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Abstract—It has been widely accepted that stress and strain 
fields near the crack tip govern crack propagation behavior. In 
most cases, an elasto-plastic analysis is required to determine 
local stress and strain fields around the crack tip due to the 
high stress concentration. However, complexities of such 
analysis lead researchers to either employ modified elastic 
analyses to approximately address stress/strain fields near the 
crack tip, or consider cracks as micro notches and use the 
Neuber rule as an approximation method to  estimate elasto-
plastic stress/strain fields from elastic stress/strain fields in the 
vicinity of micro notch tips. Unfortunately, both approaches 
have limitations to provide generalized solutions. The present 
work aims to develop robust artificial neural network (ANN) 
models to obtain elasto-plastic stress, strain, and displacement 
fields near the crack tips by means of a numerical elastic 
solution rather than a complex elasto-plastic solution. In order 
to do so, two separate finite element models (FEMs) are 
implemented to analyze a cracked specimen, made of stainless 
steel (SS304), under mode (I) of loading in both elastic and 
elasto-plastic states. ANN models are developed to learn the 
relationship between elastic and elasto-plastic behavior of the 
material in the presence of cracks. The elastic and elasto-
plastic FEMs are employed to generate  the input and output 
numerical data, respectively, to train and validate the 
constructed ANN models. The results show that well-trained 
ANN models can efficiently and accurately predict the elasto-
plastic stress, strain, and displacement fields around the crack 
tips on the basis of numerical elastic finite element solution 
under monotonic loading conditions.  
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I.  INTRODUCTION 
In most cases, local stresses in the close proximity of the 

crack tip exceeds the material yield strength due to the high 
stress concentration at the crack tip. Subsequently, an elasto-
plastic analysis is needed to determine local stress and strain 
fields at/near the crack tip. Unfortunately, such analysis 
methods are undesired due to the complexity, high computation 

time and large data in practical engineering applications. As a 
result, researchers tend to employ approximate linear elastic 
solutions to address the crack propagation response of materials 
in the presence of cracks. Two of the most famous models to 
determine stress and strain fields near the crack tip under 
elastic state are the Westergaard method [1] and Creager-Paris 
solution [2]. Both methods use the stress intensity factor (SIF) 
to characterize the elastic stress field near the tip of cracks and 
deep notches. Since the local stress/strain field around the crack 
tip governs the fatigue crack growth (FCG) behavior, the SIF 
range was introduced by Paris and Erdogan as a crack growth 
driving force to calculate the FCG rate based on linear elastic 
fracture mechanics (LEFM) [3]. Almost all approximate elastic 
models to deal with crack behavior of materials can be 
categorized into two main groups. First is the one that employs 
the SIF range itself as a driving force. Such an approach simply 
ignores the plastic deformation zone (PDZ) at the tip of the 
crack and/or the sharp notch. The second group uses the 
modified driving forces based on the SIF range to adjust them 
to account for small-scale plasticity. Most of such 
modifications are based on either the crack closure concept 
originally suggested by Elber and Newman [4] or based on the 
‘Unified Approach”, employing both the maximum SIF and 
SIF range to quantify FCG rate [5]. One of the most recent and 
promising models in the latter category is the UniGrow model. 
The success of the UniGrow model is attributed to the fact that 
the model not only using the two-parameter driving force (i.e. 
both the maximum SIF and SIF range are accounted for in the 
formulation of the two-parameter driving force)   but also 
utilizing the Neuber rule to transform the hypothetical elastic 
stress/strain fields, obtained by the LEFM approach, to actual 
elasto-plastic ones [5]. Unfortunately, even crack-closure and 
two-parameter driving force based models cannot account for 
relatively large-scale plasticity e.g. the short crack regime in 
which the PDZ size is comparable with crack length [6-8]. In 
addition, the application of the Neuber rule is limited to the 
blunt, deep and micro notches [9-11]. In other words, the 
succesful application of the Neuber rule to estimate actual 
elasto-plastic stress/strain fields from the hypothetical elastic 
stress/strain field in case of real crack geometries has not been 
carried out  yet. It should be mentioned that it has been 
suggested that SIF-based driving force can be replaced by other 



   

driving force parameters such as J-integral-based or crack tip 
opening displacement (CTOD) to account for large-scale 
plasticity [12]. However, calculating such driving forces 
requires computationally inefficient and complicated elasto-
plastic finite element (FE) analyses. As a result, such 
approaches are often considered to be impractical for 
engineering applications [13]. That is why many researchers 
persist in applying LEFM models to quantify FCG rate, even in 
the case of large-scale plasticity. 

Artificial neural networks (ANNs), as one of the most 
powerful machine learning algorithms have recently received 
much interest to characterize material  deformation [14] and 
FCG behavior [15]. In the case of crack growth behavior, 
experimental FCG datasets have been utilized for training 
ANN to predict crack growth behavior [16]. A great potential 
has been observed for the prediction of FCG rates by such 
algorithms [17]. Training datasets must be sufficiently large 
and well-structured in order to obtain well-trained ANN 
models to provide accurate predictions. Unfortunately, 
experimental FCG data are generally limited. As a result, the 
application of such models has been limited to particular 
conditions, in which there are sufficient and well-structured 
data in hand [18]. In the present paper, new ANN models are 
developed to establish the relationship between elastic and 
elasto-plastic responses of a cracked plate body. Two 
independent FEMs are developed to obtain the stress, strain, 
and displacement datasets near the crack tip under elastic and 
elasto-plastic states for a plate made of grade 304 (SS304) 
stainless steel. The stress, strain, and displacement fields under 
the elastic state are used as the input data, and those datasets 
under the elasto-plastic state are set as the output data for ANN 
models. The results showed that the robust algorithms of ANN 
can establish the complex non-linear relationship(s) between 
well-organized input and output data. As a result, the well-
trained ANN models are capable of offering accurate and 
efficient computational predictive methods to predict the 
elasto-plastic stress, strain, and displacement distribution 
around the crack tip through a linear elastic solution under 
monotonic loading. It should be mentioned that the presented 
modeling approach is not limited to notches or any other 
specific geometry or any loading conditions.  

II. MODELING METHODOLOGY 
ANN algorithms are able to extract complex patterns from a 

given dataset and determine interplay relationships among 
input and output variables. Dataset is referred to the sequence 
of numerical numbers as input(s) and corresponding output(s). 
The modeling framework of an ANN schematically shown in 
Fig. 1, presents one input layer, three hidden layers, and one 
output layer to represent the ANN model structure. The first 
step of training the ANN model is based on data preparation, 
such as data normalization. Data normalization puts all of the 
input data in the same range in the case of multivariable 
problems so that, the order of the magnitude for data cannot 
yield any influence on the training process. As shown in Fig.1, 
each layer includes different numbers of neurons. In the first 
layer, each neuron embeds one input variable. The value of 
each neuron is multiplied by a positive value called weight 
(Wij) and results in an activated neuron (XiWij). The higher 

weight makes a particular neuron have more impact on the 
output. The sum of all activated neurons may be added with a 
positive value called bias (b) and then is delivered to the next 
layer. The hidden layers embed an activation function in each 
neuron. Each neuron in a hidden layer receives the value from 
the previous layer as the input of its activation function. Then 
the output of the activation function is activated and transferred 
to the next layer. As the last step, the value generated by the 
last hidden layer is transferred to the output layer. The output 
layer presented in Fig.1 consists of only one neuron. It should 
be pointed out that the output layer in different problems may 
consist of multiple output variables. All the hyperparameters, 
such as weights, biases, the number of hidden layers, the 
number of neurons in each layer, and activation functions, are 
required to be appropriately determined to build a well-trained 
network model. A well-trained network should work for any 
new data, not introduced in training and validation stages. 
ANN developed by Keras [19] with Tensorflow as a high-level 
neural network application programming interface (API) is 
adopted in the present study to develop and train the network  
models. Generally, three groups of data are used in the 
development of ANN models. First, data classified as the 
training data and its usage briefly is discussed above. Second, 
data defined as the validation data used to validate the trained 
model(s) and  chosen hyperparameters e.g. weights and biases. 
As mentioned before, all the hyperparameters are assigned to 
account for particular training datasets. Then the ANN model 
should be tested by another group of datasets known as 
validation data to confirm the model prediction capability while 
adjusting the hyperparameters . This process is  repeatedly 
conducted until the ANN model with its updated weights and 
biases can account for not only training data but also for 
validation data as well. After completing the training and 
validation processes, the ANN model may be tested for new 
datasets which have not been used as either training or 
validation data to assess prediction performance of the model. 
The latter group of datasets is known as testing data. In the 
present study, the displacement and stress/strain distributions 
resulting from an elastic FE analysis are fed to the network as 
the inputs. Subsequently, displacement and stress/strain 
distributions resulting from an elasto-plastic FEM are assigned 
as the network outputs. It has been shown that with this 
modeling approach, ANN can determine the relationships 
among the elastic and elasto-plastic responses of the material in 
a cracked specimen body. In the present study, both the elastic 
and elasto-plastic FEMs were developed using the commercial 
FE software package, Abaqus to obtain the input and output 
datasets for the network models.  

 
Figure 1. The schematic structure of ANN 



   

The geometry and loading condition and all required 
geometric and material parameters to develop the FEMs are 
presented in Fig. 2, and TABLE I. Fig. 3 illustrates the area 
chosen around the crack tip to extract data from the FEMs. This 
area consists of 480 (40×12) elements and 1920 (480×4) Gauss 
points (GPs). As a result, the chosen area shown in Fig. 3 
provides 1920 datasets for each crack length. Since the model 
is developed under plane strain conditions, four stress 
components and three non-zero strain components are obtained 
on each GP, and two displacement components are determined 
on each node. Stress and strain components at each GP are 
considered as datasets to train the ANN models for prediction 
of stress and strain distribution. Subsequently, the displacement 
components on each node are considered as specific datasets in 
the case of training the ANN model to predict the displacement 
field. Fig. 4 presents the matrices assigned as the input and 
output of the ANN model to predict the stress field around the 
crack tip. It should be emphasized that each matrix in Fig. 4 
schematically has 1920 datasets generated by the FEM for one 
particular crack length. 

 
Figure 2. Description of FEM model, dimensions are in mm 

TABLE I.   DETAILED PARAMETERS FOR THE FEM 

Material SS304 Elasto-plastic 
Model 

Bilinear 
isotropic 
hardening 

Modulus of 
Elasticity 

(MPa) 
195100 

Hardening 
Properties 

(MPa) 
570 

Poisson’s Ratio 0.267 Mesh Size 
(mm) 

0.1 (in zone 1) 
2 (in zone 2) 

Yield Stress 
(MPa) 206 Force (KN) 20 

 

 
Figure 3. The area chosen around the crack tip to extract data from 

However, ten different crack sizes are used to generate 
sufficient datasets to train promising networks. That being said, 
the number of datasets used in the present paper is 19200 
(1920×10). The different crack lengths to provide the training, 
validation, and test data, discussed before are given in TABLE 
II. The input and output data matrices to train the ANN models 
to predict strain and displacement fields are similar to the data 
structure presented in Fig. 4. However, the number of 
components in each dataset is three and two in the case of 
strain field and displacement field, respectively, as mentioned 
earlier. In the present study, three different ANN models are 
trained, validated and tested to predict stress, strain, and 
displacement fields, separately. The number of neurons in the 
input layer is the number of input data (19200). And the 
number of neurons in the output layer is the number of outputs. 
The other characteristics of ANN models in terms of layers and 
neurons size are the same for all three models and are described 
in TABLE III. 

III. RESULTS AND DISCUSSION 
This section presents stress, strain, and displacement fields 

predicted by three different ANN models on the basis of the 
test data. The results of ANN models have been compared with 
the results obtained from elasto-plastic FEMs to assess the 
accuracy of proposed ANN models. It should be emphasized 
that the results of ANN models shown in this section 
correspond to test data i.e. new crack lengths, which have not 
been used during the training and validation of models. The 
crack tip in all of the contours presented in this section is at the 
origin of the coordinate system (x=0 and y=0). The key point 
that should be reminded here is that only the corresponding 
elastic fields are required by ANN models. to predict the 
elasto-plastic stress, strain, and displacement fields around the 
crack tip  

 
Figure 4. Schematic of training data for the presented ANN model to 

predict stress field around the crack tip. a) input data, b) output data 

TABLE II.  CRACK LENGTHS USED IN FEM TO GENERATE DATA 

Data Type Crack Length (mm) 
Training data 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Verification data 1.5, 4.5, 7.5 
Test data 2.5, 5.5, 8.5 



   

TABLE III.  STRUCTURE OF PRESENTED ANN MODELS 

Number of Hidden 
Layers 

Number of Neurons in 
the First Hidden 

Layer 

Number of Neurons in 
the Second Hidden 

Layer 
2 1024 512 

 In other words, the well-trained ANN models receive the 
hypothetical elastic stress, strain, and displacement fields as the 
input, and predict the corresponding actual elasto-plastic fields 
within 2 to 3 seconds. Fig. 5 a) and b) presents the results of the 
σ11 obtained by the trained ANN model and the elasto-plastic 
FEM for the crack length of 8.5 mm as one of the testing data. 
As shown in Fig. 5 a) and b), the distribution of σ11 around the 
crack tip predicted by the ANN model is very close to ones 
obtained by the elasto-plastic FEM. Fig. 5 c) also presents the 
percentage of error (POE) calculated using (1) between the 
values predicted by the ANN model and obtained by FEM. As 
shown, the POE is between -8 to +6 percent in this case. The 
number of GPs with relatively higher error (such as -8 or +6 
percent) is significantly smaller than those with lower POE.  

 

 

 
Figure 5. σ11 distribution of crack size of 8.5 mm. a) ANN prediction, b) 

FEM results, c) POE 

Fig. 6 shows the results of the ANN model and FEM for σ22 
as the second component of stress tensor around the crack tip 
for the crack length of 8.5 mm. As shown, the distribution of 
σ22 has been predicted accurately around the crack tip. The 
POE obtained by (1) is shown in Fig. 6. The POE for the 
second component of the stress tensor, σ22 is in the range of -8 
and +6 percent in this case. Figs. 5-6 show the accuracy of two 
stress components (σ11 and σ22) as examples of the stress field 
around the crack tip for the crack length of 8.5 mm. The results 
showed that the POE for the other two components (σ33 and 
σ12) is less than 10%. The elasto-plastic stress fields predicted 
by the ANN model have been compared with the ones obtained 
by FEM for the crack lengths of 2.5 and 5.5 mm as the other 
test data described in TABLE II as well. The maximum POE in 
those cases is less than 10%.   

ANN FEM

FEM 100POE σ σ
σ

−
= ×

.                        (1) 

 

 

 
Figure 6. σ22 distribution of crack size of 8.5 mm. a) ANN prediction, b) 

FEM results, c) POE 



   

    Fig. 7 a) and b) shows the results of ε11 as the first strain 
tensor component predicted by the ANN model and elasto-
plastic FEM for the crack length of 5.5 mm. As shown in Fig. 
7, the POE calculated using (1) is between -20 and +5 percent 
for this case.The contour of error in Fig. 7 c) shows that the 
values of only two GPs behind the crack tip are close to -20%. 
It means the POE would be between -10 and +5 percent by 
ignoring those two GPs. Fig. 8 presents the results of the 
second component of the strain tensor, ε22, predicted by the 
ANN model and elasto-plastic FEM for the crack size of 5.5 
mm. For this case, the POE is in the range of -4 to +14 percent. 
Similar to the previous case, the values of POE only for two 
GPs is around 14%. It means the POE is approximately 
between -4 to +8 percent for most GPs. Fig. 7-8 show the 
results of two strain components (ε11 and ε22) as the examples 
of strain components for the crack size of 5.5 mm. The results 
showed that the maximum of POE in the case of ε12 as the third 
strain tensor component is less than 20% for the crack size of 
5.5 mm. The results showed that the POE for predicted strain 
components for 8.5 and 2.5 mm crack sizes is less than 20%.  

 

 

 
Figure 7. ε11 distribution of crack size of 5.5 mm. a) ANN prediction, b) 

FEM results, c) POE 

 Fig. 9 a) and b) presents the results of u2 as the second 
component of the displacement vector predicted by the ANN 
model and elasto-plastic FEM for the crack length of 2.5 mm. 
The distribution of the predicted u2 agress well with the one 
predicted by elasto-plastic FEM. The POE is between -30 to +5 
percent in this case. As discussed before, the displacement 
values as datasets for training the ANN model have been 
extracted from the nodes in the FEMs. However, the stress and 
strain datasets have been extracted from the GPs. Each element 
has four GPs in the presented FEM. On the other hand, each 
node is commonly shared between four elements. As a result, 
the number of displacement datasets is significantly smaller 
than stress and strain datasets. Therefore it is considered that 
the accuracy of displacement prediction is less than that in the 
case of stress and strain predictions due to smaller data size. 
Fortunately, the accuracy in all cases discussed so far can be 
improved by increasing the number of training data discussed 
in TABLE II. The results showed that the maximum POE for 
the u1 in the case of crack length of 2.5 mm, and for u1 and u2 
for the crack sizes of 5.5 and 8.5 as the other test data is less 
than 30%. 

 

 

 
Figure 8. ε22 distribution of crack size of 5.5 mm. a) ANN prediction, b) 

FEM results, c) POE 



   

IV. CONCLUSION 
In the present study, artificial neural network (ANN) 

models are developed as predictive models to determine the 
relationship(s) between elastic and elasto-plastic responses of 
stainless steel (SS304) in a cracked specimen around the crack 
tip. The stress, strain, and displacement fields obtained by the 
elastic finite element model (FEM) have been used as the input 
data to the ANN models. Subsequently, the ones obtained by 
the elasto-plastic FEM have been employed as the output data 
to train ANN models. The results showed that the well-trained 
ANN models with the proposed modeling approach can 
accurately and efficiently predict the elasto-plastic stress, 
strain, and displacement fields near the crack tip by only using 
the corresponding elastic fields. Such predictive modeling 
capability to compute elastic-plastic stress, strain and 
displacement fields near cracks provides a great advantage over 
complex elastic-plastic FE analyses due to its computational 
efficiency, and low cost. 

 

 

 
Figure 9. u2 distribution of crack size of 2.5 mm. a) ANN prediction, b) 

FEM results, c) POE 
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