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ABSTRACT

The present safety theory for concrete structures
is based on reducing the probability of failure to an
acceptable value by the use of load and resistance fac-
tors. The purpose of this study was to obtain populations
of the ratio of theoretical ultimate flexural moment to
the ACI design strength for bonded prestressed concrete
beams using the Monte Carlo technique. The results of
this study will be used in the future to develop under-
strength factors for prestressed concrete beams in flexure.

Probability models for concrete strength, re-
inforcing steel strength, and cross section dimensions were
obtained from papers on this subject. The probability
models for prestressing steel and prestressing losses
were developed in this study. Concrete properties,
prestressing steel properties, losses, and dimensions of
the cross section were varied in this study to examine the
effect on the variability of the strength ratios. The
type of prestressing strand, the depth of the beam, and
the reinforcement index, wp, were also varied to see what
effect they had on the strength ratios. The effects of
construction quality, conventional reinforcing steel, and

prestressing losses were also studied.
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CHAPTER I
INTRODUCTION

1.1 General

The present safety theory for concrete struc-
tures is based on reducing the probability of failure to
an acceptable value by the use of load and resistance
factors. An understrength or resistance factor, ¢, is
applied to the strengths and an overload factor, A, is

applied to the loads. The development of an understrength

factor requires that the distribution of ultimate strengths

be calculated and compared with the strength that would be

computed by the designer. This is described in more de-
tail in Section 2.2.

This study is concerned with the calculation of
ultimate moment for bonded prestressed concrete beams in
flexure. The results are expressed in the form of the ra-
tio of theoretical ultimate strength to the ACI design
strength. It is hoped that these results can be used to
develop understrength factors for prestressed concrete beams
in flexure.

A large population of ultimate strength ratios was
obtaihed for each beam studied through the use of computers

and the method of random sampling, also called the Monte



Carlo technique. This technique requires that the pro-
bability distribution of every variable affecting the
strength be known. Using these probability distributions,
random values are generated for each variable using a
random number generating subroutine. These values are

used in the appropriate equations and a moment-curvature
curve is generated. The maximum moment from this curve

is determined and taken to be the ultimate moment. When
this random sampling.procedure is repeated a 1érge number
of times, a representative population of ultimate strengths

is obtained.

1.2 Scope

Both pretensioned and post-tensioned prestressed
concrete beams were studied. The beams were either rec-
tangular beams or T-beams. Two types of prestressing
strand were used—stress relieved strand and stabilized,
or low relaxation, strand.

Only beams with straight, bonded strand were
studied. The beams were all assumed to be simply supported
and the section of maximum positive moment was studied.

The overall depth of the beams and the amount of
steel was varied. A sensitivity study into the effect of
each variable on section strength was conducted. The
effects.of construction quality, reinforcing steel, and
prestfessing losses were also investigated.

It was atfémpted to study practical beams that



are used in prestressed construction. In view of this,
many of the beams studied were taken from the PCI Design

Handbook (1971).



CHAPTER I1
LITERATURE REVIEW

A literature review was conducted into flexural
theory, safety theory, direct calculation of probability
of failure of structural members, and the Monte Carlo
technique. Because of the extensive literature in these

fields, only a few representative papers will be discussed.

2.1 Flexural Theory

Warwaruk (1957) used a semi-empirical analysis
in determining the ultimate strength of prestressed con-

crete beams. The following assumptions were made in that

analysis:
1. Conditions of statics are valid.
2. Concrete fails by crushing at an ultimate

strain, e€y.

3. The strain in the steel can be related to the
concrete strain at the extreme fiber in compression using
a strain compatibility factor F and the depth to the neutral
axis at ultimate, k,d. This compatibility factor is re-
quired because strains may not be linearly distributed in

the tension zone due to cracking and loss of bond of the



steel to the concrete in this zone. The variation of

Fey is mainly due to concentration of the strain near the
cracks in bonded beams and to the lack of bond in unbonded
beams. ‘If the ultimate steel stress is in the elastic
raﬁge of the stress-strain curve, variations in Fey can
cause large changes in resisting moment. In the inelastic
range, however, the value of Fe, does not affect the re-

sisting moment significantly.

4. The effective stress of the concrete:in the
compression zone, f.,, is known. The actual distribution
of stress is probably quite similar to the stress-strain
curve of cylinders in compression. This distribution was
approximated by an average or effective stress. A rela-
tionship between effective stress and compressive cylinder

strength, f'., was found.

5. The ratio, k2, of the depth to the resultant
compressive force in concrete to the depth to the neutral
axis was assumed to be equal to 0.42. This value is mid-
way between the extremes of 0.5 and 0.33 for rectangular
and triangular stress distributions, respectively. The
value of k, does not affect the calculated ultimate mo-

ment significantly.

6. The stress-strain curve for the prestressing

steel is known.

7. No tension is resisted by the concrete. Some

tension is, in fact, resisted by the concrete but this ten-



sion force is usually quite small and, at ultimate moment,

is insignificant compared to the other forces.

From strain compatibility and equilibrium, the

following equations were derived:

(1-ky)
€Egy = Fﬁu’——'l'(u— * €g5e t Ece (2.1)
f
k, = st | (2.2)
cu .
My = Agpfsud(1 - kaky) (2.3)

where:
€Egy = prestressing steel strain at ultimate moment;
€ee = effective prestrain in steel after losses;
€Ece = the compressive strain in the concrete due to the
prestressing force.
If the ratio of prestressed reinforcement Pps
fcu’ €5 and the stress-strain curve for reinforcement are

known, and Fe, is known or assumed, the first two equations
can be solved. Once the steel stress at ultimate moment,

f

sy» 1s known, Equation 2.3 can be used to solve for the

ultimate moment. Therefore the calculation of ultimate
moment reduces to the determination of the steel stress at
ultimate moment. Warwaruk, Sozen, and Siess (1962) sug-
gest thét the steel stress can be determined using trial

and error, graphical, or algebraic means.



Rusch (1960) studied the effects of loading rate
on the stress-strain curves for concentric compression in
concrete. On the basis of a series of such curves, he
proposed a stress block for the compression zone in flexure.

Perhaps the most important thing suggested by
Riisch was the definition of failure of a beam in flexure
in terms of dM/decpax = 0. That is, there is a maximum
point in the curve of resisting moment versus strain in
the extreme concrete fiber that corresponds to the ulti-
mate moment capacity of that section.

From this concept, Riisch also showed that e.,
the strain in the extreme fiber in compression at ultimate
moment, is not a constant quantity for all cross sections
but dependent on the shape of the cross section as well as
on the position of the neutral axis. For example, the
value of €., for a T-beam is generally less than that for
a rectangular beam and much less than that for a triangu-
lar beanm.

The suggestion that the strain at ultimate moment
varied according to concrete strength, rate of loading,
position of neutral axis, and shape of cross section was
a departure from previous ultimate strength design theories
which assumed a strain at ultimate moment that was con-

stant, or dependent only on concrete strength.

2.2 Safety Theory

MacGregor "(1976) reviewed the reasons for re-



quiriﬁg safety factors, the techniques for establishing
safety provisions, and the derivation of resistance fac-
tors (¢) and load factors (A).

Safety factors are required in structural design

for three reasons:

1. The strengths of materials or elements may be
less than expected due to variability in strengths, rate
of loading effects, or the reduction in strength due to
in-situ effects. Also, the area of the reinfofcing bars,
the size of the member, or the depth to the steel may be

less than what the designer assumes them to be.

2. There may be an overloading of the structure due
to variations in load. Both dead and live loads may be
more in the structure than was assumed in the design.
Actual stresses may be different from the stresses ob-
tained from analysis due to inaccurate assumptions or

modelling errors.

3. The result of a failure could be costly not only
in terms of repair or replacement but also in terms of the
consequences of the failure including the loss of human

lives.

One technique for establishing safety provisions
is to 1limit the maximum probability of failure to an ac-
ceptable value. The probability of failure is the pro-
bability that the loads (U) exceed the strengths (R),

that is, the probability that (R - U) < 0 or:



P; = PL(R-U) < 0.0] (2.4)

A distribution curve for the function Y = R - U
is plotted in Figure 2.1. The probability of failure can
be represented by the area under the curve in this figure.
The probability of failure can also be expressed in terms
of the number of standard deviations, Boy, that the
mean, Y, is above zero. The term 8 is referred to as the
safety index since, if the type of distribution is known,
B is a measure of the probability of failure.

After some manipulation of Equation 2.4, the
following equation is obtained (Cornell, 1969; Lind, 1971;

summarized in MacGregor, 1976):
Ryp[e PeVR] > Uy [eBaVy] (2.5)
This equation can be rewritten as:
6R = Uh (2.6)
where:
o = YRe-BaVR (2.7)

A= yueB“VU (2.8)
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and:

Vu

understrength factor;
overload factor;

ratio of actual mean strength to strength computed

using the code procedures;

ratio of actual mean load to the loads specified in

the building code;

safety index, taken equal to:

3.5 for ductile structures with normal consequences
of failure, and

4.0 for severe consequences of failure or brittle

failures;
a separation factor taken equal to 0.75;

the coefficient of variation of the strength or re-

sistance;

the coefficient of variation of the loads.

The values of B were chosen to obtain sufficiently low

probabilities of failure, 10

"% in 30 years for ductile

structures and 10-° in 30 years for brittle structures.

The results from the present study will be

values of ygR and Vg which can be used in Equation 2.7 to

calculate the understrength or ¢ factor for pfestressed

concrete beams.



2.3 birect Calculation of Probability of Failure of
Structural Members

Chandrasekar and Dayaratnam (1975) studied the
probability of failure of prestressed concrete beams which
were deéigned by the Indian Standards (IS) Code and the
ACI Code. The strengths of materials were generated as
random variables, the only restriction being that code
specifications had to be met. The loads were treated as
deterministic in one case and as having a probability dis-
tribution in the second. The probability of failure was
then calculated using equations.

The probability of failure of the beams decreased
as the amount of steel was increased. Varying the strength
of concrete did not influence the probability of failure
significantly because the beams were underreinforced.

Very low probabilities of failure were obtained for the
codes used; of the order of 10°!* for deterministic loads
and of the order of 10-!' for probabilistic loads.

Ellingwood and Ang (1974) also used a probabilis-
tic approach to failure. The level of risk was evaluated
from an analysis of the uncertainties in the design.
Uncertainties, §, in the variables are functions of the
basic variabilities, &, and the prediction errors, A,
as given by Q2 = 8% + A%2. The mean value and: the basic
variability (8) for each variable were estimated from
available data. The basic variabilities (6) could exist

even if the designer and fabricator took all due care.

12
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The pfediction error (A) accounts for inaccuracies in es-
timating the mean. Ellingwood attributes these predic-
tion errors to modelling errors, insufficient information,
and inaccurate calculations in design. If sufficient

data on the variables are available, A can be set equal to
the coefficient of variation. Otherwise, it may have to be
estimated by estimating a range of values for the mean and
then assuming a distribution over this range. 1In other
cases, it may be necessary to use only judgment and past
experience to choose A.

The uncertainties in fy, fo, b, d, and Ag were
found using the basic variability and the prediction error
for each variable. The uncertainty in the limiting
strain, €.,, was also found since this variable was re-
quired to calculate the uncertainty in the balanced re-
inforcement ratio p,. The uncertainties in the coefficients
defining the concrete compressive stress distribution were
also found.

The various uncertainties did not contribute
equally to the uncertainty of MT(the mean flexural capa-
city of a beam failing in tension). For lightly reinforced
sections, the uncertainties of fy, Ag, and d contributed
greatly towards the uncertainty of M;. As the amount
of reinforcement increased, f., b, and the stress block
parameters became more important which indicates that the
moment at tension failure is more affected by crushing of

the concrete for high amounts of reinforcement. Concrete
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qualify control (variability of f.) and the mean value of
the steel ratio were found to have little influence on

the uncertainty of M;. The uncertainty of M., the flexural
capacity in compression, was higher than the uncertainty

of My. Concrete quality control had more influence on the
flexural strength for compression failures than for tension
failures.

This probability approach was used to obtain the
uncertainty in shear capacity. The uncertainties in shear
capacity were considerably larger than those in flexure;
however, the shear uncertainties were not affected by
concrete quality control. The uncertainty of dead and
live loads were also investigated.

The level of safety in the ACI Building Code
(1971a) was evaluated using this risk analysis procedure.
It was found that under the ACI restrictions, there is a
probability of compressive failure as high as 25 percent
for a steel ratio at the limit of 75 percent of the nominal
balanced steel ratio. Also, the probability of shear
failures (which are more dangerous than flexural failures
because they give less warning) was higher than the pro-
bability of flexural failure for a wide range of the mean
value of the steel ratio. The authors suggest lowering the
reinforcement ratio limit to 50 percent of the mean balanced
steel ratio to decrease the likelihood of a compression
failure, and reducing the capacity reduction factor, ¢,

for shear to about 0.75 from its present value of 0.85,



to ensure that the risk of a shear failure is less than the

risk of a flexural failure.

2.4 Monte Carlo Technique

The concept that strength is dependent on factors
that are multivalued was used to determine a factor of
safety for timber structures (Wood, 1958). Wood used
frequency distributions to describe these factors. Al-
though he called his procedure the method of random pro-
ducts, it is the same as the Monte Carlo technique. Wood
stated that:

The method of random products consists of

taking a random value from the frequency

distribution that represents each factor and

multiplying tThese random values ftogether fo

obtain a random product.

Warner and Kabaila (1968) described the concept
of using a Monte Carlo technique in conjunction with high

speed computers to evaluate structural safety. Their tech-

nique consisted of three steps.

1. Random values for the material properties and
geometric parameters were generated in accordance with the

density functions of these properties and parameters.

2. The structural response corresponding to these
random values was calculated using a strength prediction

equation.

3. Steps 1 and 2 were repeated until a large popula-

tion of structural responses was obtained. From this



population, it would be possible .to estimate the proba-
bility of the response falling below a particular value.

Warner and Kabaila present the variability of a

short reinforced concrete column as an example. The results

agree very well with the closed form solution.

The authors point out that very often only a
small part of the distribution is of interest to the in-
vestigator. A few selective sampling techniques are sug-
gested so that the desired information is obtained in a
minimum number of simulations.

Allen (1970) has studied the variability of
flexural failures for reinforced concrete beams reinforced
in tension only. Allen's approach was very similar to
that used in this study. He derived prediction equations
for the ultimate moment and ductility ratio (ratio of
curvature at ultimate to curvature at yield) for beams
developing tension and compression failures. Probability
distributions for the parameters involved in computing
ultimate moment were obtained. A Monte Carlo analysis
was then used to compute the probability distributions of
the ultimate moment and ductility ratio.

The prediction equations were derived using the
equivalent rectangular stress block for the compression
zone and the assumption that plane sections remain plane.
The concrete was assumed to have no tensile strength.

The limiting strain in concrete and other parameters de-

fining the concrete -strength and the shape of the stress



block.were determined from tests..

The prediction equations were found to predict
the ultimate moment very accurately. The mean of the ratio
of the pltimate test strength to the ultimate predicted
strength was only 1.01 for tension failures and 1.00 for
compression failures. The coefficient of variation of
this ratio was 3.1 percent for tension failures and 5.7
percent for compression failures. Most of this disper-
sion could be attributed to variation of the actual test
beam parameters from the measured values.

The effect of rate of loading on the compressive
strength of concrete was taken into account by Allen. He
also considered the rate effect in determining the pro-
bability model for yield strength for reinforcing steel.

A normal distribution was used for yield strength.

Two levels of workmanship—minimum and good-—were
considered in the distributions for concrete strength and
dimensions.

The results for ultimate moment were reported
in the form of a ratio of predicted ultimate moment to the
ultimate moment calculated using the 1963 ACI Code. The
distribution of this ratio was close to being normal.

Allen concluded that there is a significant pos-
sibility that a section will have a compression failure
even when it is underreinforced according to ACI318-63
due to variations in the concrete strength. This agrees

with Ellingwood's observation mentioned earlier. He also
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concluded that:
The average ultimate moment [ratio] is more

or less independent of depth to reinforcing,
percentage of steel, and workmanship.

However, he found that the variability of the ultimate moment
increased for shallow sections (i.e., thin slabs) or for
high steel percentages whereas good workmanship decreased
the variability. Rate of loading had little effect on the
variability of the ultimate moment.

The distribution for ductility ratio was skewed
positively. This ratio had a higher variability than did

ultimate moment.



CHAPTER III

THEORETICAL BEHAVIOUR OF
PRESTRESSED CONCRETE SECTIONS

3.1 Basic Assumptions in Analysis

In order to analyze a prestressed concrete sec-
tion, several assumptions had to be made. These assump-

tions were:

1. Plane sections remain plane after loading. That
is, the strains in the beam cross section are proportional
to the distance from the neutral axis which leads to a

linear strain distribution at the cross section.

2. The strain in the reinforcing steel was assumed
to be equal to the strain in the concrete at the same point
in the beam. In other words, perfect bond was assumed to
exist and the strain compatibility factor, F, was equal to

1.0 (see Section 2.1).

3. The strain in the prestressing steel was assumed
to be greater than the corresponding concrete strain due to
the pretension strain that occurs in the steel before the
concrete is bonded to the prestressing strands. Figure 3.1

shows that, relative to the unstressed state, this prestrain

19
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is méde up of two parts—the effective prestrain in the steel
after losses, €se, and the compressive strain in the concrete
due to the prestressing force, €ce. After bonding occurred,
however, any change in strain in the concrete was accompanied
by the same change in prestressing steel strain. Hence, once

a bond has occurred, this bond was assumed to be perfect.

4. The stress in the concrete could be determined from
the strains using a modification of Hognestad's stress-strain
curve in compression and an elastic line in tension (see

Section 3.2).

5. The stress-strain relationship for the reinforcing

steel was assumed to be elastic-plastic.

6. The stress in the prestressing steel was determined
from the strains using a stress-strain curve composed of

two straight lines and a parabola (see Section 3.4).

7. The forces acting on a cross section must be in

equilibrium.

8. The maximum moment capacity of a given cross sec-
tion corresponds to the maximum point in the moment-curvature

diagram for that cross section (Rusch, 1960).

3.2 Stress-Strain Relationship for Concrete

A variation of Hognestad's (1952) stress-strain

curve for concrete was used in the theoretical analysis of

21
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presfressed concrete sections. Hognestad's curve consists
of a second order parabola up to a maximum stress of f{ =
0.85f. which occurs at a strain g, = 2f'C'/EC where E. is
the initial tangent modulus of elasticity of concrete de-
fined in Section 4.1. Beyond the maximum stress, the
stress is assumed to decrease linearly with increasing
strain to a value of 0.85f{! at the ultimate strain, €,
taken by Hognestad as 0.0038. In this study, the same ex-
pression for €, and the same value of €, was used. The
stress-strain curve used in this study, shown in Figure 3.2,
differed from Hognestad's curve only in that the maximum
stress was set equal to the im-situ strength of concrete,
adjusted for the effects of the rate of loading, f_ i gr-
This particular strength is described more fully in Sec-
tion 4.1.

The tensile strength of concrete was also consi-
dered in this study. The reason for its inclusion was the
need for as high a degree of realism as possible in cal-
culating forces and moments.

A linear relationship between tensile stress and
strain in concrete was assumed up to the strain at which the
concrete cracks, ¢~ (see Section 4.1). At tensile strains
greater than this cracking strain, the stress was zero as
is shown in Figure 3.2. The modulus of elasticity was as-

sumed to be equal in tension and compression.
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3.3 Stress-Strain Relationship for Reinforcement

The stress-strain relationship for conventional
deformed reinforcement was assumed to be elastic for strains
less than the yield strain, ey = fy/ES where fy and E; are
the yield strength and the modulus of elasticity, respec-
tively, as defined in Section 4.2. At strains greater than
the yield strain, the stress was equated to the yield
strength. Because the onset of strain hardening in the
reinforcement occurs at strains close to the failure strains
of the prestressing tendons, strain hardening should have

little effect on the strength and was ignored.

3.4 Stress-Strain Relationship for Prestressing Steel

Two types of prestressing steel strand were con-
sidered in this study, stress relieved and stabilized. The
main difference between stress relieved and stabilized steel
is that the stabilized steel has been further heat treated
and subjected to high tension to reduce relaxation losses.
As described in Section 4.3, the process of stabilization
results in slightly improved stress-strain characteristics.
This improvement is reflected in the stress-strain curve
for stabilized strand used in this study. The assumed stress-
strain curve for stress relieved strand will be described
first, followed by a description of how the stress-strain
curve for stabilized strand is different.

The stress-strain curve for stress relieved
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strand was taken to be linear up to the elastic limit of
70 percent of the ultimate stress. From this point to the
stress at 1 percent strain, the curve was defined by a
second straight line as shown in Figure 3.3. The average
value of the stress at 1 percent strain was found to be

89 percent of the ultimate stress although, as discussed
in Section 4.3, it could be as high as 94 percent or as
low as 84 percent of the ultimate stress. The part of the
curve from 1 percent strain to the failure strain, point C
to point D in Figure 3.3, was taken as a parabola. The

equations for the three regions are:

Region I (0 < e s 0.7£f,,/Esp):

o = Egp * € (3.1)

Region II (0.7fpu/ESp < g < 0.01):

0.7f
E1 - 0.7fpu] {e - _E—_pE]
= Sp
o 0.7f5, + VET (3.2)
0.01 - ——_~pU
Region III (0.01 < e < eyp):
g = "b + VZBa - 4aC . (3.3)
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-20B
pu

c = qaB2 + 0.01 - ¢

€ p " 0.01
¢TI - R)?

o
B = ?—L
pu
0; = stress at 1 percent strain
f = ultimate tensile strength

Eup = ultimate strain of prestressing steel

Egp = modulus of elasticity of prestressing steel

The parabola used in this study was adapted from
a stress-strain curve proposed by Murray and Epstein (1976).
In that work, a parabola was used to describe the stress-
strain curve between the elastic limit and the ultimate

stress:

0.7fpu < g < fpu
e=E° + 0.1[f—°—- 0.7]2 (3.4)
sp pu

Equation 3.4 tended .to underestimate the stress at small



28

straiﬁs where the curve started to bend over and reached
the ultimate stress at too small a strain. This resulted
in a straight, horizontal line from medium strains to the
ultimatg strain at the level of the ultimate stress. As
can be seen in Figure 3.3, using the parabola between points
C and D instead of between points B and D seems to overcome
this problem. It should also be noted that in Murray's work,
the stress was used in the parabola equation to solve for
strain. On the other hand, the analysis in this study re-
quired that the strain be used to solve for the stress.
This involved solving a quadratic equation, as can be seen
in Equation 3.3. Since the root required was always the
higher one, however, the solution was simplified somewhat.
The stress-strain curve for stabilized strand was
assumed to be linear up to 75 percent of the ultimate
stress, rather than 70 percent in the case of stress
relieved strand. In addition, the stress at 1 percent strain
was assumed to be a little higher for stabilized strand,
averaging 90 percent of the ultimate stress, with a maxi-
mum and minimum of 95 percent and 85 percent, respectively.
Thus, Equation 3.1 applies up the yield strain which is now
defined as 0.75fpu/Esp and Equation 3.2 must be changed for

stabilized strand:

Region II (0.75fpu/ESP < e < 0.01):

0.75f
(01 - 0.75fpu} [E - ——E—'—ﬁ]
o = 0.75fp, + =P (3.5)

0.75f
[0.01 - -—E——Rﬂ]
sp




The term B, defined earlier, takes into account the magni-
tude of the stress at 1 percent strain in Region III.
Thus, the stress-strain curve for prestressing

steel can be described using four parameters:
1. the modulus of elasticity,

2. the ratio of stress at 1 percent strain to ulti-

mate stress,
3. the ultimate stress, and
4, the ultimate strain.
Values for these four terms are presented in Section 4.3

of this report.

3.5 Method for Developing the Moment-Curvature Diagram

The moment-curvature diagram was developed for
a beam having the properties generated in each simulation
in the Monte Carlo program. The maximum moment from the
moment-curvature diagram was assumed to be the ultimate
moment capacity of the section and was compared to thg ul-
timate moment computed according to the ACI Building Code.
(1971a). A typical moment-curvature diagram for prestressed
concrete beams is shown in Figure 3.4. Curvature is de-
fined as the ratio of the strain at the extreme concrete

fiber to the depth to the neutral axis.



Moment (in—k)

Curvature ¢

Figure 3.4 Typical Moment-Curvature Diagram for a Prestressed Concrete Beam
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The moment-curvature diagram was developed by
incrementing curvature. For a particular curvature, the
strain at the top of the section was altered using either
the Newton-Raphson procedure or a trial and error procedure
until the compression and tension forces in the section were
essentially equal. These procedures are further described
in the balance of this section and in Section 3.56. Once
the forces were balanced, the moment was calculated and
thus one point on the moment-curvature diagram was deter-
mined. The curvature was then incremented and the above
procedure of balancing the forces and calculating the moment
was repeated. This was continued until the change in moment
after an increment in curvature was so slight that for all
practical purposes, the ultimate moment had been reached.

Before the calculation of the forces is described,
a brief explanation of the notation and sign convention is
in order. The basic notation for dimensions, strains,
stresses, and forces is shown in Figure 3.5. The strain
at the top of the section is e,, the strain at the bottom
of the flange is €3, and the strain at the bottom of the
section is e€;. Compressive strains and forces were taken
as positive. A positive moment was taken as counterclock-
wise as shown in Figure 3.5.

The compressive force in the concrete was calcu-
lated by splitting the stress distribution into three parts
as shown in Figure 3.6. The area under the parabola could

be calculated by integrating the equation for the parabola
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as suggested by Gurfinkel and Robinson (1967):

Area = £ f:" f"c[% - [i] Z:Ide (3.6)
The areés of the triangle and the rectangle could be cal-
culated using simple geometric relationships. These areas
are multiplied by the width of concrete that is influenced
by this stress distribution to give the force in that part
of the compression zone. For a rectangular cross-section,
there were four basic cases as shown in Figure 3.7. For
a T-section these basic cases had to be adjusted slightly
to take into account the area of the flange. There are
nine different cases to consider for a T-section. Th=
various cases for rectangular and T-beams and the corres-
ponding equations are summarized in Appendix A. The four
cases for the rectangular section are included in the nine
cases for the T-section since in a rectangular section,
b = b, and some unnecessary terms drop out in the equations.
It should be noted that some of these equations are not
very accurate for very low values of €, and €; since these
terms are taken to the third or fourth power at times. This
inaccuracy did not affect the results of this study, how-
ever, since the critical ranges correspond to high values
of ey.

The tension force in the concrete was calculated
by multiplying the area under the triangular stress distri-

bution by the width of the concrete influenced by this stress
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distribution. This may be expressed as:

£
Te = [%—f,. x r}bw (3.7)

where Eﬁ% is the distance shown in Figure 3.6.

For a given strain distribution, the strain in
each reinforcing bar was obtained. The corresponding stress
was obtained from the stress-strain curve. This stress,
when multiplied by the bar area, gave the steel force.

Similarly, the strain at the level of the pre-
stressing tendons, e+, could be determined for a given
strain distribution. As explained in Section 3.1 and

Figure 3.1, the total strain in the prestressing steel is:
€ps T €+ * Ece T Ese (3.8)

The load gradually reduces the compressive strain in the
concrete due to the prestressing force, ece, to zero strain
before the concrete at the level of the prestressing steel
goes into tension.

Once the strain in the prestressing steel was
known, the stress was obtained from the stress-strain
curve and the force was obtained by multiplying this stress
by the tendon érea.

Concrete that was displaced by the steel was taken
into account by calculating the compressive force that this

amount of concrete would have exerted, C.g, and then sub-
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tracting it from the compressive force. This displaced
concrete was taken into account only when the steel was
above the neutral axis.

The total force acting on the section was ob-

tained by summing all of these forces:
P=2Cc+Tc+ Tgr *+ Tgp + Cs + Ccs (3.9)

As explained earlier, tensile forces are negative. These
forces should add up to zero since this was a beam and there
was no axial force on it. The computer program had a
tolerance built into the force balancing procedure so that
the sum of forces was close to, but not necessarily equal
to, zero.

Once the forces were balanced within tolerance,
the moment was calculated by multiplying the forces by their

moment arms:

ey b i 4
Tsp[% - dp] + (Cq + ccs)[% - d'] (3.10)

The expressions for the moment arms for the compressive
force in the concrete are given in Appendix A: All the mo-
ments were summed about midheight. This introduces a small
error since the resultant force, P, acts at the centroid

which is not at midheight for T-beams, and should thus con-
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tribute to the total moment. However, the moment due to P
would not significantly affect the total moment because the
tolerance on P was small enough that P was close to zero.

Figure 3.4 shows that a prestressed concrete beam
is initially subjected to negative curvature. This is
caused by the prestressing force which makes the beam
camber upwards before any load is applied. At this stage,
the top of the beam is in tension (or at a small compres-
sion) and the bottom of the beam is in compression as
shown in Figure 3.1(a).

Figure 3.4 also shows that for a small increase
in curvature, the moment decreases slightly at the cracking
moment, Mc. The cracking moment is the bending moment at
which the strain at the bottom of the section reaches the
cracking strain. Up until this point, the tension force
in the concrete increases as the strain in the concrete
increases. As soon as the concrete cracks, however, the
tension force in the cracked concrete disappears. As the
cracking in the concrete progresses upward, the tension force
in the concrete reduces in magnitude and moves toward the
neutral axis causing a slight decrease in moment at this
point. As the curvature increases, however, this reduction
in moment is soon offset by an increase in the moment due
to the increase in the reinforcement stress.

The decrease in calculated moments at cracking
was found to stop the development of the full moment-

curvature diagram in some cases. This problem was overcome



by finding the cracking moment and cracking curvature and
then bringing the magnitude of the moment up to the level
of the cracking moment if the curvature was greater than
the cracking curvature. This is shown graphically in Fi-
gure 3.4. In effect, the dip in the curve was eliminated
and was replaced by a horizontal line.

The cracking moment and cracking curvature were
calculated using a trial and error procedure. The strain
at the bottom of the section was assumed equalfto the crack-
ing strain and the curvature was incremented until the com-
pression and tension forces were equal within a tolerance.

In a few cases, a second dip in the moment-
curvature diagram was observed when the tension block in the
concrete extended into the flange of a T-beam.

Generally, the ultimate moment was reached when
either the strain in the concrete at the top of the section
reached the ultimate strain, €,, or the strain in the pre-
stressing steel reached the ultimate strain, €up - However,
in some cases, the maximum moment was found to occur when
the strains in the concrete and steel were less than the
ultimate strains. The shape of the compressive stress
block was partly responsible for this, as iliustrated in
Figure 3.8 for one particular case. The increase in ¢
and e, results in a change in stress distribufion, shown

by the dotted lines. As ¢ and €, 1ncrease:

1. eps increases, resulting in increases in the steel

stress, force and moment;

38
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‘2. The tension force in the concrete decreases due
to a decrease in d+. Also, this force gets closer to mid-
height, therefore, the moment due to the tension force

decreases.

3. The compressive force in the concrete may decrease
because the position of €, moves down. There is less con-
tribution from the parabola portion of the compressive block
and slightly more from the trapezoidal part. The centroids
of the parabola and trapezoid both move down resulting in
smaller'moment arms and a smaller moment due to the compres-

sive force in the concrete.

If the decrease in the moments of the concrete forces is
more than the increase in the moment of the steel force,
the total moment will decrease. This beam was investigated
at the ultimate moment condition assuming the concrete
strain was at the ultimate strain and the moment was found
to be less than the moment for the distributions shown in
Figure 3.8. Thus, the ultimate moment may be reached be-

fore the strains in the concrete and steel reach their so-

called ultimate strains.

3.6 Numerical Analysis Techniques

Two techniques were used to determine the strain
at the top of the section, e,, that would balance the
forces. The first technique was the extended Newton-

Raphson method. This method was used by Gurfinkel and
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Robiﬁéon (1967) to determine the, strain distribution in

a reinforced concrete section that was subjected to com-
bined axial load and bending moment. In this study, the
sectioq is not subjected to a longitudinal load so the
procedure is simplified somewhat. The Newton-Raphson tech-
nique converges on the correct value of e, very quickly.
Thus, the computer program used in this study tries to use
this method wherever possible. However, this technique does
break down in a few cases, as discussed later in this sec-
tion. When this happens, a trial and error technique is
employed.

The Newton-Raphson procedure is used on nonlinear
curves. In this case, it is used on the force-top strain
(P - €4) curve which can have inflection points, as shown
in Figure 3.9. There is one P - €4 curve for each cur-
-vature, ¢. The upper part of the curve becomes flatter as
€, increases (keeping ¢ constant) because the compressive
stress in the concrete does not increase as fast as the
strain due to the shape of the stress-strain curve for con-
crete. [See Section 3.2 and Figure 3.10(a).] As e, de-
creases, the compressive stress and hence the compressive
force decreases as well. Eventually, as e, continues to
decrease, the concrete cracks in tension and, because the
P - €4 curve is plotted for a constant value of ¢, the ten-
sion force remains constant while the compressive force
continues to decrease as shown in Figure 3.10(b). Depending

on the magnitude of.the steel force, the resultant force, P,
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Figure 3.9 Typical P -¢, - ¢ Curves
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could become negative as shown in Figure 3.9. The inflec-
tion point appeared to correspond to the condition of zero
strain at the bottom of the section.

The strain distribution with zero strain on the
tensile side was chosen as the starting reference point for
the first curvature. The forces due to these strains as
well as the resultant force, P.o¢, were then calculated, as
described in Section 3.5. Once the coordinates of the
reference point are known, €, is given a small increment,
Ae,, as shown in Figure 3.11, and the coordinates of this
point are calculated. The slope between these two points is
then calculated using:

SP P, - P

_ ‘a ref
Seo ic. (3.11)

The correction to €4, €.,, is determined by going along
this slope to the desired level of P as described by the

following equationand as shown graphically in Figure 3.11.

Pdesired P

_ ref
cor 5P/8en (3.12)

For prestressed concrete beams, the desired P is zero since
there is no external axial force on the beams. The value

of P is calculated for this new corrected value of e€,. This
P is then compared to the tolerance level. If it is close
enough to zero, no further iterations are required. If

not, this corrected point is teken as the reference point
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Figure 3.11 lllustration of Newton-Raphson Technique
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and the process of incrementing €4, getting a slope, and
then shooting along this slope is repeated.

Once the value of P is within the allowable toler-
ance, the moment due to this strain distribution can be found
and thus one point on the M—¢ curve has been determined.

The curvature is then incremented and the ''correct'" €4
from the previous curvature is used as the starting point
on this new P—e, curve as shown in Figure 3.11.

Some problems were encountered with the Newton-
Raphson procedure in connection with the incrementing of
curvature. If the increment was too large, the Newton-
Raphson procedure would tend to '"shoot" to a corrected
€, that was close to, or greater than, the ultimate strain,
€y. Due to the shape of the P—e, curve in this region, the
calculated slope for the next correction was either flat,
as shown in Figure 3.12(a), or so slight that a negative
value of €, resulted, as in Figure 3.12(b). A reduction in
the size of the increment in curvature corrected these prob-
lems, as shown by the dotted curves in these figures.

The Newton-Raphson technique was found to break
down in a few other cases. These problems did not have
anything to do with the increment of curvature. One case,
shown in Figure 3.13(a), occurs when the corrected value of
ey corresponded to a P that was farther away from zero than
the starting P. The value of e, may not converge to the

solution when this occurs. Another case occurs when the Newton-

Raphson method oscillated back and forth between two points
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as sﬁown in Figure 3.13(b). Yet. another case where this
technique cannot be used is when the value of P for €, and
the value of P for e, + Ae, are equal. The slope is thus
calculated to be zero and the value of €., cannot be cal-
culated, as shown in Figure 3.13(c).

When the Newton-Raphson technique breaks down,
a trial and error approach is used. This procedure basical-
ly increments e, until the forces balance within a speci-
fied tolerance. The increment is divided in two every time
the sign of P changes and P is still outside the tolerance.
Thus the increments become smaller as the method converges
on the correct €4. This method is shown graphically in
Figure 3.14. The value of P is calculated for point 1
first. Since P is outside the tolerance and is negative,
the strain e, is increased by adding an increment, Ae,.
Because P for point 2 is still outside the tolerance, Ae,
is added to the strain at point 2. Going from point 2 to
point 3, the sign of P changes and the P at point 3 is still
outside the tolerance so the increment is halved and sub-
tracted from point 3. In the figure, point 4 is within the
tolerance so the process is stopped. If the tolerance 1is
small or the increments are large, the increment may be

halved a number of times.

3.7 ACI Calculation of Ultimate Moment

The calculation of the ultimate moment capacity of

prestressed concrete beams according to the ACI. Building
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Code.(1971a) is required in this- study. This calculation
is basically the same as that for reinforced concrete beams.
The only difference is that there is a force due to the
prestrgssing steel, as shown in Figure 3.15.

The ACI calculation of ultimate strength is per-
formed by the ACI subroutine in the computer program de-
veloped for this study. The rectangular concrete stress
distribution as shown in Figure 3.15 is permitted in the
ACI Code and was used in these calculations. The depth of
the rectangular block was determined from a = B;c where
¢ is the depth to the neutral axis and B; is a constant
defined in the ACI Code with a value of 0.85 for strengths,
f'c, up to 4000 psi and which is reduced continuously at a
rate of 0.05 for each 1000 psi of strength in excess of
4000 psi. The maximum strain in the extreme concrete com-
pression fiber was assumed to be 0.003 as specified in the
ACI Code. The tensile strength of the concrete was neg-
lected. It should be noted that the ACI calculation of
ultimate moment in this study did not include any under-
strength (¢) factors.

The effect of conventional reinforcing steel on
the ultimate moment was accounted for in the ACI subroutine.
Tension reinforcing steel was always assumed to be yielded
as allowed in Section 18.7.2 of the ACI Code. Following
a check by hand calculations, this assumption was found to
be true for all the beams investigated in this study. Any

compression reinforcing steel was also assumed to be
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yieldéd but, unlike the assumption for tension steel, this
assumption is checked in the ACI subroutine using a strain
compatibility analysis. If it was found that the compression
steel hgd not yielded, the stress was set equal to the modu-
lus of elasticity multiplied by the steel strain.

The stress in the prestressing steel at design
load, fp5, was determined by using Equation 18-3 of the

ACI Code:

H

fps = fpu(l - 0.5p, ?25 (3.13)

where:

fpy = ultimate strength of the prestressing

steel, psi

Pp = Asp/bd

= ratio of prestressed reinforcement

f'c = specified compressive strength of con-

crete, psi.

This equation is an approximation and can only be used if
fse is not less than 0.5f,,. However, the mean nominal
value of fg, was always greater than 0.5f;, for the beams
investigated in this study. The above equation was used in

lieu of a more exact strain compatibility analysis because
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the désigner would probably use that equation.

As written for this study, the ACI subroutine could
handle only one layer of compression steel, one layer of
prestressing steel, and one layer of tension reinforcing
steel. Thus, if in reality there are three layers of pre-
stressing steel, in the program the prestressing steel must
be lumped at the centroid of the three layers.

If prestressing steel and normal tension rein-
forcing steel are both present, the combined centroid is
calculated and the effective depth, d, is defined as the
distance from the extreme compression fiber to the combined
centroid (ACI Code, 1971a).

The ACI subroutine can determine the ultimate
moment for either a rectangular beam or a T-beam. A beam is
classified as a T-beam when the total maximum compressive
force possible from the concrete in the flange and the com-
pression steel is less than the tension force so that the
neutral axis is forced down into the web.

When the compression steel lies within the equi-
valent rectangular stress block, the area of concrete that
is displaced by the steel is accounted for in the program
by subtracting the force due to this area from the total
compressive force calculated assuming that no concrete is
displaced by the steel.

A beam is classified as underreinforced and the
ultimate moment is calculated in the normal way only if the

steel ratio is less -than or equal to 0.30:



w, < 0.30 (3.14)

IA

(w + wp - w') 0.30 (3.15)

N

(ww + wpw' ww') 0.30 (3.16)

where:

w = pfy/f'c (tension reinforcement)

w' = p'fy/f'c(compression reinforcement)

wp = ppfps/f'C (prestressing steel) and
Wy, Wpy Wy = reinforcement indices for flanged sections

computed as above except that b is the web width, and the
steel area is that required to develop the compressive

strength of the web only.

If the steel ratio is greater than 0.30, the beam
is classified as overreinforced and the ultimate moment is

calculated using the equation (ACI, 1971b):
My = 0.25f'.bd? (3.17)

This equation underestimates the ultimate moment because

there are additional safety factors in this equation due to
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the néture of failure of an overreinforced beam. This type
of beam fails when the concrete crushes, which is a sudden
and dangerous failure.

The ACI Code (1971a) requires that the area of
prestressed and nonprestressed reinforcement be sufficient
to develop a design load of at least 1.2 times the cracking
load. This provision eliminates the possibility of a beam
reaching the cracking moment and the ultimate moment si-
multaneously. This requirement was checked using another
ACI program for all the beams studied here. This require-
ment was not inserted into the ACI subroutine of the Monte
Carlo program because it is a design requirement, not an
analysis requirement. If this requirement was not met, the
section had to be adjusted by adding steel until it was
satisfied. Only beams satisfying this requirement were

used in the Monte Carlo studies.



CHAPTER 1V

PROBABILITY MODELS OF VARIABLES
AFFECTING SECTION STRENGTH

The strength of a cross section of a prestressed
concrete beam is affected by the variability of the con-
crete, the reinforcing steel, the prestressing steel, the
prestress force and losses, and the dimensions. A pro-
bability model is required for each of these variables for

use in the Monte Carlo program.

4.1 Concrete Variability

The probability models for the compressive and
tensile strengths of concrete and for the modulus of elas-
ticity of concrete were taken from a statistical descrip-
tion of the strength of concrete prepared by Mirza,
Hatzinikolas, and MacGregor (1978) and will not be derived
here.

The mean 28-day strength of concrete in a struc-
ture for minimum acceptable curing was given as:

T = 0.675f'c + 1100 < 1.15f', psi (4.1)

cstrss

The subscript 35 denotes a rate of loading of 35 psi/sec.
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whichhrepresents a typical testing rate for a concrete con-
trol cylinder.

The effect of different rates of loading should
also beltaken into account. The higher the rate of loading,
the higher the apparent strength. Lower strengths at
lower rates of loading are probably due to creep and micro-
cracking effects which have more opportunity to develop
when the specimen is loaded slowly. The mean value for the
"in-situ" or "in-structure'" compressive strength at a rate

of loading of R psi/sec. was taken as:
festrr = Testrss[0.89(1 + 0.08log,,R)Ipsi (4.2)

The coefficient of variation of the <n-situ
strength at a given rate of loading was given by Mirza

et al. (1978) as:
Vis+rr = Vicy| - 0.04% + 0.10% = V&, + 0.0084 (4.3)

where Voo is the coefficient of variation of the compres-
sion test cylinders for a particular job. In the analyses
reported in this thesis, pretensioned beams were assumed

to be precast, and hence were assumed to have better-than-
average to excellent control with V.., equal to 10 percent.
Post-tensioned beams, on the other hand, were assumed to be
cast-in-place with average concrete control, for which Vccy|

was taken equal to 15 percent.



59

The tensile strength of concrete was represented
by the model for flexural tensile strength proposed by Mir:za
et al. (1978) in lieu of that for splitting tensile strength.
This was done because it was felt that the former better pre-
dicted the tensile strength of concrete in a beam. The
following two equations were used to describe the tensile

strength of concrete:

T = 8.3f

1 _
rstrR cetrss [0.96(1 + 0.111o0g,oR)Ipsi (4.4)

= 0.20 (4.5)

The model for the initial tangent modulus of

elasticity used the following equations:

EcisTrR %(1.16 - 0.08log,ot) (4.6)

- 60’400fcs1‘r35

where t is the loading duration in seconds

Viietrr = 0.08 (4.7)
It can be seen from the above equations that the
tensile strength and modulus of elasticity depend on the
compressive strength. However, these equations by them-
selves do not prevent the Monte Carlo technique from generat-
ing a high value of compressive strength and low values of

tensile strength and modulus of elasticity. This would be
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unrealistic because, as can be seen from the above equa-
tions, a high compressive strength tends to be'accompanied
by a high tensile strength and a high modulus of elasticity.
To prevent unrealistic combinations from occurring, the
mean values of tensile strength and modulus of elasticity
are set equal to values that depend on the generated value
of compressive strength before the random number generating
subroutine is used to generate values for tensile strength
and modulus of elasticity as described by the following

equations:

retras - 8.3vXy (4.8)
EcisTrss = 60,400/X; (4.9)

where X; is the generated value of compressive strength
at a rate of loading equal to 35 psi/sec. for the particular
beam under consideration.

Equations 4.2, 4.4, and 4.6 are thén used to ap-
ply the rate of loading effects to the generated values.
This procedure ensures that if a high value is generated for
compressive strength, relatively high values would also be
generated for the tensile strength and modulus of elasti-
city.

The cracking strain, €., is equal to the tensile
strength divided by the modulus of elasticity.

The distributions of compressive strength, ten-
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sile strength, and modulus of elasticity of concrete were

assumed to be normal.

4.2 Reinforcing Steel Variability

An elastic-plastic stress-strain curve was used
for the reinforcing steel. Probability models of properties
related to reinforcing steel were obtained from a paper on
the variability of the properties of reinforcing bars by
Mirza and MacGregor (1978a). It should be noted that only
Grade 60 bars were considered in the present study.

The mean value and coefficient of variation of the
mill test yield strength were 71,000 psi and 9.3 percent,
respectively. The probability density function (PDF) of
of the mill test yield strength was calculated using a

Beta distribution described by:
£ - g57)2-02 108 - £ )°-°°
PDF = 7.1414—Fer— e (4.10)

where: 57 < fy (ksi) < 108

The mill test yield strength is determined at a
much greater rate of loading than is normally encountered
in the structure. As a result, the yield strength is over-
estimated. This is corrected by subtracting afys from the
mill test yield strength to get the static yield strength.
The distribution of dfys was assumed to be normal with a

mean value of 3.5ksi and coefficient of variation of
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13.4 bercent.

The modulus of elasticity was assumed to be nor-
mally distributed with a mean of 29,000 ksi and a coeffi-
cient of variation of 3.3 percent.

The actual area of reinforcing steel is usually
not equal to the nominal area. This is taken into account
by multiplying the nominal area by the ratio of measured
to nominal area, Ay/A,. This ratio is normally distributed
and truncated at 0.94 and 1.06. It has a mean value of
0.99 and a coefficient of variation of 2.4 percent.

Because reinforcing steel comes only in certain
sizes, the furnished area of steel is usually not equal
to the area of steel required by calculations. Therefore,
the nominal area of steel is also multiplied by the ratio of
furnished to calculated areas, Af/Ac. A modified log-normal
distribution with mean value 1.01, coefficient of variation
4 percent, and modification constant 0.91 was used for this
ratio. This distribution was suggested by Mirza and
MacGregor (1978b) in their paper '"Variations in Dimensions

of Reinforced Concrete Members."

4.3 Prestressing Steel Variability

Data pertaining to prestressing strand was ob-
tained from the material test records of Con-Force Products
Ltd., Edmonton for 1976 and 1977. This data included 99
and 100 samples, respectively, of Grade 270 stress relieved

strand and Grade 276 stabilized strand. The strand was



from two sources in two countries and was in two diameters,
7/16 and 1/2 inch. This data was analyzed statistically as
described in this section.

A number of correlation analyses were also per-
formed using this data in an attempt to find interdependence
between parameters. No correlation was found between the
ultimate strain and the ultimate stress nor between the
strain at 70 percent of the ultimate stress and the ultimate
strain. A good correlation was found between the stress
at 1 percent strain, o;, and the ultimate stress, fpu,
using a power regression analysis. However, a simpler,
linear relationship was found between o; and f;, by divid-
ing the mean value of stress at 1 percent strain by the mean
value of ultimate stress to get the coefficient k in the fol-
lowing equation:

ou (4.11)

E)'.1
fpu

where: k =

The results of the correlation analyses were used
to help determine what parameters should be used in de-
scribing the stress-strain curve for prestressing steel.

A number of different parameters with different equations
were tried before the stress-strain curve described in

Section 3.4 was selected. The stress-strain curve was de-
scribed using four parameters: the modulus of elasticity,

the ratio of the stress at 1 percent strain to the ultimate
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stresé, the ultimate stress, and -.the ultimate strain. The
mean value and coefficient of variation of each of these four
parameters was needed for use in the Monte Carlo program.
The coefficient k in Equation 4.11 was found to
be 0.89 for stress relieved strand and 0.90 for stabilized
strand. Equation 4.11 was found to fit the data very well;
given the measured ultimate stress, this equation yielded
values for the stress at 1 percent strain that averaged
0.997 times the measured values of o; with a coefficient of
variation 0.014. The coefficient of variation of o;/fpu
was taken equal to the coefficient of variation of the
stress at 1 percent strain which was equal to 1.72 percent.
The value of 0.90 for stabilized strand is a reasonable
value, borne out by the fact that section 5.6.2 of CSA
Standard G279 (1975) uses 90 percent of the minimum break-
ing strength of the strand as the minimum value for the
stress at 1 percent extension for low relaxation strand.
Values for the other three parameters were ob-

tained by comparing the statistical analysis of the Con-
Force data with data from the other sources listed in
Tables 4.1, 4.2, and 4.3.

‘ It can be seen in Table 4.1 that the mean value of
the reported modulus of elasticity from the Con-Force data
was 27.58 x 10° psi which was low compared to the American

data.* However, the modulus of elasticity calculated from

*Private communication not to be identified by company name.
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the Con-Force data by dividing 7Q percent of the ultimate
stress, 0.7f,,, by the corresponding strain, €o,7 agreed
very well with that from the American data as shown in
Table 4.1. Based on this, the mean value of the modulus of
elasticity of Grade 270 strand was taken as 28.4 x 10° psi,
with a coefficient of variation of 2.0 percent.

In order to facilitate comparison of ultimate
strengths from different sources, the ratio of the mean
ultimate strength to the nominal ultimate strength was
computed and compared. Table 4.2 shows that this ratio
varied from 1.035 to 1.154 for the strand. The Con-Force
data fell at the low end of this range and also had slight-
ly lower coefficients of variation than the other sources.
The mean value of the ultimate strength was chosen to be
1.04 x nominal ultimate strength for both types of strand,
representative of the Con-Force data. The coefficient of
variation was chosen to be 2.5 percent. This value is
roughly the average of the standard deviations of all of
the tests of strand quoted in Table 4.2.

Not much data was available for ultimate strain
(Table 4.3). The Con-Force data indicated a mean ultimate
strain of 0.05 in/in and a coefficient of variation of
7.0 percent. These values were used for both types of
strand.

Based on the data collected and the observation
by Brenneisen and Baus (1968) that the mechanical charac-

teristics of prestressing wires, bars, and cables were nor-



70

mally‘distributed, all prestressing steel properties were
assumed to be normally distributed in this study. An up-
per and lower limit was set only for the ratio of stress
at 1 percent strain to ultimate stress. This would result
in a trﬁncated normal distribution. The limits were set
at three standard deviations away from the mean value re-
sulting in an upper and lower 1limit of 0.94 and 0.84 for
stress relieved strand, and an upper and lower limit of
0.95 and 0.85 for stabilized strand.

It should be noted that the coefficients of vari-
ation for the prestressing steel properties are less than
those for the reinforcing steel properties. This is be-
cause the production of prestressing steel is a more con-
tinuous process than the batch process which is used for
reinforcing steel (Bannister, 1968).

It is claimed that stabilized strand has improved
stress-strain characteristics compared to stress relieved
strand such as a higher modulus of elasticity (Stelco, 1976),
a higher proportional limit (Stelco, 1976; Bannister, 1968),
as well as a higher ultimate strength and ultimate strain
(Bannister, 1968). Due to a lack of quantitative informa-
tion, however, the same modulus of elasticity, ultimate
stress, and ultimate strain were used for both stress re-
lieved and stabilized strand. The data from Con-Force
indicated that there was little difference between these
values for the two types of strand. As described in Sec-

tion 3.4, the proportional limit was increased from 70 per-



cent 6f the ultimate stress for stress relieved strand to
75 percent of the ultimate stress for stabilized strand.
Bannister (1968) states that 75 percent is a minimum value
for stabilized wire. As mentioned earlier, the ratio of
the stress at 1 percent strain to the ultimate stress was
increased to 0.90 for stabilized strand from 0.89 for stress
relieved strand.

Since the Con-Force test data was based on the
nominal areas of the strands, no correction was made to

account for the variability of the areas of the strands.

4.4 Variability of Prestressing Losses

4.4.1 Preliminary Investigation

A preliminary investigation was carried out to
determine if prestressing losses had a significant effect
on the stress in the prestressing steel at ultimate, and
hence on the ultimate moment. The stress-strain diagram
used in this investigation was obtained from the mean values
of the statistical analysis of the prestressing steel data
(see Section 4.3). This mean curve was shifted in the ne-
gative direction by the initial prestrain, €go *+ €cg, @S
shown in Figure 4.1. The meanings of ege and ece are ex-
plained in Section 3.1. The magnitude of e€g¢. *+ €ce Was
calculated by arbitrarily assuming that losses of 22 per-
cent of the initial transfer stress occurred. The calcu-

lation of ege and ece is further described in Section 5.2Z.
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Mean Curve for Stress Relieved Strand

300

250 T+

Stress (KSI)

0.008
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0.00546 (27.5% loss)
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0.00632 (17.5% loss)

Figure 4.1 Effect of f, on Prestressing Steel Stress At Ultimate
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The effect of variations in the losses was arbitrarily
studied by multiplying the assumed loss of 22 percent by
1.25 and 0.75 to get 27.5 percent and 16.5 percent losses,
respect;vely. The different amounts of loss resulted in
differeﬁt values of €gg¢ + €ce. This in turn shifted the
stress-strain curve to either side of the mean curve as
shown graphically in Figure 4.1.

Also plotted in this figure is the locus of pos-
sible solutions for the stress in the prestressing steel
at failure, fg,, for varying values of steel ratio, pp.
The range of p, was obtained from a survey of the sections
listed in the PCI Design Handbook (1971). The equation

for these curves is:

_ [B10.85f" ][ £ J

f = c cu 4.12
su [ Pp €cu * Esu ( )
where: B, = factor relating the depth of the equivalent

rectangular stress block to the neutral axis
depth (see Section 3.7).
€cy = limiting strain in concrete
= 0.003 in ACI Building Code (197la)

€gy = strain in the prestressing steel at failure.

This equation can be derived from strain compatibility and
equilibrium (Warwaruk et al., 1962), based on a rectangular
stress block. The intersections give stresses at failure.

The difference between the high and low values of



steel stress due to the assumed variation in losses ranged
from 1 percent for beams with a prestressing steel ratio
Pp = 0.003 to as much as 6 percent for a steel ratio

Pp = 0.01. Because the latter value appeared significant,
prestressing losses were included as a random variable and

a probability model for the losses was estimated.

4.4.2 Method of Calculation of Losses

The prestressing losses were calculated for a
typical Prestressed Concrete Institute (PCI) beam (8DT 20
with a strand pattern 68-D1) (PCI, 1971) with a span of 50
feet. The strands were assumed to be jacked from one end.
The mean loss, maximum loss, and minimum loss calculations
were carried out for the four combinations of type of pre-

stressing operation (pretensioned and post-tensioned) and

type of prestressing steel (stress relieved and stabilized).

Anchorage loss, elastic shortening loss, and time
dependent losses due to shrinkage, creep, and relaxation
were all taken into account in these calculations.

Anchorage loss is the loss of stress in the
prestressing steel due to the anchorage of the prestressing
steel. In post-tensioned members, the anchors at the end
of the tendons will slip slightly and locally deform the
end of the beam as they set, thus reducing the stress
slightly. Anchorage loss in pretensioned members is caused
by slippage in the strand-holding devices.

Elastic shortening loss occurs when the pre-
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stressing force is applied to the concrete. Under this
compressive force, the concrete éhortens a bit and the
prestressing steel shortens the same amount. Thus, there
is a reduction of stress in the steel. This loss occurs in
both post-tensioned and pretensioned construction.

As the concrete loses water, it shrinks, result-
ing in loss of stress in the steel. This loss is called
shrinkage loss.

Creep loss occurs as the concrete creeps. Creep
is defined as the change in strain which takes place in
concrete due to a constant stress. A prestressed beam is
not subjected to a constant stress; the stress is always
changing as the losses grow in magnitude. Partly for this
reason, an incremental approach was used in the calcula-
tion of losses. The stress in the concrete at the center
of gravity of the steel is the stress that is used in the
creep calculations.

Relaxation of the prestressing steel also causes
a loss of stress in the steel. Relaxation 1s defined as the
change in stress that takes place due to a constant strain.
Generally, relaxation increases as stress, time, and tem-
perature increase. Only normal temperatures (20°C) were
considered in this study. Thus, it was assumed that steam
curing or any other process that increases the temperature
was not used on the typical beam used for the loss calcu-
lationms.

Due to the different sequence and method of pre-



stressing, the losses for a post-tensioned beam are dif-
ferent from those for a pretensioned beam. In a post-
tensioned beam, ducts are placed in position and then the
concrete is poured. The concrete is then cured until it is
strong énough to withstand the jacking and anchoring of

the tendons.

Shrinkage occurs in the concrete during this peri-
od of time between pouring and anchoring which was assumed
to be fourteen days long in the loss calculations. This
shrinkage does not affect the steel stress, however, be-
cause the concrete and the strands are still unbonded. When
the tendons are jacked, there is a friction loss due to the
lack of straightness (wobble) of the ducts. Since only
straight tendons were used in this study, the curvature co-

efficient was omitted from the expression for friction loss:

P. = P,eKl (4.13)
S X

where: Pg steel force at jacking end

Py = steel force at any point X

=~
n

wobble friction coefficient per foot of pre-
stressing steel
1 = length of prestressing steel element from

jacking end to any point x.

When the tendons are anchored, there is an anchorage loss

due to the effect of wedge set. From a literature review,

-
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the mean value of this movement was chesen to be 0.35 inch
with a maximum of 0.5 inch and a minimum of 0.2 inch. The
stress in the prestressing steel after the tendons are
anchored is called the stress at transfer. The elastic
shortening loss occurs at transfer. To develop bond
between the tendons and the concrete, grout is injected
into the ducts at this stage. The time dependent losses—
shrinkage, creep, and relaxation—then take place.

In a pretensioned beam, the strands are first
stressed in the pretensioning bed. Relaxation losses start
from this point. An anchorage loss due to slippage in the
strand-holding devices occurs. The Prestressed Concrete
Institute (1971) suggests a maximum loss of 5 percent due
to slippage and the effect of strand deflection devices.
Since straight strands were used in this study, there would
be no loss due to deflection devices. A mean anchorage loss
of 2.5 percent was chosen, with a maximum of 4.5 percent and
a minimum of 0.5 percent. The concrete is then poured around
the tendons. After steam curing or a few days of normal
curing, the concrete is bonded sufficiently to the strands
and has sufficient strength to allow the strands to be re-
leased. Shrinkage occurs in the concrete during this peri-
od of time which was assumed to be three days long in the
loss calculations. Unlike the post-tensioned‘'beam, this
preliminary shrinkage does reduce the steel stress because
the concrete is bonded to the steel right from the start.

An elastic shortening loss occurs at transfer. Time de-
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pendeht losses then take place.

There is essentially no difference between a
post-tensioned beam and a pretensioned beam as far as the
calculation of the elastic shortening and time dependent
losses is concerned. A post-tenéioned beam after anchoring
and grouting behaves similarly to a pretensioned beam in
which the strands are cut. In fact, Khachaturian and
Gurfinkel (1969) suggest that losses measured from transfer
may be taken as 25,000 psi for both post-tensioned and
pretensioned beams.

The mean loss was calculated first. The mean
properties of concrete and prestressing steel, described in
Sections 4.1 and 4.3, respectively, were used in these cal-
culations. It was assumed that the stress at transfer,
f+ransfer, was 70 percent of the specified ultimate stress,
fspecified- Any losses that occur before transfer were com-
pensated for by overtensioning the tendons to an initial
jacking stress that was greater than the stress at transfer.
The mean value of initial jacking stress in fhe prestress-
ing steel was calculated by working backwards from the
stress at transfer using a trial and error approach. In
this calculation, the initial jacking stress was estimated.
From this value, the mean friction loss (for post-tensioned
beams), the mean shrinkage and relaxation losses during the
period prior to transfer (for pretensioned beams), and the
mean anchorage loss were subtracted to get the stress at

transfer. This trial and error calculation was repeated
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until f+ransfer was approximately 70 percent of fspecified.
Starting from f4+-345fer and using common elastic
theory, the elastic shortening loss was then calculated

(PCI, 1971):

E
T (fes)

Esp(Py , Poe?  Mgye
= 5P e~ _ dI”
£ (Ac i TS J (4.14)

where: Lgg = loss of prestress due to elastic shortening
f.s = concrete stress at the centroid of the strand
Po = prestress force at transfer
A. = area of concrete
e = eccentricity at point of consideration
Iy = gross moment of inertia of section

Mdl = moment due to dead load of the member

The elastic shortening loss for pretensioned beams can be
calculated directly from this equation. For post-tensioned
beams, the elastic shortening loss calculated in this manner
must be adjusted to take into account the effects of stressing
tendons one at a time. As each tendon is stressed, the con-
crete shortens a bit more, resulting in more elastic
shortening loss in the steel. The first tendgn that is
stressed would have the highest elastic shortening loss
since the stressing of each subsequent tendon contributes

to its loss of prestress. On the other hand, the last ten-

don that is stressed would have no loss due to elastic

79



shorténing because the shortening in the concrete and steel
would have already occurred by the time the prestress was
being measured in the last tendon. An average loss for
all the tendons is generally used for post-tensioned beams.
The mean time dependent losses were calculated
next. Creep and shrinkage losses were determined using the
Comité Européen du Béton prediction equations and curves
(Neville, 1970). These curves give coefficients which allow
one to calculate the 5th and 95th percentiles as well as
the mean values of shrinkage and creep. A water cement
ratio of 0.5 was assumed for all calculations. The creep
and shrinkage calculations require the use of an equivalent
thickness, dmp, defined as the ratio of cross sectional
area to semi-perimeter. For T-sections, the equivalent
thickness was based on the dimensions of the stems because
that is where the prestressing steel is located. A rela-
tive humidity of 40 percent was assumed for the calcula-
tion of mean losses. As explained earlier, the age at
transfer, which was taken to be the age at loading for
the creep calculations, was taken as fourteen days for
post-tensioned beams and three days for pretensioned beams.
The relaxation loss was determined using the
graphs for the range of losses for stress relieved strand
and stabilized strand given by Stelco (1976). The maximum
and minimum values from these bands, as well as the mean
value calculated from these values, were used because the

customary relaxation formulae tend to overestimate the mean
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relaxation losses for strand (Stelco, 1976).

Before maximum or minimum losses could be cal-
culated, the maximum and minimum jacking forces had to be
determined. Using.data obtained from stressing records for
the Edmgnton plant of Con-Force Products Ltd., a statisti-
cal analysis of the ratio of the actual jacking pressure to
the specified jacking pressure was carried out. A mean of
1.030 and a coefficient of variation of 0.0132 were ob-
tained. The maximum and minimum jacking forces were
calculated by adding and subtracting three standard devi-
ations from the mean jacking force calculated earlier by
trial and error.

A value that is three standard deviations from
the mean corresponds to a chance of occurrence of about
1 in 1000. Because the jacking force is independent of
the variability of the concrete and steel properties,
the chance of getting the maximum or minimum jacking force
is about 1 in 1000. On the other hand, the magnitude of
the losses depend on both the concrete and steel properties.
The maximum and minimum values for these properties were
taken as the mean plus or minus 1.645 standard deviations
corresponding to the 5th and 95th percentile values, or
a chance of occurrence of 1 in 20. The chance of getting

maximum (or minimum) concrete and steel properties at the

same time is about 1/20 x 1/20 1/400. This is the same
order of magnitude as the chance of getting the maximum

or minimum jacking force. The values of the variables
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used for the loss calculations are summarized in Table 4.4.

The maximum loss was calculated by using low
values of the modulii of elasticity of concrete and steel.
Minimum slip and friction losses were subtracted from the
maximum jacking force in order to obtain a high stress at
transfer and, as a result, the maximum time dependent los-
ses. Mean values were used for all creep and shrinkage
coefficients except that the 95th percentile values
were taken for the effects of water cement ratios and rela-
tive humidity. A relative humidity of 40 percent was used
for maximum loss calculations. The upper limit on relaxa-
tion losses was taken from the Stelco (1976) literature.

The higher strength properties of concrete and
steel (i.e. mean plus 1.645 standard deviations) were used
in the calculations for minimum loss. Starting at the
minimum jacking force, higher slip and friction losses
were subtracted in order to minimize time dependent los-
ses. Mean values were used for all creep and shrinkage
coefficients except that the 5th percentile values were
used for the terms reflecting the effects of water cement
ratio and relative humidity. A relative humidity of 90
percent was used for minimum loss calculations. The relaxa-
tion losses were based on the minimum losses suggested by
Stelco (1976).

The strength gain of concrete with time was

taken into account for pretensioned beams:
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Table 4

.4

Values of Variables Used in Loss Calculations

MEAN MAX | MUM MIN [MUM
VARIABLE LOSSES LOSSES LOSSES
JACKING FORCE 31.47 k 32.71 k 30.23 k

STEEL PROPERTY Egp

CONCRETE PROPERTY
Ecc

(f'c = 4000 psi)

(post-tensioned)

(f'c = 4500 psi)

(f'c = 5000 psi

FRICTION LOSS
k (post-tensioned)

ANCHORAGE LOSS
SLIP
(post-tensioned)
(pretensioned)

CREEP LOSS
o
f
Bs
do

g
Ptime -

SHRINKAGE LOSS
v

O
Br

RELAXATION LOSS

28.62 x 10° psi

3.723 x 10° psi

3.885 x 10° psi

4.04 x 10% psi

0.00125

.35"
.5%

N O

0.75
0.85
3.2

27.83 x 10° psi

2.955 x 10° psi
3.125 x 10° psi

3.25 x 10° psi

0.0005

0.2"
0.5%

0.75
0.85
3.8

1.2 for post-tfensioned, 1.6 for
varies with time-used mean value line

400 x 10-°
0.76
1.2

550 x 10~%
0.76
1.4

used Stelco Graphs (1976)

29.40 x 10° psi

4,451 x 108 psi

4.645 x 10° psi

4.83 x 10° psi

0.002

0.5"
4.5%

0.75
0.85
1.25
pretensioned

15 x 1078
0.76
0.95
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f'c days after pour
4000 3
4500 10

5000 17

The corresponding gain in modulus of elasticity can be seen
in Tablé 4.4. Because post-tensioned beams were assumed

to be cured for fourteen days before they were stressed,

a constant strength and modulus of elasticity for concrete
was used.

If steam curing was used, the strength gain of
concrete would be accelerated so that the concrete would
reach a higher fraction of final strength at an earlier
period of time. This would tend to decrease the creep
loss. Neville (1970) suggests that a fictitious age based
on the maturity of the concrete be used in the calculation
of creep loss. Steam curing would also raise the relative
humidity of the storage which decreases the creep and
shrinkage losses. Moist curing would raise the relative
humidity so that creep and shrinkage losses would both
decrease but would not accelerate the strength gain.

The losses were calculated using the numerical
integration procedure presented by Libby (1971). The 1los-
ses were calculated for a period of five years because
most of the losses have occurred by this time and because
the beam may be overloaded at any time in its.life so that
a forty-year loss would tend to overestimate losses at the
hypothetical overloading. The results of the loss calcu-

lations are given in Tables 4.5, 4.6, 4.7 and 4.8. An
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Table 4.5

Summary of Losses#*

Post-Tensioned Beam with Stress Relieved Strand

TYPE OF MIN + MAX
LOSS MAX., MIN. MEAN —

EL. SHORTENING 1.69 0.87 1.24 1.28
SHR INKAGE 5.12 0.10 3.42 2.61
CREEP 9.40 1.68 5.88 5.54
RELAXATION 10.68 6.30 8.36 8.49
SUBTOTAL 26.90 8.95 18.91 17.92
FRICTION 1.42 5.08 3,34 3.25
ANCHORAGE 3,32 7.39 5.49 5.36
FRICTION +
ANCHORAGE 4.74 12.48 8.83 8.61
ALL LOSSES 31.64 21.43 27.74 26,53
*All losses in percentage of nominal stress at transfer

which is equal to o'7fspecified°
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Table 4.6
Summary of Losses®
Post-Tensioned Beam with Stabilized Strand
TYPE OF MIN + MAX

LOSS MAX. MIN. MEAN >
EL. SHORTEN!NG 1.69 0.87 1.24 1.28
SHR INKAGE 5.12 0.10 3.42 2.61
CREEP 10.51 1.83 6.50 6.17
RELAXAT ION 2.44 1.40 1.90 1.92
SUBTOTAL 19.76 4,20 13.07 11.98
FRICTION 1.42 5.08 3.34 3.25
ANCHORAGE 3.32 7.39 5.49 5.36
FRICTION +
ANCHORAGE 4,74 12.48 8.83 8.61
ALL LOSSES 24.5 16.67 21.90 20.59
¥Al| losses in percentage of nominal stress at transfer

which is equal to O.7fspecified.
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Table 4.7

Summary of Losses*

Pretensioned Beam with Stress Relieved Strand
TYPE OF MIN + MAX
LOSS MAX. MIN. MEAN >
EL. SHORTENING 1.80 1.08 1.36 1.44
SHR INKAGE 6.60 0.13 4.22 3.36
CREEP 12.01 2.77 8.09 7.39
RELAXAT ION 6.52 4.31 5.36 5.42
SUBTOTAL 26.93 8.29 19.04 17.61
RELAXATION +
SHRINKAGE 5.59 2.42 4.13 4.00
ANCHORAGE 0.55 4.62 2.67 2.59
RELAX. + SHR.
+ ANCHORAGE 6.14 7.04 6.80 6.59
ALL LOSSES 33.07 15.33 25.84 24.20
*¥All losses in percentage of nominal stress at transfer

which is equal to O.7fspecif;ed.
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Table 4.8

Summary of Losses¥

Pretensioned Beam with Stabilized Strand

TYPE OF MIN + MAX

LOSS MAX. MIN. MEAN >
EL. SHORTENING 1.82 1.06 1.36 1.44
SHRINKAGE 6.60 0.13 4,22 3.36
CREEP 12.89 2.83 8.51 7.86
RELAXATION 1.34 0.86 1.10 1.10
SUBTOTAL 22.64 4.88 15.19 13.76
RELAXATION +
SHR | NKAGE 2.36 0.63 1.65 1.50
ANCHORAGE 0.54 4.51 2.61 2.52
RELAX. + SHR.
+ ANCHORAGE 2.90 5.14 4.26 4,02
ALL LOSSES 25.54 10.02 19.45 17.78
*All losses in percentage of nominal stress at transfer

which is equal to O.7fspecif;ed.
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example calculation is given in Appendix B.

Because the loss computations were deterministic
calculations, each based on a particular low or high value
of each of the variables, the probability of the occurrence
of the particular high or low losses computed is consider-
ably less than the 1 in 20 assumed for some of the vari-
ables. The combinations chosen are felt to result in
realistic upper and lower bounds for prestressing losses.
For the purposes of computing the coefficient of variation
of the losses, the high and low values were arbitrarily
assumed to be plus and minus three standard deviations from
the mean.

4.4.3 Summary of Losses and Comparison with Other
Sources

A summary of the stress at transfer and mean
losses occurring after transfer is given in Tables 4.9
and 4.10. For the Monte Carlo study, the mean stress
at transfer was taken as 70 percent of the specified ul-
timate stress for all combinations of type of prestressing
operation (pretensioned and post-tensioned) and type of
strand (stress relieved and stabilized). The coefficient
of variation of the stress at transfer varied only ac-
cording to the type of prestressing operation, having
values of 1.5 percent and 2.0 percent for prefensioned and
post-tensioned beams, respectively. The mean losses and

the coefficients of variation of losses were found to be
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similér for pretensioned and post-tensioned beams when
expressed as losses measured from transfer. This result
supports Khachaturian's statement (1969) that there is no
difference between losses measured from transfer for a
pretensioned beam and a post-tensioned beam. There was
a distinct difference between the losses for stress relieved
strand and stabilized strand, however. Thus, the mean loss
for stress relieved strand was taken as 19 percent of the
mean stress at transfer with a coefficient of variation of
16 percent. The mean loss for stabilized strand was taken
as 14 percent of the mean stress at transfer with a coef-
ficient of variation of 20 percent. It should be noted that
all losses in these tables are in terms of percent of mean
stress at transfer—not initial jacking stress.

Based on a somewhat different method of analysis,
Glodowski and Lorenzetti (1972) predicted total prestress
losses in 40 years of 21.9 percent and 18 percent, res-
pectively, for stress relieved and stabilized strand. If
it is assumed that 90 percent of this would occur in the
first five years, the corresponding five-year losses
would be 19.7 and 16.2 percent which are close to the values
of 19 and 14 percent in the last column of Table 4.10.

The ACI-ASCE Joint Committee 323 (1958) recom-
mended using losses of 35,000 psi for pretensioned beams
and 25,000 psi for post-tensioned beams. These losses do not
include losses due to friction but they are measured from

the time of tensioning—not from when the stress is trans-
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ferrea to the beam. Thus, the 35,000 psi for pretensioned
beams includes relaxation and shrinkage losses that occur
between the time of stressing and the time that the stress
is transferred. This committee also states that the magni-
tude of the loss does not significantly affect the ultimate
moment.

Lin (1955) gives prestressing losses for both
pretensioned and post-tensioned beams with stress relieved
strand. These losses are tabulated in Table 4.11. Lin's
relaxation losses are quite a bit lower than the relaxation
losses calculated in this study because Lin has assumed
that the strands have been overtensioned to reduce relaxa-
tion losses. Lin (1955) states that ". . . creep may
easily be cut in half if it is overtensioned by 5 to 10%
and held there for 2 to 3 minutes." No overtensioning has
been assumed for the calculations in this study. If the
absence of overstressing was assumed to double the relaxa-
tion losses, Lin's final losses would be 18 percent for
post-tensioned beams and 20 percent for pretensioned beams.
This compares favorably with the loss calculations in this
study which indicate a loss of 19 percent for both pre-
tensioned and post-tensioned beams.

Overtensioning to reduce relaxation losses was
not considered in this study because the effectiveness of
this procedure is open to some doubt. The effect of over-
tensioning was investigated by Magura, Sozen and Siess

(1962). After performing some tests of their own as well



Table 4.11

COMPARISON OF LOSS CALCULATIONS
WITH LIN'S LOSSES

POST-TENSIONED PRETENS IONED

TYPE OF LOSS CALCULAT IONS LIN CALCULAT IONS LIN

EL. SHORTENING 1.24% 1% 1.36 3
SHRINKAGE 3.42 6 4.22 7
CREEP 5.88 5 8.09 6
RELAXATION 8.36 3 5.36 2

TOTAL 18.91 15 19.04 18
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Relaxation Loss (for stress relieved strand)

1.2 (mean for .

3.628 x 107"

= 10.382p+ime (ksi)

ratio)

3.628 x 10™* x 28.617 x 10 X pyime

400 x 107% x 0.70 x 1.2 x (1 - 10 x 5.464 x 10°"*)

TIME
(HOURS ) MAX MIN MEAN
7 x 24 = 168 0.047 0.029 0.038
14 x 24 = 336 0.054 0.034 0.044
30 x 24 = 720 0.062 0.039 0.0505
90 x 24 = 2160 0.074 0.048 0.061
360 x 24 = 8640 0.087 0.058 0.0725
1825 x 24 = 43,800 0.104 0.071 0.0875
at 7 days:
fSC = 1,445 x 1072 x 1102.6 x 1.2 x 0.21 4,015 ksi
Afge = 4.015 ksi
fss = 10.382 x 0.34 2.53 ksi
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7.09 ksi

179.6 ksi

7.

il

950.3 x 1.2 x (0.3 - 0.21)

09 = 11.52 ksi
-152.3 psi

950.3 psi

0.038) = 1.08 ksi

178.5 ksi

1.483 + 0.62 + 1.08 = 3,183 ksi

bfgg = 3.53 - 3.11 = 0.42
Mg+ = 186.7 x 0.038 =
fe+ = 186.7 - 7.09 =
Af, = 4,015 + 0.42 +
_Afcgs = -13.22 x 11.52
fecgs = 1102.6 - 152.3
at 14 days:
Afge = 1.445 x 1072 x
= 1,483 ksi
Afgs = 10.382 (0.4 - 0.34)
= 0.62 ksi
Afgy = 179.6(0.044 -
fg+ = 179.6 - 1.08 =
Afg =
Acgs = -13.22 x 3.183

-42.08 psi
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fegs

Jfric+anch

Cjacking ~

= 950.3 - 42.08 = 908.2 psi

See Table B-1 for summary of calculations.

Calculation of Percentage Loss*:

Elastic shortening géég% = 1,24%
Shrinkage 2%‘9992 = 3,42%
Creep 218_79% = 5.88%
Relaxation 2284922 = 8.36%
Subtotal 241 < 18,914
Friction géggg = 3,34%
Anchorage %32%% = 5,49%
friction +

Anchorage 8.83%
All losses 27.74%
*¥Al| |osses in percentage of nominal stress

at transfer which is equal to 0.7fpy.

{(See Table 4.5 for maximum, minimum and

mean losses.)

max(fric + anch)loss - min(fric + anch)loss

_12.48 - 4.74
6

of ratio of Actual to

Coefficient of Variation
Specified Jacking Force

= 1.29% of nominal ffansfer stress

ratio of jacking
to transfer force
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= 1.43% of nominal transfer stress

109
1.316 [Tﬁﬁ]

firansfer = %tr ° fjacking

Mean stress at transfer = Nominal Value

0.7 x specified ultimate +~———

Ot+ransfer <

1
—
—_
et
1—!
O[N
Sho
e
N
+
o
ju—y
.
Sl
Sl e
| S
e
Y |
M=

1.93% x Mean stress at transfer <

Mean value of losses 1?631 x Mean stress at transfer

0.19 x Mean stress at transfer <—

_ max. loss - min. loss
Jlosses = 3

26.90 - 8.95
6

3.00% of Mean stress at transfer

0.03 x Mean stress at transfer <«

fse = ftransfer - lOsses




APPENDIX C

FLOW DIAGRAMS OF THE MONTE CARLO PROGRAM

This appendix contains flow diagrams of the

Monte Carlo Program used in this study including:

The Main Program

Subroutine THEORY
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MONTE CARLO PROGRAM

INPUT T:
NOMINAL
PROPERTIES OF
VARIABLES

ACI ULTIMATE
STRENGTH MODEL

| : ACT
STRENGTH
INPUT 2:
& STATISTICAL
PROPERTIES OF
VARIABLES
SELECT A RANDOM §
VALUE OF EACH
VARIABLE
THEORETICAL REPEAT
ULTIMATE 1000
STRENGTH TIMES
MODEL

T » THEQRETICAL
STRENGTH

«

STRENGTH RATIO:
THEORETICAL / ACI
ULTIMATE STRENGTH

b

QUTPUT: SUMMARIZE
STATISTICAL ANALYSIS
OF STRENGTH RATIOS




SUBROUTINE THEORY

STARY

| CALCULATE €0, EY, FCP, P0 |

[7 FIND CENTRQID OF SECTION AAJ

2

CALCULATE ECC FOR EACH
LAYER OF PRESTRESSING STEEL

¥

CALCULATE ESE FOR
PRESTRESSING STEEL

¥

FIND CRACKING MOMENT (BMCRA)
AND CRACKING CURVATURE (PHICRA)
USING TRIAL AND ERROR

> 100 TRIALS
T0 FIND BMCRA

INITIALIZE I = 1
1 1S USED AS COUNTER OF
POINTS ALONG M - ¢ CURVE )

¥

SET CURVATURE (PHII) AND TOP STRAIN (E4)

EQUAL TO VALUES AT INFLECTION
POINT OF P - E4 CURVE

¥

CALL AXIAL
WHICH FINDS FORCES AND
RESULTANT FORCE (PAXIAL) FOR
A GIVEN STRAIN DISTRUBUTION
(1E. GIVEN PHII AND E4)

185
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3 - USE PAXIAL AS STARTING POINT
FOR NEWTON-RAPHSON PROCEDURE
CHECK
EPS (K) L 3
vs EUP CALL MOM
r GIVER PHII, BALANCES P BY
VARYING E4. SUBROUTINES AXIAL
AND F STEEL USED TO CALCULATE
FORCES, MOM CALCULATES MOMENT
CALL {BMM) ONCE PweO,
AXIAL -

> 100 ITERATIONS
USED TO BALANCE
P

PHINCR
REDUCED
> 100
TIMES

> 10G POINTS YES
0 CALCULATED ON M - ¢
® CURVE Yes
16 ‘

BMA{99)=BMCRA

REDUCE PHINCR

E4 >
LTIMATE STRAIN (EU
FOR 1 CYCLE {* ‘ : (Ev)

OR E4 < 0.0

SET INCREMENT |
OF PHII, PHINCR
L

L=PHI1 IF BMCRA = 0, SET @

AV/PHII(1)=PHIT{I-1) +
DMCRA = gMM (1
E(I)=E{I-1) PHICRA = PHII (1})

L
CALL AXIAL IF PHIT > PHICRA
AND BMM < BMCRA,

IF EPS (K) > EUP, BMM = BMCRA
CUT PHINCR IN HALF
UNTIL EPS {K) < EUP




i~

-‘;_ e

CALCULATE ALLOUARLE TOLERANCE
{TOLBMA) FOR BENDING MOMENT

¥

BMTOL = BMM (1) ~ BMM (I - 1)

i

-
<

PHINCR = PHINCR / §.0, FIND MOMENTS
BETWEEN MAXIMUM MOMENT AND
POINT ON EITHER SIOE DF THIS POINT

¥

1F TRIES GOING THROUGH THIS
_STEP MORE THAN ONCE, FINDS
MOMENTS AT PHINCR / 2.0 ON
EITHER SIGE OF MAX. MOMENT

BHMTOL 2 TOLBMA

Y]

YEs !
BMTOL g TOLBMA

"KEEP INCREMENTING PHII FOR
A MAXIMUM OF 3 MORE TIMES

EPS > EUP
OR E4 > EU OR
4 < 0.0

YES

et (1) > B {1 - 1)

NG
0

H

E4 > (EU - 0.0002
OR EPS > {EUP - 0.005)

IF
TRIES GOING THROUGH
THIS STEP MORE
THAN 2 TIMES

T
[ Teuinc = phinee * 2.0 !
' — ¥

[ N,
L. 4

1 {1 - 1) + TPHIKC
=t {I - .[,

¥

G0 PHINCR / 2.0

CALCULATE FORCES
AND MOMENTS

BACK AHD AHEAD
ON M - ¢ CURVE

[ teusnc = ThHinG /2.0

t YES

L. —
10 PHI1 (1} = PHI
YES @ £ (1) {1-1)
| CALL AXIAL AND MOH
-1

EPS > EUP OR
E4 > EU OR
E4 < 0.0

YES

EPS > EUP
OR E4 > EU
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FIND MOMENT AT POINT .
MIDWAY BETWEEN
HIGHEST MOMENT AND
POINT AT PHINCR LESS
THAN THIS

¢

PICK MAXIMUH
HOMENT ON M - ¢

CURVE QUT QF
MOMENTS CALCLATED

<END




APPENDIX D
NOMENCLATURE
{Alphabetic Symbols
a depth of equivalent rectangular stress block
Ag area of conventional reinforcement steel, sq.
in.
Agp area of prestressing steel, sq. in.
b cross section width on compression face, in.
. by width of web, in.
(o depth to neutral axis

Ce compressive force in concrete, 1b.

Ces compressive force that would have been exerted
by concrete that is displaced by compression
steel, 1b.

Cq compressive force due to compression reinforc-

LT

ing steel, 1b.

*
3
i

effective depth, in.

d depth to tension reinforcing steel, -in.

o
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dl

fbo‘l'
f'e

8]
fC

cu
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depth to compression’reinforcing steel, in.
depth to prestressing steel, in,

depth of tension stress block in concrete,
eccentricity

modulus of elasticity of concrete (used with

subscripts given later), psi, (mean value =

E)
modulus of elasticity of concrete, psi

modulus of elasticity of reinforcing steel,

psi

modulus of elasticity of prestressing steel,

psi

strength of concrete (used with subscripts

given later), psi, (mean value = )
stress at the bottom of the scction
specified compressive strength of concrete, psi

maximum stress in Hognestad (1952) stress-strain

curve for concrete, psi

the effective stress of the concrete in the

compression zone, psi



fjacking

se

fspecified

su

f'I'op

ffransfer

I: H‘ L m
191

stress in the prestressing steel due to the

jacking force, psi

calculated stress in the prestressing steel at

design load, psi
ultimate stress in prestressing steel, psi
modulus of rupture of concrete, psi

effective stress in prestressing steel, after

losses, psi

specified ultimate stress of prestressing steel,

psi

prestressing steel stress at ultimate moment,

psi

stress at the top of the section

stress in prestressing steel at transfer
yield strength of reinforcing steel, psi
strain compatibility factor

overall depth of cross section, 1in.
depth of flange, in.

moment of inertia

Moment



Vin—bafch

Vs

VTesT

v'I'heo

192

cracking moment

moment due to dead load, psi

ultimate moment, psi

number of prestressing tendons

resultant force acting on a cross section, 1b.
prestres; force at transfer

steel force at any point X

tension force in concrete, 1b.

tensile force due to prestressing steel, 1b.

tensile force due to tension reinforcing steel,

1b.

coefficient of variation (used with subscripts

given later)
in-batch variability

coefficient of variation of the ratio of test

strength to theoretical strength

variability due to different people testing and

the errors implicit in the test itself

variability of the theoretical model
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y distance from mid-height to the resultant com-

pressive force in concrete

Y+ distance from mid-height to the resultant com-

pressive concrete force in the flange

Y distance from mid-height to the resultant com-

pressive concrete force in the web

Zp section modulus with respect to the bottom fiber

of a cross section

Zt section modulus with respect to the top fiber

of a cross section

In addition, the following symbols are used in subscript:

strength and elastic modulus

ccyl refers to "compressive cylinders" in conjunc-

tion with strength

ci refers to "initial tangent" in conjunction with

modulus of elasticity
g gToss

r refers to "modulus of rupture with third point

loading"

I c refers to "compressive'" in conjunction with

R refers to 'rate of loading R psi/sec'" corres-

ponding -to strength or modulus of elasticity




str

35

refers to "in-structure or im-gitu' in conjunc-

tion with strength and modulus of elasticity

refers to "rate of loading 35 psi/sec" corres--
ponding to compressive strength and modulus

of elasticity

, Greek Symbols

B

Ecu

safety index

ratio of stress at 1 percent strain to ultimate

stress for prestressing steel

a constant defined in Section 10.2.7 of the

ACI Code (1971a)

prediction errors

increment

strain, in./in.

the compressive strain in the concrete due to

the prestressing force

the strain in the extreme concrete fiber in

compression at ultimate moment

the total strain in the prestressing steel,

in./in.

cracking strain in concrete
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€50 effective prestrain in prestressing steel
after losses have taken place

€5y prestressing steel strain at ultimate moment

€+ strain at the level of the prestressing tendons

Ey yield strain of reinforcing steel

€y ultimate strain in concrete

€up ultimate strain in prestressing steel

Ep the strain in concrete that corresponds to the
maximum stress in Hognestad's (1952) stress-
strain curve for concrete

£ the strain at the bottom of the section

€3 the strain at the bottom of the flange

£y the strain at the top of the section

A overload factor

u mean value

P ratio of nonprestressed tension reinforce-
ment (= A /bd)

p! ratio of nonprestressed compression reinforce-

ment (= Al/bd)




Pp ratio of prestressed reinforcement (= Agp/bd)

o standard deviation |

o stress

0, stress at 1 percent strain for prestressing
steel

¢ understrength factor

) curvature

ber cracking curvature

) = pfy/f'c

w' = p'fy/f'¢

Wp = opfps/f'c

WysWpy,wy  reinforcement indices for flanged sections com-
puted as for w,wp,m' except that b is the web
width, and the steel area is that required to
develop the compressive strength of the web

only.

Units

The Monte Carlo study was carried out using the
basic units of pounds and inches. Thus, the forces were in
pounds, the dimensions were in inches, the stress was in

psi, and the moment was in in-1bs.
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