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Abstract 

Automated essay scoring (AES) is a technology that efficiently and 

economically score written responses by emulating intelligence of human scorer. 

Present study had employed open-source Natural Language Processing 

technologies for developing AES framework, to score multilingual medical 

licensing examination. English, French, and translated-French responses of 

constructed-response items were scored automatically, and the strength of 

multilingual automated scoring framework were evaluated in relation to human 

scoring. Machine-translation was also contextualized for raising AES 

performance, when restricted sample size counters the performance of AES 

software. Specific feature extraction and model building strategies resulted in 

high concordance between AES and human scoring, with average maximum 

human-machine accuracy of 95.7%, which was in almost perfect agreement with 

human markers. Results also revealed that the machine-translator had raised 

predictive consistency but negatively influenced the predictive accuracy. 

Implications of results for practice, as well as directions for future research are 

also presented. 
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Chapter 1: Introduction 

Writing is one of the most powerful methods for assessing 21
st
 century 

skills such as critical thinking, problem solving, communication, creativity, and 

innovation (Rich, Schneider, & D'Brot, 2013). Considerable resources are now 

being channeled towards measuring writing ability as evidence of academic skill 

acquisition. As a result, there is an increased demand to develop efficient 

assessment systems that can measure the higher-order thinking and writing skills 

of students (Attali, Lewis, & Steier, 2013; Shermis & Hamner, 2013). However, 

such assessments often require long-written responses, and consequently, they are 

difficult to score in an efficient, economical, and objective manner. 

One possible solution to address these problems is the technology of 

automated essay scoring (AES). AES uses computer models (or scoring models) 

to score student-produced writings (Brew & Leacocle, 2013; Shermis & Burstein, 

2003). An AES program is a computer software that builds the scoring models 

from pre-scored essays, using artificial intelligence and machine learning 

approaches, and then uses these models to grade new sets of essays automatically 

(Schultz, 2013). AES offers many exciting benefits for writing assessments, such 

as improving the quality of scoring, reducing time for score reporting, minimizing 

cost and coordination efforts for human raters, and the possibility of providing 

immediate feedback to students on their writing performance (Myers, 2003; 

Weigle, 2013; Williamson, 2013). 
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Background to Problem 

The early idea of scoring students’ writing using computers was advanced 

by Ellis Page in 1966 (see Page, 1966) with his AES program called Project 

Essay Grade. However, it was not until early 1990s when the advancement in 

automated scoring technology was resurrected (Keith, 2003), followed by the 

rapid revolution in technological innovation when assessment professional began 

to embrace and integrate these technologies into student assessments. This rapid 

growth in learning technologies has also given rise to commercialization and 

technology proprietorship. And the development of AES is not an exception. The 

information technology involved in automated scoring programs largely exists in 

the proprietary domain (Elliot & Klobucar, 2013). Researchers and licensing 

authorities who wish to study and automate the scoring of constructed-response 

items can incur significant start-up costs, only to establish a proof-of-concept. 

Fortunately, researcher at the Language Technologies Institute of Carnegie 

Mellon University recently released a free and open-source machine learning 

environment called LightSIDE (Light Summarization Integrated Development 

Environment). This program has a user-friendly interface and it incorporates 

numerous options to develop and evaluate machine learning models. These 

models can be used for a variety of purposes including AES, thereby providing 

open-source access to otherwise proprietary technology. More excitingly, in a 

recent AES comparative study, LightSIDE performed equally well compared to 

other proprietary automated scoring programs developed by large testing 

companies (Shermis & Hamner, 2012; Shermis & Hamner, 2013). However, little 
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is known about how well LightSIDE would perform if different machine learning 

algorithms (MLAs) were applied to score responses from different context. One 

example being, the written responses from the medical licensing context (e.g., 

questions which assess examinees’ knowledge in medical clinical decision-

making situations). 

In order to test these machine learning algorithms, the structure of the 

writing passages also needs to be considered. For instance, Shermis and 

Hamner (2012) showed that different AES programs have different efficiencies 

for scoring essays with different text features (e.g., length of writing passage, 

number of words). While long essays can tap the maximum capacity of an AES 

program, they also introduce more ambiguities for researchers to define the 

underlying scoring process. Consequently, it is important to test the efficiency of 

machine learning algorithms by considering the properties of the input data for 

multilingual essay responses. 

Purpose of Current Study 

The research questions in this study were motivated to address three  

interrelated issues corresponds to the  design and application of an automated 

scoring system within an open-source technology. That is, my study was designed 

to address the gap in the current academic literature describing the open-source 

AES framework available to researchers and licensing authorities who wish to 

study and automate the scoring of student-produced written responses. My study 

helps establish the proof-of-concept for an automated scoring process within an 

operational testing program.  My study is also intended to contextualize the 
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machine-translation process in an educational testing environment using  

automated scoring technology. The aim of the present study was to fill these 

research gaps and to convey the results that are of interest to a broad audience of 

researchers and practitioners. My study therefore addresses academia, assessment 

and licensing authorities, and researchers who wish to explore and advance the 

open-source automated essay scoring technology. Thus, the purpose of this 

research is threefold: 

1) to develop and demonstrate the automated scoring framework using 

open-source Natural Language Processing (NLP) technologies for a 

multilingual medical licensing context; 

2) to compare the strength of three multilingual score prediction engines 

with scores obtained from human raters; and 

3) to contextualize machine-translation, in automated score prediction 

process, for raising the performance gain when restricted sample size 

counters the model building process. 

To begin, related literatures are reviewed in Chapter 2. This review is then 

followed by the methods in Chapter 3 and the results in Chapter 4. Conclusions, 

discussion, limitations, and directions for future research are presented in 

Chapter 5.  
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Chapter 2: Literature Review 

 In this chapter, an overview of automated score prediction algorithms are 

presented. Three machine learning algorithms (MLAs) are reviewed, namely 

Naïve Bayes, Sequential Minimum Optimization, and J48-program. For a detailed 

technical review, corresponding references are also appended. Quantitative 

measures of automated scoring accuracy and consistency are then described. 

Types of Prediction Algorithms 

 Automated score prediction algorithms fall in two broad types, supervised 

and unsupervised algorithms. The supervised algorithm is a machine learning 

algorithm that uses the pre-scored training samples (essays) to learn the 

approximated behaviour of human scoring process by looking at several examples 

of pre-scored essays. This step is called the model building/learning process. The 

built model could then be used for automated scoring of a separate or a new set of 

essays based on the likelihood suggested by the regression steps of the model 

(Yannakoudakis, Briscoe, & Medlock, 2011). 

 The unsupervised algorithm is a machine learning algorithm that does not 

require any pre-scored reference samples (essays) for building the learning model. 

This approach is called unsupervised because there is no need for human 

intervention and/or the requirement of supplying the pre-scored essay documents 

at any point in the process (Lee & Yang, 2009). For unsupervised algorithms, 

learning is based on the content of the individual essays and their divergence from 

the collection of essays, where the collection is considered as one large essay (De 

& Kopparapu, 2011). Empirically, the unsupervised learning algorithms are less 
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accurate than the supervised learning algorithms. That is, the trade-off is the less 

accurate score prediction model for unsupervised learning verses the expensive 

task of acquiring the pre-scored training dataset for supervised learning (Xiong, 

Song, & deVersterre, 2012). 

 Most automated scoring systems are based on supervised learning 

algorithms (De & Kopparapu, 2011). Ironically, the machine learning methods 

used for automated scoring process are not described in any detail in the 

published work of AES systems (Yannakoudakis, Briscoe, & Medlock, 2011). For 

this study, three supervised learning algorithms were used and each algorithm had 

a distinct approach for building the score prediction models. The theoretical 

overview of each learning algorithm is presented next. 

Overview of Naïve Bayes 

 The Naïve Bayes is a probabilistic classification method based on Bayes’ 

theorem and the assumption of conditional independence (Mitchell, 1997). The 

main question Naïve Bayes classifier tries to answer is: given a subject has a 

certain set of features, what is the most likely class that this subject belongs to? 

For example, given a fruit is red, round, and about 7 centimeters in diameter, is 

this fruit more likely to be an apple or an orange? In order to solve this problem, 

the Naïve Bayes method estimates the conditional probabilities for both apple and 

orange, and chooses the class that has the highest conditional probability. To 

estimate these conditional probabilities, the Naïve Bayes classifier makes a strong 

conditional independence assumption: within each class (i.e., apple or orange), the 

features (i.e., roundness, color, and diameter) are independent of one another. 
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This means Naïve Bayes assumes that the roundness of an apple is unrelated to its 

redness or its diameter. In practice, this assumption is often violated. Therefore, 

the term “Naïve” is used to remind us of this assumption. That said, many 

empirical comparisons between Naïve Bayes and other more complex 

classification algorithms show that Naïve Bayes is simple, efficient, and provides 

comparable performance (Chen, Huang, Tian, & Qu, 2009; Kononenko, 1990; 

Pazzani, 1996). To put the above example into mathematics, Naïve Bayes 

classifier is expressed as: 

             ∏       |                             

 

   

 

where        represent the features and n indicates there are a total of n features; 

       represents the probability of a class c under class variable C (e.g., what 

is the probability that a random fruit is an apple?);        |     represents 

the conditional probability that given a case belong to class c, what is the 

probability of having the ith feature    equals to value    (e.g., given the fruit is an 

apple, what is the probability that its color is red?). 

 In practice,        and        |     are first estimated from a 

training dataset that contains examples that have already been classified. Then, 

the estimated        and        |     can be input into equation (1) to 

classify a new dataset. 
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Overview of Sequential Minimal Optimization 

Unlike Naïve Bayes classification, Sequential Minimal Optimization 

(SMO) by itself is not a classification method. However, SMO can be considered 

as a part of a classification method called Support Vector Machine (SVM; Platt, 

1998). While SVM and Naïve Bayes address similar classification problems, 

SVM uses a different approach. Instead of using a probabilistic approach, SVM 

uses a geometric or linear algebraic approach. Basically, SVM can be 

conceptually understood as representing subjects as points in space, which is 

mapped so that the examples of the separate categories are divided by a clear gap 

that is as wide as possible (Platt, 1998; Tong & Koller, 2002). This basic idea can 

be illustrated by Figure 1, which represents a simple classification problem: given 

the values of two features (i.e., F1 and F2) of a subject, what class (c1, c2) does 

this subject belongs to? 

 
Figure 1. Conceptual representation of sequential minimum optimization. 

H2 
H3 

H1 

F1 

F2 

SEQUENTIAL MINIMUM OPTIMIZATION 

Legend

= c1    

= c2 
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As shown in Figure 1, the solution to this problem is to find a line (or 

hyperplane when there are more than two features) that best separate the two 

classes c1 and c2 by a maximum margin. The criterion for best separation is that 

the distances from the nearest point to the separating line must be a maximum. As 

shown in Figure 1, the line H1 cannot separate c1 and c2; line H2 separates c1 

and c2, but the distances from the nearest point to H2 is small; line H3 separates 

c1 and c2, and the distances from the nearest point to H3 is at its maximum. 

Mathematically, this geometric problem can be generalized and 

represented by the following optimization problem: 

    ∑  

 

   

 
 

 
∑∑     (     )          

 

   

 

   

 

Subject to:                        and ∑        
     

where n is the number of subjects;    is a vector that contains all the feature 

values for subject i;    is the class for subject i;    is the Lagrange multipliers; H 

is an SVM hyper parameter;          is a symmetric Mercer kernel function 

(Souza, 2010; Tong & Koller, 2002). 

 The SMV-based algorithm, SMO, is an efficient algorithm to solve the 

optimization problem presented in Figure 1. Conceptually, SMO splits the 

classification problem into a series of the smallest possible sub-problems, and 

then solves these problems analytically (see Platt, 1998 for a detailed 

mathematical explanation). 
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Overview of J48 Program 

 The J48 program is an open-source java implementation of the C4.5 

classification algorithm (Costa et al., 2013). The C4.5 algorithm addresses the 

classification problem using a slightly different approach compared to Naïve 

Bayes and SMO. It uses the information gain approach (Costa et al., 2013; 

Quinlan, 1993). The basic idea for this algorithm is to split the data into subsets 

based on a feature that offers the most information gain, and then split the subsets 

based on another feature that offer the most information gain at the subset level. 

This process is repeated until all the features are used. For the previous example 

of apple versus orange, the first step is to determine what feature (i.e., shape, 

color, or diameter) offers the most information gain for the classification of fruit. 

Conceptually, since apple and orange have similar diameter and shape, splitting 

the dataset based on these features will not lead to much information gain. But if 

the dataset is split based on color, we would expect most of the red colored fruits 

to be apples and most of the orange colored fruits to be oranges. Therefore, in this 

case, color is the feature that provides the most information gain for the 

classification. 

 Mathematically, this information gain can be calculated using equation 3: 

                  

 ∑            

 

   

 ∑ (
|  |

 
)  ( ∑ (  )     (  )

 

   

)          
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where c is the class value; k is the total number of class; P(c) is the proportion of c 

in the whole sample; f is the value of a feature; l is the total number of values in a 

feature; |  | is the number of elements in a subset which has a feature value of f; n 

is the total sample size;       is the proportion of c in a subset that has a feature 

value of f. 

 Equation 3 can be applied repeatedly to determine the next best feature 

that leads to the most information gain. After the next best feature is determined, 

such as shape in the fruit example, the subsets can be further split based on this 

feature. C4.5 also includes some specific algorithms to deal with continuous 

features and missing data (see Quinlan 1993 for detailed explanation of J48). 

Model Performance Measures 

 The performance of machine learning algorithms in predicting human 

scores is evaluated using measures of accuracy and consistency. For accuracy, the 

exact-agreement percentages between human-produced and machine-predicted 

scores are computed. To measure the consistency between human and predicted 

scores, Cohen’s (1960) un-weighted Kappa is computed. The interpretation of 

these performance measures is discussed in chapter 3. Methods of this study are 

presented next.  
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Chapter 3: Method 

Dataset for Automated Scoring 

 Pre-scored responses from eight clinical decision-making (CDM) 

construct-response (CR) items were extracted from the examination system of a 

national medical licensing authority. The CDM items are a component of the 

licensing exam in which a clinical situation is presented to examinees and then 

they are expected to respond with a correct set of diagnoses, treatments, or 

prescriptions. The examinees could answer CDM items either in English or in 

French. The CDM component of the licensing exam carries two types of CDM-

CR items. The first type ask an examinee to type-in the short answers for the 

given clinical situation while the second type ask an examinee to select as many 

of the given choices as appropriate. A sample of these CDM-CR questions are 

presented in Figure 2 and Figure 3, respectively. For the purpose of this research, 

eight CDM-CRs items that requires examinees to type-in the short answers were 

used. 

A 38-year-old married pregnant woman presents with a complaint of vaginal 
discharge. She complains of a 4-day history of vulvar/vaginal itching associated 
with a thick white vaginal discharge. She is 28 weeks pregnant and is otherwise 
healthy. 
  
What are the possible causes of her vaginal discharge? 

       List up to Four. 
  1.  

  2.  

  3.  

  4.  

Figure 2. Sample CDM-CR item that requires to write-in short answers.  
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An anxious young mother brings her 14-month-old daughter to the Emergency 
Department. The child has had diarrhea for 3 days for which her mother gave her 
dimenhydrinate and apple juice. The child has not vomited. She appears ill and is 
crying with no tears in her mother's arms. She seems weak and lethargic. Her 
vital signs are: 
   
Temperature 36.5°C (axillary)  

Pulse 160/minute  

Respirations 70/minute  

Blood pressure 95/35 mm Hg  

   
She weighs 13.5 kg. She has no tearing. Mucous membranes are dry to the touch. 
The capillary refill time is abnormal. There is diminished skin turgor with some 
tenting of the abdominal skin. The diaper is dry except for a small amount of 
watery green stool. 
 
How should you manage this child? 
                          Select as many as are appropriate. 
                       (N.B. There are 12 options.) 
   

1. Abdominal radiograph 

2. Apple juice and monitoring of intake 

3. Arterial blood gases 

4. Blood glucose 

5. Blood urea 

6. Complete blood count 

7. Flat ginger ale and monitoring of intake 

8. Glucose water and monitoring of intake 

9. Intravenous infusion of 5% dextrose 

10. Intravenous infusion of 5% dextrose in normal saline 

11. Nasogastric rehydration solution 

12. Nothing by mouth 

Figure 3. Sample CDM-CR item that requires examinees to select as many of the 

given choices as appropriate.  
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 An overview of CDM-CR scoring. Typed CDM-CR responses were 

presented to human markers on a computer screen. The markers are appointed 

physicians who have expertise in the subject matter. They refer to well-

established scoring rubric for assigning partial or full credit to the examinee`s 

CDM response. A scoring rubric is a criterion for assigning a score to the CDM-

CR responses. There is a maximum of one mark per CDM question and an 

examinee`s response could also secure partial score. For instance, a CDM 

question whose scoring criterion includes four elements of a correct answer 

allows an examinee to receive partial marks, which in this case will be 0.25, 0.5, 

0.75, or 1. For the purpose of this research, all eight CDM-CR items had a 

maximum score of 1 and minimum score of 0, with no partial credit between 

these score points. 

 Each CDM-CR response was scored individually by two human markers. 

As a result, each CDM response is scored twice. The scores were then compared 

for agreement and the final score is determined if there is exact agreement 

between two markers. In a case of disagreement between scores, the markers 

review the response in pairs to resolve the disparity in their score assignment. As 

a result of the in-pair review, the final score for discrepant cases were determined 

after exact agreement between markers. 

 Sample Size for CDM-CR items. For both language groups, English and 

French, pre-scored responses of eight CDM-CR items were extracted from the 

spring 2011, 2012, and 2013 exam administrations. Responses from the spring 

2011 and 2012 exam administrations were used for feature extraction, training, 
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and model validation processes. The validated models were then used for 

automatically scoring the responses from spring 2013. The anonymity of 

examinees was preserved by omitting names and demographic information. The 

sample sizes for training and automatic score prediction are presented in Table 1. 

Table 1                                                                                                                                               

Sample Size Summary for Training and Prediction Dataset in English and 

French 

CDM-CR 

Question 

Training Sample 

(Dataset-I) 

Prediction Sample 

(Dataset-II) 

English French English French 

1 1266 226 856 149 

2 1259 237 1268 241 

3 1255 238 859 143 

4 1269 226 1256 246 

5 1255 239 1256 246 

6 1205 254 1272 241 

7 827 144 848 156 

8 1241 242 1260 228 

 

In the subsequent sections, the spring 2011 and 2012 CDM-CR responses, 

which were used for feature extraction, training, and model validation, will be 

referred as Dataset-I while the spring 2013 CDM-CR responses, which were used 

for automated score prediction process, will be referred as Dataset-II.  

Developing and Evaluating Classification Models 

 To develop the work-flow for automated essay scoring, the computer 

program LightSIDE (Light Summarization Integrated Development Environment) 

was used. LightSIDE is a open-source machine learning software environment 
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written in Java. The performance of LightSIDE was tested and found to be 

remarkably high on essay scoring tasks, matching or exceeding human 

performance nearly universally (Mayfield & Rose, 2013; Shermis & Hamner 

2013). LightSIDE offers many MLA implementations using machine learning 

software libraries from Weka. 

 Weka, an acronym of Waikato Environment for Knowledge Analysis, is 

developed and updated by the researchers at University of Waikato, New Zealand 

(Hall et al. 2009). Weka is a comprehensive suite of software libraries which 

provides a general-purpose environment for text classification, regression, 

clustering, and feature selection which are collectively referred as data-mining 

(knowledge-discovery) and machine learning (Frank et al., 2005; Frank, Hall, 

Trigg, Holmes, & Witten, 2004; Witten, et al., 1999). Software libraries of Weka 

are also programmed using Java, and are freely available for import and extension 

into other software environments, such as LightSIDE. To develop and evaluate 

the automated score prediction models using LightSIDE, three MLAs (Naïve 

Bayes, SMO, and J48) were used. The design of this research is shown in Figure 4 

and detailed steps are presented next. 
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Figure 4. The research design of automated scoring framework for multilingual 

medical licensing examinations.  
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 Steps for Creating Automated Scoring Models. Automated essay 

scoring is based on text classification (Rudner & Liang, 2002), which employs 

three basic steps for classifying texts (i.e., scoring essays) automatically. The first 

step is called the Feature Extraction process, which extract statistical relationships 

among elements-of-text (i.e. training dataset), thereby emulating the indirect 

relationship between elements-of-text and writing quality (Attali, 2013). The 

second step, often called Model Building and Self-Evaluation, employs the 

extracted text features to train, build, evaluate, and rebuild the scoring model. The 

third step, called Model deployment, which employs the final models from step 

two, on specific subject matter, and could be applied to a large pool of essays for 

automated text evaluation. Details for each of these steps are presented next. 

Step One – Data Pre-processing and Feature Extraction 

 Data pre-processing. For each CDM-CR items, the responses were pre-

processed before passing on to the feature extraction module. Two sub-steps are 

required. First, raw scores from markers must be annotated into labels. That is, 

each score point is replaced by text scoring labels. For instance, if a response is 

scored 1, then the annotated score label will be “one” (a text-label for number 1). 

This annotation is a requirement for the machine learning (classification) process. 

Second, the input dataset must also be cleaned from separators (e.g., commas ‘,’ 

or pipelines ‘||’ symbols). After annotating and removing separators, the 

CDM-CR responses were converted into a CSV file format for the feature 

extraction process using LightSIDE.  
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 Statistical Feature Extraction. Across both linguistics groups, the item 

wise CDM-CR responses from Dataset-I were used to extract text features. 

Feature extraction is a process of objectively transcribing the input pool of texts 

(i.e., CDM-CR responses) into corresponding n-gram, line length, and non-stop 

words. n-gram is a sequence of terms with length n, the word of length one, two, 

and three were extracted and thus could be named as unigram, bigram, and 

trigram, respectively. Features beyond trigrams were not extracted as it could 

reduce the performance of the classification model (Fürnkranz, 1998). Line length 

feature creates a single numeric feature representing the counts of words in an 

essay instance. A non-stop word feature creates a single Boolean feature 

representing whether an essay instance carries any content-based words. n-gram 

were ignored if they did not qualify with the threshold of five occurrence in the 

training dataset. Each feature was extracted as binary feature; that is, the features 

are encoded as presence or absence of a particular word (or n-gram) among the 

training dataset. Further, the stop-words were removed from the CDM-CR 

responses. Stop-words are function words like “and” or “are” which do not 

contribute to the content of training responses (i.e., CDM-CR responses) because 

scoring a CDM-CR response is more about content than style (i.e., examinee`s 

writing style has no credit in the scoring rubric). As a result, removing stop words 

will improve the prediction accuracy of the automated scoring model (Dave, 

Lawrence, & Pennock, 2003; Mayfield, Adamson, & Rose, 2013; Pitler, Louis, & 

Nenkova, 2009). Item-wise extracted features, of English and French CDM-CR 

responses, were then used for the model building and evaluation process.  
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Step Two – Model Building and Self Evaluation 

 Model building. Model Building is an iterative process in which the 

extracted features were passed to the MLA so that the learning patterns and 

associations among the elements of texts could be analyzed. The objective of this 

iterative process is to develop a text classifier capable of intelligently classifying 

(i.e., scoring or grading) the written prompts. The classifier building process starts 

by judging the statistical features of text and building its own knowledge base or 

classification model from the training dataset (i.e., Dataset-I). While the classifier 

is learning from the text features, the performance of a classifier is measured in 

terms of prediction error (Rodriguez, Perez, & Lozano, 2010). In most real-world 

problems, the error cannot be calculated exactly and it must be estimated. 

Therefore, choosing an appropriate estimator for model prediction error that can 

validate the developing model requires some considerations. 

 Model self evaluation. The validity of classification model could be 

evaluated in two ways: validating using separate datasets or validating by splitting 

and re-using the training dataset, which is also called cross-validation. Acquiring 

separate datasets for the purpose of model evaluation is often difficult because 

large amounts of unique data must be available. In the current study, only a small 

amount of data were available. Therefore, cross-validation was employed. For 

splitting the data into training and testing dataset, one can choose to make a single 

split (e.g., half of the data for training and other half of the data for evaluation) or 

multiple (K) splits, which is commonly referred as K-fold cross-validation. Model 

evaluation by means of K-fold cross-validation is practical because it is 
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computationally feasible (Arlot & Celisse, 2010) and economical because it does 

not require additional data. However, the computational cost is depended on the 

number of splits and the model statistical performance often does not improve if 

the number of splits exceed ten (Arlot & Celisse, 2010; Kohavi, 1995). For the 

purpose of this research, model evaluation by means of K-fold cross-validation 

(Geisser, 1975) was employed and training dataset were randomly split into K 

subsets for the model building and evaluation process. 

 K-fold is an attempt to estimate how accurately a scoring model would 

perform during the actual score prediction process. The model evaluation using 

K-fold cross-validation is achieved by randomly splitting training dataset, 

Dataset-I, into K mutually exclusive datasets of approximately equal size. The 

MLA is then trained and tested using K datasets (i.e., folds) in K iterations. In each 

iteration, the MLA is trained on all but one fold and tested on the remaining single 

fold. The overall accuracy of a trained MLA (i.e., model) is computed by 

averaging the K individual accuracy measures. For the purpose of this research, 

ten-fold (K=10) cross-validation is employed for model evaluation. 

Mathematically this could be represented as: 

   
 

 
∑  

 

   

       

where,   represents the expected prediction accuracy of the classifier; K is the 

number of splits; and A is the accuracy of a fold (Arlot & Celisse, 2010; see 

Geisser,1975, for a detailed explanation of K-fold cross validation). 
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 For each CDM-CR item, the initial score prediction model is built using 

extracted features along with an arbitrary subset of the training dataset. The 

partially trained MLA (i.e., developing model) is then iteratively refined using the 

remaining K-1 training subsets. After the K
th

 iteration, the developed model is 

considered final for the automated score prediction process. For each CDM-CR 

item, three distinct score prediction models were developed, one each for SMO, 

Naïve Bayes, and J48 MLAs, and their expected accuracies and predictive 

consistency were then computed, compared, and contrasted. 

Step Three – Automated Score Prediction 

 The developed models were used for automated scoring of the 

corresponding CDM-CR responses using data from the spring 2013 exam 

administration (i.e., Dataset-II). The model built using English CDM-CR 

responses were used to score English CDM-CR responses. Similarly, the model 

built using French CDM-CR responses were used to score French CDM-CR 

responses. The sample size for French (nfr.) CDM-CRs is noticeably smaller than 

the English responses (see Table 1 for item-wise sample size details). In an 

attempt to minimize the impact of small sample size for the French training 

responses (144  nfr.  254 per CDM-CR item), French responses were also 

machine translated into English using Google Translate™ 

(http://translate.google.ca), and then scored using the English CDM-CR model. 

Google Translate™ is a statistical machine-translation service which is freely 

available. It has also currently the most accurate service for translating text from 

French to English (Callison-Burch, 2009; Mehdad, Negri, & Federico, 2010).  

http://translate.google.ca/
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Analysis of Automated Scoring Process 

To evaluate the accuracy of the automated scoring process, a 

comprehensive evaluation scheme proposed by Williamson, Xi, and Breyer (2012) 

was used. That is, the model predictive power for English, French, and 

Translated-French CDM-CR items were evaluated on the basis of 

exact-agreement percentage and Kappa coefficient values. 

Table 2                                                                                                                                               

Viera & Garrett (2005) Guidelines for Interpreting Agreement 

Consistency Index – Kappa () 

Kappa Value Strength of Agreement 

< 0.0 Less than chance agreement 

0.01 - 0.20 Slightly agreement 

0.21 - 0.40 Fair agreement 

0.41 - 0.60 Moderate agreement 

0.61 - 0.80 Substantial agreement 

0.81 - 0.99 Almost perfect agreement 

 

Agreement percentage was computed based on exact matching between 

human and predicted scores. Then, Cohen’s (1960) Kappa coefficient () was 

used to summarize the consistency of the score prediction model. Kappa is a 

summary estimate that measures agreement beyond chance. A Kappa of 1.0 

indicates perfect agreement, whereas a Kappa of 0.0 indicates agreement 

equivalent to chance (random assignment) only. For the purpose of this research, 

guidelines presented in Table 2 from Viera and Garrett (2005) were used for 

interpreting  statistics. The results are presented next.  
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Chapter 4: Results 

 The results are presented in three parts. Part one contains the results for 

English CDM-CR questions. Part two includes the results for French CDM-CR 

questions. Part three provides the results for translated-French (into English) 

CDM-CR question responses. In each part, the expected and absolute agreement 

percentages, kappa coefficients, score distribution, and variance for human and 

machine scores are presented. 

English CDM-CR Questions 

Expected Accuracy and Consistency. The overall results of model 

expected prediction accuracy and kappa () consistency indices across eight 

English CDM-CR questions, using three automated score prediction models, are 

presented in Table 3. For the Naïve Bayes scoring model, the expected accuracy 

ranged from 84.9% to 98.2%, with corresponding consistency coefficients from 

0.66 to 0.96. Expected accuracy for the SMO scoring model ranged from 92.1% 

to 98.3%, with corresponding kappa from 0.82 to 0.96. For the J48 scoring model, 

the expected accuracy ranged from 89.4% to 98.2%, with corresponding kappa 

between 0.75and 0.92. 

For item 1, 2, 5, and 8, the SMO scoring model is expected to produce the 

highest agreement with human scores, and the high kappa value (0.82) also 

suggests the machine and human scoring will be almost perfectly consistent. For 

item 3 and 4, the J48 scoring model is expected to produce the highest agreement 

with human scores, and the kappa value of  0.91 also suggests almost perfect 

agreement.  
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Table 3                                                                                                                                               

Expected Accuracy and Consistency for English CDM-CR questions Using K-Fold 

Cross-Validation Method 

  

Expected Accuracy and Consistency 

CDM-CR 

Question 

Count of Training 

Responses 
Naïve Bayes SMO J48 

1 1266 
92.9% 97.5% 96.2% 

0.77 0.91 0.88 

2 1259 
96.5% 98.3% 97.8% 

0.92 0.96 0.95 

3 1255 
93.4% 95.6% 96.0% 

0.84 0.90 0.91 

4 1269 
96.1% 97.9% 98.2% 

0.85 0.91 0.92 

5 1255 
95.0% 96.0% 95.5% 

0.87 0.90 0.88 

6 1205 
93.7% 95.9% 95.9% 

0.55 0.65 0.68 

7 827 
98.2% 97.9% 97.6% 

0.96 0.96 0.95 

8 1241 
84.9% 92.1% 89.4% 

0.66 0.82 0.75 

 

 For item 7, the Naïve Bayes is expected to produce almost perfect 

agreement with human scores. For item 6, both SMO and J48 are expected to 

equitably predict human scores. However, the J48 is expected to produce 

relatively higher consistency with human scoring ( = 0.68). Table 3 also 

suggested that the SMO and J48 would be comparable in predicting close to 

human scores. Apart from item 1 and item 8, the scoring models are generally 

comparable in their agreement percentage and kappa values. 
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 Absolute Accuracy and Consistency. Model absolute prediction 

accuracy and consistency indices, across eight English CDM-CR items, are 

presented in Table 4. For the Naïve Bayes scoring model, the prediction accuracy 

ranged from 83.6% to 98.7%, with corresponding kappas between 0.63and 0.97. 

The score prediction accuracy for the SMO scoring model ranged from 90.6% to 

98.2%, with corresponding kappas between 0.79 and 0.96. Prediction accuracy for 

the J48 scoring model ranged from 88.1% to 98.2%, with corresponding kappas 

between 0.73and 0.95. Across all three scoring models, item 8 shared the lower 

bound of agreement with human scores. For this item, the best agreement 

observed was 90.6% with a kappa of 0.79. 

Table 4                                                                                                                                               

Absolute Accuracy and Consistency for English CDM-CR Questions 

  

Absolute Accuracy and Consistency 

CDM-CR 

Question 

Count of Prediction 

Responses 
Naïve Bayes SMO J48 

1 856 
91.1% 97.3% 94.9% 

0.72 0.91 0.83 

2 1268 
98.7% 98.2% 97.7% 

0.97 0.96 0.95 

3 859 
91.9% 94.6% 94.1% 

0.82 0.88 0.87 

4 1256 
96.9% 98.1% 97.7% 

0.90 0.94 0.92 

5 1256 
96.6% 97.9% 98.2% 

0.91 0.94 0.95 

6 1272 
93.9% 95.0% 95.1% 

0.50 0.57 0.67 

7 848 
98.6% 98.0% 96.6% 

0.97 0.96 0.93 

8 1260 
83.6% 90.6% 88.1% 

0.63 0.79 0.73 
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 Based on the accuracy and consistency indices, the Naïve Bayes scoring 

models performed best in predicting scores for item 2 and 7. For item 1, 3, 4, and 

8, the SMO scoring models best predicted the human scores. The J48 scoring 

model best predicted scores for item 5 and 6. Apart from item 8, the best score 

predictors are in agreement with human raters for at least 95% of the time and, 

often, the kappa value suggested perfect consistency (  0.81) with human 

scoring. The kappa values are graphically represented in Figure 5. 

 

 
Figure 5. Kappa coefficients across English CDM-CR questions for three score 

prediction models. 

 Score Distribution and Variance. Score distributions for human and 

machine scoring are presented in Table 5. The corresponding variances are 
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the magnitude of the variances suggests that the machine-predicted scores does 

not have any systematic differences and are comparable to the aggregate human 

scores. Each variance value is identical across the three scoring model with only 

rounding error to differentiate the values. Specifically, item 6 had the lowest 

variability and item 7 had the highest variability (
2
 = 0.25) in score distributions 

for human and predicted scores. 

Table 5                                                                                                                                               

Human and Computer Score Distributions for English CDM Responses 

  
Score Distributions 

  
Zero One 

CDM-

CR 

Question 

Count of 

Prediction 

Responses 

Human 
Naïve 

Bayes 
SMO J48 Human 

Naïve 

Bayes 
SMO J48 

1 856 
161 183 170 167 695 673 686 689 

18.8% 21.4% 19.9% 19.5% 81.2% 78.6% 80.1% 80.5% 

2 1268 
447 462 468 474 821 806 800 794 

35.3% 36.4% 36.9% 37.4% 64.7% 63.6% 63.1% 62.6% 

3 859 
278 296 302 301 581 563 557 558 

32.4% 34.5% 35.2% 35.0% 67.6% 65.5% 64.8% 65.0% 

4 1256 
239 262 227 216 1017 994 1029 1040 

19.0% 20.9% 18.1% 17.2% 81.0% 79.1% 81.9% 82.8% 

5 1256 
301 332 305 304 955 924 951 952 

24.0% 26.4% 24.3% 24.2% 76.0% 73.6% 75.7% 75.8% 

6 1272 
92 76 68 112 1180 1196 1204 1160 

7.2% 6.0% 5.3% 8.8% 92.8% 94.0% 94.7% 91.2% 

7 848 
418 414 411 411 430 434 437 437 

49.3% 48.8% 48.5% 48.5% 50.7% 51.2% 51.5% 51.5% 

8 1260 
410 443 443 392 850 817 817 868 

32.5% 35.2% 35.2% 31.1% 67.5% 64.8% 64.8% 68.9% 
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Table 6                                                                                                                                               

Variability in Human and Machine scores for English CDM-CR Questions 

CDM-CR 

Question 

Count of Prediction 

Responses 
Human 

Naïve 

Bayes 
SMO J48 

1 856 0.15 0.17 0.16 0.16 

2 1268 0.23 0.23 0.23 0.23 

3 859 0.22 0.23 0.23 0.23 

4 1256 0.15 0.17 0.15 0.14 

5 1256 0.18 0.20 0.18 0.18 

6 1272 0.07 0.06 0.05 0.08 

7 848 0.25 0.25 0.25 0.25 

8 1260 0.22 0.23 0.23 0.21 

 

French CDM-CR Questions 

Expected Accuracy and Consistency. The overall expected predictive 

accuracy and consistency for French CDM-CR models are presented in Table 7. 

Across eight CDM-CR items, expected accuracy for the Naïve Bayes scoring 

models ranged from 81.8% to 97.9%, with corresponding kappas between 0.50 

and 0.89. Expected accuracy for the SMO scoring models ranged between 92.1% 

and 99.2%, with corresponding kappas from 0.78 to 0.97. For the J48 scoring 

models, the expected accuracy ranged from 89.1% to 99.1%, with corresponding 

kappas between 0.54 and 0.90. 

For item 1, the Naïve Bayes is expected to produce the highest agreement 

with human scores. For item 2, the expected accuracy and consistency are equal 

across all three scoring models. For item 4 and item 5, the J48 and SMO scoring 

models are expected to agree with human 99% of the time, respectively. For item 

3, 6, and 8 the SMO scoring model is expected to produce higher agreement with 

human scores. However, the kappa value of 0.20 for item 6 suggested the 
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predicted scores may not be consistent with human-produced scores. For item 7, 

the J48 scoring model is expected to best predict the human scores and the kappa 

value of 0.89 also suggests the machine and human scoring to be almost perfectly 

consistent. 

 

Table 7                                                                                                                                               

Expected Accuracy and Consistency for French CDM-CR questions Using K-Fold 

Cross-Validation Method 

  

Expected Accuracy and Consistency 

CDM-CR 

Question 

Count of Training 

Responses 
Naïve Bayes SMO J48 

1 226 
95.1% 93.8% 90.7% 

0.54 0.43 0.04 

2 237 
97.9% 97.9% 97.9% 

0.89 0.89 0.89 

3 238 
92.9% 93.3% 89.1% 

0.70 0.73 0.54 

4 226 
92.5% 98.2% 99.1% 

0.45 0.79 0.90 

5 239 
93.7% 99.2% 98.7% 

0.82 0.97 0.96 

6 254 
91.7% 94.5% 93.7% 

0.04 0.20 0.17 

7 144 
93.1% 93.1% 94.4% 

0.85 0.85 0.88 

8 242 
81.8% 92.1% 92.1% 

0.50 0.78 0.77 

 

 Absolute Accuracy and Consistency. The absolute predictive accuracy 

and consistency indices, across eight French CDM-CR items, are presented in 

Table 8. For the Naïve Bayes scoring model, the predictive accuracy ranged from 
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75.0% to 97.1%, with corresponding kappas from 0.29 to 0.86. Absolute 

prediction accuracy for the SMO scoring models ranged from 87.3% to 98.8%, 

with corresponding kappas from 0.61 to 0.90. For J48 scoring models, the 

prediction accuracy ranged from 88.2% and 98.8%, with corresponding kappas 

from 0.62 to 0.90.  

 

Table 8                                                                                                                                               

Absolute Accuracy and Consistency for French CDM-CR Questions 

  

Absolute Accuracy and Consistency 

CDM-CR 

Question 

Count of Prediction 

Responses 
Naïve Bayes SMO J48 

1 149 
91.3% 91.3% 89.9% 

0.40 0.47 0.18 

2 241 
97.1% 97.1% 97.1% 

0.86 0.86 0.86 

3 143 
90.9% 95.8% 95.1% 

0.63 0.84 0.82 

4 246 
96.7% 98.8% 98.8% 

0.77 0.90 0.90 

5 246 
92.3% 98.4% 98.4% 

0.78 0.95 0.95 

6 241 
97.1% 96.3% 97.5% 

-0.01 0.38 0.39 

7 156 
96.2% 97.4% 96.8% 

0.91 0.94 0.92 

8 228 
75.0% 87.3% 88.2% 

0.29 0.61 0.62 

 

 For item 2, there was a performance tie across all scoring models with 

97.1% agreement and almost perfect consistency of 0.86. Another performance tie 

exists, between the SMO and J48 scoring models, for item 4 and item 5. Across 

both scoring models, item 4 had the accuracy rate of 98.8% with almost perfect 
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consistency of 0.90 and item 5 had an accuracy of 98.4% with almost perfect 

consistency of 0.95. For item 1, 3, and 7, the SMO scoring models was best in 

predicting the human scores. The J48 scoring model best predicted scores for item 

6 and 8. Apart from item 1 and 8, the best score predictors are in agreement with 

humans for at least 96% of the time, and the kappa value (  0.81) suggests a 

high level of agreement with human-produced scores. Across all three scoring 

models, item 8 yields the lower bound of prediction accuracies, in which case the 

maximum agreement was observed to be 88.2% with the corresponding kappa 

value of 0.62. The kappa values across eight CDM-CR questions are graphically 

represented in Figure 6. 

 

 
Figure 6. Kappa coefficients across French CDM-CR questions for three score 

prediction models.  
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 Score Distribution and Variance. Table 9 contains the distributions for 

human-produced and machine-predicted scores. The corresponding variances are 

presented in Table 10. For item 1, 4, and 6 the lower variability in predicted 

scores could be due to the small number of responses for these items ( 15 CDM 

responses with zero score) for model training process. For item 8, score 

distributions for the J48 model deviated by 10% from the human score 

distribution. Apart from problem associated with small sample size, the predicted 

score distributions for French CDM-CR does not shown any systematic difference 

and are comparable with the human score distributions. 

Table 9                                                                                                                                               

Human and Computer Score Distributions for French CDM Responses 

  
Score Distributions 

  
Zero One 

CDM-

CR 

Question 

Count of 

Prediction 

Responses 

Human 
Naïve 

Bayes 
SMO J48 Human 

Naïve 

Bayes 
SMO J48 

1 149 
16 7 11 3 133 142 138 146 

10.7% 4.7% 7.4% 2.0% 89.3% 95.3% 92.6% 98.0% 

2 241 
28 31 31 31 213 210 210 210 

11.6% 12.9% 12.9% 12.9% 88.4% 87.1% 87.1% 87.1% 

3 143 
22 19 22 23 121 124 121 120 

15.4% 13.3% 15.4% 16.1% 84.6% 86.7% 84.6% 83.9% 

4 246 
15 23 18 18 231 223 228 228 

6.1% 9.3% 7.3% 7.3% 93.9% 90.7% 92.7% 92.7% 

5 246 
48 61 50 48 198 185 196 198 

19.5% 24.8% 20.3% 19.5% 80.5% 75.2% 79.7% 80.5% 

6 241 
6 1 9 4 235 240 232 237 

2.5% 0.4% 3.7% 1.7% 97.5% 99.6% 96.3% 98.3% 

7 156 
47 49 47 46 109 107 109 110 

30.1% 31.4% 30.1% 29.5% 69.9% 68.6% 69.9% 70.5% 

8 228 
55 48 38 32 173 180 190 196 

24.1% 21.1% 16.7% 14.0% 75.9% 78.9% 83.3% 86.0% 
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Table 10                                                                                                                                               

Variability in Human and Machine scores for French CDM-CR Questions 

CDM-CR 

Question 

Count of Prediction 

Responses 
Human 

Naïve 

Bayes 
SMO J48 

1 149 0.10 0.05 0.07 0.02 

2 241 0.10 0.11 0.11 0.11 

3 143 0.13 0.12 0.13 0.14 

4 246 0.06 0.09 0.07 0.07 

5 246 0.16 0.19 0.16 0.16 

6 241 0.02 0.004 0.04 0.02 

7 156 0.21 0.22 0.21 0.21 

8 228 0.18 0.17 0.14 0.12 

 

Translated-French CDM-CR Questions 

 Absolute Accuracy and Consistency–A Comparison. Responses for 

French CDM-CR questions were first translated into English and then scored 

using prediction models of English CDM-CR questions. The intent was to 

improve the predictive accuracy and consistency for the French CDM questions, 

which had relatively low sample sizes ( 246) across the eight CDM questions. 

The results for the absolute predictive accuracy and consistency indices, across 

eight translated-French CDM-CR items, are shown in Table 11. The gain in 

predictive accuracy and consistency between French and translated-French 

CDM-CR items is summarized in Table 12.  



AES for Multilingual Licensing Exam     35 

 

Table 11                                                                                                                                               

Absolute Accuracy and Consistency for Translated-French CDM Responses Using 

Score Prediction Models from English CDM-CR Questions 

  

Absolute Accuracy and Consistency 

CDM-CR 

Question 

Count of Prediction 

Responses 
Naïve Bayes SMO J48 

1 149 
86.6% 88.6% 87.9% 

0.55 0.59 0.54 

2 241 
98.8% 98.8% 99.2% 

0.94 0.94 0.96 

3 143 
91.6% 93.0% 94.4% 

0.69 0.74 0.79 

4 246 
87.8% 99.6% 98.4% 

0.45 0.96 0.87 

5 246 
91.9% 94.7% 94.7% 

0.76 0.84 0.84 

6 241 
95.0% 98.3% 98.8% 

0.23 0.59 0.76 

7 156 
92.3% 96.2% 96.8% 

0.82 0.91 0.92 

8 228 
85.5% 89.0% 88.2% 

0.62 0.68 0.65 
 

 In Table 12, positive values suggest that the translation had improved the 

performance of the score prediction processes whereas negative values indicate a 

decrease in performance of the score prediction model. For example, with item 6, 

+2.1% for the SMO model suggested that the machine translation improved the 

agreement between human and machine-predicted scores by 2.1%. That is, the 

accuracy increased from 96.3% to 98.3%. Similarly, for item 6, -2.1% for Naïve 

Bayes model indicates that the translation process reduced the agreement between 

human and machine-predicted scores by 2.1%. That is, the accuracy decreased 

from 97.1% to 95%.   
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Table 12                                                                                                                                               

Gain in Score Prediction Accuracy and Consistency between French and Translated-

French CDM-CR Questions 

  

Absolute Accuracy and Consistency 

CDM-CR 

Question 

Count of Prediction 

Responses 
Naïve Bayes SMO J48 

1 149 
-4.7% -2.7% -2.0% 

0.15 0.12 0.36 

2 241 
1.7% 1.7% 2.1% 
0.07 0.07 0.10 

3 143 
0.7% -2.8% -0.7% 
0.06 -0.10 -0.03 

4 246 
-8.9% 0.8% -0.4% 
-0.32 0.06 -0.04 

5 246 
-0.4% -3.7% -3.7% 
-0.02 -0.11 -0.11 

6 241 
-2.1% 2.1% 1.2% 

0.23 0.21 0.38 

7 156 
-3.8% -1.3% 0.0% 
-0.09 -0.03 0.00 

8 228 
10.5% 1.8% 0.0% 

0.33 0.07 0.03 

 

 Apart from item 2, 6, and 8, most scoring models had shown a reduction 

or a negligible gain in accuracy and consistency. For item 1, the reduced 

agreement is paired with increased consistency of machine-predicted scores. The 

same conclusion is true for item 6 for the Naïve Bayes model only. Naïve Bayes 

also produced extreme results for item 4, and 8. For item 4, Naïve Bayes reduced 

the agreement by 9% and kappa by 0.32 points. For item 8, Naïve Bayes showed a 

gain in agreement by 11% and kappa by 0.33 points. The gain in accuracy and 

consistency across the three score prediction models is graphically represented in 

Figure 7 and 8, respectively.  
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Figure 7. Gain in accuracy as a result of machine translation across eight CDM 

CR questions for three score prediction models. 

 

Figure 8. Gain in consistency as a result of machine translation across eight 

CDM-CR questions for three score prediction models.  
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Figure 9. Overall performance for three scoring framework across eight CDM 

questions. 

 The absolute performance of three scoring algorithm across English, 

French, and Translated-French CDM responses is summarized in Figure 9. 

Overall, the scoring framework developed using SMO produced the best accuracy 

and consistency results for predicting human scores, followed by the automatic 

scoring using J48 learning algorithm. Item 2 is the only item which has the 
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performance tie across all three MLAs for French CDM responses. Naïve Bayes 

performed well only for three CDM questions, and it did not competed in scoring 

for any Translated-French CDM item. Apart from item 1, J48 program generally 

performed well, and often times there were performance tie between SMO and 

J48, suggesting that they are generally comparable. 

 In summary, the agreement percentages and kappa coefficients were 

comparable for the automated score prediction of the eight CDM-CR writing 

prompts. The concordance between expected and absolute accuracy and 

consistency indices was generally in alignment. Although the score prediction 

models for English and French CDM-CR questions were comparable, English 

CDM-CR scoring models had relatively better performance than French score 

prediction models. But scoring of the translated-French CDM-CR questions did 

show performance gain for three of the eight CDM-CR items. The discussion and 

conclusion are presented next.  
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Chapter 5: Discussion 

Summary of Findings Given Purposes of the Study 

 Clinical-decision making (CDM) questions are regarded as an integral part 

of the medical licensing examination process because this item type deals with 

skills required to think, reason, and solve medical problems. Such a written-

response format carries little or no subjective interpretation and, as a result, has 

the advantage of being scored using natural language processing techniques. The 

purpose of this study was to demonstrate and evaluate the strength of three 

supervised machine learning algorithms (MLAs) for developing the automated 

scoring framework using open-source machine learning environment. I also 

investigated the feasibility of employing machine-translation in the automated 

scoring process. 

The present study was designed to address three different purposes as 

presented in the introduction chapter. Each research purpose is followed by a 

description of how that purpose was answered or addressed is the present study. 

1) To develop and demonstrate the automated scoring framework using 

open-source technologies for a multilingual medical licensing context: Three 

supervised machine learning algorithms were used to develop and demonstrate the 

automated scoring framework. The performance of the algorithms were then 

evaluated using two independent performance measures, i.e., accuracy and 

consistency. The automated scoring framework was developed for English, 

French, and translated-French CDM-CR questions. The elements of the developed 
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framework were presented in Figure 4. The machine learning algorithms included 

Naïve Bayes – probabilistic learning, Sequential Minimum Optimization (SMO) – 

support vector learning, and J48 program – decision-tree learning. Two 

performance measures, exact agreement percentage (accuracy) and un-weighted 

Kappa (consistency), were computed between human and machine scoring. 

2) To compare the strength of multilingual score prediction engines with 

scores obtained from human raters: The results from the present study helped 

demonstrate that the open-source scoring framework works extremely well for 

eight medical CDM question prompts, with average maximum prediction 

accuracies (in relation to human raters) of 96.4%, 95.6%, and 95.1%, for English, 

French, and Translated-French CDM responses, respectively. The variances of the 

score distributions (see Table 6 and Table 10) between human-produced and 

machine-predicted scores were also found to be comparable. For example, the 

score distributions for English CDM responses (Table 6) across the three scoring 

frameworks are almost identical to the human score distributions with only slight 

difference between the human and machine ratings ( 0.02). Similarly, the 

predicted score distributions for French CDM responses (Table 10) is comparable 

to human-produced score distributions, with only negligible difference between 

them ( 0.03) suggesting an overall strength, flexibility, and employability of 

open-source automated scoring for multilingual medical licensing examinations. 

In sum, the results from this study suggest that integrating technological 

innovations for high-stake assessment situations is feasible and, from an 

economic point-of-view, highly desirable. 
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3) To contextualize machine-translation for raising the performance gain 

when restricted sample size counters the model building process: Both positive 

and negative gain in accuracy and consistency was observed when machine-

translation (Google Translate™) was used as a mechanism for dealing with a 

small sample size of French CDM questions. It was reported that the machine-

translation raised the gain in the consistency measure but negatively influenced 

the agreement accuracy. However, there are some instances which showed 

positive gain on both measures. For example, Naïve Bayes for item 8 had a 

positive gain in accuracy by 10.5% and also raised the consistency by 0.33. A 

similar pattern (but with less magnitude) was also observed for items 2 and 6. 

Conversely, for some translated-French item responses, the accuracy decreased 

while the consistency increased, which suggests a non-linear gain from the 

machine-translation process. 

 To date, Google Translate™ has been demonstrated to be the most 

accurate application for translating text from French to English (Callison-Burch, 

2009; Mehdad, Negri, & Federico, 2010). The results from this study suggest that 

such contextualization (an attempt to improve predictive accuracy and 

consistency by using a model from a large alternate training sample— English) 

may not always result in a performance gain. However, scoring systems 

supplemented with real-time machine-translation sub-system exists (see Higgins, 

2013; Pérez et al., 2005) and assessments scientists might consider developing 

systems that are capable of automatically translating examinees’ responses in the 

alternate language. 
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Conclusion and General Discussion 

 The performance measures across the three MLAs demonstrated that 

while their prediction accuracy and consistency are promising, they are not 

identical. That is, the performance ranking for the three MLAs differs across the 

eight CDM questions. For example, Naïve Bayes had the lowest prediction 

accuracy for item 1 using the English CDM-CR (91.1%), but for item 2 this MLA 

had the highest prediction accuracy (98.7%) when compared to SMO and J48. 

Clearly, the order of the performance measures are not consistent across the 

MLAs and there is reason to believe that identifying a high performing MLA in 

advance could reduce overhead for developing the best performing scoring 

framework. 

 But selecting the best performing scoring framework is not straight 

forward, especially when competing varieties of learning algorithms (e.g., 

probabilistic, decision-tree, neural network, etc.) are available. A unified 

technique or method does not exists that could reveal, in advance, which MLA 

would work best for a given classification problem (Hastie, Tibshirani, & 

Friedman, 2009). Empirical comparisons have shown that the best machine 

learning algorithm varies from application to application (Domingos, 2012). 

These differences occur because the prediction models which performs best in 

one content area may occasionally perform poorly in a different content area. 

Conversely, the prediction models with poor average performance in one 

application can occasionally perform exceptionally well in a different application 

(Caruana & Niculescu-Mizil, 2006). 
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 The literature in the machine learning domain does not clearly demarcate 

which MLA should be used given the content and/or attribute of the dataset. 

However, some studies suggest that with support vector learning, one should 

expect high predictive accuracy (i.e., low error rates) when learning is run on data 

in its basic forms and when a limited dataset is available for model training 

(Bradski & Kaehler, 2008) because support vector learning is capable of making 

good decisions about data points that were not been supplied as part of training 

dataset (Harrington, 2012). This phenomenon is often called prediction 

generalization (Domingos, 2012). On the other hand, decision-tree learning is 

efficient because it is considered to be a simple and flexible approach to 

classification using the so called information gain approach (Costa et al., 2013; 

Domingos, 2012). Decision trees are also commended for scalability, speed, 

immunity towards outliers in training dataset, robustness to missing data, and ease 

in interpretability of the classification models (Harrington, 2012; Hastie, 

Tibshirani, & Friedman, 2009). However, for small training samples (n< 1000), 

decision tree learning seldom provides predictive accuracy that could be achieved 

using other prediction algorithms, such as Naïve Bayes (Hastie, Tibshirani, & 

Friedman, 2009; Domingos, 2012). Naïve Bayes learning, which uses probability 

theory for text classification, is conceptually simple, efficient in practice, and 

considered to be an optimal classification strategy is most situations when small 

amounts of training data are available (Domingos, 2012; Manning, Raghavan, & 

Schütze, 2008; Zhang, 2004). 
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 It is unrealistic to assume that a human marker would have all of the pre-

knowledge about the essays during standard setting and/or the marking process 

and, for such responses, the marker could acquire a peer judgment. However, the 

machine does not have this freedom. While building the automated scoring model 

it is assumed that the training essays provided to the learning algorithm would 

statistically resembles the essays instances encountered later on during the score 

prediction process. This is an idealistic view in any real-world situation (Dekel, 

Shamir, & Xiao, 2010). One way to deal with this challenge is to employ 

unsupervised (or semi-supervised) algorithms for developing score prediction 

frameworks. 

 There are many consideration required when making decisions about 

selecting the best scoring framework (i.e., the underlying classification algorithm). 

One way to make this decision in advance is to run the cross-validation for 

multiple MLA and select the MLA based on the best expected accuracy from 

cross-validation (Hastie, Tibshirani, & Friedman, 2009). However, in the present 

study, the expected accuracy by means of cross-validation was not always 

consistent with the absolute predictive accuracy of the model. For example, as 

shown in Table 3 and 4, the cross-validation results for item 5 suggest the 

expected highest prediction accuracy for SMO (expected accuracy = 96% and  = 

0.90), but the absolute prediction performance reveals that the J48 had the best 

predictive accuracy (absolute accuracy = 98.2% and = 0.95). The opposite is true 

for item 3. In fact, for some CDM questions the expected and absolute prediction 

accuracies are consistent and also identical in some cases across three MLAs. 



AES for Multilingual Licensing Exam     46 

 

 Performance patterns for MLAs across three linguistic conditions 

(Figure 9) suggested that the support vector learning (SMO) is a promising 

prediction technique for almost all CDM questions. Decision-tree learning (J48) 

was the second best predictor. Probabilistic learning (Naïve Bayes) was the third 

best predictor. However, the third best predictor — Naïve Bayes, remained close 

to the best performing predictors by about 6% (apart from items 4 and 8) and was 

shown to be the top performer for item 2 and item 7 for the English CDM 

questions, and item 1 for the French CDM question. SMO and J48 were 

comparable because, for the most part, their absolute prediction accuracies are 

similar and they deviated only by 1.4% or less across the study conditions. This 

outcome suggests that the automated scoring framework developed using SMO 

and J48 are comparable in predicting human scores followed by the Naïve Bayes 

score prediction. 

 In sum, the proposed automated scoring frameworks are all quite 

consistent with one another and with human-produced scores. However, a policy 

still needs to be outlined as to what is an acceptable outcome for each scoring 

framework and how the scoring result would be used in the high-stakes medical 

licensing testing situation. The proposed framework could be used in two ways. 

First, for the existing two human marking structure (at the licensing authority), 

where scoring judgement are sought from two human markers, one human marker 

could be replaced with an automated scoring engine and the second human 

judgement should only be sought in cases where there is a discrepancy between 

human and machine scores. Second, to use the scoring framework as an additional 
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quality assurance indicator to confirm the scores assign by the human markers are 

both consistent and accurate. The former implication is a more obvious resource-

saver than the later from the point-of-view of money and time. 

Limitations of the Study 

 The agreement among human scorers was not available, and thus the 

predictive accuracy achieved in this study could not be compared with human-

human agreements. Further, the feature extraction mechanism discussed in this 

study was based on restricted set of features, as only limited feature extraction 

options are available in the open-source machine learning environment. That is, 

the semantic and/or linguistics characteristics of essays were determined by the 

co-occurrence of n-grams in the training dataset. This limits the employability of 

proposed framework in assessment situations where examinees are credited for 

their style and organization of writings.  

Recommended Direction for Future Research 

Three future directions for research are suggested. First, the agreement 

between two human markers for the medical CDM questions is currently not 

available. Hence, the accuracy of the human-rated CDMs is currently unknown. 

Future studies should be conducted to evaluate the agreement rate from CDM-CR 

scoring, between human markers, and with machine scoring. Second, the biannual 

licensing examination carries a number of new CDM questions that could not be 

scored with the framework proposed in this study. Thus the automated scoring 

framework capable of scoring both reused and new CDM questions is highly 

desirable. Future studies may work to extend the existing framework by 
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incorporating the unsupervised (or semi-supervised) machine learning algorithms 

and evaluating its prediction strengths. Third, most written assessments grant 

credit to examinees for style of writing, grammatical accuracy, and/or 

organization of ideas. Such feature, also called micro-features (Bridgeman, 

Trapani, & Attali, 2012), requires extraction procedures beyond n-grams (Baayen, 

Hendrix, & Ramscar, 2013). Further research is required to investigate the micro-

feature extraction techniques that could be incorporated in the proposed scoring 

framework. In sum, different assessment circumstances should be replicated for 

generalizing the strength of using open-source machine learning environment.  
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