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ABSTRACT

fﬁThe transfer matrlx mbthod employed for v1bratlon analy51s

AT % '
whlch has long been used for a contlnuous beam on mu1t1ple‘i,'

-

aysupports (elther sprlng or - knmfe edge supports). ~Ho ver,

’;1mprovements are made on the method by comblnlng the -4‘ .
'-c1a551cal transfer matrlx method w1th the concept of the

P propagab1on constant and the F1n1te Element formulatlon of

aan 1mpedance matrlx‘ The Flnlte Element formulation enables

jfone to do - the v1brat10n analys1s no matter how complex the
’ . rz_.

Vstructure may be, whlle the use of transfer matrlces reduce5=

B the computatlonal effort v1rtually to that of a s1ngle~}
"Per10d1c un1t lf :f?n-~,i ":f 'fi'ffﬁp',j<j”e S i\ﬂf:;o'

The propagatlon constant whlch 15 obtalned 1n the~for

\

\

*of a logarlthmlc elgenvalue of the trahsfer matrlx‘helps in .

'”fthe‘understandlng of:the v1bratronfby 1nd1cat1ng~wh1ch

[y

\”’flexural waves attenuate and whlch propagate along the."
7.’periodic structure. Consequently,_v1bratlon problems of

?periodic structures whﬁch could be very dlfflcult to- analyze

£
¥

-vby other methods can . be more ea311y and eff1c1ently analyzed
by thls 1mproved transfer matrlx method

' The numerlcal examples taken in the preseht study are
mostly for unlform Tlmoshenko beams w1th dlfferent
'ﬂlntermedlate supports and extreme boundary cond1tlons. tThe
'naturalrfrequenc;es or‘the‘steadyfstate forced harmonic |

reSponSe of'suchhbeams are,obtained_andﬂthe~effect'of rotary

a .

-

:°f Per1odlc st;ucture in the present study 15 somewhat g., Py



1nert1a and shear deform;t:on'bn the flexural mot:ons of a'

}multa—span beam 1s 1nvest1gated. The appllcatlon of the

"‘present method is. by no means restrlcted to- the unlform beam

1

»

'hwlbratxon problems.g However the numerxcal exar

the1n re5ults may suff1c1ently demonstrate'
;and superlority of the present metho

_'methods for analy51s of v1bratlon of

N AN . "

. e

1
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ffairplanesfcontaln numerous examples of

- ~

1. INTRODUCTION AND LITERATURE SURWHY

A, .Per1od1c Structure‘r v"[,'“::“ SRR : h/ »
Many practlcal structures are conggruCted 1n the form‘
of_a "per;odlc structure malnly for appearance and lower
building‘costs.' The- 1nter1or of a perlodlc structure .
con51sts of 1dent1cal substructures connected in 1dent1cal
yaySu ‘Flgure 1 1 shows two s1mp11f1ed examples of perlod1c

Structures In the f1rst example of a 51mp1e perlodlc-
A\
structure, the 1dent1cal perlodlc un1t 51mp1y Wepeats over

and over aga1n,,wh11e~the perlodlc un1t in"the second '
4example is- 1tself a perlodlc structure composed of per1od1c.‘“;

‘subunlts. Be1ng the gen\rallzatlon of the 51mp1e per10d1c ol

_structure, the latter 1s ca&led a compound per1od1c

<

jstructure. The constructlons of\

-

rldges, sh1ps and

;the second type,
uhlle rallroad tracks, shafts w1th bear1ngs d dlSCS can be
"~con51dered good examples of the first type.f |
 For' v1bratlon analy51s, these beam and plate l1ke
i-structures w1th regularly spaced supports or stlffeners are
__often approx1mated by a.unlform beam model restlng on.
equi?spaCed supports,hknOWn;as a"periodic'beam' .cfhese
-supports prov1de translatlonal and rotat1ona1 restralnts to
the flexural mot1on and thus may be represented by |
‘kntfe edges or by translat1onal and rotational elast1c

l sprlngs.'



Belng a mono coupled system,bthe un1form beamnrestlng
pon un1formly spaced knlfe edge supports is one of the S
'51mp1est case of the per1od1c structure, and hence it. has
been the favorlte subject of ear11er studles by MllesEﬂG]
4h1Ayre and Jacobsen [1] and many others.. stng a graph1cal
: technlque of bu11d1ng up a nomograph of natural frequencles
vs number of spans, it was shown in. [1] that the natural
'dfrequenc1es of the mult1 “span beam can be obtalned for. two
types of extreme boundarles,vnamely,'51mple and clamped
The repet1t1ve nature of the groups of natural frequenc1es,
as any frequanc1es 1n each group as - there are spans, was'
- obsgrved in hlS study. A dlfference equatlon method ‘was -
also shown to be appllcable to f1nd the natural frequenc1es
of such beams. [16] However, th1s unlform beam model
’restlng on knlfe edge supports can . not satlsfactorlly
_approx1mate many compllcated types of per1od1cally stlffened
structures commonly used in aeronautlcal and naval | |
‘frameworks. SENE R R B ‘..::;. o c v
n"BJ'Transferhuatrln
d When the contlnuous beam 1s on unlformly spaced elast1c
spr1ngs whlch prov1de for constralnts to the deflectlon and .
rotat1on of the beam- the system becches mult1 coupled and
Vrequ1res matrlx representatlon of coupllng dlsplacements and
'forces. kfﬁchls type of problem the transfer matrlx whlch//

relates 'such coupl1ng d1splacements -and forces 1n succe551ve'

substructures was eff1c1ently used by L1n[10] to analyze'
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(b) A compound periodic structure.

‘Figpre 1.1. Examples of periodic structures. :
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forced response OflSUéh periodic.beams.,,Natural(frequencies
and principal-modes’mere aléo found;for periodic beams njth
certain extreme ends by benkewet al[(s]. The.transfer matrix
method wasdshown to,be‘suitable'for the v1brat10n analysls~
of such mult1 span beams, as: the extreme boundary condltlons
:“can be ea51ly taken 1nto account W1th the matr1x equation.
In addition, by working. with a smaller sized matrlx

representlng a- s1ngle periedic beam element the -~

B
computatlonal effort becomes v1rtually 1ndependent of the

%

number of spans For years the. transfer matr1x method has
been the major tool for v1brat10n ana1y51s of per1od1c»
beams. Tables of analytlcal transfer matrlces for commonly

_appear1ng perlodlc beam elements are l1sted in [18]

C. Propaéation éonstant

When a per1od1c structure contains many supports, SO
»:many modes must be - 1ncluded in the analys1s that the
class1cal nonmal mode or transfer matrix methods become very
_cumbersome. Under thlS c1rcumstance, it is convenlent to -

Vregard the structure as belng 1nf1n1te in extent Discrete

pr1nc1pa1 modes do not ex1st for infinite systems instead

the d1fferent1al equat1ons governlng llnear v1brat1on of the
. system y1eld free.flexural waves wh1ch-attenuate or
'propagate in- the absence of damplng and external forces.
Wlth some damplng present “the forced response of a f1n1te
structure even with a few spans can be approx1mately

obtalned by assumlng the number of spans be1ng 1nf1n1te and.

-



xby uéing the'wave/abproach. Thie method, still giviné
acceptable results,_mould require_far less computation.
. N .

When a periodic structnre is vibrating in one of its
free waves, therebexists a'constant ratio‘between the
'ampiitude of motions in the adjaéentdperiodic elements [3].
The natural log of this ratio of the ampl1tudes .was f1rst
called the propagatlon constant" by Hec&l[G]. The flexural
waves are then expressed as continuous fUnctions of
‘directional propagation constants.

- In the yorke of Mead[11,12,13] and Sen Gupta[19,20] the
propagation'of the flexural waves'in nniform beams were
-extensiyely investigated by the use of the propagation
. constant. The propagationrcohstant in their works was
obtai@bd from the receptances of beam elements [2) and it
was shown that the forced response of 1nf1n1te beams are
ea511y obtained by this propagat1on constant method. Even
in the case of beams of finite number of spans they also .
managed to express some boundary cond1t1ons in terms of
propagatlon constants. The mono-coupled system of a un1form
beam on kn1fe edge supports was reconsidered by Sen
Gupta[20] and it was shown that the natural frequenc1es are
graphlcally obtainable from ‘the curve of propagatlon
constants. However, in the case of multl-coupled systems
vthe representation of the extreme boundary condltlon in.
terms of propagatlon constant causes con51derable difficulty

[13] and hence the propagation constant method is hardly

used in:finding the natural frequencies of finite span beams



~on other than kn i~ &- edge supports.

In the present study the propagatlon constant ' is
recognlzed as-the natural log of an elgenvalue of the
transfer matrlx. By doing so, - the useful features of the

" propagation constant are still ‘ptalned thus expandlng the

limit of the transfer matrlx method .

D. Finite'Element Method

"~ The transfer matrix and the propagat1on constant
methods have been based on the analyt1cal express1on of the
~normal mode solut1ons to the differential equations. of beam
v1bratlon. Slnce these analytlcal solutlons are restrlcted
_to only s1mple beam shapes so are the transfer matrix and
the propagation constant methods. -

Often periodic structures in engineering are SO complex
that a uniform beam model no‘longer represents the pracflcalA
structure satlsfactorlly and therefore a numerlcal technique
such as the F1n1te Element Method is requ1red to analyze the
dynamlcs of the reallstlc models of these complex. per10d1c |
structures, In.fact, almost any shape of structure
» periodic or'non—periodicV can be analyzed by this numer1cal
technlque with the aid of dlgltal computers.“ However, as
the number of spans. increases the accuracy of the numerical
results deteriorates whlle the computational‘costs grow
enormously showing the l1m1t of the appl1cat10n of stralght

numerical methods for the V1brat1on analysis of perlodlc

structures. Due to such'limitations of the straight



numerlcal methods the transfer matrlx method ha

renewed 1nterest for the vxbratlon analy51s of eriodic
structures. | )
In the works of Orrls and Petyt [17] the - t od’of
‘obtalnlng the propagat1on constant from the 1mpedance matrix
formulated by Finite Element Method*was dlscussed:
Independehtly,_Meirovitch_and Enéels[1a,15]fshowed that a
matrix eguation can be,formed from.the same impedance matrix
‘using the so. called A transform method Agaln by;definlng
the propagatlon constant as the logar1thmn of the eigenvalue
of the transfer matrix, these two seemlngly dlfferent
technlques can be comblned w1th -added conven1ence resultlng

from the propertles of the 1mpedance matrlx.

¢
o

The transfer matrix method employed 1n'the present
study is dlfferent from the class1cal -one in that the
express1on is der1ved from the 1mpedance matrix resultlng
from the Finite Element Method not from the normal mode
solution to differential equat;ons. =Thus the transfer
matrix for a substructure is obtainable no matter how
complex it maytbe.. The analyticallexpression for the
transfer matrlx is also poss1ble as a spec1al case if the
1mpedance matr1x is expressed in terms of the normal mode
solutions of the beam d1fferent1a1 equat1ons. Thei
analytlcal expre551on for the propagatlon constant is then.

obta1ned from the e1genva1ues of the analytlcally der1Ved

transfer matrix.



E. Timoshenko Beqml |

All the analytical studles of- the flexural motions of
elastlc beams resting on multiple supports have been based ‘
" on the Bernoulli Euler beam theory neglecting the effe&t of
Ebtgry inertia and shear deformatzons. Correctxons to the
Bernoulli- Euler beam theory were glven by T1moshenké[21] in,
which the govern1ng differential equatlon 1ncludes the
effect of rotary 1nert1a and shear deformatlon. Huang[7]
solved this dlfferentlal equatlon by form1ng the normal mode'
:equatlons for six common types of single span beams and
d1scussed the effect of cross-sectional d1men51ons on the
('natural frequenc1es of a s1ngle Span beam.» However, 11tt1e
work has been ‘done for the Tlmoshenko beam with 1ntermed1ate
osupports. Thls prompted ‘the choice of a mult1 span
Timoshenko beam as* the numer1cal example for the present
: study . . . ‘ : u !

Qu1te recently several F1n1te Element models have been
proposed for the same Tlmoshenko beam as con51dered by
Huang. mKapur s[81 and Craggs'[4] elements are two of these
that have given good results over a wlde range of
1cross sectlonal parameters »These Finite Element analyses
as well as Huang s analytical study of the beam vibration

o

show that when solutions are based on the Bernoulli- Euler ,/’/

“beam theory there are cons1derable dlfferences except in the
low frequency range of ‘a long slender beam where the
cross- sectlonal d1men51on is negllglble/W1th respect to the

span length. B L ~
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In thzs study the results are obtained analytically as

‘well as numer1ca11y for the Timoshenko beam on

multi- supports. Thesge results are then compared with those.

7based on Be;noullz-zuler beap theory in order tc 1nvestigate

‘,the effect of cross—sectional dimens1ons on the natural

frequencies of such beams. By simply setting the
slenderness ratio to zero the present method 1s .shown to
yield the same results as those of MH e5[16], Ayre and

Jacobsen[1] and Lin[9]. \ \

v
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11. TRANSFER MATRIX AND PROPAGATION CONSTANT

-

)
=

A. Introduction

: . 4
When a periodic structure is approximated as a uniform
beam on multiple supports, the transfer matrix can belcasily
formulated from the analytical ‘solutions [9,10] or listed in
(18], However,‘man;”engineering structures {re often of the
fofm which'may not be approximgted'as a uniform beam, and
can only be analysed by a numerical Eechnique such as the
Finite Element Method, This requires a more»general method‘;
of deriving the transfer matrix for any type of perio@ic
structure. , : - ) —

In the following sectidn the transfer matrix which
relates the state vectors at two succe551ve nodes is derxvéd
from the 1mpedance matrix commonly formulated by the Finite
,Element Method The 1mpedancé‘matr1x of a sxngle periodic
unit relates the 1ntercou6&1ng generalized forces to the

generalized displacements at both ends of the substructire.

This impedance matrix, expressed either analytically or -

numerically, displays a general pattern - symmetry is one of

" ‘the features. Formulated in terms of submatrices of the

kmpedance matrix,'the'grénsfer matrix not only possesses all j
the properties of thg classical traﬂsfer'matrix, but aléo
contains some added features rgsulting from'thefpfoperties
of the impedance matrix. For this reason .simple ‘ «
@anipulétions,“for éxample inversion, of 'the transfer matrix

is possible. As in the case of beams supporfed on
10

-A
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}eQUl spaced elastlc sprlnds,tthe change of conflguratron of -

L”the perlodlc support}can be ea511y done by 51mply addlng or
1-f*subtract1ng the appropr1ate terms to the dlagonal elements

v}of the 1mpedance matrlx .‘r ‘-d", :.': ,.dnld
Once the transfer matrlx is formulated and 1ts
- elgenvalues are found the propagatlon constants are'
iobtalned .as the natural logar1thmns of these elgenvalues.
dIn thls way many‘propertles of the propagatlon constant aref’
” 51mply 1nterpreted by. ‘the algebralc propertles result1ng
wafrom the transfgr matrlx and 1ts elgenvalues : All the
:‘con51derat1ons of the behav1or of’ transfer matrlces and
-the1r elgenvalues can be " 1nterpreted as those of propagatlon'
constants and v1ce versa. Therefore, only a brlef |
’dlscu551on of-the propagatron constant 1s-needed'1n,thisih,
’chapter | | » 2

_ For the v1brat1on analys1s of mult1 un1t perlodlc

vstructures, e1ther free or forced often the. mult1p11cat1on ‘
of the element transfer matr1x der1ved for a 51ngle’
vsubstructure 15 requ1red in order to/flnd the total transfer
-matrix: relatlng the state vectors from one end to another of
the whole structure. ThlS dlrect multlpllcatlon ls |
'satlsfactory when the ‘number- of spans is small however for
‘per1od1c structures composed of many substructures thlS o
ddlrect multlpllcat1on would be very costly y1eld1ng doubtful
-results ‘ In thlS c1rcumstance, e1ther the Cayley Ham1lton |
‘theorem or the s1m11ar1ty transform metﬁod can be used so

that" the accuracy of the numer1ca1 results 1mprove'wh11ef_
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mreducing the compUtationallefforts;

v

In some cases only the propagatlon constants (or the

12

elgenvalues of the transfer matrlx) are needed 1nstead of

‘the transfer matrlx 1tself Slnce the transfer matr1x is
expressed in terms of submatrlces of the 1mpedance matrlx
the elgenvalues of the transfer matrlx or the propagatlon

constant can béjrelated dlrectly to the 1mpedance matrlx.
I

hIn thls way’ much of the computatlonal effort 1s reduced by-r

'ellmlnatlng the formulatlon procedure of the transfer ‘,f“

matrlx

~B. Transfer Matr1x from Impedance Matrlx
Con51der a perlodlc system shown in Flgure 2 1 and

supégse that the 1mpedance matrlx [Z] for ‘the. subsystem

v o8 e =

(R e ;
fr - f

Figure 2. 1 Block dlagram of a perlodlc structure |

K

showlng the generallzed dlsplacements and forces.

.‘,
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shown' in Figure 2.1 is formed as

R

{f} [Z]{d} S 2.

where {d} and {f} denote the general1zed dlsplacement and -
| force‘vectors respectlvely ' The;;mpedance matrlx,-[z] 1s.

of the famlllar form

“~

2] =~[K]§¢;;MJ. SR 2.

‘when formulated by the Flnlte Element Meﬁhod Here, [K] and i
‘, [M] denote the stlffness and mass matrkges, respectlvely

" This 1mpedance matrix as. well as the dlsplacement and force’

vectors can be. part1t10ned as

. ,"‘ o ‘» ‘L £, T Zi0 0 Zew 9 dL : » . . . ; |
T e o= _ S (203)
: "’,v fe i Zee " Zrr J- dn.j S - o T
. . . ) \ . . o w ! )
where the subscrlpts L and R denote the left and rlght ends
of the subsystem. 'In equatlon (2 3) it is assumed that the,
1nternal nodal degrees of freedom are already removed if
",necessary, by the procedure descrrbed in [14]
It can be easily shown that ‘the equatlon (2.3)fcanlbe

rearranged in the form

A

B L) G S ST WU 77 I - (S
R A { ) R e S P SPD
. fR‘j L=ZrrZ2id 2L +Zna, Znnzfﬁy £o)y. EREE :



-

‘But;

‘”by«the‘¢0mpatfbjlity reiatiqnshfhjbf disp;acements and

"{fR};j =_ {fL};j‘41 . ey R (2,6) _k .

0/
by the equ111br1um cond1t1on when there are no external
forces applled | ; _‘ | |

'»\;;\' Equatlons (2 5) and (2 6). are subst1tuted back 1nto

| equatlon (2. 4) to- yleld a’ matr1x d1fference equatlon ‘,‘;
relatlng generallzed dlsplacements and forces 1n the ‘

succe551ve subsystems J and J+7 as:

S L 0 e S O R ) RN
SN & 35 FR : ,fg 5.2: ,'i_ . ti ei,v> rueh R -

fT]‘denotes'thevtranSEe:‘métrix byvdefinitibnJCOnSisting‘of;;

’submatrices as

SCIE

=Z2if°2:0 o ZUR s v - ’ : :
. ZrrZr2.c Lk, ‘VZ'QR'Z._;:VR‘. o L » e |

¥

The augmented vector of generallzed dlsplacements and forces'

1s called the'state vector at a node
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& Lo e S
- C. Properties bfiT%ather Mat rix

Inwers1on ' ;"":A e :_i. jh);ﬂ‘r —

It %an be noted that the equatlon (2 3) may be»

frearrangedjln the dxfferent;ordervfrom equat;on (2i4)'as

fact o %Za‘L‘»"ZR,R R Zr! dR e B S
o= ] S (2.9)
Ry LTl ZR( ZRe*Zier ZocZaCD fER . T T e
Substltutlon of equat1ons (2 5) and (2. éI:Ento equatlon‘
‘(2 9) ylelds a transfer matr1x in the opp051te dlrectlon to h'

'equat1on (2 8), i;e.y the 1nverse of the transfer matrlx,

'-[T] ‘as deflned in: equatlon (2 8)

S S R I s . L o (2a10),
‘Thus. the 1nverse of transfer matrlx,‘[T*'] is another

transfer matrlx whlch con51sts of the submatrlces as

T tZRlZae . SZRILY ot
[P-*)} = | o o o ’;‘e- . S (2.11)
. ’ L2 2R Z2rRrTZ g '*Z%inﬂv" ST o

D1rect multlpllcatlon of [T] and [T"] in equatlons 12 8)

and (2.11) conflrms an. 1dent1ty matrlx, i. e., . 3'”

tTJ[Té»]7;.[r];7 f.”“fi“ S (2012)
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' %&15 derlvatlon of [T"] expressed by equat1on (2 11) doeg
not requ1re any add1t10nal calculatlons. -If_the‘transpose‘-’

r
of [T‘*] is taken as.

o/ ,'; L . . |

| | zn‘nznt 2 h-ZRRZAIZ.L
['r ’J ' (2,13)

"Z_au. S “Zr 211

- and noting that the impedance matrix [z] is symmetric, i.e.,
2.0 = -ZYL’L_‘, Zgr = Zn'afandeJt = Z-L,.;.. . (2.14)

\

"thenwthe”equation (2.13)ycan be Simpiified as

' ] '._ZR.R‘ZvER" ‘ ZRL".ZRRZE"&ZLL- R R
e [ B O PP T

';Zﬁﬁ , T“"ZfQZLL:

Compar1son of equatlon (2 15) w1th equatlon (2 8)
v‘1mmed1ately suggests an algorlthm for‘;nver51on of the.
transfer matr1x whlch is expressed by ngation”(é;Bj:
 (a) Partition the transfer matrlxwinto‘feurfsnbmatrices,
»(b) Sw1tch the left top and rlght~botton'submatriees,
“y(c) Change the 51gn of rlght top and left bottom S
submatrlces,_ |

(a) Take the transpose of the matrlx obtalned in (c)
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= _ -
,Elgenvalues and Exgenvectors

Assum1ng that a constant ratlo (e1genvalue) N exists

"A»such that B " _
fde¥ = Mat, o (2.16)
R ' N - o :
. \_
. ; //\/ .
and T I
Ee) = -MELD, o 2an

aand by subs1tut1ng equatlons (2.16) and (2.17) for {dn} and '

‘{fa}, matrlx equatlon (2.3) can be rewrltten “as -
(£} = [zoo 10} + Alzewllded - (2.18a)

S f - ,[;. o i S
{50} = [Ze2{a) +/ M zRaldl].  (2.18b)

'Equat1on (2 18a) is multlplled by X\, then addedbto'eqUatioh

“',(2 18b) to yleld

L

P~

,[.x‘zZLR""k‘('ZLL ;‘ZRR__')*"ZR“L‘]_{dL.} = 0. » .(2."19)

Equation (2. i9)-does not have an immediaté solution for 1,
'except when it 1s a scalar equatlon _ HowéVea, together with

i

a tr1v1a1 relatlonshlp S g SR

e pdg = Mad T (2.20)
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- ‘equatiqn (2.19) mayjbe aughented as ‘ o

\\ | 0 : .ZLR | . d. 2 O . "dL R S
BT - = A S o (2.21)

N LZa Zuo+ZredNal) 0 -zw=J XA}, |
~Equation (2.21) is of ‘the same size as the transfer matrix,
[T] and allows the use of- ord1nary elgenvalue subroutlnes ‘to
 find A values and the correspondlng elgenvectors {a. } The
generallzed force vector,\{fL} is then found by the
relatlonshlp N '

(£} = [z l{d) + fzied¥Ral}.  (2.22)
The augmented vector'of {dt}'and'{f‘} obtained from'\
equat1ons (2. 21) and (2 22) is the e1genvector of the
transfer matrlx. '

o

} It can be ea51ly shown that the transfer matrlx andﬂ:ts
1nverse .possess an 1gent1cal characterlst1c equatlon and,
thus the same set of ergenvalues. It follows then that the
geigenvalueshofvthe tranSfer'matrix must be-pa1rw1se

reciprocals. .

Mult1p11cat10n of transfer matrices

Accordlng to the Cayley—Ham1lton ‘theorem, a matr1x'
.itself satlsfles its own character1st1c equation and thus
uthe power of aﬁmatrix'ofvsize bn may be-expressed“by'a
linear combination of any 2njlinear1y independent

!
v
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‘polynomials of the matrix,

~

B n » ) .
[Tl = = [e;T) + g7 0], ©(2.23)
1= : . Co ;

- This equation must be satisfied by the inverse of [T] as

well

.q . . n . . A ] N ! B
(- = .3 [e,10 + 4,1 (2.24)-
‘ j:(‘ - \1:'., - e R .

o

'Addition and subtraction-of equations (2.23) and (2.24)

yield ~, o . | o ;
e n T - ,
“[TN+T-N]) = 2 ajlTi+T ] B .. {2.25a)
. j:j - ) ‘ ' S
[Tv-T-M) = . 2 byTi-T 0] ' © (2.25b)

_Qhere n denotes-half the size of-the’transfer matrix. The

constants &; and b; are determlned by subst1tut1ng the

e1genvalues N for [T] in equatlons (2 253) and (2. 25b) The

N-th power’ of the transfervmatr;x,_[T”] is then obtalned

(%] = 2 ajbTi+r-1] + 2 blTi-T-7] (2.26)

1-1 e IR 3=t

It is often more conven1ent to f1nd [TN] by -the
so- called 51m11ar1ty transform method. Since the transfer
-matrix has 2n linearly 1ndependent elgenvectors it can be

.dlagonallzed as - : ,?~\\;\
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[T] = [S1[A)[s ') (2.27)
where the columns of the matrix, [S] are the éigenvectors of
[(T] and [A] is a diagonal matrix with the correspbndiﬁg'.'
eigenvalues of [T] along its diagonai.‘ Then the .

}multiplicatioh of [T] can be done as

TN S IsiAMIs).  (2.28)

D.'Pfdpagation‘ConStantsfand Transfer Matrix
Alfhoughbthe"¢onéept ofvthe propagation cqnstant was

.'~orjéinally developed in waQe'theofy‘[S], independent of the

!transfer_matfix, it is quite clear that there exists a

<'definite'félationship'between them. By definition

' .{V}j.} '[T]{v}3 f transfer matrix - |
' . S s (2.29)
{vlj.s = exp(u){v}; : propagation constant ' :

<

wherex{v}’denbtés-the state vector conéisting of the

‘géneralized displacements and forces as shown in eguation

—

(2.8), and u is called the.propagation‘chstant. f//;///f“ .
. ) 7 . . // } '
- The latter can be subtracted:-from the former in- .

=
»

- equation (2.29) to yield

[T = exp(u)1] {v}; = 0. | : (2.30)
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Thus the propagation oonstant; u‘may 5!'nnderstood»as the
natutal logarithmns of'the eigenvalues of‘the ttansfer(
matrix. Hence the propagatlon constant in th1s study does
not requ1re a separate formulatlon but is evaluated from
the trafsfer mateix and 1ts.elgenvalnes; )

The propagatlon constants as well. as the e1genva1ues of

the transfer matrix are generally complex numbers. Since

\
{

the elgenvalues of the transfer matrlx are palrs of
rec1procals, the propagatlon constants are palrs of opp051tej
51gns..

For the transfer matrix of sizé éh, there eaist-n_pairs
‘of[propaoation,oonstants-and hence for a mono—coupied system:
only .a single curve is needed toHShow the propagation
constant. | |
E. Discussion o

‘The transfer matrix obtained from the impedance matrix

as in-the present study.can be applied to any complex

b

7R,

periodic structure since the impedance matrix can'he'always oy
| formed by the Finite Element Method. The Finite Element

. Method commonly nses polynomial interpolation fonctions} for
instance, a cubic function is normally assumed for the
deflection of beams.'hThe accuracy of the FiniteAElement
Method depends mainly on how olosely these tntefpolation
functions approximate the exact notmal modes. 1If HhESe
1nterpolatlon functions happen to be 1dent1cal to the normal

_ modes, the F1n1te Element Method yields the exact solutlon

-



within the rqund-ofilerrer-due»to the digitel cohputation;

. In the eese of a uniform’beem‘tﬁe analyticel expression for
the ttaﬁsfer matrix.cﬁg@pemebtained through the preeedu;e’as
descrlbed in the sect1on II1. B from the impedance?matrii |
'analytlcally formulated u51ng the two hyperbol1C/and
‘itrlgonometrrc normal modes as the 1nterpolatlon functions,
The cross-symmetric property of the transfer matrix haej
:been'consideted‘quite important in the earlier studies |
19,101]. jThis'c;dss-symmetryﬂefva transfer matrix is
expressed in the indicial form as |

tijg = tzami-j 200 : : } (2.31)

where 't;; is the i-th row and.j-tB\QOlUmn entry of the
transfer matrix of size 2n. This cross~symmetry together
with other propertiés of the tranSfer’matnfx\;eads‘tQ an

algorithm for transfer matrix inversion as - .

By e (2.32)
where t;; is the I-th row and j-th‘columﬁ entry of:{T"]t"
‘When the periodic unit is‘symmetricdabout its center it
is possible to obtain a cross-symmetri transfer mattix by a
suitable choice of the order and signs onvention for the
components of the state vector. However, the transfer"
matrlces are not generally cross symmetrlc, and even so, the

- propeg, reorderlng 9hd rearranging of a transfer matr1x into

L

L
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a croSstynmetric form;%ei ™ n"YWW1th the d191ta1 computer
is extremely difficult. In the present study- dea11ng with
the generally shaped periodic structures the use of
equat1on_(2.32)-can not be made and thus a new algorithm of
{:1nvers1on which does not requ1re the cross- symmetry be
,developed as in the section II.C. \ .
Certalnly the elgenvalues ang e1genvectors can be found
by ordlnary subroutlnes d1rectly from the transfer matrlx.
When_lts appllcat1on is restricted to the perlodlc beams
(the size of the transfer matrix is at most four) it matters
iittle how the-eigenvélues are obﬁained. HoWever,‘it ie
bpossiblebto greatly.redUCe the gomputationai effort fer

finding the eigenvalues and eigenvectors by using the °

submatrices of the impedance matrix instead of the transfer -

¢matrix as described'in equations (2. 16) through (2.22),
When the perlodlc unit is symmetflc further reductlon of
computatlon is p0551b1e by halvlng the size of. matr1x
involved [14,15]. ThlS ig p0551ble because of the special
\pattern of the 1mpedance matrix of the symmetrlc subsystem,
although it was not po1nted out in his study. By halving
the size of ?atrix for the eigenvalue éUbrontine the
computational cost 1is reduced/by a factor of approximately.

eight.’

>

_
- 5 .
By expressing the transfer matrix in teyms of'th%

submatrlces of the impedance matrix it’can be easily shown
that the transfer matrix and its 1nverse possess the same .

characteristic equation and thus the same set of

o
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eigenvalues. Consequently, the determinant of a trangfer
matrix .is always unity and the eigenvglues of the transfer
matrix'are therefore pairwise fecibrocals. This leads to
the conclu51on that the propagation constants which are
deflned as the logarlthmns of the exgenvalues must be pairs
_of opposite signg. Physically this should be true since
nature would not recognize the négativé and bositive
‘diféc;ion§ of the structure.

withoup excitation, a wave signallié not amplified as
it propagates along the structure. This implies that an
eigenvalue whose hagnitude is greater thanvpnity cor:espondé
to a negativ; goin;mwave aAd its recis;acél to a positive
going wave; In terms of propagation constants, the onn‘with
a positive real part corresponds to a negative going wévé
while the épe with a negative real parf to'a postive going
~wave. ’ ’ |
Generaily, the propagation conSt;nt as well as an
_eigenvalue of the tranéfer matrix is a complex.number. The
reai ?art of "the prdpaéation constang represents the
ampli;ude decay; the:imaginéry part the phase difference at:
two succeSs?ve_nodes.' An energy carrying freg flexural wave
is possible in the distiﬁct frequency zones where the real
part of propagation constant vahishés. For a fiQite
structure the wave motion satlsfles the extreme end
condltlons only at -the certaln groups of dlScrete Yalues of

frequenc1es w1th1n these propagation zones, " These groups of

freguencies constltute the natural frequengiés of the whole

-‘Jif)—"'

Ve
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‘:structure, wh1ch W1ll be dlscussed 1n the next chapter.p

| In order to use the transfer matrlx for the v1brat10n
analy51s of the N— pan periodlc structure, free or forced
" the f1rst step requ1red may . be the multlpllcat1on of the
element transfer matr1x.r Three dlfferent technlques are

- o

suggested namely, d1rect multlpllcatlon appl1cat10n of

Cayley Ham11ton theorem and the 51m11ar1ty transform methodv

“‘Dlrect multlpllcatlon 1s of course “the 51mplest and can. be

"satlsfactorlly USed for a structure with a few spans (three"

. or four spans at the most) Th1s d1rect multlpllcatlon 1s

?the only avallable technlque in the case where the structure;"

is composed of dlfferent substructures, Con51der1ng that
the'matrlx»multlpllcatlon is a costly process 1051ng the

"accuracy of the numer1car results,.th1s d1rect Vo “' e

multlpllcatlon can not be used for a perlodlc structure of

»

,many spans.
R The use. of the Cayley Hamllton theorem also contalns
the dlrect multlpllcatlon 2n tlmes (n t1mes for [T] and n n
vtlmes for I ). Because of this dlrect multlpllcatlon
1nvolved thls method is not su1table for mult1 coupled
h'systems when there are many coupllng coordxnates For the
'-sake of eff1c1ency, the Cayley—Hamllton theorem for the
k'multlpllcatlon of the transfer matrlx is not dlrectly

.applled to the ‘transfer matrlx 1tselfﬁ but to the sum and

'the dlfference of the transfer matrix and 1ts 1nverse ‘fnj'

th1s way, the computat1on deals with two half s1zed matrlces

.instead of one double-sized and this would resultlln e
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;reductlon o;}@he computatlonal effort Slnce the ‘Sum and

'hvthe dlfference of the transfer matrlx and its 1nverse are'of
Ca weakly coupled form, w1th half the components be1ng equal:
‘to or close to zero, the accuracy of the results alsoﬁ.‘ |
'1mproves. . | » " | '

‘On the other hand the method of 51m11ar1ty transform
‘does not requ1re any multlpllcatlon -Imstead 1t requ1res‘.
that the e1genvectors of the transfer matrlx be found to
form the matrlx LS] and 1ts 1nverse; [S-*].

'elgenvectors are automatlcally obta1ned in most elgenvalue

,~subrout1nes, however, ‘the 1nvers;on'of [SJ'lS‘aga;n a.cost;y,r‘

'process;, Fortunately, many. vibration‘problems‘do not need

[s-+] to be found as it w1ll be . shown in the next chapter.

‘, In such cases the method of 51m11ar1ty transform can be most

.‘-

eff1c1ently used.
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'Ilf,~’HARMONIC'MOTIQNS‘OF PERIODIC STRUCTURES

,.A. Introduction" St ‘:‘f: i _t" tvj °

In the prev1ousbchapter a transfer matr1x was .
.formulated for a typlcal bay of a perlodlc structure ThlS
7element transfer matrlx was then shown to be mult1pl1ed to
:,represent a transfer matr1x’for an N bay per10d1c structure,o

o

i.e.,
mN M ERERTE

“where [TN] denotes N- th power of a transfer matrlx [T] and
at the same t1me the total transfer matrlx relatlng the

' ~state vectors at the ends of the perlodlc structure o

| Generally speaklng, the two end bays of a’ perlodlc

structure are dlfferent from the typlcal 1nternal bay due to

"Nthe boundary condltzons of the whole structure - see Flgure

1(a) In thlS case the transfer matrix for the two end

‘bays may be formulated separately and the transfer matrxx"
for the whole system can. be obtalned as

S
"l;’}

vl o= 0] LT OTL tvle (3.2)

.‘where [T], and [T]N denote thektransfer ma%ggcestfor the
f1rst and last elements of the structure. ‘Fortunately in_
a many homogeneous boundary beam cases,*theitwo end bays can

"be,consideredyfdentical~to the other interfor bays. ‘These
oy ‘ ‘ R E ‘ .
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are the cases where the extreme boundar1es offer more
constralnts than the 1ntermed1ate supports f see F1gure -
1(b)=, The boundary condltlon is then applled to the state”
Ovectors {v}q; {V}J':n equat1on (3. 1) to obtaln the frequency;‘
'_equatlon of the complete system.‘ Therefore, w1thout loss of f .
generallty, it is- assumed in the present study that [TN] |
‘represents the transfer: matrlx for the whole structure
;relatlng the state .vectors {v}o and {v}N. !
| Spetlal con51deratlon is g1ven to mono- coupled systems
;where the perlodlc un1ts are 1ntertcoupled by a 51ngle
dlsplacement or a force (general1zed) A spr1ng ma'ss
osc1llat1ng system and a unlform beam rest1ng on knlfe edge
'bsupports are the examples of a mono coupled system “The
transfer matrix. for a mono coupled s@stem 1s of size two,
and hence it has a palr of elgenvalues and consequently a
‘palr of propagatlon constants. ThlS propagatlon constant
_vcan be represented by a smgle curve and 1t 1s p0551b1e '
~use a graphlcal technlque to f1nd the natural frequenc1es f
nthe system.. in the case : of a multi- coupled sysfem; the set
of frequency equatlons is of determlnantal form con51st1ng
of 1mp11c1t functlons of frequenc1es, Wthh can be solved by
an 1terat1ve technlque or a numerlcal scheme whlch does not
requ1re exp11c1t knowledge of frequenc1es.. M
while it 1s p0551ble to con51der tran51ent or
nonAharmon1c exc1tatlon problems,»only the steady state

: harmonlc forced response problems are con51dered in thlS

~study. In ‘such cases the response can be unlquely

N
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.',determlned W1thout any 1terat1ve procedure.
When a per1od1c structure contalns 1nf1n1te1y many ' 5{
spans the frequency equat1on is no’ longer obtalned

- However, the steady state solutlons to the harmon1C"'

”»exeltatlon are st111 avallable from relatlvely 51mp1e

calculatlons. Wnen th1S'response 1is 'shown 1n'the-form of a
resonance curve : the frequency at whlch the resonance occurs_z.
can be con51dered as: the natural frequency of such an

1nf1n;te system.

B Natural Frequenc1es
Con51der a perlodlc structure con51st1ng of N per10d1C"

_‘substructures w1th 2n degrees of freedom at each node

‘thhere exist 2n boundary condltlonS'— A for the left. boundary\

'a_and n for'the.r;ght. These boundary condltlons are .
substituted into equatlon (3 1) and a Set of equatlons {or\
the boundary condltlons 1s obtalned 1f the bouhdary'

‘.dcondltlon is such: that all the generallzed dlsplacements arec

zeros in the state vectors, {v}o and*{v}N 50 that
[T4) {£}e =0 - (3.3)

“where [T|%] denotes theﬁtop—rightlsubmatrig of [TN].
Equatlon (3 3) repreSents a set. of n“homogeneous algebraic
equatlons, wh1ch has nontr1v1al solutions if and only if the

":zu/%

determrnant of [T,z]‘vanlshes’



“From equatlon (2 28)

By setting

® 3
get[TN] =o0. ' - - (3.4)

The frequency equatlon can be obtalned dlfferently 1f

.the 51m1lar1ty transform method 1s used for obta1n1ng [TN]

i

Cvhes [SHAMIST wle. . (35)

[T ) - . - L

Premultiplication of both sides by [S™'] yields

BRI [ANllsf}J{V}o-"‘x o (3.8)

w

IS {Chao= fvhe, (3.

24

and' B
[S] {C}o - {V}’o , v - o (3.8)
. 'd*'v. , | L
_uequation (3.5) can be'rewritten*as B yA _ B
(Clu = A" {Clo. (3.9)

In these eqguations {C}o and {C}N denote the arbltrary

'-hCOEEficients to be determlned by the boundary condltlons at

"”the left and right ends of the structure.‘ Applylng the'

extreme boundary condltlons to equatlons (3. 7) and (3 8) a.
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-set of 2n homogeneous frequency equat1ons are obtalned¢ If
“the both ends are‘flxed, i.e., all the generallzed
displacements are zeros, ‘then

1

NOT (Clo =0 |
B o  (3.10)
[S/\N]1 {'G}o =0 ' ‘

‘uhere the subscript 1 in equétionn(B 105 denotes the upper
half of the. matrlx and the total number of equatlons in

(3. ")315 2n. : Boundary. cond1t1ons other than fixed ends can
be handled 51m1larly These frequency equations (3 4) "or.
l3 10) are hlghly transcendental and not’ to be solved
'51mply, because the components of the matrlces [TN] and [S]
‘are 1mp11c1t functlons of frequenc1es Thus a’ numerlcal
algorlthm Wthh does not requ1re explicit knowledge of the
characterlstlc determlnant is needed to solve the frequency
equatlon Me1rov1tch and Engels[15] suggested an algorlthm
whlch is referred to as Muller s method .For the detailed

a

dlscu551on for the Muller s method one should refer to [15].
Cv Steady- state Harmonxc Response

' Con51der agaln an N-bay structure.and suppose that a
harmonlc exc1tatlon is introduced at the node J.' The state

vectors at ‘the ends, {v}o,,andifv}N are now related as

{viy = [TM]{vlo *+ [TN-il{w}j" | A"'(3.11l

i
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where {w}; is the input vector'at Jj. ‘Equation (3.11)
contains total of 4n unknown quant1t1es in 2n equatlons.
Upon 1mp051ng 2n boundary cond1t1ons on {v}o and - {v}N, the
number of total unknowns is reduced to 2n, glv1ng a set of

: én equatlons ‘with 2n unknowns. ThlS equatlon is'
inhomogeneous due to. the 1nput vector and thus the state
‘vectors {vlo or {vl}ly can be unlquely determlned The
response at theylntermed1aternode, i then .can be obtained by

Vo

{vii = [T'I{vle: = if i5j,

| (3.12)
{V}i '

(T ){v}e + [T' 11{w};:  if i>5.

In. the case where the 1nput vector is 1ntroduced in
ibetween the nodes a part1a1 transfer matr1x 'is needed, wh1le o
the rest of the analy51s is the same. | Suopose an excitatlon
is 1ntroduced at a p01nt X 1n between the nodes Jj- 1 and j,

~ then the equatlon (3 11) can be mod1£1ed as-

S c

{vin =f-[.TN]{v}c>’}+ [TN-I10T, .51 (W)« C(3.13)

. A | // . | |
where'[T,_,] denotes a partial transfer matrix transferringd
the inputkveCtor from the point X to the node j. VWhen there.
are multlple 1nput vedtors the term due to other 1nput
vectors can be 51mply added to ‘the RHS of equatlon (3. 1).

-The problem of the perlodlc structure con51st1ng of

1nf1n1te1y many spans 1s not difficult to solve but needs -

separate:con51derat10n,. Figure 3.2(a) shows an example of a
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semi-infinite system. The boundary conditibn at the right
end is that there is no wave returning from it so that half
the coefficients {C}o'inbequatiohs‘(3.7) and (3.8) which
coftespohd to negative going waves are zeros. This gives n
'boundaryv¢onditions togethér with anothér»n boundary

conditions at the other end provide 2n feéuired eqhations.

b o e
» . f
v (a) Semi-infinite system.. ) N
‘ < ' . //
//’/
. oe w . ' : . \ . e © 0 o
Ppp— o l . . o b o oo

~(b) Infinite-infinite system.

‘Figure 3.2. Ha:monicallyvexcitea‘infinite systems.

Consider an example of a semi-infinite system with the

excitation at the.free end. From equation (3.6)

84
..

T (vlet{wlo = ISMCle - (3.14)

where half the eléments.of {C}p'ﬁhich correspond to negative

-

!
E

i
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goiné waves are zeros and the bottom half of {v}l, are also
zero6s” so that n equations frém the bOtf&m ;re solved first
for the n nonzero coefficients then the réSponse,is given by’
the upper haif of the equations. Inlfhe case of the '
infinite-infinite systemﬂwith‘the exciting force intrdduced
at tbe middle as shown in Figure 3.2(b),‘thé,addi£ional n
equations are the conditions at the chitation that the n

generalized displacements are continuous.

D. Mono-coupled System
Figure 3.3 shows two examples of mono-coupled system.
" The 2x2 transfer matrix for-a mono-coupled system is of .the

form

o tis tiz - :
[T_]=[ - } , . (3.15)
tey tazd. » : o

Since the‘determinantal‘value of a transfer matrix is alwéys

unity the inverse of [T] in equation (3.15) is simply

L

: tzz ~tiz | - :
T ['r-']‘=[ o } , -~ (3.16) .

Let the eigenvalues bﬁ [T] be A ahd'1/k and the propagation
constant be #u, then the total transfer matrix, [TN] is

obtained by the equations (2.25) and (2.26) as



= 0-5(‘t|1+Atzz).

/
/
i

‘(a) A spring-mass oscillating system,

- ' *w

Flgure 3.3, Examples of mono coupled systems showing

two p0551ble element d1v151ons.

| sinhNyT(t(,-tzg)' sxnh~y )"
[TN] = coshNu* ghy 2 sinhy °'? (3
sinhNu , coshNu —sinhNu (t,;-tp,) )
sinhy 2" - sinhu 2 .
_where it is noted that
‘coshu = 0.5(A+1/%)
‘ (3.

36

17)

18)

4 -
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In the special case where the periodic element is symhetric
about its center, t.;=t;;=coshu, so that equation (3.17) can

be simplified as

i

, 7 ,EoshNu s;nhN ty2 :
. : NY - | sinhu
. , : g{;ﬁ;ﬂtz1 .coshNu :

Three different boundary cohditions may be considered;

“._ 1) Both ends free ;-

/
%

/- . 5
=7 7 sinhNu/sinhu=0, or w=jmi/N (j=1,2,...,N-1).
| - (3.20)

v

O;‘( t21 =0 B

2)_§oth ends fixed

sinhNu/sinhu=0, or u%jwi/N'(j=1,2,...,N—L)
o - (3.21)
or ty, =0 )

3) One end free, one end fixed

1. Symmetric element .
coshNu=0, or u=(j+0.5)xi/N (j=0,1,..,N-1) (3.22)

2. Unsymmétric*element
cOShNu%0.55inhNu(ty ~tz,)/sinhu =0. (3.23)
For the spfing*mass oscillating System'shown7in Figure

3.3(a), the transfer matrix is obtained as - see Appendix

Al
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1-b? -1
[T] = [ ] (3,24)
b*(2-b?) 1-b? .

where b?=mw?/k. The propagation constant is obtained from

this transfer matrix as
pu = cosh '(1-b?) (3.25)

‘which is shown in Figure 3.4. Above the frequency, b=y2 the
wave attenuates with increasing amplitude decay as the
freqUency increases and the wave propagation'is only

p0551b1e in the frequency zohe, b</2 where the real pert of

the propagat1on constant vaqdihes.qult the propagation

zone at the points numbered )2 e, W 1=j7i/N (N=4 -in

Figure 3.4), the natural frequencies o r the free-free

or the fixed—fixed'sy gems are read i.e.,

/// ‘
= V1-cos(3n/N) (3=1,2,..,N-1) (3.26)
and additional roots exist
b = 0 and V2 ‘ . - (3.27)

in the case of fréfe-free boundary.

The natural frequencies of the system with the
free—fixed boundaries fall at the middle of these poihts
corresponding to the natural frequencies of the free-free or

fixed-fixed :systems® as

o
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mmfj f5 -

N Ere

2
=3

o5 1 22
FREQUENCY b= fle

‘ M
T

~ Figure 3.4. Propagation constant for'a spring-mass system.



gﬁelement Systgms v Whereas, those of the unsymmetrlc boundary
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b = /T-cos ((3#0.57) /W) (3=0,1,2,..,8-1)  (3.28)

' ‘ S

}7'only when the perlodlc element is symmetrlc.v For the four

',"span sér1ng mass systems of symmetrlc elements shown 1n

, “Flgure 3.5 the natural frequenc1es are obta1ned by thls
,method and they are glven in Table 3 The mode shapes

‘correspondlng to’ these natural frequenc1es of the free free

and flxed f1xed cases ‘are shown in- Flgure 3 6 The axial

hmotlon of the mass is shown vertlcally in thlS flghre

‘The same sprlng mass system can be d1v1ded 1nto
unsymmetrlc perlod1c elements as shown ‘in Flgure 3 3(a)

The transfer matrlx 1n thls case becomes - see Appendlx A, 2

. - : 1—2b2 ;1 E . ; » | . o .
[T] =,[ R ] | o | (3.29)
o  2b? | P S R |

>

‘The bropagatlon constant is 1dent1cally obtaxned as in

equatlon (3 25)zﬁnd Flgure 3. 4 Flgure 3.7 shows the four

span sﬁfﬁng miss systems of. unsymmetrlc elements. Note«that

the mass at theaends becomes 2m in thlS case. “The natural

LN

"frequenc1es of the symmetf%c boundary systems, (a) free free

and (d) fixed- flxed may be. determlned graphlcally from the
z

: 3
propagat1 ‘gconstant curve as in the case of symmetrlc

systems, (b) free fixed: and (c) fixed-free, can be obtained
by solv1ng the frequency equatlon (3. 23) : Thesefresults_are

g1ven 1n Table 3. 2
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_Table 3;1 Natural frequenc1es of four span spr1ng mass
systems of symmetrlc elements. (b—fﬁw)

Lo

3

No. MODE | FREE-FREE 'FREE-FIXED | FIXED- FIXED l

1 o0 o 02760 | 0,541

oy

0.541 . 0.78 | 1.0

TwN

1.0 Sl 101180 1.307 0 -

a f o 1.307 | 1.387

(a) Free—-free boundary

'(b)vFree—fiiediboundafy;

.m S 2m m i .

"(C)‘Fixed'f?xéd‘boundaryfu

\ ! ’ nﬂ.," ]
8 } . . e
‘Figure 3.5. Free Qibratlons‘of_a four span spring-mass

system of‘symmetriévelemeﬁts. ans

- L BT
f - . ‘. . .~ .o




tsnesegeonsase

(a) Free-free system.

N

Figure 3.6. Mode shapes oflthe four span Spring-maSé

systém,

42
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: o ' .
Table 3.2. Natural frequenc1es of four: span,, §€blng mass

f{}j\ :  .égstems of ugsymmetrlc elements. (b=f—w) )
~ MODE | FREE-FREE | FREE-FIXED | FIXED-FREE | FIXED-FIXED
1 ,vo.o fJ 0.286 | 0.315 | 0.541 °
2 0.541. [ 0.707 | 0.882 | 1.0
3 1.0 ™ 1.083 1.274 ] 1307
AR 1,307 | 1.329 |
5 1,414 | . '

(a) Free-free boundafy, w

. e ¥
2m - 2m .2m “m
(b) Free-fixed boundary. = g .
- 2m e 2m o T2m

(c)‘Fixéd-f;ee boundaty. ,
2n “2m  2m

(d) Fixed-fixed bbundary.i e
TR 2m  2m

om

Figure 3.7. Free vibrations of a four span spring-mass

system of unstmetric elements, . -
I _
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- Next, con51der the spr1ng mass systems w1th a un1t
harmonlc force as shown 1n Flgure 3 8. For the flrst
hexample of the four span free-free system the equatlon |

(3. 11) can be wrltten as

Xa| | Xo e . 2 T !
o=y U (3.30)
o) 1] ‘ ; - '
vFrom thlS equat1on the d1splacement of the flrst mass, X, .
canfbe obtalned as
;:"34'- Xo = - ta2/t2,

.o | ' o 33y
: .coshdu-sinhu/sinhdu: (2b2-b+).

n

- The displaceméht of the flrst mass 1n ‘the next example of -

’free flxed system in Frgure 3. 8 can be 51m11arly obtalned as'

Xo = - t12/‘t'z1'1.‘ ’
: SR g (3.32)
sinh4u/sinhy-coshédu, -

]

{
The‘displacement:of the center mass inlthe fikedffiXed four

spanvspring—mass'system can be also obtained. Since

. { }=;[_T‘]{ , }’5? [T’]{ } ‘ ; (3.33)

Fovcan'be‘obtainedjaS«



Figure 3.8. Forced responses of symmetric spring-mass

systems.

o
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Fo =‘-sinh2u/sinh4u5 ‘ (3.34)
The displacement of the center mass, X, is then

V- <X2~= t|2FQ ‘
o : (3.35)

= sinh?2u/sinhu-sinh4u e
where the propagation constant, u in these equations can be

eQaluéted by the équation (3.25). For the last example of

‘1nf1n1te system in Figure 3 8 the response can be obtained

-

by- the simpler calculatlon.' Since the elgenvectorlof.the

1

transfer matrix in eguation (3.24) is of the ‘form ,
X/F = 1/+/b*-2b* (3.36)

‘the ratio of displacement to force is the same for all the
‘state JECtbrs as in this equation. The‘hafmonic respo%fes
for the four span spring-mass systems 1n Flgure 3.8 obtained

‘as in the equatlons (3.31)-(3. 36) are, shown in F1gure°

e
e

3.9(a)-(a)y.. - R ¥
. , |

E. biscuésﬁon

The transfer matrix obtained in the previous chapter
for a sipgie‘ﬁériodic unit of the periodic structure and the -
propagation constanf obtained from it is used to solve the

[

free or forced vibration problems of the N bay strUcfure in

v £

th35>chapter. For -this. the flrst step requ1red 1s to

_multiply the element transfer matrix in order to obtain tﬂﬁr'
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(a) Free-free four-span system.
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Figure 3.9. Resonance curves of four span spring-mass

systems.
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(c) Fixed-fixed four—-span system.
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total transfer:matrix relating the state}vectors at the
‘nodes of several spans apart, eventually from oneAend to
~another. It is shown that the use of the CaYley-ﬁamilton
theorem can bé made for the mono-coupled System quite
effeétjyely. |

Maﬁy subroutines for the eigenQalQes do not r quiré
much additional'computation\toffind the éigenvectors; These
»!éigenvectors afé simply collected to form the matrix tS] and
as in the case'ofvequation (3.10) the inversion of this
matrix is not always required. Thaﬁ.is, no costlf
computation with the matrices is involved in such cases.
This alsb increases the accuracy ofvthe numerical results
because most round-off erfo;s occur during the matrix
mpltiplication.and inversion process. The elaborate
numerical scheme of a?oidinq these calculation errors as in
the reference [}0] ié not necessary .in the present study.

i A \ o x

The natufal frequencies of the periodié structure are,
found wheré the determinant of a sﬁbmatrix vanishes not by
the respoﬁses betominé-infinité as in [10]. Indeed it would
beia difficult task.to obtain accurate results with |
calculations involving infinity. The.determinantai
- frequency eqqations;(3.4):and (3.10) can be solved by any
numerical techniques availableffor such equations. However,
it was foundvthag thg determinant beha?es very smoothiy
around the roots so that ‘even the linear ihterpolation is

quite satisfactory. On the other hand the problem of the

stéady—State response to harmonic excitation does not
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require any 1terat1ve numerlcal scheme, instead the
\ . -
solutlons &re obtained by a linear equatlon solver such as

'Gau551an ‘elimination. K o o

The forced response sectlon is only brlefly discussed
in thls chapter because there are numeraus types of
problems, many of which are out of thﬁ scope of the present
‘study. It is bélieved‘thet most-engineering'problems of
forced responses can be sattsfactorily solyed by using thel
superposit&on of harmonic responses or by the classical
' normal mode method using the resplts obtained by the preseht
method. | .

In order to treat the tnf1n1te structures r1gorously
the veIOC1t1es of the waves, group and phase veloc1t1es
should be consxdered However, the 1nf1n1te structure in
thxs study is not really 1nf1n1te, instead it approx1mates a
structure w1th _many spans (more than five) w;th some damplng
in order to reduce the computationalleffort still obteining
reasonapiy good resolts.

An entire section is devoted to the mono-coupled system
becaose of‘easy celculation and easy illos%ration:of the
method and the behav1our of the solutlons. "The propagatlon.
”‘constant of the mono coupled . system can be elther pure
1mag1nary or real with the 1maglnary part being Q or #w, in
the attenuation zone. For a spring-mass system only’the low
frequency (‘ <vV2 ) s gnals can propagate along the system
:1e) that-the system acts like. a low pass filter. Oéathe
.other hand uniform beam on knlfe—edge supports_acts.somewhat

AR ) ‘7
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like an alternating ftequency.band pass filter.

For an N bay discrete system with symmetric units,
there exist either N 6r‘N-1 natural fréquencies in this
proggggtion zone, with the interval of 7n/N of the iméginary
partvgf the propagatioy constant. A system with the mixed ’wy
boundary has N masses qhé N nathral‘frequencies ali inside
“the p:opagation zone. ’Thé free-free system has N+1 masses
and the same number éf natpral'f:eQuencies, of gpich N—IF
frequenéies lie inside tﬁe\propagation zone and £wo are the
bounding"frequencies. The lower 5ounding freqﬁehéy is zero
corresponding to‘rigid'body motion leaving N n;tpral

frequencies. The fixed¥fixed system has N-1 masses and N-1

.y
1

natural frequencies all inside the pfopagation zZone, A
An N.bay continuohs'System hés N natural frequehcies'in
eqch propagation zone. All the N natural frequenciés‘lie
i&sidé the propagation zone in the case of mixed boundary
system; whiie the systéms with free-free or-fixed?fixed ,
boundaries have N-1 natu}al frequenciés inside the
propagation zone together Qith»one of the‘boundiné"f 'ia;ﬁ oo

frequencies.

This graphical'teéhaique of finding»the natural ‘31'_:
fréquénciegswas first‘hoted by Sen Gupta [20] by conside' ﬁ;éﬁ :
the‘flexural waveS’albng the uniform Bernoulli—Euler beam - §%Mf;?
resting on the knife-edge supports;‘yh}ch is an gxample\of ;; é&x;
the moho—coupled, continubus\system,as shown in Figure '§é§§tf

3.3(b). Figure 3.10 shows the propagation constant for such®%:

. | _ ¢
~beams with no rotational springs attached and his method offﬂwia-
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determining the natural freéuencies of the four span
hinged-hinged beams. Unlike\;he spring-mass system, the
atfenuatidn and propagation zones alternate.‘ There is a
group of N natural frequencies in each propghation zone, and
‘there are infinitely many.such gfoups ;esultihg in
infinitely many natural‘frequencies. This method:.of finding
the-naturel frequencies of the uniform Bernoulli-Euler beams
on knife*edge supports is identical to that employed for the
mono-coupled systems in the previous séction. In‘his'study,
however, the limitations of this graphical techniqgue are not
‘clear. In the present study the mono-coupled system is just
a special case where the present method.of‘analysis applies
and in the procedure of the analysis the graphical fechnique
appeafs. It is now clear that Mhis graphical technique can
be applied to any mono-coupled system, whesher it is a
uniform beam (Timoshenko or Eernoblli—Euler beam) on-

knlfe edge ssbports, spring-mass osc1llat10n system or even'
some electr1cal-c1rcu1ts.‘ When the perlodlc element is pot

. . [
uw,gfﬁ sgmmetr1c about its center ~however, “the natuﬁgl frequenc1es

£l

‘5tem w1th unsymmetrlc boundarles, i. e., one end’
»:'d“fﬁe other fixed, ‘can not be obtained graphically,

1nstead the equation (3.23) is to be used.

Rl ¥

It can be noted that the symmetric and the

e

L E

% .jant1~symmetr1c modes alternate in the case of symmetrlc

~—

Tf“’ :, systems in Figure 3.6. At each of the natural frequencies
) o

of the free—-free system including the first ome which

:epresentsythe rigid body}mdtion, the end masses must
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osc1llate so thatglf the exc1tat10n is 1ntroduced at the end
the resonance must occur. However, 1f the center mass of
the flxed flxed system 1s exc1ted the-resonandiacan occur-.

)

“ohly at- the flrst and th1rd natural frequenc1es -

: correspondlng to the symmetrlc modes. Thxs may bﬁd,-ﬁ yed ‘
in. Flgures 3, 9 (a) and (c).

P

Harmon1cally exc1ted steady state responses are

- obtalned in the form of receptance (ratlo of dlsplacement to

)

*force [2]) for the four span sprlng mass systems w1th four
_d1fferent boundary cond1t1ons and the results are. shown in

the res@@anceﬁrurves, Flgure 3. 9(a)-(d) Unllke &he 51ngle

mass- system the response ‘can become zero, that ls; a force
~can be exerted 1nto th/ system w1th nobmotlon at the point -
of exc1tat10h, the sysﬁem is actlng 11ke a v1brat10n
absorber.‘.81nce the /urves show only the absolute value of
| -the dlsplacement to fzrce rat1o the phase dlfference of

: 1nput and. output is not seen from these f1gures 1nstead 1t‘3
can be noted from the equatlons (3 31)‘(3 36). The\j'.‘
receptance in equatﬂon (3. 36) is pure 1maglnary when b</2 so‘
lthat there ex1sts # S phase dlfference 1n ‘the 1nfin1te
system The free kree system 1s capable of rlgld body

motion so that thJ receptance is 1nf1nrte at zero\frequency
(static load), but as soon as the exc1t1ng force becomes h'f
harmonic with low.frequency theydlsplacement becomes

v

harmonic with 7 out of phase of the force.

e



.A.ﬂlntroduction e U R A

'shq;rdeformat1on is fully taken’lntO'aCCount

flllustrated technlque as expla*hed in sect1on II

s
. IV. NOMERICAL EXAMPLE - UNJFORM:TIMOSHENKQ BEAM

W - v

i
All the formulatlon 1n the prev1ous chapter 1svnot

restrlcted to 51mple types of uniform beams. However,uthe

numer1ca1 example taken in this chapter is -a unlform

: T1moshenko beam in wh1ch the effect of rotary inertia and

G .

el & - 00
In this chapter the 1mpedance matrlx for a beam element

is f1rst obtalned.i Th1s 1mpedance matrlx can be obta1ned by‘: '

the F1n1te ,Element formulatlon u51ng Huang s normal modes as o

fthe 1nterpolat10n functlons ' However, the same 1mpedance

matrlx 1s more readlly avallable by the beam flexural theory

and the unknown coeff1c1ent method The analytlcal transfer

' matrlx for a- Tlmoshenko beam 1s then derlved from thlS

1mpedance matrlx “and expresbed 1n terms of Huang s normal '

»

mode solutlons and hlS noeatlons.'

: Natural frequencnes of the un1form T1m shenko beam on

t

the knmfe edge supports are found by a graph1cally

' although the actual calculatlon is done by a d1glta1 "w ‘{\ -

R &

computer The natural frequenc1es of beams on sprlng -

Jsupports ‘are found by solving the determ1nantal frequency

equatlons The conf1gurat10n of the 1ntermed1ate supports

is chang#d by vary1ng the translatlonal sprlng constant k‘ -

" and the ﬁotatlonal spr1ng, kr. For example, the beam restlng

o

on the Knife- edge supportsvcan be represented e1ther by a

ey

. 55 .‘ . . 4’ "‘;‘ \‘ v. “’ | : .’
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beam with K, becomlng infinite, or by e11m1nat1ng the

deflectlon dnd the shear force at the nodes since only the'ff

bend1ng slope and the bend1ng moment can be transmltted
through the‘knlfe—edge supports; =

The rotational’ spr1ng in Figure 4.1 is asSumed'to‘exert

°a re51st1ng moment proport1onal to the bendlng slepe .instead

®
of the total slope. Consequently, the boundary cond1t1on at

thebclamped end of the Tlmoshenko beam 1s;1mplemented by .
eguating~the bending sKEpe'todzero. This assUmption makes
the calculation simplerz althoughdit.would make ‘no . ’
‘:dlfigrence 1n the case of the Bernou111 Euler. beam where the
‘,bendlng slope and the total’ slope are the same. - | |

| The results of the harmon1c response problems are

- presented in the form of resonance curves.i Inf1n1te. R

gboundary cond1t1ons are also con51dered together with the

,ord1nary boundary condltlons such as’ h1nged or clamped.

£

In order to show the effect of rotary 1nert1a and shear

i‘

ﬂ'deformatlon, the results are obtalned for the three -
slenderness ratlos- r=0, 0. 04 and O 08. When thisd
slenderness ratlo is set to zero the Cross- sectlonal
‘dlmen51on is in fact’ neglected and hence the results become
’those for the Bernoulli- Euler beam. ‘ l

o L:ttle work has been done for the T1moshenko beam on
mult1ple 5upports, malnly due to the complex1ty of the
problem.o The analyt1ca1 solution by the p&fse#% method -

therefore can not be conflrmed by other publ1shed results

However” the results for some extreme cases of zero o

J @
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/ S

slendernéss rat{o or the 51ngle span peam may, be compared

leth those 1n [2] - [53, [9] and [10}.) For this purpose the

‘sprlng oénstants and other parameters are chosen as those

/.
found in theSe;re;erences,

‘B. Analyt1cal Formulatlon of Transfer Matr1x

. ]

g : _
Tlmoshenko be§m dxfferent1al equatxon -
Consxder a.contlnuous beam shown in Flgure 4. 1(b) The

elastlc constralnts proylded at . each support are

‘characterlzed by a translatlonal spr1ng, k‘ and a rotat10nal

spr1ng, k,. K11 the inter -'supports,are assumed to be
R‘

1dent1cal ma1nta1nnng the perlod1c1ty of the structure. -
P

(a) Kn1fe edge supports.‘

kjt ~ ;kr/{v 4 r/£ ‘ ﬁ‘[!,
ECSERRCIECR O

A

A : A o A,“‘ A
. ‘ 1kr}E,-J }
ﬁ(‘ 9,

*

 (b) Spring supports.

'Figure'4i1,n Uniform beams resting on egui-spaced

~ supports.
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’The'coupied equations for the”total défleétibn
¥, the slope due to bend1ng w1th1n a span are due«to

7*T1moshenko[21]

6

5;¥+k GA(5¥ =y)-pI 5—— =

AR
a‘g FGA( 6'1:1'5")’0

in which -
A = croSé?séctional area .
#;Yohng's modulus of elaéticity,

shear modulus . B

area moment of ‘inertia of cross-section

a

SR

P o M
"

=" shape factor for cross-section

"p = mass density of material.

Setting
= JYexp(iwt)
: v = ¥expliot)
E - X/]
where . A&‘

Y = normal function of y

¥ = normal function of v

£ = nondimen;iépal local qpordihate
© = angular fredﬁency

] = length of "a beam segment,

. 58

y»ahd:‘

(4.1)

(4.2)

(4.3)

(2.4)

(4.5)

CoxF
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s"li{"_—(1—,f>’r"sz")xp+y'= 0 . ' : (4_6)

. “ Y, . i ¥ . . . )
B S : - S b : , .
: Il e . Y . oo .
N LS . . . .‘

RCR Elim&néting'#ﬁpr Y £rom equétioné (4.6) and (4.7), the

.:£foiﬁbwiﬁg differential equations are obtained

YWV 4bi(r*+s7)Y"-b?(1-b’r?s?)Y= 0 | (4:8)

"¢'V+bz(r=+sZ)¢"—B3(1-b=r?$‘)¢= 0. (a.9)

[

Invequa;ions'04.6)-(4;9%

r are defined as
bz

r?

s?

the nondimensional parameters b, s,

= E:L?I“u’ : : (4‘.10_)
"ii%7 VT o o (4.11)
='?$";X%5 ’ Ty ey

“and the ‘prime undlcates the dlfferentlatlon w1th respect to.

the nondlmen51onal local coordlnate £E.

Following Huang s procedure further the npfmal mode

solutions to equations %4”8)5(4.9) are found as

P
¥ .

f&’ LR

Y —C,coshp£+C251nhp£+C3coqu*C.51nq£ e (4.13)




¥ =D1coshpz+Désinhp£+b3césq£+D;Sinq£' - (4.14)

Gy ‘._.n ®

‘rf N §_= ;%é/&(r’+s’)+/kr’55’)‘+,%3..f | t (4.15)
The argument of the myperbollc normal functlons, p in
equatlon (4.15) c;nbbecome 1maglnary number when the termvin
1{the square root bracket becomes negaflve. Thls exten51on is
applled to all the consequent equations 1nvolv1ng W1th p
: The coeff1c1ents C,,.Cz,..nandHD,; Dz,.. are related by

equations (4n6) or (4.7) as

- Dy - aC, |

ISZ = aC, V _ - ( ‘

-Da . 4.1?3
Duv'f= "3C3

'where a and B are the nond;mensional constants defined by
a p+b*s®/p, B=g- b’S /9.
) From the beam flexure theory the nondlmen51onal shear

‘force,v and the bending moment M:can be ekpressed as [21])

o V= - {k'GA(3y/3x-y¥).}]?/El - (4.17)

M= - ]3y/dx. E | (4.18)

Yo Substituting equations (4.1)-(4.5) into equations



(4-.17)-(4.18) thé generalized forces are -obtained as

,

<
]

(bir2g+y" )exp(1wt)

|
k4
]

= -y exp(lwt)

Having the expressions'for—the generalized

(\Y

displacements, equations (4.13)-(4.14), and forces,
equations (4.19)-(4.20),

vector as

Y
= L4 ’ L
b? r’#+¢" : e
-t L .

R

“\
|
)

Here the common factor exp(iwt) wés omitted, and all the

elements of the vector {v} are nondlmen51onal guantities.

Using the: normal mode’ solutlon, equatlon (4.13) and (4.14),
the general1zed displacements and forces at the left and
r1ght ends of the beam segment are- expressed in terms of
unknown'constsnts {C}. “
Y(£=O) 1 -0 1 0 PC1 ]
) w(E=0)\ - 0 a -0 B J C. (4.21)
Y(E=1) Ch Sh C S C,
$(£=1) aSh aCh -B8S BC | Cy ),
v(t=0) 0 gaB 0  -paBf 7 [Ci
M(§=0){ _| -pa = O a8 o |/c. (1.22) 3.
V(g=1) quBSh QaBCh pags —paﬁcj, Cs %‘afa%;
M(£=1) paCh  paSh -gBC -gBS Ca ;&@ '
. . @‘

(4.

it is possible to define a state

61

19)

(4.20)
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'where Ch Sh, C and S denote the four normal ﬂunctlons,
coshp, sinhp, cosq and sing, respectively, and the
_relaylonshlp . ' ‘ T
p*+bir? = gp

: (4.23)
ql-b?r!'v.g pa

wvas used to simplify the expression.

Impedance matrix : - S
The impedance matrix whﬁch relates the generaliééd_.
displacements and forces is then obtained‘by substituting
for the constants {C} in equation (4.22) with the
dlsplacements obta1ned from equation (4.21) as

A

T, Z 4 22 243 214

[Z] = pz+gz 232 222 223 2. | (4.24)
ﬂ )ShS*zaB(1 ChC) 23y 232 Z3za Zig,
Zu1 Zaz2 Za3 Zag

wvhere z,; denote the components of [2]:

211 = aBlaShc+pChs) 7

212 = aB{ShS+(gB-pa) (1-ChC)}/(pi+q®) -~

2,5 = -aB(aSh+gS) |

Zys = aB(Ch-C) | |
C2as = aChS-BShC - | | (4.25)

Z34 =7aB(Ch;q) |

BSh-a$

2234

Z3y = Z4,



0J.

‘Zan B T2

Zyy = Zz2.

" The same impedance matrix would be obtained by the standard

* . K

finite element formulation procedure, with the interpolation

functions being taken as the four exponential functions or
two trigonometric and two hyperbolic‘functlons. However,

the method described in this section is much simpler in the

case of an analytxcal 1mpedance ‘matrix. J
The forces due to spr1ngs (translat1onal or/rotatlonal)

are nqg included in equatlon (4.25) howeve% the effect of

sprlngs at each end of the subsystem can be 1ncluded eas11y

by addlng to’ equatlon (4.25) the matrix

(z] = K, - (4.26)

Y N

where K, k. are nondimensional spring constants.defined as

k kel?/2EI,

(4.27)

kz kr’/ZEI.

e
Ky

Transfer matrix and its inverse
) ’ 8 .
once the impedance matrix is obtained, the expression
‘for the transfer matrix can be easily derived by the simple

elgebraic procedure described in the previous chapter. The
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final expression of the transfer matrix for the Timoshenko -

- beam element shown in Figure 4.1(b) is obtained as

‘where
ty
tis
tis

tig

ta,

t2y

ta,
ts,
ts:
tas
taa
ta
taz
tas

Ctaa

1
p*+q? tar taa

tih t,ya
tzy ta:

tar taa2

QBCh+paC - ki(sh/a-s/B

tis
ta,
tay
tas

PSh+gS + k,(Ch-C)

(ﬁSh-aS)/aﬁ
Ch-C .

Ch-c
aSh+gs.

aB(q BSh+p aS) - 2k, (qBCh+paC)+k1’(Sh/a S/B)

tia

taa
Lt

tan

‘@B{gSh-pS) - k,(ch-C)
'PaCh+gBC + k, (aSh+BS)

(4.28)

b* (Ch- C) -k, (pSh+qS)+kzaB(qSh -pS) -k, k,(Ch-C)

qBCh+paC -~ k,(Sh/a-S/B8)

B(aSh=pS) + k,(Ch-C)

b*(Ch-C) + k, (pSh+qS) kzaB(qSh pS)+k k (Ch-cC)

pP*aSh-qg?8S - 2k, (paCh+qBC) kz‘(aSh+BS)

.PSh+gS = K, (Ch-C)

paCh+gBC + k2 (aSh+gs),

Thls transfer matr1x can also be obtalned dlrectly from the

normal mode functions and beam flexure theory w1thout

' formulatlng the impedance matrlx as shown in Append1x B.

¢



C. Specidl Case

As mentioned previously, the general transfer matrix
for the Tlmoshenko beam, equatlon (4. 28), can be reduced to \“\_f
Al .,

that for.Bernou111 Euler beam by simply puttlng the

slenderness rat1o to zero, i.e., ri=s*=0, so that " oy

; ' oy

1

p=q=a=B‘.“.‘/~. ~ ‘ (4.29)

The transfer matrix for, the Bernoulli-Euler beam on

spring supports then becomes a 4x4 matrix:

tey ty2 tia taa

_ 1. ]tzy tzz ta2s taa
(T) 2 t3s taz tasz tia
a1 taz taas . Cans
whéres:
ty, = p*(Ch+C) - k,(Sh-S)

ti1z =p?(Sh+§) + k?p(Ch-C)
ty; = Sh-S |

tya = p(Ch-C) ,

tza = p*(Sh-S) - k,p(Ch-C)
“t,, = p*(Ch+C)

tzs =}p(Ch?C)

tzy = pz(Sh*"S) |
o i (4.30)
tay = p*(Sh+s). - 2k,p>(Ch+C)+k,*(Sh-S) y
' N /
ty, = p‘(éh*C)“rg 1p?*(Sh+S)+k;p* (Sh- S) -k kzp(Ch C)
tay = p3(¢hyc),i{k (Sh-S)
t3q = p‘(ShfS) - k,p(Ch-C)

tas = p*(Ch-C) - k,p?(Sh+S)+k,p*(Sh-S)-k k2p(Ch-C)



. . » o - 6b

o | ~tez = DUME-S) + 2Kap’ (CheC)+k,*p? (Shes) "
fhin, . tas =Pi(Sh+S) + k,p(Ch-C) | | |
~rw"‘~; T ' ’ | | ‘
err taw = p’(Ch+C) + kyp*(Sh+s). L. R
T te = PP(CHC) + kipt(Shs). Y *

e #, -

e
L i

Ex

A spec1al case of this deveIOpment 15 the beam on
knife-edge supports,'which #ﬁs cOns1dered by Miles[16] and
Ayre and Jacobsen[1]. The transfer matrix in this case can .
be obtained by setting the total deflectlon y to zero on the‘ﬁ
supports . The transfer matrix obtalned from’ equatlons
(4. 28) and (4Q30) by this 0perat1on as shown in. Append1x C

is for the Tlmoshenko beam

[T] = ﬂSh-«S v L
gv_g , ) ) (4.31), *
[ﬁShc aChS~k;4 ﬁ_ef;"‘?ﬂg A }
k4 . '.Q,
(Ri+q’ )sﬁ% 2k, (ﬂShC*aEhS)ﬁk 1A BShC aChS=k ;4
; ';1' ' “ =)

«

where" A {(a=~p Wsns#zap(1 ChC)}/(p’+q ).

vFor the Bernoull1-EuLer beam o .i SN
’ “‘.*’At’*-w '.; .l L v .
. ‘ » ) ﬁ‘ ’ : .
: . K ;o :
[T] Sh S ‘ 4‘. L, ::g%‘ g.‘ /
ESSRTY ' ;uﬁ~ [ . L (4.32) .
[Shc ChS kz(1—chc)/p AJ,- ,_1 Co (1-ChC)/p \-]'
2pShS-2k, (ShC*d%S)+kz’(1 ChC)/p ‘She- chs- m,(1 ChC)/p ,

"y TR

U51ng the equataoms (2 25)-(2 2:; the total transfer
matrlces for. the N-span ‘beams can be obtalned in terms of
‘the prOpagatlon cohstant and the normal mode funct1ons

e1ther for the Tlmoshenko or the Bernou111 Euler beams,



5T1moshenko beams on kn1fe edge supports :“f;y

U,

Flgure 4, 2 shows a. un1fonm beam restlng on: the o

knife- edge supports w1th a rotatlonal sprlng prov1ded at

.;each support.} The propagatlon constants are obta1ned for a

[¢]

- beam element w1th three d1fferent kz values, kz—, 1 and

e 100 and shown 1h Flgures 4 3 $ From these propagatlon

v’ﬂ'constant curves and by the graphlcal techn1ques as explalned

- dn the sectlon III D the natural frequenc1es are obtalned

‘for two dlfferent boundary condltlons' hlnged and clamped

'The flrst four natural frequenc1es for the four sﬁan beams
are llsted in Table 4 The correspondlng mode shapes are
shown°for the hlnged beam case 1n Flgure 4, 6 Shown 1s;the
total deflectlon as well as that due to bendlng alone. 
- ﬁ : Ry S v W,v_ c
~ T L R R
”ﬂq; fd,#li (a) Hlnged h1 ged boundary ::;'ibj;, L
< AR : . T P "
LT P\. .
- ’ ‘ (b) Clamped-clamped boundary. ; uit”'(ul'- tﬁ'
L 2k 2k 2k R '
; o ;L‘-,,;*\E) \S) ;\é);; R
A AN
) Flgure 4 2 Free vzbratxons of the un1form beams onv- e
J" knxfe~edge suppoets ‘ “@d”'( L .
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Natural frequenc1es of a four span beam on

kn1fe edge supports, vb= {pAh' ;7EI}&

MODE

9

.04

- 0 L4

08

HINGE

‘|- HINGE

cLAMP

HINGE

cgﬁmp¥<(a¢

3,142

4.064

3.393
3.926

3.083
©3.301
3.759

4.199

4.199

14,402

13.759

12.940

3.412

3.090 |

3.709

“

3,090
'3.412

3,709 °

3,833

.08

CLAMP.

CLAMP

3.596
4.042
 4.505

4.730

3.833

430492
g 3492

S
3. 733‘ o b

. t
par

MODE

.04

.08

HINGE

HINGE

CLAMP ,

" HINGE

. CLAMP

R W N

B ERLY

4.654
4.685"

4,717 |

{4,337
‘,4;347
4.370 |
4,302 |

4.347
4.370
4.392

L Lnl

L

3.799

3.816

4.402

3.804

358285

' 3.808
3.816
3.828°

;g3.833:
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4
-

L R
——— TOTAL DEFLECTION =
... BENDING DEFLECTION = "

Flgure 4, 6 Normal modes of th@”four span T1moshenko beam

on knlfe edge su;? rks. oj S

"0"‘0_ PN e . ce "y



‘transla;1onal and’ rdtat;pnal sprlngs.’ Natural frequenc1es'}gf
. . el £

[¥]

T1moshenko beams on elastxc sprlngs

/"/

/
Flgure 4.7 shows the beam supported on elastic
are found for threb ditferent K, values- ki=0, 0.5 and 50,
ahd for two dlfferent boundary cond1t10Qs, h1nged and

clamped The- rotatlonal spring, k. is assumed zero for all.

'the results presented, although it can be ea51ly included.

Agaln the first four natuﬁal fre uenc1es iven in Tabl 4 2
aq ‘e 7

-abe for the four span beams In Flgure 4, 8 the R d
& correspondlng mode shapes are shbwn for the hlnged beam

‘case. Shown 1s the total deflectlon as’ well a{ tha portlon

of the deflectlon due .to bendlng alone.' 7‘ V..
R W : - Cp
N _’*-‘ . “ﬁ - ‘ . . . ",-‘,. g?: : )
L S R

{a) Hinged¥hihged boﬁndary.

(b).Clamped-elamped boundary.

Figure ¢.7. Free vibration-of the beams on spring *
S o it i 2.

supports.
.' ‘:;: t .‘/‘;:1 o o R SN . .

Ape ¥ :
L “:g@«iﬁf R

=5
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o

Table 4.2. Natural frequencies of a foUr span beam on
spring supports, /5={pAl‘w'/EI}%.‘ : . i

[

(a) ky = 0. ' f,-k:7 ‘ T

r= 0 10,04 | 0,08 N1y
A _ N S , BT
M@PE |HINGE | CLAMP | HINGE | CLAMP | HINGE' | CLAMP .’ .-

1 Jo.78s | 1.183 | 0.78¢ | 1:176 x 0.82 | 1.158 -
o 1,571 |1 be3 | 1.563 | 1.940 | 1.542 | 1.878

3 |2 356 \;,";; 2,331 | 2.694 | 2.264 2.558
»gg4;%‘ 14§ﬁ 3. 534 Y.085 | 3.446 | 2.941 | 3.185 "
| , { | o ] | | | . » _‘.r. ,‘.’ ;\»
\ » ‘ o . : A S
(b)k1 = 0.5. o o ) oS '
¥ == — &
r=.0 - 0.04 ¥ o.08

MODE | HINGE | CLAMP | HINGE | CLAMP HINGE | CLAMP

1 [1.084 | 1.371. | 1.083 | 1.307 | 1.081 | 1.294
1.631 | 1.996 | 1.623 | 1.974 | 1.605 | 1.917

2
3 2.373 2;766 +2.349 2.711 2.284 2.577
4

3.141 3.518 3.082 | 3.438 | 2.941 | 3.185

ér, r - 0 T o o4 . 0.08- Lo

‘% wope [ HINGE | camp | HINGE CLAMP '| HINGE | CLAMP
W 1 | 3.028 %.045 |-.2:985 | 3.005 | 2.872 | 2.898

3.042 | 3.065 | 3.003 | 3.019 | 2.897 | 2.898 *
075 | 3.608 | 3.025 | 3.507 | 27898 | 3.288

*> w N
w . .
~3
o

3.142 | 3.689 | 3.083 | 3.562 | 2.940.] 3,314



[

‘Figure 4.8. Normal modes ofvthe.ﬁour span Timoshenko beam

i

on spring supports.
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€7,

' E. Steady-state Harmonic Responses

i\

*

Timoshenko beams on knife—edge supports

‘A four-span beamfw1th both ends h1nged and the beam

-y

with 1nf1n1te1y many spans are shown in F1gure 4,9. The

bending moment is introduced at the center node and the
K4

bendmg slope * the game pomgt is found. The results. are

‘then shown .by the resonance curves - F1gures 4. 10 and 4.11.

(a) Four-span_hihged-hinged beam.

L
' .
2 .. & &

Figure 4.9, Forced vibration of the uniform beams on

knife-edge supports. . - ‘ . | -

‘7 6
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T1moshenko beamgfon elastxc sprlngs

Harmonic responses ate obtalned for the EJpe of
vert1ca1 force 1nput and deflect1on output The results are
L'

then shown by fhe resonance curves

Flgures 4 13 and 4 14 ?Zig'
"p,ffﬁf A four span beam w1 h both ends hlnged and an 1nf1n1te beam

are. taken assum1n'

that the ex01tat10n 1s at the center/node
_of the beams as srown 1n F1gure 4. 12

G e T e e le‘imt S T T

L "Ujlj ﬂ(b)/infinitefinfinite'bea? e |

P
|
|

= 3

i ure 4. 12 Forced v1brat1on'of;the:unifofmfbeams:onﬁﬁf
sprTﬂQ\SUPports. BET OSSR

o
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F1gure %,13. Resonance curves for a four span

hlnged hlnged beams on: spr1ng supports.

e



<J§EtEE¥n&Nc%”

Y
V2

i l

Tl

r 0

‘.904--0",‘~

W FTRREnTRTRY k

(=]
-
.
.
L3
.
X
b
-
8
.
-
<
.
B
.
e
5
5
o
3
L
b
.

il
L R

o
e

/’FREQUENCY @

Figure 4.13, ;entithd},.b



'RECEPTANCE.
4

t

ey .
e a4

. . A Y . - I
°> - A ' A s ROt e s s a0 00 a2 g sandooinaeaa

-
un
<4

L ; -
P

~

]
-

7

1

14

s

s

T EREQUENCY b -

- ..

'

.;"Figurg'4.14,.LResonanpe.¢urves for an infinite beam on

 'spri@g=supp6rts, ,  :;  1‘t : ; o
(@) ky =00 T |

@



87

FREQUENCY

” ~3 ¥ T &
L
#
5 m s m -
i
] - | ©
- “ e. i ! 104. O
L ‘o 3 - o
4 . "oy "
. "o Co o
‘o .l - -
. R : : s 4
o . Z N o —...Z
o N ~
: B &
; ..A ‘A
S ; p
'. \ .
.. ’,
.. - \
e’ ! --
ro-o.o..-.o-.oo de l-nlnl‘ll . i
o o vn‘-n-o,-ouuno, . . 'l'-"l ,
N RO -- - LI N N
i Co . ) . . . T lu
3 s . L \ ]
\ — : v
. . i ]
. I '
. .- 2 A ” i L A — -
n =3 o o wn o -
- - o o et ) L, hd Oo
- ,. Coe L > i o \. - <
- e — . 3 , : . )
L _>* ' 3INVLd303Y
: § EIE : - )
B _ | ‘
°- 1 .
- A . i
.,w 4 . . A

,/5

ed...

Figufe 4.14. co

‘.- (b)\ k1 S'Ob_.s.



“hﬁ. Numerical Results by Finite Element Method C N r
| In order to compare the reeults ana&yt1cally obta1ned

.

w1th those from the F1n1te'E1ement ﬂprmulat1on, a span of o

._the Tlmoshenko beam on 1ntermedlete supports is. subd1vzded
1nto a number of elements. The beam may . thus be con51dered )

an example o£ the compound per1od1c structure -~ see F1g?re

(1),Element division.

e

‘ N . . ‘ o . N
..~ -(b) Craggs' element showing the nodal displacements.

AN ’@ ,®-"1"R

A

Fxgure 4.15. T1moshenko beam element for the F1n1te Element

*%{ } qé Method

1 4

Craggs' TimOehenko beam element [4] uses four“nodalbll *ht\@t
degrees‘of ffeédom- namely, the total deflectlon, Y, bendlng
‘slope, ¢ and the1r first derivatives at each end of the
element. In between the nodes the total deflectlon and the
bend1ng slope are 1nterpolated by a cub1c functlon from the
nodal values. Through the general F1n1te Element procedure

,the 1mpedance matr1x 1s then obta1ned for the beam element



. l\\‘

in the nondimensional form as

- . ' . L4 . :
where. the stiffness maxrix,f[K]=
N

56 -42 0 -42

~.

. 504s7+156 4257422 =210
N @

56s2+4  -42

504
Symmetric.
3
and the mass matrix,
[156 22 0 0

4 0o 0
156r? 22r:

[Ml= o S e

-3
o

Symmetric.

N T A
[ 504> 42 210 42 -504

&

-

c[z) = [K) - 5=[M1

4205’

42
-14

42
,_7

§

-42

56.
504574156 -4252-22

54

13

 0‘

156

0

-50452+54 425713

-3 0 0t

-2 0 o

210 -42
- 42 =7
-425%+13 -1452-3
=210 42
-42 0

56si+4 |.

-3 0 0

0 54r? -13r%

0 13r?  -3r?

4 0 0
156r2 -22r2

o -

4r?

Here the nondimensional parameters are as defined in

‘ fX -?
' (4.3%
o . Lo )\.Jm,ww\\’i

N

aj

%



equations (4. 10) (4, 12) g ) e g

Unlike the analytrcally derived 1mpedance matrxx in

- equat1on (4.24), th1s eXpression for the 1mpedance matrlx of
\ o

size 8x8 can not be used~to'represent the Bernoullx—Bqler~»

beam element by setting rhéio. Impedance matrix for lheA
Bernoulli-Euler bean is of size#4x4 and may be found in most
texts of Finite Element Method

At a given frequency, b, thxs 1mpedancp matrix can be
evaluated numerlcally @nd the transfer matrix can be formed
uging equatlon (2. 8). This el%ne t transfer matrix is then
multiplied to form the.transfer metfirﬁrelating the state
vectors at the suppogts.- Ef the beal is supported on the

lX#TS the transfer

A Y
- matrlx for a span can be reduced 1n 51zerby the procedure

~

explalned in the Appendlx C, From the reduced transfer

knife-edges as in the case'of Figure

*

matrlx thus obtalned(the elgenvalues are calculated and the
logarithmns of these elgenvalues yield the propagat1on
constants._ In Figure 4. 16 the propagatlon constant for the
flexural ﬁftgon is plotted agalnst frequency for the two
.slerderness reéyos, -0 04 th\O 08. For each sleénderness
ratio a span of the beam is d1v1ded 1nto-one,'two énabthree
elements. From these propagatlon constant curves the

natural frequenc1es a

,explalned in Sectjon III D. Table 4.3-gives the results for

\

the h1nged-h1nged beams in terms of relative errors_compered

t

with the_exact solutions.

obta;ned by the grapglcal metho& as
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(b) r=0.08.




“ Table 4.3, Errors of Pinite Eim

L span ‘l‘iﬁélhnko*bum ic?a kﬁi!‘~"dg‘f;,!u§pgpg‘..‘ . :

23 NUMBER OF ELEMENTS PER SPAN .
. 3
'Fci¢ 3m8§ 47 ' 9.0

) X 2° | 3.30 8.7 } 0.1
3 13.759 25.3 | 0.7 | 0.3
4 | 4.199 64.9 1.5 0.7
5 |s.881 - 1,5 0.1
2 6 | 6.046 - | 2.8 0.5
7 1 6.378 s s 1.2
8 |6.689 - 9.4 2.1
"~ © (b)) r = 0.08e (%)
; | NUMBER OF ELEMENTS PER SPAN
GROUP | MODE | vb = 2 3
1| 2.940 1.5 | 0.0 0.0
11 2 |3.090 4.0 0.5 0.3
' c 3 | 3.a12 13.6 1.6 1.0
. 4 |3.709 38.5 2.9 1.7
s s - 0.6 0.1
2 6 |5.260 - 1.9 0.7
7 | 5.400 - 4.9 2.0
|, 8. 1s.520 - . |, 8.6 3.5

W
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G, vD1scu551on ,
h»;lt” It can’ be e351ly sho n that‘the same 1mpedance matr1x‘f‘fd'

as 1n-eduat1on (4 7) can le obtalned by the cla551cal F1n1te'
'hElement Method US1ng the four normal modes as the

'ulnterpolatlon.functlons, 1nstead of the polynom1als._pf;~*

ithoWeyer thlS procedure requ1res more calculatlon than that

S

fls needed by the unknown coeff1c1ent method employed in. th1s

"'tjchapter.”-If one requlres an: approx1mate solutlon one can

»‘use the polynomlals (most commonly CUblCS) to obta1n the |
vylmpedance matr1x 1n the fam111ar form as 1n equatlon'(z 2)
'The prec1se method of formulat;ng the 1mpedance matrix is
fnot 1mportant 1n “the present study because the present study
starts from the 1mpedance matrlx.v One should be cautlous of»”/
'the 51gn conVentlon used 1n the present study because 1t 1s

,Cacon51stent w1tqbthat of F1n1te Element Method not that

fcommonly used 1n many texts_—-see equatlon (4 18) for
h*

.example . f_ l T e T T s

: L1n[10] used con51derable effort to flndvthe expres51ong"
”for [TN] for the Bernou111 Euler beam on sprlng supports.:flz
h:Whlle thlS approach can also be used for the T1moshenko beamp
',case the Cayley Hamllton theorem and the s:m1lar1ty -
"transform methods, shown arelmore eff1c1entvj Bes1des, the
"present method 1s a1med at the generally shaped perlodlci'
'structures not jUSt unlform beams.\

As’ mentloned prev1ously, the-four components‘of theb:‘
,transfer matrlx for the mono- coupled systems are in fact thet

frequency equatlons for a 51ngle span system w1th dlfferent

e



N .

boundary cond1 ions;t Therefore three frequency equat1ons

f be obta1ned for the T1moshenko beams w1th three ;['

:equatlon (4 31) t,, (or tzz) for clamped hlnged tfg"for o
| ”'“clamped clamped and t21 for h1nged hlnged case., These |
?frequency equatlons are the same as those found 1n [7]
'»except in the case of hlnged h1nged boundary, where the tw01

-equatlons yleld the same set of solutrons in the low

'_the argument of the hyperbollc normal functlons p becomes
'1mag1nary number so. that these functlons 1n fact become
f'; trlgonometrlc, Huang k3 equatroh fa1ls to g1ve all the’d
.Jnfrequency roots | | | » &
e v All the results are’ obtalned for the three slenderness '
!‘ratlos- r= 0 0 04 and 0.08. The nondlmen51onal parameter ,s,“f
;':15 set to tw1ce the;§*values assum1ng that the shape factor |
’—2/3 (or 0 65) and E/G 8/3 (or 2. 6) whlch was used ‘in the¢>l
'Zreferences. | | o o |
v F1gures 4 3 4 5 show the propagatlon constants for the
#1moshenko beam on the kn1fe edge supports and w1th thev .
rotat1onal spr1ngs, kz—O 1 and 100 Wlth r= 0 and kz—O the
“F;propagatlon constant curve becomes 1dent1cal to. Flgure 3 5 |
'and also that in" [20] for the°Bernou111 Euler beam. The

- propagatlon constant has a repeatlng regular pattern of o

1nterval 2w w1th the propagatlon zones ly1ng in the

- once the natural frequenc1es of the flrst group are

oy
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:dlfferent boundary cond1t1ons from the transfer matrlx 1n [;:-'»‘”

'_frequency range However 1n the hlgh frequency range where""i

5frequency ranges mﬂ<¢b<(m“0 5)#, approx1mately , Therefore\t {U;U'



'ffThls regular pattern becomes dlstorted as the slenderness

T{ratxo 1ncreases by sh1ft1ng the curve towa ds the lower\

"xfrequency 31de, that 15, the qatﬁral frequenc
"w1th 1ncrea51ng slenderness ratlo.: Above a. certa1nvyc'y
frequency the alternatlng pattern of attenuat1on ‘and.-
?ﬁpropagatlon zones completely breaks and there can: be.anh“

B . s .
‘addltlonal natural frequency in a’ group V |
The 1ncrease 1n the rotat1onal sprlng constant kz
»:makes the propagat1on zone narrower by mov1ng the lowet,
;iboundlng frequency towards the upper bound1n§*frequency |
.glv1ng h1gher natural frequenc1es. S1nce the upper boundlng
frequentles are the natural frequenc1es of . the 51ngle span‘t

:clamped clamped beam these are 1ndependent of the o

-\: e . 3

:Jbefomes lower =~ N

A

: . i‘y-

4rotat1onal sprlng, kz.d The lower boundlng frequenc1es oh‘;'yﬂl

the dther hand wh1ch are the natural frequenc1es of the

“'”51ngle span hlnge h1nged beam for wh%ph the ends can rotate,

{f;ﬁlncrease for the h1gher kz. As kz,lncreases further these

3.natura1 frequenc1es approach the upper boundlng frequenc1es

pof the propagatlon zones wh1ch are the naturaﬂ frequenc1es
of the s1ngle span beam with' both ends/clamped . Thef'
,propagatlon of ‘the flexural waves 1s then pQ§51ble only at

,‘these frequenc1es and every span of the beam becomes

!

v1rtually 1solated

In the case of beams on’ sprlng supports, llttle is to_‘7

:be ga1ned by con51der1ng the propagatlon constant and the :

P

. ,,‘
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r‘ H ‘ ) ‘
ﬁnatural frequéncles are found by 1terat1ve1y solv1ng the“
.frequency equatrbns.. The results are shown 1n Table 4 2.
'hfW1th both k1 and Kz belng zero the beam becoﬂts a. 51ngle

‘xspan beam w1th no-- 1ntermed1ate supports, whlch ‘is 1dent1ca1‘

'f_to the beam con51dered 1n [7] The propagatlonoconstants 1n

,Ythls case are u—+p, +q1 and the natural frequenc1es are . jﬂ/N

v . N

‘Jﬁ(j—1 2,0 ) for the Bernou111 Euler beam with both ends

t: h1nged and approx1mately (J+0 5 w/& (3—1 2,...) for the
y clamped clamped case | The reason t#at the number of spans,~
“iN appear Ain these frequenc1es 1s that the frequency
para%i b is. based on the beam element length : f
By 1ncreas1ng the translatlonal sprlng constant. k.;f

'the natural frequenc1es 1ncrease approachlng the natural
v.trequenc1es of the beams on kn1fe edge supports. The effect"
nfrof the- rotatlonal sprlng would be higher natuqal
'“g.frequenc1es,,however, it 1s not con51dered in thlsvcase.
o The total'deflectlons shown 1n the mode shapes 1h_hf’
hthlgure 4.6 and 4.8 are’ 1dent1cal to those for the'
.Bernoulll Euler beams except that the total deflectlon of
'?the Tlmoshenko beam 1s composed of deflect10n5 due to : »
'tbendlng and shear. When the mode shapes are 51mple :vtr-. ///‘;
“SlﬂuSOldal curves as. the flrst mode in Flgure 4, 6 and all. /v‘
:the modes 1n Flgure 4 8 there GXIStS a constant wh1ch _f‘( i

',governs the proportlon of the deflect1ons due to bendlng/and

/ :

S shear throughout ‘the beam.{ The proport1on of the shear f?h

' deformatlon 1ncreases as the frequency 1ncreases and at the

,suff1c1ently hlgh frequency normal modes of pure shear can'



' appear.‘ The translatlonal or the rotat1onal sprxng”;atithe-"

-~

f.supports do not affect the mode shapes.

The effect of the rotary 1nert1a and shear deformatlon

‘.on the natural frequenc1es 15 shown 1n the formf f“ap

correctlon factor glven 1n Flgure 4 17. The co rectlons for R

3

the 51ngle span hlnged hlnged beam,are s1mi s~to those for‘f"
\

' clamped free beam as shown 1n [7] Tﬂ*fhe case of the four

° - Vv

"“°'g'span beam the correct1ons for the flrst four modes fall 1n

between those of the f1rst and second mode of the 51ngle “V

f": There are two resonances and two zero responses 1n each
Mfrequency band 1n Flgures 4 10 and 4 1./ A four span beam

7uthas four natural frequenc1es, of wh1ch two correspond to '5ﬂ

symmetrlc modes, the other two; 0" ant1 symmetrlc modes.‘

:,_center at the natural frequenczes cor;espondlng to" symmetr”d

S modes.v It 1s obv1ous then that the number of these |
‘fresonances and zero receptances in each group 1ncreases w1th
the number of spans, maklng the analy51s very dlffxcult as a
Sllght change in . the frequency results 1n the change of g

/////response from zero to 1nf1n1te or. v1ce versa. 'Therefore it

xls more convenlent to. assume the number of spans be1ng
1nf1n1te 1n th1s c1roumstance,'wh1ch not only saves the

ny
computatlonal efforts but y1elds reasonable results as shown

.‘,’-

R : . S
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'in'Figure 4*11 “In- the case of 1nf1n1t' beams there is a

‘51ngle resonance and a: zero receptance 1’ each frequency

*band the reSonat1ng frequency is. the na ural frequency of a'

’~;fjszngle span beam with both ends hlnged and zero receptance

'at the natural frequency of a’ clamped~c1am‘ed beam element

‘ysmooth1ng the response in between these two boundlng

'v"frequencaes._ A 51m11ar trend can- be observed in’ Flgures‘q ‘

"4 13 and 4 14 wh1ch show the vertlcal deflectlon due to ...

"cwvertlcal exc1tatlon 1ntroduced at the center nodes of a ’;;

L]

Ffour span beam and an 1nf1n1teﬂbeam on elast1c sprlngs. ‘The

'response does not have to be found only at the p01nt of

[o—

h'excatatlon. The state vectors at any nodes can be obtalned'*~—~c

by equatlon (3 12) once the equatlon (3 11) is solved
since the upper half of the entrles 1n the state vectors are
ﬁ-the dlsplacement responses. The harmonlc response problems
f“con51dered are. for the cases of force -inpug - :
fdlsplacemeét output problems. However,,51nce ‘the 1nput
',vector {w} in equatlon (3 11) contalns bothathe_dlsplacement :
- and force terms, ‘the opp051te casefcan'also'beJtreated”in”
.1dent1cal-ways: WIn;fact evenﬂtheamiked input problems:cana-
A be‘considered, however;'it'isfrare;to find'such applications
“in practlce.' ' | \u |
It should be noted that the response at zero frequency
is in: fact the response due to the static force.r Hence the

v{presept method of analy51$ does not exclude the statlc i

,'ana1y51s of perlodlc structures. :




- \‘ - ' 101

Whether the 1mpedance matrlx 1s obtalned (halytlcally
or by the. Finite: Element Methodﬁ the transfer matrlx
analysis is 1dent1cally applled 1n the’ present study.‘ Thlsv
‘was demonstrated by u51ng ‘the 1mpedance matrlx in reference
f@l.: The accuracy of the F1n1te Element solutlon depends |
‘largely upon how. closely the interpolatlon functlon can
approximate the true shape of the normal modes. ‘If the

cubic functlon is used as w1th the Craggs element the/i
sfunct1on may not satlsfactorlly approximate the deformatlon
kcorrespondlng to the second or hlgher group natural modes.
Therefore only the f1rst group of natural frequenc1es are.
obtained w1th a 51ngle element per span.” As the number of
elements per span 1ncreases the propagatlon constant curve
from the Finrte Element more closely resembles that of the
analytlcally obtalned ’ A

, Generally, the accuracy of the F1n1te Element solution
b)deterlorates as the frequency 1ncreases. For the multluspan
f beam, however the accuracy the lower mode solutlon in the
next group is better than that of the last mode 1n the _
prev1ous group ThlS can be also noted in the propagatlon'“
constant curve. In each propaqatlon zone the dlscrepancy
1ncreases w1th the frequency but the dlscrepancy at the
.lower boundlng frequency of the next- propagatlon zone is
smaller than that at the upper boundlng frequency

“The same four span T1moshenko ‘beam was also treated by
the ordlnary F1n1te Element Method The natural frequenc1es

were obta1ned -by f1nd1ng the elgenvalues, b* from the~global
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! ' .

impedance matrlx assembled from the element 1mpedance

matrices. The sdlutlons by this ordlnary F1n1te Element

Method are the same as’ those obtalned through the

: formulatlon of the transfer matr1x within the round -of £
error. The advantage of the present method of analy51s is

~then the computatlonal eff1c1ency The computlng t1me (CPU)

requlred for these two methods is shown in ‘Figure 4.18,

which represents only the spec1f1c case of the example 1n
the present study. However, the general trend can he
observed 1nd1cat1ng that the 1ncreas1ng computat1onal effort

is necessary to obtaln better solutlons by the ordinary

“ F1n1te Element Method. On the other hand, the computatlonal"

~effort is v1rtually constant regardless of number of

elements per span when the transfer matrlx method is used °



9 | R 03

- Figure 4.18.
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- O-----0 FINITE ELEMENT
=3t - ' ]
(L)
Z
§~2- o .v' -
= o -
o . .
1t . ® o -
| . G O o ¢
o | | L
1 2 - 3 L

 NUMBER OF ELEMENTS PER SPAN

Compatison of the computing time msed.



!

V. CONCLUDING REMARKS _ :
There have been two dlfferent approaches used for. the
‘v1brat10n ana1y51s of per1od1c structure5° the matrix method
- and the wave approach .The - present method 1s a blendlng of
these two . approaches puttlng more emphas1s on. the transfer
matrix and merglng the propertles of propagatlon constants
and the elgenvalues of the transfer matrlx. Since per10d1c
structures can be of complex shapes 50 that the analy51s can
be done by numer1cal means only, the transfer matrlx 1# the
- «present study is derlved from the 1mpedance matr1x whlch
commonly formulated by the F1n1te Element- Method ‘These
1deas-are not reallylhew and»had been USed by“previous'
authors. However~ the present study 1s somewhat more N o,
complete and ea51er to 1mp1ement s1nce*the method suggested
J’ is quite general eff1c1ent byt very 51mple. -Some .of the\
advantages of the present study whlch ‘have been dlscussed 1?
the previous chapters are: ' V !
. The périodic structure can be ofeany complex form,
Many other methods are only appl1cable to spec1f1c type
of periodic structure, but the present study can handle
a perlodlc structure composed of d1fferent
‘substructures, or a- structure wh1ch 1s not ‘even per1od1c
at all. The per1od1c un1t can be either symmetrlc about<
its center or - unsymmetrlc. v . - ‘ o
562.;_The perlodlc structure may have any type’ ot extreme

boundar1es. Even the 1nf1n1te structures can be handled

by the present method wh1ch can not be analyzed by

104



,Bernoulll Euler beam theory fa1ls to g1ve acceptable

105

“other matrix methods. The wave approach on. the other
hand can not satisfactor1ly handle the ord1nary boundary

condltlons.

3, «Free or forced v1brat10n analyses are performed wlth\
_»practxcally the sane procedure. Other methods usually
can handle e1ther free or forced analysxs,
4. As many natural frequenc1es as needed or thpse in
the spec1f1c frequency ranges can ‘be obtained by the
present method The F1n1te Element Method, on the other
hand y1elds only the same number of natural frequenc1es
_as the size of matrix start1ng alwaysvfrom the loWest- |
natural freqdency. | |
- 5. The results can be obtained elther analytlcally or
numerlcally, dependlng on what type of 1mpedance matr1x
- useéd. | Other studies are commonly dlrected to Just one
of these.  The method. y1eldb accurate results without
any comp11cated measures of avoldlng errors due to the'
_dlg1tal computatlons. Thls is. accompl1shed by reduc1ng
.the computational effor;’to ‘a minimal amount,
Any perlodlc structure can be taken as the numerical

example for the. present study However it is belleved that

the results for the Txmoshenko beams on multlple supports

<

are readily appllcable to practical englneer1ng problems.
These results are more useful for the short: and stubby beams
and for the high frequency analy51s, where the‘

v

results.
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.“In the cases where the high frequency vibration is
concerned or the Plriodic ‘structure contains‘mdny bays, the

damping eff@ct may ie qoticeable and the analyiis should

‘include the damping terms. Furthér study may be diréctgd to

understanding of the éave;phenomona in tprms oﬁ?tha

propagation constant and the transfer matrices, It may be

.

also possible to extend the application of the present study

to engineering problems other than the static and dynamic
o ! |

\
flow or some other problems which'¢§n be exP,essed in the

v

K v ’ ;L ! .
analysis of the structures, such as‘heattraYSfer, fluid

form of difference equations.
. ' /.
r/ "
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V1. ~ APPENDIX

A. Impedanceymatripes}fq:,sprjngemass‘Systemst‘

1) System of symmetrlc elements B
It can be shégn that the mass and the st1ffness
vmatrlces caﬁ be expressed for the/symmetrlc element shown 1n

”‘Flgure 3 3(a) in the form

,t»IM]\ h 2;(6;1>L ;

1)

3
L 1
(o) —
©

i
>

RS

J(6f25~fn‘.“m

: Theﬂimpedanéedmatrinis then expressed in the;nondimensibnal'”"'“‘

i Y

o ‘.,51mt;1—br S e

(AR

- form as

Whéfe b"mw’/k U51ng thlS 1mpedance matrlx and the
"procedure descrlbed 1n equatlon (2 8) the transfer matrlx S

’as in equatlon (3 24) 1s obtalned

2) System of unsymmetrlc elements ;

7For the unsymmetrlc element the mass and the stlffness

‘_10.9.



matrices -can be obtained as

. q ‘

1
=]

K] =

fl
=
¥ 1
] -t
-—
S R
»

R X . . BN i . .
B R " e - S . ~

, Tﬁefimpedange”matfix’in this‘Cage becomes | "

bl [i' [T 5]7 o (e.)
TR L VR I S AR

iy
- -
E B

From this impedance matrix, the transfer matrix in equation

(3.29) is obtained. =



'1nclud1ng the terms due to spr:ngs, k, and kz as

\} L M= Sy,

B. Derxvat1on of transfer matr1x by dxrect method
The nond1mens1onal shear fofce and the bendlng moment

shown 1n Flgure 4. 1 can be evaluated from equatlon (4 19)

AoaLo

ét =0, .and

v ;;b= ’¢+¢“—k Y;h\,*

M %V- ’—k ¥,

ét 251’

Thus the state vectors at E 0 and 5—1 can be wrltten 1n.?_'

1

-'terms of the normal mode funct1ons and the coef§1c1ents,v{C}fw7

N as“ » : R T L ‘ .Vu " o ~‘ < ,,ﬁ,-‘,, : - .'511 (, p PR

: {‘V;jf = - J

M

{v}o Sfoe o p el e

k1 an :'.'pd_Bi - -Cjé'v PR
L-pa QB 'z‘B,, G

Cigh . e s e
' «Sh | - aCh —Bs - BC

- qaBSh-k ;Ch _gaBCh-k,Sh paBS—k(C paBC-k,S |
—paCh kzaSh -paSh kzaCh ch kzﬁS qu kzﬁc»

. The matrhm 1n equatlon (6 10) is postmultlplled by the ;wﬁ_h

’.<4 28)

.1nverse of the matr1x 1n equatlon (6 9) to y1eld the

.fexpress1on for the transfer matrlx 1dent1cal to equatlon



B )

R S e
‘. Cu Derlvatlon of the reQuced trangﬁer matrxx

The transfer matrlx for the beam on knlfe edge supports

';o;‘can be. obta1ned from that for the beam on sprlng supports 1n~“'

I

equat1on (4 28) by e11m1nat1ng the components correspondlng
:5Fito the deflectlon Y and the: shear force, ? Slnce the if‘h

“3;deflectlon Y 1s not permltted‘on the knlfe edge supports

Y= 0 = by ¥+t Vet M, N (TR E D R

°

‘f'where ti denotes the I-th row’ and J th colum'

ry of the ‘
antransfer matrlx in’ equatlon (4 28) w1th k,_o The thlrd .
|column Of the transfer matrlx then can ‘be replacéd by the n”‘h
- relatlonsth obtalned 1n equat1on (6 11) leav1ng the reduced
matrlx of 51ze two as ‘ ' : '

FEPCE R S

(R

T v=':l:< e ]2-’-.'t'1'5?.‘-','{ }[t 12 tval S (6e012)

The transfer matrlces Ain- equatlons (4 31) and (4 32) are j”pg‘

. obtalned by thlS procedure from the transfer matr1ces 1n.’:”1"‘

equations (4 28) and (4 29)

e



