors can be computed through a low-rank approx-

imation (e.g., truncated SVD) of the rearranged Hessian. The process of approximating a

block matrix via the superposition of Kronecker products is illustrated with a toy example.

Consider a 4 × 4 block matrix H composed of 2 × 2 blocks. The matrix H is the Kronecker

product of two 2 × 2 matrices A and B, written explicitly they read as

A =

[
a1 a3

a2 a4

]
, B =

[
b1 b3

b2 b4

]
, (C.1)

where ai and bi denote the elements of the two matrices. In terms of A and B, H has the

form

H =

[
a1 a3

a2 a4

]
⊗
[
b1 b3

b2 b4

]
=




a1

(
b1 b3

b2 b4

)
a3

(
b1 b3

b2 b4

)

a2

(
b1 b3

b2 b4

)
a4

(
b1 b3

b2 b4

)




=

[
H11 H12

H21 H22

]
, (C.2)

where Hij indicates one block of H. To determine the connection between Hij and the pair

A and B, I rearrange the elements of H in a two step process. First, the blocks of H are

vectorized into column vectors. Secondly, the column vectors are concatenated horizontally
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to form a new matrix H̃. The procedure is expressed as follows:

H̃ =
[
vec(H11) vec(H21) vec(H12) vec(H22)

]
=




a1b1 a2b1 a3b1 a4b1

a1b2 a2b2 a3b2 a4b2

a1b3 a2b3 a3b3 a4b3

a1b4 a2b4 a3b4 a4b4



. (C.3)

The rearrangement operation is denoted by the following mapping (Pitsianis, 1997)

H̃ = R(H). (C.4)

To provide the general rule for this rearrangement operation, I use four indices i, j, k, l to

indicate one element in the matrix H (equation 12). The indices i, j indicate the block an

element belongs to, whereas k, l are the indices of an element within that block. For a single

element, I use the notation Hijkl
. For example, H2221

is the element at the 2nd row, 1st

column in the block H22 and is equal to a4 · b2. I use only two indices i1, i2 to indicate the

elements in the matrix H̃ and assume A and B are square matrices of size nx × nx and nz

× nz, respectively. The relationship between indices of H and H̃ are given by

i1 = (l − 1)nz + k,

i2 = (j − 1)nx + i.
(C.5)

For more general cases, such as when A and B are non-square matrices, interested readers

are referred to Van Loan and Pitsianis (1993). In the preceding toy example, the rearranged

Hessian H̃ is a rank one matrix as it can be expressed as the outer-product of the vectorized

versions of the matrices B and A,

H̃ =




b1

b2

b3

b4




[
a1 a2 a3 a4

]
= vec(B) vec(A)T . (C.6)

The problem of estimating the optimal Kronecker product approximation to a block matrix

is defined as

argmin
A ,B

‖H−A⊗B‖2F , (C.7)

and is equivalent to finding the optimal rank-one matrix approximation (Pitsianis, 1997)

via

argmin
a ,b

‖H̃− baT ‖2F . (C.8)
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The Kronecker factors are obtained by reshaping the vectors obtained by solving equation

C.8. A rank one matrix is not sufficient to capture the complexity of the Hessian matrix;

therefore, the problem is redefined using a superposition of Kronecker products in equations

6.12 and 6.13. The Kronecker factors can be retrieved by reshaping the first k singular

vectors of the rearranged Hessian into matrices. This process is summarized in algorithm

1.

Algorithm 4 SKP

1: function {Ai,Bi} = Sum of Kronecker Products(H, k, nz, nx)
2: Rearrange the block matrix H: H̃ = R(H, nz, nx)
3: Evaluate the truncated SVD of H̃: (U, S, V) = svd(H̃)
4: for i = 1 : k do
5: Ai = reshape(V[:, i] ·

√
S[i, i], nx, nx)

6: Bi = reshape(U[:, i] ·
√

S[i, i], nz, nz)
7: end for
8: Output Ai, Bi

9: end function



APPENDIX D

Kronecker factors estimation using matrix completion

This appendix provides the algorithm for estimating the Kronecker factors from randomly

selected samples of the Hessian matrix H. I indicate random samples of H with HΩ, where Ω

indicates the sampled set. This algorithm is called economical orthogonal rank-one matrix

completion (EOR1MP) (Wang et al., 2015b). Besides the random samples, the input to

the algorithm includes the number of factors, which is indicated by k, and the size of the

Kronecker factors (nz, nx). In this algorithm, I organize the samples as a sparse matrix.

The matrix Xi contains the approximations to observed samples after the ith iteration. The

vector θ has a length of k. At step 1, the top left and right singular vectors (ui,vi) are

estimated with Power method from the current residual matrix Ri (Jaggi and Sulovskỳ,

2010). The singular vectors are saved to recover the Kronecker factors as square matrices.

The optimal weights α1, α2 in step 2 are computed from the least-squares solution of a

linear inverse problem in which the weights are the unknowns and the vectorized non-zero

elements of the sparse matrix HΩ form the data. The non-zero elements of Xi−1 and Mi

are vectorized and concatenated to form a two-column matrix.
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Algorithm 5 EOR1MP

1: function {Ai,Bi} = EOR1MP(HΩ, k, nz, nx)
2: Initialize: Set X0 = 0, θ0 = 0
3: for i = 1 : k do
4: Step 1: Find a pair of top left and right singular vectors (ui,vi) of the observed

residual matrix Ri = HΩ −Xi−1 by the Power method. Set Mi = ui · viT
5: Step 2: Compute the optimal weights α1, α2 for Xi−1 and Mi by solving

argmin
α1 ,α2

‖α1X
i−1 + α2(Mi)Ω −HΩ‖2F

6: Step 3: Set Xi = α1X
i−1 + α2(Mi)Ω; θii = α2 and θij = θi−1

j · α1 for j =
1, 2 · · · i− 1.

7: end for
8: for i = 1 : k do
9: Ai = reshape(ui, nz, nz) · θki

10: Bi = reshape(vi, nx, nx)
11: end for
12: Output Ai, Bi

13: end function



APPENDIX E

Constrained kronecker factors estimation

I illustrate the process of estimating Kronecker factors with constraints (equation 3.12)

using a toy example. Suppose I have a 9 × 9 block band matrix C, which is the Kronecker

product of two square band matrices size of 3 × 3 and bandwidth 2. Mathematically, this

is expressed as:

C = A⊗B, A,B ∈M2
3. (E.1)

I further define the two band matrices as

A =



a1 a3 0

a2 a4 a6

0 a5 a7


 , B =



b1 b3 0

b2 b4 b6

0 b5 b7


 , (E.2)

so the matrix C is expressed as

C =




a1



b1 b3 0

b2 b4 b6

0 b5 b7


 a3



b1 b3 0

b2 b4 b6

0 b5 b7


 0

a2



b1 b3 0

b2 b4 b6

0 b5 b7


 a4



b1 b3 0

b2 b4 b6

0 b5 b7


 a6



b1 b3 0

b2 b4 b6

0 b5 b7




0 a5



b1 b3 0

b2 b4 b6

0 b5 b7


 a7



b1 b3 0

b2 b4 b6

0 b5 b7







. (E.3)
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Based on the properties of Kronecker products, the rearranged matrix C̃ can be expressed

as

C̃ = R(C) = vec(B) vec(A)T , (E.4)

which, written element-wise, is equivalent to




a1b1 a2b1 0 a3b1 a4b1 a5b1 0 a6b1 a7b1

a1b2 a2b2 0 a3b2 a4b2 a5b2 0 a6b2 a7b2

0 0 0 0 0 0 0 0 0

a1b3 a2b3 0 a3b3 a4b3 a5b3 0 a6b3 a7b3

a1b4 a2b4 0 a3b4 a4b4 a5b4 0 a6b4 a7b4

a1b5 a2b5 0 a3b5 a4b5 a5b5 0 a6b5 a7b5

0 0 0 0 0 0 0 0 0

a1b6 a2b6 0 a3b6 a4b6 a5b6 0 a6b6 a7b6

a1b7 a2b7 0 a3b7 a4b7 a5b7 0 a6b7 a7b7




=




b1

b2

0

b3

b4

b5

0

b6

b7




(
a1 a2 0 a3 a4 a5 0 a6 a7

)
.

(E.5)

I can also represent the vectorization of any matrix in the set of M2
3 as the multiplication

of a condensed vector composed of the matrix diagonals, by a projection matrix

a = vec(A) =




a1

a2

0

a3

a4

a5

0

a6

a7




=




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1







a1

a2

a3

a4

a5

a6

a7




= Qaâ. (E.6)

The matrix Qa inserts zeros into the condensed vector at the appropriate locations, â is the

new vector consisting of the diagonals of A. Similarly, the vectorization of B can be written

as

b = vec(B) = Qbb̂, (E.7)

where b̂ =
(
b1, b2, b3, b4, b5, b6, b7

)T
. Qb is equal to Qa in this special example

as the matrices A and B have the same size and bandwidth. The algorithm can be extended

to more general cases when the size and bandwidth of A and B are different. Substituting

equations E.6 and E.7 into equation E.4, I obtain

R(C) = Qbb̂â
TQT

a . (E.8)
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A left and right multiplication of equation E.8 by QT
b and Qa yields

QT
b R(C)Qa = QT

b Qbb̂â
TQT

aQa. (E.9)

Since QT
b Qb = I and QT

aQa = I, where I is the identity matrix, the previous equation

simplifies to

QT
b R(C)Qa = b̂âT . (E.10)

An interesting result arises from the product QT
b R(C)Qa, expressed explicitly it is

QT
b R(C)Qa =




a1b1 a2b1 a3b1 a4b1 a5b1 a6b1 a7b1

a1b2 a2b2 a3b2 a4b2 a5b2 a6b2 a7b2

a1b3 a2b3 a3b3 a4b3 a5b3 a6b3 a7b3

a1b4 a2b4 a3b4 a4b4 a5b4 a6b4 a7b4

a1b5 a2b5 a3b5 a4b5 a5b5 a6b5 a7b5

a1b6 a2b6 a3b6 a4b6 a5b6 a6b6 a7b6

a1b7 a2b7 a3b7 a4b7 a5b7 a6b7 a7b7




= b̂âT . (E.11)

The left and right multiplication of R(C) with QT
b and Qa selects the non-zero rows and

columns from the rearranged matrix. The constrained optimization problem expressed in

equation 3.13 can be converted to an unconstrained problem of the form

argmin
â, b̂

‖QT
b R(H)Qa − b̂âT ‖2F . (E.12)

The equivalent expression for a matrix approximated by a superposition of Kronecker prod-

ucts is given by

argmin
Â, B̂

‖QT
b R(H)Qa − B̂ÂT ‖2F , (E.13)

where Â = (â1, â2, · · · , âk) and B̂ = (b̂1, b̂2, · · · , b̂k). The band Kronecker factor matrix

Ai can be recovered by reshaping Qaâi into a square matrix. For additional constraints

e.g., symmetry, orthogonality, Toeplitz structure, readers are referred to Pitsianis (1997).

I summarize the computation of the band Kronecker factor matrix in Algorithm 6. This

algorithm is only intended to provide insight. In real applications, I never compute the

Kronecker factors through a direct matrix decomposition. Uniform random sampling is

applied to the elements of QT
b R(H)Qa to compute Â and B̂ via the matrix completion

technique described in Appendix D.
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Algorithm 6 SBKP

1: function {Ai,Bi} = sum of band Kronecker(H, k, nz, nx, nrz , nrx)
2: Rearrange block matrix H̃ = R(H, nz, nx)
3: Build matrix Qa = build matrix(nx, nrx)
4: Build matrix Qb = build matrix(nz, nrz )

5: Compute Ĥ = QT
b H̃Qa

6: Singular value decomposition (U, S, V) = svd(Ĥ)
7: for i = 1 : k do
8: âi = V[:, i] ·

√
S[i, i]

9: b̂i = U[:, i] ·
√
S[i, i]

10: ai = Qa · âi
11: bi = Qb · b̂i
12: Ai = reshape(ai, nx, nx)
13: Bi = reshape(bi, nz, nz)
14: end for
15: Output Ai,Bi

16: end function



APPENDIX F

Reduced Hessian: Implementation details

In Appendix E, I established that the reduced Hessian Ĥ = QT
b H̃Qa is obtained by selecting

rows and columns of the rearranged Hessian H̃. Because of the memory cost, I never build

the full Hessian H explicitly. Likewise, the rearranged Hessian H̃, Qa, Qb and reduced

Hessian Ĥ are also not computed explicitly. As discussed earlier, the Kronecker factors

are estimated from the random samples of the reduced Hessian Ĥ (preferential samples

of H) via low rank matrix completion. As a result, only random samples of the reduced

Hessian need to be computed. The restriction (and sampling) of H amounts to finding

a mapping relationship between the indices of H and Ĥ. The desired samples can then

be computed using equation 6.15. The remainder of this section explores the mapping

relationship between H and Ĥ in detail.

Figure D-1a displays the connection between the three forms of the Hessian matrix. For one

identical element, its index is represented as [ir, ic], [ĩr, ĩc],[îr, îc] for the Hessian, rearranged

Hessian and the reduced Hessian, respectively.

I assume the index of one image point x is (iz, ix) and the index of another image point

x + r, in its vicinity, is (iz + irz, ix + irx) with |irz| 6 nrz and |irx| 6 nrx . Half of user-

defined window sizes are denoted by nrz and nrx . The index of the Hessian element H[ir, ic]

corresponding to these two image points is

ir = (ix− 1) · nz + iz,

ic = (ix+ irx − 1) · nz + iz + irz,
(F.1)

where ir and ic are the row and column indices of H, respectively. This element moves to

137



APPENDIX F. REDUCED HESSIAN: IMPLEMENTATION DETAILS 138
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Figure F.1: Schematic representation of (a) Hessian, (b) rearranged Hessian and
the (c) reduced Hessian matrices.

the location (ĩr, ĩc) in the rearranged Hessian H̃ with

ĩr = (iz + irz − 1) · nz + iz,

ĩc = (ix+ irx − 1) · nx + ix.
(F.2)

Mapping the elements of Hessian H to the elements of reduced Hessian Ĥ is realized with

the help of two auxiliary mapping matrices Tx and Ty. One is for the row index and the

other is for the column index. I use a toy example to illustrate how to build the mapping
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matrices. Consider a square 4× 4 band matrix with a bandwidth of b = 1,

A =




a1 a3 0 0

a2 a4 a6 0

0 a5 a7 a9

0 0 a8 a10



. (F.3)

The vectorization of A can be expressed as

a = vec(A) =




a1

a2

0

0

a3

a4

a5

0

0

a6

a7

a8

0

0

a9

a10




=




1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1







a1

a2

a3

a4

a5

a6

a7

a8

a9

a10




= Qaâ, (F.4)

I create the following mapping matrix

T =




0 1 3

2 4 6

5 7 9

8 10 0



. (F.5)

The mapping matrix records the locations that the banded elements map to. The size of

the mapping matrix is n× (2b+ 1). The (b+ 1)th column saves the locations of the diagonal

elements, which are stored in the central column of matrix T. The location of the rth

off-diagonal elements are stored in the (b + 1 + r)th columns of T, r is the offset of the

off-diagonal to the main diagonal and satisfies |r| 6 b. For example, one element A[i, i+ r]

is mapped to â[̂i] and î = T[i, b+ 1 + r].

In this application, I need to create two auxiliary matrices Tz and Tx for the index mapping.
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The matrix Tz is related to the vertical model size nz and the vertical half window size nrz .

The matrix Tx relates to the horizontal model size nx and the horizontal half window size

nrx . Their sizes are nz × (2nrz + 1) and nx × (2nrx + 1). I get the index of the element in

the reduced Hessian Ĥ via the following equation

îr = Tz[iz, nrz + 1 + irz]

îc = Tx[ix, nrx + 1 + irx]
. (F.6)

I can also map elements from the reduced Hessian back to the Hessian. To facilitate the

mapping, I define another matrix F based on the content of T. The matrix F is given as

F =




1 0

2 −1

1 1

2 0

3 −1

2 1

3 0

4 −1

3 1

4 0




. (F.7)

The size of F is p× 2 where p is the maximum element in matrix T. The first column saves

the row index of the element when it maps back to a banded matrix. The second column

saves the offset of an element to the main diagonal. The following describes how to map the

vector â back to the banded matrix A. Take the element â[̂i] as an example, the row index

is given as i = F[̂i, 1] and the offset is r = F[̂i, 2]. So the column index j of this element

is computed as j = i + r. In terms of the Hessian matrix, I need to build two mapping

matrices Fz and Fx for the vertical and horizontal direction, respectively. For one element

of the reduced Hessian Ĥ[̂ir, îc], I can get the index of the image point and the offset with

respect to it, they are given as

iz = Fz[îr, 1] , irz = Fz[îr, 2]

ix = Fx[îc, 1] , irx = Fx[îc, 2]
. (F.8)

So the index of the corresponding Hessian element can be computed according to equation

F.1.


	Introduction
	Review of seismic data denoising
	Review of seismic data regularization
	Review of multicomponent seismic data registration
	Review of least-squares reverse-time migration
	Contributions of this thesis
	Thesis overview

	Multi-dimensional tensor algebra
	Introduction
	Notations
	Definitions
	Tensor folding and unfolding
	Tensor multiplication
	Hadamard product
	Kronecker product
	Khatru-Rao product

	Tensor rank and decompositions
	Canonical polyadic decomposition
	Tucker decomposition
	Parallel matrix factorization


	Random noise attenuation via the CPD
	Introduction
	Theory
	Candecomp/Parafac Tensor Decomposition
	An efficient CP Decomposition by Random Sketching: Randomized CP-ALS Decomposition
	Relation to other low-rank tensor decompositions

	Examples
	Synthetic data examples
	Field data examples

	Discussion
	Conclusions

	Multicomponent seismic data regularization
	Introduction
	Theory
	Examples
	Conclusions

	Multicomponent seismic data registration
	Introduction
	Theory
	Preliminaries
	Parameterization of the warping function
	Time domain interpolation
	Optimization

	Examples
	Synthetic example
	Field 2D data example
	Field 3D data example

	Conclusions

	Kronecker least-squares reverse-time migration
	Introduction
	Theory
	Least-squares reverse-time migration
	Superposition of Kronecker products
	Kronecker factor estimation using sparse Hessian samples
	A preferential sampling strategy for Hessian samples
	Computational cost

	Numerical Examples
	KLSRTM-SVD
	KLSRTM-MC

	Discussion
	Conclusion

	Conclusions
	Bibliography
	Relationship between the Vp/Vs ratio and warping function
	Discrete second derivative operator
	Direct estimation of Kronecker product
	Kronecker factors estimation using matrix completion
	Constrained kronecker factors estimation
	Reduced Hessian: Implementation details

