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Abstract—The forward and inverse displacement problems (FDP,
IDP) are solved for a 4-DOF hybrid cable-driven parallel manipulator.
This manipulator uses three cables and one extensible rod to manip-
ulate the mobile platform, and shares some kinematic similarities to
the well-studied Stewart-Gough platform. Through the use of the dual
quaternion representation of a manipulator pose and the Levenberg-
Marquardt algorithm, the FDP was numerically solved at a variety
of poses throughout the workspace. This method was shown to be
useful at determining the correct pose from an initial guess in close
proximity. The inverse displacement and velocity problems are also
solved for this manipulator using the standard geometric model for
cable-driven manipulators and the method of reciprocal screws.
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I. INTRODUCTION

Advancements in both theoretical understanding and com-
putational ability have allowed for developments in the field of
robot kinematics. This has allowed new types of manipulators
to be designed and implemented. This shift has driven parallel
manipulators to be an increasingly viable option over their
serial counterparts, especially where accuracy and speed are
desired characteristics. Within the field of parallel manipu-
lators, cable-driven parallel manipulators (CDPMs) replace
conventional rigid prismatic links with cables held under
tension by winches. This developing field of study has allowed
for analyses to be made toward manipulators with extremely
large workspaces, incredibly high accelerations, high degrees
of redundancy and efficient movement due to a decreased
mass of the kinematic chains attached to a tool at the end
effector [1], [2]. Applications of an extremely large workspace
include the Skycam [3], patented in the 1980s and used to film
sporting events in stadiums ever since, as well as mechanisms
to orient a large reflector for a radio telescope [4].

The kinematic analysis conducted in this work aims to solve
the position problem of the manipulator two ways; a forward
problem that determines the pose of the end effector as a
function of the cable lengths, and an inverse problem that
determines the required cable lengths at a particular pose.
The inverse displacement problem (IDP) of CDPMs (and
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equivalently the Stewart-Gough platform [5], [6]) is simpler
than the equivalent problem for standard (rigid) serial or par-
allel manipulators. Contrary to these other manipulators, each
kinematic chain can be modelled as a straight line between
two points and can be solved using something very similar to
a vector loop [1]. This can be understood geometrically far
more simply than even a standard 6-DOF serial manipulator
such as the PUMA 560 [7]. One of the benefits of using a
CDPM is that regardless of the number of cables, the IDP is
equally simple. This is true for redundant CDPMs with more
cables than DOF in the workspace as well as underactuated
manipulators with fewer cables than DOF [1], [8]. The mech-
anism discussed here has four actuators in a spatial 6 DOF
workspace so it will not be capable of controlling the position
at the same time as arbitrary orientations.

The forward displacement problem (FDP) of Stewart-Gough
and CDPM-style mechanisms was not solved in the closed
form until long after they were introduced. 30 years after
Stewart’s creation of the 6-DOF parallel manipulator the FDP
was solved in the closed form by Husty [9] as the solution of a
degree-40 polynomial, two years after Raghavan showed that
there were up to 40 solutions to the problem [10]. Since then,
many more examples of kinematically similar manipulators
have appeared, differing by the number of cables or linear
actuators as well as the configuration of the anchor points of
the actuators. The commonality between these manipulators is
the n-UPS configuration, where there are n kinematic chains
with a universal joint (U) connection to a stationary frame,
a prismatic actuator (P), and a spherical joint (S) connection
to a mobile platform or end effector. For CDPMs, controlling
the length of a cable under tension using a winch behaves
as the prismatic actuation. Many of these configurations have
been evaluated to determine the number of solutions to the
FDP, or a full analytical solution has been found. With the 4-
UPS manipulator of interest, the maximum possible number of
solutions to the FDP has been found to be 216 [11], however
the number of real solutions for a given set of cable lengths
is less certain. A general mathematical model for n-UPS
manipulators has been created by Wampler in 1996 [12] which
uses dual quaternions and Soma coordinates to represent the
pose, but this is not a full analytical solution in the closed form.



This representation of the FDP can then be solved numerically
using a root finding algorithm to determine individual real
solutions to the manipulator pose based on a set of cable length
inputs.

This paper aims to present developments in the theory be-
hind a 4-UPS hybrid CDPM, using 3 cables under tension and
one extensible rod that can be used in tension and compression
throughout its workspace. The extensible rod behaves in a
kinematically similar way to the cables, but can both push
and pull. One of the limitations of exclusively using cables
under tension is that the maximum possible acceleration for a
suspended CDPM, which has the base of each of the cables
above the mobile platform (like a crane), is that of gravity.
Suspended CDPMs can therefore also not provide any greater
downward force than the weight of the tool and any object that
it holds. By replacing one of the cables with an extensible rod
it is possible to overcome that obstacle while keeping all of
the attachment points above the mobile platform. This could
be beneficial in an industrial setting if the manipulator were
placed above a conveyor belt or work surface where cables
below the surface would cause interference. Conventional
CDPMs with cables above and below the mobile platform
must remain under tension and act antagonistically, inducing
an internal force and/or moment on the mobile platform.

This work is an extension of prior work at the Robotics
and Mechanisms Laboratory at the University of New
Brunswick that implemented a high packing-ratio linear ac-
tuator (HPRLA) [13] as the extensible rod. With a few
basic assumptions about the geometry and kinematics of the
actuators, this manipulator can be explained as an extension
of standard parallel manipulator theory.

II. CABLE MANIPULATORS THEORY
A. Background

In its simplest form, the kinematics of CDPMs very closely
resembles the extensively studied 6-UPS Stewart-Gough plat-
form, which uses six telescoping legs from universal joint
connections on a fixed base frame to six spherical joints found
on a mobile platform or end effector with each prismatic joint
acting in parallel [5], [6].

A geometric model of the hybrid CDPM is shown in Fig. 1.
On the stationary frame there are proximal anchor points A;
representing a universal connection where the cable winches
are fixed. On the mobile platform there are distal anchor points
B; which can be modelled as spherical joints where the cables
attach to the mobile platform. These cables under tension
behave very similarly to rigid prismatic joints. The assumption
for this analysis is based on the standard geometric model of
cable manipulators [1], [14]. This set of assumptions for the
displacement of the manipulator ignores effects such as cable
sag, changing position of cable pulleys and cable elasticity,
treating a cable under tension as a perfectly straight and rigid
connection between the anchor points. In order to maintain
control and for this model to be useful each of the cables
must remain in tension at all times.

Fig. 1.

Geometry of the hybrid CDPM with a central actuator and three
surrounding cables

B. Inverse Displacement

The inverse displacement problem for CDPMs is fairly
straightforward from vector addition and the use of a rotation
matrix for a frame transformation from the fixed to the moving
frame. The transformation from the base frame K, to the
moving frame K, is defined using the pose, a combination
of a position vector r and a rotation matrix R). That is,

li:ai—r—Rbi (1)
li = [kl ()

where 1; is a vector from B; to A;, ; is the Euclidean norm
of that vector, a; is the vector in K, from the origin to A;,
and b; is the vector in K, from the mobile platform origin to
point B;.

The IDP of a CDPM finds the required cable lengths /; that
allow the mobile platform to reach the desired pose based on
the geometry of the frame mostly identified by the position
of the ground attachment points a; as well as the geometry
of the mobile platform identified by positions b; expressed in
terms of frame K. During the solution in (1), each vector
quantity is separated into a three-dimensional vector so the
components are known. In (2) the magnitude is found, which
is the only requirement to obtain the required position of the
moving platform on a CDPM and can be used to control a
cable winch.



III. JACOBIAN AND STRUCTURE MATRICES

In order to fully constrain a n-UPS CDPM in an m DOF
space, there is a requirement for n > m + 1 cables. With
fewer cables than DOF, linking the statics to the displacement
problem can help obtain a solution at a given pose. The
solution of the IDP provides the cable lengths and directions,
which is essential to the solution of the statics as any cable
can only produce force along the direction of the prismatic
actuation in tension. The structure matrix is used to linearly
map joint forces to external forces and torques of the mobile
platform. The structure matrix is defined as the transpose of
the Jacobian matrix.

The solution to an n-UPS manipulator has been found in
general using the method of reciprocal screws [1], [15]. This
allows for the inverse Jacobian, J,, to be an identity matrix
I,, and the forward Jacobian, J,, to be dependent on the cable
directions and the geometry of the mobile platform. That is,

T N ul s un
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where x is the desired linear velocity of the mobile platform, g

groups in one vector the cable joint velocities, and u; is a unit

vector along cable ¢ which is simply obtained as u; = 1;/1;.
Likewise, the static force problem can be solved as:

Jf+w,=0 Q)

where w,, is the external wrench applied to the mobile
platform while f is a vector of the joint forces.

Important to note that, for typical CDPMs, all f;, the
individual components of f, are bounded by the force limits
related to the cable forces. As such, since cables are required
to always be in tension, all f; are typically strictly positive.
However, for the hybrid CDPM in this work, given that the
HPRLA can apply/sustain forces in tension and compression,
this last constraint is relaxed for that specific actuator while,
for the cables, positive tension is still required as for typical
CDPMs.

IV. FORWARD DISPLACEMENT PROBLEM
A. Formulation

The mathematical model for the 4-UPS manipulator is very
similar to that of the 6-UPS, where a pose of the mobile
platform is found from a set of cable lengths. The present
analysis is heavily based off of a solution of the FDP of the
Stewart platform using Soma coordinates and dual quaternions
to represent position and orientation [12]. With this method,
one quaternion, (e), is used to represent the orientation of the
mobile platform frame (R) while the other quaternion, (g),
is used to represent the position of the origin of the mobile
platform frame (r). Although this representation uses 8 values
rather than the 6 required for a homogeneous transformation
matrix (3 rotation and 3 translation), the formulation of the
quadratic equations to be solved for the FDP is far simpler than
other representations of the same problem, and the quaternions

can be treated as standard 4 x 1 vectors with Wampler’s for-
mulation [12]. This solution method again uses the geometry
of the proximal and distal anchor points alongside equations
for the displacement from each point to search for solutions.

With only the length known for each cable, the set of
kinematically-possible solutions for the location of a distal
anchor point B; from the known proximal anchor point
A; forms a sphere of radius [;. If all of the distal anchor
points coincided, the set of feasible solutions would be the
intersection of each of these spheres. However, assuming the
moving platform is not only a point (i.e., non-zero b; vectors),
the solution becomes a problem of matching the geometry to
the location of the spheres. Wampler [12] devised a solution
to this problem using the dual quaternion representation of the
pose.

Without loss of generality, the reference point on the mobile
platform can be chosen to intersect the spherical joint for
the central HPRLA rod, so b; becomes a zero-vector. This
simplifies some of the equations to reduce computational
complexity. Due to the geometric basis of the problem and the
information available, this becomes a solution of a system of 6
equations that are multivariable and quadratic. These equations
have been converted to a form where the desired solution of
each is 0 to allow for root finding computational tools to be
used. For these equations, each of the quaternions (e and g)
are treated as 4 x 1 column vectors, where the first element
represents the real component, and the others represent the
imaginary components [12]. Therefore, the system can be
written as

Fy:ele—1=0

Fi:gle=0

Fy:glg— l%eTe =0
Fs_5:el'M;e +2g"*M,e =0

(6)

In the above, Fy shows that the quaternion representing the
rotation must be a unit quaternion while F; comes from the
definition r = ge” for the position vector r. I and F3_5
represent loop closure equations for the four links, knowing
that b, is defined as a zero vector. Finally, matrices 'M and
2M are 4 x 4 matrices that depend on the geometry of the
system a;, b;, [; and I, where 2M is a skew-symmetric matrix
such that 2M = —2M7”. More specifically,

1Mi = (b?bl + aZTai — llz + Z%)Ll

a;sz (bl X az-)T
-2 [bl X a; biaiT + aZbZT — ain,» )
ong | O (a; —b;)"
M; = [bi —a; -—skew(a;+b;) ®)

Using computational tools in MATLAB, it is possible to solve
equations Fy — F5 to find 4 x 1 vectors e and g that provide a
feasible solution. The solution represents a root of the set of
quadratic equations.

Testing and validation was completed that compares the
same set of parameters with the forward and inverse displace-
ment problems and determines whether or not this method



is capable of determining complementary solutions. This was
completed by beginning with a desired pose (r, R), using the
IDP to find the corresponding cable lengths, and using this
information to begin the FDP. Due to the large number of
solutions, it is expected that having an initial guess being too
far from the desired solution will result in the FDP finding the
incorrect pose. The initial guess (in quaternion form) fed into
the solver was based on a close position from prior poses (e,

)
B. Multiple Solutions

The complexity of the FDP for parallel manipulators comes
from the large number of solutions to the problem. There are
theoretically hundreds of solutions to the geometric and static
problems associated with this underactuated CDPM (4 cables
in a spatial application), depending on the chosen geometry
as well as the current pose of the manipulator. If all of the
possible solutions were found in a global sense it would be
necessary to determine the correct solution for use with a
physical manipulator. For this to be true, the solution must be
real, in the reachable workspace based on the constraints of the
physical and theoretical manipulator, and will be dependent on
the motion of the system and the refresh rate of the sensors
and computations. Future work will be completed toward
differentiating between multiple FDP solutions and ensuring
the correct pose is reached, especially when passing through
singular configurations.

V. RESULTS

The method used to solve the FDP was a built-in MATLAB
function that implements the Levenberg-Marquardt algorithm
for non-linear and non-square problems. In the eventual
implementation of a physical manipulator, solving the pose
will be completed repeatedly as the manipulator traverses its
trajectory, so at this point in time the algorithm is seeded an
initial guess that is very close to the desired solution. The
trajectory chosen to demonstrate the solution methods is a
spiral traversing the workspace in the x, y, and z directions,
with a desired orientation parallel to the ground, with no
changing roll, pitch, or yaw throughout the trajectory. A
trajectory was made in the task space with a changing position
and constant orientation, then the IDP was solved to find the
set of cable lengths, 1;, that makes each pose, (r, R), possible,
where r is the translation to the end effector position and R
is the rotation matrix representing the orientation.

The planned manipulator is approximately a cube of side
length 2 m. The placement of the proximal anchor points on
the top of the manipulator are one at the centre (HPRLA) and
three cables attached at a distance of 1 m, equally distributed
radially around the centre and shifted down 0.1 m. On the
mobile platform the distal anchor points follow a similar
configuration, all on the same plane and with a radius of 0.1 m
from the centre attachment. Testing was completed at 2000
positions along the path.

The error in the position, e, was measured by finding the
2-norm of the vector between the desired position and the

position found using the forward displacement problem. The
error in the rotation, eg was found as a measure of radians
between the two poses. More specifically,

er = ||r — rrpp|| 9
(v.er) = RR{pp (10)

where (r, R) is the given pose while (rppp, Rppp) is the pose
solved by the forward displacement problem.

When the two orientations are the same (i.e., zero error in
the orientation), the resultant rotation matrix on the right side
should be an identity matrix. In (10), the left side is represented
as a vector v and an angle er, where the angle in radians is the
absolute error between the matrices rotated about the vector
axis. This measure is converted to degrees as the final results
are displayed.

The first set of tests was conducted while only giving the
manipulator the initial pose at the start of the path. This
was fed into the FDP as the initial guess to the Levenberg-
Marquardt algorithm. Each sequential pose that the algorithm
tried to find was based on a linear extrapolation of the FDP
solution of the two prior poses. This should in theory allow the
initial guess to be close to the desired solution, but the spiral
trajectory that accelerated in three directions caused that guess
to be inaccurate.

Trajectory Traversal

Desired Path
*  FDP Path
A Start

Fig. 2. Path of the manipulator solved using the FDP (no end effector pose
feedback provided)

Fig. 2 shows the inaccuracies in the FDP in following a
trajectory without any information about the true resultant
pose of the manipulator. While using the cable lengths that
should have made the manipulator follow the desired path, the
deviation of the FDP path can clearly be seen. The manipulator
follows a different but nearby trajectory, likely due to the
solution branching out after passing through one of the many
singular configurations near the beginning of the path. This
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Fig. 3. Position and angle error in FDP (no end effector pose feedback
provided)

error is quantified in Fig. 3 with a position error in the
decimetre range and a rotation error approaching 90°.
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Fig. 4. Path of the manipulator solved using the FDP (end effector pose
feedback provided)
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Fig. 5. Position and angle error in FDP (pose feedback provided to point
algorithm toward the correct pose)

If the manipulator had access to some information about
the true pose of the end effector, the propagation of error
after crossing singularities could be quickly corrected. This
is approximated here by offering an initial guess to the

FDP solver that is skewed toward the desired path. This
was completed by choosing an initial guess that was found
as a linear interpolation between the prior manipulator FDP
pose and the next desired pose along the trajectory. Fig. 4
shows the FDP path being almost perfectly coincident with
the desired trajectory. The position and rotation error shown
in Fig. 5 remain in the millimetre range and sub-degree range,
respectively. This confirms that the correct pose is found each
time to the accuracy level of the solver.

VI. CONCLUSIONS AND FUTURE WORK

As was shown in Section V, the performance of the FDP
was strongly dependent on the location of the initial guess.
When no information was given about the true pose of the
manipulator, the trajectory that was followed deviated from the
desired course, most likely at a singular configuration of the
manipulator. Information about the true pose was then given
to the solver which allowed for the correct pose to be found,
with each resultant pose arriving within 3 mm and 0.4° of
the desired solution. This reinforces the need for a global
method at determining solutions to the FDP to ensure that
the correct path is followed, and supports the necessity of
recording the end effector position to ensure the manipulator
does not change configurations along a trajectory.

Further work will be dedicated into linking the statics and
dynamics of the manipulator with the kinematics for trajectory
planning, optimization, and determining the static equilibrium
workspace. This manipulator will be developed into a physical
apparatus therefore a thorough analysis of computational time
will be conducted to develop real-time capable solutions for
controlling this manipulator. A singularity analysis will be
conducted in order to aid in the path planning process. The
viability of trajectories for this manipulator will be studied
to determine what continuous moves are possible in terms of
position and orientation. This manipulator will be used to help
quantify the limits of the HPRLA and how it can be used to
improve an existing cable-driven parallel manipulator.
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