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Abstract

This study presents and evaluates the algorithmic enhancements to Fuzzy 

C-Means (FCM): the class assignment information in the PS-FCM (Partially 

Supervised FCM) and the proximity hints in the P-FCM (Proximity-based 

FCM). It was proposed and examined the PSP-FCM (Partially Supervised 

Proximity-based FCM), which is a hybrid method o f  two previous approaches 

that collaboratively combines both sources o f  user supervision.

The detailed experimental part embraces the clustering and classification 

with user supervision on the synthetic data, Machine Learning datasets and a 

comprehensive case study o f WWW docum ents’ (Web pages) collection. It 

compares and quantifies the amount o f user supervision in two modes: random 

and the misclassification mode, and then presents the most successful scenarios 

o f their application. The results presented may serve as a practical guide for any 

other applications that incorporates user knowledge, its amount, and quality in a 

specific experimental design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgement

I would like to sincerely acknowledge, as well as render special thanks to my 

supervisor Dr Witold Pedrycz for his insightful comments and guidance. His 

many suggestions have been invaluable.

1 am deeply indebted to my parents and brother for their constant and 

unconditional support.

Finally, I would like to express my gratitude to my friends, both in Canada and 

Poland, whose presence in my life at the time o f  my endeavors towards 

attaining a Master o f Science diploma significantly increased m y motivation, 

and helped me considerably in successfully overcoming difficulties: Adrianna 

and M ilan Galandak, Anton Nguyen, Clinton Martin, Kinga and Stefan 

Slowikowscy, Lukasz Krzymien, Magda Zuber, Sandra Mandic, Tomek 

Marciniak and Victor Prosolin.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of contents

1. INTRODUCTION............................................................................................................................. 1

1.1 Fuzzy sets in Pattern Recognition......................................................................................................2

1.2 B ib liography.............................................................................................................................................. 3

2. MAIN OBJECTIVES.......................................................................................................................4

2.1 M otiva tion ..................................................................................................................................................4

2.2 B ib liography.............................................................................................................................................. 6

3. LITERATU RE REVIEW................................................................................................................ 7

3.1 Fuzzy clustering and user supervision support literature.......................................................7

3.2 W eb M ining: concepts and techniques........................................................................................... 8

3.3 B ib liography............................................................................................................................................11

4. DATASETS DESCRIPTION.....................................................................................................14

4.1 Synthetic d atasets..................................................................................................................................14

4.2 M achine Learning d atasets...............................................................................................................14

4.2.1 W ine recognition d a tab ase ......................................................................................................... 14

4.2.2 Im age segm entation d a ta .............................................................................................................15

4.2.3 W isconsin Diagnostic Breast C ancer (W D B C) and W isconsin Prognostic Breast

C ancer (W PBC) d a ta .........................................................................................................................................18

4.2.4 D erm atology database................................................................................................................. 21

4.2.5 G lass Identification database.....................................................................................................27

4.2.6 Thyroid gland d a ta .......................................................................................................................28

4.3 W eb Pages d a ta se t............................................................................................................................... 29

4.3.1 Description o f  the data s tru c tu re ..............................................................................................29

4.3.2 Feature selection and d a ta se ts ...................................................................................................31

4.4 B ib liography........................................................................................................................................... 32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 . A L G O R IT H M S -  T H E O R Y , D ER IV A TIO N S A N D  ILL U ST R A T IO N  ON

SY N T H E T IC  D A T A S E T S ................................................................................................................................33

5.1 K now ledge d iscovery  w ith  fuzzy c lu s te rin g .................................................................................33

5.2 N on-re la tiona l c lu s te rin g  a lg o r ith m s .............................................................................................34

5.2.1 Fuzzy C -M eans (F C M )..............................................................................................................34

5.2.2 Fuzzy C-M edian (FCM ED )....................................................................................................... 36

5.2.3 Experim entation on synthetic d a ta ..........................................................................................37

5.3 R ela tional fuzzy c lu s te rin g  a lg o rith m s.......................................................................................... 41

5 .3 .1 Relational Fuzzy C-M eans (R F C M )...................................................................................... 41

5.3.2 N on-Euclidean Relational Fuzzy C -M eans (N E R F )......................................................... 43

5.3.3 Experim entation on synthetic d a ta ..........................................................................................44

5.4 P a rtia l superv ision  -  a lgo rithm ic  en h an cem en ts  to  F C M .....................................................50

5.4.1 Partially supervised FCM (PS-FM C )..................................................................................... 50

5.4.2 P roxim ity-based FCM (P-FC M )............................................................................................. 52

5.4.3 Partially Supervised Proxim ity-based FCM (P S P -F C M )............................................... 55

5 . 4.4  Experim entation on synthetic d a ta ..........................................................................................56

5.5 B ib lio g rap h y ............................................................................................................................................ 60

6  DATA E X PL O R A T IO N  WITH U S E R  S U P E R V IS IO N ........................................................62

6.1 M ethodo logy ............................................................................................................................................62

6.2 A ssessm ent o f  c lu s te rin g  p e rfo rm a n c e ..........................................................................................63

6.2.1 A ccuracy form ulation .................................................................................................................63

6.2.2 C luster va lid ity .............................................................................................................................64

6.2.3 C luster sim ilarity ......................................................................................................................... 65

6.3 M ach ine  L ea rn in g  d a tase ts  e x p e rim e n ta tio n .............................................................................65

6.3.1 W ine recognition database experim ents................................................................................65

6.3.1.1 K nowledge incorporation ...............................................................................................66

6.3.1.2 O bservations...................................................................................................................... 70

6.3.2 Image segm entation dataset experim ents............................................................................. 70

6.3.2.1 K nowledge incorporation ...............................................................................................72

6.3.2.2 O bservations...................................................................................................................... 75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.3.3 W isconsin Diagnostic Breast Cancer (W D B C) and W isconsin Prognostic Breast

C ancer (W PBC) experim en ts .........................................................................................................................76

6.3.3.1 Knowledge incorpora tion ..............................................................................................76

6.3.3.2 O bservations......................................................................................................................79

6.3.4 D erm atology database..............................................................................................................80

6.3.4.1 K nowledge incorpora tion .............................................................................................. 81

6.3.4.2 O bservations......................................................................................................................82

6.3.5 G lass identification da tabase ................................................................................................. 83

6.3.5.1 K nowledge incorpora tion .............................................................................................. 83

6.3.5.2 O bservations......................................................................................................................85

6.3.6 Thyroid gland d a tab a se ...........................................................................................................85

6.3.6.1 K nowledge incorpora tion .............................................................................................. 85

6.3.6.2 O bservations......................................................................................................................87

6.3.7 Sum m ary and protocol for other experim entation...........................................................87

6.4 W eb  Pages d a ta se t e x p e r im e n t........................................................................................................92

6.4.1 W eb Pages dataset analysis with FC M ............................................................................... 93

6.4.1.1 Feature space and d im ensionality ............................................................................... 93

6.4.1.2 Construction o f  feature space for F C M .................................................................... 94

6.4.1.3 Fuzzification coeffic ien t................................................................................................ 94

6.4.1.4 Prototypes a n a ly s is ..........................................................................................................96

6.4.1.5 R esu lts .................................................................................................................................98

6.4.1.6 Feature space im provem ent.......................................................................................... 99

6.4.1.7 Latent Semantic Indexing (L S I) ................................................................................101

6.4.1.8 U ser supervision for clustering and c lassifica tion ............................................... 102

6.4.2 C onclusions................................................................................................................................ 104

6.5 B ib lio g rap h y ..........................................................................................................................................104

7 CONCLUSIO NS..........................................................................................................................106

7.1 G en era l D iscussion ..............................................................................................................................106

7.2 F u tu re  re s e a rc h ....................................................................................................................................108

APPENDICES..............................................................................................................................................110

A ppend ix  A: D escrip tion  o f the so ftw are  tools. T estin g  F ram ew o rk  an d  D ataiW iner........... 110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A p p en d ix  B: S in g u la r V alue  D ecom position  (SV D ). D escrip tion  o f  the  m e th o d .......................112

B ibliography.......................................................................................................................................................112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables
Table 4-1 .C onstituents o f  the w ine chem ical analysis: range o f  va lues...................................................14

Table 4-2. C onstituents o f  the wine chem ical analysis: m eans and standard deviations.................... 15

Table 4-3. Statistical descriptors as features for im age segm ents..............................................................15

Table 4-4. Statistical descriptors as features for im age segm ents: range o f  values. C lasses 1-3....16 

Table 4-5. Statistical descriptors as features for im age segm ents: range o f  values. C lasses 4-7.... 16 

Table 4-6. Statistical descriptors as features for im age segm ents: m eans and standard deviations.

C lasses 1-3...................................................................................................................................................... 17

Table 4-7. Statistical descriptors as features for image segm ents: m eans and standard deviations.

C lasses 4 -7 ...................................................................................................................................................... 17

Table 4-8. Features for the W DBC and the W PBC datasets........................................................................18

Table 4-9. A dditional features for the W PBC dataset................................................................................... 18

Table 4-10. Features o f  breast cancer cases for the W DBC dataset: range o f  values..........................19

Table 4-11. Features o f  breast cancer cases for the W DBC dataset: standard deviations.................. 19

Table 4-12. Features o f  breast cancer cases for the W PBC dataset: range o f  values.......................... 20

Table 4-13. Features o f  breast cancer cases for the W PBC dataset: standard deviations.................. 20

Table 4-14. C lass d istribution ...............................................................................................................................22

Table 4-15. C linical attributes o f  the derm atology database: range o f  values. C lasses 1-3...............22

Table 4-16. C linical A ttributes o f  the derm atology database: range o f  values. C lasses 4 -6 ..............22

Table 4-17. H istopathological attributes o f  the derm atology database: range o f  values. C lasses 1-3.

............................................................................................................................................................................23

Table 4-1 S. H istopathological attributes o f  the derm atology database: range o f  values. C lasses 4-6.

............................................................................................................................................................................23

Table 4-19. C linical attributes o f  the derm atology database: m eans and standard deviations.

C lasses 1-3......................................................................................................................................................24

Table 4-20. C linical attributes o f  the derm atology database: m eans and standard deviations.

C lasses 4 -6 ......................................................................................................................................................25

Table 4 -2 1. H istopathological attributes o f  the derm atology database: means and standard

deviations. C lasses 1-3................................................................................................................................25

Table 4-22. H istopathological attributes o f  the derm atology database: m eans and standard

deviations. C lasses 4 -6 ................................................................................................................................26

Table 4-23. C lass d istribution...............................................................................................................................27

Table 4-24. A ttributes o f  the glass identification database: range o f  values............................ 27

Table 4-25. A ttributes o f  the glass identification database: m eans and standard deviations .27

Table 4-26. C lass d istribution...............................................................................................................................28

Table 4-27. A ttributes o f  the glass identification database: range o f  values............................ 28

Table 4-28. A ttributes o f  the glass identification database: m eans and standard deviations .28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4-29. Them atically dissim ilar (non-overlapping) categories.......................................................... 30

Table 4-30. T hem atically sim ilar (overlapping) categories.........................................................................30

Table 4-31. The num ber o f  pages in each category o f  dataset from  Fig. 4 -3 ........................................ 31

Table 4-32. Datasets constructed with the available categories.................................................................31

Table 5-1. The overall schem e o f  the Fuzzy C -M eans (FC M )........................................................ 35

Table 5-2. The overall schem e o f  the Fuzzy C-M edian (FC M E D )................................................37

Table 5-3. M ean and covariance m atrices used to generate 3 clusters.................................................... 38

Table 5-4. Mean and cos'ariance m atrices used to generate 5 c lusters................................................ 40

Table 5-5. The overall schem e o f  the Relational Fuzzy C -M eans (R FC M )................................42

Table 5-6. The overall schem e o f  the Non-Euclidean Relational Fuzzy C -M eans (N ERF)...43

Table 5-7. Mean and covariance m atrices used to generate tw o clusters............................................... 46

Table 5-8. The overall schem e o f  the Partially Supervised Fuzzy C -M eans (PS-FCM )....................52

Table 5-9. Mean and covariance m atrices used to generate three c lu sters...........................................56

Table 6-1. A ccuracy results for clustering (10 trials average)....................................................................66

Table 6-2. Average accuracy for clustering and classification (10 trials) o f  the FCM and the PS-

FCM ................................................................................................................................................................. 68

Table 6-3. Average accuracy for clustering and classification (10 trials) o f  the P-FCM ..................69

Table 6-4. Average accuracy for clustering and classification (10 trials) o f  the PSP-FCM ............ 69

Table 6-5a,b,c,d,e. The accuracy m atrices exhibiting allocation o f  patterns from 7 categories to 5-9

clusters for testing dataset..........................................................................................................................71

Table 6-6. Mean values o f  c luster sim ilarity (upper triangular matrix equal to low er triangular

m atrix)............................................................................................................................................................. 72

Table 6-7. Standard deviation values o f  cluster sim ilarity (upper triangular matrix equal to lower

triangular m atrix)..........................................................................................................................................72

Table 6-8. Average accuracy for clustering and classification (10 trials) o f  the FCM and the PS-

FCM ................................................................................................................................................................. 73

Table 6-9. Average accuracy for clustering and classification (10 trials) o f  the P-FCM ................... 74

Table 6-10. Average accuracy for clustering and classification (10 trials) o f  the FCM and the PSP-

FCM ................................................................................................................................................................. 74

Table 6-11. A verage accuracy for clustering and classification (10 trials) o f  the FCM and the PS-

FCM for the W DBC dataset..................................................................................................................... 77

Table 6-12. Average accuracy for clustering and classification (10 trials) o f  the FCM and the PS-

FCM for the W DBC dataset......................................................................................................................77

Table 6-13. A verage accuracy for clustering and classification (10 trials) o f  the PSP-FCM for the

W DBC dataset...............................................................................................................................................78

Table 6-14. Average accuracy for clustering and classification (10 trials) o f  the FCM and the PS- 

FCM for the W PBC dataset...................................................................................................................... 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 6-15. Average accuracy for c lustering and classification (10 trials) o f  the P-FCM for the

W PBC dataset................................................................................................................................................79

T able 6-16. Average accuracy for c lustering and classification (10 trials) o f  the PSP-FCM  for the

W PBC dataset................................................................................................................................................79

T able 6-17. Average values o f  cluster sim ilarity  (upper triangular matrix equal to low er triangular

m atrix)..............................................................................................................................................................80

T able  6-18. Standard deviations values o f  cluster sim ilarity (upper triangular matrix equal to low er

triangular m atrix)..........................................................................................................................................80

T able 6-19. Average accuracy for c lustering and classification (10 trials) o f the FCM and the PS-

FC M ................................................................................................................................................................. 81

T able 6-20. Average accuracy for c lustering and classification (10 trials) o f  the P-FC M ................ 81

T able 6-21. Average accuracy for c lustering and classification (10 trials) o f  the PSP-FC M ........... 82

T able 6-22. Average accuracy for c lustering and classification (10 trials) o f  the FCM and the PS-

FCM ................................................................................................................................................................. 83

T able 6-23. Average accuracy for c lustering and classification (10 trials) o f  the P-FC M ................ 84

T able 6-24. Average accuracy for c lustering and classification (10 trials) o f  the PSP-FC M ........... S4

T able 6-25. Average accuracy for c lustering  and classification (10 trials) o f  the FCM and the PS-

FCM ..................................................................................................................................................................85

T able 6-26. Average accuracy for c lustering  and classification (10 trials) o f  the P-FC M .................86

T able 6-27. Average accuracy for c lustering and classification (10 trials) o f  the PSP-FC M ........... 87

T able 6-28. The im provem ent o f  the average accuracy in the clustering m ode....................................88

T able 6-29. The im provem ent o f  the average accuracy in the classification m ode............................. 88

T able 6-30. The deterioration o f  the average accuracy in the classification m ode.............................. 89

T able 6-31. Com parison between w eighting schem as for the http://w w w .fish-haw k.org W eb page.

...........................................................................................................................................................................94

T able 6-32. Com parison between clusters centers and Web pages with the highest m em bership

values in the clusters (Relative frequencies used).............................................................................. 96

T able 6-33. A ccuracy results for Euclidean distance and 1-cosine sim ilarity, m =2.0........................98

T able 6-34. A ccuracy results after truncating the vectors lengths calculated using the relative

frequencies schem e, m=2.0, 10 iterations........................................................................................... 100

Table 6-35. A ccuracy results after reducing the dim ensionality w ith the LSI, m =2.0, 10 iterations.

 101

T able 6-36. Random m ode accuracy results for clustering after reducing the dim ensionality with

the LSI, m=2.0 (fo rse ts  6,7 m = l . l ) ,  10 iterations............................................................................102

Table 6-37. M isclassification m ode accuracy results for clustering after reducing the

dim ensionality w ith the LSI, m =2.0 (fo rse ts  6 ,7 m = l.l ) ,  10 iterations.................................... 103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.fish-hawk.org


Table 6-38. Random  m ode accuracy results for classification after reducing the dim ensionality

with the LSI, m =2.0 (fo rse ts  6,7 m = l.l ) ,  10 iterations.................................................................. 103

Table 6-39. M isclassification m ode accuracy results for classification after reducing the

dim ensionality w ith the LSI, m =2.0 (for sets 6,7 m = l .1), 10 ite rations.................................... 104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures
Figure 4-1. First three levels o f  them atically dissim ilar (non-overlapping) categories...................... 29

Figure 4-2. T hem atically  sim ilar (overlapping) categories......................................................................... 29

Figure 4-3. The dataset w ith nested (internal) categories, 326 pages in 6 ca tegories......................... 30

Figure 4-4. R elationships between dim ensionality, the num ber o f  categories and the num ber o f

W eb pages...................................................................................................................................................... 32

Figure 5-1. Three clusters from norm al distribution and 25 outliers (left), 50 outliers (right).........38

Figure 5-2. The sum  o f  distances for the FCM and the FCM ED for different values o f  m (3

clusters, no ou tliers).....................................................................................................................................39

Figure 5-3. The sum  o f  distances for the FCM and the FCM ED for different values o f  m (3

clusters, 25 ou tlie rs).....................................................................................................................................39

Figure 5-4. The sum  o f  distances for the FCM and the FCM ED for different values o f  m (3

clusters, 50 ou tliers)...................................................................................................................................39

Figure 5-5. Three clusters from norm al distribution and 50 outliers (left), 100 outliers (right) 40

Figure 5-6. The sum  o f  distances for the FCM and the FCM ED for different values o f  m (5

clusters, no ou tliers)...................................................................................................................................40

Figure 5-7. The sum  o f  distances for the FCM and the FCM ED for different values o f  m (5

clusters, 50 ou tliers)...................................................................................................................................41

Figure 5-8. The sum  o f  distances for the FCM and the FCM ED for different values o f  m (5

clusters, 100 ou tliers).................................................................................................................................41

Figure 5-9. Tw o clusters from norm al distribution...................................................................................... 46

Figure 5-10. The averaged U error for four m odes o f  approxim ation; beta param eter was equal to

0 ........................................................................................................................................................................ 47

Figure 5-11. The averaged U error for four m odes o f  approxim ation; beta=2...................................... 47

Figure 5-12. The averaged U error for four m odes o f  approxim ation; beta= 10.................................... 47

Figure 5-13. The averaged training error for four m odes o f  approxim ation; beta= 0...........................48

Figure 5-14. The averaged training error for four m odes o f  approxim ation; beta= 2...........................48

Figure 5-15. The averaged training error for four m odes o f  approxim ation; beta= 10.........................48

Figure 5-16. The averaged beta values for zero approxim ation m ode; initial beta=0, percentage o f

m issing values -  80% .................................................................................................................................49

Figure 5-17. The averaged beta values for mm/max approxim ation mode; initial beta=0,

percentage o f  m issing values -  80% ......................................................................................................49

Figure 5-18. The overall schem e o f  Proxim ity-based FCM (P-FC M ) optim ization steps................. 55

Figure 5-19. The overall schem e o f  Partially supervised Proxim ity-based FCM (PSP-FCM )

optim ization step s........................................................................................................................................56

Figure 5-20. Three clusters from norm al distribution and 30 outliers....................................................57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5-21. The averaged sum o f  distances o f  the PS-FCM  for different values o f  alpha in respect

to the FC M ......................................................................................................................................................57

Figure 5-22a, b. The averaged sum  o f  distances o f  the P-FCM  for different values o f  alpha in

respect to the FCM ....................................................................................................................................... 59

Figure 5-23a,b. The averaged sum  o f  distances o f  the PS-FCM , the P-FCM , the PSP-FCM  in

respect to the FCM for the sam e dataset................................................................................................60

Figure 6-1. The logical flow o f  experim entation with user supervision.................................................. 63

Figure 6-2. The averaged (10 trails) accuracy for 2-30 iterations............................................................. 66

F igure 6-3. Random  and classification m ode com parison for the PS-FC M .......................90

F igure 6-4. Random  and classification m ode com parison for the P-FCM ..........................91

F igure 6-5. Random  and classification m ode com parison for the PSP-FC M .................... 91

F igure 6-6. The protocol o f  application o f  user supervision......................................................................92

Figure 6-7. The histogram  o f  the num ber o f  occurrences (relative frequencies) o f  the keyw ords for

the W eb page: w ww .fish-hawk.org - fishing online resources........................................................93

F igure 6-8. Com parison between w eighting schem as for the Web page: w w w .fish-haw k.org  93

F igure 6-9. Fuzzy partition matrix m em bership grades graph: Halloween category........................... 95

Figure 6-10. Fuzzy partition matrix m em bership grades graph: Fishing category............................... 95

Figure 6-11. The objective function values for 10 iterations...................................................................... 96

Figure 6-12. The ‘best’ representative page from Fishing category (left) and m iss-classified page

(righ t)................................................................................................................................................................97

Figure 6-13. Prototypes and their w eights’ distribution. (Relative frequencies used).........................97

Figure 6-14. The accuracy evaluation. For each length there is shown standard deviation for 5

experim ents, (a) The grow th o f  the dim ensionality, (b) Relative frequencies used ................100

Figure A -0-1. The main com ponents and logical flow o f  the framework..............................................110

Figure A -0-2. The main window o f  the testing fram ew ork....................................................................... 110

Figure A -0-3. The main window' o f  the D ataM iner Application. Proxim ity hints settings............111

Figure A -0-4. The main w indow  o f  the D ataM iner Application. Class m em bership se ttings 111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.fish-hawk.org


1. Introduction
The evolutionary process created the most advanced classifier known: the human 
neural system. Observe a person driving a car and be astonished at the speed with 
which human beings can process complex information, recognize perceived 
objects, their special location and act accordingly. It is easy to see the great 
benefit that would be derived from having computers performing hum an-related 
recognition activities. The other aspect coming from usage o f  computers is 
associated with a huge amount o f data to process, which is easily beyond the 
capabilities o f  a human being. The usage o f computers for the recognition 
purposes marks the origin for Pattern Recognition field.

The term Pattern Recognition includes the procedures and methodologies that 
are used to make judgem ents based on a datum ’s category [3]. Classically, Pattern 
Recognition can be divided into three phases: (a) data acquisition (observation 
space), (b) data pre-processing and feature extraction (feature space), and (c) 
classification (decision space) [1], Interestingly, one o f  the disciplines derived 
from Pattern Recognition is the Knowledge Discovery in Databases (KDD) 
process.

KDD itself is an interdisciplinary field, which merges together database 
management, statistics, machine learning and other related areas aiming at 
extracting knowledge from data. The whole KDD process consists o f  the iterative 
sequence o f steps [4] that are directly related to the Pattern Recognition phases. 
KDD steps form a methodological approach o f extracting useful knowledge from 
large data collections; databases. They are more specialized but develop along 
Pattern Recognition phases and are as follows:

1) Data cleaning

2) Data integration

3) Data selection

4) Data transformation

5) Data Mining

6) Pattern evaluation

7) Knowledge representation

Data cleaning removes significantly different observations from the data set 
(outliers). The subsequent steps integrate the data, and then a data subset is 
selected for further processing. The next challenge o f imitating hum an-like 
classification processes appears in finding the proper way o f  abstracting complex 
objects. Then the objects o f  complex structure are described in terms o f  some 
subset o f their features the best characterizing the object. The features are 
carefully selected and quantitatively measured to allow comparison with features 
from other objects. The core o f  extracting information from data is the fifth step 
o f Data Mining. It spans the methods and algorithms for discovering interesting
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knowledge in the data. Pattern evaluation deals with the identification o f  truly 
interesting patterns and the evaluation o f  Data M ining techniques. The focus o f  
this work will adhere to the methods o f Data M ining and Pattern evaluation.

1.1 Fuzzy sets in Pa ttern Recog ni tion
This work will examine clustering and classification as Data Mining tools. 
Clustering is a method o f unsupervised learning, where all patterns from a dataset 
are assigned to k  groups o f similar patterns (homogeneity within a cluster), where 
k  is smaller than the number o f  patterns in a dataset. Dissimilar objects will be 
located in different clusters (heterogeneity between clusters) [2]. There is no 
training and no a priori knowledge used to influence the process. The ultimate 
goal o f clustering is to generate a partitioning o f  given dataset into a number o f 
clusters.

Unlike clustering, classification uses a certain training procedure, usually 
performed on a certain number o f labelled patterns called training set. From a 
training set it is possible to derive a classifier(s). The rest o f  the patterns is 
denoted as a test set and is used to validate a classifier’s performance. Since the 
number o f classes is fixed, the classifier is used to decide which class a pattern is 
assigned to given the properties (features) o f  the pattern. Based on the results, 
suitable modifications o f  the classifier’s parameters can be carried out. The 
overall goal o f classification is to find the underlying structure in the provided 
training set, and to learn by modifying classifier’s structure and/or parameters that 
allows classifying o f  new patterns into one o f  the existing classes.

Real world data rarely form a concise and transparent structure. Deeper 
analysis reveals that the clusters’ boundaries are more likely to be obscured than 
crisp. Some clusters will overlap, the smaller groups could be nested inside larger 
ones. In such scenarios fuzzy sets are useful. Fuzzy sets have proven advantages 
in Knowledge Discovery and Data Mining systems. W hy is the fuzzy sets 
approach so useful for Data Mining? There are several reasons for it:

(i) The fuzzy sets theory establishes the interface between higher level 
concepts represented as features and the computer computations driven by 
the quantitative measurements

(ii) The concept o f  fuzzy sets is well suited for the real world data, which 
often do not have crisp boundaries and do have overlapping clusters. This 
can be expressed as a multiple class membership that is a pattern may 
belong to certain degree to more than one cluster.

(iii) The membership functions o f  the fuzzy sets model unsure patterns and are 
able to identify unclear patterns in the dataset

The advantages o f  fuzzy sets are beneficial for this work as well. Specifically, the 
work was confined to clustering methods based on fuzzy sets, which are able to 
deal very well with unclear patterns. The Fuzzy C-Means algorithm will be o f 
prime interest when clustering and will also be applied as a foundation for the 
construction o f fuzzy classifiers.
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The purpose o f this study is motivated by the challenges that exist in Pattern 
Recognition and Data Mining, as presented in the following chapters.

1.2 Bibliography
1. Bow, S., “Pattern recognition: applications to large data-set problem s”, 

Marcel Dekker, New York, 1984.

2. Cios, K.J, Pedrycz W., Swiniarski, R. W., “ Data Mining: Methods for 

Knowledge Discovery” , Kluwer Academic Publishers, Boston, 1998.

3. Duda, R.O., Hart, P.E, Stork, D.G, “Pattern Classification”, John W iley & 

Sons, 2001.

4. Han, J., Kamber M., “Data Mining: Concepts and Techniques”, Morgan 

Kaufmann, San Francisco, 2000.
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2. Main Objectives

2.1 Motivation
The fuzzy clustering algorithms exhibit obvious advantages for Data M ining’s 
purposes. The clustering process is an unsupervised learning technique, thus there 
is an absence o f any guidance or training. In some cases there is not enough 
training information in order to train a classifier, but it seems appropriate to take 
advantage o f  a small but important piece o f  information to improve the clustering. 
Often this kind o f  knowledge is acquired as experience and is only available for 
data experts/designers whose knowledge o f their domains is very good. In this 
situation the human operator is able to conclude if  the processes appearing in the 
system are correct, and act in the scenarios when the behaviour should be 
corrected. This partial, segmented or stepwise involvement o f the user in the 
process o f pattern recognition provides field knowledge to improve the 
unsupervised learning method performance. Henceforth it will be referred to as 
partial user supervision or simply user supervision. Interest lies in the different 
types o f user supervision, what they embrace, and how they could be realized and 
integrated with the Fuzzy C-Means (FCM) algorithm [l] . The role o f  partial user 
supervision in clustering will be examined and the observations quantified. This 
project’s objectives are as follows:

(i) Study in detail algorithmic enhancements o f  Fuzzy C-Means
algorithm: partial supervised FCM [7] and proximity based FCM [2,3] 
algorithms

(ii) Focus on the efficient manner o f combining these aforementioned
types o f  user supervision into one method -  partially supervised 
proxim ity based FCM (PSP-FCM) merging two previous techniques

(iii) Provide a well-justified and fully quantified protocol o f practical
relevance advising how the mechanisms o f  supervision could be
implemented in a given experimental setting

It is also the intention o f  this project to compare different modes o f 
incorporating user input. For instance, the first mode can constitute random usage 
o f the available knowledge for improvement o f  clustering/classification accuracy. 
The idea is to proceed with randomly selected patterns and then require their 
proper class assignment and/or induce the grade o f  similarity between them. 
However, the project will also consider the gradual application o f  user input only 
for misclassified patterns in order to correct undesired errors. We will examine if  
both modes are equivalent, study their practical applications and advantages, 
measure the required effort o f  their usage, and the possible improvement o f 
accuracy they provide. Several other related issues will be studied: the 
applicability o f  finding or recovering structure in data by Fuzzy C-Means in a 
noisy, incomplete or distorted data environment, robust statistic based algorithms 
and relational methods.
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Partial supervision can be especially beneficial in three situations, where:

(i) The complete feature space is not available due to lack o f data, 
incomplete measurements or physical unavailability o f information.

(ii) The exploration o f the structure is strongly influenced by the outliers 
contained in the dataset.

(iii) It is difficult or cumbersome to construct the feature space o f  patterns 
because o f the complexity o f these features. World W ide Web 
(WWW) documents are a good example because not only is the textual 
information important, but also the multimedia content, and the 
structure o f  links or layout. The numerical representation o f  these 
elements together is highly non-trivial.

Although fuzzy clustering methods are proved to produce high quality results in 
favourable and less optimal conditions [1], the accuracy o f the clustering or 
classification decreases at difficult tasks. It is worth testing their performance in 
the presence o f the real world data, which often form a noisy, incomplete or 
distorted data environment. This kind o f  environment directly causes deterioration 
o f  performance.

This work endeavours to find an intermediate state between supervised, 
trainable methods and completely unsupervised learning. In the supervised 
scenario, the quality o f  the training data is important to provide a good 
approximation o f the testing set. In some cases, the amount o f information that is 
possessed is not sufficient for training. Conversely, in unsupervised techniques 
the user does not have any influence on the process (besides choosing input 
parameters), which is guided by an internally defined similarity measure, inter 
and intra cluster distance, or an optimization criterion (alternating optimization 
algorithms) [2].

Although the user input is important, relying entirely on user knowledge does 
not seem to be a proper approach too. The essence o f the right approach is to 
combine collaboratively two dimensions o f the following: (i) the physical nature 
o f  the dataset and (ii) the designer’s knowledge potential. The combination 
creates a fertile field o f applications that have fuzzy sets. The ability o f  fuzzy sets 
and the algorithms based on them model the data with non-crisp boundaries, and 
it is well established in the techniques o f Pattern Recognition and Data Mining 
[1,3].

The second reason for applications o f fuzzy methods lies in their suitability o f 
emulating o f  human cognitive processes, and this is especially important in the 
area o f  Pattern Recognition [5]. The application and rationale for supervision 
mechanisms can be twofold: (i) it will provide a new line o f user-oriented support 
for the clustering. The data experts would be able to model the dataset by their 
influence ranging from minimal to significant depending on the amount o f 
information available, (ii) such support from the users side can play a key role in 
the situation when the dataset is difficult to explore and standard methods provide
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insufficient results. This may happen in presence o f  outliers or distorted structure 
o f dataset.

Finally, it is important in this study to provide justification for the user 
supervision component experimentally by examining its influence on the 
clustering and classification processes, and illustrating the performance boost o f 
clustering and classification on the datasets in the areas o f  our interest. The 
performance assessment will be based on three categories o f  datasets. First the 
algorithms will be illustrated on the synthetic datasets. The second category 
constitutes Machine Learning datasets. In the last data collection, WWW 
documents from different thematic groups will be the subject o f  clustering.
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3. Literature Review
This section o f our study presents the algorithms, methods and concepts from two 
fields: fuzzy clustering with user supervision, and Web Mining methods and 
concepts. The literature o f fuzzy clustering, and the literature regarding user 
supervision guiding the process o f  data discovery will be reviewed. Then, we will 
carefully examine the existing trends and challenges in Web Mining, which can 
be a fertile field for applications of user supervision components.

3.1 Fuzzy clustering and user supervision support 
literature

Numerous approaches o f unsupervised fuzzy clustering methods in the literature 
[3,4,5,9,13,20,22] seem to confirm its valuable assets in revealing unknown 
information about data, and organizing it into groups o f  similar patterns. The most 
known and widely used method here is the Fuzzy c-M eans (FCM) algorithm [3]. 
There are situations when the extensive dimensionality growth may increase 
unnecessary complexity o f  computations. The solution to this particular problem 
forms a family o f relational clustering algorithms [4,5,12, 13] with a Relational 
Fuzzy C-Means as a representative. The patterns in this case instead are being 
represented as multidimensional feature vectors are implicitly referred to as pair 
wise relative similarities (dissimilarities) to each other. RFCM and other 
relational methods store these similarities in a similarity (dissimilarity) matrix 
where rows and columns correspond to patterns. Essentially, RFCM is an 
equivalent method to FCM. The evident advantages o f  RFCM can be applied to 
the pure relational data or the reduction o f  the patterns’ dimensionality (similarity 
can be computed only once before running o f  the algorithm). The drawback o f 
using relational methods is an increased computational complexity.

Although fuzzy clustering methods match well with the nature o f  real world 
data, and perform well in many environments, problems can appear in some cases 
because we are rarely provided with clean, complete data in real world scenarios. 
In this case the most obvious source o f  authorized infoimation are users equipped 
with their field knowledge, experience and/or intuition. The idea o f  incorporating 
user input is not new, and several approaches o f supervised and semi-supervised 
learning were created as a result [1, 2,21,23].

The incorporation o f a designer’s knowledge in fuzzy clustering appears in 
various extensions o f the situation described above: (a) an internal optimization 
mechanism ultimately guided by the user [21,23]; (b) weight vectors magnifying 
the impact o f selected patterns (or features) in the clustering process. [1,2]; (c) the 
objective function is extended by an additive, supervision component [24].

Proxim ity-based FCM (P-FCM) [21,23] exhibits a concept o f  an arbitrary 
modeling o f a dataset by entering user ‘hints’. One is able to enter subjective 
proximity information for any pair o f  patterns existing in the dataset ranging from 
very dissimilar to nearly identical. The provision o f user guidance allows the 
person to more easily grasp a difficult, more abstract concept o f  similarity in a 
very convenient way.
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A form o f  exploiting an expert knowledge acquired a priori to the experiments 
was introduced by Bensaid et al. [1] and was developed along the lines o f  the 
weight vectors idea. This approach was applied to Magnetic Resonance Imaging 
(MRI) clustering. A part o f the dataset is labelled in the initialization phase with 
known labels by a human expert; the rest o f the patterns remain unclassified.

In contrast to the existing approaches o f (a) and (b), another way o f  allowing 
the user to influence the clustering is using Partially Supervised FCM [24]. The 
concept o f Partially Supervised Fuzzy C-M eans lies in the foundation o f  
providing the user with a flexible way o f incorporating his domain knowledge, 
and imposing the assignment o f  patterns to particular clusters. The guidance to the 
algorithm is provided via user hints in the form o f an extension o f  the general 
objective function by an additional component.

It is important to mention briefly robust clustering algorithms, which are 
especially designed to deal with outliers in datasets. Kersten [16,17,18] proposed 
a Fuzzy C-Median (FCMED) clustering algorithm derived on a basis o f  a fuzzy 
median. The fuzzy median is a robust statistic, which is able to accept almost 50% 
o f outliers before it loses its ability to generate meaningful results. Two other 
approaches include relational algorithms: Fuzzy C-M edoids (FCM dd) by 
Krishnapuram [20] and a robust non-Euclidean fuzzy relational data clustering 
method (robust-NE-FRC) [9]. Dave and Sen [9] presented a broad spectrum o f 
existing relational clustering techniques using objective functional. They 
introduced robust-NE-FRC, a relational algorithm dealing efficiently with noise 
and outliers. A low-complexity fuzzy relational algorithm (FCM dd) and its robust 
version were successfully applied to WWW documents and snippet clustering. 
Good results were recorded, although the algorithm itself does not guarantee 
finding o f  a global minimum. It is advisable to test several random initializations 
to determine which produce the best results.

3.2 Web Mining: concepts and techniques
Dealing with WWW data imposes additional challenges to the concepts and 
methods applied to this field. W W W  data by their nature and large size causes all 
kinds o f problems such as incompleteness, non-uniformity and inconsistency. The 
problems described can only be partially overcome by data cleaning, integration 
or transformation. This study will focus on applying user guidance in the context 
o f Web Data Mining where standard approaches perform poorly. There were 
several attempts to prevail over emerging problems.

In articles about the WWW, it is appropriate to include PagcRank used in 
Google and HITS algorithms [7, 19], respectively. Both approaches introduce the 
concept o f authoritative pages, which are pointed many other WWW pages (back- 
links, and give the estimate o f  page importance -  PageRank) and hubs, which 
contain many forward-links (outgoing links from a page) and suggestions about 
other authoritative pages (HITS). Both algorithms are not clustering algorithms 
and can be used to compute the ranks o f web pages within a given set o f  pages, 
but are unable to form complete thematic clusters o f a given collection o f  Web
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documents. Moreover, to obtain meaningful results they have to be supported by 
auxiliary text information from the WWW pages.

Roussinov and Zhao [25] constructed Context Sensitive Similarity Discovery 
(CSSD) - a method for computing similarity relationships among concepts 
surfacing during an electronic brainstorming session. In contrast to the vector 
space model, which their technique outperforms, CSSD is capable o f  grasping a 
similarity between documents that do not contain any keywords in common but 
their topic is relevant.

An evident shortcoming o f CSSD is the construction o f a similarity network, 
which in practice is difficult to create a priori from unknown, unlabelled data. 
Even though the authors believe that this method would work with other 
clustering algorithms, the limiting factor can be a choice o f parameters resulting 
in creating a similarity matrix very different from natural relationships between 
the concepts. It seems that this method would perform well using documents o f a 
smaller size, and with a certain amount o f user supervision.

Broder et al. [8 ] demonstrated a scalable method for syntactic clustering on 
the WWW that focused mainly at finding duplicate and contained documents, that 
is locating highly similar alternatives to a given URL. Their idea uses 
representation o f documents with contained in it contiguous sequences o f  words 
(shingles). Limitations o f this method derive from its internal architecture that it is 
not efficient for basic clustering and complexity o f  data processing, which is 
storage and computationally expensive, especially in the context o f forming 
clusters in the real time.

Another method, which uses the vector space model is the modified Adaptive 
Resonance Theory (ART) algorithm proposed by Vlajic and Card [28]. The 
authors proposed solving the problem o f synonymy and reduction o f  dimension 
by applying a thesaurus. In practice, the method o f  creating a thesaurus requires 
human assistance, which together with the fact that the algorithm is applied only 
to a single domain (neural networks) and the authors provided insufficient 
measures o f  analyzing the performance o f  the proposed method, brought the 
applicability o f ART in a broader situation into question.

Guillaume [11] proposed another approach to the clustering o f XML 
documents. He found a relationship between documents as expressed by the links 
between them, thus the entire problem was reduced to a graph-partitioning 
problem. The proposed method, although successful for XML documents, 
exploits XML links, and this exploitation is the main reason that clustering is 
limited to a narrow domain.

Boley et al. [6 ] demonstrated further two techniques o f WWW document 
clustering. The first method (ARHP) exploits the concept o f association rule 
discovery. In this technique items are documents, and features (words) are 
transactions so the affinities among documents are captured by frequent item sets. 
The second method (PDDP) is a principal direction algorithm, hierarchically 
creating a binary tree hierarchy o f clusters in which the root is an entire document 
set. Both algorithms reveal great assets, are fast, scalable and efficient. However, 
they may not represent a natural organization o f  data. ARHP creates compact,
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highly cohesive clusters but leaves some documents unassigned to any o f  the 
clusters. Dendroram outputted from PDDP is based on a binary split o f  every 
cluster that will obviously favour clusters o f  the same size.

Self-organizing maps (SOM) proved to be a useful tool for clustering pages 
with users’ navigational patterns [27], clustering document collections [14], 
finding WWW communities [10] and browsing the results o f  clustering. The first 
approach [27] is limited to a narrow domain with difficult parameters estimation, 
and they might not scale well. The third approach [10] cannot reveal real clusters, 
for a WWW community is not a cluster but a collection o f web pages that have 
more hyperlinks between each other than other pages from outside o f the 
community.

Although the WEBSOM map [14] was successfully applied to the clustering 
o f  documents in large collection, it may not scale for larger WWW collections, as 
the word and document maps will significantly increase.

Aforementioned algorithms, except self-organizing maps, and most o f the 
standard approaches (especially partitioning methods, k-means or k-medoids) 
produce crisp clusters. This approach is more appropriate for clusters, which can 
be well separated from each other rather then for overlapping, very close 
thematically or nested clusters.

The variability o f WWW data requires a more careful approach, possibly 
introduced by fuzzy sets. The natural extensions to Web approaches are fuzzy sets 
allowing arbitrary modeling the assignment o f an object (e.g. Web page) to a 
cluster by fuzzy membership values. A lot o f work in the realm o f  fuzzy 
clustering was done by Bezdek and Hathaway [3, 4, 12, 26], who introduced 
numerous fuzzy algorithms i.e. FCM, RFCM, NERFCM. According to 
Krishnampuram [20], FCM, RFCM and NERFCM [3, 4, 12] algorithms seem to 
be more stable in practice and have proved its efficiency and accuracy. The 
RFCM algorithm is a relational version o f the FCM, with a restriction that the 
similarity data has to be derived from Euclidean distance. The NERFCM relaxes 
this restriction imposed on a dissimilarity matrix by introducing p  -spread 
transformations. In fact, the RFCM algorithm is closely related to another 
technique presented by Kaufman and Rousseeuw -  the FANNY algorithm [15].

Fuzzy algorithms have strong mathematical foundations, are fairly efficient, 
accurate, and suitable for enhancements. In our context it is important that they 
are able to reveal ‘unsure’ patterns; those that are not associated closely with any 
particular cluster. A possible limitation can be a choice o f parameters (this is a 
subject o f  the optimization as we show in later sections), computational 
complexity, which can be also overcome (Krishnampuram et al. [20]), and 
sensitivity to outliers. Dave and Sen [9] introduced robust-NE-FRC and proposed 
transformations generalizing approaches o f converting non-robust algorithms into 
robust ones.

Some relational fuzzy clustering algorithms were applied to Web data mining. 
Runkler and Bezdek [26] used Relational Alternating Cluster Estimation (RACE) 
algorithm for WWW logs’ and newsgroups’ articles clustering. Krishnampuram et 
al. [20] presented a low-complexity fuzzy relational algorithm (FCMdd) similar
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in concept to RFCMt Although Runkler and Bezdek observed acceptable results,
using other weighting scheme for keywords besides that o f Levenshtein distance
might have produced better results.
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4. Datasets Description
The synthetic data sets used in this study were chosen to illustrate the idea o f 
operating o f the algorithms and assessing their performance. In addition to the 
artificial data, real-world datasets were also used. M achine Learning and Web 
Mining datasets constitute more challenging data collections, allowing more 
meaningful evaluation o f  the assumed methodologies and techniques, as well as 
emphasizing their practical applicability.

4.1 Synthetic datasets
The synthetic multivariate datasets generated in this study have normal 
distribution with the mean vector and covariance matrix . This regular
and predictable structure was subjected to interference from a group o f  noise 
points. Outliers can distort the original structure and make it substantially more 
difficult to explore. In this case the outliers are from a group o f  points generated 
from a heavy-tailed Cauchy distribution, and will be used to distort the structure. 
In the experiments with the synthetic datasets, the primary interest lies in 
simulating real-w ord scenarios. The challenge is reconstruction with the available 
methods the original (known) structure from the dataset. This allows us to test the 
performance o f the algorithms by extensive experimentation using different 
parameters, and then gathering general observations o f  their functioning. These 
actions will possibly lead to their tuning and improvements. The synthetic 
datasets can be arbitrarily modified as to the number o f  points and outliers while 
the parameters o f  the distributions provide more exhaustive information to the 
researcher during the experiment.

4.2 Machine Learning datasets
The UCl Repository o f  machine learning databases [ l]  provided several datasets 
for this study. They are used by the machine learning community for the empirical 
analysis o f  algorithms. The datasets may cover a range o f topics from a chemical 
wine analysis to picture segmentation, or biological data manipulation, therefore a 
variety o f  clustering and classification tasks can be performed on them.

4.2.1 Wine recognition database
These data were collected from the results o f a chemical analysis o f wines grown 
in the same region in Italy, but derived from 3 different cultivars. The analysis 
determined the quantities o f the 13 constituents found in each o f the 3 types o f 
wines. The class distribution is as follows: class A -  59 instances, class B -  71, 
class C -  48. All 13 attributes are continuous. Table 4-1 and Table 4-2 show the 
range o f the features’ values, the mean and standard deviation o f the features in 
each class.

T ab ic  4 -1 .C o n stitu en ts  o f  the  w ine chem ical analysis: ra n g e  o f  values.

# Chem ical Range o f  values
constituent Class I C lass 2 C lass 3
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1 Alcohol [ 12.85; 14.83] [11.03; 13.86] [ 12.2; 14.34]
2 M alic acid [1.35:4.04] [0.74;5.8] [1.24;5.65]
3 Ash [2.04;3.22] [1.36;3.23] [2.1;2.86]
4 A lkalin ity  o f  ash [11.2;25.0] [10.6;30.0] [17.5;27.0]
5 M agnesium [89.0;132.0] [70.0; 162.0] [80.0; 123.0]
6 Total phenols [2.2;3.88] [1 .1 ;3.52] [0.98;2.8]
7 Flavanoids [2.19;3.93] [0.57;5.08] [0.34; 1.57]
8 N onflavanoid

phenols
[0.17;0.5] [0.13;0.66] [0.17;0.63]

9 Proanthocyanins [1.25;2.96] [0.41 ;3.58] [0.55;2.7]
10 C olor intensity [3.52;8.9] [ 1.28:6.0] [3.S5; 13.0]
11 Hue [0.82; 1.28] [0.69; 1.71] [0.48;0.96]
12 O D 280/O D 315 o f  

diluted wines
[2.51;4.0] [1 ,59;3.69] [1.27;2.47]

Proline [680.0; 1680.0] [278.0:985.0] [415.0;SS0.0]

T ab ic  4-2. C o n s titu en ts  o f  th e  w ine chem ical analysis: m eans an d  s ta n d a rd  dev ia tions .

ft C hem ical M eans ±  Standard Deviations
constituent Class 1 C lass 2 Class 3

1 Alcohol 1 3 .7 4 1 0 .4 6 1 2 .2 7 1 0 .5 3 1 3 .1 5 1 0 .5 3
2 M alic acid 2 .0 1 1 0 .6 8 1 .9 3 1  1.01 3 .3 3 1 1 .0 8
3 Ash 2 .4 5 1 0 .2 2 2 .2 4 1 0 .3 1 2 .4 3 1 0 .1 8
4 A lkalinity  o f  

ash
1 7 .0 3 1 2 .5 4 2 0 .2 3 1  3.34 2 1 .4 1 1 2 .2 5

5 M agnesium 10 6 .3 3 1  10.49 9 4 .5 4 1  16.75 9 9 .3 1 1  10.89
6 Total phenols 2 .8 4 1 0 .3 3 2 .2 5 1 0 .5 4 1 .6 7 1 0 .3 5
7 Flavanoids 2 .9 8 1 0 .3 9 2 .0 8 1 0 .7 0 0 .7 8 1 0 .2 9
8 N onflavanoid

phenols
0 .2 9 1 0 .0 7 0 .3 6 1 0 .1 2 0 .4 4 1 0 .1 2

9 Proanthocyanins 1 .8 9 1 0 .4 1 1 .6 3 1  0.60 1 .1 5 1 0 .4 0
10 C olor intensity 5 .5 2 1  1.23 3 .0 8 1 0 .9 2 7 .3 9 1 2 .3 1
11 Hue 1 .0 6 1 0 .1 1 1 .0 5 1 0 .2 0 0 .6 8 1 0 .1 1
12 O D 280/O D 315 

o f  diluted w ines
3 .1 5 1 0 .3 5 2.7S 1 0 .4 9 1 .6 8 1 0 .2 7

13 Proline 1 1 1 5 .7 11221 .52 5 1 9 .5 0 1  157.21 6 2 9 .8 9 1  115.09

4.2.2 Image segmentation data
The instances o f  this dataset were drawn randomly from a database o f  7 outdoor 
images. The images were hand-segmented to create a classification for every 
pixel. Each instance is a 3x3 pixel region. The whole dataset contains 2,100 
instances with a distribution o f 300 instances per class. Each instance is described 
by a 19-dimensional vector o f various statistical descriptors (Table 4-3). The 
seven classes are as follows: brick-face, sky, foliage, cement, window, path and 
grass. Table 4-4, 4-5 and Table 4-6, 4-7 show the range o f  values and means with 
standard deviations.

T ab le  4-3. S ta tis tica l d esc rip to rs  as fea tu re s  fo r  im age  segm ents.

# Statistical descrip tor Description

1 region-centroid-col T he column o f  the center pixel o f  the region.
2 region-centroid-row  T he row o f  the center pixel o f  the region
3 region-pixel-count T he num ber o f  pixels in a region = 9
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4 short-line-density-5

5 short-line-density-2

6 vedge-m ean

7 vegde-sd
8 hedge-m ean

9
10 
1 1  
12
13
14
15
16
17
18 
19

hcdge-sd
intensity-m ean
raw red-m ean
raw blue-m ean
Raw green-m ean
exred-m ean
exblue-m ean
exgreen-m ean
value-m ean
saturation-m ean
hue-m ean

The results o f  a line extraction algorithm  that counts how 
many lines o f  length 5 (any orientation) with low contrast, 
less than o r equal to 5, go through the region 
Same as short-line-density-5 but counts lines o f  high contrast, 
greater than 5
M easure the contrast o f  horizontally adjacent pixels in the 
region. T here are 6, the mean and standard deviation are 
given. T his attribute is used as a vertical edge detec tor 
(see 6)
M easures the contrast o f  vertically adjacent pixels. U sed for 
horizontal line detection 
(see 8)
The average over the region o f (R + G + B)/3 
The average over the region o f the R value 
The average over the region o f the B value 
The average over the region o f the G value 
M easure the excess red: (2 R -(G  +  B))
M easure the excess blue: (2B - (G + R »
M easure the excess green: (2G - (R + B))
3-d nonlinear transform ation o f RGB 
(see 17)
(see 17)_____________________________________________________

T a b le  4-4. S ta tis tica l d esc rip to rs  as fe a tu re s  fo r im age segm ents: ran g e  o f  va lues.
C lasses 1-3.

# Statistical descriptor
C lass 1

Range o f values 
Class 2 C lass 3

1 region-centroid-col [2;245] [2;253] [119;253]
2 region-centroid-row [I64;251] [171 ;201 ] [12;154]
3 region-pixel-count [9;9] [9;9] [9;9]
4 short-line-density-5 [0;0.22] [0;0 .11] [0:0.11]
5 short-line-density-2 [0 ;0 . l1] [0;0.22] [0 ;0 .1 1]
6 vedge-m ean [0.5;3.38] [0.83;4.66] [0;5.50]
7 vegde-sd [0.32;3.25] [0.51 ;5.49] [0;5.73]
8 hedge-m ean [0.77;8] [1.00;9.77] [0;9.27]
9 hedge-sd [0.49;2.94] [0.91 ;7.36] [0;3.35]
10 intensity-m ean [8.92;20.66] [39.85;52.55] [0:15.37]
11 raw red-m ean [6.33;21.44] [35.77;47.33] [0 ;I1 .33 ]
12 raw blue-m ean [6.44; 17.77] [47.33;65] [0;22]
13 Rawgreen-m ean [13.77;23.33] [35;45.77] [0:13.88]
14 exred-m ean [-10 .11;2.33] [-18.55;0] [13:0.11]
15 cxblue-m can [-12.44;0] [22.44;37.33] [0;22.66]
16 exgreen-m ean [6.33; 18.88] [-22;0] [10.22;0]
17 value-m ean [13.77;23.33] [47.33;65] [0;22]
18 saturation-m ean [0.23;0.59] [0.24;0.32] [0;0.88]
19 hue-m ean [1.28;2.33] [-2.17:0] f-2.37;0]

T a b le  4-5. S ta tis tica l d esc rip to rs  as fe a tu re s  fo r im age segm ents: ran g e  o f  va lues.
C lasses 4-7.

C lass 4 Class 5
R ange o f  values 

C lass 6 Class 7
[2;252]
[13; 159] 
[9;9]

[3;124] 
[64; 147] 
[9;9]

[1;254]
[12;249]
[9;9]

[1:254] 
[1 1;249] 
[9;9]
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4 0;0.22] [0;0 .11] [0;0.22] [0;0.33]
5 0;0.22] [0:0.22] [0;0.22] [0;0.22]
6 0.22; 17.5] [0;25.5] [0;22.16] [0;29.22]
7 0.17; 16.44] [0;14.96] [0;375.09] [0 ;991.71 ]
8 0.27; 10.33] [0;27.27] [0; 26.61] [0;44.72]
9 0.25;5.72] [0;21.61] [-1.58:184.52] [0;1386.32]
10 20.51 ;72.88] [0;49.81] [0;129.25] [0;143.44]
11 19.S8;65] [0;41.77] [0;11S.33] [0;137.11]
12 22.33;90.11] [0;61.11] [0;144] [0; 150.88]
13 18.66:64.55] [0;46.55] [0; 125.44] [0; 142.55]
14 -3 1 .1 1;0] [-34.44;0] [-46.22:0.66] [-49.66;9.88]
15 5.44;59.22] [0;52.22] [-12.11:70.33] [-11 ;S2]
16 -2 8 .1 1;0] [-17.77;3] [-26.66:24.66] [-33.88:20.33]
17 22 .33 ;90 .11] [0;61.11] [0;144] [0;150.88]
18 0.15;0.36] [0:1] [0;1] [0:1]
19 -2 .18;0] [-3.04;0] [-2.45:2.86] [-3.01;2.91]

T ab le  4-6. S ta tis tica l d e sc r ip to rs  as fe a tu re s  fo r im age segm ents: m eans and
s ta n d a rd  dev ia tions . C lasses 1-3.

# Statistical descriptor M e a n s !  Standard Deviations
Class 1 Class 2 Class 3

1 rcgion-centroid-col 11 0 ±  14 72.99 1 6 8 .5 5 1 6 7 .2 8 1 9 1 .4 8 1  33.42
2 region-centroid-row  213.04 ±  23.27 187.22 ±  7.46 101 .01147 .71
3 region-pixel-count 9 0 1 0 8 .9 9 1  1.96 9 +  0
4 short-line-density-5 0 .0 3 1 0 .0 5 0 .0 1 + 0 .0 4 0 .0 0 + 0 .0 1
5 short-line-density-2 0 .0 0 1 0 .0 1 0 .0 0 1 0 .0 3 0 .0 0 + 0 .0 1
6 vedge-m ean 1 .5 6 1 0 .6 8 2 .1 7 1 0 .8 6 0 .8 2 +  1.23
7 vegde-sd 1 .1 5 1 0 .7 1 1 .6 0 1 0 .8 4 0 .7 0 +  1.14
8 hedge-m ean 2 .0 4 1  1.18 3 .3 1 1  1.71 0 .6 4 +  1.31
9 hedge-sd 1 .3 4 1 0 .5 9 2 .2 5 1  1.39 0.49 +  0.75
10 intensity-m ean 1 3 .1 9 1 2 .3 6 4 7 .3 7 1  2.95 3 .8 3 1 4 .5 5
11 raw red-m ean 1 1 .1 2 1 2 .6 9 4 2 .7 2 1 2 .5 9 2 .7 4 1 3 .3 0
12 raw blue-m ean 1 0 .2 3 1 2 .4 9 5 8 .1 5 1 3 .9 9 6 .0 8 1 7 .0 1
13 Rawgreen-m ean 1 8 .2 4 1 2 .2 1 4 1 .2 5 1 2 .3 8 2 .6 7 + 3 .4 3
14 exred-m ean -6 .2 3 1  1.93 -1 3 .9 6 1 2 .0 8 -3.28 +  3.91
15 exblue-nican -8 .8 8 1 2 .1 4 3 2 .3 3 1  3.39 6.75 +  7.60
16 exgreen-m ean 1 5 .1 2 1 2 .5 1 -1 8 .3 7 1 2 .0 7 -3 .4 7 1 3 .8 0
17 value-m ean 18 .2 4 1 2 .2 1 5 8 .1 5 1 3 .9 9 6 .0 8 1 7 .0 1
IS saturation-m ean 0 .4 6 1 0 .0 8 0 .2 9 1 0 .0 1 0 .3 3 1  0.29
19 hue-m ean 1 .9 8 1 0 .1 6 -2 .0 0 + 0 .0 5 -1 .3 7 1 0 .9 6

T ab le  4-7. S ta tis tica l d e sc r ip to rs  as fea tu re s  fo r im age segm ents: m eans an d  
s ta n d a rd  dev ia tions . C lasses 4-7.

a M e a n s !  Standard Deviations
Class 4 Class 5 C lass 6 C lass 7

l 11 2 .7 5 1  66.66 6 2 .4 3 +  37.06 1 3 3 .7 7 1 6 9 .8 9 1 1 8 .6 7 1 7 3 .9 4
2 8 5 .4 4 1  39.56 118 .29+  19.63 1 3 0 .9 9 1 6 3 .2 9 1 1 8 .1 3 1 5 3 .9 0
3 9 .0 0 1 0 8 .9 9 1 0 9 .0 0 1 0 9. 1  0
4 0 .0 2 1 0 .0 4 0.01 1 0 .0 3 0 .0 1 + 0 .0 4 0 .0 1 1 0 .0 4
5 0 .0 0 1 0 .0 2 0.01 1 0 .0 3 0 .0 0 1 0 .0 2 0.00 +  0.02
6 2 .7 9 1 2 .7 8 2 .4 9 1 3 .7 1 2.02 +  2.50 1 .7 0 + 2 .7 7
7 1 .8 0 1 2 .1 4 2 .1 1 1 2 .9 4 3 .4 9 1 2 2 .9 9 8 .9 3 1 6 1 .7 5
8 1 .9 0 1  1.77 2.88 +  4.73 2 .4 9 1 2 .8 9 2.49 +  4.04
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9 1.27± 1.04 2.40 ±3 .9 7 3.14 ±  12.54 13.63 ±75 .38
10 49.70 ±  13.01 9.64 ± 9 .8 8 51.35 ±  38.36 33.02 ±41 .69
11 43.57 ±  11.28 6.11 ± 7 .6 2 45.42 ±  34.93 29 .60±  38.56
12 62.08 ±  16.29 14.77 ±  13.71 60.46 ±44.28 39.08 ±46 .74
13 43.44 ±  11.59 8.04 ±8 .7 6 48.17 ±  36.28 30.39 ±  40.12
14 -18.39 ±  6.11 -10.58 ±  8.66 -17.79 ±  11.42 -10.27 ±  12.23
15 37.16 ±  10.56 15.38 ±  13.04 27.34 ±20.83 18.17 ±  18.95
16 -18.77 ±  4.62 -4.79 ±4 .89 -9.54 ±  13.47 -7.89 ±  10.49
17 62.08 ±  16.29 14.82 ±  13.74 61.73 ±  43.11 39.94 ±46 .30
IS 0.30 ±0 .03 0.65 ± 0 .2 6 0.35 ± 0 .1 7 0.48 ±0 .23
19 -2.07 ±  0.06 -2.16 ±  0.58 -1.28 ±  1.73 -1 .32 ±  1.53

4.2.3 Wisconsin Diagnostic Breast Cancer (WDBC) and 
Wisconsin Prognostic Breast Cancer (WPBC) data

Experiments were performed using two breast cancer databases: the Wisconsin 
Diagnostic Breast Cancer (W DBC) and the Wisconsin Prognostic Breast Cancer 
(WPBC). Each pattern from these databases represents follow-up data for one 
breast cancer patient. Only those cases exhibiting invasive breast cancer and no 
evidence o f distant m etastases at the time of diagnosis are included.

The first dataset, from WDBC, contains 569 patterns (class distribution: 357 
benign, 212 malignant). The 10 features examined are computed from a digitized 
image o f a fine needle aspirate (FNA) o f a breast mass. They describe 
characteristics o f  the cell nuclei present in the image (Table 4-8). For each o f 
these features the mean, standard error and "worst", or the largest mean o f the 
three largest values, were computed for each image, resulting in 30 real-valued 
features.

In the second set there are 194 patterns (class distribution: 148 non-recurring 
before 24 months, 46 recurring). 4 incomplete patterns were eliminated from the 
initial 198 records. This dataset has, in addition to the 30 features formed in the 
way mentioned above, two additional (Table 4-9). For both datasets the means 
and standard deviations for each class were computed (Table 4-10, Table 4-11, 
Table 4-12 and Table 4-13).

T ab le  4-8. F ea tu res  fo r the  W D BC  an d  the  W P B C  d a ta se ts .

u Feature Description

l Radius mean of distances from center to points on the perimeter
2 Texture standard deviation of gray-scalc values
3 Perimeter -

4 Area -

5 Smoothness local variation in radius lengths
6 Compactness pcrimctcrA2 / area - 1.0
7 Concavity severity o f  concave portions o f the contour
8 concave points number o f concave portions o f the contour
9 symmetry -
10 fractal dimension "coastline approximation" -  1

T ab le  4-9. A d d itio n a l features fo r th e  W PB C  d a ta s e t.

U
Feature Description

1 Tumor size diameter o f the excised tumor in centimeters
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2 Lyniph node status number o f  positive auxiliary lymph nodes
__________________________observed at lime o f surgery_____________

T ab le  4-10. F ea tu re s  o f  b reas t c a n c e r  cases fo r  th e  W D B C  d a ta se t: ran g e  of values.

# Range of values
Class 1 Class 2

1 [6.98; 17.85] [10.95;28.11]
2 [9.71 ;33 .81 ] [10.38:39.28]
3 [43.79;114.6] [71.9:188.5]
4 [I43.5;992.l] [361.6;2501]
5 [0.05;0.16] [0.07;0.14]
6 [0.01 ;0.22] [0.04;0.34]
7 [0;0.4I] [0.02;0.42]
S [0;0.08] [0.02;0.20]
9 [0.10;0.27] [0.13:0.30]
10 [0.05;0.09] [0.04;0.09]
II [0.11;0.88] [0.19:2.87]
12 [0.36;4.88] [0.36:3.56]
13 [0.75;5.11] [1.33:21.98]
14 [6.80;77.11] [13.99:542.2]
15 [0.00;0.02] [0.00;0.03]
16 [0.00;0.10] [0.00:0.13]
17 [0;0.39] [0.01:0.14]
IS [0;0.05] [0.00;0.04]
19 [0.00;0.06] [0.00;0.07]
20 [S.94;0.02] [0.00;0.0i]
21 [7.93; 19.82] [12.84:36.04]
22 [12.02;41.7S] [I6.67;49.54]
23 [50.41; 127.1 ] [85.1:251.2]
24 [185.2;1210] [50S.I;4254]
25 [0.07;0.20] [0.08;0.22]
26 [0.02;0.5S] [0.05:1.05]
27 [0; 1 -25] [0.02;I.17]
28 [0;0.17] [0.02:0.29]
29 [0.15;0.42] [0.15:0.66]
30 [0.05;0.14] [0.05;0.20]

T ab le  4-11. F e a tu re s  o f  b rea s t c an ce r cases fo r th e  W D B C  d a ta se t: s ta n d a rd  deviations.

Statistical Means ±  Standard Deviations
descriptor Datasct c lass I Class 2
n
1 14.12 +  3.52 12.14 ±  1.78 17.46 ± 3 .2 0
2 19.28 ± 4 .3 0 17.91 ± 3 .9 9 21.60 ± 3 .7 7
3 91.96 ± 2 4 .2 9 78.07 ±  11.80 115.36 ±  21.85
4 654.88 ±351 .91 462.79 ±  134.28 978.37 ± 3 6 7 .9 3
5 0.09 ± 0 .0 1 0.09 ± 0 .0 1 0 .1 0 ±  0.01
6 0.10 ± 0 .0 5 0.08 ±  0.03 0.14 ± 0 .0 5
7 0.08 ±  0.07 0.04 ±  0.04 0.16 ±  0.07
S 0.04 ±  0.03 0.02 ± 0 .0 1 0.08 ±  0.03
9 0.18 ± 0 .0 2 0.17 ± 0 .0 2 0.19 ± 0 .0 2
10 0.06 0.00 0.06 ± 0 .0 0 0.06 ± 0 .0 0
11 0.40 ± 0 .2 7 0.28 ± 0 .1 1 0.60 ±  0.34
12 1.21 ± 0 .5 5 1.22 ± 0 .5 8 1.21 ± 0 .4 8
13 2.86 ± 2 .0 2 2.00 ± 0 .7 7 4.32 ± 2 .5 6
14 40.33 ± 4 5 .4 9 21.13 ± 8 .8 4 72.67 ± 6 1 .3 5
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15 0 .0 1 + 0 .0 0 0.01 ± 0 .0 0 0.01 ± 0 .0 0
16 0.02 ± 0 .0 1 0.02 ± 0 .0 1 0.03 ± 0 .0 1
17 0.03 ±  0.03 0.02 ±  0.03 0.04 ±  0.02
IS 0.01 ± 0 .0 0 0.01 ± 0 .0 0 0.01 ± 0 .0 0
19 0.02 ±  0.00 0.02 ±  0.00 0.02 ± 0 .0 1
20 0.01 ± 0 .0 0 0.01 ± 0 .0 0 0.01 ± 0 .0 0
21 16.26 ± 4 .8 3 13.37 ±  1.98 21.13 ± 4 .2 8
22 25.67 ± 6 .1 4 23.51 ± 5 .4 9 29.31 ± 5 .4 3
23 107.26 ± 3 3 .6 0 87.00 ±  13.52 141.37 ± 2 9 .4 5
24 880.58 ± 5 6 9 .3 5 558.89 ±  163.60 1422.28 ± 5 9 7 .9 6
25 0.13 ± 0 .0 2 0.12 ± 0 .0 2 0.14 ± 0 .0 2
26 0.25 ± 0 .1 5 0.18 ± 0 .0 9 0.37 ± 0 .1 7
27 0.27 ± 0 .2 0 0.16 ±  0.14 0.45 ± 0 .1 8
28 0 .11 ± 0 .0 6 0.07 ± 0 .0 3 0.18 ± 0 .0 4
29 0.29 ± 0 .0 6 0.27 ±  0.04 0.32 ± 0 .0 7
30 0.08 ± 0 .0 1 0.07 ± 0 .0 1 0.09 ±  0.02

T ab le  4-12. F ea tu res  o f  b re a s t c an ce r cases fo r the  W P B C  d a ta se t: ran g e  o f  values.

# Range o f  values
Class 1 Class 2

1 [ i ;125] [1:78]
2 [10.95;24.63] [I2.34;27.22]
3 [10.38:39.28] [14.34:30.99]
4 [71.9;I66.2] [81.15:182.1]
5 [361.6;I841] [477.4:2250]
6 [0.07;0.14] [0.08:0.12]
7 [0.04:0.31] [0.06;0.23]
8 [0.02;0.42] [0.05:0.33]
9 [0.02:0.20] [0.03:0.19]
10 [0.13:0.30] [0.14;0.23]
II [0.05;0.09] [0.05:0.07]
12 [0.19:1.81] [0.22;l.73]
13 [0.44;3.50] [0.36:2.91]
14 [I.15;I3.28] [1.60:11.56]
15 [13.99;253.S] [ 18-85:316]
16 [0.00;0.03] [0.00;0.0i]
17 [0.00:0.13] [0.00;0.i0]
18 [0.01:0.14] [0.0i;0.09]
19 [0.00:0.03] [0.00;0.02]
20 [0.00:0.06] [0.00:0.05]
21 [o.oo;0.oi] [o.oo;0.oi]
22 [I2.84;32.49] [15.51:35.13]
23 [17.04;49.54] [ I6.67;40.14]
24 [85.l;214] [101.7;232.2]
25 [508.l;3432] [733.2;3903]
26 [0.08;0.22] [0.10:0.18]
27 [0.05:1.05] [0.12:0.74]
28 [0.02:1.17] [0.22:0.73]
29 [0.02;0.29] [0 .ll;0 .27]
30 [0.15:0.66] [0.22;0.48]
31 [0.05;0.20] [0.06:0.13]
32 [0.4; 10] [0.4; 10]
33 [0:27] [0;27]

T ab le  4-13. F ea tu re s  o f  b rea s t c a n c e r  cases fo r  th e  W PB C  d a ta s e t: s ta n d a rd  dev ia tions.

Statistical Means ±  Standard Deviations
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descriptor Dataset Class 1 Class 2
#
1 46.93 +  34.52 53.58 ± 3 4 .9 1 25.56 ± 2 2 .7 2
2 17.40 ± 3 .1 7 17.11 ± 3 .0 6 18.33 ± 3 .3 6
3 22.30 ± 4 .3 3 22.46 ± 4 .5 1 21.75 ± 3 .6 9
4 114.78 ± 2 1 .4 3 112.81 ± 2 0 .6 3 121.09 ± 2 2 .9 1
5 9 6 9 .0 9 ±  353.15 934.00 ± 3 3 1 .9 8 1081.98 ± 3 9 7 .2 6
6 0.10 ±  0.01 0 .1 0 ±  0.01 0 .1 0 ±  0.01
7 0.14 ± 0 .0 5 0.14 ± 0 .0 5 0.14 ± 0 .0 4
8 0.15 ± 0 .0 7 0.15 ± 0 .0 7 0.16 ± 0 .0 6
9 0.08 ± 0 .0 3 0.08 ±  0.03 0.09 ±  0.03
10 0.19 ± 0 .0 2 0.19 ± 0 .0 2 0. IS ± 0 .0 2
11 0.06 ± 0 .0 0 0.06 ± 0 .0 0 0.06 ±  0.00
12 0.60 ± 0 .3 0 0.58 ± 0 .3 1 0.66 ±  0.30
13 1.27 ± 0 .5 2 1.29 ± 0 .5 5 1.20 ± 0 .4 2
14 4.25 ± 2 .1 8 4.11 ±  2.16 4.73 ± 2 .2 1
15 70.29 ± 4 8 .0 1 66.66 ± 4 5 .8 2 81.96 ± 5 3 .3 5
16 0.00 ± 0 .0 0 0.01 ± 0 .0 0 0.01 ± 0 .0 0
17 0.03 ± 0 .0 1 0.03 ± 0 .0 1 0.03 ± 0 .0 1
18 0.04 ±  0.02 0.04 ± 0 .0 2 0.03 ± 0 .0 1
19 0.01 ± 0 .0 0 0.01 ± 0 .0 0 0.01 ± 0 .0 0
20 0.02 ±  0.00 0.02 ±  0.00 0.01 ± 0 .0 0
21 0.00 ± 0 .0 0 0.01 ± 0 .0 0 0.01 ± 0 .0 0
22 20.99 ± 4 .2 4 20.46 ± 3 .9 6 22.67 ± 4 .7 0
23 30.18 ± 6 .0 6 30.35 ± 6 .2 2 29.62 ± 5 .5 5
24 140.13 ± 2 8 .8 2 136.65 ± 2 6 .7 9 151.33 ±  32.41
25 1401.75 ±  5S7.04 1329.02 ± 5 2 7 .8 6 1635.76 ±  703.14
26 0.14 ± 0 .0 2 0.14 ± 0 .0 2 0.14 ±  0.01
27 0.36 ±  0.16 0.36 ± 0 .1 7 0.35 ± 0 .1 3
28 0.43 ± 0 .1 7 0.43 ± 0 .1 8 0.44 ± 0 .1 4
29 0.17 ± 0 .0 4 0.17 ± 0 .0 4 0.18 ± 0 .0 3
30 0.32 ± 0 .0 7 0.32 ± 0 .0 7 0.31 ± 0 .0 6
31 0.09 ± 0 .0 2 0.09 ±  0.02 0 .0 S ± 0 .0 l
32 2.86 ±  1.95 2.67 ±  1.S9 3.47 ± 2 .0 2
33 3.21 ± 5 .4 7 2.69 ±  5.21 4.S6 ±  6.01

4.2.4 Dermatology database
This database contains the data that pertains to patients with differential diagnosis 
o f erythemato-squamous diseases. The diseases in this group are psoriasis, 
seboreic dermatitis, lichen planus, pityriasis rosea, cronic dermatitis, and 
pityriasis rubra pilaris. The differential diagnosis o f erythemato-squamous 
diseases is a real problem in dermatology because they share many clinical and 
histopathological features.

This database contains 34 attributes, 33 o f  which are continuously valued and 
one that is nominal. Patients were first evaluated clinically for 12 features. 
Afterwards, skin samples were taken for the evaluation o f 22 histopathological 
features. The values o f the histopathological features are determined by an 
analysis o f  the samples under a microscope. The family history feature has a value 
o f  1 if  any o f these diseases has been observed in the family, and a value o f  0  

otherwise. Every other feature (clinical and histopathological) was given a value
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within a range o f 0 to 3. Here the value o f 0 indicates that the feature was not 
present, 3 indicates the largest amount possible, and values o f either 1 or 2 
indicate relative intermediate values. Table 4-14, Table 4-15, Table 4-16, Table 4- 
17, Table 4-18, Table 4-19, Table 4-20, Table 4-21 and Table 4-22 show the class 
distribution, the range, and the mean and standard deviation o f  each o f  the 
features in each class.

T ab ic  4-14. C lass d is tr ib u tio n .

Class D istribution 
Class code C lass nam e N um ber o f  instances
1 Psoriasis 112
2 seboreic derm atitis 61
3 lichen planus 72
4 p itynasis rosea 49
5 cronic derm atitis 52
6 pityriasis rubra pilaris 20

T ab ic  4-15. C lin ica l a ttr ib u te s  o f  the  d e rm ato lo g y  d a tab a se : ran g e  o f values.
C lasses 1-3.

Clinical Range o f  values
U A ttribute Class 1 Class 2 C lass 3
1 Erythem a [i;3 ] [0:3] [0;3]
2 Scaling [1:3] [1:3] [°;3]
3 definite borders [0:2] [1:3] [0;3]
4 Itching [0:3] [0:3] [0;3]
5 K oebner [0:2] [0:3] [0;3]

phenom enon
6 polygonal papules [0;0] [0:0] [0:3]
7 follicular papules [0; 1 ] [0:2] [0:0]
8 oral mucosal [0;0] [0:0] [0;3]

involvem ent
9 knee and elbow [0 ;i] [0:3] [0:2]

involvem ent
10 scalp involvem ent [0;2] [0:3] [ ° ; i]
11 fam ily history [0;1] [0 ;i] [0 ;l]
34 Age [0:2] [0:21 [2;3]

'a b le  4-16. C lin ica l A ttr ib u te s  o f the  d e rm ato lo g y  d a ta b a se : ra n g e  o f  values.
C lasses 4-6.

# Clinical Range o f  values
Attribute Class 4 C lass 5 C lass 6

1 erythem a [0:3] [1:3] [i;3 ]
2 scaling [0:3] [i;2 ] [1:2]
3 definite borders [0:3] [0:2] [0:2]
4 itching [0:3] [0:3] [0:2]
5 koebner [0:0] [0:3] [0:0]

phenom enon
6 polygonal papules [0:0] [0:0] [0:0]
7 follicular papules [0:2] [0:0] [1:3]
8 oral m ucosal [0;0] [0:0] [0;0]

involvem ent
9 knee and elbow [0:1] [0;0] [0;3]
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involvem ent
10 scalp involvem ent [0;0] [0;0] [0;2]
11 fam ily history [0;0] [0;0] [0; 1 ]
34 Age__________________ [OHJ___________ [OjO]___________ [O JJ_________

T ab ic  4-17. H istopatho log ical a ttr ib u te s  o f the  derm ato logy  d a tab a se : ran g e  o f  values.
C lasses 1-3.

a Histopathological Range o f  values
Attribute C lass 1 Class 2 C lass 3

12 melanin
incontinence

[0;0] [0;0] [0:3]

13 eosinophils in 
the infiltrate

[0;2] [0:2] [0:2]

14 PNL infiltrate [0;3] [0:3] [0;0]
15 fibrosis o f  the 

papillary derm is
[0;0] [0;0] [0;2]

16 cxocytosis [0:3] [0:2] [0:3]
17 acanthosis [0:3] [0;3] [0:2]
18 hyperkeratosis [0:3] [0:3] [0:3]
19 parakeratosis [0:3] [0;3] [0:3]
20 clubbing o f  the rete 

ridges
[0:0] [0:3] [0;0]

21 elongation o f  the 
rete ridges

[0;2] [i;3] [0;0]

22 thinning o f  the 
suprapapillary 
epiderm is

[0 ;l] [0;3] [0;0]

23 spongiform  pustule [0:2] [0:3] [0:0]
24 m unro m icroabcess [0:0] [0:3] [0:3]
25 focal

hypergranulosis
[0;0] [0;0] [0:3]

26 disappearance o f  
the granular layer

[0;0] [0;3J [0:2]

27 vacuolisation and 
dam age o f  basal 
layer

[0:0] [0 ;l] [0:3]

28 spongiosis [0:3] [0;0] [0:3]
29 saw -tooth 

appearance o f retes
[0:0] [0:0] [0:3]

30 follicular horn plug [0:1] [0;0] [0:1]
31 perifollicular

parakeratosis
[0:1] [0;0] [0:0]

32 inflam m atory
m onoluclcar
infiltrate

[0:3] [0:3] [0:3]

33 band-like infiltrate [0:31 [0:3] [0:3]

4-18. H istopatho log ica l a ttr ib u te s  o f the derm ato logy  d a ta b a se : ran g e  o f v
C lasses 4-6.

# H istopathological Range o f  values
Attribute C la ss4 Class 5 C lass 6

12 melanin
incontinence

[0:0] [0:0] [0:0]

13 eosinophils in the [0 ;l]
- 2 3 -
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14
infiltrate 
PNL infiltrate [0;0] [0 ;l] [0;1]

15 fibrosis o f  the [i;3 ] [0;0] [0;0]

16
papillary derm is 
exocytosis [0;2] [0;3] [0;3]

17 acanthosis [i;3 ] [0;2] [1;3]
18 hyperkeratosis [0:2] [0;2] [0;2]
19 parakeratosis [0;2] [0;2] [0;2]
20 clubbing o f  the rete [0;2] [0;0] [0 ;l]

21
ridges
elongation o f  the [0;3] [0;0] [0 ;l]

22
rete ridges 
thinning o f  the [0 ;l] [0;0] [0;0]

23

suprapapillary 
epiderm is 
spongiform  pustule [0;1] [0;0] [0 ;l]

24 m unro m icroabcess [0;0] [0 ;l] [0;0]
25 focal [0;0] [0;0] [0 ;l]

26
hypergranulosis 
disappearance o f [0;0] [0;2] [0;0]

27
the granular layer 
vacuolisation and [0;0] [0;0] [0;0]

28

dam age o f  basal 
layer
spongiosis [0;3] [0:3] [0;3]

29 saw -tooth [0;0] [0 ;l] [0;0]

30
appearance o f  retes 
follicular horn plug [0 ;l] [0;0] [0;3]

31 perifollicular [0;0] f 0;0] [i;3 ]

32
parakeratosis
inflam m atory [0;3] [0:3] [0;3]

33

m onoluclear
inflitrate
band-like infiltrate [0;3] |0;31 (0:3]

T ab ic  4-19. C lin ical a ttr ib u te s  o f the d e rm a to lo g y  d a tab a se : m eans and  
s ta n d a rd  deviations. C lasses 1-3.

it Clinical M eans ±  Standard Deviations
Attribute Class I C lass 2 Class 3

1 erythem a 2.27 ± 0 .6 0 2 .2 8 1 0 .6 2 2 .0 8 1 0 .5 9
2 scaling 2 .0 6 ± 0 .5 4 2 .1 9 1 0 .6 2 1 .6 2 1 0 .6 5
3 definite borders 0 .9 5 1 0 .8 0 2 .0 9 1 0 .5 8 2 .0 9 1 0 .6 7
4 itching 1 .6 2 1 0 .9 5 0 .9 4 1  1.08 2 .2 7 1 0 .7 9
5 koebner 0 .0 3 1 0 .2 5 0 .6 6 1 0 .8 7 1 .3 4 1  1.05

phenomenon
6 polygonal 0 0 0 0 2 .2 7 1 0 .6 9

papules
7 follicular 0.01 ± 0 .1 2 0 .0 3 1 0 .2 2 0 0

papules
8 oral mucosal 0 0 0 0 1.91 ± 0 .7 6

involvem ent
9 knee and elbow 0 .0 6 1 0 .2 4 1 .6 3 1  1.00 0 .0 2 1 0 .2 3

involvem ent
10 scalp 0.11 ± 0 .4 1 1 .5 2 1 0 .9 7 0 .0 2 1 0 .1 6
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involvem ent
11 fam ily history 0.04 ± 0 .2 1  0.28 ± 0 .4 5  0.01 ± 0 .1 1
34 Age______________ 0.03 ±  0.25________ 0.02 ± 0 .2 1  2.72 ± 0 .4 5

T able 4-20. C linical attributes o f  the derm atology database: m eans and 
standard deviations. C lasses 4-6.

# Clinical M eans ±  Standard D eviations
A ttribute Class 4 Class 5 Class 6

1 Erythema 1.50 ± 0 .6 7 1.89 ± 0 .5 8 2.05 ± 0 .5 1
2 Scaling 1.13 ±  0.62 1.51 ± 0 .5 0 1.75 ±  0.44
3 definite borders 0.84 ±  0.89 1.18 ±  0.72 1.05 ± 0 .7 5
4 Itching 1.88 ±  1.04 0.46 ±  0.76 0.49 ±  0.60
5 Koebner

phenom enon
0 1.18 ± 0 .8 0 0

6 polygonal
papules

0 0 0

7 Follicular
papules

0.23 ± 0 .5 4 0 2.20 ± 0 .6 1

S oral m ucosal 
involvem ent

0 0 0

9 knee and elbow  
involvem ent

0.03 ± 0 .1 9 0 1.70 ± 0 .8 0

10 scalp
involvem ent

0 0 0.5 ± 0 .8 2

11 fam ily history 0 0 0.49 ± 0 .5 1
34 Age 0.01 ± 0 .1 3 0 0.05 ±  0.22

Table 4-21. Histopathological attributes o f  the derm atology database: m eans and standard
deviations. C lasses 1-3.

ti H istopathological M eans ±  Standard D eviations
A ttribute Class 1 C lass 2 C lass 3

12 melanin
incontinence

0 0 2.05 ± 0 .6 6

13 eosinophils in the 
infiltrate

0.45 ±  0.67 0.03 ±  0.22 0.16 ± 0 .4 4

14 PNL infiltrate 1.08 ± 0 .8 2 1.11 ± 0 .9 0 0
15 fibrosis o f  the 

papillary derm is
0 0 0.05 ± 0 .3 3

16 exocytosis 2.19 ± 0 .7 0 0.26 ± 0 .6 2 2.26 ± 0 .6 7
17 acanthosis 1.77 ± 0 .7 6 2.09 ± 0 .6 2 2.11 ± 0 .6 6
18 hyperkeratosis 0.21 ± 0 .5 2 0.82 ± 0 .9 0 0.29 ± 0 .5 4
19 parakeratosis 0 .9 S ±  0.93 1.99 ± 0 .6 4 1.20 ± 0 .8 5
20 clubbing o f  the rete 

ridges
0 2.11 ± 0 .7 3 0

21 elongation o f  the 
rete ridges

0.16 ± 0 .4 8 2.25 ± 0 .6 2 0

22 thinning o f  the 
suprapapillary 
epiderm is

0.01 ± 0 .1 2 2.05 ± 0 .7 5 0

23 spongiform  pustule 0.16 ± 0 .4 5 0.85 ± 0 .9 3 0
24 m unro m icroabcess 0 1.15 ±  0.95 0.04 ± 0 .3 5
25 focal

hypergranulosis
0 0 1.98 ± 0 .7 0
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26 disappearance o f  
the g ranular layer

0 1.19 ±  1.11 0.23 ±  0.63

27 vacuolisation and 
dam age o f  basal 
layer

0 0.00 ± 0 .0 9 2.30 ± 0 .5 9

28 Spongiosis 2.16 +  0.77 0 1.09 ±  1.17
29 saw -tooth 

appearance o f  retes
0 0 2.29 ± 0 .6 3

30 follicular horn plug 0.01 ± 0 .1 2 0 0.01 ± 0 .1 1
31 perifo llicular

parakeratosis
0.01 ± 0 .1 2 0 0

32 inflam m atory
m onoluclear
infiltrate

1.60 ± 0 .7 8 1.86 ± 0 .7 1 2.24 ± 0 .5 9

33 band-like infiltrate 0 0 2.05 ± 0 .6 6

T ab ic  4-22. H isto p a th o lo g ica l a ttr ib u te s  o f the  derm ato lo g y  d a ta b a se : m eans a n d  
s ta n d a rd  dev iations. C lasses 4-6.

ii H istopathological M eans ±  Standard Deviations
A ttribute Class 4 Class 5 C lass 6

12 m elanin
incontinence

0 0 0

13 eosinophils in the 
infiltrate

0.07 ± 0 .2 6 0.06 ±  0.24 0

14 PNL infiltrate 0 0.12 ± 0 .3 3 0.15 ± 0 .3 6
15 fibrosis o f  the 

papillary derm is
2.28 ± 0 .7 2 0 0

16 exocytosis 0.84 ± 0 .7 7 2.04 ± 0 .7 0 1.5 ± 0 .8 2
17 acanthosis 2.24 ± 0 .6 8 1.44 ± 0 .6 4 1.65 ± 0 .5 8
18 hyperkeratosis 0.69 ± 0 .8 0 0.30 ± 0 .5 8 0.80 ± 0 .6 1
19 parakeratosis 0.75 ± 0 .8 6 0.75 ± 0 .6 3 1.25 ± 0 .6 3
20 clubbing o f  the rete 

ridges
0.07 ± 0 .3 3 0 0.1 ± 0 .3 0

21 elongation o f  the 
rete ridges

1.88 ± 0 .8 3 0 0.1 ± 0 .3 0

22 thinning o f  the 
suprapapillary 
epiderm is

0.01 ± 0 .1 3 0 0

23 spongiform  pustule 0.01 ± 0 .1 3 0 0.05 ± 0 .2 2
24 nuinro m icroabcess 0 0.02 ± 0 .1 4 0
25 focal

hypergranulosis
0 0 0.05 ± 0 .2 2

26 disappearance o f  
the granular layer

0 0.38 ± 0 .5 3 0

27 vacuolisation and 
dam age o f  basal 
layer

0 0 0

28 spongiosis 0.34 ± 0 .7 1 1.95 ± 0 .7 0 1 .2 ±  1.00
29 saw -tooth 

appearance o f  retes
0 0.02 ± 0 .1 4 0

30 follicular horn plug 0.01 ± 0 .1 3 0 1.75 ± 0 .8 5
31 perifo llicular

parakeratosis
0 0 2.05 ±  0.60

32 inflam m atory 1.82 ± 0 .7 5 1.77 ± 0 .6 2 1.60 ± 0 .6 8
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m onoluclear 
infiltrate 

33 band-like infiltrate 0 0 0

4.2.5 Glass Identification database
The study o f  classification o f  types o f glass was motivated by criminological 
investigation. A t the scene o f the crime, the glass left can be used as evidence if  it 
is correctly identified. The database contains 9 continuously valued attributes 
describing the chemical constituents o f the glass. The glass originates from 
various objects: building window, vehicle window, container, tableware and 
headlamp. In terms o f chemical constituents the glass can be divided into 3 
classes (Table 4-23). Table 4-24 and Table 4-25 show the range o f values o f 
features, the means and the standard deviations o f  features in each class.

Tabic 4-23. Class distribution.

Class Distribution
Class

, C lass name 
code

N um ber o f  
instances

1 Float processed 87
2 Non float processed 76
3 Non-window  glass 51

T abic 4-24. Attributes o f  the glass identification database: range o f values.

A ttribute Range o f  values
# Class 1 Class 2 Class 3
1 RI: refractive index [ 1.51; 1.52] [l.51 ;1 .53] [1.51;1.52]
2 Na: Sodium [I2.16;14.77] [I0 .73;14.86] [11.03:17.38]
3 Mg: M agnesium [2.7I;4.49] [0;3.98] [0;3.34]
4 Al: Aluminum [0.29;1.76] [0.56;2.12] [0.34;3.5]
5 Si: Silicon [7I.35;73.7] [69.81:74.45] [69.89:75.41]
6 K: Potassium [0:0.69] [0:1.1] [0;6.21]
7 Ca: Calcium [7.78:10.17] [7.08;16.19] [5.43:12.5]
S Da: Barium [0;0.69] [0;3.15] [0;2.88]
9 Fe: Iron [0:0.371 [0;0.35] [0:0.51]

T able 4-25. Attributes o f the glass identification database: m eans and standard deviations.

n A ttribute
Class 1

M e a n s !  Standard D eviations
Class 2 Class 3

l RI: refractive 
index

1.51 0.00 1.51 ± 0 .0 0 1.51 ± 0 .0 0

2 Na: Sodium 13.28 ± 0 .5 0 1 3 .1 1 1 0 .6 6 1 4 .0 6 1  1.06
3 Mg: M agnesium 3 .5 5 ± 0 .2 3 3 .0 0 1  1.21 0 .7 3 1  1.10
4 Al: A lum inum 1.17 +  0.28 1 .4 0 1 0 .3 1 1 .9 6 1 0 .5 9
5 Si: Silicon 7 2 .5 7 1 0 .5 6 7 2 .5 9 1 0 .7 2 7 2 .8 5 1  1.08
6 K: Potassium 0 .4 3 1 0 .2 ) 0 .5 2 1 0 .2 1 0 .5 5 1 1 .2 8
7 Ca: Calcium 8 .7 9 1 0 .5 4 9 .0 7 1 1 .9 2 9 .0 6 1  1.58
8 Ba: Barium 0.01 ± 0 .0 7 0 .0 5 1 0 .3 6 0 .6 3 1 0 .7 4
9 Fe: Iron 0 .0 5 1 0 .0 9 0 .0 7 1 0 .1 0 0 .0 2 1 0 .0 8
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4.2.6 Thyroid gland data
Five laboratory tests are used to try to predict whether a patient's thyroid belongs 
to the class euthyroidism, hypothyroidism or hyperthyroidism. The diagnosis (the 
class) was based on a complete medical record, including anamnesis, scan, etc. 
The database contains 5 continuously valued attributes. The class distribution is 
presented in Table 4-26. Table 4-27 and Table 4-28 show range o f  values o f  
features, means and standard deviations o f features in each class.

Tabic 4-26. C lass distribution.

Class Distribution
Class ,,, Number o f

, C lass name 
code instances

1 Euthyroidism 150
2 H yperthyroidism 35
3 H ypothyroidism 30

T abic 4-27. A ttributes o f  the glass identification database: range o f values.

A ttribute Range o f  values
n C lass 1 Class 2 Class 3
l T3-resin uptake test [90; 133] [65; 144] [97; 141]
2 Total Serum  thyroxin [4.2; 16.1] [11.1 ;25.3] [0.5;6.8]
3 Total serum  

triiodothyronine
[0.4;3.1] [1.6; 10] [0.2;2.5]

4 basal thyroid- 
stim ulating horm one 
(TSH)

[0.3;3.7] [0.1;1.8] [1.2;56.4]

5 M aximal absolute 
difference o f  TSH value 
after injection o f  200 
m icro gram s o f  
thyrotropin-releasing 
horm one

[-0.7; 13.7] [-0.6;0.6] [l.4 ;56 .3]

Table 4-28. Attributes o f  the glass identification database: means and standard deviations.

# A ttribute Means ±  Standard Deviations
Class 1 Class 2 Class 3

1 T3-resin uptake test 95.28 ±  18.76 121 .70±  11.05 110.51 ± 8 .0 9
2 Total Serum thyroxin 17.74 ± 4 .1 6 3 .6 0 ±  1.75 9.19 ±  2.04
3 Total serum 

triiodothyronine
4.26 ± 2 .2 5 1.06 ± 0 .5 5 1.73 ± 0 .4 7

4 basal thyroid- 
stim ulating horm one 
(TSH)

0.97 ± 0 .4 0 12.91 ±  12.38 1.31 ± 0 .4 9

5 M aximal absolute 
difference o f  TSH 
value after injection 
o f  200 micro gram s o f  
thyrotropin-releasing 
horm one

-0.02 ±  0.26 17.53 ±  15.50 2.51 ±  1.97
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4.3 Web Pages dataset

4.3.1 Description of the data structure
The Web pages dataset constitutes a collection o f  Web Pages related to various 
topics [3]. This set was created from the categories o f  Open Directory Project [2]. 
An internal concept o f  the data structure was based on thematic partitioning. In 
the first subset, the pages were taken from the categories significantly different in 
the content (e.g. Top\ Spoils] Cycling\ Clubs and Teams; Top\ Business\ 
Transportation and Logistics\ Aviation\ A irports; Top\ Health\ Medicine\ 
Hospitals\ North Atnerica\ Canada; etc.). Yet, in the second subset the categories 
o f pages were somehow similar thematically to each other -  they partially overlap 
because o f having the same directory root to a certain depth o f the tree (e.g. Top\ 
Sports\ WinterSports\ Curling', Top\ Sports\ WinterSports\ Snowboarding). The 
categories contain from about 20-100 web pages up to 200-300 pages. The 
structure o f the dataset is presented in Fig. 4-1 and 4-2, and the details o f each o f  
category are in Table 4-29 and Table 4-30.

F ig u re  4-1. F irs t th re e  levels o f  them atica lly  d iss im ila r (n o n -o v erlap p in g ) categories.

■ C ooldng^

<Ẑ tui»ags>

F ig u re  4-2. T h em atica lly  s im ila r (o v e rlap p in g ) ca tegories.
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T ab le  4-29. T h em atica lly  d is s im ila r (non -o v erlap p in g ) ca tegories .

# N am e C ode Cardi
nality

Open D irectory Project Path

/ Clothing Cloth 17 Top\ Shopping] Clothing
2 K ids art Kart 24 Top\ Kids and Teens] Arts
3 Collecting Coll 27 Top | Recreation] Collecting
4 Cooking Cook 34 Top] Home] Cooking
5 Fishing Fish 44 Top] Sports] Fishing] Personal Pages
6 Halloween Hall 48 Top] Society] Holidays] Halloween
7 G o lf G o lf 49 Top| Sports| Golf] Resources
8 C areers C arr 55 Top] Business] Employment] Careers
9 Gymnastics Gytnn 91 Top] Sports] Artistic] Clubs and Schools
10 Plants Plan 202 Top] Home | Gardens] Plants
11 M ortgages M art 205 Top] Business] Financial Services] M ortgages
12 A irports Airp 242 Top | Business] Transportation and L ogistics | 

Aviation] Airports
13 H ospitals Hosp 298 Top] Health] Medicine] Hospitals] North America] 

United States
14 Cycling Cycl 300 Top] Sports] Cycling] Clubs and Teams

T ab le  4-30. T h em atica lly  s im ila r (ov e rlap p in g ) categories.

# N am e C ode C ardinality  Open D irectory Project Path
1 Snowboarding Snbd 60 Top | Sports] Winter Sports] Snowboarding
2 Snowmobiling Snmb 60 Top] Sports | Winter Sports] Snowm obiling
3 Skating Skat 62 Top] Sports] Winter Sports] Skating
4 Curling Curl 64 Top] Sports] Winter Sports] Curling
5 Email M ail 157 Top | Computers] Internet] E-mail] Free
6 Web hosting Host 165 Top] Computers] Internet] Web D esign and  

Development] Hosting] Free
7 Web design Webd ISO Top] Computers] Internet] Web D esign and  

Development] Designers] Full Service

Additionally, using categories retrieved in the data collecting process there was 
formed an arbitrary dataset revealing similarity at different levels o f  hierarchy. In 
Fig. 4-3 there is presented the dataset with the schematic diagram o f  all its 
categories. In this dataset there exist 6  categories (‘Curling’, ‘Fishing’, 
‘H allow een’, ‘G o lf , ‘Skating’, ‘Snowboarding’) gathering 326 web pages.

<SiJ3jWlnlMr'gM>li<gS> g &TMilnijg

F ig u re  4-3. T he  d a ta se t w ith  nested  (in te rn a l)  ca tego ries , 326 pages in 6 ca tego ries .
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T a b le  4-31. T he  n u m b e r o f  pages in  each  ca teg o ry  o f  d a ta se t from  Fig. 4-3.

Curling Fishing Golf Halloween Skating Snow- Boarding 

Cardinality 64 44 49 48 62 59

4.3.2 Feature selection and datasets
For the features extracted from the Web pages, keywords were chosen from the 
title and the HTML metatags (keywords provided by the page designer in special 
<meta> tags). According to Pierre [4], rich meta-information constitutes the most 
authoritative source o f information about the content o f  the web page and 
provides the most accurate results. From cleaned, stemmed keywords and 
elimination o f  the stop words (most frequently appearing keywords e.g. a, the, it, 
that, etc which are too frequent to be helpful in discrimination between pages), the 
feature vectors were created. Two weighting scheme were applied giving different 
weights to the corresponding keywords: (i) relative frequencies, and (ii) tf-idf 
approach. In this manner, the feature space based on a vector space model was 
constructed, in which every Web Page was represented by a normalized to [0,1] 
interval feature vector and each keyword is associated with a weight, which is 
greater if  the descriptive ability o f the keyword is larger.

Such collection poses a significant challenge in detecting the underlying 
structure o f the data via clustering and classification. From the pre-processed 
pages in the several above-mentioned categories, the proper datasets were created 
(Table 4-32).

T ab ic  4-32. D atase ts co n stru c ted  w ith  th e  av a ilab le  ca tegories .

# Categories Dime
nsion

C ardinality  
(# o f  Pages)

H of
Catego
ries

Them atic
overlapping

/ Fishing; Halloween 1128 92 2 Non-overlapping

2 Fishing; Halloween; G o lf 1849 141 3 Non-overlapping

3 Fishing; Halloween; C areers 1627 147 3 N on-overlapping

4 Fishing; Halloween; Gymnastics 1833 183 3 Non-overlapping

5 Fishing; Halloween; Career; 
G ymnastics;

2272 238 4 Non-overlapping

6 Clothing; Collecting; Cooking; 
Fishing; Golf; Halloween; Kids 
Art; Snowboarding

3660 302 8 N on-overlapping

7 A irports; Cycling; Plants 5450 744 3 Non-o verlapping

8 Snowboarding; Snowmobiling; 
Skating; Curling

2002 244 4 . O verlapping

9 Email; Web hosting; Web design 3249 501 3 Overlapping

In order to predict how fast the dimensionality o f  the vectors increases, the 
relationship between dimensionality, the number o f  categories and the num ber o f 
WWW pages was examined. Fig. 4-4 presents the graph. There exists a noticeable 
relationship between dimensionality and the number o f  categories within the data. 
The more categories there are in the data, the larger the dimension o f  the dataset.
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The relationship between dimensionality and the number o f  pages seems to be 
weaker. This is because WWW pages in the same categories will most likely have 
the same keywords, so that after reaching a certain level o f  ‘saturation’ the 
dimension will not grow as fast as in the case o f pages from different categories.

8000

7000

6000

5000

4000

3000

2000

1000 ■

7 8652 3 41

— ♦ — dimension • -» •- categories x 200 a pages x 5

F ig u re  4-4. R e la tio n sh ip s betw een d im ensionality , th e  n u m b e r  o f  ca teg o ries  and  th e  num ber
o f W eb pages.
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5. Algorithms -  Theory, Derivations and Illustration 
on Synthetic Datasets

5.1 Knowledge discovery with fuzzy clustering
Clustering is a fundamental method o f unsupervised learning. More generally it 
can be referred to as a search for structure in data [l]. The data here can be 
virtually any data drawn from a physical process. The search enables the 
computers to transmit its findings to the researcher in usable forms. These forms 
depend not only on the data but also on the methods and models used, and upon 
the structure we expect to find. While data possibly carries the information about 
the process generating it, the structure is the fashion in which this information can 
be organized so that relationships between variables in the process can be 
identified. Representations o f the organized structure depend on the data, the 
method o f  search and the model used. In terms o f information, the data contains 
the information, the search recognizes it and the structure represents it.

More explicitly, the clustering seeks for data structure in datasets and

generates a partitioning o f  a dataset X  -  {x,, x 2 x A, } where X* e  and 

k = 1,2,...,jV into c e {2,...,N  -1} clusters (we do not consider trivial cases when 
c = 1 or c = N ). Vectors are the representation o f patterns from the dataset and are 
produced as a result o f  feature extraction and selection.

Classically, c clusters were disjoint, collectively exhaustive subsets o f X. Let 
us consider a following problem. What is the possible partitioning o f a set o f  three 
fruit X={x\ = peach, \ 2 =plum, xi=nectarine} into 2 clusters? Let us denote A / as 
the subset containing a peach, thenx, e A , . a plum, which is a different fruit and 
would belong to another subset, x 2 e A 2. Both sets exhibit different features o f 

the contained objects so the following is needed: A, n A 2 = 0  . Now, we consider 
the assignment o f  a nectarine (a peach-plum hybrid). Clearly, x, e A t a x } eA^
and we encountered quite a disappointing mathematical constraint o f  this model 
resulting in the inability o f a natural assignment x.i (a nectarine) to any o f  the 
subsets. M ore formally it means a failure o f  generating a 2-elements partition o f 
the set X  reflecting the features o f  objects from X. This limitation can be 
successfully eliminated by fuzzy sets. We can imagine a function m , : X  -» [0,1],  

whose values u t(x) give a grade o f membership of .v in the fuzzy set i//. This is 
exactly what we needed in our example. A grade o f  membership o f  a nectarine 
can be expressed as A/(xj)=0.51 and /L(x;j)=0.49 denoting that a nectarine is to 
the same extent as the peach and the plum.
A very convenient form of representation o f  a partitioning o f  X  can be denoted as 
a fuzzy c-partition. X  is a finite set, Vcn is the set o f real matrices, c is an integer 
2 < c < N  , Uik = Ui(x\J. Then the fuzzy c-partition o fX  is the set:

M /r = {U e Vfjv | «„ e [ 0 , 1 ] =  1 V*;0 < < N  V/} (1)
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Now, an example solution to the problem o f  finding a 2-partition o f X  may look as 
what follows:

A membership function o f \ |  is equal to 0.92 in the first cluster and this means 
that X| is more associated with cluster one (first row). Similarly, X2 clearly 
belongs to the second cluster. However, X3 (nectarine) exhibits features o f both 
clusters, and this is apparent in its membership functions -  it is equally similar to 
either one. For more detailed considerations the reader is referred to Bezdek [1].

5.2 Non-relational clustering algorithms

As we pointed out in the previous section, generating partitioning o f a given 
dataset may be not trivial. The similarities and dissimilarities between objects 
easily recognized by humans might be challenging to grasp in terms o f the 
features describing the objects. At this point we assume that the “best” features 
were extracted and each pattern is represented as a feature vector. The process o f 
clustering can now be started. When clustering, it is necessary to distinguish 
between the different partitions and choose the desired one. In other words we 
need to quantify the quality o f the produced clusters. The optimal solution should 
minimize the error o f  clustering which can be expressed as the minimization o f 
the distances between the patterns, and the cluster centers to which these patterns 
belong. If  the assumed representation o f  the clustering is the matrix U e M ^  as

described above (1), each distance can be weighted by the elements o f  U and the 
expression to be minimized may look as follows:

In fact this is the objective function o f FCM algorithm [1] guiding the clustering 
process. In the objective function U e M /r is the fuzzy c-partition o f X;

uik e[0,l] specifies the degree o f  membership o f  pattern k = 1,2,...,7V in the cluster

/ =  l , . . . ,c ;  v is the set o f  prototypes (clusters centers) v =  { v , ,v 2 , . . . ,v c} with

5.2.1 Fuzzy C-Means (FCM)

(2)

v, e R /’ ; d jk being the distance between each data vector \ k and a fuzzy 

prototype v , :

(3)
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Notation o f  ||.| refers to a norm, in particular it is assumed as Li (Euclidean norm); 

m e  (1,+m) is the fuzzification coefficient.

As it follows from (2) each term o f J  mis proportional to (djk)2, thus J m is a 

squared error-clustering criterion. The problem o f  generating partitions o f X  was 
reduced to finding in iterative steps the optimal partition matrix U . Optimum in
this case means with minimal squared error clustering criterion. The algorithm is
performed in subsequent iterations (Table 5-1).

T abic 5-1. T he overall schem e o f the Fuzzy C -M eans (FCM ).

I. Initialization:
Fix c, 2 < c < N  ; fix in, 1 < in < oo; Initialize randomly the 
partition matrix U 6  M fc. Proceed with I = 0,1,...

II. Com putations o f prototypes:

Compute the c prototypes {v(/\ } with U (/) according to:

» .=  l '. ,  < « .> •« ./ s r . , (4)

III. Com putations o f entries o f partition matrix:

Compute U (/) using {v(/)i} i f  d ik > 0 :

=
d„

\ d * J

' i k  

2/(».-!)

(5)
Otherwise:

Set u jk = 0 and impose (u jk = 1 , V; 1 < / < c that 

produces d ik = 0 .

IV. Checking for termination condition or specifying  
m axim al number o f iterations:
Comparison in the convenient matrix norm i f  termination

condition was reached u</+1) -  u ( I ) < £ where c is a veiy

small positive constant or until I < max iterations holds true.

FCM is an excellent Data Mining tool for regular, distinguishable clusters o f  
similar size. The algorithm computes the cluster centre using every pattern from 
the cluster. This feature reflects the mean behaviour and implies that FCM can be 
misguided in a noisy data environment. Another weak point o f  FCM is its 
sensitivity to the initial settings o f the partition matrix. Depending on the different 
settings and the nature o f the data, we can obtain different prototypes, and 
implicitly a different structure o f  clusters. In such cases it is advisable to repeat 
the experiments to get the best results. FCM allows convenient control o f  the 
“amount” o f  fuzziness in the partition matrix. This is done by the fuzzification
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param eter m. Increasing the value o f m results in larger amount o f  fuzziness in the 
partition matrix -  patterns tend to balance, equalize, the membership values in all 
clusters. Conversely, for m -» 1 the membership values o f  a pattern are increased 
and favour a single cluster. The standard value o f m frequently assumed by 
researchers to be m - 2 .

5.2.2 Fuzzy C-Median (FCMED)
The FCM algorithm is based on the mean computations when calculating 
prototypes. As mean statistics can be easily influenced by even a small number o f 
outliers, FCM cannot be successfully applied to noisy data. In this context it 
seems appropriate to suggest more sophisticated methods to deal efficiently with 
noisy, incomplete or distorted data. One o f  the possible approaches is a robust 
statistics that is more resistant to outliers. Kersten [7,8,9] suggested a Fuzzy C- 
Median algorithm founded on two robust statistics: the median estimating the 
center o f  the data and the median absolute deviation from the median (MAD). The 
fuzzy median is a robust statistic, which is able to accept almost 50% o f outliers 
before it will lose its ability to generate meaningful results. How is the fuzzy 
median constructed? The process begins with the definition o f median, which 
does not depend upon the ordering o f the samples:

min

in, e

This definition is amenable to generalization for fuzzy sets. For being the 
membership o f  xkin i-th cluster 1 < i < c , m  solves:

min . .
2 X I x * - /h'I (7)in, e  R * = !

The derivative o f  this expression exists and is given by:

X  Wik sgn( x a “  m i )  =  0  ( 8 )
*■« i

Prototypes (V j)  for FCMED are constructed by finding the fuzzy median for each 
cluster. Each prototype (fuzzy median /»,) Vj is sought using the membership 
functions given by //,* and the p-th component X|< -  can be computed from (8 ).

The FCMED algorithm is constructed on the general scheme o f  FCM. While 
both algorithms perform similarly for clean data, presence o f outliers causes 
problems in convergence for FCM. FCMED handles this situation better. The 
possible drawback o f  FCMED is caused by non-continuity o f  the functional (8 ) 
and can make the search for medians troublesome. A numerical search is applied 
that may increase the computational complexity. For the purpose o f this study the 
bisection method was used (applied initially by the author [9]). There exist some 
other methods that provide a trade-off between search cost and accuracy, and 
furthermore may reduce the search cost, e.g. the Remcdian evaluation method [8 ].
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FCMED forms a robust alternative to FCM with some computational penalty. The 
general flow o f the algorithm is presented in Table 5-2.

Table 5-2. T he overall schem e o f the Fuzzy C -M edian (FC M ED ).

I. Initialization:
Fix c, 2 < c < N  ; f ix  m, 1 < m < oo ,• Initialize randomly the 
partition matrix U e ; Choose Lt metric (Manhattan metric)

f o r d lk. Proceed with I = 0,1,...

II. Com putations o f prototypes:

Compute c prototypes v , e  R {V(/)i} by finding the fuzzy 
median with memberships uf" fo r each class. Each class 
prototype V( is p-dimensional so v {( j )  must be found fo r  each 

p}, using just the j-th component o f  Xk .

III. Com putations o f  entries o f partition matrix:

Otherwise:
Proceed accordingly to Fuzzy C-Means (Table 5-1).

IV . C h e c k in g  fo r  te r m in a tio n  co n d it io n  o r  sp ec ify in g  
m a x im a l n u m b e r  o f  itera tio n s:
Proceed accordingly to Fuzzy C-Means (Table 5-1).

5.2.3 Experimentation on synthetic data
The artificial data described in this section illustrate how the algorithms work. In 
particular this experiment compares the performance o f  FCM and FCMED in a 
noisy environment. The idea is to generate a regular structure from a distribution 
o f well-known parameters and type, and to attempt to interfere with it using some 
noise. It is expected that there will be an observed continual deterioration o f 
structure as more outliers are added to the dataset.

The original structure is more difficult to reveal by the method relying on 
mean statistics (FCM), which often converges to a non-optimal position. One way 
o f overcoming the problem might be the application o f  more robust methods 
dealing efficiently with outliers (FCMED). It is expected that the robust FCMED 
would perform better with respect to FCM; more outliers exist in the dataset.

Initially, we constructed 3 clusters o f 100 patterns per cluster, generated from 
normal distributions with the parameters, whose values are included in Table 5-3.

Compute U (/) using {v (/)i} i f  d ik > 0 :
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This structure was interfered with noise. 50 outliers from a heavy-tailed Cauchy 
distribution were additionally added to the initial dataset. The patterns are 4- 
dimensional. The 3rd and 4th feature are equal for all patterns to 0 so it is possible 
to present the structure on a plane (Fig. 5-1). The easily distinguishable groups o f 
points are centered and surrounded by the outliers appearing in different locations.

T able 5-3. M ean and covariance m atrices used to generate 3 clusters.
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2
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Figure 5-1. T hree clusters from norm al distribution and 25 outliers (left), 50 outliers (right).

As we can expect, in the dataset without outliers the prototypes obtained from the 
algorithms will be almost the same as the cluster centers calculated from data (a 
single mean vector for one cluster). The presence o f  noise influences the results o f 
the algorithms in such a way that the original prototypes will change (move to 
another, less desired location). This “change” between cluster centers computed 
from the data and the prototypes obtained from the algorithms forms the criterion 
o f  quantifying the performance o f the algorithms. This changing behaviour can be 
observed for the dataset without noise and after adding outliers to the dataset. The 
criterion o f measuring the performance is the sum o f  distances between 
corresponding prototypes in their previous and new positions. The smaller the 
sum, the closer are the new prototypes to the original cluster centers and the better 
the resistance to noise (the algorithm is more robust).

Initially we recorded the results for three clusters. Knowing that FCMED is 
very sensitive to the fuzzifier m [8 ] we computed the sum o f the distances for 
different parameters o f  in for both algorithms. The experiment was performed for
(i) the undisturbed structure o f clusters, (ii) adding 25 outliers and (iii) adding 50 
outliers to the original structure. The sum o f distances is recorded and presented 
in Fig. 5-2, Fig. 5-3 and Fig. 5-4. FCMED works similarly to FCM for smaller 
values o f m but its performance deteriorates for m closer to value o f  2. However 
FCMED is more stable than FCM in the dataset with outliers. The difference is 
considerable. The prototypes generated by FCMED seem to be more independent
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from the added outliers than the prototypes produced by  FCM. It significantly 
outperforms FCM when noise appears in dataset (Fig. 5-2, Fig. 5-3 and Fig. 5-4).

12
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8

6

4

2

o

- ♦ — FCM, 20 iter — a  -  FCMED, 20 iter

-«.....
-♦ •----

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1.8 1,9

Figure 5-2. The sum  o f  distances for the FCM and the FCM ED for different values o f m (3
clusters, no outliers).
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Figure 5-3. The sum  o f  distances for the FCM and the FCM ED for different values o f m (3
clusters, 25 outliers).
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Figure 5-4. The sum  o f  distances for the FCM and the FCM ED for different values o f m (3
clusters, 50 outliers).
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The same experiment was run again using an increased num ber o f  clusters and 
outliers. In the new dataset there is 5 clusters and 100 outliers. The experiments 
were completed using a procedure similar to the previous one: (i) no outliers in 
dataset, (ii) 50 outliers and (iii) 100 outliers (Fig. 5-5). The results resemble the 
previous experiment but the effect is magnified. For the dataset with 100 outliers 
FCMED performs substantially better than FCM (for the smaller values o f  /?;)•

T ab le  5-4. M ean  a n d  covariance  m atrices  used  to g e n e ra te  5 c lu s te rs .

'2 ' 'l 0 0 o' 2 "I 0 0 o' '_2‘ "1 0 0 o'
2 0 1 0 0 _ 2 0 1 0 0 _ 2 0 1 0 0

) /V( ) /V(
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

_0 0 0 0 1 0 0 0 0 l_ 0 0 0 0 1_

' - 2 ' '1 0 0 o ' '5 ' 1 0 0 0"

2 0 1 0 0
) N (

0 0 1 0 0

0 0 0 1 0 0 ’ 0 0 1 0

0 0 0 0 1 0 0 0 0 l_

F igu re  5-5. T h re e  c lu s te rs  from  n o rm al d is tr ib u tio n  an d  50 o u tlie rs  (left), 100 ou tlie rs
(righ t).
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F ig u re  5-6. T he  su m  o f  d is tances fo r the  FC M  and  th e  F C M E D  fo r d if fe re n t values o f  m (5
clu s te rs , no ou tlie rs).
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FCM. 20 iter — * -  FCMED, 20 iter

40 -

» — *  ■

1,6 21,7 1.8 1,91,1 1,2 1.3 1,4 1,5

F ig u re  5-7. T h e  su m  o f  d istances fo r the  FCM  an d  th e  FC M E D  fo r d iffe ren t values o f m (5
c lu s te rs , 50 o u tlie rs).

FCM, 20 iter —a  - FCMED. 20 iter

70

60

50

40

30

20

10

-IS—,—»—,—K—
1,1 1,2 1,3 1,4 1.5

0

21.6 1,8 1.91.7

F ig u re  5-8. T h e  su m  o f  d istances fo r the FC M  an d  th e  FC M E D  fo r d iffe ren t values o f m (5
c lu s te rs , 100 o u tlie rs).

These experiments reveal very important features o f  both algorithms. We could 
observe that even small presence o f outliers may influence heavily the results o f 
FCM (Fig. 5-3). In other words, it is possible that very few, large outliers may 
cause the production by the FCM the structure that does not conform to the 
physical state. The FCMED is more stable (Fig. 5-4 and Fig. 5-8) and the outliers 
are not influencing much its outcomes. This means it is more reliable method 
when dealing with unknown, unlabelled data.

5.3 Relational fuzzy clustering algorithms

5.3.1 Relational Fuzzy C-Means (RFCM)

The given set o f patterns X  = { x ,,x 2,..., x w} where X k G R /J instead o f being 

described by the numerical data, where a vector x k gives measurements for every

feature o f a described pattern, may be represented by the numerical relational 
data. The numerical relational data describe the set o f  objects in less direct 
manner giving pair wise similarity (dissimilarity) between objects. The
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dissimilarities can be represented using a matrix D, where D jk, f o r  1< j , k < N  is

the degree o f  dissimilarity between patterns. The matrix D has the following 
properties:

The fuzzy c-means algorithms are methods, which in practice are very good at 
finding minimizing pairs o f  (U ,v). Following the conditions imposed upon the 
matrix U e M /f , it is possible to restrict J m in (2) to a surface in (U ,v) space,

which satisfies two properties: (i) v is a function o f  U on this surface; and (ii) this 
surface contains all optimal minimizing pairs o f  (U, v) o f  J m. A fter some 
simplifications, the restricted Jm can be only the function o f  U , written as:

The minimization o f  K„, with usage o f  the relational data Dyt is equivalent to 

minimization o f  J,» with the numerical data provided that DyA is derived from the 

Euclidean norm (11).
The general scheme o f  the algorithm is presented in Table 5-5.

T ab ic  5-5. T he  overa ll schem e o f  th e  R elational Fuzzy C -M ean s (R F C M ).

Dj k >0 f o r \ < j , k < N  

D;* = D*/ f a r \ < j , k < N  

D m = 0 f o r \  < j , k  < N

(9a)

(9b)

(9c)

( 10)

Where

( 1 1 )

I. Initialization:
Fix c, 2 < c < N  ; f ix  m, 1 < m < <x>; Initialize randomly the partition 
matrix U e M /r / Proceed with I = 0,1,....

II. Computations of fuzzy prototypes:
Compute the c-mean vectors v j = v / ,) using U = U(/). fo r  

1 < i <cwith:

( 12)

III. Computations of distances:

d ik = ( v , ) t  _ ( v / D v () / 2  fo r  1 </  < c ,  1 < A'< jV  (13)

IV. Computations of entries of partition matrix:
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Compute U (/) = \ } (M). I f d ik > 0 :

/ / r l/(m-1) '

= 1/ T i
d ik

k *  J J

for  1 < i < c , 1 < k < N

Otherwise:
Proceed accordingly to Fuzzy C-Means (Table 5-1).

V. C hecking for termination condition or specifying maximal 
num ber o f  iterations:
Proceed accordingly to Fuzzy C-Means (Table 5-1).

The assets o f  Relational Fuzzy C-Means are fairly obvious. It creates an 
alternative for clustering when there are not any numerical data available in a 
vector form but instead there exist a relational equivalent. Another benefit o f  the 
RFCM appears when the patterns’ vectors have a very large dimensionality. The 
dissimilarity matrix can be computed prior running the algorithm that decreases 
computational complexity. This however is applicable for the datasets o f smaller 
number o f elements. W hile larger datasets are processed, the RFCM performs 
more slowly than FCM due to more costly distance computations. It is the third o f 
the algorithm, in which the prototypes are multiplied by the dissimilarity matrix.

5.3.2 Non-Euclidean Relational Fuzzy C-Means (NERF)
The RFCM performs well on the numerical relational data, in which dissimilarity 
data D contains the squared Euclidian distances between each pair o f the points -  
restrictions for the matrix D, (9a-b). The restriction o f  deriving relational data 
from the Euclidian norm is a strong limitation on the dissimilarity matrix. This 
makes RFCM inapplicable to most o f relational clustering problem s because there 
is no guarantee that arbitrary data provided by the physical process will conform 
to the Euclidean norm.

The problem o f  D not being Euclidean can be eliminated by applying a 
“beta-spreading” transformation [5]. The transformation chosen to convert a non- 
Euclidean matrix D into an Euclidean matrix is the following:

D = D 0 ->  D /; = D + /? * (M  -  I) (14)

where /? is a suitably chosen scalar, I 6  R 'VtA' is the identity matrix and 

M e  satisfies:
M,y = 1 fo r  l<  i , j  < N  (15)

The optimization schem e of the Non-Euclidean Relational FCM (NERF) follows 
the RFCM flow with the only modification o f  incorporating the beta- 
transformation. The general scheme o f the NERF is presented in Table 5-6.

Tabic 5-6. The overall schem e o f  the N on-Euclidean Relational Fuzzy C -M cans (NERF).

I. Initialization:
Given the relational data D satisfying (9a,b,c) fix  c, 2 < c < N  ;fix
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111, 1 < in < oo; Initialize (i = 0 ;  Initialize randomly the partition 

matrix U e M /(. ; Proceed with I = 0,1,....

II. Com putations of fuzzy prototypes:

Compute the c-mean vectors v . = v .l/) using U = U (,), for  

1 < / < c with:

( m m in i /  ^ / m \
“ ,i 2 v . . ,« w } / 2 L kJ " lk )

III. Com putations o f distances:

d ,k =  ( v , ) *  -  ( v / D v , ) /  2  f o r  1 < /  S  c , K k < N  

I f  d ik < 0 fo r  any i and k, then:

Compute A (I = max j-  2 * d jk /( ||v . -  e k ||‘ )| fo r  \<i<c,  \ s k z N

Update d ik <— d ik + (A /? /2 )* ||v (. - ||‘ for  1 < / < c , \ <k<,N 

Update ft  *- {} + Aft

IV. Com putations o f entries o f  partition matrix:

Compute U (,) = U u+]). I f d ik > 0 :

u,t =

/
V 1 /(m-I) N

\ . d * . J

fo r  ]< i < c, 1 < k < N

Otherwise:
Proceed accordingly to Fuzzy C-Means (Table 5-1).

V. Checking for termination condition or specifying maximal 
num ber o f iterations:
Proceed accordingly to Fuzzy C-Means (Table 5-1).

5.3.3 Experimentation on synthetic data
This experiment illustrates how the relational algorithms could be beneficial for 
data explorations. If we imagine that one or more components o f  D is missing we 
happen to deal with incomplete data. The incompleteness o f data may arise as a 
result o f  missed observations, distorted data or simply an absence o f  complete 
relational knowledge about patterns. Aside from the origin o f  this problem, the 
algorithms for processing such data are desirable. In this section, the incomplete 
data will be simulated by elimination o f some percentage o f entries from D. The 
strategies for approximation o f the missing values will be applied and experiment 
with the methods in such conditions will be performed. The RFCM as mentioned 
before is essentially a relational equivalent to the FCM and operates on 
dissimilarity matrix D derived from the Euclidean norm. What would happen if 
data were not Euclidean? The NERF algorithm could be used for such cases. This 
specific case focuses on the NERF because it is not correct to assume that the
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approximations will lead to a perfect recovery o f the initial matrix D and as a 
result the RFCM is not applicable. To approximate the missing values from the 
matrix D the straightforward triangle inequality-based approximation (TIBA) [4] 
was used. When the similarities are distances besides conditions (9a, 9b and 9c), 
the following inequality holds true:

The element at the position (ij)  is denoted as if available and Dy i f  missing.

Following (9b) we obtain D y = D 7,. Simple strategies o f  approximation for 
missing entries come from the triangle inequality (16). The first scheme is

minimax TIBA. Minimax aims to obtain the upper bound for Dy by wmimizing 

the /warimum possible value o f D(> over all possible k  for which D(> is available 

(16), that is:

D,y =min {d(A+d ,} ™ < /{ * |d ,  and DA( are availabl<| (17)

The second TIBA scheme exploits the triangle inequality in the opposite manner. 
The conditions (9c) and (16) give a pair o f inequalities:

D , i < D , / + D 7i
(18a)

Solving (18a) and (18b) yields:

DiJ- D* (19a)

D,y > D 7, - D „  (19b)

The inequalities combined with each other constitute the lower bound for D y:

Dy > | D „ - D „ |  (2 0 )

The maximin TIBA was defined to be the max/mum o f the «//7?imum possible 

values for Dy given by (20), which is:

Dy = max|DlA -  D ;A |] and  {A' | DiA and D kJ are availabl^ (21)

In cases where such k does not exist, the missing elements Dy are defined to have 
the value 0 .
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The following experiments use four approximation modes: (i) filling the 
missing values with 0  (baseline for quality o f  other approximations), (ii) the 
/w'/jimax TIBA, (iii) the wavimin TIBA, and (iv) is the average o f  the last two. 
The number o f missing values was expressed via the percentage o f possible 
values in D, in the lower or upper triangular matrix and was in the range: 10% - 
90%. The quality o f  clustering was measured according to two criteria. The first 
one is the U error for each trial (10 averaged trials) and is computed by

E X This criterion measures the difference between the matrix

U 1; that is the final partition matrix obtained from the NERF on the incomplete

data and matrix U (; that is the final matrix produced by the RFCM on the original

relational data. The second criterion is referred to as the training error and 
represents the averaged percentage o f the misclassified data. The training error o f 
misclassiflcation is computed by matching the resulting class membership 
determined by the maximal terminal membership value and class membership 
obtained from the data (cluster membership).

The dataset used in this experimentation is a simple dataset o f two clusters o f 
50 patterns per cluster generated from normal distribution, whose values o f 
parameters are included in Table 5-7. The 3rd and 4th feature are equal for all 
patterns to 0. The opposite to each other groups o f  points are visible in Fig. 5-9.

T ab ic  5-7. M ean  a n d  covariance  m a tric e s  u sed  to g enera te  tw o clusters .

V(

1 0  0 0 
0  1 0  0 

0 0 1 0  

0 0 0 1

A'(

1 0  0 0 
0  1 0  0 

0  0  1 0  

0 0 0 1

t« 35 , -J6 -t 7 .-087

F igu re  5-9. Tw o c lu s te rs  fro m  n o rm a l d is tr ib u tio n .

There are two sets o f  graphs. In the first set the U error is presented for different 
beta parameter in four approximation modes (Fig. 5-10, Fig. 5-11 and Fig. 5-12). 
The second set embraces the sets o f  graphs for the training error and different 
values o f  beta parameter (Fig. 5-13, Fig. 5-14 and Fig. 5-15). The averaged values 
o f beta param eter (10 trails) updated by the algorithm itself are presented in Fig.
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5-16 and Fig. 5-17 (for the maximin  TIBA and the average mode, the beta value 
was not changed from initial 0  value).

Zero a  MiniMax — A— MaxiMin —X— Average

100 
90 -

70 -

50 -

20 -

0,1 0,5 0,6 0,7 0,8 0,90,2 0,3 0,4

Figure 5-10. The averaged U error for four modes o f approxim ation; beta param eter was
equal to 0.

♦ — Zero - »  MiniMax —A— MaxiMin —X— Average

80

70

60

50

40

30

20

10

0

0.1 0.2 0.3 0,4 0,5 0.6 0.7 0,8 0,9

Figure 5-11. The averaged U error for four modes o f  approxim ation; bcta=2.

Zero - h  _ MiniMax —A— MaxiMin —X— Average

75

A—
70

65 -

60 -

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Figure 5-12. The averaged U error for four modes o f approxim ation; bcta=10.
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Z e ro  — ■ — MiniMax — * —  MaxiMin — X — A v e ra g e

0,6

0,5

0,4

0,3

0,2

— & i * —i — —x—,—x—,—x
0,1 0,2 0,3 0,4 0,5 0,6 0.7 0,8 0.9

Figure 5-13. The averaged training error for four modes o f approxim ation; bcta=0.

Zero I* - MiniMax —A— MaxiMin —X— Average

0,5

0,45

0,4

0,35

0,25

0,2

0,15

0,05 -

-x——A'----  »  &^=^x—,—x—i—x—i—x-
0.2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

— X -

0,1

Figure 5-14. The averaged training error for four modes o f approxim ation; beta=2.

Zero - B — MiniMax —*— Max iMin —X— Average

1

0,8

0,6

0,4

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Figure 5-15. T he averaged training error for four modes o f approxim ation; bcta=10.
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10982 3 4 6 751

F ig u re  5-16. T h e  av e rag ed  beta  values fo r zero  ap p ro x im a tio n  m ode; in itia l beta=0, 
pe rcen tag e  o f m issing values -  8 0 % .

-  H — MiniMax

0.45 ,  

0,4 - 

0,35 

0,3 

0,25 

0, 2 -I 
0,15 

0,1 

0,05 -

B 9 10

F ig u re  5-17. T h e  av e rag ed  beta  values fo r minimax  a p p ro x im a tio n  m ode; in itia l bcta=0, 
p e rcen tag e  o f  m issing values -  8 0 % .

The experim ents’ outcomes present the applicability o f  the NERF to cluster 
incomplete data. All approximation modes besides zero mode, produced in most 
cases low values o f  the training error. The partition matrix error was the lowest 
for the averaged TIBA (for initial beta=0). This may lead to the conclusion that all 
approxim ations worked fairly well but the closest one to the original matrix D 
was produced by the averaged TIBA. After increasing the value o f initial beta 
param eter for the algorithm, the partition matrix error was increased too. Hence it 
is advisable not to increase the beta value initially and allow the algorithm to 
m odify it accordingly. The example change o f beta is presented in Fig. 5-16 and 
Fig. 5-17. This will lead to better results because the algorithm ’s mechanism has 
the option to modify the beta value “upwards” only if  the computed distance is 
lower than 0 (Step III in NERF, Computations o f distances). An unnecessary 
increase o f beta and implicitly the dissimilarities in D will result in worse 
performance. Except o f  that, the NERF can be successfully applied to clustering 
o f  incomplete data.
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5.4 Partial supervision -  algorithmic enhancements to 
FCM

This section is focused on user supervision mechanisms. In the situations when 
the expert knowledge from the user is available, an exploitation o f  it may aid the 
unsupervised approaches and as a result may provide better performance. In this 
section the concepts o f  partial supervision are explored: partial supervision, a 
proximity-based approach and a combined approach o f proximity-based partial 
supervision (a hybrid construction o f these two).

5.4.1 Partially supervised FCM (PS-FMC)
The Partially Supervised FCM (PS-FCM) is founded on the concept o f providing 
the user with a flexible way o f incorporation o f  his domain knowledge by 
explicitly labelling patterns. This means the user will be involved in guidance o f 
an algorithm. The idea relies on the user’s knowledge that certain patterns belong 
to particular clusters. The user can label a selected pattern and in this way impose 
its assignment to a certain cluster. Importance lies in exploiting underlying 
information residing in these “known” patterns.

In a general sense the Partially Supervised Fuzzy C -M eans [12] follows an 
alternating optimization scheme o f the standard FCM algorithm. It is possible to 
accomplish the objective o f enabling the human operator a significant 
involvement in the clustering process by extending the FCM objective function
(2) by a supervision component. Let us consider the following objective function:

• / . ( U .V ) .  ( . . . r w , ) 1 - / „ ) • ! > , « , ) '  (22)

The parameters o f  the additive component are:
(a) The weight factor a ,  which models the impact coming from the labelled 

part.
(b) Information from the user about class membership f k . It has the form of 

hard c-partilion, A e { 0 ,l} and both conditions ^ . , ^ = 1  ar>d

0  < < N  hold true-
(c) Boolean predicate bk controlling if the user entered f A class 

membership information and assuming the following values:

{ 1  i f  f n ~  \ ' s given (f o r  k -  th pattern)

b * 1 °  i f  A  is ,lot give" ( A  = 0 )

(d) Fuzzfier m. For the purpose of derivations o f the formulas for the 

prototypes and W/Jtthe parameter m is equal to m=2. In a case o f  any

other value (different from 2 ) conditions require an additional 
computational effort.
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Ultimately we are interested in the minimization of:

The minimization o f  (23) is performed by the Lagrange multipliers method. The 
Lagrangian o f  (23) will be as follows:

- M E , , " *  - ' )  (24)

Derivatives after uk and A give two equations:

(') ~ - ( ^ < h )  = 2i‘J sl2 + 2 a » J,b / / J,2 - 2 a f s,b,ds;  - A  = 0 
di's.

Solving above equalities leads to the new formula for the entries uk ’s o f  the 

partition matrix:

(1 _ V r r )
l + a b t /=l Jk o f lkb k n ?->

u,k = ------------- k— ----------+ ■ * (25)
(l2,k l+ob*

Now remaining computations are to complete two stages alternating optimization 
design by new formulas for prototypes. After substitution d tk ={xk) - v v)2 to (23)

and taking the derivative o f it after v( , we obtain:

^ (A,uk) = ulk' (2 v - 2 .V(,) + a (ulk - f lk)2b k( l v - l x kJ) = 0
d\’iJ (26)

Reorganization o f the terms provide us with final formulas for prototypes:

v.. =

Influence o f the additive component in (22) should be more significant; the larger 

the gap between the user input and the trend from dataset. When the values o f  Uik 

and f k are similar, the impact o f the additional part is minimal. If no information 

f jk from the user is entered or if the learning coefficient is equal t o a  = 0 , the

supervision would have no effect and the algorithm will be reduced to the 
standard FCM. The optimization formulated in this way seems to fulfill the 
objective by allowing the user for guidance. The general scheme o f the PS-FCM 
algorithm is presented in Table 5-8.
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T ab ic  5-8. T h e  overa ll schem e o f  the  P a rtia lly  S u p erv ised  Fuzzy C -M eans (PS-FC M ).

I. Initialization:
Fix c, 2 < c < N ; Initialize randomly the partition matrix 
U e  M ;?. Entering fk  information by the user. Proceed with

1 =  0 ,1,. . .

II. Com putations o f prototypes:

Compute cprototypes {v</)i} with U (/) according to (27):

Z  + « ( m« - / * ) 2b*)

III. Com putations o f entries o f partition matrix:

Compute U (/) using {V(/)i} i f  d ik > 0 ; use (25):

l + 1 , oflkb k
“  j2 i . j.■̂ -'r (i ik 1 "+■ Ca)

Otherwise:
Proceed accordingly to Fuzzy C-Means (Table 5-1).

IV. Checking for term ination condition or specifying 
m axim al num ber o f iterations:
Proceed accordingly to Fuzzy C-Means (Table 5-1).

5.4.2 Proximity-based FCM (P-FCM)
A proximity-based clustering explores another mode o f  partial supervision. An 
additional supervision process is augmenting the “standard” clustering performed 
in completely unsuperviscd manner. The source o f supervision is enclosed in the 
user “hints” and is expressed in terms o f resemblance o f  pairs o f objects in the 
dataset. A data analyst enters proximity constraints in a way that any two patterns 
can be considered either similar or different. This paradigm can be perceived as 
reconciliation o f  two sources o f  information: (i) the first one resulting from data 
and intrinsically associated with data, (ii) another source is external to data and 
provided by the user (data expert), who gathers some general observations about 
data and is able to make use o f them.

The general computing scheme o f the P-FCM [10,11] is built upon the 
standard FC M ’s optimization procedure. The proximity optimization mechanism 
forms an internal optimization loop. These two procedures work in the interleaved 
manner and separately update the entries o f  the fuzzy partition matrix. The 
standard FCM phase is well known. It was described in detail in Section 5.2.1. 
The internal loop is optimized by a gradient method. The accommodation o f
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proximity points is carried out by a certain objective function, which 
minimization leads to the optimal fuzzy partition matrix. The objective function is 
as follows:

V  =  I " . ,  K - I  W „ k 2] -  p [ k , , k , ] ) 2 * [ * , ,k , ] d [ k , , k 2] (28)

Where:
A

1) The notation o f p[kx, k 2] describes the proximity level produced by the 
partition matrix:

p [ k  p ^ ] = Z L k  a  (29)

Where a  denotes the minimum operation. It is not difficult to detect that if  k j = k :

A

Pikl > *2 1 = Z/=l (“/*, A 11 ) = S /.I = 1
2 ) /?[&,, ] is the proximity value provided by the user

3) b[kt, k 2] receives the binary value corresponding to the situation if the user 

provided the proximity value (in this case b[kv k 2] = 1 ), or otherwise = 0  

for each pair o f patterns, for which the user did not enter the proxim ity hint
4) r/[£,, k , ] is a distance between patterns

The objective function with proximity defined in (29) is as follows:

V  =  Z m Z I ^ Z m K  a w /*i ) “ P [ ^ i ^ 2 ] ) 2 ^ i ^ 2 M ^ i ^ 2] (30)
The optimization o f this performance index is done in an iterative gradient-based 
format:

11 si (iter + 1) =
du st{iter)

(31)
0,1

Where t 1,2,..., A ,̂

[ ]0, denotes clipping the result to the unit interval and a  is a positive learning

rate. The detailed derivations are straightforward (the successive iterations are 
referred to as “iter” :

(32)

= 2 i : „  Z L ,  ( Z / . ,  ("* , A "/*: ) -  P lk . ’ k 2 K  A U.k; )
SI

The derivative assumes binary values depending on satisfaction o f  the conditions:
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fl i f t  = k x and  i/sA. <w,4i

^ 7 " Z m  K  A ) = 1 ' f t = k '- and ~
sl 0  otherwise

(33)

Both optimization schemas used in the P-FCM optimize the partition matrix. 
Learning rate a  controls the impact o f  the internal optimization. The higher value 
o f a  is associated with more confidence that we have in the proximity hints 
provided by the user. This means that we allow the proxim ity hints to influence 
already formed structure o f the partition matrix. The collaborative optimization 
effect can transform itself into competitive process if  the entered proximity 
information does not correspond to the natural relationships in dataset. This 
happens because the two objective functions guiding optimization processes may 
lead to different optimal partition matrices. The optimal partition matrix for one 
objective function may not be optimal for the second one. This competitive 
behaviour is seen as oscillations during minimization o f  V.

A conceptual aspect o f  proxim ity guided clustering is somehow similar to the 
idea o f relational clustering described in previous sections. However, there are 
important differences between these two approaches:

a) Relational clustering is motivated by an absence o f the vector 
representation o f single patterns while the relational data are only 
available. In proximity based clustering we still operate in the vector 
space o f patterns’ features. From this a computational advantage can 
arise because in P-FCM number o f  patterns is n and number o f  
relational patterns is much higher -  n(n-l)/2.

b) Unlike relational clustering, the P-FCM provides two independent 
optimization schemas. The number o f  hints entered and the learning 
coefficient can arbitrarily model the amount o f  user impact.

c) The number o f  clusters is to be specified at initialization o f the 
relational algorithms. P-FCM relaxes this constraint dealing only with 
the number o f  proximities for pairs o f  objects. The actual number o f  
clusters is entirely dependent upon the external optimization.

The overall scheme o f  the P-FCM optimizations is presented in Fig. 5-18.
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Proxim ity  hin ts
FCM

/

I

O bjective Function P erfo rm ance  index V
optim ization grad ien t optim ization

F ig u re  5-18. T he overall schem e o f P rox im itv -based  FC M  (P -F C M ) op tim iza tion  steps.

5.4.3 Partially Supervised Proximity-based FCM (PSP-FCM)
It is interesting to pursue the investigation o f the consequences of availability for 
the algorithm two types o f user supervision at the same time. Is it possible to 
combine both sources o f  the user input: partial supervision in the form of class 
memberships (PS-FCM) with proximity hints (P-FCM) into one method? What 
will be the clustering performance o f such a method? Will it perform better than 
either one o f  the other methods separately?

We tried to answer these questions by construction o f the Partially Supervised 
Proxim ity-based FCM (PSP-FCM) algorithm. The PSP-FCM attempts to 
combine in a collaborative way both sources o f  the user input: partial supervision 
in the form o f class memberships and proximity hints. In this scenario the user 
will have the opportunity to explicitly impose the membership o f some patterns to 
certain clusters, as well as enter the degree o f similarity between them. This 
behaviour could be achieved by the application o f  the objective function o f  the 
Partially Supervised FCM (2) and extending it with the gradient optimization o f 
the Proximity-based FCM (28). Following every iteration o f the internal 
optimization o f  the PS-FCM algorithm’s objective function, the external process 
starts optimizing the proximity-based performance index.
The overall flow of the combined optimizations is presented in Fig. 5-19.

Proximity hintsLabelled patterns
PS-FCM

Extended Objective Function Perform ance index V
(Supervision Com ponent) optim ization g rad ien t optim ization
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F ig u re  5-19. T h e  overa ll schem e o f  P a rtia lly  superv ised  P ro x im ity -b a sed  FC M  (P SP -FC M )
op tim iza tion  steps.

The initial concern o f this hybrid integration is if the both schemes would not 
compete with each other or if some certain choice o f  the class membership 
information and proximity hints would make the competition possible. It is not 
difficult to show that these mechanisms would rather act in complimentary 
manner. Let us consider for instance two dissimilar patterns from different 
clusters (the opposite would be applicable for similar patterns). These dissimilar 
patterns would have class memberships for different clusters indicating the 
placement o f  them in different clusters. On the other hand, the induced proximity 
hint between these patterns would attain low value indicating that the patterns are 
dissimilar. It is easily seen from this situation that both mechanisms would rather 
support each other because they have the same objective o f  placing the patterns in 
separate clusters. In this situation both types o f  the user supervision for the 
patterns was entered and this is the model what was assumed for the experiments 
in this work.

However it is possible to envision other situations o f  specifying the user 
supervision elements. For instance they can be entered exclusively i.e. for some 
patterns the class membership information could be applied and for the other 
patterns the proximity hints could be given. Various experimental choices are 
possible especially in the constrained situations, in which only limited user 
knowledge is available.

In general the Partially Supervised Proximity-based FCM  (PSP-FCM) gives 
more control the user who can decide what type o f  supervision is more natural to 
apply in a given context which depends right now on three sources o f information 
with two o f  them being user supervision mechanisms: trend in data, user labelled 
patterns and proximity hints.

In this study the interest lies in gaining general knowledge about the influence 
o f certain parameters (number and quality o ff a  and proxim ity hints) on the results 
o f  clustering and achieving the best performance.

5.4.4 Experimentation on synthetic data
The following experiment illustrates a user supervision effect induced by PS- 
FCM, P-FCM and PSP-FCM algorithms. The user will have the ability to impose 
assignment o f  particular patterns to certain clusters and/or to enter the proximity 
hints between patterns. The main interest is to investigate how the user input 
influences the performance and if it can improve it. Similarly as in Section 5.2.3 
there will be assumed the criterion o f comparison as the sum o f  the distances 
between original prototypes and the new prototypes obtained in noisy 
environment. It is expected that user supervision will help to revert them to the 
original positions.

The synthetic dataset used here contains 3 clusters o f  50 patterns from normal 
distribution and 30 Cauchy outliers. The patterns are 4-dimensional (Fig. 5-20).

T ab ic  5-9. M ean  an d  covariance  m atrices used to g e n e ra te  th re e  c lu s te rs .
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F ig u re  5-20. T h re e  c lu s te rs  from  n o rm a l d is tr ib u tio n  a n d  30 ou tlie rs .

Fig. 5-21 shows the performance the o f  PS-FCM. The information f i k  was directly 
entered to impose assignment o f  data points to clusters they belong to. The case 0 
f i k  denotes the sum o f distances between the FCM on data with and without 
outliers and while f i k  information was not entered. The rest refers to the amount 
o f user supervision entered and denotes the sum o f distances computed for the 
FCM with outliers and the PS-FCM with user supervision. Evidently the sum of 
distances decreases and the PS-FCM performs better than the FCM. Increasing a 
parameter alpha strengthens this effect.

— ♦ -P S -F C M , m=2.0, 20 iter, psAlpha=1 
-IB PS-FCM, m=2 0, 20 iter. psAlpha=10 

--♦ --P S -F C M , m=2.0. 20 iter, psAlpha=50

1.2 

1.15 

1.1 

1,05 

1

0,95 -

0 , 9  -i 1---------1---------1---------1---------1-------- t ---------r---------r---------1-------
0 9 18 27 36 45 54 63 72 81 90
fik fik fik fik fik fik fik fik fik fik fik

F ig u re  5-21. T h e  av e rag ed  sum  o f d is tances o f th e  PS-FC M  fo r  d if fe re n t values o f  a lpha in
respect to the  FC M .

The performance o f  the P-FCM was measured in the same manner. The proximity 
hints were entered in two scenarios: (i) the similarity hints -  entered for randomly 
chosen data points from the same cluster, (ii) the dissim ilarity hints -  introduced 
for randomly chosen points from different clusters. The experimentally 
determined constant equal to 0.5 modified proximity hints values and new 
proximity values were adjusted in the following manner: the actual proximity 
computed from the partition matrix plus 0.5 (for strengthening the similarity
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relationship between two data points), and the actual proximity minus 0.5 (for 
inhibiting the similarity relationship between two data points). Fig. 5-22a,b 
presents the results for the 2 - 1 0 % o f possible proximities to be entered (proximity 
matrix). The second figure skips the 0 f i k  case for clarity o f  the presentation.
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F ig u re  5-22a, b . T he  averaged  sum  o f  d is tances o f  the  P -FC M  fo r d iffe ren t va lues o f  a lp h a  in
respect to  th e  FC M .

The combined effort o f both modes o f user supervision is combined by the PSP- 
FCM. This algorithm allows specifying f i k  class assignment o f  data points to 
certain clusters and proximity hints referring to the degree o f similarity between 
data points. Fig. 5-23a,b shows the performance o f  the PSP-FCM in comparison 
to the single user supervision mode clustering: the PS-FCM and the P-FCM. In 
this very simple test case all three algorithms exhibit similar (very close) 
performance. PSP-FCM achieves the performance close to P-FCM . For both 
algorithms it is possible to obtain even better performance because the proximity 
hints were entered for selected points chosen in completely random manner. 
However the important fact is potentially promising, successful combination both 
sources o f user supervision input into one method -  PSP-FCM.
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F igu re  5 -23a ,b . T he  av e rag ed  sum  o f d is tances o f the P S -F C M , th e  P -FC M , the  P S P -F C M  in 
respec t to the  FC M  fo r the sam e  d a ta se t.
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6 Data Exploration with User Supervision

6.1 Methodology
This section thoroughly develops the methodology o f  experimentation. The 
assumed model organizes data, performs the search and represents results. The 
constructed framework unifies data manipulation tools, clustering and 
classification, and representation o f the results. Fuzzy clustering algorithms 
constitute the core o f the model. FCM is used as the basis (ground truth) for 
comparison with other versions o f  the algorithm employing the user supervision 
enhancements. The experiments appearing in the later sections will be clustering 
experiments as well as classification experiments. In clustering we will be 
interested in partitioning the dataset -  X  c  5 into subsets. While in the 
classification mode, we will attempt to divide the data space S  into decision 
regions that will help in the classification o f patterns from S  instead o f  classifying 
the patterns only from the training set.

The assessment o f  the user input will be illustrated by the experiments run on 
the more advanced and complex data -  the real world sets gathered from the Web 
and Machine learning repositories. The dataset D is to be divided into training set 
-  D| and testing set -  D?. The split is performed for a specified ratio, in this case 
it will be 70% for the training set and 30% for testing set. It is done for every 
separate category, i.e. 70% o f patterns from each category will remain in the 
training set and the rest will go to the testing set.

The dataset D] will be used to assess the performance o f  the clustering o f 
FCM. On the same dataset we will run and compare algorithms with user 
supervision: P-FCM, PS-FCM and PSP-FCM. The user supervision mechanisms 
will allow for evaluation o f a variety o f  scenarios depending on the method o f 
incorporating user input, amount o f it, and the strength o f  its impact. The foremost 
objective will be to detect the most successful scenarios o f  user interactions and 
provide guidelines for the application o f  these scenarios in any other 
experimentation. In the second part o f this experiment we will be highly 
interested in the derivation o f fuzzy classifiers. The prototypes obtained in the 
clustering mode will serve as the drivers for the classification o f  the data from 
testing set D 2 .

In these experimental settings we will be doing a comparison between two 
modes o f  incorporating o f the user input. The first mode will be the random mode 
and the user input will be applied in a random way. The second mode will focus 
on the misclassified patterns from the standard FCM method, and will manipulate 
the user supervision specifically to alleviate the problem o f  the misclassification.

In our examples we deal with labelled patterns, thus the assessment o f  the 
performance and simulation o f user input is fairly straightforward.

Fig. 6 - 1 explains the logical flow o f the experimentation methodology.
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F ig u re  6-1. T he  logical How o f ex p e rim en ta tio n  w ith  u ser superv ision .

6.2 Assessment o f clustering performance

6.2.1 Accuracy formulation
M odels provide a carrier for recognition, organization and representation o f 
information. Obviously, it is possible to find more than one model for a physical 
process and immediately after this statement arises a question o f finding the 
model that describes the given process in the best way. The best way is referred to 
as achieving the best performance. We need a criterion for assessment o f  its 
performance. In this section, the accuracy concept will be defined for the purpose 
o f evaluation o f  results.

The accuracy is calculated according to membership values in the fuzzy c- 
partition matrix. A particular pattern will be assigned to the cluster with the final 
highest membership value for this cluster in the fuzzy partition matrix. The 
accuracy is calculated in the following manner. Having / clusters, where / = l ...c 
and j  classes, where j  = l ...p in data we formed the accuracy matrix A .
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Searching for the maximal value au from given i-th cluster and dividing it by the

number o f  patterns in the class, will give the accuracy for one class. The sum o f 
accuracy for each class (the column in the matrix) will give the final accuracy.

Besides quantitative measurements o f the accuracy such a matrix has another 
important asset. It enables the visual inspection o f the dispersion o f  patterns over 
clusters. This allows the monitoring o f a natural trend in the data, e.g. the most 
“unsure” patterns from one cluster will be spread over many classes and 
conversely, the most compact clusters will contain mainly patterns from one class.

6.2.2 Cluster validity
Accuracy calculations and performance measurement o f  algorithms is fairly easy 
while dealing with labelled data. However, evaluation o f  how “good” the 
structure is and what is the number o f  clusters is more complex.

The straightforward approach involves an objective function itself. This 
strategy leads to processing data through c e  {2 ,...,« - lj  clusters and recording the 
optimal values o f the performance index as a function o f  c. The significant 
problem arises in this situation because many objective functions are monotonic 
in c and unless the changes are considerable, it is almost impossible to detect 
pathological behaviour. For this reason, there were proposed heuristic validity 
indicants [2]. There exist two different approaches:

(a) the partition index

(b) the entropy index

The partition index o f U is the scalar:

Where the logarithmic base is assumed asoe(l,oo) and ujk \oga(uik) = 0 whenever 

ti ik = 0 , in this case a is base o f the natural logarithm, a - e .
The illustration o f cluster validity indicants applied to Web documents collections 
can be found in [4].

(2)

The partition entropy o f  U is denoted as:

(3)
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6.2.3 Cluster similarity
Aside from calculations o f accuracy and estimation o f  the proper number of 
clusters, it is interesting to investigate another relationships residing in datasets. 
One o f these relationships is the similarity between clusters. Besides revealing the 
relationships within the dataset based on the objects being grouped, the similarity 
between clusters could be used for instance to determine, which clusters should be 
merged or split when clustering the patterns for the number o f  clusters different 
than categories. We introduce the cluster similarity between cluster / and clustery 
as a measure based on the entries o f the final partition matrix:

1 v  u ik a  u ,
Cl list erS imi I ari ty(i, j )  = — —  £  ---------   (4)

A/ 2 uik + u Jk

Where N  is the number o f  patterns.
As we can see, the functional (4) reaches 1.0 value o f  similarity for / -  j  (itself) 
and 0  for hard c-partitions, in which membership functions returns either 1 or 0 . 
In the numerator we used the minimum operation because according to the 
operations on fuzzy sets, the set intersection is defined as the minimum operation 
o f the values o f characteristics functions for two fuzzy sets. If  we assume the fact 
that the larger the sets intersection, the larger the similarity between them, the 
operation minimum for partition matrix membership functions o f  a pattern would 
express the similarity between clusters based on this pattern. Above assumption is 
straightforward because the sets will be more similar to each other, the greater 
their intersection, what in a particular case will be the highest for the same sets i.e. 
ujk a  ulk = u,k . If we take a sum for all patterns, weight the functional by the sum 
o f the characteristics functions of the sets and additionally weight by the number 
o f patterns, we obtain the similarity between the rows o f  partition matrix, which 
in fact is the similarity between clusters. We can calculate the similarities for each 
pair o f clusters and present it in the matrix form where the rows and columns 
would correspond to categories and the entries will be the similarities. Henceforth 
it will be referred to as cluster similarity matrix. Using the cluster similarity 
matrix enables easy inspection of the relationships in the dataset. In this work the 
cluster similarity matrices were calculated for the datasets with more than 3 
categories, as it is not very interesting to investigate the cluster similarity for 2  or 
3 categories.

The algorithms used do not associate the cluster num ber with category. 
Nevertheless, it is possible to derive this information from the accuracy matrix 
and tie the clusters to corresponding categories. This approach was used in the 
experiments.

6.3 Machine Learning datasets experimentation

6.3.1 Wine recognition database experiments
The experimental part starts with a simple dataset o f  wine recognition. The initial 
analysis o f the dataset included the inspection and computations o f  the range, the
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mean and the standard deviation for every feature for each class. The range o f 
feature values in vectors varied considerably. In order to minimize the impact o f 
particular features we could (i) normalize data or (ii) introduce a weight 
component to our distance function: the Euclidean distance weighted by an 
inverse o f the square o f  standard deviation from i-th feature:

*  ~ v , Y (5)

Fig. 6-2 shows the accuracy results o f  the FCM for the Euclidean distance o f raw 
data, normalized data and weighted distance. W hile the results for the normalized 
data and the weighted distance are essentially the same, we decided that the rest 
o f the experiments would be performed on normalized data. The FCM is 
converging fast and in a few iterations it is possible to obtain final solution. For 
the purpose o f  experimentation, 2 0  iterations were assumed as certainly 
guaranteeing to obtain the final partition matrix. The fuzzifier m was given the 
standard value o f  m=2.0. The accuracy for the FCM is presented in Table 6-1.
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Figure 6-2. T he averaged (10 trails) accuracy for 2-30 iterations. 

Table 6-1. Accuracy results for clustering (10 trials average).

Algorithm and parameters Euclidean distance
Weighted Euclidean 

distance
Euclidean distance - 

Normalized data

FCM
m=2.0; 20 iterations; c=3 0.67 ± 0 .0 0 1 0.97 ±  0 .001 0.96 ±  0

6.3.1.1 Knowledge incorporation
The obtained accuracy result is very high, thus there is not much field for 
improvement. However, we are interested if the results still could be improved by 
application o f  user knowledge. The dataset was divided into training and testing 
set in the ratio 70%-30% respectively. The training set was used for the clustering 
mode to assess the m ethods’ performance and to generate prototypes used later in 
the classification mode for testing set.

We investigated the possible improvement o f  accuracy when applying user 
input. The interaction with the user is provided via the mechanisms o f the PS- 
FCM, the P-FCM and the PSP-FCM. There is a number o f choices o f 
incorporation user input. Two approaches o f  incorporating user supervision were
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compared. The first one, the Random mode, assumes random generation o f  class 
assignment information fk ,  based on the class memberships from categories’ 
labels (PS-FCM) or the generation o f the proximity hints between randomly 
chosen patterns (P-FCM). High proximity hints are for the patterns from the same 
class and low proxim ity hints for patterns originating from different classes. The 
user supervision for the PSP-FCM was a combination o f the PS-FCM and the P- 
FCM supervision and was applied in the same manner as in the other algorithms.

In the second scenario, the Misclassification mode, instead randomly 
generating the class assignment information (PS-FCM) or proximity hints (P- 
FCM), or both (PSP-FCM), we calculated the misclassified patterns for each 
cluster and focused on reducing the problem o f misclassification by attempting to 
improve the classification rate (accuracy) directly by the user input applied to the 
misclassified patterns. The second process as more complex deserves broader 
description. The PS-FCM allows imposing class membership o f  specific patterns 
to particular clusters. After determining the misclassified patterns for each class 
and finding out the correct class assignment, it was possible to demand the right 
class assignment o f  them. The algorithms do not associate the clusters numbers 
with the class numbers from data so to enforce that particular patterns belong to 
adequate clusters we experimented with adding more class membership 
information for correctly classified patterns in each cluster. This would cause to 
form clusters around these patterns. The amount o f this additional information to 
enter varied in the range 3-9% o f all patterns.

Unlike the PS-FCM, the P-FCM algorithm offers the designer another way o f 
exploiting his or her knowledge. Namely the P-FCM permits the user to specify 
the degree o f  similarity between patterns expressed as a proximity hint. This is 
another kind o f  information, certainly much less specific than the rigid class 
assignment information. However, regarding the proximity hints as less quality 
information is wrong. This manner o f incorporation o f the knowledge can be very 
useful, because it does not demand from the user the specific knowledge o f  the 
particular class assignment but only the subjective judgement about the level o f 
similarity between any o f two patterns.

Similarly to the PS-FCM experiments, in P-FCM experiments the proximity 
for misclassified patterns was entered as well. To enter proximity hints it was 
necessary to make a distinction in perception o f misclassified patterns. We regard 
the misclassified patterns o f class k as patterns, which should be classified to k-th 
class but they were classified into remaining classes. The wrongly classified 
patterns o f  class k are patterns from other categories incorrectly classified to the 
category k. In fact misclassified patterns and wrongly classified patterns is the 
same set o f patterns but the difference lies in the reference point (the class). The 
P-FCM proximity hints were entered in the following manner:

i) For misclassified patterns. A high proximity hint is entered for the 
specific misclassified pattern and the closest pattern (or n closest 
patterns) within the same cluster. The closest pattern is the pattern with 
the minimal distance to the misclassified pattern.
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ii) For wrongly classified patterns. A low proxim ity hint is entered for the 
specific wrongly classified pattern and the closest pattern (or n closest 
patterns) from the cluster it was incorrectly classified to.

The proximity hints o f different degree o f  similarity were incorporated in these 
two scenarios. High proximity hints were adjusted in such a manner that we 
calculated the proximity induced by the partition matrix (5-29) and added to it an 
experimentally determined values: (i) a constant 0.5 as proximity i.e. highProx = 
actucilProx + 0.5 or (ii) the value Me where c  is a number o f classes. The low 
proximity hints were adjusted in the opposite manner i.e. lowProx = actucilProx - 
0.5. In case o f overflow or underflow the results were clipped to [0,1] interval.

Another important aspect is the num ber o f  proximities. We experimented with 
the same number o f hints introduced per one pattern. This number was 
determined as the percentage o f the number o f patterns per cluster i.e. 
pattern_munber_in_class*percentage_rate. In practice the percentage o f  10% 
brought a visible effect. The more the hints entered, the better the performance 
gain.

Class assignment information f k  and the proximity hints entered for the first 
mode (the random mode) were entered in the same manner as for the 
misclassification mode. The only modification was that class assignment 
supervision was given as the percentage o f  patterns in the group for which f k  was 
entered. The number of patterns for which the proximity hints were given was 
assumed as the average number o f misclassified patterns calculated from the 
FCM. User supervision was set up in this manner to be able to compare both 
modes: the random mode and the misclassification mode. In other situation the 
number o f  user input would vary in these two modes and would bring into 
question the meaningful comparison between them.

The parameters o f the PSP-FCM were combined from the parameters o f the 
PS-FCM and the P-FCM. Thus it was easy to compare the relative performance of 
all three methods. In Table 6-2, Table 6-3, Table 6-4 are presented the results for 
clustering experiment (training set) and classification experiment (testing set).

T abic 6-2. A verage accuracy for clustering and classification (10 trials) o f  the FCM and the
PS-FCM .

Algorithm and 
parameters Form o f user knowledge Training dataset Testing dataset

FCM 
m=2.0; 20 iter; c=3 0.96 ±  0.002 0.95 ±  0.00S

Random Mode

(3% ) f i k  randomly entered per 
group 0.96 ±  0.004 0.95 ±  0

PS-FCM 
a  = 1 0; 20 iter; c=3

( 6 % ) J lk  randomly entered per 
group 0.96 ±  0.005 0.95 ±  0.004

(9%) f i k  randomly entered per 
group 0.97 ± 0 .0 0 5 0.96 ±  0.006

Misclassification Mode
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a) 0 f i k  entered per group
b)f i k  fo r  misclassified patterns 0.95 ±  0.07 0.93 ± 0 .0 1

PS-FCM

a) (3%) f i k  entered per group
b ) f k  for misclassified patterns 0.9S ±  0.002 0.92 ± 0

a  =1.0; 20 iter; c=3 a) ( 6 % ) f k  entered per group
b ) f k  for misclassified patterns 0.99 ± 0 .0 0 5 0.91 ± 0 .0 0 4

a) (9%) 12 f k  entered per group
b) f i k  for misclassified patterns 0.99 ± 0 0.91 ± 0

T able 6-3. A verage accuracy for clustering and classification (10 trials) o f  the P-FCM .

Algorithm and 
parameters

Form o f  user knowledge
Training
dataset

Testing
dataset

Random M ode

10% o f  randomly entered proximity 
hints 0.94 ± 0 .0 0 5 0.95 ±  0

P-FCM 
c= 5 .0 E -4 ;m = 2 .0 ; 20 

iter; c=3

20% o f  randomly entered proximity 
hints 0.95 ± 0 .0 0 5 0.95 ±  0

30% o f  randomly entered proximity 
hints 0.95 ±  0.007 0.95 ±  0

M isclassification Mode

10% o f  proximity hints for 
misclassified patterns 0.96 ± 0 0.95 ±  0

P-FCM 
a  =5.0E-4; m=2.0; 20 

iter; c=3

20% o f  proximity hints for 
misclassified patterns 0.98 ± 0 .0 0 3 0.95 ±  0

30% o f proximity hints for 
misclassified patterns 0.99 ± 0 .0 0 3 0.95 ±  0

P-FCM 
a  =5.0E-4; m=2.0; 20

10% o f  proximity hints for 
misclassified patterns 0.97 ±  0.004 0.95 ±  0

iter; c=3

p r o x  -  p r o x  +  l / c  
( a n d  p r o x =  p r o x - l / c )

20% o f  proximity hints for 
misclassified patterns

30% o f  proximity hints for 
misclassified patterns

0.99 ±  0.004 

0.99 ± 0 .0 0 3

0.95 ±  0 

0.95 ±  0

T able 6-4. A verage accuracy for clustering and classification (10 trials) o f the PSP-FCM,

Algorithm and 
parameters

Form o f user knowledge Training
dataset

Testing
dataset

Random Mode
PSP-FCM 

a  =5.0E-4; m=2.0; 
20 iter; c=3

a) (6% ) f k  randomly entered per group
b) 10% o f randomly entered prox. hints 0.94 ±  0.03 0.94 ± 0 .0 1

p r o x  = p r o x  +  0 .5  
( a n d  p r o x  = p r o x  - 

0 .5 )

a) ( 6 % ) f k  randomly entered per group
b) 20% o f  randomly entered prox. hints 0.94 ±  0.03 0.93 ± 0 .0 1

Misclassification Mode
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PSP-FCM 
a  =5.0E-4; m=2.0; 

20 iter; c=3

a) (6% ) f i k  entered per group
b )  f i k  for misclassified patterns

0 . 9 9  ± 0  0 . 9 5  ± 0c) 10% o f  proximity hints per pattern (for 
misclassified patterns)

p r o x  = p r o x  +  0 .5  
( a n d  p r o x  =  p r o x  - 

0 .5 )

a) (6% ) f i k  entered per group
b )  f i k  for misclassified patterns

0.99 ± 0 .0 0 5  0.95 ± 0c) 20% o f  proximity hints per pattern (for 
misclassified patterns)_________________

6.3.1.2 Obsen>ations
The classes o f  the dataset are well separable. Even though the maximal possible 
performance gain was small, the results o f applying user supervision are very 
promising. The methods with user supervision are capable o f  improving the 
results, which had already been very high (the FCM produces 96% accuracy). All 
three methods provided improvement relatively to the FCM. The PS-FCM seems 
to be the most effective for the clustering mode (specific assignment o f pattern to 
class). The P-FCM  and the PSP-FCM perform well even with small percentage o f  
proximity entered. The comparison between fully the random way o f  
incorporating class assignment information, the proxim ity hints, and more 
advanced mode when the user input is provided with the focus on the 
misclassified patterns shows that the second scenario performs better. The user 
knowledge provided for the misclassified patterns is more effective. Smaller 
amount o f class assignment information f k  and smaller num ber o f  proximity hints 
record larger gain in the performance for the misclassified patterns mode. It is 
noticeable that the effort needed for the misclassified patterns mode is smaller and 
provides better results. For instance the PS-FCM and the PSP-FCM reach the 
maximal 99% accuracy while applying only 6 % o f  class assignment information 
and 10% o f proxim ity hints (PSP-FCM).

In the classification mode we did not observe any improvement from the user 
input. The accuracy remained on the level of the standard FCM.

6.3.2 Image segmentation dataset experiments
The dataset o f  image segmentation is more complex than the previous dataset. 
The number o f  patterns and the number o f clusters were considerably increased. 
To explore the structure o f  the dataset we calculated the accuracy matrices for the 
FCM for different values o f  parameter c. (Table 6-5). The mean and standard 
deviation values were computed for the accuracy matrices o f  the training dataset. 
The rows in the accuracy matrices were arranged in such a way that the largest 
values from categories were placed on the diagonal, thus it is convenient to 
observe dispersion o f  categories over clusters.

The clustering experiment was performed for the num ber o f  categories equal 
to the number o f  clusters (7). There was also examined how the categories merged 
for the number o f  clusters smaller than number o f categories and how they split if  
there was more clusters than categories. Evidently, the most compact categories 
turned out to be ‘Sky’, ‘G rass’ and ‘W indow’ (Table 6-5). Conversely, the most 
variable (uncertain) categories were ‘Brickface’ and ‘Foliage’. An interesting 
situation occurred for number o f  clusters equal 6 . Instead o f  the identification o f
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new cluster centers, category ‘W indow’ was allocated to other categories, while 
for the remaining categories we observed increased accuracy. 

In this experiment it was used the 10 fold cross validation testing scheme. The 
training sets contain 210 patterns. For the testing set was used a different training 
set in every iteration.

T able 6-5a,b ,c,d ,c. T he accuracy matrices exhibiting allocation o f patterns from 7 categories
to 5-9 clusters for testing dataset.

Cluster # B rick face C em en t Foliage G rass Path Sky W indow

1 15.92.3 1.1 ±  0.6 6 ±  2.0 0.7 ±  0.7 0 ±  0 0 ±  0 4.6 ±  0.5
2 0 +  0 16.6 ±  2.5 0.5 ±  0.1 0 ±  0 0.8 ±  0.2 0.1 ±  0 1.3 ± 0 .4
3 5 .9 +  1.0 0.8 ±  0.3 16.5 ±  0.1 0.6 ±  0.1 0 ±  0 0 ±  0 5.6 ±  0.8
4 0 + 0 0.1 ±  0 0.1 ±  0 23.5 ±  0.8 0 ±  0 0 ±  0 1 ±  0.3
5 0 ± 0 1.9 ±  0 0.3 ±  0.1 0.2 ±  0.6 19.7 ±  0.4 0 ±  0 0.2 ±  0.2
6 0 ±  0 0 ± 0 0 ±  0 0 ±  0 0 ±  0 25.9 ±  1.3 0 ±  0
7 2.3 ± 3 .2 2.8 ±  0 2.5 ±  0.8 2.6 ±  0.2 0 ±  0 1.2 ±  0.3 12.2 ±  1.2
S 0.7 ± 0 .2 2.9 ±  1.7 1.3 ±  0.1 1.5 ±  0.5 7.0 ±  0.3 2.7 ±  0.9 2.6 ±  0.4
9 5.2 ±  1.7 3.5 ±  0.1 2.8 ±  0.9 0.8 ±  0.3 2.5 ±  0.5 0 ±  0 2.5 ±  0.1

Cluster // B rick face C em en t Foliage G rass Path S ky W indow

1 15.8 ±  1.9 1.2 ±  0.9 6.4 ±  0.4 0.3 ±  0.1 0.2 ±  0 0 ±  0 3.7 ±  0.7
2 0.3 ±  0 15.4 ±  0.1 0.5 ±  0.1 0.9 ±  0.3 3 ±  1.0 0.1 ±  0 0.3 ±  0.5
3 4.5 ±  2.1 4.5 ±  0.1 12.5 ±  3.8 1.7 ±  0.2 0.2 ±  0 0 ±  0 6.6 ±  0.5
4 1.5 ± 0 .5 0 ±  0 0 ±  0 23.5 ±  0.8 0 ±  0 0 ±  0 1.8 ±  0.6
5 0 ±  0 2.8 ± 0 .2 0.5 ±  1.6 0.1 ±  0.3 22.2 ±  2.0 0 ±  0 0.1 ±  0
6 0 ±  0 0 ±  0 0 ±  0 0 ±  0 0 ±  0 27.2 ±  0.9 0 ±  0
7 4.2 ±  1.5 4.3 ±  0.7 4.6 ±  1.5 1.3 ±  0.2 0.9 ±  0.3 0 ± 0 14 J  ±  0.4
8 3.6 ±  1.2 1.7 ±  2.3 5.4 ±  1.4 2.2 ±  0.7 3.5 ±  3.5 2.6 ±  0.8 3.2 ±  0.2

C luster// B rickface C em ent Foliage Grass Path Sky W indow

1 16.8 ± 3 . 6 2.3 ±  1.5 4.9 ±  1.3 2.1 ±  0 0.3 ±  0.9 0 ±  0 4.3 ±  0.2
2 0.6 ±  0.2 18.8 ±  0.6 1.3 ± 0 .4 1.4 ±  0.4 4 ±  1 0 ±  0 0.S ±  0.7
3 10 ±  0.3 1 ±  0.3 20.1 ±  2.2 2.2 ±  0.7 0.2 ± 0 0 ±  0 7.5 ±  1.8
4 0.1 ±  0 0.3 ±  0.5 0.1 ±  0 23.9 ±  0.6 0 ±  0 1.3 ±  0.4 1.3 ±  0.4
5 0 ±  0 2.3 ±  0.7 0.4 ± 0 .1 0 ±  0 23.7 ±  0.7 0 ±  0 0.5 ±  0.8
6 0 ±  0 0.1 ±  0 0 ±  0 0 ± 0 0 ±  0 25.9 ±  1.3 0 ±  0
7 2.5 ±  3.5 5.2 ±  0.4 3.1 ± 0 .7 0.4 ±  0.5 1.7 ±  0.5 2.7 ±  0.9 15.59 ±  0.4

Cluster U Brickface Cem ent Foliage Grass Path Sky W indow

1 21.7 ±  2.5 1.8 ±  1.0 9.4 ±  0.6 2.0 ±  0.6 0.1 ±  0 0 ±  0 6.5 ±  2.5
2 1.5 ± 0 .5 17.9 ±  0.2 1.3 ±  0.5 1.5 ±  0.5 4.4 ±  0.8 0 ±  0 7.1 ±  0
3 6.5 ±  3.1 4.9 ±  2.6 18.0 ±  0.7 3.3 ±  0.7 0.6 ±  0.2 0 ±  0 10.3 ±  2.1
4 0.3 ± 0 .1 1.3 ± 0 .1 0.6 ±  0.5 23.2 ±  0.5 0.2 ±  0 0 ±  0 5.5 ±  1.8
5 0 ±  0 4.0 ±  0.6 0.6 ±  0 0 ±  0 24.7 ±  1.1 0 ±  0 0.6 ±  1.4
6 0 ±  0 0 ±  0 0 ±  0 0 ±  0 0 ±  0 30.0 ±  0 0 ±  0

Cluster tt Brickface C em ent Foliage Grass Path Sky W indow

1 12.5 ±  0.1 6.4 ±  1.5 3.8 ±  0.6 2.2 ±  1.2 1.6 ±  0.5 9.0 ± 3 .0 4.9 ± 5 .0
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2 1.5 ±  0.5 9.3 ±  3.1 1.3 ± 0 .4  0 ± 0  1.7 ±  0.5 I 8 .0 ± 4 .0  2.2 ±  0.7

3 13.2 ±  1.2 3.4 ±  0.8 22.6 ± 1 .1  3 .0 ± 0 .6  0.4 ±  0 .1 0 ± 0  14.4 ± 3 .1

4 2.7 ±  0.9 1.8 ±  0 1.8 ±  0.2 2 4 .8 ± 0 .6  0.9 ±  0.3 0 ± 0  7 .0 ±  1.6

3 0 ± 0  9.1 ±  0.6 0.5 ±  0.1 0 ±  0 25.4 ± 1 . 5  3 .0 ± 1 .0  1 .5 ± 0 .5

From the accuracy matrices it is possible to observe the variability o f the 
categories including the most variable and/or the most compact classes. It would 
be also interesting to investigate the similarity between clusters. Using cluster 
similarity measure (4) the mean (Table 6 -6 ) and standard deviation (Table 6-7) 
values o f  the cluster similarity matrix were calculated. The classes most similar to 
each other are: W indow to Brickface (0.752), Brickface to Foliage (0.762) and 
Foliage to Window (0.689). The least similar to other classes is the Sky class. 
These conclusions adhere to the observations derived from accuracy matrices. 
The wrongly classified patterns in the Foliage category are the patterns 
originating from Brickface and Window categories. The category Sky is also the 
least variable (most compact) category.

T ab le  6-6. M ean  values o f  c lu s te r sim ila rity  (u p p e r  t r ia n g u la r  m a trix  equal to low er
tr ia n g u la r  m a trix ).

Brickface Cem ent Foliage Grass Path Sky W indow

Brickface 1.0 0.618 0.762 0.486 0.601 0.290 0.752

Cem ent 1.0 0.564 0.526 0.6S0 0.341 0.649

Foliage 1.0 0.574 0.587 0.331 0.689

Grass 1.0 0.488 0.449 0.438

Path 1.0 0.323 0.645

Sky 1.0 0.257

W indow  1.0

T ab le  6-7. S ta n d a rd  d ev ia tion  values of c lu s te r  s im ila rity  (u p p e r  tr ia n g u la r  m a trix  equal to
low er tr ia n g u la r  m a trix ).

B rickface Cem ent Foliage Grass Path Sky W indow

Brickface 0 0.007 0.031 0.004 0.002 0.002 0.002

Cem ent 0 0.008 0.044 0.040 0.011 0.021

Foliage 0 0.046 0.021 0.024 0.052

Grass 0 0.001 0.000 0.000

Path 0 0.000 0.003

Sky 0 0.000

W indow 0

6.3.2.1 Knowledge incorporation
The final accuracy obtained by standard FCM will be the subject o f improvement 
in this section by the user input. The choice o f  parameters o f incorporation the 
designer knowledge is chosen in a similar manner as for the previous dataset. The 
experimentation part was extended. Class membership information f k  for the 
PSP-FCM was entered for 0,5-7,5% correctly classified patterns per class. These 
patterns impose forming clusters around themselves. The proximity hints for the
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P-FCM were entered for 10-50% o f the closest patterns in each cluster. Both 
modes were applied: the random mode and the misclassified mode. 

The PSP-FCM algorithm parameters are adjusted according to the PS-FCM 
and the P-FCM parameters. The results are presented in Table 6 -8 , Table 6-9 and 
Table 6-10.

T ab le  6-8. A v erag e  a c c u ra c y  fo r c lu s te ring  an d  classification  (10 tr ia ls )  o f  th e  FC M  and  the
PS-FC M .

Algorithm and parameters User input
Training
dataset

Testing
dataset

FCM
0.76 ± 0 .0 7 0.71 ± 0 .0 7m=2.0; 20 iter; c=7

Random Mode

(0.5% )y?A- randomly entered per 
group 0.78 ±  0.06 0.73 ± 0 .0 8

(1,5%) f i k  randomly entered per 
group 0.82 ± 0 .0 3 0.75 ±  0.07

(3% ) f i k  randomly entered per 
group 0.85 ±  0.05 0.77 ± 0 .1 0

PS-FCM 
a  =1.0; 20 iter; c=7

(4,5%) f i k  randomly entered per 
group 0.89 ± 0 .0 3 0.79 ± 0 .1 0

(6% ) f k  randomly entered per 
group 0.92 ±  0.02 0.77 ± 0 .1 0

(7,5% )f i k  randomly entered per 
group 0.93 ±  0.02 0.77 ± 0 .1 1

(9%) f i k  randomly entered per 
group 0.93 ±  0.02 0.79 ± 0 .1 1

Misclassification Mode

a) 0 f i k  entered per group
b ) f i k  for misclassified patterns 0.7S ±  0.09 0.70 ± 0 .0 7

a) (0.5%)f i k  entered per group
b ) f i k  for misclassified patterns 0.84 ±  0.04 0.74 ±  0.07

a) (1.5%) f i k  entered per group
b ) f i k  for misclassified patients 0.86 ±  0.05 0.74 ±  0.08

PS-FCM

a) ( W o ) f ik  entered per group
b ) f i k  for misclassified patterns 0.S9 ±  0.03 0.75 ±  0.08

a  =1.0; 20 iter; c=7 a) (4,5% )f i k  entered per group
b)f i k  for misclassified patients 0.95 ±  0.02 0.75 ±  0.09

a) ( 6 % ) f i k  entered per group
b ) f i k  for misclassified patients 0.96 ± 0 .0 2 0.75 ± 0 .1 0

a) (7,5%) f ik  entered per group
b ) fik  for misclassified patterns 0.97 ± 0 .0 1 0.74 ± 0 .1 1

a) (9%) f ik  entered per group
b ) f i k  for misclassified patterns 0.99 ± 0 0.80 ± 0 .1 1
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T a b le  6-9. A verage  accu racy  fo r c lu s te rin g  a n d  c lassif ica tion  (10 tr ia ls) o f  th e  P -FC M .

Algorithm and 
parameters

User input
Training
dataset

Testing
dataset

Random M ode

10% o f randomly entered proximity 
hints 0.75 ±  0.08 0.67 ±  0.08

P-FCM 
a  =5.0E-4; m=2.0;

20% o f randomly entered proximity 
hints 0.74 ±  0.08 0.67 ± 0 .0 8

20 iter; c=7 

p r o x  = p r o x  + 0 . 5

30% o f  randomly entered proximity 
hints 0.74 ± 0 .0 8 0.67 ± 0 .0 9

( a n d  p r o x  =  p r o x  - 
0 .5 )

40% o f randomly entered proximity 
hints 0.74 ±  0.08 0.67 ±  0.07

50% o f randomly entered proximity 
hints 0.75 ± 0 .1 0 0.67 ±  0.09

Misclassification Mode

10% o f  proximity hints for 
misclassified patterns 0.80 ±  0.05 0.69 ± 0 .0 9

P-FCM 
a  =5.0E-4; m=2.0;

20% o f  proximity hints for 
misclassified patterns 0.79 ± 0 .1 2 0.71 ± 0 .0 9

20 iter; c=7 

p r o x  = p r o x  +  0 .5

30% o f proximity hints for 
misclassified patterns 0.84 ±  0.06 0.6S ± 0 .1 0

( a n d  p r o x  =  p r o x  - 
0 .5 )

40% o f proximity hints for 
misclassified patterns 0.87 ± 0 .0 6 0.72 ± 0 .1 1

50% o f proximity hints for 
misclassified patterns 0.84 ±  0.07 0.71 ± 0 .0 8

10% o f proximity hints for 
misclassified patterns 0.80 ± 0 .0 5 0.71 ± 0 .0 8

P-FCM 
a  =5.0E-4; m=2.0;

20% o f  proximity hints for 
misclassified patterns 0.78 ±  0.09 0.71 ± 0 .1 0

20 iter; c=7 

p r o x  = p r o x  +  l / c

30% o f proximity hints for 
misclassified patterns 0.75 ±  0.09 0.67 ± 0 .1 0

( a n d  p r o x  =  p r o x  -  
l / c )

40% o f proximity hints for 
misclassified patterns 0.79 ±  0.09 0.72 ± 0 .0 8

50% o f proximity hints for 
misclassified patterns 0.76 ± 0 .1 1 0.69 ± 0 .1 0

T ab le  6-10. A verage  accu racy  fo r c lu s te rin g  and  c lassifica tion  (10 tr ia ls ) o f the  FC M  an d  th e
P S P -F C M .

Algorithm and 
parameters

User input Training
dataset

Testing
dataset

Random M ode

PSP-FCM
- «  a n  m  a) (3%) f ik  randomly entered per group ,a  -5 .0E -4; m=2.0; 20 r . , , , , . 0 .7 4 ± 0 . 0 0 .6 9 ± 0 .0 9

ilcr' c=7 b) 30% o f randomly entered prox. hints
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prox =  prox + 0.5 
(andprox =  prox - 0.5)

a ) (3 % )  fik  r a n d o m ly  e n te re d  p e r  g ro u p
b )  4 0 %  o f  ra n d o m ly  e n te re d  p ro x . h in ts 0 .7 3  ± 0 . 0 7 0 .7 2  ± 0 . 0 7

a) (4 ,5 % )  fik  r a n d o m ly  e n te re d  p e r  g ro u p
b ) 3 0 %  o f  ran d o m ly  e n te re d  p ro x . h in ts 0 .7 2  ± 0 . 0 9 0 .5 4  ± 0 . 7 0

a) {4,5%)fik  r a n d o m ly  e n te re d  p e r  g ro u p
b ) 4 0 %  o f  ra n d o m ly  e n te re d  p ro x . h in ts 0 .7 3  ±  0 .0 8 0.71 ± 0 . 0 7

M is c la s s if ic a tio n  M o d e

a) (3 % )  fik  e n te re d  p e r  g ro u p
b )Jik for m isc la s s if ie d  p a tte rn s
c )  3 0 %  o f  p ro x im ity  h in ts  p e r  p a tie n t

0 .9 !  ± 0 . 0 5 0 .8 6  ± 0 . 0 6

P S P -F C M  
a  = 5 .0 E -4 ;  m = 2 .0 ;  20  

i te r ; c= 7

a) (3 % )J ik  e n te re d  p e r  g ro u p
b ) J ik  fo r m isc la s s if ie d  p a tte rn s
c) 4 0 %  o f  p ro x im ity  h in ts  p e r  p a tte rn

0 .9 3  ±  0 .0 5 0 .8 7  ± 0 . 0 7

prox = prox + 0.5 
(and prox =  prox - 0.5)

a) (4 ,5 % )  f ik  e n te re d  p e r  g ro u p
b)fik  fo r m is c la s s if ie d  p a tte rn s
c )  3 0 %  o f  p ro x im ity  h in ts  p e r  p a tte rn

0 .9 5  ± 0 . 0 3 0 .8 8  ± 0 . 0 6

a) (4 ,5 % )ftk  e n te re d  p e r  g ro u p
b )fik  fo r m is c la s s if ie d  p a tte rn s
c )  4 0 %  o f  p ro x im ity  h in ts  p e r  p a tte rn

0 .9 5  ± 0 . 0 3 0 .8 8  ± 0 . 0 6

63 .2 .2  Observations
The final result from the standard FCM for clustering was 76%. We investigated 
if  it was possible to improve the classification rate with user input. The maximum 
obtained accuracy for the PS-FCM was 99% correctly classified patterns for 9% 
additional class membership information f ik  entered. This is a very good result. 
The results for the P-FCM were less spectacular. The highest recorded accuracy 
was 87% but it is still a considerable improvement in comparison to the FCM. 
The modification o f the value o f proximity hints influenced the results. The value 
modified by the l/c  expression was less successful than the modification by 
constant 0.5. The first option worked well for 3 clusters (Wine recognition 
dataset) but it turned out to be too small for larger number o f clusters (7 in this 
case). The num ber o f proximity hints was also important. Generally, the accuracy 
was increasing proportionally to the number o f  proximity hints entered. The 
highest accuracy was obtained for 30-40%. This may be explained by the fact that 
after incorporating too many hints the structure o f  the dataset starts to deteriorate. 
If we consider the values o f the high proximity hints (the same would apply to 
low proxim ity hints as well), we will notice that too many hints entered with the 
same (similar) value for a misclassified pattern and the large number o f  the 
patterns from the class o f this pattern (e.g. 80% o f patterns) will cause that even 
the patterns with large distance from the misclassified pattern would have very 
high similarity hint associated with each other. This certainly might not be true 
and would affect the relationships within the dataset. As a result o f  it the accuracy 
might drop.

The parameters for the PSP-FCM were constructed from the most successful 
param eters’ combinations o f two previous algorithms. The clustering results were
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high. In comparison the PSP-FCM with the P-FCM and the PS-FCM the results 
obtained were higher than each o f  the two methods would provide separately for 
the same choice o f parameters. This is an important conclusion because it shows 
that combining both sources o f knowledge is possible and provides higher results 
than using any o f  the methods alone.

The results based on this dataset show more clearly that there exists a 
considerable difference between the random and the misclassification mode o f 
incorporation o f  the user input. Focusing on the misclassified patterns allows for 
obtaining higher results. Moreover the results are obtained with smaller effort i.e. 
smaller number o f  incorporated user knowledge For instance the PS-FCM for 9% 
class assignment information per group records 93% for the random mode but 
99% for the classification mode. This effect is even more visible for the P-FCM. 
The random mode did not improve the results in respect to the FCM (76%) for 
any num ber o f  hints used in the experiment (10%-50%) but the misclassification 
mode obtained 87% correctly classified patterns.

The accuracy for the testing set (classification mode) initially oscillated 
around the values obtained from the FCM for smaller amount o f user supervision 
and subsequently improved for the PS-FCM and the PSP-FCM. The accuracy o f 
the classification mode for the P-FCM was worse than the FCM results. This 
behaviour may lead to conclusions that the class membership assignment is less 
specific (the pattern belongs to a cluster or not) than the level o f  proximity 
between two patterns and the first case can be generalized to other patterns better 
then the second approach. Usually the relationships (degree o f  similarity) 
between patterns are very specific to the certain dataset and particular patterns 
existing in it. They cannot be applied to the other datasets because other patterns 
would most probably have different kind o f  relationship between each other.

6.3.3 Wisconsin Diagnostic Breast Cancer (WDBC) and 
Wisconsin Prognostic Breast Cancer (WPBC) 
experiments

The next two datasets come from the University o f  W isconsin Hospitals, 
Madison. The classification task o f  the WDBC dataset is to correctly classify a 
given patient to either benign or malignant class. There are 569 cases in this 
dataset. The second learning problem is defined for the WPBC dataset with 194 
patterns. It is to predict the recurrence o f  the illness. If it recurs within 24 months 
the case will be marked as positive, otherwise negative.

6.3.3.1 Knowledge incorporation
The parameters for the algorithm were constructed in a similar manner as in the 
previous datasets. We divided the dataset into training and testing set (70%-30%). 
Class membership information f ik  for the PSP-FCM was entered for the 
misclassified patterns and for 1,5%-18% correctly classified patterns per class. 
The proximity hints for the P-FCM were entered for the misclassified and 
wrongly classified patterns for 10-30% o f  the closest patterns in each cluster. The 
PSP-FCM algorithm ’s parameters merged PS-FCM and P-FCM parameters. The
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results for WDBC and WPBC are presented in Table 6-11, Table 6-12, Table 6 - 
13, and Table 6-14, Table 6-15, Table 6-16 respectively.

T ab le  6-11 . A vera g e  a ccu ra cy  for  c lu ster in g  and  c lassifica tion  (1 0  tr ia ls)  o f  the FCM  and the
P S-F C M  for the W D B C  dataset.

A lg o r ith m  a n d  p a ra m e te r s  U se r  in p u t
T ra in in g
d a ta s e t

T e s tin g
d a ta se t

F C M  
m = 2 .0 ; 2 0  ite r ; c = 2 0 .91  ± 0 0 .9 2  ±  0 .0 2

R an d o m  M o d e

(1 ,5 % ) fik randomly e n te re d  p e r  
g ro u p 0 .91  ± 0 . 0 0 4 0 .9 5  ± 0 . 0 0 !

P S -F C M
(4 ,5 % )/? *  ran d o m ly  e n te re d  p e r  
g ro u p 0 .9 2  ±  0 0 .9 5  ±  0

a  = 1 .0 ; 2 0  ite r; c = 2 (9 %)fik ran d o m ly  e n te re d  p e r  
g ro u p 0 .9 3  ±  0 0 .9 5  ±  0

(I8% )/JA - ran d o m ly  e n te re d  p e r  
g ro u p 0 .9 5  ±  0 0 .9 5  ± 0

M isc la s s if ic a tio n  M o d e

a) 0  fik  e n te re d  p e r  g ro u p ;
b)Jik fo r  m isc la s s if ie d  p a tte rn s 0 .9 3  ±  0 .0 4 0 .9 5  ±  0

P S -F C M  
a  = 1 .0 ; 20  ite r; c = 2

a) (1 ,5 % )  fik  e n te re d  p e r  g ro u p
b )Jik fo r m isc la s s if ie d  p a tte rn s 0 .9 4  ± 0 . 0 5 0 .9 5  ±  0

a) (4 ,5 % )  fik  e n te re d  p e r  g ro u p
b )fik  fo r m isc la s s if ie d  p a tte rn s 0 .9 9  ±  0 0 .9 5  ±  0

ble 6-12. A verage accu racy  fo r c lu s te rin g  an d  classification  (10 tr ia ls )  o f  the  FC M  and  i
PS-FC M  fo r the  W D BC  da tase t.

A lg o r ith m  and  
p a ra m e te rs U s e r  in p u t

T ra in in g
d a ta s e t

T e s tin g
d a ta se t

R a n d o m  M o d e

P -F C M  
a  = 5 .0 E -4 ; m = 2 .0 ;

10%  o f  ra n d o m ly  e n te re d  p ro x im ity  
h in ts 0 .9 5  ±  0 .0 0 5 0 .9 5  ±  0

2 0  iter; c= 2  

prox =  prox + 0.5

2 0 %  o f  ra n d o m ly  e n te re d  p ro x im ity  
h in ts 0 .9 8  ±  0 .0 0 3 0 .9 5  ±  0

(and prox =  prox - 
0.5)

3 0 %  o f  ra n d o m ly  e n te re d  p ro x im ity  
h in ts 0 .9 9  ±  0 .0 0 2 0 .9 5  ±  0

M isc la s s if ic a tio n  M o d e

P -F C M  
a  = 5 .0 E -4 ; n i= 2 .0 ;

10%  o f  p ro x im ity  h in ts  for 
m isc la s s if ie d  p a tte rn s 0 .9 8  ±  0 0 .9 5  ±  0

2 0  iter; c= 2  

prox =  prox + 0.5

2 0 %  o f  p ro x im ity  h in ts  for 
m isc la s s if ie d  p a tte rn s 1.0 ± 0 0 .9 5  ±  0

(and prox =  prox - 
0.5)

3 0 %  o f  p ro x im ity  h in ts  for 
m isc la s s if ie d  p a tte rn s 1.0 ± 0 0 .9 5  ±  0
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T ab le  6-13. A verage  accu racy  fo r c lu s te ring  an d  classifica tion  (10 tr ia ls ) o f  th e  PSP-FC M  for
th e  W D B C  d a ta se t.

Algorithm and 
parameters

Form o f user knowledge
Training
dataset

Testing
dataset

Random Mode
PSP-FCM 

a  =5.0E-4; m=2.0; 
20 iter; c=2

a) (1,5%) fik  randomly entered per group
b) 10% o f  randomly entered prox. hints 0.89 ±  0.09 0.87 ± 0 .0 8

p r o x  = p r o x  + 0 .5  
(a n d  p r o x  =  p r o x  - 
0 .5 )

a) (3%)fik randomly entered per group
b) 20% o f  randomly entered prox. hints 0.89 ±  0.09 0.87 ±  0.08

Misclassification Mode

PSP-FCM 
a  =5.0E-4; m=2.0; 

20 iter; c=2

p r o x  -  p r o x  + 0 .5  
(a n d  p r o x  = p r o x  - 

0 .5 )

a) 6 fik  entered per group ( 1,5%)
b)fik for misclassified patterns
c) 10% o f  proximity hints for misclassified 
patterns
a) 18 fik  entered per group (4,5%)
b)fik for misclassified patterns
c) 20% o f  proximity hints for misclassified 
patterns

0.97 ± 0 .0 4  

0.95 ±  0.04

0.95 ±  0 

0.95 ± 0

T a b le  6-14. A v era g e  accu racy  for  c lu sterin g  and  c la ssifica tio n  (10 tr ia ls) o f  th e  FC M  and the
PS-FC M  for th e  W P B C  d a ta set.

Algorithm and parameters User input
Training
dataset

Testing
dataset

FCM 
m=2.0; 20 iter; c=2 0.58 ±  0 0.41 ± 0 .0 2

Random Mode

(3% )f ik  randomly entered per 
group 0.57 ± 0 .0 2 0.43 ±  0.005

(6%) fik randomly entered per 

PS-FCM S ^ P  

a  1.0, 20 iter, c 2 (\2% )fik  randomly entered per 
group

0.70 ± 0  

0.77 ±  0.002

0.41 ± 0  

0.44 ±  0.004

(24%) fik  randomly entered per 
group 0.83 ±  0 0.40 ± 0

Misclassification Mode

0 fik entered per group; 
fik for misclassified patterns 0.56 ± 0 .0 0 2 0.49 ± 0 .0 1

a) (3%)fik  entered per group
b)fik for misclassified patterns 0.51 ± 0 .0 0 1 0.49 ± 0 .0 1

PS-FCM a) (6%) f ik  entered per group 
a  - 1.0; 20 iter; c=2 b)f k  for misclassified patterns 0.60 ±  0 0.49 ± 0 .0 1

a) ( 12%) fik entered per group
b )fik for misclassified patterns 0.74 ±  0.002 0.50 ± 0 .0 1

a) (24%) f ik  entered per group
b)fik for misclassified patterns 0.96 ±  0.04 0.50 ± 0 .0 1
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T ab le  6-15. A verage  accu racy  fo r c lu s te rin g  an d  c lassifica tion  (10 tr ia ls )  of th e  P -F C M  fo r
the  W P B C  d a ta se t.

Algorithm and 
parameters

User input
Training
dataset

Testing
dataset

Random Mode

P-FCM

10% o f randomly entered proximity 
hints 0.65 ± 0 .0 1 0.38 ± 0 .0 0 9

a  =5.0E-4; m=2.0; 
20 iter; c=2

20% o f randomly entered proximity 
hints 0.70 ± 0 .0 1 0.37 ± 0 .0 0 4

p r o x  = p r o x  +  0 .5  
( a n d  p r o x  = p r o x  -

25% o f  randomly entered proximity 
hints 0.74 ± 0 .0 2 0.37 ± 0 .0 0 7

0 .5 )
30% o f randomly entered proximity 
hints 0.66 ±  0.049 0.39 ± 0 .0 1

Misclassification Mode

P-FCM

10% o f proximity hints for 
misclassified patterns 0.75 ± 0 .0 2 0.43 ±  0.04

a  =5.0E-4; m=2.0; 
20 iter; c=2

20% o f  proximity hints for 
misclassified patterns 0.93 ± 0 .0 1 0.44 ±  0.02

p r o x  =  p r o x  +  0 .5  
( a n d  p r o x  = p r o x  - 
0 .5 )

25% o f proximity hints for 
misclassified patterns

30% o f randomly entered proximity 
hints

0.95 ± 0 .0 1  

0.58 ± 0 .1 0

0.44 ±  0.003 

0.46 ± 0 .0 0 3

T a b le  6-16 . A v era g e  accu ra cy  for c lu sterin g  and  c la ssifica tio n  (10  tr ia ls) o f  the P S P -F C M  for
the W P B C  d a ta set.

Algorithm and 
parameters Form o f  user knowledge Training

dataset
Testing
dataset

Random Mode
PSP-FCM 

a  =5.0E-4; m=2.0; 
20 iter; c=2

a) (12%) fik randomly entered per group
b) 20% o f randomly entered prox. hints 0.63 ±  0.03 0.50 ±  0.09

p r o x  = p r o x  +  0 .5  
( a n d  p r o x  -  p r o x  - 
0 .5 )

a) (24%) f k  randomly entered per group
b) 25% o f randomly entered prox. hints 0.64 ±  0.04 0.50 ± 0 .0 9

Misclassification Mode

PSP-FCM 
a  =5.0E-4; m=2.0; 

20 iter; c=2

p r o x  =  p r o x  +  0 .5  
( a n d  p r o x  =  p r o x  - 

0 .5 )

a) (12%) fik entered per group
b)ftk  for misclassified patterns
c) 20% o f proximity hints for misclassified 
patterns
a) (24%) fik entered per group
b)fik for misclassified patterns
c) 25% o f  proximity hints for misclassified 
patterns

0.90 ±  0.02 

0.91 ± 0 .0 8

0.44 ±  0.003 

0.41 ± 0 .0 0 6

6.3.3.2 Observations
The results for the WDBC and the WPBC datasets show that the user supervision 
plays an important role in recovering the structure o f the dataset. The standard
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FCM algorithm obtained 91% accuracy for the WDBC dataset. This rate was 
successfully increased to 95% by the PS-FCM and 99% the P-FCM in the random 
mode and to 99% by the PS-FCM and 100% the P-FCM in the misclassification 
mode. The PSP-FCM accuracy was equal to 97% in the misclassification mode. It 
is worth noting that the P-FCM algorithm in this experiment obtains comparable 
or even better results than PS-FCM. The classification results for all algorithms 
were stable and provided us with 95% o f  correct classification rate.

The accuracy o f FCM for the second dataset (WPBC) was 58%. The PS-FCM 
raised the accuracy to 83% in the random mode and to 96% in the classification 
mode. The performance o f the P-FCM showed 74% and 95% accuracy for the 
random and the classification mode respectively. The PS-FCM obtained 91% 
accuracy.

The results obtained after applying user supervision were much better. It was 
observed also very significant improvement o f  the misclassification mode over 
the random mode, especially for the W PBC dataset.

6.3.4 Dermatology database
The dermatology database contains 366 patterns. The learning task is to correctly 
assign patterns to 6  groups o f erythemato-squamous diseases based on clinical 
and histopathological features. The cluster similarity measure was calculated for 
all clusters using the partition matrix obtained from FCM. The cluster similarity 
matrix (Table 6-17) reveals that the categories are very difficult to separate 
because they exhibit very high sim ilarity in respect to each other. The categories 1 
and 3, 1 and 6 , 3 and 6  are the most sim ilar to each other attaining almost the 
maximal value o f similarity. The least sim ilar category to all others is the second 
category (Seboreic dermatitis).

T a b ic  6 -1 7 . A verage  values o f  c lu ster  s im ila r ity  (u p p e r  tr ia n g u la r  m atrix  equal to  low er
tr ia n g u la r  m a trix ).

Psoriasis Seboreic Lichen Pityriasis Cronic Pityriasis
derm atitis planus rosea derm atitis m bra

_________________________________________________________ pilaris
Psoriasis 1.0 0.704 0.992 0.943 0.962 0.990

Seboreic 1.0 0.701 0.753 0.733 0.709
dcm iatitis
Lichen 1.0 0.940 0.964 0.986
planus
Pityriasis 1.0 0.927 0.951
rosea
Cronic 1.0 0.960
dcm iatitis
Pityriasis 1.0
rubra pilaris

ble 6-18. Stan d ard  d ev ia tio n s v a lu e s  o f  c lu ste r  s im ila r ity  (up p er  tr ia n g u la r  m atrix  cq
to lo w e r  tr ia n g u la r  m atrix ).

Psoriasis Seboreic Lichen Pityriasis Cronic Pityriasis
derm atitis planus rosea dermatitis rubra

pilaris
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Psoriasis 0 0.076 0.001 0.001 0.008 0.000

Seboreic 0 0.076 0.080 0.087 0.076

derm atitis
Lichen 0 0.001 0.009 0.001

planus
Pityriasis 0 0.024 0.002

rosea
Cronic 0 0.005

derm atitis
Pityriasis 0
rubra pilaris_________________________________________________ _

6.3.4.1 Knowledge incorporation
We followed the experimentation manner and parameters for the algorithms 
assumed for previous experiments. The dataset was divided into training and 
testing set (70%-30%). Class membership information f k  for the PSP-FCM was 
entered for the misclassified patterns and for 3%-12%  correctly classified patterns 
per class. The proximity hints for the P-FCM were entered for the misclassified 
and wrongly classified patterns for 10-30% o f the closest patterns in each cluster. 
The parameters o f the PSP-FCM algorithm merged the PS-FCM and the P-FCM 
parameters. The results arc presented in Tables 6-19, 6-20, 6-21.

T a b le  6 -1 9 . A v era g e  accu racy  for c lu sterin g  and  c la ssifica tio n  (10  tr ia ls) o f  the FCM  and  the
P S-F C M .

Algorithm and 
parameters

Form o f  user knowledge Training dataset Testing dataset

FCM 
m=2.0; 20 iter; c=6 0.43 ±  0.06 0.40 ±  0.04

Random Mode

(3%) f ik  randomly entered per 
group 0.87 ± 0 .0 0 5 0.79 ±  0.003

PS-FCM
(6% )fik  randomly entered per 
group 0.91 ± 0 .0 0 4 0.81 ± 0 .0 0 3

or =1.0; 20 iter; c=6 (9% )fik  randomly entered per 
group 0.93 ±  0 0.82 ± 0

(12%) f ik  randomly entered per 
group 0.92 ± 0 0.83 ± 0

Misclassification Mode

PS-FCM

a) 0 f ik  entered per group
b) f ik  for misclassified patterns 0.99 ±  0.005 0.96 ± 0 .0 0 6

or =1.0; 20 iter; c=6 a) (3% )f ik  entered per group
b) f ik  for misclassified patterns 0.99 ±  0.005 0.95 ± 0 .001

Fable 6 -20 . A vera g e  accu ra cy  for c lu sterin g  and  c la ss if ica tio n  (10  tr ia ls) o f  the P-FC M ,

Algorithm and 
parameters Form o f user knowledge

Training
dataset

Testing
dataset

Random Mode

P-FCM 
a  =5.0E-4; m=2.0; 20

10% o f randomly entered proximity 
hints

s i

0.57 ± 0 .1 1 0.61 ± 0 .0 5
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ilcr; c=6 20% o f randomly entered proximity 
hints 0.70 ± 0 .0 9 0.69 ± 0 .1 1

30% o f randomly entered proximity 
hints 0.76 ± 0 .1 4 0.77 ± 0 .0 7

40%  o f randomly entered proximity 
hints 0.64 ± 0 .1 1 0.73 ± 0 .1 4

Misclassification Mode

10% o f proximity hints for 
misclassified patterns 0.65 ±  0.06 0.67 ± 0 .0 4

20% o f  proximity hints for 
P-FCM misclassified patterns 

a  =5.0E-4; m=2.0; 20
iter; c=6 30% o f proximity hints for 

misclassified patterns

0.62 ± 0 .0 6  

0.59 ± 0 .0 5

0.65 ±  0.02 

0.63 ±  0.05

40% o f randomly entered proximity 
hints 0.64 ±  0.09 0.63 ±  0.03

T a b ic  6 -2 1 . A v era g e  accu ra cy  for  c lu ste r in g  and  c la ssifica tio n  (1 0  tr ia ls) o f  th e  P SP -F C M .

Algorithm and 
parameters

Form o f  user knowledge
Training
dataset

Testing dataset

Random Mode
PSP-FCM 

a  =5.0E-4; m=2.0; 
20 iter; c=6

a) (3% ) f k  randomly entered per group
b) 10% o f  randomly entered prox. hints 0.70 ± 0 .1 2 0.74 ± 0 .1 2

p r o x  = p r o x  +  0 .5  
( a n d  p r o x  = p r o x  - 

0 .5 )

a) (6% ) f k  randomly entered per group
b) 20% o f  randomly entered prox. hints 0.66 ± 0 .0 9 0.96 ±  0.004

Misclassification Mode

PSP-FCM 
a  =5.0E-4; m=2.0; 

20 iter; c=G

p r o x  = p r o x  +  0 .5  
( a n d  p r o x  = p r o x  - 

0 .5 )

a) (3%) f k  entered per group
b ) f k  for misclassified patterns
c) 10% o f proximity hints per pattern (for 
misclassified patterns)
a) (6%) f k  entered per group
b ) f k  for misclassified patterns
c) 20% o f  proximity hints per pattern (for 
misclassified patients)

0.99 ± 0 .0 0 1  

0.99 ±  0.003

0.96 ± 0 .0 0 7  

0.95 ±  0.008

6.3.4.2 Observations
The results o f  applying user knowledge proved that user supervision methods are 
very powerful. The initial 43% accuracy from the standard FCM was improved to 
76% by the P-FCM (30% of randomly entered proximity hints), 99% by the PS- 
FCM {fik for the misclassified patterns and 3% f ik  entered per group) and the 
PSP-FCM (fik for the misclassified patterns and 3% f i k  entered per group and 
10% proximity hints per pattern for the misclassified patterns). It is evident that 
the misclassification mode performs much better than the random mode. It 
requires smaller amount o f user supervision and obtains better final accuracy (this 
is especially visible for the PS-FCM; in the random mode it achieved 92% 
accuracy for 12% f k  and 99% accuracy for only 3% f k  in the misclassification
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mode and the PSP-FCM -  70% and 99% respectively). The random mode 
obtained comparable or better results for the P-FCM in two situations.

The accuracy in the classification mode was significantly improved over the 
standard FCM accuracy (from 40% to 96% for the PS-FCM and the PSP-FCM). 
This demonstrates that the user supervision may help in constructing fuzzy 
classifiers where the prototypes can be used to classify patterns outside o f the 
training set.

6.3.5 Glass identification database
The glass identification database contains 214 patterns. The classification task is 
to correctly assign patterns to 3 groups o f  different kinds o f glass based on the 
chemical constituents as features.

6.3.5.1 Knowledge incorporation
We followed the experimentation m anner and param eters’ values for the 
algorithms assumed for previous experiments. The dataset was divided into 
training and testing set (70%-30%). Class membership information f ik  for the 
PSP-FCM was entered for the misclassified patterns and for 3%-18% correctly 
classified patterns per class. The proximity hints for the P-FCM were entered for 
the misclassified and the wrongly classified patterns for 10-30% o f  the closest 
patterns in each cluster. The PSP-FCM algorithm parameters merged the PS-FCM 
and the P-FCM parameters. The results for are presented in Tables 6-22, 6-23, 6 - 
24.

T a b ic  6 -2 2 . A v era g e  a ccu racy  for  c lu ster in g  and  c la ssifica tio n  (1 0  tr ia ls) o f  the FCM  and the
P S -F C M .

Algorithm and 
parameters

Form o f  user knowledge Training dataset Testing dataset

FCM 
m=2.0; 20 iter; c=3 0.56 ±  0.004 0.70 ± 0

Random Mode

(3%) fik  randomly entered per 
group 0.58 ± 0 .0 1 0.70 ± 0 .0 0 4

(6%) f i k  randomly entered per 
group 0.59 ± 0 .0 1 0.70 ± 0 .0 0 4

PS-FCM
(9%) f i k  randomly entered per 
group 0.60 ± 0 0.70 ±  0.007

a  =1.0; 20 iter; c=3 (12% ) f i k  randomly entered per 
group 0.60 ±  0.03 0.70 ± 0

(15 % )  f i k  randomly entered per 
group 0.61 ± 0 .0 2 0.70 ± 0

(18% ) f i k  randomly entered per 
group 0.63 ±  0 0.69 ± 0 .0 1

Misclassification Mode

PS-FCM a) O fik  entered per group +  0 7 0 + 0
a  =1.0; 20 iter; c=3 b )J ik  for misclassified patterns 0.65 3 :0 .003 0.70 3 :0

a) (3% ) f ik  entered per croup „ , .  ,    „ __ ,_______
b ) f i k  for misclassified patterns 0.64 ± 0 .0 0 3  0.68 +  0.003
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a) (6% ) f i k  entered per group
b ) f t k  for misclassified patterns 0.70 +  0 0.68 ±  0

a) (9% ) f i k  entered per group
b ) f i k  for misclassified patterns 0.73 ± 0 .0 0 2 0.68 ± 0

a) (12% ) f i k  entered per group
b ) f i k  for misclassified patterns 0.75 ± 0 .0 0 3 0.67 ± 0

a) (15% ) f i k  entered per group
b ) f i k  for misclassified patterns 0.77 ± 0 .0 0 5 0.68 ±  0.005

a) (18% ) f i k  entered per group
b ) f i k  for misclassified patterns 0.83 ±  0.002 0.61 ± 0 .0 0 3

T ab le  6-23. A verage  accu racy  fo r c lu s te rin g  and  classification  (10 tr ia ls )  o f  th e  P -F C M .

Algorithm ami 
parameters

Form o f user knowledge
Training
dataset

Testing
dataset

Random Mode

10% o f  randomly entered proximity 
hints 0.59 ± 0 .0 1 0.70 ± 0 .0 0 1

20% o f randomly entered proximity 
hints 0.60 ±  0.02 0.70 ± 0 .0 0 7

P-FCM
~5 0E 4' m~2 O' 20 rant*om 'y entered proximity 

’ ,  hints 
iter; c=3

0.61 ± 0 .0 5 0.70 ± 0 .0 0 6

40%  o f  randomly entered proximity 
hints 0.65 ±  0.02 0.69 ±  0.03

50% o f  randomly entered proximity 
hints 0.65 ± 0 .0 1 0.71 ± 0 .0 1

Misclassification Mode

10% o f  proximity hints for 
misclassified patterns 0.61 ± 0 .0 0 9 0.70 ±  0

20% o f  proximity hints for 
misclassified patterns 0.60 ± 0 .0 0 7 0.70 ± 0 .0 0 4

P-FCM
c n c  1 n . m  30% o f  proximity hints for a  =5.0E-4; m=2.0; 20 . . . 1

misclassified patterns 
iter; c=3 '

0.64 ± 0 .0 1 0.70 ± 0

40%  o f  randomly entered proximity 
hints 0.65 ±  0.02 0.69 ±  0.02

50%  o f  randomly entered proximity 
hints 0.65 ±  0.008 0.71 ± 0 .0 2

T ab le  6-24. A verage  acc u ra c y  fo r c lu s te rin g  an d  c lassification  (10 tr ia ls )  o f  the  P S P -F C M .

Algorithm and 
parameters

Form o f user knowledge Training
dataset

Testing dataset

Random Mode

PSP-FCM 
a  =5.0E-4; m=2.0; 

20 iter; c=3

a) (9%)fik randomly entered per group
b) 20% o f  randomly entered prox. hints

- 8 4 -
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p r o x  = p r o x  +  0 .5  a) (12%) f i k  randomly entered per group
( a n d  p r o x  = p r o x  - b) 20% o f randomly entered prox. hints

0 -5 )________________________________________________
Misclassification Mode

PSP-FCM 
a  =5.0E-4; ni=2.0; 

20 iter; c=3

p r o x  =  p r o x  + 0 .5  
( a n d  p r o x  -  p r o x  - 

0 .5 )

a) (9%) f i k  entered per group
b )  f i k  for misclassified patterns
c) 20% o f proximity hints per pattern (for 
misclassified patterns)
a) (12%) f i k  entered per group
b ) f i k  for misclassified patterns
c) 20% o f proximity hints per pattern (for 
misclassified patterns)

0.77 ± 0 .0 3  

0.80 ± 0 .0 3

0.67 ±  0.004 

0.68 ± 0 .0 1

6.3.5.2 Observations
The results obtained seem to confirm that the user supervision mechanisms are 
useful. The standard FCM obtained 56% accuracy in the clustering mode. The 
best improvement was observed for the PS-FCM in the misclassification mode -  
83% accuracy (the random mode obtained only 63% accuracy). The difference 
between the performance o f the random mode and the misclassification mode for 
the P-FCM was smaller. In the misclassification mode the P-FCM recorded 64% 
accuracy (over 61% in the random mode). The PSP-FCM proved to perform 
better in the misclassification mode: 80% accuracy against 59% accuracy in the 
random mode.

The classification accuracy was oscillating around the accuracy obtained from 
the standard FCM and we did not observe any significant improvement or 
deterioration o f the accuracy. The accuracy for the FCM is 70%, which is 
unexpectedly high in respect to the clustering experiment (56%).

6.3.6 Thyroid gland database
The thyroid gland database contains 215 patterns. The learning task is to classify 
patterns to 3 groups o f different kind o f  diseases based on the results o f five 
laboratory tests.

6.3.6.1 Knowledge incorporation
We followed the experimentation manner and the parameters for assumed for 
other datasets. The dataset was divided into training and testing set (70%-30%). 
Class membership information f i k  for the PSP-FCM was entered for the 
misclassified patterns and for 3% -15% correctly classified patterns per class. The 
proxim ity hints for f ik  P-FCM were entered for the misclassified and wrongly 
classified patterns for 10-30% o f the closest patterns in each cluster. The PSP- 
FCM algorithm parameters merged the PS-FCM and the P-FCM parameters. The 
results for are presented in Tables 6-25, 6-26, 6-27.

T ab ic  6-25. A verage  accu racy  fo r c lu s te rin g  a n d  c lassification  (10 tr ia ls ) o f the FCM  and  th e
P S -F C M .

^Jw an ic lc rs '1* Form o f user knowledge Training dataset Testing dataset
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FCM 
m=2.0; 20 iter; c=3 0 .8 2 + 0 .0 3 0.62 ± 0 .0 8

Random Mode

PS-FCM 
or =1.0; 20 iter; c=3

(3% ) f i k  randomly entered per 
group
(6%) f i k  randomly entered per 
group
(9 % )  f i k  randomly entered per 
group
( 12%) f i k  randomly entered per 
group
(15%) f i k  randomly entered per 
group

0.82 ± 0 .0 5  

0 .8 4 + 0 .0 8  

0.82 ± 0 .1 4  

0.87 ± 0  

0.90 ±  0

0.65 ± 0 .1 1  

0.64 ±  0.05 

0.67 ± 0 .0 6  

0.64 ± 0 .0 0 9  

0.71 ± 0

Misclassificalion Mode

a) 0 f i k  entered per group
b ) f i k  for misclassified patterns 0.96 ± 0 .0 3 0.72 ±  0.07

a) (3%) f i k  entered per group
b ) f i k  for misclassified patterns 0.85 ± 0 .1 1 0.66 ± 0 .0 9

PS-FCM

a) (6% ) f i k  entered per group
b ) f i k  for misclassified patterns 0.95 ±  0.08 0.87 ± 0 .1 4

or =1.0; 20 iter; c=3 a) (9% ) J ik  entered per group
b ) f i k  for misclassified patterns 0.92 ± 0 .1 1 0.75 ± 0 .0 1

a) (12%) f i k  entered per group
b ) f i k  for misclassified patterns 0.98 ±  0.00S 0.73 ±  0.009

a) (15%) f i k  entered per group
b ) f i k  for misclassified patterns 0.99 ± 0 .0 0 7 0.73 ± 0 .0 1

T ab ic  6 -26 . A vera g e  a ccu ra cy  for  c lu ster in g  and c la ssifica tio n  (10  tr ia ls) o f  the P -FC M .

Algorithm and 
parameters Form o f  user knowledge Training

dataset
Testing
dataset

Random Mode

10% o f  randomly entered proximity 
hints 0.84 ± 0 .0 1 0.63 ± 0 . 0 1

20% o f  randomly entered proximity 
hints 0.84 ± 0 .0 0 9 0.64 ±  0

P-FCM 
a  =5.0E-4; m=2.0; 20 

iter; c=3

30% o f  randomly entered proximity 
hints 0.86 ± 0 .0 1 0.64 ±  0

40%  o f  randomly entered proximity 
hints 0.87 ± 0 .0 1 0.64 ±  0

50% o f  randomly entered proximity 
hints 0.90 ±  0.02 0.64 ±  0

Misclassification Mode
P-FCM 

a  =5.0E-4; m=2.0; 20 
iter; c=3

10% o f  proximity hints for 
misclassified patterns 0.85 ±  0.005 0.67 ± 0 .0 2

20% o f  proximity hints for 
misclassified patterns 0.82 ± 0 .0 9 0.61 ± 0 .1 0
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30% o f  proximity hints for 
misclassified patterns 0.88 ±  0.03 0.62 ± 0 .0 8

40% o f  randomly entered proximity 
hints 0.78 ± 0 .1 2 0.57 ± 0 .1 1

50% o f  randomly entered proximity 
hints 0.85 ± 0 .1 4 0.63 ± 0 .0 8

Tabic 6-27. A verage accuracy for clustering and classification (10 tria ls) o f the PSP-FCM .

Algorithm ami 
parameters

Form o f  user knowledge
Training
dataset

Testing dataset

Random Mode
PSP-FCM 

a  =5.0E-4; m=2.0; 
20 iter; c=3

a) (9%) f i k  randomly entered per group
b) 10% o f  randomly entered prox. hints 0.85 ±  0.007 0.74 ± 0 .1 0

prox =  prox +  0 .5  
(and prox = prox - 

0 .5 )

a) (12%) f i k  randomly entered per group
b) 10% o f  randomly entered prox. hints 0.98 ± 0 .0 1 0.73 ±  0.009

Misclassification Mode

PSP-FCM 
a  =5.0E-4; m=2.0; 

20 iter; c=3

prox -  prox +  0 .5  
(and prox = prox - 

0 .5 )

a) (9%) f k  entered per group
b)f k  for misclassified patterns
c) 10% o f  proximity hints per pattern (for 
misclassified patterns)
a) (12% ) f k  entered per group
b)f k  for misclassified patterns
c) 10% o f  proximity hints per pattern (for 
misclassified patterns)

0.99 ±  0.009 

0.98 ± 0 .0 1

0.73 ± 0 .0 1  

0.72 ± 0 .0 1

6.3.6.2 Observations
The experiments on the thyroid gland database show that the user supervision 
helped to improve the results. In the clustering experiment the PS-FCM improved 
from initial 82% o f the standard FCM ’s accuracy to 90% in the random mode and 
to 99% in the clustering mode. The P-FCM was able to achieve 8 6 % and 8 8 % 
accuracy in the random and clustering mode respectively. Very close performance 
in both modes revealed the PSP-FCM obtaining 98% and 99%  o f accuracy.

In the classification experiments we obtained good results too. Each algorithm 
improved the accuracy level o f  the standard FCM (62%). The highest accuracy 
obtained the PSP-FCM -  74%.

It is evident that the random mode of applying user supervision was able to 
improve the accuracy over the standard FCM results. Even better performance for 
all algorithms was obtained the misclassification mode. The user input was 
valuable in classification experiment. There was a visible improvement over 
standard FCM.

6.3.7 Summary and protocol for other experimentation
This section summarizes the results obtained and suggests the procedure to be 
undertaken in a particular experimental setting. The experiments were performed 
on 7 Machine Learning databases. The overall quality o f the results achieved with 
the aid o f  user supervision is impressive. To compare the performances, a table
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was created to summarize the average percentage o f  accuracy improvement in the 
clustering mode (Table 6-28). The values were entered if  the difference between 
the standard FCM accuracy and the accuracy o f  PS-FCM, P-FCM  or PSP-FCM 
was larger than 2%. When the improvement was smaller than 2% the field was 
left blank. In the clustering experiment it was observed that there was 
improvement for every dataset in the misclassification mode and in most cases for 
the random mode. Only one case was recorded when the accuracy was smaller in 
the clustering m ode than in the accuracy o f  FCM. This accuracy drop o f 3% was 
observed only for the random mode of the W isconsin Diagnostics Breast Cancer 
database. Evidently if we compared the results, the misclassification mode would 
prove to be better than the random mode. The performance gain in some cases 
was larger than 1 0 0 %.

T able 6-28. T he im provem ent of the average accuracy in the clustering mode.

# Dataset PS-FCM P-FCM PSP-FCM

Random Misclass. Random M isclass. Random Misclass.
mode mode mode M ode m ode mode

1 W ine 3% 3% 3%
recognition

2 Image 17% 21% 11% 21%
segm entation

3.1 W ise. Diag. 4% 8% 8% 9% 6%
Breast C ancer

3.2 W ise. Prog. 25% 38% 16% 37% 6% 33%
Breast C ancer

4 D erm atology 50% 56% 33% 22% 27% 56%

5 Glass 7% 27% 9% 9% 24%
Identification

6 Thyroid gland 8% 17% 8% 6% 40% 41%

We analyzed the results o f the classification experiment in the same way. This 
time two tables were created; one for improved accuracy and the other one for the 
results where the performance deteriorated, and was worse than the results from 
FCM (Table 6-29 and Table 6-30). The data were entered only when the 
difference (improvement or drop) was larger than 2 % and the rest o f  the fields 
were left blank. The values for the deteriorated table were taken as the highest 
accuracy achieved for any o f the parameters (user input) for a particular algorithm 
and mode (random or misclassification).

T abic 6-29. T he im provem ent o f the average accuracy in the classification mode.

~ # D ataset PS-FCM P-FCM  PSP-FCM

Random Misclass. Random M isclass. Random  Misclass. 
_________________________ mode mode m ode m ode m ode mode

1 W ine 
recognition

2 Im age 8% 9% 7%
segm entation
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3.1 W ise. Diag. 3%  3% 3% 3% 3%
B reast Cancer

3.2 W ise. Prog. 3%  9% 5% 9%  3%
B reast Cancer

4 D erm atology 43%  55% 37% 27% 56%  56%

5 G lass
Identification

6 T hyroid gland 9%  25% 5% 12% 11%

T abic 6-30. The deterioration o f  the average accuracy in the classification mode.

# D ataset PS-FCM P-FCM PSP-FCM

Random M isclass. Random M isclass Random  M isclass.
m ode m ode m ode mode m ode mode

1 W ine
recognition

2 Im age 4%
segm entation

3.1 W ise. Diag. 5%
B reast Cancer

3.2 W ise. Prog. 3%
B reast Cancer

4 D erm atology

5 G lass 7%
Identification

6 T hyroid  gland

The results o f  the classification experiment are better than the accuracy o f FCM 
for all datasets in the misclassification mode. There was only one scenario when 
the accuracy dropped, and this resulted in the random mode. Random 
improvement o f  the structure does not provide the desired results, and it is better 
to proceed in an organized manner. This makes the fact stronger in that the 
misclassification mode is the preferred application mode o f  user knowledge. It is 
seen in the results that the gain o f accuracy is smaller in the classification 
experiment than in the clustering experiment, because the user does not have a 
direct influence on the patterns in the testing set. However, if the initial prototypes 
were somehow disturbed and the applied user knowledge brought about the 
structure closer to the original one, we can expect a high performance boost -  e.g. 
in the Dermatology database the performance gain in the classification experiment 
was more than 50% accurate. From this it follows that the user input could be 
beneficial in forming fuzzy classifiers, as it is a generalization from a particular 
dataset to the domain of patterns being classified, and it is very probable that the 
classification decisions made with the aid o f user supervision would achieve 
higher accuracy.

The other important factor to consider is the number o f class membership 
information or proximity hints to enter. The accuracy was plotted for the random 
and misclassification mode for the Image Segmentation database. Although the 
plots will be different for each dataset, it is possible to depict some recurring
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behaviours. The accuracy for PS-FCM will grow continuously with the increase 
in num ber o f  class membership information in the misclassification mode. The 
accuracy in the random mode will grow more slowly and tend to stabilize at some 
value (usually not reaching 99% accuracy as in the other mode) (Fig. 6-3).

The number o f patterns for which we would enter the proximity hints will 
improve the accuracy only to a certain number o f patterns -  in most cases less 
than 50% o f  the patterns for a group. A fter reaching this number the accuracy 
starts to decrease. This is associated with the larger number o f hints that will 
modify the original structure, but it is important to note that the modification is 
not always desirable. In our experiments we specified the proximity between two 
patterns by adjusting it with a 0.5 constant. The degree o f proxim ity varies greatly 
inside the cluster, and it can be correct to assume that a few o f  the closest patterns 
to our misclassified pattern would have the same, very high, level o f  proximity. 
But this unnecessarily might be the case for the other patterns -  especially for 
those located far in another part o f the cluster. This effect is even more visible in 
the random mode when we choose any two patterns within the cluster and specify 
the level o f proximity between them. In the end, the results for the random mode 
for P-FCM provide worse results than standard FCM. It is obvious in the random 
m ode that because the patterns are being chosen in a fully random way, it is easy 
to skip the patterns likely to be misclassified and enter the proximity for the 
patterns well associated with correct clusters. This is an obvious fact but 
important to remember when comparing between the modes.

The user supervision for the PSP-FCM algorithm is a hybrid o f two previous 
techniques. Typically for mergers o f  different techniques, it shares the advantages 
and disadvantages o f the methods. The accuracy o f PSP-FCM exhibits more 
stable behaviour than P-FCM, but usually obtains lower performance than PS- 
FCM. However in some cases (Thyroid Gland) it may obtain equally high 
accuracy for smaller amount o f user supervision than any o f  the other methods 
alone.

■♦— PS-FCM Random —M— PS-FCM Misclass. FCM

1 -I
0,95 - 

0,9 - 

0,85 - 

0,8  - 

0,75

*—

0,65 -

0.55 

0,5 -

0.0% 0.5% 1.5% 3.0% 4.5% 6.0% 7.5% 9.0%

Figure 6-3. Random and classification m ode com parison for the PS-FCM .
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-P -FC M  R andom  — ■ — P-FCM  M isclass. FCM

1

0,95 

0.9 

0,85

0.8  • 

0,75 

0,7 

0,65 

0,6 

0,55 

0,5

B---

10% 20% 30% 40% 50%

Figure 6-4. Random and classification m ode com parison  for the P-FCM.

-P-FCM Random — P- FCM Misclass. FCM

1

0,95

0,9

0,85

0,8

0.75

0,7

0,65

0.6

0,55

0.5

3%-30% 3%-40% 4.5%-30% 4.5%-40%

Figure 6-5. Random and classification m ode com parison for the PSP-FCM .

There is another advantage o f the misclassification mode over the random mode 
that has not yet been mentioned: it is that there only needs to be a smaller amount 
o f user supervision to enter in order to improve the results, and only the 
application o f  the user input in the places where it is necessary. For instance, in 
the Dermatology database the results reached 99% for only misclassified patterns 
whereas the random mode obtained only 92% having 12% o f all patterns entered.

In the experiments we also made a comparison between the values by which 
the proxim ity hints were adjusted for P-FCM algorithm. The following was 
evaluated: the modification by the constant (0.5) and the value 1/c, where c is the 
number o f  clusters. The first approach worked well in the experiments. The 
second one performed better for a smaller num ber o f  clusters achieving, in fact, 
the value 0.5 for c=2. However, for a larger num ber o f  clusters the change was 
too small to be significant.

Based on the above discussion and the experimental part, it is advisable to 
proceed with the misclassification mode as it performs better, exhibits more 
desirable features, and is more efficient. These assum ptions will be evaluated by 
applying them for the next dataset -  Web pages collection. All above conclusions
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and observations form a well-defined protocol o f  actions to be taken in a certain 
experimental schema. The protocol is presented as a sim plified decision tree in 
the Fig. 6 -6 .

NO YES

NO YES

NO YES

NO YES

b) c la ss  memberhip 
~ n  information

a) proximity h in ts

R andom  m ode

modify th e  proximity hints with 
0.5 co nstan t

FCM or PS-FCM (when c luste r 
m em bership Info available)

PS-FCM, PSP-FCMFCM o r P-FCM (when relational 
________ data available)________

modify the proximity h in ts with 
1/c (where c is # of c luste rs)

M isclasslcation  m ode

P-FCM, PSP-FCM

Is the  relational know ledge of 
patterns available?

Is the  c luste r m em bership of 
patterns available?

Provide the know ledge for 
maximal 30-40% of the  pa tte rn s 

from single c luste r

\ /
Is the  num ber of c lu s te rs  in the 

d a ta se t g reater than  3?

Amount of u se r superv ision  
used  for Its different type

Provide any am ount of the 
know ledge which is available 

(the accu racy  will not detriorate)

Is the  m isclassified pa tte rn s 
information available?

The protocol m aximization the  accuracy  for a  particu lar experim ental 
se tting  assu m in g  th e  u sag e  o f u ser supervision  for c luste ring  a n d  classification

F igu re  6-6. T he  p ro toco l o f app lica tion  o f u se r su p e rv is io n .

6.4 Web Pages dataset experiment
Partitioning o f a set o f  Web pages into clusters refers to formation o f  groups in 
dataset o f "similar’ Web documents. In such cases a user would expect to find in 
the same cluster similar pages in terms o f their semantic (thematic) content. For 
instance, pages describing windsurfing are more similar to sailing pages than to 
e.g. basketball pages (or other sports related pages) and should be assigned to the 
more general (broader) category o f sailing. The proper grasping o f the concept of 
similarity between the pages plays the key role here.
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This study concerned with Web pages dataset starts with an extensive part 
analysing the information content o f  Web pages, which provide interesting and 
valuable insights about the structure [4]. This is followed by the experimentation 
with the user supervision, where user input will be used to improve the cluster 
structure.

6.4.1 Web Pages dataset analysis with FCM
6.4.1.1 Feature space and dimensionality
We analyzed the first Web pages dataset. Dimensionality o f  the feature vectors 
varies significantly from 2 dimensions up to 263 in the longest vector. The 
average dimensionality is equal 26 keywords per vector. The number o f 
occurrences o f  keywords (relative frequencies) in the vectors used in the 
experiments varies from 1 up to 129. The average number o f  occurrences o f 
keywords was equal to 6 . The average distribution o f  keywords in the documents 
reveals some regular patterns. Usually, only few keywords have higher and 
significantly larger number o f  occurrences and the rest has only two and one 
occurrences (Fig. 6 -6 .).

2S<Xh--------------------------------------------------
wtmiWivknt

1 2 3 4 5 6 7 6 9  10II Q 1314151617 1619202122233*252627262930313233

F ig u re  6-7. T he  h is to g ram  o f  the  n u m b e r  o f  occu rren ces (re la tiv e  freq u en c ies) o f  th e  
keyw ords fo r the  W eb page: w w w .fish -haw k .o rg  - fish ing on line resou rces.

As we can observe in Fig. 6-7, flat distribution o f numbers o f  occurrences o f 
keywords was equalized by tf-idf scheme (the set o f Web pages from the ‘fishing’ 
category only was taken to obtain the tf-idf weights). The modified weights 
gained different distribution o f values and this is the reason why the order o f  the 
keywords was slightly changed. Table 6-31 presents first 15 out o f 33 keywords.

30.00

25.00

20.00

15.00

10.00 

5.00 
0.00

□  Number of occurrences BTf-idf scheme

F ig u re  6-8. C o m p ariso n  betw een  w eig h tin g  schem as fo r th e  W eb page: w w w .fish -h aw k .o rg .
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T able 6-31. Com parison between w eighting schem as for the http://w w w .fish-haw k.org W eb
page.

Relative frequency T f-id f schem e
# Keyword W eight K eyword W eight
/ fish 23 fish 25.24
2 bass 4 manufactur 13.05
3 river 3 river 11.15
4 lip 3 tip 11.15
5 canada 2 map 11.05
6 hawk 2 Ottawa 11.05
7 lake 2 hawk 9.S8
8 largemouth 2 smallmoulh 9.SS
9 link 2 largemouth 9.05
10 manufactur 2 muski 9.05
II map 2 Ontario 9.05
12 muski 2 bass 8.26
13 Ontario 2 canada 7.88
14 Ottawa 2 site 7.05
15 pictur 2 w alley 7.05

6.4.1.2 Construction offeature space fo r  FC M
A set o f  feature vectors accepted by the FCM algorithm is denoted by: 
X  = {a-,,.v2 vB} where x j e R p . Apparently, the vectors constructed from

keywords have various dimensions thus we need a process, which would adopt 
these vectors to the algorithm’s constraints. Therefore the concept o f the universe 
vector was introduced. The universe vector gathers all terms from entire Web 
document collection taken to clustering process. In the next step, the length o f 
every vector from the Web document set is extended to the dimension o f  the 
universe vector filling the extended spaces with ‘0 ’ frequency. Finally, all the 
weights in the vectors are normalized to the interval [0 , 1 ] and sorted in the 
descending order.

6.4.1.2 Fuzzification coefficient
Higher values o f the fuzzification coefficient (fuzzifier m) support the trend to 
spread the degrees o f ‘fuzzy’ membership o f  the vectors over all clusters. 
Alternatively, when assumed /;/ —> 1, the fuzzy partition matrix will consist only 
o f  0 ’s and 1 ’s and in this case entire value o f the fuzzy membership would appear 
only in one cluster (hard c-partitions).

The experiments were performed with the standard value o f the fuzzifier ni=2. 
This value turned out to be too large for two largest sets and the fuzzy 
membership values for the vectors in the partition matrix had the same values for 
each cluster. The value equal to m = l.l  was assumed in this case.

Fig. 6 - 8  and Fig. 6-9 show the partition matrix for the parameter m equal 2.0. 
For simplicity and clarity o f  figures we presented the results of clustering o f  the 
dataset consisting o f two categories ‘Fishing’ and ‘Halloween’ category, there 
were gathered 92 pages in the whole dataset (Section 3. Datasets description). 
Evidently, the algorithm formed two easily distinguishable clusters.
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F ig u re  6-9. Fuzzy p a rtit io n  m a trix  m em b ersh ip  g rad es g ra p h : H allow een category .
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F ig u re  6-10. Fuzzy p a r tit io n  m a trix  m em b ersh ip  g rad es g ra p h : F ishing category .

For the same dataset we tested the convergence o f the algorithm assuming 
different values o f  the parameter m. The algorithm converged very fast and in a 
few iterations (4-7) we obtained the final partition matrix. Thus we assumed 10 
iterations as the number o f  iterations throughout the experimentation. In Fig. 6-10 
values o f the objective function for m equal 1.5 and 1.1 are presented. In general, 
decreasing the value o f  m eliminates the amount o f ‘fuzziness’ from the partition 
matrix and the membership values tend to be closer to 1. We set up the value 
m = l.l .  In practice we obtained very close results for m in the range 1.1-2.0 but 
higher values generated undesired amount o f fuzziness in the partition matrix and 
FCM w asn’t able to determine proper number o f  clusters for larger datasets.
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F igure  6-11. T he  o b jec tiv e  function  values fo r 10 ite ra tio n s.

6.4.1.4 Prototypes analysis
In order to evaluate clustering process the prototypes o f  the clusters were 
examined more carefully. The results seem to confirm the intuition. There were 
investigated terms and weights o f  the prototypes from both clusters with the 
vectors having the largest degree o f  membership in the cluster. The results make 
perfect sense. Clearly, in the cluster centers and selected pages the largest weights 
gained keywords the mostly associated with the category i.e. the keyword ‘fish’ in 
‘Fishing’ category and the keyword ‘Halloween’ in ‘Halloween’ category. In the 
first 2 0  terms with the largest weights the keywords appearing in both cluster 
centre and Web page were marked with shaded area (Table 6-32).

T ab le  6-32. C om parison  betw een  c lu s te rs  cen te rs  an d  W eb pages w ith  the  h ighest 
m em bersh ip  values in th e  c lu s te rs  (R ela tive  frequenc ies used).

Cluster 1 
Prototype

Terms

(Fishing)

ll'e ig
Ills

Page with highest 
membership 
degree = 0.999 
Terms ll'eig  

Ills

Cluster 2 (Halloween) 
Prototype

Term s ll'e ig  
his

Page with highest 
membership 
degree = 0.999 
Term s ll'eig  

Ills

Misclassified page 
with membership 
degree = 0.663 
Term s  HWg 

Ins
fish 0.924 fish 1 .000 haltoween 0.816 haltoween 1 .000 catfish 1.000
bass 0.1 SS bass 0.174 haunt 0.241 costum 0.111 blue o u t
trout 0.162 river 0.120 costum 0.116 m ovi 0.111 channel 0.111
p ike 0.1 OS tip 0.120 hous 0.109 adult 0.056 fia thead 0.111
angl 0.106 canada 0.087 gam e 0.106 clipart 0.056 link 0.111
carp 0.097 hawk 0.087 ghost 0.104 craft 0.056 pictur 0.111
hunt 0.092 lake 0.087 horror 0 099 curti 0.056 stori 0.111
boat 0.090 largemouth 0.087 trivia 0.087 decor 0.056 aaron 0
tackl 0.089 link 0.087 treat 0.082 gam e 0.056 abend 0
sport O.OSS manufactur 0.087 witch 0.078 ja m i 0.056 abigail 0
bait 0.084 map 0.087 p a r ti 0.078 lee 0.056 abroad 0
lure 0.084 muski 0.087 trick 0.077 mask 0.056 accommod 0

fly 0.084 Ontario 0.087 liolidai 0.075 pictur 0.056 activ 0
angler 0.082 Ottawa 0.087 hallow 0.071 prop 0.056 adam 0
lake 0.070 pictur 0.087 stori 0.071 spooki 0.056 addon 0
outdoor 0.067 pike 0.087 spooki 0.068 aaron 0 adult 0
rod 0.062 site 0.087 pum pkin 0.066 abend 0 advcrlis 0
page 0.062 smallmouth 0.087 recip 0.065 abigail 0 affili 0
photo 0.055 stori 0.087 scari 0.065 abroad 0 air 0
gu id 0.055 trout 0.087 decor 0.059 accom m od 0 alabama 0

It is easily noticeable that the first terms in the vectors, which have the largest 
impact in the clustering process (the largest weights) appeared within first 2 0

- 9 6 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



keywords o f  1128-dimensional vectors in both cluster centre and Web page. The 
only miss-classified page was http://www.catfished.com  (Fig. 6-11), which 
contains a very small number o f keywords.

+ ..............
'^ F Is h -H a w k .N e t
B i

F ig u re  6-12. T h e  ‘b e s t’ rep re sen ta tiv e  page  from  F ishing ca teg o ry  (left) an d  m iss-classified
page (righ t).

The keyword ‘catfish’ with the largest weight appear in both prototypes only after 
first 80 keywords, while other keywords less associated with fishing category like 
‘pictur’ (after stemming) appeared earlier (with larger weight) in the ‘Halloween’ 
category prototype than ‘catfish’ keyword. This could be the reason for miss- 
classification. Moreover, the membership degree o f  this page to ‘Halloween’ 
category is not very high (equal to 0.663) what explains that this page is not 
strongly associated with the category it was assigned to. As presented in Table 6 - 
32 prototypes from both categories do not have any terms in common within the 
first 2 0  terms.

In Fig. 6-12 are presented the prototypes from the dataset 1 and their weights’ 
distribution. It is remarkable that few dominant keywords have distinctly higher 
values o f  weights.

0,25

0,20  •

901 1001 1101

0,05 •

0,00
701301 401 501 601 8011 101 201

P ag es no.
1 1 "  F i s h in g  Halloween

F ig u re  6-13. P ro to ty p es an d  th e ir  w e ig h ts’ d is tr ib u tio n . (R e la tive  freq u en c ies  used).
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6.4.1.5 Results
This section is concerned with extensive numeric experimentation that will lead to 
some general observations as to the behaviour o f  the FCM in the highly 
dimensional textual space o f  the Web pages. The accuracy is calculated for 
relative frequencies and tf-idf scheme for all datasets. In this experiment it is 
introduced also another similarity measure. Besides the Euclidean distance it was 
used another measure o f  similarity, derived from well known in Information 
Retrieval cosine similarity measure.

sim(u,v) =  1 - c o s .v/»i (i/ , v ) =  1 — 0̂r c o s s < 0 ,  — >  ( 6 )MM 2
W here cossim(u.v) is the cosine similarity measure. The cosine o f  the angle 
between two vectors does not fulfill metric properties, in fact does not meet the 
criteria o f  triangle equality and d(x,x) = 0. Above derived similarity still doesn’t 
fulfill triangle equality but meets the second condition. The obtained results are 
very good. This similarity measure produced better results and is more stable for 
both weighting schemas then the Euclidean distance.

Relative frequencies scheme performed better than tf-idf. Tf-idf scheme 
provided worse results and was sensitive to initialization. According to the 
observations this is due to equalization o f weights in tf-idf method where a few 
predominant keywords from the previous scheme (relative frequencies) lost their 
inevitable prevalence. The second reason is the relatively rare vector space. In 
some cases it was easy to foresee the drop o f  the accuracy. This happened for the 
9th dataset. The categories o f  Email, Web hosting and Web design used very 
similar and general set o f keywords describing them, e.g. ‘w eb’, ‘free’, ‘host’, 
‘site’, ‘page’. For this dataset, the accuracy was considerably lower then in other 
ones.

T ab ic  6-33. A ccu racy  resu lts  fo r  E uc lidean  d is tan ce  and  1 -cosine  s im ila rity , m =2.0.

tt Dalasct Dirncn Relative frequency T f-idf weighting scheme
sion Euclidean

distance
1 - cosine Euclidean

distance
1 - cosine

1 F is h in g :  H a l to w e e n 1 1 2 8 0.99 ±  0.0 0.99 ±  0.0 0.92 ±  0.005 0.99 ± 0 .0
2 F is h in g ;!  la l lo w e c n ;  

G o l f
I S 4 9 0.98 ±  0.0 0.95 +  0.127 0.97 ±  0.008 0.98 ±  0.045

3 F is h in g ;1  la l lo w e e n ;  
C a r e e r s

1 6 2 7 0.97 ±  0.0 0.99 +  0.0 0.96 ± 0 .0 1 4 0.99 ±  0.0

4 F is h in g ;  H a l lo w e e n ;  
G y m n a s tic s

I S 3 3 0 .9 5 +  0.1 II 0.94 ± 0 .1 1 2 0.60 ± 0 .0 1 4 0.94 ± 0 .1 1 5

5 F is h in g ;  H a l to w e e n ;  
G y m n a s tic s ;
C a r e e r ;

2 2 7 2 0.94 ± 0 .0 8 6 0.89 ± 0 .1 3 6 0.60 ± 0 .1 3 6 0.91 ± 0 .1 2 1

6 C lo lh in g .C o l le c t in g ;  
C o o k in g ;  F is h in g ;  
G o lf;  H a l lo w e e n ;  
K il ls  A r t;  
S n o w b o a r d in g

3 6 6 0 0.78 ±  0.075 0.88 ± 0 .0 7 3 0.76 ± 0 .0 4 1 0.85 ±  0.090

7 A ir p o r ts ;  C y c l in g ;  
P la n ts

5 4 5 0 0.99 ±  0.0 0.99 ± 0 .0 0.63 ±  0.038 0.98 ±  0.0

S S n o w b o a r d in g ;
S k a tin g ;

1 9 8 3 0.96 ±  0.075 0.96 ±  0.076 0.67 ± 0 .1 4 5 0.95 ± 0 .1 0 4
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S n o w m o b il in g ;
C u r l in g

9  E m a il;  W eb  h o s t in g ;  3 2 4 9  0.83 ± 0 .0 2 3  0.85 ±  0.005 0.60 ± 0 .0 2 6  0.81 ± 0 .0 6 7
 W eb  d e s ig n _________________________________________________________________

6.4.1.6 Feature space improvement
However the accuracy o f the classification is quite impressive, this approach has 
one significant disadvantage. A large number o f keywords in Web pages causes 
the dimensionality explosion. In order to overcome this problem each vector was 
truncated. Only the most important keywords with the largest weights remained. 
After such an operation the dimensionality increase linearly according to the 
number o f  pages and categories.

The accuracy was evaluated for the vectors’ lengths from 1 up to 20 for the 
dataset with nested categories (Fig. 4-3). It is easily seen that the accuracy 
increases with the number o f keywords included in a vector (Fig. 6 -13a). In Fig. 
6 -13a we present growth o f the dimensionality o f  the vectors. At the very small 
vectors’ length the accuracy can behave in not a very stable way (can vary 
depending on a specific keyword) but after reaching the length o f  17-18, accuracy 
stabilizes at the level of maximal accuracy. Based on the results o f  this 
experiment the results for the vectors’ length were truncated to 5 and 20 
keywords. With the length o f 5 only the most dominant keywords are used, which 
is sufficient to obtain reasonable results and considerably decrease 
dimensionality.

The results with the vectors’ length o f  20 proved that it is not necessary to 
include all keywords in the vectors. The accuracy will not be further improved 
after including more keywords. There is an interesting fact that can be observed 
with the vectors truncated to the length equal to 20. The classification results after 
such operation were improved (for most o f  datasets) in comparison to full vector 
length and are the best from all our experiments. This fact allows arguing that at 
the beginning o f  the vector appear the most significant keywords. Less important 
keywords or keywords accidentally included in the vector appear on further 
positions in the vector. These keywords are eliminated after truncating o f  the 
vector and do not lower the accuracy.
The accuracy results are presented in Table 6-34.

JK 0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Num ber o f keywords 

(a)
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1 2  3  4  5  6  7  8  9  1 0  11 1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  2 0

N um ber o f  k ey w o rd s  

(b)

F igu re  6-14. T he  acc u ra c y  ev a lu a tio n . F o r each length  th e re  is show n s ta n d a rd  dev ia tio n  fo r 
5 exp erim en ts , (a) T h e  g ro w th  o f  th e  d im ensionality , (b) R elative freq u en c ies  used.

T ab le  6-34. A ccu racy  re su lts  a f te r  tru n c a tin g  the  vectors leng ths ca lcu la ted  u sing  th e  re la tive  
frequenc ies  schem e, m = 2 .0 ,10 ite ra tio n s .

Accuracy (max vector length = 5) Accuracy (max v e c to r  length = 20)

It Dataset Dim
ensi
on

Euclidean
distance

1 -  cosine Dime
nsion

Euclidean
distance

1 -  cosine

I F is h in g ;  
H a llo w e e n  
(9 2  p a g e s )

251 0.96 ± 0 .0 1.0 733 1.00 1.00

2 F is h in g ;  G o lf;  
H a l lo w e e n ;  (1 4 1 )

353 0.96 ±  0.002 0.98 ± 0 .0 1031 0.99 ±  0.0 0.99 ±  0.0

3 F is h in g ;  
H a llo w e e n ;  
C a r e e r s  (1 4 7 )

356 0.95 ±  0.002 0.9S ±  0.01 1059 0.97 ± 0 .0 0.99 ± 0 .0

4 F is h in g ;  
H a llo w e e n ;  
G y m n a s tic s  (1 8 3 )

426 0.90 ±  0.005 0.89 ± 0 .1 4 1142 0.92 ±  0.14 0.88 ±  0.1

5 F is h in g ;  
H a llo w e e n ;  
G y m n a s tic s ;  
C a r e e r ;  (2 3 8 )

523 0.90 ±  0.005 0.S5 ± 0 .1 2 1440 0.94 ±  0.08 0.88 ± 0 .1

6 C lo th in g ;  
C o lle c t in g ;  
C o o k in g ;  A r t;  
F is h in g ;  G o lf ;  
H a l lo w e e n ;  K id s  
S n o w b o a r d in g  
(3 0 2 )

722 0.76 ±  0.041 0.77 ± 0 .0 7 2083 0.79 ± 0 .0 3 0.88 ± 0 .0

7 A ir p o r ts ;  
C y c lin g ;  P la n ts  
(7 4 4 )

1332 0.93 ±  0.055 0.95 ±  0.05 3496 0.94 ±  0 0.99 ±  0.0

S S n o w b o a r d in g ;  
S n o w m o b il in g ;  
S k a tin g ;  C u r l in g  
(2 4 4 )

531 0.92 ±  0.003 0.86 ± 0 .1 2 1462 0.97 ± 0 0.94 ±  0.0

9 E m a il;  W eb  
h o s t in g ;
W eb  d e s ig n  ( 5 0 1 )

676 0.67 ±  0.096 0.76 ± 0 .0 2 2102 0.78 ±  0.09 0.83 ±  0.0

1 0 0 -
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The truncation o f keywords to 20 turned out to be a suitable trade-off in reducing 
greatly the dimensionality while preserving the accuracy on very high level. 
However, the number o f features contained in the vectors is still large. W e tried to 
overcome this problem with a well-known technique in information retrieval -  
Latent Semantic Indexing (LSI).

6.4.1.7 Latent Semantic Indexing (LSI)
In the vector space model, a vector is used to represent a Web page. Each feature 
o f the vector corresponds to a keyword and reflects the importance o f  this 
particular keyword in the semantics o f the document. A set o f docum ents can be 
described in terms o f a t x d  term-by-document matrix A . The /-term s are all 
keywords from all documents. The (/-vectors represent the (/-documents and form 
the columns o f matrix A . Thus, we can perceive the av element o f  A as a

magnitude o f importance o f  i-th  term in the document j .  The straightforward 
approach assumes the num ber o f  occurrences of term / in the docum ent j .  In the 
algebraic meaning the document vectors span the semantic content contained in 
the document set. M eanwhile, the geometrical interpretation visualizes the 
documents vectors in the vector space model and allows for com puting the 
distance between them. The power o f  the LSI is apparent and important in two 
aspects: (i) a significant dimension reduction based on rank-k approxim ation, (ii) 
revealing the hidden (latent) semantic information o f the documents’ set.

It is common for vector space models o f Web documents to suffer from high 
dimensionality due to a large number o f  keywords in documents. To reduce 
dimensionality the LSI uses the SVD method (Appendix 2). After decomposition 
o f  the ( x d  term-by-document matrix A into A = U E V r , we can obtain the new 

vectors reduced to k  = m in(/,r/) by multiplying WT by 2  (we can interpret this 
operation as rescaling o f the axes in k dimensional space, by singular values o f 
L ) [  5).

In terms o f revealing the latent information LSI technique overcom es two 
important problems in the information retrieval: synonymy and polysemy. This is 
due to the replacement o f the keyword weights with other set o f  entities, which 
are more reliable indicants. The detailed description and explanations how LSI 
overcomes these problems can be found in [1], [5], [6 ].

The feature vectors’ dimension was reduced with LSI. The accuracy o f  the 
FCM is presented in Table 6-35. The obtained accuracy decreased considerably 
for the Euclidean distance and the similarity based on the cosine similarity. Yet, 
the second similarity measure recorded much better results than the Euclidean 
distance.

T ab ic  6-35. A ccuracy  resu lts  a f te r  red u c in g  the  d im ensionality  w ith  th e  L S I, m = 2 .0 ,10
ite ra tio n s .

Accuracy (max vector length = 20)

U Dataset LSI Euclidean I -  cosine
Reduced distance

______________________________________________Dimension___________________________________
I F is h in g ;  H a l lo w e e n  (9 2  p a g e s )  92 0.65 ±  0.005 0.99 ± 0 .0 0 1
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2 F is h in g ;  G o lf ;  H a l lo w e e n ;  (1 4 1 ) 141 0.74 ±  0.0 0.99 ±  0.004

.? F is h in g ;  H a l lo w e e n ;  C a r e e r s  (1 4 7 ) 147 0.63 ±  0.003 0.94 ±  0.09

4 F is h in g ;  H a l lo w e e n ;  G y m n a s tic s  
( I S 3 )

183 0.61 ± 0 .0 1 0.93 ±  0.02

5 F is h in g ;  H a l lo w e e n ;  G y m n a s tic s ;  
C a r e e r ;  (2 3 S )

238 0.41 ± 0 .0 3 0.49 ±  0.06

6 C lo th in g ;  C o l le c t in g ;  C o o k in g ;  
F is h in g ;  G o lf ;  H a l lo w e e n ;  K id s  Art.- 
S n o w b o a r d in g  ( 3 0 2 )

302 0.44 ±  0.03 0.35 ± 0 .0 6

7 A ir p o r ts ;  C y c l in g ;  I’la n ts  ( 7 4 4 ) 744 0.68 ± 0 .0 1 0.68 ±  0.004

S S n o w b o a r d in g ;  S n o w m o b il in g ;  
S k a tin g ;  C u r l in g  ( 2 4 4 )

244 0.61 ± 0 .0 2 0.79 ±  0.08

9 E m a il;  W eb  h o s t in g ;  W eb  d e s ig n  (5 0 1 ) 501 0.49 ± 0 .0 1 0.72 ±  0.05

6.4.1.8 User supervision fo r  clustering and classification 
In this section we will investigate the possible improvement o f  accuracy when 
applying user supervision. The user input would be applied via mechanisms o f the 
PS-FCM, the P-FCM and the PSP-FCM. The experiments were performed for the 
random mode and the misclassification mode. Because o f a num ber o f  datasets to 
test we fixed the amount o f user supervision available to the same amount for all 
datasets o f Web documents choosing the parameters based on previous 
experiments. For the PS-FCM we assumed 10% o f class assignment information 
per group in the random mode. For the misclassification mode we entered 
information for misclassified patterns. The parameters for the P-FCM were 
constructed in the following way. The number o f  the proxim ity hints entered for 
misclassified patterns per group was equal 30% o f patterns from clusters. In the 
random mode we introduced the average misclassified patters -  this was 30% o f  
patterns from each cluster. Assumption o f theses values for the P-FCM allowed 
for comparing the relative performance o f the random with the misclassification 
mode. The parameters for the PSP-FCM were combined from the PS-FCM and 
the P-FCM.

In Table 6-36 there are presented the results for clustering experiment for the 
random mode, and in Table 6-37 for the misclassification mode. The clustering 
results are followed by the classification results in Table 6-38 and Table 6-39. The 
training and testing set were adjusted according to 70%-30% ratio. The outcomes 
were averaged in 1 0  trails.

T ab le  6-36. R an d o m  m ode accu racy  resu lts  fo r  c lu s te rin g  a f te r  red u c in g  th e  d im en sio n a lity  
w ith  th e  LSI, m =2.0 (fo r sets 6,7 m = l .I ) ,  10 ite ra tio n s .

Accuracy (max vector length = 20) 

it Dataset 1 -  cosine
______________________________________ FCM__________PS-FCM P-FCM________ PSP-FCM

/ F is h in g ;  H a l lo w e e n  (9 2  p a g e s )  1.0 1.0 1.0 1.0

2  F is h in g ;  G o lf ;  l l a l l o w e e n ;  0.98 ± 0 .0 1  0.99 ±  0 0.96 ± 0  0.87 ± 0 .0 8
( 1 4 1 )

3  F is h in g ;  H a l lo w e e n ;  C a r e e r s  0 99 ±  0 002 1-0 1.0 0 78 ±  0 20
( 1 4 7 )

4  F is h in g ;  H a l lo w e e n ;  0.92 ± 0 .1 0  0.92 ±  0 0.89 ± 0 .0 0 6  0.89 ± 0 .0 0 8
G y m n a s t ic s  ( I  S 3 )
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5  F is h in g ;  H a l lo w e e n ;  0.83 ±  0.08 0.91 ±  0.001 0.88 ±  0.04 0.74 ±  0.15
G y m n a s tic s ;  C a r e e r ;  (2 3 S )

6  C lo th in g ;  C o lle c t in g ;  C o o k in g ;  0.83 ±  0.04 0.92 ±  0 0.88 ±  0.03 0.66 ±  0 .19
F is h in g ;  G o lf;  H a l lo w e e n ;
K id s  A r t;  S n o w b o a r d in g  (3 0 2 )

7 A ir p o r ts ;  C y c lin g ;  P la n ts  (7 4 4 )  o.78 ±  0.01 0.98 ±  0 0.79 ±  0.03 0.73 +  0.14

S  S n o w b o a r d in g ;  S n o w m o b il in g ;  0.81 ± 0 .1 1  0.89 ± 0  0.96 ± 0 .0 0 3  0.79 ± 0 .1 6
S k a tin g ;  C a r l in g  (2 4 4 )

9 E m a il;  W eb  h o s t in g ;  W eb  
d e s ig n  (5 0 1 )

0.86 ±  0.02 0.90 ± 0 0.88 ± 0 .0 0 1 0.70 ± 0 .1 7

T a b ic  6-37. M isclassification  m ode a c c u ra c y  re su lts  fo r c lu s te ring  a fte r  red u c in g  the
d im ensionality  w ith  the L S I, m =2.0 (fo r  sets 6,7 m = l.l ) ,  10 ite ra tio n s.

Accuracy (max vector length = 20)

# Dataset 1 - cosine
FCM PS-FCM P-FCM PSP-FCM

/ F is h in g ;  H a l lo w e e n  (9 2  p a g e s ) 1.0 1.0 1.0 1.0

2 F is h in g ;  G o lf ;  H a l lo w e e n ; 0.9S ±  0.01 1.0 0.98 ± 0 .0 1 1.0
(1 4 1 )

3 F is h in g ;  H a l lo w e e n ;  C a r e e r s 0.99 ±  0.002 1.0 1.0 1.0
(1 4 7 )

4 F is h in g ;  H a l lo w e e n ; 0.92 ±  0.10 0.93 ± 0 .0 1 0.92 ± 0 .0 7 0.93 ±  0.02
G y m n a s tic s  ( I S 3 )

5 F is h in g ;  H a l lo w e e n ; 0.83 ± 0 .0 8 0.99 ± 0 .0 1 0.78 ± 0 .0 6 0.99 ±  0.007
G y m n a s tic s ;  C a r e e r ;  (2 3 8 )

6 C lo th in g :  C o lle c t in g ;  C o o k in g ; 0.83 ± 0 .0 4 0.99 ± 0 .0 0 2 0.90 ± 0 .0 4 0.99 ±  0.002
F is h in g ;  G o lf;  H a l lo w e e n ;
K id s  A r t;  S n o w b o a r d in g  (3 0 2 )

7 A ir p o r ts ;  C y c l in g ;  P la n ts  (7 4 4 ) 0.78 ± 0 .0 1 0.98 ± 0 0.79 ± 0 .0 1 0.98 ± 0

8 S n o w b o a r d in g ;  S n o w m o b il in g ; 0.81 ± 0 .1 1 0.98 ±  0.004 0.98 ± 0 .0 0 3 0.98 ±  0.005
S k a tin g ;  C a r lin g  (2 4 4 )

9 E m a il;  W eb  h o s t in g ;  W eb 0.86 ± 0 .0 2 0.99 ±  0.01 0.89 ± 0 .0 0 7 0.99 ±  0.003
d e s ig n  (5 0 1 )

T ab le  6-38. R andom  m ode accu racy  re su lts  fo r classification  a fte r  re d u c in g  the
d im ensionality  w ith  the L S I, m =2.0 (fo r sets 6,7 in==1.1), 10 ite ra tio n s.

Accuracy (max vector length = 20)

it Dataset 1 cosine
FCM PS-FCM P-FCM PSP-FCM

1 F is h in g ;  H a l lo w e e n  (9 2  p a g e s ) 1.0 1.0 1.0 1.0

F is h in g ;  G o lf;  H a l lo w e e n ; 0.87 ± 0 0.87 ± 0 0.87 ± 0 0.87 ± 0 .0 8
(1 4 1 )

3 F is h in g ;  H a l lo w e e n ;  C a r e e r s 0.94 ±  0 0.98 ± 0 0.92 ± 0 0.79 ± 0 .1 8
(1 4 7 )

4 F is h in g ;  H a l lo w e e n ; 0.74 ± 0 0.60 ± 0 0.59 ± 0 .0 0 8 0.51 ± 0 .0 8
G y m n a s tic s  (1 8 3 )

5 F is h in g ;  H a l lo w e e n ; 0.59 ± 0 .1 6 0.59 ± 0 0.82 ± 0 .0 3 0.71 ± 0 .1 2
G y m n a s tic s ;  C a r e e r ;  (2 3 8 )

6 C lo th in g ;  C o lle c t in g ;  C o o k in g ; 0.79 ±  0.09 0.70 ±  0.002 0.71 ± 0 0.68 ± 0 .2 1
F is h in g ;  G o lf;  H a l lo w e e n ;
K id s  A r t;  S n o w b o a r d in g  (3 0 2 )

7 A ir p o r ts ;  C y c l in g ;  P la n ts  (7 4 4 ) 0.77 ±  0.04 0.97 ± 0 0.74 ± 0 .0 1 0.77 ± 0 .1 7

8 S n o w b o a r d in g ;  S n o w m o b il in g ; 0.82 ± 0 .1 5 0.97 ± 0 0.97 ± 0 .0 0 5 0.80 ± 0 .1 6
S k a tin g ;  C a r l in g  (2 4 4 )

9 E m a il;  W eb  h o s t in g ;  W eb 0.77 ± 0 .0 0 9 0.78 ± 0 0.78 ±  0 0.65 ± 0 .1 2
d e s ig n  (5 0 1 )
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T ab ic  6-39. M isc lassification  m ode accu racy  resu lts  fo r  c lassifica tion  a f te r  red u c in g  the 
d im en sio n a lity  w ith  the LSI, m=2.0 (fo r sets 6,7 m = l . l ) ,  10 ite ra tio n s.

Accuracy (max vector length = 20)

# Dataset 1 - cosine

FCM PS-FCM P-FCM PSP-FCM
1 F is h in g ;  H a l lo w e e n  (9 2  p a g e s ) 1.0 1.0 1.0 1.0

2 F is h in g ;  G o lf ;  H a l lo w e e n ;  
(1 4 1 )

0 .8 7 + 0 0.98 ±  0 0.98 ±  0.006 0.98 ± 0

3 F is h in g ;  H a l lo w e e n ;  C a r e e r s  
(1 4 7 )

0 .9 4 + 0 0.98 ± 0 0.9S ±  0 0.98 ±  0

4 F is h in g ;  H a l lo w e e n ;  
G y m n a s t ic s  ( I S S )

0.74 ± 0 0.77 ± 0 .0 1 0.80 ± 0 .0 7 0.78 ± 0

5 F is h in g ;  H a l lo w e e n ;  
G y m n a s t ic s ;  C a r e e r ;  (2 3 S )

0.59 ± 0 .1 6 0.93 ± 0 .0 1 0.61 ± 0 .0 3 0.79 ± 0

6 C lo th in g ;  C o l le c t in g ;  C o o k in g ;  
F is h in g :  G o lf ;  H a l lo w e e n ;
K id s  A r t;  S n o w b o a r d in g  (3 0 2 )

0 .7 9 + 0 .0 9 0.72 ±  0.002 0.71 ± 0 0.71 ± 0

7 A ir p o r ts ;  C y c l in g ;  P la n ts  (7 4 4 ) 0.77 ± 0 .0 4 0.95 ± 0 0.76 ± 0 .0 4 0.94 ± 0

S S n o w b o a r d in g ;  S n o w m o b il in g ;  
S k a tin g ;  C u r l in g  (2 4 4 )

0.82 ± 0 .1 5 0.98 ±  0.006 0.96 ± 0 .0 1 0.98 ± 0 .0 0 6

9 E m a il;  I f'eb  h o s t in g ;  W eb  
d e s ig n  (5 0 1 )

0.77 ± 0 .0 0 9 0.80 ± 0 .0 0 4 0.77 ± 0 .0 1 0.81 ± 0 .0 0 7

6.4.2 Conclusions
The clustering results o f  the standard FCM are based on textual information only. 
Although it is possible to group similar, thematic pages and obtain satisfactory, 
and sometimes even good results, as the experiment’s results showed, another 
source o f input is immensely beneficial. The user guidance may rely on other, 
non-textual characteristics o f  Web pages, such as multimedia, links and layout, 
and improve the performance. We can also observe that user supervision 
improved the results for both modes, although the results o f  the random mode 
were very variable. For some datasets we observed better results, but for the other 
datasets the results were worse than those o f the FCM. Very meaningful insights 
can give us standard deviation values for the random mode. They were relatively 
high. For every set the values were much higher than the values from the 
misclassification mode.

Equally good performance was obtained from the PS-FCM and the PSP-FCM. 
In the clustering experiment we obtained the results o f  99% for nearly o f  all 
datasets. The P-FCM also performed well.

The incorporation o f  the user knowledge in the classification mode provided 
us with good results. In fact there was a noticeable improvement o f the accuracy 
for the patterns from the testing set. Higher accuracy values were obtained for all 
datasets besides the 6 th dataset. This dataset contained 8  different categories, and 
the amount o f  user input that was applied might not have been sufficient.
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7 Conclusions

7.1 General Discussion
The user supervision can be beneficial in many practical applications. It can 
immensely help in recovering the distorted structure o f the dataset containing a 
number o f  outliers, model the relationships between the complex objects and their 
features when it comes to Web exploration, significantly aid the work o f  the 
clinical researcher trying to classify new cases o f  illnesses in combination with 
accumulated knowledge, or allow the meteorologist to more efficiently classify 
the elements o f a tornado based on satellite weather maps. As we can see, the 
possible applications o f  user input are various and broad. Interestingly, it is 
surprising that the algorithms and the enhancements to existing methods allowing 
the user to interact with the learning process are narrow.

In this work we were concerned with the possible user supervision algorithmic 
extensions to the FCM algorithm. In particular, the experiments allowed 
examination of, in a detailed way, the available means for adding user supervision 
to FCM (Fuzzy C-M eans) in a form for class assignment information provided by 
PS-FCM (Partially Supervised Fuzzy C-M eans), and the proximity hints offered 
by P-FCM (Proximity-based Fuzzy C-Means). Moreover, the combined effort o f 
these two approaches in PSP-FCM (Partially Supervised Proximity-based Fuzzy 
C-Means) was examined. Specifically, by taking into account the synthetic data, 
Machine Learning datasets, and the Web documents datasets, the PS-FCM 
approach exhibited the best average performance. The approach o f P-FCM 
seemed to be more variable and usually performed worse than PS-FCM, but still 
considerably better than standard FCM without any user input. The performance 
o f PSP-FCM provided high accuracy, close to the PS-FCM accuracy, and in some 
cases it proved to perform better than any o f  the other methods alone for the same 
number o f  parameters. It follows that both sources o f user supervision can be 
successfully applied together.

The P-FCM does not obtain information about the class membership, but 
instead it allows for the specification o f similarities between patterns. This kind o f 
information is not directly related to class membership, but it carries the implicit 
information that the patterns that are very sim ilar to each other should be placed 
in the same cluster. The patterns that are quite different should in the end appear 
in different clusters. This kind o f  information is definitely very useful, although 
the expected and actual performance o f  it is less spectacular than the PS-FCM 
algorithm ’s performance. The variability o f  the results o f  P-FCM is visible only in 
the random mode o f  knowledge incorporation, and this becomes obvious when 
the results are much more stable in the misclassification, and even more so when 
we make a comparison between the random mode and the misclassification mode.

As it follows from all the experiments, the random mode improves the quality 
o f the clustering over standard FCM. However, this way o f incorporating the user 
input is not stable and may unexpectedly provide higher or lower values than the 
expected results. The other significant disadvantage o f this approach is the effort
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from the user side. In comparison with the misclassification mode the random 
mode requires a greater amount o f  user supervision. On the contrary, the 
misclassification mode is applied in a specific context only -  to the misclassified 
patterns. This approach reduces the effort needed and immensely improves the 
accuracy. In almost all o f  the datasets, PS-FCM, nearly 100% o f accuracy in the 
m isclassification mode was achieved. Thus, as it is apparent from this study, the 
misclassification mode performs better, and because o f that, we should focus on 
this way o f  incorporating user input. Depending on our knowledge we can decide 
between the following choices: using the PS-FCM class membership information, 
specifying the similarity between the objects (P-FCM), or combining these types 
o f  knowledge in PSP-FCM. The considerable improvement in the PS-FCM will 
be visible for even a small amount o f  supervision. In order to observe substantial 
improvement for proximity hints we should enter values for at least 1 0 % o f all 
patterns from the group. The possible scenarios o f experimentation from this work 
could be extensively applied to any other dataset. The scheme o f  the 
experimentation we assumed could be extended as it could be worth examining, 
for instance, an application with only one component o f proximity hints (e.g. high 
similarity hints or low similarity hints only). The user supervision can be 
narrowed to selected clusters only, or the amount o f  the user input for the PSP- 
FCM algorithm could vary in respect to its type or given ratio o f these types (class 
membership information and proximity hints).

The other interesting practical aspect that was examined and analyzed here is 
the potential abilities o f fuzzy clustering framework to construct fuzzy classifiers. 
In the classification experiment that was created, the decision regions can be used 
for classification o f other patterns from the same domain. The prototypes obtained 
from the clustering experiment o f  the training set from FCM, PS-FCM, P-FCM 
and PSP-FCM were used for classification o f  the patterns from the testing set. 
W hile user supervision has a positive effect on reverting the structure (e.g. noise 
interference) in the clustering experiment, it uses the information about particular 
patterns from particular datasets. Then, if  we want to apply the prototypes 
constructed with the use o f specific knowledge for specific patterns, it may not be 
very effective for other patterns from the same domain. However, the 
classification rate could possibly be improved in the classification mode with user 
input, if  the training set, and the revealed structure there, is a reasonably good 
approximation o f  the testing set. The performance gain was compared to the 
accuracy o f  the classification obtained from standard FCM. In the 
misclassification mode we depicted the improvement with respect to the accuracy 
obtained for the prototypes generated by standard FCM. It is usually sm aller than 
in the clustering experiment but significant, for the Dermatology database the 
improvement was over 50%. The results showed that user supervision is valuable 
for constructing fuzzy classifiers, and the performance o f classifiers constructed 
in this way is better than the accuracy obtained from the standard FCM in the 
classification experiment.

This work presented and examined the algorithmic enhancements to Fuzzy C- 
Means (FCM) as class assignment information (PS-FCM), proximity hints (P-
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FCM), and class assignment information together with proxim ity hints (PSP- 
FCM). The experiments were conducted in a detailed way, and that used synthetic 
datasets, Machine Learning sets, and a Web Documents dataset, by quantifying 
the amount o f user supervision in two modes: random and misclassification mode. 
The results presented here can serve as a practical guide for any other applications 
in terms o f the way user knowledge is incorporated, the amount that is available, 
and the expected results. As FCM becomes more widely known, and more widely 
used, any possible improvements are valuable not only for the new users but also 
for current users. The improvements will allow them to enrich the way they can 
explore and interact with data. Nevertheless, the concepts and approaches applied 
in this work might be beneficial and transferable for other methods used for Data 
Mining tasks.

7.2 Future research
This thesis embraces the concepts o f algorithmic enhancements o f user 
supervision mechanisms for the Fuzzy C-Means algorithm. We evaluated the 
Partially Supervised FCM, the Proximity-based FCM and proposed a hybrid 
method o f  both techniques: the Partially Supervised Proximity-based FCM 
successfully combining in collaborative way class assignment information along 
with proximity hints.

While these techniques extensively cover the types o f  possible user 
supervision to be applied for the standard FCM, the next steps o f this research can 
be more focused on the importance o f each feature in the feature vectors used to 
describe the patterns. We could envision the weight vectors, which will have a 
certain weight value for each feature in the feature vector. In this way it would be 
possible to assign higher weights to more descriptive features i.e. these ones, 
which better distinguish between different objects. The key challenge would be to 
introduce the mechanism for optimization o f the weight vectors and as a result 
finding the best (most optimal) combination o f weights allowing for obtaining the 
highest performance in the given set o f objects and set o f features describing 
them.

Another important aspect in the clustering is the cluster validity problem. 
The estimation o f  the proper number o f clusters would have a enormous practical 
value for the researchers and practitioners. Based on the contained here material it 
would be worth to investigate the creation o f the hierarchical fuzzy clustering 
algorithm with usage the cluster similarity measure introduced in the Section 
6.2.3. The cluster similarity allows for deciding at each step which clusters should 
be merged with each other. It would be reasonable that the clusters with the 
highest similarity would be combined because we could expect that the patterns 
they contain are the most similar to each other. The top-down strategy applied 
would result in creating the dendrogram from which it would follow the number 
o f clusters at each level o f  split.

Besides aforementioned ideas it would be interesting to pursue research with 
other distance or similarity measures, which might be better suited for particular 
applications (as an example it can serve the cosine measure for Information
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Retrieval) or the similarity measures that would be able to provide us with the 
similarity between vectors o f  different dimensions. Finally, the alternative ways 
o f dimension reduction would be a definite candidate to consider while continuing 
to research topics gathered in this material.
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Appendices

Appendix A: Description o f the software tools. Testing 
Framework and DataMiner.
The constructed framework is a set o f Java applications unifying data 
manipulation tools, clustering, classification, and presentation o f  the results to 
users. The data manipulation tools span the data generation, gathering, pre­
processing, transformation and are specific to the particular type o f  a dataset. The 
graphical user interface (GUI) components monitor the execution o f  the 
algorithms and measure their performance (Fig. A-2, Fig. A-3 and Fig. A-4). 
M oreover they provide the user with data analysis and interpretation (Fig. A -l).

A lgorithm s,
tech n iq u es,

m eth od s

R esu lts
interpretation,
perform ance

m easurem ent

Data
m anipulation

C om putations
com ponent

F ig u re  A -0-1. T he m ain  co m p o n en ts  an d  logical flow o f the fram ew o rk .

F ig u re  A-0-2. T he  m a in  w indow  o f th e  tes tin g  fram ew o rk .
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Appendix B: Singular Value Decomposition (SVD). 
Description o f the method.
The Singular Value Decomposition (SVD) is a powerful computational method 
for analyzing matrices and solving problems involving matrices. One o f  its great 
assets is a dimension reduction in a vector space model. The decomposition is 
defined as follows [2 ]:

A = U E V r (1)

Where:
U - in-by-// orthogonal matrix (i.e. U r U = I ) and the its columns contain 
the left singular vectors o f  A
V - /i-by-/i orthogonal matrix and the its columns contain the right 
singular vectors o f A
E -  m-by-n diagonal matrix with singular values if  / *  j  then 

o (>. = 0  and o tj > 0

Above factorization can be simplified by noting that the rank o f  a diagonal matrix 
E is equal to the number o f  non-zero singular values o (>. This feature o f  the SVD

allows for finding a rank-k approximation to a matrix A with minimal change to 
that matrix for a given value o f k  (where k  is the rank o f E )  [1], [2]. After 
approximation the dimensions o f the matrices change as follows: U - m-by-k, 
V r - k-by-n, E - k-by-k.
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