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i | ABSTRACT:
A relativistic descriptioq of the bulk features of the
; nucleon;nucleus interaction is developed and used 'in a
relativistic DWBA approach to the (p,m*) reaction.

The nucleon-nucleus interaction is described by vector
and scalar potentials. For the bound state these potentials
are real and are similar to those obtained from Dirac
Hartree Fock calculations. For continuum states. namely the-
proton distorted wave, the vector and scalar potentials are
taken to be complex. The parameters are varied to fit the
elastic scattering data by a search program called RUNT;
which has been specifically developed'for this purpose. The
fits so obtained are generally of superior quality to those
obtained from a non- relativistic optical model.

Two distinct classes of potential emerged from the
search, one having large imaginary pdtentials of opposite
sign in eccord with the earlier work, the otﬁer having th
small absorptive potentials. |

The pion distorted waves are calculated trom a standard.
optical potential. '

Both pseudoscalar and bseudovector descriptions of the
lnNN vertex are used in the DWBA calculations. The energy and
angular dependences of the (p,m*) cross-section data on the
closed shell nuclei 4°CA and '20 are reproduced with the
pseudovector coupling, but not with the pseudoscalar !

coupling. The pseudovector. coupling also reproduces the



analysing power data on '2C in the forward hemisphere. The
rather curious experimental observation of the state

independence of the anélysinq power is born out by tﬁisA_}~
mede 1. -

o2 SN
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times larger.

1. INTRODUCTION
If a nucleus is bombarded with protons which have kinetic
energiés-breafer’than 140 MeV, then many thinbs can happen.
The most common occurrences are the following: the proton
cﬁn elastically scatter from the nucleus leaving the latter
in»its‘groupd state; The proton can give up some of its
Kinetic energy leaving the nucleus in a bound, excited
state; or else the proton can break up the nucleus. In this
thesis we are primarily interested in a less probable event,
namely that of pi meson production with the nucleus left

intact in some definite state. The cross- section for pion

, production is very small around threshold: for example if

“.160 MeV protons are scatféred from 4°Ca, the total .

cross-section for producing a pion and leaving the final
nucleus in its ground state is of order 0.5 4 b. The total
reaction cross-section is around 650 mb, almost a million
Experimentally the low cboss section makes the reaction -
hard to study, so it is really only with the recent advent
of the meson factories t’at the reaction has gained much
importance The reaction is however, very 1mportant
theoretically since it involves large momentum transfer and
therefore probesathe higher. momentum components of nuclear

wavefunctions. ,



1.1 The Pion-Nucleon Interaction\
\ .
Let us consider the possible interactions of pions with
y

nucleons. The simplest gagrangian\:e can write down is:

L LN * L, i VVL.W [ 1.1

{

'W(x)(iY’J, - m,)'V/(xf a - 1.2

n

L.
Lo-5(5.4.0%% - mi¢) 1.3
Lwr

“-igVr Y dy 1.4
. B -
: -t )
M 2 X; ‘ or r = (2%) ysy")r . 1.5

where the - first interaction is called the pseudoscalar
interaction (or coupling) and the second is called the
pseudovector coupling (GE60). o

In the above, § is a Dirac spinor describing the
nucleon field and ¢ is the pion field wavefunctidh. ‘

There exists another model, due.to Schwinger (SC57),
called the sigma model which has derivative coupling (as in
the pseudovector interaction) and entails the presence of
another field, that of sigma mesons. It turns out that the
sigma model an& the pseudoscalar interaction-give
renormalisable theories, whereas the pseudovector
interaction gives a theory which is unrenormalisable.

From.eqﬁation 1.1 we use the Euler-Lagrange equations

to get the field equations for the pseudoscalar vertex from

P
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D8

L YE

DX o D,X

. 1.6
Putting X = ¢ in 1.6 gives us the equation

Ve .
| @Y% m)vin = igh v v g 7
and putting X "= ¢ we get

The top equation is the one we are interested in; only the
bottdm equatfon changes its form when we use a different
interaction. One should note that the source term on'fhe
right of equation 1.8 gives the overlap of nucleons and
antinucleons; this is reminiscent of the old Bootstrap model
of the pion being made up of a nucleon-antinucleon in a
bound state.
From equation 1.4 we see that the only Qertex in the
mode: is that shown in figure 1.1
In free space, entrgy and momentum qonservati;n

prohibit a proton emittir: = free pion; however, if thefe is
?gjhucleus'nearby to remove .2 excess momentum a pion can be
sO produced. We can write th = symboiica]ly as in figure 1.2
If we take this diaéram literai. s then we can write down the

matrix element (in the zero range approximation) as
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Figure 1.1 The vertex for pseudo scalar coupling.

= J'ﬁ;kx) M, xjm"}’(x)o("x

1.9
where [ is the pion-nucleon vertex. -
If we attempt to use the usual pucléar physics
'techniqué of déing a non-relativistic reduction
(Foldy-Wbuthuysen) of the vértex, we ggt an expression
Tt [Mobgod, Y dr

where ¢*. U, ,are the nucleon distorted waves from a
Schrbdinger equation and H (r) is the FW reduced vertex .
There is an ambiguity with the FW reduction which leads fd\\\\\\
an ambiguity in kuu

Friar (FR74) has shown that this ambiguity can be.

expressed as
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Figure 1.2 Pionic stripping in the viscinity of a nucleus.

WNN

WD = T E e g e v.e. iy
ar S

D6 Vg + 49
8 m’ { "#ﬂ} s {' w.Lv ?(4’)]}
+ 9 ¥ (wfww) + 914-1) Jrej eV Ute)
am* T amt 1714

where

Ult) = U (x) + um)_ 1

and where u is completely arbitrary. In equation 1.12 Uv
and Us are the vector and scalar potentials experienced-by
the incident proton. Friar points out, however. that to .
first order in the coupling constant g the physlcs does not .
’depend on M. Assuming for the sake of argument that

M=0 ‘(the static: apéroximation) that the proton and pion



N

are free and that the final neutron enters,a bound state,

then we get terms (ignoring spin) like
| P . '
r - .‘f]’of by %
(r - B (7-) 4
j‘¥¥ e & oAt 1.13

Qhere

A 1.14
is the three momentum transfer. Here #(q) 1% the bound state
in momentum space. We can, crudely, say thatfthe angular
distribution of pions gives us directly the single particle
wavefunctions in momentum space. Knowledge of these high
momentum components of the (single particle) nuclear wave-

functions is highly desirable from a nuclear structure point

4

of view.
Now things are certainly notgthis rosy. If fhe~target

nucleus has A nucleons then the problgm. from the point of
view of qd&ntum mechanics, is an A+1 body proble@. In order
'to expléin the data and extract at least some information we
must rely on a model. There are two popular ways of
model1ing the problem: they are called the one nucleon model
(or mechanism) and the two nucleon mode] .

1 2 The One Nucleon Mode1

This model is schematically depicted in figure 1.3 The
- ‘assumptions being made here are:
1. The pion is emitted from the incident proton.

2. Before emitting the pion, the proton will undergo
' o
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Figure 1.3 The One/ydileon Mode 1.

interactions with all the other A nucleons in the
problem and this i‘nteraction éan be represented by a
potential. , '

3. After it is produced, the pion wii] interact with the
A+1 nucleons in thg final nucleus.

4. The neutron’ formed from the nucleon which emitted. the -
pion goes immediately into its final bound state. -
Given that the incident._ proton interacts by a pofent'lal in
the incident channel, the question remains how to find this

potebtial, or rather what is the best potential to use.
Weber and Eisenberg (WE78) have shown that the pion
product ion cboss-section and analysing power are very d
sensitive to this potential. These authors uséd a standard
Uoods-Saxon Optical poten’ti‘al with réal.ihnaginary and
spin-orbit parts. '
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There is one ma jor problem: 1f we fix our potential by

assuming a phenomnnological shape and then obtain tho ?
parameters in this shape by fitting the elastic scattering
data, we can learn a lot asbout the proton wnvefﬁnétions at
large distances from the nuclaus. whereas we can learn
little sbout them at short’ range. s |

Elastic scattering at intormaPiate energies is mostly
sensitive to the following propertkes of the potential:
1. the volume integral ’ :
2. the root mean square radius
3. the gradient at the nuclear surface. ,
This is clearly demonstrated in the work of Amado et al.
(AMBO) . ‘ ) e

Let us consider the real central potential. Most
analysesjassume a Woods-Saxon form for this potential. This
is actually not Such a good idea 1f we want to know the
mall distance behaviour, for the following reason: the N-N
| interaction is mediated(by meson exchange At long range the
‘lightest mesons are the most importht (pf and sigma); fhese
lead to an attractive component Thus no matter what energy
we ar? dealing with.Aue expect the tall of the NN
interaction, and hence the optical potential, to be
attractive. The volumé'integral of the potehtial fbr
energies above 400 MeV is known t¢ be positive and so the-
-potential must change sign at sama radius. The Woods-Saxon
parameterisation does not allow fOr this to happen and so
while we may use the Woods-Saxon- potential to fit
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phase-shift dats, generally the wavefuncfion resulting will
not be correct deep” 1nside the nucleus The pion potential
also hae this feature of being known only at the nuclear |
surface. We discuss the potential used to generate the pion
wave functions in Chepter ¥, . |

1.3 The Two Nucleon Model \
The basic graph for the process is depicted in figure °
1.4 | | | |

Figure 1.4 The Two Nucleon Model.

The inci&nt nucleon strmu a nucleon 1n the tarqat
tndyoducec a-pion by the reaction
P *Pr*ptn+w
- . . =

J . A . -. ‘ —

&

~/



The cross-section for thedphocess;
Pp+n-+min+w
1stmuch smaller and usually negWgéted.
i There are tw6 ways of proceeding with this model: one

microstopic and the other phenomenological.

1.3.1 The n’icrosoopic Two Nucleon Model
In the first case the amplitudes from the sub-process
ptpeptn+m’ |
are obtained from some model (e.g. (GR79)) and are folded in
- with the nuclear wavefunctiehs The advantage of this mode ]
‘1s that the huge momentum transfer is shared between 2
nuc]eons, so we expect it to be less sensitive to the

distorting potentials.

1.3.2 The Phenomenological Two Nucleon Model

In the more phenomenological approach (the
Fearing/Ruderman model) (FE77), the assumption is that in
pPtp+*p+tnt n',the dominant final state is that in which
the proton and neutron form a deuteron. By means of a
suitable factorisation of the matrix element it is possible
to get the p + A + (A+1) + =n* cross-section written in terms
of the p+p~+d+ n cross-section (plus a form factor).
This'model has the pleasing feature that knowedge of the aNN
vertex is not necessary, although this also means it is not.

poss1ble to extract any 1nformat1on about the ver tex from

the model
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1.4 Discussion of The Models |

In the ONM it seems we are very sensitive to the
distorting potentials, and algo to the ambiguity in the .
non-relativistic redﬁcf%on of the vertex.

In the two nucleon modél we have a serious prbblem withA
the distorting potentials, namely in calculating observables
for thé reaction p+A-+ (A+1)+w, weneed the p + (A-1)
potential /n the presence of a spectator nucleon. We can not
usually get this from experimental data and hust therefore
rely on a model for it.

These models, it should bevremémberéd, are just models
of a complex Eystem; it is meaningless to say the mechanism
is a 6ne body hechanism or a two body mechanism. In figure
1.5 is depicted a graph looking like the TNM. Writing down

the T-matrix element from the graph, we éet

T

"

+ + 3 D
fﬂ;ﬁ(_r,)’ll’,lr,)H(r..r,)‘Y.fr-WJr.)alnln .15

b/

' f + + . ‘ %
= V(1) J’Vﬁlr,)H(1‘-,,»1’,)?‘/{(1&)41—z Vir)dr, 1-16

L : . L3

| = | Y () Heuw (1) Y ()d € 1.17
Thus by averaging over the positions of the nucleon in the
nucleus we'can obtain something which resembles the ONM from

‘the TNM.



At .

Figure 1.5 The connection between the ONM and the TNM.

1.5 Present Contribution

‘ The model which is the cleanest as far as 1nputs and
extractable 1nformat10n, is clearly the ONM. In this thesis
the model is given a new chance by treating the protons as
D1rac par*icles.

The DWBA calculation is done entirely using
’relativistié’ potentials and wavefunctiéns. This not oniy
handles the lower components previously treatgq_in a hand .
‘waving manner (BR77), but aléo eliminates the&ambiguity in’
the non-relativistic rédﬁction in the pion-nucleon vertexf.
We employ one of the best pion distortion potgntiéls
available at present, namely the Stricker potential (ST79)
which reproduces not only the pion elastic scattering data

up to 50 MeV b%t also the pionic atom data. From
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Y

relativistic potentials, we also generate a bound state
wavefunction which exhibits properties not found when using

a non-relativistic model.

71:é Organisation of Thesis

'In Chapter 1 we have outlined the (p,w*) problem and/)
the current ways of dealing with it. In Chapter ? we briefly
review the literature available on the ONM, and discuss what
we might expect to be the result of doing the full
-rejat{vist1c DWBA calculation.

For the DWBA calculation we will need both pion and
proton distorted waves, as well as a bound state wave-
function for the neutron. We first show how these separate
components are calculated: Chapter 3 derives a bound sfate
wavefunction from relat;vistic Hartree Fock arguments;
Chapter 4 extends the resulting formalism to the continuum
and also demonstrates how to extract elaétié sgattering
results; Chapter 5 shows how to the get the pion potential
and from it the pion distorted wave. Chapter 6 accumulates
the results of the three precegding Chapters and uses them
to calculate a T matrix for the (p,m*) reaction. Chapter 7
- shows the qualify of fits obtainable to the proton elasticj
scattering data and presents the pétentials used in the
- fits. In Chapter 8 we present.the (p,w*) predictioﬁé and
compare them to the experiméntél data (whereﬂavgflable).

Chapter 9 concludes the relativistic one nucleon model

v T
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discuésion, summarisihg the results of Chapters 7.and 8 and
dréwing what conclusions are possible as to the physics
contained in the (p,n*) reaction..Teéhnical details of some
of the ' ingredients’ of the~c31¢ulation are diécussed in the

appendices.



2. BRIEF HISTORICAL REVIEW OF THE ONM
In this Chapter we outline the historical development of the
one nucleon model (ONM) for the (p,m*) reaction. For other
models of this reaction, and for more details of the ONM,
the reader is referred to the excellent reviews of the
‘(p w*) reaction by
1. Fearing (FE80)
2. Gell-Mann and Watson (GE54) P
3. Héistad (HO77)
4. Measday and Miller (MES80O)

2.1 Pion Production in N-N Collisions

The first measurement of the pion production
cross-section was done in 1943. and Heitler and Pang (HE43)
tr1ed to explain the result as a form of bremstrahlung in
which the virtual pions forming a cloud around the bare
nuclear core were knocked on shell by interacting With a
second nucleon. (This s essentially the process we call
pionic stripping today.f This idea was taken up bthdrette
and Pang (M048) where they included dietortion (a delta
fuﬁctioh potential) in the incident channel. Foldy and
Marshak (F049) did the same thing but instead of a delta
function they used a spin and isospin dependent realistic NN
potential with spacia] extent given by Yukawa terms '
_ Moderntday calculations do not differ much from the .
spirit of these early ce]cUlations.'Albefg ét'al, (AL78) |

have recently performed a field theoretic calcUﬂation.fOr

15
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the process p + p = d + n* at various intermediate energies.
These authors used the static operator for the pion-nucleon
non-relativistic vertex but were unable to get good fits to

the intermediate energy data.

2.2 Vertex Reduction
| Non relativistic ONM calculations require a
hon-re]ativiStic reduction of the vertex. The first such.

reduction was done by Chew (CH51) who obtained the

expression,
srerfa .ixIfy
Ho(ry = €€ + e
z | ' T 2.1
' )
oo (¥ I’Y'")Att'

t. = % 2.2

Cheon (CH68) derived a form similaf to this, now called the
Gall7ean invariant form, by doing a Foldy Wouthuysen
transformation on the relativistic pseudoscalar vertex.

The next year ‘Barnhill (BA69) showed how an ambiguity
in the vertex occurs in the reduced Hamiltonian from an
" ambiguity in the matrices used in the FW method. ‘Friar

points out that whilst we may do a unitary transformation on

the reduced Hamiltonian
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. L]
o ‘ - i%d
H - ‘{agt'l = e ( H A gt)e | RN 2.3

>
-

(U is any even unitary matrix, M is arbitrary)
the physics does not change to first order in the coupling
constant g, providing one includes all the terms in equation
1.11 and uses plane Waves for the pion wave-functioge. Many
past analyses have not done this. At the time of Friar’'s
paper whether the potential was of scalar or vector nature
was unknown. We now Know (JABO) (DUS6) that to proberly
describe the nuclear potential both vector and scalar
potentials must pe present. Lee and Pittel (LE76) point out
thai'sinée Friar's conclusions depend on having a plane wave
pion, we expect some .« dependence. They also show the
effect of binding the neutron with a (Lorentz) scatar as
opposed to a (Lorentz) vector botential.

Miller (MI74) obtained his own reduction of the vertex
by a high energy approximation (kinetic energies much
greater than the binding energy)

J.V. Noble (NO76) attempted to learn about the vertex
by asking the question; "given that we have a plane wave’
Hemiltonian embiguity:of the form |

o.(p ~¥ P
r T, \ 2.4

what :x1ue of a best explains the energy dependence?' He
flnds that the static approximation (a = 0) is best,
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although still not very good.
In 1980 Greben and Woloshyn (GR80) compared thé
relativistic vertex (poth pseudoscalar and pseudovector
types) calculations for the (p,nm*) reaction with the
conventional non-relativistic cal¢u1ations (SH79). They find
that the non-relativistic Hamiltonians cannot give the same
result as’ the relativistic ones. 1 o
Summing up then, while we now know how to write down a
unique non?relativistic Hamiltonian (see Chaptef 6) which
will exactly mimic the reiativistic one; it is not possible
to simplify it to the conventional static or Galilean forms,
‘the distorting and binding potehtials must always be

L4

present.

2.3 Previous ONM calculations

‘Aside from the special case of production on a hydrogen
target, which is discussed in secfion 1.1, the first
calculation of pion produétion on a nucleus was done by
Edwards and Kanaris (ED62). These authors employed 3rd'6rder
perturbation theory involving nucleons bound in Gaussian
anefunctions and S-wave pions for the reaction
1 A p + 5He + 4He + w* '
The first.modern ONM calculation was by Jones and
Eisenberg in 1970 (dO?O)ﬂ These authors did a complete job
with the préton distortion coming from an'optical potential

wfth real, imaginary and .spin-orbit parts. They also
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included pion distortion by means of the Kisslinger and
Kisslinger-Kroll potentials. They find the (p,n*) results
are increased by a factor of around 200 byrturnjng on the
pion optical potentials, taking the theory from below to
above the data.

Rost and Kunz (RQ73) claimed that (J070) were
overcounting their distortion since-the pion production
Hami 1tonian was also responsible for the OPE potential and
hence part of the distorted waves. They scale the coupling
constant down and find great sensitivity to the pion
distortion'potentialugeometry parameters. Their claim of
overcounting is hard to see howeyer. | )

Eisenberg (EI173) did a ONM calculation using |
generalised Hulthén wavefunctions for the bound state and
eikonal wavefunctions for distortions. The final distortions
bring down the cross-section 1n'forewérd angles.

Following the lead of dqnés and Eisenberg, Keating and
Willis (KE73) did'é DWBA calculation to explain the 185 MeV
~ data on '2C. Like Jones and Eisenberg they find the pion
distortion puts them above the data.'They also find great
sensitivity to the pion distortion geémetry.

In contrast Dahigren et al (DA73) analysed this same
- data using a simple square well pgtentfal for the pion
distortion. These éuthors found hardly ‘any sensitiyity to
the pion distortion. Tﬁéy‘explain this as due to th; ]arge
off-shell parts of the non-lbcai ferms in the |

Kisslinger-1ike potentials used by the other authors.
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In 1974 Miller (MI74) looked at the effect of using
different.pion optical potentials and found that he was able
to get a pion potential which gave.fits to both the elastic __ .
scattering and (p,m*) data for '2C and ®Be ground and exited

states for 185 MeV protons. His pion potential is

2E v, (r) = - bRpre) + 8,Vprte).¥

2.5
b.v - 5-¢7~ - l-, (-. ‘ ’ 2.6
b, =-38 + 5. | 2.7

The b, and b, are.not obtainable from any microscopic
theory in contrast to the Stricker potential (ST78). Miller
also looked at the effect of configuration mixing in the
final state. He found seésitivity at the level of a factor
of 2 the cross-section. ' )

Y. Le Bornec et al. (BO74) performed similar (ONM)
calculations for a '°Be target with 185 MeV protons.‘They .
found order of magnitude agreement withAthe data using
Miller’s pion potentials.

~ In 1974 Grossman et al. (GR74) did an exhaustive study
on the production of pions from 185 MeV protons incident on.
12C, They rule out the PWBA ONM as it g1ves cross section
predictions which lie below the experimental data. They
consider the eﬁfect ofﬁ* and higher order multiple'
scatterings. This same year, Dahlgren et al (DA74) measured

the (p,ﬂ’) differential cross-section on 4°Ca, 160 and 2%Si
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with 185 Mev prétons. Later, Le Bornec et al (BO76) found

"that, even with a "tame” local square well potential for the

pion distortion, they get, for 4°Ca, a DWBA cross section 30
times fop high. |
" Noble (NO75) performed the first analysing power

calculation for (p,n*) with 185 Mév prdtdhs incident on 12C,
He found the analysing power is negatiQe everwhere.

In 1977 Miller and Weber (MI77) tried a relativistic
PWBA calculation. They tried to explain the '2C data at
185 MeV. In plane_Waves they find overall agreement with the
data, however I believe there was a factor of fic (197.33)
missing in their calculétion. Simultanepusly Brockman and
Dillig (BR77) tried similar calculations on '60. They \
compare the relativistic to the non-relativistic
calculations at bf és a functién of energy. They find no
value of a (see equation 2.2) can really reproduce the
relativistic results. _ ) R

An interesting result was obtained by Gibbs and Hess
(GI77) where they relate the (p,w*) cross-section on‘varioaﬁ'

nuclei to the'pion eiastic scattering at the same energy.

" They: used an off shell extrapolatioq for the pion scattering

amplitude, which they give as \

‘ \ ,
;4..’2'2'1( : i <r‘)&t) 2.8

N >
Shoe Wt 4 <f‘) 2:

fle.7)

Their success in getting the correct oraer of "'magn%tude

agreement with the (p,n*) data indicates why, as we shall
e " : . ://, s

<
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see in Chapter 8, all the structure i data is lost if
we use plane wave pions in the calculations.

Kume and Ohtsubo (KU77) played the same off-shell

N\
extrapolation game but in the frame-work of the ONM. In

\

momentum space they multiply the vertex by a factor
-Ate-e) |
¢ 2.9
they find the cross-section is very sensitive to A .
 In 1978 Auld et al. (AU78) made analysing power

measurements on '2C at 200 Mevf the analysing power turned
out to be negative as.Noble predicted, however Noble did not
predict the correct magnitue of the analysing power. Gibbs
and Young (GI78). found the consistently negative analysing
powers very difficult to obtain from the ONM despite trying
many different operators, bound state wavefunctions and off
shell behaviours of the w-nucleus‘scattering amplitude.

Hdistad et al. (HO79) published their results for the
hifferehtial cross-section on 4°Ca for varioué energies from
threshold to 185 MeV. They found fhe PWBA and DWBA ONM' /
results are always 1 to 2 orders of magnitudé above the
data, in stark contrast to the 12C case where approximate
order of magnitudg agreement can be found. o

The (p,m*) cross-section on Zirconium and Lead were
measured by Hbistad“et al (HO78). These authors also later
revisited the 49Ca data (H079) and found that by using pion
potentials with high momentum cut-offs they were able to get-

approximate agreement with the data.-Their plane wave
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calculation is now in rough agreement with the data here as
opposed to that of Le Bornec et al. (who also may have had
the hc discrepancy) - |

Weber and Eisenberg (WE78) did a calculation of the
analysing power of fhe reaction '2C(p;w‘)"c at 200 MeVv.
They find the analySingupower comes mainly from the prgton
distortion They use partial wave analyses as opposed to the
eikonal distorted waves used by Gibbs and Young _ ;;~f 

Sicilano and Thaler (SI78) and later Johnson and Ernst
(4079) showed that inclusion of a pion optical potential in
either a Klein-Gordon or Schrédinger eduatioh leads to theq
same phase-shifts but a significent]y different pion:wave-
function, indicating that the ambiggities ieft in the N
potential aftelpkhe elastic scaftering data has been fftgétg
"quite large af smali distances. Very recently Tsangré&??“h‘s .'
performed an exhaustive sfudy on the non-relativistic ONM'
(TS80). He ‘found that he was able to get good fits for the
(p,w*) data on oxygen, but was unable to reproduce the
energy dependance of the calcium data. *

From the work done so far it seems we can expect the
relativistic one nucTeon mode .to be sensitive'to the way we
handle the pion distortion. the proton distortion and the
bound state wave function. This turns out to be the case. Iq
the next 3 Chapters we discuss the calculation of these 3 -

vital ingredients.



3. THE BOUND NEUTRON

In this Chapter we discuss how to describe the interactions

~of a valence‘neutron with a eeFe nucteus. Specifically we{

seek a 4-s§tnor solution to the Dirac Equation which has the

following properties; , | |

1. Expéneﬁiially decays with distance as exp{-wr)/f, where
w is given by the binding energy of the state

o 4 ' _' a .
bW mec’ — (mc-1£4) 3.1

2. Is regular at the origin.

These two requirements give a "handle" on the volume

integral of the binding potentinl.

 To see how to calculate the interaction between the
neutron and the core nucleus, we consider a relativistic
description of nuclei due to Miller and Green (MI72). We
outline their derivation of the single particle wave-

functions in the next section.

3.1 thef§e1ativ1st1¢ Hartree Fock Mode
.In this model the nucleons are assumed to tnteract only
by one{Boson exchange potentials. The bosons (mesons) most
Tikely to contribute (i.e. the lightest) are listed in
table 3.1 (BR78) (UA8O), along with their isospins, spins,

parities masses and coupling constants (with nucleons).

24
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Table 3.1 The Mesons which Contribute Significantly to the
Nuclear Force

Meson T J P  Mass MeV g2/4n
pf 1 0 - 138.7 14.19
eta 0 0 -  548.5 3.09
sigma 0 0 + 570  6.97
delta 40 o+ - 960 0.33
rho 11 - 783 0.43
omega 0o 1 - 783 9.92
phi 0 1 - 1020 0.86
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The N-N potentials arising from these meson exchaﬁgés
are of the form

V, = < ¥°8 T, (ir-1)

[

, e X,"X:X’Yy‘ T, (17-7))

RS ARATERLY .

<

<
©°

The subscripts signify the transformation properties under

Ltorentz transformations,and the J's are given by

J(r) = J;,csit(%ﬂr _ _Q-_A,—)

r

3.3

v“ = mc /‘"C ' , ' 3.4
N o

Flg) = 35= 3.5

F here is the usual form factor, and L is a momentum space

cut off taken to be 1414 MeV/c.

Miller and Green construct a potential

’

V=V, +V, +V,+ ...

'

. 3.6 .
For a system of A nucleons the Dirac Hartree Fock equations. .

are



(c4,-p +p mc)‘flrl) + Z sf( )V(l'_f,-_?‘zl);lfj{;r,-)gi‘.(gf;')"z.,[’arL

) Z *Tx ‘r' 1‘ ( j(')‘o(}?"_ -
)”J‘y",(:)V( r-n) §(r) 45 4

This looks very much like the ordinary non- relat1v1st1c

Hartree-Fock equations. -If we defme

A : 3 | N
2:] FreViln v v, a
CKlT,1) Z 4 (ﬂ)V I, W‘") 3.9

‘then 'we have

dexep +pmct)gir) + U(!’,)%(f,).

[kinm)ginydn, - E'd.n)

| 3.10
If we think of a non-local potential as a local state
dependent pote‘ntial, ther{ we \Can write
!b‘uéwe) 4 . c ‘ N
{r) ¢(') = E (1) 31
. With | |
- leffective)
Hd [1’) = C& P+, (MC + U (f')+ Y U)‘{r»
v -“U ("') + l U ( )) 3.12
NO\;I the calculahon sinpler we consider a nucleus

Ispin Zero (doubl,yz closed shells). This gives the

b .
B ¢
o

|



commutator
: lcffech'\u.)
[H‘ (1) P ..J-} = 9 o 3.13
and {t is straightforward to show |
Us(r)‘= U_s(r) I 3-14
to) (o) '
U0 = 0,t) 3.15
_v(gj = 0 3.16
U,,(I‘) = 0 3.17
P -
Uﬂ (1’) = 0 3..18
]
U (r) - © 3.19
U (r) = (U, ), 3.20
U tr) = % (£.0,) o 3.21

If, finally, the nucleus has.iero isospin, one can
eliminate the isovector potentials in a.similar way. The
'rédiél potentials arise.only'from gxchange tebms which we'
can assume to be smaller than the diréct terms and so we

. heglect them. Thislleaves us with two potentials: one

arising from the sigma meson (scalar, attractive) and the

other from the omega and phi mesons (vector 4th component ,

28
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repulsive), which we put into a Dirac equation.

3.2 Solving for the Bound State
3.2.1 Analytics

The resulting Dirac equation for the bound state looks
very similar to that of the incoming proton distorted wave.
In Chapter 4 we give a more detailed discussion of the

latter. In this Chapter we basical]y'staﬁt with the time

independent Dirac Equation.
N N /

(-ihica¥ + pmc” 4 PVs(m) + Uv(r)-E)'UL(‘I‘) "e

3.22
In Chapter 4 we show that the solution to this for a state

; with quantum numbers L J M is written

' 'Wg(f) = 1—) y"zT

- 3<r)}/.‘.8}.

| | . 3.23
The équatiqns gatisfied by f and g are{
() # Uty + € + mc:)f-a(r)“ - dhe (38'-&)-38@)(15.?,2)__-1))
| o I | 3.24
(V)= Uty 12 -m) 3,01 = He (bl + o (2200

- 3.25
where |
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H= b Tg T
If should be noted thatuif‘f is pprely“;ea]. g is purely
imaginary. Complex arithmetic can be avoided by defining g’
= ig. | | |
Only thé'norma]isation remains unsPccified_\We r~coipe

that

: o \
¥ SN T T L) o~
J'\y '(1')’!//8(1') dr - J(Hslr)] rlg‘(r)))'r dr = |
8 . o
' o ' 3.27
As’in the proton distorted wave we solve the:
~differential equations by elfm%nating g, then transforming

‘away the first derivative terms to get: -

')+ Ker(f)vlr)’ -0

3.28
where '
o - / ot
) = - g - ', B .
Ker(r) = A 2 & _ e
' sfate)det — o
h(r) ’ j(r)e , a 330
B(r) = MM _ 2 : e
. B :3.31 .
V, (7) T ‘ T
Alr) = V(0 (uzﬁmu)(w;(r) ,’1/((%,,,)' B
| o S 3.32

N D o V)
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i et
. () - Ule) + £ -me"
V, (1) Vulr) - Vs ) o 3.34

We integrate equatfons 3.28 u§ing the Numerov method

(seé Appendix,A) once we have set up "Ker" as an array of

points.
A typical so]ution to 3. 28 looks 1ike Fig 3.1.

y(r)

o- 2 4 6 8, 10 122 14 16 .18
r (fm) '

Figure 3.1 A typical bound state solution.

<

3.2.2 Numerics ' '
, Numerical integration of a curve is of course only an
approximate method and at each step errors. may occur. For a

‘second order differential equation these errors have the
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effect of adding some of the '‘other’ (irregular) solution to
.thé»ohé we wantr Suppose we were integrating outwards_from B'f
to C: at the first'stép then we have our required regular
solution y(r). At the second sfep we have y(r) + ¢ z(r), .
‘where z is the irregular solution and where ¢ may‘be very |
small. Then as we contihue. y(r) expone;tially decays whilst
z(f) exponentially increases. Clearly no matter'hbw small we
‘make our stepfgize (aﬁd therefore ¢), the second term will .

eventually dominate leading'to a curve as shown in Figure

3.2

7

y(r) |

=

0 2 4 6 8 10 12 14 16 18
‘ r (fm) '

Figure 3.2 The numerical instability of integrating
' outwards. . : ' - //»

' This "instability" can be put to good use however,

since if we integrate backwards from C to B then the errors
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we introduce at each step are exponentially damped. If we
start off at C with totally the wrong solution, our
calculation will correct itself. |

Using éimilar arguments for the range A to B, we see we
“must start at A and integrate outwardsg the other solution,
being irregular at the origin, damps out quickly. Thus for a
given arbitrary potential we must estimate;where the wave
function peaks and.integratg to that spot from both sides.
If we miss by a‘little it is not too serious. The curve
resulting from this procedure will typically look like the
one -shown in figure 3.31.

y(r)

S0 2 4 6 8 10 12 14 ‘]6 18
r (fm) ‘

Figure 3.3 The binding potential being too strong causes a
derivative mismatch.

‘(after suitably normalising one side 80 that they meet)
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At the matching point the (log) derivatives do not
match. This is a symptom of haVing the wrong potential
strength; in Fig 3.3 the potential is too strong. If we call
the difference in (log) derivatives at B, B, then the
problem is summarised as finding a potential strength V such
that (V) = 0. We therefore have to solve a non-linear

equation in one variable.

3.3 Determining the potentials
The vague term "potential strength” must now be

explained. We parameterise the vector and scalar potentials

as,
Uty =+ W doos Vs
r - Ry 7____,_1'-9 .
a Qs
I + e Vv I+ € 3.35

For light nuclei. relativistic Hartree Fock
" calculations (UABO) show a dip in the potential near the
origin; we thus eipect to haQe a parabolic term in the
numerator. However, we ignore such a possibility here in an
attempt to limit the numb?r of parameters. |
The geometry parameters in these’potentials can be
taken to be the same as those obtained.from fitting the
proton nucleus elastic scattering data. Typ1cal values are
a ~ 0.65 fm and r ~ 1 fm S R

To get the potent1a1 strengths we can do one of two

things:
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1. The mean field theory of nuclear matter (WA74) indicates
the volume integrals are in the ratio Jv/Js = -.81 and
so fixing Vs by this we vary Vv to‘fit the binding
energy. Moreover Arnold et al.’s (AR79) phenomenological
analysis of proton-nucleon elastic scattering gives
Jv/Js as a function of energy which extrapolates to
-0.81 at zero.energy. |

2. Following the analogy with the scattering states, one
knows that Uv-Us is in some way proportiona] to the spin
'orbit potential, and so if the associated spin orbit
split state is known to be bound we can vary Vv and Vs
independently to fit botﬁ states.

. For the (p,m*) calculations we will require the single

particle wavefunctions of ‘fCa and '3C. Since for both of

these nuclei the spin-orbit split state is not well defined
in energy we adopt the fifst criterion. |
0f interest in DWBA calculations (see Chapter 6) are

the bound state wavefunctions in momentum space. Figures 3.4

and 3.5 éhow the momentum space single particle wévef

functions for the 1£7/2 state in *1Ca for two different
geometries. The geometry~we shall be using for the (p,n*) -

éalculations is the one in which a = 0.65 fm. In Chapter 8

we show the effect of using a = 0.5 fﬁ.

) The feature which is immediately.appérent is that for

momentum transfers typical of the (p,»*) reaction (shown in

the figures by the arrowed lines for 160 meV incident

-l
5

protons) it is no longer correct to think of the lower
. )



36

o | |
— |F (@]
e |G (@)

w &4

3

5

Sy |

L.
Y
0.0 lfll !.:0 3?! II:II ;fl

MOMENTUM TRANSFER (FM-1)

Figure 3.4 The 1f7/2 bound state wavefunctions in momentum
space for 4'Ca with r=1.0 fm and a=0.65 fm.
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Figure 3.5 The 1£7/2 bound state wavefunctions in momentum
' space for 41Ca with r=1.0 fm and a=0.5 fm.
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component (g) as-the small component. This is a feature of
using the strong oppositely sigﬂed scalar and vector

\
N

potentials

I1f we use the Schr&dinger equation to Qet a bound state

with the correct binding energy, then we need a potential of
about 50 MeV. In theahydrogen'atom the Coulomb potential is
but into the»Dirac equation es the 4th component of a
four-vector; this yields the correct nyperfine splitting -
(spin-orbit force). By'anelogy we can put the 50 MeV
Schrédinger potential into the Dirac equation in the same
way, thus generating a bound state. The results of doing
| this are shown in figure 3.6. It turns out that weﬂdo not
-have to adjust the strength more than a few MeV to get the
correct binding energy. The resultjng spin-orbit strength is

about ten times smaller than that observed from nuclear

spectroscopy; since the Dirac equation has no explicit way

of 'puftﬁng in’ an extra spin_orbit potential, u@§can“expect

th1s simple approach to fail. The most striking feature
shown in figure 3.6 is that the f and g have their zero s at
the same value of momentum transfer and so we always have
_f >> g« The ’large g’ is then a consequence not so much of
using the Dirac equation but of using the strong oppos1te1y
signed potent1a]s.

Lastly, figure 3.7 shows the momentum space wave-
functions for the 1p1/2 (ground) state in 18C The feature
.of g being large at high momen tum transfers is still

”apparent

?



4. THE PROTON NUCLEUS INTERACTION
The second ingredient that enters into the calculation of _
the (p,m*) amplitude is the distorted wave describing the
motion of the incoming proton. To obtain this we need to
solve the time-independent Dirac equation in the presence of
the two potentiais: scalar and vector. The arguments for
. using these potentials are the same as for the bound state;
we must however account for the inelastic channels. This is
done in the same way as in the conventional optical model by
giving the potentials imaginary parts. There is no simple
way of Knowing the order of magnitude of these imaginary
potentials however, we expect them tp be absorptive and
thus negative. The potential parameters are ultimately tied..
down by fitting the elastic scattering data as decribed in
Chapter 7; the success with which the data can be fitted
kjustifies the assumptions a‘postiori (AR?Q) In this section
there is necessarily a lot of algebra. Not all the steps are
included however ; the interested reader may find some of the
missing details in the thesis of Mercer (ME72). We assume,
initiaily, that there is no Couiomuiinteraction present; we

later show how it can be incorporated into the formalism.

- 4.1 Separating the Dirac Equaticn
The Dirac equation is:

39 .
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e g
.%
T
3

(-ithetV +pmc +/§U,(f)* Ulr)‘*—')'wlf t) =0

N i B

where §i(r) is a 4-vector (actually a 4-ép1nor), a and

4.1

4.2

are the 4 by 4 Dirac'matri_ces and I is the 2 by 2 unit
matrix. | | T

The upper two cbnponents of ¢ may be exbanded in 'a
complete set. In analogy with the spin 1/2 non-relvativistic

case we wrjite (RO57)

Q‘) s m, m | T M) {‘;," y :‘/JZ')

, 4.3
_We wish to find two lower components (to fit into the
curly bracket in 4.3), which yield a solution to the Dirac -

equation foi‘ each LUM partial wave. To do this we define

- " (r) y"(ﬂ.)

| 4.4
" and use the Nirac Equation ’



Lk o <. mce ) o Uld-6 o r?‘,fr
mene ‘ t +/ : |

It

o -mc"- Ulr)

0 u,lr)-E

which gives, for the two component equations

-ike o9 ?‘,(!)+(mc‘+U,(r)+U,lr)-E)¢,f!) = o

.)‘hcg‘..y ¢, (r) + ('Uv{r)—mc‘—E - Uslf)} ¢z (r) = o

&

Equation 4.7 gives us the lower component as required

-iteca.9 & Ir)

| ‘¢,_(r)' . —
Volr)-E-mc-Uylr)

We need to evaluate the expression

eV M) - o9 }L;(r)ﬁnm)

‘_’I.T

We can use the identity.

1<,

o.V s o

-2

which gives us
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4.5

4.6

4,7 ~

4.8

4.9

10 -
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using

L]

o.L = 25L « 7-,"-5"

Eed

eigenfunction of all the operators in 4.12 gives us

H . .
N
L JA) s (T(Ta)-L i)y '\\ju(l-%)

'3

L' s

3 oV ¢,!) s {"'Ll:lr) - "'I(f)(J'ITﬂ}-LILw)-S/;,y Y-f ()
T ’ ‘

This exﬁ!ession can be simplified if we notice that

L

T(TH)- L(.L+i)-3./1,‘= j(l +(L-F)2T+y))

and introduce a useful quantity when dealihg with the

Equation.
L ]
K = -7y
(4 . ‘

e

" Finally we use equaiion 8.12b of Rose (RO57)

which, since the generalised spherical harmonic is an

e
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Dirac

\
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' (.Q. z - (—Q) ! - '
g.'I ‘"13) A% , L =29-L . 4.17
Therefore _
: M
e.V4 mYa) .- ~(—- '*“)J( ()fj ()
. Lo L";‘J L'”LJ
4.18

The full 4 component wave function can now be written

as |
e | am
Yirt) « /[; rme Z (R‘)(L'/z m myTm)
-” .’lmcv’ LJ’M .
| (0 Y )] | |
‘& X Tj'“’ o . 4.19
,‘ ‘,'. | ‘r) 3 "f-?) . .

where the lower_conponent is give in terms of the upper one

/

by - :
3'.:“') * : Fc ’ (2+ "L‘*—K- " ll’)
E + mc” ¥ U lr)- v,lr) \OT AR v .

4,20

Proceedmg form 4.7 1n a manner conpletely analogous to ‘
that where 4.20 is derived from 4.6, the second differential -

equation is



‘ e ) -k -
?—(r) = ih ' (; T "'1‘_—)3;.:‘ )

E - U,lr)- U,G)mﬁ
’ 4,21

4.2 setting up the Radial Equation

It now remains to solve the coupled differential
equations 4.29 and 4.21 subject fo the boundary conditions
of an elastic scattering state. In order io}do-thiﬁ eq 4.20
is substituted into 421, thereby eliminating the lower
component . A few new iﬁmbOIS‘caﬁ be intboducad for .

convenience of notatiom. -

7;(7-) = rf'm(r) , - o ' . 4.92

gtr) = T30 o 4,23
| Alr) = .;\‘C (v'v':(r)f;‘--u,«)-mcl) o 4.24
- " o

s.(r) e (’u,(r)- E + U,(ﬂ*m&) 4.5

Our differential eqn for f(r) can be written as
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- 4.26

As in the bound state calculation, the first derivative

ferm can'easily be.tranSformed away by defining
ytr) ’r{r)[,uq}

which gives us the following result

n k - Kdl ..ldk+u ] {¢) =
yir) .+ [Aerlr), _f“(.“) — ‘5f) .

where the function ker has been introduced. .

. " o . '. R ' ) _
Ree(e) = o 3 (_;{_@) - dlr)s(r)
e 24y y o lr)

~

4.3 cbmparison to the Non-Relativistic Case

4,27

4.28

4.29

The structure of equation 4.28 is rather enlightenlng

- when compared to the correspond1ng non-relativistic

| equation The non- relat1v1$tlc -equation for spin /2

scattering is
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"{_r) ‘ h"_'_zm vir) +ﬂ_(l+K) U,',_(") - LlLt) ylr) = o |
b] ( o o == |

4.30
! \ ,
We can clearly .identify the term in the Dirac Equation which

'cor‘respohds to the Spin Orbit poteh_tial as the one
proportional to K- '
. ¥ oll(r) |
S Ve T T J S st

Assuming for the moment that ;
E +.mc2 >> |us(r) - Uv(r)l and E ~ mc?

we can obtam the rather mce r‘esu]t that

Us.o.(f) - ®Z )‘7 U" (r) ~ Us (r) :
mT oy lr)- U lr)- E-me* . 4,32
. . ‘
- £ct | J.luv(f)- Us(f)).
2met T df ' 4.33

It should be noted how the ‘Thomas' form of the spin orbit
- force appears natura’lly from the formahsm Not only the
spin orbit force, ‘but also the equwalent non- relat1v1stic

'-centr'al one can be obtained from a comparison of equations _

- 4.28 and 4 30.
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h" - ___f_n_Ulr)‘ E" CRerlr) 4V J'(r)
4 , r div)
~ 1 . At\__ e 1 8 f'lct
2  Ulr) m[ (u,(r) mc) (u,,(r) ;_-)] + -
‘ T : dmc
4,34
~So. if we have |
| 2me2 >> Uvir) , Us(r)
then
Ulr} = U lr) + Uylr) ‘ Caas

Thus, loosely, we can say that the central potential
: depends‘on the sum of the potentials and that the spin-orbit’
potential éepends on the difference . It should be
emphasized that/this is not a very good approximation at
intermediate energies, ehly a rule of thumb. If we use this
simple approximation for the class A'fits shown in Table
7.1, then we get the wrong sign for the imaéinary potential.
If, however, we use the more exact expression for the

non-relativistic'corhespondence; we obthih the correct'sfgn.;‘

4.4 The Born Approximation

~ We can learn something of the relationship between . .
potentials agd)observables from the closed analyt1c forms
obtalnable from the Born Approximation

We agsume there are no Coulomb terms present in the



potentials. After the usual process of obtaining a Green
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function-to turn the differential equation into an integral

equation, we get for the differential cross-section

lelz)J/

J., . » b L 2. =
_._f.-‘ = [(E 4 mc) ln(z)' + pc E-mc
d o ‘ © E+m

420" R§{9¥(2)B(g))
where

( . sL.T 3
Aly) - Eﬁﬁ?]e,_“uﬂfmhvlf

! e | 1) o
= r)- T
B1g) QWJQ (U,‘)Us')_
For the analysihg power we get
A . 2pc 54'-'n‘9 Im (ﬂ"(v‘z)B(!))/iz
pe 3 il Ja

We can make the following qbservations:

1. In the non-relativistic limit

do - waclplul
d

3

4.36

4,37

4.38

 4.39

4.40

We thus have Uv + Us as our effective central quential.

2., Also the,anaTysing power'vanisﬁesf

a. If Uv=Us showing a difference in potentials is

.necessary

b. In the formal limit of c tending to 1nf1nity, thus

showing that'the ‘analysing power is a relativistic

AU
W
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effect.

c. IfUv=0orUs =0, soboth potentials are
necessary.

d. If both potentials are real, so absorption is

necessary.

| ,4.'5?06taining Phéswé"ksh,i- k.- ,er‘vables
: .( 8 by ‘a marching me thod

We numericgjly .
fa pre&termi ned matchi ng

described in appendix A
~radius Rmax chosen sO that gﬁe potentials have become
vanishing small. | '

At this point (Rmax), we know y and_y; and so we can
calculate f and f' from equations 4.27. To extract the
correct normalisation fdr the f(r) and also the bﬁase-shift
for.use ihfp]éstiC’sdattering, it is necessary to match to
the solutions to the Dirac equation with no potentials
present. With the cohventions of Bjorken and Drell (BJ64)

‘'such a solufion looks like

o Cakeegt) o\
Vn ,(f. £) - ¢ . _E'l!‘i o.Pc *ims)
; n 2 > s it
p- ) .‘ mc € mc
. | B I | 4.41

‘ . . . . et IO ’ .
where  X(m) is the usual Pauli 2-Spinor. We write

!
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Nx _‘}(r) (a e K(cos SK fr:Sr) +“ sin S" %-”fr)) s 12
NK '-'l" =f e. ‘(038 ). () + yns ; lr))

4.43

where the Quperscripts R and 1 refer to, respectively, the

regular and 1rregular behaviour of the solution at the

origin

From the above two simultaneous equations we can

extract both the phase shift § and the normalisation Nx We

choose the normalisation by requiring the following boundary

condition ) i ,»lm‘
- ._ en,
. (k2-EY) - Ty | ke [T
i e JE+mc| . Yim,) + e :
’WT'*)——_—? - 2mc* ZLEf Cx m hm
(’ quc : ' “n,
, ) | J“‘/

| 4.44
1f ule are in_teres‘ted only in elastic scattering, ‘then
all the relevant physics is contained in the phase-shifts.
This means we only ever need f ahd £ just at Rmax, rather |
. . th1s can. lead to a major saving in
Vhilst from eqn 4 a4 it

it

- than every point;
'ealculations' (about a factor of 4).
—vwould appear that there are 4 amplitudes to be evaluated
turns out that- the lowem two are expressible in terms of the
upper two and that all observables can be conveniently , |
expressed 'ln terms of nultiples o@’the upper two an'plitudes,

J

namely .-
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o

‘ F'.. “ . f ("w; ;‘m) P:(w'sp)"

- where
() 2: 3, 3u 0ty
o = & = |
sk o

We can now write the cross.section as

e e

and the qpaiYSiﬁQ.mr_, as
U e

o A = ‘_.'?-JTF' Fe

o IFl+ IR

AVso, for carpleteness we inc‘lude another independent

,,,,

quant’lty (GL78)

B - 2Re F.F~ .
o 'F '%Q%F, ol

‘ Clearly. we have skipped many Hnes 1n turning the o
phase-shiﬂs into observables T'he missing steps. however,

51

445

4.46

447
4.88

4.49.

4.50

are mm & less identical with those of the corresppnding

| non-raiat,ivisnc theor;y which u very uen docmnted in the
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o

text books on elementary scattering theory. as for example,
in (RO67). In the next Chaptér we discuss the results of

- ? ]
fitting the elastlc.data and present there the parameters of

«  the potentials.

. 4,8 The Coulomb Interactfon
4.6. 1 The Meaning of the Ehase Shift
So far nothing has been said about the delicate
question of the Coulomb lnteraction We can be gulded by
Janalogy with bhe~non relativistic case (MES58) . Messiah shows
that for the. ;’Ee of, pure éoulomb the scatteringdfolution

% . to the Schrbdlnger equation has the property
Z o . alk2- Qe k(r-2)) (e - 9a2ke)
. Vir)——s & _ AL

L am) . . (2n) r

'&

o 4.51
whene fc(ﬂ '

Tthe¢standard Coulomb ampl1tude given by

4ﬁ52‘
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b

7 - & Ia(Vinvvi)

4.53 ,
"Putting | ;
DU v f ,t(ha-)""" =) * .
| B ) {‘r
, e :
we get »
T . kk3E sy ¥-3
- m m . (r-2) 4.55
and putting o . |
f . i(hr-pl24r)
. , e | | |
¥ : W) » — ‘ , : |
T e ) ro . % 4.56
~ wezget (.‘ignoi,‘ing a 1/.~= /f/jterm) e
L \ | / . ® R '
;f oome r : : 4.57

/

\
Since the pieca'"es which depend on the Coulonb pa;‘ameter

: vanish at 1nfin’¥j ty we can still interpret the h\dividual

.,geaeralised sphﬁrica} hanmnics. then. tha r‘adlal conponents
: "Jof thé wavefﬂnct%ns oorre‘sponding to *the solution which has

pieces as ‘an 1nébm1ng flux along the z- direction ‘and an

| outqoing radial “'ux e X )
FErne plane waves in equations 4.42 and ”’L |
Aﬂ,,ﬁ:i m nqk. can, de\fkine Cg.ulmtf waves which are the o
é’ol{l"!vt‘‘lomyf to the Dirﬁc -equation with a 1/r term as_ th; G
g

conponent ofy ‘a 4-vector potential e "‘j;' 4
expar , the Cbulon'b wavefunctions, in terms of the

\ DA S s
71- ... i v . . 4" N
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the asymptotic form 4.51 themselves have the asymptotic

forms : ' . L
o R 4
SO #(f)————b_’_ E’"" cos (ke- 71"2""'}‘:)
. K J Tmc ‘
(f | '/ . 4.58
g «f:,; 12 [GER iptnse et
?4 ot E %
g ' .‘W_i.’ & DR | . 4.59

1s the rdta&ﬁvtstic Coulomb phase shift d1scussed
1n Appendix BE-A'Jt?f '

as For the plane:wave case:

that is fo say 1n the presence
of a (short range) additional potent1al

the regular\
solution asymptotically goes like

* (r)———) {E: :”: cos(hr 71041‘ "th +SK)

4.60
We can extract from this, again in analody with the
2 honerelattvist1c case, the total phase shift for the
scattering as ' . .
o A o
o | , | . i o
A" - Z" AT o aer
.Thts»,‘ L;Kﬁ ts<the guanﬁiiy we insert into equation 4.47,
4.6.2 SumMing the Partial Wave Series ' '

4

¢
[ .

Now he have one.more problem, namely o . ‘ -



55

’(‘."’ SK = O but ‘/im A Y ~Zkf S,‘.)'# o
' “ﬂ")“ TEY.: -

7 R - 4,62
The sums in egns 4.45 do not in fact converge. !’

In order to get around this problem, we will have to
. . ~ i

~understand the nature of the function to which we would like
the sum to converge.- The non-relativistic case suffers. from
the same malady. although in this case we do know the

~analytic solution for a point charge to be

;:zo:,th (1-3/z)

{—c»(g) = -7? " j) ' ¢ xg.cosB
_ 1 - 2

€
-

'I{n'figure 4.1 we show, qualitatively, the real@rt of the
Coulomb amplitude: (equahon 4.63) plotted against the centre
of mass scattering angle (8). There is a singulari:&in both
anphtude and phase clearly there. is no way the Legendre

polynormal expansion can converge in the normal sense. We

4

can, however. use a transformahon (YES4) to hid_e the

sifgularity. If L e

' In practice we may. argue that ‘the electron clouds shield '

the charge and so at- values of ¢{ ~ 104 the terms go rapidly

to zero.  The problem may'be interpreted as s ing up the

- convergence of the series rather- than making the -

‘ convergence @ _ A
. - P -t

4,63

-

({31 )



56

. . v",
¢ e

gC .m. \ : SR

" ?

Figure 4.1 The non-relativistic point coulomb amplitude,

) 2wy o | .
#c(") - S a, P(x) N : @'
4o . » ¥\
4.64

- then we can muitiply by (1 - x).to get

(*) ) R W
ox) = Q=X A=) = Z a Flx)
~ | e 4.65
. where the a,’s are related by v »
» W '., {+] o | “ e ¥
' 4 = Q") - alu - ""—"l . al-l T .
t 2 2443 2¢-1
o . 5 4.68

>

The function to which we want this series to ‘coﬁ”verge is
shown in figure 4.2 We have eliminated the amplitude

.
&



57

R (o)

c.m.

Figure 4.2 The removal of the amplitude singularity.

singularity but the phase singularity remains. Mercer (ME72)
suggests an eleggnt way of doing a. transformation similar to
this one to remove both amplitude and phase singularities
However, 1nvthe experience of this author, the series he
finally obtains £ti11 diverges. We can ’hide’ the R
Singularity by repeating the transformation of series

“(eqn 4 66§ to get ‘.

ls 1

(3) . @ | |
-l fxb : (n—uhl (x) =- :'“P,(z).‘ '

-h%-t Lz0 _' 44’.67_

Then we hawe a s'tuation.afhjn figure.A 3.
' The phase 51ngular1ty is nowlynder the parabolic
&
envelope and so the Legendre pd!ynomial expansion of this

l"-

" function ‘can be expe&ted now to converge unifgrmly In fact
“ .

kS
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the higher the power of (1'- x) we multiply by, the more
hidden the singularity is and the faster the series

converges. e

t

Re ﬂJG}

Figure 4, 3 The Phase s1nguF%rity is hidden under ‘the
¥ parabolic envelope S

If we perform n such transformations, the series will
converge 1ike | u .
| Z ,/ (zn-l) ' o S . ' | - 4.68

! - : ) ' H

What then is the opt1Mum valué of n? o .-‘ Vo

If n is too hlgh we have anoﬁggr problem Once we have done

the sum to. say, 5 f1gures of accuracy for 8= 5° and n=10,

we then multlply 1t by



(l - tovs So)
' 4.69

Thus the series would have to 'sum to a number much less than
10-17 with terms of order 10°; clearly this is not possible
‘with the ¥imited precision (17 figures) avatlable on a
computer. "} o L |
Lt‘seemé.th%% that n = 3,4, 5 orsperhaps 6 are all about
as good as‘éaﬁh‘other We follow the lead of (YE54) and take
n=3§ this requires typically about 150 terms in the sums

4.45 and 4.46.
. P



5. THE"PION.DISTORTED WAVE

In the final state of the (p,w*) reaction we have an
outgoing pion. As we shall see in Chapter 8, the final state
linteractiodl of the pion with the final nucleus are vital to
explaining the (p,w‘) data;.io.describe this final state
interattion we employ'a potential due to Stricker.,MCManbs _

~and Carr (SMC) (sT78), which provides Qood fits not only to
the pionic atom shifts and widths but also to the pion: )
elastie scattering in the'energy range 0+50 MeV. )

The derivation of the potential form used by SMC is
outlined below. .

5.1 Potential Derivation

_ﬁ Starting form the Klein-Gordon equation, but neglecting

»-~ferms which are quadratic in the potential gives an

equation wh1ch resembles a Schrédinger equation

(vz.# Rt . - Z w U.".lf‘))f(‘_f)'v =
’ s | 5.1

where & . is the reduced centre of mass ‘energy.
5.1.1 First Order Terms

In the centre ‘of mass frame, the pion nucleon'

scattering amplitude'is..-

60 U
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t i(d, +J,'}'.§)_-—.‘I3'»b | - 5.2

" where ¢ and Y are the spin ahd 1socp1n opoerators for
the nucleon and t is the isospin operator for the pion.

l If we transform equation 5.2 from the c.m. of the
pion-nucleon system to that of the pion-nucleus system (the
so-calledlahgle transformaflcn) and fold in the nuclear

density, we get the first order potential

'S A}

2o Uir) s -lnr{(HE)b/)(r)-— Co V.PrIV + €C, VE ]

v . 2Giee)

. ) g | o - | .5.3.

where

£.5.1.2 Second Order Terms
) " Since pion absorption cannot take place on a single

Anucleon (conservation of energy and. momentum), at least 2

nucleons mus t contribute. A phenomenological amplitude-for .

_ this process'can,be,wrltten}

{,,5’“'-,8“ ' C k ’ ,' . | | ,5_5‘;

whete Im B, ;;d Im C, can be calculated from a micrchcopic
-model involvlng graphs such as figure 5 1

-
. Q

£ .“_WE&P_/M'.C; | o | 5.4 -

gy
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-Tr\‘.
~
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~
1Y O\ ~;
\
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\
N N

. |
Figure 5.4 The source oi imaginary terms in the potential.
The real parts of B "and C are not determined by
}this model and are taken‘ as the negative of their imaginary
counterparts (ST78) At energies above 50 MeV they are. set
to zero (5T79). P ' |
Since we heve a2 nucieon‘amplifude. we get terms

proportidnel to the density squareo in-the‘pdtential. namely

2Ce g¢ﬁﬂyf ¢,V (r}
2+€ . biat
SRPU

-5.1.3 Higher order terms

The mu]tiplesjgzsering series for the-potential
rator U - S , . _—
e - 8

200 - -or [ B

f=2
------------------ i N
T

1quite arbitrarily N
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\_(o,lfj|o> doute) | 5 7
, \ : ,
is given as
U -zt TheQy L
prd T ) 5.8

y

,‘ ‘where G is the pion propagator, t is the‘pion-nuc‘feon
T 2- body T-matrix and Q is a projection operator which
projects c})‘ the ground state Ericson and Ericson (ER66)

have shown that if short range correlation effects are

) :

‘ _xincluded' the P-wav@ piece of the multiple scattering Serie‘s

is summable, providing we assume the pioh wavelength is much
greater than the average cdrrelation length between the
nucleons. This results in the modification o

tvb p(r) , B

¢ (ﬁl,jlmb [»(r} . 5.9 -

~ where § is the average correlation length between nucleons

" 4wb, /,(}) —

in the nucleus. At present

,/—.'1 -

A R | - 5.10

is taken as a free parameter and adjusted to fit the elastic

scattering data.
"~ The S-wave part can be suuned to second order which ,

_results in the replacement

. S
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b5, = b, - (b r2b) 3
. o [ 4 11f

"

with the Fermi wavevector, kg = 1.4 fm-1.
5.2 The s,tricker-'ncuanus Carr Potential
Summihg'up we obtain |
.. . C L R a A * .
CAw Y Ie) = ...zm[b(r) t Pflr) 4 g.’_:ivm) + C,(r.-QV‘p"(r)}

t -
or 2P,

-

-0-_‘(." [Ya i(f)({r)g : + Ce g.f‘?r)g] T+ 2 w _V‘ (r) .
. Fe a9

where | | IR
bty = A b ptr) - b S/mx). R o513
s A (epta - e Spe) AT

él’(v'r)‘\ -'!-ﬁ:—z- P(") | . “"5'.15

DR C R T A'%ﬁ('efl}“")i'f . /”/ |

i Pl "_ ' "'* e | : f;“; ' >P‘ .‘ | <+ !h i /.. o e 5- 1«7 .v

5.16

t B -
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5.3 uunrioal solution "

From: 5 15 we see that we can write the potential m the

form

opc

where
9, (1)

‘"

'.'3;(.1_7) - ’6‘_,.(3) '

9, Ir)

AW

«»3,{;) . (o (P-)udp'te) « (- gmetr)
’ LT ’.ﬁ o .' "". .- _

L]

_ _.i,‘,'(,., i
- .

.lf

\r'

i

%

s.tc)}”- 9,«)’“;} .

Equation 5 1 can be written in the form

‘VAo ( o'V. f"V ("

9. wr)v ﬂrl g,m) ﬂ,,, S,MV 9‘(") 525 B

ve 4"-9-(- - - Y

A

uw(bir) + uByplry - 2B vtm) 5.20

521

i}-lr) -_'_ .7.'#’:'.1-7:‘.’. "‘ (‘f 3 9'“) ) . . 523 -
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‘,}'faqeount The proeess f_fs depicted inhfiqur

B

‘ : K7
- of the. pre\douq, three

‘-.outgoflnq p'lon wt th the residual nucleus are not taken 1nto
6 1 lﬂ ;

/

' £6.° THE RELATIVISTIC DWBA WTRIX FOR (P,PI) REACTIONS\

ln this"Chapt‘er we tpaow how to put together ‘the results <

| Foa

ters, the?eby qbtaining o DWBA
expressiqbfoﬂ tue T x elements. The .main results of
brief glimpse a‘v equations will. convince the reader

that the str'uctur'e of the 'T-matrtx 1s not appﬁ'rently very

"1

‘ structure becomes transparent 1¥'We do not 1nc1u e @Wtﬁas.,»

«M *-

“ zjand final. state 1nteractions ol te. “do & py&‘e ave Bol‘n
f apprgx#mation) Th'ls section then is’ starfed, wi th a ved
N derivatfon of the PWBA T- matrtx elementas There ar.e two, -&%&

types of verte;k we consider. namely the ps, ‘.-scalar and

tnteractions of the incident proton wt th the target and the

simple. It turns out” (awntfoned 1n Ghapte __}:\..’)énthat xtpe,- oy

T- matrix QOes have a{ather nice structure howevéwandt‘ this o

A

- i 2 .
this section ,are given by equations 6.18, 6 20 and 6. 219 o

.

e ’» ‘D ugo-\!bctor vertices He derive all °ov,$’r “‘-;lts for the e

) pseudo~scafar vertex and \ﬂen show how ify them for
~_the ,pseud?,‘ye_ctor -_ver_ te_x . - ’ L Q) .
. . . -~ | . ‘ ] 5 . N J
6 1 The Pseudo Scalar Vertex O S A A
| 6 1.1 ThePlano Havo Born Approxtmatlon ;u N ) '
R In the PwaA modeI for. the (p,m+) reaction the .



. . .
! P [T
' ..'\.. 2% . ,’
3 - > qe N
. L >
N [ S N .
4 ' ¥ ,;:é.
P W
o ]
' $
- o ﬂ .
. . ' iy N
*- @ N =
N R
RV . y
, . 'f. -!
s - s .

2 e, N LR o
T Figﬁfg%G.Jthe ptlane wave' dpe nubleohgﬁbdel§k 4

E)

6.1 “
“ Bl f i x ¢"’< R
int e ) 8.2
’Thfs expression is given in M111er and’ Hgber s paper 4MI76)
The motions of the outgoing pion and that of the incident
'protpn are described by plane waves (uithv4 delta function
xnormalisation) g f:‘ : ;; - 3
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where K, and K ‘are’ the proton and pion 4- vectors The bound -

state wavefunction 1s as discussed in Chapter 3,

' &.,. . .‘ “t N ' s ‘
t.n.) . : o
. ,HB + ‘f’ y& ”l’yq : ‘. K ) i RN
. W (x) j— o, Ler 2%t T
L {r) :‘j m). - 5o
) 7‘ 3‘ '.‘ OB ! 'v‘ .~:. '..‘ .., oo M
wheFe ? ~; o 'm'F“'~ k

“.. o ".\ ' . . \4 -“.V | 2‘:
Sy s Sk, mlT MY, mm%,) Cel e
SRR SRR ons ; 6.6

. O ’ -
Q A

'.Wé-makefihe plane ane é§pahsions'
. . g &
. or “
. o - mz: Z(-d;,(er)y (1}7(11) w ER
L4 L ) * “ £50 me-L . s 6.7 a
- where j(ﬂ is a spherical Besse1 function (MESB) and
| ‘ 2'l‘lw w | 6.8 "
. Y If these formslﬁ?»the wave,fuhctjons are used in R
equation 6.15;xhe‘f9110wfng'e ression for the T-matrix
. resu1tsfk j:i : T ‘ .  , N-, | g ,;~\. *: -“ ) f‘
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T,. Mg (k',\l,) = 2 fum ¥, [Efnc. &{E{ t€E ‘L-)
(aw) J:lmc
" re "“"*“"”s” (a)c.m
“‘ L, - ER

o Mo .
,\ I - [

IEEXOYE ¢ :{r .

| i )1, " 6.10

5 L ai
: g,(r) ], (ar)ol&* & T
A . - . R 6.11 i

This result is the same as, that obtained by Millem and Weber_ 4
| ‘(MI76) (although the notation is diffe(rent) We can see from

these equations the structure as mentio%ed in Chapter 1

namely trﬁi%t the T- matrix depends on the lower donponent of .
':»the wavefunctions to First orderx i.e. ¢ .

. ‘ . ‘ '. . o , - \

: ‘ N T - ‘f 5? { ?"' . ~N- T 6.12

» — / . - ? )

where f and g are the upper and lower conponents of the

binqc "Spinagwin,,_‘:' .,ﬂt,ha subscr’jptq n ar@ 85 _gg_gg;; to the neutron
‘and proton. - T e et I |
c L '," If ‘the loaer conponent of the bound state anefunction .
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vy

, ’ '?'9’ - ,. L
is neglected, vge get! N e R
) Co ) ) j.\,-‘ -
J‘l“ {h kll) ~ 7 (“ (2') ‘;‘ .- 6.13
showing that the T-matrix depends on the product of the S ﬁ‘

bound state in momentum space and a spherical tharmonic. It

was this result (albeit the non- relativistic one) which ;e!d
~ to the hopes years ago (Cehapter 2) that the (p ‘l'l") reaction

would give us dlr'ectly the - high momentum co«ponents of the
‘ o ) .

. .‘ ' o X * ~ . R .
nuclear wavefunqéions L - ewi . .

ot S . - . bﬁ‘ x"v‘;u': L oL
e ° 2

P S

' - 6.1, 2 The Dis‘torted Wave Born'Approximation s '- ' <
| 't pr‘oton 5

i¢ we want to includegt :

: interac‘ting with the target nucleus befol‘%’nttting the' ‘pibn‘.'._-
and also . th&emitted pion int:eracting with the final nucleus .
before leaving the nucleus we get a situation as depicted in |
figu/e‘s 2. There are 3 inputs to the calculation depicted

by the three shaded areas in the figure, the proton. - .
distortion potentials, the pmn distortion potentiaals and

)

- the neutron binding potentials _
As in the PWBA we write down from the diagram,

. .
" . - . . . . "
-~ : - : R S _ oL
o - . S . A .

'Dxuo“ﬁ‘»“.-lf J“" . r1 "), ¢"molx LT A
Where we-riow write tﬁe 3 parts - “r @ ‘ A
Rt '¢ ' 1”“ .:‘_»l ,-1"4_ B ‘ v

- not, it tur,ns out J%uch a good approximation at thene
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It is straightforWard tojput,all_these,tdﬁethecije,need_to,
) e : oo

use the result

"F in;‘ ‘
j '3 (n) yi;({q‘ X.““) A

l't 1

) (T,‘ J‘-";Q' MQ“—;J_V’;)(MUL;O o‘_!,,‘”o){ 8 ' 3 l} -
' .;\'i ) ‘ - . | o o : L-' ’IL l:‘ ’
Lot Too Mottty ¢ ) oo 5 s o
L I O TP ‘ [ QLH"”:'Y Al 23,41) _ 6.19
i : : b ’ S

‘:-J

. &ﬁ .
where the curly brackets indicate“a w1gng; 69 symbo1 and the

.round bracketed expressions are Clebsh Gord&n coefficients

in the.Condon s

’ paraiiel to‘k " and choose K- to lie in the. x-y plane:

Whilst this is- not the most elegant choice of axis, it makesf )

ithe eﬁﬁressidns for the cross section and especially

- analysing power transparent He ultimately end ‘Op with the

1'.expression for the T-matrix element; . 'fl;»

S T R R T - -,. ‘k;” Y N
’ CoL RN T T e 8 IR 4

fﬁ?y phase convention Ue choose thelx axis
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6.20

Here we have introduced the two over;lap integrals

AT v * g , N
EER I R G Cuwf wr‘dr
. : - ) N
JL : «
I:L . i go(r) Fw{r)f lr)'r olr
The cross-section and an%ysing power are now given bx

.

Cdn 2k r}-;.:;- oo
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6 2 The Pseudo -Vector Ver'tex
Te get the T-Matrix for the pseudo -vector vertex (PVV)

from that of the pseudo scalar ver tex (PSV) we have to mpke

the replacement

® B X; b.1 ;'\r.
| am,c* |
. 6.‘~25;.'
where |
e PR/
}f T o
» | : 9
: - 6.26
THe T-matrix looks er : R
o S : S {%" "
'f z *CJ"V (x)X X 'W (x)sg %‘ (x)otx, R | 4-’3?‘:'
| ‘ 6.27 '

1f .we integrate by partﬁ we can turn the mf onto the -

we can use the Dirac Equation for the protcg, , ﬁ;
@

e L

w.'ﬁcX‘“ ‘Wlx)-' > ('mc + U (r) U (r))‘u' {7'-) |

>

vefunction to ge;m

B ’I H‘ ,,' .'.
where for the PSV y ‘ g Do
S

76

nuc leon spinors Instead of carr'ying out the differ‘entiation‘

| | 6.28° .
A ?d the H'ermitian conjudate of th1s equation for the neutroh,v’
[ ’a k L . o ; -

,,\ T . . f"g,rf‘w {x)x fl\(r)w 'lx) ¢”(x)olx ,6 29
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N O I
- y _ . 6.30

. and for the PVV = |
R (>) -

am, <t amc

ey %1
B K-

¥

Thus to include the PVV as an option in our cat_ml;

1, and 1g of equation 6.20 and 6.21 are sinpaymodified by

<the 1nclusion of»the potentialvtg

M

' 6.3 The Non’nhelat;vi\si:ic Hammonian o
. As promised in Chapter "2 we outline how to obtai::,ds
‘Hamiltonian for use in a Schrbdinger equation, wnich will

h'give the same results as the PS or PV vertex used in a Pirac -

‘ equation ﬁnrst we notice that equations 6 2g ‘6. 21 are
;_where the physics' is put 1nto the formalism . Our pion
vefuncti already satisfies a Schrbdinger equation. and

we need change its wavefunction, d*ﬁ we: haye to do 1sl;

w(formally),replace the f and g for the nucleons by their
"Schrbdinger equivnfEnt\fowms Ue eliminate f fh terms of y
using¢equation 4. 27 and\eliminate g similarly using 4 20

Thisz‘ill give us an expression of the form ,

.
< R
.
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where 0 is the non- relativistic operator we seek, and ( is a

‘funcé\on which depends on the angular momentum quantum
numbers 0 will contain the binding and distorting *
:'Hpotentials as well as their derivatives gnd_dertvgtjv
operators Due to. the complexity of the expre§§1on we do not
attempt a derivation here since we do nét negg the result

‘ln order to. derive the same. results as the relativistic

L
A

4.32 and 4.34 in the Schrddinger equations.

Q- e
vy
s

,formalism we must, of course,ause.pptentials of thqwform a gf i
. . I . ‘fs,, —

-,



. 7. ELASTIC SCATTERING FITS
The qeneration of the proton-diistorted wave functions .,
necessary ¥or tfe calculation of the (p,m*) anplitude of -
equetion 6.19 neceseiﬁlted the development of a conputer |
; program. bued ou;l the formalism of%bapter 4. The progrem. L
, cal“hdhw ie deu:’ibed in Append,iat 0. Es‘sentielly RUNT B ‘:.;.
variee tge potential paremegers to - it the celculated proton o
elest %@téatterim crosvsectioﬁ aﬁd anal?eing power ta ;he |
' date. 'Bhis is echieved through an automati-c search rou?ine .'
"ared minimishtiont’technique | A i K o g "__‘,‘;'

~lil? erquments presented in Chapter 3 we expect o

to ‘be able to ge a. fﬁlt only for 8 ir) zero isospin zero _, ;
nuclei Ve are priﬁrily interest in using our potegtiels o
'\

to get distorted waves for use in .[the (p ) repction and 50 =
E e concentreted on the two nuclei 12C and/"Ca For

eness we show aISO a fit to some recen___’Be andjl

" .‘ .,‘.. .

écattering data g

'N A ‘A
RN The«»»vector end scalar B?Stentials are’ pa ameteriéed aﬁ e
e N, /’ R o / _',/. e s
DI Ay C PRODRR
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7.2
which gives *12 pérameters to search on. In addition to these
nuclear potentials, a Coulomb potential due to a uniform
charge density of radius Rc is added to the vectop {erm.‘ln
general Rc is not searched on (since the fit is fairly
insensitive to it) and is_taken to be some number between
1.0 and 1.2, in accordance witH the known charge
distributisns.

The par;meters obtainea. which give fits to the elastic
scattering data, are shown in tables 7.1,7.2 and 7.3.

| There are two classés of potential: those that have

large imaginary parts of opposite sign (whfch we shall call
class A) and those which have small imaginary barts.lboth
absorptive (which we shall call class B). *

fhe search code RUNT has turned up many solutions for
the potential parameters. It turns out that, with a few
exceptibns, they éan be divided into the two above classes.

One consistent feature for all fits is the sign and

magnitude of the realuzifyntials. _
Class A type sol ons are of the type that has-.been
used by L.G. Arnold et al. (AR78), in their analysis of

P *+ *‘He scattering and recently on 4°Ca at 181 MeV. The

cla;s B solutions are new.



Table 7.1 The Optical Potential Strengths (MeV)

Nuc leus

Class A
‘He

%Be

12C
JOCa
40Ca
40Ca
40Ca
‘ACa
40Ca
Class B
120

12C
40Ca
COCa
40Ca
Aoca
IOCa

40Ca

¢

Energy

500 MeV

225 MeV.

185
155
160
181
200
4004 MeV

MeV
MeV
MeV
MeV
MeV

500 MeV

150 MeV
185
155 MeV
160 MeV
181 MeV
200 MeV
200

400

MeV
MeV

MeV

379,

Vv

274.4
140.0
241.4
285.2
315.9
312.9
17% 3
187.8
122.6

270.
289.
346.
388.
363.

260.

o W b O O OO O w

-138.
- -248.
111,
-129.
-157.
-117.
-119.
-331.
-228.

-11
-12.
-16.
-12.
-10
-16.
-14.
-22.

’

O W O o,

.85

74
55
75

.18

51

62

Vs

Q O O O =

.09

o

Ws

215.
271.
137.
136.
180.
128.
159.
472.
359.

-18.
-48,
.46
-55.
-52.
-28.

-41

040
0.0

O O 00 O O U W N

58

79
29

81



Table 7.2 The Optical Potential Radial Parameters’ ( fm)

Nucleus Energy

Class A
‘He
9Be
12¢
40Ca
40Ca
°Ca
40Ca
40Ca
40Ca
Class B
12C
12C
‘0Ca
40Ca
40Ca
40Ca
Aoca

lOCa

500
225
185
155
160
181
200
400
500

150
185
155
160
181
200
200

400

MeV

MeV
MeV
MeV
MeV
MeV
MeV
MeV
MeV

MeV
MeV
MeV
MeV
MeV
MeV
MeV
MeV

.8832
.8575
. 9688

.00
.0233
.056
.9362
.9266

. 9880
. 9827
.9885
.9870
.0255
.0083
.063

. 029

Rv

.0936
.8106
.0924
.0599
.0467
.0697
.018

L0441
.9848

.2587
.3043
. 1703
.241

.3176
. 2651
.2151 -
.2071

Rs

o o o O O

.8502
.889

.9492
.9985
.9969
.0107
.053

.0387
.9492

.9812
.9925
.9924
.9823
.0156
.0066
.0571
.001

Rs;~

1.0362
0.8713
1.032
1.042

1.0126

1.0477
0.8936
1.0244
0.9124

.5147
.4482
.7512
.7480
.7747
.8241

o O O O O o

82



Table 7.3 The Optical Potential Diffusenesses (fm)

Nucleus

Class A

4He

Energy

500

225
185
155
160
181
200
400
500

150
185
155
160
181
200
200
400

MeV
MeV
MeV
MeV
MeV
MeV
MeV
MeV
MeV

MeV
MeV

MeV
MeV

MeV
MeV
MeV
MeV

Av

o O O O O O o o o

o o (o] o o o o O

.2972
6541
4551
6181
6202
.6181
.5494
.7038
.8094

.5211
5779
.6764
.6757
.6721
L7121
.5857
.593%5

o o (o) o o .o (=) o o

Av

O O O o ©o o o o

. 3203
.6953
.5669
. 8266
.7570
.6708
.8009
.6189
.6754

.543
.4325
.7053
.6194
.5641
.5560
.6018
. 4875

As

©O O O O o o o o o

O O O O o © o o

.3149
.6782
.4978
.6641
.6500
.6470
.5963
.7078
.8593

.5523
6064
6977
.7004
.6988
7400
6109
6898

As

©O O O O © O ©o o o

o O O O o o

.3036
.6489
.5755
.8185
.749éf
.6462
.8783
.6184
.7303

. 3069
.4829
.5906
.6227
.5989
.5022
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Elastic scﬁttering data alone are not enougﬁ to choose
between thse_two classes- interestingly they both predict
similar reaq;jon,cross-sectiohs which are in rough agreement
with the data. _ |

In the non-relativistic.]imit, class A potentials give
rise to an imaginary spfn-orbit potential of about the same
magnitude as the phenomenological non-relativistic one. This
"non-relativistic strength was, however, derived by fitting
the elastic scattering data énd assuming a WOodé-Saxon shape
for the real potential. The real central potential obtained
from the reﬁatfv}stic_formalism has a repulsive core, so‘it
is not obvious to equaté imaginary spin-orbit potentials
under these conditions. ' |

The class A potentials give rise to a serious problem
with fnterpretation. Physically theyqtell us that the
coupling of the incident proton to the omega field removes .a
vast quantity of flux from the elastic channel, whereas the
coupling to the sigma field returns most of thfs flu* to the
elastic channel. There is no physical justification for this
rather bizarre state of affairs. It turns out that both
class A and class B potentials predict a repulsive core in
the real central potential, the evidence for which is now
accumulating.

Class B potenfia]s predict almost iero for the
imaginary part of the equivalent non-relativistic spin-O(bit
poteniial. However,kthey afford good fits to the elastic
scattering datas- indicating that the repulsive core in the
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real central pdtent{;l makes up for thé absence of the
imaginary spin-orbit potential. These potentials have the -
more reasoﬁable_property that they are both absorptive; =
indicating that both sigma and omega fields remove flux from
the elastic channel. This qbsorption~by both potentials is
more acceptable, from a physics point of view, than the
situation with the class A potentialsr One feature of the
class B potentials is that, whilst the geometries of the two
real potentials are roughly equal to the expected nuclear -
geometry;'the fmaginary vector potential extend§ something
1ike 20% beyond the nucleus and the 1maginéry scalag
potential tends to lie inside, 1ts radius being about:20%
less than that of the nucleus.

Below we show fits of both classes and diScuss them in

order of increasing target weight. - z;

7 1 4He

Figures 7.1 and 7. 2 show a class A fit at 500 MeV; the
data are from Moss et al. (MO80). The fit cannot be
described-és a good one, the éross-section deteriorates
rapidly, for larger angles and the analysing power is too
high at foreward angles The &Foss section failure at larger
.angles can perhaps be understood as due to exchange effects
(LE78), (AR80), (SHB1a). The analysing power failure is
probably a symptom of 4He being sO small conséquently the

coupling to the 1nelastic channels is not described well by
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a smooth imaginary pptential as ig bequiréd in the optical
- model. The non-relativistfc optical model has the same
difficulties. Arnold et al. (AR79) have found reasonably
good fits on 4He at higher energies.

7.2 *Be

. Figures 7.3 and 7.4 show a class A fit to the 225 MeV
profon,glastic.scattering data from Roy et al. (R081i. The
fit here\;;\émeLFaésingly good since we have not only
assumed a spin a;éiiiesgin zero nucleus in eliminating all

™~
but scalar and vector potent but also since the nucleus

is light, we expect to“expenjenéé”pro s as in the case of
*He. It turns out (ROB1) that this-fit is better than that
obtainablg from‘a"pn-relativistic model, evén when an
explicit coupled channel calculation is done on a prominent
exited state. |

Non-belativistiéaily the coupled channels approach {sm
necessary since there is one (collective) state which
Strohgly couples to'fhe ground state. The effect of this
state is to remove a lot of ffbx*from the elastic channel,
thereby exiting the nucleus, and then replace the flux as
tHe nuc leus de-éxites. This is 5;;11ar to the physics
associated with the class A potentials and was the reason we
earlier said they were uhrealistic for ordinary scattering.
It turns out that the class B fit to this data is of a

similar quality as the non-relativistic fits; indicating
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channel calculation. : ,'

,

7.3 11c « e
Figures 7.5 and 7.6 show the fits to the elastic
ecattering cross-section and analysing power data a}
200 Mevt The data are from Meyer et al. (ME81). It turns out
that if we take the potentials obtained from fitting the 181
MeV calcium data and just scale the radial parameters, we
can get a good fit to this data. The. figures show the result
of further refining the fits; the parameters in the tables

are therefore not'quite the same as their starting values.

7.4 4°Ca
%or cajcium we have analysed the data from the five
energies, !: MeV, 160 MeV, 181 MeV, 200 MeV and 400 MeV. We
show the fits ‘at. 160,181 and 400 MeV in figures 7.7 to 7.12

the data shown are from (RQ65), (NAB1) and (HUB1) .
As the figures show, the fits here are better than
| those on the lighter—nuclei *He and '2C. This is to,be

expected since calcium is a larger nucleu5° meaning tgetwthe

n JEREEES
-

inelastic channels present are better represented by _}/
imaginary potentials. As can be seen from the tables the
optical potential parameters move slowly with “increasing
energy, especially for the class B fits Whilst we do not

show them, it is quite possible to obtain reasonable fits to
. _ N ’ .
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thé data at 200 MeV and 400 MeV by arbitrarily setting Ws to
zero. While.théfe is no physical justj(ication fér this it
demonstrates how ambiguous the parameters are. It will take
a iot more than a‘few isolated élastié scattering
measurements to iimit the number of parameter sets. At

200 MeV is was not possible to get a good fit with the‘same
sort of parameters which worked so well at 155 MeV, 160 MeV
and: 181 MeV. The reason for this is that while all 3 of
these déta‘sets give much the same cross-section and
analysing poﬁers when plotted against momen tum transfer,_the
200 MeV set shows a 30X% normalisation difference in the

cross-section for angles less than 18°. The class B

parameter set given in the table was obtained by dropping

s from the search.

7.§§§96-Re1ativisic Equivalence o
~One nice feature of the model is that we know that the
non-re1étivistic optical pqtentiais are energy dependent;
this feature comes out explicitly in the relativistic model,
as can be seen in equations 4.32 and 4. 34 This energy
dependence is illustrated in figures 7.13 and 7.14, where
the potentials obtained from fitting the 181 MeV data are
extrapolated to other energies. The energies shown aré

80 MeV, 130 MeV, 180 MeV, 230 MeV and 280 MeV. With
~increasing energy th;\imaginary potential gets deeper and

the real potential goes from an attractive potential to a
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1

potential with a large repulsive core. The spin orbitI
potentials also have an energy dependence, but it is a much
smaller effect, as can be seen if one considers the large
energy- independent tequ in the denominator of eqﬁation
4.32.

It turns out that the 160 MeV parameters give good fits
at 181 MeV and 200 MeV; this illustrates that the energy
dependence 1s/approximately correct. » '

It is tempting to look for a set of potential
parameters which give goéd fits over a large energy range.r
However, from equation 4.34, we can see tﬁaf*the Volume
integrals of the real and jmaginary'potentials depend
linearly oﬁ energy. We Know from non-relativistic'analyses
(LE78) that this is not the case, and therefore expect some’

energy dependence in our relativistic parameters.

A
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.8. RESULTS OF THE. (P,PI) CALCULATIONS

From .the literatureI(Chapteb 2) on the noﬁ‘reiativist1c ONM
we see that the cqlculations exhibit great sensitivity to
the proton and pion distobtions and also to the bound state
wavefunction used (NO76).. We can, it seems, by doing
hsuitable'mischief on the bound state>potentfa1‘parameters
always get a fit to the'(p;n*) data. Thi#,‘however,‘does.not
mean fhat the model can be.called a success. To illustrate
l‘this point we demonstrate how even though we expect the
non-relativistic PWBA not to reproduce the data, we can
}always make it do so. | ‘

Considep the simple T-métrix for pionic stripping where

the neutron goes into an S-state

+ Mo e e J‘S
’ ‘ o 8.1
~ If we take the Hamiltonian to be é*Constanf (for the sake of

1

argument as unity) and ¢;fadd ¢_ as plane waves,

| 1, pe
Tpo, ° I"}'B“(r)e L= Fe) g Reke
8.2
then given a Tl;ﬂﬁ(q) we can ways find a &{q) to geherate
it. Because the range of g we want to fit is finite and the.
data has ffnlféﬁerror bars, once we have #(q) we can always -
find a ¢;“(r) which decays exponentially with the correct |

binding energy. If we define a:function ?(q) which agrees

N
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with T(g) only for those values of q probed by the (p,n*)

data, then we can find a ¢;%(r) given by

Mg [ 2 el 3 5
Y ;o = Wj‘e PRI | 5.3
We can then obtain a potential for the bound state. given by
(V’+-k )qp (r)
Us{r) = Q'mfyé.,{r) ' 8.4

So the plane wave ONM can élways explain the data if we
allow enough freedom in the binding potential.

Now we expect the bindiﬁg potential to resemble the
nuélear shape in some sense. If we cannot find a potential
“ which gives fits to the (p,n*) data at several energies and
looks 'reasonable’, then we must éondlude there is in the
(p,m*) reaction, some physics which the model is not
describing. In the non-ré]ativistié PWBA, the V(r) given by .
8.4 will be a‘strange shape and will not work at any ofher
energy, this failure tells us that the model is nbt‘
realistic. ' | |

The effective pion}nucleus potential is an example of a
‘potential shape which does not follow the nuclear density.
The effective potential is dgF1ved by start1ng from a
nuclear dens1ty, but then non-local and correlat1on effects
change its shape significantly.' In evaluating DWBA models
for thé (p,m*) reaction, the pertinent question to ask
| becomes the folloWing:

' Dahlgren et al. (DA73) give the effective potential
shapes. : : ,

-

&
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given that the proton and pion-distortions-are'described

correctly by the potentials given in Chapters 4, 5 and 7, is

it possible to find neutron binding potentials which look
like the nuclear density and g*ve reasonable fité to the

(p,m) croés;sectionvand analysing power at sevebal

energies? For the non-relativisti€ ONM (and DWBA) the answer

is clearly in the negative. It is the purpose of this
section to answer the same question for the relativistic ONM

(and DWBA) using both pseudoscalar (PS) and | ‘

pseudovector (PV) coupling for the’nNN'vertex.'

We chose‘initially for this purpose the nucleus 4°Ca as

‘Aa target for the f$l1owing reason;: _

1. The nucleus is heavy enough to render centre of~maés
ambiguities unimportant (see appehdix C).

2. The ground state in 4'Ca is very close to z one particie'
state (its‘speétroscopic factor is given by Seth et al.
(SE74) as 0.80).

3. Good data exist from threshold up to 200 MeV incident™
protoﬁ—enérgy (P179b). |

Sihce the an;lysing power has been measured on '2C at

200 MeV we e;amine this nucleus as well. Whilst we do not

expect treafing 13C as an inert '2C core and a 1p1/2 neutron

to be a“good approximation, our simple model has no way of
intrdducing configuration mixing. ) |

For all the figures in this section we shall denote the
pseudoscalar (PS) curves by dashed lines and the curves

calculated using pseudovector (PV) coupling as solid curves.
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wé start by showing in figure 8.1 thé results of a PWBA
calculation for the crbss;sectiOn'On 40Ca at 160 MeV; the
data are from Pile et al. (P179b). Here, the proton and pion
wavefunctions are taken as plane waves..and the vertex 1s“
taken to be of pseudoscalar or pseudovector type and the
bound state potential.geometry is taken to be the same as
that obtained in f1tt1ng the proton elastic scattering data.

We can see ‘immediately that the pure one nucleon .
(exchange) mechanism is not in accord with the data. Either
we must allow the proton to 1nteract with the target
nueieons before emit}jng the pion, and/or the pion must be
atlowed to re-scatter froh'otber nucleons.

Let us consider the first possibility, namely that the
_ proten interacts with -the targéi nucleus before emitting the
bion;gthis allows the protdn to be off shell when the pioq ’
. is emitted We represent an initial proton scattering by
means of the optical potent1al descrlbed in Chapter 4. This
. allows the!proton to undergo mu]tlple collisions involving
all A target nucleons, possibly entering into various
reactions and thereby removing flux from the elastic
channel Strictly speaking we have now a (A+1} nucleon
model. waever. since-A of them are not treated expllcltly
but used as a source of potential and an absorber of,energy
.. and momentum, we follow the conventiohs of the literature
" and retain the ONM Tabel. o |
The results of aliowing this inittaj SCatterjng,'whilst

'still using a plane wave for the pion wavefunction, are
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shown in figure 8.2. Comparing 8.1 and 8.2, we can see that
the curves, especially the PS one, have,moved>substagtially,~
It islinteresting to see that the PV and PS curves are close
together. and that at 0° they have approximately the correct.
normalisation. However. the cross-section now lacks the
structure seen in the data. \
Perhaps the feature missing from the model is that the

pion, a strongly interacting_p rticle, will elastically
scatter from the nucleons in'the“final nucleus This allows
now for the possibility that the pion_is created (at the nNN
vertex) off shell. The results of allowing the pion to
re- scatter. whilst not allowing any distortion of the
incoming proton, are shown in figure 8.37 The theoretical
curves are again‘V€F§)different from the PWBA curves, but
| still |not” iT agreement with the data Both curves are well

above the data, thus showing that the momentum sharing now
allowed by the pion rescattering by far outweighs the flux <
loss due to pion absorption.

| Since we have seen that both proton and pion

'distortions by themse lves are vely important it seems .
.logical to allow not only the incident proton to scatter
beFore emitting the pion but also to allow the pion to
rescatter before leaving the nucleus In the full DWBA
calculation where both pre and. post scattering effects are
included, none of the "legs” q# the vertex needs to be on
shell. We show the result of the DWBA calculation in figure

8.4.
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At present Wé mave not adjusted anylkarameters except
~to fit the elastic ;catterihg data and the binding energy;
and yet the.curve calculated from using Pt coupltng is in
°relat1vely good agreement with the data, hilst the curve
generated from PS coupling 1s not. It turns out to be
impossible to make the RS curve agree with the data, even if
we allow for small changes in the djstorting and_b1nd1ng‘\J
potentials. It would entail a rather long Sequence of graphs
to’demonStrate this here, and soiwe merely state thedgain
results which are as follows: " ~
1. Adjusting the bound state potentials appearsemerely to
1ift or depress the theoretical‘éurve; not change its
.shape. “ |

2. Using class A potentials'moves the minimum in to about
72° but drops the curve so that after 100° it is a
" factor of 7 lower than the data. ]

It seems then that a full ‘DWBA calculation involv1ng PV.
" coupling can explain the (p,w ) data. In figure 8.5 we show
‘the results of using class A potentials With PV coupling.
The fit is th as good as with pl?ss B‘potentialé but still
the general features of the:curve\are_there: in particular
- the minimum has moved_forward in anéle and(agrées exactly

‘with the data. ‘

At the beg1nn1ng of the. Chapter we made tke comment
that weproduction of the data at one energy is not a
sufficient qga11f1cat1on for the model to be called a

success. Ih{ffbyre 8.7 we show the Py and PS class B
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predictions feg 3 energies on 4°Ca, the 146 MeV data are
from Pile et al. (P179c) and the 185 MeV data are from
Dahlgren et a[. (DA74). At 146 MeV we have the problem that
no proton elastic scattehing data exist; we therefore use
the pa?ameteps obtained from fitting the 160 MeV data. It is
iﬁkerest}ng to see that the position of the mipimum is the .
same as at 160 Mevj:indicating, perhaps, that the proton
‘disgortion s vepy important’in determining the position of
the.mih%mum. | '

In allleases the‘shape of the data is well reproduced.
At 146 MeV the magnifude is rather low. This could be due to
the proton absorption called for"by fitting th-é"Tsp MeV data-
being too high for the 146 MeV data (as we have seen the
(p w*) cross-section is very sensitive to the proton |
d1stort1on) At 185 MeV the momentumctransfer_gt back angles
w”1g~ve % 1arge For example at 180° it is 3.7 fm-'. This |
means that the (p,n*) observables are go1ng to be very
sen51t1ve to the off. shell behaviour of the d1storting
potent1als There are several reasons for be11ev1ng the
Stricker potential does not extrapolate well off shell _
(DA73), therefore the deter1oration of the DWBA calculations
at the larger angleSHfdr the 185 MeV. and 160 MeV casee can,
perhaps, be attributed-to th1s extrapolation becoming
‘unphysical. It is poss1ble to perfqrm phase*shift equ1valent_
transformations on the potential and, whilst maintaining the:
same fit to the pion elastic scatterihg, signifieantly

change the (p,m*) results. Keister (KEB0) has shown this can

J
/.

1
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Figure 8.7 DWBA predictions for the 4°Ca(p,m*)*Ca
differential cross-sections using PV and PS vertices, class
B proton distortion potentials and bound state potential
geometry parameters r=1.0 fm and a=0.65 fm.
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lead to differences of around a factor of 2 in the
non-relativistic (p,m*) cross-sections. The effect of a .
phase-shift equivalent transformation of the kind that
Keister suggests (TH81) was 1nvestigated for calcium with
146 MeV incident protons. The effects were limited to the
- back angles where the cross-section was depressed by a
factor of 2 and the analysing power was made to go siightly
negative after 120° | )
, One general trend which is most striking is that the PV
coupling gives much better agreement with the data than PS
coupling. We can say with some confidencerthat the nwNN
vertex must involve derivative coupling. This agrees nicely
with the constraints imposed\on the vertex by PCAC (WOBO).
-Having concluded that the pion vertex is well-described
by PV coupling, is it possible to ascertain further}": |
information about the two classes of potentiais used in the
proton distortion? It turns out that the class'A potentials
give predictions below the experimental data at 146 MeV and
160 MeV. This is not grounds for expulsion however, since.
we real]y cannot say with any confidence that the
Woods-Saxon geometry of the bound state potential is well
determined by fitting the proton elastic scattering data 'It"
turns out that- if we shrink the diffuseness of the binding x
potential from 0.65 fm to 0.5 fm, then ‘this lifts the curves
up to the data. Figure 8.8 shows the result of doing Jjust
this for the 3 energies considered in figure 8.7. The PS

curves are now in violent disagreement with the data. At 146
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and‘160 MeV the PV agreement is quite good, even though at
146 we have used the ’ wrong’ proton d1stort1on obtained from
fitting the 160 MeV data. At 185 MeV the shr1nK1ng of the
diffuseness from 0.65 fm to 0.5 fm has now lifted the curve
above the data, destroy1ng what otherwise was an excellent
fit. Comparison of flgures 8. 7 and 8.8 g1ves us an insight
into how poorly determined the proton potential parameters
are. We can, within the constraints of fitting the elastic
scattering data, move the (p,w*) curves up and down and move
the minima in and out by as much as 10°. However, we still
cannot get the minima ca]culated-from PS eoup]ing to agree
with the data. | |
, It seems, from considering theucross-section results,
that we can learn two things:
1. There is an evident preference for the PV form of the -
nwNN vertex.
2. Class A and class B poteﬁtia]s for tHe proton distorted
wave give similar agreement with the (p,n*) data.
Wh\lst d1scuss1ng calcium, we show in figure 8.6 the result
of ignoring pion distortion at 146 MeV. Here, the centre of
: massienergy of the pion iszonlyv9.5 MeV. It is interesting
to see that only S-ane pions are produced (indicated by the
flat cross-sectipn); tHerefore an& structure at all in‘the
cross-sectioa (as well as any non-zero analysing bower)
comes trom the pions rescattering into P-waves which then

interfere with the S-waves (WOSS),
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We ‘have seen that, with the two above conjectures, ' we
can get fits to the cross-section data. Before concluding
that-we have solved the (p,n*) problem, we must consider the
ana]ysihg power. Since we find the cross-section agreement
in DWBA worsens as the momentum transfer increases, it is
1dg1cal to consider the foreward angle analysing power data.
Unfortunately no such data on calcium is ava1lable at
present. However, good data ex1st on '2C at 200 MeV (AU78)
as well as the corresponding proton elastic data (NA81). For
the (p,n*) calchlations we assume that 1'3C oonsists of a '2C
core with a 1p1/2 neutron (Qround state) or with a 2s1/2
neutron (3.09 MeV excited-state). |

The assumption that 13C consists of a '2C core and a
1pt/2 neutron may not be a good one. For the
non- relat1v1stic case it hasjgeen shown by M1ller (MI74)
that configuration m1x1ng effects can alter the differential
cboss section by around a'%actor of two. This means that we
>should not expeot to do better fhan a faotob of two‘in theo
relativistic'caICUIations We are, in any event, more
1nterested in the analys1ng power . As experiments‘have shown
that the analysing power is not sensitive toithe final state
(AU78),(P179b), we can expect that it might be less
sensftive:to configuration mixing. The vector and soalar
potentials for the bound. neutron are Woods Saxon wells whfch
. have radii and diffusenesses given by r=1.0 fm and a=0.4 fm.

Figures 8.9 and 8.10 show the predictions of the model for

1 PV coupling and class B distortion
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12C at 200 MeV, using class A and class B potentials and PV
‘with PS coupling. We see from figure 8.8 that in all cases
the shape of the differential cross-section is reproduced,

ough the two PS curves\tend_to be tob flat.‘We eapect.
the curve calculated using PV coupling and a class B protoﬁ
distortion to be the most realistic; thts curve comes within
a factor of 3 for anglee/larger than, 60" but it is otherwise
‘ a little low. For the analeing power (figure 8.10), allithe
curves follow the same trend, namely being neQative up to
around 90° and then positive up to 180°. The PS curves both
start off in the wrong direction but cor;ect themseﬁ@es by
40'. The PV class A curve only dtps as far as -0.3 at 50°
and then goes positive, whilst'the PV class B curve is in
.excellent_agreement with the data all the way up to g90°.

This gives ample evidence for the recipe of using PV
coup11ng and the class B potentials. Just to add-to the
ev1dence we show 1n figures 8.11 and 8.12 the cross- section'.
and analysing power predictions for the 160(p, w’)'70(g s.)
réaction at 185 MeV; the data are from (DA74). The proton
aﬁd neutronvpotentials are taken tovbe the same as for
calc1um at th1s energy, but scaled down in rad1us If\
instead of us1ng'the potential obtained by fitt1ng the
calcium data we employ those obtained from fitt1ng the
carbon data,- the curves move very little.

In figure 8.13 and 8.14 we show the cross-section and
analysind power predictions for’the reactton

_.‘2C(p;a*)*30(251/2. 3.09 MeV),’The analysing power is in .
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good agreement with the foreward angle data, and the shape
of the cross-section is excellent: the normalisation problem
in the cross- section remains somewhat of an anomaly,
possibly configuration mix1ng is very important for this
"state.

It is pleasing to see that the 3 analysing powers shown
here all have the same general shape, namely being negative °
in the foreward direction anq positive in the backward
direction. Whilst we have not shown the analysing power
prédictions from~1he calcium calculations, they too have the

same shape.



, 9. CONCLUSION
In this Chapter we summarize the information which we can
extract from the present study. The Chapter is diyided into
‘two sections: what we can learn about the proton-nucleus
interaction ahd what we can learn about the (p,m*) reaction.
Whilst there is much proton elastic scattering ‘and (p,m*)
data available, we have mainly restricted ourselves to

"analysing the proton elastic scattering data for which

(p,m*) data exist at the same (or a neighbduring) energy.

9.1 The Proton-Nucleus Interaction

We have found that the relativistic approach to
proton- nucleus elast1c scatter1ng appears to work quite well
for most nuclei. The only nucleus that causes problems is
‘He, possibly because the nucleus is so light. Generally the:
fits are at leaet as good as those generated non-
relativistically from a Schrddinger equation. '

We cen get good fits, eQen for nuclei With non-zero
spin and ﬁeh-zero isqspin} with just ‘using vector and scalar
potenfials; this indicates that the re[aiiviStic Hartree o
Fock'argumenfs about other Lofentz-iype potentials not ’
..contribUting signfficantly can_be applied to higher energies
as well asJin nuc lear Strﬁcturé. The fdeakof using vector
and scalar meSons to describe proton-nucleus elastic

scatt1ng is not new. Duerr (DU56) first derived the mode] by

us1ng arguments about the energy dependence of the effect1ve

123 | :
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non-relativistic optical potential. This work, as well as
the work of Arnold et ai.A(AR78). confirms Duerr’s
hypothesis. At higher energies flux absorption is very
important: &e appear to be able to account for it very well
by merély making the vector and scalar potentials complex.
The (eaction cross-sections'calcd]ated after fitting the
elastic data invariably come out in agreement with the
measured values where available. This indicates”that the
bulk of the proton nucleus interaction can be described in
terms of only cbmplex vector and 'scalar potentials. Notié;"
that for nuclei with ﬁon4zero spin and isospin (i.e. %Be) we
can fit the qata even though wé expect a contribution from
the pion field. This pion fiéld is mecessary to calculate
observables such as the depolarisation (just as ih the
non-rela}ivistfc case where the spin-spin term is v
necessary). However we expect its effect on the
cross-section and analysing power to be small since it is a
’1/A’-effect. | |

l One feature thaf“émergeslnatura]ly is that the
non-relativistic equivalent real cgntral potential has a
repulsive core at energies above 100 MeV and is eﬁergy
dependent. Tﬁese features are now fairly well established.

:' Both for class A and class B fits the effective
non-relativistic real central potential is predicted to be
energy dependent. The fact that the 160 MeV parameters are
- good at predicting the 181 MeV.and 200 MeV data is én'
,jndication that the energy-dependence.is probéblyvbf-the
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right magnitude; but we do not expect it to be exact.

Since the imaginaryvpotehtial arises from COQpling“tb
the open 1ne1astic channels rather than from some
fundamental interaction as in the case of the real
potential, it is perhaps unreasonable ts ask that its energy
dependence shoUld come out correctly. The analysis by
Nadasen et al (NAB1) shows that from 40 meV to 180 MeV the
‘imaginary potential is roughly constant. This is actually
the case for the small W (c%ass B) fits as shown in figure
7.14. The 1arge W fits (class A) predict a large energy

variation (AR80). However we must be cautious not to exclude

them for this reason, since at higher energ1es we ant1c1pate'

the 1maginary potential w1]1 vary more w1th increasing
energy. This has been shown in the study on “He by Leung and
»

Sherif (LE78).

I1f we must at some point choose between the two classes

of potent1als. then the small W class (c]ass B) appears most
f%allst1c for the fol1ow1ng reasons (in order of increasing
1mportance)
‘1. The physics of a little flux being absorbed by - both
' potent1als is more realistic than one swallowing far too
- much flux and the other putting most of it back.into the
lelastic channel. ' | |
2. The wavefunctions Calculétedafrom both classes of
potential. correctly predict the (p,m*) cross-sections,
but only class B d1stort1ons correctly predict the

'analysing,power data on '2C (at least for. the smaller
-~ ‘ '

/
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momentum transfers).
3. The energy dependence of the effective non-relativistic\
1maginary potential is more in 11ne with the ord1nary

non-relativistic analyses (NA81)

‘9.2 Pion Production

By examining the graphs in_Chabter 3 for the single
particle Wavefdnctions in momentum space, we can see that at
the momentum transfers encountered in the (p,m*) reaction
the lower components are just as large as the upper
components. Thus any non-relativistic theory which uses a
Fotdy Woulthousen reduction of the vertex (i.e. treating g
as sma]l)’is doomed to failure. -Indeed, to date there is no
non-relativistic calculation‘that gives both the energy andA
angular dependences of the cross- sect1ons, let alone having
simultaneously the correct analys1ng power . -

Provided we use a proton distorted wave generated from
a class B optical potential which affords a good fit to the
elastic‘data{ PV’ceupling for the aNN vertex, the Stricker
potential to d1stort the outgo1ng p1on and a bound state'
generated us1pg the strong oppos1tely signhed potentials,
then we can say the following: '
1. The observed cross-sections in the case of

40Ca(p,m*)*1Ca in the energy range 146-185 Mevbcan be

™ reproduced to a good approximation. The agreement ati

Aforward angles is quite good for energteé above 160~Mev:« A

2. The cross-sections for proton induced pion production on |

&
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BRE1Y leadlng to the ground state and the state at
3.09 MeV are qua11tat1ve1y reproduced In particular,
the backward peaking of the differential cross-section
of the excited state is correct ' »recicted by the
model, in contrast to the non-relativistic res. for
this state (PI79b).

3. For angles less than Qb' the analysing powers are well
reproduced. One feature whtch'is most promising is that
the analysing powers'to the groundland excitedA
(3.09 MeV) states 1n.'2C'are similar, in agreement with
the exper1menta1 data (AU78) This is a feature which

- has not been present in any theory SO far .

From comparing the pseudovector and pseudoscalar
couplings we can see 1mmed1ate1y that the PS coupling does
not agree w1th the data to the same extent that the PV
coup11ng does (generally the cross-section minima tend to be
too far out in angle and the ana]ys1ng power has the wrong
sign for small angles) This is str1k1ng evidence to add to
the requ1rements of PCAC to eliminate PS coup11ng as a
candidate for the ﬂNN vertex.

From figures 8 3 and 8.4 we can see that the (p,w*)
reaction is very. sen51t1ve to the pion d1stort1on The fact
fthat the Stricker potential can give such good agreement

with the data a1lows us to say that as long as we do not go

too far off shell then the Stricker potential descr1bes well

the p1on-nuc1eusv1nteractton up to 50 MeV.
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9.3 Future Development
In this thesis we héve developed a model for the (p,n*)

‘reaction in the frameworklof a relativistic DWBA formalism.b
This DWBA formalism is by no means limited,tc (p,n*), it can
also be applied to such reactions as (p,p’'),(p,¥),(p,d) and
(p.2p). ‘

‘ The second of these, (p,¥), is very attractive since it
shares the proton distortion and bound state wavefunctions
with (p,m*), but does not have any of\t. ‘mcartainties .
associated with the pion rescatter1ng nus (, .§., along
with the proton elast1c scatterlng data.»can be expected to
reduce amb1gu1ties in the proton distortion and the bound
state wavefunctions. |

The (p,d) and (p,2p) reactions can also probe the

higher momentum components of the nuclear wavefunct1ons.
thus they too can be expected to add informat1on to that
attainable from (p, Y). -

/ - One . 1nteresting app]1cat1on of the model is -to notice
that we have a good f1t to the proton e1astlc scatter1ng
’data on 8Be. This nucleus has ne1ther zero spin nor zero
isospin, which means we can expect it to have a ‘ B
significanfly large pion field, which will give rise to.a
pseudo-scalar potentiai.’Thisibotential can be calculated by
a simple fclding;modeliand should give rise to a definite
prediction for the depolerisation parameteh This parameter .
hes been measured (RO81): thus we have a good test of the

idea that the class A potent1als are realistic. and are
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-somehow causing the calculatiOns to behave in a manner which
resembles a coupled channel calculation
There are 2 competing mechanisms to the (p, w‘)

stripping mechanism as shown in figure 9.1.

p= =

,' .

Figure 9.1 Competi%g mechanisms for the (p,w*) reaction

These should be of the order of the (p,n-) reaction, which
the data show to have a cross-section about a factor of 10
Tower than,that of.the.(p,ﬂ*)ureaction. The reason for this -
is that the (p,n-) reaction goes'by_a;charge"exchange_and'so_
" we can expect it. to be less probable. The agreement with the
data on 4°Ca confirms that these effects are indeed small.

An added attraction to calculating the contributions from -
'the graphs . shown in figure 9‘1 ‘is that we can extract the *

,T-matrix for the (p o ) reaction
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Even in its present form, the (p, w‘) reaction can be
‘used as a probe of ‘the off-shell parts of the pion nucleus
potential. It would be interesting to see the effects of
treating the pion relativistically, i e. putting the |
Stricker potential into a Klein- Gordon equation instead of a
Schrbdinger equation. As Johnson and Ernst have indicated
- (J079), the wavefunct ions sovgeneratéd are quite difféfent
‘\in the nuclear interior; thus we may expéct to see.
significant d1fferences in the calculated (p nt)

+

observables
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APPENDIX A. NUMERICAL INTERGRATION

Here we discuss the numerical solution of equations of the

form

'H”(r) = ‘e’lr)y(")

A.1

This equation is of the type encountered in hot:only-tﬁe
proton and-pién‘distorted waves, but also in the bound staig
célculatiqn. We employ a modification of the Nobmerov me thod
(NO24) due to Raynal(ME66). B

The Noumerov method itself is a modification of a

Y method proposed by Cowell (CO10). The essence of the Cowell

method is as follows, - |

.+ Taylor’'s theorm gives us,

Ylreh) - 5 Wyt | ' 2
- L neo LY : o . ’,A.
o e
. (=hl Y )
Y (r-h) i%;-——j;?t?——— . A3
therefore '
’ (2n)
o . ., f hzuy )
ylrm  yie-h) = 2 L S

if we differentiate this equation, use equation A.1 and

subtract from equation A.4 after multiplying by h2/12 we get
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y(r+h)(|—'rlr+h)) + Yle-b)[1 - Tlr-h) = ylr)l2 + 1eT(r) + q(h )
' ' o . A.5

where we have defined
. ]
T(r) = _3:_-%lr) i s
_Frdm equation A.6 we see that if we Know y(0) and‘y(h) then
we can get y(2h). This makes the method self-starting since
we put y(0)=0, cHoose an'arbitrary small number for y(h} and
obtain the bverall nbrmalfsation later trom matching to the
- Coulomb wave-functions in the elastic scatterihg case, or by
the requirement of unit total probability for the bound
state. |
| One problem.that‘occurs %on the larger values of Lois
that the solution grows initially like rbt adg sb can
~overflow the machine after a few steps. We can'get\around
this by noticing that jf«oUh regular solutio;(js ngwing
like r* then . the irregular-solution will be shrinking fike
r-t. This means we can pick a sfarting point away from-the
origin, and the errors made in assﬁming y{nh)=0 go Fapgﬁly ‘
to zero. ; | \
HNoumérov suggested the*following'substitutioﬁ;'
wir) = yYir)(1 - T"f)) a3
The Cowell formulaibecomes '

%
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: 2 + 10T (r)
w(rs+h) + wir-h) = (l _ Tlr))w{‘r)

| A.8
This runs very quickly on a computer. roughly twice as fast .
-as the Cowell method. It does have a drawback however, that
is if we want y(r) as an array we have to divide each time
by (1.- T(r)) - generally if the potentials are complex so
vis T(r). this penalty exactly redresses the balance, and so
" Noumerov and Cowell methods take the same time. If, as in
the case of the search program RUNT where we are. only
‘1nterested in the phase shift the Noumerov method Keeps its
factor of 2 advantage in speed. '
A modification to speed things up fur ther (MEGS) in the
' Né%merov method is to notice that in evaluating ' i

»

2L + 10T(r)
L= Tr)

A.9
we have a complex divide. Since we are discérding terms of

order h® we may write this as
2+ 10T = (@arioTHI e T T
/I - T '

:)_{ 12T [147) + o (h°)

/ | . A.10

.

The modified Noumerov algoriﬁhm'becomes
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W(r+h) + wir=h) = (2 + 'ZT(T)(HT{-rJ)) wlr)

It turns out this formula'is actually more accurate than the
" Noumerov method, the‘sign of the terms o(h$) being discarded
are usually opposite to those discarded earlier. The
interested reader is referred to (ME66). |
One furthur note for the practioner Clearly we are

_going to use the modified Noumerov me thod in RUNT where we
}do not want to keep the wave- function Like most Physics
computer programs RUNT is written in FORTRAN. The. standard
h FORTRAN compi ler wil] hand]e an expressjon such as 12*T by '
'makjng a complex number 12 + 0i and performing the‘four
multiplies andhtwo adds required of a complex multtp1y.
Clearly an expression such as T/12 where 12 is first
complexified is horribly inefficient'! To get'around'these‘
difficultwes it TS best to handle real and 1maginary parts
separately and thereby avoid complex ar1thmat1c altogether

: At Rmax we extract the phaseﬁshift by comparing to a
Jinear combination‘of‘COUIOmb Wavefunctions. In the pion
case we match the functions at two'potnts._for the proton
case we use the function and its derivative.fwe can get the
derivative from the Noumerov method by'using_the foilowing'

formula

AT
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| y,‘m o W TEZT (4 b)) _ wir-h{i- 2Tfr-b))
o 2hll-_THfM) o 2‘hll-Tlf;h,) A.12
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APPENDIX-B.ATHEMRELATIVISTIC.COULOMB WAVEFUNCTIONS

vThe derivation and eQaluation of:these functions is a Tong
and tedious buisness. We divide thié section fnto 2 parts,
the der1vat1on of the functlonal form and then the
“evaluation of the funct1ons To avoid unnecessary
-mathemat1ca1 derivations we make numerous references to the

‘Handbook of Mathematical Functions (AB70).

B. 1 Deriving the analytic forms _
‘We start from the equations 4.20 and 4.21. We set
Vv(r) = Ze?/r and Vs(r) = 0. This gives us the two coup led

. differential equations

Ze - :-mc. )h(“') - (7‘1(1_) _ 'Kg‘{r)) = 0

Vhe T . ¢ T B.1
;Ze - E + MC)sc(r) + (’_(ﬂ + K'c[f)) ‘= 0 //
het / ¥e /. | - | g9
where we have used the def1n1tions,
' -" (r) . - i 9‘(")
#‘,(r) ) ;5‘3(7) = r

B.3

After many substitutions tb simplify the notafion and'

algebra’we‘get
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(_73_) ) I)U(x) - Vl(7t) + Bvlx) =o

2¢C
(2::1- |)V{x) ) Ulx) + Bulx) = o
. x - B.5
where the new quantities are given by
2, -t 4, | E*mc’ . B.6
+ ‘:'.‘. v <+ E+ =4 ___::_____ ‘B.
(-)‘ / R - he . -
Uy = R Vby = %0 8.7
em\ : J &
x = k'r ) od = 'Z-C‘ . o » B 8

4c
The potential is real and so two independent real solutions

to the equations can be found. Let us 1ntrodu¢e a complex

function and its complex conjugate by

F ()

V=) - iVix) B.10

F (>0

We can therefore eliminate U(x) and V(x) in favour of F and '

its complex conJugate This gives two snnultaneous equations
for F and its complex conJugate We can ehmmate F* in
Afavour of F by d1fferent1at1ng one equat1on and substituting
_into the other After much tedious but stra1ghtforward

: algebr\a Me can get

Ulx) + V() o B.9-
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Fliny + Ll - § 2002 L1 Talah Qpegeo
x , 2 : x* ¢
_ B. 11
If we compare this equation to equation 13ﬁ1:§5 in (AB?O) we
see that F can be written in terms of the Cdéfluent
HQpergeOmefic Function ‘M’ . We compare B.11 to the equation

13;1.35 and equate co-efficients. We can immediately

identify
J
hixy = 2i%
. B.12
and from equating co-efficients in the second term
{—I( ) . + 1-b-24 " }
), = 2= .. B.13

- and also if we équate powers of x°, x-' and x-2 in the third

term we have

(A - 2{iq = ¢ - (7(n + 7"5)
S B.14
. . B.v
and

~ ey . . 4 - :

| D (L’ l) = l;.( K - 7(0) 7‘-’) ;s . | B.15

equation B.15 gives us )

b ' | B. 16

where we have introduced
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g = JK-< . ﬁ"‘:*"’) -
| B.37

»

Now. using tﬁis in B.14 gives us

| . . ~ B.18
Now,\equation B.15 had IWO'possib1e solutions depending on
which sigh of the square root we take. Expressing f(x) in '
 terms of the variaolé s gives us -

-4%c

F e e s Ms-iaseiaix)

| B.20
-so going back to f and g we get
‘ ‘(f | "kf
( ;c ) . Elﬂ Re (k ) e M(s- ‘7,25*' 24,“1’)
5 7:“) \/E:,Im R . _ o
. . B.21
We obtain two'independent soiutions by putting
= +JK - <
S 'K 5.22

1IF“/e examine B.21 closely, we see the positive’é so[ution
~is regular at the origin. all other solutions in
part1cu1ar the one we. have,n!ie wrth s negative. are

irregular at the origin. We may write the most general
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solutioﬁ o

| ' | e o
(J, (,-)) (j?::) Re Xg(kf) e M (5-i, 2541, 24 kr)}

-3 ke .
o o ho (ke e Mz, 28 2ike) |

3¢ Je ,Im I | 'B. 23
[ ’ |

o

A moments thought will telljus we haven’t quite finished.

Consider the regular solution

[N

dir) - \/—E_:) Ref A (kf)’e..hrl"'(s"7a’—5*' 2”"')} : ' B.24
We have a constant XR which arose from the solution of the
comp lex d1fferential equation. In general therefore XR will
itself be a complex number It appears that we have 4 real

| arbitrary constants ar151ng in the general solution (2

,»~_regular, 2 1rregular) to the two real coupled first order

d1fferent1al equations. What.has happened is that in go1ng
from two first order equations to one secohd order equatjbn
we have differentjated. ‘This step has 1ntroduced the
poss1b1h1ty of new_solutions, and SO we must put back B. 24
and its 1rregular counterpart into the origonal first order
equations to check that it 1sf1ndeed a solution to the
or1gonal problem -

If we ‘assume Ao is complex and write it as

| X : “&.Q | . . . B.25

\

R

. . o . ‘VE, .
we can substitute back in and-get a constraint on ¢

v
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R T )
S+ iy | B.26

The derivation of this result}isuquite tedious, involving
the‘use of the Kummer Transforﬁationjas well as recurrence
‘ relatiens for the“Cbnfluent Hypérgeometric functions. |
Now in- equatlon ‘B.26 it appears that in general ¢ must
have an tmagtpary part. To see that th1s is not so we show

the magxtude of the r.h.s: te be unity

T dme '_‘,_v

K+ " p . S ﬁ&f.,&mc'
s+iy PRI =P At

u't'-- T
-PK + amc

P4 d(—-—-——-—E f‘)

Now the irregular solutlon is obtained from the regular one

]
H. -

B.27
@

by. the recipe s -+ ds and sO for the irregular solution we -

have immediately B

Ak e “;“ |
| He now have to decide on the value of N in equatlon
- ;a 25 ‘This of course depends on the normalisatton convention

we are uslng In the absence of the Coulomb 1nteraction we ‘

e - ) - . /g
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- ' ’ ) ' ' | '
choose a normalisation by requiring

shox | |

\E*mc

?L?m,)

Y (r.t) y £
(an)

o.Pc
Eame .29
We have seen that-we~getuap extra logarithmic phase in the -
arguement of the exponentiEJ‘for the Coulomd case, but this
does nqt;affeét the hormalisation%weséeek. : |

We can expand the exponentigf in B29 in partial‘waves

. and ifﬁa% use the Dirac equation to get théﬂlbwer component

. we have
A=4J
X4
n,

Yien « € 3 ym(L )

B.30

159_51321
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”~
-
* (e) S . Ngje-f M{2s+1) € :tos{ S‘R - ke - a'r:f‘(,,s..;,)
< Y -
N S :z”ra(ns.#.-'_y)l v ylndhr s 9,-5) ; 8.334

v

LAY
L

This gives us the normalisation for the regular solution

s
Noe ¥e - 28 " Jr(issein)
R R'  wme M li4zs) . B.34
and | _s,g;
| %e | Ir-seioM,
N: = R ﬁmci‘ P -2s) . 5

Equation B. 33 can be compared d1rect]y to 4 56 We see that
we can obtain.the Ooulomb Phase Shift by .

Zk = qcar'(|+5+¢7) e _2’_(-(—5“)‘»_ ¢Q

X B.36

After all th1s ‘algebra 1t is sad to report that one
problem rematns The solut1on to this problem is

strawghtforward 1n analyt1c terms, but it causes ragger

.“'\" /
At

,,ﬁiasant probrems in the numerical evalution of the

«l‘(?_

ey A

6hase sh1fts later on | ,
3 Consfder the asymptotic forms for the” f@o solutions we

P
,r.

o x "'J ’6)

Bss.

) iy L [Erme wS(hT-?’*Z‘*f”',"""*""’ B.37.

¥



151

w) l E'fmC k{‘ /”Zkr +qf9|"{|-54",)
Yo— L E et e
: !,/' . R L - v~‘ h l+ n?-a ) ¢t) . 8.38
“').‘ » " N N
"« we can wrwte U «
i} .cd . I § R ,\_%

v

*h‘”) __{___’ *E_ Eﬂnt— 5¢n.(hf- ns . )//,Zkr 4 nyl (‘fs.f‘))

c TTmC
" . ' %+ 3) . © B.39

If _E§/ 0 She so]ut1ons are 90" out of phase and -we
extract the phase Shlft as out11ned in Chapter 4 If S} is a
half odd 1nteger multiple of m; then the two solutnons we
have are 11nearly dependent and we will have to ook
a1sewhere for an irregular solution.

It turns out that | 4

; = ar(s+) + Jfam-‘( cot “%ﬁ"hﬁ7)

B.40
If we th1nK of the Coulomb 1nteractﬁo?'as be1nguweak then

» is small and we have .

|

;§1= n(s;*n.) +7/5 . . Bt

.as we have feared, E} is close to a half odd 1nteger,

-

mu1t1p1e of =,

In order to extr%ct the phase -shift we need a linear

@ comﬁi ation"ibf regular and trregular functions to get an L

“(irre lar) functioﬁ’wh1ch IS asymptot1ca1ly 90 in advance - s

of the regular solut1on in phase Such a solut1on ‘turns out -

|
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to be | y
(I) ) l , . (s“ (_q.) . R :" g«
. - . { - oA ".‘;‘ N
4 (ry = cc 'cn cosec G%C(r) | ,,@é
C_ B‘m..:‘
where | | |
A \ .
6 = -WS - a'('cn.'((ol' ”5?"“[)77} . ‘lﬂn

B.43
the (-1)K arises to ensure the solution is 90° in advance |
of rather then 90° behind the regular solution. |

Equation B.42 finally gives us the irregular solution. ~
R ..

The difficulty we ﬂzll encounter is that since » is small'L

and'theréfore the two solutions are almost linearly T

’.
dependent, the subtraction iﬁ B.42 can lose us up to 6
§igﬁ'ifi¢ant figures. |

This method is .the'same as that used by (ME72) and
(EL53) . It would be and ihté'besting'and ageful pr‘ojec‘t:”for
someong to come up with a nice way of calculating the 4 -

irregular solution which did not involve this‘i’}?tjb,tréction.

B.2 Numerical Evaluation of the Coulomb Wavefunctions
Here we evaluate thé functions with « |
5= o  B.44
and chose a Vliheé'rﬁc:'onbination,of’ them to obta{n ‘the |
irregular soliuti’on with the correct asymptotic phase. Since
" this subtracﬁt’i"cj;h«: jnyo!yés a large loss of pr‘eci'sion it is

-inbor'tagt. to evg]uaté the functions very accurately in the

ERi

N
Y‘

first place.

1)
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3

The numerical integration method of Elton and the power
series method of Mercer, it .seems to this author may not be
sufficient for this purpose and so .a more direct anmalytic

methéd is developed and employed. We have from equtiqn 3.42

&

'}r. (x) E;:“ M Re 3 "¢ cihe
| T ke e M(s iy 2541, 25ke)
Sc(', ‘::‘c N fm e K :; RS
: ; . ‘jﬁ;_ .
N

Sp
and the irregular solutidnﬁfrom s + -s.Let us cdncentrate

for now on justAthe-fegular solution.

_ | To evaluate Ns we need to evaluate a complex Gamma
function. Since this ;unctibn is not standard FJ%%RAN we

evaluate it by one of two means ‘lmf

1. If 7 <1 we use the recurfenée relation

["(54)) == s [(s)
B. 46

to reduce the problem to one with 0 < s < 1.We then use

‘the Mclauren series for the rec1proca1

) ;" ‘ ' . . :‘:4
, = E::cy,i @ oz 1, B, e5772,
NG e ’ TN
o . | ~ B.47.
o . - , '(see (AB70) 6.1.34)
If » > 1 or S > 20 we are better off using the
recurrence relation to get us to where |s + i», |'> 20

.the asymptot1c series for the logarithm of

, . TR N

- g
and using
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the gamma function

nfl2) ~ (2-th)ta2 - 2+ Y lazT

v

Y,
N Bzm,, o i ‘ - B.48
me-|
2m{zm-1) 2°77 (AB70,6.1.41)
. : . 7“' ,Fh‘ R .
where Br are the BernouTi¥ numbers.

msal

/

The evaluation of all the other parts is now
straightforward except the ‘M’ function. This function is

defined by a series which is uniformly con\}ergent on
I )

[0' oo )v ’ .
| . 2 ‘ '
Ma,b,2) = V¢ qz + afat) 2 + alatiaia) '25 + ..
. | b blbe) 207 b (beit lbea) 3
A
B.
. ,, 5.49
= Z .‘Q("!' z - . .
> I n:0 bln). ﬂ_’ . . 8-50

s comstant

.Ijil' ‘ - . —(" n," ! 'g(ll
Q"Yh‘ . " o" T b(!’

" | » B.5%
antl ;gdnce also Z is a pure imagih;iry number the series has
ide;,,{icqé?jf .'PhOPé"\f;-‘véﬁ, 6 the serfes for sxplix). 1t s o
K"“'{F};éf;;!?ﬂ%,this,_,s;p?%:ig U?_@i,?,fg for ‘,ca]‘c“]?tions’ ff, | x is

A

-larjiar than, say 20,s¢hcew§%se 8 fi'gurés.from

'}subtr;aétiph;s. 'Sincie% we_d'"ﬂj""‘f“;’i.:Ait‘i}:ervested'L in values of |Z| ~ .60
"‘*’-":‘.Eﬁis’:v-se;feé iz; 'co‘npietel'y useless. ' o

| | The large IYZI ‘can’howevéh“be turned to advantage if we
¥ try for an asymptotic series. From.the definition of the 'MW

,“/ ‘h.. u‘!
P Yy, UB
PO AR
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-

function in equation B.49 we can employ the techniques of

(L178) to get the vresult

iWee a0 R-I -n
Mla,b2) - e z Q, (1+a-b) (-32)
r"b‘_,_) n=0 - m . ] o
2 q,-.b S-1 v " an : '
+e 2z Z: ("'“)(.‘;("th) Z s B.52
» |
Cla) ™% ™ (see also (AB70) egn. 13.5.1)

For our large values of |Z| these series converge very
quickly as long as s is small. If s is of order unity the

series looks like
N |

) AL

nsO 2- > ’ : B.53

)

The terms répidly gét'shalter. buthfe series uitimately_
diverges. This is because the serié?“is asymptotic. The . 7.
saving grace of such a series is that the error invdlvéd"jn_
stopping thg series %fter a fihite number of terms is < fhe
‘size of the next term. For- small 1Z] tHe-accuracy obtainable
from the series is seriously limited; but,for-IZI > 10 we
can always gef 17 figures of qpcuracy, which is as much as
‘the computer we are using can handle anyway.

We'a:; interested in not pn]y s~ 1 but\also s ~ |Z|. 
In this latten{case thﬁ terms of the series look Tike (}ake

'1Z]=50)

BN
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R.
5 (s0), (50),
n=1 (50),' "2.’

' _'.' B.54
so that the ratio of terms is '
Toas (50+n) N

T ‘. 50n ‘ B 55

n

| thi~terms never get smaller!! The series only 1s useful then
if we have s << |Z]. The only way round this d1lemma of
calculattng the higher partlaﬂ waves is to use -2 recurrence
. relation to get us from small s to large s. Unfortunately
such a relat1on does not give us all the results we seek as
~in the non-relativistic case since the values of ’s{ we seek
aﬁé not separated by 1ntegers Suppose we are interested'in
evaluatlng the function for s=58. 7, then we must first
-evaluate the ser1es with s=.7 and s=1.7 and then recur up.
The next value of s might be 59.69 and SO we would,haye to
- start,over with s=.69 and s=1.69. 'Uslng some graph-theoretic
x

techniques and starting from the recurrence relatAQns g1ven -

- .in. (AB70) we can der1ve the requ1red relation

M(S“Z)?.S#l a) (5~ l‘(’)(s,',"}} Z
. ) ’l& P EX l) 2s
Ml | 5-1, 2 / .%L_"_’)_) =..M‘3-z-i))2s-$’é) »B~.V56
+ S I-4%, 2 ){ " G v

Thls relation 1s stable if s < kr but as in the spherical

Bessel functlons when we want to- calculate an s > Kr we must
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use a backward recurrence methqd for the regular solutibn.
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APPENDIX C. REDUCED MASS TRANSFORMATION

Here we give the formalism for calculating the reduced mass
for the case of'two relativistic projectiles. There are 3
common reciples for the reduced mass which one plugs into a

Dirac or Klein-Gordon equation, namely

NIk 3 m, m. C.1
m ¢+ M

" e o c.2

;s E,+ &, - .
E) E}

v“- s E. + él— . . - C-3

The.first énd third are the extreme non-relativistic and
extreme relativistic results The second is a hybrid. result
g1ven by (PI79a) where it is shown to give the correct

result in first order as compared with a field-theoretic
@ig?’

calculation ulf we write down'a two particle Dirac |
Ham1ltlon1an or a two particle Klein-Gordon Ham1lton1an:
then we cannot find a l1near transformation (as in the
'Schr6d1nger case) which separates.out‘the centre of mass
';motion; hence the need for a reclpe, '

| The method pfesented here_for.caiculating jl"starts.‘
from the premise that the reduced mass needed comes as a
result of recoll and so. should not depend on whether we have
Fermions or Bosons present Jjust on their masses and

' ~energies. We write the mass-energy relation as

-’ -
L]
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A c.4
.
T =
7 ERES]
me®

c.5

where T is the kinetic energy. The two particle H§T1lton1an

then is
L N ’ L. . .
"” T (1} v 1s
' T. . .

We make the approximation of replac1ng the kvnetic energy
operators by their free e1genva1ues Th1s is a reasonable ,
approximation providing that the ehergy exchange in the
centre of mass is smatll (identically zero for elastic
scattering) and ‘ o A .
o\, (- _) KT me, me” | 7
We definine effective massas by

T, ¥ o n 1:.
)' , ™ ”"(' ‘)

¥
m = m{|+

2a,c* c.8
The Hami 1tonian now looks Just l1ke a two particle
‘Schrbdinger Hami 1tonian and%so we write '
r=5-f o C.9 .

then - f : , . &

C'B



t - 11
H - mu*’”t*"*e"';"* £n + Vi (1)
2p 2m*
\ﬁ.
where - . 5 o
V“* = m: mz
¥+ ¥
m + m
¥ * ¥
M = m® g m,

Th§§ then has the centre of mass and relative motion

separated. We want the_relétive piece to look'likg: .

| o .
H - '/ﬁf}f?+\f.¢(f) - 'P.; 0 Vyle) e p

€ '1/“
SO as before;'
e o J“* . Ju(| 2.
& : S ‘ Lo RN
where ‘f_. .A  tﬂ ; .
; “n S
- -rcm * 'l + '7.,

160 .

C.15

C.16

Thus we Céh‘bet,jL fromm,,m, , T, and T, . As input to the

calculétiqh we have 4. and A . We can calculated the .

reduced centre of mass energyffrom the mass-energy re]atiéh

* [ O . &
E I"P'_C +/(C

r .

C.17



161
APPENDIX D. THE PROGRAM RUNT

‘In this Appendix we outline the structure of the search
progreﬁ RUNT. RUNT is based on the formalism of Chapter 4.
- In essence RUNT reads’ in two ;ets of elastic scatterlng,dgta_
(cross-section and analysing power) for a gi?en\nucleUS end
y energy; then varies the potential parameters SO es to obtain
a fit to the data by a x 2 mln1m1satien technique. |
| RUNT is written in double preclslon. Its speed is such
that a typical search starting~frdm guessed parameters takes
around 2-5 m1nutes on the University of Alberta’s Amdahl-V8
compute " '

We{descrwbe the program one subroutine at a time

4
J ’
S *h

\\. D.1 Maln Line
This reads in the 1n1tial parameters calls subroutine’
“USEFUL and then subroutine SEEK
- The 1nput cards are ordered as follows:

1;‘ RMAX, NSTEP (F10 4, 13) 4 A
Jb\‘— The matching radius (fm) and the number of 1nt39"atl°"

. u

ed:

steps. ,
2. ANGHIN,ANGMAX,NANG (2£10.4,i3) / |
~ ANGHIN/MAX are the smallest and largest angle§~35 which
a curve is required from a given set of potential |
'parameters NANG is ‘the number of evenly spaced~anqles
«  at which the elastlc observables are calculated

3. TPROT (F10. 4)
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The laboratory Kinetic energy of the incident proton ,
f(MeV) ; -

4. LMAX (I3)

- The number of partial waves to be used. |
5.  W,RV1,AV1 (3F13.7) » |
] The strenqthf(MeV); ragius (fm) and diffuseness (fm) of
' the real Yector potential (see C?apter 7). The radius ‘
is multiplied by At/3 where A is the number of nucleons
“in the target nucleus. '

© 6. WV,RV2,AV2 (3F13.7)

‘Same as card 5 but for the: imaginary vector potential
7.  VS,RSt, ASl {3F13.7) | |

Same as card 5 but for the real scalar potential
® LY ~— . .

8. WS,RS2, AS2 (3F13.7) o
‘Same'as card 5 but for ‘the imaginary scalar potential

H

9. _zp ZT,RCOUL (3F12.6)

The charge on the incident and target nuclei’ in units
~of the electron charge (which is taken as. negativel
~and the radius of the uniform charge distribution |
" (units of fm) .

- 10. WP, NT (2E12. 6) The atomic weights of: the projectile and

fi

target nuclei in units of a.m. u

D.2 Subroutine USEFUL

/-

P

{

- This subroutine does the odd calculations neeqfd by the

other subroutines

- L3 {* .
* B . ) gy <4 3 "
v

. D20 L '
) - . ‘}&

It scales un the pOtential radii acmrdi%,»to ‘the. "' -
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formula

[
W\

o K
~ - . K. S
LA : R 2

The subroutine then calculates all the kinematic quantities,\_}&_

relatiVistically Finally the subroutine caléﬁlates

> T
quantities to do with the Coulomb interactionﬁdhd per forms é ’
few tests on the input data to ensure the program is going “

to give sensible results. f o - : Co L,

. N
o K )

" D.3 Subroutine SEEK . .

“starts. - I . o B '\,f'i

\
RO

[

As its name suggests, this is the subroutine

“responsible for carryfng out the search

Aéter the experimental data are fed in; the main Toop .

1. The program reads (from unit 5) a sequence of 13

letters, either T'F or Fis. Each TorF refe#s .to the ,

L
variables to be searched on in ‘the order

VV RV1 AV1 WV RV2 AV2 VS 'RST AS1 WS RS2 AS2 RCOUL

- ~
(

AT SIgnifies the variable in question is to be
w:;searched on, whélst an F signifies that it is to retain_ -

its present value throughout the search

. ) . - T - N |
;o U : RN
. - R Lo

L3

The next card has on it one of 3 words '5. _ .
apUTD Subroutine CURFIT is called uhich varies the

i
. s ‘ . N Tl | T
- N i I B L )
"_ . P PR ) - v . ! e N . . .
: ~ i i »
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' due to Marquadt (BEBQ) X\&;j
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'parameters requested until the X 2 is reduced. The

o vapiables are updated with their new values which. -

are then printed along with the x 2.
b. - BOOB The program backs up a step and ﬁ%new set ofj
“ T's and F's can be read in. ' ‘
‘c. HAND The program now requests input from unit 5
The vaiues of the parameters which are to be -
'»searched on are given in one iine and the program

) calculates the X2 and prints 1t out '

. 4

D. 4 8ubroutine CURFIT ji. »”f,flfﬁh o %~‘. . ﬂft .o

This subroutine automatically varies the poteﬁ

’ parameters to iower the ;fz between the experimental dafa

hd

and°the fitted curve The\search is based on an algprithm

4o o
b

Curfit calls subrouapne DERLY which qalcuiates the o

: partial derivatives of ' the X 2 With respect the the

potential parameters Both CURFIT‘and DERIV need to call

‘subroutine FUNCTN which calcu]ates the cross- section and

ana1y51ng powers from a given set of potential parameters

\
9

D. !bsuoroutine FUNCTN Vo o o “

This subroutine takes a given set of potential

I

parameters and returns values fdr the differentiai

&

- cross section and analysing poﬂbr at ‘the: same angles as the

experimental data $0, that subroutine CHISQ can calcutated

the xz,

e IR 8 ’ . g N

¢
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& |
‘?UNCTN firsacalls subroutine DW which returns the™

phase shifts wa» partifl wave, and then usés the method

qf Yennie. et E54) to calculate the two’ scattering

an'thudes from which the observables are calculated =t

desired‘] uﬁ%’*eactjon cross-section is also.calculated.

o e ot

) . \y"‘_"l . N RN L ’ Wt
D.6 $ubgout1ne ow -/ o ’\ \"' f*’:

¢ 4 ,’ hk{a A

v This sub’l"outine takes 'its name frqm

vy

’ m-: i

X

ﬁﬂe disfbnte? wave -

r‘* =

g,
which, in the DWBA program, it calc?{lates s.?m»:e are

ﬂnterested only in the phase shift,, the meqtf'iqu merov
. Q 6 &

'y . method tAppendix A) is Used. Since approxmate]y m of the
‘Qa

CPU t1me is used in doing the numerica1 mtegratmn, th1s .
. oy | .

&p1ece of the code 1s ‘written as op 640
W 0 'x,véfo

e s | &, The f‘“‘St’ ca}#to DW sets Q:lb

funct'ions Ker(r) and d’ (r‘)ld(r) ‘wh1ch are mtroduced 1n

‘: Chhpter 4 Subsequent calls skip this - calculatioh) .
. The vaIues of the 1ntegrated wavefunction and its
' der1vative are calculated at RMAX. “and then passed to
subroutine MATCH which returns the ph%sprshift .
For the special case of_L=1, the 1ntegration 1s started
‘by a power ser1es method since the term in- the Cowell method

@

y(r)T(r) is non= vamshing at the origin
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D 7 Subroutine MATCH

On first entryathis subroutine calls subroutine%ELKOU
which returns the regular and irregular Dirac Coulomb wave-
functions and their da‘ivgtives at RMAX. If the Coulomb

-'interaction is‘turned off then. th‘é subroutine calls

'u.»

subroutine BESSEL to do the cai,eu’iation o ,
oy :
uﬁUsipg these regular and : ; Og'vefunctions. the
.l R aaaiie o

phase shift {s calculated " R ' e @’,‘1
. g « . .‘rg\ ". ) .l . . B ~ . - . . ' ) :.l
g g ‘ ‘f% w . L - . - v?J‘V
D. asﬁwouiine RELKOU o e By

e

This subr‘butme calculates the Dirac Cpu,lonb wave-
funé‘ﬁi’ons accor‘t‘iirﬂ to the algorithm described in Appendix Jc

4 .
B The subroutine istaself contained except for calls to. "lw

&
) subroutine CGAMMA which ca]culawf values of the conplex
" ganma funcan (aisd by the method utiines in Appendix B).-
AT ™, AR -
T e o -
. % w

D 9 SUerUtine BESSEL
This subroutine sinpii/ cailes SBESS and SNEUM which
- calculate the spherical Bessei functions and spherical

Neumann functions by recurrence re'iations

|D.10 Subroutfne CURVES | i
S This subroutine is. cailed from SEEK if no variabies are -
.to be searched on. i e. if thirteen F’s in a’ row are given

" 4The subroutine calls FUNCTN and returns #MNé values for

“




N

agr td between ANGMIN and

the elastic observables on a reguig
' | SR

ANGMAX .

D.11 Subroutine MATINV |
As tHe namé suggests, this subroutine inverts avquare

matrix..ThiS suprbutine is called from CURFIT and‘is

described in (BE6S). o - . S

i
- ot
-

& 5"
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APPENDIX E. THE PROGRAM SAPPHIRE ~ | J

.~

In this Appendix we outline the structure of the DWBA

program Sapphlr‘e \
Thts program calculatBs the T-Matrix elements using the\

formauv of Chapter 6, which itseh‘S calls on the results of

... Chapters 3, 4and 5. "Wg‘ ! o

%- © Sapphire has many options which means it is a’ large

- program,-not just ih the number of ~computer ‘cards needed to -

w.tpre it but also Sapphlr'e oc&gpies 248 pages of virtual

T

ry ,.\."' "o . .
Sanphfre. is- writ“En in%ub?e precision a’ typical rurb'r"\'
takes 6- 10 seconds of CPU time Sﬁbph!nb can handle up%to 7

;partial waves, however in practice it is limited by its

-

ability to handle only 800’1ntegration steps» This means

that without extending the*arr(a.y) sizes, Sapphlr‘e can pe‘rfor

o £~

around 300 MeV L J

Below we describe tﬁe program one subroutine a‘t a ti
- . . A . ’_ ‘ r
" E.1 MainLine * 7/ =~ -

o This subroutine is responsible for reading in (and
; writing out’) the main cpntrols}and input data The main line

,
4

‘then calls the necessary subroutines which perform the 4
: 'various tasks as required The input cards are ordered as|

fo]lows o o '»ff,’ IR ﬁﬁ L ) J'

., NeLOT, owBA ELAST,PLOT, LFASE; ELPI KARENS FT vrvpé |

e B
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(13,8L1) | , i
JWhere. o ﬁé ' :
a. IF NPLOT=1, then the differential.cross-sectioqﬁ§§

)

and analysing power are written on unit 7 in a
format suitable for reading by any sta;dﬁrd e

| plotting program FEA w; o
b. If DWBA=T, the DWBA calculation i§ done. ' e

W

&? . d - ;‘f":;
c. klf ELﬂﬁJ T, then the, proton elastic scattering T

U
observables are calculated

¥

d. If PLOT=T fhen many intermediate curves are

3

f.a. graphics terminal This is -
. especially useful for d g _pg.,'f
Le. If LFASE= T then the proton aﬁd pion phase shifts _'
are printed out. _ o
ff' If ELPI T, then the pion elastic scattering
| differential cross- section is calculated k2
g. . If KARENS T _then the Stricker potential is used

for the pion distortion: if KARENS=F, then the .(~

. \potential deSired is controlled by the parameterS'
on card 17. LT f
S If FT=T then the Fourier;{ransform of the bound )
h; .;:.' state wavefunctions is. calculated : S f;%.,.
RS TS “VTYPE=T; then tHe gg;uddvector vertex is used’
| _in the DWBA calculation: if/VIYPE=F.then the
B péeudpscalar veFtex 1s used ' f:,' v
2. . RMAX, ﬁ%rsp (F1b 4,13) - .

The cut off fdr the radial integrals and the number of
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‘integratiogsteps
ANGMIN ANGMAX NANG (2F10.4, 13)
. ANGMIN/MAX qre the smallest and largest angles at which

w

a curve is requirqd QANG 1s»the number of evenly

“wvspaced angles at Which the observables are calculated
WROT (F10.4) ™ 0 v
ihe laboratory Kinetic energy of the incident proton :

., . ) . RS
( Mev ) . v ;PAQA. & '*‘:’ . ) T A‘ . :x;' . | [ s,J«“
e o 4:.["' V“» R . ) . . . ‘. . A

EMAX (13) B L R R RO U
: The numbﬂ% of pan p&ltial waves used in the

calculation of the pion differential crossvsection and

\_

aISO the“bWBA calculatdon LMAX+LBOUND partial waves

“are used in the-calculation of the proton elastic

scattering observables : T
‘ ’ RN . 4".,.‘ .
IEOUND NODES PARB (213 F11. 4) Y - ./}J .

a. IBOUND determines the type of potential used 1n
calculating the boung state wavefunctions In all

cases the requirement that the state should have

P

the correct binding energy is used
il‘IBOUND 1, VVEC/VSCA PARB is used as a )

e s . - T
& . - :

) constraint . -LP\
"2) IBOUND 2 VVEC ‘and VSCA are vanﬁéd independently

-

h to fit the binding ehergy and spin orbit splitting &

. of the state
-3) mouuo 3 VSCA is set to zero
4y IBDUND 4 VVEC is. set to zero,

-

"lrbbuf»*NODES determines the number of nodes ‘needed in the

-



10.

11.

12.

. ‘ . . 1
* “‘. . . .
“upper component of the bound state, the nodes at

zero and infinity are not counted. )
c. PARB is the ratio of VVEC to%CA used if IBOUND=1
is given. A typical value would be -0.81.
VVEC RVEC AVEC (3F17 . 8) ;"' \ -
The strength (MeV) rﬁdins (fm) (to be multiplied by
A1/3, where A is the nuclecn humber of the target

nucleus) and diffusenessv(fm) for the vector potential

used in calculating the'ﬁbund'state.

VSCA, RSCA, ASCA.(%sz‘B) : ' e e
,rscalar'pCtential. e

EBIND,ESPLIT (2F1.f‘")_, .

Same as 7, but *

*.The bindlng energy and spin orbit splitting (1f Known)

'~

-of the bound state in MeV
* FUBOND, LBOUND {F10.4, 13)

The .d' and ’ L’ quantum numbers for the bound state
RMATCH,ERB (2F16.10) ;ﬁA-f’gﬁém '

»

‘RMATCH is the radius af,whichmthe outward integrated
. wavegﬁgction meets the inward integrated quefunction. S

~and the derivative mis match calculated. (Typical value

I

4 fm)t .
ERB is “the maximum allowed derivative mis- match at

RMATCH A typical value would ‘be 10 5.

il ,"-

* .QMAX, No (F10.4,13) -*1 . -._;_;d_

» "Should the bound state in momentum’space be required

";then it is calculated 1n NQMeven19~spaced steps from

. -
ze%o to QMIX fm 1 T e



13.

14.
15.
S 18,

S,

18,

18,

»
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| VV,RV1,AVI (3F13.8)

The strength (MeV), radius (fm) (which will later be

" multiplied by A173 and dqfﬁ\seness (fm) for the real

vector potential used in calculating the proton o
distortediwave . ‘ : 3;@
wv RV1,AVi (3F13 8) C . : "

Same as above but for the imaginary vector potential
VS RS1,AST (3F13 8)
Same as above but foé the real scalar potential

WS, R52 AS2 (3F13.8)

'

1Same as above but for the imaginary scdlar potential

21 ZF,RCOUL (3F17.8) R -

| a. Z1/ZF are the 1nitial and final channel charges

_(i.e. the product of incident ‘and target charges
and the product of the charges on the pion and .
“final nucleus) ' B
b. RCOUL is the radius(fm) of the uniform char;e
distribution used in calculating the proton
distorted wave (which will be multidlied by Av ’)
WP WT WF (3F17. 8) ) o

The’ atomic masses (a m.u. ) of. the projectile, target

 and final nucfEi (Must be as accurate as poséible)

A1,A2, A3 A4 (8F15 6)

& TF KARENS=T then the A3 and A4 are not used, and .

S

A1 and A2 become: the 4 varfabie !
‘,:in the Stricker potential as. o
Ast79). TR

Y

Ainary pﬁeces

‘table\lll of '
-



et :%‘

B

R A

5

¥

-~ 20.

-~ w3
S

L als
B I

f

K

b.
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1f KARENS=F then.the pion distortion potential is

of the form 3
hmw=nwnfmymﬂ
‘ E.1
Where p(r) is the density normalised to the number
4
' of nucleons. T _
GEON1 GEON2 GEOC, NPROT NNEUT IPOT (3F15 6 314) -
a. IPOT determines the potential geometry used..
1) If IPOT=1 then Woods Saxon geometry'xs used
" [P
Lpn TocEanl E.2
, ‘ LGEONT -
. ¥ ',‘ 'iﬂ?:‘w

¢ GEOC 4

/’V[Y') = : E"3_ :
f | o . r >.geoC
. - |
'2) If 1POT=2 then mddﬁfied'Gaussian geometry is
used _ ' S
S ' - (¢EON2) -
/){r)g : {| lf‘C’EONi{QE‘Q”‘i })e o E o
L w iﬁi l A o SR N

¢ o '
NPROT and NNEUT are the number of protons and

b.
/7 neutrons 1n the flnal nucleus .
21, PHITT (F12',4) e

'. . ‘ .
This 13 actually read/1n from subroutine PIDU It.i

&



..... - = & : i :
ﬁﬁy S ‘ S -
s . _ . .

" E. 2'Subroutine USEFUL ,

174

/

. best set to zero since it represents an experimental
phase-shift equivalent potential transformation i

Specifically, for the l 1 Ppartigl wave.

L PHITY [ LM}

'y ('r) ~ «J(r)e '?1"’ S e

. C- .
. . w

v o : B,
A . ) 3

v

This performs -1ittle calculationanﬂﬁﬁch ‘are needed by -
the other subroutines. These include _f te tial radius’
.gealing, kinematics Coulo*f‘parameters@%’ ' QW tq‘fon the © . e
input data SRR "ﬂi‘tﬂ Qrs;tiqkfﬁiagt: '—@t
E. 3subr-oﬁt1ne a8 N I "YU i,%

This subroutine calculates the radial iQ,tegr\als given fg'
in equations 6 21 and 6 22 This subroutqke first calls one '
of four possible boura state subrouti.nes depending on the .
valﬁe of IBOUND. S A 'Aigaf ;?-»'; . ‘U : |
tAIB next calls ow which returns a proton distorted e ‘<Iu§
wagé\\then PIDU which returns a gjon distorted wave. Having ~

%~‘ ‘all the ingrediant%. the quadrature is doﬁe using the & f,_f;{f[1ﬂ;”
trapi201dal rule‘ L lff ‘;‘ B -']:#f i‘}";v.sgjw;ifq{:;fv{fg#?
E.4 Stbroutine Tourek S I \
rsz/ This subroutine calculates the T matrix Touter s arts ;
the 3ums over the quantum humbers 1.3'{”, and then calls “1f ;

‘ f» ;g;. ?7‘ 'f
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subrout ine TINNER to do the sum over the remaining quantum
~f///'numbers Lo I S
- E.B Subroutine TINNER ‘ ) e a
‘ This subroutine is called by TOUTER, it calculates the a
T matrix for a given set of quantum numbers |
To do this TINNER evaluates the spherical harmonics ’

iwith 9-n/2 and $=0, then calls subrou~ s to*galculate the ;;f,:ﬂ
IWigner ‘34, and 6y symbols and uses thewr and 1, calculated ;“; '

‘ ' ) l‘ N toe ’ J. . ' . -l ’ .
) in subroutine IAIB. -f e A 3'f“;, | ,t} | ’f,
‘ e ’ I e e ' "
e &7 , o
E 6 Subroutine BONDV/BONDS I ‘ 2@, o ) b

A Theseisubroutines call subroutine INTGER which returns
. a value of the derivative mis match at RMA;CH They adjustf
| .VVEC/VSCA (whilst setting the other to zero) so as to make * o
" the derivative dis match less than ERB Newton s method is S "

Cused. T . LT e e elnel
S o e S
!
- ‘ . " ST 2 - oo N : -
CE.7 5ubroutine BONDi ¢ : | o .
This subroutine calls subraﬁtine INTGER which'gsturns a .;;'

~ - value of the derivative mis-match at RMATCH It adju%ts VVEC ';~:f

‘”;{~and VSCA subject to the constraint VVEC/VSCA-PARB :hfﬁ5-' :
N v . . \ S
oA .
¥ ;




E.8 swroutim aouoz @ . ,
| This subroutine varies VVEC and VSCA 1ndependently to_

fit both the binding energy and spin-orbit splitting ‘of the.

bound“state It does this by calling sqbroutine INTGER for"

L not only thﬁ bound stgte required but a)so for the' ' . -_;‘m,f

. spin-orﬁtt split state.qthereby obtaining derivative 2 f i." ;,.:;v
}r~mis-ma§2hhs for both stqtas. VV@C and VSCA are then varied

& so as, to make botq of these mis~mmtches less than ERB using
@"‘ fhe two d‘lmensional“ ﬁwtg\ s me’thod b A o

Boan oontains the entry pailnt BBNDRS &fcn is caned
aouov sonos hnd BOND!

BUNDRS calculates the f(r) and

i

E 9 Submuum xmssn PO S
. this subroutiné 1ntegrates the bou; ;" e
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the y(r) and y’ (r) obtained from the numerical integration.
E.11 Subroutine MATCH

This subroutine takes the values for y(RMAX) and
y' (RMAX) from Dw.'Ealls‘either RELKOU or BESSEL’(dependihg
on whetﬁer the Coulomb interaction is present or not) and
then calculates the phase-;hift.and normalisation for the

proton distorted wavé.

E.12 Subroutines CLEBO,F3J,F6J,S6J
& These calculate the Clebsch gordon co-efficient with
all 3 projection quantum numbers set to zero, the Wigner 3J

| éymbol and the Wigner 6J symbol respectively. -

E.13 Subrout ine DWBAOB .

This subrqutfne.takes the T matrix and calculates from
it the differential cross-section and Qnalysing power for
the (p,n’)'reaéfion. Also the phﬁse shifts are written out

<

after the entry point PHPNT.

E.14 Subroutine START s :
For the special case of 1=1, the Cowell method is not
self starting since the y(F)T(r) term does not vanish at the

Origfn.
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-

It turns out that the most accurate way around tﬁts
problem is to start with a power series, Is just so happens
that this power series is that corresponding to the non

reiativistic Coulomb wavefunctions.

E.15 Subroutine ERRORS

This subroutine is called whenever there is an error or

warning message to be given by the program.

E.16 Subroutine ELSCAT

‘ This subroutine takes the.phase-shifts as calculated by
subroutine DW, and then uses’ Yennie’ s method to calculate |
the elastic scattering amplitudes and observables The

reaction cross-section is also calculated. -

E.17 Subroutine LEGTAB
This tabulates the values of the Legendre polynomials
and first associated Legendre pblynomials for all values 6f

L from 0 to 150.

E.18 Subroutine SIGTAB
This tabulates the Dirac Coulomb phase -shifts.
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‘E.19 Subrout ine PIDW
_ On first call this subroutine sets up the array Bulkir)
aS'déécribéd'in Chapter 5. PIDW then uses the Cowe%f—méﬁhee
(modified) to caIculate y(r) and y’ (r). After calling MATPI
which returns the phase shift and normalisation. PIDW

, calculateé the pion distorted wave.

E.20 Subroutine MATPI
This calls subroutine COU which calculﬁtes the
nc -redativistic Coulomb wavefunctions, then extracts the

phas: shift and normalisation for y(r).

E.21 Subroutine PIEL

This subroutine takes the pion phase shifts and_’
calculates the piqn elastic scattering amplitude and cross
section using the techﬁiqde of subtracting off the point
charge Coulomb amplitude. ‘

E.22 Subroutine FORIER
This takes the bound 'state wavefunctions and calculates

the (three dimensional) Fourier transform of them.
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E.23 Subroutine VERFIX

This subroutine "fixes"'the pseudoscalar vertex so that
it‘wili give the answer correspondinq to the pseudovector
vertex. It does this by multiplying the bound state wave-
functions by an expression containing the binding and proton

distorting potentials (see Chapter 6).



