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Abstract 

The burgeoning global population and subsequent food security issues have attracted 

much attention toward sustainable food production systems. As one of the emerging 

vertical farming methods, aquaponics promises to be a sustainable alternative to food 

and environmental problems. Aquaponics in integrated production of fish and 

hydroponic crops with recirculation of the aquaculture effluent used by the plant as 

fertilizer. This technique offers high water efficiency, a faster growth rate, and high 

crop yields. Despite all the advantages offered by this technology, its implementation 

on a commercial scale is hindered by many technical and economic factors, which can 

be addressed by integrating smart technologies, automation, and control. This thesis, 

therefore, aims to support research towards developing solutions for crop quality 

control and viable commercial aquaponic. For this purpose, the status of digitization 

in the agriculture industry is first investigated, and potential research gaps in 

aquaponics are identified. Next, an ontology model is formalized to store relevant 

knowledge pertaining to different domains of the aquaponic 4.0 system, which can be 

extracted and used to enable data-driven decisions related to crop quality, facility 

layout, and system operations. An interactive decision support tool is then developed 

that uses knowledge from the ontology model to automatically determine the design 

of grow channels in hydroponic units based on crop characteristics for enhanced crop 

growth and quality. After that, a cloud-based dashboard is developed for the 

acquisition of sensors’ data and crop images from the aquaponic facility, which is also 

linked with the ontology model and other quality assessment tools developed in this 

research. A crop disease detection system is then developed to detect and identify 

diseases in leafy green crops, followed by the development of the model that 

effectively assesses the quality of lettuce crops based on foliage color. Another model 
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is then developed to estimate the crop morphological traits in a particular area and 

plant site spacing for healthy growth of the crop. Finally, a cloud-based application 

that acts as a decision support system is designed where all the models are deployed. 

Implementing this decision support system will assist agriculturalists in various 

decisions related to growing crops in aquaponics and crop quality control and 

management, thereby paving the way towards developing a smarter and sustainable 

food production system. 
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Chapter 1 Introduction 

1.1 Background  

1.1.1 A global food security problem 

Food security is a multidimensional concept that alleviates hunger by ensuring a 

sustainable, nutritious food supply. It is characterized by a four-pillar model shown in 

Figure 1-1, with each pillar intrinsic to ensuring food security [1].  

 

Figure 1- 1. Four-pillar model of food security by Food and Agriculture Organization 

of the United Nations. 

Due to several anthropogenic factors, such as rapid population growth, urbanization, 

industrialization, farmland loss, freshwater scarcity, and environmental degradation, 

food security is becoming a serious global issue. This is because these factors are also 

directly impacting the agricultural industry, which is a primary source of agri-food 

production around the world. It is anticipated that by 2050 global population will be 

increased from the current 7.7 billion to 9.2 billion, the urban population will rise by 

66%, arable land will be declined by approximately 50 million hectares, and global 

GHG emissions (source of CO2 – promote crop disease and pest growth) will be 

increased by 50%, agri-food production will be declined by 20%, and eventually, food 

demand will be increased by 59 to 98% – posing an imminent threat to food security 

and adequate food availability [2]–[4]. 

1.1.2.  Modern farming practices 

To meet the current food demands, traditional agricultural methods (open-air fields) 

are extensively employed, which are labor-intensive and require arable land, a 

substantial amount of water (for irrigation), and time for agri-food production [5]. 
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Water wastage and water pollution from excess nutrients, pesticides, and other 

pollutants are some of the other drawbacks of traditional agriculture – making it 

inefficient to combat the undeniable increase in food demands and the impending 

threat to food security [3]. Considering these factors, the world can no longer fully 

rely on traditional agricultural methods, which poses a need to explore modern 

farming practices such as vertical farming (VF). In principle, VF is a simple concept 

that involves growing crops in vertically stacked layers. It is essentially a controlled-

environment agriculture model, which aims to optimize indoor soilless farming 

techniques such as hydroponics, aquaponics, and aeroponics [6]. These techniques 

have the potential to solve food security issues as they offer economical viable and 

environmentally sustainable food production practices by ensuring faster crop growth 

regardless of weather and season, high crop yield, less water consumption (around 

70% reduction), reduced fertilizer usage, and enhanced crop quality [7]. The soilless 

farming techniques also offer pesticide-free organic crop production thus paving the 

way toward a cleaner food production system [8]. 

1.1.3. Aquaponics – A sustainable food production system 

For this research, an aquaponic system is considered, which is the combination of 

recirculating aquaculture system (RAS) and a hydroponics system (soilless growing 

of plants), that work together in an integrated environment [9]. This means the 

aquaponic system consists of 1) a hydroponic unit which consists of grow beds for 

plant growth; and 2) an aquaculture unit which involves water tanks for fish habitat 

and biofilters for the breakdown of ammonia. The rationale of this soilless 

recirculating growing system involves sharing the mutual benefit of the available 

resources, such as water and nutrients, between aquaculture and plant production. 

Figure 1-2 illustrates the complete biological cycle of the aquaponics process. Fish 

eats food and excretes waste which consists of ammonia (NH3+) along with other 

constituents. This waste is converted by selected microbes to nitrates (NO3-). This 

enriched effluent is then pumped into the hydroponic component of the system, where 

the nutrients are readily available for uptake.  
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Figure 1- 2. Aquaponics biological cycle. 

Hydroponic component eliminates the need for soil and provides the plant roots with 

direct access to nitrates, oxygen, and water, helping in the rapid growth of plants. An 

aquaponic system can be categorized as i) coupled system and ii) decoupled system. 

In a coupled system (research focus), RAS is directly connected with the hydroponic 

unit, and water is constantly circulated from RAS to hydroponic and back to RAS 

[10]. In a decoupled system, RAS is connected to the hydroponic unit (with an 

additional reservoir) via a one-way valve. Water separately recirculates in each 

system, and it is just supplied on-demand from RAS to the hydroponic unit, but not 

back [10]. Both systems are shown in Figure 1-3. 

Primarily, depending on the design of grow bed and crop type and size, there are three 

different types of coupled/decoupled aquaponic systems: 1) nutrient film technique 

(NFT), 2) media-based, and 3) deep water culture (DWC) [11]. Each system has its 

advantages and disadvantages. In this research, the NFT-based aquaponic system is 

considered because it has a simple design and is popular for growing leafy green 
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crops. This technique reduces the sheer amount of water required for the bed as 

compared to DWC and media-based techniques [12]. 

 

Figure 1- 3. Coupled and decoupled aquaponic systems, adapted from [10]. 

In NFT systems, a very shallow stream of nutrient-rich water is pumped from the fish 

tank to enclosed channels (grow bed) sloped slightly at a ratio of 1:30 to 1:40 (that is 

one inch of drop (slope) for every 30 to 40 inches of the horizontal length of channel) 

[13]. The top cover of the channel consists of circular or square-shaped pockets 

known as plant sites where plants sit in small plastic cups. The slope allows the water 

to flow continuously from one end to another and past the bare roots of plants which 

absorb nutrients from the water. Dissolved oxygen (DO) is one of the most important 

indicators for enhancing crop productivity, and flow rate directly affects the amount 

of DO in the water. In this essence, inadequate oxygenation of the nutrient solution 

(NS) can occur if the slope is not accurate, which may lead to root hypoxia (lack of 

oxygen) in crops as a result of low oxygen solubility [14]. Hypoxia results in reduced 

crop yield as it affects crop nutrients and water absorption. Hence, the slope of the 

growing channel is a significant parameter for high crop yield. Other parameters that 

affect crop productivity are planting site spacing, length of the channel, and distance 

between vertically/horizontally stacked channels. These factors are dependent on the 

crop type and its characteristics [15]. The general architecture of the NFT-based 

aquaponic system is shown in Figure 1-4. 
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Figure 1- 4. Diagram of a typical aquaponic system. 

Aquaponics is a form of sustainable agriculture because it imitates natural systems, 

where the efficiency of the water is dramatically increased and has fewer 

environmental impacts [16]. Typically, there is only 0.3% to 5% of the water wastage 

due to plant transpiration, evaporation losses, scheduled maintenance operations, and 

fish splashes [17]. On the contrary, in traditional farming, an estimated 10% of water 

gets absorbed by the plants, and the remaining is lost to evaporation and overflow 

[18]. Transportation costs and other aspects related to supply chain management can 

be reduced as it is possible to install aquaponics facilities in densely populated areas 

which witness high food demands [18]. 

1.2. Research motivation 

Despite all the advantages offered by this imminent and growing technology, a few 

challenges need special attention, particularly when considering its large-scale 

implementation. There exists a significant interdependence among various 

components of an aquaponic system. Hence, designing and managing an aquaponic 

system is a difficult challenge when trying to achieve high yields and quality. Being a 

greenhouse and a symbiotic environment, the parameters and factors (light, 

temperature, pH, moisture, etc.) that need to be controlled are diverse. For the system 

to be functional and efficient, a delicate equilibrium among these parameters must be 

established [5]. Optimal conditions must be met for the growth and development of all 

three varieties of organisms that are present in the system - fish, bacteria, and plants. 

Another significant challenge is that, just like traditional agriculture, crops grown in 

aquaponics may also face quality issues resulting from diseases or nutrient deficiency, 

or inadequate management of the system, impacting crop quality and causing crop 
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wastage [19]. Hence, to witness the efficiency of an aquaponic farm, it is vital to 

assess the quality of the crop in the early stages as it will allow farm practitioners to 

take precautionary measures in time if the crop is not healthy, thereby getting both 

economic and environmental benefits.  

Crop quality is characterized by various indicators including: 

• Concentrations of essential nutrients such as Calcium, Vitamins, Glucose etc. 

• Phytochemical composition (secondary metabolites)  

• Health attributes (abiotic and biotic stresses) 

• Sensory properties (taste, aroma, texture, and foliage color) 

• Morphological traits (crop canopy and its geometric characteristics crop 

height, width, volume, area, perimeter, fresh weight)  

• Safety of a food crop [20].  

These quality indicators can be used as the measure of crop quality, health condition, 

and yield potentiality [21]. With all the multiple components and stated requirements 

such as disease prevention, water quality, levels, etc., aquaponic systems are complex 

and require inspections seven days a week, 24 hours per day [5].  

With the integration of Industry 4.0 technologies such as the internet of things (IoT), 

cyber-physical systems (CPS), artificial intelligence (AI), wireless sensor networks 

(WSN), big data and analytics (BDA), autonomous robot systems (ARS) and 

ubiquitous cloud computing (UCC) in the aquaponic system, the mentioned 

challenges can be addressed. This is because these technologies enable intelligent 

data-driven decisions related to crop quality control, design configuration of the 

system, and autonomous and robust monitoring and control of the system’s operations 

[22]. But the pace at which Industry 4.0 technologies are being integrated into the 

farming industry is slow in comparison with other sectors, as shown in the image in 

Figure 1-5. This graphic indicates that the agriculture industry is far behind in 

following the pattern of computation and digitization after the construction industry.  

In addition, the realization of such a highly digitized aquaponic system requires 

efficient data integration and information flow among different domains. Recent 

research has shown that semantic web technology (SWT) plays a key role in ensuring 

efficient data heterogeneity, interoperability, interpretation, and integration [22]. To 

enable semantic modelling, ontologies are used, which provide a platform to store 

information from multiple sources and provide an automatic process known as 
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reasoning to infer new knowledge that has not been explicitly incorporated [23]. This 

knowledge and different machine learning and deep learning techniques can be 

utilized to develop a data-driven decision support system.  

 

Figure 1- 5. Digitization in different sectors, adapted from [23]. 

The motivation behind this research stems from the fact that so far, no attempt has 

been made to develop an ontology model for the aquaponic 4.0 system. Moreover, no 

unified decision support platform is available that can assist farm practitioners in 

transparent decision-making regarding crop production, product quality, and facility 

layout of the aquaponic 4.0 farm. Hence, considering these research gaps and the 

importance of aquaponics as a future farming method, this research aims to develop 

an ontology model for the aquaponic system and a decision support system to assess 

crop quality.  In this research, the quality of the crop is evaluated using foliage color, 

which indicates the chlorophyll content. Generally, if the color of the foliage is green, 

it represents that the crop is healthy. If it is yellow, it signifies that the crop is 

suffering from some type of disease or deficiency, causing interference in the 

production of chlorophyll [24]. Another quality indicator is related to crop biotic and 
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abiotic stresses. Abiotic stress imposed on plants by the environment may be either 

physical or chemical, whereas biotic stress has resulted from biological units like 

diseases, insects, etc., [25]. Early and correct detection of these stresses is of utmost 

importance to reduce yield losses and increase profitability. In this research, a crop 

disease detection system is developed to detect the diseases and assess the quality of 

leafy green crops grown in an aquaponic facility. Lastly, crop foliage area is also 

estimated. All these models are deployed on cloud-based applications and integrated 

with the ontology model to develop a unified decision support system. 

1.3. Research hypothesis, objectives and framework 

The primary purpose of this thesis is to widely promote the adoption of aquaponics 

across the globe, as it offers great potential to overcome food challenges in the 

upcoming years. Working towards the inclusion of automation and smart techniques 

will help in reducing the inherent complexity and costly adoption of the aquaponic 

system. With this aim in mind, along with benefits and impediments to the large-scale 

implementation of aquaponics technology in commercial facilities, the hypothesis, 

and six specified objectives are listed below.  

Research hypothesis: 

“The integration of knowledge modeling, computer vision, and machine learning 

technologies in an aquaponic system enhances crop quality and productivity and 

promotes a reliable, feasible, and sustainable food production”. 

Research objectives: 

The specific objectives based on the hypothesis are: 

• O1. Review the status of digitization in the second stage of the agricultural 

production value chain (in-field) for different types of farms (open-air, soil-based 

greenhouse, aquaponics, aeroponics, and hydroponics) to present a holistic 

overview of the dissemination of the tools and techniques employed, the maturity 

level of the developed systems, along with potential roadblocks or inhibiting 

factors in the development of agriculture 4.0.  

• O2. Develop a knowledge model based-on ontology for the aquaponic 4.0 facility 

to store domain-specific knowledge of an aquaponic system by formalizing the 
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links between crops/fishes, environmental parameters, production system, 

contextual data, and product quality. 

• O3. Develop a decision support framework for parametric design automation of 

aquaponic’s grow bed based on crop characteristics using the ontology model.  

• O4. Develop a data acquisition and monitoring dashboard to gather data in a real-

time setting about six different parameters related to the water quality and 

environmental condition from a wireless sensing module (WSM) and crop images 

from a camera module installed at the aquaponic facility. 

• O5. Develop an automatic inspection system using computer vision and machine 

learning for evaluating crop quality based on biotic stress such as diseases, 

foliage color, and morphological traits such as length, width, and area.  

•  O6. Integration of ontology model and automatic inspection system to develop a 

multi-stage web-based decision support system for decision-making regarding 

crop quality control. 

Research framework:The research framework showing the specific objectives and 

contributions is presented in pictorial form in Figure 1-6. 

 

Figure 1- 6. Presentation of objectives in pictorial form. 
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1.4. Thesis structure 

This thesis comprises nine chapters. Chapter 1 presents a brief introduction to 

research background and motivation along with modern farming practices with a 

special emphasis on aquaponics. This chapter also frames the research objectives of 

this thesis. Chapter 2 presents the first research contribution, “The digitization of 

agricultural industry – a systematic literature review on agriculture 4.0,” addressing 

the first research objective. Chapter 3 discusses the second research contribution, 

“Chapter 3 An ontology model to represent the aquaponic 4.0 system’s knowledge,” 

fulfilling the second research objective. Chapter 4 discusses the third research 

contribution, “Chapter 4 An ontology model to support the automated design of 

aquaponics grow beds”, addressing the third research objective. Chapter 5 highlights 

the fourth research contribution, “Data acquisition and monitoring dashboard for IoT-

enabled aquaponic facility”, fulfilling the fourth research objective. Chapters 6, 7, and 

8 address the fifth and sixth research objectives. Chapter 6 “Crop Diagnostic System: 

A robust disease detection system for leafy green crops grown in aquaponic facility,” 

covers the fifth research contribution. Chapter 7 “Non-destructive identification of 

foliage chlorosis in lettuce crop grown in aquaponic facility using image processing,” 

presents the sixth research contribution. Chapter 8 “Estimation of foliage area for 

effective crop site spacing in an NFT-based aquaponic system using Mask-RCNN,” 

covers the seventh and last contribution. Finally, the conclusion of this thesis, 

summary of research contributions, limitations of this study, and future work 

directions have been discussed in Chapter 9. 
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Chapter 2 The digitization of agricultural industry – a systematic literature 

review on agriculture 4.0 

2.1. Introduction  

To satisfy the increasing food demands, agricultural practitioners worldwide will need 

to maximize agricultural productivity involving crop and livestock farming. In this 

review, the focus is on crop farming, which involves the cultivation of both food and 

cash crops. A typical agri-food value chain depicting three primary stages, namely 

pre-field (pre-plantation stage), in-field (plantation and harvesting stage), and post-

field (post-harvesting stage), involved in the production of agricultural products is 

shown in Figure 2-1.  

 

Figure 2- 1. Agriculture value chain: stages and main functions. 

All the stages play a vital role in the value chain but, in this review, the second stage 

˝in-field˝ will be considered, which involves several crop-growing processes such as 

ploughing, sowing, spraying, and harvesting, etc. These processes currently employ 

traditional agricultural practices that are labor-intensive, and require arable land, time, 

and a substantial amount of water (for irrigation) – making it a challenge to produce 

enough agri-food [22]. A part of the problem is also related to the irregular use of 

pesticides and herbicides and misuse of available technology which cause harm to 

crops and eventually result in agricultural waste [6]. These issues can be addressed by 

integrating sophisticated technologies and computer-based applications that ensure 

high crop yield, less water consumption, optimised pesticide/herbicide utilization, and 

enhanced crop quality. This is where the smart agriculture concept comes in. 
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2.1.1 Smart agriculture 

Industry 4.0, also known as the fourth industrial revolution, is revolutionizing and 

reshaping every industry. It is a strategic initiative characterized by a fusion of 

emerging disruptive digital technologies such as the Internet of Things (IoT), big data 

and analytics (BDA), system integration (SI), cloud computing (CC), simulation, 

autonomous robotic systems (ARS), augmented reality (AR), artificial intelligence 

(AI), wireless sensor networks (WSN), cyber-physical system (CPS), digital twin 

(DT), and additive manufacturing (AM) to enable the digitization of the industry [26]. 

The integration of these technologies in agriculture is sparking the next generation of 

industrial agriculture, namely, agriculture 4.0 – also termed smart agriculture, smart 

farming, or digital farming [26]. 

 

Figure 2- 2. The concept of "Smart Agriculture". 

Smart agriculture provides farmers with a diverse set of tools (shown in Figure 2-2) to 

address several agricultural food production challenges associated with farm 

productivity, environmental impact, food security, crop losses, and sustainability. For 

instance, with IoT-enabled systems consisting of WSNs, farmers can connect to farms 

remotely irrespective of place and time to monitor and control farm operations. 

Drones equipped with hyperspectral cameras can be used to collect data from 

heterogeneous sources on farmlands, and autonomous robots can be used to support 

or accomplish repetitive tasks on farms. Data analytics techniques can be employed to 

analyze the gathered data with computer applications that can be used to assist 

farmers in the decision-making process. Likewise, a wide variety of parameters 

related to environmental factors, weed control, crop production status, water 
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management, soil conditions, irrigation scheduling, herbicides, and pesticides, and 

controlled environment agriculture can be monitored and analysed in smart 

agriculture to increase crop yields, minimize costs, enhance product quality, and 

maintain process inputs through the use of modern systems [27]. 

2.1.2. Research motivation and contribution 

The motivation for preparing this review stems from the fact that digital technologies 

in agricultural systems offer new strategic solutions for enhancing the efficiency and 

effectiveness of farms’ production. Moreover, digital transformation provides a way 

forward to implement modern farming practices such as vertical farming 

(hydroponics, aquaponics, and aeroponics), which has the potential to overcome food 

security problems. But there is a set of problems and limitations associated with this 

transformation from the technical, socioeconomic, and management standpoint that 

must be death to fully exploit the potential of agriculture 4.0 [28]. There are a number 

of studies that have discussed emerging trends in the development of agriculture 4.0 

by providing succinct information on key applications, advantages, and corresponding 

research challenges of smart farming [28]–[37]. The research focus of these studies is 

limited to either explaining more generic technical aspects while paying attention to 

only one or few digital technologies, and/or enhancing agricultural supply chain 

performance, and/or developing agriculture 4.0 definition, and/or achieving 

sustainable agronomy through precision agriculture, and/or proposing a smart farming 

framework. Nevertheless, these studies do not involve explicit discussion on the tools 

and techniques used to develop different systems and the maturity level of these 

systems. There is also a lack of studies considering modern soilless farms such as 

hydroponics, aquaponics and aeroponics (indoor/outdoor) and the implications of 

digital technologies in these farms. Hence, it is necessary to analyse the evolution of 

agriculture 4.0 from different perspectives to stimulate discussion in the area. This 

study aims to present a holistic overview of digital technologies implemented in the 

second stage of the agricultural production value chain (in-field) for different types of 

farms as mentioned in section 2.1.1. The main theoretical contribution of the study 

involves analysis and dissemination of the tools and techniques employed, the farm 

type, the maturity level of the developed systems, along with potential roadblocks or 

inhibiting factors in development of agriculture 4.0. The reflections presented in the 
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review will support researchers and agricultural practitioners in future research on 

agriculture 4.0. 

2.1.3. Chapter organization 

Following the introduction, the chapter is structured as follows: Section 2 discusses 

the approach used to gather the relevant literature; then, Section 3 presents the 

statistical results obtained after a general analysis of the selected research studies; 

next, Section 4 provides a detailed overview of the core technologies used in the 

digitization of agriculture; after, Section 5 highlights the technical and socio-

economic roadblocks to digital integration in agriculture; next, Section 6 outlines a 

discussion about the research questions followed by added value, considerations and 

future prospects related to agricultural digitization, and transition to agriculture 5.0; 

and lastly, Section 7 concludes the review. 

2.2. Research methodology 

A systematic literature review (SLR) is a tool used to manage diverse knowledge and 

identify research related to a predetermined topic [38]. In this study, SLR is 

conducted to investigate the status of Industry 4.0 technologies in the agricultural 

industry. Particularly, cases are searched where the term ‘agriculture’ appeared 

concurrently in the title, abstract, or keywords of an article with any of the ‘Industry 

4.0 technologies” mentioned in section 2.1.2. Before conducting the SLR, a review 

protocol is defined to ensure a transparent and high-quality research process, which 

are the characteristics that make the literature review systematic [38]. The review 

protocol also helps to minimize bias by conducting exhaustive literature searches. 

This includes three steps: the formulation of the research questions, the definition of 

the search strategy, and the specification of inclusion and exclusion criteria. This 

work uses a preferred reporting item for systematic reviews and a meta-analysis 

(PRISMA) approach to conduct SLR. PRISMA is an evidence-based minimum set of 

items that are used to guide the development process of systematic literature reviews 

and other meta-analyses [38]. 

2.2.1. Review protocol 

A review protocol (in Table 2-1) is defined before conducting the bibliographic 

analysis to identify, evaluate, and interpret results relevant to the research scope. First, 
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research questions are formulated to provide insight into the analysis of published 

studies in the research area of interest from different dimensions. These questions 

need to be answered in the study. Next, the search strategy is defined, which helps 

identify appropriate keywords later in the search equation to identify the relevant 

information sources, such as academic databases and search engines that provide 

access to a massive amount of digital documentation. Three online research 

repositories are used to retrieve relevant studies: ScienceDirect1 , Scopus2 , and IEEE 

Xplore3 . Finally, to refine the search results of each database, boundaries are set by 

predefining inclusion and exclusion criteria for further investigation and content 

assessments of selected publications. It involves, for instance, defining the time 

interval for the research process from 2011 to 2021 to limit the studies to those 

published in English, disregarding chapters of books and grey literature, such as 

reports and summaries of events and seminars. These last two steps of the review 

protocol allow the preliminary filtering of metadata sources and narrow down the 

scope of research. 

Table 2- 1. Review protocol for systematic literature review. 

Review 

questions 

 

RQ1: Which Industry 4.0 technologies have been used in the literature for 

the digitization of agriculture? 

RQ2: How and to what extent have these technologies been applied in the 

context of service type, tools and techniques used, system’s maturity level, 

and farm type? 

RQ3: What are the primary roadblocks in the implementation of Industry 

4.0 technologies for smart farming? 

Study 

selection 

criteria 

Inclusion criteria: 

• Peer-reviewed journal articles and conference papers. 

• Studies published during the period between 2011 and 2021. 

 

 

1 www.sciencedirect.com 

 
2 www.scopus.com 

 
3 ieeexplore.ieee.org  

 

 

http://www.sciencedirect.com/
http://www.scopus.com/
http://www.scopus.com/
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• Studies should provide answers to the research questions. 

• The article must include the title, year, source, abstract, and DOI. 

• Literature focussing on the application of Industry 4.0 technologies 

in crop plantation and harvesting activities, particularly in-field 

processes.  

Exclusion criteria: 

• Summaries of events and seminars, book reviews, and editorials. 

• Literature focusing on the application of Industry 4.0 technologies 

in livestock farming; pre-field processes such as genetic 

development, seed development and seed supplying; post-field 

stages such as crop distribution, food processing and consumption; 

and agri-food supply chain.   

• Studies published before 2011. 

• The publication is not available in full text. 

• The publication is not in English. 

Literature 

search 

Sources: Scopus, ScienceDirect, and IEEE Xplore for academic literature, 

citations in identified literature 

Search equation: (("agriculture*") AND ("Industry 4.0" OR "Digital 

Farming" OR "Intelligent Farming" OR "Smart Agriculture" OR " 

Agriculture 4.0" OR " Smart Farming" OR "Internet of Things" OR "IoT" 

OR "Cloud Computing" OR "Edge Computing" OR "Wireless Sensor 

Networks*" OR " Artificial Intelligence*" OR "Big Data*" OR "Data 

Analytics*" OR " Data Science*" OR "Cyber-Physical System*" OR 

"Robotics*" OR "Computer Vision*" OR "Machine Learning*" OR "Deep 

Learning*" OR "Data Integration*"))   
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Figure 2- 3. Four-step evaluation of literature search process (PRISMA). 
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2.2.2. Evaluation process 

The evaluation of the literature search process is done in four stages: identification, 

screening, eligibility, and inclusion, as detailed by the PRISMA flow diagram shown 

in Figure 2-3. After initial metadata filtering through the application of search 

expression, a total of 3165 records are found (1690 from Scopus, 926 from 

ScienceDirect, and 549 from IEEE Xplore), which are then consolidated for the 

removal of duplicate items in the identification stage. The number of publications 

after this step is reduced to 2876. In the screening stage, the titles and abstracts of the 

papers are analysed, and only 498 papers are selected for integral reading. In the third 

stage, a full-text screening of these articles is performed to verify their eligibility in 

relation to the objective of this review, which is to answer the research questions 

mentioned in Table 2-1. Of the 498 papers, 137 are found to be relevant for this 

review. Another 11 are added through a cross-referencing approach, adding up to 148 

papers selected in the final stage for further analysis. 

2.2.3. Threats to validity 

i. SLR replication: The presented SLR is susceptible to threats to validity because 

the current search is limited to only three online repositories. More publications 

could potentially be found if additional sources were explored. The process of 

SLR is described clearly in sub-sections 2.2.1 and 2.2.2, and hence, validity can 

be considered well-addressed. However, in the case of replication of this SLR, it 

is possible that one can find slightly different publications. This difference 

would result from different personal choices during the screening and eligibility 

steps of PRISMA, but it is unlikely that the overall findings gathered in relation 

to different review questions would change. 

ii. Search string: the search string used to find the relevant studies cover the whole 

scope of SLR, but there is a possibility that valuable studies might have been 

missed. Additional keywords and synonyms with a broader search might return 

more studies. 

2.3. Digitization trends in agriculture 

The year-wise distribution of the 148 articles from 2011 to 2021 is represented in 

Figure 2-4. Around 22% of the scientific publications in the last ten years were 
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published in 2018. This reflects that the agricultural industry is making considerable 

progress in the context of the implementation of digital technologies, but the pace is 

still slow as compared to other domains such as healthcare, manufacturing, mining, 

automotive, energy, etc.,[34]. 

 

Figure 2- 4. Year-wise distribution of selected research studies from 2011 to 2021. 

The breakdown of these publications with respect to digital technologies (mentioned 

in sub-section 2.1.2) and targeted farm types is represented in Figure 2-5. 

 

 

Figure 2- 5. Technology-wise distribution of the 148 selected research studies. 

The farm type refers to the crop farming method considered while developing an 

application or framework. For instance, the farming method can be soil-based or 

soilless. The soil-based farming category involves open-air fields (traditional outdoor 

agricultural farms) and greenhouse farms (indoor). On the other hand, the soilless 

farming category involves modern farming practices such as aquaponics, aeroponics, 
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and hydroponics (mostly indoor). The numbers at the top of the stacked column in 

Figure 2-6 indicate the total number of studies that have used the particular 

technology to develop a smart agriculture system, whereas different colors of columns 

indicate the respective farm types. Use cases from these publications are analyzed, 

and conclusions are drawn. For instance, it has been found that autonomous robotics 

systems (including unmanned guided vehicles and unmanned aerial vehicles 

(drones)), the internet of things, and machine learning appear to be the widely applied 

technologies in the agricultural domain in the last decade. The same illustration 

suggests that big data, wireless sensor networks, cyber-physical systems, and digital 

twins are the emerging areas in agriculture. Moreover, open-air farms are the most 

frequently considered in research studies (69%), contrary to indoor farms (31%). For 

soilless farming systems (aquaponics, aeroponics, and hydroponics), only 22 

publications are found, which insinuates that these modern farming practices are still 

in their infancy. 

Likewise, services of each use case are identified and are classified under nine 

different service categories, namely: i) crop management, CM (Estimation/ prediction 

of crop yield/ growth rate/ harvesting period and seed plantation/ harvesting/ 

pollination/ spraying (fertilizer/ pesticide)); ii) crop quality management, CQM (fresh 

weight, green biomass, height, length, width, leaf density, pigment content 

(chlorophyll) and phytochemical composition); iii) water and environment 

management, WEM (monitoring and control of flow rate, water level, water quality 

(nutrients), temperature, humidity, CO2, and weather forecast etc.); iv) irrigation 

management, IM (water stress detection and scheduling); v) farm management, FM 

(monitoring of farm operations, tracking and counting products, determining 

production efficiency, financial analysis, energy consumption analysis, technology 

integration and decisions implementation); vi) pest and disease management, PDM 

(pest identification and disease detection); vii) soil management, SM (moisture 

content, soil nutrients, fertilizer needs and application); viii) weed and unwanted 

vegetation management, WUVM (weed/unknown vegetation mapping, classification, 

and herbicides application); and ix) fruit detection and counting, FDC — as shown in 

Figure 2-6. These categories illustrate the role of different digital technologies in 

smart farming. Upon analysis, it is found that crop management parameters, such as 

crop yield prediction, growth rate estimation, or evaluation of harvesting period are 
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the most frequently researched areas for agriculture 4.0 in the last decade (29%). In 

contrast, tiny heed is paid to soil management (2%), fruit detection and counting 

(2%), and crop quality management (3%). 

 

Figure 2- 6. Service-wise distribution of selected research studies. 

The technology readiness level (TRL) of all the use cases is examined using European 

Union’s TRL scale that partitions the system’s maturity level into three generic levels 

[39]. The first level is conceptual, which represents European TRL 1–2 (use case is in 

the conceptual phase), and the second level is the prototype, which means European 

TRL 3–6 (use case is working even without the complete planned functionality), and 

the third level is deployed, that includes European TRL 7–9 (use case is mature with 

all the possible functions). Figure 2-7 depicts the TRL of each use case developed in 

selected studies. It is observed that little progress has been made in advancing smart 

agricultural systems beyond the concept and prototype levels to the commercial level. 

For instance, most use cases (129) are at the prototype level. 

Crop management (Estimation/ 
prediction  of crop yield/ growth 
rate/ harvesting period and seed 
plantation/ harvesting/ 
pollination/spraying 
(fertilizer/pesticide))
29%

Irrigation management 
(water stress detection 
and scheduling)
13%

Water and 
environment 
management (flow 
rate,  water level,  
water quality 
(nutrients), 
temperature,   
humidity, CO2, 
Weather forecast etc.)
16%

Soil management (moisture content, soil nutrients, fertilizer 
needs and application)
2%

Farm management (monitoring of farm 
operations, tracking and counting products, 
determining production efficiency, financial 
analysis, energy consumption analysis, 
technology integration and decisions 
implementation)
12%

Weed and unwanted vegetation management 
(weed/unknown vegetation classification and 
herbicides application)
5%

Crop quality management ( fresh weight, green 
biomass, height, length, width, leaf density, 
pigment content (chlorophyll) and phytochemical 
composition)
3%

Pest and disease management ( pest 
identification and disease detection)
18%

Fruit detection and counting
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Figure 2- 7. Distribution of studies based on the service category and system's 

maturity level. 

2.4. Agriculture 4.0 enabling technologies 

This section provides critical insights towards answering RQ1 and RQ2 from Table 2-

1.  

2.4.1. Internet of Things driven agricultural systems 

Internet of things (IoT) refers to a cosmos of interrelated computing devices, sensors, 

appliances, and machines connected with the internet, each with unique identities and 

capabilities for remote sensing and monitoring [39]. The reference architecture of IoT 

with six layers, namely the perception layer (hardware devices), network layer 

(communication), middleware layer (device management and interoperability), 

service layer (cloud computing), application layer (data integration and analytics), and 

end-user layer (user interface), is shown in Figure 2-8. In the agricultural domain, IoT 

devices in the physical layer gather data related to environmental and crop parameters 

such as temperature, humidity, pH value, water level, leaf color, fresh leaf weight, etc. 

The transmission of this data takes place in the network layer, the design of which 

depends on the selection of suitable communication technologies relevant to the field 

size, farm location, and type of farming method. For instance, ZigBee, LoRa, and 

Sigfox are widely used and employed in outdoor fields because they are cheaper and 

have low energy consumption and a good transmission range [40], [41] Despite being 

a secure technology, Bluetooth is only used in indoor farms as it offers a short 

transmission range [40]. Wi-Fi is not a promising technology for agricultural 

applications due to its high costs and high energy consumption [40]. RFID (radio 
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frequency identification) and NFC (near field communication) technologies, on the 

other hand, are increasingly being implemented in agricultural systems for tracking 

agricultural products [42]. GPRS or mobile communication technology (2G, 3G, and 

4G) are used for periodic monitoring of environmental and soil parameters. In 

addition, communication protocols mostly used in agricultural scenarios are HTTP, 

WWW, and SMTP. Likewise, to ensure interoperability and system security to their 

context-aware functionalities, middleware HYDRA and SMEPP are mostly employed 

in agricultural systems [43]. To store data, cloud computing techniques are employed 

in the service layer. This data is then used in the application layer to build smart 

applications used by farmers, agriculture experts, and supply chain professionals to 

enhance farm monitoring capacity and productivity. 

The integration of IoT in agriculture is meant to empower farmers with decision tools 

and automation technologies that seamlessly integrate knowledge, products, and 

services to achieve high productivity, quality, and profit. A multitude of studies is 

performed and put forward concerning the incubation of IoT concepts in the 

agricultural sector. The main findings of some of the studies are presented in Table 2-

2. Multiple technological issues and architectural problems have been addressed 

through the development of IoT-based agricultural systems. But most of these systems 

are either in a conceptual stage or in a prototype form (not commercial) at the 

moment. The focus is mainly laid on-farm management, irrigation control, crop 

growth, health monitoring, and disease detection. Some of these studies have also 

explained IoT implementation in modern agricultural systems such as vertical farming 

(soilless farming - aquaponics, hydroponics, and aeroponics) and greenhouse farming 

(soil-based). Moreover, most studies have focused on addressing a specific problem. 
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Figure 2- 8. The six-layered architecture of the Internet of Things (IoT), adapted from 

[44]. 

Table 2- 2. IoT-driven agricultural systems. 

Use case 

No. 

Service 

category 
Tools and techniques Farm type 

Maturity 

level 
 Citations 

1. 

CM 

WSN, CC, and reinforcement 

learning 

Greenhouse (soil-

based) 
Deployed [45] 

2. 
Sensors, actuators, and 

controllers 
Open-air Prototype [46] 

3. 
Sensors, controllers, and 

mobile app 

Greenhouse (soil-

based) 
Prototype [47] 

4. 
Sensors, CC, BD analysis, 

and  ML 

Greenhouse (soil-

based) 
Prototype [48] 

5. Sensors, and CC Aeroponics Prototype [49] 

6. 
Sensors, actuators, and 

control system 
Aeroponics Prototype [50] 

7. 
Weather boxes, sensors, and 

camera 
Open-air Prototype [51] 

8. CQM 
IoT devices, LED lights, and 

software application 
Hydroponics Prototype [52] 

9. 
WEM 

Sensors, and CC Aquaponics Conceptual [53] 

10. Sensors, Arduino board, and Open-air Prototype [54] 
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database  

11. 
Sensors, Arduino board, and 

database 

Greenhouse (soil-

based) 
Prototype [55] 

12. 
Sensors, CPS, edge, and 

cloud computing 
Hydroponics Prototype [56] 

13. 
Sensors, electronic 

components, and network 
Aquaponics Prototype [57] 

14. 
Sensors, Arduino, Raspberry 

Pi3, and deep neural network  
Hydroponics Prototype [58] 

15. Sensors, and database Aquaponics Prototype [59] 

16. Sensors, actuators, and CC Aquaponics Prototype [60] 

17. 
Sensors, controllers, and 

mobile app 
Aquaponics Prototype [61] 

18. 

IM 

WSN, fuzzy logic and neural 

network 
Open-air Prototype [62] 

19. 

Sensor information unit, 

MQTT, HTTP, and neural 

network 

Greenhouse (soil-

based) 
Prototype [63] 

20. 

FM 

Sensors, controllers, web 

interface, and CC 
Open-air Conceptual [64] 

21. 
Sensors, controllers, cloud, 

and Android application 
Open-air Prototype [65] 

22. 
Sensors, IEEE, and GSM 

protocols 
Open-air Prototype [66] 

23. 

PDM 

Sensors, controllers, and 

image processing 
Open-air Prototype [67] 

24. 
Cloud, camera, controllers, 

and K-mean clustering 
Open-air Prototype [68] 

25. WSN, controller, and cloud Open-air Prototype [69] 

26. 
WSN, cloud storage, and 

agricultural knowledge base  
Open-air Prototype [70] 

27. 
WSN, Hidden Markov 

Model, and SMS module 
Open-air Deployed [71] 

28. 

Sensors, Image processing, k-

mean clustering, and support 

vector machine 

Open-air Prototype [72] 

2.4.2. Wireless sensor networks in agriculture 

A wireless sensor network (WSN) is regarded as a technology that is used within an 

IoT system. It can be defined as a group of spatially distributed sensors for monitoring 

the physical conditions of the environment, temporarily storing the collected data, and 

transmitting the gathered information at a central location [40]. The general 

architecture of WSN is shown in Figure 2-9. A WSN for smart farming is made up of 

numerous sensor nodes connected through a wireless connection module. These nodes 

have a variety of abilities (e.g., processing, transmission, and sensation) that allow 

them to self-organize, self-configure, and self-diagnose. There are different types of 
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WSNs, which are categorized depending on the environment where they are 

deployed. These include terrestrial wireless sensor networks (TWSNs), wireless 

underground sensor networks (WUSNs), underwater wireless sensor networks 

(UWSNs), wireless multimedia sensor networks (WMSNs), and mobile wireless 

sensor networks (MWSNs) [73]. In agricultural applications, TWSN and UWSN are 

widely used. In TWSNs, the nodes are deployed above the ground surface, consisting 

of sensors for gathering the surrounding data. The second variant of WSNs is its 

underground counterpart – WUSNs, where sensor nodes are planted inside the soil. In 

this setting, lower frequencies easily penetrate through the soil, whereas higher 

frequencies suffer severe attenuation [74]. Therefore, the network requires a higher 

number of nodes to cover a large area because of the limited communication radius. 

Many research articles are available in the literature that discusses the use of WSN for 

different outdoor and indoor farms applications such as irrigation management, water 

quality assessment, and environmental monitoring. A summary of some of these 

articles is given in Table 2-3. These studies have focused on developing WSNs 

architectures that are simplified, low-cost, energy-efficient and scalable. Yet, various 

factors associated with WSNs need further attention, such as minimum maintenance, 

robust and fault-tolerant architecture, and interoperability. 

 

Figure 2- 9. General architecture wireless sensor network (WSN). 

Table 2- 3. Use of WSNs in agricultural systems. 

Use 

case 

No. 

Service 

category 
Tools and techniques used Farm type 

Maturity 

level 
Citation 

29. 

IM 

Soil-moisture and temperature 

sensors, web applications, and 

photovoltaic panels 

Open-air Prototype [75] 

30. 
Electronic board, sensor board 

and GPRS board. 
Open-air Prototype [76] 

31. 
Wireless sensor nodes, and 

Zigbee 
Open-air Conceptual [77] 
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32. 
Moisture sensors, actuators, and 

GUI 

Greenhouse 

(soil-based) 
Prototype [78] 

33. 

WEM 

Wireless communication, 

temperature, and humidity 

sensors 

Greenhouse 

(soil-based) 
Prototype [18] 

34. 

Sensor nodes, gateway unit, 

database, ordinary kriging spatial 

interpolation (OKSI) algorithm 

Hydroponics Prototype [79] 

35. 
Microcontrollers, wireless radio 

frequency and  sensor nodes 

Greenhouse 

(soil-based) 
Prototype [80] 

36. 

Wireless sensor nodes, 

communication networks, and 

mobile application 

Aquaponics Prototype [81] 

37. 

Arduino, a wireless module with 

temperature, relative humidity, 

luminosity, and air pressure 

sensors 

Any farm Prototype [82] 

38. Zigbee, Wi-fi and sensors  Hydroponics Prototype [83] 

2.4.3. Cloud computing in agriculture 

According to the National Institute of Standard and Technologies (NIST), cloud 

computing (CC) is defined as a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications, and services) that can be rapidly provisioned 

and released with minimal management effort or service provider interaction [84]. 

The main architecture of CC shown in Figure 2-10 is comprised of four layers: data 

center (hardware), infrastructure, platform, and application [85]. Each of these layers 

is linked with specific cloud service models, which are classified as software as a 

service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). 

Cloud computing has gained great attention over the past decade in the agriculture 

sector because it provides: 1) inexpensive storage services for data gathered from 

different domains through WSNs and other preconfigured IoT devices, 2) large-scale 

computing systems to perform intelligent decision-making by transforming this raw 

data into useful knowledge, and 3) a secure platform to develop agricultural IoT 

applications [86]. In combination with IoT and WSN, CC is employed to develop 

different agricultural applications, most of which are presented in Tables 2 and 3. CC 

technology is also used to create operational farm management systems (FMSs) to 

support farmers and farm managers in the efficient monitoring of farm operations. 

Table 2-4 presents the salient features of some of these FMSs. Another topic of 
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interest that is being explored in global research is related to the traceability of agri-

product quality [87]. But only preliminary research has been attempted to explore 

traceability compliance with standards of food safety and quality. 

 

Figure 2- 10. Architecture of cloud computing, adapted from [85]. 

Table 2- 4. Cloud computing-based farm management systems. 

Use case 

No. 

Service 

category 
Tools used Farm type 

Maturity 

level 
Citation 

39. 

FM 

Fuzzy logic, Java, 

HTML, Apache Karaf, 

etc.; 

Greenhouse 

(soil-based) 
Conceptual [88] 

40. RFID, and mobile app Open-air Deployed [89] 

41. 

MySQL, a financial 

analysis  tool and 

mobile app 

Open-air Conceptual [90] 

42. 

Self-leveling scale, 

control box, LCD, and 

RFID tags 

Open-air Conceptual [91] 

The cloud-based agricultural systems have the potential to solve problems of 

increasing food demands, environmental pollution caused by excessive use of 

pesticides and fertilizers, and the safety of agricultural products. These FMSs, 

however, do not have the capability to support run-time customization in relation to 

the distinct requirements of farmers. Moreover, because most farm data is usually 
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fragmented and dispersed, it is difficult to record farm activities properly in current 

FMSs applications [92].   

2.4.4. Edge/fog computing in agriculture 

The rapid development of IoT has led to the explosive growth of sensors and smart 

devices, generating large volumes of data. The processing and analysis of such an 

enormous amount of data in real-time are challenging because it increases the load on 

the cloud server and also reduce the response speed. Simply using a cloud server is 

not able to provide real-time response while handling such a large data set. 

Additionally, IoT applications are sensitive to network latency because they require a 

constant exchange of information between devices and the cloud, making CC 

unfeasible to handle these applications [92]. The emergence of the edge computing 

concept can resolve the problems associated with CC. This new computing model 

deploys computing and storage resources (such as cloudlets or fog nodes) at the edge 

of the network closer to data sources such as mobile devices or sensors. This way, it 

can facilitate real-time analytics while keeping data secure on the device [92]. Edge 

computing offers intriguing possibilities for smart agriculture, but the applications of 

this technology are only in their infancy in agricultural systems. Hence, few research 

studies are available in this area; see Table 2-5. Most of the edge computing-based 

agricultural systems discussed in these studies are prototypical and address a limited 

selection of problems in various agricultural domains. So far, interoperability and 

scalability issues have not received sufficient consideration. 

Table 2- 5. Edge computing-based agricultural systems. 

Use 

case 

No. 

Service 

category 

Edge computing techniques 

used 
Farm type 

Maturity 

level 
Citation 

43. 

FM 

Computation offloading Aeroponics Prototype [93] 

44. 
Computation offloading 

(automated control) 
Hydroponics Prototype [94] 

45. 
Computation offloading (alert 

generation) 
Any farm Prototype [95] 

46. PDM Computation offloading Open-air Prototype [96] 

47. 
WEM 

Latency reduction Any farm Prototype [97] 

48. Computation offloading Aquaponics Prototype [17] 

49. SM 
Computation offloading (data 

analysis) 
Open-air Prototype [98] 
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2.4.5. Autonomous robot systems in agriculture 

Autonomous robot systems (ARS) are intelligent machines capable of performing 

tasks, making decisions, and acting in real-time, with a high degree of autonomy 

(without external influence or without explicit human intervention) [99]. Interest in 

agricultural ARS (AARS) has grown significantly in recent years because of their 

ability to automate some practices in outdoor and indoor farms - including seeding, 

watering, fertilizing, spraying, plant monitoring and phenotyping, environmental 

monitoring, disease detection, weed and pest controlling, and harvesting [34]. The 

agricultural robots use a combination of emerging technologies such as computer 

vision, WSNs, satellite navigation systems (GPS), AI, CC, and IoT, thereby 

facilitating the farmers to enhance the productivity and quality of agricultural 

products. AARS in smart farming can be mobile AARS, which can move throughout 

the working field, or fixed AARS [100]. Mobile AARSs are further classified into 

unmanned ground vehicles (UGVs) and 2) unnamed aerial vehicles (UAVs), which 

are explained in the following sections. 

2.4.5.1. Unmanned ground vehicles in agriculture 

Unmanned ground vehicles (UGVs) are agricultural robots that operate on the ground 

without a human operator. The main components of UGVs generally include; a 

platform for locomotive apparatus and manipulator, sensors for navigation, a 

supervisory control system, an interface for the control system, the communication 

links for information exchange between devices, and system architecture for 

integration between hardware and software agents [101]. The control architecture of 

UGV can be remote-operated (controlled by a human operator via the interface) or 

fully autonomous (operated without the need for a human controller based on artificial 

intelligence technologies) [101]. Likewise, locomotive systems can be based on 

wheels, tracks, or legs [101]. Despite high ground adaptability, intrinsic 

omnidirectionality and soil protection of legged robots, they are uncommon in 

agriculture. However, when combined with wheels (wheel-legged robots), these 

robots offer a disruptive locomotion system for smart farms. In addition to their 

needed characteristics for infield operations, UGV should fulfill certain requirements 

such as small size, maneuverability, resilience, efficiency, human-friendly interface, 



31 

 

 

and safety – to enhance crop yields and farm productivity. Table 2-6 summarizes the 

diverse range of UGVs designed for agricultural operations. 

Table 2- 6. Different types of UGVs designed for performing agricultural tasks. 

Use 

case 

No. 

Service 

category 

Primary 

function 

Tools and 

techniques 

used 

Locomotion 

system 

Farm 

type 

Maturity 

level 
Citation 

50. 

WUVM 
Weed 

control 

Modules 

(Vision, 

spray, 

mechanical 

weeding), 

and 

classification 

algorithms  

Four-wheel-

steering 

system 

(4WS). 

Open

-air 
Prototype [102] 

51. 

Vision 

system with 

Kinect v2 

sensor, and 

random 

sample 

consensus 

algorithm 

Four-wheel-

drive (4WD) 

Open

-air 
Prototype [103] 

52. 

PDM 

 

Pesticides 

spraying 

RGB 

camera, 

HMI, and 

LiDAR 

Four-wheel-

drive (4WD) 

Open

-air 
Prototype [104] 

53. 

RGB 

camera,  and 

laser  

Four-wheel-

drive (4WD) 

Open

-air 
Prototype [105] 

54. 
Crop 

treatment 

Hyperspectr

al cameras, 

thermal and 

infrared 

detecting 

systems.  

Four-wheel 

steering 

system 

(4WS) 

Open

-air 
Prototype [106] 

55. 

CM 

Seed 

sowing 

Ultrasonic 

sensor, and 

PI controller 

Caterpillar 

treads 

Open

-air 
Prototype [107] 

56. 

Ultrasonic 

sensor, GSM 

module and 

actuators. 

Four-wheel-

drive (4WD) 

Open

-air 
Prototype [108] 

57. 
Artificial 

pollination 

Sensing 

module, 

pollinator 

system, 

RGB camera 

and 

Four-wheel-

drive (4WD) 

Open

-air 
Prototype [109] 
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odometry. 

58. 

Harvesting 

RGB-D 

camera and 

RCNN 

Four-wheel-

steering 

system 

(4WS). 

Open

-air 
Prototype [110] 

59. 
RGB camera 

and RCNN 

Four-wheel-

drive 

(4WD). 

Open

-air 
Prototype [111] 

Most of the agricultural robotic systems presented above have a 4WD locomotive 

system because it offers ease of construction and control. The drawback of 4WD is 

that the wheels are strongly affected by terrains containing stone elements and/or 

cavities [101]. Hence, it is significant to explore other mechanisms, such as legged or 

wheel-legged locomotive systems. Some robots have computer vision systems, but 

due to the difficulty of developing an accurate and reliable system that replaces 

manual labor, most of these robots are built with a low-cost computer vision system, 

that is, using conventional RGB cameras. Moreover, most of the systems mentioned 

above are still in the research phase, with no commercial use on a large scale. 

2.4.5.2. Unmanned aerial vehicles in agriculture 

Unmanned aerial vehicles (UAVs) or aerial robots are aircraft with no human pilot on 

board. Depending on the type of technology incorporated to fly (wing structure) and 

autonomy level, there is a wide variety of UAVs [112]. For instance, according to 

wing type, UAVs can be fixed-wing (planes), single-rotor (helicopter), hybrid systems 

(vertical takeoff and landing), and multirotor (drone). Among these, drones (multi-

rotor technology) which are lifted and propelled by four (quadrotor) or six (hex-rotor) 

rotors, have become increasingly popular in the agriculture sector due to their 

mechanical simplicity in comparison to helicopters, which rely on a much more 

sophisticated plate control mechanism [113]. Similarly, according to autonomy level, 

UAVs can be either teleoperated in which the pilot provides references to each 

actuator of the aircraft to control it, in the same manner, an onboard pilot would, or 

tele-commanded in which the aircraft relies on an automatic controller on board that 

is in charge of maintaining a stable flight [112]. Equipped with the appropriate 

sensors (vision, infrared, multispectral, and hyperspectral cameras, etc.), agricultural 

UAVs allow farmers to obtain data (vegetation, leaf area, and reflectance indexes) 

from their fields to study dynamic changes in crops that cannot be detected by 
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scouting the ground [114]. This data permits farmers to infer information related to 

crop diseases, nutrient deficiencies, water levels, and other crop growth parameters. 

With this information, farmers can plan possible remedies (irrigation, fertilization, 

weed control, etc.). Table 2-7 reviews some of the UAV-based systems used for 

different agricultural operations. 

Table 2- 7. Different UAV-based systems developed for performing different 

agricultural operations. 

Use 

case 

No. 

Service 

category 

Primary 

function 
UAV type 

Camer

as / 

sensors 

Flight 

altitude 

(m) 

Farm 

type 

Maturity 

level 
Citation 

60. 

CQM 

Vegetation 

monitoring 
Hexacopter 

Hyper-

spectral 

camera 

30 
Open-

air 
Prototype [115] 

61. 
Biomass 

monitoring 
Octocopter 

RGB-

sensor 
50 

Open-

air 
Prototype [116] 

62. 

CM 

Real-time 

growth 

monitoring 

Quadcopter 
Digital 

camera 
100 

Open-

air 
Prototype [117] 

63. 

Photosynth

etic active 

radiation 

mapping 

Fixed wing 

Multi-

spectral 

camera 

150 
Open-

air 
Prototype [118] 

64. 
Remote 

sensing 
Helicopter 

Multi-

spectral 

camera 

15-70 
Open-

air 
Prototype [119] 

65. 

Remote 

sensing and 

mapping 

RC plane 
Digital 

camera 
100-400 

Open-

air 
Prototype [120] 

66. 
Rice 

pollination 
Helicopter 

Wind 

speed 

sensor 

1.15, 

1.23, 

1.33 

Open-

air 
Prototype [37] 

67. 

Droplet 

distribution 

estimation 

Quadcopter 

Digital 

canopy 

imager 

3.5, 4, 

4.5 

Open-

air 
Prototype [121] 

68. 
UREA 

spraying 
Quadcopter 

Multi 

and 

hyper 

spectral 

camera

s 

Few 

meters 

Open-

air 
Prototype [122] 

69. 
Pesticide 

spraying 
Quadcopter 

RF 

module 
5, 10, 20 

Open-

air 
Prototype [123] 

70. 

Pesticide 

spray 

application 

Helicopter 
Digital 

camera 
3-4 

Open-

air 
Prototype [124] 
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71. 

Automatic 

spray 

control 

system 

Helicopter 
Image 

transmi

tter 

5, 7, 9 
Open-

air 
Prototype [125] 

72. 

WUVM 

Multi-

temporal 

mapping of 

weed Quadcopter 

Digital 

camera 
30, 60 

Open-

air 
Prototype [126] 

73. 

Weed 

mapping 

and control 

Digital 

camera 
30 

Open-

air 
Prototype [127] 

74. 

IM 

Water 

status 

assessment 

Fixed wing 

Multi-

spectral 

camera 

200 
Open-

air 
Prototype [128] 

75. 

Water 

stress 

detection 

Fixed wing 

Micro-

hyper 

spectral 

camera 

575 
Open-

air 
Prototype [129] 

76. 

Water 

stress 

investigatio

n 

Fixed wing 
Digital 

camera 
90 

Open-

air 
Prototype [130] 

77. 

Assessing 

the effects 

of saline 

reclaimed 

waters and 

deficit 

irrigation 

on Citrus 

physiology 

Fixed wing 
Digital 

camera 
100 

Open-

air 
Prototype [131] 

78. 

Water 

status and 

irrigation 

assessment 

Quadcopter 

Multi-

spectral 

camera 

30 
Open-

air 
Prototype [132] 

79. 

PDM 

Phylloxera 

disease 

detection 

Hexacopter 

RGB 

and 

multi-

spectral 

camera

s 

 

60, 100 
Open-

air 
Prototype [133] 

80. 

Citrus 

greening 

disease 

detection 

Hexacopter 

Multi-

spectral 

camera 

100 
Open-

air 
Prototype [134] 

Most of the systems mentioned above are still in the research phase, with no 

commercial use on a large scale. Other problems with these UAVs are associated with 

battery and flight time [112]. At the moment, lithium-ion batteries are being used 

because their capacity is larger than that of conventional batteries. But an increase in 
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battery capacity increases the drone's weight, and now research is undergoing to 

address this issue. In addition, the existing UAVs have complex user interfaces, and 

only experts can use them to perform agricultural tasks. By improving the user 

interface and making it human-centered with multimodal feedback will allow people 

who are older or unfamiliar with UAV technology to control it more easily.  

2.4.6. Big data and analytics in agriculture 

Rapid developments in IoT and CC technologies have increased the magnitude of data 

immeasurably. This data, also referred to as Big Data (BD), includes textual content 

(i.e., structured, semi-structured, and unstructured), and multimedia content (e.g., 

videos, images, audio) [135]. The process of examining this data to uncover hidden 

patterns, unknown correlations, market trends, customer preferences, and other useful 

information is referred to as big data analytics (BDA). Big data is typically 

characterized according to five dimensions defined by five Vs, which are displayed in 

Figure 2-11 [136]. The paradigm of BD-driven smart agriculture is comparatively 

new, but the trend of this application is positive as it has the capacity to bring a 

revolutionary change in the food supply chain and food security through increased 

production. Agricultural big data is usually generated from various sectors and stages 

in agriculture, which can be collected either from agricultural fields through ground 

sensors, aerial vehicles, and ground vehicles using special cameras and sensors; from 

governmental bodies in the form of reports and regulations; from private 

organizations through online web services; from farmers in the form of knowledge 

through surveys; or from social media [136]. The data can be environmental (weather, 

climate, moisture level, etc.), biological (plant disease), or geospatial depending on 

the agricultural domain and differs in volume, velocity, and format [137]. The 

gathered data is stored in a computer database and processed by computer algorithms 

for analyzing seed characteristics, weather patterns, soil properties (like pH or nutrient 

content), marketing and trade management, consumers’ behavior, and inventory 

management. A variety of techniques and tools are employed to analyze big data in 

agriculture. A summary of some of the studies is given in Table 2-8. Machine 

learning, cloud-based platforms, and modeling and simulation are the most commonly 

used techniques. Particularly, machine learning tools are used in prediction, 

clustering, and classification problems. Whereas cloud platforms are used for large-
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scale data storing, preprocessing, and visualization. There are still many potential 

areas that are not adequately covered in existing literature, where BDA can be applied 

to address various agricultural issues. For instance, these include data-intensive 

greenhouses and indoor vertical farming systems, quality control and health 

monitoring of crops in outdoor and indoor farms, genetic engineering, decision 

support platforms to assist farmers in the design of indoor vertical farms, and 

scientific models for policymakers to assist them in decision-making regarding the 

sustainability of the physical ecosystem. Lastly, most systems are still in the 

prototypical stage. 

 

Figure 2- 11. Five dimensions of "Big Data". 

Table 2- 8. Big data tools and services in agriculture. 

Use 

case 

No. 

Service 

category 

Tools and 

techniques used 

Big data 

source 
Farm type 

Maturity 

level 
Citation 

81. WEM 

Crop modelling and 

simulation, 

geospatial analysis 

Weather 

station, 

historical 

databases 

Open-air Conceptual [137] 

82. 

CM 

Clustering, 

prediction, and 

classification 

Sensor, 

historical, 

and farmer 

data 

Open-air Conceptual [138] 

83. 
Support vector 

machine 
Sensor data Open-air Conceptual [139] 

84. IM 
Cloud-based 

application.  
Sensor data Hydroponics Prototype [140] 
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85. 

Cloud-based 

platform, and web 

services 

Sensor data, 

industry 

standards 

Open-air Conceptual [141] 

2.4.7. Artificial intelligence in agriculture 

Artificial intelligence (AI) involves the development of theory and computer systems 

capable of performing tasks requiring human intelligence, such as sensorial 

perception and decision-making [142]. Combined with CC, IoT, and big data, AI, 

particularly in the facet of machine learning (ML) and deep learning (DL), is regarded 

as one of the key drivers behind the digitization of agriculture. These technologies 

have the potential to enhance crop production and improve real-time monitoring, 

harvesting, processing, and marketing [143]. Several intelligent agricultural systems 

are developed that use ML and DL algorithms to determine various parameters like 

weed detection, yield prediction, or disease identification. These systems are 

discussed in the next two sub-sections. 

2.4.7.1. Machine learning in agriculture 

Machine learning (ML) techniques are broadly classified into three categories: 1) 

supervised learning (linear regression, regression trees, non-linear regression, 

Bayesian linear regression, polynomial regression, and support vector regression), 2) 

unsupervised learning (k-means clustering, hierarchal clustering, anomaly detection, 

neural networks (NN), principal component analysis, independent component 

analysis, apriori algorithm and singular value decomposition (SVD)); and 3) 

reinforcement learning (Markov decision process (MDP) and Q learning) [144]. ML 

techniques and algorithms are implemented in the agriculture sector for crop yield 

prediction, disease, and weed detection, weather prediction (rainfall), soil properties 

estimation (type, moisture content, pH, temperature, etc.), water management, 

determination of the optimal amount of fertilizer, and livestock production and 

management [145]. Table 2-9 presents a list of publications where different ML 

algorithms are utilized for various agricultural applications. From the analysis of these 

articles, “crop yield prediction” is a widely explored area, and linear regression, 

neural network (NN), random forest (RF), and support vector machine (SVM) is the 

most used ML techniques to enable smart farming. The presented use cases are still in 

the research phase with no reported commercial usage at the moment. Moreover, it is 
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also found that AI and ML techniques are sparsely explored in the greenhouse and 

indoor vertical farming systems, particularly hydroponics, aquaponics, and 

aeroponics. There are only a few publications available summarized in the same table 

where ML techniques are employed. Considering the digital transformation's cyber-

security and data privacy challenges, new approaches such as federated learning and 

privacy-preserving methods are being developed to enable digital farming [146]. 

These approaches build ML models from local parameters without sharing private 

data samples, thus mitigating security issues. 

Table 2- 9. Machine learning-based agricultural systems. 

Use 

case 

No. 

Service 

category 
Data sources  

Algorithms 

used 

Farm 

type 

Maturity 

level 
Citation 

86. 

CM 

Yield maps, 

climate, and 

temporal data. 

SVM with radial 

basis functions 
Open-air Prototype [147] 

87. 

Vegetation dataset 

from Landsat 8 

OLI. 

Boosted 

regression tree, 

RF regression, 

support vector 

regression, and 

Gaussian 

process 

regression  

Open-air Prototype [148] 

88. 
Historical soil and 

rainfall data 

Recurrent neural 

network 
Open-air Prototype [149] 

89.  
Plot-scale wheat 

data 

Multiple linear 

regression and 

RF 

Open-air Prototype [150] 

90. 
Temperature and 

rainfall records 

Artificial neural 

network 
Open-air Prototype [151] 

91. 
Soil data, and 

satellite imagery  

Counter-

propagation 

artificial neural 

networks 

Open-air Prototype [152] 

92. Rainfall records RF Open-air Prototype [153] 

93. 
Field survey data of 

64 farms 

SVM, RF, 

decision tree 
Open-air Prototype [154] 

94. Tap water samples RF 
Hydropo

nics 
Prototype [155] 

95. 

PDM 

Images from a 

strawberry 

greenhouse 

SVM 

Greenho

use (soil-

based) 

Prototype [156] 

96. Sensor data 
Least squares 

SVM  
Open-air Prototype [157] 

97. Sensor data Decision trees Aquapon Prototype [158] 
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ics 

98. 

WUVM 

Image data  RF Open-air Prototype [159] 

99. 
Images from a 

university farm. 
SVM Open-air Prototype  [160] 

100. 

SM 

140 soil samples 

from the top layer 

 

Least squares 

support vector 

machines 

Open-air Prototype [161] 

101. 
Humidity data from 

Radarsat-2 

Extreme 

learning 

machine-based 

regression  

Open-air Prototype [162] 

102. 

WEM 

Rainfall data  

Bayesian linear 

regression, 

boosted decision 

tree and 

decision forest 

regression, 

neural network 

regression 

Open-air Prototype [163] 

103.  

Air temperature, 

wind speed, and 

solar radiation data  

Artificial neural 

networks and 

SVM 

Greenho

use (soil-

based) 

Prototype [164] 

2.4.7.2. Deep learning in agriculture 

Deep learning (DL) represents the extension of classical ML that can solve complex 

problems (predictions and classification) particularly well and fast because more 

“depth” (complexity) is added to the model. The primary advantage of DL is feature 

learning which involves the automatic extraction of features (high-level information) 

from large datasets [165]. Different DL algorithms are convolutional neural networks 

(CNNs), long short-term memory (LSTM) networks, recurrent neural (RNN) 

networks, generative adversarial networks (GANs), radial basis function networks 

(RBFNs), multilayer perceptron (MLPs), feedforward artificial neural network 

(ANN), self-organizing maps (SOMs), deep belief networks (DBNs), restricted 

Boltzmann machines (RBMs), and autoencoders. A detailed description of these 

algorithms, popular architectures, and training platforms is available from various 

sources [166]. Figure 2-12 illustrates an example of the DL architecture of CNN 

[167]. In the agriculture sector, DL algorithms are mostly used to solve problems 

associated with computer vision applications that target the prediction of key 

parameters, such as crop yields, soil moisture content, weather conditions, and crop 

growth conditions; the detection of diseases, pests, and weed; and the identification of 

leaf or plant species [168]. Computer vision is an interdisciplinary field that has been 
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gaining huge amounts of traction in recent years due to the surge in CNNs. It offers 

methods and techniques that allow the processing of digital images accurately and 

enables computers to interpret and understand the visual world [169].  

 

Figure 2- 12. Example of CNN architecture. 

A summary of agricultural applications using DL and computer vision techniques is 

given in Table 2-10. Among all the DL algorithms, CNNs or Convet and its variants 

are the most used algorithms in agricultural applications. The variants of CNN are 

region-based CNNs (RCNN), Fast-RCNN, Faster-RCNN, YOLO, and Mask-RCNN, 

among which the first four are mostly used to solve object detection problems. Mask-

RCNN, on the other hand, is used to solve instance segmentation problems. The 

reader could refer to the existing bibliography for a detailed description of these 

algorithms and their applications [168]. Few studies have also used other DL 

techniques. Talking about datasets, most DL models are trained using images, and 

few models are trained using sensor data gathered from fields. This shows that DL 

can be applied to a wide variety of datasets. It is also observed that most of the work 

is done on outdoor farms, whereas next-generation farms (environment-controlled) 

are not extensively explored. Though DL has the potential to enable digital farming, 

most systems are still in the prototype phase. Additionally, the new challenges 

imposed by cyber-security and privacy issues require optimization of current DL and 

computer vision approaches. 

Table 2- 10. Deep learning-based agricultural systems. 

Use 

case 

Service 

category 
Data sources 

Algorithms 

used 
Farm type 

Maturity 

level 
Citation 
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No. 

104. 

CM 

Satellite and 

weather data 

LSTM 

network 
Open-air Prototype [170] 

105. 

Rice yield data, 

meteorology, and 

area data (81 

counties). 

Back-

Propagation 

neural 

networks and 

RNN 

Open-air Prototype [171] 

106. 
Commercial fields’ 

images 
CNN  Open-air Prototype [172] 

107. Aerial orthoimages  Faster RCNN  Open-air Prototype [173] 

108. 

Historical yields 

and greenhouse 

environmental 

parameters. 

Temporal 

CNN and 

RNN. 

Greenhouse 

(soil-based) 
Prototype [174] 

109. 
Lettuce images 

from the farm. 
CNN  

Greenhouse 

(soil-based) 
Prototype [175] 

110. WEM 

Soil moisture data, 

and daily 

meteorological data  

RBMs Open-air Prototype [176] 

111. CQM 

Images from the 

farm and Google 

search engine 

Mask-RCNN Aquaponics Prototype [177] 

112.  WUVM 

Weed and crop 

species images from 

6 different datasets. 

CNN  Open-air Prototype [178] 

113. 

PDM 

Images collected 

from the Internet. 
CNN  Open-air Prototype [179] 

114. Public dataset  Deep CNN Open-air Prototype [180] 

115. 
Images from the 

camera. 

Faster R-

CNN, and 

single-shot 

multibox 

detector  

Open-air Prototype [181] 

116. 
Dataset with images 

of Walnut leaves 
CNN  Open-air Prototype [182] 

117. 

FDC  

RGB and multi-

modal images  

Faster R-

CNN 
Open-air Prototype [183] 

118. 
Images of oranges 

and green apples 
CNN  Open-air Prototype [184] 

119. 

Images of ripe 

young and 

expanding apples. 

YOLO-V3 Open-air Prototype [185] 

2.4.8. Agricultural decision support systems 

A decision support system (DSS) can be defined as a smart system that supports 

decision-making to specific demands and problems by providing operational answers 

to stakeholders and potential users based on useful information extracted from raw 
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data, documents, personal knowledge, and/or models [186]. DSS can be data-driven, 

model-driven, communication-driven, document-driven, and knowledge-driven. The 

salient features of these DSSs are available in the following source [187]. Figure 2-13 

presents the general architecture of a DSS, consisting of four fundamental 

components, each having its specific purpose. 

 

Figure 2- 13. The general architecture of decision support system. 

Due to the evolution of agriculture 4.0, the amount of farming data has increased 

immensely. To transfer this heterogeneous data into practical knowledge, platforms 

like agricultural decision support systems (ADSS) are required to make evidence-

based and precise decisions regarding farm operation and facility layout [188]. Over 

the past few years, ADSSs has been gaining much attention in the agriculture sector. 

A number of ADSSs have been developed that focus on a variety of agricultural 

aspects, such as farm management, water management, and environmental 

management. Table 2-11 presents a summary of the ADSSs found in the literature. 

From this analysis, most ADSSs have been found to not consider expert knowledge, 

which is highly valuable as it allows to development of systems as per user’s needs. 

The other reported issues with some of these ADDSs are complex GUIs, inadequate 

re-planning components, a lack of prediction and forecast abilities, and a lack of 

ability to adapt to uncertain and dynamic factors. It is also worth noting that all the 

ADSSs are for outdoor agricultural systems and are in the research phase. In 

comparison, the application of ADSS in indoor soilless farming is still very much 

unexploited. 

Table 2- 11. Agricultural decision support systems. 

Use 

case 

No. 

Service 

category 
Data sources 

Tools and techniques 

used 

Maturity 

level 
Farm type Citation 

120. IM 
Environmental 

and crop data 

Partial least squares 

regression and 
Prototype Open-air [189] 
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adaptive neuro fuzzy 

inference system 

121. 
Crop and site 

data 

Fuzzy C-means 

algorithm 
Prototype Open-air [190] 

122. 

WEM 

Meteorological 

and crop data 

Geographical 

information system 

(GIS)  

Prototype Open-air [191] 

123. 

Environmental, 

economic, and 

crop data 

VEGPER, ONTO, 

SVAT-CN, 

EROSION, GLPROD 

Prototype Open-air [192] 

124. 

FM 

Environmental 

and crop-

related data 

B-patterns 

optimization 

algorithm 

Prototype Open-air [193] 

125. 
Environmental 

and crop data 

Agent-based 

modeling, SVM and 

decision trees  

Prototype Aquaponics [194] 

126. 
Environmental 

and crop data 

Object-oriented 

methodology 
Prototype 

Greenhouse 

(soil-based) 
[195] 

127. 

PDM 

Crop data Excel based algorithm Prototype 
Greenhouse 

(soil-based) 
[196] 

128. 
Environmental 

data 
Rule-based approach Conceptual 

Greenhouse 

(soil-based) 
[197] 

129. 
Environmental 

data 

Rule-based approach  

 
Prototype 

Greenhouse 

(soil-based) 
[198] 

130. WUVM 

10 years of 

weather data 

and a set of 

vegetation 

indexes. 

Rule-based 

application 
Prototype Open-air [199] 

2.4.9. Agricultural cyber-physical systems  

As one of the main technologies of Industry 4.0, a cyber-physical system (CPS) refers 

to an automated distributed system that integrates physical processes with 

communication networks and computing infrastructures [200]. There are three 

standard CPS reference architecture models: namely, 5C, RAMI 4.0, and IIRA, and 

their detailed description is available in the following source [201]. Among these, the 

5C is a well-known reference model with widespread usage. The architecture of 5C 

consists of five levels which are represented in Figure 2-14. CPS benefits from a 

variety of existing technologies such as agent systems, IoT, CC, augmented reality, 

big data, and ML [202]. Its implementation ensures scalability, adaptability, 

autonomy, reliability, resilience, safety, and security improvements. 
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Figure 2- 14. 5C architecture for cyber-physical systems, adapted from [203]. 

The agricultural field is regarded as one of the complex domains that can benefit from 

CPS technology. Agricultural cyber-physical systems (ACPSs) use advanced 

electronic technologies and agricultural facilities to build integrated farm management 

systems that interact with the physical environment to maintain an optimal growth 

environment for crops [204]. ACPSs collect essential and appropriate data about 

climate, soil, and crops, with high accuracy and use it to manage watering, humidity, 

plant health, etc. A variety of ACPSs has been developed for the management of 

different services, and their summary is given in Table 2-12. Looking at these ACPSs, 

most systems are still at the prototype and conceptual level. Moreover, most studies 

are conducted for outdoor farms, with only a few works published related to soil-

based greenhouse systems. No study is found that is relevant to indoor soilless 

farming systems. ACPSs has attracted significant research interest because of their 

promising applications across different domains; deploying CPS models in real-life 

applications is still a challenge as it requires proper hardware and software [205]. 

Moreover, particular attention should be given to autonomy, robustness, and 

resilience while engineering ACPSs in order to handle the unpredictability of the 

environment and the uncertainty of the characteristics of agricultural facilities. There 

are multiple factors (humans, sensors, robots, crops, and data, among others) that 

impact ACPSs. To ensure a smooth operation while avoiding conflicts, errors, and 

disruptions, ACPSs need to be designed carefully and comprehensively. 
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Table 2- 12. Agricultural cyber-physical systems. 

Use case 

No. 

Service 

category 
Tools and techniques used 

Maturity 

level 
Farm type Citation 

131. 

IM 

Integrated open geospatial web 

service 
Prototype Open-air [206] 

132. 
Moisture sensors, and solenoid 

valves 
Prototype 

Greenhous

e (soil-

based) 

[207] 

133. 
Sensor and sink nodes, network, and 

control centre 
Prototype 

Greenhous

e (soil-

based) 

[204] 

134. 
Transceiver modules, multi-sensor 

array and weather forecasting system 
Prototype Open-air [202] 

135. 

PDM 

ToxTrac and NS2 simulator 
Conceptua

l 
Open-air [208] 

136. Sensors and cameras Prototype 

Greenhous

e (soil-

based) 

[209] 

137. Unmanned aircraft system 
Conceptua

l 
Open-air [210] 

138. 

CM 

Multispectral terrestrial mobile and 

autonomous aerial mobile 

mechatronic systems, and GIS 

Conceptua

l 
Open-air [211] 

139. Edge and cloud computing Prototype Open-air [212] 

140. 
Sensors, actuators, Arduino, and 

Raspberry Pi 
Prototype Any farm [213] 

2.4.10. Digital twins in agriculture 

A digital twin (DT) is a dynamic virtual replica of a real-life (physical) object of 

which it mirrors its behaviors and states over multiple stages of the object’s lifecycle 

by using real-world data, simulation, and machine learning models, combined with 

data analytics to enable understanding, learning, and reasoning [214]. A complete 

description of the DT concept for any physical system requires consolidation and 

formalization of various characteristics, including the physical and virtual entities, the 

physical and virtual environments, the metrology, and realization modules that 

perform the physical to virtual and the virtual to physical connection or twinning, the 

twinning and twinning rate, and the physical and virtual processes [215]. The 

schematic showing the mapping of these characteristics is shown in Figure 2-15. The 

DT concept has gained prominence due to advances in the technologies such as the 

Internet of Things, big data, wireless sensor networks, and cloud computing. This is 

because these technologies allow real-time monitoring of physical twins at high 
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spatial resolutions through both miniature devices and remote sensing that produce 

ever-increasing data streams [39]. 

 

Figure 2- 15. Schematic of a digital twinning process, adapted from [215]. 

The concept of DT in agricultural applications is rather immature as compared to 

other disciplines with its first references occurring in 2017; hence its added value has 

not yet been discussed extensively [39]. This is because framing is a highly complex 

and dynamic domain because of its dependence on natural conditions (climate, soil, 

humidity) and the presence of living physical twins (plants and animals) and non-

living physical twins (indoor farm buildings, grow beds, outdoor agricultural fields, 

agricultural machinery). The non-living physical twins interact directly or indirectly 

with plants and animals (living physical twins), thereby introducing more challenges 

for DT in agriculture. Whereas in other domains such as manufacturing DTs are 

mostly concerned with non-living physical twins. Table 2-13 summarizes the 

agricultural DTs developed in the last 10 years. 

Table 2- 13. Digital twins in agriculture. 

Use 

case 

No. 

Service 

category 

Physical 

twin 

Tools and 

techniques used 

Maturity 

level 
Farm type Citation 

141. WEM 

Aquaponic 

system and 

building 

IoT sensor 

system, and 

MQQT broker 

Prototype Aquaponics  [216] 

142. CM 
Agricultural 

product 

Sensor, network, 

and computational 

units 

Prototype Open-air [217] 

143. FM 
Agricultural 

machinery 

ROS platform, 

Gazebo 3D and 
Prototype Open-air [218] 
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Open Street Maps 

144. Farmland 

Sensor, network, 

and computational 

units 

Prototype Open-air [219] 

145. 

Agricultural 

farm/landsca

pe 

Sensors, and 

PLCs 
Conceptual Open-air [220] 

146. 
Agricultural 

building 

Sensors, GUI, and 

control centre  
Prototype 

Greenhouse 

(soil-based) 
[221] 

147. 

PDM 

Crops 

(plants)/ 

Trees 

Mobile 

application and 

computational 

unit 

Deployed 

 

Open-air 

 

[222] 

 

 

148. 

Trees 

planted on 

orchard 

IoT sensors, 

network, and 

computational 

units 

Prototype Open-air [223] 

The analysis shows that most studies have focused on open-air farming systems. Only 

one study is found that has proposed DT for soil-based vertical farming systems and 

one study that implemented DT for soilless farming systems (aquaponics). This might 

be because the design and management of modern farming systems are challenging. 

Moreover, most DTs are in the research phase with no commercial deployment at the 

moment. The reported benefits of the DT applications in agriculture are cost 

reductions, catastrophe prevention, clearer decision-making, and efficient 

management operations, which can be applied to several agricultural subfields like 

plant and animal breeding, aquaponics, vertical farming, cropping systems, and 

livestock farming.  While DT technology has great potential, achieving the 

synchronization between the physical entity and its digital counterpart is challenging. 

The complexity of this process is further amplified in agricultural systems due to the 

idiosyncrasies of living physical twins. Hence, implementation of agricultural DT 

should start with micro-farms, which can then be gradually enhanced to an intelligent 

and autonomous version by incorporating more components.  

2.5. Roadblocks in the digitization of the agriculture industry 

This section provides an answer to RQ3 by listing a series of interconnected 

roadblocks hampering a larger adoption of digital technologies in the agriculture 

sector. After analyzing 148 articles, 21 roadblocks are identified, which can be 

categorized at technical and socio-economic levels. 
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2.5.1. Technical roadblocks 

• Interoperability: data is considered a cornerstone for the success of smart 

systems. Agricultural data usually comes from multiple heterogeneous sources 

such as thousands of individual farmlands, animal factories, and enterprise 

applications. This data can have diverse formats, making data integration 

complex. Hence, data interoperability is essential to enhance the value of this 

massively dispersed data after systematic data collection, storage, processing, and 

knowledge mining [224]. Likewise, for establishing effective communication 

between heterogeneous devices, they need to be interconnected and interoperable. 

With cross-technology communication, the interoperability of the system can be 

improved [225]. 

• Standardization: to fully exploit digital technologies for smart farming 

applications, standardization of the devices is essential. Output differences can 

occur because of misinterpretation and alterations from time to time. With 

standardization, the interoperability issues of the devices, applications, and 

systems can also be resolved [43]. 

• Data quality: to produce meaningful results, data quality is also crucial, along with 

data security, storage, and openness. The lack of decentralized data management 

systems is another roadblock hindering the adoption of smart farming practices 

[28]. This issue decreases the willingness of multiple actors to share agriculture 

data.  

• Hardware implementation: the deployment of a smart agricultural setup in large-

scale open fields is extremely challenging. This is because all the hardware 

consisting of IoT devices, wireless sensor networks, sensor nodes, machinery, and 

equipment is directly exposed to harsh environmental conditions such as heavy 

rainfall, high/low-temperature levels, extreme humidity, strong wind speeds, and 

many other possible dangers which can destroy electronic circuits or disrupt their 

normal functionality [30]. A possible solution is to build an adequate casing for all 

the costly devices that is robust and durable enough to endure real field conditions 

[226].  

• Adequate power sources: typically, the wireless devices deployed at farms 

consistently operate for a long time and have limited battery life. A suitable 
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energy-saving scheme is necessary because, in case of any failure, instant battery 

replacement is complicated, especially in open-air farms where devices are 

strategically placed with minimum access [30]. The possible solutions to optimize 

energy consumption are the usage of low-power sensors and proper management 

of communication [42], [227]. Wireless power transfer and self-supporting 

wireless systems are other promising solutions to eliminate the need for battery 

replacement by recharging the batteries through electromagnetic waves. However, 

long-distance wireless charging is needed in most agricultural applications [28]. 

Ambient energy harvesting from rivers, fluid flow, and movement of vehicles and 

ground surface using sensor nodes offers another viable solution, but the 

converted electrical energy is limited at present – posing the need to improve 

power conversion efficiency [228].  

• Reliability: The reliability of devices, as well as corresponding software 

applications, is crucial. This is because IoT devices need to gather and transfer the 

data based on which decisions are made using several software packages. 

Unreliable sensing, processing, and transmission can cause false monitoring data 

reports, long delays, and even data loss – eventually impacting the performance of 

the agricultural system [43]. 

• Adaptability: agricultural environments are complex, dynamic, and rapidly 

changing. Hence, when designing a system, it is pertinent for the devices and 

applications to proactively adapt to the other entities under uncertain and dynamic 

factors - offering the needed performance [5].  

• Robust wireless architectures: wireless networks and communication technologies 

offer several benefits in terms of low cost, wide-area coverage, adequate 

networking flexibility, and high scalability. But dynamic agriculture environments 

such as temperature variations, living objects’ movements, and the presence of 

obstacles pose severe challenges to reliable wireless communication. For instance, 

fluctuations in the signal intensity occur due to the multipath propagation effects – 

causing unstable connectivity and inadequate data transmission [229]. These 

factors impact the performance of the agricultural system. Hence, there is a need 

for robust and fault-tolerant wireless architectures with the appropriate location of 

sensor nodes, antenna height, network topology, and communication protocols 

that also require minimum maintenance [230].  
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• Interference: another challenge is wireless interference and degradation of the 

quality of service because of the dense deployment of IoT devices and wireless 

sensor networks. These issues can be mitigated with efficient channel scheduling 

between heterogeneous sensing devices, cognitive radio-assisted WSNs, and 

emerging networking primitives such as concurrent transmission [231]. Since 

agriculture devices are distributed in indoor greenhouses, outdoor farmlands, 

underground areas, or even water areas, cross-media communication between 

underground, underwater, and air is also required for the complete incorporation 

of smart technologies [232].  

• Security and privacy: the distributed nature of smart agricultural systems brings 

potential vulnerabilities to cyber-attacks such as eavesdropping, data integrity, 

denial-of-service attacks, or other types of disruptions that may risk the privacy, 

integrity, and availability of the system [233]. Cyber-security is a major challenge 

that needs to be addressed within the context of smart farming, with diverse 

privacy-preserving mechanisms and federated learning approaches [146]. 

• Compatibility: to achieve the standards of fragmentation and scalability, the 

models or software applications developed should be flexible and run on any 

machine installed in the agricultural system [32]. 

• Resource optimization: farmers require a resource optimization process to 

estimate the optimal number of IoT devices and gateways, cloud storage size, and 

amount of transmitted data to improve farm profitability. Since farms have 

different sizes and need distinct types of sensors to measure different variables, 

resource optimization is challenging [234]. Secondly, most of farm management 

systems do not offer run-time customization in relation to the distinct 

requirements of farmers. Hence, complex mathematical models and algorithms are 

required to estimate adequate resource allocation [92].  

• Scalability: the number of devices, machinery, and sensors installed at farms is 

increasing gradually due to advancements in technologies. To support these 

entities, gateways, network applications, and back-end databases should be 

reliable and scalable [235].  

• Human-centered user interfaces: complex user interfaces of existing agricultural 

applications and devices are impeding smart farming practices. Most GUI is 

designed in a way that only experts can use to perform agricultural tasks. 
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Improving the user interface by making it human-centered with multimodal 

feedback will allow a larger group of people to use it to perform different 

agricultural operations [112]. 

2.5.2. Socio-economic roadblocks 

• Gap between farmers and researchers: the participation of farmers is a key factor 

in the success of the digitization of the agricultural industry. Farmers face a lot of 

problems during the agri-food production process, which smart technologies could 

fix, but agricultural experts are not usually aware of these issues [35]. Moreover, 

to devise an adequate smart solution, first, it is important to fully understand the 

nature of the problems. Hence, it is essential to bridge the gap between farmers, 

agricultural professionals, and AI researchers.  

• Costs associated with smart systems: the costs associated with the adoption of 

smart technologies and systems are the major deterrent to the digitization of the 

agricultural sector.  These costs usually involve deployment, operating, and 

maintenance costs. The deployment costs of smart systems are usually very high 

as they involve;  i) hardware installation such as autonomous robots and drones, 

WSNs, gateways, and base station infrastructure, etc., to perform certain farm 

operations, and ii) hiring skilled labor [236]. Likewise, to facilitate data 

processing, management of IoT devices and equipment, and knowledge exchange, 

subscription to centralized networks and software packages is required, which 

ultimately increases the operating costs [237]. Though sometimes service 

providers offer free subscription packages with restricted features, the amount of 

storage capacity is limited. To ensure the adequate operations of the smart system, 

occasional maintenance is required, which then also adds up to total costs. Other 

types of costs associated with smart systems deployment could be environmental, 

ethical, and social costs. To overcome cost-related roadblocks,  initiatives 

focusing on cooperative farming are needed that provide; i) support services for 

better handling of costs and needed investments and ii) hardware solutions to 

transform conventional equipment into smart farm-ready machinery to reduce 

high initial costs [237]. 

• Digital division: another factor that is slowing the digitization of the agricultural 

sector is the lack of knowledge of digital technologies and their applications. The 
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majority of farmers have no idea about the significance of digital technologies, 

how to implement and use them, and which technology is suitable for their farm 

and meets their requirements [33]. Hence, it is essential to educate farmers about 

modern farming technologies and systems. Moreover, different strategies are 

needed to build tools using natural language that farmers with low education 

levels can easily understand [238]. 

• Return on investment: in agriculture, the profit margin is very important, like in 

other sectors. When it comes to the implementation of advanced technologies, 

farmers have concerns related to the time to recover the investment and to the 

difficulties in evaluating the advantages [31].  

• Trust building: unlike in other disciplines, building trust regarding the 

effectiveness of smart technologies in agriculture is difficult because many 

decisions affect systems that involve living and non-living entities, and 

consequences can be hard to reverse [35]. Additionally, insufficient proof of the 

impact of digital tools on-farm productivity further intensifies the current 

challenges.  

• Laws and regulations: different regions and countries have different legal 

frameworks which impact the implementation of digital technologies in the 

agriculture sector, particularly in monitoring and agri-food supply [87]. Likewise, 

regulations related to resource allocation (spectrum for wireless devices), data 

privacy, and security also vary from one country to another [87].  

• Connectivity infrastructure: most less-developed countries usually have 

insufficient connectivity infrastructure that limits access to advanced digital tools 

that would help to turn data from heterogeneous sources into valuable and 

actionable insights [29]. 

2.6. Discussion 

This section discusses the main conclusions of RQ1, RQ2, and RQ3. In addition, 

added value, considerations, and future directions are also presented to ensure higher 

accuracy and great advancements in the agricultural industry. 
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2.6.1. RQ1, RQ2 and RQ3 

The present study tried to articulate the emerging digital technologies being 

implemented in the agricultural industry to anticipate the future trajectories of 

agriculture 4.0. By looking at Tables 2-2 to 2-13 in section 2.4, it can be seen some 

technologies such as big data and analytics, wireless sensor networks, cyber-physical 

systems, and digital twins are not significantly explored in agriculture. A reason for 

this gap could be that implementing advanced technologies with more complex 

operations can be expensive, at least in the early experimental phase of their adoption. 

Hence, the development of these technologies in the agricultural industry should 

increase in the coming years. The results of SLR also show that IoT is significantly 

implemented in farms. This is due to the broad functionality of IoT such as in the 

monitoring, tracking, and tracing of agriculture machinery, and precision agriculture 

[39]. It can be said that IoT is one of the main research objectives within the 

agriculture 4.0 approaches. Nevertheless, only a few studies have considered data 

security and reliability, scalability, and interoperability while developing an 

intelligent agricultural system.   

The research findings also demonstrated that most use cases are still in the prototype 

phase. The possible reason could be that most agricultural operations have to do with 

living subjects, like animals and plants or perishable products, and developing 

systems is harder than non-living human-made systems. Another reason might be that 

agriculture is a slow adopter of technology because of the transdisciplinary nature of 

this field, and hence to develop intelligent systems, the agricultural community must 

become familiar will all the digital technologies. Lastly, variations in plant/crops 

species and growth conditions also make the digitization of agricultural systems 

complex [204]. The SLR findings also show that most of the systems are developed 

for open-air soil-based farms contrary to indoor farms (soilless and soil-based). This 

is due to the complex design and management of indoor farms, particularly soilless 

farms where parameters and factors (pH, air temperature, humidity, etc.) to be 

controlled are diverse [22]. But with the introduction of digital technologies and data-

driven computer applications in indoor farms, more robust control of the process can 

be achieved. Furthermore, it is also revealed from SLR that limited research is 

conducted in three ( soil management,  fruit detection, counting, and crop quality 

management) out of nine different service categories mentioned in section 2.3. This 
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corroborates that substantial research and development are needed in some areas to 

ensure the successful digitization of the agriculture industry in developed countries as 

well as in developing countries.   

The complexity of the agriculture ecosystem presents a series of interconnected 

roadblocks that hinder the full integration of digital technologies for agriculture 4.0 

realization. Hence, it is essential to identify potential roadblocks in order to come up 

with strategic solutions to overcome them. This study is an attempt to explore what 

these roadblocks are. Based on the analysis, 21 roadblocks were identified and 

classified at technical and socio-economic levels. These roadblocks are listed in 

section 2.5, which suggests what needs to be done for the digitization of the 

agricultural industry on a larger scale. But it is still not known to what extent the 

elimination or mitigation of these roadblocks assists in the successful integration of 

digital technologies.  

2.6.2. Added value of agricultural digitization 

Based on the analysis, several benefits that can motivate framers and other actors to 

support the digitization of the agricultural industry are identified and summarised 

below. The presented benefits have the potential to maximize the farm’s productivity 

and enhance product quality, but they should not be considered a panacea for 

challenges associated with smart agriculture [237].  

• Improved agility: digital technologies improve the agility of farm operations. 

Through real-time surveillance and forecast systems, farmers or agricultural 

experts can rapidly react to any potential fluctuations in environmental and water 

conditions to save crops [236]. 

• Green process: digital technologies make the farming process more 

environmentally friendly and climate-resilient by significantly reducing the usage 

of in-field fuel, nitrogen fertilizers, pesticides, and herbicides [239]. 

• Resource use efficiency: digital platforms can improve resource use efficiency by 

enhancing the quantity and quality of agricultural output and limiting the usage of 

water, energy, fertilizers, and pesticides [3].  

• Time and cost savings: digital technologies enable significant time and cost 

savings by automating different operations, such as harvesting, sowing, or 
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irrigation, controlling the application of fertilizers or pesticides, and scheduling 

the irrigation [240].  

• Asset management: digital technologies allow real-time surveillance of farm 

properties and equipment to prevent theft, expedite component replacement and 

perform routine maintenance [29]. 

• Product safety: digital technologies ensure adequate farm productivity and 

guarantee a safe and nutritious supply of agri-food products by preventing fraud 

related to adulteration, counterfeit, and artificial enhancement [233]. 

2.6.3. Considerations and future prospects  

The upcoming initiatives would result in significant improvements in the agricultural 

sector. But in order to make things sustainable for small and medium-scale growers, 

roadblocks mentioned in section 2.5 need to be addressed first. Awareness campaigns 

highlighting the significance of smart agriculture at every level of the agricultural 

value chain and promoting innovative ways (such as gamification) to encourage 

stakeholders to take on an active role in the digital revolution can mitigate some of the 

mentioned roadblocks [28]. Government-level initiatives, grants and endowments, 

public-private partnerships, the openness of data, and regional basis research work 

can also assist in coping with potential roadblocks. Lastly, a roadmap can be adopted 

while developing a smart agriculture system, starting from basic architecture with few 

components and simpler functionality, gradually adding components and functionality 

to develop a complex system with the full potential of digitization [39]. These 

considerations can pave the way for the successful implementation of agriculture 4.0. 

The future prospects of digital technologies in smart agriculture involve using 

explainable artificial intelligence to monitor crop growth, estimate crop biomass, 

evaluate crop health, and control pests and diseases. Explainable AI fades away the 

traditional black-box concept of machine learning and enables understanding the 

reasons behind any specific decision [34]. Description of big data through common 

semantics and ontologies and the adoption of open standards have great potential to 

boost research and development toward smart farming. Similarly, to ensure enhanced 

connectivity and live streaming of crop data, 5G technology need to be extensively 

explored [6]. 5G technology will minimize internet costs and augment the overall user 

experience of farm management and food safety by performing accurate crop 
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inspections remotely [241]. Furthermore, it will significantly bridge the gap between 

stakeholders by keeping them well informed on produce availability. Lastly, 

blockchain in combination with IoT and other technologies can be implemented to 

address the challenges related to data privacy and security [242].  

2.6.4. Transition to Agriculture 5.0 

Industrial revolutions have always brought a breakthrough in the agricultural sector. 

As formally discussed in previous sections, agriculture 4.0 has great potential to 

counterbalance the growing food demands and prepare for the future by reinforcing 

agricultural systems with WSN, IoT, AI, etc. While the realization of agriculture 4.0 

is still underway, there is already talk about agriculture 5.0. Agriculture 5.0 extends 

agriculture 4.0 with the inclusion of industry 5.0 principles to produce healthy and 

affordable food while ensuring to prevent of degradation of the ecosystems on which 

life depends [243]. The European Commission formally called for the Fifth Industrial 

Revolution (industry 5.0) in 2021 after observing that industry 4.0 focuses less on the 

original principles of social fairness and sustainability and more on digitalization and 

AI-driven technologies for increasing efficiency and flexibility [244]. Industry 5.0 

complements and extends the industry 4.0 concept to recognize human-centricity, 

sustainability, and resilience [245]. It involves refining the collaborative interactions 

between humans and machines, reducing environmental impact through a circular 

economy, and developing a high degree of robustness in systems to achieve an 

optimal balance between efficiency and productivity.  The enabling technologies of 

industry 5.0 are Cobots (collaborative robots), smart materials with embedded bio-

inspired sensors, digital twins, AI, energy efficient and secure data management, 

renewable energy sources, etc., [244]. In agriculture 5.0 settings, farm production 

efficiency and crop quality can be enhanced by assigning repetitive and monotonous 

tasks to the machines and the tasks that need humans' critical thinking. For this 

purpose, similar to the manufacturing sector, cyber-physical cognitive systems 

(CPCS) that observe/study the environment and take action accordingly should be 

developed for the agricultural sector.  This may include collaborative farm robots 

which will work in the fields and assist crop producers in tedious tasks such as seed 

sowing and harvesting etc. Likewise, digital twins in agriculture 5.0 can also offer 

significant value by identifying technical issues in agricultural systems and 
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overcoming them at a faster speed, detecting  crop diseases, and making crop yield 

predictions at a higher accuracy rate. This shows that agriculture 5.0 has potential to 

pave a way for climate smart, sustainable, and resilient agriculture but as of now, it is 

in the developing phase.  

2.7. Conclusions  

Increased concerns about global food security have accelerated the need for next-

generation industrial farms and intensive production methods in agriculture. At the 

forefront of this modern agricultural era, digital technologies offered by Industry 4.0 

initiative are suggesting a myriad of creative solutions. The scientific community and 

researchers integrate disruptive technologies in conventional agriculture systems to 

increase crop yields, minimize costs, reduce waste, and maintain process inputs. An 

SLR discussing the prevailing state of these technologies in the agriculture sector is 

presented in this study. After applying the SLR protocol, 148 articles were considered 

from the time frame of the year 2011 to 2021. Various research questions pertaining 

to i) current and continuing research trends, ii) functionality, maturity level, farm type 

and tools and techniques used, iii) primary roadblocks, and iv) added value of digital 

technologies; were put forward and answered. Several conclusions are drawn, such as 

the integration of big data and analytics, wireless sensor networks, cyber-physical 

systems, and digital twins in agriculture is only in its infancy, and most use cases are 

in the prototype phase. Likewise, 21 roadblocks are identified and classified at 

technical and socioeconomic levels. To ensure the digitization of the agricultural 

industry, these roadblocks must be analyzed and overcome. The added value of digital 

technologies in the agriculture industry is also identified and presented in the study. 

Overall, this study contributes to the research being carried out around agriculture 4.0. 

The primary limitation of this review is twofold: firstly, only three online repositories 

are considered for literature search (Scopus, IEEE, and Science Direct), and secondly, 

additional keywords and synonyms might return more studies. In both scenarios, it is 

highly unlikely that the overall findings would change. For future work, additional 

research databases and aspects can be considered to provide a holistic overview of the 

agricultural industry in terms of digitization. Moreover, studies targeting agriculture 

5.0, in general, will also be included. 
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Chapter 3 An ontology model to represent aquaponic 4.0 system’s knowledge 

3.1.  Introduction 

The gradual decrease in farmlands due to ongoing trends of increasing population, 

rapid urbanization, anomalous environmental changes, diminishing water supply, and 

resulting food security issues have attracted much attention towards vertical farming 

(VF) practices [8]. In principle, VF is a simple concept that involves growing crops in 

vertically stacked layers. It is essentially a controlled-environment agriculture model, 

which aims to optimize indoor soilless farming techniques such as hydroponics, 

aquaponics, and aeroponics. As one of the modern VF methods, aquaponics has the 

potential to be the future of agriculture as a sustainable farming method with high 

yield and low water consumption. As discussed, being a symbiotic process, the design 

and management of an aquaponic system are challenging, when scaling it up to a 

commercial level. However, through the introduction of automation, smart strategies, 

and connectivity, the aquaponic system's feasibility can be strengthened. 

With the advent of agriculture 4.0—the agricultural counterpart of Industry 4.0—

modern vertical farms can leverage disruptive digital technologies such as the internet 

of things (IoT), cyber-physical systems (CPS), artificial intelligence (AI), wireless 

sensor networks (WSN), big data and analytics (BDA), autonomous robot systems 

(ARS) and ubiquitous cloud computing (UCC) to achieve sustainable intensification. 

Aquaponic 4.0 system is a digital farm based on a smart farming concept that uses all 

these technologies to bring improvements in systems' design and operation by 

ensuring autonomous monitoring and control and intelligent data-driven decisions in 

the fast-processing pervasive environment [246]. The realization of aquaponics 4.0 

brings flexibility and adaptability to the system; however, it requires efficient data 

integration and information flow among different domains. Data can be defined as a 

value (measurement or descriptor) that by itself has no meaning [247]. Data can be of 

two types: i) data created by people, which are mainly distributed through the Web 

(social networks, emails, online television, online broadcasting, etc.) or available in 

form of books, documents, and computer files; and ii) data generated by multiple 

heterogeneous sources such as sensors, IoT devices and suggested services [247]. 

This mixed traffic of data needs to be stored, categorized, mined, and processed to 

extract useful knowledge and utilize it to solve complex real-world problems such as 
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managing complex processes. When this data is placed in context, it acquires meaning 

which then provides information about a certain object [247]. Information that is 

structured and organized as the result of cognitive processing and validation becomes 

knowledge [247]. The continuous evolution of digital technologies, however, has led 

to complex systems’ architectures – generating enormous volumes of data with 

diverse formats. The exponential increase in data size is causing interoperability 

issues making data integration and knowledge extraction complex and difficult [248].  

Recent research has shown that semantic web technology (SWT) plays a key role in 

solving the problems of data heterogeneity, interoperability, interpretation, and 

integration [224], [249]. To ensure reliable semantic modeling, knowledge 

management, and data integration, ontologies are considered promising tools. 

Ontologies are used to store information from multiple sources and provide an 

automatic process known as reasoning to infer new knowledge that has not been 

explicitly incorporated [250]. They are commonly employed in the development of a 

knowledge base - one of the building blocks of a decision support system. Besides, 

ontologies have appeared as an alternative to relational databases (RDB) and are 

considered more powerful than RDB because; i) accessibility of the data is simple in 

ontologies – it is easy to define changes, and 2) Inference of new knowledge from 

existing models is carried out using reasons in ontology, whereas in RDB one needs 

to create every single link manually to infer new knowledge – making RDB difficult 

to manage in case of knowledge modeling of big data [251].  

3.1.1. Research motivation and contribution 

So far, no attempt has been made to develop an ontology model for the aquaponic 4.0 

system. Therefore, this study aims to create an ontology “AquaONT” for the 

aquaponic 4.0 system by utilizing web ontology language (OWL). AquaONT stores 

aquaponics 4.0 knowledge gathered from domain experts, literature, databases, and 

IoT devices installed at the farm. It also builds the semantic relevance among 

fundamental elements of an indoor soilless vertical farm, such as optimal 

environmental parameters, system configuration, and product qualitative aspects. It 

can provide the optimal solution for the operation of IoT devices based on contextual 

data received from the farm, updates on crop quality along with respective causes and 

treatments, and design configuration of grow beds concerning crop characteristics, 
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when integrated with the suitable interface. The practical implementation of 

AquaONT in the context of engineering design (parametric design automation of 

aquaponics grow beds based on crop characteristics) can be found in a study which is 

the extension of this work and is covered in the next chapter (Chapter 3). Overall, the 

current work can be used as a semantic framework to build agricultural applications 

that will allow vertical farming practitioners to access each dimension of aquaponics 

knowledge for more precise decision-making regarding crop production and facility 

layout in aquaponics farms. In summary, the main contributions of this work are listed 

as follows. 

• Review of the knowledge modeling approaches and current state-of-the-art 

ontology models in the agriculture sector. 

• Description of the domain-specific concepts and sub-concepts of an aquaponic 4.0 

farm and the relationships between them. 

• Populating the respective knowledge domains with data and information from 

multiple sources to enable automatic decision-making related to various aspects 

such as process, design, environment, and quality control. 

3.1.2. Chapter organization 

The rest of the chapter is organized as follows. Section 2 presents a theoretical 

analysis focusing on the general concepts of an aquaponic 4.0 system, knowledge 

modeling, and research contributions related to ontology-driven smart systems and 

agricultural ontologies. The research methodology used to develop AquaONT is 

discussed in Section 3 followed by its detailed formulation in Section 4. The 

implementation and validation of AquaONT are presented in Section 5. In Section 6, 

a detailed discussion of the work is provided. Finally, the concluding remarks and 

future directions are presented in Section 7.   

3.2. Theoretical analysis and state of the art 

3.2.1. Aquaponics 4.0 historical landscape 

The historical interaction between the industrial revolution and aquaponics evolution 

is depicted in Figure 3-1. Aquaponics technology was first implemented towards the 

end of the 19th century, when indigenous tools were used to develop the system and 

can be referred to as aquaponics 1.0 [5]. Intensive research was conducted afterwards 



61 

 

 

to determine the efficiency of aquatic plants at filtering and consuming the nutrients 

in wastewater from aquaculture farms, and several electrical devices such as water 

pumps, aerators, and fish feeders were installed, which can be marked as aquaponics 

2.0 [252]. Around the 1970s, technologies like robotics, information technology (IT), 

embedded systems, and software engineering were integrated with the aquaponic 

system to enable precision farming, which can be marked as aquaponics 3.0 [12]. The 

research regarding the implementation of industry 4.0 concepts in an aquaponic 

system started towards the end of 2016 [253]. This can be marked as the beginning of 

aquaponics 4.0—a digital aquaponics farm that involves remote monitoring and 

control of ecosystem parameters, a high degree of automation, and intelligent 

decision-making to ensure high crop yield and quality.  

 

Figure 3- 1. Roadmaps describe the interaction between the industrial and aquaponics 

evolution. 

Applications of various Industry 4.0 technologies in an aquaponic system are reflected 

in Figure 3-2. The realization of such a high level of digitization requires efficient 

data integration and information flow along with knowledge management so that the 

system can vary and adapt its behaviors to different scenarios based on past 

experiences and learning capabilities [254]. 
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Figure 3- 2. Aquaponics 4.0—Applications of Industry 4.0 technologies in an 

aquaponic system. 

3.2.2. Knowledge modeling conceptual overview 

According to Davenport et al., knowledge is a high-value form of information 

combined with experience, context, and interpretation that is applied to decisions and 

actions [255]. To store and represent this knowledge, modeling techniques are 

employed [256]. Based on fundamental theories of knowledge base technology, 

knowledge modeling and manipulation techniques can be classified into four groups 

such as 1) linguistic knowledge base; 2) expert knowledge base; 3) ontology; and 4) 

cognitive knowledge base, and their detailed description can be found at reference 

[257]. For situations in which large data acquisition systems are used, i.e., aquaponic 

4.0 system, ontologies are employed as they support the creation of customized rich 

web-based data platforms and ease data accessibility to interested parties. Therefore, 

for this study, an ontology-based knowledge modeling and manipulation technique is 

employed to model knowledge of the aquaponic 4.0 system. 

3.2.3. Overview of ontology modeling 

Ontology is a branch of metaphysics that is related to the philosophy of the "being". 

Ontology can be defined as a formal, explicit specification of a shared 

conceptualization, where “conceptualization" refers to an abstract model of some 

phenomena in the world that can be identified by its relevant and explicitly defined 

concepts and constraints [258]. Ontologies provide mechanisms to represent shareable 

heterogeneous data among domains, in the form of knowledge models that vary due to 

the complex and dynamic nature of a system. An ontology is typically formulated as a 

tuple, O={C,I,OP,DP}, where C (concept) is a set of instances, I (instance) is the 
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object in the domain, OP (object property) is the relationship between two concepts or 

instances, and DP (datatype property) links instances with literals (integer or string) 

[259]. Most researchers classify ontologies into four categories: 1) application 

ontologies; 2) domain ontologies; 3) representation ontologies, and 4) generic 

ontologies based on generality levels and conceptualization [260]–[263]. In this study, 

a domain ontology is proposed, representing the concepts that are valid only in a 

specific domain—the aquaponics domain. Detailed insights into ontology, its 

architecture, and related computational tools such as SWRL and SPARQL can be 

found at [264]–[268]. To develop an ontology model, Protégé4  is employed, which is 

an open-source ontology editor and framework developed at Stanford University 

[269]. 

3.2.4. Ontology-driven smart systems 

The recent advancements in big data, IoT, and cloud computing have spurred the rise 

of artificial intelligence (AI) in various sectors such as agriculture, aquaculture, 

manufacturing, healthcare, etc. AI is all about data analysis, which is roughly 

classified into two categories: data-driven and rule-based [270]. Traditionally, many 

smart devices and services use a set of rules for situation recognition and inference. 

These rules are extracted from the long-term experiences and knowledge of human 

experts (human learning). Semantic modeling (ontology) is a representative technique 

for this approach - performed on already-built semantic models (a set of rules in 

semantic language) and new data [271]. Today, the focus is more on data-driven 

approaches such as machine learning and deep learning - extensively used in image 

recognition and natural language processing because of their high accuracy. Both 

approaches, however, have their drawbacks and benefits. In semantic modeling, rules 

should fit the real phenomena consistently. The rules may become obsolete if 

circumstance changes dynamically and drastically. In machine learning, assumptions 

are made on the data reflecting the whole phenomena we are interested in. The 

analysis becomes meaningless if the assumptions made are not satisfied [272].  

 

 

4 https://protege.stanford.edu/products.php#desktop-protege 
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Recently, ontologies are increasingly being used in combination with machine 

learning and deep learning techniques to model smart ecosystems such as smart 

homes, smart farms, smart factories, and power grids [36], [260], [273]–[288]. The 

main applications include solving interoperability issues, detecting the cyber-attacks, 

remote monitoring and controlling of system’s parameters and entities, analysis of big 

data, creating and analysis of digital twin models, predicting patient disease, checking 

the accountability of AI systems, improving the monitoring of industrial operations, 

enhancing the flexibility of control solutions in human-robot collaborative cells, and 

optimizing the design parameters for maximum reliability and minimum cost. 

Examples of how ontology and machine learning or deep learning technologies are 

used in these applications are context modeling, semantic filtering, automatic 

ontology population, utilization of background knowledge stored in ontology models, 

developing intelligent decision support systems, and ontology-based learning and 

applications. Table A.1 given in Appendix A provides a summary of relevant 

publications, where ontologies are used in combination with digital technologies.  

The idea of combining machine learning, AI, and ontology modeling techniques is 

relatively new in the agricultural field, and hence, there are only a few studies 

available, which are mentioned towards the end of section 3.2.5. Most of these studies 

have either focused on enabling smart services (monitoring and control) in IoT-based 

farming systems or detection of cyber-attacks using ontology models. None of these 

studies has directly used machine learning in combination with ontology modeling. 

There could be various reasons for that: i) Agricultural data is vast and scattered, and 

no unified model is available to keep that data in one place, ii) Agricultural sector is a 

slow adopter of technology, owing to the increasing complexity of IT (information 

technology), and iii) Presence of complex biological processes, environmental 

parameters, and living organisms. Therefore, the notion of presenting examples of 

different domains (Table A.1 in Appendix A), where ontology is used in combination 

with smart technologies is to highlight the significance of the ontology modeling 

approach and how it can be used in different capacities to bring improvements in a 

variety of systems. 
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3.2.5. Agricultural ontologies 

Ontologies have been a dominant research area for the representation, storing and 

management of agricultural knowledge.  For instance, AGROVOC, initially published 

in the early 1980s is the renowned agricultural thesaurus [289]. AGROVOC is the 

amalgamation of a controlled RDF vocabulary with around 32000 concepts covering 

several areas of interest, such as food, nutrition, farming, fisheries, forestry, and the 

environment. Another prominent ontology model is crop ontology (CO), which was 

designed to provide a structured and controlled vocabulary for significant crops' 

phenotypes for food and agriculture research [290]. Several ontologies are developed 

to represent specific aspects of a crop or a system. For example, Aree et al. proposed 

an ontology model for Thai rice, aiming to present a plant ontology prototype and 

specify crop growth data [291]. In the study by Maleerat et al., domain ontology 

based on the agricultural expertise retrieval framework “ARGIX” was constructed in 

Protégé with the idea of improving the performance of information retrieval using 

simple query terms and association rules mining method for inference [292], [293]. 

Suresh et al. developed a farming ontology with extensible vocabulary to support the 

dataset with agricultural aspects related to production, geography, and meteorology 

[294]. Hifza et al. extended this ontology to include several other classes, such as 

water, pesticide, nutrients, and seed, to assist farmers in decision-making related to 

rice crops [295]. To represent the technical knowledge of the agriculture operations 

field, Elcio et al. presented a formal task ontology model [296]. The field operations 

associated with task agents, agent roles, input resources, task and sub-task 

decomposition, control flow, task concepts, attributes, and relations were defined. 

Most recently, Aydin et al. proposed a generic ontology-based data acquisition model 

to create data acquisition forms based on a model-view-controller (MVC) design 

pattern, with the notion of publishing and using agricultural open data platforms 

[297]. A tool OWL2MVC was developed that integrates the hazelnut ontology to 

illustrate the proposed model's effectiveness for generating data acquisition forms.  

Ontologies are also developed to enable smart farming services. For instance, 

Chukkapalli et al. developed a member farm and co-op ontologies for a connected 

cooperative, a smart farming ecosystem to provide a more accurate and data-driven 

dimension to precision agriculture [283]. AI applications are employed to use the 

information gathered from the cloud for diagnosing the critical conditions of the farm, 
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such as crop diseases, soil conditions, water levels, etc. Sai et al. developed a smart 

farm ontology (incorporates users, sensors, and systems in a farm) for implementing 

an attribute-based access control (ABAC) to evaluate access control requests in farms 

dynamically [285]. Sivamani et al. proposed a vertical farm ontology (VFO) model to 

enable a smart service based on ubiquitous sensor networks [298]. Their research 

concentrates more on the monitoring and controlling of the internal and external 

environment parameters. This work was extended to link VFO with web services 

aiming to assist different entities related to hardware, user, service, and environmental 

factors [299]. In the study by Kim et al., an ontology using a context modeling 

technique is designed for an intelligent service in a vertical farm by integrating 

several environmental and control factors, which were validated for different 

scenarios [300].  

The contributions mentioned above have established the philosophical foundations in 

representing agricultural knowledge, but most of the models are designed for soil-

based methods. For soilless VF, such as hydroponics, aquaponics, and aeroponics 

systems, limited or no research is conducted in relation to knowledge representation 

through ontology models. Moreover, the current models are limited to the 

representation of knowledge concerning a single product type and its growth data, 

monitoring, and controlling of environmental parameters, usage of pesticides, and 

seed plantation. Nevertheless, no heed has been paid to integrating and specifying the 

heterogeneous metadata related to crop quality and soilless VF design.  With these 

observations in mind, this work aims to present an ontology model for representing 

and storing multidimensional knowledge of an aquaponic 4.0 system with a notion to 

use it for developing further applications using machine learning models, which will 

assist aquaponics practitioners in decision-making related to aquaponics farms. 

3.3. Methodology for ontology development 

To represent and model the essential knowledge of the aquaponic 4.0 system, an 

ontology is developed. There are multiple methodologies to create an ontology from 

scratch. In this study, the “methontology” approach is employed to formulate and 

evaluate AquaONT. This approach presents a well-structured framework to develop 

ontologies from scratch by enlisting and tracking the activities necessary in an 

ontology development process [301]. These activities are classified into six stages: 
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ontology specification, knowledge acquisition, knowledge conceptualization, 

knowledge formalization, ontology evaluation, and ontology verification and 

validation, which are presented in Figure 3-3. 

 

Figure 3- 3. Methontology approach for ontology development, adapted from [301], 

[302] 

First, ontology's scope is specified in the ontology specification stage by describing 

and assembling the general aspects such as the ontology domain, the purpose of 

ontology, its intended users, the level of formality, and several key terms. A 

conceptual model is then developed in the second phase – involving organization and 

modeling of the raw data gathered in accordance with the scope during the knowledge 

acquisition stage in a more formal and structured form. A glossary of terms (GT) 

describing physical and conceptual objects related to each knowledge domain is 

created in tabular or graphical form. A conceptual model (taxonomy) is converted to a 

formal model (computable) in the ontology formalization phase, using an ontology 

editor such as Protégé. Domain-specific concepts and sub-concepts are defined in this 

stage. Finally, to test the correctness and coherence and detect incompleteness, 

inconsistencies, and redundancies, formal ontology is evaluated. The evaluation 

process is carried out during each phase, between the phases, and at the end, and it 

involves validation and verification [302]. Verification refers to “building the system 

right” and involves a technical process that ensures that the ontology is built correctly 

as per the requirements established during the specification phase [301]. Whereas, 

validation refers to “building the right system.” It ensures that the ontology 

corresponds to the system that it represents and guarantees that the designed ontology 

performs correctly with an acceptable level of accuracy by checking the quality of the 
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solutions when the system is queried [301]. The validated and verified ontology 

model is then used in different applications for automatic decision-making. 

3.4. Formulation and evaluation of AquaONT 

Following the steps mentioned in section 3.3, formulation and evaluation of 

AquaONT are carried out. Each stage is comprehensively described in the following 

sub-sections. 

3.4.1. Ontology specification 

An informal ontology specification document written in natural language and 

describing the clear and concise purpose and scope of an ontology was generated for 

AquaONT before its formalization, see Table A.2 in Appendix A. The purpose of 

AquaONT was specified in this document, which is to structure, model, and store the 

aquaponic 4.0 system’s knowledge and use it to enable data-driven decisions for 

farmers by developing a functional decision support system. These decisions will be 

related to determining the optimal growth environment, assessing the system 

configuration based on product characteristics, and evaluating the quality of products 

based on the environment-based contextual data. 

3.4.2. Knowledge conceptualization 

To organize and store the gathered knowledge, a conceptual model representing the 

upper-level hierarchy of AquaONT is developed, see Figure 3-4. The resources used 

to gather the knowledge for AquaONT include i) literature, which provided 

information about optimal environmental parameters, optimal growth parameters, 

qualitative aspects of the product, and standard operation of the aquaponics farm; and 

ii) the aquaponic 4.0 system established as a learning factory (AllFactory) at the 

University of Alberta, which provides real-time contextual data [303]. For the 

AquaONT, six knowledge domains are identified for creating a conceptual model 

such as consumer product, production system, production facility, ambient 

environment, product quality, and contextual data. The common dependencies among 

and within knowledge domains are identified as the relationships and are illustrated in 

the model. Several GT e.g., Crop, Fish, Digital_System, 

Qualitative_Value_Assessment, and relationships between these terms, e.g., 

Product_Quality “is_Determined_by” Quality_Aspects, are identified for AquaONT. 
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Figure 3- 4. Conceptualization tree for the upper-level ontological model of 

AquaONT. 

3.4.3. Ontology formalization 

The upper-level ontological knowledge model developed for AquaONT during the 

conceptualization stage is formalized and implemented using Protégé 5.5. Six 

“classes” or “concepts” were created for the six knowledge domains mentioned in the 

previous subsection, and accordingly, “subclasses” were formed, see Figure A.1 of 

Appendix A. The relationships between these classes and subclasses were specified 

using “object properties.” Instances of classes are modeled using “individuals,” and 

attributes are stipulated using “data properties.” In the next sub-sections, all the 

contents are distinctly presented and explained. 

3.4.3.1. Domain-specific concepts 

Consumer product concept 

A product is the outcome of any production system. In an aquaponic 4.0 system, the 

notion of the Consumer_Product class is to provide an abstract view of the type, 

growth status, and growth parameters of ready-to-harvest crops and fish, which are 

primary products in this case [304], [12]. The hierarchical tree-like structure of this 

class is shown in Figure 3-5. Crop as an indispensable part of any aquaponic system is 

further defined to include subclasses such as Crop_Growth_Parameters (optimal 

humidity, light intensity, water temperature, air temperature, pH, carbon dioxide 
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(CO2), etc.), Crop_Type (leafy green vegetables such as lettuce, basil, mint, cabbage, 

and cilantro), and Crop_Growth_Status (the growth rate of a specific crop from seed 

to ready-to-harvest crop). The second product in the aquaponic system is fish, which 

plays a vital role in supplying nutrients for the healthy growth of plants in the RAS. 

The subclasses Fish_Species (fish used in an aquaponic system), 

Fish_Growth_Parameters (water pH level, ammonia content, amount of dissolved 

oxygen, etc.), and  Fish_Growth_Factors ( growth rate, feeding rate, stocking size, 

etc.) are specified under the class Fish. 

Ambient environment concept 

For the healthy growth of crops and fish in an indoor aquaponic 4.0 system, it is 

necessary to ensure that environmental parameters (water and atmospheric) are within 

the optimum range [305]. The Ambient_Environment concept is modeled in this 

regard to specify the threshold of indoor influenceable environmental parameters 

according to the tolerance range of crops and fish considered under the subclasses 

Optimal_Water_Parameters and Optimal_Atmospheric_Parameters. The hierarchical 

diagram of this concept is given in Figure 3-6. In an aquaponic system, living 

organisms can exist only if water and atmospheric parameters such as temperature, 

pH, electroconductivity, ammonia, dissolved oxygen, nitrate and nitrite level, water 

hardness, light intensity, humidity, and CO2, water level, water flowrate, alkalinity, 

and salinity are within the optimal range or else they may perish [305]. 

Contextual data concept 

The IoT-based system has many heterogeneous environments that consist of several 

devices generating context information/data. Therefore, it is necessary to integrate, 

store and share this information between system entities for which ontologies are used 

[306]. The contextual information is usually gathered from sensors through proper 

connectivity channels and is utilized to enable data-driven decisions [254]. Hence, 

contextual information plays a vital role in a ubiquitous environment. The 

Contextual_Data concept in AquaONT specifies the set of environmental parameters 

and crop growth status at a particular location at a scheduled time interval. The 

hierarchical structure of this concept is shown in Figure 3-7. Three subclasses are 

identified for this concept include Sensed_Indoor_Parameter, 
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Current_Outdoor_Parameter and Current_Product_Status. The instances of these 

subclasses are populated by importing cloud data of farm in ontology model using 

transformation rules. 

 

Figure 3- 5. Consumer product concept showing knowledge elements of crop and 

fish. 

 

Figure 3- 6. Ambient environment concept showing a variety of atmospheric and 

water parameters. 
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Figure 3- 7. Contextual data concept showing real-time data that is imported in 

AquaONT. 

Production system concept  

An indoor aquaponic 4.0 system consists of various mechanical and electrical 

components. The Production_System concept is devised to model the knowledge of 

these components under the subclasses Digital_System and Mechanical_System, 

shown in Figure 3-8. The mechanical system of the aquaponic 4.0 farm is comprised 

of NFT (nutrient film technique) grow channels for plant growth represented under 

subclass Hydroponic_Unit and the fish tanks for fish habitat and biofilters for the 

breakdown of ammonia mentioned under subclass Aquaculture_Unit. The design of 

these systems is dependent on the physical characteristics of plants and fishes, such as 

height and width [6]. The subclass Digital_System lists sensors, controllers, and other 

electronic and network devices that are employed in an aquaponic 4.0 farm to achieve 

autonomous services, such as remote monitoring and control [241]. 

Product quality concept 

The Product_Quality concept models and stores the qualitative product aspects, 

quality control standards, and quality assessment criteria and links these attributes 

with the knowledge represented under Consumer_Product, Production_System, and 

Ambient_Environment classes. The diagram showing the hierarchical structure of this 

concept is depicted in Figure 3-9.  The Subclass Qualitative_Aspects represents the 

quality attributes of both fish and crops, such as products' physical aspects ( size, 

shape, color, structure, transparency, or turbidity, etc.) and nutritional value (well-

balanced ratio of carbohydrates, fats, proteins, minerals, etc.) as standardized by local 
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and international food associations [307]. The Quality_Control subclass defines the 

set of procedures adopted to ensure that product meets the desired quality standards 

set in subclass Qualitative_Aspects. It involves two main areas; product inspection 

and product handling. The last subclass defined under this concept is 

Qualitative_Value, which classifies the product as a good or bad quality product by 

comparing the information from product inspection with qualitative aspects. 

 

Figure 3- 8.  Production system concept with digital and mechanical components in 

aquaponic 4.0 farm. 

 

Figure 3- 9. Product quality concept showing potential elements related to qualitative 

aspects. 
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Production facility concept 

The main purpose of an indoor aquaponic 4.0 system is to increase crop yields by 

maintaining optimal conditions, even in the middle of urban areas [2]. 

Production_Facility concept shown in Figure 3-10  is designed to specify the location 

of the aquaponic 4.0 farm.  

 

Figure 3- 10. Production facility concept showing the interactions of farm facility and 

other domains. 

In this study, the production facility is the AllFactory. The crop grow area in the 

facility is divided into multiple sections referred to as crop sectors to grow a variety of 

crops. For instance, Sector_01 is allocated to grow lettuce, and Sector_02 is assigned 

to grow cabbage. Each crop sector has its digital system composed of sensors, control 

devices, controllers, and network access points. 

3.4.3.2. AquaONT instances 

For the AquaONT, a total of 310 instances/individuals are defined for different 

classes and subclasses. For example, the instances defined for Ambient_Environment 

class are Optimal_Light_Intensity, Optimal_Humidity, Optimal_Temperature, and so 

forth. Likewise, to classify the product quality, the instances defined are 

Good_Quality_Crop (crop meeting the required qualitative aspects) and 

Poor_Quality_Crop (crop lacking the desired qualitative aspects). To further express 

the outstanding quality issues, potential causes, and recommended solutions in the 

context of poor-quality lettuce, instances are specified, as shown in Figure 3-11. 

Instances are also defined for subclasses of Production_Facility, Consumer_Product, 

Production_System, and Contextual_Data concepts. For the Contextual_Data concept, 

the instances are real-time data coming from sensors and control devices. For the 
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Production_System concept, the defined instances give information about operating 

voltages, equipment identifiers, suppliers along with a sector-wise description of all 

the sensors, devices, and control architecture installed in the AllFactory. The list of 

instances of some other classes is given in Figure A.2 of Appendix A. 

 

Figure 3- 11. Instances for subclasses of Product_Quality concept specifying 

qualitative requirements. 

3.4.3.3. Object and datatype properties  

The domain-specific concepts defined for AquaONT are related to each other, and 

their relationships are represented through the property module, which consists of two 

types of properties viz object property and the datatype property. Object properties 

represent the ontological relationships that link different classes (concepts) together 

[308]. In AquaONT, 139 object properties are defined to represent all the interactions 

between classes and subclasses. Figure A.3 and A.4 in Appendix A show object 

properties of AquaONT and relationships between classes and subclasses, 

respectively. Object property assertions are also applied to develop relationships 

between different instances. For example, in AquaONT, to determine the solution, 

causes, and quality issues of a poor-quality product, the instances of subclass 

Recommended_Solution are linked with the instances of Quality_Issues through 

object property is_Recommended_for, and instances of Quality_Issues are linked with 

instances of Potential_Causes through is_Consequence_of. The second type of 

property is the datatype property that links an instance to an RDF literal. RDF literals 

can be in the form of Boolean or integer values, as well as string variables [308]. For 

the AquaONT, 53 datatype properties are created, and they are used with 575 

different literals. The list of datatype properties of AquaONT is given in Figure A.5 of 
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Appendix A with Figure A.6 shows the relationship between some of the instances 

and attributes. 

3.4.3.4. Standards, restrictions, and rules 

After creating the instances for subclasses of domain-specific concepts, these are 

assigned numerical and qualitative values through datatype properties. These values 

conform to the standards defined in literature or local bodies. For example, in 

AquaONT, the optimal values for instances of Ambient_Environment class were 

taken from the literature [5]. The value of Optimal_Light_Intensity is PPFD 

(photosynthetic photon flux density) 600-900 nm wavelength, and in terms of PAR 

(photosynthetic active radiation), it is 5 to 17 mols/m2/day. For other indoor 

environmental parameters, the values of instances are defined in the same way. 

Likewise, for assessing the qualitative aspects of the products, the data was taken 

from the Health Canada database [309]. To enable the knowledge retrieval process, 

the real-time data from AllFactory is then compared with these standard values using 

a data query engine. Restrictions refer to the constraints in the ontology model. In 

ontologies, there are three main types of restrictions that can be placed on classes: 

quantifier restrictions, cardinality restrictions, and “hasValue” restrictions [269]. In 

AquaONT, only cardinality constraints are imposed using the object restriction 

creator to limit the number of sensors employed to get variable data. In Protégé, rules 

are usually written in the SWRL editor, which is a built-in development environment 

to work with SWRL. As multiple scenarios occur at the aquaponics farm, for which 

rules are created within the AquaONT model. 

3.4.4. Ontology verification and validation 

Different types of built-in reasoners are available to evaluate an ontology model in 

Protégé for its consistency and coherence. The most used reasoners for ontology 

evaluation are “Pellet” and “HermiT” [310]. For the AquaONT, both reasoners are 

tested with selection based on the empirical results obtained.  After testing, HermiT 

v.1.4.3.456, a Protégé built-in reasoner, is employed for verification and validation of 

AquaONT because it processed the ontology in 2098 ms - lower than for “Pallet”, 

which is 3450 ms. The computation is done with no errors, showing the consistency 

and coherence of AquaONT. To further verify it, the DL queries were created and 
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executed after the reasoner classification [311]. Examples of DL queries and 

corresponding results for AquaONT are shown in Figure 3-12. 

 

Figure 3- 12. DL queries for verification of AquaONT. 

The first DL query is about finding the potential cause of one of the quality issues 

mentioned in the query (class expression) tab. The result shows that the potential 

cause of the Low_Iron_Content of lettuce is High_pH_Level, which is an individual 

in AquaONT. The second DL query is related to checking whether the given value of 

humidity is optimal or not. The result of this search shows that 60%–80% is the 

Optimal_Relative_Humidity, which is an individual of humidity. Nevertheless, it is 

also possible to search for AquaONT according to other scenarios. The results of 

these queries depict the correctness of the captured knowledge and requirements set 

during the specification stage. Likewise, the validation of AquaONT was performed, 

which is discussed in section 3.5. 

3.5. Validation and Implementation of AquaONT 

As stated, AquaONT is developed to capture and store the essential knowledge of the 

aquaponic 4.0 system, which then can be retrieved and used in other applications to 

make informed decisions for a variety of applications related to an aquaponic system, 

from systems’ design and preparation to systems’ control and monitoring. A 

framework in which AquaONT is currently utilized is shown in Figure 3-13. This 

framework has two primary purposes: 1) The first one is to structure how the data is 
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acquired and stored in the ontology model as it populates its instances and to validate 

that the appropriate knowledge is being retrieved; and 2) The second one is to give an 

insight that how AquaONT can be integrated with the aquaponic 4.0 farm through an 

interface (decision support system) to control operations and ensure intelligent 

decision-making regarding design, quality, among others as required by the user. The 

framework consists of four building blocks, including 1) data generation and 

communication, 2) knowledge representation and modeling, 3) knowledge extraction 

and validation, and 4) knowledge application and decision-making. An aquaponic 4.0 

system reflects a context-rich environment that has entities that generate data related 

to indoor environmental parameters and crop growth characteristics. Hence, the real-

time data from these entities is gathered and transmitted to an accessible cloud 

database, which along with other databases such as for product quality, populate the 

instances of AquaONT concepts. The existing and inferred knowledge can be 

extracted from AquaONT and applied to enable autonomous decision-making and 

control of farm operations through an interface, which is part of future work (the 

fourth building block of the framework). A variety of test cases in relation to the 

aquaponic 4.0 farm and the capacity of AquaONT mentioned in section 3.1 were then 

considered to validate the accuracy of ontology. To achieve this, AquaONT was 

uploaded in Apache Jena Fuseki 3.16.0, which is a SPARQL server to retrieve the 

desired information using the SPARQL query language. These test cases are 

explained below. 
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Figure 3- 13. Overview of the implementation of AquaONT in the aquaponic 4.0 system. 
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Test case 1 

One primary function of AquaONT is that it will allow users to keep track of indoor 

environmental conditions at the farm. In case, if conditions are not adequate, 

AquaONT will tell users what to do in that scenario. To validate this, we have 

performed a simple test case using the historical data of the aquaponic 4.0 farm 

(AllFactory) available on the IoT-enabled dashboard, the layout of which is given in 

Chapter 5. The farm has different crop sectors, with each sector has a distinct crop 

with its particular atmospheric parameters and water conditions. This means each 

crop sector has its set of wireless sensors and control equipment. The historical data 

used is related to the growth of Little Gem Romaine Lettuce, which is located in 

sector 1. A sector can be defined as a location where vertically stacked NFT grow 

channels are being kept, and sector 1 is the place where Lettuce is being grown. The 

cloud data is imported in AquaONT, which is then compared to the knowledge stored 

in it, and the required information is retrieved by running SPARQL queries. One 

simple example of this test case is shown in Figure 3-14. Let’s say a user wants to 

know what to do under certain indoor temperature conditions. For instance, the 

temperature value in the farm has exceeded 18℃. The query and corresponding 

results for this case are shown in Figure 3-14.  

From the results, it can be seen that AquaONT has given several suggestions to a user 

on what to do in a particular scenario. For example, it has been suggested a user turn 

off the heater in sector 1, which is represented by GHH01:OFF. This is because the 

optimal temperature to sustain the aquaponic 4.0 ecosystem is 18℃–30℃, and for the 

healthy growth of the lettuce crop, the temperature should be kept between 16℃–

19℃. Whereas, the temperature on the farm at the moment is 24℃, higher than 

needed for the growth of Lettuce. A similar pattern is followed for other temperature 

values (lower and optimal temperature) to see if the AquaONT is giving the correct 

information that corresponds to real-world phenomena. Every time, the query 

produces the same results for the given conditions, proposing the validation of 

AquaONT. These results, later on, can be integrated with some applications such as 

expert systems or decision support systems to control the environmental conditions at 

the farm. In addition to that, these results can also allow new farmers or aquaponics 
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startups to get information on which type of sensors and electronic equipment is most 

suitable for their aquaponic 4.0 farms before building the physical system. 

 

Figure 3- 14. Test case 1—SPARQL query 1 and results (Temperature variations in 

the aquaponic 4.0 farm). 

Test case 2 

To further validate AquaONT, another simple test case is conducted considering a 

different class and scenario. This test case reflects another primary function of 

AquaONT, which is to allow users to get information on different qualitative aspects 

of crops or fish involved in the process. A simple example of this test case is shown in 

Figure 3-15. When considering growing a certain crop in an aquaponic 4.0 farm, a 

few elements are important to be known beforehand: i) what quality issues in lettuce 

crop any practitioner can encounter; ii) what can be the causes of the particular quality 

issue, and iii) what treatments should be employed to solve this particular quality 

issue. Each crop has standardized qualitative aspects in terms of nutritional value and 

physical characteristics recommended by local food authorities that need to be met to 

ensure a marketable product. Hence, the answers to all these questions can be found 

through the knowledge stored in AquaONT, which is imported from literature, 
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databases, and food agencies. Running simple queries, results show the potential 

quality issues for selected crops, i.e., quality issues for the lettuce crops in Figure 3-

15. For each potential quality issue, AquaONT provides the user with information on 

the cause and treatment of that issue. For instance, one potential quality issue of the 

lettuce crop is inadequate length or width at a certain period of its growth cycle or at 

the time of harvesting. The primary cause of this issue could be lower calcium content 

in the nutrient solution, for which the suggested treatment is to add calcium chloride. 

This kind of information will guide a user on what necessary steps should be taken 

before start growing the lettuce crop. 

 

Figure 3- 15. SPARQL query 2 and results for test case 2. 

Another scenario for this case study could be if a user is already growing a certain 

crop in an aquaponic 4.0 farm and wants to compare the quality of the crop with the 

standards available. Let’s say that this user has a crop inspection system installed at 

the farm, from where it is gathering real-time data on crop height and width. This data 

can be populated in the instances of AquaONT. Upon running the query, the user will 

get information on whether the crop is of adequate dimensions or not along with 
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causes and treatments. For this scenario, a proper interface is needed with which 

AquaONT needs to be integrated.   

The aforementioned test cases and queries are created considering the capacity of 

AquaONT mentioned in section 3.1 in order to search and extract useful knowledge of 

real-time events happening at the farm. Upon analysis of the final results after query 

execution, it was observed that AquaONT provides accurate information each time 

the particular query is executed, which proposes the validation of AquaONT. Further, 

these results can be utilized to reconfigure and supervise the aquaponic 4.0 system 

accordingly by integrating AquaONT with an external interface or application. 

3.6. Discussion 

Driven by rapid advancements in AI due to big data, IoT, cloud computing, machine 

learning and deep learning, the agriculture sector is shifting towards a smart farming 

ecosystem to balance the increase in food demands. Not only that, modern farming 

techniques such as hydroponics, aquaponics, and aeroponics are being employed to 

increase crop yield, optimize plant growth, and improve crop quality. Within the 

scope of this study, we focused on the aquaponic system, that couples RAS with 

hydroponics.  Research has shown that the design and management of an aquaponic 

system are complex due to the presence of living organisms such as plants and fishes, 

complex biological processes, and diverse environmental parameters [5]. To deal with 

these issues, the concept of aquaponics 4.0 is introduced in this chapter. Aquaponic 

4.0 system is a digital farm based on Industry 4.0 technologies. It consists of smart 

sensors and IoT devices that bring automation to the system and provide data-driven 

applications to improve farming practices with minimal human and natural resources 

and enable farmers to make optimal decisions for the farms.  

However, developing such a highly digitized system requires efficient data integration 

and knowledge management. With its growing number of devices and their diversity, 

along with the big data from divergent sources, the reality of IoT is challenging 

current approaches and technologies for smarter integration of data, applications, and 

services in the agricultural domain. Providing interoperability among IoT devices and 

other heterogeneous big data sources is one of the most fundamental requirements to 

support object addressing, tracking and discovery, and information representation, 

storage, and exchange. While the Web is seen as a convenient platform for integrating 
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things, Semantic Web Technologies (SWT) can further improve its capacity to 

understand things’ data and facilitate their interoperability along with enabling 

knowledge management and data exchange in a machine-interpretable way. This 

synergy between SWT and IoT domains gives rise to the birth of a new appellation; 

known as the semantic web of things (SWoT) [248]. To develop this semantic web 

stack for IoT, metamodels such as ontologies play a key role in facilitating semantic 

integration and aggregation of data generated by different sources. Moreover, 

ontologies can connect and qualify unstructured, semi-structured or structured data 

formats without any need for standardization. They streamline the process of 

identifying core concepts and improving classification results to collate critical 

information.  

Considering the complexity of the aquaponic 4.0 system with different data sources 

and the unavailability of a unified knowledge model,  AquaONT — aquaponic 4.0 

ontology — is proposed in this work. AquaONT is designed to store and model the 

knowledge of the aquaponic 4.0 system. It gives a full description of concepts 

concerning remote monitoring and controlling of environmental parameters, 

production facility layout based on crop selection, and product quality to analyze the 

quality issues and suggest the desired treatments. AquaONT also enables semantic 

interoperability among multivariate data sources. The knowledge from AquaONT can 

be retrieved and used to make intelligent decisions regarding farm operations and 

system design by integrating it with an external interface (decision support system). 

The final service and quality of application, however,  depends on the quality of the 

knowledge base, which is usually constructed from ontology models [312], [15].  

With a unified knowledge model for the aquaponic 4.0 system, such as AquaONT, it 

is possible to get insights on what are the optimal environmental parameters for 

growing different types of crops, what are the optimal growth parameters for fish, and 

what are the optimal water and atmospheric parameters for sustaining an aquaponic 

4.0 farm. This information will assist farmers in deciding which sensors and IoT 

devices are most suitable for their farm and their choice of the crop before building it. 

This will, in turn, allow farmers to avoid wasting money on the wrong sensors and 

IoT devices. Even if the farm is already running and growing a certain crop, 

AquaONT will assist in finding out if the parameters are within the range by 

collecting the data from sensors and comparing it with standard values. If integrated 
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with some external interface, the knowledge from AquaONT can be exploited to 

control parameters and processes in the aquaponic 4.0 farm.  

 In an aquaponic system, the design of grow bed is directly dependent on the type of 

crop to be planted [6]. Each crop has certain width and height at optimal water and 

environmental conditions that impact the design of grow beds in terms of the spacing 

between plants and between channels. Hence, the same configuration of grow bed 

cannot be used for different crops. The correct design configuration of grow bed 

enables plants to absorb the right amount of nutrients, ensuring healthy crops, high 

crop yields, and enhanced farm productivity [313]. With the AquaONT-driven 

decision support platform, it is possible to visualize the impact of crop characteristics 

on grow bed design that assists farmers in deciding on what design configuration of 

an aquaponics grow bed is suitable for their crop choice and space availability before 

building a physical system. Such an ontology-driven platform can also enable 

parametric design automation by retrieving the data from the ontology model and 

integrating it with some CAD software. This kind of platform can save a lot of money 

by preventing farmers from choosing the wrong materials and saves a lot of time as a 

new design of the system can be built with just one click due to parametric modeling. 

Another significance of AquaONT is that it can provide information on quality issues, 

causes, and recommended treatments for different crops and fish species, which will 

assist farmers in taking necessary steps before building a system to avoid quality 

issues.  

At the moment, AquaONT can only be applied to an NFT-based aquaponic 4.0 farm 

that grow leafy green vegetables such as lettuce, spinach, parsley, basil, and cabbage. 

But it can easily be expanded to include aspects and knowledge of other aquaponic 

4.0 systems such as deep-water culture (DWC) and media-based aquaponics. For this 

purpose, the “Production_System” class will be modified to include subclasses, 

instances, and attributes related to the design configuration of aquaculture and 

hydroponic units.  For instance, DWC uses more water for the hydroponics portion of 

the equipment with a ratio of about seven times as much water for plants as for fish 

[314]. Hence, the design of grow bed, the capacity of fish tanks and the specifications 

of biological and mechanical filters will be different from that of an NFT-based 

aquaponic 4.0 system. This information is required to be modeled in AquaONT before 

using it for different aquaponic systems.  The rest of the AquaONT classes for 
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different aquaponics setups will remain the same if leafy green vegetables are to be 

grown. In case other crops such as fruits, roots, and flower vegetables are to be 

considered, then all other classes of AquaONT will have to be expanded. Overall, the 

concepts of AquaONT can be extended and reused in different aquaponic 4.0 systems. 

Other approaches, such as empirical and theoretical, can be utilized to model the 

aquaponic 4.0 system [315]. These modeling techniques serve different objectives. 

For instance, an empirical approach that uses statistical models can be employed to 

perform an analysis of historical data from previous experiments. This approach is 

useful to estimate potential factors affecting fish and crop production in the aquaponic 

system, which can further be used in future experiments - making the utilization of 

costly research assets more effective. A theoretical approach such as mathematical 

modeling or system dynamic (SD) modeling can be employed to understand and 

optimize the farm for effective management and control of complex processes. The 

theoretical approach offers various benefits over the statistical approach. For instance, 

with theoretical models, it is possible to perform process simulation considering the 

hypothesis, comparative analysis of simulation results with observed data, evaluation 

of proposed model and hypothesis, and optimization of the system, whereas statistical 

models just confirm the hypothesis with no clear evidence of underlying processes 

[315]. Developing a theoretical model, however, requires different parameters that 

usually come from the empirical model [315]. A theoretical approach such as SD 

modeling is widely employed in literature to model the aquaponic system with many 

aims. These include understanding the dynamic behavior of different aquaponics 

processes such as crop and fish growth, waste production and filtration, greenhouse 

climate and hydroponics; evaluating the performance of multis-stage RAS; and 

estimating the energy-efficient greenhouse parameters [316], [317]. SD modeling has 

proven an effective tool as it provides a simulation platform to represent real-world 

entities in the form of equations, which allows us to understand and anticipate 

changes in complex systems. There are also a few drawbacks to this modeling 

approach. For instance, to develop a complete dynamic model for a system, sub-

models of all the contributing entities have to be built and then integrated to ensure 

process synchronization, which is a time-consuming process. In case a new entity 

must be added later on, a new dynamic model has to build for this entity and linked 

with other sub-models. Moreover, different sub-systems and their dynamic models 
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introduce complexities driven by time and spatial scales and multiple interactions 

among the factors [318]. However, with ontology modeling, it is easy to expand 

ontologies by incorporating new entities as classes and linking them with existing 

ones. But to exploit the full potential of the ontology model, it needs to be integrated 

with an external interface.   

While ontologies offer various advantages concerning storing knowledge and solving 

interoperability issues, they also face various challenges. For instance, knowledge is 

described as a priori in ontology models, making them less adaptable to systems 

where the notion is to predict and analyze behaviors of different environments and 

users [294]. These challenges can be resolved by integrating machine learning 

techniques with ontology models in different applications. This is because machine 

learning supports the prediction and analysis of systems using classification, 

clustering, and association identification techniques – bringing adaptability in 

ontology-driven systems. However, one problem with machine learning models is that 

they struggle to explain the rationale for decision-making, where multi-domain 

semantic modeling and rule-based reasoning can excel [272]. The idea of using cloud 

data and underlying essential semantic knowledge with learning algorithms preserves 

the interoperability and re-usability of classification processes and brings intelligence 

to systems.   

However, combining machine learning and ontology modeling is not sufficiently 

addressed in the agricultural domain, but there are several applications available in 

other domains, which are explained in section 3.2.4. These applications focus on 

improving cybersecurity, patient monitoring, design improvement, digital twin 

analysis, etc. Regarding ontology-driven IoT and AI systems for the agriculture 

sector, only a few studies are available, which are explained towards the end of 

section 3.2.5. These applications mainly focus on cyber-attack detection and 

monitoring and controlling of IoT-based farms. The reason behind limited research 

work in the agricultural sector in the context of ontology-driven AI systems or a 

combination of ontology modeling and machine learning approaches could be the 

complex dynamics of agricultural operations and the presence of complex biological 

processes. In this essence, AquaONT is a first step toward introducing an ontology 

model that can be integrated with machine learning models to bring intelligence in 
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aquaponic 4.0 farms by autonomously managing farm operations and providing 

solutions for farm design.   

3.7. Conclusions and future work 

An ontology model, “AquaONT” is presented to model and store the knowledge of 

the aquaponic 4.0 system – a digital farm that uses smart technologies to improve the 

system’s design and operations. AquaONT provides information for the optimal 

operation of IoT devices by comparing contextual data coming from a farm with 

standard/ideal data from experts, taking corrective actions on qualitative issues of 

crop and fish, and designing the configuration of grow beds based on crop 

characteristics when integrated with the suitable interface. This information can assist 

farmers and users in clear decision-making regarding IoT devices, sensors, and other 

components necessary for farm development. To achieve remote control of the 

aquaponic 4.0 farm’s operation, AquaONT can be integrated with the external 

interface, which will exploit the AquaONT knowledge to control the electronic 

devices installed at an aquaponic 4.0 system such as heaters, lights and fish feeders or 

humidifiers, etc. The knowledge of AquaONT can be extracted and used to get an 

insight into crop characteristics and their impact on the design of aquaponics’ grow 

beds, which can be used to make a decision support platform for parametric design 

automation.  

In future work,  an autonomous decision support system will be developed by 

integrating AquaONT and intelligent techniques such as machine learning, deep 

learning, and computer vision for controlling farm operations and crop quality. 

Moreover, it is also possible to investigate the monetary benefits of parametric design 

automation of grow beds. 
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Chapter 4 An ontology model to support the automated design of aquaponic 

grow beds – Application of AquaONT 

4.1.Introduction 

Traditional agriculture methods employed for crop production require vast amounts of 

land, time, and manpower and hence are not very efficient in meeting the growing 

food demands.  The current paradigm, therefore,  poses a need to explore new farming 

practices such as aquaponics mentioned in previous chapters to develop and achieve 

economically viable and environmentally sustainable food production [319]. An 

aquaponic system is comprised of two integrated units: 1) a hydroponic unit that 

consists of grow beds for plant growth, and 2) an aquaculture unit that involves water 

tanks for fish habitat and biofilters for the breakdown of ammonia [320]. These units 

work together in a symbiotic environment to enable plant and fish growth. Primarily, 

depending on the structure of the plants’ grow bed and crop type and size, there are 

three different types of aquaponic system designs: nutrient film technique (NFT), 

media bed, and deep water culture (DWC) [11]. In this work, the NFT-based 

aquaponic system is considered because it is the most popular type of aquaponic setup 

used. Moreover, it uses less water and is suitable for growing leafy green crops. In 

NFT systems, a very thin film of nutrient-rich water is pumped to enclosed channels. 

The top cover of the channel consists of circular or square-shaped pockets known as 

plant sites where plants sit in small plastic cups, allowing their roots to access the 

water and absorb the nutrients [321]. 

The design and management of an NFT-based indoor aquaponic system present 

several challenges when scaling it to a commercial level [5]. These challenges are 

mainly attributable to the design of growing channels based on crop selection. Each 

crop has a certain width and height at optimal environmental conditions that impact 

the design infrastructure of the aquaponic system in terms of plant site spacing and 

distance between grow channels [15]. This in turn affects the system productivity 

which involves crop yields and product quality. Hence, to ensure high system 

productivity, the proper design and placement of grow channels are significant. To 

achieve this, the complex and heterogeneous existing links between grow bed design 

and crop characteristics need to be formally described by appropriately capturing the 

data and managing the knowledge related to these entities. In this essence, ontology is 
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regarded as one of the normative knowledge modeling tools that provide semantic 

interoperability and a general understanding of specialized multidimensional 

knowledge in various domains that is cognitively transparent and accessible to human 

experts and software agents [288], [322], [323]. The ontology models, in combination 

with rule systems, act as strong candidates to construct a decision support platform for 

the representation of different knowledge sources and the facilitation of knowledge-

driven decisions in a reusable and modular manner [312]. 

4.1.1. Research motivation and contribution 

So far, no attempt has been made toward knowledge modeling of the 

aquaponicsystem particularly for the representation of the grow bed design knowledge 

based on crop selection. Therefore, the purpose of this work is to provide a knowledge 

model in the form of an ontology model to support the parametric design automation 

in an indoor aquaponic system with the notion of automatically determining the 

design parameters of grow bed based on crop selection. This ontology model stores 

knowledge gathered from the farm, domain experts, and databases. The inferred 

knowledge is then extracted and used to calculate grow bed design parameters for a 

specific crop. To streamline the decision-making process, a graphical user interface 

(GUI) is developed. This research study allows aquaponic's practitioners to visualize 

the impact of crop selection on aquaponic system design, which eventually will 

facilitate better decision-making regarding crop production in aquaponic farms. 

4.1.2. Chapter organization 

This chapter is structured into 8 sections. Section 2 introduces a knowledge-based 

decision support framework for the parametric design automation of aquaponic grow 

beds based on crop selection. Section 3 provides an overview of the main classes of 

aquaponic ontology, namely, AquaONT, and the relationships between them. 

Governing equations devised to determine the design features of grow beds are 

described in section 4. The user interface developed to visualize the behavior of 

AquaONT is presented in section 5. Section 6 presents a use case considering the 

basil crop.  The analysis of the results obtained in section 6 is covered in section 7. 

Finally, section 8 concludes the chapter by addressing the efficacy of this study. 
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4.2. Decision support framework for automated design of aquaponic grow beds 

The effective decision-making related to the design of grow beds based on crop 

selection in aquaponic farms is contingent upon the representation, extraction, and 

usage of available knowledge about contributing entities. For this purpose, a decision 

support framework is proposed, the layout of which is shown in Figure 4-1. 

 

Figure 4- 1. Decision support framework for automated design of grow beds. 

The proposed framework consisting of three primary stages depicts the complete 

lifecycle of the decision-making process based on the knowledge extracted from the 

ontology model. To represent the aquaponic’s knowledge, first, an ontology model is 

developed by acquiring knowledge from farm and domain experts and unifying it as 

domain concepts. Then, the existing and inferred knowledge about crop 

characteristics and grow bed design features are extracted from the ontology model 

using Apache Jena API5  and SPARQL query language. Then, MySQL Workbench6, 

is used to import and organize extracted knowledge into a database. MATLAB 

 

 

5 https://jena.apache.org/tutorials/rdf_api.html 

 
6 https://www.mysql.com/products/workbench 
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database explorer toolbox is employed to link this database with the MATLAB app 

designer module, which along with various mathematical equations, is utilized to 

develop a graphical user interface (GUI). Finally, the results (design features) 

obtained from GUI are exported to SOLIDWORKS for parametric modeling of the 

final grow bed design. 

4.3. AquaONT: an ontology model for the aquaponic system 

In this section, AquaONT developed in Chapter 2 is used, which is an OWL ontology 

developed to represent and model the essential knowledge of the aquaponic system. 

This ontology model is created in Protégé 5.5, which is an open-source ontology 

editor developed by Stanford University. First, the upper-level ontological knowledge 

model known as base ontology is presented which provides the domain-specific 

concepts related to the aquaponic system. Then, product and production system 

concepts are presented that define the crop characteristics and grow bed features, 

respectively.   

4.3.1. Upper-level ontological knowledge model 

An ontology model, O, represents the dimensions of domain-specific knowledge in 

terms of four fundamental elements referred to as a tuple: O = {C, I, OP, DP}, where 

concept (C) is a set of instances, the instances (I) are the objects in the domain, the 

object property (OP) is the relationship between two concepts or instances, and the 

datatype property (DP) links instances with literal variables (integer or string) [259]. 

Figure 4-2 shows upper-level ontological model of AquaONT, also known as the base 

ontology model. Six “classes” or “concepts” are created to represent the six 

knowledge domains. These concepts are related to each other through object 

properties, which are given in Table 4-1. The class Ambient_Environment specifies 

the optimal ranges of environmental parameters that ensure the healthy growth of 

crops and fish in an indoor aquaponic system. These parameters are classified into 

two categories: 1) indoor environmental parameters, which include water temperature, 

pH, electroconductivity, ammonia, dissolved oxygen, nitrate, and nitrite level, water 

hardness, water level, water flowrate, alkalinity, salinity, air temperature, light 

intensity, humidity, and CO2; and 2) outdoor environmental parameters which 

involve the daily weather conditions, routine climatic changes, day-night times, and 
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seasons. The notion of product in any production system refers to the outcome of the 

process [324]. 

 

Figure 4- 2. Upper level ontological model of AquaONT. 

Table 4- 1. Relationships between classes/concepts. 

Domain Object property Range 

Ambient_Environment,  have_Impact_on Product_Quality 

Production_Facility is_Maintained_at Ambient_Environment 

Contextual_Data is_Received_from Production_Facility 

Consumer_Product is_Output_of Production_System 

Product_Quality is_Characteristic_of Consumer_Product 

Production_System is_Established_in Production_Facility 

In an aquaponic system, there are two primary products: ready-to-harvest crops and 

fish. Consumer_Product class represents the product knowledge in terms of crop and 

fish type, crop and fish growth status, and crop and fish optimal growth parameters. A 

wide variety of crops can be grown in an aquaponic system, but each crop needs a 

distinct environment to thrive and has its own standard height and width at the 

maturity stage or at the time of harvesting. These aspects are significant in 

determining the design of grow beds and, therefore, are also represented under this 

class. Besides biological components, an indoor aquaponic system consists of various 

mechanical and electrical components. Production_System class models the 

knowledge about these components under the subclasses digital system and 

mechanical system. The digital system is further categorized to include sensors, 
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controllers, and other electronic or network devices. Whereas the mechanical system 

subclass represents design features of grow beds, fish tanks, and biofiltration tanks 

with respect to crop and fish type. In an indoor aquaponic system, the idea is to 

control and maintain the optimal environmental conditions to enhance crop yields, for 

which the location of the system plays a significant role. Production_Facility class, 

therefore, specifies the location where the aquaponic system is located and managed. 

This class also represents the workers that are responsible for managing each part of 

the aquaponic system through a centralized system. For remote monitoring and 

control of the aquaponic system, context information is obtained from sensors through 

proper connectivity channels and is utilized to enable data-driven decisions in the 

knowledge model. This context information is related to real-time data of surrounding 

conditions in aquaponics farms and is therefore represented under the class 

Contextual_Data. The Product_Quality concept models the qualitative product 

aspects, quality control standards, and quality assessment criteria and links these 

attributes with the knowledge represented for a consumer product, production system, 

and ambient environment covered in previous concepts.  

To verify AquaONT, Protégé built-in reasoner, HermiT was used. The computation 

was done successfully without errors, showing the accuracy of ontology. Similarly, to 

validate ontology, SPARQL queries were developed and executed. Every time, these 

queries produce the same results for the given conditions, representing the consistency 

and coherence of ontology. 

4.3.2. Consumer product and production system concepts  

Ontologies enable the interoperability of autonomous agents and support the design of 

production systems [325]. In this study, AquaONT is used to enable parametric design 

automation – involving the determination of design features of aquaponic grow beds 

pertaining to each crop. To achieve this, two concepts, namely, Consumer_Product 

and Production_System are employed and extended to include several sub-concepts, 

which are then populated with the knowledge of grow bed design features and crop 

characteristics gathered from domain experts and farms. The detailed hierarchical 

architecture of these two concepts, along with significant sub-concepts and instances, 

is shown in Figure 4-3.  



95 

 

 

The different types of crops are defined as instances (Icrop) under the sub-concept 

Crop_Type. The crops considered in this study are leafy green vegetables: basil, 

chard, lettuce, parsley, and spinach. The characteristics of these crops involve 

standard plant spacing (PS), width (Wi), and height (H) as recommended by 

aquaponics professionals. PS is defined as the distance between two consecutive 

plants on the same channel. These characteristics are the attributes of respective crops 

represented as literals and linked with instances through corresponding datatype 

properties: “hasPlantSpacing”, “hasPlantWidth”, and “hasPlantHeight” respectively. 

 

Figure 4- 3. Architecture of Consumer_Product and Production_System class. 

 Likewise, the design parameters of the grow channels are modeled under the 

instances (Idesign) of the sub-concept NFT_Grow_Channel. These instances 

represent different design categories, and each category specifies a certain width (W), 

length (L), depth (D), plant site spacing (S), plant site size (SS), vertical channel 

spacing (VCS), and horizontal channel spacing (HCS) of an NFT grow system. These 

parameters are the attributes represented as literals and linked with the design 

categories through datatype properties “hasWidth”, “hasLength”, “hasDepth”, 

“hasPlantSiteSpacing”, “hasPlantSiteSize”, “hasVerticalChannelSpacing”, and 

“hasHorizontalChannelSpacing” respectively. Figure 4-4 shows the crops’ basic 

dimensional characteristics and generalized design features of an NFT grow channel. 
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Figure 4- 4. a) Crop characteristics; b) Grow channel design features. 

4.4. Calculation of grow bed design parameters 

Using the attributes specified for instances of sub-concepts- crop type and NFT grow 

channel given in section 4.5 - equations are developed to calculate the design 

parameters of grow bed. For instance, PS and L are used to determine the number of 

plant sites per channel (NPSC). NPSC is defined as the capacity of each channel to 

grow a number of plants. In Figure 4-4b, NPSC is 8, which implies that in this 

particular channel, only 8 plants can be grown. The S on the grow channel is directly 

related to PS and is essentially important to ensure high crop yields. Other yield 

parameters that are impacted by PS in the aquaponic system are plant height, leaf 

area, and leaf number. The general rule of thumb in this essence is to build plant sites 

on each channel and keep the spacing of channels according to the expected width of 

the plant at its maturity stage [177]. NPSC, along with the total number of channels 

(NC) needed to build the complete hydroponic unit, determines the production 

capacity (PC) of the aquaponic system, which is equivalent to the maximum possible 

crop yield. Equations (1) and (2) are developed for computing NPSC and PC, 

respectively. 

𝑁𝑃𝑆𝐶 = 𝐿/𝑆                                                              (1) 

𝑃𝐶 = 𝑁𝑃𝑆𝐶 × 𝑁𝐶                                                      (2) 

The grow channels can be stacked horizontally or vertically or both by maintaining 

the recommended HCS and VCS. Moreover, the farm space must also be taken into 

consideration while choosing NC and respective stacking setups. With horizontally 

stacked NFT channels, the length of the fully developed hydroponic unit is the same 



97 

 

 

as the length of the grow channel, L, whereas the width of (WHU) is equivalent to the 

sum of widths of all channels and horizontal spacings between channels. Equation (3) 

is formulated to determine WHU.  

WHU = (NC ×W) + ((NC − 1) × HCS)                (3) 

Another significant agronomic factor that enhances crop yield is plant density or plant 

population (PD). PD measures the number of plants per unit area, and its optimum 

value varies with the genotype and geographic location [326]. In aquaponic systems, 

the number of plants to be grown refers to the production capacity of the system, 

whereas the unit area is related to the area of the hydroponic component. To compute 

PD, Equation 4 is devised. 

PD = PC ⁄ (L ×WHU)                                        (4) 

These equations use the existing and inferred knowledge from AquaONT to 

determine mentioned design features and to visualize this, GUI is developed, which is 

explained in the next section. 

4.5. AquaONT application: Graphical User Interface  

To visualize the behavior of AquaONT, a GUI is developed using the MATLAB app 

designer tool which is shown in Figure 4-5. This GUI uses inferred knowledge from 

AquaONT, and equations developed in section 4.4. It allows users to make a crop and 

a channel length selection and observe the impact on design parameters in terms of 

numerical value. For better visualization of design variations in the grow channel as a 

3D CAD model, these numeric values are sent to SOLIDWORKS, where they are 

applied to the already-built design, referred to as default parametric design.  

Five fields are created on the GUI to represent the knowledge of the ontology model: 

1) Crop Field, 2) Grow Bed Design Field, 3) Environmental Parameters, 4) NFT 

Channel Selection, and 5) NFT-based Crop Production System. The first four fields 

are populated with existing and inferred knowledge from AquaONT - acquired 

directly through the SQL database, whereas the last field is linked with the set of 

equations created in section 4.4. The Crop Field describes the five leafy green crops 

along with their characteristics, such as H, Wi, and PS [12]. The Grow Bed Design 

Field gives information about the grow bed type, PS, HCS, and VCS of each crop. 

The Environmental Parameters field specifies the optimal growth conditions for these 
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crops. The entries of fields 2 and 3 are auto-populated once the crop is selected. For 

the selection of the right NFT channel, the NFT Channel Selection field is 

incorporated, where the length of the channel is the deciding factor. The channel 

lengths considered are 6 feet, 8 feet, 10 feet, and 12 feet.    

The other parameters under this field, such as the width and depth of the channel, are 

kept constant for the sake of simplifying the model. Moreover, the shape of the plant 

site is chosen to be circular with a diameter of 2 inches. The plant site can also be 

squared in shape. The last field on the GUI is the NFT-based Crop Production 

System. This field uses entries of previous fields and governing equations given in 

section 4.4 in order to calculate parameters. This field is important as it gives 

information about the production capacity of the system along with the length and 

width of the complete hydroponic unit once the user selects the number of channels. 

In addition, three auxiliary fields are created on the lower side of the GUI window, 

which displays the total area of the hydroponic unit, total growing area, and plant 

density (plant population). 

4.6. Use Case - Grow bed design for basil crop  

The use case presented here aims to illustrate the feasibility of AquaONT and GUI. 

For this purpose, the basil crop is considered, which is one of the most common 

economically viable products in aquaponic systems. The optimal environmental 

conditions to grow basil in indoor farms, standard height and width under these 

conditions, and HCS, VCS, and PS are shown in Figure 4-5. These values are 

extracted from AquaONT. Assuming the user selects 6 feet long NFT channel for its 

aquaponic system and his/her farm can accommodate a maximum of four channels. 

After entering these values in the relevant fields in GUI, the design parameters under 

the fifth field are automatically calculated.   

For the given inputs, such as L = 6ft and NC = 4, the results show that only 7 basil 

plants per channel can be grown, and these plants must be placed 10 inches apart on 

each channel.  
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Field 2. Inputs (inferred) Field 1. Inputs (existing) Field 3. Inputs (existing) 

Field 4. Inputs (existing) Field 5. Outputs (mathematical model) 

User input. 

Figure 4- 5. Graphical User Interface for AquaONT design application developed by LIMDA, University of Alberta. 
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In addition, each channel must be placed at a distance of 6 inches from the other. The 

application also calculates the total area, the effective growing area, and the PD of the 

hydroponic unit, which in the case of basil are: 18.25 ft2, 0.61ft2, and 2/ft2, 

respectively, see Figure 4-5.  

Finally, to visualize the CAD model of the NFT grow system for basil, the calculated 

design parameters from MATLAB are imported into SOLIDWORKS. These 

parameters are saved in a design table which enables parametric modeling. The idea is 

to develop a default design of a grow system in CAD software and automatically 

update it with a single click without designing the entire part or assembly again by 

using the new design details stored in the design table. This process is showcased by 

presenting the basic case of the basil crop. The default and updated grow channel 

design for basil is shown in Figure 4-6. Before implementing the parameters saved in 

the design table, L = 96in with NPSC = 8 for default design but after application, L 

becomes 72in with NPSC reduced to 7 – showing the updated design configuration 

for basil. The process is repeated for basil, lettuce, and parsley for different input 

values. The results obtained are explained in the next section. 

 

Figure 4- 6. a) Default grow bed design. b) Updated grow bed design for basil. 

4.7. Results and discussion 

The proposed system is simulated for all the crops mentioned in section 4.3.2. Figure 

4-7 shows the design configurations of the hydroponic unit for three crops with two 

different input sets – including {L, NC} = {72in, 4} and {96in, 6}. The results show 

that for the same channel length, NPSC is different for each crop. This is due to the 

distinct requirement of plant site spacing (S) for each crop such as {Sbasil, Slettuce, 
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Sparsley} = {10,8,12}. Similarly, the production capacity of the hydroponic unit is 

also different for each crop. For the same NC, it is observed that the PC of the system 

for lettuce is 22.22% and 33.33% higher than for basil and parsley, respectively.  If L 

is increased from 72in to 96in and NC is increased from 4 to 6, the resulting NPSC 

and PC will also be increased. For instance, in Figure 4-7(e, f) NPSC and PC for 

parsley are increased from 6 and 24 to 8 and 48, respectively. With these visualization 

results in place, crop characteristics such as PS, Wi, and H significantly impact the 

design parameters of grow channel in an aquaponic system. Having a correct grow 

bed design in an aquaponic system for crop growth is crucial because it ensures high 

yields. Moreover, it also ensures the right amount of water and nutrient absorption, 

which eventually leads to high crop quality with the right nutritional value. In this 

essence, a quick knowledge-based virtual tool assists in decision-making related to the 

proper design of grow bed based on crop characteristics.   

For future work, intelligent techniques such as machine learning, deep learning, and 

computer vision will be incorporated to make the system smart and autonomous. 

Moreover, a cost model will also be integrated to optimize the aquaponic grow beds 

based on market demand. 

4.8. Conclusions 

Aiming at providing a knowledge-based system for automated decision-making 

regarding crop production and respective grow bed design in aquaponics farms, this 

work has proposed a decision support framework. An ontology model, AquaONT, is 

developed to assist in decision-making process, which can be extended to include 

other elements and tested against robust case studies. GUI is developed that uses 

inferred and existing knowledge from AquaONT and mathematical equations to 

calculate design parameters. To visualize the impact of crop selection on the design of 

grow beds, parametric modeling is performed. The analysis of results shows that the 

correct design of grow bed ensures high crop yield and quality. 
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Inputs 

Outputs 

L= length of grow bed, NC = total number of channels/grow beds, PC= Production capacity of system, NPSC = Number of plant 

sites per channel. 

Figure 4- 7. NFT grow bed design configurations for different crops: (a, d) Basil; (b, e) Lettuce; (c, f) Parsley. 
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Chapter 5 Data acquisition and monitoring dashboard for IoT-enabled 

aquaponic facility 

5.1. Introduction 

Aquaponics offers several benefits as mentioned in previous chapters and hence,  can 

be scaled to commercial levels to meet ongoing food demands. The presence of 

diverse parameters in an aquaponic system such as dissolved oxygen (DO), 

electroconductivity (EC), pH, water temperature, light intensity, humidity, and air 

temperature impact the growth rate, yield, and quality of the crops and fish. For 

instance, a low pH level decreases the nitrification process causing stressful 

conditions for fish that often results in fish diseases or death, whereas, high pH levels 

stop the nitrification process which can affect plant growth [5]. Similarly, if the water 

temperature goes out of optimal range, the productivity of the bacteria will tend to 

decrease and the nitrification process will not be successful. Another important 

parameter is DO, which is the amount of oxygen in the water and determines the 

ability to support aquatic life [177]. If the Oxygen level is low, the bacteria will stop 

breaking down the ammonia and nitrite, increasing potential health risks for fish and 

plants. The fish population is also affected by the changes in the EC which is related 

to how fresh the water is. Low levels of EC indicate an unbalanced system and high 

levels indicate that water is polluted, and it may cause the death of the fish population 

[177]. Air temperature and light intensity also affect plant growth. At higher 

temperatures and inadequate lighting, leafy greens can bolt, flower, seed and become 

bitter [5]. The mentioned challenges require keeping these parameters within their 

optimal ranges, which poses a need to monitor the system 24 hours per day and seven 

days a week, which is challenging if done manually.  

The emergence of industry 4.0 technologies such as the internet of things (IoT), cloud 

computing, wireless sensor networks and artificial intelligence (AI), etc., has allowed 

intensive automation, monitoring, and control in the aquaponic system - giving rise to 

the concept of the smart aquaponic system [177]. With smart aquaponics design, 

monitoring and controlling essential parameters can be regulated remotely through 

IoT and cloud computing technologies. In contrast, processing and analysis of 

parameters can be achieved using machine learning and deep learning models.  

Extensive research is carried out to develop monitoring systems and provide clear 

visualization of relevant aquaponics’ parameters. Still, only a few studies have 
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addressed the modeling of each parameter and future autonomous and smart 

applications. Naser et al. presented a smart aquaponic system capable of controlling 

and monitoring the essential aquaponics’ parameters, such as degree of acidity, water 

level, water temperature, and fish feed [59]. An internet-based mobile application was 

also developed to visualize the collected data. Haryanto et al. designed an IoT-based 

aquaponics monitoring system in a real-time setting that uses NodeMcu to collect data 

(dissolved oxygen, pH, temperature, etc.) from sensors and send it to a web server 

[327]. Pasha et al. developed an IoT-based monitoring and control system for 

aquaponics that measures and displays three parameters: pH, temperature, and water 

level [328]. A web interface using web socket protocol is also created to transfer 

information, provide secure server connections, and keep the system running in a real-

time. Odema et al. developed an IoT-based system that allows remote monitoring and 

control of the aquaponics’ parameters such as DO, temperature, pH, etc. A Modbus 

TCP standard protocol is used to pull data from the sensing nodes of a supervisory 

computer [60]. Nagayo et al. created a GSM and Arduino-based monitoring and 

control system that sends alerts to the users when parameters’ values reach dangerous 

levels, such as temperature, relative humidity, light, pH, water level, DO, EC, total 

dissolved solids (TDS), and salinity [329]. A Graphical User Interface (GUI) is also 

designed to display the information which can be extracted using NI LabView. Wang 

et al. designed a data acquisition sensor module consisting of different sensors to 

provide real-time data on temperature, humidity, light, water level, and dissolved 

oxygen in an aquaponic system [330]. Arduino and WRTnod transmit data wirelessly 

to the control and management platform, which stores the data, processes it, and sends 

it to the server for further analysis and data-driven decision-making to control the 

aquaponics’ system. Vernandhes et al. constructed a real-time monitoring and control 

system that uses an Arduino connected to a web server through an ethernet shield 

[61]. A GUI is also developed that enables users to remotely switch on or off different 

devices. 

5.1.1. Research motivation and contribution 

The studies mentioned above have contributed to the enhancement of an aquaponic 

system. But none have focused on constructing smart decision-support models 

capable of predicting and correlating parameters. The key to creating such models is 
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the availability and robustness of well-structured and well-defined data platforms that 

showcase the accurate representation of the system in a real-time. The current work 

aims to develop a cloud-based data acquisition and a monitoring dashboard. The data 

about six different parameters related to water quality and environmental conditions is 

gathered from a wireless sensing module (WSM) that was designed and implemented 

for an aquaponic system in previous work [331]. The data is then uploaded wirelessly 

to a dashboard, providing real-time insights into the monitored aquaponic system. The 

successful deployment of this work will stimulate the building of data-driven models 

that will autoregulate the parameters within optimal ranges and promote the 

development of decision support systems for accurate system design, focusing on 

maximizing yield and quality control. 

5.1.2. Chapter organization 

The remainder of the chapter is structured as follows: Section 2 will present the 

architectural design employed to develop a data acquisition and monitoring 

dashboard, Section 3 will discuss the results and discussion, and finally, Section 4 will 

discuss conclusions and prospects. 

5.2. Data and monitoring dashboard development 

To develop a data acquisition and monitoring system for an aquaponic facility, this 

study uses the three-tier IoT architecture [332]. The three layers are perception, 

network, and application, as shown in Figure 5-1. In general, the  IoT architecture 

refers to a framework that defines the physical components, the functional 

organization and configuration of the network, operational procedures, and the data 

formats to be used [332].   

In an aquaponic system, the perception layer, also known as a physical layer, is used 

to sense and collect relevant information related to changes in the environmental 

conditions, water quality, and crop and fish growth status and automatically control 

the parameters to maintain an equilibrium of the system. In this study, the perception 

layer is comprised of a WSM and a camera module, which is installed on the 

hydroponic unit, a nutrient film technique (NFT) based system located at the 

Aquaponics 4.0 Learning Factory (AllFactory, University of Alberta, see Figure 5-2). 

The primary components of WSM and the camera module are listed below: 
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Figure 5- 1. Architectural design of the data acquisition and monitoring system. 

Wireless sensing module: 

• 1× PH-4502C liquid pH value detection sensor 

• 1× Gravity analog electrical conductivity sensor 

• 1× DS18B20 water temperature sensor 

• 1× DHT22 air temperature and humidity sensor 

• 1× TEMT6000 LDR sensor 

• 1× ESP8266 wireless sensor 

• 1× 2-channel relay module 

• 1× 5V power supply 

• 1× Arduino UNO USB microcontroller 

     Camera Module: 

• 2× ELP 1080P webcam (2.8–12 mm HD Varifocal Lens) 

The complete development and working of WSM are detailed in a previous work by 

the authors [331]. For this system, the leafy vegetable Little Gem Romaine Lettuce is 

chosen. A Raspberry Pi 4 (Model B Rev 1) controller is programmed to receive the 

data from the WSM (wirelessly) and camera module (through USB) simultaneously 

after 30 min from 6:00 h to 18:00 h. In total, around 1000 data points and 1000 

images (500 top views and 500 side views) with three plants each are collected over 
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the period of one month (December 1st – December 31st, 2021). One set of growth 

lights (T5 high output bulb, full daylight spectrum, 24 W) is also installed, which are 

programmed to work at on/off intervals of 12 h. The temperature and humidity levels 

of the lab are maintained to meet the optimal ranges of essential aquaponics 

parameters. 

 

Figure 5- 2. Physical system with cameras, sensors, and grow lights. 

The network layer realizes the data transmission, routing, and control [1]. The 

communication technology (equipment and programs used for data transmission) and 

communication protocol (communication rules and unified formats) are the primary 

elements of this layer. In this study, Wi-Fi technology is used for local network 

connection via the device’s local Internet Protocol (IP) address to transmit data from 

the perception layer to the last layer. 

The application layer provides a platform built on the cloud for data storage, 

visualization, and analysis [241]. Task-specific applications and dashboards can be 

developed in this layer to monitor and control the system, make predictions on data, 

and generate data-driven decisions. This study uses the Google cloud platform to 

develop a monitoring dashboard. In particular, Google sheets are used to store data, 

and Google data studio is used to build a dashboard for data visualization and analysis 

in a real-time setting. The complete layout of the dashboard is shown in Figure 5-3 as 

well as in Figure B.1 to Figure B.5 in Appendix B. It consists of four tabs: data 

acquired, data visualization, parameter monitoring, and crop monitoring. The `data 
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acquired` tab imports data related to six parameters (air temperature (air T), relative 

humidity (RH), light intensity, pH, water temperature (water T), and 

electroconductivity (EC)) from Google sheet and displays concerning the date and 

time it is taken. The `data visualization` tab displays the time series plots of all six 

parameters. The `parameter monitoring` shows the parameter’s measurements in the 

form of a gauge meter, along with top and side images of the lettuce crop. 

Lastly, the `crop monitoring` tab displays the links (respective Google drive folder) 

for top and side images of the lettuce crop. In the future, the dashboard will be 

updated to include parameters related to the aquaculture unit, and a new tab, `fish 

monitoring`, will also be added. Currently, the data from the aquaponic system is sent 

to the cloud every 30 minutes; hence, the refresh rate of the dashboard is set at 30 

minutes, which means it is automatically updated with new data every 30 minutes. 

5.3. Results and discussion 

The process starts with raspberry pi sending the commands to WSM and the camera 

module. After receiving commands, both modules retrieve the required data and send 

it back to a raspberry pi. The data is comprised of sensor values and top and side view 

images of the lettuce crop. Upon receiving the data, raspberry pi sends it directly to 

the Google cloud platform, where the first data is stored in a Google sheet, see Figure 

5-4. The data from the Google sheet is then imported into the dashboard developed in 

Google data studio. Figure 5-5 shows an example of time series plots of six 

parameters displayed on the data visualization tab of the dashboard. To balance the 

aquaponic system for healthy growth of crops, the optimal ranges of the six 

parameters are: air T = 18℃ – 30℃, RH = 60% – 80%, light intensity = 400 lux – 

500 lux, water pH = 6.5 – 7.0, water T = 17℃ – 30℃, and water EC = 100 – 3000 

μSiemens/cm. Figure 5-5 shows the variations of these parameters over time. 

Measurement of ambient light sensor shows values greater than 400lux for 12-hour 

intervals between 6:00 h to 18:00 h and lower than 50 lux at all other times. Tab 

parameter monitoring, shown in Figure 5-3 and Figure B.4 of Appendix B, also 

provides the path (URL link) where images of crops are stored, which are captured at 

the same instance as sensor values. These images can be accessed by clicking the 

buttons, namely, Crop-Top-View and Crop-Side-View, available at the bottom of the 

tab. The dashboard can be accessed by inserting the provided credentials (username 
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and password). The monitoring dashboard ran smoothly throughout the experimental 

phase without experiencing data loss and stability issues. The proposed IoT-based 

monitoring dashboard provides a way forward to integrating smart technologies and 

prediction tools in an aquaponic system. 

Apart from basic implementations such as remote monitoring and data visualization, it 

can be used as a robust database to work with deep learning and machine algorithms 

for future smart applications. Moreover, the well-structured and well-defined data 

acquisition and monitoring system is also vital to constructing accurate knowledge-

based decision support systems. Based on this monitoring dashboard, the authors have 

developed a knowledge-based application for the automated design of aquaponics’ 

grow beds which is presented in Chapter 4. The proposed dashboard can further be 

extended to integrate heterogeneous data from multiple modules installed at different 

locations in a commercial-level setting. 

5.4. Conclusions  

The dashboard is developed using the Google cloud platform to import and display 

data from six sensors and two cameras installed at the hydroponics unit of the 

aquaponic facility in a real-time. The monitoring dashboard is available on the cloud, 

which extends the remote monitoring capability of the facility while eliminating the 

need to perform on-site parameter monitoring manually. 

Currently, the dashboard only considers parameters’ values and images from the 

hydroponics unit. No sensors are installed at the aquaculture unit because of the 

limitations of internal regulations about animal experimentation. In future work, 

WSM will be upgraded to include aquaculture sensors such as dissolved oxygen, 

ammonia, nitrites and nitrates, salinity, and dissolved solids, among others. Likewise, 

the dashboard will be upgraded accordingly. 
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Figure 5- 3. Layout of dashboard for IoT-enabled aquaponic system.
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Figure 5- 4. Example of data stored in Google sheet. 
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Figure 5- 5. Time series plots of six parameters in dashboard. 
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Chapter 6 Crop Diagnostic System: A robust disease detection and management 

system for leafy green crops grown in an aquaponic facility  

6.1. Introduction 

6.1.1. Research motivation and contribution 

Despite all the advantages offered by aquaponics technology, a few challenges 

mentioned in Chapter 1 need special attention, particularly considering its large-scale 

implementation [333]. One of these challenges is related to crop diseases resulting 

from an either nutrient deficiency or inadequate management of the system, impacting 

crop quality and causing crop wastage [19], [334]. As Khirade and Patil pointed out, 

identifying crop diseases and applying disease management practices are key to 

preventing losses in the yield and quantity of agricultural products [335]. For this 

reason, early detection of disease outbreaks is crucial for the progress of aquaponics 

farms. Traditionally, crop diagnostic is performed by agricultural specialists who 

visually examine the plant leaves. This practice, however, is subjective, destructive, 

time-consuming, and labor-intensive [336]. Moreover, it also requires the experts to 

be proficient with extensive knowledge of various diseases, their symptoms, and 

treatments [337]. Other methods include chemical analyses, leaf color chart (LCC) 

matching, soil plant analysis development (SPAD), hyperspectral imaging, and 

spectral remote sensing, which again are either time-consuming or costly or 

destructive techniques [338]. To address these problems, different automatic crop 

disease detection systems based on artificial intelligence (AI) techniques such as 

machine learning and deep learning are developed as they offer contactless, rapid, 

environmental-friendly, and accurate methods for performing a non-invasive 

evaluation of crops’ health and quality [339], [340]. Deep learning techniques offer 

two significant advantages over machine learning techniques. First, the feature 

extraction process is automatic, and second, the time to process large datasets of high 

dimensions is significantly reduced [339]. 

In addition to disease detection, it is also paramount that farm practitioners and 

researchers have access to relevant information about crop management strategies that 

allow them to pick up methods and treatments appropriately to prevent diseases, 

thereby gaining both economic and environmental benefits [158]. In most cases, such 
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information is dispersed throughout multiple heterogeneous data sources — posing a 

need for a unified model that contains knowledge about the causes and treatments of 

different crop diseases. Semantic technologies such as ontologies have proven 

effective for data integration in multiple domains [341]. An ontology is a formal and 

explicit specification of a shared conceptualization [342]. The logical formalisms 

behind ontological models allow autonomous agents to interpret the information that 

is being processed [268]. Ontology can be used to construct a knowledge base 

containing relevant information about causes and suggested treatments of crop 

diseases, which can be extracted upon disease detection [341]. With this information, 

farm practitioners are able to get clear guidelines to effectively perform crop 

monitoring and disease management.  

In this study, an automatic system based on deep learning techniques is presented for 

the detection and classification of diseases in four leafy green crops, lettuce, basil, 

parsley, and spinach, grown in an aquaponic facility. Taking advantage of semantic 

technologies, an ontology model, ‘AquaONT’  developed by authors in chapter 3 is 

used that contains knowledge about causes and treatments of different diseases. This 

ontology model is integrated with a disease detection system through an interface 

established on a cloud-based application. 

6.1.2. Chapter organization 

 The remainder of the chapter is structured as follows: Section 2 summarizes the most 

recent literature related to crop disease detection systems, Section 3 presents the 

methodology used to design the proposed system, Section 4 discusses the 

experimental results and findings, and finally, Section 6 concludes the chapter and 

presents the future prospects. 

6.2. Related work 

The rapid developments in AI have made a major breakthrough in deep learning (DL) 

and computer vision (CV) technologies by solving complex problems like image 

classification, object detection, speech recognition, voice recognition, natural 

language processing, and medical imaging, among others [21]. In particular, 

convolutional neural networks (CNNs) in combination with computer vision have 

proved their efficiency in these fields and are widely being integrated into agriculture 
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for automatic crop disease detection — presenting a reasonable alternative to 

traditional practices. In recent years, several models and applications have been 

developed for crop disease identification and diagnosis. This section investigates 

some latest works present in the literature. 

Fuentes et al. combined ResNet with Faster R-CNN, R-FCN, and SSD. They 

proposed a method to detect the diseases and insect pests of tomato plants, achieving 

the effective identification of nine different types of diseases and insect pests [181]. 

Chen et al. proposed a method to detect rice plant diseases using the DenseNet model 

of deep transfer learning [343]. To identify the cucumber disease spots in 

greenhouses, Ma et al. developed a CNN-based system, combining a compound color 

feature with a region-growing algorithm [344]. A disease recognition algorithm based 

on VGGNet and InceptionV3 with reduced model size and improved recognition 

accuracy is proposed by Rahman et al. for rice plants [345]. Oppenheim et al. 

proposed a disease classification algorithm based on an improved VGG network for 

accurate and quick identification and classification of spots on potato crops [346]. A 

method based on an improved CNN is proposed by Fan et al. to identify nine kinds of 

common corn diseases from images with a complex background [347]. Khan et al. 

proposed an apple disease detection system that works in two stages [337]. Based on 

the Xception model, the first stage classifies whether the leaf is healthy or diseased, 

and the second stage, based on Faster-RCNN, performs disease detection. Qi et al. 

developed a disease recognition system based on an improved YOLOv5 (squeeze-

and-excitation (SE) module is added) model to identify the tomato virus diseases in 

the greenhouse [348]. Nandhini et al. proposed a deep learning model that combines 

RNN and CNN for disease classification and early prediction in the Plantain tree 

[349]. Abbas et al., 2021 proposed a deep learning-based method for tomato disease 

detection that utilizes the Conditional Generative Adversarial Network (C-GAN) to 

generate synthetic images of tomato plant leaves [350]. A DenseNet121 model was 

then trained on synthetic and real images using transfer learning to classify the tomato 

leaves images into ten categories of diseases. An efficient detection model (EFDet) 

consisting of an efficient backbone network, a feature fusion module, and a predictor 

is proposed by Liu et al. for the detection of cucumber leaf diseases in complex 

backgrounds [351]. (Mathew and Mahesh, 2022) proposed a YOLOv5-based disease 

detection model to detect bacterial spot disease in the bell pepper plant from the 
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symptoms seen on the leaves. A framework is proposed by Barosa et al. for an 

aquaponic system based on image processing and decision tree methodology that 

performs disease detection of four leaf species, eggplant, chili, citrus, and mandarin. It 

automatically generates a report which is sent to the owner through the mobile 

application if the disease is detected [158]. Musa et al. presented a CNN-based 

approach for detecting plant disease in smart hydroponics, providing a tool to the 

farmers capable of doing the task of an agricultural extension worker with even better 

accuracy [352]. Lisha et al. developed an application based on image processing and 

SVM to classify apple diseases [353]. Yudha Pratama et al. proposed a model based 

on Faster R-CNN with Inception V2 algorithm to recognize the diseases in 

hydroponic lettuce [354].  

The aforementioned studies have significantly contributed to the scientific and 

research community. However, the analysis shows that most disease detection 

systems are developed for open-air farms. There are only a few systems that are 

developed for modern farming systems, such as aquaponics or hydroponics. Most 

models are developed considering multiple diseases of only one crop. Moreover, to 

the best of the authors’ knowledge, no unified disease detection system is proposed 

for identifying diseases of multiple leafy green crops grown in aquaponics facilities. 

Disease detection in leafy green presents various challenges. For instance,  

sometimes, a strong resemblance exists among the foliage of different leafy green 

crops that might impact the performance of the detection system. Secondly, due to 

differences in light illumination during imaging, the visual symptoms of different 

diseases may appear similar. Another challenge is the availability of a dataset of leafy 

green crops that can be used for disease detection. Deep learning models require a 

huge amount of data for training, and to the best of the authors’ knowledge, there is 

no sufficient-sized large-scale open-source dataset available that can be utilized for 

this research. There are few datasets such as PlantVillage, PlantDoc and CropDeep 

[355], [340], [356]. PlantDoc and PlantVillage are open-source datasets with no 

categories of leafy green crops. CropDeep dataset contains images of some of the 

leafy green, but it is not open-source. Lastly, none of the aforementioned models 

provides information related to the causes and treatments of detected diseases. 

Apart from AI techniques, ontology-based systems are also developed over the years 

for plant disease diagnosis and treatment recommendations. Jearanaiwongkul et al. 
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developed an ontology-based expert system called ‘RiceMan’ for disease 

identification and control recommendation in rice crops [357]. Likewise, Rodríguez-

García et al. proposed a decision support system based on an ontology model for crop 

pests and disease recognition [341]. It also provides information on agriculture 

practices and permitted pest control measures. In these systems, users are required to 

select crop and observed symptoms from the list for further processing, which is a 

time-consuming process. Whereas, in deep learning models, this information can be 

obtained by using crop images. Deep learning techniques can be combined with 

ontology models to develop efficient decision support systems for disease 

management in crops. The idea of combining the two techniques is relatively new in 

the agriculture sector, and hence, limited work is done in this regard that primarily 

focuses on enabling smart services (monitoring and control) in IoT-based farming 

systems or detection of cyber-attacks [22]. 

Considering the research gaps and potential opportunities, this study aims to create a 

dataset consisting of high-quality RGB images (healthy and diseased) of four leafy 

green crops: little gem romaine lettuce, spinach, parsley, and basil. This study also 

aims to develop a crop diagnostic system based on deep learning models and ontology 

models for detecting diseases and identifying causes and potential treatments in stated 

crops, respectively. 

6.3. Research methodology 

The block diagram illustrating the three sequential modules of the research 

methodology is shown in Figure 6-1. The first module involves the preparation of the 

dataset and training of classification and object detection models.  The disease 

detection model works in three phases. The first and second phase uses lightweight 

classification models to classify the type of crop and identify whether the classified 

crop has a disease or not, respectively. Phase 3 is the detection stage which uses an 

object detection model to detect and localize the diseased and non-diseased spots in 

the crops. The third phase also tells the class of the diseased spots. The purpose 

behind adding two classification phases before the detection phase is three-fold. First, 

to improve the detection performance by reducing the number of wrong detections 

which could arise as the model has to identify and localize different disease spots of 

varying sizes. Second, to determine the characteristics of the crop identified in the 
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first phase in relation to aquaponics’ system design by linking it with the knowledge 

model. Lastly, to reduce the overall processing time by filtering out invalid inputs in 

the second phase. The second module aims to extract the instances of relevant classes 

such as potential causes and treatments of detected diseases from the ontology model 

‘AquaONT’ developed by authors in chapter 3. In the third module, a cloud-based 

application is developed using Streamlit, where a pre-trained disease detection model 

and ontology model are deployed to obtain a complete crop diagnostic system. Upon 

identification of the crop in phase 1, its characteristics in relation to optimal 

environmental (pH, temperature, illumination, etc.), growth (width, height, area, etc.), 

and grow bed design (plant site spacing) parameters for an aquaponic facility are 

extracted from ontology model using OWLready2  (ontology-oriented programming 

package in Python). The authors have conducted a study in chapter 4 that identified 

design parameters as vital knowledge in ensuring high crop yields and product quality 

in an aquaponic facility. Likewise, once the disease and its type are detected in phase 

3, the potential causes and recommended treatments are extracted from the ontology 

model. Each element of each module is presented in detail in the following 

subsections. 

 

Figure 6- 1. Proposed methodology for disease detection and control 

recommendation system. 

6.3.1. Dataset preparation 

The dataset preparation involves three steps, i) data acquisition, ii) data annotation, 

and iii) data augmentation, which are detailed below. 

6.3.1.1. Data acquisition  

This study considers four leafy green crops, lettuce, basil, parsley, and spinach. The 

dataset consists of healthy and diseased images of these crops, which are acquired 

from different sources such as NFT-based aquaponic facility built in the Allfactory 
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4.0 Lab (University of Alberta, Canada), the Google search engine, and Ecosia. The 

diseases considered for the four crops while developing the dataset are given below. 

• Lettuce: Bacterial leaf  spot and Downy mildew 

• Basil: Downy mildew 

• Parsley: Septoria leaf spot 

• Spinach: Downy mildew and Stemphylium leaf spot 

These six diseases are considered as they are common in mentioned leafy green crops 

when grown in a greenhouse environment [358]. To enhance the flexibility of the 

model to correctly classify and detect disease, it is ensured that images have non-

homogeneous backgrounds, different illumination conditions, and disease maturity 

stages.  A total of 2000 images are gathered from all the resources. Among these 

images, 800 images belong to a healthy category of each crop (4×200), and 1200 

images belong to diseases mentioned above (5 ×240). Figure 6-2 shows some of the 

sample images from the dataset. 

6.3.1.2. Data annotation 

Data annotation is one of the vital steps for the successful development of object 

detection models. The process is manual and involves labeling the desired objects in 

an image with a label or tag that refers to a particular class. The labeled data is used 

during the training of the model. There is a number of open-source annotation tools, 

but in this study, LabelImg7 is used. LabelImg is a python based graphical annotation 

tool that supports a variety of deep learning algorithms. For instance, it generates 

annotations in COCO JSON format, XML files in PASCAL VOC format, and  YOLO 

Darknet TXT format with the addition of a YAML file containing model 

configuration and class values [348]. In this study, the annotations are generated in 

COCO JSON and YOLO Darknet TXT formats because, in the disease detection 

phase, two object detection models are tested to design the final system. 

 

 

 

7 https://github.com/tzutalin/labelImg 
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Figure 6- 2. Samples from leafy green image dataset. 

6.3.1.3.Data augmentation 

Next, a data augmentation process is performed to supplement and enrich the dataset. 

This helps increase the model's generalizability and overcome the problem of 

overfitting. Moreover, it also allows the model to learn as many relevant features as 

possible. This study uses Albumentations, a Python library, for fast and flexible image 

augmentations [359]. The different augmentation techniques applied are flip, rotation, 

noise, blur, and brightness. Figure 6-3 shows examples of different augmentation 

operations. After applying the data augmentation, the final dataset comprises 2640 

images with their annotations. The final distribution of the dataset is presented in 

Table 6-1. For all three models in three phases, 75% of the dataset is used for training, 

20% for validation and 5% for testing.  
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Figure 6- 3. Example of different augmentation operations applied on original image. 

Table 6- 1. Distribution of dataset among four crops. 

Crop Healthy 
Diseased 

Total 
Disease 1 Disease 2 

Lettuce 240 280 280 800 

Basil 240 280 - 520 

Spinach 240 280 280 800 

Parsley 240 280 - 520 

6.3.2. Disease detection model development 

Object detection is a complex task, and disease detection of leafy green crops comes 

with its own set of challenges. To overcome these challenges, the detection process in 

this study is divided into three primary phases, which are discussed in the next 

subsections.  Figure 6-4 shows the full protocol followed to develop the proposed 

disease detection system. 

6.3.2.1. Phase 1: Crop classification  model 

The first phase of the proposed system uses a lightweight CNN architecture to classify 

input images into one of the four types of crops: lettuce, basil, parsley, and spinach. 
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Recent years have witnessed the birth of numerous CNN architectures such as 

AlexNet, VGG, Inception, Xception, ResNet, Inception-ResNets, etc.; each offers 

several advantages and disadvantages listed in [360]. The crop classification model 

developed in this study is based on ResNet-50 (Residual Network). ResNet-50 is one 

of the variants of ResNet having 50 deep layers. It has a simple design and high 

accuracy and is suitable for smaller datasets  [361].  ResNet-50 is similar to the 

typical deep CNN structure with an additional identity mapping capability shown in 

Figure 6-5 [361]. ResNet predicts the delta that is required to reach the final 

prediction from one layer to the next and hence reduces the vanishing gradient 

problem by allowing this alternate shortcut path for the gradient to flow through. The 

identity mapping used in ResNet allows the model to bypass a CNN weight layer if 

the current layer is not necessary, which helps in avoiding the overfitting problem of 

the training [362]. 
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Figure 6- 4. Protocol for disease detection process.
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Figure 6- 5. A residual building block for ResNet-50 [361]. 

In this study, ResNet-50 is used as the base model, and its last layer is replaced with 

one Global Average Pooling layer followed by one Dense layer (fully connected 

layer) of size 1024 and activation function ReLu followed by Output layer for making 

final predictions, and it uses Softmax for the classification task. The crop type 

identified in this stage saves to a folder and also acts as an input to the next phase. 

6.3.2.2. Phase 2: Crop health classification  model 

Phase 2 of the system also uses ResNet-50 and classifies the input from phase 1 into 

one of the following eight classes.  

i) Lettuce-Healthy 

ii) Lettuce-Diseased 

iii) Basil-Heathy 

iv) Basil-Diseased  

v) Spinach-Healthy 

vi) Spinach-Diseased 

vii) Parsley -Healthy 

viii) Parsley-Diseased 

A similar architectural design of ResNet-50 is followed in phase 2 as discussed in 

section 6.3.2.1 except for the Output layer, which now has eight classes. If the input 

image is classified into one of the ‘Diseased’ crop categories, it goes to phase 3. On 
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the other hand, if any of the ‘Healthy’ crop categories are identified, the process ends, 

and the classified image does not go to the next phase for further processing. 

6.3.2.3. Phase 3: Crop disease detection  model 

The third phase of the proposed system is disease detection, which involves 

classifying and localizing the diseased spots in an image and classifying them into one 

of the disease classes mentioned below.  

i. Lettuce-Bacterial leaf spot  

ii. Lettuce-Downy mildew 

iii. Basil-Downy mildew 

iv. Parsley-Septoria leaf spot 

v. Spinach-Downy mildew 

vi. Spinach-Stemphylium leaf spot 

This phase activates only when the input from the previous phase is one of the 

‘Diseased’ categories. To develop a disease detection model, object detection 

algorithms are used. In the past recent years, advances in deep learning and computer 

vision have greatly accelerated the momentum of object detection [337]. Numerous 

object detection algorithms (object detectors) are developed and used in the disease 

detection of crops. These detectors are broadly classified into two categories: i) two-

stage detectors based on region proposal and ii) one-stage detectors based on 

regression or classification [363]. The popular two-stage detectors are Fast-RCNN, 

Faster-RCNN, and Mask-RCNN, and one-stage detectors involve YOLO (You Only 

Look Once) family [351].  Khan et al. conducted a research where they ran three 

different models Faster-RCNN, YOLOv4, and EfficientDet, to solve a similar 

problem for apple crops [337]. It has been observed that Faster RCNN with mAP 

(mean average precision) of 42.1% outperformed YOLOv4 (mAP of 41.4% ) and 

EfficientDet (mAP of 38%). As per these results, Faster-RCNN seems the right choice 

for this study. But the YOLOv5 model developed by Ultralytics has substantially 

improved the detection speed while maintaining the detection accuracy [364]. 

Therefore, both approaches are tested in this study. 

Faster-RCNN 
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Faster R-CNN is an improved version of Fast-RCNN and is a region-based object 

detector [365]. The first image runs through a backbone network (CNN)  which 

creates feature maps. On the last feature map of Convolution layers, a fully 

convoluted network called region proposal network (RPN) is trained, which outputs a 

set of bounding boxes along with their scores which determine the likelihood of an 

object [365].  

YOLOv5 

The YOLOv5 network algorithm is an improved algorithm based on YOLOv3 as it 

proposes a method of multi-scale prediction, which can detect the target of image 

features of different sizes simultaneously [348]. The network model of YOLOv5 

consists of four main parts: input, backbone, neck, and prediction, the details of which 

can be found at [364]. YOLOv5 has five versions: YOLOv5n (nano), YOLOv5s 

(small), YOLOv5m (medium), YOLOv5l (large), and YOLOv5x (extra-large), the 

depth and width of which are gradually increasing and each one offering different 

detection accuracy and performance [364].  In this study, YOLOv5s is adopted as it 

has a smaller size and good accuracy. Moreover, it works well with smaller datasets 

and can be used with embedded devices [364].  

6.3.3. Disease detection model training 

NVIDIA GeForce RTX 3090 is used to train all the models in three phases. The 

classification model developed in stage 1 is implemented in PyTorch (an open-source 

machine learning framework based on the torch library developed by Meta AI8 ).  

Using transfer learning (TL) approach, ResNet-50 pre-trained on ImageNet is used 

[366]. The pre-trained model saves a lot of time as it is already trained on a dataset 

and hence contains the weights and biases of previous training that represent the 

features of the dataset it was trained on, which are often transferable to different 

datasets [350]. Hence, model parameters are initialized using the TL approach and 

then retrained on a custom dataset prepared in section 3.1.1 with a learning rate of 

0.0001, batch size of 64, input size of 224 x 224 x 3, and epochs of 100. The model 

was tuned using the Adam optimizer. The hyperparameters and their values used for 

 

 

8 https://pytorch.org/hub/pytorch_vision_resnet/ 
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the classification model in phase 1 are given in Table 6-2. For the classification model 

in phase 2, a batch size of 64 is used, and values of the remaining hyperparameters are 

kept the same, as shown in Table 6-2. 

Table 6- 2. Values of hyperparameters used for classification model in phase 1. 

Hyperparameters Values 

Weights ImageNet 

Learning rate 0.0001 

Batch size 32 

Loss function Categorical CrossEntropy 

Epochs 100 

For training of the detection models, the dataset is split into 75% train, 20% 

validation, and 5% test sets. The first model Faster-RCNN is implemented in 

Detectron2 — Facebook AI Research's next-generation library written in PyTorch 

that provides state-of-the-art detection and segmentation algorithms. For Faster-

RCNN, the annotations format is COCO JSON. The pre-trained model (trained on the 

COCO dataset) from the model zoo of the Detectron29 ‘Faster-RCNN with ResNet-

101 + FPN’ is used, where FPN stands for Feature Pyramid Network [367]. The 

model is trained for 3000 iterations with an initial learning rate of 0.01 for the first 

500 iterations and then 0.001 for the next 2500 iterations.  

The second model, YOLOv5s, is implemented in PyTorch. Again, pre-trained version 

of the algorithm is used to enhance the training process and reduce time. For 

YOLOv5s, the annotation format is YOLO Darknet TXT but with the addition of a 

YAML file containing model configuration and class values. The model is trained for 

3000. The hyperparameters and their values for the two models are shown in Table 6-

3. 

 

 

 

 

9 https://ai.facebook.com/tools/detectron2/ 
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Table 6- 3. Values of hypermeters used for two objection detection methods. 

Hyperparameters 
Methods 

Faster-RCNN YOLOv5s 

Input size 600×600 416×416 

Batch size 16 16 

Learning rate 0.001 lr0=0.01, lrf=0.001 

Momentum 0.89 0.937 

Gamma value 0.1 fl_gamma = 0.0 

Weight decay 0.0001 0.0005 

Training time 1.5hrs 50 minutes 

6.3.4. Ontology model 

The complete development and details of all the concepts and instances of the 

ontology model ‘AquaONT’ developed by the authors are available in Chapter 3. 

AquaONT is a unified ontology model that represents and stores the essential 

knowledge of an aquaponic 4.0 system. It consists of six concepts: Consumer Product, 

Ambient Environment, Contextual Data, Production System, Product Quality, and 

Production Facility. In this study, two classes, ‘Consumer Product’ and ‘Product 

Quality’ are used for knowledge extraction. The ‘Consumer Product’ class provides 

an abstract view of the type, growth status, and growth parameters of ready-to-harvest 

crops in an aquaponic system. Whereas the ‘Product Quality’ class provides 

knowledge on crop attributes related to pathology (crop diseases, causes, and the ways 

and means by which these can be managed or controlled) and morphology (canopy 

dimensions such as area, length, width, etc.). Four crops: lettuce, basil, parsley, and 

spinach, are considered in this study. Their growth conditions and morphological and 

pathological attributes stored as instances of the respective classes are extracted once 

the crop and disease are classified. Figure 6-6 shows the hierarchical architecture of 

the ‘Consumer Product’ and ‘Product Quality’ classes with their instances for the 

‘Basil’ crop in Protégé  (an open-source ontology editor and framework developed at 

Stanford University) environment. 
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Figure 6- 6. Hierarchical structure of 'Consumer Product' and 'Product Quality' 

classes and respective instances in relation to Basil Crop. 

6.3.5. Cloud-based application 

The trained model of the crop disease detection system is then saved and deployed on 

a cloud-based application built on Streamlit. The ontology model ‘AquaONT’ is also 

deployed on the application, and relevant classes are integrated with the final disease 

detection model through the Owlready2 library. The layout of the application is 

shown in Figures 6-7. It consists of two user inputs ‘Select Model’ and ‘Upload 

Image’. ‘Select Model’ provides an option to select the model as per requirement, 

which in this study are ‘Crop Classification’ referring to phase 1, ‘Disease or No 

Disease’ referring to phase 2, and ‘Disease Type, causes and Treatments’ referring to 

phase 3 of the proposed disease detection system. After model selection, an image is 

uploaded which is used by all the models. Once the disease is detected and classified, 

the causes and treatments of the disease are extracted from the ontology model 

automatically and displayed on the application panel. This kind of information is 

useful as it will allow agricultural practitioners to determine the causes of diseases 

and take precautionary steps in the early stages to avoid crop wastage and economic 

loss. 
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Figure 6- 7. Layout of cloud-based application for disease detection.
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6.4. Experimental Results and discussions 

This section presents the results of experiments performed in the current research 

work. First, the performance evaluation of deep learning models in three phases of the 

disease detection system is discussed. Next, the trained and validated system is tested 

on new data. In the end, the significance of the complete system is presented.   

The performance of the classification model in phase 1 is evaluated using a validation 

dataset.  For this phase, there are four classes to be classified: lettuce, basil, spinach, 

and parsley. The distribution of labeled images in the validation set for this model is 

shown in Table 6-4.  

Table 6- 4. Dataset distribution of validation set for phase 1. 

Class (Health + Diseased) Number of  images 

Lettuce 160 

Basil 104 

Spinach 160 

Parsley 104 

The performance of the model is presented in the form of a confusion matrix (CM) 

shown in Figure 6-8.  

 
Figure 6- 8. Confusion matrix of classification results in phase 1. 

The overall accuracy, precision, recall, and F-measure are computed by using the 

formulae given below and are summarized in Table 6-5. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Where,  TP = True positives, TN=True negatives FP=False positives and FN=False 

negatives. 

Table 6- 5. Class-wise results of classification model in phase1. 

Crop Accuracy Precision Recall F1-Score 

Lettuce 0.97 0.95 0.96 0.96 

Basil 0.98 0.96 0.96 0.96 

Spinach 0.96 0.94 0.94 0.94 

Parsley 0.99 1 0.98 0.99 

Average - 96.25% 96% 96.25% 

Overall 

accuracy 

95.83%    

The classification model in phase 1 has achieved an overall accuracy of 95.83%, 

average precision of 96.25%, an average recall of 96%, and an average F1-score of 

96.25%. From Table 6-5, it can be seen that the performance metrics of the spinach 

class are lower than the other classes. This is because eight examples of spinach have 

been classified as lettuce, and two examples have been classified as basil. This can 

happen as sometimes spinach leaves might look similar to lettuce or basil, particularly 

during the initial stages of their growth cycle. Next, the performance of the 

classification model in phase  2 is evaluated in a similar fashion. For phase 2, there 

are six classes that model has to classify, which are mentioned in section 6.3.2.2. 

Table 6-6 shows the distribution of the validation set used for the model in phase 2.  

Table 6- 6. Distribution of validation dataset for phase 2. 

Class Number of images 

Lettuce-Healthy (LH) 48 

Lettuce-Diseased (LD) 112 

Basil-Healthy (BH) 48 

Basil-Diseased (BD) 56 

Spinach-Healthy (SH) 48 
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Spinach-Diseased (SD) 112 

Parsley-Healthy (PH) 48 

Parsley-Diseased (PD) 56 

The CM for this model is shown in Figure 6-9 and performance metrics are 

summarized in Table 6-7.  

 
Figure 6- 9. Confusion matrix of classification results in phase 2. 

Table 6- 7. Performance metrics of classification model in phase 2. 

Class Accuracy Precision Recall F1-score 

LH 0.979 0.86 0.92 0.89 

LD 0.981 0.96 0.95 0.95 

BH 0.989 0.90 0.98 0.94 

BD 0.983 0.91 0.93 0.92 

SH 0.981 0.91 0.88 0.89 

SD 0.983 0.96 0.96 0.96 

PH 0.994 0.98 0.96 0.97 

PD 0.992 0.98 0.96 0.97 

Average - 94% 94% 93.6% 

Overall 

accuracy 
94.13%    

 

The classification model in phase 2 has achieved an overall accuracy of 94.13%, 

average precision of 94%, average recall of 94%, and an average F1-score of 93.6%. 
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It can be observed from the CM in Figure 6-6 that the model is also prone to 

confusion in distinguishing between some of the classes. For instance, six examples of 

LD (Lettuce-Diseased) are classified among LH (1), BD (1), SH (2), and SD (2). This 

might be due to a lack of clarity in identifying leaf patterns and diseased spots.  

The performance of selected models for the detection phase (phase 3) is also 

evaluated using a validation dataset. For this phase, there are six different diseases 

that models have to detect in crop leaves. These six diseases and their distribution in 

the validation dataset are given in Table 6-8. 

Table 6- 8. Distribution of validation dataset in phase 3. 

Class Number of images 

Lettuce-Bacterial Leaf Spot (LBS) 56 

Lettuce-Downy Mildew (LDM) 56 

Basil-Downy Mildew (BDM) 56 

Parsley-Septoria Leaf Spot (PSS) 56 

Spinach-Downy Mildew (SDM) 56 

Spinach- Stemphylium Leaf Spot 

(SSS) 
56 

In this phase, the metric that is used to evaluate and compare the performance of two 

models, i-e, Faster-RCNN, and YOLOv5s, is mean Average Precision (mAP). The 

mAP is the primary evaluation indicator used for the evaluation of object detection 

models [337]. In particular, mAP@0.5 (mean value of mAP at IOU threshold = 0.5) is 

evaluated. The comparison of the two models against all the classes is presented in 

Table 6-9. 

Table 6- 9. Class-wise comparison of two detection models. 

Class Faster-RCNN YOLOV5s 

Lettuce-Bacterial Leaf Spot (LBS) 77.32 83.86 

Lettuce-Downy Mildew (LDM) 73.89 78.63 

Basil-Downy Mildew (BDM) 75.47 80.11 

Parsley-Septoria Leaf Spot (PSS) 78.63 84.55 

Spinach-Downy Mildew (SDM) 74.19 79.87 

Spinach-Stemphylium Leaf Spot (SSS) 79.52 85.74 

mAP@0.5 76.34 82.13 

From Table 6-9, it can be seen that YOLOv5s with mAP@0.5 of  82.13% have 

outperformed  Faster RCNN. The two models have achieved the best mAP score for 

mailto:mAP@0.5
mailto:mAP@0.5
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Lettuce-Bacterial Leaf Spot (LBS),  Parsley-Septoria Leaf Spot (PSS), and Spinach-

Stemphylium Leaf Spot (SSS), whereas a low mAP score is observed for Lettuce-

Downy Mildew (LDM), Basil-Downy Mildew (BDM), and  Spinach-Downy Mildew 

(SDM). Downy Mildew causes light green to yellow angular spots on the upper 

surfaces of leaves and hence looks similar independently of the crop type. This causes 

confusion for the detector in distinguishing the crop-specific Downy Mildew. But 

with more data, this issue can easily be resolved. Later in the growth cycle, the plant 

tissue affected with Downy Mildew turns tan in spinach, purplish brown in basil, and 

light brown in lettuce, which are correctly identified by the detector. 

The performance evaluations of models in three phases have shown that detection 

models are not as straightforward as classification models. This is because an image 

consists of many objects which belong to either the same class or different classes. 

Hence, three things have to be verified during evaluation, including object class, 

bounding box (object location), and confidence.  

In the end, the two detection models are compared in terms of inference time which is 

an important metric that determines the detection speed. It is observed that the one-

stage detector i-e., YOLOv5s with a detection speed of 52.8 FPS (frames per second) 

is faster than Faster-RCNN with a detection speed of 43.2 FPS. Moreover, it is also 

observed that YOLOv5s accurately detect objects of varying sizes with little to no 

overlapping boxes. All the comparisons between the two detection models show that 

YOLOv5s have a clear advantage in terms of accuracy and run speed. Therefore, in 

this study, YOLOv5s are used for developing the disease detection system. 

After training and validation, the complete system with YOLOv5s is tested using the 

test set. The system has shown promising results by effectively classifying and 

detecting the diseases in specified crops, which shows the system's robustness in 

dealing with a variety of objects having different shapes, patterns, textures, colors, 

etc. Figure 6-10 shows examples where the system has accurately classified the crop 

and detected the diseased and healthy spots in crop leaves. Images in the first row of 

Figure 6-10 are the results from three phases of the disease detection system for the 

Lettuce crop, which is suffering from Bacterial Leaf Spot disease. Similarly, row 2 

and row 3 are the results from three phases of the system showing Spinach and 

Parsley, respectively, and the diseases they are suffering from, such as Downy 

Mildew and Septoria leaf spot disease, respectively.   
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The final crop disease detection system is then deployed on a cloud-based application 

developed in section 6.3.5. Figure 6-7 shows the layout of the application. The 

ontology model discussed in section 6.3.4 is also integrated with the final system to 

build a complete real-time crop diagnostic system. The images are acquired wirelessly 

from the aquaponic facility through an interface developed on the Google Cloud 

Platform by the authors in Chapter 5 . The images are stored in a folder to be used by 

the crop diagnostic system. Once the crop type and its disease are identified, the 

causes and treatments are automatically extracted from the ontology model and 

displayed on the application panel. For instance, Figure 6-7  shows an example of a 

working crop diagnostic system for parsley crops. The disease detected by the system 

after image uploading is Septoria Leaf Spot. The crop diagnostic system extracts 

knowledge about potential causes and general treatments of this disease from 

AquaONT. The primary causes of Septoria Leaf Spot in Parsley could be high 

humidity levels, infected seeds, leaf wetness, etc. This disease could also be caused 

due to irregular variations in air temperature. The potential preventive measures and 

treatments suggested by the system for this disease include: maintaining optimal 

humidity and temperature levels in accordance with Parsley crop and indoor 

aquaponics environment throughout the growth cycle, treating seeds before 

germination with hot water or Clorox bleach, using conventional fungicides if the 

disease is spread out in multiple plants. Downy Mildew disease is one of the most 

common diseases observed in different crops [368]. In the greenhouse or indoor 

farming environment, the potential causes of this disease are the same irrespective of 

crop type, which includes: high humidity, cool temperatures, infected seeds, and leaf 

wetness [368]. Therefore, the methods to treat Downy Mildew in lettuce, basil, and 

spinach are also similar. This means that the classification of Downy Mildew disease 

with respect to crop type does not impact the results related to disease treatments. 

Despite this independence, it is still significant to perform the classification of Downy 

Mildew for each crop individually as its symptoms for three crops, lettuce, basil, and 

parsley, change later in the growth cycle. This might cause confusion for the detector 

to distinguish Downy Mildew from other diseases. For instance, the lettuce tissue 

affected with Downy Mildew eventually turns brown in later stages and these 

symptoms are similar to the Bacterial Leaf Spot symptom in lettuce, and both diseases 

have different treatment methods.  
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Figure 6- 10. Results from proposed disease detection system. 
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The significance of the proposed system is that it can act as a vital tool for 

agriculturalists who wants to develop and digitize aquaponics farm. This system will 

allow them to diagnose diseases at early stages and also assist them in decision-

making regarding crop characteristics and treatments of diseases. Moreover, this study 

will also promote the introduction of new implementations, such as research on the 

complex relationship between dynamic parameters (environmental and water) and 

diseases in aquaponics farms and self-adapting farms in case of disease detection. 

These smart technologies in the aquaponic system will reduce crop wastage and 

ensure both economic and environmental benefits. 

6.5. Conclusions and Future Prospects 

This study proposes a crop diagnostic system for leafy green crops grown in an 

aquaponics environment. Four leafy green crops, lettuce, basil, spinach, and parsley, 

are considered. The first dataset is developed that contains 2640 healthy and diseased 

images of these four crops collected from various sources. Next, a system is proposed 

that can efficiently and effectively identify crops and diseases. The detection system 

works in three phases. The first phase classifies the crop type, the second phase 

classifies whether the crop is healthy or diseased, and then in the third phase, the 

disease is detected if the crop is classified as unhealthy in the previous phase. All the 

models used in this study are initialized using transfer learning and then trained on a 

dataset prepared for leafy green crops. The performance of the models is evaluated, 

and promising results are achieved. For instance, in the detection phase, YOLOv5s 

with mAP@0.5 of 82.13% and detection speed of 52.8 FPS has outperformed Faster-

RCNN. Based on the performance, YOLOv5s is selected as the final model for this 

study. The ontology model that contains knowledge related to the causes and 

treatments of diseases is then integrated with the final crop disease detection system. 

Finally, a cloud-based application is designed where the final crop diagnostic system 

consisting of a disease detection system and ontology model is deployed. The 

proposed system proves to be accurate and flexible enough to be used in real 

scenarios and hence is not limited to being disturbed by potential changing conditions 

and environments. It can be a helpful tool for agricultural practitioners who want to 

explore modern farming practices and want to integrate smart techniques into their 

farms. This system will not only help them in disease diagnosis and quantification but 
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will also assist them in decision-making regarding potential treatments against 

identified diseases at early stages.  

For future work, the system will be extended to include other leafy green crops. 

Moreover, the dataset will also be extended, and more real-field images will be 

incorporated. Moreover, a mobile application will be constructed, reducing the 

latency, and providing data privacy, which normally occurs in cloud-based systems.
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Chapter 7 Non-destructive identification of foliage chlorosis in lettuce crop 

grown in aquaponic facility using image processing 

7.1. Introduction  

Just like traditional agriculture, crops grown in aquaponics may also face quality 

issues — causing crop wastage and impacting the overall productivity of the farm. 

Various quality indicators such as crop morphological attributes (crop height, width, 

area, volume), biomass production, and foliage color can be used as the measure of 

crop quality and yield potentiality [21]. One of the quality indicators is foliage color 

which indicates the chlorophyll content and is used to evaluate the health of the crop. 

If the color of the foliage is green, it represents that the crop is healthy. Whereas, if it 

is yellow, it signifies that the crop is suffering from some type of disease or 

deficiency, which is causing interference in the production of chlorophyll contents 

[24]. The primary contributors of chlorosis or leaf yellowing in crops grown in 

aquaponics could be i) inadequate environmental conditions (humidity, temperature, 

illumination, etc.),  ii) incorrect design of the system leading to an irregular supply of 

nutrient-enriched water which fails to reach the roots of plants, iii) poor water quality 

(improper pH), iv) root damage or compacted roots, v) insufficient concentrations of 

required minerals such as N-NO3, P, K, Ca, and Mg in the effluent, vi) nutrient 

deficiency in plants, and vii) diseases or pests [24], [369]. 

The conventional method to identify the plant's health is based on visual observation, 

requiring certain expertise from agriculture practitioners [370]. Visual detection, 

however, is a time-consuming and laborious task, and there is a probability of 

misdiagnosis, especially in the early growth stages [370]. Other methods include 

chemical analyses and leaf color chart (LCC) matching, which again are costly, time-

consuming, and destructive techniques. Chemical methods involve the collection of 

plant tissue for laboratory analyses of plant leaves. One of the most widely used 

chemical methods is the Kjeldahl digestion assay [371]. Although this method is 

accurate, sample preprocessing and delays in laboratory analyses hinder its 

widespread usage. The standard LCC tool is also available and used as a reference to 

estimate leaf color and plant health [372]. This technique is widely used in many 

countries, but it is a manual inspection process and hence, time-consuming.  
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To overcome these challenges, agriculture methods have been automated for years, 

and hence a number of non-destructive methods have been proposed to detect plant 

health. One of the methods is the spectral reflection method which uses the property 

of chlorophyll that has different reflection intensities at different wavebands to assess 

the health of the plant. Several portable meters, such as SPAD (Soil Plant Analysis 

Development), are developed based on this method [373]. The spectral instruments 

are fast and fairly accurate, but they are very expensive. Hyperspectral imaging and 

spectral remote sensing also use the spectral reflection principle [374]. Again, 

hyperspectral instruments are costly and require specific environmental conditions for 

proper sampling.  With the development of technology, some researchers applied 

computer vision techniques to detect the health of plants based on their nutritional 

status. Computer vision is low-cost and non-destructive, but it requires a large amount 

of data for training and achieving the desired performance of the model [375].  

7.1.1. Research motivation and contribution 

Considering the aforementioned challenges, this study aims to propose a methodology 

based on an image processing technique to evaluate the health of lettuce crops grown 

in aquaponics facilities based on their foliage color. To be more certain, the 

estimation of chlorophyll content or nutrient deficiency is out of the scope of this 

study. The focus of the study is to determine the plant health by extracting the foliage 

and its Red (R), Green (G), Blue (B) channel values using ‘HSV Space segmentation’. 

HSV stands for hue, saturation, and value [376]. The foliage color detection model is 

then developed using mean values of R, G, B channels and a color distance model. 

The color distance model is to compute the foliage color difference from the threshold 

values. Numerous color distance models are available for this purpose, such as 

Euclidean Distance, Color Approximation Distance, CIEXYZ, CIE76, CIE94, 

CIEDE2000, and CMC l:c [24]. In this study, Euclidean Distance (ED) model is used 

as it is the simplest method of finding the distance between two colors within an RGB 

color space [24]. Moreover, it works well when a single color is to be compared to a 

single color, and the need is to simply know whether a distance is greater or smaller, 

which is the case with the proposed model in this study. The model is built in Jupyter 

Notebook and saved in a local directory. A cloud-based application is also developed 

using Streamlit, which is an open-source app framework for machine learning and 
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data science [377]. The performance of the model is validated, achieving an accuracy 

of 95%.  

7.1.2. Chapter organization 

The remainder of the chapter is structured as follows: Section 2 will present the 

related work, Section 3 will explain the methodology used to develop the system, 

Section 4 will present results and discussion along with model significance and 

limitations, and finally, Section 5 will discuss the conclusions and future work. 

7.2. Related work 

This section presents the recent and relevant image processing-based models that have 

used different color spaces and techniques to identify leaf chlorosis and assess the 

quality of crops. Yang et al. proposed a model based on a support vector machine 

(SVM) and advanced imaging processing techniques such as image binarization, 

mask, and filling approaches for the extraction of selective color features such as a* 

(CIELAB color space), G (green from RGB color space), and H (hue from HSV color 

space) to detect the yellow and rotten lettuce leaves in hydroponics system [378]. The 

model has achieved an accuracy of 98.33%. Maity et al. proposed a model based on 

Otsu's method and k-means clustering technique to detect faulty regions in leaves 

[379]. Wang et al. developed an HSV and decision tree-based method for greenness 

identification of maize seedling images captured in the outdoor field [380]. Benjamin 

et al. proposed a methodology based on the color analysis technique to determine the 

quality of tomato leaves using Otsu’s method, SVM, k-NN (k-nearest neighbor), and 

multi-layer perceptron (MLP) [381]. Their model obtained an accuracy of 86.45% 

when classifying the healthy tomato leaves from the diseased tomato leaves and an 

accuracy of 97.39% when classifying the type of disease suffered by a diseased leaf.  

Sharad et al. developed a system based on LAB (L*: lightness, a*: red/green value, 

b*: blue/yellow value) space-based color histogram, k-NN and random forest to detect 

the quality of apple leaves [382]. This approach has achieved an accuracy of 98.63%. 

The aforementioned models have made great contributions to literature, but some 

limitations are observed. For instance, most models have used images belonging to 

one scenario. Either they are taken indoors in the lab environment or outdoors in 

open-air fields. Secondly, some models have used non-destructive chemical 

approaches to collect the preliminary data, particularly while assessing the health of 
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plants based on chlorophyll content, nitrogen level, or nutrient deficiency.  

Considering that, in this study, a fully automated, low-cost, and non-destructive 

model is proposed that is built considering a variety of lettuce images from different 

sources.    

7.3. Research Methodology 

The block diagram illustrating the five sequential modules of research methodology is 

shown in Figure 7-1. Each module, along with its elements, is described in the next 

subsections. 

 

Figure 7- 1. Research methodology outline. 

7.3.1. Data preparation 

The image dataset is constructed using a variety of little gem romaine lettuce images 

from diverse sources. This involves top-view images of lettuce grown in the 

Allfactory 4.0, an NFT-based aquaponic facility at the University of Alberta, Canada, 

focusing on smart indoor farming. These images are divided into two classes based on 

the color of foliage: green foliage (no leaf chlorosis), and yellow foliage (leaf 

chlorosis). To increase the model flexibility to segment lettuce foliage irrespective of 

background and to ensure it correctly determines the plant’s health, the dataset is 

complemented with more lettuce images obtained from Ecosia, a search engine based 

in Berlin, Germany. Figure 7-2 shows examples of some of the images. 
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Figure 7- 2. Image dataset: a and b are acquired from an aquaponic facility and c, d, 

e, and f are downloaded from Ecosia.org. 

Next, the image augmentation process is performed to increase the dataset and 

reliability of the segmentation process despite the location and orientation of objects 

in the image by generating new images from existing images. In this study, 

Albumentations, a Python library, is used for fast and flexible image augmentations 

[359]. The different augmentation techniques applied are horizontal flip, vertical flip, 

90° rotation, and glass noise. In total, 100 images  (50 from both classes) were 

selected randomly for the augmentation, which created 100 new images. The new 

images were added to their respective classes, increasing the length of the dataset to 

500 images. Figure 7-3 shows examples of augmentations.  
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Figure 7- 3. Data augmentation performed on different images. 

7.3.2. Image segmentation 

Image segmentation was performed to extract the lettuce foliage from the background 

for further processing. This study uses the HSV segmentation model to segment the 

image [376]. There are two stages of the image segmentation process, which are 

detailed in the next two subsections. 
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7.3.2.1. HSV color space 

The acquired images from the smartphone are RGB images, where the color of any 

object in these images is represented with the combination values of R, G, and B 

channels. The main problem with this color representation is that the objects’ colors 

are affected by variations in illumination conditions [177]. With the HSV color 

segmentation technique, as the name suggests, HSV color space is used, which 

describes the objects’ colors independent of the illumination effect [376]. The 

difference between various color spaces is usually based on color representation. For 

instance, the object’s color in HSV color space is represented by three different 

parameters, namely hue (H), saturation (S), and value (V). H represents the color of 

the object, whereas  S and V values represent the illuminance state of the object’s 

color [376]. This kind of description provides the ability to discriminate the color 

from the illuminance while avoiding the effect of illumination changes on the object's 

color. Therefore, the first step of segmentation is to convert the image’s color space 

from the RGB into HSV. Generally, the transformation process from RGB into HSV 

can be performed using the following equations [378]. 

𝑅′ =
𝑅

255
 , 𝐺′ =

𝐺

255
 ,    𝐵′ =

𝐵

255
  

𝑀 = 𝑚𝑎𝑥(𝑅′, 𝐺′, 𝐵′),   𝑚 = 𝑚𝑖𝑛(𝑅′, 𝐺′, 𝐵′), 𝐶 = 𝑀 −𝑚 

𝐻 =

{
 
 
 
 

 
 
 
 
0°                                        𝑖𝑓 𝐶 = 0 

60° × (
𝐺′ − 𝐵′

𝐶
𝑚𝑜𝑑 6)  𝑖𝑓 𝑀 = 𝑅′

60° × (
𝐺′ − 𝐵′

𝐶
+ 2)  𝑖𝑓 𝑀 = 𝐺′

60° × (
𝐺′ − 𝐵′

𝐶
+ 4)  𝑖𝑓 𝑀 = 𝐵′

 

𝑆 = {

0       𝑖𝑓 𝑀 = 0
𝐶

𝑀
    𝑖𝑓 𝑀 ≠ 0

 

𝑉 = 𝑀 

After image transformation, a color bar is created, which provides intensity values of 

H, S, and V channels. These values are used in the next stage for segmenting the 

image. Figure 7-4 shows an example of the original image, its HSV channel, and 

color bar format.  
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F 

Figure 7- 4. Illustration of an image, its HSV channel, and color bar format. 

7.3.2.2. Image hue thresholding  

The second step of image segmentation is to determine the suitable threshold value to 

distinguish between foreground and background. For this purpose, the hue image 

obtained in the first step is used as it provides a suitable grayscale image that can be 

used to classify objects based on the color content. The upper and lower range of the 

hue channel is obtained from the color bar. This range is used to define an upper and 

lower threshold value for lettuce foliage in a hue image in the form of a mask. This 

mask is then applied to the R, G, and B channels of the original image, which are then 

stacked to get the segmented image. The final segmented image is saved in RGB 

format. To save time, the segmentation process is automated, and by the end of the 

process, each segmented image is saved in a common directory.  
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7.3.3. Foliage color detection model 

After image segmentation, we have the lettuce foliage in the RGB channel. The R, G, 

and B values of each lettuce foliage (foreground) are extracted from segmented 

images. These images are represented as i and j for two classes g (Green Foliage – No 

Leaf Discoloration) and y (Yellow Foliage – Leaf Discoloration), respectively. Then 

the mean value of each color channel red (µR), green (µG), and blue (µB) is computed, 

which are represented by Equations 1 and 2. 

𝜇𝑔,𝑖 = [𝜇𝑅,𝑖, 𝜇𝐺,𝑖, 𝜇𝐵,𝑖]                   (1)     

     𝜇𝑦,𝑗 = [𝜇𝑅,𝑗, 𝜇𝐺,𝑗, 𝜇𝐵,𝑗]                 (2)        

µg, i and µy, j represents the mean values of three color channels of foreground (lettuce 

foliage). Equations 3 – 8 are used for computing the mean values of channels. 

𝑅𝑖/𝑗 = ∑ 𝑅𝑛,𝑖/𝑗

𝑛𝑅,𝑖/𝑗

1

           (3)   

𝐺𝑖/𝑗 = ∑ 𝐺𝑛,𝑖/𝑗

𝑛𝐺,𝑖/𝑗

1

           (4) 

 𝐵𝑖/𝑗 = ∑ 𝐵𝑛,𝑖/𝑗

𝑛𝐵,𝑖/𝑗

1

          (5) 

𝜇𝑅,𝑖/𝑗 =
𝑅𝑖/𝑗

𝑛𝑅,𝑖/𝑗
                 (6) 

  𝜇𝐺,𝑖/𝑗 =
𝐺𝑖/𝑗

𝑛𝐺,𝑖/𝑗
                 (7) 

    𝜇𝐵,𝑖/𝑗 =
𝐵𝑖/𝑗

𝑛𝐵,𝑖/𝑗
              (8) 

Where Ri/j, Gi/j, and Bi/j refer to the summation of red, green, and blue values of lettuce 

foliage in two classes, i/j refers to either image belonging to g class or y class, and 

nR,i/j , nG, i/j, and nB, i/j represents R, G, B count of lettuce foliage respectively.  

The background is segmented images is black with [R, G, B] = [0, 0, 0].  Hence,  R, 

G, and B count and values of background are not included while determining the 
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mean value of R, G, and B channels for the foreground. The process of calculating the 

mean value of R, G, and B channels is again automated to save time. The values for 

each channel are automatically saved in an excel file. While saving the results, it is 

ensured that mean values of R, G, and B are saved for their respective image label and 

class category g and y. Next, reference or threshold values (gref and yref) are 

determined for both g and y classes, shown in equations 9 and 10. To compute gref , 

three average values are calculated, which are related to the mean red, mean green, 

and mean blue values of images saved in the excel file for the g category. The total 

number of mean values for each channel is m (total values  = 3×m). The first average 

value is obtained by summing all the green channel values and dividing the results by 

the total number of green values (m).  Similarly, the second and third average values 

are obtained by summing all the green channel values and all blue channel values of 

all images in the m category and dividing the results by the number of green (m) and 

blue values (m), respectively. A similar computation is done for yref while considering 

the channel values and their count (l) for images in the y category. Equations 11–16 

are used to calculate gref and yref. 

𝑔𝑟𝑒𝑓 = [�̅�𝑅,𝑚, �̅�𝐺,𝑚, �̅�𝐵,𝑚]                  (9)         

𝑦𝑟𝑒𝑓 = [�̅�𝑅,𝑙, �̅�𝐺,𝑙, �̅�𝐵,𝑙]                         (10)          

�̅�𝑅,𝑚 =
∑ 𝑅𝑚
𝑚
1

𝑚
                           (11) 

�̅�𝐺,𝑚 =
∑ 𝐺𝑚
𝑚
1

𝑚
                          (12) 

�̅�𝐵,𝑚 =
∑ 𝐵𝑚
𝑚
1

𝑚
                           (13) 

�̅�𝑅,𝑙 =
∑ 𝑅𝑙
𝑙
1

𝑙
                               (14) 

�̅�𝐺,𝑙 =
∑ 𝐺𝑙
𝑙
1

𝑙
                                (15) 

�̅�𝐵,𝑙 =
∑ 𝐵𝑙
𝑙=
1

𝑙
                            (16) 
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Where  �̅�R,m, �̅�G,m, and �̅�B,m  are averages of m×red, m×green, and m×blue channels 

values in the g category respectively. Rm, Gm, and  Bm are values of m×red, m×green, 

and m×blue channels in the g category. Where  �̅�R,l, �̅�G,l, and �̅�B,l  are averages of 

l×red, l×green, and l×blue channels values in the y category, respectively. Rl, Gl, and  

Bl are values of l×red, l×green, and l×blue channels in the y category.  

After determining the reference or threshold values, the color distance model is used 

to compute the foliage color difference from the threshold values. In this study, 

Euclidean Distance (ED) model is used, and its general equation is presented below 

[24]. 

𝑑 = √∆𝑅2 + ∆𝐺2+∆𝐵2 

Where  

∆𝑅 = 𝑅2 − 𝑅1, ∆𝐺 = 𝐺2 − 𝐺1, ∆𝐵 = 𝐵2 − 𝐵1 

Based on the ED model, two distances d1 and d2 are computed using two threshold 

values gref and yref, respectively. d1 determines the distance from the green color 

threshold, whereas d2 determines the distance from the yellow color threshold. For 

single foliage, both d1 and d2 are determined. The lower value of d1 and a higher value 

of d2 suggests that color patterns of foliage are closer to gref or in other words, green 

tones. Conversely, a lower value of d2 and a higher value of d1 suggests that color 

patterns of foliage are closer to yref or in other words, yellow tones. The governing 

equations for d1 and d2 are given below. 

𝑑1 = √(𝑥𝑅 − �̅�𝑅,𝑚)2 + (𝑥𝐺 − �̅�𝐺,𝑚)2+(𝑥𝐵 − �̅�𝐵,𝑚)2     (17) 

𝑑2 = √(𝑥𝑅 − �̅�𝑅,𝑙)2 + (𝑥𝐺 − �̅�𝐺,𝑙)2+(𝑥𝐵 − �̅�𝐵,𝑙)2         (18) 

Where xR, xG, and xB are the mean values of three channels (R,G, B) of the foreground 

in the segmented image of the validation samples (their mean R, G, B values are not 

included while developing the model). 

Lastly, the quality indicator (Q) is defined as a function of d1 and d2 for evaluating the 

health of plants based on foliage color. In this essence, when green foliage with no 

leaf depigmentation is detected, the value of Q is equal to 1, which implies that the 
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crop is healthy. On the other hand, when yellow foliage with leaf depigmentation is 

detected, the value of Q is equal to 0, suggesting that the crop is unhealthy. The Q is 

represented as under. 

𝑄 = 𝑓(𝑑1, 𝑑2) = {
1            𝑖𝑓  𝑑1 < 𝑑2
0           𝑖𝑓  𝑑2 < 𝑑1

               (19) 

7.3.4. Ontology model 

The complete development and details of all concepts and instances of an ontology 

model ‘AquaONT’ is available in previous work by the authors (Chapter 3). 

AquaONT is a unified ontology model that represents and stores the essential 

knowledge of an aquaponic 4.0 system. It consists of six concepts: 

Consumer_Product, Ambient_Environment, Contextual_Data, Production_System, 

Product_Quality, and Production_Facility. In this study, two classes, 

‘Consumer_Product’ and ‘Product_Quality’ are used for knowledge extraction. The 

‘Consumer_Product’ class provides an abstract view of the type, growth status, and 

growth parameters of ready-to-harvest crops in an aquaponic system. Whereas the 

‘Product_Quality’ class provides knowledge on crop attributes related to pathology 

(abiotic and biotic stresses, causes, and the ways and means by which these can be 

managed or controlled), morphology (canopy dimensions such as area, length, width, 

etc.) and foliage color. The lettuce crop is considered in this study. The crop growth 

and quality attributes are defined as instances of respective classes, which are 

extracted once the crop foliage is detected as yellow (or leaf chlorosis is detected). 

Figure 7-5  shows the hierarchical architecture of the ‘Consumer_Product’ and 

‘Product_Quality’ classes with their instances for the Lettuce crop in Protégé7 (an 

open-source ontology editor and framework developed at Stanford University) 

environment. 
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Figure 7- 5. Ontology model showing classes, instances, and relationships between 

them. 

7.3.5. Cloud-based application  

The proposed foliage detection model and ontology model are deployed on a cloud-

based application built on Streamlit. The layout of the app is shown in Figures 7-6 to 

Figure 7-9. The app works in six stages. The first and second stages are associated 

with two user inputs, “Select the Model” and “Upload Image” as shown in Figure 7-6. 

The first input allows the user to select a relevant quality evaluation model. This app 

has other quality models integrated into it, which are out of the scope of this study. In 

this study, the relevant model is “Lettuce Foliage Pigment”. After selecting the model, 

the image is selected using the second input. The third and fourth stages are linked 

with two widgets, “Preprocess and Segment Image” and “Determine the Crop Status”, 

respectively, shown in Figure. 7-7, that run the sub-processes associated with the 

model. As the name suggests, the first widget activates the segmentation algorithm, 

which preprocesses and segments the image selected by the user in the second stage. 

Likewise, the second widget activates the model developed in the study. The model 

determines the status of the crop and displays results on the application panel. In the 

fifth stage, the sensor data from the dashboard is acquired and displayed to monitor 

the environmental conditions, as shown in Figure 7-8. By clicking ‘Sensor Data’, the 

most recent data will be displayed. In the sixth stage, a widget is developed ‘Causes 

and Treatments’, which is linked with ‘AquaONT’. This widget extracts knowledge 



153 

 

 

from the ontology model related to possible causes of leaf yellowing in the aquaponic 

facility. Figure 7-9 shows the sixth stage of the app when yellow foliage is detected. 

 
Figure 7- 6. Stage 1 and 2 of cloud -based application. 

 

Figure 7- 7. Stages 3 and 4 of a cloud-based application. 
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Figure 7- 8. Stage 5 of a cloud-based application. 

 

Figure 7- 9. Stages 6 of a cloud-based application 
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7.4. Results and discussion 

This section first presents the validation of the proposed method by a case study. 

Then, the performance of the proposed method is compared with existing similar 

methods. 

To validate the proposed model, twenty healthy seedings are placed in NFT-based 

hydroponic systems for five weeks (plantation cycle), after which lettuce is harvested. 

A 12MP Sony Exmor RS camera sensor is used to capture crop images during this 

period. Twenty images of 4032×3024 pixels (one image for one lettuce plant) are 

captured every day at 9:00 am from the top while keeping the distance between 

camera and channel at a value of 40 centimeters throughout the plantation cycle, i.e., 

five weeks. In total, 700 images of plants are collected over 5 weeks. During the first 

three weeks, no significant difference is observed in the color of the foliage. After the 

third week, foliage chlorosis is observed in eight lettuce plants. Therefore, for further 

processing, the images captured in the last two weeks of the plantation cycle are 

considered for model validation. In total, 280 images are divided into two classes 

based on the color of foliage: Green Foliage – No Leaf Chlorosis (168 images), and 

Yellow Foliage – Leaf Chlorosis (112 images). The dataset is complemented with 

more lettuce images with green (32) and yellow (88) foliage, downloaded from 

Ecosia. The images are added to their respective classes. All the images are resized to 

1000 × 1000 pixels and are saved in JPG format. The augmentation process is then 

performed. In total, 100 images (50 from both classes) are selected randomly for the 

augmentation, which created 100 new images. The new images were added to their 

respective classes, increasing the length of the dataset to 500 images. Half of these 

images belong to the (g) class, and half belongs to the (y) class and hence are saved in 

two folders named (g) and (y), respectively.  Out of 500 images, 100 random images 

(50 from each folder) were extracted and saved in a separate validation folder to be 

used for model evaluation. To complement the validation data, 20 images are 

randomly selected (10 from each class), and their R, G, and B values are altered using 

Adobe Photoshop in a way that the healthy-looking lettuce appears yellow and the 

unhealthy lettuce appears green. The validation dataset now has 120 images in total. 

Figure 7-10 shows an example of new images generated for the validation dataset. 
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Figure 7- 10. Images generated in Adobe Photoshop. 

The segmentation is then performed on all 520 images in the dataset. Figure 7-11 

shows an example of segmented images. R, G, and B values and their count are then 

computed for the foreground (lettuce foliage) of 400 segmented images in two classes 

g and y. The means values of R, G, and B channels are then computed. Each class has 

200 foliage images, so for each class  3×200 = 600 mean values (3 refers to 3 

channels of an image) are obtained which are automatically saved in an excel file. 
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Figure 7- 11. Example of segmented images. 

Out of 600 means values for each class, 200 belong to the red channel, 200 belong to 

the green channel, and 200 belong to the blue channel. The threshold values gref and 

yref are obtained by dividing the mean values of 3 channels by 200 and are given 

below. 

𝑔𝑟𝑒𝑓 = [�̅�𝑅,𝑚, �̅�𝐺,𝑚, �̅�𝐵,𝑚] = [123.4, 138.2, 19.52] 

𝑦𝑟𝑒𝑓 = [�̅�𝑅,𝑙, �̅�𝐺,𝑙, �̅�𝐵,𝑙] = [156.6, 155.8, 22.2]           

Next, the model is validated using a validation dataset consisting of 120 different 

segmented images belonging to two classes g and y. The mean values of three 

channels are computed for each image and are inserted in equations 17 and 18 in 

place of xR, xG, and xB, along with reference values gref and yref computed above. The 

d1 and d2 are determined for all 120  images in the validation dataset using equations 

17 and 18, respectively. Quality indicator, Q is also determined using equation 19 for 

120 images. The performance of the model on the validation dataset is then evaluated 

by analyzing the ground truth Q value and predicted Q value. In the validation dataset, 
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60 images have a ground truth Q value of 1, meaning these images contain healthy 

and green lettuce foliage. 60 images have a ground truth value of 0, meaning these 

images contain unhealthy and yellow lettuce foliage. The performance is presented in 

the form of a confusion matrix (CM), shown in Figure 7-12 [177]. The different 

values of the CM are interpreted as. 

•  True Positive (TP) = 58; meaning 58 plants were actually healthy, and the model 

correctly classified them healthy as well. 

•  True Negative (TN) = 57; meaning 57 plants were actually unhealthy and the 

model correctly classified them unhealthy as well.   

• False Positive (FP) = 3; meaning 3 plants were actually unhealthy, but the model 

incorrectly classified them as healthy. 

•  False Negative (FN) = 2; meaning 2 plants were actually healthy, but the model 

incorrectly classified them as unhealthy. 

The performance metrics based on CM are also computed using the formulae given 

below and are summarized in Table 1. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Table 7- 1. Performance metrics of foliage color detection model. 

Class N 

(truth) 

N (classified) Accuracy Precision Recall F1-

Score 

Q=1 60 61 0.95 0.95 0.97 0.96 

Q=0 60 59 0.95 0.97 0.95 0.96 

Average - - 0.95 0.96 0.96 0.96 

In Table 1, N (truth) tells the number of actual cases in a particular class, and 

N(classified) tells the number of predicted cases belonging to a class. Table 1 shows 

that the model has achieved an average accuracy of 95%, precision of 96%, recall of 
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96%, and F1-Score of 96%. The model has correctly classified 115 cases out of a total 

of 120 cases. Figure 7-13 shows an example of correctly classified cases. 

 
Figure 7- 12. Confusion matrix for quality assessment system. 
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Figure 7- 13. Example of correctly classified cases. 

To further investigate the performance of the proposed methodology, it is compared 

with existing vision-based methods mentioned in section 7.2. These methods are 

implemented on the dataset prepared in this study, and their performance is evaluated 

using the metrics based on CM, which are presented in Table 7-2. The results show 

that the proposed method has outperformed the similar existing methods, achieving an 

average accuracy of 96%, precision, recall, and F1-score of 96%. The method 

proposed by Sharad et al. has shown appreciable performance when implemented on 

the dataset prepared in this study by achieving an average accuracy of 94%, precision 

of 94%, recall of 95%, and F1-score of 94.45% [382]. Whereas, with their apple leaf 

dataset, they have achieved an accuracy of 98.63%.  

 

Table 7- 2. Performance metrics of existing methods. 

Methods 
Techniques and parameters 

used 

Average 

Accuracy 

Average 

Precision 

Average 

Recall 

Average 

F1-Score 

1 [378] SVM (support vector machine) 0.91 0.92 0.93 0.925 
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The final model is then deployed in the aquaponic facility through a cloud-based 

application. This time, instead of manually taking the images, four ELP 1080P 

webcams (2.8–12 mm HD Varifocal Lens) are installed at a distance of 40 cm from 

channels for image acquisition. Each camera is programmed through Raspberry Pi 4 

(Model B Rev 1) controller to take one image per day at 9:00 am, which along with 

sensor values from WSM are wirelessly uploaded to ‘IoT enabled Aquaponics 

Dashboard’ developed by authors in previous work (Chapter 5). The images and 

sensor data are available on the cloud as well as locally, and the app developed in this 

study can access them. The ontology model discussed in section 7.3.4 is also 

integrated with the proposed model and deployed on a cloud-based application. Once 

the health status of the lettuce crop is identified as ‘Yellow Foliage – Leaf Chlorosis’, 

the potential causes are automatically extracted from the ontology model and 

displayed on the application panel. Figures from 7-6 to 7-9 show an example of the 

working of the proposed method and application forlettuce when its foliage is 

detected to be yellow. The primary causes of lettuce foliage chlorosis could be 

inadequate environmental conditions (humidity, air temperature) or poor water quality 

(inadequate pH or EC) or nutrient deficiency, etc. By analyzing sensor data and 

possible causes of leaf chlorosis, it is possible to reach the specific cause of the 

problem. For instance, if sensor data shows that all parameters are within their 

optimal ranges, then the problem could be related to nutrient delivery or the design of 

the system. A reasonable treatment can be suggested after problem identification.  

and a* (CIELAB color space), 

G (green from RGB color 

space), and H (hue from HSV 

color space) 

2 [379] 
Otsu's method and k-means 

clustering technique 
0.92 0.93 0.93 0.93 

3 [380] 

HSV (hue, saturation, and 

value) color space and 

decision tree method 

0.89 0.91 0.90 0.905 

4 [381] 

Otsu’ method, SVM, k-NN (k-

nearest neighbor) and MLP 

(multi-layer perceptron) 

0.90 0.91 0.91 0.91 

5 [382] 
L*a*b* color histogram, k-

NN, and random forest 
0.94 0.95 0.94 0.945 

6 Proposed model 0.95 0.96 0.96 0.96 
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The proposed model is developed using open-source frameworks, and hence it can 

easily be expanded or adjusted as per the requirement by adjusting the threshold 

values. The significance of the model is that it is fully automated and offers a non-

destructive, low cost and reliable approach to identifying leaf chlorosis and 

determining the quality of lettuce plants along with possible causes. In contrast to 

computer vision and machine learning-based models, the proposed methodology 

requires less data. 

7.5. Conclusions and future work 

In this study, the major problem of lettuce foliage chlorosis in the aquaponic system is 

discussed. The image processing approach ‘HSV Color Segmentation’ is used to 

segment the lettuce images obtained from various resources. The segmented images 

are divided into two classes ‘Green Foliage-No Discoloration’ and ‘Yellow Foliage-

Leaf Discoloration’. Then, the foliage color detection model is developed, and a 

quality indicator is defined for evaluating the health of the lettuce crop. The model is 

validated, and its performance is evaluated. The results show that the overall accuracy 

of the model is 95%. A cloud-based application is also developed for the aquaponic 

facility where the proposed model is deployed.  

In future work, the current limitations of the model will be addressed by considering 

other crops as well as multiple objects in an image. Moreover, further work will be 

done to identify the causes and possible treatments of leaf discoloration. 
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Chapter 8 Estimation of morphological traits of foliage and effective plant 

spacing in an NFT-based aquaponic system  

8.1. Introduction  

Crop quality is evaluated by a number of indicators, as discussed in Chapters 1, 6 and 

7. One of the indicators is crop morphological traits such as length, width, area, and 

perimeter, which are used to assess the health status as well as the market value of the 

crops. Hence, it is vital to monitor these parameters throughout the plantation cycle 

[383]. Moreover, plant spacing directly impacts crop quality, defined as the distance 

between the growing sites of two consecutive plants. In traditional agriculture, crops 

compete with each other for resources such as solar radiation, nutrients, and moisture 

uptake to gain energy for their growth. They require reasonable root space and 

vegetative space [384]. The inadequate plant spacing may lead to a number of 

problems. For instance, the plants sited closely produce fewer leaves, flowers, and 

seeds, which causes reductions in final crop yields. Moreover, overcrowded plants are 

also susceptible to potential diseases, foliage damage as crops mature, and invasion by 

unwanted pathogens [384]. Many disease agents require a humid environment to 

develop and in crowded plantations, reduced airflow prevents moisture from 

evaporating from leaf surfaces, increasing the likelihood of diseases. Similarly, 

excessive plant spacing can also be a problem, as it hinders the pollination process. 

Unlike traditional agriculture, the aspect of plant spacing is different in the NFT-

based aquaponic system. The crop growing area (hydroponics) in the NFT system is a 

combination of enclosed channels consisting of circular or squared-shaped pockets 

known as plant sites where plants reside in small plastic cups allowing their roots to 

access water and absorb nutrients enriched effluent from aquaculture. Plant spacing in 

NFT systems refers to either distance between two plants on the same channel or the 

distance between plants on adjacent channels. The plant spacing attribute on the same 

channel is normally fixed and is designed considering the full-grown size of the plant 

before the actual plantation. The plant spacing attribute between channels is also kept 

fixed in open-air farms but in indoor NFT-based systems, it can be varied depending 

on the crop type to efficiently utilize the limited space. In NFT systems, all the 

nutrients are directly delivered to the crops’ root system; therefore, there is no 

competition for resources for the root system. However, vegetative space still requires 
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special attention as crops spend the most energy on vegetation to absorb more light 

[15]. Plant spacing varies as a function of crop species and their morphological traits 

such as length, width, area, and perimeter [385]. Therefore, the optimum plant 

spacing must be maintained according to crop type and its morphological 

characteristics to achieve maximum yields. Additionally, the crop growth cycle 

consists of various phases, from seedling to vegetative, and in each phase, the area of 

crop foliage changes as it grows over time — requiring different plant spacing and 

illumination conditions [386].  

8.1.1. Research motivation and contribution  

The aforementioned challenges pose a need for a self-adaptive aquaponic system that 

determines the crop morphological traits, determines the distance between two plants 

and adjusts the spacing between channels. Traditionally, manual methods that require 

a high level of expertise and advanced equipment were used to determine 

morphological traits. These methods produce accurate results, but they are costly, 

labor-intensive, and time-consuming [387]. Numerous semi-automatic tools are 

developed to accelerate plant phenotyping, such as LeafJ, Easy Leaf Area, and 

TraitEx [388]–[390]. But these tools require pre-processing of the input images for 

utilizing multiple automation degrees [387]. To overcome the stated bottleneck, this 

study aims to propose an approach to automatically estimate morphological traits 

(foliage area, length, and width), the distance between plants, and effective plant 

spacing between adjacent channels. Based on this information, the aquaponic system 

can adapt itself by adjusting the position of grow channels. The proposed approach is 

deployed on a cloud-based application developed in Chapter 7 and integrated with 

ontology model proposed in Chapter 3.   

8.1.2. Chapter organization 

The rest of this chapter is organized as follows. Section 2 shows the related work. 

Section 3 discusses the proposed approach. Section 4 presents the results and findings. 

Section 5 provides discussion and future work and finally, Section 6 presents the 

conclusion. 
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8.2. Related work  

With developments in deep learning and computer vision techniques, several methods 

have been developed and instantly grown in different visual recognition tasks such as 

the estimation of morphological traits of crops. A review of some of the latest and 

more relevant methods is presented here. Weaver et al. have proposed a tool 

‘LeafMachine’ based on CNN (convolutional neural network) and SVM (support 

vector machine) to measure the leaf morphological traits from digitized herbarium 

specimen images autonomously [338]. Triki et al. used the same dataset and proposed 

a new and enhanced approach, ‘Deep Leaf’ based on Mask-RCNN (region-based 

convolutional neural network), to determine the length, width, area, and perimeter of 

leaves [313]. Hirigoyen et al. developed a machine learning model using SVM and 

RF (random forest) techniques to determine the leaf area index in Eucalyptus 

plantations [391]. Lu et al. proposed a Mask R-CNN-based model to determine the 

growth rate of lettuce crops as a function of leaf area and time in a hydroponics 

system. Juyal et al. proposed a method to estimate the length and width of trees for 

calculating the overall volume using Mask-RCNN [392]. Reyes et al. proposed a 

methodology to determine the size of crops (height, width, depth, side view area, top 

view area) for assessing crops' growth rate and fresh weight using Mask-RCNN [177]. 

Even though the methods above have made a significant contribution to the research 

community, the analysis shows that none of the studies has focused on using these 

traits as a key feature to assess plant spacing. Hence, to complement the existing 

efforts, this study proposed a new methodology to determine the morphological traits 

of lettuce crops grown in aquaponics facilities and assess the plant spacing between 

grow channels. Additionally, based on the capability of instance segmentation, Mask-

RCNN is used to estimate the morphological attributes in this study [393], [383].    

8.3. Research Methodology 

An automated system is developed to monitor the morphological traits of the lettuce 

crop and estimate the plant spacing in aquaponics facilities using deep learning 

techniques. The overall methodology is divided into three sequential modules: i) 

Dataset preparation and pre-processing ii) Model development and parameter 

estimation, and iii) Model training and implementation.  
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Figure 8- 1. Pipeline for estimating the foliage area for effective plant spacing. 
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Figure 8-1 shows the complete pipeline of this approach, and details of all stages are 

explained in the following subsections. 

8.3.1. Dataset preparation and preprocessing 

8.3.1.1. Data acquisition and manual measurements 

For this study, iPhone X12 Pro Max is used to capture images of thirty lettuce plants 

grown in an NFT-based aquaponic facility situated at the University of Alberta, 

Canada. Fifty images of  4,032 × 3,024 pixels are captured every day, half (25 

images) at 9:00 am and a half at 6:00 pm from the top while keeping the distance 

between camera and channel at a value of 40cm throughout the plantation cycle, i-e., 

five weeks. Each image contains two plants planted in adjacent channels. There are 

six grow channels, each having five plant sites. The channels are horizontally stacked, 

so the total number of plants in all the rows of channels is six. In total, 1750 images 

were collected over the period of 5 weeks and are saved in JPG format.  Figure 8-2 

shows an example of some of the images of lettuce from different growth stages.  

 

Figure 8- 2. Sample images from an aquaponic facility. 

The manual measurements of morphological traits such as length, width, and height of 

30 plants are also recorded twice a day at 9:00 am and 6:00 pm for five weeks using a 

caliper. For the ground truth value of the foliage area, the number of pixels is counted 

manually by selecting the area of interest in Adobe Photoshop, which is then 

converted to cm2. The area is also recorded twice a day at the given timings for five 

weeks. As the plants grow, their area, length, and width also increase, reducing the 

distance between the two plants. This distance needs to be measured throughout the 

plantation cycle to determine the effective plant spacing and adjust the spacing 
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between plants. The actual distance is recorded for all the plants by taking the manual 

measurements twice daily at 9:00 am and 6:00 pm for five weeks using a scale. Fifty 

distance values are calculated daily for 30 plants growing on adjacent channels. 

Moreover, the plant spacing is also decided by using the recorded distance and initial 

plant spacing value. All the manual measurements are recorded in a common excel 

file.  

8.3.1.2. Data augmentation 

Next, the image augmentation process is performed to increase the dataset, and avoid 

overfitting. It enhances the reliability of the segmentation process despite the location 

and orientation of objects in the image by generating new images from existing 

images. This study uses Albumentations, a Python library, for fast and flexible image 

augmentations [359]. The different augmentation techniques applied are horizontal 

flip, vertical flip, 90° rotation, and glass noise. In total, 250 images were selected 

randomly for the augmentation, which created 250  new images — increasing the 

length of the dataset to 2000 images. Figure 8-3 shows an example of augmentation.  

 

Figure 8- 3. Example of an augmented image. 

To reduce the computation time of the training and testing of the model, the sizes of 

all the images were scaled to 640×480. A total of 2000 images are used for the model 

training and parameter optimization of Mask R-CNN, with 80% as the training set and 

20% at the validation set. After the training, the model is tested with a new set of 

images captured from a new batch of plants to evaluate the performance of the trained 

model. 
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8.3.1.3. Data annotation 

Data annotation is one of the vital steps for the successful development of object 

detection models. The process is manual and involves labeling the desired objects in 

an image with a label or tag that refers to a particular class. The labeled data is used 

during the training of the model. There is a number of open-source annotation tools, 

but in this study, VGG Image Annotator (VIA) is used [394]. This graphical 

annotation tool supports a variety of deep learning algorithms. For instance, it 

generates annotations in JSON and CSV formats. In this study, Mask-RCNN is used, 

which accepts annotations in JSON format. The relevant regions of the image are 

labeled, and the remaining region defaults to the background. Figure 8-4 shows an 

example of ground truth bounding boxes and masks obtained after data annotation. 

 

Figure 8- 4. Bounding boxes and masks after data annotation. 

8.3.2. Object detection and instance segmentation  

After data collection, object detection and instance segmentation are performed on 

crop images to achieve class, mask, and bounding box values for lettuce foliage. In 

this study, Mask R-CNN is used, which is the state-of-the-art method in the field of 

object detection. It is an extension of Faster R-CNN with an extra branch at the end of 

the model that activates instance segmentation for each output proposal box using a 

fully connected layer (FC) in parallel with the identification and localization tasks 

[395]. Instance segmentation is a computer vision task for detecting and localizing an 

object in an image through the identification of boundaries at a detailed pixel level 

[396]. The Mask R-CNN framework has three primary steps shown in Figure 8-5. In 
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the first step, feature maps are extracted from input images through a backbone 

network, which in the second step, are sent to the region proposal network (RPN) to 

generate regions of interest (RoIs). Finally, in the third step, the generated RoIs are 

mapped to extract the corresponding target features in the shared feature maps, which 

are then sent to a multi-branch prediction network consisting of FC, regression layer 

and FCN (fully convolutional networks) to generate three outputs: classification 

scores, bounding boxes, and segmentation masks. 

 

Figure 8- 5. Architecture of Mask-RCNN, adapted from [395] . 

Different deep neural networks have been designed over the years, such as AlexNet, 

ZF, VGG, GoogleNet, Inception, Xception, and ResNet, each having various pros and 

cons [383]. In this study, ResNet-101 (101 layers deep) is used as the backbone 

network for feature extraction because it tackles the issues of gradient disappearance 

and training degradation [362]. The architecture of ResNet is discussed in Chapter 6. 

Additionally, to better represent the lettuce in images on multiple scales, the backbone 

network is extended by adding a feature pyramid network (FPN) which is especially 

effective for the detection of small targets. The convolution feature maps from the 

backbone network are used as input for the RPN network. To generate the regions of 

interest (RoIs), nine anchors with different area scales and length-width ratios are 

used to slide on the feature maps. The corresponding features of each RoI are 

extracted from the feature maps, and RoIAlign is applied to adjust the dimension of 

each RoI to meet the input requirements of next layers. The adjusted RoI features are 

then sent to multi-branch prediction network consisting of three prediction branches: 

the FC layer for classification prediction, the regression layer for coordinate 

corrections of bounding boxes, and the fully convolutional network (FCN) for 

instance segmentation to generate the target mask. 

8.3.2.1.Mask-RCNN training 
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NVIDIA GeForce RTX 3090 is used for training the Mask-RCNN. A total of 2000 

images are split into 80% for the training set and 20% for the validation set. The 

Mask-RCNN is implemented in Detectron2 — Facebook AI, Research's next-

generation library, written in PyTorch that provides state-of-the-art detection and 

segmentation algorithms. Since the dataset is small, the pre-trained version of Mask-

CNN  (trained on the COCO dataset) from the model zoo of the Detectron210 ‘Mask-

RCNN with ResNet-101 + FPN’ is applied using the transfer learning approach. 

COCO is a huge dataset with 328k images, including 91 categories for object 

detection and image segmentation. The general features of all categories are extracted 

from COCO using the pre-trained model [397]. The parameters of the model can be 

adjusted to a better state based on the pre-trained model, regardless of the size of the 

dataset. Residual networks, such as ResNet-44/47/50/71/101, are used as a backbone 

network of Mask R-CNN, which are different from each other in the layer number of 

convolutional modules [397]. Among all the architectures, ResNet-101 has shown the 

highest detection accuracy and is, therefore, chosen as the backbone network for 

Mask-RCNN in this study. The model is trained for 600 iterations with the image 

input batch size given as 32. The initial learning rate is kept at 0.001 for the first 100 

iterations and is then adjusted per 100 iterations with an adjustment factor of 0.95. 

The category scores, bounding boxes, and masks of lettuce foliage for each input 

image are then obtained as the outputs of the model. The training process is 

completed in around 1 hour for 600 iterations, and the model loss function achieved a 

convergence state. 

The total loss of the proposed approach consists of two parts: the loss of classification 

and regression operations by RPN, and the training loss in the multi-branch predictive 

network, and can be calculated by using the formula given below [395].  

𝐿𝑓𝑖𝑛𝑎𝑙 = 𝐿𝑅𝑃𝑁 + 𝐿𝑚𝑢𝑙𝑡𝑖_𝑏𝑟𝑎𝑛𝑐ℎ 

Where 𝐿𝑓𝑖𝑛𝑎𝑙 represents the total loss,  𝐿𝑅𝑃𝑁 represents the training loss of the RPN 

(anchors classification loss (SoftMax Loss) and bounding box regression loss 

(SmoothL1 Loss)), and  𝐿𝑚𝑢𝑙𝑡𝑖_𝑏𝑟𝑎𝑛𝑐ℎ represents the training loss due to the three 

 

 

10 https://ai.facebook.com/tools/detectron2/ 
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branch structures (SoftMax Loss, SmoothL1 Loss, and Mask Loss). 𝐿𝑅𝑃𝑁 and  

𝐿𝑚𝑢𝑙𝑡𝑖_𝑏𝑟𝑎𝑛𝑐ℎ are calculated as follows: 

𝐿𝑅𝑃𝑁 =
1

𝑁𝑐𝑙𝑠1
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖

∗) + 𝜆1
1

𝑁𝑟𝑒𝑔1
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗)

𝑖𝑖
 

𝐿𝑚𝑢𝑙𝑡𝑖_𝑏𝑟𝑎𝑛𝑐ℎ = 𝐿(𝑝𝑖, 𝑝𝑖
∗, 𝑡𝑖, 𝑡𝑖

∗, 𝑠𝑖, 𝑠𝑖
∗)

=
1

𝑁𝑐𝑙𝑠2
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖

∗)
𝑖

+ 𝜆2
1

𝑁𝑟𝑒𝑔2
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) + 𝛾2

1

𝑁𝑚𝑎𝑠𝑘
∑𝐿𝑚𝑎𝑠𝑘(𝑠𝑖, 𝑠𝑖

∗)
𝑖𝑖

 

Where constant 𝑁∗ represents the number of corresponding anchors or bounding 

boxes. The hyperparameters 𝜆∗ and 𝛾∗ balance the training losses of the regression 

and mask branch. Classification loss 𝐿𝑐𝑙𝑠, regression loss 𝐿𝑟𝑒𝑔, and mask loss 𝐿𝑚𝑎𝑠𝑘  

are derived from the following formulas: 

𝐿𝑟𝑒𝑔(𝑡𝑖
∗, 𝑡𝑖) = 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖

∗ − 𝑡𝑖), 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {
0.5𝑥2 𝑖𝑓 |𝑥| < 1

|𝑥| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐿𝑟𝑒𝑔(𝑝𝑖
∗, 𝑝𝑖) = −𝑙𝑜𝑔𝑝∗𝑝 

𝐿𝑟𝑒𝑔(𝑠𝑖
∗, 𝑠𝑖) = −(𝑠∗ log(𝑠) + (1 − 𝑠∗) log(1 − 𝑠)) 

Where 𝑝𝑖 represents the classification probability of anchor i, and 𝑝𝑖
∗ represents the 

ground-truth label probability of anchor i; The variable 𝑡𝑖 represents the difference 

between the prediction bounding box and the ground-truth label box in four parameter 

vectors (the horizontal, vertical coordinate value of the center point in the bounding 

box; the width and height of the bounding box), and 𝑡𝑖
∗ indicates the difference 

between the ground-truth label box and the positive anchor; 𝑠∗ and 𝑠 represent the 

mask binary matrices from the prediction and ground-truth label, respectively.  

The loss function value and accuracy per iteration of the model for 600 iterations are 

shown in Figure 8-6. The loss function shows a downward trend during the training 

process, as seen in Figure 8-6, which means that the prediction loss deviation is 

gradually decreasing by updating the loss function of the small sample batches during 

the optimization process. The loss function values for both the training set and 

validation set are reduced to less than 0.2 and tend to be stable when the number of 
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iterations is more than 550. This indicates that the training of the model runs well, 

with a detection accuracy of lettuce foliage of more than 0.98.  

 

Figure 8- 6. Training losses, validation losses and accuracy per iteration. 

8.3.3. Crop morphological traits estimation model 

From the instance segmentation process, the predicted mask and bounding box of 

each instance are retrieved to determine lettuce morphological traits such as foliage 

area, length, and width. In this case, there are two masks, and two bounding boxes as 

each image consists of two lettuce foliage. The foliage area of two lettuce plants is 

calculated by extracting features from their respective predicted masks. The masks are 

a set of matrices that contain pixels belonging to the area of the segmented object 

(area of interest), which in this case are two lettuce foliage. These pixels are retrieved 

from the prediction, and further processing is done to give this data useful meaning. 

The distance between the camera and the object affects the pixel count of the image. 

The closer the camera, the greater the number of pixels of an object in an image and 

vice versa. Hence, in this study, the distance between the camera and channel is kept 

fixed at a value of 40cm while taking the images and is denoted by (𝐷). As we know, 

the height of the lettuce increases throughout the plantation cycle and affects the pixel 

count. . To calculate the foliage area (𝐴𝑓), the height (h) of the crop is also taken into 

account. At the end of the plantation cycle, a boxplot is created shown in Figure C.1 

of appendix C for the heights of 30 lettuce plants recorded manually and a scatter plot 
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is created shown in Figure C.2 of appendix C using median values of plants’ heights 

to derive a linear regression relationship between height (h) and a number of days (x), 

which is represented in equation 1.  

ℎ = 0.2521𝑥 + 2.9641                                                      (1) 

To adequately measure the morphological traits, the relationship between real-world 

metrics, such as cm (centimeter) and actual pixel values on the image should be 

identified. Triki et al. used scale bar objects to determine this relationship [387]. In 

this study, the width of the channel (𝑤𝑐) which is known to be 10cm is used for this 

purpose. Equation 2 shows the relationship between (𝑤𝑐) and (𝑝𝑐). At a constant 

distance of 𝐷 the relationships (𝑘) and (𝑘′) between pixel count (𝑝𝑐) and channel 

width (𝑤𝑐) are given in equation 3 and 4. 

𝑤𝑐 (𝑐𝑚) ≡ 𝑝𝑐 (𝑝𝑖𝑥𝑒𝑙𝑠)                                      (2)    

𝑘 =
𝑝𝑐
𝑤𝑐
   (
𝑝𝑖𝑥𝑒𝑙𝑠

𝑐𝑚
)                                              (3) 

𝑘′ =
𝑝𝑐
2

𝑤𝑐2
   (
𝑝𝑖𝑥𝑒𝑙𝑠

𝑐𝑚 2
)                                            (4) 

Let (𝑝𝑚) is the pixel count of the predicted mask, which is dependent on the height ℎ 

of the plant. The height of the plant changes throughout the plantation cycle and 

hence affects the pixel count of the predicted mask. To compute foliage area 

(𝐴𝑓), equation 5 is developed. 

𝐴𝑓 =
𝑝𝑚 × ℎ

𝑘′ × 𝐷
                                                       (5) 

Next, bounding boxes are retrieved from the model in the form of coordinates of 

opposite rectangle corners (top left (𝑥1, 𝑦1) and bottom right (𝑥2, 𝑦2). These 

coordinates are used to calculate the approximate width (𝑊𝑓) and length (𝐿𝑓) of 

foliage shown in Figure 8-7, using equations 6 and 7, respectively.  

𝑊𝑓 = 𝑥2 − 𝑥1   (𝑝𝑖𝑥𝑒𝑙𝑠)                                (6) 

𝐿𝑓 = 𝑦1 − 𝑦2   (𝑝𝑖𝑥𝑒𝑙𝑠)                                 (7) 
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Figure 8- 7. Dimensional characteristics of foliage. 

The equations for the width and length of foliage in real-world metric units 

(centimeter) are given as, 

𝑊𝑟 =
𝑊𝑓 × ℎ

𝑘 × 𝐷
   (𝑐𝑚)                              (8) 

𝐿𝑟 =
𝐿𝑓 × ℎ

𝑘 × 𝐷
      (𝑐𝑚)                              (9) 

The above process is performed for two lettuce foliage in a segmented image. 

8.3.4. Mathematical model for plant spacing calculation 

Figure 8-8 shows the most common configurations of plant spacing used for NFT 

channels along with several dimensional characteristics. In configuration 1, the plant 

sites on two adjacent channels are in-line with each other and in configuration 2, the 

plant sites are at an angle. In this study, configuration 1 is considered for a case study 

but the proposed model can also be applicable to configuration 2. The plant spacing 

(𝑆) is to be maintained on individual grow channels as well as between the channels 

(𝑆′) to avoid foliage occlusions and overlapping which limit crop growth and affect 

crop quality. Generally, while designing the aquaponic system, the plant spacing on 

the channel, (𝑆) and between channels (𝑆′) is kept constant.  The latter parameter can 

be controlled to make a self-adaptive aquaponics. From Figure 8-8, (𝑆′) is the 
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distance from the center of the plant site of one channel to the center of the plant site 

of the adjacent channel and is given in equation 10. 

𝑆′ =
𝑤𝑐1
2
+
𝑤𝑐2
2
+ 𝑠                            (10) 

Where (𝑤𝑐1 = 𝑤𝑐2), (𝑤𝑐1) is the width of channel 1, (𝑤𝑐2) is the width of channel 2 

and (𝑠) is the distance between two adjacent channels. The width of channels is 

constant whereas (𝑠) is a dynamic parameter. By changing (𝑠), the horizontal channel 

spacing i-e., the distance between channels can be changed.  

 

Figure 8- 8. Dimensional characteristics of grow channels with respect to two 

configurations. 

To compute the distance between plants automatically, the initial and new values of 

(𝑆′) and (𝑠) are computed. Let (𝑆′𝑛−1) and (𝑠𝑛−1) refers to initial or previous values 

for (𝑆′) and (𝑠), respectively, and (𝑆′𝑛) and (𝑠𝑛) refers to new values for (𝑆′) and (𝑠), 

respectively. Equations 11 and 12 represent the initial and new values of (𝑆′). 
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𝑆′𝑛−1 =
𝑤𝑐1

2
+
𝑤𝑐2

2
+ 𝑠𝑛−1            (11) 

𝑆′𝑛 =
𝑤𝑐1

2
+
𝑤𝑐2

2
+ 𝑠𝑛                     (12) 

To compute (𝑠𝑛), an incremental parameter (𝑠𝑖) is defined, which determines the 

variation in plant spacing due to changes in foliage morphological traits. The 

incremental parameter (𝑠𝑖) is calculated using the Euclidean distance (𝑑) between two 

bounding boxes achieved through the prediction process shown in Figure 8-9 and 

(𝑆′𝑛−1). The parameter (𝑠𝑖)  will only increment if (𝑑) will be less than (𝑆′𝑛−1) i-e., 

𝑖𝑓 𝑑 < 𝑆′𝑛−1.   The value of (𝑑), on the other hand, is dependent on the foliage area 

and  length,  which decreases as the area (𝐴𝑓) and length (𝐿𝑓) of foliage increases. 

Equations 13, 14 and 15 provide the relationship for (𝑑) , (𝑠𝑛)  and (𝑠𝑖), respectively.  

 

Figure 8- 9. Calculation of distance between plants using bounding boxes. 

𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2            (13) 

         𝑠𝑛 = 𝑠𝑛−1 + 𝑠𝑖                              (14) 

𝑠𝑖 = 𝑆
′
𝑛−1 − 𝑑                                      (15) 

The new values for (𝑆′) are then obtained by incrementing the values of (𝑠) using the 

above process for all plants’ pairs in images and converted to metric units (cm) using 

Equation 2 The updated values of (𝑠) can be used to estimate plant population (PD) 

using the equation 16 proposed by authors in previous work (Chapter 4).  
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𝑃𝐷 =
𝑁𝑃𝑆𝐶×𝑁𝐶

𝐿×((𝑁𝐶×W)+((𝑁𝐶−1)×𝐻𝐶𝑆) 
                (16) 

Where (𝑁𝑃𝑆𝐶) is the number of plant sites (circular or squared-shaped pockets) per 

channel, (𝑁𝐶) is the total number of channels, 𝐿 is the length of each channel and is 

equivalent to (𝑙𝑐) shown in Figure 7, (W) is the width of each channel and is 

equivalent to (𝑤𝑐𝑗) shown in Figure 7 (j=1,2,3…..n), and (𝐻𝐶𝑆) is horizontal channel 

spacing and equivalent to (𝑠).   

8.3.5. Ontology model 

The complete development and details of all the concepts and instances of the 

ontology model  ‘AquaONT’ developed by authors in previous work are available in 

Chapter 3. AquaONT is a unified ontology model that represents and stores the 

essential knowledge of an aquaponics 4.0 system. It consists of six concepts: 

Consumer_Product, Ambient_Environment, Contextual_Data, Production_System, 

Product_Quality, and Production_Facility. In this study, two classes, ‘Consumer 

Product’ and ‘Production_System’ are used for knowledge extraction. The ‘Consumer 

Product’ class provides an abstract view of the type, growth status, and growth 

parameters of ready-to-harvest crops in an aquaponic system. Whereas the 

‘Production_System’ class provides knowledge on design parameters of the grow 

channels such as width, length and depth of channel and size of plant site on channel 

[6]. Figure 8-10 shows the hierarchical architecture of the ‘Consumer Product’ and 

‘Product Quality’ classes with their instances for the ‘Lettuce’ crop in Protégé11 (an 

open-source ontology editor and framework developed at Stanford University) 

environment. The length and width of the channels can be extracted from ontology to 

be used to determine the plant spacing as well as the production capacity of the 

aquaponic facility using equation 16. 

 

 

11 https://protege.stanford.edu/products.php#desktop-protege 
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Figure 8- 10. Ontology model showing the instances of ‘Consumer_Product’ and 

‘Production_System’ classes. 

8.3.6. Cloud-based application  

A cloud-based application is developed using Streamlit, where the final versions of 

both models developed in sections 8.3.3 and 8.3.4 are deployed  The layout of the 

application is shown in Figure 8-11. It consists of three tabs: i) Select model, ii) 

Upload image, and iii) Determine morphological traits and plant spacing. The first 

and second tabs are user inputs where the model is selected, and the image is 

uploaded respectively. The third tab activates the crop morphological model and plant 

spacing model respectively. The ontology model is also deployed on a cloud-based 

application through the Owlready2 library. Once, the morphological traits are 

estimated and effective plant spacing is determined, the length of the channel is 

extracted from the ontology model to determine plant population and overall yield.  

Moreover, crop quality can also be assessed by comparing the predicted 

morphological traits of lettuce and standard values stored in the ontology model. This 

type of application is useful as it provides access to remotely monitor and control the 

production facility. 
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Figure 8- 11. Cloud-based application for estimation of morphological traits of 

lettuce and plant spacing. 
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8.4. Results and findings 

To validate the research methodology, a new batch of plants are grown. The 

experimental setup used to capture new dataset and validation results and findings are 

presented in the following subsections 

8.4.1. Experimental setup 

The experimental setup is built in the Allfactory 4.0, an NFT-based aquaponic facility 

situated at the University of Alberta, Canada, which focuses on smart indoor farming 

[246]. The aquaponic system is divided into five crop growth phases which represent 

the complete growth cycle of the crop. For this study, only phase 1 is considered, 

which consists of six horizontally stacked grow channels and each channel has five 

plant sites. The length and width of each channel are 125 cm and 10 cm respectively. 

The distance between the center of plant sites (circular pockets) of two consecutive 

channels is 12 cm. A fresh batch of lettuce crop is grown for which fifty seeds of 

Little gem lettuce (Lactuca sativa L.) are placed in growth chambers with an ambient 

temperature of 18°C, relative humidity of 70%, and illumination of a 12-hour (12 

hours light / 12 hours dark) photoperiod [333]. Twenty-one days after sowing, 30 

healthy lettuce seedlings are transplanted in Rockwool cubes and placed in the six 

NFT channels in phase 1. The seedings are placed in NFT-based hydroponic systems 

for a period of five weeks (plantation cycle), after which each lettuce is harvested. A 

wireless sensing module (WSM) consisting of five sensors (pH, temperature, 

humidity, water temperature, electroconductivity and light) is installed on the system 

to monitor the system and gather the sensor data. The complete development and 

working of WSM are detailed in a previous work by the authors (Chapter 5). 

Moreover, the images are captured in a similar fashion as discussed in section 3.1.1. 

But this time camera module consisting of four ELP 1080P webcams (2.8–12 mm HD 

Varifocal Lens) is used. All the webcams are attached at a distance of 40cm and are 

scheduled to take one picture per day for five weeks. In total, 8 plant samples are 

chosen for images and each image contains two plants. These plants are grown on 

adjacent channels and each day four pictures are taken automatically. At the end of 

the plantation cycle, there are 140 images which are then used for testing and 

evaluation of the proposed models.  The actual measurements for morphological traits 

and distance between plants are recorded in a similar manner as discussed in section 
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8.3.1.1. The actual values of plant spacing (𝑆′) are also computed manually using the 

actual distance between plants and formulas mentioned in section 8.3.4.  

8.4.2. Evaluation of trained Mask-RCNN model  

To evaluate the detection accuracy of the trained Mask-RCNN model, the intersection 

over union (𝐼𝑜𝑈) metric is used, which compares the predicted detection with ground 

truth. 𝐼𝑜𝑈 is the ratio of the area of overlap between ground truth and predicted 

bounding boxes or masks divided by the area encompassed by both the predicted 

bounding box and the ground-truth bounding box [397]. For this purpose, the test 

dataset consisting of 140 images is used. The 𝐼𝑜𝑈 is calculated as follows:  

𝐼𝑜𝑈 =
𝐴𝑇 ∩ 𝐴𝐷
𝐴𝑇 ∪ 𝐴𝐷

 

Where  𝐴𝑇 and 𝐴𝐷 represent the target bounding box of the ground truth and the 

detected bounding box from the model, respectively. All 140 test images have shown 

𝐼𝑜𝑈 coefficient of 0.9 or above, indicating that there is significant overlap between 

the two bounding boxes. Figure 8-12 shows an example of an image showing 

detection with 𝐼𝑜𝑈 of above 0.9. The green bounding box is the ground truth, whereas 

the red bounding box is predicted by the model. All the targets in the lettuce image 

are aimed to be detected and marked with target category scores, bounding boxes, and 

instance segmentation masks. The detection performance of the Mask-RCNN is 

shown in Figure 8-13. The final model is then used to evaluate foliage morphological 

traits and plant spacing. 
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Figure 8- 12. Object detection by Mask-RCNN with IoU. 

 

Figure 8- 13. Detection and instance segmentation of lettuce foliage. 

8.4.3. Evaluation of morphological model  

To evaluate the crop morphological model, the length, width, and area of lettuce 

foliage are computed from masks predicted by the trained model. The actual and the 

measured values for each morphological trait are compared for images in the test 
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dataset. The increasing trend in the morphological traits is observed — indicating the 

growing behavior of the plants (increase in size). The estimation error between 

manual and masked dimensions for each trait per plan is then measured using root 

mean squared error (RMSE) using the formula given below. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑗 − 𝑦𝑗)2
𝑘

𝑗=0

 

Where 𝑥𝑗 is actual value, 𝑦𝑗 is predicted value, Table 8-2 lists the RMSE calculated 

using the above equation for each measurement per plant. The test image set refers to 

a set of images taken throughout the plantation cycle for one pair of plants (Foliage 1 

and Foliage 2). The test dataset in this study consists of four plant pairs. The 

minimum error is observed, which demonstrates that the trained model is reliable for 

the calculation of the leaf area, length, and width in real-world scenarios. 

Table 8- 1. RMSE of manual and estimated measurements of morphological traits. 

Test image set Instance Length,  𝑳𝒓(cm) Width, 𝑾𝒓 (cm) Area, 𝑨𝒇 (cm2) 

1 
Foliage 1 1.1 1.8 3.35 

Foliage 2 1.3 1.1 2.9 

2 
Foliage 1 0.95 1.5 3.1 

Foliage 2 1.05 1.3 2.79 

3 
Foliage 1 1.27 0.99 3.2 

Foliage 2 1.37 1.21 3.12 

4 
Foliage 1 1.31 1.32 3.23 

Foliage 2 1.18 1.27 2.87 

8.4.4. Evaluation of plant spacing model 

To evaluate the plant spacing model, first, the distance between bounding boxes of 

two instances (two plants per image) is computed after instance segmentation is 

performed on images in the test dataset.  The plant spacing is then computed 

following the process mentioned in section 3.4. The predicted values are then 

compared with actual measurements,   which indicates that plant spacing increases 

with an increase in foliage area and length. Table 3 presents the RMSE for each test 

image set. The lower RMSE values indicate the reliability of the proposed model.  
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Table 8- 2. RMSE of manual and estimated measurements of plant spacing. 

Test image set Instance 1 Instance 2 Plant spacing,  𝑺′ (cm) 

1 Foliage 1 Foliage 2 1.1 

2 Foliage 1 Foliage 2 0.95 

3 Foliage 1 Foliage 2 1.27 

4 Foliage 1 Foliage 2 1.31 

8.5. Discussion and future work 

The objective of this study is to automatically measure the crop morphological traits 

from the lettuce images acquired from the aquaponic facility and determine the 

effective plant spacing between grow channels. The idea is to develop an approach 

that can lead to a self-adaptive aquaponic system, where based on crop morphological 

attributes, the grow channels adjust their positions effectively to ensure high crop 

yield and quality by avoiding occlusions and foliage overlapping. The presented work 

has used the Mask-RCNN algorithm to enable a fine-grained detection of lettuce 

foliage within the images and the generation of a pixel-wise segmentation mask for 

each detected instance. The segmentation masks distinguish foliage from the 

background and provide a mechanism to identify non-foliage classes, such as channel, 

Rockwool cubes, etc., by considering their high heterogeneity in form and texture.  

The manual measurement of morphological traits is time-consuming and labor-

intensive. Even for an experienced agriculturalist, it would take a significant amount 

of time to measure all morphological traits. The proposed approach can automatically 

estimate the morphological traits of lettuce foliage that vary in size and shape. Plant 

spacing is one of the key features that impact crop growth. It is dependent on crop 

type as well as crop morphological traits. In this study, plant spacing is automatically 

measured for each segmented foliage using the mathematical model.  

The final model is deployed on a cloud-based application and integrated with the 

ontology model. The ontology model provides information about crop characteristics 

and grow bed design parameters for a variety of crops grown in NFT-based 

aquaponics. The application acts as a decision support system, which analyses the 

results from the models, compares them with the relevant knowledge from the 

ontology model and suggests the final action by sending control signal to the 
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aquaponic facility for automatically adjusting the grow channels based on the value of 

plant spacing predicted by the proposed model. 

While promising results are achieved from the proposed models, there is still scope of 

improvement. For instance, only one crop is considered in this study for the 

estimation of morphological attributes and assessing the plant spacing between 

channels.  Considering that, the potential solutions for estimating the morphological 

attributes of multiple crops will be investigated in future work. Subsequently, the 

dataset will be increased with more image variations and other leafy green crops as 

well as fruits, flowers, and non-flowering plants. Furthermore, the impact of 

morphological traits on other design parameters of the aquaponic facility will also be 

studied. A case study using this model is also developed to estimate the wet biomass 

of lettuce grown in deep water culture aquaponics which is presented in Appendix D. 

8.6.Conclusions  

In this study, an automatic tool is developed to predict the morphological traits of 

lettuce crops such as foliage area, length, and width and estimate effective plant 

spacing for an NFT-based aquaponic facility. The results have shown that the growth 

of plants is estimated within 2cm of error for both length and width, 4cm for area and 

1.5cm for plant spacing. The final model is then deployed on a cloud-based 

application and an ontology model is integrated with it. The proposed method is 

accurate and flexible and hence can easily be applied in real scenarios. This 

contribution has great significance to the research community as it promotes the 

implementation of a self-adaptive aquaponic system that can be constantly improved 

using dynamic data. Moreover, the presented methods offer the opportunity to rely on 

smart technologies for the application of new concepts such as research on complex 

relationships between optimal parameters, and detection of nutrient deficiency in 

crops using computer vision which will pave the way for large-scale implementation 

of aquaponics farming technology.  
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Chapter 9 Conclusions, discussions, and future work 

9.1. General conclusions 

Over the past few years, the world has been facing several challenges, such as drastic 

increases in population, resource scarcity, and climate change. These factors also 

threaten food security due to increasing demands for agri-food products.  In the facet 

of this upheaval, traditional farming practices seem vulnerable to matching the 

growing need for nutritious food. This poses a need to explore modern farming 

practices such as indoor vertical farming methods, namely aquaponics, hydroponics, 

and aeroponics. These farming methods represent a class of horticulture that involves 

the cultivation of plants in a soilless-controlled environment by subjecting the bare 

roots to a nutrient-enriched solution. The benefits of these modern farming methods 

are evident from sustainable and environmental-friendly urban growth to enhanced 

crop yields at a faster rate and reduced labor costs. 

 In this research, the aquaponic system is considered, which integrates hydroponics 

(soilless growing of plants) with aquaculture (farming of fishes) in a recirculating 

system, where the wastes and metabolites produced by cultured fish are removed by 

nitrification and taken up by the plants. Imitating the natural cycle, aquaponics 

presents a symbiotic relationship between plant cultivation and fish farming and 

hence acts as a promising resource-efficient and sustainable food production 

technology that can address food security issues. Although there is a growing interest 

in aquaponics, the complex relationship between various parameters, limited 

availability of crop and fish species suitable for this technology, special requirements 

for system design, nutrient concentrations, and water quality along with disease 

management are hindering its adoption at commercial scale.  

The integration of smart technologies, automation, and control in an aquaponic 

system enables intelligent data-driven decisions related to crop quality control, design 

configuration of the system, and autonomous and robust monitoring and control of the 

system’s operations, and hence can address the challenges mentioned above. But 

realizing such a highly digitized aquaponic system requires system knowledge, 

efficient data integration, and information flow among different domains. Research 

has shown that ontologies can be used for this purpose as they store information and 

knowledge from multiple heterogeneous sources, ensure efficient data integration and 
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infer new knowledge that has not been explicitly incorporated. This knowledge and 

different machine learning and deep learning techniques can be utilized to develop a 

data-driven decision support system for system management,  crop quality control, 

and disease prevention.  

Therefore, this thesis attempts to unify various findings in the field of a smart 

aquaponic system which can be divided into seven stages. In the first stage (Chapter 

2), a detailed analysis and review of the present literature related to digitization in the 

agriculture industry are performed to get insights into the status of smart technologies 

in agriculture. It is found that the pace at which digitization is happening in the 

agriculture industry is slow because most agricultural operations deal with living 

subjects, like animals and plants or perishable products, and developing systems is 

harder than non-living human-made systems. Other reasons include dependence on 

natural conditions (climate, soil, humidity) and variations in crop species and their 

growth conditions. Moreover, it is also found that in the case of aquaponics, complex 

design and management of the system add additional challenges. Further analysis of 

the literature shows that no unified ontology model is currently available for storing 

knowledge of an aquaponic system knowledge. Moreover, no automatic crop quality 

and disease diagnostic system for an aquaponic system has been developed that 

considers multiple leafy green crops and associated system requirements. Finally, no 

decision support system is available that integrates an ontology model and crop 

diagnostic system, which can assist agricultural practitioners in decision-making 

regarding crop quality, facility layout, and a system’s operations. 

Considering the research gaps identified from literature analysis in the first stage, an 

ontology model “AquaONT” is developed using the “Methontology” approach in the 

second stage (Chapter 3) to model and store relevant knowledge pertaining to 

different domains of an aquaponic 4.0 system (a digital farm that uses smart 

technologies to improve the system’s design and operations) identified through the 

literature as well as other resources. The knowledge from AquaONT can be extracted 

for optimal operation of IoT devices by comparing contextual data coming from a 

farm with standard/ideal data from experts, taking corrective actions on qualitative 

issues of crop and fish (disease and quality management), and ensuring correct design 

configuration of the system based on crop characteristics. This information can assist 
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agricultural practitioners and farmers in clear decision-making regarding IoT devices, 

sensors, and other components necessary for farm development.  

The design of the aquaponic system, such as grow bed configuration (spacing 

between plants and channels), significantly impact crop growth and overall quality. 

Therefore, in the third stage (Chapter 4), a framework based on ‘AquaONT’  is 

proposed for automated decision-making regarding crop production and respective 

grow bed design in aquaponics farms. To deploy the framework, a GUI is developed 

that uses inferred and existing knowledge from AquaONT and a mathematical model 

to calculate design parameters for grow bed design-based crop characteristics. The 

GUI is also integrated with CAD software which, upon receiving the calculated 

design parameters, performs parametric modeling and provides the layout of grow bed 

for the specified crop. This virtual tool can assist agriculturalists in decision-making 

regarding which design configuration is suitable for a particular crop choice and space 

availability.  

In the fourth stage (Chapter 5), a cloud-based dashboard is developed for the 

aquaponic facility established in the Aquaponics 4.0 Learning Factory (AllFactory), 

University of Alberta. The dashboard displays the sensor data and crop images in a 

real-time. The data is acquired from an aquaponic facility and uploaded wirelessly to 

the cloud. The proposed dashboard can be used as a standalone tool for farm and crop 

monitoring, or it can be integrated with other systems. For instance, this research is 

integrated with the ontology model developed in stage 2, where it populates the 

instances of the ‘Contextual_Data’ class, with sensor data. Moreover, it is also 

integrated with crop inspection and decision support systems developed in the next 

stages, demonstrating this dashboard's usefulness.  

For a functional and efficient aquaponics farm, a number of challenges must be 

addressed. One of these challenges is related to crop diseases that impact crop quality 

and cause crop wastage. Hence, early and correct detection of diseases is crucial to 

witness the efficiency of aquaponics farms. In the fifth stage of the thesis (Chapter 6), 

an automatic crop disease detection system is proposed for detecting diseases in four 

leafy green crops, lettuce, basil, spinach, and parsley, grown in an aquaponic facility. 

To develop this system, the first dataset comprising 2640 images is constructed.  Then 

the system is developed that works in three phases. The first phase is the crop 

classification phase which tells about the type of crop. The second phase is the disease 
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identification phase which determines whether the crop has a disease or not. The final 

phase is the disease detection phase which localizes and detects the diseased and 

healthy spots in leaves and also tells about the disease category. The third phase only 

activates if the input coming from the second phase is one of the diseased crops. The 

proposed approach has shown promising results with accuracy in three phases, 

reaching 95.83%, 94.13%, and 82.13%, respectively. A cloud-based application is 

then developed where the final system is deployed along with an ontology model 

developed in stage two for identifying causes and treatments once the disease is 

detected. This cloud-based application act as a decision support system (DSS) which 

can be used by agricultural practitioners for early disease diagnosis and taking 

precautionary measures.  

Following stage five, another tool based on the image processing technique is 

proposed in stage six (Chapter 7) to evaluate the health of lettuce crops grown in 

aquaponics facilities based on their foliage color. ‘HSV Space segmentation’ 

technique is used to segment images and extract Red (R), Green (G), and Blue (B) 

channel values. The foliage color detection model is then developed using mean R, G,  

and B channel values and a color distance model. The performance of the model is 

evaluated, achieving an accuracy of 95%. After that, the proposed model is deployed 

on DSS developed in stage five. The model developed in this study can be used for 

the quality evaluation of other crops by adjusting the threshold values. 

Finally, in the last stage (Chapter 8), a model is developed using Mask-RCNN to 

estimate the crop morphological traits in a particular crop top view area for safe plant 

spacing, which is one of the key design parameters in aquaponics facilities as 

mentioned in stage three (Chapter 4). The correct spacing between plants in NFT 

channels is crucial to ensure healthy crop growth, which otherwise is not possible in 

case of incorrect spacing. This is because each plant has certain canopy dimensions, 

and if they grow too close to each other, their foliage can overlap, which can stress the 

plants and limit their growth potential. Moreover, plants grown very close to each 

other are prone to diseases. This model is also deployed on DSS developed in stage 

five. 

9.2. Research contribution 

The primary contributions of this research are summarized as follows: 
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• Investigated and analyzed the extent of digital technologies adoption in agriculture 

in the context of service type, technology readiness level, and farm type. 

Identified the research gaps, particularly in the area of aquaponics. 

• Developed an ontology model to store relevant knowledge of an aquaponic system 

pertaining to environmental parameters, contextual data, production system, 

product quality, production facility, and product type. Formalized the relationships 

among these domains to enable the decision-making process. 

• Constructed a virtual decision support tool using ontology model and parametric 

modeling model to determine to grow bed design configuration based on crop 

characteristics for healthy growth of crops in aquaponic facility. 

• Developed a cloud-based dashboard for data acquisition and monitoring of 

aquaponic facility. 

• Developed a crop disease diagnostic system using deep learning and computer 

vision techniques for early detection and identification of diseases in leafy green 

crops grown in an aquaponic facility. 

• Developed a novel real-time image processing technique to determine the quality 

of the crop based on foliage color. 

• Designed a system to estimate crop morphological traits for plant site spacing 

using deep learning and computer vision approaches.  

• Integrated all the developed models and systems to ensure efficient data and 

information flow. 

• Developed a DSS in the form of a cloud-based application using the Streamlit, 

where ontology model and crop quality inspection systems are deployed. This 

DSS assists in the decision-making process regarding facility layout, crop quality 

and optimal environmental conditions, etc. 

9.3. Research limitations and future research 

This research is subjected to the following limitations: 

• While conducting the literature analysis using the PRISMA approach, only three 

online repositories are considered for the literature search (Scopus, IEEE, and 

Science Direct), and a specified search string is used.  In both scenarios, it is 

highly unlikely that the overall findings would change. But still, there is a 

possibility that additional databases, keywords, and synonyms might return more 
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studies. For future work, additional research databases and aspects can be 

considered to provide a holistic overview of the agricultural industry in 

digitization. Moreover, studies targeting agriculture 5.0, in general, can also be 

included. 

• At the moment, AquaONT can only be applied to an NFT-based aquaponic 

system that grow leafy green vegetables such as lettuce, spinach, parsley, and 

basil. Moreover, it does not contain knowledge about microbial inoculum or 

nitrifying bacteria. Hence, for future work, AquaONT can be expanded to include 

aspects and knowledge of: i) other aquaponic 4.0 systems such as deep-water 

culture (DWC) and media-based aquaponics, ii)  fruits and other vegetables, and 

iii) nitrifying bacteria.   

• The crop disease diagnostic system is developed considering only four leafy green 

crops. The dataset is also developed that contains around 2640 healthy and 

diseased images of these crops. The system can be extended for future work to 

include other crops such as fruits and cereal crops. Moreover, the dataset can also 

be expanded to incorporate more real-field images.  

• During the development of the model for crop quality evaluation based on color 

foliage, only the lettuce crop is considered. The model has not taken into account 

other crops. However, it can be implemented to other crops as well by adjusting 

some parameters. The second limitation is that model works with images having 

only one object. The model does not perform the segmentation process efficiently 

with multiple objects in the background. In future work, the current limitations of 

the model can be addressed by considering other crops as well as multiple objects 

in an image.  

• The lettuce crop is considered for developing a model to estimate the foliage area 

for plant site spacing. But this model can easily be applied to other crops as well 

after training it on new crop data. For future work, the model is expanded to 

include other crops along with a dataset containing images of other crops.  

• Due to certification requirements related to fish, the aquaculture system is not 

taken into account, which limits the research to the hydroponics component of the 

process. However, to imitate the aquaponics process, nutrient concentrations in 

water effluent are kept at similar levels as that of aquaponics. In the future, the 

scope of current research can be broadened by incorporating aquaculture along 
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with hydroponics, collectively analyzing the impact of both systems on crop 

growth and quality and thus facilitating the large-scale commercial 

implementation of this sustainable food production system. 
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Appendices 

Appendix A: Supplementary Information on AquaONT (Chapter 3) 

A1: Summary of different ontology-driven smart systems (Table A.1) 

Table A- 1. Review on ontology-driven smart systems (Integration of ontology and 

AI techniques). 

Sr. 

No. 
Model Domain Purpose Significance Approach Citations 

1. 

A semantic 

framework 

consisting of   

“RAInS” and 

“SAO” ontologies 

is developed for 

AI systems. 

AI 

AI system 

design and 

implement

ation 

Provide a 

visual 

interface for 

designing 

accountability 

plans and 

managing 

accountability 

records. 

Modeled the 

accountability 

information 

relevant to the 

design stage of 

the AI system. 

[318] 

2. 

A deep learning-

based NLP 

ontology 

population system 

is developed. 

Biology 

Systems 

and 

processes 

analysis 

Automatic 

population of 

the 

Biomolecular 

Network 

Ontology 

(BNO). 

Used the 

popular deep 

learning 

algorithm 

“Word2vec” to 

learn word 

embeddings 

using a shallow 

neural network 

[398] 

2  

An ontology 

model  

“OntoSenticNet” 

is proposed 

consisting of a 

composite deep 

learning classifier. 

Text 

analysis 

Sentiment 

mining 

Deep learning-

based text 

mining with 

ontology-

based 

information. 

Used semantic 

information in 

ontologies for 

explaining deep 

text mining, 

using neural 

attention and 

word 

embeddings. 

[286] 

3  

A lightweight 

dynamic ontology 

“LiO-IoT” using 

machine learning 

technique is 

proposed for IoT 

systems. 

IoT 

Fulfilling 

the 

requiremen

ts of IoT 

systems. 

Ensure 

semantic 

interoperabilit

y among IoT 

devices and 

reducing 

complexity 

and 

introducing 

dynamicity in 

the ontology. 

Used machine 

learning 

technique 

(clustering) to 

provide 

dynamic 

semantics 

automatically 

for including 

additional 

concepts. 

[287] 

4  
A smart ontology-

based IoT 

Healthca

re 

Covid-19 

detection 

Control the 

spread of the 

An ontology-

based biosensor 
[282] 
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framework is 

proposed for the 

early detection of 

COVID-19 in 

patients. 

and remote 

patient 

monitoring

. 

coronavirus. is developed 

using sensory 

1D biomedical 

Signals (ECG, 

PPG, 

temperature, 

and 

accelerometer) 

and machine 

learning 

techniques such 

as feature 

extraction and 

classification. 

5  

A novel approach 

is proposed for 

generating 

ontology using a 

deep learning 

model. 

Cyber 

security 

Ontology 

learning 

and 

application 

for cyber-

attack 

detection. 

Improve 

intelligent 

intrusion 

detection for 

cybersecurity. 

Used deep 

neural network 

and supervised 

classifier 

gradient 

boosting 

decision tree 

(GB) for 

ontology 

learning and 

application. 

[273] 

6  

A  decision 

support system is 

developed using 

ontology and 

machine learning 

techniques to 

predict disease and 

suggest solutions. 

Healthca

re 

Prediction 

of diabetes 

stage in 

patients 

Improve the 

healthcare 

diagnostic 

system. 

Used ontology 

containing data 

such as disease 

symptoms, 

causes and 

treatments, 

Naive Bayes 

algorithm, and 

decision tree for 

identifying 

disease stage. 

[274] 

7  

An ontology 

model is proposed 

for cyber-security 

of self-recovering 

smart grids. 

Smart 

Grids 

Monitoring 

and 

restoration 

of the 

operability 

of the 

Smart Grid 

power 

systems. 

Ensure 

sustainability 

and 

functioning of 

power systems 

in the event of 

destabilization 

Used conceptual 

bases of self-

recovery of 

perspective 

energy 

systems in the 

conditions of 

information 

confrontation 

are employed to 

develop an 

ontology model. 

[281] 

8  

An ontology 

model is proposed 

to represent 

Cyber-

physical 

system 

Analysis of 

DT 

through 

Highlights the 

main concepts 

involved in the 

Used concepts 

already existing 

in the literature, 

[275] 
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Digital Twin (DT) 

in the context of a 

cyber-physical 

system (CPS). 

knowledge 

representat

ion. 

development 

of DT. 

such as the IoT-

Lite ontology. 

 

9  

A smart fisheries 

ontology is 

developed, and an 

Attribute-Based 

Access Control 

System (ABAC) is 

implemented to 

evaluate access 

requests in farms. 

Aquacult

ure 

Protect the 

internet-

connected 

sensors 

from 

potential 

cyber-

attacks and 

propose AI 

application

s to aid the 

owners to 

effectively 

manage 

their fish 

farms. 

Secure and 

efficient smart 

fisheries 

ecosystem. 

Used an 

ecosystem 

consisting of 

virtual and 

digital entities 

and their 

interactions to 

develop an 

ontology model, 

which is then 

used to 

implement 

ABAC. 

[285] 

10  

A method based 

on natural 

language analysis 

and big data 

ontology is 

proposed for 

metadata analysis, 

Big data 

Analysis of 

metadata 

records in 

big data. 

Improve the 

efficiency of 

all stages of 

big data 

processing 

Used data 

created by 

human experts 

and generated 

by electronic 

devices to 

populate the 

instances of the 

ontological big 

data model. 

[276] 

11  

A decision support 

system based on 

ontology-based 

text mining, self-

organizing maps 

(machine learning 

algorithm),  

reliability and 

cost optimization 

is developed for 

design 

improvement 

using warranty 

data. 

Design 

Identificati

on of 

manufactur

ing faults 

and 

optimizatio

n of design 

parameters 

Enhanced 

design 

reliability and 

reduced 

manufacturing 

costs. 

Used ontology-

based text 

mining 

approach to 

extract hidden 

knowledge in 

warranty 

database, data 

mining 

approach SOM 

to link 

information 

with 

manufacturing 

data, and 

statistical 

analysis for re-

evaluation of 

parameters for 

cost analysis 

and design 

[277] 
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changes. 

12  

A system “PALS 

(Privacy via 

Anomaly-

detection 

System)” is 

developed based 

on ABAC and 

ontology model to 

execute access 

control decisions 

for smart homes. 

Smart 

home 

Detect the 

intrusions 

in the 

smart 

home. 

Enable users 

to control 

devices at 

home by 

providing 

them with the 

ability to 

change the 

access control 

policy. 

Used context-

sensitive 

policies that 

were created 

based on online 

privacy policies 

available from 

cloud service 

providers like 

Google Nest 

suite of 

products. 

[284] 

13  

Innovative 

ontology matching 

system is 

developed that 

finds complex 

correspondences 

by processing 

expert knowledge 

from external 

domain ontologies 

and by using novel 

matching methods. 

Smart 

grids 

Identify 

and solve 

interoperab

ility issues 

within 

smart 

grids. 

Improve 

performance 

of smart grids. 

Used innovative 

graph-based 

matching 

methods and 

innovative 

mapping 

algorithms. 

[278] 

14  

A novel ontology-

based neural 

network model 

“OntoLSTM” is 

proposed for 

manufacturing 

time series 

classification. 

Smart 

factory 

Enhancing 

deep 

learning 

model by 

using 

semantic. 

Improve 

products, 

processes, and 

decisions. 

Used a core 

manufacturing 

process 

ontology to 

design deep 

neural networks. 

[284] 

15  

A methodology 

for the 

combination of 

ontology-based 

knowledge 

management and 

machine learning 

for the 

classification of 

multiple spatial 

data sources. 

Nature 

conserva

tion 

Determinat

ion of the 

grassland 

indicators 

wetness 

and 

alkalinity. 

Improve 

interoperabilit

y, 

reproducibility 

and 

exchange of 

data. 

Used a decision 

tree classifier 

(DT) approach 

in combination 

with ontological 

formalism to 

generate 

classification 

procedures and 

results. 

[279] 

16  

A roadmap is 

presented 

combining 

ontology and 

machine learning 

approaches for 

intelligent 

Energy 

consump

tion 

Intelligent 

monitoring 

of building 

energy 

consumpti

on 

Enhanced 

energy 

utilization. 

Used nearest 

neighbour 

algorithm to 

predict the 

electricity 

consumption 

based on raw 

[280] 
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building 

monitoring. 

data along with 

knowledge data 

related to 

occupancy. 

 

A2: Ontology specification document for AquaONT (Table A.2) 

Table A- 2. Ontology specification document for AquaONT describing the scope and 

purpose. 

Ontology Requirement Specification Document 

1 Purpose 

 

The purpose of AquaONT is to structure, model and store the aquaponics 4.0 

system’s knowledge, and use it to enable data-driven decision making for farmers 

by developing a functional decision support system. 

2 Domain  

 Agriculture – Smart Indoor Soilless Farming – Aquaponics 4.0 

3 Scope 

 

The ontology has to focus on the aquaponics 4.0 system – which is a digital farm 

based on a smart farming concept. The level of granularity is directly linked with the 

indoor vertical farming terminologies. 

4 Implementation Language 

 The ontology has to be implemented in OWL 2 web ontology language. 

5 Intended End-Users 

 

• User 1.  A farmer who wants to build a new indoor aquaponics 4.0 farm and 

wants to get information on the growth parameters of crops and fish. 

• User 2. A person who wants to understand the impact of crops on the design 

configuration of aquaponics grow beds before building a physical farm for 

his/her startup. 

• User 3. Researchers who want to build further applications such as decision 

support systems, and expert systems. 

• User 4. Industrial practitioners who want to find out the causes of poor crop 

quality in their aquaponic farm. 

6 Intended Uses 
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• Use 1. Develop a decision support system. The ontology model will be used to 

develop a system for crop quality monitoring and control. 

• Use 2. Search for aquaponics 4.0 system information. A farmer will look for 

general information about the management of the aquaponics 4.0 system. 

• Use 3. Search for optimal ranges of environmental and water parameters for the 

sustainability of aquaponics 4.0 farm. 

• Use 4. Build an interface to enable parametric design automation. The ontology 

will be used to develop an application to visualize the impact of crop type on the 

design configuration of grow bed.  

7 Ontology Requirements 

 

a. Non-Functional Requirements 

1. The ontology must be based on the international and Canadian food 

standards in existence or under development. 

b. Functional requirements  

1. Optimal ranges of environmental parameters: light intensity, humidity, 

temperature, etc. 

2. Optimal ranges of water parameters: pH, DO, TDS, water level, flow rate, 

nitrogen level etc. 

3. Types of crops: leafy green vegetables such as lettuce, basil, spinach, mint 

etc. 

4. Optimal growth conditions for crop survival: environmental plus water 

parameters. 

5. The growth cycle of each crop: seedling, sprouting, vegetative and plant. 

6. Species of fish suitable for the crops considered: Tilapia, catfish, trout etc.  

7. Optimal growth conditions for fish survival: environmental plus water 

parameters. 

8. The growth cycle of each fish: fingerlings and mature fish. 

9. NFT grow channel configuration: standard widths, lengths, and heights 

available in the commercial market. 

10. Specifications of fish tanks, mechanical filters, and biological filters. 

11. Specifications of sensors and electronic devices installed at the farm for 

monitoring and controlling. 

12. Crop and fish quality specifications and control standards determined by 

international and Canadian food agencies. 
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A3: A formal model of AquaONT showing classes and subclasses (Figure A.1) 

 

Figure A. 1. AquaONT formal model implemented on Protégé showing classes and 

subclasses 

A4: AquaONT instances for different classes and subclasses (Figure A.2) 

 

Figure A. 2. AquaONT instances for different classes and subclasses. 



226 

 

 

 

 

A5: Object properties of AquaONT (Figure A.3) 

    
Figure A. 3. Object properties of AquaONT formal model. 
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A6: Object properties showing relationships between classes and subclasses 

(Figure A.4) 

 

Figure A. 4. Object properties showing relationships between classes and subclasses. 
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A7: Datatype properties of AquaONT (Figure A.5) 

 

Figure A. 5. Datatype properties of AquaONT. 

A8: Datatype properties showing relationships between instances and attributes 

(Figure A.6) 

      

Figure A. 6. Datatype properties showing relationships between instances and 

attribute. 
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Appendix B : Layout of dashboard for IoT enabled aquaponics system (Chapter 5) 

 

Figure B. 1. Home page of dashboard. 
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Figure B. 2. Data acquisition panel. 
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Figure B. 3. Data visualization panel. 
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Figure B. 4. Parameter monitoring panel. 
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Figure B. 5. Crop monitoring panel. 
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Appendix C: Variations in heights of 30 plants (Chapter 8) 

 

Figure C. 1. Boxplot showing variations in the heights of thirty plants over the period 

of thirty days. 

 

 

Figure C. 2. Variations in median heights of plants. 
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Appendix D: Case Study- Biomass prediction from canopy measurements in 

deep water culture-based aquaponics system. (Related to Chapter 8) 

Objective 

This case study is conducted in collaboration with Dr. Lisa Stein’s team from 

Biological Sciences Lab. Crop biomass refers to the mass of the crop composed of 

live cells [1].  It is one of the primary indicators used to assess the plant growth and 

quality in plant phenotyping and also used an estimator of yield in agriculture [2]. The 

objective of this case study is to develop a system for the estimation of aboveground 

crop biomass suitable for in situ deployment. For this purpose, the canopy area is 

measured by implementing an instance segmentation process on crop images. Using 

Mask-RCNN, lettuce mask is extracted from the images and its features are computed  

and correlated with biomass values recorded manually using multi-layer perceptron 

(MLP) neural network. The significance of this study is that it paves a way to the 

ultimate goal of equipping the researchers and farm practitioners with a tool for rapid, 

non-destructive, reliable, and affordable assessment of their crops. 

Experimental setup and description 

In this aquaponics experiment, lettuce and goldfish are grown in four tanks namely 

A1, A2, B1 and B2 under different conditions.  The pH in Tanks A1 and A2 was 

maintained at 7.6, whereas in Tanks B1 and B2 pH was maintained at 6. In this case 

study, Tank B1 and B2 are considered to develop a prediction model for lettuce 

canopy area and biomass. The primary difference between Tank B1 and B2 was that 

in the Tank B1 the inoculum or bacteria received from commercial supplier  

‘NutraPonics’  were used for the biofiltration process, while for Tank B2 the desired 

community of bacteria developed by researchers in the Biology Lab was used. The 

wet biomass in grams was calculated for all 14 plants in each tank at the end of each 

harvesting round and recorded in an excel file shown in Table D-1. In total, there were 

three harvesting rounds with the first and second rounds 30 days, and the third round 

45 days. Figure D.1 shows the comparison of fish yield in the four systems. It can be 

observed that fish growth in the acidic pH was slower as compared to the basic pH. 

However, in Tank B2 (where a developed bacterial community is used) fish grew 

better than in Tank B1 (with the original bacterial community). Likewise, Figure D.2 

shows the plant biomass of 3 rounds of harvesting; unlike fish, lettuce was growing 
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better at acidic pH. In the first round, the higher biomass in Tank B2 was obtained 

compared to B1, but in rounds, 2 and 3 (when you set up your cameras) no 

meaningful difference between Tanks B1 and B2 is observed.  

 

 

Figure D. 1. Fish yield in four tanks for three harvesting rounds (Biological sciences 

lab data). 

 

Figure D. 2. Lettuce yield in four tanks for three harvesting rounds (Biological 

sciences lab data). 
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Table D- 1. Biomass data for fourteen plants in four tanks for three harvesting rounds 

(Biological sciences lab data). 

Tank Round Biomass 

A1 A1.First 36.2 

A1 A1.First 52.5 

A1 A1.First 51 

A1 A1.First 31.1 

A1 A1.First 42.5 

A1 A1.First 50.3 

A1 A1.First 15.3 

A1 A1.First 51.3 

A1 A1.First 18.5 

A1 A1.First 42.5 

A1 A1.First 23.7 

A1 A1.First 96.3 

A1 A1.First 75.4 

A1 A1.First 64.4 

A1 A1.Second 66.1 

A1 A1.Second 49.3 

A1 A1.Second 55.6 

A1 A1.Second 73 

A1 A1.Second 51.1 

A1 A1.Second 39.6 

A1 A1.Second 44.8 

A1 A1.Second 61.4 

A1 A1.Second 38.4 

A1 A1.Second 42.3 

A1 A1.Second 63 

A1 A1.Second 71.4 

A1 A1.Second 66.9 

A1 A1.Second 42.5 

A1 A1.Third 46.5 

A1 A1.Third 42.9 

A1 A1.Third 78.9 

A1 A1.Third 57.2 

A1 A1.Third 102.1 

A1 A1.Third 75.7 

A1 A1.Third 12.3 

A1 A1.Third 96.9 

A1 A1.Third 110.2 
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A1 A1.Third 54 

A1 A1.Third 77.2 

A1 A1.Third 112.3 

A1 A1.Third 123.1 

A1 A1.Third 58.9 

A2 A2.First 66.3 

A2 A2.First 64.6 

A2 A2.First 64 

A2 A2.First 54.5 

A2 A2.First 40.5 

A2 A2.First 44.3 

A2 A2.First 73.8 

A2 A2.First 65.9 

A2 A2.First 57.5 

A2 A2.First 37.3 

A2 A2.First 34.7 

A2 A2.First 50.9 

A2 A2.First 24.2 

A2 A2.First 43.5 

A2 A2.Second 53.6 

A2 A2.Second 55.2 

A2 A2.Second 71.3 

A2 A2.Second 51.3 

A2 A2.Second 39.8 

A2 A2.Second 58.7 

A2 A2.Second 66.1 

A2 A2.Second 45.7 

A2 A2.Second 81 

A2 A2.Second 42.2 

A2 A2.Second 54.6 

A2 A2.Second 39.6 

A2 A2.Second 44.1 

A2 A2.Second 40.2 

A2 A2.Third 94.3 

A2 A2.Third 112.7 

A2 A2.Third 34.8 

A2 A2.Third 59.9 

A2 A2.Third 67.3 

A2 A2.Third 91.1 

A2 A2.Third 66.1 

A2 A2.Third 76.7 

A2 A2.Third 105 
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A2 A2.Third 57 

A2 A2.Third 80.3 

A2 A2.Third 50.7 

A2 A2.Third 64.2 

A2 A2.Third 93.6 

B1 B1.First 71.6 

B1 B1.First 85.4 

B1 B1.First 68.4 

B1 B1.First 75.4 

B1 B1.First 66.7 

B1 B1.First 37.9 

B1 B1.First 53.6 

B1 B1.First 56.1 

B1 B1.First 95.9 

B1 B1.First 63.1 

B1 B1.First 114.2 

B1 B1.First 95.4 

B1 B1.First 109.1 

B1 B1.First 60.9 

B1 B1.Second 61.9 

B1 B1.Second 82.8 

B1 B1.Second 83.4 

B1 B1.Second 66.4 

B1 B1.Second 70.9 

B1 B1.Second 54.2 

B1 B1.Second 60.7 

B1 B1.Second 66.4 

B1 B1.Second 88.3 

B1 B1.Second 118 

B1 B1.Second 89.5 

B1 B1.Second 109.8 

B1 B1.Second 114 

B1 B1.Second 111.7 

B1 B1.Third 43.7 

B1 B1.Third 97.8 

B1 B1.Third 92.7 

B1 B1.Third 124.5 

B1 B1.Third 123.3 

B1 B1.Third 63.2 

B1 B1.Third 104.7 

B1 B1.Third 116.1 

B1 B1.Third 72.6 
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B1 B1.Third 81.7 

B1 B1.Third 128.6 

B1 B1.Third 95.3 

B1 B1.Third 103.8 

B1 B1.Third 143.8 

B2 B2.First 107.2 

B2 B2.First 55.5 

B2 B2.First 86 

B2 B2.First 58.7 

B2 B2.First 74.9 

B2 B2.First 61.9 

B2 B2.First 92.1 

B2 B2.First 57.1 

B2 B2.First 64.3 

B2 B2.First 82.8 

B2 B2.First 75.5 

B2 B2.First 124.7 

B2 B2.First 114.2 

B2 B2.First 95.6 

B2 B2.Second 88.9 

B2 B2.Second 113.6 

B2 B2.Second 77 

B2 B2.Second 66 

B2 B2.Second 63.2 

B2 B2.Second 88.2 

B2 B2.Second 68.4 

B2 B2.Second 61.1 

B2 B2.Second 91 

B2 B2.Second 68.7 

B2 B2.Second 66.4 

B2 B2.Second 108.5 

B2 B2.Second 101 

B2 B2.Second 115.9 

B2 B2.Third 60.1 

B2 B2.Third 66.1 

B2 B2.Third 72.6 

B2 B2.Third 79.2 

B2 B2.Third 69.7 

B2 B2.Third 105.8 

B2 B2.Third 114.1 

B2 B2.Third 106.3 

B2 B2.Third 98 
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B2 B2.Third 86.8 

B2 B2.Third 133.1 

B2 B2.Third 72.6 

B2 B2.Third 152.4 

B2 B2.Third 140.3 
 

Image acquisition and preprocessing 

For this case study, four ELP 1080P webcams (2.8–12 mm HD Varifocal Lens) were 

installed on Tank B1 and B2 (two cameras for each tank for top and side view) at a 

distance of 40cm from crops grow area to capture images during the second 

harvesting round. Each camera is programmed through Raspberry Pi 4 (Model B Rev 

1) controller to take one image per day at 9:00 am, which were wirelessly uploaded to 

‘IoT enabled Aquaponics Dashboard’ developed by authors in previous work 

(Chapter 5). To develop a model for biomass prediction based on canopy area, the 

lettuce images captured on the harvesting day are used. A data augmentation process 

is then performed to supplement and enrich the dataset. This helps increase the 

model's generalizability and overcome the problem of overfitting. Moreover, it also 

allows the model to learn as many relevant features as possible. This study uses 

Albumentations, a Python library, for fast and flexible image augmentations. The 

different augmentation techniques applied are flip, rotation, noise, blur, and 

brightness. Figure D.3 shows the sample image.  
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Figure D. 3. Sample image from the aquaponics system. 

Prediction model development and training 

The methodology used to estimate biomass of lettuce from the canopy area (top view) 

is shown in Figure D.4. The Mask-RCNN based morphological model developed in 

chapter 8 is used to extract features such as pixel count from the predicted mask, 

which is then used to estimate canopy dimensions or morphological traits. The 

artificial neural network (ANN) algorithm is used to optimize the canopy area, length 

and width which act as independent variables with respect to the dependent variable 

crop biomass.       

The ANN works in two phases: i) forward propagation, and ii) backpropagation. In 

forward propagation, first feature values are multiplied with weights, then bias is 

added, and lastly, an activation function is applied to each neuron in the neural 

network. An activation function introduces non-linearity to the data which helps to 

identify the underlying complex patterns. In backpropagation,  the optimal values of 

the parameters are determined for the model by iteratively updating parameters by 

partially differentiating gradients of the loss function with respect to the parameters. 

An optimization function is applied to perform backpropagation which is used to find 

the optimal value for parameters. The architectural layout of ANN used for the 

proposed model is shown in Figure D.5. 
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Figure D. 4. Research methodology. 

It consists of seven layers including one input layer, one output layer, and one hidden 

layer. The first layer is input layer with three neurons, each representing one of the 

lettuce crop biomass yield prediction features 𝑥𝑖. The second layer is hidden layer 

with seven neurons (units) along with the bias neuron, which allows control of the 

behaviour of the layer without changing a value. Bias also helps the model to fit in the 

best way possible. This layer uses Sigmoid activation function. The last layer is output 

layer that has only one neuron. The 𝑖𝑡ℎ neuron of the input layer connects with the  

𝑗𝑡ℎ  neuron of the hidden layer by weight 𝑊𝑖𝑗, and weight between the 𝑗𝑡ℎ neuron of 

the hidden layer and the 𝑘𝑡ℎ neuron of output layer is 𝑊𝑗𝑘. In hidden layer, all the 

inputs are multiplied by their weights, 𝑊𝑖𝑗. Weight is the gradient or coefficient of 

each variable. It shows the strength of the particular input. After assigning the 

weights, a bias variable is added.  
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Figure D. 5. The architecture of ANN model used to estimate the crop biomass. 

The equation used to perform computations in hidden layers are given below. 

ℎ̂𝑗 =∑(𝑥𝑖 ×𝑊𝑖𝑗) + 𝑏 

𝑛

𝑖=1

 

In the second step, the activation function (non-linear) is applied to the linear equation 

ℎ𝑗 . For this model sigmoid function is used, which is given below.  

ℎ𝑗 = 𝜎(ℎ̂𝑗) =
1

1 + 𝑒−ℎ̂𝑗
 

Likewise, for output layer the following equations are used for biomass prediction. 

�̂�𝑘 =∑(ℎ𝑗 ×𝑊𝑗𝑘) + 𝑏
′ 

𝑛

𝑗=1

 

𝑦𝑘 = 𝜎(�̂�𝑘) =
1

1 + 𝑒−�̂�𝑘
 

For model to learn and perform the prediction process, backpropagation is performed. 

For this purpose, first error is computed with actual and predicted output using loss 

function such as mean squared error (MSE). It calculates the difference between the 

truth and prediction and square it. For multiple predictions and ground truths, the 

formula for MSE is given below. 
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𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑘 − 𝑦′𝑘)

2

𝑁

𝑘=1

 

Where 𝑦𝑘 is predicted output and 𝑦′𝑘 is ground truth value. N denotes the total 

number of output samples. In this study, there is only one output node. The goal with 

backpropagation is to update each of the weights in the network so to bring the actual 

output closer to the ground truth output, thereby minimizing the error for each output 

neuron and the network as a whole. For this purpose, gradient decent optimization 

function is used by applying chain rule for  partial differentiation of loss i-e, MSE 

with respect to weights. The equation is given as under. 

𝜕𝑀𝑆𝐸

𝜕𝑊𝑖
=
𝜕𝑦𝑘
𝜕𝑊𝑖

×
𝜕�̂�𝑘
𝜕𝑦𝑘

×
𝜕𝑀𝑆𝐸

𝜕�̂�𝑘
 

To decrease the error, the above value is subtracted from current weight and 

multiplied by learning rate, 𝜖. This is called weight update rule. 

𝑊𝑖
′ = 𝑊𝑖 − (𝜖 ×

𝜕𝑀𝑆𝐸

𝜕𝑊𝑖
) 

Results and Discussion 

The proposed model is implemented in TensorFlow and to tarin the model the values 

of hyperparameters are shown in Table D-2. The constructed ANN model is trained 

with a ground truth dataset of 100 data points where 10 % of arbitrarily selected data 

was used for validation. The model was optimized using the Adam optimizer 

algorithm. It is an extension of Stochastic gradient descent which can be applied in 

place of conventional stochastic gradient descent to update network weights more 

competently. 

Table D- 2. Hyperparameters for training. 

Hyperparameter Values 

Learning rate 0.05 

Momentum 0.5 

Batch size 18 

Epochs 120 

Activation Sigmoid 



246 

 

 

Optimizer Adam 

The ANN model with 120 iterations resulted in an optimum accuracy with respect to 

minimized training and validation error in 100 iterations. The model stops when 

training loss minimizes to 2.4305 % and validation loss equals 0.4260 %. Figure D.6 

shows the loss minimization of the model for 100 iterations. The model is then tested 

with another input and output dataset of known values.  

 

Figure D. 6. Training and validation minimization loss. 

The proposed model is evaluated and tested with a prearranged dataset of inputs and output 

data that is unknown to the model. The predicted biomass by the model from the input 

variables of the testing dataset is compared with the actual biomass of the same input 

variables.  Figure D.7 shows the model fit for ANN predicted values.  The proposed ANN 

model has shown high accuracy in predicting biomass from the morphological parameters.  
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Figure D. 7. Model fit for ANN. 
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