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Abstract

Bubble chambers using fluorocarbons or noble liquids gases are promising tools for

detecting low-energy nuclear recoils caused by the elastic scattering of weakly inter-

acting massive particles (WIMPs), a type of dark matter. These chambers comprise

a vessel filled with a superheated liquid, which is controlled in terms of pressure

and temperature. Bubble formation occurs when the energy deposition surpasses a

specific threshold defined by the ”heat-spike” Seitz Model. The efficiency of bubble

nucleation from low-energy nuclear recoils in superheated liquids is a crucial factor in

interpreting results obtained from direct searches for WIMPs as dark matter. This

study aims to develop a physics model capable of explaining the observed disparities

between experimental outcomes and the current Seitz model. Molecular dynamics

simulations were utilized to investigate the bubble nucleation threshold, and a Monte

Carlo simulation employing SRIM was performed to obtain the energy transfer in

the target medium. The model also incorporates Lindhard’s theory to enhance accu-

racy and improve predictions of bubble nucleation efficiency. By applying nucleation

efficiency, we can estimate the cross-section exclusion limit for experiments. The

model has been tested with existing experimental data and shows similar detector

responses.
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Chapter 1

Introduction

One of the most challenging mysteries for physicists to solve is the existence and

nature of dark matter. Although its presence is elusive, dark matter’s gravitational

influence on galaxies and the large-scale structure of the universe are undeniable.

Its abundance, estimated to account for about 85% of the matter in the universe,

has profound implications for our understanding of fundamental physics. Weakly In-

teracting Massive Particles (WIMPs) are among the most intriguing candidates for

dark matter particles. These hypothetical particles, predicted by various theoretical

frameworks, have the potential to elucidate supersymmetric models. Direct detec-

tion experiments use a variety of technologies to search for WIMPs with low-energy

thresholds. A detailed discussion on WIMPs and their detection will be presented in

Chapter. 2.

The primary focus of this work revolves around the bubble chamber detector tech-

nology. In Chapter 3, the principle of operation and an overview of bubble chamber

experiments will be introduced. Notably, the disparity between conventional bub-

ble nucleation theory and experimental observations serves as the motivation for the

present study, which aims to understand the underlying factors affecting the efficiency

of bubble nucleation.

This study employs molecular dynamics (MD) simulations to investigate bubble

formation at the microscopic scale. Chapter. 4 will provide an in-depth analysis of the
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simulation methodology, including detailed descriptions of the simulations conducted

and the resulting outcomes. Furthermore, in Chapter 5, Monte Carlo (MC) simula-

tions will be used to estimate the energy transfer from nuclear recoils to the target

medium as recoiling ions travel through it. By combining the results from both MD

and MC simulations, we can determine the bubble nucleation efficiency as a function

of nuclear recoil energy. The outcomes of this modeling approach are found to be

consistent with experimental analysis, which is presented in Chapter.6.
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Chapter 2

Dark matter overview

Dark matter has been an intriguing topic in astrophysics and cosmology for several

decades. The concept of dark matter originated in the 1930s, when Swiss astronomer

Fritz Zwicky [1] noted that the observable mass of galaxy clusters couldn’t explain

their gravitational behavior.

The term “dark matter” refers to matter that’s invisible to telescopes because it

doesn’t interact with light or other forms of electromagnetic radiation. However, its

gravitational effects on visible matter, like stars and galaxies, allow us to infer its

existence.

Over the years, several theoretical models have been proposed to explain what

dark matter is. One of the most popular theories suggests that dark matter could be

made up of exotic particles beyond the standard model, such as Weakly Interacting

Massive Particles (WIMPs) or axions [2]. Despite extensive research, the true nature

of dark matter remains unknown.

To solve this mystery, various experimental techniques have been developed. One

such technique is indirect detection, which involves detecting cosmic rays such as

gamma and neutrino rays that result from dark matter annihilation and decay. An-

other approach is to look for direct detection evidence of dark matter particles in

laboratory experiments. This area of research is constantly evolving, and remains

an active field in both astro and particle physics. In this chapter, readers will gain
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an overview of the history of dark matter evidence discovery, explore the theoretical

models and candidates, and delve into the latest developments in direct detection of

dark matter, with a particular focus on WIMPs [3].

2.1 Evidence

The existence of dark matter has been inferred from its gravitational effects on vis-

ible matter, such as stars and galaxies. Several pieces of evidence that indicate the

presence of dark matter in the universe. In this subchapter, we will discuss some of

the most compelling evidence, including galaxy rotation curves, gravitational lensing,

and the cosmic microwave background.

2.1.1 Galaxy rotation curves

One of the earliest pieces of evidence for dark matter came from the study of galaxy

rotation curves. The rotation curve of a galaxy is a measure of its orbital velocity

as a function of distance from the center. According to Newton’s laws of motion,

the orbital velocity of stars and gas in a galaxy should decrease as the distance from

the center increases. However, observations of galaxy rotation curves showed that

the orbital velocity remains constant or even increases with distance from the center.

As Fig. 2.1 shows, the rotational velocity distributions of galaxies do not match the

observable matter (disk and gas) at increasing galactic radii. This indicates the

presence of extra invisible mass (halo) that contributes to the galaxies’ rotational

velocity. Moreover, the invisible mass in the galaxy is more than can be accounted

for by visible matter alone. This extra, invisible mass is believed to be dark matter

[4].

The observed phenomenon is not limited to individual galaxies; rotation curves of

galaxies within galaxy clusters also indicate the presence of dark matter [4]. In some

cases, the total mass of dark matter inferred from the rotation curve outweighs the

visible mass by a factor of up to 10 to 1 [6]. While the rotation curve is a crucial piece
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Figure 2.1: Observed rotation speed of the NGC 6503 galaxy according to the distance
from its center compared to that predicted by the theory [5]. The disk component
represents the visible mass contribution to the rotational velocity, while the gas com-
ponent represents the interstellar gas contribution. The halo component represents
the contribution of the elusive dark matter halo.
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of evidence in the search for dark matter, it is just one of many methods used to infer

its presence in the universe. In addition to rotation curves, other observation such

as gravitational lensing and the cosmic microwave background have provided addi-

tional independent evidence for the existence of dark matter. These complementary

approaches have allowed scientists to better understand the elusive nature of dark

matter and its role in shaping the structure of the cosmos.

2.1.2 Gravitational lensing

Gravitational lensing is one of the most convincing pieces of evidence for the existence

of dark matter [7]. This phenomenon occurs when the path of light from a distant

object is bent by the gravitational field of a massive object, such as a galaxy. The

degree of bending is directly proportional to the mass of the object, enabling scientists

to use gravitational lensing to infer the distribution of matter in the intervening

galaxy cluster, including the distribution of elusive dark matter. The observed lensing

effects are consistent with the presence of dark matter around galaxies and in galaxy

clusters [8]. The distribution of dark matter can be mapped out by measuring the

lensing effects on the light from background galaxies. These maps have revealed

that dark matter is distributed in a web-like structure, forming large filaments and

clusters of galaxies [9]. As depicted in Fig. 2.2, the galactic dark matter halo mass

creates gravitational lensing that amplifies further galaxies, including those that were

observable during a time when the universe was less than a billion years old [10].

Gravitational lensing has also been used to study the properties of dark matter.

By comparing the lensing effects with computer simulations, scientists can infer the

properties of dark matter, such as its density and clustering properties [11]. One in-

teresting result from these studies is that dark matter appears to be less concentrated

in the centers of galaxies than previously thought, which has led to new questions

about the nature of dark matter and its interactions with visible matter [12].
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Figure 2.2: The first science image from the James Webb Space Telescope (JWST)
was of a gravitational lens, specifically the galaxy cluster SMACS 0723. Gravitational
lenses magnify the light from background galaxies and create multiple images.[10]
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2.1.3 Cosmic microwave background

The cosmic microwave background (CMB) is a form of radiation that was leftover

from the Big Bang. It has been used to study the large-scale structure of the uni-

verse, and its fluctuations provide strong evidence for the presence of dark matter.

The CMB is a relic radiation that was emitted when the universe was only 380,000

years old, and it has been traveling through space ever since. Two of the most promi-

nent experiments used to observe the cosmic microwave background (CMB) are the

Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck experiment.

WMAP was one of the first experiments to produce a detailed map of the CMB. Its

data provided strong evidence for the existence of dark matter in the universe. The

fluctuations in the CMB that WMAP observed were consistent with the presence of

dark matter, which is believed to have played a key role in the formation of large-scale

structures like galaxies and galaxy clusters. The WMAP mission provided important

data on the CMB that has been used to estimate the total amount of matter in the

universe, including dark matter [13]. The Planck experiment has also provided data

on the CMB. Its latest data confirmed the presence of dark matter in the universe

and provided more precise estimates of its properties [14].

WMAP and Planck measured the temperature differences of the cosmic microwave

background at different angular scales, as shown in Fig. 2.3. This data enables us to

determine the density of ordinary matter and dark matter in the universe. Baryonic

matter density is denoted by Ωb, while dark matter density is denoted by Ωdm. In this

graph, a higher baryon density corresponds to a higher power spectrum. The best-fit

result of the data indicates that the density of dark matter is Ωdm = 0.222 ± 0.026,

and the baryon mass is Ωb = 0.0449 ± 0.0028, as published in WMAP’s seven-year

publication [16]. These results suggest that dark matter accounts for about 85% of

the universe’s mass.

8



Figure 2.3: The power spectrum of in the WMAP experiment with different baryon
density Ωb and dark matter density Ωdm. The anisotropy power spectrum gives the
level of temperature fluctuations in different angular scales, where a spherical Fourier
transform gives multipoles l, where l ≈ 180◦/θ [15]. The higher baryon density
correspond to higher power spectrum.

9



Figure 2.4: The graph presents different types of dark matter particle candidates
across a wide range of mass scales. SUSY thermal WIMPs and QCD axions are
shown in red, general thermal WIMPs and specific classes of axions are shown in
blue, and the “classical” QCD axion mass regime is shown in orange. [17]

2.2 Dark matter candidates

Several models have been proposed to explain dark matter, including the particle

dark matter model and the Modified Newtonian Dynamics (MOND). MOND is a

modified gravity theory that attempts to explain the observed phenomena attributed

to dark matter by changing the laws of gravity at low accelerations. This theory was

originally aimed at clarifying the constant velocity observed in spiral galaxies’ rotation

curves from the Section. 2.1.1. However, MOND cannot explain other cosmological

phenomenon such as gravitational lensing [8]. Therefore, only the particle dark matter

model is currently the most widely accepted explanation for dark matter.

The particle dark matter model proposes that dark matter consists of one or more

types of particles that interact weakly with ordinary matter, as Fig. 2.4 show. Two of

the most popular candidates for dark matter particles are Weakly Interacting Massive

Particles (WIMPs) and axions.

2.2.1 QCD axion

Axions are a hypothetical particles that could constitute dark matter. They were

first proposed in the 1970s as a solution to the strong CP problem in particle physics

[18]. The strong CP problem arises from the fact that the strong nuclear force, one
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of the four fundamental forces of nature, should violate CP symmetry, but it doesn’t.

Axions were proposed as a solution because they could cancel out the CP-violating

effects of the strong nuclear force. Axions were predicted to be very light, with masses

ranging from 10−6 to 10−3 eV [19]. They are also predicted to be weakly interacting,

like WIMPs, and would interact with ordinary matter only through the weak nuclear

force.

Axions are one of the promising candidates for dark matter, and several experi-

ments have been designed to search for them. These experiments include the Axion

Dark Matter eXperiment (ADMX), which is designed to detect axions using a reso-

nant cavity, and the CERN Axion Solar Telescope (CAST), which searches for axions

produced in the sun [20]. Despite extensive searches, no conclusive evidence for axions

as dark matter has been found yet.

2.2.2 Weakly Interacting Massive Particles

WIMPs are hypothetical particles that were first proposed in the 1980s by Goodman

and Witten [21]. They are called weakly interacting because they interact with ordi-

nary matter only through the weak nuclear force, one of the four fundamental forces

of nature. The mass of WIMPs is typically predicted to be in the range of 10 to 1000

times the mass of a proton [22].

The most popular theoretical model for WIMPs is the supersymmetric model.

Supersymmetry is a theoretical framework that extends the standard model of particle

physics and predicts the existence of new particles, including WIMPs [22]. In the

supersymmetric model, WIMPs are the lightest supersymmetric particles and are

stable because they cannot decay into lighter particles. The supersymmetric model

provides a natural explanation for the observed abundance of dark matter in the

universe. The properties of WIMPs, such as their weak interaction with ordinary

matter and their stable nature, make them excellent candidates for the elusive dark

matter particles.
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Figure 2.5: The diagram depicts the three main processes in which WIMPs could
potentially interact with particles in the Standard Model (SM), namely indirect de-
tection (annihilation), collider experiments (production), and direct detection (scat-
tering).[24]

WIMPs are one of the most promising dark matter candidates, and direct detection

experiments have been designed to search for them. These experiments look for the

nuclear recoil of atoms that result from collisions with WIMPs [23].

2.3 Direct detection of WIMPs

The search for dark matter is a multifaceted effort that includes three types of ex-

periments: collider, indirect, and direct detection, as illustrated in Fig. 2.5. Collider

experiments, such as the Large Hadron Collider (LHC) at CERN, have also been

employed in the search for dark matter particles. The goal of these experiments is
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to produce dark matter particles by colliding high-energy protons with one another.

If dark matter particles are produced, they would escape the detector without inter-

acting with it, resulting in an energy or momentum imbalance in the collision event.

One technique involves looking for missing transverse energy (MET) in the collision

events, which would indicate the presence of an invisible particle, such as a dark mat-

ter particle, escaping the detector [25]. Another technique involves looking for the

production of dark matter particles in association with standard model bosons, such

as Higgs or Z bosons [26].

Indirect detection of WIMPs is another technique used to search for dark matter.

This method involves looking for the products of WIMP annihilation, such as gamma

rays, neutrinos, and cosmic rays. These products can be detected by telescopes

and other detectors. However, indirect detection is challenging because it requires

distinguishing the products of WIMP annihilation from other astrophysical sources.

Direct detection experiments aim to detect the scattering of WIMPs off nuclei in

a detector. The signature of a WIMP-nucleus interaction would be a small recoil

energy deposited in the detector. The recoil energy spectrum is expected to peak at

low energies, typically below 100 keV, making the detection of WIMPs challenging,

as many other background sources can produce similar signals.

2.3.1 Elastic scattering of the nuclei

Observations in cosmology have suggested the existence of a dark matter halo en-

veloping the Milky Way. This halo potentially interacts with detectors through elastic

scattering, which makes the detection of WIMPs reliant on the event rate and the

energy spectrum following an elastic collision on a target nucleus. The differential

energy spectrum can be expressed as [27]:

dR

dEnr

=
R0

E0r

k0
k1

{︃√
π

4

v0
vE

[︃
erf

(︃
vmin + vE

v0

)︃
− erf

(︃
vmin − vE

v0

)︃]︃
− e−v2esc/v

2
0

}︃
(2.1)
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where r = 4 mNmχ

(mN+mχ)2
, mN is the mass of the target nucleus and mχ is the mass of the

WIMP, E0 = 1/2mχv
2
0 is the kinetic energy of the dark matter when v = v0 = 230

km/s, Enr is the nuclear recoil energy and vE is the velocity of the earth relative to

the galactic frame. k1 corresponds to the truncated velocity distribution due to vesc,

where vesc = vmax = 533 km/s is the escape velocity of the Milky Way. The ratio

k0/k1 equals 0.9965, which implies that only 0.35% of the WIMPs have a velocity

greater than the escape velocity. Moreover, vmin is the minimum velocity that causes

nuclear recoil of energy Enr, given by:

vmin =

√︄
EnrmN

2

1

µ2
(2.2)

Here, µ is the reduced mass of the WIMP-nucleus scattering interaction, defined

as:

µ =
mNmχ

mN +mχ

(2.3)

The event rate per unit mass when vE = 0 and vesc = ∞ is defined as R0, which

given by:

R0 =
2√
π

NA

mN

ρχ
mχ

σv0 (2.4)

where NA is Avogadro’s number, ρχ is the local dark matter density, mχ is the mass

of WIMPs, and σ is the WIMP-nucleus scattering cross-section.

Then we can integrate the Eq. 2.1 over the energy to get the events rate.

Robs =

∫︂ Emax

Emin

ε (Enr,mχ)
dR

dEnr

dEnr (2.5)

where Robs is the observed event rate, ε is the detector efficiency, Emin and Emax are

the lower and upper energy limits of region of interest.

dσ

dEnr

=
σ0F

2(Enr)

4µ2v2
(2.6)
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where F 2(Enr) is the nuclear form factor. σ0 is the zero-momentum cross-section

for a WIMP of arbitrary spin and general Lorentz-invariant WIMP-nucleus cross-

section may be written in terms of a σ0,SI spin-independent (mostly scalar) and a

spin-dependent σ0,SD (mostly axial vector) term, given by:

σ0 = σ0,SI + σ0,SD =
4µ2

π
[Zfp + (A− Z)fn]

2 +
32G2

Fµ
2

π

J + 1

J
(ap ⟨Sp⟩+ an ⟨Sn⟩)2

(2.7)

where A is the atomic mass, Z is the atomic number, fp and fn (ap and an) are

effective spin-independent (spin-dependent) couplings of the WIMP to the proton

and neutron respectively, GF is the Fermi constant, J is the total nuclear spin, ⟨Sp⟩

and ⟨Sn⟩ are the expectation values of proton and neutron spins. The values of

spin and expectation values of proton and neutron spins for some selected elements

are shown in Table. 2.1. For spin-independent (SI) cross-section, the couplings are

considered to be the same fp ≈ fn, therefore

σ0,SI ≈
4µ2

π
f 2
nA

2 (2.8)

For the spin-dependent (SD) component, the complete expression is composed of

two terms multiply with its “scaling factors” 4 ⟨Sp⟩2 (J+1)/3J and 4 ⟨Sn⟩2 (J+1)/3J .

They represent the cross-section for WIMP-proton and WIMP-neutron interactions

respectively:

σSDp =
24G2

Fµ
2
na

2
p

π
(2.9)

and

σSDn =
24G2

Fµ
2
pa

2
p

π
(2.10)

where µp and µn are the reduced mass of proton and neutron respectively.

When a search for Weakly Interacting Massive Particle (WIMP) candidate events

yields no results [27], we set 90% confidence level (C.L.) limits on the WIMP-nucleon

cross-section for a given WIMP mass. If a detector does not measure any events or if
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Odd 4 ⟨Sp⟩2 (J + 1) 4 ⟨Sn⟩2 (J + 1)

Nucleus Z Nuc. J ⟨Sp⟩ ⟨Sn⟩ 3J 3J

19 F 9 p 1/2 0.477 -0.004 9.1× 10−1 6.4× 10−5

23Na 11 p 3/2 0.248 0.020 1.3× 10−1 8.9× 10−4

27Al 13 p 5/2 -0.343 0.030 2.2× 10−1 1.7× 10−3

29Si 14 n 1/2 -0.002 0.130 1.6× 10−5 6.8× 10−2

35Cl 17 p 3/2 -0.083 0.004 1.5× 10−2 3.6× 10−5

39 K 19 p 3/2 -0.180 0.050 7.2× 10−2 5.6× 10−3

73Ge 32 n 9/2 0.030 0.378 1.5× 10−3 2.3× 10−1

93Nb 41 p 9/2 0.460 0.080 3.4× 10−1 1.0× 10−2

125Te 52 n 1/2 0.001 0.287 4.0× 10−6 3.3× 10−1

127I 53 p 5/2 0.309 0.075 1.8× 10−1 1.0× 10−2

129Xe 54 n 1/2 0.028 0.359 3.1× 10−3 5.2× 10−1

131Xe 54 n 3/2 -0.009 -0.227 1.8× 10−4 1.2× 10−1

Table 2.1: The properties of selected odd proton and neutron nuclei, along with their
relative sensitivities to spin-dependent interactions. The data displayed in the table
includes the atomic number Z, the total nuclear spin J , and the expectation values
of proton and neutron spins ⟨Sp⟩ and ⟨Sn⟩, the value is extracted from [27].
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the background can be accurately predicted, the cross-section limit is determined by

calculating the Poisson limit at a 90% confidence level. For instance, if no events are

detected, the Poisson limit at 90% confidence level is equivalent to 2.3 counts. The

method to determine this limit depends on the background of the experiment as well

as the characteristics of the detector used. If the experiment has a flat background rate

that does not mimic the detector response to dark matter interaction, the background

rate can be subtracted to isolate the WIMP signal. In this case, the leftover signal is

fitted with a WIMP signal, and the cross-section is extracted. The determination of

the limit itself is performed with statistical tools that highly depend on the type of

detector and background.

The parameter space for comparing various direct detection experiments for WIMP

sensitivity is characterized by the mapping of specific cross-sections (SI or SD) to a

range of sensitivities of the experiment to different masses of dark matter particles.

Most experiments do not report any conclusive evidence of a WIMP signal. Instead,

they define “exclusion” limits which correspond to regions in the parameter space

that are statistically excluded based on the assumption that all observed unidentified

signals come from WIMPs.

2.3.2 Detection technologies

Most experiments searching for dark matter detect signal of nuclear recoil from rare

interactions between weakly interacting massive particles (WIMPs) and target nuclei.

This principle is based on detecting energy transfer from WIMPs to our detectors.

The energy can be detected as thermal energy via heat and phonons, as well as

ionization charge and scintillation light from the nuclear recoil. The diagram in

Fig. 2.6 illustrates the technologies used in these experiments. This chapter discusses

some of the detection technologies used in direct detection experiments.

Scintillation detectors are based on the detection of scintillation light produced

by dark matter particles interacting with target atoms in a detector. These pro-
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Figure 2.6: This diagram illustrates the possible signals that can be detected in direct
detection experiments based on different technologies and detection media used. [28]

duced photons can be detected by sensitive photodetectors such as photomultiplier

tubes (PMTs) or silicon photomultipliers (SiPMs). This technology is used in exper-

iments such as the DAMA/LIBRA and DEAP experiments [29][30]. The DEAP is

a single-phase argon scintillator detector, located in SNOLAB. It uses pulse-shape

discrimination to identify background events [30]. The DAMA/LIBRA experiment,

located in the Gran Sasso National Laboratory in Italy, is another direct detection

experiment searching for dark matter. It uses a sodium iodide (NaI) scintillator detec-

tor to search for the signal of WIMPs. The experiment has reported positive results

in the form of an annual modulation signal that could be interpreted as a WIMP

signal [23]. However, other experiments have not been able to confirm these results,

and the DAMA/LIBRA collaboration’s interpretation of the data has been a topic of

debate in the community [31].

Ionization detectors are based on the detection of ionization produced by recoil

events. This ionization can be detected by semiconductor charge-coupled devices
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(CCDs), which operate with high voltage to read out the signal with single-electron

sensitivity. DAMIC and SENSEI are experiments using this technology [32][33]. Ad-

ditionally, the NEWS-G experiment is a gas ionization Spherical Proportional Counter

(SPC) that detects ionized electrons drifting through the high electric field inside the

detector and can be detected as a current pulse [34]. The number of charges is pro-

portional to the energy of the recoil events.

The heat produced by the WIMPs-nucleus interaction can also be a detection

channel. One type of detector that uses heat is the bubble chamber detector, which

is the theme of the present work. The details of the principle will be discussed in

Chapter 3. The PICO experiment [35] is an example of a bubble chamber detector

that uses fluorocarbon to detect WIMPs, particularly spin-independent WIMPs.

Another type of detector is the phonon detector, which senses the collective vibra-

tions of atoms in a crystal lattice generated by dark matter particles as they elastically

scatter with atomic nuclei. Phonon detectors convert these vibrations into measur-

able electrical signals. The Cryogenic Dark Matter Search (CDMS) and SuperCDMS

experiments are examples of phonon detectors that use germanium and silicon crys-

tals cooled to extremely low temperatures (millikelvin) to detect phonons generated

by dark matter interactions [36]. Additionally, CDMS and SuperCDMS can detect

ionization produced by these interactions. This use of multiple detection channels is

known as hybrid detection technology.

Hybrid detection allows for greater sensitivity since different channels can probe

different regions of parameter space, and it also helps with better background dis-

crimination. Another notable experiment is XENON1T [37], which is a dual-phase

liquid xenon experiment. XENON1T uses a hybrid detection technique that combines

a time projection chamber (TPC) with a scintillation light detection system.

Last but not least, the scintillating bubble chamber (SBC) is a new experiment

that combines the technology of both scintillation and bubble chamber detector [38].

SBC uses liquid argon doped with xenon as a target to operate in the superheated
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Figure 2.7: Status of direct detection experiment results for spin-independent (SI)
WIMP-nucleon scattering cross-section as functions of WIMP mass in 2022 [17], with
90% confidence level. The dashed orange line represents the coherent elastic neutrino-
nucleus scattering floors.

state. When the WIMPs cause nuclear recoil, the ionization will create photons, also

the energy deposition will cause phase change from liquid to gas to form a bubble.

The details will be discussed in the following chapters.

2.3.3 Status of the field

Direct detection experiments in the search for dark matter aim to identify the particle

responsible for the majority of matter in the universe. These experiments rely on de-

tecting rare interactions between dark matter particles and ordinary matter. Despite

significant progress, the elusive nature of dark matter remains a mystery, with no

positive detection to date. Typically, the results and projections of these experiments

are presented as exclusion plots, illustrating limits on WIMP cross-sections versus

WIMP masses, as discussed in section Fig. 2.3.1. The exclusion limits on both spin-

dependent and spin-independent interactions are typically shown separately. Fig. 2.7
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Figure 2.8: The graph shows the projected 90% C.L. spin-dependent WIMP-proton
exclusion (dashed blue line) for two expected background events in PICO-40L at a
2.8 keV threshold with 1.64× 102 kg-days of exposure, as compared against existing
limits from several direct detection experiments [39]. The solid blue line corresponds
to PICO-60, the orange line corresponds to XENON1T, the yellow line corresponds to
LUX[40], the cyan line corresponds to PandaX-II[41], and the green line corresponds
to PICASSO[42]. Indirect limits from IceCube (magenta)[43] and SuperK (black)[44]
are also shown assuming annihilation to 7 leptons (dotted lines) and b quarks (dashed-
dotted lines). The targets of coherent elastic neutrino-nucleus scattering floor are
xenon (spin-dependent neutron, gray shaded) and C3F8 (no energy resolution, orange
shaded).

shows the most recent (2022) results of spin-independent WIMP-nucleon cross-section

exclusion limit. And for the spin-dependence WIMP-proton cross-section is shown in

Fig. 2.8.

The major challenge in the direct detection of dark matter is the extremely low

detection rate of dark matter particles. This makes it difficult to distinguish the

signal from the background radiation. To address this, more sensitive detectors with

lower background radiation and new detection techniques are required to increase

sensitivity to dark matter particles at very low-masses (sub-GeV).
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As shown in both exclusion limit plots Fig. 2.7 and Fig. 2.8, another major challenge

in these experiments is the presence of a background signal from neutrinos. Neutrinos

are produced by natural sources such as the Sun and cosmic-ray interactions in the

Earth’s atmosphere. They can produce similar energy deposits in the detector by

coherent neutrino scattering, which makes it difficult to distinguish their signal from

that expected from dark matter particles. This challenge is particularly significant for

experiments that use low-mass target materials, as the neutrino background becomes

increasingly dominant as the dark matter particle mass decreases. This is known

as the “neutrino floor” Fig. 2.7 problem, and it ultimately limits the sensitivity of

these experiments to dark matter particles with masses below a certain threshold.

One possible way to address this challenge is to use directional channels which can

help identify the source of the signal and effectively discriminate against neutrinos

originating from known sources [45].
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Chapter 3

Bubble chamber detectors

Bubble chamber detectors are one of the most important tools in experimental particle

physics for studying the behavior of subatomic particles. It was first developed by

Donald Glaser in 1952 [46], for which he was awarded the Nobel Prize in Physics

in 1960. The bubble chamber was initially used to study cosmic rays, which are

high-energy particles that originate outside of our atmosphere. Over time, it became

clear that bubble chamber detectors could also be used to study particles that were

produced in accelerators.

The basic principle of operation of a bubble chamber is that a liquid is maintained

in a state called a superheated state, which will be introduced in the Section. 3.1.

When a charged particle passes through the liquid, it ionizes the molecules along its

path, creating a trail of ions. The resulting phase transition in the ionized region

causes the liquid to boil along the particle track, forming a trail of bubbles [47]. The

bubbles grow in size as they rise to the surface of the liquid, where they can be

observed and photographed.

Bubble chamber detectors have led to many discoveries in particle physics, includ-

ing the Z boson and J/ψ meson. The Gargamelle experiment at CERN used a large

liquid hydrogen bubble chamber to study the weak interaction between neutrinos and

electrons, confirming the existence of neutral current [48]. Eventually, this led to the

discovery of the Z boson in UA1 and UA2 experiments later in 1983 [49]. Another
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discovery made by the bubble chamber is the Ω− particle at Brookhaven National

Laboratory in 1964. [50]. The Ω− particle is composed of 3 strange quarks, and its

discovery helped confirm the quark model of Gell-Mann.

This chapter aims to provide an overview of the principle of operation of bubble

chamber detectors and their application in dark matter searches. We will discuss the

energy threshold, theory of bubble growth, two dark matter direct search experiments

using bubble chambers (PICO and SBC), and nucleation efficiency as an important

factor in determining the exclusion limit of the dark matter search experiment.

3.1 Principles of operation

The phenomenon of phase change is traditionally studied in classical thermodynam-

ics under quasi-steady-state equilibrium conditions at saturation. However, a phase

change occurs under non-equilibrium conditions. Vaporization processes, for instance,

require temperatures that exceed the saturation temperature levels, known as super-

heating temperatures. Similarly, condensation can only occur after at least some

vapor has been sub-cooled below the saturation temperature. As a result, saturation

curve plots of pure substances exhibit regions where the liquid is superheated or the

vapor is subcooled. These states are referred to as metastable [51].

Fig. 3.1 shows the P − v (pressure verse molar volume) Clapeyron diagram for

a pure substance, which highlights the regions where metastability occurs. It also

contains an isotherm curve that represents different thermodynamic conditions. A

state is considered thermodynamically stable when (∂P/∂v)T < 0, meaning that if

the temperature level remains constant, an increase in pressure leads to a decrease in

volume, or vice versa. Fig. 3.1 displays stable liquid and stable vapor in sections AB

and FG, respectively. The horizontal line BF represents the liquid-vapor equilibrium

state, while BC and EF indicate metastable superheated liquid and metastable sub-

cooled vapor, respectively. The region CDE is an unstable region. The metastable

regions are located between the saturation curve and the spinodal curve, where phase
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Figure 3.1: Pure substance P − v diagram and Van der Waals curve. [51]
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Figure 3.2: The diagram depicts the Gibbs free energy (Gibbs potential) as a function
of density and pressure. As the pressure decreases (from blue to red), the Gibbs free
energy of both the liquid and vapor phases decreases, but the energy in the lower-
density vapor phase decreases at a faster rate than in the liquid phase. Consequently,
the gas phase becomes more stable than the liquid phase.[52]

separation occurs for infinitesimal fluctuations in the composition and density of sub-

stances.

The Gibbs free energy, also known as the Gibbs potential, is a measure of the max-

imum amount of non-volume expansion work that can be done by a closed system at

constant temperature and pressure. This measure is crucial for determining whether

processes like chemical reactions can take place under given pressure and tempera-

ture. When a substance is held at constant pressure and temperature, its state is

determined by calculating its minimum energy. In the case of a phase transition,

energy can be absorbed or released due to a change from one phase to another. At

equilibrium, both phases, such as liquid and gaseous phases of water at its boiling
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point, coexist because they minimize the Gibbs potential. [52]

When a liquid substance is decreased isothermally and slowly in pressure from

point AB to BC in Fig. 3.1, the Gibbs free energy of both the liquid and gaseous

phases decreases until they reach equilibrium. If the pressure is further decreased,

the Gibbs free energy of the gaseous phase becomes smaller than that of the liquid

phase. Curves BC and EF follow the phase stability criteria, but are in a state of

non-thermodynamic equilibrium, which means that, for the same pressure, there is

another state of lower potential. This is demonstrated by plotting the Gibbs free

energy as a function of density for various pressures, as shown in Fig. 3.2. The

substance remains in a local minimum, which is a metastable state, in this case,

the superheated liquid state. When a particle travels through the liquid, the energy

deposit can overcome the potential barrier that causes a phase change resulting in a

bubble. The energy is considered to be larger than a minimum threshold, called the

Seitz threshold [53], which is discussed in the following sections.

3.1.1 Critical radius

When energy is deposited into a superheated liquid, it can cause a local phase tran-

sition resulting in the formation of a spherical cavity filled with vapor, known as a

protobubble, which is surrounded by superheated liquid. A heat spike can cause the

protobubble to reach a critical radius denoted as rc, at which point it remains in static

equilibrium with the surrounding liquid. If the protobubble’s radius is less than rc,

it will collapse on itself. If, on the other hand, the radius exceeds rc, it will undergo

macroscopic expansion. The critical radius can be defined by the equation [47]:

rc =
2σ

Pb − Pl

(3.1)

Here, Pb is the vapor pressure inside the bubble, Pl is the liquid pressure, and σ

is the surface tension. The pressure of the liquid Pl is a known value that can be

controlled experimentally, whereas Pb cannot be directly measured and must be esti-
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mated using other measurable quantities. Pb is defined by the equilibrium condition,

which can be expressed by the Gibbs potentials for the liquid and vapor phases. At

isothermal temperature T, when the pressure reaches the saturation point (points B

and F in Fig. 3.1) where the vapor and liquid coexist, the vapor pressure is annotated

as Pv (where Pl < Pv).

The change in Gibbs free energy when transitioning from Pl to Pv can be equivalent

to change from Pb to Pv in the gas phase. The Gibbs free energy in differential form

is given by:

dG = V dP − SdT + µdN (3.2)

Here, V is volume, S is entropy, µ is chemical potential, and N is the number of

particles. Since the phase change occurs under isothermal conditions and the number

of particles does not change, we can simplify the equation to dG = V dP . Therefore,

we can let the phase change between Pl and Pv be equal to Pb to Pv, and we have:

∆G =

∫︂ Pv

Pl

VldP =

∫︂ Pb

Pv

VvdP (3.3)

We consider the ideal gas law PVv = nRT and incompressible liquid (Vl does not

change with P). After integrating both sides, we get:

Vl(Pv − Pl) = nRT ln

(︃
Pv

Pb

)︃
(3.4)

Substituting relations from the ideal gas law (RT = PvM/ρv and Vl = nM/ρl), we

obtain:

Pv − Pl

ρl
=
Pv

ρv
ln

(︃
Pv

Pb

)︃
(3.5)

Finally, we can express Pb as a known variable and approximate it using the first-

order Taylor expansion:
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Pb = Pve
− ρv

ρl
(1− Pl

Pv
) ≈ Pv −

ρv
ρl
(Pl − Pv) (3.6)

The critical radius can be expressed in terms of known variables:

rc =
2σ

Pv − Pl

ρl
ρl − ρv

≈ 2σ

Pv − Pl

(3.7)

The approximation holds since the liquid density is much greater than the vapor

density ρl ≫ ρv. The critical radius is crucial to calculate the critical energy that

must be deposited inside the radius to produce a phase transition in a superheated

liquid.

3.1.2 Seitz threshold

The energy of the bubble contains the following major terms, Qh the change in en-

thalpy or the latent heat, Qs +Qds the surface energy, Qw the work done against the

pressure pl of the liquid. Therefore Seitz [53], following Pless and Plano’s work [54],

writes the necessary energy to form the initial bubble.

The energy of the bubble contains three major terms: Qh, the phase change in

enthalpy or the latent heat; Qs, the surface energy; and Qw, the work done against

the pressure pl of the liquid. Seitz [53] has written the necessary energy to form the

initial bubble, following Pless and Plano’s work [54]. The equation takes into account

the three major terms and is given by:

QSeitz =
4π

3
r3cρb∆H + 4πr2c

(︃
σ − T

dσ

dT

)︃
− 4

3
πr3c (Pb − Pl) +Wirr (3.8)

where ∆H is the enthalpy of vaporization, σ is the surface tension, T is the tempera-

ture, Pb is the vapor pressure inside the bubble, Pl is the liquid pressure, and Wirr is

the irreversible work term. ρb is the density of the vapor which can be calculated as

ρb ≈ ρv
Pb

Pv

(3.9)
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In addition to the previously described terms, there is also an irreversible work term

Wirr that accounts for the emission of acoustic waves, effects due to viscosity, energy

lost to electronic excitation or ionization due to the recoil ion, and energy lost due to

heat diffusion outside of the critical radius.

Traditionally, in nuclear recoil, bubble formation requires that the energy deposi-

tion along the track be greater than the critical energy in Eq. 3.8:

Edep =
dEdep

dx
lc =

dEdep

dx
brc > QSeitz (3.10)

where lc represents the track length, also known as the critical length, and b is a factor

of critical radius that varies depending on the author [55][56]. In the PICO experiment

[57], b = 2 is considered for a C3F8 target. This work considers track length as

a variable that depends on both the primary recoil energy and the probability of

interaction with target nuclei. The detail will be discussed in the following chapter.

As the critical radius decreases, the surface tension becomes dependent on the

bubble radius due to the effect of intermolecular spacing, also known as the Tolman

length [58]. At the protobubble stage, the curvature of the bubble surface is taken

into account in the equations as a higher-order correction to both surface tension and

radius. Consequently, the measured value of surface tension σ0 is affected by these

corrections, resulting in changes to both the surface tension and radius

σ/σ0 = 1 + 2
δ

r0
(3.11)

and

r/r0 = 1 + 2
δ

r0
(3.12)

where the σ0 and r0 represent the surface tension and critical radius when δ = 0. We

can then expand the QSeitz into δ/r0 order, such that [59]:

Q = Q0 +Q1
δ

r0
+O

(︃
δ

r0

)︃2

+ ... (3.13)
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Using this definition, Q0 and Q1 can be written as:

Q0 = Q0,h +Q0,s +Q0,ds +Q0,w

Q1 = Q1,h +Q1,s +Q1,ds +Q1,w

(3.14)

Each term can be decomposed as below,

Q0,h =
4

3
πr30ρb (hb − hl)

Q0,s = 4πr20σ0

Q0,ds = − 4πr20t
∂σ

∂t

⃓⃓⃓⃓
∆p

Q0,w = −4

3
πr30 (Pb − Pl)

Q1,h = 8πr30ρb (hb − hl)

Q1,s = 24πr20σ0

Q1,ds = − 16πr20t
∂σ0
∂t

⃓⃓⃓⃓
∆p− 4

3
πr30ρb (hb − hl)

Q1,w = −8πr30 (Pb − Pl)

(3.15)

where Q0 is the same as QSeitz in Eq. 3.8.

All these thermodynamic parameters of the targets are taken from REFPROP [60]

from which the Seitz energy QSeitz (or the Q with correction) and the critical radius

rc can be calculated.

3.1.3 Bubble growth

If the energy deposition does not reach Seitz threshold energy along the track length,

the initial bubble will collapse, otherwise, it will expand when these conditions in

Eq. 3.10 are met. The growth of the bubble can be distinguished into two phases,

each of which has been described in theoretical studies by Rayleigh [61] and Plesset

and Zwick [62]. Both of these stages are based on approximate solutions derived from

the Navier-Stokes equation and heat equations.

Once a bubble reaches the critical radius rc size during the first stage, the energy

transfer from the recoiling ion keeps it growing. The force that opposes bubble growth
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is the surface tension of the surrounding liquid, which declines as the bubble grows.

This process is described mathematically by the Rayleigh-Plesset equation

Pb = Pl +
3

2
ρlṙ

2 + ρlrṙ (3.16)

where Pb is the pressure inside the bubble, Pl is the liquid pressure, ρl is the liquid

density and r is the radius of the bubble. The equation provides a solution for the

rate of bubble growth and is given by:

r1(t) = ϕ1t,

where, ϕ1 =

(︃
2

3ρl
(Pb − Pl)

)︃1/2 (3.17)

where ϕ1 represents the rate of expansion and the subscript 1 represents the inertial

regime. However, this equation can only describe bubble growth in a spherical shape.

In reality, the geometry changes due to the linear energy transfer from the initial

track to the spherical bubble, which requires an extra spatial degree of freedom. In

this work, we study the evolution of bubbles from a cylindrical track using molec-

ular dynamics simulations during the first few nanoseconds. Further details will be

discussed in the next chapter.

The second stage is the thermal growth stage. As the initial energy diffuses, it

becomes insufficient to support the phase transition. Heat transfer from the region

surrounding the bubble is then required to provide the necessary energy. By combin-

ing the Rayleigh-Plesset equation [61] for the inertial growth phase and the Plesset-

Zwick equation [54] for the thermal growth phase as in [16], we arrive at the bubble

growth rate, such as:

dR

dt
= −

[︃
A2

√
t− ts
B

+
2νl
R

]︃
+

√︄
A2 − 2σ

ρlR
+

(︃
2νl
R

+
A2

√
t− ts
B

)︃2

(3.18)

where A is

A =

√︄
2

3

hρv∆T

ρlTsat
(3.19)

where B is

B =

√︃
12

πal
Ja =

√︃
12al
π

· 2∆T
2cl

3A2Tsat
(3.20)
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where ts is the time bubble become approximately spherical (eccentricity ¡ 0.3), νl

is the liquid viscosity, σ is the surface tension, ρl and ρv is the density of the liquid

and vapor, h is the latent heat of vaporization, ∆T is the liquid superheat above

the saturation temperature, Tsat is the saturation temperature, Ja is called the Jacob

number with cl being the liquid heat capacity, al is the thermal diffusivity of the liquid.

We can solve this differential equation numerically with initial conditions of radius

Rs and time ts when the bubble becomes spherical. We defined the bubble become

sphere to be when the eccentricity smaller than 0.4. Bubble growth is particularly

useful in the context of dark matter bubble chamber experiments, where the bubble’s

expansion serves as a source of acoustic emission. This equation will be used to model

the acoustic intensity to discriminate α particle background events from nuclear recoil

events.

3.1.4 Acoustic Signal

When bubbles grow in a metastable superheated liquid and exceed the critical radius,

they undergo macroscopic expansion, emitting an acoustic wave. The power radiated

by this wave can be described by the following equation [63]:

P =
ρlV̈

2

4πc
=

ρl
4πc

(︃
4πr̈3

3

)︃2

=
4πρl
9c

(︁
3r2r̈ + 6ṙ2r

)︁4
(3.21)

Here, V̈ is the acceleration of the volume expansion, and c is the speed of sound

in the liquid phase. We can replace the solved numerical solution r(t) from Eq. 3.18.

The intensity (power per unit area) of the pressure acoustic is defined as:

I =
P(t)2

ρlc
= |A(f)|2 (3.22)

The acoustic pressure intensity can be converted into a frequency spectrum by

performing a discrete Fourier transform and taking the norm of the complex pressure

amplitude A(f). Fig. 3.3 shows the pressure intensity in the frequency domain during

the bubble growth in different events. In the PICO experiment, the frequency range
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Figure 3.3: Acoustic power frequency spectra during the expansion of nuclear recoil
and alpha-induced bubbles events [63]. The Eα curves represent the alpha induce
bubble events, and the T (19F) curves represent the fluorine recoil events.
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Figure 3.4: The WIMP-search AP data of the PICO-60 experiment at a 2.45 keV
threshold (in red), along with the AP distributions for 252Cf (blue) and 133Ba cali-
bration data (combined with 252Cf, green). The acceptance region for nuclear recoil
candidates defined through neutron and gamma calibration data.[35]

of interest is from 1 kHz to 300 kHz [63], in order to distinguish different particle

events. The acoustic parameter (AP) is calculated by integrating the intensity in the

frequency domain, as shown in the following equation:

AP =

∫︂ 300kHz

1kHz

I(f)df (3.23)

where I(f) represents the intensity in the frequency domain. Fig. 3.4 shows the AP

distributions in the PICO experiment WIMP-search results, as well as the neutron

and gamma calibration data.

3.2 Experiments

In the field of direct search experiments for dark matter, two major experiments use

bubble chamber technology: PICO and SBC. This work will focus on analyzing the

data and targets of these two detectors. The following subsection introduces these

two experiments.
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Figure 3.5: The PICO-60 detector model that operated with C3F8. [35]

3.2.1 PICO experiment

The PICO experiment is named after two former bubble chamber dark matter ex-

periments, PICASSO (Project In CAnada to Search for Supersymmetric Objects)

and COUPP (Chicagoland Observatory for Underground Particle Physics). Fig. 3.5

shows the model of PICO-60 as illustration.

The PICO experiment is a research project that aims to detect dark matter in

the form of Weakly Interacting Massive Particles (WIMPs) using bubble chambers.

These chambers are designed to operate similarly to historical bubble chambers but

with a lower degree of superheat. This lower degree of superheat results in a higher

energy threshold of approximately O (keV) [35], allowing PICO’s bubble chambers to

remain active for hours, waiting for a dark matter interaction. If the energy deposition
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nucleates a bubble, it is recorded by cameras as an event. Additionally, piezoelectric

acoustic sensors detect the acoustic power released during bubble formation, while

pressure and temperature measurements determine the thermodynamic state of the

chamber.

Since its operation, PICO has maintained its position as the world’s leading exclu-

sion limit for dark matter spin-dependent (SD) WIMP-proton interaction, and it has

continued to enhance this limit. The initial PICO-60 detector used 36.8 kg of CF3I as

the active liquid during its first run[64]. For the subsequent PICO-2L detector, 2.90

kg of C3F8 was used. In the second run of PICO-60, the chamber was filled with 52 kg

of C3F8 [35]. Currently, the PICO collaboration is constructing PICO40L [39], which

will contain approximately 40L of active freon. Additionally, they are designing their

next detector, PICO500, which will contain approximately 500L of active freon [65].

3.2.2 SBC experiment

The Scintillating Bubble Chamber (SBC) is a liquid-noble bubble chamber that de-

tects low-mass (GeV-scale) dark matter and coherent scattering of low-energy (MeV-

scale) neutrinos (CEνNS)[38]. It combines two technologies: the bubble chamber

and the noble liquids gas scintillation detector. In the SBC experiment, superheated

liquid argon is used as the target. In order to optimize the collection efficiency of

scintillation light by silicon photomultipliers (SiPMs), a small concentration of xenon

(O(ppm)) is added as a wavelength shifter. This addition xenon facilitates the con-

version of ultraviolet scintillation light to blue scintillation light, enabling SiPMs to

capture the light higher quantum effectively. The SBC detector is shown in Fig. 3.6.

The liquid-noble bubble chamber technology is highly scalable and offers excellent

background discrimination power, making it an attractive option for future dark

matter searches. The projected spin-independent sensitivity of the upcoming dark

matter search is approximately 10−43 cm2 at 1 GeV/c2 dark matter particle mass [38].

This technique is also well-suited for studying the solar neutrino floor at 1 GeV/c2
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Figure 3.6: Schematic of the SBC (left) and annotated detail model (right) of the
SBC-LAr10 detector. [38]

particle mass, which requires a ton-year exposure with non-neutrino backgrounds sub-

dominant to the solar CEνNS signal. Additionally, the scalability and low background

noise of the liquid-noble bubble chamber technology can benefit high-statistics CEνNS

studies at nuclear reactors.

The SBC-LAr10, a 10-kg liquid argon bubble chamber [38], is the first physics-

scale demonstrator of this technique and is currently being commissioned at Fermilab.

This detector will calibrate the background discrimination power and sensitivity of

superheated argon to nuclear recoils at energies as low as 100 eV. A second detector,

identical in function to the SBC-LAr10 but with a focus on radiopure construction,

is being built for SBC’s first dark matter search at SNOLAB.

3.3 Nucleation efficiency

The Seitz threshold mentioned above does not guarantee bubble nucleation when the

nuclear recoil energy exceeds the threshold energy. The model does not take into

account energy losses to the electronic stopping, which causes electron excitation and

ionization. Furthermore, the energy distribution is affected by the geometry of the
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track length, as longer tracks cause heat diffusion outside of the critical radius.

The effects mentioned above can shift the nuclear recoil detection threshold and, in

the case of straggling, broaden it. This can lead to detection efficiencies below 100%

near the threshold. As Fig. 3.7 shows. The experimental analysis [66] [67] revealed

that the bubble nucleation efficiency is a function depending on the recoil energy

instead of a step function, as the current theoretical Seitz model indicates.

The goal of this work is to construct a physics model that explains the discrepancy

between experimental results and the current theoretical model. In Chapter 4, we

will introduce the details of our molecular dynamics simulations, which we conducted

to study the first stage of bubble nucleation.

In Chapter 5, we will introduce our Monte Carlo simulations, where we connect the

energy required for bubble formation with primary recoil energy loss. The probability

of bubble nucleation for each nuclear recoil energy depends on the energy distribution

in each event, which determines whether the bubble grows or collapses.

Finally, in Chapter 6, we compare the results of our model with those of recent

studies using liquid xenon bubble chambers [66] and PICO C3F8 bubble chambers

[67].
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(a) The nucleation efficiency curves obtained from the PICO-60 C3F8 data. The best-
fit curves and 1 σ error bands for fluorine and carbon are shown in blue and magenta,
respectively, while the green bands indicate both thermodynamic Seitz thresholds (2.45
keV above and 3.29 keV below). [66].

(b) The Preliminary results for nucleation efficiency in SBC LXe prototype [38], with
a 1 σ error bands from the best fit (blue). The thermodynamic Seitz thresholds of 0.9
keV and 2 keV are indicated in red. [66]

Figure 3.7: Discrepancy between Seitz threshold and the nucleation efficiency of
nuclear recoil.
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Chapter 4

Molecular dynamics simulation

The Seitz model describes the minimum energy required to form an initial bubble

and the conditions for the bubble to continuously grow. However, the mechanism for

forming the initial protobubble remains unclear.

To address this, Molecular Dynamics (MD) simulations were used to study the

energy deposition from the nuclear recoil and the initial bubble growth. The MD

simulation was performed using the Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS) program [68]. In LAMMPS, we use the Lennard-Jones (LJ)

potential to describe the interaction between atoms, specifically the attractive and

repulsive forces between them:

VLJ = 4ϵ

[︃(︂σ
r

)︂12

−
(︂σ
r

)︂6
]︃

(4.1)

Here, r represents the distance between atoms, while σ refers to the distance at which

the potential between atoms is zero, sometimes referred to as intermolecular distance.

The potential energy has a minimum value of −ϵ, where ϵ is the depth of the potential

well. The r−6 term representing the dipole-dipole van der Waals attraction and the

r−12 part is responsible for Pauli repulsion.

In practice, the truncated shifted-force Lennard-Jones (TSF-LJ) potential can ac-

curately describe the superheated system [56] and is given by:

VTSF(r) =

⎧⎨⎩ VLJ(r)− VLJ (rcut)− (r − rcut)V
′
LJ (rcut) for r ≤ rcut

0 for r > rcut
(4.2)
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Figure 4.1: Comparison of Lennard-Jones (TSF-LJ) potential and shifted-force
Lennard-Jones (TSF-LJ) potential.

where V ′
LJ is the first derivative with respect to r and rcut is the cutoff distance to

maintain the computation efficient. rcut = 2.5σ for this work to ensures the deviation

from the full-tail Eq. 4.1 to be smaller than 1.6% [63]. The shape of the potential

function in Eq. 4.1 and Eq. 4.2 are shown in Fig. 4.1.

In MD simulations, all quantities are unitless and are referred to as LJ units. With-

out loss of generality, we assume that the fundamental quantities of mass, σ, ϵ, and

the Boltzmann constant kB are defined to be 1. The masses, distances, and energies

specified in the system are multiples of these fundamental values. The transformation

between the SI unit and the LJ unit is shown in Table. 4.1
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Quantities SI Unit LJ Unit

Distance x = σ x∗ = x/σ

Mass M = m M∗ =M/m

Time τ = τ τ ∗ = τ
√︁

ϵ
mσ2

Energy E = ϵ E∗ = E/ϵ

Density ρ = m/V ρ∗ = ρσ3

m

Pressure P = P P ∗ = P σ3

ϵ

Table 4.1: Physical quantities express in SI and LJ Units

4.1 LAMMPS

LAMMPS simulates the motion and interactions of atoms in a system using the LJ

potential under defined periodic conditions. The primary goal is to connect the LJ

molecule (atom) to the target molecule (atom) by constraining σ and ϵ to SI unit

quantities. The LJ energy unit ϵ can be calculated as ϵ = TckB/0.935, where Tc is

the critical temperature. The value of TckB/ϵ = 0.935 is theoretically derived using

an ordering map representation [69].

To constrain the intermolecular distance σ, we can simulate the saturation state

at the same operational temperature as the detector. The saturation state includes

both the liquid and gas phases, so we can use the densities of both phases to calculate

σ. The simulation begins by creating a lattice of atoms and running NVE (constant

number of particles, volume, and energy) at the detector’s operating temperature in

the saturated state. This process initializes a stable liquid system.

In NVE simulations, the number of particles (N), volume (V), and total energy (E)

of the system are conserved, which is known as the microcanonical ensemble. NVE

simulations do not use an external thermostat, and the system’s energy is conserved

throughout the simulation. This means that any energy exchanges or changes in

temperature within the system occur solely due to the internal interactions between

particles. NVE simulations are often used to examine energy conservation, study
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dynamics without temperature fluctuations, or investigate systems in the absence of

thermal baths or external temperature control.

Following the NVE simulation, we conducted an NVT (constant number of parti-

cles, volume, and temperature) simulation using the initialized system. This resulted

in an isothermal saturation state that exists in both the liquid and gas phases.

In NVT simulations, the number of particles (N), volume (V), and temperature

(T) of the system are held constant. A thermostat is used to adjust the velocities

of the particles and maintain a desired temperature throughout the simulation. The

NVT ensemble is particularly useful for studying systems where temperature is a

crucial factor, such as thermal equilibrium or investigating temperature-dependent

properties.

Next, we collect the density profile for the liquid and vapor in the simulation box

and select the density of the system over the z-axis as ρz. We can then use a time-

averaged hyperbolic tangent function that depends on z [70]:

ρ(z) =
1

2
(ρl + ρv)−

1

2
(ρl − ρv) tanh

[︃
2 (|z| − z0)

d

]︃
(4.3)

where ρl is the density of the liquid, ρv is the density of the vapor, and z = z0 is

the plane of the surface when ρ(z0) =
1
2
(ρl + ρv), which is the density equal to the

average of the liquid and vapor. The measure the interface thickness d is defined as:

d = −(ρl − ρg)

[︃
dρ(z)

dz

]︃−1

z=z0

(4.4)

Fig. 4.2 shows an example of density along the central z-axis of CF3I liquid. Once

we have determined the density of the liquid in the saturation state, we make constrain

the value of σ for a specific liquid using the LJ unit transform in Table 4.1: ρ∗ = ρσ3

m
.

Once the energy unit ϵ and spatial unit σ have been established for the LJ system,

the next step is to create a superheated state using the NVE mode. For the lattice

command, we can use the density of the superheated liquid. However, the density

of the liquid in a superheated state is usually lower than the saturation state at
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Figure 4.2: Saturation-state density distribution of CF3I along the central line. Data
points obtained from MC simulation, with fitting function defined in Eq. 4.3. Where
ρl is the density of the liquid, ρv density of the vapor.
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Figure 4.3: Schematic of energy deposition in the MD simulation. We selected a
cylinder-shaped region and rescaled the temperature associated with the energy de-
position using Eq. 4.6.

the same temperature. To start, we set the initial temperature to be slightly higher

than the superheated temperature and then lower the temperature under the NVE

ensemble. During the procedure, the system volume and the liquid density were kept

constant. Consequently, the resulting density was insufficient for the stable liquid

under the given temperature conditions. The density should have been increased

proportionally to account for the decrease in temperature and maintain the system

in a stable liquid state. As a result, the liquid remained in a superheated state. After

creating the superheated system, we proceeded to simulate the energy deposition

caused by the track of an ionizing particle from nuclear recoil. To model the track,

we defined it as a narrow cylinder with length lcyl, which is shown in the schematic

in Fig. 4.3. The volume of the cylinder is given by:

Vcyl = πr2cyllcyl (4.5)

According to [63], the cylinder’s radius is fixed at rcyl = 2σ. We also varied rcyl

between 2 and 5 σ in the simulation, whereas it did not affect bubble formation.

Therefore, we used rcyl = 2σ for all other simulations. Since we know the liquid’s

density ρ∗ [mσ−3], the number of particles inside the cylinder will be a multiple of the

volume with number density. Then, we rescale the temperature of the atom inside

the region associated with the energy deposition using the following equation:

Tdep =
2

D

Edep

NkB
+ T0 (4.6)
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where D represents the degree of freedom of the target molecule or atom, T0 repre-

sents the temperature of the superheated liquid (which is also the temperature of the

detector), and N represents the number of atoms or molecules inside the cylindrical

region. N can be calculated N with the superheated liquid density N = πr2cyllcylρ
∗
l .

The degree of freedom of a molecule depends on its structure. Noble elements with

monatomic structures, such as argon and xenon, have 3 translational degrees of free-

dom. In contrast, complex molecules like C3F8 and CF3I have both 3 translational

and 3 rotational degrees of freedom.

Since the simulation box is a finite region, we need to avoid the bubble expansion

influence on the overall pressure of the system. To solve this, we use NPT ensemble

mode to simulate the bubble growth.

The NPT ensemble enables control over the number of particles (N), pressure (P),

and temperature (T) of a system. In this ensemble, the system can exchange particles

with a reservoir while also exchanging energy and volume with external pressure and

temperature baths. This approach is useful for investigating the behavior of liquids

under constant pressure conditions. By maintaining a constant temperature and

pressure, the NPT ensemble provides a realistic representation of the thermodynamic

properties and dynamics of the system to study phase transition phenomena.

4.2 Results

Using MD, we can observe the bubble growth or collapse depending on the track

length and energy deposition. Fig. 4.4 shows two events of the bubble nucleation

process in molecular dynamic simulation for xenon. The upper graphs show the 2 keV

energy deposition and the lower graphs show the 1 keV energy deposition. The sphere

surface tracking is done by python skimage.measure.find_contours package. The

effective radius Reff represents the radius of a sphere that has the same volume as

the non-spherical bubble. The red circle represents the bubble that becomes spherical

(eccentricity < 0.4) and the red line is the fit obtained by the differential equations
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in Eq. 3.18 given in Sec. 3.1.3.

Figure 4.4: MD simulation in liquid xenon for the thermodynamics condition with
0.9 keV Seitz threshold. The upper two graphs show the 2 keV energy deposition
and the lower two graphs show the 1 keV energy deposition. The left two graphs
show the density of the liquid in the simulation region. The color scale indicates the
liquid density in the simulation region. The right two graphs show the effective radius
Reff = 3

√︁
3V/4π as a function of time, where V is the volume of the bubble. The

red circle represents the bubble becoming spherical and the red line represents the fit
given by the differential equations in Eq. 3.18. The green dashed line is the critical
radius of xenon obtained from Eq. 3.7

In this study, we conducted a MD simulation to investigate the formation and

collapse of bubbles based on the variation of two key variables: the energy deposition

(Edep) and the cylinder length (lcyl). Our goal was to determine the conditions under

which bubbles form or collapse, as illustrated in Fig. 4.4. To analyze the results of

bubble nucleation, we categorized them based on the linear energy density (dE/dx)

and the cylinder length (lcyl) in the MD simulation.

The function:
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⟨dE
dx

⟩ = Edep

lcyl
=

a

l2cyl
+

b

lcyl
+ c (4.7)

was used to fit the region between bubble formation and collapse. The parameters

a, b, and c are the free parameters of the fit, which were determined based on the

simulation data. Following this procedure, we have conducted analysis of various gas

species used in bubble chamber experiments, enabling us to compare the results with

existing data. Further details regarding the analysis of each liquid will be discussed

in the subsequent sections, providing a comprehensive understanding of the bubble

nucleation.

4.2.1 Liquid Xenon

The SBC experiment has a prototype that uses liquid xenon [71]. Thus, we used

MD simulations to study liquid xenon, following the method described in Section 4.1.

First, we calculated ϵ by the relation ϵ = TckB/0.935 = 4.278 × 10−21 [J] from the

critical temperature of xenon Tc = 289.74K [72]. Then, we determined σ by obtaining

the liquid density at the saturation state in the MD simulation at a temperature of

T = −42.9 [◦C] (0.743 [ϵ/kB] in LJ unit), which is σ = 3.97Å. By calculating ϵ and

σ, we could constrain the simulated LJ-liquid to our target liquid.

Seitz threshold Pressure Liquid Density

[keV] [psia] [Pσ3/ϵ] [g/cc] [ρσ3/m]

0.9 25 0.00253 2.4204 0.6951

2.06 76 0.00767 2.4258 0.6959

Table 4.2: Xenon thermodynamics properties in SI units and LJ units. The density
is extracted from REFPROP [60], based on the temperature and pressure conditions
of superheat. Xenon superheated temperature is fixed in -42.9 [C◦] (0.743 [ϵ/kB] in
LJ unit)

To initialize the simulation, we created a superheated state with thermodynamic

conditions corresponding to Seitz energy thresholds of 0.9 keV and 2.06 keV, as shown
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Figure 4.5: The bubble nucleation condition as a function of the linear energy density
and the track length. The graphs show the xenon in the 0.9 keV and 2.06 keV Seitz
threshold respectively. Red crosses indicate events where bubbles collapse, while blue
triangles indicate events where bubbles form. The fitting curve is fitted by Eq. 4.7
with the average dE/dx between the form and collapse.

in Table. 4.2. The parameters used in the MD simulation in both LJ and SI units are

presented there. We then varied the energy deposition Edep and cylinder length lcyl

and summarized the results by fitting them with the function in Eq. 4.7.

Fig. 4.5 illustrates the dependence of bubble nucleation on the linear energy density

dE/dx and cylinder length lcyl in molecular dynamic simulations. Red crosses indicate

events where bubbles collapse, while blue triangles indicate events where bubbles

form. The regions between bubble formation and collapsing (i.e., the average energy

density between them) are fitted with the function given in Eq. 4.7. Conversely, the

lower bound is fit with the largest simulated energy density resulting in bubble collapse

(red crosses). Similarly, the upper bound is fit with the lowest energy density resulting

50



in bubble formation (blue triangles). The fitting parameter is shown in Table. 4.3.

Seitz threshold a [eV·nm] b [eV] c [eV/nm]

0.9 keV 705.86 1109.1 12.542

0.9 keV lower bound 1188.4 995.18 10.581

0.9 keV upper bound 1087.6 1116.3 17.417

2.06 keV 1503.4 1835.2 10.371

2.06 keV lower bound 1388.4 1755.1 9.6365

2.06 keV upper bound 721.58 2031.3 9.4678

Table 4.3: The xenon bubble nucleation fitting parameters obtained from Eq. 4.7
used for Fig. 4.5 shown. The lower bound is fit with the largest simulated energy
density resulting in bubble collapse (red crosses) and the upper bound is fit with the
lowest energy density resulting in bubble formation (blue triangles).

4.2.2 Octafluoropropane (C3F8)

The MD simulation of C3F8 was conducted following a similar procedure as em-

ployed for liquid xenon. However, C3F8 is a multi-atom compound, leading to a

non-isotropic intermolecular potential. Considering the computational expense asso-

ciated with accounting for all internal chemical bonds within the molecule, a degree

of simplification was necessary for the simulation. This simplification was achieved

through a method known as coarse-graining (CG), which treats the molecule as a

single particle while disregarding internal interactions, including chemical bonds. CG

models are MD models specifically designed to investigate the behavior of complex

molecules. They enable a reduction in system complexity by focusing on relevant

physical quantities while still capturing the fundamental physics at play. Notably,

the CG method has been successfully applied to study the behavior of C2ClF5 in the

context of the SIMPLE experiment [56].

To determine the interaction energy parameter ϵ, we used the relation ϵ = TckB/0.935 =

5.095 × 10−21 J, where Tc represents the critical temperature of C3F8, found to be
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345.1 K in REFPROP [60]. Subsequently, to obtain the liquid density, we created a

saturation state in the MD simulation at temperatures of T = 14 [◦C] (0.778 [ϵ/kB]

in LJ unit) and T = 16 [◦C] (0.783 [ϵ/kB] in LJ unit), which corresponded to the

experimental conditions at Seitz thresholds of 3.29 keV and 2.45 keV, respectively.

From the saturated density, we determined σ to be approximately 5.38 Å. This value

was then used to constrain the LJ-liquid simulation to accurately represent the target

liquid. The specific values employed in the simulation are shown in Table 4.4.

Seitz threshold Temperature Pressure Density

[keV] [◦C] [ϵ/kB] [psia] [Pσ3/ϵ] [g/cc] [ρσ3/m]

3.29 14 0.778 106 0.0224 1.3676 0.688

2.45 16 0.7834 71 0.0146 1.3791 0.672

Table 4.4: Thermodynamic properties of C3F8 in both SI and LJ (Lennard-Jones)
units used in MD simulation. The density values are extracted from REFPROP [60],
utilizing the temperature and pressure conditions corresponding to the experimental
superheated state. The listed pressure values represent the outputs obtained from
the MD simulation.

The use of a coarse-graining model, such as C3F8, involves approximating a com-

pound molecule with a single isotropic particle, which can result in certain deviations

from the properties of the actual material. In the PICO-60 experiment [35], we con-

trolled the temperature and pressure to achieve a superheated state. However, in the

MD simulations, we regulated the temperature and density to attain the same state.

When generating the superheated state in MD, the pressure becomes a dependent

variable determined by temperature and density. In the case of the xenon MD simu-

lation, the isotropic nature of the atom allows for agreement between the MD-derived

pressure and the experimental pressure provided in Table 4.4. However, for C3F8, as

shown in Table 4.4, the coarse-graining model leads to a discrepancy in the pressure

estimation. Despite this discrepancy, it is important to note that the coarse-graining

model remains valid and has been employed successfully in past studies [56, 63]. Con-
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Figure 4.6: The bubble nucleation condition dependence on the linear energy density
and the track length. The graphs shows the C3F8 in the 3.29 keV and 2.45 keV Seitz
threshold. Red crosses indicate events where bubbles collapse, while blue triangles
indicate events where bubbles form. The fitting curve is fitted by Eq. 4.7 with the
average dE/dx between the form and collapse.

sequently, we constrained the model using real experimental temperature and density

values to conduct subsequent simulations for both C3F8 and CF3I.

We conduct the simulation using the experimental superheated state with Seitz

thresholds of 3.29 keV and 2.45 keV. To understand the bubble nucleation threshold,

we systematically vary the energy deposition Edep and cylinder length lcyl. The ob-

tained results are summarized by fitting them with the function described by Eq.4.7.

The dependence of bubble nucleation on these thresholds is revealed in Fig. 4.6.

Fig. 4.6 shows the relationship between bubble nucleation, linear energy density

(dE/dx), and cylinder length (lcyl) in our MD simulations for C3F8. The red crosses

indicate bubble collapse events, while the blue triangles represent bubble formation
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events similar to xenon results. The fitting parameter is shown in Table. 4.5.

Seitz threshold a [eV·nm] b [eV] c [eV/nm]

2.45 keV 1543 2975.6 12.054

2.45 keV lower bound 112.48 2866.1 10.137

2.45 keV upper bound 32.204 3333 13.003

3.29 keV 3850.8 2111.9 21.169

3.29 keV lower bound 3131 2022.8 17.278

3.29 keV upper bound 3532.1 2433.8 22.084

Table 4.5: The C3F8 bubble nucleation fitting parameters obtained from Eq. 4.7
used for Fig. 4.6. The lower bound is fit with the largest simulated energy density
resulting in bubble collapse (red crosses) and the upper bound is fit with the lowest
energy density resulting in bubble formation (blue triangles).

4.2.3 Trifluoroiodomethane (CF3I)

In 2015, the PICO-60 used CF3I as a target in the search for WIMPs [64]. Thus, a

MD simulation of CF3I was conducted to verified the present model. The simulation

produced ϵ = 5.85× 10−21 J and σ = 6.43Å with a critical temperature of 396.495 K

and a saturation temperature of 34.5 ◦C.

During the experiment, the detector operated in a superheated state with a 13.6

keV Seitz threshold. To replicate this threshold condition, we used the thermody-

namic parameters listed in Table 4.6.

Seitz threshold Temperature Pressure Liquid Density

[keV] [◦C] [ϵ/kB] [psia] [Pσ3/ϵ] [g/cc] [ρσ3/m]

13.6 34.5 0.725 23 0.0075 1.97967 0.70954

Table 4.6: CF3I thermodynamics properties in common units and LJ units. The
density is extracted from REFPROP [60], based on the temperature and pressure
conditions of superheat. The listed pressure values represent the outputs obtained
from the MD simulation.
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Figure 4.7: The bubble nucleation condition dependence on the linear energy density
and the track length. The graphs show the C3F8 in the 3.29 keV and 2.45 keV Seitz
threshold respectively. Red crosses indicate events where bubbles collapse, while blue
triangles indicate events where bubbles form. The fitting curve is fitted by Eq. 4.7
with the average dE/dx between the form and collapse.

After creating the superheated state, we simulate various values of energy depo-

sition (Edep) and cylinder length (lcyl). We obtain results and summarize them by

fitting them with the function Eq. 4.7. The dependence of bubble nucleation on these

thresholds is shown in Fig. 4.7, along with the fitting parameters Table. 4.7.

Seitz threshold a [eV·nm] b [eV] c [eV/nm]

13.6 keV 22114 14537 28.066

13.6 keV lower bound 22114 13537 28.066

13.6 keV upper bound 22114 15537 28.066

Table 4.7: The CF3I bubble nucleation fitting parameters obtained from Eq. 4.7used
in Fig. 4.7. The lower bound is fit with the largest simulated energy density resulting
in bubble collapse (red crosses) and the upper bound is fit with the lowest energy
density resulting in bubble formation (blue triangles).

4.2.4 Liquid Argon

In the upcoming SBC experiment, the detector will use liquid argon to operate at a

very low threshold to search for low-mass WIMPs. Following the same procedure as

with liquid xenon simulation, we obtained ϵ = 2.227× 10−21 J and σ = 3.4Å. In this
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work, we perform simulations at two threshold conditions, 44.5 eV and 97.3 eV, with

the aim of achieving the desired experimental targets for these thresholds.

Seitz threshold Pressure Liquid Density

[keV] [psia] [Pσ3/ϵ] [g/cc] [ρσ3/m]

44.5 20 0.002466 1.035 0.639

97.3 100 0.1233 1.046 0.646

Table 4.8: Liquid argon thermodynamics properties in SI units and LJ units. The
density is extracted from REFPROP [60], based on the temperature and pressure
conditions of superheat. Argon superheated temperature are fixed in -143.15 [C◦]
(0.806 [ϵ/kB] in LJ unit)

Once the superheated state was created, we conducted simulations with various

values of energy deposition (Edep) and cylinder length (lcyl). We then summarized

the results by fitting them to the function given in Eq. 4.7. The relationship between

bubble nucleation and these thresholds is shown in Fig. 4.8, and the fitting parameters

are provided in Table. 4.9.

Seitz threshold a [eV·nm] b [eV] c [eV/nm]

44.5 eV 15.834 31.109 2.7416

44.5 eV lower bound 14.617 26.638 2.7928

44.5 eV upper bound 14.770 36.878 2.6474

97.3 eV 0.62748 122.00 2.8496

97.3 eV lower bound 1.1863 111.63 2.9051

97.3 keV upper bound 1.6679 131.52 2.8864

Table 4.9: The liquid argon bubble nucleation fitting parameters obtained from
Eq. 4.7used in Fig. 4.8. The lower bound is fit with the largest simulated energy
density resulting in bubble collapse (red crosses) and the upper bound is fit with the
lowest energy density resulting in bubble formation (blue triangles).

Moving on to the next chapter, we will discuss the travel of the recoiling nucleus in

the target material after the nuclear recoil. A fraction of the incident ion’s energy is

56



Figure 4.8: The bubble nucleation condition dependence on the linear energy density
and the track length. The graphs show the argon in the 44.5 eV and 97.3 eV Seitz
threshold respectively. Red crosses indicate events where bubbles collapse, while blue
triangles indicate events where bubbles form. The fitting curve is fitted by Eq. 4.7
with the average dE/dx between the form and collapse.
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transferred into the target material, which can contribute to the formation of bubbles

as we discussed in this chapter. We will introduce the Monte Carlo simulation and

the theoretical models that describe the interaction and the energy transfer.
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Chapter 5

Recoil ion in matter simulation

MD can provide the insights into the mechanism of bubble nucleation. The initial

trigger for nucleation is the deposition of energy, typically in the form of heat, known

as the heat spike. This surge in temperature is a result of momentum transfer from

the initial ion, which is ionized due to nuclear recoil. Hence, comprehending the

efficiency of bubble nucleation requires a profound understanding of how energy is

transferred from the incident ion to the target medium. This chapter provides an

introduction and discussion of Monte Carlo (MC) simulation tools used to study and

analyze energy transfer in different target materials. By employing MC simulations,

we can reproduce and explain the shape of the efficiency curve.

5.1 SRIM

Stopping and Range of Ions in Matter (SRIM) and its Monte Carlo subprogram,

Transport of Ions in Matter (TRIM), are simulation tools used to model interactions

between ions and their target material [73]. These simulations are used to study the

behavior of ions when they collide with solid or liquid targets.

In SRIM/TRIM simulations, the incident ion is assigned a specific energy and di-

rection, and the simulation calculates the ion’s trajectory as it traverses the target

material. Throughout its journey, the ion undergoes collisions with atoms in the

target, resulting in a cascade of recoiling atoms. The SRIM/TRIM simulation uses
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universal nuclear-scattering cross-sections, as provided by Ziegler [73], which quanti-

tatively measure the probability of a collision leading to a recoil event.

Figure 5.1: Example of 2 keV xenon ions in the xenon target simulated in SRIM.
The graph on the left shows the distribution of the position of recoiling ions. The
histogram on the right shows the energy loss of the ion in the atomic motion through
recoiling or electron stopping.

Fig. 5.1 shows an example of the energy deposition of 2 keV xenon ions in a xenon

target. The SRIM/TRIM simulation output includes the energy and position of

the recoiling atoms, which can be used to calculate the heat generated by the ion’s

interactions with the target atoms. This heat can contribute to the formation of

bubbles in the target material. The remaining energy of the incident ion is either lost

through electronic excitation or ionization, which can contribute to the scintillation.

5.2 RustBCA

RustBCA is a newly developed package for simulating ion-material interactions using

the binary collision approximation (BCA) [74]. Similar to the SRIM/TRIM software,

Fig. 5.2 shows an example of the energy deposition of 2 keV xenon ions in a xenon

target. However, RustBCA’s source code is built using Rust, a modern programming

language that overcomes common challenges associated with conventional scientific

computing languages. This enhances RustBCA’s overall functionality and reliability.

Moreover, the code is open source and can be used for more flexible purposes.

BCA codes are typically valid within a range of incident ion energies spanning from
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(a) The distribution of the position of recoil-
ing ions.

(b) The histogram shows the energy loss of
the ion in the atomic motion through recoil-
ing or electron stopping.

Figure 5.2: Example of 2 keV xenon ions in the xenon target simulated in RustBCA

around 10 eV to several GeV. However, RustBCA yields satisfactory outcomes even

at substantially lower energy levels, as validated by conducted tests. By represent-

ing the collision cascade as a series of binary collisions, BCA codes can effectively

simulate reflection, implantation, sputtering, transmission, and displacement damage

accurately and efficiently.

Using the RustBCA codebase, we can perform similar calculations to those done

in SRIM/TRIM to simulate ion interaction in the target and extract the energy that

contributes to heat to study bubble nucleation. However, the major disadvantage

of RustBCA is that it doesn’t return information about which atom the initial ion

scattered with if the target consists of more than one element. Nevertheless, we can

still uses it to compare with SRIM to avoid bias from the simulation code.

5.3 Lindhard Model

To understand the underlying mechanism of energy transfer, we need to understand

the theoretical model. When a neutron or WIMP undergoes elastic scattering with

a target nucleus, the resulting recoiling nucleus traverses the target material. The

energy loss per unit length of the nucleus is called the stopping power, which consists

of two mechanisms. On one hand, energy dissipation can occur via electronic excita-
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tion or further ionization caused by interactions with the electron cloud surrounding

the target atoms, and we usually call it the electronic stopping power. Ultimately,

this energy deposition contributes to scintillation or fluorescence. On the other hand,

another portion of the energy is dissipated through momentum transfer via elastic

collisions with other nuclei in the material, and we usually call it the nuclear-stopping

power. These collisions prompt additional ionization, and the resulting primary ions

create cascades of successive interactions. This momentum transfer from recoiling

contributes to the generation of a localized heat spike.

The energy loss is commonly described by Lindhard’s model [75]. Lindhard derived

an integro-differential equation that describes the total electronic energy loss in a

nuclear recoil cascade, in terms of the differential elastic nuclear-scattering cross-

section and the electronic stopping power for recoiling nuclei. This equation provides

a means for calculating the energy lost to electronic excitation during a nuclear recoil

event [76]. The electronic stopping power for low-velocity ions is given by Lindhard’s

equation:

Se =ξe × 8πNe2a0
Z1Z2(︂

Z
2/3
1 + Z

2/3
2

)︂3/2

v

v0

= ξe × 8
√
2πNℏca0

Z1Z2(︂
Z

2/3
1 + Z

2/3
2

)︂3/2

√︃
E

mc2

with ξe ≈ Z
1/6
1 ,

(5.1)

where Z is the atomic number, subscript 1 represents the incoming ion and subscript

2 represents the target medium atoms, a0 is the Bohr radius, N is the number density

of atoms in the target medium, E is the kinetic energy of the ion, m is the mass of

the ion, e is the electron charge, ℏ is the reduced plank constant, v is the velocity of

the projectile ion and v0 = c/137 where c is the speed of light and 1/137 is associated

with the fine structure constant. If the target and projectile are the same elements

Z1 = Z2 = Z:
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Se = 4πNℏca0Z7/6

√︃
E

mc2
. (5.2)

Lindhard [77] solved the problem with the dimensionless reduced linear energy

transform:

(
ϵ

ρ
)el = kϵ1/2 (5.3)

where ϵ and ρ are the dimensionless reduced energy and range respectively, and

k is a parameter associated with the electronic stopping power. Hitachi expressed

that for most cases [78], k = 0.1 ∼ 0.2. He calculated kC = 0.127 for carbon and

kF = 0.132 for fluorine in CF4 by using:

k = 0.133Z2/3A−1/2 (5.4)

where A is the atomic number. We are using the same k values for C3F8 in our model

since it is made of the same atoms and we vary the uncertainty between 0.1 and 0.2.

The reduced energy can be expressed as:

ε =
asA2

Z1Z2e2 (A1 + A2)
E (5.5)

where as is the screening radius proposed by Lindhard [77]:

as = 0.8853a0/
(︂
Z

2/3
1 + Z

2/3
2

)︂1/2

(5.6)

For monotonic atoms Z1 = Z2 = Z, we have ϵ = 11.5 (Enr/keV )Z(−7/3).

The friction of nuclear recoil energy contributing to the electronic excitation is

called the Lindhard factor or quenching factor. The numerical solution of the Lind-

hard factor is approximated by:

L =
Ee

En + Ee

≈ kg(ϵ)

1 + kg(ϵ)
(5.7)

where

g(ϵ) = 3ϵ0.15 + 0.7ϵ0.6 + ϵ
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En is the energy loss in nuclear stopping, Ee is the energy loss in electronic stopping.

Hitachi [79] approximated the Lindhard factor of a compound with the ratio of L

for each element, such as for C3F8, L(C3F8) = (3L(C) + 8L(F)) /11. For the case

of liquid xenon, we use NEST (Noble Element Simulation Technique) [80] package

to calculate the Lindhard factor. NEST fits the empirical functions from various

experimental data.

Due to quantum fluctuations, the energy transferred to the nucleus or electrons will

have a probability distribution with a straggling. The relative straggling (variance)

of energy that goes to the electronic stopping sector, with low energy approximation,

is given by [77]:

Ω2
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1

14
γ

{︄(︃
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}︄
(5.8)

therefore the straggling of the Lindhard factor can be determined as:

Ω2
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L
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where

CA = 2/3

{︃
E1c

−1/2 +
1

2
γ1/2Ec

−1/2

}︃
E1c

∼= A1
3 (A1 + A2)

−2 Z4/3Z1
−1/3 · 500eV

and

E2c
∼= (A1 + A2)

2A−1
1 Z2 · 125eV

where Z2/3 = Z
2/3
1 + Z

2/3
2 , Ec = γE2c and γ = 4A1A2/ (A1 + A2)

2. The Lindhard

factor of C3F8 and Xe as a function of energy with straggling (ΩL) is shown in Fig. 5.3.

5.4 Analysis and correction

By using both SRIM and RustBCA software, we are able to conduct Monte Carlo

(MC) simulations to analyze the extent to which energy contributes to bubble nucle-

ation. The inherent quantum fluctuations in the system introduce randomization in

energy transfer and ion track length, thereby affecting the nucleation efficiency. To
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Figure 5.3: C3F8 and Xe Lindhard factor as a function of nuclear recoil energy. C3F8

is calculated by Eq. 5.7 (kC = 0.127, kF = 0.132), and Xe is calculated by NEST [80].
The Xe data is also compared with experimental data from Sorensen and Dahl [81].
The error band is 1σ straggling of the Lindhard factor calculated by Eq. 5.9.

validate our simulation tool and the way we interpret the simulation data, it is crucial

to incorporate Lindhard’s theory as a benchmark in our analysis. This will allow us

to determine if the simulation results align with the expected outcomes predicted by

the theoretical model.

In the MC simulation, in both SRIM and RustBCA, numbers of ions with as-

signed energy were sent into the target, as illustrated in Fig. 5.4. Each incoming

ion undergoes multiple elastic scattering events with the target nuclei (depicted as

blue circles), which in turn leads to the creation of secondary recoiling ion (depicted

as pink circles). Between each recoiling event, the initial ion gradually loses energy

as it interacts with the electron cloud surrounding the target atoms, e.g. electronic

stopping (indicated by the dashed line). The secondary ions, generated by the inci-

dent nucleus, also experience energy loss along their trajectories following the same

principle. The red dashed line represents their energy loss due to electronic excita-

tion, while the pink circle represents a recoiling event. Eventually, one ion leads to a

cascade of interaction.

According to the Lindhard model, nuclear recoil energy can be deposited either
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𝐸𝑁𝑅

The primary recoil by the initial incidence ion, also produces secondary ion.

The secondary recoil by the secondary ion.

Electronic stopping (electronic excitation) by the initial ion.

Electronic stopping by the secondary ion.

Target atoms.

Figure 5.4: Diagram showing the cascade created by the incident nucleus. The grey
circles represent the target atoms, while the blue circle indicates the recoiling of the
target nucleus due to the incident nucleus. The pink circles represent the secondary
recoil scatter by the secondary ions. The black dashed line represents the energy loss
due to electronic stopping by the incident nucleus, while the red dashed line is the
electronic loss of the secondary ion.
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through nuclear stopping or electronic stopping. Only the portion of energy at-

tributed to nuclear stopping is responsible for generating the heat spike required for

bubble formation. However, when comparing the energy distribution allocated to the

electronic stopping, we observe inconsistencies with the predictions of the Lindhard

theory.

As we can see from Fig. 5.5, the Lindhard factor calculated by both simulation tools

is significantly smaller than the theoretical value. The discrepancy arises because

the simulation tools only track the energy loss of the primary ion (e.g. incidence

ion). We consider all of its nuclear energy loss as the contributor to the heat spike,

as indicated by the blue circle in Fig. 5.4. However, this portion of the energy is

subsequently carried by the secondary ions, which can also dissipate energy through

electronic stopping as they travel, illustrated by the red dashed line in Fig. 5.4.

To overcome this issue, we need to implement corrections that account for the

energy losses incurred during the process of electronic stopping. Consequently, when

considering the energy of the secondary ion with index i in a nuclear recoil event, we

can describe it as follows:

Ei,n = Ei(1− L(Ei)) (5.10)

where Ei,n represents the nuclear stopping energy loss experienced by the secondary

ion with index i, Ei the initial energy of the secondary ion and L is the theoretical

Lindhard factor. The Lindhard factor is a function that encapsulates the dependency

of energy loss on nuclear recoil energy. Since the Lindhard factor L represents the

fraction of energy loss due to electronic stopping, the remaining contributes to nuclear

stopping.

By implementing this correction, we can establish a benchmark for our simulations

using the theoretical Lindhard model. Through the summation of the energy of all

recoiling secondary ions, we can determine the amount of energy that contributes to

both nuclear stopping and the resulting heat spike. The Lindhard factor, derived
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(a) Distribution of energy loss fractions dissipated to electronic stopping (e.g., Lindhard
factor) in 2 keV nuclear recoil events in liquid xenon (LXe), simulated using RustBCA
(left) and SRIM (right). The black dashed line represents the theoretical Lindhard factor
at 2 keV nuclear recoil energy, and the red dash line is the mean of the distribution.

(b) Lindhard factor versus nuclear recoil energy without correc-
tion. The red dashed line corresponds to the simulation gener-
ated by SRIM, while the blue dashed line represents the simu-
lation produced by RustBCA. The theoretical value is obtained
from NEST. The shaded error band represents the 1-σ from the
distribution from histogram (a).

Figure 5.5: Simulation results without considering for the energy lost from the sec-
ondary ions.
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from the simulation, can be expressed as:

L = 1−
∑︁

iEi,n

Enr

(5.11)

As depicted in Fig. 5.6, the simulation results are compared to the theoretical Lind-

hard factor. It is observed that the simulations generally align with the theoretical

values, except for energies smaller than 500 eV. The discrepancy may occur due to

the insufficient energy of the primary ion to create numbers of secondary ions, so the

faction of energy contributing to the electronic stopping is over estimated. However,

this lower energy range only has small impact on the simulated data in higher energy

region. The Lindhard factor in the lower energy range remains an active subject of re-

search due to some inconsistencies between experimental observations and theoretical

predictions [37].
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(a) Distribution of energy loss fractions dissipated to electronic stopping (e.g., Lindhard
factor) in 2 keV nuclear recoil events in liquid xenon (LXe) with correction, simulated
using RustBCA (left) and SRIM (right). The black dashed line represents the theoretical
Lindhard factor at 2 keV nuclear recoil energy, and the red dashed line is the mean of the
distribution.

(b) Lindhard factor versus nuclear recoil energy with correction.
The red dashed line corresponds to the simulation generated
by SRIM, while the blue dashed line represents the simulation
produced by RustBCA. The theoretical value is obtained from
NEST. The shaded error band represents the 1-σ from the dis-
tribution from the histogram (a).

Figure 5.6: Simulation results using consideration for the energy lost from the sec-
ondary ions.
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Chapter 6

New model of bubble nucleation
efficiency

In Chapter. 4, we explore the use of MD to determine the specific conditions that

dictate the growth or collapse of a bubble. These conditions depend on both track

length and energy deposition.

To concisely represent the bubble nucleation condition, we use a fitting function

defined by Eq. 4.7. This fitting function enables us to describe that if the linear energy

density dE/dx of a nuclear recoil event is above the threshold given by Eq. 4.7, the

bubble will form. Conversely, if the linear energy density is below this threshold, the

bubble will collapse.

Following the Chapter. 5, we will discuss the use of MC simulations to study how

energy is deposited into the target, along with the correction for secondary ionization

using the Lindhard model. Recall the energy for each secondary ions the Eq. 5.10, if

we sum up all of the secondary ion that lost energy through nuclear stopping, we get

the amount of energy that would contribute to the heat spike:

Q =
∑︂
i

(1− L(Ei))Ei (6.1)

where Ei represents the energy of the secondary ion or the recoil energy caused by

the incident ion, which is the calculation output in SRIM and RustBCA simulation.

The Lindhard factor L(Ei) is a function of energy that depends on the recoil energy.
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Figure 6.1: Example of 6 keV nuclear recoil events compared with the linear energy
density fitting curve for C3F8 at a 3.29 keV thermodynamic threshold. The y-axis
represents the linear energy density and the x-axis represents the track length. The
red curve represents the fitting linear energy density fit using Eq. 4.7, which governs
the bubble formation for C3F8. The scatter points are the simulated events produced
in SRIM. The left graph represents the carbon recoiling events, and the right plot
shows the fluorine recoiling events.

On the other hand, we have the trajectory of the incident nucleus, so the average

linear energy transform is given by:

(︃
dEdep

dx

)︃
avg

=
Q

lc
(6.2)

where Q is the energy loss in heat in Eq. 6.1 and lc is the track length varying for

different events. Therefore, we can determine if a given event from the MC simulation

satisfies the conditions necessary for bubble formation. In other words, if the energy

density in an event exceeds the curve shown in Fig. 6.1, the formation of a bubble is

considered to occur. Conversely, if the energy density falls below the curve depicted

in Fig. 6.1, the bubble is considered to collapse.

Furthermore, the example presented in Fig. 6.1 reveals the energy density dEdep/dx

and the track length of 6 keV carbon and fluorine ions in C3F8. Although both carbon
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and fluorine ions possess the same initial energy, fluorine ions have a higher stopping

power, enabling them to be stopped within a shorter distance. Thus, fluorine ions

display a higher energy deposition density compared to carbon ions. Moreover, it

is observed that fluorine ions generate a greater number of events above the bubble

formation curve obtained with Eq. 4.7, indicating that bubble formation is more

readily achieved with fluorine recoil. The nucleation efficiency can be calculated from

the MC by:

ε =
# of events above the curve

# of total events
(6.3)

where ε is the efficiency for a given nuclear recoil energy. It is determined by the

number of events above the fitting function divided by the total number of events.

For 6 keV carbon and fluorine recoiling ions in C3F8, 47% of carbon recoil events

and 94% of fluorine recoil events exceed the expected curve. Therefore, the bubble

nucleation efficiency for carbon and fluorine recoil is 47% and 94%, respectively. Using

this principle, we can model the nucleation efficiency as a function of nuclear recoil

energy and compare this model with experimental results.

6.1 Experimental comparison

This presents the comparison between our new model with experimental results from

SBC liquid xenon’s prototype chamber that used liquid xenon [71], as well as the

PICO experiments that used C3F8 [64] and CF3I [35].

6.1.1 Liquid Xenon

We performed MD simulations to obtain the energy density function described by

Eq. 6.2 with parameter in Table. 4.3, which governs bubble formation at thermo-

dynamic thresholds of 0.9 keV and 2.06 keV. The corresponding thermodynamic

conditions and liquid properties used in the MD simulation are shown in Chapter 4

Section 4.2.1, specifically in Table 4.2.
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Figure 6.2: Xenon bubble nucleation efficiency as a function of energy by using SRIM.
Three graphs show the bubble nucleation efficiency with a Seitz threshold (red dash
lines) of 0.9 keV, and 2.06 keV respectively. The blue curve is the calculation done
in the present work with MD, SRIM and the Lindhard correction. The green curve
represents the experimental result obtained by MCMC calculation. Their associated
errors are described in the text.
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Figure 6.3: Xenon bubble nucleation efficiency as a function of energy by using Rust-
BCA. Three graphs show the bubble nucleation efficiency with a Seitz threshold (red
dash lines) of 0.9 keV and 2.06 keV respectively. The blue curve is the calcula-
tion done in the present work with MD, RustBCA with the Lindhard correction. The
green curve represents the experimental result obtained by MCMC calculation. Their
associated errors are described in the text.

The first results show the liquid xenon nucleation efficiency under different thresh-

old conditions. Fig. 6.2 gives the nucleation efficiency with a Seitz threshold of 0.9

keV and 2.06 keV respectively. The simulated results represented by the blue curve

in Fig. 6.2 are the calculation procedures obtained in the previous section, including

MD in LAMMPS, MC simulation in SRIM, and the secondary recoiling correction by

the Lindhard factor. The experimental best fit is analyzed by Markov Chain Monte

Carlo (MCMC) approached by Durnford and Piro [66]. The experiment is based on

SBC collaboration’s LXe prototype chamber [71].

Moreover, we also performed the MC simulation using RustBCA to cross-check
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if there is any bias from the simulation tools. Fig. 6.3 represents the nucleation

efficiency using MD simulation in LAMMPS and MC simulation in RustBCA. The

results are mostly consistent between the two MC simulations.

The error estimation in our new calculation incorporates both the upper and lower

limits of the function defined by Eq. 4.7, which governs the formation of bubbles.

The upper limit is determined by fitting the function to the MD simulated data that

represents the minimum energy density required for bubble formation. Conversely,

the lower limit is obtained by fitting the function to the MD simulated data that

represents the maximum energy density that leads to bubble collapse. Additionally,

there is a component of statistical error resulting from the inherent randomness of

the Monte Carlo simulations. To quantify this statistical uncertainty, we employed

the Bootstrap method. However, it is important to note that the magnitude of this

statistical uncertainty is comparatively small when compared to the error arising from

the upper and lower limits.

The obtained results align well with the initial rising trend observed in the exper-

imental efficiency curve. For the 0.9 keV threshold condition, the curve calculated

using our model mostly agrees with the experimental result within the 1σ error band.

However, it should be noted that for the 2.06 keV threshold condition, the uncertainty

of the results in this study appears to be underestimated, particularly in the high-

efficiency regions. Nonetheless, within the 1σ error band, the experimental curve and

the simulation show good agreement for efficiencies below 50%. Above this threshold,

the experimental analysis reveals a sharp increase in the energy required to nucleate

the bubble, exceeding 10 keV. These observations indicate the need for further in-

vestigation to gain a deeper understanding of the underlying physics governing these

phenomena.
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(a) The nucleation efficiency of C3F8 obtained with MD, SRIM
and Lindhard correction. The two dashed curves are the analysis
results from PICO-2L [64].

(b) The nucleation efficiency of C3F8 obtained with MD, Rust-
BCA and Lindhard correction.

Figure 6.4: Two subplots in each graph show nucleation efficiency with a Seitz thresh-
old of 3.29 keV and 2.45 keV (green vertical line) respectively. The blue curve shows
the nucleation efficiency of fluorine nuclei, while the red curve shows the one for car-
bon, both obtained with the calculation in this work. The deep blue and purple curves
are the experimental results for fluorine and carbon recoil, respectively, obtained by
MCMC analysis [66].
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6.1.2 Octafluoropropane (C3F8)

We conducted MD simulations of C3F8 using the same methodology as described

in the previous chapter and a prior study [63]. The parameters employed in the

LAMMPS simulations are presented in Table 4.4. To simulate nuclear recoil, carbon

and fluorine ions were simulated with SRIM and RustBCA. The formation of bubbles

was determined by comparing the energy density versus the track length of events

with the curve defined by Eq.4.7. The resulting C3F8 nucleation efficiency curves

using SRIM and RustBCA are depicted in Fig. 6.4a and Fig. 6.4b respectively. These

simulation results are compared to the best-fit experimental data obtained via MCMC

analysis of the PICO-60 [67] . The error bands were calculated using the same method

as described in the previous section for liquid xenon.

In the SRIM results presented in Fig. 6.4a for a threshold of 3.29 keV, the fluo-

rine recoil simulation aligns well with the experimental analysis within the low and

high-efficiency regions, falling within a 1σ error band. However, it is observed to

be approximately 1.5σ higher than the experimental analysis near 60% efficiency.

For the 2.45 keV threshold, the fluorine ion efficiency curves obtained from both the

experiment and our simulations reveal good agreement within a 1σ error band. Re-

garding the carbon simulation, it matches the experimental analysis in both low and

high-efficiency regions. However, there is a deviation between 30% and 90% efficiency,

with energy approximately 1 to 2σ lower than the experimental value.

Comparing the results obtained using RustBCA in Fig. 6.4b, it should be noted

that RustBCA does not provide information on which nucleus the ion scatters with.

Consequently, the discrepancy between carbon and fluorine is smaller compared to the

results obtained using SRIM. The simulation curve for fluorine recoil demonstrates

good agreement with the experimental curve within a 1σ range for both the 2.45 keV

threshold conditions. However, the RustBCA simulation results for carbon do not

align as well as those from SRIM, and further investigation is needed.
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6.1.3 Trifluoroiodomethane (CF3I)

By performing the same procedure, we also obtain the nucleation efficiency for CF3I.

The resulting nucleation efficiency curves for CF3I, obtained from SRIM and Rust-

BCA simulations, are depicted in Fig. 6.5a and Fig. 6.5b respectively. These simu-

lation results are then compared to experimental data obtained through the neutron

calibration result from the COUPP [82] and PICO-60 experiment [64]. Error bands

were computed using the same methodology as xenon and C3F8.

Analyzing the SRIM results presented in Fig. 6.5a, we observe that the iodine

recoil simulations exhibit a close alignment with the experimental results obtained

from both the PICO-60 experiment (gray curve) and the COUPP iodine efficiency

data (brown data points) within a 1σ confidence interval for efficiencies exceeding

60%. However, below 60% efficiency, there is a notable discrepancy between the

iodine simulation results and the experimental data. Regarding the fluorine recoil, the

experimental results demonstrate agreement with the simulation when the efficiency

is below 50%. However, as the energy increases, the efficiency of the simulation

begins to plateau, deviating from the experimental trend. The case of carbon recoil

show a slower increase in efficiency compared to the experimental result, indicating

a disagreement between the two.

The analysis of the simulation results using RustBCA reveals similar findings,

which effectively eliminates potential bias arising from the simulation tools. While the

analysis of the simulation results using RustBCA demonstrates a consistent agreement

with SRIM, it is important to acknowledge the areas where discrepancies between the

simulation and experimental data persist. These inconsistencies highlight the need

for further investigation to better understand the underlying causes and mechanisms

governing the observed differences.
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(a) Nucleation efficiency of CF3I obtained through MD simulations, SRIM simulations, and
Lindhard correction.

(b) Nucleation efficiency of CF3I obtained through MD simulations, RustBCA simulations,
and Lindhard correction.

Figure 6.5: The subplots in each graph illustrate the nucleation efficiency with a Seitz
threshold of 13.6 keV indicated by the black vertical dashed line. The black solid curve
represents the nucleation efficiency of iodine, the blue curve represents the nucleation
efficiency of fluorine nuclei, and the red curve represents the nucleation efficiency
of carbon, all obtained through calculations in this study. The gray, deep blue and
purple curves represent the experimental results for iodide, fluorine, and carbon recoil,
respectively, obtained through MCMC analysis. Additionally, the brown data point
corresponds to the iodine nucleation efficiency as a function of iodine-equivalent recoil
energy from the COUPP experiment [13].
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Figure 6.6: Predicted nucleation efficiency of liquid argon for the future SBC experi-
ment, derived from MD simulations, SRIM simulations, and Lindhard correction.

6.1.4 Liquid Argon

In the upcoming SBC experiment [38], the plan is to utilize superheated liquid argon

as the target. To prepare for this future operation, we conducted MD and MC sim-

ulations. These simulations aimed to predict the efficiency curve for the forthcoming

experiment and understand our detector threshold. Additionally, we followed the

same procedure to determine the nucleation efficiency for liquid argon at an energy

threshold of 97 eV and 44 eV, as shown in Fig. 6.6. The corresponding thermodynamic

parameters and properties for these threshold conditions are outlined in Table. 4.8.

SBC using liquid argon aim to operate at a low threshold to detect low-mass

WIMPs and coherent neutrino scattering. Thus, the experiment sets the threshold in

the range of tens to hundreds of eV. Fig. 6.6 illustrates the nucleation efficiency curve

for different threshold conditions. For a threshold of 97 eV, the nucleation efficiency

curve exhibits an increase after surpassing the Seitz threshold at approximately 130
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n0 \ b 0.0 0.5 1.0 1.5 2.0

0 0.00, 2.44 0.00, 1.94 0.00, 1.61 0.00, 1.33 0.00, 1.26

1 0.11, 4.36 0.00, 3.86 0.00, 3.36 0.00, 2.91 0.00, 2.53

2 0.53, 5.91 0.03, 5.41 0.00, 4.91 0.00, 4.41 0.00, 3.91

3 1.10, 7.42 0.60, 6.92 0.10, 6.42 0.00, 5.92 0.00, 5.42

Table 6.1: According to the Table.IV in Feldman and Cousins [83]. 90% C.L intervals
for the Poisson signal µ, for total events observed n0 for known mean background b.
The number on the left is the lower limit, the right is the upper limit.

eV, reaching 100% efficiency slightly beyond 300 eV. On the other hand, the efficiency

curve for the 44 eV threshold condition shows a rise starting at around 70 eV, with

100% efficiency achieved at 200 eV.

In the following stage, we eagerly anticipate conducting a thorough comparison of

our current results with the forthcoming data, focusing particularly on the prototype

chamber developed at the University of Alberta.

6.2 Effect on exclusion limit

The nucleation efficiency plays a crucial role in determining the exclusion limit of

the bubble chamber, making it a significant factor to consider. Understanding the

underlying principles that govern nucleation efficiency can provide valuable insights

for planning future experiment operations. Recall Eq. 2.5 in Sect. 2.3.1

Robs =

∫︂ Emax

Emin

ε (Enr,mχ)
dR

dEnr

dEnr (6.4)

where Robs is the observed event rate, ε is the detector efficiency, Emin and Emax

are the lower and upper energy limits of the region of interest. Therefore, we can

determine expect events rate of the WIMPs for a given mass (mχ). Most of the cases,

when no WIMPs candidate events are found, 90% C.L. (confidence level) limits of

the cross-section can be determined and the results above the limit will be excluded.

According to Feldman and Cousins [83], 90% confidence level (C.L.) intervals for
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(b) SD WIMP-proton cross-section.

Figure 6.7: The 90% C.L. limit on the cross-section in C3F8 PICO-60 2017 blind
analysis. The blue line is calculated with the MD and MC generated efficiency, while
the orange curve is derived from the MCMC efficiency function published PICO data
[66]. The shaded region represents the 1-sigma efficiency upper limit area propagate
to the cross-section. The green dashed line is the published cross-section in PICO-60
paper [84].

Poisson signal are presented in Table 6.1. If we have an experiment that detected 2

events with 1 expect background, 4.91 events and above can be excluded with 90%

confidence. Therefore, we can use this principle to determine the exclusion limit σlim

with a given mass mχ.

σlim(mχ) = nlim
σ(mχ)

Robs(mχ) · Texposure
(6.5)

where Robs is the expected observed rate of the WIMPs for a given mass mχ, and

Texposure is the exposure with the dimension of time multiplied by mass. nlim is the

90% upper limit event in Table. 6.1 depending on the experimental event counts and

prior expected background counts.

Fig. 6.7 and Fig. 6.8 present the exclusion limits for the PICO-60 C3F8 bubble

chamber obtained using different approaches. The dashed lines are extracted directly

from PICO-60 C3F8 blind analysis in 2017 [84] and the complete exposure in 2019

[35] as a benchmark. The event rate in the blue line is obtained with the MD and

MC generated efficiency and integrated with the differential rate in Eq. 6.4. The

uncertainty of the event rates is calculated by propagating the efficiency uncertainty.
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(a) SI WIMP-nucleus cross-section.
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(b) SD WIMP-proton cross-section.

Figure 6.8: The 90% C.L. limit on the cross-section in C3F8 PICO-60 2019 complete
exposure. The blue curve is calculated with the MD and MC generated efficiency,
while the orange curve is derived from the MCMC efficiency function published PICO
data [66]. The shaded region represents the 1-sigma efficiency upper limit area prop-
agate to the cross-section. The green dashed line is the published cross-section in
PICO-60 paper [35].

The lines with label “best case” represents the result obtained using the best-fit

efficiency function, while the lines labeled “1-sigma upper limit” shows the 1-sigma

uncertainty of the efficiency propagated to the cross-section limit. The cross-section

and differential rate dR/dEnr function are extracted from the dmdd package [85]. We

use the standard WIMPs halo parameters [86], which are the same as those in the

PICO-60 publications. The parameters are: Local dark matter density ρD = 0.3

GeV/c−2cm−3, galactic escape velocity vesc = 544 km/s, velocity of the earth with

respect to the halo vEarth = 232 km/s, and characteristic WIMP velocity with respect

to the halo v0 = 220 km/s. In the PICO-60 in 2017 blind exposure [84], the detector

was operated with a 3.3 keV Seitz threshold in the first run, with 0.25 prior expected

background, there were no recorded single bubble events during the 1167 kg-day first

run exposure. As a result, the 90% upper limit was calculated to be 2.44 events.

In the PICO-60 in 2019 complete exposure [35], the detector’s Seitz threshold was

set to 2.4 keV in second run. During the 1404 kg-day exposure second run period,

3 single bubble events have been observed with an expected 1 background event.

Consequently, the 90% upper limit was estimated to be 6.42 events. The complete
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Figure 6.9: Reproduced exclusion limit normalized with respect to the PICO-60 C3F8

2017 blind analysis publication [84]. The blue line is calculated with the MD and MC
generated efficiency, and the orange line is calculated with the efficiency in PICO
MCMC analysis [66]. The dotted lines represents the conservative 1-sigma upper
limit considering the uncertainty from each efficiency curve.

exposure final result includes both the first and second runs. They are combined via:

1

σlim
tot

=
∑︂
i

1

σlim
i

(6.6)

where σtot is the total excluded cross-section limit and i represents each run. The

same applies to the combined cross-section limit for different elements in the target

[86].

When comparing results, it is important to note that the 2017 blind analysis results

represent a conservative limit. They use an efficiency function that is rescaled upwards

to account for the 2% difference in thermodynamic threshold. In the complete expo-

sure in 2019, it shows the best fit exclusion limit. The estimated exclusion limit curves

in our study are found to be consistent with the results obtained from the PICO-60

profile likelihood analysis. These curves, represented by the blue and orange lines,

primarily differ in their utilization of different efficiency functions. Specifically, the

blue curve employs the best fit efficiency derived from our work, as shown in Fig.6.4a,

while the orange curve adopts the efficiency obtained through MCMC analysis, as de-

picted in Fig.6.4a for PICO-60. Despite these distinctions, the exclusion limit curves
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Figure 6.10: Reproduced exclusion limit normalized with respect to the PICO-60
C3F8 2019 complete exposure publication [35]. The blue curve is calculated with
the MD and MC generated efficiency, and the orange curve is calculated with the
efficiency in PICO MCMC analysis. The dotted curves represents the conservative
1-sigma upper limit considering the uncertainty from each efficiency curve.

generally align with each other. Fig. 6.9 and Fig. 6.10 show that two reproduced

curves are normalized with respect to the PICO published results. Both blind analy-

sis result and the complete exposure result show that the reproduced curves and the

PICO published results are within the same order of magnitude. In the high WIMP

mass range, the exclusion limit curves are mostly aligned. This is because a higher

WIMP mass corresponds to a higher recoil energy, and the nucleation efficiency is al-

ways one for high energy. However, discrepancies begin to emerge around the curves’

minima and in the lower mass range, primarily due to the variation in efficiency. In

the 2017 blind analysis, the maximum difference is approximately between 1 and 2

order of magnitude lower than the published findings in low mass range. Conversely,

in the full exposure analysis, the maximum difference can range from within an order

of magnitude with respect to the published results. These difference between each

limit we obtained from the efficiency and the PICO publish results are primarily

attributable to numerical errors arising from the use of different analysis methods.

Fluctuation within an order of magnitude is common to all rare-event search experi-
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Figure 6.11: The 90% C.L. limit on the cross-section in CF3I bubble chamber. The
blue curve is calculated with the MD and MC generated efficiency, the orange curve is
calculated with CF3I PICO-60 published efficiency function [64]. The shaded region
represents the 1-sigma efficiency upper limit propagate to the cross-section. The green
dashed line is the cross-section limit reported in the PICO publication [64].

ments [37]. To understand the impact of efficiency, we need to compare the difference

between reproduced results where the only variable is the efficiency function. These

differences in efficiency functions mainly affect the exclusion curves in the low mass

range. The discrepancy between using different efficiency function is within an or-

der of magnitude. In the context of SI analysis, the observed small discrepancy can

be attributed to the fact that both the simulated carbon and fluorine efficiencies lie

between the efficiencies obtained from the MCMC analysis. This intermediate po-

sitioning mitigate some of the discrepancies between the two. On the other hand,

in the SD analysis, where only the fluorine nucleus contributes to the SD mitigate

cross-section, the exclusion limit produced by the simulated efficiency appears to be

more conservative. This is due to the simulated efficiency being slightly lower than

the efficiency derived from the MCMC analysis.

For CF3I, the cross-section exclusion limit curves estimated in our study are consis-

tent with the results obtained from the PICO-60 analysis [64]. Note that the published

results shown are conservative, as the 1-sigma upper limit of the efficiency function

was used to obtain the result. Fig. 6.11 shows the 90% confidence level upper limit
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Figure 6.12: Comparison of exclusion limits normalized to PICO-60 CF3I Data. The
blue curve is calculated with the MD and MC generated efficiency, while the orange
curve is derived from the efficiency function published PICO data[64]. Dotted curve
indicates the conservative 1-sigma upper limits, accounting for uncertainties in the
efficiency curve.

cross-section exclusion. It is also normalized with respect to the PICO-60 published

data, as shown in Fig. 6.12a. The “best case” represents the result obtained using

the best-fit efficiency function, while the “1-sigma upper limit” shows the 1-sigma

uncertainty of the efficiency propagated to the cross-section limit. The results for two

recalculated exclusion limit are consistence within an order of magnitude. In the SI

cross-section shown in Fig. 6.11a and Fig. 6.12a, there is a relatively high discrepancy

between the results in this work and in PICO-60 for the low WIMP mass range. This

is mainly due to the carbon nucleation efficiency, which contributes mostly to the

low mass range and is lower in the simulated results compared to the experimental

results. The impact of carbon makes the difference up to 6 times higher the published

results in SI cross-section. On the other hand, for the SD cross-section in Fig. 6.11b

and Fig. 6.12b, the results are mostly consistent with the experimental results within

the same order of magnitude, due to only fluorine and iodine contributing to the SD

cross-section. One thing to note is that the uncertainty in efficiency, as produced in

this work (blue curve), has been taken into account and shown as shaded area when
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calculating the exclusion limit. As the efficiency from the PICO-60 CF3I publication

is not provided, the reproduced result (orange curve) does not include the uncertainty.

Using our new model with MD and MC simulations shows promise in assessing bub-

ble nucleation efficiency and estimating cross-section limits with an accuracy within

the same order of magnitude. This could potentially obviate the need for experimen-

tal calibration. This methodological approach provides valuable insights into under-

standing the intrinsic constraints of detectors. It also advances our understanding of

their operational limitations and assists with experimental operation planning.

6.3 Discussion

In Section 5.3, we present the Lindhard model as a means to describe the fraction of

energy loss in electronic stopping that contributes to ionization and excitation. In our

study, we employ the Lindhard model to estimate the energy loss of secondary ions

generated by the initial recoiling ion. In this section, we will thoroughly discuss and

compare the results obtained with and without the incorporation of this correction.

Fig. 6.13 presents the nucleation efficiency of xenon. The blue and green curves

correspond to the same data shown in Fig. 6.2. The purple dotted curve represents

the results without the Lindhard factor correction. The observed outcome is aligned

with expectations, as the Lindhard factor correction for secondary ions leads to an

additional energy loss in electronic stopping, resulting in a greater contribution to the

heat spike and hence better efficiency. However, even with the correction, there are

still deviations from the experimental results. Several hypotheses merit exploration.

Firstly, noble liquid gases exhibit scintillation properties due to the ionization and

excitation processes involved. These processes entail the intricate formation of dimers

[87]. One of the phenomena entails the excitation of noble liquid atoms through

electron collisions, resulting in the formation of highly stable diatomic molecules in

an excited state known as excimers. The excimers will produce photons during the

de-excitation. The process can be shown as:
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Figure 6.13: Lindhard model correction impact on the nucleation efficiency for xenon.
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e− +R → R∗ + e− impact excitation

R∗ +R → R∗,v
2 excimer formation

R∗,v
2 +R → R∗

2 +R relaxation

R∗
2 → R +R + hν VUV emission

where, R = Ar or Xe and the superscript v is used to distinguish excited states with

vibrational excitation within the molecule bond.

On the other hands, for the case of ionization, the ions and free electrons would

recombine and form excimers. De-excited of the excimers will produce photons. The

process can be shown as:

e− +R → R+ + 2e− ionization

R+ +R +R → R+
2 +R

e− +R+
2 → R∗∗ +R recombination

R∗∗ +R → R∗ +R + heat

R∗ +R +R → R∗
2 +R + heat

R∗
2 → R +R + hν VUV emission

The recombination occurs mostly with molecular ions formed shortly (∼ps) after

ionization. However, both ionization and excitation processes involve two different

kinds of excimers, called singlet and triplet state. The de-excitation time for a triplet

state is longer than that of the singlet state due to the forbidden direct transition

from the triplet state to the ground state. The lifetime for the triplet state in LXe is

approximately ∼ 27 − 34 ns, while the singlet state has a lifetime of 2.2 ns [87]. In

the aforementioned process, we observed that it involved an inelastic collision that

would result in a loss of kinetic energy from the R∗ + R → R∗,v
2 excimer formation.

In the process after the ionization, heat is generated after recombination as well. The

hypothesis is that some of the heat release will be delayed due to the long lifetime of

the triplet state. The time scale of bubble formation is in the order of ∼ns, and the

bubble may collapse within ∼3 ns as we can see from the MD simulation Fig. 4.4.
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Figure 6.14: Lindhard model correction impact on the nucleation efficiency for C3F8.

Estimating the amount of delayed heat release is a challenge, and it could be the next

step of this project.

Moving on to the results for C3F8, as depicted in Fig. 6.14, we observe that the

nucleation efficiency without employing the Lindhard correction is represented by the

dotted curve. Notably, the fluorine efficiency without the correction falls within the

1-sigma error band of the experimental data, indicating a strong agreement. In con-

trast, the efficiency for carbon with the Lindhard correction aligns more closely with

the experimental analysis. There are two primary factors to consider. Firstly, the

Lindhard model demonstrates better performance with noble liquid, benefiting from

the numerous experimental data available. However, for C3F8, the Lindhard factor is

solely calculated based on theoretical grounds, lacking experimental verification. Sec-

ondly, the MD simulation employs a simplified coarse-graining (CG) model, treating

C3F8 as a sphere, while the MC simulation does not account for molecular structure.
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Assuming the validity of the Lindhard correction, the discrepancy may stem from the

influence of the molecule’s structure. Similar considerations apply to CF3I, as shown

in Fig. 6.15, where the complexity of the molecule and the uncertainty associated with

the Lindhard correction introduce further challenges. The endeavor to construct a full

molecular simulation incorporating chemical bonds has been contemplated. However,

it is important to note that a fully detailed molecular simulation without CG is com-

putationally demanding and would not yield results within a reasonable time frame.

Overall, the efficiency results for the primary targets, fluorine in C3F8 and iodine in

CF3I, are reasonably accurate even without incorporating experimental data. The

impact of this discrepancy is minimal since carbon in C3F8 does not couple with the

spin-dependent WIMP. Furthermore, in terms of the spin-independent cross-section,

carbon’s contribution is almost negligible compared to fluorine and iodine in both

targets.

93



Figure 6.15: Lindhard model correction impact on the nucleation efficiency for CF3I.
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Chapter 7

Summary and the Future Work

Despite the absence of definitive evidence of dark matter through ongoing exper-

iments, the present moment holds great promise for direct dark matter detection.

This optimism stems from the fact that the initial tonne-scale experiments are cur-

rently gathering data, with several others progressing toward the construction or

planning stages. These upcoming detectors possess the capability poised to breach

the neutrino floor [38], a significant milestone in the field. The thesis work provides

insights into the bubble nucleation efficiency for bubble chamber dark matter detec-

tors. Such insights have the potential to assist in detector design and planning future

operations.

This thesis work begins by exploring the operational principle of bubble chambers,

which are operated with a metastable state known as a superheated state. In these

detectors, when the WIMP or neutron interacts with the target nucleus, the recoiling

nucleus traverses through the target medium, resulting in energy deposition as a

local heat spike. Such a heat spike triggers the superheated liquid to have a local

phase change, resulting in a bubble. The energy deposition is described by the Seitz

model, which depends on the pressure and temperature of the superheated liquid.

Although the Seitz model, has conventionally been considered as the threshold for

bubble chamber detection, experimental results have indicated that the efficiency of

bubble nucleation is influenced by the energy of the nuclear recoil. Consequently, this
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thesis focuses on studying the factors that impact bubble formation to gain a deeper

understanding of the phenomenon.

The study begins by using molecular dynamics simulations to investigate the for-

mation of bubbles at the microscopic scale. The simulations involve depositing energy

in a cylinder to simulate the track length. Depending on the energy and length of the

cylinder, the bubbles will either grow or collapse. An empirical function (linear en-

ergy density as a function of cylinder length) is used to fit the events between bubble

formation and collapse. The resulting empirical function is used as an acceptance or

rejection criterion to determine the bubble nucleation efficiency in the Monte Carlo

simulation.

In addition, Monte Carlo simulations are employed to investigate the transfer of

energy from recoiling nuclei to the target material. The energy loss during this pro-

cess can be divided into nuclear stopping and electronic stopping. However, only the

energy attributed to nuclear stopping contributes to the heat necessary for bubble

formation. The Lindhard model, a theoretical model, is used to describe the energy

transfer and approximate the energy loss of secondary ions. Additionally, the Lind-

hard model is used as a benchmark to validate the results obtained from the Monte

Carlo simulations.

By combining molecular dynamics and Monte Carlo simulations, it is possible to

determine the efficiency of bubble nucleation. The criterion for successful bubble

formation is satisfied when the linear energy density exceeds the threshold defined

by the empirical function. Conversely, if the condition is not met, the bubble will

collapse. Simulations conducted across various nuclear recoil energies can determine

the relationship between bubble nucleation efficiency and nuclear recoil. The results

obtained show promising agreement with experimental data.

Combining MD and MC simulations can generate efficiency, which allows us to

replicate the cross-section exclusion limit. The results enable comparisons with ex-

perimental observations, facilitating a comprehensive assessment of how the simulated
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outcomes impact the exclusion limit. This methodology not only offers insights for

the planning of future experimental procedures but also has the potential to obviate

the requirement for experimental calibration.

Moving forward, several aspects need to be explored to continue this project. The

Lindhard factor calculation is still active in the sub-keV range. This factor can also

be computed from the nucleation efficiency obtained experimentally. One area of

focus is delving deeper into the energy transfer mechanisms, including the energy

associated with dimmer formation in noble liquids. Another aspect is developing

theoretical models that describe the formation of bubbles based on energy and track

length. Furthermore, an intriguing development in the project is the ongoing con-

struction of a prototype scintillation bubble chamber in the Piro Lab at the University

of Alberta. This presents an exciting opportunity to compare and validate the ex-

isting models with experimental observations, further enhancing our understanding

of bubble formation, and potentially adding the directional channel into the bubble

chamber.
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