
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iversity o f A lb erta

A P e r f o r m a n c e E v a l u a t io n F r a m e w o r k o f M u l t i- r e s o l u t io n
A l g o r it h m s f o r R e a l - t im e R e n d e r i n g

by

P in g Yuan ©

A thesis subm itted to the Faculty of Graduate Studies and Research in partial fulfill
ment of the requirements for the degree of D octor o f P hilosophy.

Department of Computing Science

Edmonton, Alberta
Spring 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1+1 National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Acquisitions et
services bibliographiques
395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Voire reference

Our file Notre reference

The author has granted a non
exclusive licence allowing the
National Library o f Canada to
reproduce, loan, distribute or sell
copies o f this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-60363-6

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iversity o f A lb erta

Library R elease Form

N am e o f A uthor: Ping Yuan

T itle o f Thesis: A Performance Evaluation Framework of Multi-resolution Algo
rithm s for Real-time Rendering

D egree: Doctor of Philosophy

Year th is D egree Granted: 2001

Permission is hereby granted to the University of A lberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any m aterial
form whatever without the author’s prior w ritten permission.

Ping Yuan
Aptl703, 15 Brookbanks Dr.
North York, ON.
Canada, M3A 2T1

"-tL . ?~e-e>c
D a t e :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iversity o f A lb erta

Faculty o f G raduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad
uate Studies and Research for acceptance, a thesis entitled A P erform ance Evalu
ation Framework o f M u lti-reso lu tion A lgorithm s for R ea l-tim e R endering
subm itted by Ping Yuan in partial fulfillment of the requirements for the degree of
D o cto r o f Philosophy.

Dr. Mark W. Green

Dr. Bu< nan

Dr. W alter Bischo:

Dr. Janelle Harms

v .

Dr. Xiaoling Sun

. (P.< SA- C
pev. Dr. Michael Zyda

D ate: U ~U ' .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my paxents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Many multi-resolution algorithms have been proposed to solve real-time rendering

problems. However, the performance of these algorithms have not been evaluated, and

there is no comparison between them . It is no t clear how well these algorithms perform

and under what conditions their performance is optimal. Thus the advances in multi-

resolution algorithms can not be widely applied in real-tim e rendering applications.

This thesis presents a performance evaluation framework for multi-resolution algo

rithm s for real-time rendering. It consists of a set of autom atic performance measures

and a standard real-time rendering testbed. This framework provides a unified system

environment to automatically measure a range of multi-resolution algorithms while

they perform various real-time rendering benchmarks. Experimental results show

that the measured performance data are meaningful and consistent, and can form

the basis for performance comparison of the measured algorithms. Several multi-

resolution algorithms have also been evaluated using a prototype of the framework.

The performance results help the user to compare their performance. These encour

aging results demonstrate the potential of the performance evaluation framework, and

indicate tha t it can ultimately promote the application of multi-resolution algorithms

in real-time rendering systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I am deeply indebted to my parents, Rongxi Yuan and Peixia Zhao. Where I am
today is in no small part due to their love and support.

I would like to express my sincere thanks to Dr. Mark Green, my supervisor
for his encouragement and assistance throughout the course of this research. His
many suggestions have been invaluable. I would also like to thank the rest of my
thesis committee, Dr. John Buchanan, Dr. W alter Bischof, Dr. Janelle Harms, Dr.
Xiaoling Sim, and Dr. Michael Zyda for their help.

Thanks go to the graphics research group at the University of Alberta for many
interesting discussions. To University of Alberta, Faculty of Graduate Studies and
Research, and Departm ent of Computing Science, for technical and financial support.

To my friends Rona, Yuan, Yanping, Hongzhi, Nicolas, Paul, and Ruyam for their
friendship and help.

To my sister, Fang, for her love and motivating me to graduate.
Finally, I would like to thank my husband, Dr. Qi Zhang, for his love, under

standing and many insightful comments on this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 Multi-resolution algorithms for real-time rendering 1
1.2 Performance evaluation of multi-resolution a lg o rith m s.......................... 2
1.3 C o n trib u tio n s ... 3
1.4 Outline of m a te r i a l ... 4

2 M otivation 5
2.1 Observations.. 5
2.2 Problem definition ... 7
2.3 Chapter su m m ary ... 8

3 Background and R ela ted Work 9
3.1 Real-time ren d e rin g ... 9
3.2 Multi-resolution algorithms survey .. 11

3.2.1 Level of d e ta i l ... 11
3.2.2 Continuous m ulti-reso lu tion ... 12
3.2.3 Smooth transition between multi-resolution m o d e l s 14
3.2.4 Mesh simplification algorithms .. 15
3.2.5 Geometric measures of simplified m e s h e s 16
3.2.6 Multi-resolution algorithms variants .. 16
3.2.7 Section s u m m a ry .. 18

3.3 The art of com puter system performance e v a lu a tio n 18
3.3.1 G oa ls ... 19
3.3.2 Evaluation techniques ... 20
3.3.3 Performance m e a s u re s ... 20
3.3.4 B en ch m ark s.. 21
3.3.5 Analysis and com parison... 21
3.3.6 Section s u m m a ry .. 22

3.4 Related performance evaluation w o r k .. 22
3.4.1 Graphics workstations performance evaluation 23
3.4.2 Performance evaluation of digital video compression techniques

for high definition TV (H D T V) ... 24
3.5 Chapter su m m ary .. 26

4 O verview o f th e Fram ework 28
4.1 Design p r in c ip le s ... 28
4.2 System a rch itec tu re ... 29
4.3 Performance m etrics and measures ... 29
4.4 Real-time rendering t e s tb e d .. 32
4.5 Chapter su m m ary .. 33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 K ey P erform ance M easures 34
5.1 Performance requirements and artifacts of multi-resolution algorithms 34
5.2 Frame rate .. 40
5.3 Image f id e l i ty ... 41

5.3.1 Spatial image fidelity . .. 41
5.3.2 Temporal image fidelity .. 47
5.3.3 Critical vertices ... 50
5.3.4 Size of the axea of i n t e r e s t ... 52

5.4 Chapter sum m a r y .. 55

6 R ea l-tim e R en d erin g T estbed 56
6.1 Real-time rendering benchmark requirements 56
6.2 Testbed design ... 59

6.2.1 V irtual e n v iro n m e n t .. 60
6.2.2 Interactive navigation p a t h s ... 65

6.3 Benchmark param eters ... 66
6.4 Chapter sum m a r y .. 67

7 R R B — A P ro to ty p e S ystem 69
7.1 Im plementation overview ... 69
7.2 Interface between multi-resolution algorithms and RRB 71
7.3 Performance evaluation with R R B .. 74
7.4 Chapter su m m ary .. 76

8 E valuating th e Fram ework 77
8.1 Evaluation m e t h o d .. 77
8.2 Measurement results and a n a ly s is .. 80

8.2.1 Experiment 1 ... 81
8.2.2 Experiment 2 ... 84
8.2.3 Experiment 3 ... 86
8.2.4 Section s u m m a ry ... 90

8.3 Im portant param eter a n a ly s is .. 90
8.3.1 Number of critical vertices ... 91

8.4 D iscu ss io n ... 94
8.5 Chapter sum m a r y ... 94

9 A p p lication s o f R R B 95
9.1 Measurement of LOD algorithms using RRB .. 95

9.1.1 Introduction to the LOD algorithms ... 95
9.1.2 Experiment setup and p a ra m e te rs .. 96
9.1.3 Experiment r e s u l t s ... 97
9.1.4 Section s u m m a ry .. 101

9.2 Measuring other multi-resolution algorithms with R R B 101
9.3 Real-time rendering p ro b le m s .. 101
9.4 Chapter su m m ary ... 101

10 C onclusions 103
10.1 Summary of c o n tr ib u tio n s .. 103
10.2 Future d ir e c t io n s .. 104

B ib liography 108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A R R B Im p lem en tation N o te s 113
A .l V irtual E n v iro n m en t.. 113

A. 1.1 The VRML 2.0 p a r s e r .. 114
A .1.2 The SceneGraph N odes.. 114

A.2 Navigation P a th ... 115
A.2.1 The EyePath class .. 115
A.2.2 The subclasses 116
A.2.3 Measures ... 116

A.3 RRB bootstraps ... 117
A.3.1 The RRBWorkspace c l a s s ... 117
A.3.2 RRB graphical user interface .. 117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

3.1 Conceptual view of the rendering pipeline .. 10

4.1 Overview of the fram ew ork.. 30

5.1 Fluctuating frame rate produced by a multi-resolution algorithm . . . 35
5.2 Local image distortions generated by multi-resolution algorithms . . . 37
5.3 Popping artifacts in the test image sequence, notice the difference be

tween frame 4 and 5, frame 13 and 1 4 ... 38
5.4 Ranking the distortions using R M S E .. 43
5.5 Es on single f r a m e s .. 46
5.6 Critical v e r t ic e s ... 53

6.1 3D navigation application s y s te m .. 57
6.2 Cow p ic tu r e .. 61
6.3 Cow scene g r a p h .. 62
6.4 Scene graph a rc h ite c tu re ... 68

7.1 RRB architecture and class relationship .. 70
7.2 Interfacing the algorithm with RRB .. 73
7.3 RRB s n a p s h o ts ... 75

8.1 Sample frames in experiment 1 81
8.2 Areas of interest in sample frames in experiment 1 82
8.3 Navigation path in experiment 1 ... 82
8.4 Navigation path in experiment 2 ... 85
8.5 Sample frames in experiment 3 87
8.6 Areas of interest in sample frames in experiment 3 88
8.7 Navigation path in experiment 3 ... 89
8.8 Es affected by number of critical vertices in benchmark 1 91
8.9 E t affected by number of critical vertices in benchmark 1 92
8.10 Es affected by number of critical vertices in benchmark 3 93
8.11 Et affected by number of critical vertices in benchmark 3 93

9.1 Navigation paths in benchmark cowex2, bunnyex and dragonex 96
9.2 Es produced by the three LOD algorithms in six experim ents..... 98
9.3 Et produced by the three LOD algorithms in six experim ents..... 98

A .l Scene graph node class h ie r a r c h y .. 115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

8.1 Performance results in experiment 1 .. 83
8.2 Performance results in experiment 2 .. 86
8.3 Performance results in experiment 3 90

9.1 Experiment results of benchmark headexl, 113 critical vertices 97
9.2 Experiment results of benchmark headex2, 113 critical vertices 99
9.3 Experiment results of benchm ark cowexl, 621 critical vertices 99
9.4 Experiment results of benchmark cowex2, 621 critical vertices 99
9.5 Experiment results of benchmark bunnyex, 359 critical vertices 100
9.6 Experiment results of benchmark dragonex, 293 critical vertices . . . 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Multi-resolution algorithms for real-time ren
dering

One of the challenges in the interactive 3D computer graphics field is real-time render

ing. Given enough CPU-time, current computer graphics technologies can render very

complex scenes and produce nearly photo-realistic pictures. However, for interactive

3D computer graphics, such as virtual reality applications and real-time CAD tasks,

real-time response and natural motion is as im portant as, or even more im portant

than, image realism to users [21]. For example, a t 1 frame per second, an interactive

3D graphics application system is painful to use no m atter how good the rendered

image is [1]. In large-scale interactive 3D graphics applications, the required interac

tive frame rate and large, complex 3D models push the limits of graphics technology.

D ata management and programming decisions have to be m ade in trading off graphics

rendering quality for interactive update rates. This has been called the real-time ren

dering problem. This problem exists in low end systems, where computer games and

distributed virtual environments must often operate on systems where the available

resources are highly constrained. It also arises at the high end as well, where realistic

simulation and scientific visualization systems typically have object databases that

far exceed the capacity of even the most powerful graphics workstations.

Many speed-up techniques for the graphics pipeline, such as Z-buffer, can help in

certain situations. However most of the time, the real problem is tha t many complex

details are not necessary for rendering a scene and also scene complexity varies from

one frame to another, resulting in slow and fluctuating update rates. This problem

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be solved if one is able to render the proper approximation of the original data

set for each viewpoint and orientation in each frame. Multi-resolution algorithms are

developed for this purpose. They are based on the observation that coarser models

take less tim e to render and they appear similar to the original ones if used properly.

They use several levels of detail of the original models to achieve m ax im u m display

efficiency during real-time rendering. A multi-resolution algorithm consists of two

components. F irst, a multi-resolution modeling technique is needed to create, store

and retrieve level of detail hierarchies to enable switching from one level of detail to

another. Second, a run-time display mechanism for d e te rm in ing and rendering the

best level of detail for models for each viewpoint and orientation. They work together

to achieve the goal of maintaining a user required frame rate while preserving the

image fidelity as much as possible.

1.2 Performance evaluation of multi-resolution al
gorithms

Dozens of multi-resolution algorithms have been proposed for real-time rendering.

However, all th e current algorithms produce image artifacts of some form, as the

nature of the algorithms is to trade off rendering quality for frame rate. Some al

gorithms can not even guarantee an increased frame rate with these image artifacts,

since their decision strategies are so expensive tha t they use up any gain in render

ing tim e. Therefore, the performance of a multi-resolution algorithm is not obvious

without thorough tests and careful measurements being done. Currently, the perfor

mance of these algorithms has not been evaluated thoroughly. Quite often the papers

presenting the algorithms do not provide a thorough evaluation of their performance,

leaving the reader with no idea of how they fit into the existing set of algorithms.

In some cases the algorithms do not improve the rendering speed, and introduce

artifacts tha t would not be present if they were not used in real-time rendering appli

cations. Some algorithms were only tested under lim ited conditions, such as testing

a algorithm while doing a fixed path navigation in a simple virtual environment. In

addition, there is no comparison between the algorithms. This makes it difficult to

determine how well these algorithms perform, which one is better than the others and

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

under what conditions an algorithm ’s performance is optimal. Thus, the advances in

real-time rendering algorithms can not be widely applied to interactive 3D computer

graphics systems in the real world.

The reason for the limited performance evaluation of algorithms is that evaluat

ing multi-resolution algorithms in real-time rendering systems is much more difficult

than it looks. There is no previous experience on conducting broad tests of these

algorithms. There are no performance metrics defined for multi-resolution algorithms

and no clear definition of what tasks algorithms should carry out. There axe many

different hardware configurations and support software configurations involved for

testing these algorithms and complex virtual environment models for testing axe te

dious to build, complicating the evaluation process. However, a fair and thorough

performance evaluation is crucial to determine how well an algorithm works and how

much it indeed helps in solving the real-time rendering problem.

In order to solve this problem, a standard performance evaluation system for multi

resolution algorithms is needed. Fair and thorough measurements of these algorithms

axe required. The major thrusts of this research axe to investigate the performance

evaluation techniques for multi-resolution algorithms in real-time rendering applica

tions. A standard evaluation framework for evaluating algorithms is built upon them,

so th a t a num ber of the existing real-time rendering algorithms can be evaluated ef

ficiently. The measurements axe consistent and meaningful, resulting in a relative

ranking of their performance. The evaluations can be extended to new algorithms

easily, so the new algorithms can be compared with existing ones.

1.3 Contributions

The primary contributions of this thesis axe as follows:

• Key performance metrics axe defined for multi-resolution algorithms in real-time

rendering. The algorithms axe expected to m aintain constant frame rate that

is above a certain threshold. They should preserve image fidelity in both the

spatial and temporal domains. They should also keep preprocessing time and

extra resource consumption to a minimum.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Novel automatic performance measures of frame rate, spatial image fidelity, and

tem poral image fidelity are developed. These measures are able to compute how

well the algorithms achieve the ideal situation. They are specific, realizable and

easy to interpret.

• A standard real-time rendering testbed is developed. It is capable of loading and

running various real-time rendering benchmarks based on virtual environments

and navigation paths. It also provides a standard interface to plug in a range

of multi-resolution algorithms for measurements. The testbed sidesteps the

tedious job of building real-time rendering benchmarks and makes consistent

performance measurements and comparison possible.

• Using the framework, three level of detail (LOD) algorithms are measured in

several real-time rendering benchmarks. The measurement results axe used to

effectively compare their performance.

1.4 Outline of material

We begin with the motivations behind this research. Then, details on multi-resolution

algorithms for real-time rendering and their performance issues are discussed in chap

ter 3. The considerations in performance evaluation in general and related perfor

mance evaluation work are also discussed in this chapter. Having established this

background information, we present the performance evaluation framework in chap

ter 4. The key performance measures in the framework are presented in chapter 5.

Chapter 6 introduces the design of the real-tim e rendering testbed. Chapter 7 presents

a prototype system and the methods to plug in algorithms and conduct performance

measurements with it. Chapter 9 presents the performance evaluation and compari

son of three LOD algorithms using our framework. The last chapter summarizes the

research and presents topics for future research. It concludes the dissertation. To

highlight certain design choices and techniques, Appendix A is included. It contains

details on the prototype implementation of the performance evaluation framework.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Motivation

2.1 Observations

The initial drive for building a performance evaluation framework of multi-resolution

algorithms for real-tim e rendering came from our virtual reality research. We have

developed several virtual reality packages over the past decade [51]. The most famous

ones include the MR Toolkit and MR Objects. They facilitate the low level support

of virtual reality applications. However, scene content has to be kept as simple as

possible to m aintain the required fram e rate. In order to add rich interesting scene

content to our applications and m aintain the required fram e rate, we started to look

at current real-time rendering algorithms and try to incorporate them into our virtual

reality packages.

Among a variety of real-time rendering approaches, multi-resolution algorithms

have drawn increasing attention recently. The fundam ental idea of multi-resolution

algorithms is to describe 3D models and their a ttributes such as color and texture in

a variety of resolutions. Depending on the tim e budget, ob ject’s distance and other

factors, the appropriate level of detail within the model is chosen for rendering. Thus,

the required frame rate is m aintained and the “best” image of 3D scenes is displayed.

Dozens of algorithms have been proposed for the real-time rendering problems. Quite

often the papers presenting the algorithms do not provide a thorough evaluation of

their performance. Most of them only concentrate on presenting the technical strate

gies, such as how a model hierarchy is built and how the simplification methods are

novel and unique. Little performance evaluation is reported. There is no compari

son between the algorithms either. It is very difficult to determine how well these

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithms perform in real-time rendering applications.

To find which algorithms perform better in real-time rendering applications, fair

measurements m ust be done. We first experimented with Isler’s real-time m ulti

resolution algorithm[3l] to see how it performs for real-time rendering [67]. This

algorithm was developed to adaptively change the resolution of a triangular model

during real-time rendering. The following were observed in the performance experi

ment:

• The algorithm is capable of switching level of detail back and forth and increas

ing the frame rate. It also introduces artifacts. However, these characteristics

are hard to describe and compare with other algorithms. This is because there

has been no performance metrics and automatic measures defined for m ulti

resolution algorithms.

• A real-time rendering task is complex, time consuming and tedious to build.

It is not only concerned with modeling a 3D scene and arranging a navigation

path , but also with many hardware and support software configurations. It

also results in numerous task parameters that need to be controlled during the

evaluation.

• The algorithm performs differently on different tasks. For example, for a simple

scene with 4k polygons, the preprocessing time is 30 seconds. However, for a

large model with 69k polygon, the preprocessing time is more than one hour

on the same platform. It suggests many different real-time rendering tasks are

needed to obtain fair measurement results.

• In this experiment, the algorithm implementation was bundled with the real

tim e rendering tasks in the program, which makes it difficult to reuse the task

for other algorithms without changes. A clean and well defined interface for

real-time rendering tasks is needed for plugging in different algorithms.

W hen we looked back into the field of real-time rendering, the following facts were

revealed more clearly:

• There is no previous work on conducting broad measurement and comparison

of multi-resolution algorithm or any other real-time rendering algorithms.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Like other performance evaluation problems, performance evaluation of multi

resolution algorithm for real-time rendering needs to be systematically studied.

2.2 Problem definition

The above observations lead me to try to find a solution for performance evalua

tion of multi-resolution a lgorith m s, which is a performance evaluation framework.

The framework consists a set of well defined performance measures and a real-time

rendering testbed which can load and run various real-time rendering benchmarks.

Multi-resolution algorithms can be autom atically measured and compared in this

standard environment, producing consistent and meaningful performance results and

comparisons.

The key research problems in the performance evaluation of real-time rendering

algorithm s addressed in thesis thesis include:

• P e rfo rm a n c e m e tr ic s : Many multi-resolution algorithms have been proposed

for real-time rendering in the literature. However, the main performance targets

and typical artifacts that impair the performance of algorithms have not been

clearly defined. Identifying the performance metrics is the first problem that

needs to be solved in this research.

• A u to m a tic m easu res : Automatically m easuring and comparing multi-resolution

algorithms is one of the research goals. T he autom atic measures of each of the

metrics is required to achieve this goal. They are expected to detect typical

artifacts and physical properties of the algorithms, and be computable and easy

to interpret.

• R e a l- tim e ren d e rin g b en ch m ark s : T he benchmarks are typical real-time

rendering tasks which are used to evaluate algorithms. They are essential for

measuring the algorithms. A real-time rendering task tends to be complex,

tedious and difficult to build and run. I t usually has many param eters and

attributes, such as viewer positions, orientations and behavior, virtual environ

ment lighting, object hierarchy, object graphic attributes and behavior. Also,

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

many different hardware and software configurations need to be involved, mak

ing the job of composing such a task even m ore difficult and tim e consuming. A

number of tasks of various types axe needed. Thus, instead of one or two real

tim e rendering benchmarks, proper techniques to compose, load, and rim many

typical real-tim e rendering tasks m ust be investigated and developed. They

should relieve the tedious job of building various real-time rendering bench

marks, and also provide a standard interface for various multi-resolution algo

rithms to be plugged in and tested.

The thesis research is to investigate the above problems and propose solutions.

The objective of this thesis is to propose a performance evaluation framework of

multi-resolution algorithms for real-time rendering. It consists of a set of autom atic

performance measures and a standard real-time rendering testbed. This framework

can automatically measure a range of multi-resolution algorithms while they perform

various real-time rendering benchmarks. The performance results are consistent and

can form the basis for performance comparison.

2.3 Chapter summary

The motivation behind this research came from the need to choose optim al m ulti

resolution algorithms for real-time rendering application. This need was further iden

tified as building a performance evaluation framework.

Various multi-resolution algorithms have been proposed. However their perfor

mance has not been evaluated and compared. A standard evaluation framework

which consists of a set of objective measures and a testbed will help researchers to

measure and compare existing and new multi-resolution algorithm. This research

attem pts to build such a framework.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Background and Related Work

This chapter provides an overview of background m aterial used throughout the rest of

this dissertation. First real-time rendering is briefly reviewed, as it is the application

domain of multi-resolution algorithms. Then, we will discuss typical multi-resolution

algorithms and examine the need for a performance evaluation framework for evalu

ating and comparing their performance. Lastly, the general guidelines of computer

system performance evaluation and some related performance evaluation work axe

discussed.

3.1 Real-time rendering

In the area of computer graphics, real-tim e rendering is concerned with displaying 3D

scenes rapidly on the computer. Given a set of 3D objects, their attributes, lighting

and a virtual camera, a 2D image is rendered on a screen. The viewer can interact

w ith it, and the feedback affects what is displayed next. The cycle of reaction and

rendering happens at a rapid enough rate that viewers see an animated environment

and feel immersed in it. This is the core of the real-tim e rendering procedure.

The underlying tool for supporting this procedure is the rendering pipeline. Figure

3.1 shows the conceptual view of the pipeline.

The pipeline consists three m ajor stages, application, geometry and rasterization.

The slowest stage determines the rendering speed. Thus, the goal of real-time ren

dering is to optimize the whole rendering pipeline, so that complex and large scale

3D virtual environments can be rendered interactively. Many software and hardware

techniques have been developed to optimize each stage and increase the performance

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• • • • • •

✓ V
Multi-resolution i\

I\ algorithms

Application Geooetry Rasterizer

Transfomation > Lighting -► Projection

Clipping Screen napping

Scan conversion

Z buffer

Figure 3.1: Conceptual view of the rendering pipeline

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the pipeline. Moller and Haines’s real-time rendering book provides a good refer

ence for these techniques [43].

M ulti-resolution algorithms are one type of real-time rendering technique. They

try to optimize the rendering pipeline and solve the real-time rendering problem in

the application stage. For any given system, available hardware capacity, such as

primitive drawing rate, frame buffer fill rates, transformation and lighting through

put, and network bandwidth is essentially fixed. But the complexity of the scene

may vary considerably. Sometimes, many details only waste rendering tim e and do

not contribute, or contribute little, to the quality of the displayed images. Multi

resolution algorithms try to choose proper approximations to m aintain an interactive

and constant frame rate.

3.2 Multi-resolution algorithms survey

A multi-resolution model is a model representation which captures a wide range of

approximations of an object and which can be used to reconstruct any one of these on

demand [23]. The multi-resolution modeling approach relies on these representations

of a virtual environment. When the tim e budget is tight, a coaxser representation of

the objects is rendered. In this way, the target frame rate is guaranteed and the “best”

possible image is produced. Objects’ size, distance from the view point, objects’

inherent im portance in the scenaxio and other factors can also be used as threshold

param eters for selecting and rendering the approximations. M ulti-resolution models

and the mechanism for selecting and rendering the approximations together constitute

a multi-resolution algorithm. Multi-resolution modeling m ethods can be classified as

discrete multi-resolution, which is also called level of detail modeling, and continuous

multi-resolution modeling.

3.2.1 Level of detail

Level of detail modeling consists of a set of pre-generated increasingly simpler models.

These models axe usually generated off-line. During real-time rendering, a renderer

selects one level of detail model to use and renders that model in a given frame ac

cording to some threshold. One of the typical level of detail modeling approaches

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is described by Funkhouser and Sequin [21]. They generate the levels of detail rep

resentations of a 3D building model m anually and use a time management strategy,

i.e. frame rate, to select the level in their real-time walkthrough system. Their al

gorithm yields good results on m aintaining consistent frame rate. However image

quality is not evaluated and analyzed adequately in their work. Support for levels

of detail has also been included in a num ber of commercial rendering systems, in

cluding RenderMan [54], Open Inventor [61], IRIS Performer [46], and Cosmo Worlds

[64]. The RenderMan interface provides for mixing successive levels of detail together,

bu t leaves the exact mechanism undefined. Performer provides explicit support for

smooth transition between level of details, such as alpha blending and geomorphing

(see detail in §3.2.3). Cosmo Worlds is capable of creating alternative representations

of an object with varying levels of detail and displaying a different version based on

distance or frame rate. Most current level of detail techniques mainly address the

problem of level of detail control in real-tim e rendering. Generation of level of detail

models axe done either manually or w ith mesh simplification algorithms (see §3.2.4).

Level of detail modeling is simple and easy to use. However it is not flexible for

real-tim e rendering applications. The levels of detail available at run tim e are lim ited.

Usually, there are three or four levels for one object due to resource limitations. A

Tenderer would be forced to pick one of them, even if it needed an intermediate

level. Thus, the Tenderer would either have to pick a model without sufficient detail

(and sacrifice image quality) or choose a model with excess detail (and waste tim e).

Level of detail modeling approaches usually suffer from popping artifacts and abrupt

scene changes caused by switching the level of details. Other artifacts that level of

detail modeling may produce include loss of geometric, topological, luminance and

color information, non-guaranteed or fluctuating frame rate, lengthy preprocessing

procedures, and extra resources for storing the huge amount of data. Performance

evaluation is to detect these artifacts.

3.2.2 Continuous multi-resolution

As we have seen level of detail modeling techniques have drawbacks for real-time

rendering, multi-resolution modeling approaches which can continuously adapt the

representation at run tim e based on performance or viewing conditions are certainly

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in need. These techniques axe called continuous multi-resolution modeling.

Continuous multi-resolution modeling techniques have been in use in height field

applications, such as terrain [15] [39]. Most axe based on a regular subdivision (e.g.,

quadtrees) of the height field surface. Recently, many continuous multi-resolution

modeling approaches have been proposed for general polygonal surfaces. Multi

triangulation [18] [17] is a general framework for describing multi-resolution of trian

gulated surfaces. Vertex hierarchies have drawn increasing attention recently. They

focus on generating surface hierarchies and related operations which can facilitate

varying the level of detail over different parts of the model. One of the typical vertex

hierarchy algorithms is Hoppe’s progressive mesh [29] [30]. It is a scheme of stor

ing an arbitrary mesh as a much coarser mesh together with a sequence of n detail

records tha t indicate how to incrementally refine the base mesh exactly back into

the original mesh. This scheme can be used to adaptively transm it and render large

geometry models. However the performance of the algorithm has not been evaluated

against other algorithms. Garland introduced a vertex hierarchy which is s im ilar to

progressive mesh. He proposes to build the vertex hierarchy using his quadric based

simplification algorithm [23]. He did a good performance analysis on his surface

simplification algorithm. But more experiments are needed to test how the vertex

hierarchy based on his simplification algorithm behaves in real-time rendering. Lue-

bke and Erikson’s idea [41] is to create a vertex tree using a chosen simplification

algorithm during a preprocessing stage. This vertex tree can then be used to selec

tively vary the level of detail according to changing view parameters. No performance

data except for preprocessing time is provided in their paper. Xia and Varshney [65]

introduce a merge tree for a triangular mesh, and then use it to guide the selection of

appropriate triangles for display. They provide some convincing performance results

in their paper. The algorithm still needs to be compared with other a lgorith m s. Lau

et. al. present a simplification list [34], which is similar to Hoppe’s progressive mesh.

It decimates an original mesh using edge collapse strategies and keeps the simplifi

cation procedure in memory, which is later used to reduce or increase level of detail

adaptively in run time. The performance and image quality also need to be evaluated

thoroughly.

The above multi-resolution modeling approaches all need long preprocessing time

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the generated data structure may consume a fair amount of memory. There

fore, the continuous multi-resolution models axe usually generated off-line, with the

exception of Lau’s simplification list, and stored in a repository for later render

ing. These multi-resolution modeling approaches are term ed as static continuous

multi-resolution modeling. The other type of continuous multi-resolution modeling

algorithms concentrate on time management and adapting the level of detail continu

ously over successive frames during real-time rendering. They are defined as dynamic

continuous multi-resolution modeling. There has been comparatively less work on

dynamic continuous multi-resolution modeling for real-time rendering. Green [25]

introduces geometry compilation for large scale virtual reality applications. His idea

is to use a geometry compiler to generate a proper tessellation of n geometric object

at run time. It avoids the preprocessing work of generating multi-resolution models

and it will maintain a certain frame rate and preserve the geometric and topological

information of objects more easily. I t is suited for predefined geometries, such as cone,

sphere, and torus, but leaves arbitrary meshes with no definition. The performance

of this method also needs to be investigated.

3.2.3 Smooth transition between multi-resolution models

Both level of detail modeling and continuous multi-resolution modeling can cause

visual artifacts in real-time rendering. The number of polygons and appearance in

two models can be significantly different. If the switch of these two models occurs in

consecutive frames, users will experience popping artifacts and abrupt scene changes.

Funkhouser et. a/.[21] propose to use alpha blending to smooth the transition between

the two models. Visual artifacts are reduced. However, the rendering cost increases

significantly because the system must render two levels of the model at the same time.

Another alternative is geomorph [28]. The idea is to smoothly interpolate between

the geometries of two consecutive levels over several frames. Suppose tha t we axe

transitioning between a model M and a simpler model MO. For each vertex v in M,

we substitute an interpolated position tv + (1 — t)4>(v). At t = 0, the model will have

exactly the same shape as M , and at t = 1, the model will have the shape of MO. By

moving t between 0 and 1 over several successive frames, we can smoothly transition

between the two models. However, there is the additional overhead of interpolating

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the vertex positions for each frame. Experiments are needed to see how expensive

geomorph is and if it is faster than ju st rendering the original model.

3.2.4 Mesh simplification algorithms

As discussed in previous sections, one of the fundam ental support tools for multi-

resolution modeling is surface simplification algorithms. In practice, most of the

multi-resolution models, both level of detail and continuous multi-resolution modeling

are created by simplification algorithms. To have a be tter understanding of multi

resolution modeling, a brief review of the most relevant simplification algorithms is

presented. Cignoni et. al. [7] and Heckbert and Garland [27] have more detailed and

complete surveys of simplification algorithms.

Surface simplification aims at reducing the n u m b er of polygons while assuring a

good approximation of the original model. Typical algorithms include vertex deci

mation, vertex clustering, iterative edge collapse and vertex pair contraction. Vertex

decimation methods iteratively select a vertex for removal, remove all adjacent faces,

and retriangulate the resulting hole, e.g. [49] [6]. Vertex clustering methods [47]

divide the original models into a grid. W ithin each cell, the vertices are clustered

together into a single vertex, and the model faces are updated accordingly. Edge

collapse algorithms are drawing increasingly attention among various mesh simpli

fication m ethods recently. They iteratively collapse edges, e.g.[28] [29] [34]. The

essential difference between these algorithms is to choose which edge to collapse and

how to collapse. Vertex pair contraction methods extend the contraction pairs to

non-edges to facilitate better approximation, e.g. [22] [40].

O ther simplification algorithms not only take into account surface attributes but

also color, m aterial and textures. Maciel and Shirley [42] simplify a scene using a mix

of approaches, including geometric simplifications created by Iris Performer, texture

m aps and colored bounding boxes. Chamberlain et.al [5] construct a spatial hierarchy

of cells over the scene and associate with each cell a color box. Cohen et.al [9] intro

duce a simplification algorithm which preserves appearance. They decouple a surface

and its a ttributes and then apply color and normal map after the simplification. Their

algorithm can preserve the appearance, but is relatively expensive.

All of simplification algorithms approximate the original object using a coarser

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

representation. However, it is not clear if the simplification procedure and the ren

dering of the simplified representation is less expensive than rendering of the original

object. T he image fidelity generated by these algorithms has also never been thor

oughly evaluated and compared.

3.2.5 Geometric measures of simplified meshes

Research has been done on intrinsic geometric measures between the original mesh and

the simplified mesh. Cignoni et al. propose a tool, Metro [8], to compare the geometric

differences between a pair of surfaces (e.g. a triangulated mesh and its simplified

representation). It adopts a surface sampling approach and uses surface distances as

the m ajor error measure. In their work [8], they provide some experim ental results of

some mesh simplification algorithms produced by Metro. However, the param eters of

these experiments are not provided, and the results are not explained and analyzed

in the report. Nevertheless, this is the first report about the geometric measurement

and comparison of mesh simplification algorithms.

Geometric measures of the simplified mesh is for estimating the sim ilarity of ge

ometric shape. In real-time rendering, one would rather like to know the similarity

of appearance of multi-resolution models. A geometrically distorted surface model

does not necessarily produce a distorted appearance in real-time rendering. W hen the

distorted portion is not visible, the appearance is not affected. Therefore, geometric

measurements only play roles in the middle stages. Even if the measures were fully

developed, one would still need image fidelity measures of m ulti-resolution algorithms

in real-time rendering.

3.2.6 Multi-resolution algorithms variants
V iew -d ep en d en t m ulti-resolu tion a lgorithm s

Visibility Culling algorithms accelerate rendering by avoiding the rendering of objects

that are not visible in the image. The idea is classic and has been used in computer

graphics for more than two decades. Recently, algorithms have been proposed to

combine multi-resolution techniques with visibility culling for real-time rendering. [41,

29, 30, 65]. They are often referred to as view-dependent multi-resolution. The idea is

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to model a surface in a hierarchical fashion. The simplification process continuously

queries this hierarchy to generate a scene containing only those polygons th a t axe

im portant from the current viewpoint. Xia et.al [65] first explores this idea. Luebke

et.al [41] develop a general framework for dynamic view-dependent simplification.

Hoppe [29, 30] extends the idea to the progressive mesh.

In real-time rendering one m ajor performance shortcoming for view-dependent

multi-resolution algorithms is fluctuating and non-guaranteed fram e rate. This is

because the performance of culling algorithms depends on the scene complexity and

depth. Scene complexity and depth in a large virtual environment may vary from

one part to another. Therefore, for some viewpoints, culling com putation can be

much more expensive than others. Second, for some viewpoints, m ost of the scene is

visible, and culling does not help to increase rendering speed no m atte r how good it

is. Importantly, querying the hierarchy costs time. If this process uses up the tim e

saved for rendering, these algorithms do not improve rendering speed. Other artifacts

are long preprocessing procedures to construct an object hierarchy or scene hierar

chy of the virtual environment. These algorithms may cause loss of geometry and

color information due to inaccurate depth computation and simplification. However,

popping artifacts and abrupt scene changes usually are not m ajor issues.

H ierarchical im age cache

The Hierarchical Image Cache m ethod is another variant of multi-resolution algo

rithms. The idea is to hierarchically model a 3D scene and store it in image caches.

During the interactive rendering period, instead of rendering all the original geometric

models, the cached images of far away geometries are reused as textures mapped to

the polygons which represent its boundary. This idea was first investigated by Regan

and Pose [45]. It is called M ultiple Frame Buffer Rendering. It relies on hardware

with multiple frame buffers. Objects are organized into different buffers based on their

distance from the viewer. These frame buffers are updated at different rates. The

frame buffers which contain close objects are updated frequently, while distant parts

are updated at a much slower rate. The reason is that distant objects do not change

or move as much as close ones. They do not need to be updated in every frame. Thus

only a small portion of the environment needs to be updated frequently. The final

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

image is created by overlapping the frame buffers form front to back. Recently, some

software solutions for hierarchical image cache, have been proposed [42] [50] [48] [2].

They put more effort on the hierarchical organization of the scene, preservation of

the image quality or tim e management. However, the performance measurements of

this approach still need to be done.

3.2.7 Section summary

In this section, some typical multi-resolution algorithms and their variants were pre

sented. It is shown th a t all these algorithms try to solve the real-time rendering

problem by trading off rendering quality for real-time. However, it is not clear how

they perform in real-time rendering applications and which ones perform better than

others in terms of frame rate, image fidelity and other performance considerations.

Thorough measurement and comparison of these algorithms are needed to answer

this question. In the m ean time, we can also see th a t there axe considerable differ

ences between algorithms. To do a fair measurement and compare them, a standard

performance evaluation framework is required. It is the beginning and foundation for

the performance study of the algorithms.

3.3 The art of computer system performance eval
uation

Performance evaluation seldom stands alone as a research topic. It is always coupled

with some application area - science (e.g. [12]), sociology (e.g. [20]), engineering (e.g.

[71]), or anywhere there is a performance concern. Performance evaluation of multi-

resolution algorithms is a problem in the category of computer system performance

evaluation (A computer system is referred to any collection of hardware, software,

and firmware components). A great amount of research work has been done in this

category, such as performance evaluations of computer hardware systems, databases,

networks, and various algorithm s. Most of these problems, including the performance

of multi-resolution algorithms itself, are unique. The evaluation techniques, measures,

and benchmarks used for one problem generally can not be used for the next problem.

However, general methodologies and system atic approaches have been studied to

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

help performance analysts to solve day-to-day performance measurement problems

and obtain the most performance information w ith the least effort [32] [36]. In this

section, we review these general guidelines and emphasize the key components for our

performance evaluation of multi-resolution algorithms.

3.3.1 Goals

The first step in any performance evaluation research is to sta te the goals. T he goals

define the performance evaluation system boundaries. Given the multi-resolution

algorithms, for example, the goal may be to measure if and how much the algo

rithm s improve response tim e and image quality of a hockey video gam e on the

Sany P lay Stations™ . In this case, the system would consist of not only the al

gorithms, but also the particular rendering engine of the game and the hardware

support platform. Thus, the study results m ay significantly depend on m any compo

nents other than the algorithms. On the o ther hand, if the rendering mechanisms and

graphics workstations axe similar except for the difference between the algorithms and

the goal is to decide which algorithm is be tte r for general real-tim e rendering tasks,

the algorithms may be considered the one and only measured target. O ther compo

nents are parts of the support platform.

The goals also determine how to develop a performance evaluation system and how

to proceed with the performance evaluation study. They affect the architecture of a

performance evaluation system, and the performance measures as well as benchmarks

used to compare the measured algorithms.

In a previous section, the state of art of m ulti-resolution modeling were described.

Many algorithms have been proposed, and new algorithms are being and will be pre

sented. However, their performance has never been evaluated. Thus, our goals are to

develop the first performance evaluation framework. It will be used to automatically

measure and compare multi-resolution algorithms in a standard environment. The

framework is easy to extend with new measures as new multi-resolution techniques

are developed.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2 Evaluation techniques

T he three broad techniques for performance evaluation are measurement, simulation

and analytical modeling. Different techniques are chosen based on different condi

tions. Measurement is usually used in the post-prototype stage, where the evaluated

systems are available, evaluation tools are available and the requirements of tim e and

level of accuracy axe moderate. Simulation and analytical modeling are used when

systems are not available, theoretical modeling or simulation techniques are m ature,

and the accuracy requirement is moderate. In general, measurement tends to be

m ore expensive than simulation and analytical modeling. Its results are also more

convincing to users than the other two techniques.

The measurement methods can be classified into objective measurement and sub

jective measurement. The objective m ethods are repeatable, quantifiable and can be

used in real tim e. They axe usually implemented in software. Subjective assessment

is time-consuming and the results are difficult to duplicate. However, the beauty of

subjective assessment is that it measures the perceived quality directly.

3.3.3 Performance measures

Appropriate performance criteria or metrics axe the basis for meaningful performance

evaluation. For any performance study, a set of performance metrics must be chosen.

They should be thorough, specific, measurable, and realizable. Listing the services

offered by the measured algorithms is a good way to choose performance metrics [32].

Multi-resolution algorithms axe proposed for real-time rendering applications. Ide

ally, the algorithms should increase and m aintain the frame rate at a user-specified

value while preserving image quality as much as possible. Therefore, increasing and

m aintaining a certain frame rate and preserving image fidelity axe the key perfor

m ance requirements. In addition, the algorithms shouldn’t require huge amounts of

ex tra data which could be several times larger than the original model. This not only

increases the workload of generating the data , but also involves memory management

problems if the data set is too large. The model preprocessing work is also an over

head for a good algorithm. E xtra hardware requirements, such as multiprocessors

is also a restriction for general purpose multi-resolution algorithms. When defining

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the performance metrics, all the requirements of frame rate, image fidelity, resource

consumption, and preprocessing time should be taken into consideration.

Performance measures axe the methods of observing and quantifying if and how

well the test subjects satisfy the performance criteria when they perform tasks. They

are also called performance monitors in the performance evaluation literature. After

the performance metrics axe chosen, the m ajor concern in objective performance

evaluations is to design the performance measures. The detail of our performance

measures is described in a later chapter.

3.3.4 Benchmarks

In the performance evaluation literature, the process of performance comparison of

two or more systems by measurements is called benchmarking, and the workload used

in the measurements axe called benchmaxks [32]. In the context of oux performance

evaluation of multi-resolution algorithms, this tradition is followed. Benchmarks axe

the real-time rendering tasks used in the performance measurements.

Benchmaxks axe the most crucial paxt of any performance evaluation project. They

must be well defined in order to accomplish the performance evaluation. In general,

two m ajor aspects need to be considered when selecting benchmarks.

• Completeness: view the test subjects as a service provider. Benchmaxks should

exercise the provided services as completely as possible.

• Representativeness: A benchmark should be representative of the real applica

tion. It should represent the latest usage pattern of the test subject. In the

mean time, it should also be kept minimal and self-complete.

Our real-time rendering benchmarks are designed based on the above general

guidelines. They also have their own characteristics.

3.3.5 Analysis and comparison

Performance evaluation system design is often the m ajor concern of performance

evaluation research. However comparing two or more test subjects by analyzing the

generated performance data is also a common problem. This problem is concerned

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with using proper statistical techniques to analyze the samples and compare sev

eral alternatives. D ata analysis and compaxison has been a classic problem in both

statistics and performance evaluation, and has been studied for many years [32] [36].

Various data analysis models and methods are presented in the literature. How

ever, we are not concerned with complex models and analysis in this performance

evaluation study. Multi-resolution algorithms and real-time rendering axe still new

research areas. This performance study is considered a first step in the systematic

performance analysis and compaxison of multi-resolution algorithms. Simple analysis

is preferred because it is easy for o ther researchers to understand and can expedite

the improvement of real-time rendering algorithms.

Our research focus is on providing a standard performance experiment environ

m ent, so th a t various experimental measurements can be designed. Complex and in

depth data analysis and performance compaxison will be left to the multi-resolution

algorithms researcher. The performance analysis and compaxison of some typical

algorithms only serves as the evaluation of our framework itself.

3.3.6 Section summary

The general considerations of com puter system performance evaluation have been

reviewed in this section. Jain [32] and Lavenberg [36] have presented detailed de

scriptions of the methodologies. T heir books are good references for any computer

system performance evaluation research. Our performance evaluation problem is a

specific case in this domain. The experiences in computer system performance eval

uation can be employed as general guidelines. However, performance evaluations of

multi-resolution algorithms have unique characteristics, especially in the performance

measures, real-time rendering benchmarks, and system design. Investigating these is

sues and working out solutions axe th e m ajor thrusts in this research.

3.4 Related performance evaluation work

The background of real-time rendering, multi-resolution algorithms and computer

system performance evaluation has been discussed in previous sections. Performance

evaluation of multi-resolution algorithms for real-time rendering is seen as the first

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

research a ttem pt in the intersection of these axeas. However, there is some related

work to our problems in the areas of graphics workstations performance evaluation,

performance evaluation of digital video compression techniques and geometric mea

surement of simplified meshes. The following sections describe how these works are

related to our problem and also how they differ from the performance evaluation of

multi-resolution algorithms.

3.4.1 Graphics workstations performance evaluation

Work has been done on graphics workstation performance measurement. In the

1980’s, the Graphics Performance Characterization (GPC) group of the National

Com puter Graphics Association (NCGA) proposed four levels of performance mea

surement for graphics workstations. These levels are low-level primitives(points, lines

and polygons per second), pictures, systems (input and action response times), and

applications. Many attem pts have been made at measuring the four levels of graphics

workstations performance [71] [53]. But, to our best knowledge, no fully functional

performance evaluation system has been designed and implemented so far. The graph

ics workstation performance work concentrates on measuring graphics hardware per

formance over a range of graphics tasks. These tasks include 2D graphics, 3D graph

ics, windows, visualization tasks and many more. This makes graphics workstation

performance measurement a large and complex problem.

The OpenGL performance characterization project [44] is an alternative to graph

ics workstations performance evaluation. It was originated by an ad-hoc project

group, OpenGL Performance Characterization (OPC) in 1993. It is aimed at provid

ing unambiguous m ethods for comparing the performance of OpenGL implementa

tions across vendor platforms, operating systems, and windowing environments. Two

benchmarks have been released by OPC. The first one, Viewperf, is for measuring

the 3D rendering performance of systems ru n n in g under OpenGL. It takes a data

set and rendering param eters from command line arguments and outputs the frame

rate of the test. Frame rate is the only performance metric. T he second one, GLperf,

which complements Viewperf, is for measuring the optim al performance of 2D and 3D

graphics primitives across vendor platforms. The output includes number of polygons

per second. OPC also selected some benchmarks representative of the OpenGL ren-

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dering portion of Independent Software Vendor (ISV) applications called viewsets to

satisfy the real-world benchmarking requirement. A viewset is a group of individual

runs of Viewperf that a ttem pt to characterize the graphics rendering portion of an

ISV’s application.

The OpenGL performance characterization is an on going development project. It

is currently focused on measuring the speed of graphics systems under the OpenGL

API. Meaningful performance metrics except fra m e rate still need to be defined.

Our work is different from the work on graphics workstation performance evalu

ation and the OpenGL performance characterization project. It is measuring multi

resolution algorithm performance for a particular task, which is real-time rendering

for interactive 3D graphics. This is a single, well defined task, thus removing the prob

lem of establishing a set of measures th a t cover a diverse set of graphics tasks. The

effects of different graphics platforms can be reduced by evaluating the algorithms on

the same platform. Also, when measuring the performance of the algorithms, many

aspects need to be considered, such as fram e rate, static image quality, temporal im

age quality etc., in contrast to OpenGL performance characterization project, which

is mainly concerned with the speed of graphics workstations.

3.4.2 Performance evaluation of digital video compression
techniques for high definition TV (HDTV)

This problem is concerned w ith measuring how well the video compression techniques

preserve the level of quality of the original video with as few bits as possible. A fair

amount of work has been done in this area. They can be classified into:

• Modeling and General Discussion. In [70], Zou surveyed various lossless and

lossy compression techniques and discussed the artifacts th a t these techniques

bring in, and the general approaches of objective and subjective evaluations of

these techniques. Lambrecht [56], according to a study of the human visual

system, developed a spatial-temporal model for designing the image quality

metrics of coded video from the visual perception point of view.

• Subjective Measurement. Lauzon [35] conducted a formal subjective assessment

of MPEG-2 video coding technique on selected HDTV sequences. Bit rate,

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structure of picture organization and temporal processing are the performance

metrics they used for testing. Dezhgosha [14] analyzed their subjective test re

sults on VQ based image coding algorithm. He also did objective measurements

using NTSC video performance metrics. But the meaning and validation of the

metrics were not discussed.

• Objective M easurement. Wolf proposed a performance evaluation system [62]

for objective quality assessment of digitally transm itted video. She described

some spatial features and temporal features th a t need to be measured objec

tively, but it is not clear how these features are quantified in her system. Also,

no detailed experimental methods and results axe reported. Lambrecht [56]

[55] developed a Spatial-Temporal Model of HVS for assessing MPEG coding

fidelity. He estim ated the free param eters of the model based on psychophysics

experiments on coded video sequences. The param eterized model is then used

as the basis for a coded video sequences quality metric. Since the parameters of

this model axe particular for MPEG coded video sequences, it is not clear how

useful it is for measuring multi-resolution algorithms.

In the literature of performance evaluation of digital video compression, such

as [70] [69] [62] [58] [35] [14], the results on subjective measurement are found to be

fruitful. But few methods or systems are reported to conduct objective measurement,

of either absolute distortion or visible error between the referenced image sequence

and the tested image sequence. However, the performance evaluation of digital video

compression techniques is a valuable reference for performance evaluations of multi-

resolution algorithms for its characteristic of measuring the degradation of image

sequence quality.

Performance evaluation of digital video compression techniques is similar to our

problem, in the sense tha t both need to measure the image degradation caused by

techniques or algorithms. However, the nature of the two problems are different:

• Goal: As we discuss here, video compression techniques are concerned with rep

resenting video images with as few bits as possible without losing or discarding

im portant information. Bit rate is a big performance concern for measuring

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

video compression, techniques. M ulti-resolution algorithms axe concerned with

increasing frame rate while preserving required image quality. Frame ra te is

certainly a major performance m etric.

• Artifacts impairing image quality: T he artifacts they cause are different. Digital

video compression techniques may produce quantization noise, loss of contrast,

loss of resolution, loss of chrominance, edge busyness, motion jerkiness and

ringing. These artifacts are usually seen over the whole image. Multi-resolution

algorithms, however, mainly cause lose of geometric and luminance information

statically, and popping effects, sudden image changes and fluctuating fram e

rate temporally. These artifacts are usually seen locally. For example, when

the level of detail of an object changes, only the image in the neighborhood of

th a t object is effected, the artifact doesn’t spread to other parts of the image.

• Comparison of image sequence fidelity: Digitally compressed video can always

be compared with the original video, statically or temporally to determine its

quality. That is, there is a well defined standard for its performance. This is

rarely the case with real-time rendering. There is no reference algorithm th a t

can display the environment at th e optim al display rate with perfect image

quality, otherwise there would be no need for multi-resolution algorithms and

other real-time rendering techniques. This difference stems from the fact th a t

video compression is used to decrease bandwidth and storage requirements, and

doesn’t need to decrease display tim e.

3.5 Chapter summary

From this brief survey of relevant work, we can make the following observations:

First, there is a need for a performance evaluation framework of multi-resolution

algorithms, so that various algorithms can be measured in a standard environment,

generating a relative ranking of their performance.

Second, the major research problems in this study are the performance measures

and real-time rendering benchmarks.

The next chapter presents our performance evaluation framework for multi-resolution

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithms tha t can cope with these problems.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Overview of the Framework

In the previous chapters, we discussed the motivation for this research and reviewed

various relevant work. Now, we will present the performance evaluation framework

of multi-resolution algorithms for real-time rendering th a t has been developed. This

chapter focuses on the design principles and fundamental ideas of the framework.

The key components of the framework — autom atic performance measures and the

real-tim e rendering testbed will be described in much greater detail in chapters 5 and

6. The prototype system and experimental results axe described in chapters 7 and 8.

Lastly, the applications of the framework are discussed in chapter 9.

4.1 Design principles

As we have seen in the discussion of related work, many multi-resolution algorithms

have been proposed, however, there have been no performance measurements and

compaxison of them. There axe two main reasons. F irst, the axtifacts of multi

resolution algorithms have not been fully recognized. There have been no performance

m etrics and automatic measures in real-time rendering research. Second, automatic

performance evaluation of multi-resolution algorithms involves many complex hard

ware and software configurations. It is tedious and time consuming to build real-time

rendering benchmaxks. The primary goal of this research is to overcome these prob

lems. We intend to design a standard performance evaluation environment, which

consists of a set of well defined performance measures and is able to load various

real-time rendering benchmaxks. It is aimed a t measuring existing multi-resolution

algorithms of various types in a standard real-time rendering environment and auto-

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m atically producing their performance data.

O ur work is based on two assumptions.

• The performance evaluation framework is platform independent and can be

ported to test multi-resolution algorithms across different hardware and software

platforms. However, it is used to measure and compare the algorithms on

the same hardware and software platform, to guarantee the consistency of the

measurement results.

• No single performance measure. Algorithms are tested over various real-time

rendering benchmarks to avoid biased measurement.

As a performance evaluation framework, it is by no means complete. We expect

it to be extended to add new measures and incorporate broader real-tim e rendering

benchmarks in the future.

4.2 System architecture

The fundam ental idea of the framework is th a t algorithms are evaluated and compared

in a standard real-tim e rendering environment. The framework contains a number

of autom atic performance measures and provides a standard testbed which can load

and run various real-time rendering benchmarks. Multi-resolution algorithms can be

attached to the framework via a standard software interface. The performance is

measured autom atically in the system while an algorithm performs real-time render

ing benchmarks. The performance data can be used to generate the relative rankings

of algorithms. Figure 4.1 shows the logic diagram of this framework.

The two fundam ental components of the framework are: performance measures

and real-time rendering testbed.

4.3 Performance metrics and measures

The term performance metrics refers to the criteria used to evaluate performance.

For example fram e rate - frames per second could be used to compare two multi

resolution algorithms. For the performance study of multi-resolution algorithms,

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r

Algorithms

Real-time Rendering
Benchmarks

Virtual Environments and Paths)

I
Performance Measures

. Frame rate

.Spatial image fidelity

. Temporal image fidelity

MB

i
Results

Figure 4.1: Overview of the framework

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a set of metrics m ust be chosen. O ur approach is to analyze the service offered

by the algorithms and the general requirement of real-time rendering and derive

the corresponding m etrics. The ultim ate goals of multi-resolution algorithms are to

improve rendering speed and preserve the appearance of the original scene as much

as possible. Improving rendering speed is crucial for a successful algorithm. All the

multi-resolution algorithms axe developed to at least achieve this goal. Thus, frame

rate is chosen as one of the most im portant performance metrics. Preserving the

appearance of the original models is also one of the main goals for the algorithms.

It is concerned with image fidelity in both the spatial domain and the tem poral

domain. Spatially, the algorithms are expected to preserve the appearance of the

original models from a set of viewpoints. Temporally, the transition from one frame

to another should be smooth, there should be no noticeable popping artifacts and

abrupt image changes. Spatial image fidelity and temporal image fidelity axe two

other important performance metrics in our framework. In addition, the algorithms

axe expected to have reasonable preprocessing tim e and resource consumption. In

our framework, they axe considered as performance metrics as well. All the metrics

axe used to compare the overall performance of multi-resolution algorithms.

Measures axe methodologies used to implement the performance m etrics. For

example, frame rate is one of the performance metrics. The methods of obtain

ing, su m m arizing, and comparing the frame rate data axe frame rate measures. In

our framework, all the measures are developed experimentally and improved itera

tively. First, the chaxacteristics and artifacts of typical multi-resolution algorithms

axe observed. Then, autom atic measures axe developed using the advantages and also

considering the constrains of real-time rendering. The measures axe put into practice.

If they do not yield expected results, the previous steps axe iterated to improve the

measures.

In the framework, the key performance measures are frame rate, spatial image

fidelity and temporal image fidelity.

For frame rate, experimental and statistical methods are used to gather frame

tim e data and compute if they satisfy a user specified threshold and how much they

fluctuate during this real-time rendering process.

As we have seen in chapter 3, the spatial image distortions generated by multi-

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resolution, algorithms axe usually seen locally, around the neighborhood of simplified

3D objects. These local areas of interest axe produced by choosing vertices of 3D

objects. Our spatial image fidelity measure is developed to compaxe the local intensity

differences of the local areas of interest. The vertices used to create local axeas of

interest axe chosen autom atically based on psychological studies and experimental

observations in real-time rendering.

Preserving image fidelity in the tem poral domain is also a key issue. For real-time

rendering, the ideal situation occurs when the simplified objects look like the original

ones as much as possible and the visual representations of the object changes smoothly

when the user or the object moves between frames. However, multi-resolution algo

rithm s usually simplify representations only based on the current frame. Represen

tations of adjacent fram es could be very different from each other. This leads to

the discontinuities of image quality over time, that is temporal image distortions. A

dynamic measure of tem poral image fidelity of the algorithms is developed in the

framework. It computes the transition smoothness and frequency of representation

changes along a given pa th in a virtual environment. This measure also concentrates

on the local axeas of interest, as the spatial image fidelity measure does.

The key measures will be described in detail in chapter 5.

4.4 Real-time rendering testbed

As indicated in the previous chapter, real-time rendering benchmarks tend to be com

plex and very time consuming to build. Also, fair measurement of multi-resolution

algorithms need various real-tim e rendering benchmaxks. Therefore, instead of pro

viding one or two standard benchmaxks, the thesis concentrates on the techniques

of automatically loading and running various real-time rendering benchmarks. Our

approach is to provide a real-time rendering testbed. This testbed is built around

two core components: virtual environments and navigation paths. A virtual environ

ment is a collection of 3D objects, their attributes and lighting. It is loaded from

VRML2 files. A navigation path is a set of viewpoints that the user uses to navigate

a virtual environment. It is generated either from a 3D input device, such as a 6DOF

tracker or by interpolating a set of viewpoints. By loading and combining the virtual

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environments and the navigation paths, various real-time rendering benchmarks are

obtained for testing multi-resolution algorithms.

The virtual environment is the key component that m ost multi-resolution algo

rithm s work on in real-tim e rendering. For example, level of detail algorithms and

progressive mesh try to render simplified representations of a virtual environment to

gain speed. View dependent algorithms use object hierarchy or spatial subdivisions

to cull invisible surfaces in a virtual environment. In order to effectively apply these

different algorithms to the same virtual environment and compare them , we represent

a virtual environment with a flexible and self-complete 3D scene graph. This scene

graph serves as a common software interface for multi-resolution algorithms. Various

algorithms can be plugged into the testbed via this interface and perform real-time

rendering tasks.

Overall, by autom atically loading virtual environment and navigation p a th datasets,

the testbed avoids the effort of building various real-time rendering tasks. It also pro

vides a standard software interface to plug different algorithms into the standard

measurement environment. The testbed makes it possible to measure and compare

algorithms in a standard real-time rendering environment.

We describe the design of the real-time rendering testbed in detail in chapter 6.

4.5 Chapter summary

This chapter explains the primary goals of this research: to investigate a perfor

mance evaluation framework which is capable of autom atically measuring various

algorithms and producing the performance data. The fundam ental components of

the framework are performance measures and a real-time rendering testbed. Sev

eral typical algorithms are tested using the framework. The results and comparison

of the algorithms, along with the other potential applications of our framework are

described in chapters 8 and 9.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Key Performance Measures

The performance evaluation framework for multi-resolution algorithms described in

chapter 4 is built around two core components: performance measures and a real

tim e rendering testbed. The performance measures axe frame rate, spatial image

fidelity, temporal image fidelity, preprocessing time and resource consumption. In

this chapter, we will discuss the key measures of frame rate, spatial image fidelity

and tem poral image fidelity in greater detail. These measures are experimentally

derived from the performance requirements, common properties and typical artifacts

of current algorithms which are observed experimentally. We will start from the

analysis of the performance requirements and artifacts th a t most multi-resolution

algorithms produce.

5.1 Performance requirements and artifacts of multi
resolution algorithms

Frame rate

As we have discussed, multi-resolution algorithms are developed for real-time ren

dering applications. The illusion of continuous motion in interactive computer graph

ics is usually generated by rendering a number of still images quickly. The number

of frames rendered per second is called fram e rate. In real-time rendering, the still

images are generated according to the user’s view point and view direction. They

must render at a certain frame rate to achieve the effects of continuous and natu

ral movement in a virtual world. Therefore, the basic requirement for algorithms is

to m aintain a frame rate that is above a certain threshold. This threshold can be

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frame
Time
m sec

O riginal--------
Optimal

A Multi-resolution algorithm -----

250

200

150

100

80 120 14060 10020 40
Frame Number

Figure 5.1: Fluctuating fra m e rate produced by a multi-resolution algorithm

specified by users according to different application requirements. M aintaining a con

stant frame rate is also very im portant [21]. Especially when the m ean frame-time is

high, fluctuations in fram e-rate can influence the performance of real-time rendering

tasks [60]. Therefore, frame ra te and constant frame tim e management are important

performance requirements.

Many multi-resolution algorithms don’t produce guaranteed fram e rate, or do not

even improve frame rate. This situation happens when algorithms spend a great

amount of time on their programming strategy and data management, and they

use up the gain of rendering a coarser level of detail. Fluctuations in frame rate

is also a com m on artifact of multi-resolution algorithms. Given a simple real-time

rendering scenario, for example, a user walking towards or away from an object. It

has been proposed that, in such a situation, the distance to the object should be

considered as the criteria for switching level of detail. If the object is far away, use

the coarser representation, and switch to a finer representation when the object comes

closer. This type of algorithm, which does not use any tim e management strategies,

will produce very inconsistent fram e rates. Figure 5.1 shows the typical frame rate

generated in one such experiment.

Spatial im age fidelity

Preserving spatial image fidelity for single frames is an im portant performance

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

goal for multi-resolution algorithms. To speed up fram e rate, algorithms generate and

render approximations of the original models. Ideally, these simplified representations

should resemble the original frames generated by a non real-time rendering algorithm.

During rendering, the less distortion shown in the image sequence, the better.

However, all algorithms produce image distortions and artifacts of some form due

to simplification. Physically, these errors axe differences of pixel values between the

test image and original image. To users, they are of different types with distinctive

features, such as loss of geometric information, loss of intensity and color informa

tion and false object positioning. These artifacts are usually seen locally, around the

neighborhood of the simplified objects. They do not spread to the entire image. Fig

ure 5.2 shows some of the typical artifacts. The bright areas in the difference images

show the scale and location of these artifacts. It is evident that all of artifacts are

around the neighborhood of the cow, and each algorithm produces different artifacts.

Spatial image fidelity measures are developed to autom atically identify the areas of

artifacts and capture these artifacts.

T em poral im age fidelity

To preserve image fidelity in the tem poral dom ain is also a key requirement for

real-time rendering. The ideal situation occurs when the approximations look like the

original object as much as possible and the visual representations of the object changes

smoothly when the user or object moves between frames. However, algorithms usually

simplify representations only based on the current frame. For example, in real-time

rendering, an algorithm renders representation a in frame i. In the next adjacent

frame i + 1, if the frame rate, distance to the object, or other criteria passes a certain

threshold, the algorithm will switch to representation 6. Representation a and 6 in

the two adjacent frames could be very different from each other. This leads to the

discontinuities of image quality over time, i.e. tem poral image distortions. Figure 5.3

illustrates this scenario.

These types of temporal image distortions of multi-resolution algorithms are of

ten referred as popping artifacts. Other temporal distortions include abrupt scene

changes, which are often produced by hierarchical image cache methods and view-

dependent multi-resolution algorithms when they perform real-time rendering tasks.

All of these temporal artifacts are also seen locally, as spatial image distortions of

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) original image

X '

(b)simplified cow by Qslim (228 faces) (c) difference image of a and b

(d)simplified cow by Jade (228 faces) (e) difference image of a and d

(f)simplified cow by Cluster(228 faces) (g) difference image of a and f

Figure 5.2: Local image distortions generated by multi-resolution algorithms

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Original images Test images

Figure 5.3: Popping artifacts in the test image sequence, notice the difference between
frame 4 and 5, frame 13 and 14

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

single frames.

There are two main reasons for temporal image distortions:

• Transitions between different representations are noticeable and not smooth in

the context of moving viewpoints.

• Noticeable transitions between different representations happen too frequently

while viewpoints are moving.

W hen transition roughness, and transition frequency increase, the perceptible

temporal image distortion artifacts become more severe.

Previous experiments show that tem poral distortions are more annoying to users

than spatial distortion in real-time rendering. However, to our knowledge, no ex

periment has been done to measure the temporal distortion of real-time rendering

algorithms. An automatic measure is required to estim ate the distortions.

O ther requirem ents

M ulti-resolution algorithms are expected to use a reasonable amount of resources.

However, some algorithms require large amounts of ex tra da ta which could be several

times larger than the original model. It not only increases the workload of generating

the data, but also involves memory management problems if the data set is too large.

The model preprocessing work is also an overhead for a good real-time rendering

algorithm . E xtra hardware requirements, such as multiprocessors are also restrictions

for general purpose real-time rendering algorithms. W hen the performance metrics

are defined, all of these factors should be taken into consideration.

The performance requirement analysis described in the previous paragraphs im

plies tha t frame rate, image fidelity in both spatial and temporal domain, prepro

cessing tim e and resource consumption are the m ain performance targets for m ulti

resolution algorithms. Algorithms are expected to satisfy the requirement in these

aspects while performing real-time rendering tasks. How well an algorithm performs

in these aspects basically characterize its performance in real-time rendering. We

therefore choose frame rate, image fidelity in both spatial and temporal domain,

preprocessing tim e and resource consumption as the performance metrics in the eval

uation framework. These metrics are specific and measurable. They serve as the

foundation of the performance evaluators in the performance evaluation system. In

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

our performance evaluation framework, these metrics are quantified to produce auto

m atic objective measures. The main focus of the following section is the key measures

of frame rate, spatial image fidelity and tem poral image fidelity.

5.2 Frame rate

Our frame rate measures test how an algorithm satisfies the requirements of frame

rate threshold and consistency. They axe realized in two steps, raw data collection

and data summarization.

The frame rate measures axe based on the fram e time of each frame f i while an

algorithm runs a benchmark. To obtain / t-, the trap instruction mechanism [32] is

used. A sub-routine call is placed at the beginning of the rendering code that records

the time. After finishing the rendering, another trap instruction reads the clock,

subtracts the start value to obtain the elapsed tim e for rendering the current frame.

This mechanism adds little overhead to the rendering time. The resulting data axe

buffered for the next step.

To compare the frame rate performance, the obtained frame time data set needs

to be summarized. Various statistical methods exist for d a ta representation and

analysis [33] [37] [26]. At the moment, we axe concerned with the ones that can

easily be interpreted. The arithm etic m ean / , given by equation 5.1, minimum frame

tim e m in f and maximum frame tim e m a x f axe used to represent the frame ra te

performance. An ideal frame rate is specified as the threshold for a real-time rendering

benchmark. The mean, minimum and maximum fram e time in this test axe compared

with the threshold to see how well the algorithm maintains a certain frame rate.

To compute the fluctuation of an algorithm ’s fram e rate, mean absolute deviation,

which is defined by equation 5.2, is used. Many other data summarization methods

developed in statistics can also be used to obtain accurate analysis, such as sample

variance and semi-interquartile range [32]. It would be useful to experiment with

them in the future.

1 n
7 = n T= i

40

(5.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F = ^ E l / i “ / I (5 - 2)
U ,-= 1

where /,• is the frame tim e of each frame.

After applying the equations to the fram e tim e dataset, the smaller the / and F ,

the better the frame rate performance. For all the multi-resolution algorithms, the

following baseline is applied. A real-tim e rendering benchmark is run with a regular

rendering algorithm, that is without involving any multi-resolution a lgorith m . The

frame rate performance produced by this regular algorithm is the baseline for frame

rate performance. Any multi-resolution algorithm should achieve better performance

when it performs the same task, otherwise it should be ruled out as a real-time

rendering solution.

5.3 Image fidelity

All of the multi-resolution algorithms generate image distortions of some form, such as

loss of geometric, intensity and color information, false object positioning and popping

artifacts. These distortions are annoying to users and they won’t be present if the

algorithms are not forced to trade off rendering quality for speed. Our measures

are developed in the context of real-tim e rendering [67] [68]. While an algorithm

runs a real-time rendering benchmark, the measures locally compare the test image

sequence rendered by this algorithm with the original image sequence rendered by

regular algorithm and autom atically produce the image fidelity performance in both

spatial and tem poral domains. The performance data can be used to generate a

ranking of multi-resolution algorithms.

5.3.1 Spatial image fidelity

The requirement of preserving spatial image fidelity for multi-resolution algorithms

means an algorithm should preserve the appearance of the original models or scenes

from a set of viewpoints on a navigation path. However, almost all multi-resolution

algorithms introduce image distortions and artifacts due to simplifications. These

distortions occur locally, around the neighborhood of the simplified objects, as seen

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in §5.1. Our spatial image fidelity m easure is used to estimate these visible distortions

produced by an algorithm from a set of viewpoints.

R ela ted m easures

Image fidelity measurement problems exist in many areas, such as image processing,

video signal processing, TV and m onitor design, and psychophysics. A considerable

amount of research has been done in these areas and many measures predicting the

visual difference between the distorted image and the original image can be found in

the literature.

Root m ean square error(RMSE) and peak signal to noise ratio (PSNR) are widely

used in image processing [24] [14] [69] [35]. Given the original image and the test

image, equations 5.3 and 5.4 are used to compute RMSE and PSNR.

R M S E = i E l l ™ (* . ») - W I C 5 ' 3)
71 (x , y)e i o

P S N R = -1 0 log n E (x ,y)e/o W x .y) ~ A*,y)) (5.4)
zoo

where || * || is the Euclidean Z/2-norm. An image I is an array of n pixels (a:, y), I 0 ^ y)

and T (x ,y) axe the pixel’s intensity in the original and test images respectively.

RMSE and PSNR axe capable of measuring physical pixel-by-pixel errors between

two images, however, they axe also criticized for lacking local information and visual

perception meanings [59]. For example, given the original image (a) and two distorted

images (6) and (c) as in figure 5.4. RMSE of (6) and (c) are 8.95 and 17.58 respectively,

which suggests image (c) has bigger distortions. However, as we see, image (c) looks

the same as the original image, and image (6) clearly has a large local distortion.

RMSE fails in this situation because it can’t identify the location of the large error

and it evens out the local error over the entire image.

Displaying the difference image between the distorted image and the original image

can help to overcome the problem of root mean square measure. It is often used in

the digital image processing community. It can indicate the location and nature of

the image distortions. For example, figure 5.2 clearly shows the location and size of

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) original image (I = 155) (b) distorted image 1=255 in the white square, otherwise
1=155 (c) distorted, image 1= 154

Figure 5.4: Ranking the distortions using RMSE

the distortion. However, this method does not describe the distortions quantitatively,

thus it can not be directly used for threshold ranking.

Another trend in spatial image fidelity research is to explore the properties of

Human Visual System (HVS) and develop psychophysical models to analyze and

estim ate the visual difference, as in [59] [56] [16]. However, effective models have to

be tested in tedious psycho-visual experiments and are often influenced by factors

beyond experimental control. Also, they tend to be hard to implement and interpret.

Developing universal objective image fidelity measures is still an open problem,

and is beyond the scope of this reseaxch. Techniques developed in other areas, such

as image compression and HDTV m ust be experimentally verified for the domain of

multi-resolution rendering. This is because the image distortions generated by multi-

resolution algorithms have unique properties. They are new, and may have never been

seen before by most users. The goal of our work is to analysis these distortions and

develop specific measures to capture them . These measures serve as the first attem pt

to solve the problem of performance evaluation of real-time rendering algorithms. In

the future, new measures can be added to the framework.

M e a su re E s

The spatial image fidelity measure E s autom atically computes the image distortions

produced by a multi-resolution algorithm while i t ’s performing a real-time rendering

task. The high-level method is as follows:

• For a given real-tim e rendering benchmark (see chapter6), generate the original

image sequence by rendering the given virtual environment along the given path

using a regular algorithm.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Generate the test image sequence using the test multi-resolution algorithm on

the same benchmark.

• The frames of the original image sequence and the test image sequence are

aligned according to the given path, i.e. view points and orientations. If the

test algorithm drops frames during rendering, represent the missing fram es by

the previous frame and make the frame n u m b er of the test image sequence equal

to the original frame number. W ithout loss of generality, it is assumed that the

first fram e is never dropped.

• Com pute the errors between the image pairs using equation 5.7.The average

error of all frames represents the spatial image distortion generated by the test

m ulti-resolution algorithm while i t ’s performing the given real-time rendering

task.

This m ethod, like many related image fidelity measurement methods, is a simple

image pair comparison. The critical part of a spatial image fidelity m easure is how

to compare each image pair. This is where E s differs from other measures.

Briefly, E s computes the image distortion in the local areas of interest only. It

works in the following way:

• Identify a critical vertex, v of an object, in 3D object space.

• Obtain and record the position of v in screen space pi for all frames while

rendering the original image sequence, where i is the frame number. Mark the

frame as Invisible if the vertex is a hidden vertex, or is out of view in the current

frame. pt- is the center of one area of interest. The size of this area of interest, i.e.

the num ber of pixels in this area is at least 1. It can be proportionally enlarged

according to the number of pixels occupied by the object in the current frame.

• Com pute the average of absolute intensity difference esv between the original

image and test image in the area of interest, using equation 5.5.

• Each image pair usually has multiple areas of interest. They are all obtained

in the same manner as described in previous steps. The average of errors of

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all areas of interest accounts for the distortion of this image, which is given by-

equation 5.6.

• Equation 5.7 defines the overall distortions generated by the test algorithm

while it performs the real-time rendering benchmark.

{ 0 if v is Invisible , .
|/0 —1\ otherwise

where 10 is the average intensity of the area in the original image and I is the average

intensity of the area in the test image.

E si = — V) esv (5.6)
n v v€V

where nv is the number of areas of interest, and V is the set of critical vertices.

E s = - f ^ E s i (5.7)
n i=i

where n is the number of frames of the original image sequence.

The value of E s is proportional to the absolute spatial image distortions produced

by an algorithm. That is, a large value indicates tha t the visual representations

produced by the algorithm are significantly different from the optim al representations

for the current real-time rendering benchmark.

Overall, E s computes the images distortions locally, in the areas of interest. It

takes advantages of real-time rendering and multi-resolution algorithms. First, in

real-time rendering, the local area of interest of images can be obtained directly from

3D object space and kept track of by E s. This information is crucial for successful

image fidelity measures. Most other image fidelity measurement problems are difficult

because these error locations can not be easily identified from image space. Second,

multi-resolution algorithms produce image distortions of unique properties. They are

only seen around the neighborhood of simplified objects, and do not spread to the

entire images. Es can just focus on these local areas.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Original image (b) Measured areas shown in green and blue highlights

(c)E s = 1.96648 Jade, 1050f (d)E s = 5.04542 Qslim, 1043f (e)E s = 18.4634 Cluster, 1043f

(f)E s = 18.605 Jade, 190f (g)E s = 22.1036 Qslim, 193f (h)E s = 23.7162 Cluster, 190f

Figure 5.5: Es on single frames

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.5 dem onstrates some experimental results for E s. More results and

analysis are reported in chapter 8.

In figure 5.5. the green and blue highlights are the areas of interest. It is known

from previous discussions th a t these areas are around the neighborhood of chosen

vertices in 3D object space. It is natural to ask how to choose these critical vertices

In this framework, the critical vertices are chosen automatically. They axe m ainly ex

trem a of curvature or mesh discontinuities. The choice of critical vertices is discussed

in greater detail in §5.3.3. For the moment, and also for the next section on tem poral

image fidelity, we assume the critical vertices have already been selected.

5.3.2 Temporal image fidelity

Ideally, multi-resolution algorithms should preserve tem poral image fidelity. In an

image sequence rendered by an algorithm, transitions between different simplified

representations axe expected to be smooth, and noticeable transitions should occur

as little as possible. However, most multi-resolution a lgorith m s simplify representa

tions only based on the current frame. They often produce tem poral errors, such

as popping artifacts. The tem poral image fidelity measure E t dynamically measures

these temporal distortions while an algorithm runs a real-time rendering benchmark.

M e a su re E t

E t uses the same high-level mechanism as E s, in that it computes the temporal image

distortions by comparing the original image sequence and test image sequence. In E t,

both original and test image sequences are described as discrete functions of frame

number. They axe aligned with respect to view points and orientations, just as in E s.

Ideally, for a tem poral image measure, the original and test image sequences should

be represented as functions of time. Temporal image fidelity should be measured

in the context of absolute tim e as well. However, on one hand, the original image

sequences can not be generated in real-time, otherwise there would be no need for

real-time rendering. On the other hand, multi-resolution algorithms usually do not

produce a constant frame rate, as discussed in §5.1. To align images with respect

to time, interpolation or blending of images is needed. The interpolation of images

across time without impairing perceivable image quality is still an open research

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem. Therefore, temporal image fidelity is only computed in the context of image

sequences. The artifacts of inconsistent display rate axe evaluated by the frame rate

measure described in §5.2.

E t is for estim ating the tem poral error, i.e. popping artifacts in a given test

image sequence. As we discuss in §5.1, the tem poral distortions are the accumulated

representation differences between adjacent frames. E t computes the differences in

the following way:

• For a given original image sequence and test image sequence, obtain and keep

track of a local area of interest in the same m anner as in f?s.(§5.3.1)

• For each pair of images from the test image sequence and original image se

quence, compute the intensity error e,- of the local area of interest using equation

5.9.

• Compute the average of the deviation of the intensity error differences between

two successive frames in the image sequence, as given in equation 5.8. The result

is the tem poral error of this local area of interest in the test image sequence.

• The tem poral error for the test image sequence is the average of E tv at all local

areas of interest, as defined in equation 5.10.

1 71— 1

E tv = — V ' |e,-+i — e,j if /0 t- ^ 0 and /O.+i ^ 0 (5.8)
n S

- I i if I0 { / 0
otherwise (5.9)

E t = — J 2 EU (5.10)
nv vev

Differences between the visual representations at the local area of interest in ad

jacent frames contribute to the values of E iv. The larger the difference, the larger

the value of this measure will be. If an object changes representations frequently,

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and these representations are significantly different, then E tv will have a large value.

This situation corresponds to an object tha t pops noticeably and frequently as the

user moves through the environment. The average of E tv at all local areas of interest

represents the temporal distortions of an algorithm.

A naly sis o f m e a su re E t

E t is based on the deviation of vertices’ intensity error between adjacent frames. In

real-time rendering, a vertex color is determined by its position, normal, m aterial

and lighting in the scene. Theoretically, or according to the OpenGL lighting model

[63], it is independent of viewpoint if there are no moving lights, spotlights and

specular reflection effects in the scene. In this case, the vertex color of the original

model remains the same as long as it is visible. The intensity of the corresponding

position in the test image sequence should m aintain the same value if there are no

temporal artifacts in the test image sequence. If there are any intensity changes at

the corresponding position in the test image sequence, they are purely caused by the

algorithm’s temporal errors, such as popping artifacts. E t accurately represents this

fact in the ideal situation.

In the cases with spotlights, moving lights or specular reflection in the real-time

rendering task, the intensity of a vertex changes with moving viewpoints. Thus, the

intensity at the same object position doesn’t stay the same from frame to frame, even

for the original image sequence. So it doesn’t in the test image sequence. Therefore,

there will be a certain amount of noise if we directly compare the intensity deviation

of adjacent frames.

Thus, E t uses intensity error e,- between the test image and the original one for

each frame pair. This tries to reduce the noise and isolates the visual distortions

caused by the multi-resolution algorithm in the measured area from normal intensity

changes from frame to frame. I t does not claim to be the best solution. However, in

practice the results turn out promising, as we will see in chapter 8.

Since E t is based on the pixel intensity of vertices, its accuracy can intrinsically

be affected by another type of noise — aliasing. For example, in the ideal case of no

moving lights, spotlights and specular reflection effects in the scene, the intensity of

a vertex should maintain the same value in an image sequence so long it is visible.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, due to limited sampling rate and computation precision, the intensity can

vary among different frames. This will cause E t to have a non-zero when there axe

no popping artifacts at all. E t is not capable of removing such noise completely.

However, in practice, algorithms axe measured using the same real-time rendering

benchmarks, and the noise tends to follow a similar pa ttern . It thus does not impose

a serious effect on ranking algorithms tem poral image fidelity. The experiment results

in both chapter 8 and chapter 9 provide the evidence.

5.3.3 Critical vertices

As we have seen in the last two sections, both of the spatial and temporal measures

axe based on the intensity difference in the local areas of interest. These local areas

axe obtained from the chosen vertices in the given 3D scene. In this framework, these

vertices axe term ed critical vertices. They axe the source of the local areas of interest.

This section examines how to select these vertices automatically.

A 3D scene consists of a set of 3D geometric objects and their attributes. Any

geometric object can have many vertices. For example, the “cow” used previously

has 2904 vertices. The “Stanford bunny” shown in figure 5.6 has 35947 vertices. In

real-time rendering, many of these vertices may be invisible in many frames due to

visibility culling. Even if they axe visible, thousands of vertices can be projected to

just a few pixels. If all of them axe used to compute local area of interest for every

frame, it is computationally inefficient and unnecessary. It is evident that critical

vertices need to be selected from the vast num ber of vertices in a 3D scene.

The problem is which vertices of a 3D object axe critical vertices? A classic result

on this issue was reported by Attneave in 1954 [3] .In his famous visual perception ex

periments - the Attneave Cat, Attneave discovered that th e most informative points

of a 3D object axe at its extrem a of curvature. Changes in these areas axe more no

ticeable to users than other areas. Previous research on mesh simplification have also

found similar results for this problem [28] [23]. It has been reported tha t surface dis

continuities of a 3D object such as open boundaries, and borders between differently

colored regions, and creases are often among its most visually significant features.

The appearance of their neighborhood should be preserved first.

The above discoveries suggest that vertices on extrem a of curvature and discon-

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tinuities of a 3D object axe a good choice for critical vertices. We therefore start the

experiments with this idea. The vertices of an object are classified into three cate

gories, extrem a of curvature, discontinuities and regular vertices. Critical vertices axe

mainly chosen from the first two categories.

E x tr e m a o f c u rv a tu re

On a surface, there is a curvature in every direction. Unless the curvature is equal

in all directions, there must be a direction in which the normal curvature reaches a

maxim um and a direction in which it reaches a minimum. These directions are called

the principal directions and the corresponding curvatures ki, k2 axe the principal cur

vatures. In practice, the principle curvatures are often used to define other curvatures

to represent surface properties, such as the Gaussian curvature K = ki * k2 and the

mean curvature H = (ki + k2)/2 . W hen computing extrem a of curvature, only the

principle curvatures are considered.

The extrem a of curvatures on a surface occur where there is the curvature m axim a

or minima. Curvature can be positive and negative. So, curvature extrem a refer to

where the magnitudes of the principal curvatures axe maxima or minima. Users can

specify the range of the principle curvature m agnitude required for a point to qualify

as an extremum.

Various methods axe available to compute k i and k2 of a vertex on a discrete

surface, i.e. a mesh. We found Garland’s quadric m atrix is preferable [22]. He

defines a quadric m atrix Q for each vertex in a given mesh. Q is the sum of a set of

fundam ental quadric m atrixes which represent an entire set of planes adjacent to the

vertex. The vertex is the corner of this set of planes. Equations 5.11 and 5.12 define

the quadric m atrix Q.

Q = £ K r
p€ p lanes(v)

(5.11)

(a2 ab ac ad \
ab b2 be bd
ac be <? cd

\ ad db dc d? /

(5.12)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where ax + by + cz + d = 0 is the plane equation of an adjacent face of the vertex

v. Garland [23] has proved tha t for a sufficiently dense mesh, the eigenvalues of

the quadric m atrix Q of a vertex are proportional to the squares of the principal

curvatures and that its eigenvectors axe the corresponding principal directions. So,

for each vertex on a mesh, The principle curvatures ki and & 2 are estim ated with

Garland’s quadric m atrix Q. In detail, the eigenvectors and eigenvalues are computed

using Jacobi’s algorithm. Sort the three eigenvalues, the second one 0 2 is proportional

to k \ and th ird value a3 is proportional to The vertex is an extrema of curvature

if the larger one of a-i and a3 is larger than a user specified threshold.

Using this m ethod, we might miss some extrem a points. When the principle

curvatures of all vertices in an object are larger or equal to zero, the vertices of

minim a of curvature are missed. If the principle curvatures of all vertices in an object

are smaller or equal to zero, the vertices of maxima of curvature are missed. However,

in practice, these situations seldom occur for a complex 3D model.

Surface d iscontinu ities

The geometry and attributes of a 3D object can give rise to discontinuities in its

visual appearance. The discontinuities are of three types. They are geometric open

boundaries, borders between differently colored regions and creases. They usually

form visually significant features of 3D objects.

Computing the discontinuity of a mesh is trivial and straightforward. Typical

methods can be found in many computer graphics books, such as [19].

Figure 5.6 show the critical vertices of sample objects selected using the above

described method.

5.3.4 Size of the area of interest

The image fidelity measures of E s and E t are based on image pair comparison at

the local areas of interest. Previous sections explained how to find the location of an

area of interest. This section briefly discuss a method of computing its size, i.e. the

number of pixels in the local area of interest.

By default the size of an area of interest is one pixel, the pixel corresponding

to the critical vertex in the projection of the object. Previous research in real-time

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Original cow (b)Visible critical vertices

(c) Original dragon (d)Visible critical vertices

'v. '̂ •
^Ilf!K & ,

.A.'. •*;&>' /

(e) Original Stanford bunny (f) Visible critical vertices
Green highlights are extrem a of curvature, blue highlights are mesh discontinuities

Figure 5.6: Critical vertices

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rendering, such as [21], indicates tha t a laxger object in screen space is more visually

im portant than a smaller object. This suggests that the size of a local area of interest

should be selected to reflect the visual importance of this axea. The laxger the object

appeaxs in the screen in real-time rendering, the laxger the local areas axe. Equation

5.13 shows that the size of a local axea of interest iV,- is proportional to Si, which

represents the screen size of the associated object, where ki is a user determined

constant.

Ni = h * Si (5.13)

The problem is how to compute the scalar factor S{. For a simple virtual envi

ronment which has only one object and a black background, computing the exact

nu m b er of pixels occupied by a 3D object is easy. For each frame, it is the entire

window size minus the number of background pixels. However, for a more complex

virtual environment which has multiple objects or a textured background, it becomes

a non-trivial problem. Image analysis techniques axe required to compute the pixel

number of an 3D object in image space. In the context of our image fidelity measures,

we axe not concerned with the exact screen size of an object, rather an approxima

tion. Si is not necessarily the exact screen size of an object. It is sufficient to be

a proportional scalar factor which represents the changing screen size of an object.

More importantly, we prefer an efficient method to compute Si since this computation

is needed for every fram e of a real-time rendering task. To satisfy these two require

ments, we choose an simple m ethod to obtain the approximation from the 3D object

space. A 3D object’s bounding box and the distance between the user and the object

contribute to its screen size. The laxger the object is, the laxger axea it occupies in

an image; The closer an object is to the viewer, the laxger it appears. Based on this

projection principle, Si can be defined in the equation 5.14:

Si = k2 * B /d i (5.14)

W here k2 is a user defined constant, B is the diagonal of object bounding box and

di is the distance between the viewer and the object in frame i.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This m ethod basically reflects the idea that a laxger and closer object has laxge

axeas of interest. It is computational efficient, but it is by no means the best solution

for computing the size of an local axea of interest. It can’t model the fact that an

irregular shape has different screen size projected from different directions. Accurate

and efficient methods should be studied in the future. Another factor in computing

the size of an local axea of interest is the constants ki and k2. They determine

th e range of the actual pixel numbers in a local axea of interest. O ur experience

is th a t they should be small enough to keep the actual pixel numbers in the range

of 1 to 10. Laxge sizes can cause m any overlaps of the local axeas. They can also

introduce intensity errors a t the object boundaries. Therefore, E s and E t work better

in practice if the local axeas of interest axe small.

5.4 Chapter summary

T he key performance m etrics and autom atic measures of multi-resolution algorithms

for real-time rendering have been presented. The metrics axe defined based on the

general requirements tha t the algorithms axe expected to satisfy. The typical artifacts

of multi-resolution algorithms axe also analyzed in this chapter. Finally, the autom atic

measures of of frame rate, spatial image fidelity (E s) and tem poral image fidelity (Et)

th a t axe developed to capture the artifacts and evaluate the algorithms axe presented.

T he measures axe designed to work specifically for multi-resolution algorithms in

real-tim e rendering applications. They axe easy to implement and interpret.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Real-time Rendering Testbed

As we have seen in chapter 3, many multi-resolution algorithms have been pro

posed, such as level of detail, continuous multi-resolution and view-dependent m ulti

resolution algorithms. The goals of these algorithms are to improve rendering speed

and preserve image fidelity as much as possible when applied to real-time rendering

applications. To effectively evaluate these algorithms, a unified test environment is

needed. First the general requirements of real-tim e rendering benchmarks are dis

cussed. Then, the real-time rendering testbed design is described, along with how

the testbed can load various real-time rendering benchmarks and also plug in algo

rithm s for measurement. Lastly, the parameters and factors of the real-time rendering

benchmarks axe discussed.

6.1 Real-time rendering benchmark requirements

Loosely speaking, any interactive 3D application can be used as real-time rendering

benchmarks. They include 3D navigation, interactive 3D operations, and real-time

CAD. Among them, 3D navigation is the most basic and common real-time rendering

task. It enables a viewer to experience a virtual environment by simulating a walk

through of the computer generated 3D models. They can stand alone, or they can form

the basis for other real-time rendering applications, such as real-time CAD/CAM. In

the performance evaluation framework we concentrate on 3D navigation applications

only. A broad range of 3D navigation applications of different workloads axe used as

real-time rendering benchmarks for testing multi-resolution algorithms.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L-**'
Multi-resolution
algorithms

Application programVirtual Environment
3D navigation task3D o b je c ts and

a ttr ib u te s

RasterizerApplication

Display
Devices

Figure 6.1: 3D navigation application system

Building a 3D navigation system, as building other interactive 3D applications,

tends to involve many hardware and support software configurations. Besides the

rendering pipeline (§3.1), input devices and display devices need to be configured as

well. Figure 6.1 illustrates the high-level conceptual diagram of such a system.

From an application point of view, the following has to be done to obtain one

real-time rendering benchmark:

• Model the geometric objects in the virtual environment

• Define navigation tasks.

• Create a view at each step of the navigation.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Render the virtual environment using the graphics rendering pipeline.

• Configure input devices and display devices

Development of each of the above steps is tim e consuming and not easy. Par

ticularly, large and complex virtual environments axe notoriously difficult to model

and very tedious to build. To evaluate multi-resolution algorithms thoroughly and

fairly, one would like to have many different real-tim e rendering benchmarks. It is

obviously not optimal for users to design every benchm ark step by step from scratch.

This raises the first requirement for real-time rendering benchmarks. One would like

to have high-level system support to avoid complex system configuration, and sys

tem atic methods to simplify real-time rendering benchm ark design. It would be ideal

to automatically load and run various real-time rendering benchmaxks.

The second requirement of the benchmaxks is to have a standard software inter

face for the algorithms evaluated in the real-tim e rendering benchmark. On one hand,

it is easy for a multi-resolution algorithms to be hooked up and tested with many

benchmaxks without changes. Thus the algorithm can be evaluated m ore thoroughly

and fairly. On the other hand, the standaxd interface makes it possible to test diverse

algorithms with the same benchmaxks and thus compaxe their performance. W hen

we look at the system architecture of a typical real-tim e rendering benchmark (Figure

6.1), we see that multi-resolution algorithms only interface with a sm all portion of it,

despite its complex system configuration. Algorithms axe mainly concerned with the

application module. In particular, most multi-resolution algorithms work on virtual

environments only. They try to choose an appropriate representation of the virtual

environment and produce faithful pictures of it interactively. For example, level of

detail and continuous multi-resolution modeling try to render simplified representa

tions to gain speed. View-dependent multi-resolution algorithms also use an object

hierarchy or spatial subdivisions to cull invisible surfaces. Thus, with a well designed

system architecture for real-time rendering benchmaxks, a software interface to virtual

environments is essential and enough for joining algorithms and benchmaxks together.

Thirdly, real-time rendering benchmaxks have many param eters, including system

configuration parameters and task parameters. These param eters should be recorded

and easy to control. Thus they can be used repeatedly to benchmark a set of different

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithms and across diverse real-time rendering application environments.

Overall, these requirements indeed ask for a system atic unified real-time rendering

testbed. It avoids complex system configuration, simplifies the work of benchmark

design, loads and runs various real-time rendering benchmarks, and also allows al

gorithms to be plugged in, measured and compared. It is also one of the primary

research goals to develop a unified benchmarking platform to satisfy the above re

quirements. The next section describes the design approach of the testbed.

6.2 Testbed design

The central task of the testbed design is to capture the general characteristics and

control structures of typical real-time rendering benchmarks and build a real-time

rendering application framework. As we have discussed, real-time rendering bench

marks simulate users’ viewing while they are walking through, observing or examining

a 3D virtual environment. Typical examples include examining a set of 3D models

from different viewpoints in real-time, walking through a virtual building, flying in

a virtual outdoor scene, or wandering or even jum ping in any computer generated

world.

Such applications can almost all be implemented in the following simulation loop.

• O btain a viewpoint on a navigation path, either from user input or program

simulation.

• Update the virtual environment based on the viewpoints.

• Render the virtual environment.

From a system analysis point of view, such an application can also be divided into

two main components :

• V irtual Environments: They are composed of hierarchically grouped 3D geo

m etric objects, their properties and behaviors. The properties include materials,

textures, transformation hierarchy and lighting. A basic object behavior is to

have its graphics output on the screen through the rendering pipeline.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Interactive Navigation Paths: They represent key param eters of 3D navigation

programs. A navigation path consists of a sequence of viewpoints and view

orientations.

The goal of the framework design is to encapsulate the routine simulation loop in

the two components and provides a high-level software interface for the algorithms.

In the m ean tim e, by loading various virtual environments and paths, and mixing and

m atching them , the framework can run a variety of real-time rendering benchmaxks

which facilitate performance evaluation of multi-resolution algorithms.

6.2.1 Virtual environment

The virtual environment is the most im portant component in the testbed, since it is

where most algorithms interact with our framework. We axe concerned with providing

a standard interface for the algorithms and also various virtual environments with rich

content. It raises the technical issues of scene graph, virtual environment dataset and

file parser.

Scene graph

A virtual environment is a collection of geometric objects, their properties and lighting

in a 3D world. It has many parameters, such as object coordinates, edges, faces, object

size, m aterial, texture, lighting, group and transformation information etc. The most

popular modeling structure for describing such virtual environments is hierarchical

modeling. In this technique, a virtual environment is organized as a directed acyclic

graph (DAG), which is also referred to as a scene graph. The nodes in the graph hold

graphical da ta and dictate grouping structure, while the edges of the graph describe

the inheritance relationships of state information. Figure 6.2 and 6.3 show an example

of the scene graph and view of a virtual environment.

A scene graph not only organizes its constituent objects, but also defines their

regular rendering protocol. Its architecture is of great interest to multi-resolution

algorithms, especially view-dependent algorithms. A number of scene graph architec

tures exist. A typical one in the early years is the central stT~ucture storage in PHIGS

[19]. It stores the objects in a structure hierarchy which facilitates sequential display

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2: Cow picture

traversal. However, this has a major lim itation. In the scene graph, a leaf node’s

state (attributes or transformation) is affected by any state changes of a node above

or to the left. In the example shown in figure 6.3, if it was structured in PHIGS or

Openlnventor scene graph, the cow has to be displayed before the terrain to get a

correct picture. Therefore, the rendering traversal of such a scene graph has to be

from top to bottom and left to right. This characteristic limits application of many

current multi-resolution algorithms, such as view-dependent and hierarchical cache

algorithms. Many current scene graph structures share the same limitation, such as

SGI’s Openlnventor and the early version of VRML 1.0.

To provide a standard and usable interface for existing multi-resolution algorithms,

one would like to have a scene graph structure without the previous limitation. An

algorithm should be able to traverse the scene graph in whatever order it wishes. It

can traverse the scene graph from left to right and top to bottom , in level order from

right to left, or even in parallel. This requires a scene graph structure, in which a leaf

node’s state is only defined by the nodes in a direct path between the scene graph’s

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scene Graph

' Terrain ^
Transformation

^ Cow >
TransformationLights

INDEXED
FACESET Texture

Cow uterusCow hornsCow hoofs

INDEXED
FACESET

INDEXED
FACESET

AppearanceAppearance

INDEXED
FACESET

INDEXED
FACESET

AppearanceAppearance

Figure 6.3: Cow scene graph

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

root and the leaf. The scene graph structure in our performance evaluation framework

satisfies this requirement. It is defined as a DAG where the nodes in the graph hold

graphical data and dictate grouping structure, while the edges of the graph describe

information inheritance relationships. A scene graph may contain internal nodes and

leaf nodes. The leaf nodes hold geometric and appearance information. In our system,

they axe triangular indexed face sets , i.e. meshes, and their appearance properties.

This is the node which most current multi-resolution algorithms interact with. Since

algorithms mainly work with meshes, they are the main geometry nodes defined in

our scene graph. Internal nodes of the scene graph hold either grouping information

or scene state information, such as transformations. The grouping and scene state

information can only be inherited along the path from root to leaf. Thus, there is no

restrictions on how an algorithm traverses the scene graph. V irtual environments axe

built upon this relatively simple d a ta structure, so that a number of algorithms can

be applied to it and evaluated. Figure 6.4 shows the scene graph architecture.

This scene graph is similar to the scene graph structure of Java 3D and VRML

2.0, in the sense that it does not restrict the display traversal order. However, it

is much simpler than Java 3D and VRML 2.0. I t serves one purpose only, which

is to support plugging in various multi-resolution algorithm. It is intended to be

minimal and complete to reduce the work load of the performance evaluation system

itself. In contrast, the Java 3D A PI is designed to provide a rich set of features for

creating interesting 3D worlds in Java using a high-level object-oriented programming

paradigm. VRML 2.0 is designed for interactive 3D graphics on the web. The scene

graph’s Internet functionalities are certainly not of interest to our problem. Both

Java 3D and VRML 2 scene graphs have complex and huge structures. We have

experimented with the VRML 2.0 scene graph. The file parser code itself and the

generated scene graph from a m edium size 3D scene consume a huge amount of

memory. On a networked SGI platform with 32M RAM, page swapping occurred

during the actual performance evaluation. Therefore, a simple, minimal and self-

complete scene graph structure was designed and implemented as shown in figure 6.4

for our performance evaluation framework.

In the scene graph, each node encapsulates its basic behavior, which is display its

graphics output on the screen. Together they define the regular rendering algorithm.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V irtu a l environm ent dataset

It is tedious and very tim e consuming to model interesting v irtual environment. This

conclusion is drawn from other researchers’ and our own experience. In 1996, we did

an “Athabasca Hall” walk-through project. It took us one whole month to model the

3D Athabasca Hall interior and exterior from its 2D blue prin t. Fair measurement

of multi-resolution algorithms requires many virtual environment models. It is not

productive for us to spend a huge amount of tim e on modeling them all.

Many 3D models are available on the Internet, from single objects to complex vir

tual environments. They are often designed for interactive 3D graphics applications

in real-life. These models are good resources for composing th e virtual environments.

They can be used directly or they can be put together to construct virtual environ

ments of different scales and complexity. In e ither way, it alleviates the user’s tedious

effort of virtual environment modeling. On th e Internet, the models are often found

in different file formats, such as 3DS, DXF, Openlnventor, VRML 1.0, or VRML2.0.

Most of the formats are interchangeable. In our framework, we use VRML 2.0 as ex

ternal data format. All the virtual environments axe described in VRML 2.0 form at

and follow the VRML2.0 syntax.

V R M L 2.0 parser and scene graph gen erator

VRML 2.0 is a scene description language th a t describes the geometry and behavior

of a 3D scene or world. It is the most commonly used file form at for web 3D graphics

currently. It has the capacity of describing complex and anim ated 3D worlds with

its scripting feature. The VRML 2.0 specification and examples can be found on

the web [10] [11] and the VRML reference manual[4]. Several VRML 2.0 browsers

have been developed commercially, such as Cosmo Player [64]. Unfortunately, the

implementation details and source code are not available to us. In order to use

the VRML 2.0 datasets, a prototype VRML 2.0 parser and scene graph generator

was implemented. They are able to parse any VRML 2.0 file, filter out un-wanted

information and generate an in-memory scene graph of the structure described in

section 6.2.1. The VRML 2.0 parser and scene graph generator bridge various existing

VRML2.0 worlds with our scene graph structure, thus solving the problem of virtual

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environment modeling.

6.2.2 Interactive navigation paths

Some multi-resolution algorithms [21] [50] lack complete evaluation in th a t they were

tested in just one or two fixed-path navigation experiments. These paths are all ar

tificially generated. To test the algorithms thoroughly, we need many more different

interactive navigation paths, both m athem atically generated paths and the ones cap

tured from users’ natural motions. We denote the mathem atically generated path as

level 1 paths and the natural movement generated path as level 2 paths. The level

1 paths are used to evaluate the algorithm for some particular task, such as moving

along a path with high path coherence, or with little path coherence. They are also

good for some special tests, such as how the algorithm works while viewers are moving

towards or away from the geometric objects. The level 2 paths axe for testing how

algorithms behave while running real life navigation tasks.

The challenge is to provide techniques to generate, record and apply these in ter

active navigation paths to virtual environments. The level 1 paths are constructed by

defining and interpolating the key points of a path using a m athem atical representa

tion, such as walking along a B-spline path . The interpolation methods include linear

interpolation and cubic spline interpolation. Linear interpolation is usually fast to

compute. The continuity is not as good as cubic spline interpolation. However, cubic

spline interpolation is computationally expensive. The level 2 paths simulate users’

natural motions. For example, a user holding a 6DOF tracker can freely navigate a

virtual environment in whatever way she wants, such as any combination of looking

up, down and around, walking or flying in 3D space. Such a path can be collected

from any 6DOF interaction device, such as head mounted display, 6DOF trackers,

space-balls and joysticks. A virtual reality software system, the MR toolkit, devel

oped in the University of Alberta, provides the low level software support for these

devices [51]. They include data sampling and filtering procedures. Research results

on how to efficiently navigate a 3D environm ent are also available for us to use [13]

[52] [57],

The obtained paths need to be sampled and recorded so they can be used repeat

edly to test all multi-resolution algorithms. In our framework, both level 1 and level

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 paths are recorded as a sequence of 3D positions and quaternions. This format is

easy for recording, and sampling 3D translations and rotations.

A real-tim e rendering benchmark is generated by applying a navigation path to a

virtual environment.

6.3 Benchmark parameters

After solving the above technical issues of real-time rendering benchmarks, a bench

m ark can be easily composed using the virtual environment described in a VRML

file and a navigation path. They can be loaded into our testbed and used to measure

multi-resolution algorithms.

In a performance study, the benchmark characteristics that affect the performance

of test subjects are called -parameters. Providing a complete list performance param

eters in a performance evaluation system is im portant for performance comparison

and analysis. In our performance evaluation framework, the parameters are classified

as system param eters and task param eters. System parameters are the parameters

of the testbed itself, which include the param eters of support hardware and software

platforms. Since algorithms are measured and compared on the same platform, these

param eters do not vary among various algorithms. The system parameters include:

• CPU speed/status

• Memory

• Graphics card

• Network status

• Operating System type

• Single User/M ultiple User

• 3D input devices

• Display devices

• Compiler

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Graphics API

Task param eters axe characteristics of real-tim e rendering benchmarks. They

could vary from one test to the next. These param eters tend to affect the algorithm

performance more than other parameters. They are often chosen for performance

analysis and comparison. In real-time rendering measurements, task parameters in

clude

• The virtual environments, including geometric objects and their attributes,

transform ation/group hierarchy and lighting.

• Navigation paths. Level 1 paths include key points, interpolation methods, and

number of samples. Level 2 paths include sample frequency, number of samples

and 6DOF tracker control method.

• Number of critical vertices

W hen reporting an a lg o r ith m ’s performance, both system and task parameters

should be included. For complete performance analysis, tasks parameters should be

studied.

6.4 Chapter summary

In this chapter, a real-time rendering testbed for multi-resolution algorithms is pre

sented, in which various 3D navigation tasks can be loaded and run to measure a

range of algorithms. The testbed is based on a standard scene graph and navigation

paths. VRML 2.0 files and paths can be autom atically loaded and used to generate

various real-time rendering benchmarks. It avoids the tedious work of building these

tasks. It also provides a unified interface for plugging in diverse multi-resolution

algorithms.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scene Graph
/A p p ly Culling / Image ’**
\ Cache Algorithms /

••• •••

Transformatio
/LOO/Collisio

ransformation
/LOD/Collision

Transformation
/LOD/Collision

INDEXED
FACESET

INDEXED
FACESET

AppearanceAppearance

Apply Multi-resolution Algorithms

Figure 6.4: Scene graph architecture

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

RRB — A Prototype System

To study the merits of our ideas, and use them to evaluate current multi-resolution

algorithms, a prototype system, called “RRB”, has been developed. It integrates

the autom atic measures and the real-time rendering testbed and provides a standard

system environment for autom atically evaluating m ulti-resolution algorithms. In this

chapter, its implementation is briefly discussed. Details axe provided in appendix

A. Some of RRB functionality is also described in th is chapter, demonstrating the

potential easy of use and flexibility of the performance evaluation framework.

7.1 Implementation overview

The implementation started in early 1997. Little is left from the first version as

numerous revisions have been made, reflecting the insights gained in investigating

the performance evaluation problem of multi-resolution algorithms.

RRB realizes the framework system architecture and integrates the techniques of

autom atic measurement and real-time rendering testbed design th a t were described

in the preceding chapters. It is intended to simplify the tedious effort of performance

evaluation, and provide a standard environment to produce consistent performance

results which later can be used for performance compaxison.

As an object-oriented application framework, RRB consists of a collection of re

lated classes. Figure 7.1 shows the main classes tha t form the architecture of RRB.

Each box represents one class with its main functionalities. The lines between

the classes show collaboration relationships. From the figure we can see th a t the

class of RRBWorkspace connects to almost all the other classes. It is the center of

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[~ AlgorithmWrapperClass
I .Rendering
L.---------------- T ------------------

Inheritance
V

SceneGraphObj
.Regular rendering
.LOD rendering

Inheritance Member

f Multi-resolution^,
V algorithms S

SceneGraph
•SceneGraph hierarchy
.Regular rendering
•LOD rendering

 T- - - - - - - - -A Member

Ve
.Parse VRML file
.Generate SceneGraph

EyePath (Abstract)
.Generate viewpoint
.Generate view volume
.Viewpoint control

Access/Control

Access

I

MathPath

Datapath
Inhej itance
'.rnple ten C a tio n

TrackerPath
Access

RRBWorkSpace
.Choose a multi-resolution
algorithm
.run an algorithm
.Perform measurement operations
•Collect resource information
•Dump measurement results

Access/Control

DBenchMark
.Select critical vertices .Generate local areas of interests .Compute Es and Et

Access

Access/Control

I
Control

RBBApp
•Manage resources of
RRBController window
and RRBViewer window
.Register operation
commands
.Invoke callbacks

A ccess/C on trol

Timer
.Collect timing data
.Compute framerate
performance

Framebuffer
.Collect intensity
data in areas of
interest

Figure 7.1: RRB architecture and class relationship

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the system structure. The figure also demonstrates how a multi-resolution algorithm

interacts w ith RRB. By adding a wrapper class, an algorithm can interface with

RRB without changing its internal implementation. Thus it is easily plugged into

RRB for performance evaluation. In the next section, an example is used to show the

interfacing technique.

7.2 Interface between multi-resolution algorithms
and RRB

RRB is a performance evaluation framework for multi-resolution algorithms. At the

moment, it supports the regular rendering algorithm and level of detail algorithms

based on the distance between the viewer and objects. Level of detail algorithms can

be evaluated directly using RRB, providing the LOD models and distance criteria.

O ther multi-resolution algorithms need to be plugged into RRB for measurement.

As discussed in chapter 6, most multi-resolution algorithms work on the geometric

node of IndexedFaceSet. Some axe combined with culling techniques or hierarchical

cache to improve rendering speed. In either case, RRB provides an interface to

plug in the algorithm, which is actually a derived class of SceneGraphObj. The

SceneGraphObj class is a base class which defines the basic interface for all scene

graph objects. The set of scene graph node classes implemented in RRB are:

• Appearance

• Box

• Collision

• Color

• Coordinate

• DirectionalLight

• Group

• ImageTexture

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• IndexedFaceSet

• LOD

• Material

• Normal

• Point Light

• Shape

• SpotLight

• TextureCoordinate

• TextureTransform

• Transform

Each of the classes maintain a set of scene graph attributes and provide the ren

dering methods. They together form the scene graph hierarchy and implement the

regular rendering algorithm of a virtual environment.

Among them , IndexedFaceSet is of in terest to most algorithms. Here, Lau’s sim

plification list [34] is used as an example to show how a typical multi-resolution algo

rithm is interfaced with the IndexedFaceSet class in RRB. The algorithm consists of

eight classes. Only one that provides the final simplification and recovery methods is

interfaced with RRB. The rest are treated as black-boxes. To interface the algorithm

w ith RRB, a wrapper class is needed to connect them together. Internal implemen

tations of both RRB and the algorithm are not changed. Figure 7.2 shows the class

diagram of the interface.

It is the framework system architecture th a t enables the clear and simple hookup.

Complex real-time rendering system configuration and real-time rendering bench

marks are all handled in RRB itself. A fter the hookup, RRB can load and run

various real-time rendering benchmarks and produce the performance data of the

algorithm.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ALGORITHM RRB

Other claaaea
OtherSRHode *coord;

sreoda *noraal;
SRHOde *color;
SRNode ‘texCoord;
MFInt32 *coordIndex,

TndexedFaceSet

void CallapO;
void SiaplifyModelO ;
void HiatSiaplifyModal();
void RecovarModelO;
void Ret_Diap_ModeI();

CModel

void checkinjndelO;
void readerO;

AlgorithaMrapper

Figure 7.2: Interfacing the algorithm with RRB

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 Performance evaluation with RRB

For users’ convenience, RRB provides a 2D GUI to facilitate measurement opera

tions. It has a control window which facilitates measurement operations, and a view

window providing a visual display of how an algorithm runs the real-time rendering

benchmarks. Figure 7.3 shows a snapshot of RRB.

Using RRB, the measurement of a multi-resolution algorithm can be done in just

a few steps.

The first step is to load a real-time rendering benchmark. A real-time rendering

benchmark consists of two components: a virtual environment and a navigation path.

A user first loads a virtual environment from a VRML 2.0 file. After the user specifies

the file, RRB is responsible for parsing the file and generating the scene graph. Then,

the user can specify the navigation path, which can either be a level 1 path or a level

2 path. A default path is defined in the system, if she chooses not to select one by

herself. RRB will automatically m ap the p a th on the loaded virtual environment and

display frame 0. The loaded benchmark can be used to test m ultiple algorithms.

The second step is to measure the chosen algorithm ’s performance for this bench

mark. An algorithm’s frame rate, pre-processing tim e and resource consumption can

be obtained while it runs the benchmark. T he user initializes the algorithm by clicking

the corresponding radio button in the control window. The measurement procedure

is then activated by just clicking the Navigation button. RRB records timing data

of the pre-processing procedure and the rendering of each frame. Once the task is

over, the user can click FrameRate to dump the frame rate, algorithm pre-processing

time, and memory usage, along with current platform related information to a data

file. Measurement of the algorithm ’s image fidelity is also done by clicking a few

buttons. First, by clicking Orglnfo, the user instructs RRB to automatically choose

critical vertices and obtain the positions and intensity of areas of interest produced

by a regular algorithm for this benchmark. This information is kept in RRB for re

peatedly measuring multiple algorithms until a new virtual environment or path is

loaded. Then, the algorithm runs the benchmark, and its spatial and temporal image

fidelity are computed once button EsEt is clicked. B utton ImgQ is for dumping the

image fidelity results.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Session Display Help About

Load VE

MathPathO Regular <> Algrithm 2

O Algrithm 1 O Algrithm 3 Datapath

I Tracker Path

jNavigate j Step | f R ^ e t -Resume

UrameRatej Orgln mm

Stap 2: Choosa an algorithm

Stap I t load a raal-tima randaring banchmark (a VRML fila and a path)

Stap 2:Maasura frama rata, pra-procassing tima and raaourca Stap 2tMaasura imaga fidality

Currant frama rata
Currant £raa>a numbar

Figure 7.3: RRB snapshots

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In RRB, all the GUI components for measurement operations are activated or

deactivated autom atically in a constrained sequence to help users reduce errors. While

far from a complete set of performance measurement tools, RRB provides a reasonable

base for most performance evaluation studies of multi-resolution algorithms that we

discuss in this document.

7.4 Chapter summary

In this chapter, we introduce the prototype system RRB, which realizes the perfor

mance evaluation techniques discussed in the preceding chapters. It is shown that

performance evaluation of a multi-resolution algorithm with RRB is easy. RRB avoids

the effort of real-time rendering system configuration and benchm ark development.

Thus, it significantly reduces the work of performance m easurement.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Evaluating the Framework

In previous chapters, the fundamental ideas of the performance evaluation frame

work of multi-resolution algorithms and the prototype system were described. This

chapter demonstrates that RRB is capable of automatically measuring various multi-

resolution algorithms and producing consistent performance data.

8.1 Evaluation method

The m ain purpose of this research is to investigate ways of automatically evaluating

multi-resolution algorithms. Since RRB is the first performance evaluation frame

work, there is no similar existing system to compare with. One way to verify the

results is to demonstrate th a t the performance rating generated by our RRB axe in

accordance to the expected ratings of the algorithms, and also RRB indeed avoids the

tedious effort of complex system configuration and real-time rendering benchmarks.

It is very difficult, if not impossible, to obtain the actual performance ratings of

various algorithms at the moment, because no performance evaluations and compar

ison have been done. This was the main reason for developing this framework. One

practical way to break the deadlock situation and proceed with evaluating RRB is to

artificially produce some algorithms, whose ratings are known or can be predicated.

Then, compare the ratings generated by RRB with the known ratings. If the two

results m atch, then the effectiveness of RRB is evident.

Such algorithms can be generated from one basic algorithm by changing key strate

gies and parameters. We choose Lau’s continuous multi-resolution algorithm [34] as

the base algorithm. It is a typical continuous multi-resolution algorithm. The algo-

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rithm simplifies an original mesh using edge collapse strategies and keeps the simplifi

cation steps in memory. Later a t run time, the simplification list is reused to reduce or

increase the level of detail adaptively. As discussed in chapter 3, m any recent m ulti

resolution algorithms shaxe similar ideas, such as Hoppe’s progressive mesh and Xia’s

merge tree. We use Lau’s algorithm as a basis for producing algorithms th a t can

easily be plugged into RRB and measured in the standard real-time rendering envi

ronment. The other advantage of choosing a continuous multi-resolution algorithm,

such as Lau’s simplification list, as the base algorithm is tha t it can also be used to

directly produce fixed level of detail models, and thus generate LOD algorithms. By

changing the runtim e display mechanism, other multi-resolution algorithm variants

can be generated from it as well.

To verify the result of RRB, Lau’s algorithm itself, an LOD algorithm, two m ulti

resolution algorithms derived from Lau’s algorithm and the regular rendering algo

rithm s are used.

• Algorithm Rynson is Lau’s simplification list. It is designed to m aintain a tar

get frame rate and also preserve the image fidelity as much as possible. The

algorithm computes the visual importance of each vertex and edge in a prepro

cessing procedure. The lower resolution model is obtained by collapsing edges

in the original model starting with those in the lowest importance group. The

edge collapsing operations are cached in a simplification list. During rendering,

this cached simplification list is used to adaptively reduces or increases level

of detail. Algorithm Rynson uses Funkhouser’s predictive optimization method

to select levels of detail in real-time rendering. It predicts the complexity and

visual importance of objects from the current viewpoint and chooses an ap

propriate level of detail for each object to meet the target frame rate. The

frame rate produced by Algorithm Rynson is expected to be the best among

the algorithms. Its image fidelity is also expected to be very good. However, the

preprocessing tim e and memory cost are high due to producing and maintaining

the cached simplification list.

• Algorithm LOD is a typical level of detail a lgorith m . It does not m aintain a

continuous multi-resolution model in memory, like Rynson. Instead, it uses

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two pre-generated level of detail models and the original model itself. The

two models have 50% and 25% faces of the original model respectively. During

rendering, it switches level of detail according to the distance between the viewer

and the model. Therefore, it does not produce guaranteed frame rate. Its

image fidelity could vary on different real-time rendering benchmarks. W hen

the distance between the viewer and an object change very much and very often

in a benchmark, the algorithm is expected to produce high temporal image

distortion, which are popping artifacts; otherwise it does not. Its spatial image

fidelity is expected to be okay. The algorithm does not have extra pre-processing

tim e online. However, the level of detail models have to be pre-generated off

line. Its ex tra memory costs are mainly for storing the coarser level of detail

models.

• Algorithm XPop is designed to produce poor fram e rate performance and image

fidelity performance. It uses a feedback mechanism for level of detail control.

The original model is rendered in the first frame. As the frame rate is very low,

the a lg o r ithm traverses the simplification list and renders a very coarse level

of detail which has only 10% of the faces of the original model in the second

frame. Then, in the th ird frame, it recovers to the original model from the

coarse model using the simplification list as the feedback from the second frame

shows the algorithm can render a high level of detail. Thus, the XPop algorithm

is designed to switch between the original model and a very coarse model in

every frame transition. It is expected to have a large temporal image distortion,

as it switches from the finest resolution directly to the coarsest back and forth.

Its spatial image fidelity may not be the worst, since half of the frames use

the original models. The algorithm’s average frame rate should not be very

bad because it does not need to spend time to do online simplification with

the cached simplification list. Many of the current proposed continuous multi-

resolution algorithms, such as progressive mesh and merge tree are expected to

benefit from a similar idea and improve frame rate. However, the performance

of such an idea has never been tested. No report has been published on how

much performance loss can be caused by only traversing the vertex hierarchy.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm Xpop is included to verify the idea and see if such an idea really

always improves rendering speed.

• Algorithm MPop uses same method as XPop, except tha t the coarse level of

detail has 25% of the faces of the original model. It is expected to have better

image fidelity and frame rate performance than XPop.

• Algorithm Regular is the regular rendering algorithm, which renders the original

models at all times and does not involve in any multi-resolution strategies. It is

included in the experiments to test the boundary conditions for all our measures.

Among all th e algorithms, it should have the best image fidelity, which means

it does not have spatial and temporal distortions. The original algorithm is

expected to have the slowest frame rate, however, frame rate does not necessarily

fluctuate. For the regular algorithm, the fluctuating frame rate can be produced

when the scene complexity varies from one frame to another due to viewpoint

changes. It can also be constant most of time, when the scene complexity does

not change much during real-time rendering. This original algorithm does not

have any ex tra resource consumption and preprocessing tim e, compared with

the other algorithms.

We choose these algorithms which represent most of the typical approaches used in

current multi-resolution algorithms. Their performance are basically known to us.

In the next section, we will present the experiments of measuring their performance

with RRB and determ ine if the results produced by RRB m atch with the expected

ratings of the algorithms.

8.2 Measurement results and analysis

All algorithms, except for the regular rendering and the LOD algorithm, need to be

plugged into RRB before the experiments. The interface procedure is simple and

is described in detail in §7.2. The regular algorithm and LOD algorithm have been

integrated in RRB system. Then RRB is responsible for loading specified real-time

rendering benchmarks from VRML and path files. Performance data was produced

while algorithms perform the benchmarks in RRB. RRB is installed on a Silicon

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) frame 1 (b) frame 15 (c) frame 30

Figure 8.1: Sample frames in experiment 1

Graphics Crimson with RealityEngine, R4400, 150 MHZ CPU and R4000 F P Proces

sor, 64M memory, 21” monitor (1280x1024) at 60Hz, IRIX 6.2, OpenGL, X l l , Ansi

C + + development and executable environment. The system is on the department

network. However it runs in single user status in all the timing experiments, as all re

mote logins axe blocked during these periods of tim e. The performance data of all five

algorithms listed in the following sections are produced in this standard environment.

All the experiments and measurement results axe repeatable with RRB.

8.2.1 Experiment 1
E xp erim en t goals and setup

The first experiment is to test if RRB can load a simple real-time rendering bench

mark, rim the five algorithms on it and measure their performance results in terms of

frame rate, E s , E t, preprocessing tim e and resource consumption. The benchmark

is a typical real-time rendering task, a viewer walking towards and then away from

a “face” model. The required frame ra te is 20 frames per second, i.e. 50 msec per

frame. All the parameters of the benchmark are described in a VRML file, head.wrl

and a path file, exl. Figure 8.1 and 8.3 show three sample frames produced by the

regular algorithm and the path. There are 60 frames in the benchmark in total. 391

critical vertices, including 193 extrema of curvature and 198 discontinuities, are used

in E s and E t. Figure 8.2 illustrates the area of interests projected by critical vertices

in the sample frames.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) frame 1 (b) frame 15 (c) frame 30

Figure 8.2: Areas of interest in sample frames in experiment 1

► X

walking towards
and away £rom tha
faca (60 £ramas)

Figure S.3: Navigation path in experiment 1

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm f (msec) m i n f (msec) m a x f (msec) F E s E t
Rynson 46.433 45 50 3.895556 1.00367 0.403666
LOD 52.6 37 164 19.0733 3.61027 1.35122
XPop 684.783 223 1150 460.35 6.68442 6.42103
MPop 564.233 194 939 369.1.914 2.129522 2.36024
Regular 145.383 145 156 0.613332 0 0

Algorithm Preprocessing tim e (msec) Process Memory (kb)
Rynson 35965 11196
LOD Manual 6068
XPop 36503 11252
MPop 36358 11264
Regular 0 5632

Table 8.1: Performance results in experiment 1

E x p e r im e n t re s u lts and an a ly sis

Table 8.1 lists the performance data of the five algorithms produced by RRB. They

include their average frame time, minimum fram e tim e, maximum frame time, fluc

tuation of frame time, Es and E t. The results clearly indicate the ratings of the five

algorithms. Rynson has the best frame rate performance, in term s of both threshold

and consistency. To maintain the required fram e rate, it varies the resolution from

66% — 69% of original faces. It thus has th e best spatial image fidelity. It has a

little tem poral image distortion. This is m ainly because the algorithm changes the

resolution adaptively when it has more tim e for rendering. Rynson uses about 36

seconds pre-processing time to do first round simplification and generate the simpli

fication list. It is relatively high for a model with only 4356 faces. The memory cost

is 11196kb, which is also high compaxed with 5632kb used in the original algorithm.

LOD improves the frame rate, however, it does not guarantee consistent frame

rate performance, since the algorithm itself changes the resolution only based on the

distance between object and viewpoint. W hen the object is far, it uses the coarsest

level of detail which requires 37 msec for rendering. W hen it is close to viewpoint,

it switches to the fine resolution model, and spends 164 msec, first on making the

decision and then on rendering. During rendering, the viewer experiences navigation

a t different speeds which is out of her control. Its overall spatial image fidelity ranks

after Rynson and MPop, because it has to use lower levels of detail m ost of the tim e,

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

but it is better than XPop.

XPop is one of the worst examples of using simplification list in real-time ren

dering. It does not improve fram e ra te at all, and even produces slower and more

variable frame rates than the regular algorithm. This bad frame ra te performance of

XPop indicates that traversing the simplification list only can be expensive. The cost

of 36 seconds pre-processing tim e and about twice the amount of m em ory doesn’t pay

off because of improper use. Therefore, it is evident that a vertex hierarchy, such as

a simplification list, progressive mesh, or merge tree, may not always be effective for

speeding up rendering as commonly believed. Their performance m ust be evaluated

thoroughly. The spatial image fidelity of XPop is also the worst among the five algo

rithm s, because it renders the model with 10% faces in half of all frames. XPop has

more severe temporal image distortions, as expected. It switches between the original

model and the coarse model at every frame transition.

The frame rate and image fidelity performance of MPop is be tter than Xpop as

expected. Its spatial image fidelity is even better than LOD, because half of all frames

use original models, while LOD uses coarser level of details in most of the frames in

this benchmark.

The regular algorithm produces slow but constant frame rate in this benchmark,

because the scene complexity does not vary much. It does not produce spatial and

tem poral errors as expected.

Overall, the performance da ta produced by RRB basically matches with the ex

pected ratings of the algorithms in this experiment. Since the data are all produced

in the same environment - RRB, they can be used to fairly characterize and compare

these algorithms’ performance.

8.2.2 Experiment 2
E xp erim ent goals and setup

Algorithms tend to behave differently on different tasks. In this experiment, the

navigation path is changed to circling around the “face” , as shown in figure 8.4.

The distance between the viewer and the object changes less often than in the first

experiment. Also, in most of the frames, the viewer is closer to the object than in

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Circling around
the face

Y (200 frames)
Z

Figure 8.4: Navigation path in experiment 2

experiment 1. All the other param eters remain the same as in experiment 1. This

change is expected to affect the LOD algorithm the most. Since it selects level of

details based on distance. W hen distance remains relatively short and constant,

LOD uses the models of fine resolutions. It also does not need to switch the level of

detail often. All the other algorith m s should not change much, since we still use the

same model and thus the frame rate should not vary too much.

E xperim ent results and analysis

Tabie 8.2 shows the performance results produced by RRB. By comparing the per

formance data in the two experiments, we can see that the performance of LOD in

benchmark 2 does differ a lot from benchm ark 1. The image fidelity improves a lot,

which is even a little better than Rynson. The result is expected since LOD ren

ders the original model in most of its frames. It also produces much slower frame

rate. LOD also produces less tem poral image distortions than in benchmark 1 due

to the navigation path change. The other algorithms’ performance vary very little

from benchmark 1 as expected. In this experiment, RRB captures the performance

changes of the algorithms. It shows th a t LOD performs better in benchmark 2 than

in benchmark 1. Algorithm Rynson performs very good in both benchmarks. Its

performance is affected little by the change of navigation path.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm / (msec) m i n f (msec) m a x f (msec) F E s E t
Rynson 45.64 45 48 0.672 1.1277 0.36799
LOD 103.58 72 156 34.5608 1.05318 0.38057
XPop 686.03 223 1168 461.59 6.48925 5.50483
MPop 568.31 195 1066 372 2.41492 2.16531
Regular 146.27 145 150 0.439303 0 0

Algorithm Preprocessing tim e (msec) Process Memory (kb)
Rynson 36379 11216
LOD Manual 6096
XPop 36886 11268
MPop 36546 11276
Regular 0 5632

Table 8.2: Performance results in experiment 2

8.2.3 Experiment 3
E xperim ent goals and setu p

The first two test benchmarks axe quite simple. In order to test if RRB can load more

complex real-time rendering tasks, apply the algorithms on them and autom atically

measure their performance, we designed a th ird experiment. The real-tim e rendering

benchmark consists of a more complex scene and a longer path. The scene is composed

of five indexed face sets w ith different attributes. Together they describe a colored

cow on grass land. The path is walking on the grass and looking at the cow. All the

param eters of the benchmark are described in the VRML file, myworld.wrl and the

path file, ex3. Figure S.5 and 8.7 show the sample frames produced by the regular

algorithm and the path.

In the benchmark, 958 critical vertices, including 594 extrema of curvature and

364 discontinuities, are used in E s and E t. Figure 8.6 illustrates the areas of interest

projected by critical vertices in the sample frames.

E xperim ent resu lts and analysis

Since RRB provides a standard scene graph hierarchy, applying a continuous m ulti

resolution algorithm, such as Rynson, MPop, and XPop, on the complex benchm ark is

the same as applying the algorithm on a simple benchmark with only one indexed face

set. By default, RRB autom atically traverses the scene graph from top to bottom

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(e) frame 108 (f) frame 132

Figure 8.5: Sample frames in experiment 3
87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(e) frame 108 (f) frame 132

Figure 8.6: Areas of interest in sample frames in experiment 3
88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* walking on fcarzain
and looking at a

z cow (150 fraaaa)

Figure 8.7: Navigation p a th in experiment 3

and left to right, and applies the algorithm on each of the indexed face sets one

by one. Different scene graph traversing and culling techniques can certainly be

added on as well, with th e flexible transform ation hierarchy of the RRB scene graph.

Therefore, the user does not need to do extra work for measuring these algorithms on

benchmarks of various types. However, for LOD algorithms, the level of detail models

for each of the indexed face sets in the virtual environment have to be generated and

re-composed manually. For simple virtual environment with only one surface model,

such as the ones in the first two benchmarks, it does not take too much tim e. If we

have a complex scene, the LOD models have to be generated and re-composed one by

one. At the moment, it is found to be the most tim e consuming work for performance

evaluation using RRB. In the case of benchmark 3, we spent more than three hours to

put together the LOD models of five surface models in VRML format. This situation

is expected to improve with a LOD modeler and composer for VRML.

Nevertheless, RRB successfully measures the algorithms on the benchmark and

produces the performance data, as shown in table 8.3. Due to increased scene com

plexity, all algorithms except Rynson, produce slower frame rates than in the first

two benchmarks. Their frame rate rankings rem ain the same. Algorithm Rynson still

ranks the best among all the a lg o r ith m s in term s of frame ra te and image fidelity.

However, its spatial image fidelity is not much better than other algorithms because

it has to trade off more image quality to m aintain the required frame rate. All the

algorithms need more resources due to the increased scene complexity. Also, algo-

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm / (msec) m i n f (msec) m a x f (msec) F E s E t
Rynson 50.52 49 54 1.02934 1.61971 0.977169
LOD 86.34 52 223 34.9848 2.02177 1.11837
XPop 861.92 290 1469 571.147 1.85416 1.54629
MPop 705.973 249 1220 456.16 1.66947 1.20789
Regular 200.493 199 213 1.75004 0 0

Algorithm Preprocessing tim e (msec) Process Memory (kb)
Rynson 43025 14100
LOD Manual 7080
XPop 43075 14192
MPop 42048 14192
Regular 0 6400

Table 8.3: Performance results in experiment 3

rithm Rynson, MPop and XPop need more pre-processing tim e. As we can see, all

the results produced by RRB axe in accordance with the expected ratings.

8.2.4 Section summary

As we have shown in the experiments, RRB is capable of measuring the five algorithms

and producing consistent measurement results. The results quantitatively show which

algorithm is better than others. They are in accordance with the expected rankings of

the algorithms. RRB also makes it possible to compare an algorithm ’s performance

in benchmarks of different scale and complexity, and helps the user to understand

under what conditions an algorithm performs the best.

8.3 Import ant parameter analysis

As we have discussed in §6.3, benchmark param eters affect the m easurement results of

algorithms. This fact is also illustrated in our experiments in §8.2. Among the many

parameters, virtual environment, navigation path, dimension of viewing window and

distribution, and number of critical vertices are the most im portant param eters. It

would be very interesting and useful to further study their effects in performance

analysis of multi-resolution algorithms in real-tim e rendering. However, due to the

lim itation of resource and time, we only conducted some experiments on the number

of critical vertices to study their effects on the measurement results of the algorithm s’

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

Rynson -O'—
LOD ------6

5
• + - .

4

3

2

1

0
1 10 100 1000 10000

number of critical vertices

Figure 8.8: Es affected by number of critical vertices in b en ch m ark 1

image fidelity performance.

8.3.1 Number of critical vertices

Previous research, suggests th a t image distortions are more noticeable in extrem a of

curvature and discontinuities. Thus we choose them as critical vertices and measure

the image distortions in these local areas of interest. However, to the best of our

knowledge, there is no report on how many vertices are sufficient to effectively capture

the noticeable distortions. In the following experiments, we try to determine the

answer and find out how the number of extrema of curvature affects E s and E t.

First, we choose algorithm Rynson and LOD to run benchmark 1. Both algorithms

do not have dram atically large image distortions. Rynson has a better image fidelity

performance than LOD in both spatial domain and temporal domain in benchmark 1.

However, it is not much better. These conditions are ideal for us to study the effects

of critical vertex number. In this experiment, the number of extrem a of curvature is

increased from 4 to 2278 (all vertices). Discontinuities (198 vertices) are not included

in the experiments, except for the last case in which all vertices are included. Figure

8.8 and 8.9 illustrate the results.

As shown in the graphs, the number of critical vertices affects the measured results.

The detected image distortions are smaller when too few or too many vertices are

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5
Rynson -O—

LOD •+• - -

2.5

Et
1.5

+ • '

0.5

1000010 10001 100
number of critical vertices

Figure 8.9: E t affected by num ber of critical vertices in benchmaxk 1

chosen. The measures perform best when the critical vertices axe in the range of

2% — 20%. They produce the maxim um absolute errors for both algorithms and also

the biggest differences between the two algorithm. It indicates that too few local axeas

of interest can’t represent all the artifacts, while too many even out the distortions.

To test if the same trend applies to other situations, another set of experiments

was done. In this second set of experiments, the two algorithms are tested using

benchmark 3. Benchmark 3 has a complex scene, which has five meshes. Each of

them uses different color or texture. The discontinuities axe considered more impor

tan t in this benchmark than in benchm ark 1. Thus, they (364 vertices) axe always

chosen as critical vertices in this set of experiments. The number of extrema of cur

vature increases from 12 to 3186 (all vertices). Figure 8.10 and 8.11 illustrate the

measurement results.

The measurement results dem onstrate a similar trend. The detected absolute

image distortions are relatively small when either too few or too many critical vertices

are chosen. The measures perform the best when the critical vertices reach 30% of

all vertices. It is obvious that the measures need different numbers of critical vertices

to reach their optimal condition in different benchmarks. They need more critical

vertices in benchmark 3 than in benchmaxk 1.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2
Rynson O —

LOD H- - “

1.8

1.6

1.4

1.2

0.8

0.6
35001500 2000 2500 300010000 500

number of critical vertices

Figure 8.10: Es affected by num ber of critical vertices in benchm ark 3

1.2
Rynson -O—

LOD H- -1.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3
35001500 2000 30001000 25000 500

number of critical vertices

Figure 8.11: E t affected by num ber of critical vertices in benchm ark 3

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.4 Discussion

As we have shown in the experiments, RRB provides a standard real-time rendering

environment to measure multi-resolution algorithms. The measurement results pro

duced by RRB are in accordance with the actual ratings of the algorithms. RRB also

effectively characterizes the algorithms and detects their artifacts in benchmarks of

various types and scale.

In the experiments, some intrinsic lim itations of the image fidelity measures are

also revealed. They axe affected by the benchmaxk param eters, such as v irtual envi

ronm ent lighting, navigation path and the num ber of critical vertices. Due to time

and resource lim itation, only formal experiments on the num ber of critical vertices

were conducted. Experim ental results show th a t different num ber of critical vertices

produce different image fidelity measurement results. In these experiments, the re

sults never show a conflicting ranking of algorithm performance. However, a certain

num ber of critical vertices is required to reach the optim al condition for the measures.

8.5 Chapter summary

Experiments have been carried out to evaluate the effectiveness of the performance

evaluation framework, RRB. First, we evaluate five multi-resolution algorithms with

RRB. By comparing the ratings produced by RRB w ith the actual rankings of the

algorithms, RRB is shown to be capable of m easuring a range of multi-resolution al

gorithms and producing consistent and meaningful performance results. Second, we

experimentally examine the effects of a performance param eter - number of critical

vertices, on the image fidelity measures. Experim ental results show that a certain

number of critical vertices are needed for image fidelity measures to reach their op

tim al condition. However, measures do not produce a conflicting ranking by varying

the value of the param eter.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Applications of RRB

As we have discussed, many multi-resolution algorithms have been proposed for real

tim e rendering. However, their performance has never been evaluated and compared

in the application domain. RRB was developed to fill this gap. This chapter presents

our experience with evaluating three typical LOD algorithms using RRB. They serve

as more evidence to show the potential of our performance evaluation framework. In

addition, some of the potential applications which are made possible by the extensi

bility and flexibility of RRB in particular are also explored.

9.1 Measurement of LOD algorithms using RRB

9.1.1 Introduction to the LOD algorithms

As we discussed earlier, an LOD algorithm, like other multi-resolution algorithms

consist of two components, LOD modeling and the model selection mechanism used

in rendering. In our experiments, LOD modeling of the three algorithms was done

with three mesh simplification algorithms available in the public domain. They are:

• Cluster: It simplifies a polygon model by collapsing multiple points together.

This is basically Jarek Rossignac and Paul Borrell’s method of simplifying poly

gon models [47]. The code is provided by Greg Turk, Georgia Institu te of Tech

nology.

• Qslim 2.0: It simplifies a mesh model based on quadric error metrics. The

algorithm was developed by Michael Garland, Carnegie Mellon University [23].

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

► X -►x

cowex2:
looking at
the cow
(30 frames)

Z
buanyex:
looking at
the bunny
(80 frames)

▼
z

dragonex:
looking at the
dragon (40 frames)

Figure 9.1: Navigation paths in benchmark cowex2, bunnyex and dragonex

e Jade 2.0: It simplifies a triangulated model by removing vertices and re-triangulating

the patches using edge flipping. It was developed in the Visual Computer Group

of CNUCE/IEI-C.N.R. [6].

These algorithms were all proposed for producing multi-resolution models for real

tim e rendering. They are used to produce three sets of level of details. However,

the LOD selection mechanism is not defined in the algorithms. During real-time

rendering, the same distance threshold is used as a criteria to choose level of detail.

Our goal is to test how the three LOD algorithms perform in a set of real-time

rendering benchmarks and which one is better than others.

9.1.2 Experiment setup and parameters

Six benchmarks are used in the experiments. Benchmark headexl and headex2 are

the same as benchmark 1 and 2 respectively, which were presented in chapter 8.

Benchmarks cowexl and cowex2 are navigating a “cow” model shown in figure 5.2(a),

along paths exl and cowex2path. Benchmark bunnyex uses the “Stanford Bunny”

model and path bunnypath. Benchmark dragonex navigates a ’’dragon” model shown

in figure 5.6(b), along path dragonpath. Figure 9.1 illustrates the paths in benchmarks

cowex2, bunnyex, dragonex

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm /(m sec) m in f (msec) m a x f (msec) F E s E t
ClusterLOD 19.1167 2 57 18.2772 43.772 5.22969
QslimLOD 17.9667 1 47 17.5589 17.8928 4.38768
JadeLOD 16.4833 1 47 15.8294 17.5531 3.78405
Regular 145.383 145 156 0.613332 0 0
Algorithm Preprocessing tim e Process Memory (kb) Model Size(face)
ClusterLOD Manual 5656 4356 -1- 1052 + 191 + 26
QslimLOD M anual 5656 4356 + 1042 + 192 + 25
JadeLOD Manual 5672 4356 + 1050 + 190 4- 26
Regular 0 5632 4356

Table 9.1: Experiment results of benchmark headexl, 113 critical vertices

9.1.3 Experiment results

Tables 9.1, 9.2, 9.3, 9.4, 9.5 and 9.6 present the results obtained with RRB. LOD

model size in each algorithm is also included in the tables.

The results in all the six experiments (figure 9.2 and 9.3) show that algorithm

JadeLOD and QslimLOD produce significantly better spatial image fidelity than al

gorithm ClusterLOD. Algorithm JadeLOD is the best for preserving spatial image

fidelity. It also gives the best temporal image fidelity performance as well. Algorithm

QslimLOD ranks the second for tem poral image fidelity in the experiments. Clus

terLOD produces the worst image fidelity in both the spatial and temporal domains.

The last two benchmarks use a very large original model. Three algorithms are de

signed to render coarse levels of details only, which have 25%, 5%, 1% and 0.5% of

the original faces respectively. Thus, they all improve frame rate significantly and

use much less memory.

The three algorithms produce similar frame rate performance and memory con

sum ption because the LOD selection criteria is the same for all of them and their

model size are almost the same.

In the experiments, the LOD models are generated off-line with the three algo

rithm s. The simplification tim e is not reported as it is not related to the performance

in real-time rendering.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 5 ^ ------------------- 1-------------------- 1-------------------- 1-------------------- 1--------------------

A n - Cluster O
<q> Qslim +

35 - Jade D -

30 -

25 -
Es O

20 - +
E} O □

15 - u O “

10 -

5 _ + □ & i>
n El0 -------------------1--------------------1-----------------1------------------ 1----------------- T

1 2 3 4 5 6
Benchmarks

Figure 9.2: Es produced by the three LOD algorithms in six experiments

7 ------------------ 1------------------ 1------------------ 1------------------ 1------------------
Cluster O

6 - v Qslim +
I Jade □

5<- +
□

4 : f O
Et , o

3 -

+ O
2 " □ 4 *

< >
l -

El
0 1 1 \ 1-----------------------

1 2 3 4 5 6
Benchmarks

Figure 9.3: E t produced by the three LOD algorithms in six experiments

98

< >

O
+

Cluster O
Qslim +

+

o

Jade □

* °
□ f t

<

< >

□
_L

Cluster O
<£> Qslim +

Jade □

o
+

o □

+ A f t

o

□ i <1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm / (msec) m in f (msec) m a x f (msec) F E s E t
ClusterLOD 41.92 38 56 2.6559 16.8642 3.81719
QslimLOD 40.415 37 65 3.37745 7.23394 3.27359
JadeLOD 41.84 36 58 5.1 2.66828 1.68281
Regular 146.27 145 150 0.439303 0 0
Algorithm Preprocessing time Process Memory (kb) Model Size (face)
ClusterLOD Manual 5696 4356 + 1052 4* 191 + 26
QslimLOD Manual 5700 4356 + 1042 + 192 + 25
JadeLOD Manual 5656 4356 + 1050 + 190 + 26
Regular 0 5632 4356

Table 9.2: Experiment results of benchmark headex2, 113 critical vertices

Algorithm / (msec) m in f (msec) m a x f (msec) F E s E t
ClusterLOD 26.2833 2 61 20.8306 37.6945 6.06652
QslimLOD 24.8833 2 55 20.7305 19.6469 5.40293
JadeLOD 24.9833 2 54 20.5805 16.2764 4.42467
Regular 192.8 192 214 1.28 0 0
Algorithm Preprocessing time Process Memory (kb) Model Size (face)
ClusterLOD Manual 6065 5804 + 1450 + 284 + 56
QslimLOD Manual 6064 5804 + 1444 + 282 + 52
JadeLOD Manual 6065 5804 + 1444 + 282 + 54
Regular 0 5952 5804

Table 9.3: Experiment results of benchmark cowexl, 621 critical vertices

Algorithm / (msec) m in f (msec) m a x f (msec) F E s E t
ClusterLOD 50.8 49 68 1.85333 22.5632 3.39001
QslimLOD 50.2 49 53 1.2 8.28042 2.23856
JadeLOD 49.433 49 56 0.664445 5.46574 1.92486
Regular 197.167 196 218 1.55556 0 0
Algorithm Preprocessing time Process Memory (kb) Model Size (face)
ClusterLOD Manual 6084 5804 + 1450 + 284 + 56
QslimLOD Manual 6104 5804 + 1444 + 282 + 52
JadeLOD Manual 6100 5804 + 1444 + 282 + 54
Regular 0 5984 5804

Table 9.4: Experiment results of benchmark cowex2, 621 critical vertices

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm / (msec) m i n f (msec) m a x f (msec) F E s E t
ClusterLOD 176.225 10 606 169.835 14.6005 2.49024
QslimLOD 185.425 10 620 177.869 7.51062 1.80495
JadeLOD 181.925 10 603 176.732 5.9761 1.61096
Regular 2461.3 2451 2619 13.4575 0 0
Algorithm Preprocessing time Process Memory (kb) Model Size (face)
ClusterLOD Manual 8808 17200 + 3347 + 636 + 302
QslimLOD Manual 8852 17200 + 3353 + 633 + 300
JadeLOD Manual 8832 17200 + 3353 + 634 + 301
Regular 0 21328 69451

Table 9.5: Experiment results of benchmaxk bunnyex, 359 critical vertices

Algorithm / (msec) m in f (msec) m a x f (msec) F E s E t
ClusterLOD 236.175 17 443 172.601 6.00743 1.32515
QslimLOD 240.625 17 475 175.719 2.39099 0.472434
JadeLOD 236.375 18 446 172.731 1.90055 0.421805
Regular 1753.65 1742 1971 17.27 0 0
Algorithm Preprocessing time Process Memory (kb) Model Size(face)
ClusterLOD Manual 7676 12688+ 2494 + 470 + 234
QslimLOD Manual 7704 12638 + 2482 + 476 + 226
JadeLOD Manual 7692 12638 + 2482 + 476 + 226
Regular 0 16756 50761

Table 9.6: Experiment results of benchmark dragonex, 293 critical vertices

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.1.4 Section summary

RRB is used to measure three LOD algorithms which have never been evaluated in

real-tim e rendering. It produces consistent performance results which m ake it possible

for us to evaluate and compare them . For this reason, we have achieved significant

progress towards our ultim ate goal for performance evaluation and comparison of

multi-resolution algorithms for real-tim e rendering.

9.2 Measuring other multi-resolution algorithms
with RRB

Due to the limitation of resource and tim e, and also the lim ited access to the code

of current multi-resolution algorithms, other multi-resolution algorithms were not

evaluated in this research. However, as we have shown in chapter 7, it is easy to

interface a multi-resolution algorithm with RRB through the small and clean interface

and evaluate it with RRB.

Currently many view dependent algorithms have been proposed. RRB is also

capable of interfacing w ith these algorithms and testing them . One needs to add a

wrapper for the transform ation/group node, disable the default traversal mechanism

and enable a view culling mechanism.

9.3 Real-time rendering problems

As we discussed earlier, m ulti-resolution algorithms are one type of real-tim e rendering

algorithm. Other real-time rendering algorithms, such as culling algorithms, may have

similar performance problems while they try to speed up rendering. RRB can also

measure such algorithms. The algorithms just need to be interfaced with RRB at the

proper points and tested in the same way. RRB can help to evaluate the algorithm ’s

performance and also identify the bottlenecks in the real-time rendering pipeline.

9.4 Chapter summary

W hile RRB was designed as the first prototype system to investigate the performance

evaluation problem of multi-resolution algorithms for real-time rendering, it has been

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

successfully used for measuring and comparing current level of detail algorithms. It

also shows great potential as a tool for investigating the real-tim e rendering problem

in general.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10

Conclusions

This thesis presents a performance evaluation framework for multi-resolution algo

rithm s for real-time rendering. The empirical tests demonstrate that this framework

provides a standard measurement en v iron m ent for multi-resolution algorithms. It is

capable of conducting broad and thorough performance tests and producing consis

ten t and meaningful performance results. The performance evaluation framework has

been used to effectively measure and compare three typical level of detail algorithms

which have never been evaluated in real-tim e rendering applications.

10.1 Summary of contributions

To review, the primary contributions of our work as described in this thesis axe:

• Key performance metrics for multi-resolution algorithms in real-time rendering

axe defined. They axe based on the general requirements that the algorithms

axe expected to satisfy.

• Novel automatic performance measures of frame rate, spatial image fidelity, and

temporal image fidelity axe developed. These measures axe able to capture typ

ical artifacts produced by algorithms and compute how well algorithms achieve

the ideal situation. They are specific, realizable and easy to interpret.

• A testbed and techniques for composing and running real-time rendering bench

marks of various types in a standard environment axe developed. They avoid

the tedious job of building the tasks and make performance measurements and

comparison possible.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Using the framework, several algorithms axe measured in various real-time ren

dering benchmarks. The measurement results are used to compaxe their perfor

mance.

10.2 Future directions

There axe several ways in which this work could be improved and extended in the

future. The following avenues appear particularly im portant or promising.

Im proved Im age F id e lity M easures

Image fidelity is one of the important issues for evaluating multi-resolution algo

rithm s. In this framework, we measure an algorithm ’s image fidelity in the spatial

and temporal domains. The measures are based on intensity differences of local areas

of interest in the original image sequence and test image sequence. T he local areas axe

chosen around the neighborhood of extrema of curvature and surface discontinuities

of 3D objects. Experimental results show tha t they effectively estim ate the image

distortions produced by multi-resolution algorithms. However, these measures have

not been formally correlated with subjective tests. It is not clear if the measures

properly capture the ju st noticeable distortions from visual perception point of view.

Formal user studies axe needed to answer this question.

As discussed in chapter 5, the results produced by the image fidelity measures,

especially tem poral image fidelity measure E t , have a small amount of noise caused

by the intrinsic aliasing problem in computer graphics. In our experiments, the noise

does not affect the image fidelity rankings of test algorithms. However, we believe

the noise should be reduced to a minimal level for more accurate measurement in

the future. Super sampling or other anti-aliasing techniques can be appropriately

applied.

Perform ance P aram eter A nalysis

Performance param eter analysis is important in performance comparison. In RRB,

task parameters should be thoroughly studied for more effective performance analysis

and comparison of algorithms. As we have seen in the experiments, the task param

eters affect an algorithm’s performance. In the framework, we suggested to evaluate

an algorithm based on m ultiple measures with different benchmarks for fair results.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We leave the param eter analysis and performance comparison to future study, which

are believed to be a very interesting project.

E xten d in g th e testb ed and broader range o f benchm arks

Our experience with multi-resolution algorithms shows they perform differently on

different tasks. To fairly evaluate and compare their performance, various real-tim e

rendering tasks axe needed.

In the framework, the testbed is designed to load and run 3D navigation tasks as

real-time rendering benchmarks. These tasks are composed of virtual environments

written in the VRML 2.0 format and navigation paths. Due to limited resources,

we are unable to incorporate anim ation in the scene graph of the current prototype

system. Our experience with RRB indicates th a t it is an im portant extension. Many

interesting virtual environments obtained from the Internet consist of anim ated ob

jects. While loading such tasks, RRB has to ignore the animation feature and change

the associated objects to static ones as it doesn’t have anim ation support. Thus the

number of benchmark options is greatly reduced. Given the current VRML 2.0 parser

and the scene graph architecture, incorporating basic anim ation support in RRB is

not technically difficult. It can be done by implementing the VRML 2.0 event model.

3D navigation tasks covers a large class of real-tim e rendering tasks used in

practice. However, there axe m any other interactive 3D applications where m ulti

resolution algorithms should be tested in as well. For example, real-time CAD/CAM

tasks often need multi-resolution algorithms to give the designer real-time response.

Such tasks involve more complex interactions between a user and a CAD/CAM en

vironment. Often a user wants to have the capability to m anipulate single objects

directly in a CAD/CAM environment. The current virtual environment and navi

gation path model in RRB is certainly not sufficient to satisfy this requirement. In

interactive 3D graphics, navigation is considered one of the simplest interactions and

is easy to develop. CAD/CAM tasks require fax more complex interaction techniques.

Liang reports a good investigation in this area [38]. W hen measuring real-time ren

dering algorithms with CAD/CAM tasks, one is not only concerned with developing

interaction methods, but more im portantly concerned w ith providing a technique for

users to conveniently load, run and replay these CAD/CAM tasks. Thus various al

gorithms can be measured and compared in a unified environment. Extending RRB

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in this direction is considered very challenging and useful.

M easurem ent and C om parison o f Broader R an ge o f A lgorithm s w ith

R R B
The performance evaluation framework was developed to evaluate and compare

multi-resolution algorithms. As a set of performance evaluation tools, RRB greatly

reduces the effort of performance measurement of multi-resolution algorithms in real

tim e rendering and makes the evaluation and comparison possible. In this thesis, we

describe our experiences of evaluating Lau’s simplification list and its variants. It

shows interfacing these algorithms v/ith RRB is quite convenient and clean given the

flexible and well design scene graph architecture. Most continuous multi-resolution

algorithms, such as [39] [18] [30] [23], are similar to the simplification list [34]. Given

a C + + implementation of the algorithms, one just needs to write wrapper classes to

bridge the prototype system and the algorithms at the IndexedFaceSet node. Then,

performance measurements can be done in a few steps using RRB. In the thesis we

also reported evaluating three LOD algorithms in RRB. LOD is one of the basic multi-

resolution techniques. RRB integrates the LOD mechanism in its implementation. We

have shown it can evaluate such algorithms directly given their LOD representations

in a VRML 2.0 file, In all the experiments, the m easurem ent results produced by

RRB explicitly show which algorithm performs b e tte r than others and under which

conditions an algorithm behaves best.

Many other multi-resolution algorithms or ideas have been proposed for real-time

rendering. However, they have never been evaluated and compared. It would be ben

eficial to both multi-resolution and real-time rendering community if more algorithms

are evaluated and compared with RRB. Recently, view-dependent multi-resolution al

gorithms, such as [41] [65] [30], have drawn increasing attention in the multi-resolution

community. They are believed to be good ideas for real-tim e rendering problems.

However, their performance should be evaluated and compaxed to show their poten

tia l and lim itation. W ith the flexible scene graph architecture, RRB allows these

algorithms to be interfaced as well. As view culling techniques are involved in these

algorithms, they will need to attach RRB at higher level nodes, which axe the Group,

Transform, LOD and Collision nodes. If an algorithm attaches RRB at a higher

level node, it has more flexibility to manipulate the scene graph and also has more

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

responsibility in the mean time. In this case, the algorithms take th e responsibility

of implementing both view culling and level of detail control. Again wrapper classes

axe required to bridge the algorithm s’ implementation and RRB. Hierarchical image

cache is another variant of multi-resolution algorithms. The idea is to hierarchically

model a 3D scene and store it in image caches. During real-time rendering, the cached

images of fax away objects axe reused to improve speed. Currently RRB doesn’t sup

port image caches in the scene graph nodes. To evaluate such algorithms, caching

mechanism needs to be incorporated. Another solution is to interface the algorithm

with RRB at the scene graph root level and let the algorithm itself m aintain its own

image caches.

RRB is indeed a real-time rendering framework. If we look a t real-tim e rendering

algorithms in general, most of them have similar performance problems as m ulti

resolution algorithms, which include frame rate, image fidelity, resource consumption,

etc. The techniques developed in th is thesis should be extended to measure many

of the real-time rendering algorithms. It can help to find which algorithms perform

better than others in a standard real-tim e rendering environment. On th e other hand,

it facilitates the identification of problems and limitations of current techniques, and

thus inspires improvements in them . We believe that performance evaluation and

comparison of more algorithms w ith RRB is the most promising avenue for improving

multi-resolution technologies and also other real-time rendering techniques in general.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] John M. Airey, John H. Rohlf, and Frederick P. Brooks. Towards Image Realism
with Interactive Update Rate In Complex V irtual Building Environments. In
Computer Graphics(1990 Symposium on Interactive 3D Graphics, pages 41-50,
March 1990.

[2] Daniel G. Aliaga. Visualization of Complex Models Using Dynamic Texture-
based Simplification. In IE EE Visualization ’96, pages 101-106, April 1996.

[3] F. Attneave. Some Informational Aspects of Visual Perception . Psychological
Review , 61:183—193, 1954.

[4] Rikk Carey and Gavin Bell. The Annotated VRM L97 Reference Manual.
Addison-Wesley, 1997.

[5] Bradford Chamberlain, Tony DeRose, Dani Lischineski, David Salesin, and John
Snyder. Fast Rendering of Complex Environm ents Using a Spatial Hierarchy. In
Proceedings o f Graphics Interface’96, May 1996.

[6] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno. Multiresolution deci
m ation based on global error. The Visual Computer, 13(5):228—246, 1997.

[7] P. Cignoni, R. Montani, and R. Scopigno. A comparison of mesh simplifica
tion algorithms. Technical report, Istitu to per l’Elaborazione deU’Infomazione -
Consiglio Nazionale delle Ricerche, 1997.

[8] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: measuring error on simpli
fied surfaces. Technical report, Istitu to per l’Elaborazione dell’Infomazione -
Consiglio Nazionale delle Ricerche, 1996.

[9] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-Preserving
Simplification. In Proc. A C M SIG G R A P H ’98, pages 115—122, July 1998.

[10] Vrml
Consortium. The Virtual Reality Modeling Language, http://www.vrml.org,
1995.

[11] Web3D Consortium. The V irtual Reality Modeling Lauguage Repository.
http://www.web3d.org/vrml/vrml.htm, 1999.

[12] Patrick Courtney, Neil Thacker, and A drian F. Clark. Algorithmic Modelling
for Performance Evaluation . Machine Vision and Applications, 9(5-6) :219-228,
1997.

[13] Rudy P. Darken and John L. Sibert. A toolset for navigation in virtual environ
ments. In Proc. ACM Symposium on User Interface Software and Technology
’93, pages 157-265, November 1993.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.vrml.org
http://www.web3d.org/vrml/vrml.htm

[14] K. Dezhgosha, M.M Janali, and S.C. Kwatra. Performance Evaluation of the
VQ based Image Coding Algorithm. In 1990 IE EE International Symposium on
Circuits and Systems, part 4, pages 3057—3060, May 1990.

[15] Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Chaxles
Aldrich, and Mark B. Mineev-Weinstein. ROAMing terrain: Real-time optimally
adapting meshes. In IE E E Visualization ’97, pages 81-88, October 1997.

[16] Jam es A. Ferwerda, Sum anta N. Pattnaik, Peter Shirley, and Donald P. Green
berg. A Model of Visual Masking for Computer Graphics. In Proc. A C M SIG-
GRAPH ’97, pages 143—152, August 1997.

[17] Leila De Floriani, Paola Magillo, and Enrico Puppo. Efficient implementation
of multi-triangulations. In IE E E Visualization ’98, pages 43—50, October 1998.

[18] Leila De Floriani, Enrico Poppo, and Paola Magillo. Geometric Modeling: The
ory and Practice, chapter A formal approach to multiresolution hypersurface
modeling. Springer Verlag, 1997.

[19] Jam es D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Com
puter Graphics Principles and Practice. Addison-Wesley Publishing Company,
2 edition, 1990.

[20] Aubrey R. Jr. Fowler and Stephen C. Bushaxdt. T.O.P.E.S. : Developing a Task
Oriented Performance Evaluation System. SA M Advanced Management Journal,
51(4):4-8, 1986.

[21] Thomas A. Funkhouser and Carlo H. Sequin. Adaptive Display Algorithm for
Interactive Frame Rates During Visualization of Complex V irtual Environments.
In Proc. ACM SIG G RAPH ’93, pages 247-255, August 1993.

[22] M. Garland and P. Heckbert. Surface Simplification using Quadric Error Metrics.
In Proc. ACM SIG G RAPH ’97, pages 209-216, August 1997.

[23] Michael Garland. Quadric-Based Polygonal Surface Simplification. PhD thesis,
Carnegie Mellon University, May 1999.

[24] Rafael C. Gonzalez and Paul W intz. Digital Images Processing . Addison-Wesley
Publishing Company, 1987.

[25] Mark Green. A Framework for Real-Time Rendering in V irtual Reality. In ACM
V R S T ’96, pages 3-9, July 1996.

[26] D.G. Haack. Statistical Literacy: A Guide to Interpretation. Duxbury Press,
1981.

[27] P.S. Heckbert and M. Garland. Survey of Polygonal Surface Simplification Al
gorithms. In SIG G RAPH ’97 Course Notes, August 1997.

[28] Huges Hoppe. Progressive meshes. In Proc. A C M SIG G RAPH ’96, pages 99—108,
August 1996.

[29] Huges Hoppe. View-Dependent Refinement of Progressive meshes. In Proc. ACM
SIG G RAPH ’97, pages 189-198, August 1997.

[30] Huges Hoppe. Smooth view-dependent level-of-detail control and its application
to terrain rendering. In IE EE Visualization ’98, pages 35—42, October 1998.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[31] Veysi Isler, Rynson Lau, and Mark Green. Real-time Multi-resolution Modeling
for Complex V irtual Environments. In A C M V R S T ’96, pages 11-20, July 1996.

[32] Raj Jain. The A rt o f Computer Systems Performance Analysis. John Wiley
&Sons, INC., 1991.

[33] R.S. King and B. Julstrom . Applied Statistic Using the Computer . Mayfield
Publishing, 1982.

[34] Rynson W.H. Lau, Mark Green, Danny To, and Janis Wong. Real-Time Con
tinuous Multi-Resolution Method for Models of A rbitrary Topology. Presence:
Teleoperators and Virtual Environments, M IT Press, 7(l):22-35, February 1998.

[35] Daniel Lauzon, Andre Vincent, and Limin Wang. Performance Evaluation
of MPEG-2 Video Coding for HDTV . IE E E Transaction on Broadcasting,
42(2):88-94, 1996.

[36] S. Lavenberg. Computer Performance Modeling Handbook. Academic Press, New
York, 1983.

[37] R.I. Levin. Statistics fo r Management . Prentice-Hall, 1981.

[38] Jiandong Liang. Interaction Techniques fo r Solid Modeling with a 3D Input
Device. PhD thesis, University of Alberta, Septem ber 1995.

[39] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges, Nick Faust,
and Gregory A. Turner. Real-time, continuous level of detail rendering of height
fields. In Proc. A C M SIG G RAPH ’96, pages 109—118, August 1996.

[40] Peter Lindstrom and Greg Turk. Fast and Memory Efficient Polygonal Simplifi
cation. In IEEE Visualization ’98, 1998.

[41] David Luebke and Carl Erikson. View-Dependent Simplification of Arbitrary
Polygonal Environment. In Proc. A C M SIG G R A P H ’97, pages 199-208, August
1997.

[42] P.W.C. Maciel and P. Shirley. Visual Navigation of Large Environments Using
Textured Clusters. In 1995 Symposium on Interactive 3D Graphics, pages 95-
102, May 1995.

[43] Tomas Moller and Eric Haines. Real-Time Rendering. A K Peters Ltd., 1999.

[44] OpenGL Performance Characterization Organization. The OpenGL Performance
Characterization Project . http://www.specbench.org/gpc/opc.static/index.html,
1998.

[45] Matthew Regan and Ronald Pose. Priority Rendering with a Virtual reality
Address Recalculation Pipeline. In Proc. A C M SIG G RA PH ’94, pages 155-162,
August 1994.

[46] John Rohlf and James Helman. IRIS Performer: A high performance multipro
cessing toolkit for real-time 3D graphics. In Proc. A C M SIG G RAPH ’94, pages
381-394, August 1994.

[47] Jarek Rossignac and Paul Borrel. M ulti-resolution 3D Approximations for Ren
dering Complex Scenes. Technical report, IBM, 1992.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.specbench.org/gpc/opc.static/index.html

[48] Gem ot Schaufler and Wofgang Sturzlinger. A Three Dimensional Image Cache
for V irtual Reality. In Proceedings o f Eurographics’96, pages 227-248, April
1996.

[49] W illiam J. Schroeder, Jonathan A. Zarge, and W illiam E. Lorensen. Decimation
of Triangle Meshes. In Proc. AC M SIG G R A P H ’92, pages 65-69, July 1992.

[50] Jonathan Shade, Dani Lischinski, David H. Salesin, Tony DeRose, and John
Snyder. Hierarchical Image Caching for Accelerated Walkthroughs of Complex
Environments. In Proc. ACM SIG G R A P H ’96, pages 75-82, August 1996.

[51] Chris D. Shaw, Mark Green, Jiandong Liang, and Yunqi Sun. Decoupled Simula
tion in Virtual Reality with the MR Toolkit. A C M Transactions on Information
Systems, 11(3):287-317, July 1993.

[52] Anthony Steed. Efficient navigation around complex virtual environments . In
A C M V R S T ’97, pages 173-180, September 1997.

[53] Steve E. Tice, Mike Fusco, and Paul Straley. The Picture Level Benchmark.
Computer Graphics World, pages 123-130, July 1989.

[54] Steve Upstill. The Renderman Companion. Addison-Wesley Publishing Com
pany, 1990.

[55] Christian J. van den Branden Lambrecht. Automatically Assessing MPEG Cod
ing Fidelity. IE EE Design and Test o f Computers, 12(4):28-33, 1995.

[56] Christian J. van den Branden Lambrecht. A Working Spatio-Temporal Model
of the Human Visual System for Image Restoration and Quality Assessment
Applications. In Proceedings o f ICASSP96, 1996.

[57] Norman G. Vinson. Design guidelines for landmarks to support navigation
in virtual environments. In Proc. CHI ’99 Conference on Human Factors in
Computing Systems, pages 278-285, May 1999.

[58] Stephen Voran and Stephen Wolf. The Development and Correlation of Ojbec-
tive and Subjective Video Quality Measures. In IE E E Pacific R im Conference
on Communications, Computers, and Signal Processing’91, pages 483-485, May
1991.

[59] Andrew B. Watson. Digital Images and Human vision. The MIT Press, 1993.

[60] Benjamin Watson, Victoria Spaulding, Neff Walker, and William Ribarsky. Eval
uation of the Effects of Frame Time Variation on V R Task Performance . Tech
nical report, Georgia Institute of Technology, 1996.

[61] Josie Wemecke. The Inventor Mentor: Programming Object-Oriented 3D Graph
ics With Open Inventor, Release 2. Addison-Wesley Publishing Company, 1994.

[62] Stephen Wolf, Margaret Pinson, Stephen Voran, and Arthur Webster. Objec
tive Quality Assessment of Digitally Transm itted Video. In IE EE Pacific R im
Conference on Communications, Computers, and Signal Processing’91, pages
477-482, May 1991.

[63] Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming Guide, Sec
ond Edition. Addison-Wesley Developers Press, 1997.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[64] Cosmo Worlds. Cosmo Worlds 2.0 Technical Specifications.
http://www.cosmosoftware.com/products/worlds/, 1999.

[65] Julie C. Xia and Am itabh Vaxshney. Dynamic View-Dependent Simplification
for Polygonal Models. In IEEE Visualization ’96, pages 327-334, 1996.

[66] Douglas A. Young. Object Oriented Programming with C++ and O SF /M otif 2nd
Edition. Prentice Hall PTR, 1995.

[67] Ping Yuan, Mark Green, and Rynson Lau. A Framework of Performance Evalu
ation of Real-time Rendering Algorithms in V irtual Reality. In A C M V R S T ’97,
pages 51-59, September 1997.

[68] Ping Yuan, Maxk Green, and Rynson Lau. Benchmarking Mesh Simplification
Algorithms in Real-time Rendering Applications. In Proceedings o f the Tenth
Western Computer Graphics Symposium , 1999.

[69] W illiam Y. Zou. Digital HDTV Compression Techniques for Terrestrial Broad
casting. SM P TE Journal, pages 127-131, February 1993.

[70] W illiam Y. Zou. Performance Evaluation: From NTSC to Digitally Compressed
Video. SM P T E Journal, pages 795-800, December 1994.

[71] Micheal J . Zyda, Maxk A. Fichten, and David H. Jennings. Meaningful Graphics
W orkstation Performance Measurements. Computers and Graphics, 14(3) :519—
526, 1990.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cosmosoftware.com/products/worlds/

Appendix A

RRB Implementation Notes

The purpose of this appendix is to augment the outline of the prototype implementa

tion. We focus on some key points, leaving out various support functions and details.

RRB is developed as an object-oriented application framework using C + + with Stan

dard Tem plate Library, OpenGL, Motif object oriented framework, Flex and Bison.

Figure 7.1 shows the main classes tha t form its architecture. It is designed to be

portable over a wide range of platforms and to be extended easily.

A .l Virtual Environment

Virtual environment is one of the core component of RRB. It is built around a VRML

2.0 parser and a set of scene graph nodes which are used to construct the scene graph

hierarchy. Two primary concerns have m otivated the design of this component. First,

it is im portant that RRB loads various available virtual environment datasets in the

VRML 2.0 format. Thus, a wide range of real-tim e rendering benchmarks can be

autom atically generated to measure multi-resolution algorithms. Second, RRB is

meant to be reasonably efficient in its use of memory. The scene graph is expected

to be self-complete and contain only a m inimal set of nodes tha t are necessary for

multi-resolution algorithms to perform real-tim e rendering tasks. The VRML 2.0

specification defines a large collection of nodes to describe 3D graphics for the web.

Many of them are not concerned for multi-resolution algorithms a t the moment, such

as Anchor, Audioclip, and etc.. If these nodes appear in a VRML file, they need to

be filtered out when the scene graph is built.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.1.1 The VRML 2.0 parser

In RRB, the VRML 2.0 parser is responsible for paxsing a VRML 2.0 file, and gen

erating the in-memory scene graph as described in chapter 6. It is designed based

on the prototype nodes defined in the VRML 2.0 specification and developed with

flex and and bison. O ur parser is capable of paxsing any VRML 2.0 file. However,

as some of these nodes axe not of interests of RRB, they axe not built into the scene

graph when they axe scanned. For example, if a file contains an Anchor node which

is not defined in our scene graph, the paxser still parses this node and determines if

it follows the VRML 2.0 syntax. If it does, the paxser will go on to parse other nodes

without instancing this node and its children into memory. If it does not follow the

VRML 2.0 syntax, the paxser will report a syntax error and exit. W hen these nodes

axe successfully scanned by the paxser, their instances will be loaded into the memory

to build a scene graph. For example, if an IndexedF aceSet node is scanned success

fully, an instance of the IndexedFaceSet class is created and loaded in the memory

as it is defined in our scene graph. If paxsing is failed, an error is reported and the

program exits.

A. 1.2 The SceneGraph Nodes

As described in the previous chapters, a scene graph is a direct acyclic graph (DAG).

I t consists of the root node, the internal nodes and the leaf nodes. The SceneGraph

class implements the root of a scene graph. It m aintains a list of scene graph node

objects which can be internal nodes or leaf nodes and provides the basic traversal

methods. The internal nodes include Collision, Group, LOD and Transform. They

all contain an object of the MFNode class which maintains a list of scene graph nodes

as their children. The internal nodes provide their own implementation of the list

traversal and rendering methods. The rest axe the leaf nodes which define their own

attributes and methods. All the internal and leaf nodes axe derived from a super

class called SFNode. T he SFNode class defined the common attributes of these node

classes. It also defines a set of virtual m ethods that the node classes must implement,

such as render. The SceneGraphObj class is the root of the entire class inheritance

hierarchy. It defines th e com m on attributes of all the scene graph objects, such as

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inherit: nee

SceneGraph

 ^ --------- Inheritance

V

Memeber

SceneGraphObj SFNode
Inherits ice

Inheritance

■Collisioir
-Group-
-LOD------
-Transform- 1

Memeber

MFNode

-Appearance

-Box

-Color

-Coordinate

-DirectionalLight

"ImageTexture

-IndexedFaceSet

“Material

-Normal

-PointLight

-Shape

-SpotLight

-TextureCoordinate

-TextureT ransform

Figure A .l: Scene graph node class hierarchy

their name, type, etc.. Every other class is derived from the SceneGraphObj class.

Figure A .l illustrates the class inheritance hierarchy in the RRB scene graph.

A.2 Navigation Path

A.2.1 The EyePath class

A navigation path simulates a set of viewpoints and view orientations which the user

uses to navigate a virtual environment. In RRB, it is represented by an object of

EyePath class. EyePath class defines the data structure of a pa th as a set of 3D

coordinates and quaternions. It also defines two key behaviors for its objects:

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Update the viewpoint and view orientation for the current frame

• Draw the scene according to the viewpoint and view orientation

These two behaviors are defined as pure virtual functions and m ust be implemented

in the subclasses of the EyePath class.

A.2.2 The subclasses

As described in the previous chapters, RRB supports both level 1 path and level 2

path. Eyepath defines a general interface for the navigation path . The implementa

tion are encapsulated in the subclasses of the EyePath class. They are M athPath,

TrackerPath and D ataPath. M athPaths implements a navigation path which axe

m athem atically generated based on some key interpolation points. TrackerPath de

fines a navigation scheme in which the navigation path is determined by a 3D tracker

device. The device’s position, orientation and the button press actions performed on

the device axe used to obtain the navigation path. D ataPath reuses the path data

generated and recorded by the TrackerPath.

A.2.3 Measures

The measures of frame rate, E s, and E t axe mainly implemented in three classes.

They axe the Timer class, FrameBuffer class, and DbenchMark class.

T h e T im er class

The Tim er class implements a mechanism to obtain the timing of a block of function

calls and maintains a buffer of the tim ing data so tha t the frame rate performance

can be computed later.

T h e Fram eBuffer class

The FrameBuffer class implements a set of methods to obtain the RGB value of an

array of pixels in the rendered image for each frame. These values are used to compute

the average intensity data.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h e D benchM ark class

The DbenchMark class implements methods to autom atically select critical vertices

given a scene graph. The critical vertices are then projected to the frame buffer,

according to the viewpoint and view orientation, to obtain the local areas of interests.

It is the connection point of the Ve class and the FrameBuffer class and also the core

of the image fidelity measures.

A.3 RRB bootstraps

A.3.1 The RRB Workspace class

The RRB Workspace class is the central controller of RRB. It maintains global prop

erties and references to the objects of Ve, EyePath, DbenchMark, Timer and Frame-

Buffer. It provides bootstraps to load a virtual environment, choose an algorithm,

perform a set of measurement operations and dum p measurement results.

A.3.2 RRB graphical user interface

As shown in figure 7.3, RRB is provided with a graphical user interface for user’s

convenience. To simplify the development effort, its implementation makes use of the

MotifApp application framework [66], The MotifApp application framework provides

a collection of user interface components, such as Application, MainWindow, Cmd,

MenuBar, B utton and etc. It also encapsulates a basic structure of applications based

on X and Motif. The graphical user interface of RRB is implemented by reusing these

components and the basic application structure defined in the MotifApp framework.

The RRBApp class is the central point of the implementation. It derives from the

central class — Application which is defined in the MotifApp application framework.

RRBApp is responsible for managing the resources of the RRBController window and

the RRB View window. It also registers the commands and invokes callback functions

when events occur.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

