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Abstract

Logic Program m ing with the stable model semantics, called stable logic program

ming (SLP), has been suggested as a new paradigm for solving a number of com

putationally hard problems in artificial intelligence, including constraint satisfaction 

problems (CSPs), planning problems and scheduling problems. The expressiveness 

of SLP as a general knowledge representation language is in sharp contrast with the 

conventional problem solvers that work only for special domains. The promise of 

this new paradigm has recently been demonstrated by efficient implementations of 

SLP systems, among which the sm odels system developed by Niemela et al. is the 

most competitive. Niemela demonstrated that sm odels successfully competes with 

special-purpose solvers for a class of planning problems. But to date, very few stud

ies have been carried out for sm odels in context of CSPs which form the basis of 

some of the most successful practical industrial-scale systems in artificial intelligence. 

Further, the promise of SLP can be strengthened by the development of strong and 

more powerful pruning techniques for stable model computation. One is unlikely to 

succeed in this direction without an understanding of the techniques employed by 

the efficient existing implementations, and how they relate to the pruning techniques 

we understand for other domains. Though the efficiency of smodels is apparently 

attributed to some of well-known techniques in solving CSPs (and SAT problems) so 

far no comprehensive studies of such implementations has been performed.

In this thesis, we study the important techniques incorporated in the implementa

tion of smodels. We show that the three main techniques used in smodels, namely, 

constraint propagation, lookahead, and backjlim ping, are mappings from well-
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known efficient techniques in CSPs. It turns out that sm odels with lookahead can 

compete successfully with the best CSP algorithms.

An interesting yet challenging question in constraint satisfaction is what if a CSP 

is inconsistent, i.e., it does not have a solution in which all the given constraints 

are satisfied. These problems are called over-constrained problems. Our study ex

tends to these problems. Research in the direction of representation and solving of 

over-constrained problems necessitated a clear understanding of their semantics and 

complexity. However the inadequate treatment of the semantic notion of solution in 

over-constrained problems in the literature prompted us to first explore their seman

tics. In the latter part of the thesis we studied the semantical problems with the 

notion of solution in over-constrained problems. We find that the existing notions of 

solutions in over-constrained problems suffer from the following semantic problems:

1. ad-hoc semantics;

2. higher computational complexity;

3. semantics not preserved in translation from non-binary to binary representa

tions; and

4. techniques used in solving finite CSPs cannot be used directly.
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Chapter 1 

Introduction and M otivation

Logic Programming with the stable model semantics, called stable logic programming 

(SLP), has been suggested as a new paradigm for solving a number of computation

ally hard problems in artificial intelligence, including constraint satisfaction problems 

(CSPs), planning problems and scheduling problems. The expressiveness of SLP as 

a general knowledge representation language is in sharp contrast with the conven

tional problem solvers that work only for special domains. The promise of this new 

paradigm has recently been demonstrated by efficient implementations of SLP sys

tems, among which the smodels [54, 41] system developed by Niemela et al. is the 

most competitive. Niemela demonstrated that sm odels successfully competes with 

special-purpose solvers for a class of planning problems.

Now we discuss the major motivations for studying the relationship between the 

techniques employed in sm odels and finite CSP techniques.

1. CSPs have found strong practical and industrial applications due to the de

velopment of a core set of efficient techniques. It is natural to see if these 

techniques can be generalized to implementations of logic programs yielding 

efficient implementations.

2. The promise of SLP can be strengthened by the development of strong and more 

powerful pruning techniques for stable model computation. One is unlikely to 

succeed in this direction without an understanding of the techniques employed

1
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by the efficient existing implementations, and how they relate to the pruning 

techniques we understand for other domains.

3. In the literature, many instances are known where a general purpose solver 

is shown to be as powerful as highly domain-specific solver. E.g. a domain- 

independent planner like SATPLAN [30] has been shown to be as efficient as 

some domain dependent planners. On account of the ease of representation of 

problems in these general purpose solvers, it is preferable to use these general 

purpose solvers in the face of comparable efficiency. In case of smodels, if it 

can be shown to be comparable to some efficient CSP solving techniques, it can 

succeed as a general purpose solver.

4. Comprehensive performance studies of existing implementations of logic pro

gramming is required so as to gather insights into the computational nature 

of stable models. One possible manner in which this can be achieved is by 

performance analysis of these systems on special classes of problems like CSPs, 

planning problems etc.

5. Though the efficiency of smodels is apparently attributed to some of well- 

known techniques in solving CSPs so far no comprehensive studies of such tech

niques has been performed.

In this thesis, we study the important techniques incorporated in the implementa

tion of smodels. We show that the three main techniques used in smodels, namely, 

constraint propagation, lookahead, and backjum ping, are mappings from well- 

known efficient techniques in CSPs. Our investigation of these techniques was two

fold: (i) to measure the relative effectiveness of each technique in terms of contribution 

to the efficiency of smodels, and (ii) to conduct a preliminary comparison of the ef

ficiency of these techniques in smodels with the corresponding techniques in finite 

CSPs. This study was performed in the context of logic programs modeling finite

2
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CSPs. Our investigation reveals that lookahead dominates the other two techniques 

in smodels, and that smodels employing lookahead can be as efficient as some of 

the most efficient techniques in finite CSPs. It thereby corroborates our contentions 

that CSP techniques can be generalized to provide efficient implementations of more 

general knowledge representation schemes and that general purpose solvers can be as 

efficient as domain specific problem solvers.

An interesting yet challenging question in constraint satisfaction is what if a CSP 

is inconsistent, i.e., it does not have a solution in which all the given constraints 

are satisfied. These problems are called over-constrained problems. Our study ex

tends to these problems. Research in the direction of representation and solving of 

over-constrained problems necessitated a clear understanding of their semantics and 

complexity. However the inadequate treatment of the semantic notion of solution 

in over-constrained problems in the literature prompted us to first explore their se

mantics. Since time only permits us to investigate the computational and semantic 

difficulties with the standard notions of solution in the over-constrained context, our 

goal is only partially achieved. We studied the semantical problems with the notion of 

solution in over-constrained problems. We find that the existing notions of solutions 

in over-constrained problems suffer from the following semantic problems:

1. ad-hoc semantics;

2. higher computational complexity;

3. semantics not preserved in translation from non-binary to binary representa

tions; and

4. techniques used in solving finite CSPs cannot be used directly.

Overall, the stress of this thesis is two-fold: (i) To push forward an efficient logic 

programming system with stable models as an expressive and efficient constraint 

programming paradigm; and (ii) To study the semantics of over-constrained problems.

3
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1.1 Constraints

In the broadest of all definitions, a constraint refers to a relation that must be 

satisfied. In the domain of artificial intelligence, various definitions and formats of 

constraints have been used and proposed. In the recent past, the idea of programming 

with constraints has found a broad sense of acceptance in terms of practical problem 

solving. The loose definition of constraint, as given above, can be interpreted in a 

wide range of ways and a wide variety of formats, depending upon the application. 

In the seminal paper [33] Mackworth writes:

A constraint can be taken to mean a relation over a Cartesian product of sets, 

a Boolean predicate, a fuzzy relation, a continuous figure of merit analogous to en

ergy, an algebraic equation, an inequality, a Horn clause in Prolog, and various other 

arbitrarily complex symbolic relationships.

From the above statement, it is clear that constraints have a wide applicability 

in terms of application domains, and consequently a diverse range of representations 

depending upon the domain of applicability. In many problem solving situations 

where problems have been modeled using constraints, it has been found that it is 

impossible to find a solution satisfying all the constraints. In such situations, the 

problems have been termed as over-constrained problems [39].

Over-constrained problems suffer from additional computational complexity as 

compared to finite CSPs due to the need to accommodate preference information. 

In over-constrained problems, a variety of extra-logical measures are used to specify 

the preference information. Some of the common measures used in over-constrained 

systems are weights, priorities, and hierarchies. In all such measures there is the 

notion of a preferred solution in contrast to other possible solutions. Due to the 

diversity of extra-logical measures in identifying preferred solutions, no clear semantics 

of a solution has been presented in the literature of over-constrained systems.

4
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1.2 Logic programming w ith stable m odels

Ground logic programs with default negation [24, 64, 23] consist of clauses of the form

h —̂ Qi,. . . ,  On, not b\ , . . . ,  not bm.

where a i , . . . ,  o„, bx, . . . ,  bm, and h are prepositional or instantiated ground first-order 

atoms.

Ground horn logic programs (HLP) are a special sub-class of the above class of 

logic programs which represent a collection of clauses of the form

h <— a i , . . . , a n.

where a i , . . . , ^ ,  and h axe prepositional or instantiated ground first-order atoms. 

HLPs do not have any default negation not. HLPs are monotonic (addition of new 

knowledge does not decrease the set of conclusions) and they admit a unique intended 

model (the least model) which can be computed in polynomial-time [60]. E.g. if the 

Horn logic program P  consists of the set of clauses {a <—; b <— a} the unique intended 

model of P  is {a, 6}.

In contrast, logic programs with default negation (not) behave non-monotonically,

i.e. the addition of new knowledge can decrease the set of conclusions. Diverse seman

tics [24, 64, 23] have been proposed to account for the meaning of logic programs with 

default negation. The most important among them being the well-founded semantics 

[23], the stable model semantics [24], and the regular model semantics [64].

The stable model semantics of logic programs with default negation is defined 

in terms of the unique model of the HLP generated by applying a transform to the 

original logic program. The transformed HLP (reduct) Pa of a logic program P  with 

respect to a set of atoms A is the program obtained by first deleting each clause in P 

that has a not-atom not x  in its body such that x  6 A  and then deleting all not-atoms 

in the remaining clauses. The stable model semantics [24] for a general logic program 

P  is then defined as follows: A set of atoms A is a stable model of P  if and only if A is
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the same as the unique model of the HLP P&. Consider P = {a <— not 6; 6 <— not a}. 

Take the set of atoms A  =  {a}. The reduct Pa is {a <—}, whose unique model is {a}. 

Thus {a} is a stable model of the program P.

The decision problem of finding whether a ground logic program has a stable 

model is known to be computationally hard (NP-complete) [36]. Logic programming 

with stable model semantics is however known to be a powerful knowledge representa

tion paradigm with relations to many non-monotonic reasoning frameworks including 

autoepistemic logic [65], and default logic [49]. Conventionally inefficiency arguments 

have been used against non-monotonic formalisms as the main reason for the relatively 

fewer implementations of practical systems. Recently though some researchers have 

developed efficient implementations of non-mono tonic systems [7, 42, 45], thereby en

abling the massive amount of research that has gone into non-monotonic reasoning 

to be put to practical use.

1.3 Thesis layout

Chapter 2 reviews some of the concepts in constraint satisfaction, over-constrained 

problems, and non-monotonic logic programming based on stable models. Com

monly used finite constraint satisfaction techniques are presented in detail. Some of 

the extra-logical measures used in identifying preferred solutions in over-constrained 

problems are also explained. L P s m  (a non-monotonic logic programming language 

based on stable models), and sm odels (the underlying stable model computation en

gine of L P s m ) [41, 42, 54] are introduced. Towards the end a firm mapping between 

some of the existing techniques in solving the SAT problem and smodels techniques 

have been established with a view to providing an idea for the motivational basis for 

the implementation of smodels techniques.

Chapter 3 examines how L P s m  and smodels can be used to model and solve 

constraints. It is shown how the language of LPsm shares the declarative nature 

as other constraint programming languages like Oz, Eclipse,OPL etc. Some unique
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representational features of LPsm was also shown which highlights the advantages of 

using L P s m ■ Finite CSPs are first modeled in L P s m  and then directly in smodels, 

and their relative efficiency measured.

Chapter 4 explores the question: Can CSP techniques be generalized to provide 

an efficient implementation of logic programs? This is studied by showing how the 

techniques used in implementation of smodels map to some of the most efficient 

techniques used in finite CSPs. A relative measurement of the effectiveness of smod

els techniques is done by experiments on logic programs representing finite CSPs. 

In addition, the techniques in smodels are compared experimentally with the cor

responding techniques in CSP. Further the relationship between the techniques in 

sm odels and their corresponding equivalent techniques in finite CSPs is explored 

along the following three directions: (i) by showing sufficient conditions under which 

the technique coincides in semantics in CSP and sm odels, (ii) by exploring the pos

sibility of improvement of the smodels technique based on the special structure of 

the logic program, and (iii) by experimental comparison of the average performance 

of the two corresponding techniques on random CSPs. The technique of lookahead 

turns out to be the dominant of all the smodels techniques. In fact, smodels with 

lookahead turns out to be competitive to some of the best techniques in the finite 

CSP literature.

Chapter 5 provides a critique of over-constrained semantics and solution methods. 

It begins with a computational complexity-theoretic treatment of the various notions 

of priority in over-constrained systems. In the same chapter, it is shown that semantics 

of maximal constraint satisfaction problem is not preserved in translation from non

binary format to binary format of constraint representation. In the end, various 

intelligent backtracking based proof procedures for finite CSPs are modified to work 

for some of these prioritized over-constrained systems, and some related theoretical 

results elucidated. The material presented in this chapter is independent of the earlier 

chapters and hence can be read separately.
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Chapter 6 concludes with a summary of the results in the thesis and a study of 

the areas where there is a scope for further research.
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Chapter 2 

Background

In this chapter, some of the basic concepts in the area of non-monotonic reasoning 

and constraint programming are presented. From constraint programming, concepts 

in the area of finite constraint satisfaction are reviewed. The most common finite 

constraint satisfaction techniques are explained with suitable illustrative examples. 

Next, common existing semantic notions of preferred solution in over-constrained 

systems are explained. Finally the non-monotonic logic programming language L P s m  

[41] (based on stable model semantics [24]) is reviewed. In particular, the sm odels 

proof procedure for deducing stable models of a ground program is explained in detail. 

In the end, some related algorithms in literature which form the basis of the sm odels 

procedure are reviewed.

2.1 Constraint satisfaction

In this section, some basic concepts of constraint satisfaction are reviewed. In par

ticular, the framework of finite constraint satisfaction is explained, and the common 

finite constraint satisfaction algorithms and techniques are illustrated.

A finite constraint satisfaction problem (CSP) involves a set X  =  {xi, x2, . - • ,xn} 

of n variables, and a set C of constraints, where each variable Xi 6 X  takes a value 

from its finite domain d* and each constraint c* 6 C, defined on a subset X c of the 

set of variables X ,  is a relation expressed as a subset Rc of the cartesian product
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n *  ■ e x j d i ] .  Each constraint Cj specifies the admissible combinations of the values of 

variables involved in the constraint. An assignment A  of values to variables in Y  C X  

satisfies a constraint c such that X c C Y  iff the tuple formed by X c in A  belongs to 

Rc, the relation associated with c. Am assignment of values to a subset Y of the 

variables is consistent iff it satisfies all the constraints c such that X c C Y. A solution 

is a consistent assignment of values to all the CSP variables. A CSP is consistent iff 

it has at least one solution.

There are a variety of algorithms to compute a solution of a given CSP. The two 

common techniques present in any such algorithm are:

1. Backtracking

2. Constraint Propogation

Many of them are variable manipulation algorithms, i.e., they either change the 

domains of the variables or assign values to the variables.

Chronological backtracking and its variants, are based on the idea of consistently 

assigning values to variables and expanding a partial solution till a dead-end is reached 

and then backtracking in case of such dead-ends. The intelligent versions of backtrack

ing are endowed with more ways of pruning the search space than the chronological 

backtracking algorithm.

The pure constraint propagation algorithms on the other hand, are based on the 

idea of the altering of domains, based on a certain consistency criterion. The idea is 

to manipulate the domains of the variables, so as to bring the global state of the CSP 

to a consistent one.

But most commonly, the constraint propagation is interleaved with backtracking 

to get different algorithms based on the level of propagation used in the algorithm 

alongside backtracking. In certain cases, a partial assignment, is fully propagated 

through the CSP, and in certain cases it is propagated in a limited sense. A relative 

comparison between the overhead of computation involved in the application of prop-
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agation, and the pruning achieved by propagation is used as a guide to determine the 

best algorithm to be used.

In the next section, the chronological backtracking algorithm and its intelligent 

variants are reviewed.

2.1.1 Chronological backtracking

The most naive of all the backtracking algorithms is the chronological backtrack

ing (6T) algorithm. In chronological backtracking, the variables are assigned in a 

fixed order, which is not changed during the process of backtracking. The crux of 

chronological backtracking is as follows: A partial assignment of values is consistently 

expanded by instantiating a new variable x/, with a value v^. This new value Vh as

signed to Xh, is checked against all previously instantiated variables ({xj | i < h}), 

to see iff it is consistent against each such variable. This value assignment is said to 

be consistent if it is consistent against all the previous variables. If it is consistent, 

then the next variable in the order is instantiated with a new value from its domain. 

But if that particular value of x/, fails in its consistency check against at least one 

previous variable, the next value from the domain of X/, is assigned tox/,. In the case 

of all domain values of Xh being exhausted the algorithm backtracks to the previous 

variable, and instantiates it with the next available value from its domain. If a con

sistent assignment of a value is made to xn, the last variable, then a solution is said 

to be found. An example of the search tree traversed by chronological backtracking 

for a finite CSP is shown in Figure 2.1.

2.1.2 Improving chronological backtracking

In general, chronological backtracking is not efficient, the reason being the unneces

sary consistency checks performed in the blind process of backtracking to the most 

recently instantiated variable. But the cause of conflict with the current variable 

may have been an earlier variable in case of which any further instantiation of this
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Constraints in the CSP;
C ^ X ,^ )  = {(b,c),(a,a),(a,b),(a.c)} 

CJ(Xlj g  = {(a.b)}
C/X|JCj) = ((a, a))

C /X j JCj) =  {(b,a),(a,a)} 

q ( X j j g  = {(b,a),(a,b)}

CrfX4JCJ) = {(a.a)}

•Area avoided by CBi

•Area avoided by BJ

Search Path traced by BT. BJ ami CBJ for the above 
CSP. BT goes through all the nodes in the graph. The shaded 
areas are avoided by BJ and CBJ respectively.

Figure 2 .1 : A CSP example with execution traces of BT, BJ and CBJ

Constraint Graph o f the CSP
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most recent variable will prove futile. This motivated the development of algorithms 

involving some amount of bookkeeping and avoiding unnecessary backtracking.

As a result of bookkeeping the algorithm becomes more informed and unnecessary 

backtracking is eliminated. The important improvements of chronological backtrack

ing are listed below:

1 . Backjumping (BJ) [22]

2. Conflict-directed backjumping (CBJ) [46]

Backjumping

Backjumping(BJ) is similar to chronological backtracking but it behaves more effi

ciently when no consistent instantiation can be found for the current variable at 

dead-end. Instead of backtracking to the chronologically most recent variable, BJ 

jumps to the deepest past variable x/, that was checked against the current variable. 

This is more efficient because any further instantiation of any variable between x/, 

and Xi is futile.

In [11] BJ is shown to outperform BT universally, the improvement being signifi

cant when the constraint graph is sparse.

Conflict-directed backjumping

This technique is based on the same idea as backjumping. However, instead of the 

simplistic notion used in backjumping a more complicated bookkeeping method is 

used to give a more efficient method. In CBJ every variable has a record of its own 

conflict set, i.e. the set of past variables which failed consistency checks with its 

current instantiation. Every time a consistency check fails for a variable Xi with a 

past variable x/,, x/, is added to conflict set of x*. When there are no more values of 

Xi to be tested, the algorithm backtracks to the deepest variable X/, in the conflict set 

of x„ and the conflict set of x* with the exception of x/, is added to the conflict set of
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x/,, thus adding extra eflBciency. This effectively eliminates unnecessary consistency 

checks of variables after X/, which are sure to fail.

To understand the difference between the effectiveness of these variations of back

tracking, consider the CSP whose graph is shown in Figure 2.1. The CSP consists of 

four variables Ax,A2 ,A3  and X 4 with domains di =  {a, b}, d2  =  {a, b, c}, d3 =  {a, b}, 

and d4  =  {a, 6 } respectively. It has six constraints C \{X i,X 2) = {(b, c), (a, a), (a,b), 

(a,c)}, C2 (X t,X 4) =  {(a, 6 )}, C3 (X 1 ,X 3) =  {(a, a)}, C4 (X 2 ,X 3) = {(b,a), (a, a)}, 

C3 {X2, X 4) =  {(&, a), (a, 6 )} and C3 (X4, X 3) =  {(a, a)} as shown in the upper part of 

Figure 2.1. The solution space (search tree) explored by chronological backtracking is 

shown for the CSP represented by the graph. In the figure the portions of the solution 

space which are avoided by the BJ and CBJ algorithms have also been indicated. It 

is evident that a larger chunk of the search tree is truncated by CBJ as opposed to 

BJ.

Consider BJ. At the point {Ax = a, X 2 = b, X 3  = a} which is consistent, X 4 is 

tried for a. But it is inconsistent with Ax =  a. Trying the next value for X 4, namely 

6 , we find that it is consistent with X\ = a but inconsistent with X 2 =  b. By now all 

values of X 4 are exhausted and we need to backtrack. The deepest variable in conflict 

with X 4 is A2, and hence any backtrack to A 3  is pointless. Thus BJ backjumps to 

X 2 to the point {Ax =  a, X 2 = c} and the search proceeds further.

Consider CBJ. Here we consider the nodes {Ax =  a, X 2  =  a, X 3  = a, X 4 = a} 

and {Ax =  a, X 2  =  a, A 3  =  a, X 4  =  b}. At this level the conflict set of variable X 4  

is {Ax, A 3 } and thus backjump to A3( the deepest point in the conflict set of X 4) 

takes place and A t is added to the conflict list of A 3  which is initially empty. After 

all domain values of X 3  are exhausted, it jumps to the deepest in the conflict set of 

A3, which is Ax- Thus it bypasses all further values of X 2.

Hence the number of nodes pruned by CBJ is much higher than BJ which in turn 

is much higher than BT.
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2.1.3 Constraint propagation algorithms

In contrast to chronological backtracking and its intelligent variants, the constraint 

propagation algorithms achieve a limited degree of consistency either statically or 

dynamically to simplify the CSP. Unless otherwise mentioned these algorithms here 

shall be explained for binary versions of constraint satisfaction problems.

The fundamental idea in consistency based algorithms is based on the idea of 

^-consistency, for a fixed k. The definition follows

D efinition 1  [34]: A constraint satisfaction problem (CSP) P is k-consistent, iff 

given any instantiation of any k- 1  variables satisfying all the direct constraints between 

them, it is possible to find an instantiation of the kth variable such that the k values 

taken together satisfy all the constraints among the k variables.

In other words, fc-consistency states that any partial solution for k — 1 variables can 

be consistently extended to a partial solution containing an additional variable. A 

1 -consistent CSP is said to be node consistent, a 2 -consistent CSP is said to be arc- 

consistent, and a 3-consistent CSP is said to be path consistent. The idea of enforcing 

consistency on a CSP is to remove local inconsistencies so that the task of finding 

a global solution becomes easier. In general, it is common practice to use levels of 

consistency till 2. So most constraint systems applying constraint propagation algo

rithms limit themselves to enforcing node- and arc-consistency. Even the enforcement 

of arc-consistency is done in varying degrees. In some algorithms, full arc-consistency 

is attained at the start and then backtracking is applied. In some of the extreme al

gorithms the full arc-consistency is maintained at the start, as well as at every stage 

of the backtracking [17]. But the cost of achieving arc-consistency can be prohibitive 

in comparison to the cost saving achieved by pruning.

As a compromise, a limited version of arc-consistency, enforced dynamically along

side backtracking, is used commonly in CSP algorithms. One common technique 

which falls into this category is the forward checking algorithm.
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*3
a

Figure 2.2: Search tree traced by forward checking for the CSP in Figure 2 . 1  

Forw ard checking

Forward checking (FC) [25] is a limited constraint propagation algorithm where partial 

consistency is enforced in the intermediate stages of the backtracking algorithm.

In forward checking, consistency check is done between the current variable and the 

future variables. Once a current variable is instantiated, the partial solution is checked 

for consistency against all future variables, and the values which are inconsistent with 

the current partial value assignment are removed from the domain of each future 

variable. If a future variable has no value remaining, backtrack occurs. The current 

variable is then instantiated to its next available value from its domain, and all the 

values removed in the previous assignment are undone. Further, the domains of the 

future variables are brought back to the state before the last consistency step was 

enforced. If the last variable can be instantiated in this manner a solution has been 

found.

Forward checking embodies a compromise between naive backtracking and main

taining full arc-consistency [17].
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Example

Let us illustrate the running of forward checking on the example shown in Figure 2.1. 

The search tree visited by forward checking is shown in Figure 2.2. It is immediately 

evident that the number of nodes traversed by FC is the least of all the algorithms 

BT, BJ, CBJ and FC. After starting at {A\ =  a}, this value is propagated against 

X 2  ,Xz and X 4. At this stage the value b is removed from the domain of X 3, and the 

value a is removed from the domain of X 4, and none removed from domain of Xi. 

Then the assignment is expanded with X 2  =  a. At this stage, we again propagate this 

value to X 3 and X 4. There is no reduction of domains of X 3 and X 4. The assignment 

is then expanded to assign a to X 3. At this stage on propagation to X 4, the domain of 

X 4  is annihilated (i.e. with all values in the domain removed), causing backtracking. 

The backtrack to the next value b of X 2  occurs. The value of b is then added back to 

X 4, as a part of the undoing process. This value of b for X 2  is then propagated to X 3, 

and X 4. The value of 6  is removed from the domain of X 4 causing the annihilation of 

the domain of X 4. This being a dead-end, backtracking occurs to value c of X 2. Upon 

propagating this value to the variable X 3 , its domain is annihilated. Thus backtrack 

now returns to X \ =  6 , and all propagation effects of X \ =  a are undone. All domains 

are thus back to their original form. The assignment {At = 6 } is then propagated 

to the variables X 2, X 3  and X 4. The values a and b are removed from the domain 

of X 2, and the entire domain of X 3 is annihilated. So backtrack occurs and end of 

problem is reached without any solution.

2.2 Over-constrained system s

Some constraint satisfaction problems do not admit a solution satisfying all the con

straints in the problem. Such problems are termed as over-constrained problems. 

Since not all constraints can be satisfied, commonly some measures are used to spec

ify the relative importance of each constraint in generating a preferred solution. The
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relative importance of each constraint can be specified in terms of various mecha

nisms. The mechanisms used in literature of over-constrained systems include weights 

attached to constraints, priority information as partial order on constraints, and hi

erarchies.

In this section we present common notions of preferred solution to over-constrained 

problems discussed in the literature.

2.2.1 M aximal weighted constraint satisfaction

Maximally weighted constraint satisfaction problem (max-weighted CSP) refers to 

the problem setting in which each constraint is assigned a weight according to its 

importance. A solution is an assignment of values to variables, such that the total 

of the weight of the constraints satisfied by the assignment is maximum among all 

assignments.

Formally, a max-weighted CSP P  involves a set X  — {xi, X2 ,. of n variables, 

a set C of constraints (ci, cz, . . . ,  c™}, where each variable Xi € X  takes a value from 

its domain di, and each constraint Cj € C is defined as a relation on a subset X c of 

the set of variables X , and associated with each constraint c\ 6  C, is a numerical 

value Wi, Wi being a real number.

An assignment A  of values to variables in X , satisfies a constraint c iff the tuple 

formed by X c in A  belongs to Rc, the relation associated with c. Let w(A) =  £{u>< | 

A satisfies  Cj}. Let WP represent the set of all possible assignments A , assigning 

values to all variables in X . The solution set S  of the problem is defined as

S  = {A  e W P \ w (A ) = max{w(A) \ A  6  WP}}

Consider a CSP P  with three constraints ci, c%, and C3  defined on three vari

ables xi,X2 > and £ 3  with domains {0,1}, {1,2}, and {1 } respectively. Assume that 

the weights associated with cx, C2 , and C3  are 1, 2, and 4 respectively. Now let 

ci (an, *2) =  {(0>2), (1 , 1 )}, c2 (x2 ,x3) =  {(2,1)}, and c3 (xx,X2 ,x3) =  {(0,1,1)}. P
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has only one solution, namely {xi =  0,x 2  =  1 , ^ 3  =  1}. This assignment satisfies 

only one constraint C3 with weight 4. Any other assignment of variables yields a lower 

combined weight of satisfied constraints than this assignment.

2.2.2 Maximal constraint satisfaction problem

A special case of the max-weighted CSP is what is called the maximal constraint 

satisfaction problem (max-CSP), where the weights of all constraints are considered 

to be 1 . The search for a solution turns out to be a search for an assignment satisfying 

maximal number of constraints.

Formally, a max-CSP P  involves a set X  =  {2 :^X2 , . . .  ,xn} of n variables, a set 

C  of constraints {ci,c2, . . . ,  c™}, where each variable x* € X  takes a value from its 

domain <k, and each constraint c* € C  is defined as a relation on a subset X e of the 

set of variables X . If A is an assignment, let sat(A) =  {c* | A satisfies c*}. Then let 

w(A) = | sat(A) |, where | D | stands for the cardinality of a set D. Let Wp represent 

the set of all possible assignments A, assigning values to all variables in X . Then the 

solution set S  of the problem is defined as

S — {X  € Wp | w (X ) =  max{w(A) \ A  6  Wp}}

Consider a CSP P  with three constraints ci, C2, and C3 defined on three variables 

xi,x2, and x3 with domains {0,1}, {1,2}, and {1} respectively. Let ci(xl ,x2) =  

{(0,2), (1,1)}, c2(x2,x3) =  {(2,1)}, and c3(x1,X2,x3) = {(0,1,1)}. P  has only one 

solution, namely {xi =  0 ,X2  =  2 ,X3  =  1 }. This assignment satisfies two constraints: 

ci and C2. Any other assignment of variables satisfies either a single constraint or no 

constraints.

2.2.3 Hierarchical constraint satisfaction problems

Another important school of over-constrained systems allowing for specification of 

preferences in constraints is the hierarchical constraint logic programming (HCLP)
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paradigm [63]. HCLP employs constraint hierarchies [4] in constraint logic Program

ming [28].

In constraint hierarchies, an arbitrary number of levels of preference is allowed, 

each successive level being more weakly preferred than the previous one. The set of 

required constraints represents the lowest level in the hierarchy.

A solution to a constraint hierarchy is an assignment to the free variables in the 

hierarchy, such that the set of required constraints in the hierarchy are satisfied and 

the remaining constraints are satisfied in the best possible manner. In addition to 

the basic criteria of satisfaction of the set of required constraints, the solution must 

be better than any other assignment which satisfies the hierarchy too. The notion of 

better is based on the comparison of how well two assignments of values satisfy the 

hierarchy of non-required constraints. The comparison measures are referred to as 

comparators. The conditions for a comparator are that it should be an irreflexive and 

transitive relation. Further it is desired that any comparator respect the hierarchy. 

By respecting the hierarchy, it is meant that if there is a solution to the set of required 

constraints such that it satisfies all non-required constraints through level k, then all 

solutions returned by the comparator must satisfy all the constraints through level k.

Comparators in HCLP

Comparators in HCLP [63] refer to methods to compare the valuations satisfying 

a constraint hierarchy. These methods are used for comparing constraint hierarchy 

solutions, and are hence based on combining the results of satisfaction of constraints 

at one level with the results at the next level. The magnitude of how well a solution 

satisfies constraints at a given level in the hierarchy is measured by an error function. 

The error function is a measure of how well a solution satisfies a constraint. The 

error function can be defined in a number of ways for a given hierarchy. For a given 

hierarchy, we can define a trivial error function which defines to 0  if the constraint is 

not satisfied or 1  if it is. Otherwise we can use a metric error function which defines
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the error in terms of the difference between the expected output and the output of a 

constraint. At a particular level, the error of each constraint is aggregated to obtain 

a combined measure of the total error at the current level with the current solution. 

So for any comparator, we can have the predicate better or the metric better version 

of the comparator.

Ideally the metric function should also be converted to predicate function so that 

we can use a uniform scale for comparison for comparators. But in many real life 

cases, metric error function is capable of yielding precise and better results.

But a notion which needs to be described before the concepts of comparison of 

valuations is described is the concept of combining function. The combining function 

g when applied to real valued vectors returns a value which can be compared using 

two relations <>g and <g. The requirement for <g is that it must be irreflexive, 

antisymmetric and transitive. The relation <>g must be reflexive and symmetric.

The combining function G is a generalization of g and is applied to error sequences 

and returns a sequence of values that can be compared using <>g and <g. This type 

of sequence is called the combined error sequence.

The combined error sequences are compared using the lexicographic ordering of 

the sequences. Based on this ordering, the solution set 5  of a constraint hierarchy 

is defined as the subset of S q , the set of solutions to set of required constraints 

(ignoring the soft constraints), consisting of all the valuations for which no better 

(based on lexicographic ordering) valuations in S q exist.

In HCLP [63] there can be a variety of comparators for combining the results 

across multiple levels depending upon which the type of the result may vary. The 

comparators can be of three types - local, regional and global. For a local compara

tor each constraint is considered individually. So for a particular level, there will 

occur a constraint for which one solution is better than the others and for all the 

other levels below this level this solution behaves same as other solutions worse than 

it. In a global comparator, the error sequence at a given level is aggregated using a
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aggregation function. In regional comparator, the constraint at each level is consid

ered individually like in the local case, but it has the additional advantage that the 

comparators incomparable at a lower stricter level, can still be compared at a higher 

level. So the general behavior of each comparator depends upon the hierarchy and 

also on the constraints constituting each hierarchy.

Com m on com parators

Some of the more common comparators used in HCLP are presented in this section. 

These different comparators are obtained by using different relations <>g and g. To 

list a few they are:

W eighted-sum  b e tte r  The constraint errors at any given level are aggregated tak

ing the weighted sum of the errors at that level.

W orst-case b e tte r  The constraint errors at any given level are aggregated taking 

the weighted maximum of the errors at that level.

Least squares b e tte r  The constraint errors at any given level are aggregated taking 

the weighted sum of the squares of the errors at that level.

Locally B e tte r  The solution must perform at least as well as any other solution at 

all levels below k and at level k must do strictly better than other solutions for 

at least one constraint and at least as well for all other constraints.

Regionally B e tte r  The solution is exactly as a local comparator except that the 

<>g is not the strict =, as is the case in locally better, but <>g also succeeds 

for cases where two values are not comparable.

In combination with the error function chosen, the comparators can be either of 

predicate type or metric type. e.g. Locally-metric-better or Locally-Predicate-Better.
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2.2.4 Partially ordered constraint hierarchical system s

In this section a generalization of the scheme of HCLP shall be discussed. It can be 

shown that in lot of real life applications of constraints, where the underlying problem 

is over-constrained, a strict constraint hierarchy as used in HCLP does not work.

The problem with constraint hierarchies is in the imposition of levels which induces 

unnecessary priority relationships between constraints. The constraints which are at 

different levels have a priority relationship which is many to many. Any constraint in 

a higher priority level is more preferred than any constraint in the lower priority level. 

This concept does not fit very well with some realistic applications where constraint 

hierarchies have been used.

To avoid this problem of over-specification, a generalization of the priority rela

tionship between the constraints is necessary. Such a generalization can be in the 

form of a partial order on the set of constraints. This is a superset of the constraint 

hierarchy relation on the set of constraints.

Partial order on constraints typically assumes the constraints to be ordered on 

a reflexive, transitive and anti-symmetric relation on the set of constraints. This 

relation, termed as the priority relation, forms the governing rule for deciding the 

order of application of constraints. An optimal solution can also be defined in terms 

of the partial order on the set of constraints involved in the relation.

Partially ordered hierarchies have been studied in [5]. A totally ordered hierarchy 

H  is said to be consistent with a partially ordered hierarchy G, if H  has the same set 

of constraints as G, and if there is a mapping m  from the strengths of G to those in H  

such that if Sx < S2  in G, then m(si) < m(s2). and there is a one to one relationship 

between any constraint SjCj in G and m(sj)cj in H.

Under such definition the set of solutions of the partially ordered constraint hi

erarchy G, is given by the union of the solutions of all totally ordered hierarchies H  

consistent with G.
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Thus in this semantics, the partial order information is heavily dependent upon 

the comparator used in the obtaining of solutions of the approximating totally ordered 

constraint hierarchies consistent with the partially ordered hierarchy.

Key fact to note is that such kind of approximation by a totally ordered constraint 

hierarchy is possible only because the priority relationship between pairs of constraints 

in this case is inclusive in nature. The satisfaction of a higher priority constraint does 

not affect the satisfaction of a lower ranked constraint.

2.2.5 Preference information in existing over-constrained 
frameworks

The over-constrained systems studied in this section use a range of methods to deal 

with the problem of identifying the preferred solution. In all the frameworks dealing 

with the notion of preferred solution, an important factor which affects the semantics 

of the solution is the nature of preference relation between constraints.

In the simplest case of max-CSP, every constraint is considered to be of equal 

importance. A solution is then defined by an assignment satisfying a maximal number 

of constraints. Thus there is practically no concept of any preference relation between 

constraints.

Next, in case of max-weighted CSP each constraint is given a unique weight de

pending upon its importance. But the introduction of weight does not precisely cap

ture the nature of semantics of preference between two constraints. A large number of 

constraints of lower preference measure (weight) could outweigh or equal a constraint 

with a large weight. Thus albeit the preference information encoded in max-weighted 

CSP is more fine-grained than preference-less max-CSP, max-weighted CSP still does 

not capture the notion of preference between constraints in a satisfactory manner.

The concept of preference between constraints is better captured in HCLP which 

employs constraint hierarchies [4]. In HCLP, the constraints are assigned unique levels 

according to the importance of the constraint. A set of required constraints form the
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most important and the lowermost level lQ in the hierarchy. As we go from li (the most 

important non-required level of constraints) to ln (the least important non-required 

level of constraints) the importance of a constraint decreases. Though the precise 

definition of a solution to a hierarchy depends upon the choice of comparator, the 

preference information between constraints is captured in HCLP in a better manner 

than max-weighted CSP. This is due to the lexicographic ordering employed in the 

derivation of a solution. In a lexicographic ordering, any single constraint at a lower 

level li in the hierarchy is more important than any number of constraints at a level 

lj higher than Thus the anomaly of the max-weighted CSP is corrected in HCLP. 

In spite of this general nature of preference relation between constraints captured 

by HCLP, in some cases the preference relation imposed becomes restrictive. This 

restrictiveness is due to the fact that the hierarchy imposes a many to many preference 

relation between constraints at a lower level and constraints at a higher level. This 

might be too restrictive in cases where we need to specify a one-to-one preference 

relation between any two constraints. Such kind of preference information requires a 

finer representation of priority.

The above-mentioned restrictive nature of the HCLP framework is overcome by 

partially ordered constraint hierarchies [5]. In these hierarchies, it is possible to 

specify more fine-grained priority information. The priority information is specified 

as a binary, transitive, and anti-symmetric relation on the set of constraints. Since it 

is possible to specify the relation between constraints directly, we can specify a fine

grained priority relation between pairs of constraints which does not suffer from the 

restrictiveness of HCLP. Among all, partially ordered constraint hierarchies represent 

the most general kind of priority information that can be accommodated in over- 

constrained frameworks.
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2.3 Function-free normal logic programs and sta
ble m odels

In the recent past, languages based on stable models for logic programs have been 

developed for expressing and solving problems in artificial intelligence. The notable 

among these languages are the LPsm  language developed by Niemela in [41], and the 

stable logic programming (SLP) paradigm developed by Marek and Truszczynski in 

[37]. In [41], LPsm  is shown to be an effective language for modeling constraint satis

faction problems, planning problems, and other computational problems in artificial 

intelligence. On similar lines, in [37] the SLP paradigm was used to model various 

constraint satisfaction problems. Before we proceed with a detailed discussion of the 

languages, we introduce the stable model semantics for logic programs with ground 

or propositions! terms.

2.3.1 Stable model semantics

Logic programs with ground or propositional terms consist of rules of the form:

h ( . . . ,  on, Tiot . . . , not bjji

where a i , . . . ,  a„, &i,. . . ,  bm, and h are propositional atoms. The expression not b is 

called a not-atom.

Before proceeding with the definition of stable models, we need to define the 

concept of reduct. The reduct Pa of a general logic program P  with respect to a set 

of atoms A is the program obtained by applying the following two steps to P:

1. by deleting each rule in P  that has a not-atom not x  in its body such that x  6  A 

and

2 . by deleting all not-atoms in the remaining rules.

The stable model semantics [24] for a logic program with ground terms P  is then 

defined as follows: A set of atoms A is a stable model of P  if and only if A is the
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unique minimal model of the reduct Pa . The unique minimal model is obtained as 

the deductive closure of the program Pa -

Consider P  =  {a <— not b;b <— not a}. Take the set of atoms A  =  {a}. The 

reduct Pa is {a <—}. The deductive closure of Pa is {a}. Since it is the same as A, 

therefore {a} is a stable model of P . But if we consider A  =  {a, 6 }, the reduct PA is 

the empty program {}. The unique minimal model is thus {}. This is not the same 

as A. Hence {a, 6 } is not a stable model of P.

2.3.2 Function-free normal logic programs

Function-free normal logic programs (FFNLPs) with variables refer to sets of clauses 

of the form

h(Yi, Yi, - . .) «— O lC X n ,  X 1 2 , • • •)> ° 2 (-^2 1 > ^ 2 2 ) • • -)i • • • 1 Xn2 , - - •)>

not bi(Zu, Z \2 i ••■))•••) bm{Zmi, Zm2 , - ■ .)

where h ,a i,0 2 , - ■ ■, a*,6 1 , •  >bm represent predicates and yj, Y2 , X u, Zu, Zm 1 . . .  

etc. are variables.

The absence of functions in FFNLPs controls the explosion of the size of the 

ground version of these programs. The restriction of FFNLPs to finite programs 

yields a computationally interesting and expressive language. The stable models of a 

finite FFNLP are the stable models of the ground translation of the FFNLP. Both the 

important paradigms of SLP and LPsm depend upon languages which are subsets of 

finite FFNLPs.

A finite FFNLP can capture integrity constraints. A ground integrity constraint 

refers to a rule of the form

/  <— B \,. .  . ,B m,not C i,.. . ,n o t  Cm,not f

The semantics of the integrity constraint above dictates that any set of atoms S  

satisfies the above integrity constraint iff it is not the case that ( P i , . . . ,  Bm} C S
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and {Ci, . . . ,  Cn} ft 5  =  <t>. A non-ground integrity constraint is represented by the 

set of ground instances of the rule.

The idea of using finite FFNLPs for programming constraints is based on the idea 

that each clause is interpreted as a constraint on the solution set of the problem. 

The underlying principle of use of FFNLPs in modeling constraints is shown in the 

following example:

Consider the following finite non-ground FFNLP for the coloring of a graph. 

It assumes two predicates vertex(X) and arc(X, Y) to represent the graph. A graph 

is defined by a set of ground instances of vertex and arc predicates. Further the 

predicate col{C) denotes the set of available colors. The FFNLP program consisting 

of the following rules captures the semantics of the A:—coloring of the graph, (assume 

= =  to be defined extensionally as a predicate ==(X,Y) consisting of all pairs X, Y 

such that X is same as Y).

color(V,C) <— vertex(V),col(C),not othercolor(V, C) 

othercolor(V, C) <— vertex(V),col(C), col(D), not C = =  D, color(V, D) 

f  «— arc(V, [/), col(C), color(V,, C), color(U, C), not f

The first clause states that if a vertex is assigned a color, it cannot be assigned another 

color. The integrity constraint states that if there is an arc between two nodes, they 

cannot be assigned the same color. The program returns a stable model iff there 

is a A:—coloring of the graph. From a stable model, all facts of the form color{v, c) 

indicate the respective color assigned to each node.

It is clear that a variety of constraints can be captured in the framework of finite 

FFNLPs.

28

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



2.4 L P s m  language and the sm odels proof proce
dure

2.4.1 The language of L P s m

In this section we present the details of one subset of finite FFNLPs called LPsm pro

posed in [41]. In LPsm > a sub-class of FFNLPs is used as the underlying language. 

The sub-class is defined by the property of domain-restrictedness [41]. Domain re

strictedness is a special case of the general property of range restrictedness which 

refers to the property that any variable which appears in a rule also appears in some 

positive body literal in the same rule. The property of domain-restrictedness is defined 

as follows:

Definition 2 (D om ain-restrictedness) [41] Let P be a logic program and D be a 

set of predicates. Then P is domain restricted with respect to D, if for each rule it 

holds that every variable appearing in the rule appears also in a positive body literal 

for which the predicate is from D.

A domain restricted program can be further restricted by restricting the set of 

predicates to those with a fixed set of ground instances.

Definition 3 [41] Let P be a logic program that is domain restricted with respect to 

D, and let D be a set of ground instances of predicates in D. The program P D is 

defined as the set of ground instances of the rules in P such that each positive body 

literal with a predicate from D belongs to D.

Further, the notion of completeness is defined for a set of ground instances D.

Definition 4 [41] Let P be a logic program which is domain restricted with respect 

to D and D a set of ground instances of predicates in D. Then D is complete for P iff 

for each ground instance d of a predicate d £ D it hold that (i) if d is in some stable 

model of P, then d £ D and (ii) i f  d is in some stable model of P D, then d £ D.
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Certain classes of domain definitions are amenable to efficient computation of 

complete ground instances. LPsm  uses a class of domain predicates which have 

stratified and non-recursive domain definitions in the program depending only on 

other domain predicates. This class of domain definitions permits an efficient way 

to generate complete set of ground instances. Thus effectively LPsm uses function- 

free domain restricted programs with stratified non-recursive domains. The following 

theorem [41] states the result about the preservation of semantics in translation of a 

non-ground program to its ground equivalent.

T heorem  2.1 [41] Let P be a domain restricted program with respect to D and D 

a subset of the ground instances of the predicates in D with respect to the Herbrand 

universe of P such that D is complete for P. Then P and P D have the same stable 

models.

The use of a restricted class of programs permits additional programming features 

to be integrated into the I jgic program rules. The additional features added in LPsm 

in addition to the usual non-ground logic program rules allowed by FFNLPs are the 

built-in functions. The addition of built-in functions is possible because of the absence 

of the process of floundering. Floundering refers to the situation when a procedure 

receives uninitialized values as parameters. The use of domain-restricted programs 

avoids the phenomenon of floundering. Hence L P s m  allows built-in functions to be 

used in its language in the infix form. Some built-in functions and predicates allowed 

in LPsm are abs, # , +.

Effectively, in the most general form L P s m  contains the following two types of 

rules:

P rog ram  rules In the most general form a program rule is of the form 

h(X l tX i t ...)  <- dl (X l),d2 {X2 ) , . . . ,d m(Xm),

Pi (Xn) ,p2(Xx2) 1 • • •,  expr 1 mathop expr2 , . . . ,  

not qi (Xki ) , . . . .
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where denote domain predicates, pt,P2 , 9 i , • • • etc. are non-domain

predicates, expri. . .  etc. denote mathematical expressions over variables de

fined by the domain predicates, and mathop denotes a mathematical operator 

(including > etc).

Integrity constraints An integrity constraint is a program rule without any head.

Consider the encoding of the fc—coloring of a graph in LPsm [41]. Keeping all 

parameters and definitions same as the case in FFNLPs, the corresponding encoding 

in LPsm is

color(V,C) <— vertex(V),col(C),not othercolor(V, C) 

othercolor(V, C) «- vertex(V), col(C), col(D), C ^  D, color(V, D)

arc(V, U), col{C), color(V, C), color{U, C)

Note that the only additional power here is in the inclusion of ^  within the language 

of LPsm ■ But an operational difference is to be mentioned with respect to the imple

mentation of integrity constraints in LPsm • In LPsm any integrity constraint of the 

form

i B \i . . . ,  Bm, not C\ , . . . ,  not Cm

is enforced in LPsm  by converting the rule to a clause

false  <— B \ , . . . ,B m,n o tC i, . . . ,n o tC m

and then enforcing the constraint that any returned stable model should not have the 

atom false  in it.

An LPsm  program is solved in a two-stage process [41]. The two stages are:
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lparse - This stage converts a L P s m  program to a ground program such that sound

ness and completeness is not lost.

sm odels - This stage computes the stable models of the converted ground program.

Our stress in the next section is to explore the details of the smodels stage of the 

L P s m  solver.

2.4.2 Description of smodels system

In [41], L P s m  is presented as a language for constraint satisfaction, where the rules 

of a program are seen as constraints on the stable models. L P s m  uses smodels [54], 

an efficient procedure for computing the stable models of ground logic programs. In 

this section an overview of the smodels system is presented. The material in this 

section is taken from [54].

The smodels system uses two main efficiency techniques:

Backjumping An improvement over chronological backtracking.

Lookahead A pruning method based on an intelligent way of choosing the next 

literal to be instantiated.

Further two deductive closures expand and conflict are given linear-time im

plementations that provide a linear-space implementation method for the decision 

procedure.

2.4.3 The decision procedure

The decision procedure for the stable model semantics is presented in this section. 

Logic programs with ground terms consist of rules of the form:

h ( q ,̂ . . . ,  Qfi, not . . . ,  not bm

where a i , . . . ,  On, 6 x,. . . , bm, and h are propositional atoms. The expression not b is 

called a not-atom. For an atom x  let opp(x) =  not x, and for a not-atom not x
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let opp(not x)= x. For a set of atoms A, not(A) = {not a \ a 6 A}. For a set B 

containing both atoms and not-atoms, the set of atoms in B  is denoted by B + and 

the set of not-atoms by B~. Consider B  =  {a, 6 , not c, not a}. Then B+ =  {a, b} and 

B~ =  {not a, not c}. Atoms and not-atoms are also called literals. Further, for a set 

of literals B, let Atoms(B)=  {x | x  € B or not x  6 B}. Similarly, for a program P, 

let Atoms(P) denote the set of all atoms x  such that either x  or not x  appears in P. 

For a set of atoms A, if the set of all atoms in the language is if , then A =  H  - A. 

For a set of rules P  let the set of negative antecedents in P  be denoted by Neg(P), 

i.e., Neg(P) contains every atom x  such that not x  appears in P.

Definition 5 (Agreement) [54] Let A be a set of atoms and let B be a set of literals. 

A set of atoms A agrees with B if 

B+ C A and B~ n  not(A) =  <f>

Definition 6 (Coverage) [54] Let A be a set of atoms and B be a set of literals. B 

covers A if A C  Atoms(B).

The deductive closure of a set of rules P  and a set of literals B is denoted by 

Dcl(P, B), where Dcl{P, B) is the smallest set of atoms that contains B+ and is the 

fix-point of R(P, B) where

B(P, B) =  {h 4- a y ,.. .,On\ h 4- ai,. ..,On,not b i ,...,n o t bm E P  

and not bi 6  B- , for i =  1,... ,m }

is seen as a set of inference rules. Let P = {a 4— not 6 ; d 4- not c}, and B =  {not b, d}. 

Then B(P,B) =  {a <-}. Hence Dcl{P,B) =  {d,a}.

From the definition of a stable model given in previous section, it is clear that a 

stable model A can as well be defined by the following equation:

A =  Dcl(P,not(Neg(P) — A)).
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function smodels(P, B)
B' := expand(P, B) 
if conflict (P, B') returns true th en  

re tu rn  false 
else if Neg(P) is covered by B' th en  

re tu rn  te s t (Del (P, B’))
else

Take some x  € Neg(P) not covered by B' 
if sm odels(P, B' U {x}) returns true then  

re tu rn  tru e
else

re tu rn  sm odels(P, B' U {not x})
endif

endif

Figure 2.3: The sm odels procedure 

Basic decision procedure

The decision procedure for the stable model semantics is presented in Figure 2.3. It 

computes a stable model A of a program P  agreeing with a set of literals B  such that 

the function te s t (A) returns true, or it returns false if no such stable model exists. 

The function test(A) is used to test if the set of atoms A is a stable model of the 

program P.

The decision procedure smodels(P, B) finds stable models by nondeterministi- 

cally exploring the search space consisting of all subsets of Neg{P). The procedure 

assumes the existence of two functions, expand and conflict. We will give the pre

cise definition of these functions as used in sm odels shortly. In general, they should 

satisfy some basic conditions. For any B' =  expand (P,B), the following properties 

are satisfied:

E l  B  C B ' , and

E2 every stable model A of P  that agrees with B  agrees with B '.

The function conflict (P,B) returns true or false and satisfies the following two
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conditions:

C l  if B  covers Neg(P) and the deductive closure Dcl(P, B') does not agree with 

B , then conflict (P, B) returns true, and

C2 if conflict(P, B) returns true, then there is no stable model A of P  such that A 

agrees with B.

The algorithm of smodels explores the search space of the possible subsets of 5  

where S= Neg(P) U not(Neg(P)). Beginning from the starting set B, the algorithm 

interleaves the recursive calls to smodels and calls to the expand function. The idea 

is to avoid the costly calls to smodels, by propagating the truth values in B  to the 

program P , thereby adding as many new literals to B  as possible before generating 

a new call to smodels. Depending upon the way the procedure smodels is used, 

the starting value of B  may be either the empty set {}, or a predetermined set of 

literals. If we need to find any stable model of the original program, we start with 

B  = {}. If on the other hand, we want only stable models in which certain literals 

are necessarily true, we run the smodels procedure with a starting value of B  as the 

set of such literals. E.g. suppose we want to find out if there is a stable model that 

contains a but not 6 , we invoke smodels(P, {a, not 6 }). If any stable model agreeing 

with this B  exists, smodels outputs it.

In the intermediate stages of the algorithm, at each call to smodels a new literal 

(either an atom or a not-atom) I (where I € S, S  being Neg(P) U not(Neg(P))), is 

added to the existing B. Then the search proceeds for a stable model agreeing with 

this new set B.

The function of expand is to prune the search space by avoiding calls to smodels. 

At each call to smodels, the function expand is called to add as many literals to B  

before the next call to smodels.

The function conflict, on the other hand, is given the task of enforcing the stable 

model semantics. If the function conflict(P, B) returns true at any point, it indicates
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that the current set B  cannot be expanded to generate any stable model.

The decision procedure sm odels above is shown to be sound and complete in [54].

E xpand and conflict

To prune the search space as much as possible, the expand function should return 

as large a set as possible and the conflict function should return true on as many 

sets as possible. Good candidates for the two functions expand and conflict are 

presented here.

Since expand (P, B) is going to enlarge the set B, (El) is satisfied. If a stable 

model A of P agrees with the set of literals B, an approximation of the set of rules 

in P  which actually take part in derivation of A, can be constructed by introducing 

a reduct of P . Let Pb , the reduct of P  with respect to 5 , be the set of rules

{h <- l i , . . . ,  ln € P  | opp(li) i  B }

where lx, . . . ,  /„ are literals and we know that for an atom x, opp(not x) =  x and 

opp{x) = not x. The following additional observations allow the propagation of B  to 

B' without sacrificing the semantics of the stable models agreeing with B.

Inference rule 1 (IR 1 ) If the body l\, of the rule h <— Zl t . . . ,  ln is a subset of 

B , then the head h belongs to every stable model agreeing with B.

Inference rule 2 (IR2) If Pg contains no rule with head h, then h is not an element 

of any stable model agreeing with B.

Inference rule 3 (ER.3) If h E B  is the head of only one rule h «— l\ , . . . ,  ln in Pb , 

then li , . . . ,  /„ € A U not(A) for every stable model A agreeing with B.

Inference ru le  4 (IR4) If not h 6  B  and h is the head of the rule h <— l\ , . . . ,  ln in 

Pb for which h , . . . ,U - i , /t+i , . . . , Zn E B, then every stable model that agrees 

with B  agrees with B  U {opp(/,)}.

36

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



The above criteria help in identifying the additional literals which can be added 

to B  without any problem in semantics. The literals which can be added in expand 

are based on the following two lemmas.

The closure Cl(P,B) is defined as a minimal set closed under inference rules 1  

to 4 above, that contains B. The following lemma is a direct result of the above 

observations.

Lem m a 1  [54] I f  a stable model A of P agrees with B, then A also agrees with Cl(P, 

B).

More information can be deduced about the stable models that agree with B.

In [54], it is shown that

A =  Dcl{P,not(K))

C Dcl(PB,not(Neg(P)))

Lem m a 2  [54] I f  a stable model A of P agrees with B, then A agrees with B u {  

not x  | x  6  Atoms(P) and x  & Dcl(PB,not(Neg(P)))}

Based on the previous two lemmas, we have a strong criterion for the function 

expand (P,B). These two lemmas characterise the expand function outlined in 

Figure 2.4. The definition in Figure 2.4 satisfies both the criteria E l and E2.

The function conflict(P, B) is made to return true when

not{B+) fl B~ 7^ <f>

This function satisfies the criteria Cl and C2 as required for a definition of the conflict 

function. The functions expand and conflict are given in Figure 2.4.
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function expand(P, B) 
repeat

B' := B  
B :=  Cl(P,B)
B \— B  U {not x  | x  6  Atoms(P) and x £ Dcl(PB,not(Neg(P)))} 

un til B' = B  
re tu rn  B

function conflict (P, B)
Precondition: B  =  expand(P, B) 
if not(B+) DB~ ^  0 th en  

re tu rn  tru e
else

re tu rn  false
endif

Figure 2.4: The procedures expand and conflict

Exam ple

Let us consider an example program P  to illustrate how the smodels procedure 

works in conjunction with expand and conflict. Let P  =  {a <— not a; a c,d;e<- 

not d,d<r~ not e; c <—} Let the clauses in P  be named P i, R 2 , P 3 , P 4  and P 5  respec

tively to be able to refer to them at ease. The steps invoked in the generation of the 

first stable model of this program P  are outlined in Figure 2.5.

2.4.4 Backtracking improvements: lookahead and backjump- 
ing

The decision procedure sm odels employs chronological backtracking search. But 

this search method is very costly as it blindly explores all dead ends of the search 

space without exploiting any properties of the problem domain to lessen the amount 

of work.

Two main cost saving techniques are employed in smodels, namely the looka

head and backjumping. While lookahead makes an intelligent choice for the next 

literal, backjumping jumps over irrelevant variables when a conflict is encountered.
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B =  l l
Program clauses in P. 

Rl: a <-nota 
R2: a <-c,d.
R3: e <• notd. 
R4: d <- not e. 
R5: c <-.

expand
[Rl (Add the foots)

B =  (c)

No more inference 
rules applicable.

Pick not a

expand

IR3 (to clause 
R3)

conflict
IR3 (to clause

_ j :------ R4)
B = BU (note)

X

B covers Neg(P).
Check for stable model.

Stable Model: |ax.d|

Figure 2.5: Execution trace of sm odels on a sample program
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function lookahead(P, B)
A  := Neg(P) - Atoms(B)
A  := A  U not(A)
W hile  A^<(> do

Take any literal I € A  
B' :=expand(P, B  U {I})  
if conflict (P ,P  ) returns true then  

re tu rn  opp(l)
else

A := A -  B'
endif

endwhile
re tu rn  any atom in Neg(P) not covered by B

Figure 2.6: The lookahead procedure

A dding lookahead

Lookahead is based on the idea of testing every possible choice before committing 

to one. In the case of smodels, this means that we can avoid choosing literals that 

directly leads to a conflict. Namely, if the stable model A agrees with the set of literals 

B, but A does not agree with B  U {/}, we know that A agrees with B  U {app(l)}. 

Thus, lookahead immediately gives us a stronger pruning method: if conflict(P, B') 

returns true for B' =expand(P, B  U {/}), add opp(l) to B. If we know for sure that 

choice of a literal I is leading to a conflict immediately, then we can save the search 

space traversed by smodels by considering only the path of addition of opp(l), thereby 

saving a lot of unnecessary traversal. Lookahead has been shown to be one of the 

most effective cost-saving measures used in the smodels procedure.

The lookahead procedure is given in Figure 2.6. This principle is similar to the 

principle of dynamic variable ordering used in finite constraint satisfaction, where 

first fail principle is a guiding heuristic in the determination of the next variable to 

be chosen.

40

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



A dding backjum ping

Although many conflicts are discovered using lookahead, there are still situations 

when the decision procedure exhaustively searches through assignments that are not 

relevant to a set of conflicts. A simple example is furnished by the union of two 

programs that do not share atoms. It is assumed that the first program has several 

stable models and that the second one has none. If we always begin by choosing 

atoms from the first program, then we will search through all stable models of the 

first program before we discover that the joint program has no stable models.

The notion of a path between two atoms in a program is introduced. A logic 

program generates an undirected graph whose nodes are the atoms appearing in the 

program and whose edges connect every pair of atoms appearing in the same rule. In 

effect, if

fll   ̂ 02 • • •  , Orn, not Qm+1 > • • • i not On

is a rule in the program, then every pair (a*, Oj), for 1  < i, j < n, is an edge in the 

graph. A path between two atoms in the program is then a path in the corresponding 

graph. Empty paths are accepted and a path between two literals is defined as the 

path between the atoms the literals cover.

The main technical result which allows backjumping is presented below.

T heorem  2.2 [54] Let P be a program, B be a set of literals, and l\ and I2  be two 

literals such that there is no path from li to I2 in Pb and such that conflict (P, B ') 

returns true for B' =  expand (P, B u { l \ , l 2 }) but conflict (P, exp and  (P, £ u  

returns false. Then, conflictfP, expand (P, B  U {h})) returns true.

This theorem explains the situation when a conflict is encountered on addition of 

two literals l\ and I2  to a set B, where there is no path between li and I2  in Pb- It 

states that if li does not cause a conflict on addition to B, then I2  definitely leads
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function smodels(P, B, level)
B' := expand(P, B)
if conflict (P, B') returns true
then

re tu rn  false 
else if Neg(P) is covered by B' th en

top := level
re tu rn  tes t( Dcl(P, B'))

else
conflict := I := lookahead(P, B')
if sm odels(P, B' u {/}, level +  1) returns true th en  

re tu rn  true
else if  (level < top or there is a path from I to conflict in Pg>) ,then  

if level < top then  
top := level 

endif
re tu rn  sm odels(P, B' U {opp(l)}, level +  1)

else
re tu rn  false

endif
endif

Figure 2.7: smodels with backjum ping and lookahead

to a conflict upon addition to B. This theorem is the basis for the incorporation of 

backjumping in the proof procedure of smodels.

The decision procedure incorporating backjumping from conflicts and backtrack

ing from stable models is presented in Figure 2.7. The algorithm assumes the existence 

of two global variables: conflict and top. The variable conflict holds the last choice 

leading up to a conflict, while the variable top keeps the level, or depth of recursion, 

above which backtracking is chronological.

The key savings occurs here when there is no path between a past variable I and 

a future variable conflict where the conflict has actually taken place. In such a case, 

the possible cause of conflict is due to a value added between I and conflict. This 

ensures that the conflict remains intact if we try the sm odels procedure with opp(l) 

too. Hence there is no point in pursuing the path of addition of opp(l), as we are
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sure to find the same conflict again. In that sense, it is possible to backjump to the 

previous choice point in the procedure instead of wasting searching the path along 

opp(l). Hence the savings obtained by addition of backjumping into the smodels 

procedure.

2.5 Relation of smodels to earlier systems

The smodels algorithm derives its roots from the well-known Davis-Putnam (DP) 

procedure [9, 10] for solving the SAT problem. The SAT problem [8] is defined as 

follows:

Let V  be a set of boolean variables {vi,v^ ,. . . ,  un}. A literal v is of the form 

Vi or vi where V{ is a boolean variable. A SAT problem P  consists of a set C of 

clauses Ci each clause being a collection of literals. A truth assignment £ is a function 

t: V  ->■ {T, F}, where T  and F  represent the boolean constants true and false  

respectively. A variable Vi is satisfied by £ if t(vi) = T. A literal vi is satisfied if 

t(vi) = F. On the other hand a variable V{ is contradicted by £ if t(vi) =  F, and a 

literal vl is contradicted if t(vi) = T. A clause Ci, which is a collection (disjunction) 

of literals is satisfied by £ iff at least one of the literals in Ci is satisfied by £. A clause 

Ci is contradicted by £ iff all the literals in Ci are contradicted by £. A set of clauses 

C  is satisfied by £ iff all the clauses in C are satisfied by £. A set of clauses C is 

contradicted by £ iff at least one of the clauses in C  is contradicted by £. The SAT 

decision problem is stated as follows [2 0 , 8 ]:

Definition 7 (SAT) Given a set V of boolean variables (each variable Vi is present 

either as a literal u,- or a literal vi), and a collection of clauses C over V, where each 

clause represents a disjunction of literals, is there a satisfying truth assignment t for 

C?

In [8] SAT was shown to be NP-complete. Most implementations of SAT return a 

satisfying assignment for a SAT problem if any exists, otherwise return false.
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function DP(C, t) 
if C  is satisfied by t th en  

re tu rn  (T, t) 
else if  C is contradicted by t then  

re tu rn  (F, t)
else

Pick a variable v such that v does not have a value in t 
t = tU {v  = T}
( / ,0 = D P ( C , t )  
if ( /  = =  T) then

re tu rn  (T , £*)
else

re tu rn  DP(C, t U {u =  F})
endif

endif

Figure 2.8: Pure Davis-Putnam procedure

2.5.1 Davis-Putnam  procedure

DP is a simple and practical procedure for solving the SAT problem. If the set 

of clauses C in a SAT problem is satisfiable the DP procedure [9] returns a truth 

assignment t satisfying C, otherwise it terminates without returning any assignment. 

Let us consider a SAT problem P  consisting of a set C  of clauses defined over a set 

V  of boolean variables. The basic Davis-Putnam procedure is shown in Fig. 2.8.

The pure DP procedure non-deterministically explores the space of the possible 

truth assignments over the set of variables X  in a SAT problem. The procedure DP 

is initially called with an empty truth assignment t = <f>. In the end the returned t is 

a truth assignment satisfying C  if C  is satisfiable.

The procedure of sm odels bears a strong similarity to the solution method fol

lowed in DP. The main points of similarity between the basic smodels procedure 

(Fig.2.3) and the pure DP procedure (Fig. 2.8) are:

• Terminates with a satisfying assignment in both cases if the problem (clause-set 

or program) has a solution. If there is no solution, the method terminates in
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both cases indicating the unsatisfiability.

•  At any point where branching occurs, in each case a new literal I is chosen 

non-deterministically. There are exactly two branches corresponding to each 

such choice, one branch for assignment of T  to I (adding I to B) and the other 

branch for assignment of F  to I (adding opp{l) to B).

2.5.2 Improvements to basic Davis-Putnam  algorithm

The basic procedure of DP assumes no intermediate processing at any stage. But 

it has been shown in literature that low-order polynomial processing at each stage 

is a useful mechanism for reducing the number of nodes in the search space of DP. 

The basic idea behind any such pre-processing algorithm is to process a set of clauses 

C  based on the latest truth value assignment and return a new set of clauses C' 

which is simpler than C  to solve. This type of pre-processing is commonly termed as 

propagation. A generic version of the DP algorithm with propagation is given in Fig.

2.9.

The basic smodels algorithm presented in Fig. 2.3 bears a closer resemblance 

to this version of DP with propagate as shown in Fig. 2.9. In addition to the two 

main similarities to the pure DP algorithm mentioned before, the call to expand 

in sm odels after every non-deterministic choice is similar to the call to a propagate 

function after the addition of a new variable assignment in the DP procedure. The 

expand function is applied in smodels with the intent of simplifying the problem 

before another recursive call, as is also the case in application of the propagate function 

in DP.

U nit resolution

The most common propagation algorithm presented in DP [9,10] is the unit resolution 

method. In unit resolution the effects of simple facts are propagated and used to 

subsume clauses. If the set of clauses C  in SAT contains a unit clause (that is, a
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function DP(C, t) 
if C  is satisfied by t  th en  

re tu rn  (T, t) 
else if C is contradicted by t then  

re tu rn  (F, t)
else

Pick a variable v such that v does not have a value in t 
t = t l)  {v = T}
C' =  propagate(C , t)
(7 ,0  =  DP(C", t) 
if  ( /  = =  T) th en

re tu rn  (T ,f)
else

t = t u{u = F}
C' =  propagate(C, t) 
re tu rn  D P (C \ t)

endif
end if

Figure 2.9: Davis-Putnam procedure with propagation

clause consisting of a single literal v or v), the clause can only be made true by one of 

the two possible assignments of truth value to the variable v. Hence this assignment 

can be made without branching and the resulting formula can be simplified based on 

this assignment. This procedure is termed as unit resolution. Since unit resolution 

only decreases the number of clauses in a formula, it terminates leaving a much simpler 

set of clauses C".

Consider the set of clauses C =  {(x), (x, y), (y,z)}. We know x to be true and 

propagating x to the second clause we obtain that y is true, which we then find that 

it subsumes the last clause. In this case the theory is solved by the propagation alone.

R elation betw een expand and  U nit resolution

In the basic smodels procedure, a call is made to expand after every choice of a 

new literal I in order to add as many new literals as possible to B  as possible. This 

is similar to the call to a propagation algorithm in DP before the choice of a new
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literal. The technique of unit resolution is closely related to the technique of expand 

in smodels both being propagation algorithms. Here we show how the inference 

rules of expand can be interpreted in terms of application of unit resolution to logic 

program rules.

A ground logic program rule h «— Zj,. . . ,  Zn can be interpreted as a SAT clause 

Ci=(h,opp(l\), opp(l2 ) , . . . ,  opp(ln)). Likewise a set of literals B can be interpreted 

by a truth assignment t which assigns the values to the variables in B  such that all 

the literals in B  are true. Unit resolution can then be used to explain the specific 

inference rules used in the definition of Cl{P, B ) as part of expand.

Consider IRl. If l\ , . . . ,  Zn are all true in B, then the corresponding truth assign

ment t satisfies all literals ll t . . . ,  ln. Since t contradicts all other literals opp(Z 1 ), opp(Z2), 

...,opp(ln) in Ci, the clause C, reduces to (h). Since this is a unit clause, by unit 

resolution, t must be extended so that h is assigned T. This is equivalent to addition 

of h to exisiting B, as dictated by rule IRl.

Consider IR4. Since B contains the literals not h,Zi,...,Zi_i,Zi+l,...,Z n, the 

truth assignment corresponding to B contradicts the literals h, opp(ly),. . . ,  opp{li-1 )> 

opp(U+1 ), • • • ,opp(ln). Thus the clause Ci reduces to (opp(Zj)). This is a unit clause, 

and by unit resolution t must be extended so that opp(Zj) is true. This is equivalent 

to the addition of opp(Zj) to the exisiting set B.

Failed literals

A more advanced technique employed in DP is to test for failed literals [13]. If setting 

a variable v to true and propagating results in a contradiction then v must be false 

in any model. Hence we can just add v to the truth assignment, and propagate the 

results of this. The effect of this is like a local propagation step applied to the current 

point in the search space. The examination of potential sources of conflict requires a 

linear pass through the set of variables, coupled with the application of propagation 

at each step. This is still a low-order polynomial pre-processing step, hence can be
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successfully used to reduce the search space of the DP algorithm.

The concept of lookahead function in smodels derives itself from the above 

technique of failed literals used in DP. In lookahead of smodels, when a literal I 

when added to B  leads to a conflict, opp(l) is added to B  and the resulting B  is 

propagated. This is exactly same as the above technique of failed literals employed 

in DP for solving SAT.

2.6 Summary

In this chapter, we explored some of the common finite constraint satisfaction problem 

solving techniques. Later some of the existing semantic notions of solution in over

constrained systems are studied in detail. Finite function-free normal logic programs 

were then studied with stress on stable models. The language LPsm is introduced 

with stress on smodels, the procedural engine of LPsm  responsible for generation of 

stable models. In the end we presented the techniques for solving the SAT problem 

in literature from which smodels derives its algorithms.
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Chapter 3 

Constraint programming in L P q m  
and smodels

In this chapter, we shall address two main issues involved in the specification and solv

ing of constraints using logic programming with stable models (SLP). In the earlier 

part, we shall evaluate SLP as a modeling paradigm for specifying and solving con

straints. In the latter part, we shall evaluate different representations and languages 

based on SLP for solving the finite CSP problem.

In the first part of this chapter we shall review some existing modeling languages 

for specifying constraints, by comparing the relative ease of modeling one specific 

constraint satisfaction problem in each of these languages. Later, we show that the 

stable logic programming paradigm (SLP) shares the declarative nature of these ex

isting modeling languages. Further we show some additional advantages of SLP over 

other modeling languages which makes it an attractive candidate for specifying and 

solving dynamic CSPs.

In Section 3.3 we explore the modeling of finite CSPs in L P s m  as suggested in [41] 

by Niemela. Later in Section 3.4 we solve finite CSPs by applying smodels directly 

to ground logic programs representing finite CSPs. This direct method of solving 

finite CSPs is then compared theoretically and experimentally with chronological 

backtracking of CSPs and possible improvements are suggested.
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3.1 Constraint modeling languages

In constraint programming, bulk of research in the past few years has concentrated 

on development of efficient solving techniques. In the recent past the thrust has 

shifted to the modeling aspects of constraint programming. The conventional model 

of finite CSPs is restricted in its modeling power. To overcome the representational 

limitations of the finite CSP paradigm, enriched models of constraint programming 

have been proposed to model constraints with more general semantics. Among these 

formalisms are constraint logic programming (CLP) [27], concurrent constraint pro

gramming (CCP) [53], abductive constraint logic programming (ACLP) [29] and logic 

programming with stable models (SLP) [41, 37].

In the recent past a multitude of languages have been developed for addressing the 

modeling issues in respresenting constraint satisfaction problems. These languages 

are based on the programming paradigms like CLP, CCP, SLP etc. Some of the 

languages which have been used in the modeling of constraints are Oz [53], Eclipse 

[38], OPL [26], and L P s m  [37]. In this chapter we shall first address the issue of 

modeling constraints in some of these languages and then try to identify some of the 

unique modeling features of LPsm as compared to other langauges.

The main attraction of the use of these modeling languages is their declarative 

nature which supports the natural statement of a problem reducing the gap between 

the problem specification and the program. Further, a program is typically abstracted 

away from the low level implementation details of the solver making the model in

dependent of the way it is implemented. In addition, this allows the separation of a 

model from the instance data, which enables the application of the same model to 

multiple problem instances. These attractive features of the declarative languages 

prompted researchers to invent constraint languages with powerful implementations 

and declarative semantics. This is a feature shared by all the languages which will be 

explored in this chapter. This makes them an attractive prospect for specifying and
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solving CSPs if the implementations of these languages me powerful. To illustrate 

the attractiveness of these features we shall show how to model a commonly used 

benchmark CSP in each of these modeling languages and show the ease of modeling 

constraint satisfaction problems in these languages. The zebra problem is a classic 

constraint satisfaction problem which is often used as a benchmark in the constraint 

programming literature.

The statement of the zebra problem is given below:

Five men with different nationalities live in the first five houses of a street.

They practise five distinct professions, and each of them has a favorite

drink, and all of them has a favorite animal and a favorite drink, all of

them different. The five houses are painted in different colors.

The Englishman lives in a red house.

The Spaniard owns a dog.

The Japanese is a painter.

The Italian drinks tea.

The Norwegian lives in the first house on the left.

The owner of the green house drinks coffee.

The green house is on the right of the white one.

The sculptor breeds snails.

The diplomat lives in the yellow house.

Milk is drunk in the middle house.

The Norwegian’s house is next to the blue one.

The violinist drinks fruit juice.

The fox is in a house next to that of the doctor.

The horse is in a house next to that of the diplomat.

Who owns a zebra and who drinks water?
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House Number 1 2 3 4 5
Nationality

Color
Drink

Profession
Pet

Norwegian
Yellow
Water

Diplomat
Fox

Italian
Blue
Tea

Doctor
Horse

English
Red
Milk

Sculptor
Snails

Spaniard
White
Juice

Violinist
Dog

Japanese
Green
Coffee
Painter
Zebra

Table 3.1: Solution to the zebra problem

The solution to the problem is given in Table 3.1.

3.1.1 Expressing CSPs in OPL

A recent entry to the set of programming languages for specifying constraint satis

faction problems is OPL [26]. OPL combines the procedures involved in constraint 

satisfaction and linear optimisation to yield a powerful language where it is possible 

to specify both problems involving optimisation as well as constraint problems.

To illustrate the modeling power of OPL, let us express the zebra problem in OPL. 

The specification of the zebra problem is given in OPL as below in Fig. 3.1:

The encoding of the zebra problem in OPL as illustrated in Fig. 3.1 highlights the 

fundamental modeling power of OPL. The variables with discrete domains here are 

nationality, pets, color, profession, and drink. Each of them takes pairwise different 

values from the individual domains. This fact is represented in the program by use 

of the global constraint alldifferent which is in-built into the language of OPL. The 

global constraint alldifferent finds use in a variety of problem-solving applications of 

constraint programming. Further, the individual constraints in the zebra problem can 

be specified in an easy manner in OPL as illustrated in Fig. 3.1. The solve instruction 

instructs to find a suitable assignment to each of the five arrays so that the constraints 

in the problem are satisfied. The proximity of the specification of constraint and 

the constraint semantics is obvious by the way the individual constraints have been 

encoded in OPL. Take for example, the constraint that ’’the Spaniard owns a dog” . 

The corresponding statement in OPL is written as ”nationality[spaniard]=pet[dog]” .
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/*  The collection of domain values*/
enum Nations english,Spaniard Japanese,italian,norwegi an;
enum Colors red,green,white,yellow,blue;
enum Professions painter,sculptor,diplomat,violinist,doctor;
enum Pets dog,snails,fox,horse,zebra;
enum Drinks tea,coffee,milk juice,water;
/*  There are five houses in all */ 
range house 1..5;
/*  Declaration for each discrete variable */
var house nationality[Nations];
var house color [Colors];
var house pet [Pets];
var house profession[Professions];
var house drink[Drinks];

solve {
/* Each discrete variable has pairwise different value 
assignment*/

alldifferent(nationality); 
alldifferent (color); 
alldifferent(pet); 
alldifferent(profession); 
alldifferent (drink);

/* Problem-specific constraints of the zebra problem*/
drink[milk]=3;
nationality [norwegian]=1;
nationality [english] =  color[red];
nationality [spaniard]=pet [dog];
nationality [japanese] =  professionfpainter];
nationality [italian] =  drink [tea];
color[green] =  drink[coffee];
color[green] =  color[white] +  1  ;
profession [sculptor] =  pet [snails];
profession[diplomat] =  color [yellow];
nationality[norwegian] =  colorfblue] +  1 V
nationalityfnorwegian] =  colorfblue] - 1  ;
profession [violinist] =  drinkffruit];
abs(profession[doctor] - pet [fox] ) =  1 ;
abs(profession[diplomat] - petfhorse]) =  1  ;

}
Figure 3.1: Expressing the zebra problem in OPL
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This shows the declarative nature of constraint programming in OPL.

In OPL, the declarative treatment of constraints makes it easy to specify problems 

irrespective of the underlying constraint satisfaction method. This feature makes OPL 

as attractive as the other languages presented in this section.

3.1.2 Eclipse for modeling CSPs

Eclipse [38] is a language based on the constraint logic programming (CLP) paradigm. 

It offers a language for specifying and solving combinatorial problems including con

straint satisfaction problems. The langauge offers two levels of flexibility in spec

ification of problems in solving CSPs. The first level of fexibility corresponds to 

the abovementioned declarative nature of these languages. The specification of the 

’’conceptual model” in an Eclipse program is precisely meant to capture the problem 

statement of a CSP. This satisfies the desired quality of natural problem specification 

of a problem. Let us capture the often mentioned zebra problem in the langauge 

Eclipse.

It is clearly evident that the conceptual model of Eclipse offers the required level of 

abstraction for specifying constraint satisfaction problems with the clear distinction 

between the implementation details and the problem statement. The implementation 

of the zebra problem is provided in Fig. 3.2. The solution is to define 5x5 integer 

variables for each mentioned item, to number the houses from one to five and to 

represent the fact that e.g. Italian drinks tea by equating Italian =  Tea. The value 

of both variables represents then the number of their house.

3.1.3 Constraint programming in Oz

Oz [53] is a concurrent langauge which enables functional, object-oriented, and con

straint programming. One of the main advantages shared by Oz which favours its use 

in constraint programming is its declarative nature, which makes it a easy language 

for specifying constraints. To illustrate the point let us implement the zebra problem
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lib(fd).

zebra([zebra(Zebra), water(Water)])
Sol =  [Nat, Color, Profession, Pet, Drink],
Nat =  [English, Spaniard, Japanese, Italian, Norwegian],
Color =  [Red, Green, White, Yellow, Blue],
Profession =  [Painter, Sculptor, Diplomat, Violinist, Doctor],
Pet =  [Dog, Snails, Fox, Horse, Zebra],
Drink =  [Tea, Coffee, Milk, Juice, Water],

Nat :: 1..5,
Color :: 1..5,
Profession :: 1..5,
Pet :: 1..5,
Drink :: 1..5, 
alldifferent(Nat), 
alldifferent (Color), 
alldifferent (Profession), 
alldifferent(Pet), 
alldifferent (Drink),

English =  Red,
Spaniard =  Dog,
Japanese =  Painter,
Italian =  Tea,
Norwegian =  1 ,
Green =  Coffee,
Green # =  White + 1 ,
Sculptor =  Snails,
Diplomat =  Yellow,
Milk =  3,
Distl # =  Norwegian - Blue, Distl :: [-1 , 1],
Violinist =  Juice,
Dist2 # =  Fox - Doctor, Dist2  :: [-1 , 1 ],
Dist3 # =  Horse - Diplomat, Dist3 :: [-1, 1],

flatten(Sol, List), 
labeling(List).

Figure 3.2: Capturing the zebra problem in Eclipse
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in Oz. The implementation of the zebra problem is provided in Fig. 3.3. The houses 

are numbered from 1  to 5, where 1 is the first and 5 is last house in the street. There 

are 25 different properties (i. e. hosting an Englishman, being the green house, host

ing a painter, hosting a dog, or hosting someone who drinks juice), and each of these 

properties must hold for exactly one house. The properties are partitioned into five 

groups of five members each, where the properties within one group must hold for 

different houses. The model has one variable for each of these properties, where the 

variable stands for the number of the house for which this property holds.

The solution in Fig 3.3 constrains the root variable Nb to a record that maps 

every property to a house number between 1 and 5.

The script introduces two defined constraints. The defined constraint {Partition 

Group} says that the properties in the list Group must hold for pairwise distinct 

houses. The defined constraint (Adjacent X Y} says that the properties X and Y 

must hold for houses that are next to each other. The statement {FD.distance X Y 

=  1 } creates a propagator for | X  — Y  | = 1  .

3.2 SLP for constraint modeling and programming

We concern ourselves with the frameworks of logic programming based on stable mod

els [37, 41]. In the recent past, languages based on stable models for logic programs 

have been developed for expressing and solving problems in artificial intelligence. 

The notable among these languages are the LPsm  language developed by Niemela 

in [41], and the stable logic programming (SLP) paradigm developed by Marek and 

Truszczynski in [37]. In [41], LPsm  is shown to be an effective language for modeling 

constraint satisfaction problems, planning problems, and other computational prob

lems in artificial intelligence. On similar lines, in [37] the SLP paradigm was used to 

model various constraint satisfaction problems.

Fundamental to use of logic programming languages in modeling constraints are 

the following main ideas:
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proc {Zebra Nb}
Groups =  [ [english Spanish japanese italian norwegian] 

[green red yellow blue white]
[painter diplomat violinist doctor sculptor]
[dog zebra fox snails horse]
[juice water tea coffee milk] ]

Properties =  (FoldR Groups Append nil} 
proc (Partition Group}

{FD.distinct {Map Group fun {$ P} Nb.P end}}
end
proc {Adjacent X Y}

{FD.distance X Y 1}
end
in

/* Nb maps all properties to house numbers*/ 
{FD.record number Properties 1..5 Nb}
{ForAll Groups Partition}
Nb.english =  Nb.red 
Nb.spanish =  Nb.dog 
Nb.japanese =  Nb.painter 
Nb.italian =  Nb.tea 
Nb.norwegian =  1  

Nb.green =  Nb.coffee 
Nb.green >: Nb.white 
Nb.sculptor =  Nb.snails 
Nb.diplomat =  Nb.yellow 
Nb.milk =  3 

{Adjacent Nb.norwegian Nb.blue}
Nb. violinist =  Nb.juice

{Adjacent Nb.fox Nb.doctor}
{Adjacent Nb.horse Nb.diplomat}

Nb.zebra =  Nb.white 
{FD.distribute ff Nb}

end

Figure 3.3: Capturing the zebra problem in Oz
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1. The presence of an efficient implementation of stable models like smodels [54] 

at the back-end,

2. The interpretation of logic program rules as constraints on the solution set,

3. The use of restricted first order representations of logic programs so that the 

computation is not thrown out of bounds and yet the representation has the 

capacity to model a large class of constraint problems, and

4. The correspondence between stable models of the logic programs and solutions 

to the constraint problem.

5. The paradigm differs from the conventional view of logic programming followed 

in other extensions like CLP etc. The conventional view of logic programming 

is based on the idea that the user specifies a target goal clause, and an explana

tion of the target goal is desired as the output. In that sense, in CLP and other 

logic programming we are not interested in generating the models of the whole 

program. This has an effect on the solving procedures for CLP and similar sys

tems. CLP and similar paradigms follow top-down goal-directed procedures for 

generating explanations of a goal. In contrast, the computation based on stable 

models here is directed at computation of complete models for the program. 

There is no concept of a goal directed computation of stable models here.

As studied in the previous chapter, the only additional features of L P s m  which 

were not present in the usual function-free normal logic programs (FFNLPs) were 

the mathematical operators. But in the extreme case, it is possible to represent 

the mathematical operators in LPsm on variables with finite domains by a finite 

extensional set of all satisfying tuples. In that sense the power of L P s m  is just in 

the compact representation of such functions. Semantically it is possible to generate 

a FFNLP corresponding to a LPsm program. Hence without loss of generality, we 

stress on use of L P s m  in this chapter even though the discussion is typical of any
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FFNLP. So the references to LPsm hi this chapter should be viewed as representative 

of the class of FFNLPs.

3.2.1 Declarative nature of stable logic programming

In [41] L P s m  was used to model the finite CSP specification and other specific con

straint satisfaction problems ( n —queens, schur etc). We follow the methodology 

given in [41], to illustrate the decalarative nature of L P s m  to develop a non-trivial 

example of constraint programming. In that sense SLP offers langauges with similar 

declarative nature as the languages explained in the previous section, which enables 

use of SLP in easy modeling of constraint programming situations. Recently LPsm 

has been extended with more additional features like weighted rules, choice rules etc. 

in [43]. However, our discussion in this section is limited to the version in [41].

Let us study how to model the zebra problem in L P s m • The formulation of the ze

bra problem shall help us understand the modeling of general constraint programming 

problems in L P s m • To model this in L P s m  assume a set of five domain predicates 

p, n, c, pe, and d (representing the profession, nationality, color, pet, and drink 

respectively) each having the same domain d = {1,2,3,4,5}. The domain of the 

predicate p represents the ordered set {painter, sculptor, diplomat, violinist, doctor}, 

each element represented by its index. Likewise, n represents the ordered set {english 

, Spaniard, japanese, italian, norwegian}, c represents the ordered set {red, green, 

white, yellow, blue}, pe represents the ordered set {dog, snails, fo x , horse, zebra}, 

and d represents the ordered set {tea,coffee, milk, juice, water}. A domain pred

icate house represents the corresponding house number and has the domain d = 

{1 ,2,3,4,5}. With this set-up, the LPsm program in Figure 3.4 represents the zebra 

problem.

In addition to the domain predicates, the predicates color, nationality, drink, pet, 

and profession are used to specify the constraints of the problem and to return the 

solution. An atom of the form color{X, Y) in a stable model indicates the assignment
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% Domain Predicates

n(1..5). c(1..5). pe(1..5). p(1..5). d(1..5). house(1..5).
% Mutual Exclusion Rules

nationality(X,Y) <— house(X), n(Y), not negnationality(X,Y). 
negnationality(X,Y) «- n(Y),house(X), n(Yl), nationality (X,Yl), Y1  ^  Y. 
color(X,Y) <— house(X), c(Y), not negcolor(X,Y). 
negcolor(X,Y) <- c(Y),house(X), c(Yl), color(X,Yl), Y1  #  Y. 
profession(X,Y) <— house(X), p(Y), not negprofession(X,Y). 
negprofession(X,Y) <— p(Y), house(X), p(Yl), profession(X,Yl), Y1 ^  Y. 
pet(X,Y) «- house(X), pe(Y), not negpet(X,Y). 
negpet(X,Y) «- pe(Y), house(X), pe(Yl), pet(X,Yl), Y1 ^  Y. 
drink(X,Y) <- house(X), d(Y), not negdrink(X,Y). 
negdrink(X,Y) <- d(Y),house(X), d(Yl), drink(X,Yl), Yl #  Y.
% All predicates have pairwise different values.
t -  house(X), n(Y), house(Z), nationality(X,Y), nationality(Z,Y), X ^ Z .  
<— house(X), c(Y), house(Z), color(X,Y), color(Z,Y), X ^  Z.
<- house(X), p(Y), house(Z), profession(X,Y), profession(Z,Y), X ^  Z.
<- house(X), pe(Y), house(Z), pet(X,Y), pet(Z,Y), X ^  Z.
«— house(X), d(Y), house(Z), drink(X,Y), drink(Z,Y), X ^  Z.
% Problem Specific Constraints

drink(3,3).
nationality(l,5).

house(X),c(Y),color(X,Y),nationality(X,l),Y ^  1.
<— house(X),pe(Y),pet(X,Y),nationality (X,2), Y 7  ̂ 1 .

house(X),p(Y),profession(X,Y),nationality (X,3) ,Y ^  1 .
<— house(X),d(Y),drink(X,Y),nationality(X,4),Y 7  ̂ 1.
<- c(Y),house(XI),drink(Xl,2).color(XI,Y),Y #  2.
<— p(X),house(Xl),professional,X),pet(Xl,2),X 7  ̂ 2.
<- d(X),house(Xl),drink(Xl,X),professional,4),X ^  4.
<— c(X),house(Xl),color(Xl,X),profession(Xl,3),X 7  ̂4.
<— color(X,2),house(X),house(Y),color(Y,3),X /  Y +  1  .
<- house(X),house(Xl),nationality(X,5),color(Xl,5),abs(X-Xl) #  1 .
«— house(X),house(Xl),pet(X,3),professional,5),abs(X-Xl) 7  ̂ 1.
«— house(X),house(Xl),profession(X,3),pet(Xl,4),abs(X-Xl) 7  ̂ 1 .

Figure 3.4: Captiuing the zeira problem in LPsm
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of the color number Y  to house number X  in the solution, e.g. color (1, 4) indicates 

that the first house is yellow in color. Likewise for the other predicates. There are 

three sets of rules in the LPsm  program:

1 . Mutual exclusion rules stating that each house can have only one color, one 

profession, one pet, one drink, and one nationality.

2. Rules stating that the houses have different colors, different drinks, different 

pets, different professions, and different nationalities.

3. Problem specific constraints which are translated to the corresponding rules in 

the program.

The detailed discussion of each type of constraint and their representation in L P s m  is 

explained in the sections to follow. The program returns a stable model iff an assign

ment exists such that all the constraints of the problem are satisfied. The returned sta

ble model contains instances of predicates color(X, Y , drink(X, Y), nationality (X, Y), 

pet(X, Y), and profession(X, Y). There is only stable model of the program. So the 

problem has only one solution. The lone stable model contains the atoms {co/or(l, 4), 

color(2,5), co/or(3,1), co/or(4,3), coZor(5,2)} indicating that the the houses 1,2,3,4, 

and 5 are assigned the colors yellow, blue, red, white, and green respectively.

3.2.2 Advantages o f Stable Logic Programming

In this section till now we studied the declarative nature of SLP. The declarative 

nature makes it a good choice for modeling constraints because of the lesser distance 

between a program and the meaning of a constraint. This is particularly useful in sit

uations where it is constantly required to change the specifications of the constraints. 

The re-formulation of a constraint program in such situations becomes easy if the 

underlying modeling laguage is declarative in nature. Hence in a language based on 

SLP like LPsm , it is easy to change the problem specifications of a constraint problem
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with ease in case of change of problem definition. In addition there are certain con

straint programming situations in which the paradigm of SLP proves to be a bright 

candidate for specifying and solving constraint problems.

Dynamic constraint satisfaction problems

Dynamic constraint satisfaction problems (DCSPs) [56, 57] are a generlization of the 

class of CSPs. In DCSPs, the set of variables in a solution changes dynamically on 

the basis of intermediate assignments of values to variables. This dynamic nature 

of problem space in DCSPs makes them a generalization of the general finite CSP 

paradigm. The finite CSPs can be considered a special case of the more general 

DCSPs because they are merely static version of DCSPs. The discussion in this 

section is taken mainly from [56, 57], where L P s m  has been shown to be a useful 

langauge for solving and specifying product configuration problems.

Formally, an instance P  of a DCSP [40] is of the form < V, D,V},Cc,Ca >, 

where V = {v1} v^ , . . . ,  vn} is the set of variables and D—{d\, d-i, . . . ,  dn} is the set of 

domains of each of the variables in V. The set V) C V  is the set of initial constraints, 

Cc is the set of compatibility constraints, and Ca is the set of activity constraints. 

The compatibility constraints specify the set of allowed combinations of values for a 

set of variables similar to the case in a finite CSP. They are usually specified by a 

subset of the cartesian product of the domains of the variables. On the other hand, an 

activity constraint is of the type c —> u, where c is a constraint like the compatibility 

constraints, and v is a variable. Here not all variables need to have a value (be active) 

in all solutions but the activity of variables is controlled by the activity constraints. 

An activity constraint c —► v states that the variable v needs to be active (have a 

value) in a solution where constraint c is satisfied.

An assignment of values A in a DCSP P  need not assign a value to all the variables 

in V. Any assignment A assigns values to a subset of V, and all variables assigned 

values by A  are said to be active in A. An assignment A satisfies P  iff it satisfies all
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the compatibility constraints and activity constraints in P. A satisfies a constraint 

c e  Cc iff all the variables in c are active in A and the tuple of values assigned to the 

active variables in c by A  is allowed by c. This is exactly same as a constraint in a 

finite CSP case. On the other hand, an assignment A  satisfies an activity constraint 

c —► v iff whenever the compatibility constraint c is satisfied by A  then the variable v 

is active in A. An assignment A is a solution to the DCSP P  iff (a). All the variables 

v € Vi are active in A, (b). A satisfies all the compatibility and activity constraints 

in P , and (c). A is subset minimal.

Clearly the main difference between the DCSP paradigm and the CSP paradigm 

is the presence of activity constraints. These activity constraints are seem to be 

essential in various domains including product configuration and are hard to handle 

in standard CSP setting. DCSP can capture the elements of product configuration 

in a concise and succinct manner as shown in [57].

Stable logic programming languages like L P s m  can straigthforwardly capture the 

DCSP problems because of the unique language features in L P s m • The dynamic 

nature of solution space where a new variable is dynamically activated based on a 

partial solution in the intermediate stage in the solution process, is easily captured 

by means of default and conditional rules in L P s m - To illustrate how this type 

of knowledge can be captured in L P s m . consider the following example of product 

configuration in L P s m -

Product configuration is the process of finding a specification of a product in an 

industry as a collection of predefined components. The model of the configuration 

describes the various components in the configuration, the rules on how the compo

nents interact, and the requirements of the product individuals in terms of conditions 

of components. The output is a configuration which is a description of the process 

yielding the individual product specifying the components used in the process. Let 

us consider a small manufacturing unit where steel toys of various shapes are made. 

Two kinds of machines (lathes and milling machines) represented by variables lathe
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lathe(ll) «— not lathe(12), not lathe(13), lathe-needed.
lathe(12) <— not lathe(ll), not lathe(13), lathe-needed.
lathe(13) «— not lathe(12), not lathe(ll), lathe-needed.

millmachine(ml) <— not millmachine(m2 ), mill-needed. 
millmachine(m2 ) <— not millmachine(ml), mill-needed.

shape(cylinder) <- not shape(sphere). 
shape(sphere) <— not shape(cylinder).

lathe-needed <- shape(cylinder). 
mill-needed «— shape (sphere).

sat(c) lathe(ll), millmachine(m2 ). 
sat(c) <— lathe(ll),millmachine(m3).

«— not sat(c).

Figure 3.5: Product configuration example

and millmachine respectively, axe used for producing different shapes. Consider a 

sample unit which produces two shapes cylinder and sphere. Further let the activ

ity constraints state that cylinder shape requires only lathe machines while sphere 

requires only milling machines. Let there be three lathe machines (11,12,13) and two 

milling machines (ml, m2). Further the size restrictions on the unit give the follow

ing compatibility constraint c(lathe, millmachine) =  {(11, m2), (12, ml)}. This can be 

captured in LPsm by the program shown in Fig. 3.5. The variables lathe — needed 

and mill — needed are used to identify the situations when the appropriate machines 

Eire required. Here it is evident that all solutions need not have values for both the 

variables lathe and millmachine. In case of manufacturing a sphere shaped object 

there is no value for lathe in the solution. Further the compatibility constraint c is 

needed to be satisfied by every solution, a fact enforced by an integrity constraint in 

L P s m -

Dynamic situations involving constraints seem to be captured easily in LPsm - An 

encoding of the familiar hamiltonian cycle problem in LPsm  appears in [41]. This is a
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problem where you seem to need to combine constraints dynamically (choosing edges 

leaving and entering nodes to form chains and making sure that there is a unique 

chain visiting all nodes exactly once and returning to its starting point). Hence 

L P s m  seems to be a promising representation langauage for constraint programming 

situations involving dynamic constraints.

3.3 Capturing finite constraint satisfaction by L P s m

In [41] it is shown that finite CSPs can be captured in LPsm , the clausal programming 

language based on the sm odels system for computation of stable models. In this 

section, we shall present the translation method presented in [41] for representing a 

finite CSP in LPsm • Let the translation algorithm presented be termed as transl.

3.3.1 Translation algorithm

The translation algorithm transl proposed by Niemela in [41] is described in Figure 

3.6.

The two-stage process of solving a finite CSP P  thus involves using transl to 

generate an equivalent LPsm program P' corresponding to P  and later solving P' by 

using the combination of the lparse and smodels components of L P s m  [41]. lparse 

first parses P' to a ground program which is then fed to smodels to generate a stable 

model of P' if one exists.

There are four sets of rules (and facts) in the output of transl corresponding to 

a finite CSP P:

D om ain facts These are the facts of the form di(vali) <— added to denote that vali 

is in the domain dk of the variable Vi in P.

Unique nam e axiom  rules These rules define two predicates u,(X) and ovi(X) 

corresponding to each variable t/*. Effectively Vi(X) represents the assignment 

of value X  to variable Vi in P , and cnii(X) is true whenever u* is assigned a value

65

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Inpu t: A finite CSP P  involving a set X  =  {ul 5  u2, . . . ,  u„} of n variables, and a set 
C of constraints, where each variable Vi € X  takes a value from its finite domain di 
and each constraint c* 6  C, is defined on a subset X c of the set of variables X , is a 
relation expressed as a subset Re of the cartesian product n ^ e x ^ ) ] -  
O utpu t: A LPsm  program P' such that the stable models generated by the ground 
program translation of P' correspond to the solutions of the CSP P.
Procedure: In P‘ for each domain value t in P  a constant t is adopted, and for each 
domain di in P  a one-place predicate d, is used. Moreover for each constraint c in P  
a constant c is adopted. For each variable Vi in P  two one-place predicates Vi and 
ovi are used. Two special purpose one-place predicates sat and constraint are used 
in the translation too. Given these, P' is the set of clauses formed by the following 
steps.

• For each domain dk in P , a set of facts di(vali) 4—, . . . ,  di(valm) , is added to 
P' where va li , . . . ,  valm are the possible values in domain d*.

• For each variable Vi with the domain d* in P, to allow a unique value from d,, 
we add
Vi(X) 4-  di(X),not ovi(X) 
a u i ( X )  4 -  d i i X ^ d i i V h v i i n X  #  Y
where the predicate ovi(X) expresses the fact that the variable has some 
other value than X .

•  For each constraint c defining a set of allowed value combinations for a set of 
variables a fact constraint(c) 4— is added.

• For each allowed value combination in c of variables (on which c is
defined) of the form {t/i =  vali, . . . ,  Vj =  valj} a rule
sat(c) 4— vi(va li) , . . . ,  Vj(valj)

is added.

• Finally an integrity constraint rule 4— constraint(C),not sat(C), is added to 
indicate that all constraints must be satisfied.

Figure 3.6: transl - an algorithm for translation of a finite CSP to LPsm
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other than X .  The unique name rules assert that at any time any variable Vi 

can be assigned only one value.

C onstra in t satisfaction rules These rules represent the tuples in each constraint. 

Any such rule corresponding to a constraint c* has satfe) at the head.

C onstrain t facts Facts of the form constraint(q) «— corresponding to each con

straint Ci in P  are added.

In addition to the above groups of rules and facts, the final integrity constraint states 

that for any constraint c, sat(c) has to be true in any stable model, thereby indicating 

that all constraints must be satisfied.

Exam ple for solving a  finite CSP by LPsm

We shall illustrate the algorithm transl by an example with detailed analysis of 

all the steps involved in the solving of a CSP. Consider a finite CSP P  with four 

variables vl, v2, v3, and v4 each with domains d l= {l} , d2={l,2,3}, d3={l,2}, 

d4={l,2} respectively. P  contains five constraints cl, c2, c3, c4, and c5 defined as fol

lows: cl(vl,v2)={(l,2), (1,1)}, c2(v2,v3) =  {(2,1),(3,2)}, c3(v3,v4) =  {(1,1),(2,2)}, 

c4(v2,v4) =  {(2,1)} and c5(vl,v4) =  {(1,1)}. The output P' of transl is given in 

Figure 3.7. The LPsm  program in Figure 3.7 when fed to lparse returns the ground 

program shown in Figure 3.8.

The output of the parser lparse shown in Figure 3.8, expands the non-ground 

rules corresponding to the unique names axioms in the original program. For each 

ground term Vi(valj), the unique name axiom asserts that it is true as long as there 

is no other value assigned to i/j. This is asserted by making sure that the predicate 

oVi(valj) is not true. ovi(valj) returns true iff tr* takes on a value other than valj, 

e.g. in the above example, ov2(l) returns true whenever the predicates v2(3) or u2(l) 

return true. This means that u2 (l) will return true iff ou2(l) is never true. The 

remaining rules simply relate to the axioms corresponding to each constraint, namely
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d l(l).
d2(l). d2(2). d2(3). 
d3(l). d3(2). 
d4(l). d4(2).

vl(X) <- dl(X), not ovl(X).
ovl(X) <- dl(X), dl(Y), vl(Y), X != Y.
v2(X) d2(X), not ov2(X).
ov2(X) <- d2(X), d2(Y), v2(Y), X != Y.
v3(X) f -  d3(X), not ov3(X).
ov3(X) <- d3(X), d3(Y), v3(Y), X != Y.
v4(X) <- d4(X), not ov4(X).
ov4(X) <- d4(X), d4(Y), v4(Y), X != Y.

sat(cl) <— v l(l), v2 (2 ). 
sat(cl) <— v l(l), v2 (l). 
sat(c2) <— v2(2), v3(l). 
sat(c2) <— v2(3), v3(2). 
sat(c4) <— v2(2), v4(l). 
sat(c5) <— v l(l), v4(l). 
sat(c3) <— v3(l), v4(l). 
sat(c3) <- v3(2), v4(2).

constraint (cl), 
constraint (c2 ). 
constraint (c3). 
constraint(c4). 
constraint(c5).

<— constraint(C), not sat(C).

Figure 3.7: Example output of transl
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what combination of value assignments to the variables Vi s makes each constraint c, 

true. The last set of rules state that all constraints c, should be satisfied in any stable 

model of the program. This is ensured by making sure that the literal not Scfalse is 

present in any stable model of the program.

Execution of th e  above exam ple

Let us examine the execution of the procedure sm odels when applied to the above 

program shown in Figure 3.8. We shall be referring to the inference rules 1  to 4 used 

in the definition of expand function of the sm odels procedure explained in Chapter

2. That will help explain the different steps involved in the derivation of the stable 

model in this example. Let us denote the inference rules as IRl, IR2, IR3 and IR4 

respectively for convenience to denote each of the inference rules in the definition of 

expand. The steps involved in the application of sm odels are outlined in Figure

3.9.

A close look at the procedure of the previous section reveals that a finite CSP is 

solved effectively in a three stage process. The first stage generates a L P s m  program 

using the transl algorithm shown in Figure 3.6. Next, the output of transl is passed 

to the parser lparse which parses the non-ground program to a ground program. 

In the third stage, the ground program output by lparse is passed to smodels to 

generate a solution.

Use of a high level representation like LPsm in transl is responsible for the re

quirement of an additional stage of compilation into a ground logic program before 

sm odels can be applied. It would be interesting from an efficiency point of view to 

see if a direct encoding of finite CSPs in a lower level representation can enhance the 

efficiency of solving CSPs. In the next section we explore the possibility of directly 

encoding a finite CSP as a ground logic program. The ground program representing 

the CSP is then solved by directly applying sm odels to it. Hence we are able to 

bypass the stage of translation from the non-ground program to the ground program 

using the lparse parser. We also perform experimental analysis to compare the ef-
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sat(cl) <- v l(l), v2(2).
sat(cl) <- v l(l), v2(l).
sat(c2) <- v2(2), v3(l).
sat(c2) *- v2(3), v3(2).
sat(c4) v2(2), v4(l).
sat(c5) *- v l(l), v4(l).
sat(c3) *- v3(l), v4(l).
sat(c3) *- v3(2), v4(2).
constraint(c5). constraint(c4). constraint(c3).
constraint(c2). constraint (cl).
k  false <- k  false.
& false «- not sat(c5). 
k  false «— not sat(c4). 
k  false <- not sat(c3). 
kfalse  <- not sat(c2). 
kfalse  <- not sat(cl). 
v4(l) «- not ov4(l). 
v4(2) <- not ov4(2). 
v3(l) «- not ov3(l). 
v3(2) «- not ov3(2). 
vl(l) <- not ovl(l). 
v2(l) «- not ov2(l). 
v2(2) «- not ov2(2). 
v2(3) <- not ov2(3). 
ov4(2) <- v4(l). 
ov4(l) *- v4(2). 
d4(l). d4(2). 
ov3(2) <- v3(l). 
ov3(l) v3(2). 
d3(l). d3(2). 
ov2(2) <- v2(l). 
ov2(3) <- v2(l). 
ov2(l) <- v2(2). 
ov2(3) <- v2(2). 
ov2(l) «- v2(3). 
ov2(2) *- v2(3). 
d2(l). d2(2). d2(3). dl(l). 
compute 1 { not kfalse  }

Figure 3.8: Output of lparse applied to the program in Figure 3.7
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( b =  (not&falscQ

expand

IR 4 (by vinue of 
notov4(l) 
andnotov2(2)(

IR1 (All facts are added to B)

IR 3 (Only one rule with sat(c3) 
on head, and v4(l) in B)IR 4(A dd sat(cl),sat(c2) etc. 

by virtue o f not &false)

IR1 (from v3(l) )

IR3 (v 3 ( l) is in B )IR3 (There is only rule with 
sat(c4) on the head)

IR3 (There is only rule each 
with v2(2) and v4( 1) on 
the head)

No more inference rules applicable.

B covers Neg(P). Return the stable modeL

B =  B U  |n o to v 3 ( l) )

B = B U |ov3(2))

B = B U (v2(2).v4(l)}

B = B U { not v 3 (2 )}

IR2 (No rule with v3(2) as 
 head )_____________

B =  B U  { not ov4(2), 
notov2(2)l

B =  B U (sat(cl),sat(c2), 
sat(c3),sat(c4), sat(c5)}

B = B U {not v4(2), not v2(3), 
n o tv 2 ( l) }

B={ not &false,d 1 (1 ),d2( 1), 
d2(2),d3( 1 ),d3(2),d4( 1 ),d4(2), 
constraint^ I ),constraint(c2), 
constraint(c3),constraint(c4), 
constraint(c5)}

Stable Model: (not ifalse, dl(l), d2(t). d2(2), d3(l), d3(2). d4(l), d4(2). constraint(cl), constraint(c2). constnunt(c3).
constraint(c4), constnunt(c5). sat(cl), sat(c2). sat(c3), sat(c4). sot(c5), vl(l), v2(2),v3(l).v4(t), ov2(l),ov2(3),ov3(2),ov4(2) )

Figure 3.9: Execution of the ground program in Figure 3.8 for the example in Figure 
3.7
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fectiveness of the smodels procedure on the ground programs in each method. We 

find that experimental results on random finite CSPs show the higher efficiency of 

the directly encoded ground programs.

3.4 Solving finite CSPs by smodels directly

The translation method for translating a finite CSP P  to a ground non-monotonic 

logic program Up is given in Figure 3.10. This program lip  corresponding to P  is 

then solved by invoking sm odels directly.

The algorithm trans2 outlined in Figure 3.10 generates a ground logic program 

whose stable models correspond to solutions of a original CSP. We show that trans2  

is both sound and complete.

Theorem  3.1 trans2 is sound and complete.

Proof. Since trans2 differs from transl only in the enforcement of the unique 

name axiom (any variable can be assigned only one value) and transl is sound and 

complete, trans2  is both sound and complete. □

The working of trans2 is best illustrated by an example.

Consider the same example as in Section 3.3.1. The CSP P  has four variables 

vl,v2,v3 and v4 each with domains d l={l} , d2={l,2,3}, d3={l,2}, d4={l,2} respec

tively. P  contains five constraints cl,c2,c3,c4 and c5 defined as follows: cl(vl,v2)={(l,2), 

(1,1)}, c2(v2,v3) =  {(2,1),(3,2)}, c3(v3,v4) =  {(1,1),(2,2)}, c4(v2,v4) =  {(2,1)} and 

c5(vl,v4) =  {(1,1)}. P  is translated into the ground logic program shown in Figure 

3.11.

The program in Figure 3.11 is then sent to smodels for derivation of a stable 

model. The different steps in the generation of a stable model corresponding to the 

solution is given in Figure 3.12.
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In p u t: A finite CSP P  involving a set X  =  {ui, U2 , . . . ,  u„} of n variables, and a set 
C  of constraints, where each variable Vi 6 X  takes a value from its finite domain di 
and each constraint Cj € C, is defined on a subset X c of the set of variables X , is a 
relation expressed as a subset Rc of the cartesian product riuiexj^')]- 
O u tpu t: A ground logic program rip such that the stable models of lip correspond 
to the solutions of the CSP P.
Procedure: In lip for each domain value t in P  a constant t is adopted Moreover for 
each constraint c in P  a constant c is adopted. For each variable Vi in P  a one-place
predicate Vi is used. One special purpose one-place predicate sat is also used in the
translation. Given these, lip is the set of clauses formed by the following steps.

• Let the variable Ui in P  have the domain di = {vali, ual2, val3, . . . ,  valm} con
sisting of m  possible values val\,val2 , . • •, valm. Corresponding to a variable v,, 
define a set of m  clauses as follows:
Vi{val\) not Vi(val2 ),not v^valz),. . . , not Vi(valm)
Vi{val2) «- not Vi{val{),not Uj(t/aZ3) , . . .  ,not Vi(valm)

Vi(valm) <— not Vi(vali),not Vi(val2) , . . . ,  not Vi(valm- 1 )
Define sets of clauses corresponding to each such variable u*.
If the domain of a variable Vi contains only one value vali, add a fact Vi(vali) .

•  For each allowed value combination in c of variables v \,.. . ,V j  (on which c is 
defined) of the form {t>i =  vali, ■ ■ ■»Vj =  valj} a rule
sat(c) vi(vali),. . . ,  Vj(valj)
is added.

• Finally corresponding to each constraint c in P  add a rule sat(c) <— not sat(c). 
This is added to indicate that all constraints need to be satisfied.

Figure 3.10: trans2 - Algorithm for translation of a finite CSP to a ground logic 
program
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vl(l).
v2(l) 4- not v2(2), not v2(3). 
v2(3) 4- not v2(l), not v2(2). 
v2(2) 4 -  not v2(l), not v2(3). 
v3(l) 4- not v3(2). 
v3(2) 4- not v3(l). 
v4(l) 4- not v4(2). 
v4(2) 4- not v4(l). 
sat(cl) 4 -  vl(l), v2(2). 
sat(cl) 4 -  vl(l), v2(l). 
sat(c2) 4- v2(2), v3(l). 
sat(c2) 4- v2(3), v3(2). 
sat(c4) 4- v2(2),v4(l). 
sat(c5) 4- v l(l), v4(l). 
sat(c3) 4- v3(l), v4(l). 
sat(c3) 4- v3(2), v4(2). 
sat(cl) 4 -  not sat(cl). 
sat(c2) 4- not sat(c2). 
sat(c3) 4- not sat(c3). 
sat(c4) 4- not sat(c4). 
sat(c5) 4- not sat(c5).

Figure 3.11: Example for trans2
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(  B - "  J

'expand
UU

B >B U  (vt(l)l

IB-B U |«Kc2)| I
Pick mx sat(c3)

B * B u  (MX sanc3)

n s i
B-B U (saKc3)i

Pick mx su(c5)
B -B u(a t(c3 )}

B - B u  (notsat(c5)

n a

not sat(cl)

B-B U (sat(cl)|
B « B U  (MXsattcl)Pick mx sat(c2)

B-BU|*aKcI)|B - BU(mxjatfc2)

i  IR1
| b .>BU(uUc2)| |

B a B U  satfcS)

|  1R3 (to «atfc5))
B -B U |v4<l))

+ 1R3 (tDv4T
B « B U  (MX v4(2)|

|  1K3 (msatfcJ) /

B a B U  (notv3(2).v2(2))

T I B l r m

B-BU(«XCc4)i

conflict

X

B - B U  (ut(c5)}

conflict

X
B cotct N«g(P). Cbtck for itoblo model.

conflict

X

Stable Model: {uttlc 1)j»«c2)ja«c3)jal(c4)ja«cS).v I (1 >.v2(2). »3( I).v4< t) |

Figure 3.12: Execution of the ground program in Figure 3.11
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3.4.1 Experimental comparison of transl and t r a n s 2

We performed experiments for a comparison of the relative efficiency of using transl 

and trans2 in solving finite CSPs. The experiments were performed on randomly 

generated constraint satisfaction problems. In all the cases only one solution was 

generated if one existed.

In the experimental set-up, ternary constraints were considered (constraints on 3 

variables). The number of variables was fixed at 40 and each variable was considered 

to have a fixed domain size of 5. The number of constraints was fixed at 15. An 

ensemble of 20 random finite CSPs was generated for each value of k (number of 

tuples). The value of k varied from 3 to 125. The average time for each value of 

k was computed for both representations and plotted against k. In all cases, the 

time is measured for computing one stable model or reporting that no stable model 

exists. All experiments were carried on Pentium PII machines with 400 MHz clock, 

running RedHat Linux version 5.1. The graph in figure 3.13, shows the computing 

time plotted against k.

The experimental results show that the ground program obtained by applying 

trans2  to a finite CSP provided better results than the ground program generated by 

applying lparse to the LPsm program generated by transl. This can be explained 

by two main factors:

1. Let Pi and P2  represent the ground programs generated in transl and trans2 

respectively for the same problem. Consider an assign m en t of a value val to 

a variable whose domain is of size m*. Corresponding to each literal Vi (val) 

there is a single clause in P2  while in Pi corresponding to each Vi(val), there are 

mi clauses in Pi (one clause Vi(val) *— not 0Vi(val) and other m* — 1 clauses of 

the form ov{(val)«— Vi(vat) where val' ^  val).

2. Excess effort is required in propagating the effect of a variable assignment in 

case of transl. In trans2, a  variable assignment V{ = val is reflected by addi-
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Comparison of direct ground program and lparse generated ground program
1

Direct Ground representation 
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Figure 3.13: Direct ground representation versus lparse generated ground represen
tation

tion of Vi(val) to B. This assignment is immediately propagated in one step by 

application of inference rule IR3 of expand causing addition to B  of all literals 

of the form not Vi(vat), where val' ^  val. But in transl, any variable assign

ment Vi = val is achieved by addition of a literal of the form not ovi(val) to 

B. This is propagated to add vi(val) to B  in one step. The literals of the form 

not Vi(vaf), where vat  ±  val, are then added in a series of steps of application 

of inference rule IR3 of expand. Thus the propagation of an assignment takes 

a single step in trans2  while it takes multiple steps in transl. This is a possible 

major contributor to the excess time required by transl .

The results in this section concur with the expected results that use of a more 

specialized language is bound to have a positive effect on the efficiency of a system. 

On the other hand, use of a more general tool even though makes things expressive, 

might compromise on efficiency. However, an important point is that a general tool
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may also be fine-tuned to efficiently process special applications. In the context of 

finite CSPs, this means that once a methedology of representing constraints is fixed, 

the process of translating to ground programs is merely a "compilation process”: the 

user writes constraints in some standard form, which are then parsed and translated 

to the corresponding ground program. The translations transl and trans2 can be 

viewed as these type of methodologies.

In the next section, we shall compare finite CSP methods based on backtracking 

and sm odels based CSP solving method presented in the previous section. We shall 

be referring to the method of solving finite CSPs using trans2.

3.4.2 Comparison o f search spaces o f sm odels and backtrack
ing for binary CSPs

The sm odels based solving method and BT differ in the way branching occurs. 

The ordering in sm odels occurs dynamically whereas the order in fixed in BT. The 

difference between the two methods of solving the same CSP is illustrated by showing 

the running of BT and sm odels on the CSP shown in Fig. 2.1. The search space of 

BT and sm odels is shown in Fig. 3.14.

In the literature of finite CSPs common measures which are used to compare 

different methods are execution time, number of consistency checks, and size of search 

space. Our intent here is to provide a comparative analysis of the efficiency of solving 

finite CSPs using chronological backtracking (BT) and smodels. Thus we need to 

compare the relative efficiency of two different knowledge representation schemes. 

The concept of consistency checks does not have an identical corresponding measure 

in sm odels based solving.

In [54], sm odels was compared with other implementations of SAT problems 

on basis of execution time. The execution time is a commonly used parameter for 

measuring the relative efficiency of different implementations. The execution times 

of both methods when measured on same machines, gives a reasonable idea of the
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Search Space of smodels

Search Space of Chronological Backtracking

Figure 3.14: Search spaces of sm odels and BT for the example in Fig. 2.1
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relative efficiency of the systems. However, in many cases some heterogeneous factors 

like the data structures used, the implementation langauge etc. make execution time 

a biased choice. So another relatively less biased metric of measurement presented 

along with execution time gives a balanced picture. Here both the methods here are 

essentially search algorithms.

In a typical search algorithm in artificial intelligence, a search node is defined by 

a choice point where one needs to choose between a fixed number of alternatives. 

This choice factor is responsible for the exponential nature of search space. Further 

if the computation involved at any node is polynomial in complexity, it fades out 

in contrast to the exponential number of choices in terms of contribution to the 

overall cost of solving the problem. Hence size of search space is a reasonable choice 

for comparing two heterogeneous methods provided the cost of computation at each 

node is polynomial in both cases. Thus we use the size of search space as the measure 

for comparing smodels and BT. Hence size of search space is used in combination 

with execution times as the method to compare two methods in our case.

We base our analysis here on finite binary CSPs. Further, we assume that number 

of variables is n and that each of the n variables {ui, t/2 , . . . ,  u„} can assume any of the 

d values from its domain. In addition, let us assume the number of binary constraints 

to be m each with I tuples. Trivially it can be seen that m  is of the order of magnitude 

0(7i2) in the worst case. Further, we explain the concept of a node in the search space 

in both cases. In case of BT, a node refers to a point in the search space when a 

partial assignment is extended by assigning a value to a new variable. On the other 

hand, in smodels a node shall be referred to a point in search space when a new 

literal of the form I or not I is picked and smodels is called with either B  U {1} 

or B  U {not /}. We further assume that B  initially contains all atoms of the form 

sat(c) where c is a constraint. This assumption is valid because any stable model of 

a program generated by trans2 contains all these atoms necessarily. Based on the 

assumptions, we now proceed to measure the relative efficiency of computation at
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each search node in the solving process.

The smodels system uses a linear-time method [60] at some nodes in the search 

space (when B  covers Neg{P)) to check whether the model is a stable model of the 

program or not. Further all heuristics and deductive closures {Del) at any node are 

computable in time linear in the size of the program [54], and expand computes a 

deductive closure a linear number of times . Further there is only one call to expand 

at each node. The size of the program generated in the translation algorithm trans2 

corresponding to a finite CSP is also polynomial in the total number of domain 

constants in the CSP. Hence overall the computation at a node is bounded by a 

polynomial in the size of a CSP.

Coming to the solving of finite CSPs by BT, we see that at any node in the search 

space we need to go through all the tuples in all the constraints in the problem in the 

worst case. This is polynomial in the size of the CSP.

So at any particular node in the search space of either method, the processing is 

polynomial in the total number of domain constants in the CSP. Given this back

ground, we can now go ahead and compare the number of nodes in the search space 

of both methods of representing and solving finite CSPs.

W orst-case complexity bounds

Based on the concept of solution node as explained in the previous section, we show 

that the worst-case bound of the number of nodes in case of solving by sm odels is 

double that of the worst-case bound of number of nodes in solving by backtracking 

based method. As explained already, the underlying assumption in case of a counting 

a node is the assumption of low order polynomial pre-processing at each node, and 

counting only the non-deterministic choice points as nodes in the solution space. In 

case of BT, a node refers to an extension of a partial solution by the assignment 

of a new value to a new variable, and checking of the consistency of this extended 

assignment with previous assignments forms the polynomial processing part at each
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node. In sm odels based solving, the non-deterministic calls to smodels with a new 

literal is counted as a node and the polynomial processing consists of the processing 

in expand. Based on these assumptions, the following results can be explained.

T heorem  3.2 The number of nodes in the worst-case for backtracking is bounded by
dr+l-d 

d - 1 •

Proof. In the search space of backtracking, let level 1 correspond to v\, level 

2 correspond to v2 and so on. Hence the number of nodes at the first level is the 

same as the number of choices for vi, namely d. Next, at level 2 there are d values 

of v2  corresponding to each choice of v\. Hence there are d2 values at second level. 

Following this thread, at the leaf level there are d" values. The total number of nodes 

in the search space is hence £"=1 d*. The precise value of this is ^ r f -. □

T heorem  3.3 The number of nodes in the worst-case for smodels based solving is
n * d n+ l - d  
a  d - l  •

Proof. At any node, smodels chooses either I or not I where I 6 Neg(P). If P is 

the program generated by trans2, Neg(P) contains all atoms of form V{(val) as well 

as atoms of the form sat(c). Since smodels is assumed to be invoked with an initial 

B  containing all literals of the form sat(c), sm odels only chooses literals of the form 

Vi(val), where val is a value in the domain of v*. Let the first level correspond to the 

choice of values for the variable V\ whose domain contains d values vali,val2, . . . ,  val*. 

The program generated by trans2 ensures that when an atom of the form v\ (val) is 

selected at a node by smodels, not vi(val') is added to B  by expand (by inference 

rule IR3) for till values val' in the domain of ui such that val' ^  vali. Hence any 

further choice of a literal of the form vi(val2) or not vi(val2) occurs only for the node 

of not vi(vali). On similar lines, further choice of a literal of the form vi(val3) or 

not Vi(val3) occurs only for the node of not vi{val2). Hence corresponding to vi, a 

total of 2d nodes are traversed corresponding to the d values of v\.
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SEARCH SPACE FOR CSP 

Figure 3.15: Search space of finite CSP in backtracking

At the second level however, there are value assignments corresponding to literals 

of the type v2 (val) or not v2 {val) only for nodes in the first level corresponding to 

positive atoms of the type vi (vali). Thus the 2d possible values at second level are 

attached to only d nodes of the first level. Hence there are 2d2 nodes at the second 

level. Generalizing this we get the total number of nodes as £ ”=12 * d \ which is 

exactly 2 * ^ ^ .  □

The discussions and proofs above will become clear if we see the example shown 

in Figures 3.15 and 3.16. We draw the search space for both for the case when n = 2  

and d =  3. There are two variables v\ and v2  each with a domain size of 3. In Figure 

3.15, we can see that the search space is made of a total of 12 nodes while in Figure 

3.16 the search space is made of 24 nodes.

E xperim ental com parison o f sm odels and BT

The worst-case complexity analysis usually reflects only the extreme behavior of an 

algorithm, which might occur quite rarely in practice. To get an idea of the aver

age case performance of BT and smodels, we performed experiments on randomly 

generated CSPs. We use the basic sm odels procedure without either lookahead or 

backjum ping as shown in Figure 2.3. Further we use the programs generated by 

trans2 for the comparison. We additionally enforce the condition that initially B
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Figure 3.16: Search space of smodels based CSP solving
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ail literals of form sat(c), where c is a constraint. Since the basic sm odels proce

dure uses expand, which in turn performs constraint propagation, we also compared 

sm odels and BT. A detailed study of the relationship between expand and FC is 

presented later. In all the cases the measurement was taken either to generate one 

solution if it existed or to report if none existed.

In the experimental set-up, binary constraints were considered. The number of 

variables was fixed at 20 and each variable was considered to have a fixed domain size 

of 5. Further all constraints were considered to contain 16 randomly chosen tuples (of 

the possible 25). Constraint density w, which is defined as the number of constraints 

in the CSP expressed as a fraction of the total possible number of constraints, is 

varied. An ensemble of 100 random finite CSPs was generated for each value of w. 

The value of w (in %) varied from 1 to 100. The average number of nodes for each 

value of w was taken by taking the median of the number of nodes for the 100 CSPs. 

The median is chosen because it gives a better measure of central tendency then 

mean because it is not affected by outliers in the data which is a source of major 

discrepancies in the data for arithmetic data. The graph in Figure 3.17 shows the 

relative comparison of the number of nodes in sm odels and BT. The graph in Figure 

3.18 shows the relative comparison of the execution times of smodels and BT.

The graph highlights some interesting results. The main points elucidated by the 

graph are:

1. Though the worst-case complexity of sm odels is higher than that of BT, the 

average case performance of sm odels is better than BT.

2. The phenomenon of phase transition [55, 62] in search methods refers to the 

occurrence of abrupt peaks in the search cost. It has been shown that these 

peaks in finite CSP methods occur in the region of transition from the region 

of soluble CSPs to the region of inconsistent CSPs. It has been also shown 

that problems in the phase transition region are the "hardest” problems to

85

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



No
 

of 
no

de
s 

vi
si

te
d

Comparison of chronological backtracking with smodels
450000

Chronological Backtracking — i—  
Forward Checking — x—  

Pure smodels without lookahead or backjumping

400000

350000

300000

250000

200000

150000

100000

50000

I *-*
0 * -)4- x- m • *  nit-frit -K'Unir  A A if k  k *  >1 * —

10 20 30 40 50 60 70 80 90 100
Constraint density in %

Figure 3.17: Comparison of median number of nodes of smodels and BT

86

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Tim
e 

(s
ec

)
Comparison of chronological backtracking with smodels

1.6
Chronological Backtracking -  

Forward Checking -— x —

Pure smodels without lookahead or backjumping

1.4

1.2

0.8

0.6

0.4

0.2

50 60 70 80 90 100

^  jK* X  *X

o J N ie t^ L . 
10 20 30 40

Constraint density in %

Figure 3.18: Comparison of median execution time of smodels and BT

87

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



solve. All backtracking based finite CSP solving methods have been shown to 

exhibit phase transition behavior. Here we observe that similar phase transition 

phenomenon is exhibited by smodels too.

3.4.3 Fine-tuning smodels for CSP generated logic programs

The worst-case analysis of smodels for solving CSPs has shown that the bound in 

terms of number of nodes traversed in the extreme case is double the worst-case bound 

of backtracking. A question arises if smodels can be modified taking into account the 

specific structure of the logic program generated by trans2  for CSPs. In this section, 

we present csp-smodels, a restricted version of the sm odels procedure which works 

for logic programs generated by trans2 and has the same worst-case bound as BT. 

This exploits the specific structure of the logic program generated by trans2 on a 

CSP. Assume a program P' obtained by applying the algorithm trans2 to a finite 

CSP P.

The difference between trans2 and csp-smodels lies in the restriction that the 

procedure csp-smodels is called only with positive atoms of the type Vi {val), and 

not with any negative literal of the form not Vi(val). Further it is assumed that 

csp-smodels is invoked initially with

B  =  (sat(c) | c is a constraint in P}.

Moreover, csp-expand, a simplified version of expand, is used and has been shown 

to achieve the same result as expand for the class of logic programs generated by 

trans2. The procedures csp-expand and csp-smodels are presented in Figure 3.19.

Before we compare the worst-case bound of search spaces, we prove that the 

csp-smodels procedure is sound and complete. We need to show the equivalence 

of expand and csp-expand for P '. Recall that expand(P , B) is defined by the 

procedure in Figure 2.4. Recall further that the closure Cl(P,B) is defined as a 

minimal set closed under inference rules 1 to 4 below, that contains B.
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Inference ru le  1(IR1) If the body of the rule h <— . . . ,  /„ is a subset of

B, then the head h belongs to every stable model agreeing with B.

Inference ru le  2 (IR2) If Pb contains no rule with head h, then h is not an element 

of any stable model agreeing with B.

Inference rule 3 (IR3) If h € B  is the head of only one rule h *- l i , l n in Pb, 

then l i , . . . ,  ln G A U not(A) for every stable model A agreeing with B.

Inference ru le  4 (IR4) If not h E B  and h is the head of the rule h <— lx, in 

P b  for which h , . . . ,  /*-i, U+i, € B, then every stable model that agrees 

with B  agrees with B  U (opp(I»)}-

Theorem  3.4 csp-expand (P ',B ) = expand (P ',B ).

Proof. Effectively we need to show that the second clause in the definition of 

expand is irrelevant in case of csp-expand. This is shown by looking at the structure 

of the program P' generated by trans2. In trans2 corresponding to any assignment 

atom Vi(vali) (which stands for the assignment Vi =  vali where val{ is in the domain of 

Vi), there is exactly 1 clause with Vi(vali) as the head. All other clauses for the variable 

Vi have not Vi{vali) in the body. Now considering Neg(P'), we find that it contains all 

the atoms of the form vi(valj) for any such possible combination. Further it contains 

all atoms of the sat{ci) where Cj is a constraint. Now let us turn our attention to 

a specific B  in an intermediate stage of the solving process. B  contains a set of 

positive atoms of the form Vi(vali) for some variables Vi, and B  contains all negative 

literals of the notVi{valk) where valk #  vali and valk is in the domain of Let us 

turn our attention to Dcl(Pg, not{Neg(P'))). Since Neg(P') contains all atoms in the 

program as explained above, all negated literals in PB can be removed indicating that 

now all the clauses are involved in the program PB are retained except the negated
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function csp-smodels (P, B)
B' := csp-expand(P, B) 
if conflict(P, B') returns true th en  

re tu rn  false
else if for all u* 6 {vi, . . . ,  u„} there is an atom of the form Vi(vali) in B' th en  

re tu rn  tru e
else

Pick a variable Vi such that there is no atom of the form Vi(val{) in B'
Let Si =  {vi(vali) \ Vi(vali) is not covered by B'}
For all x  6 S* 
do
if csp-sm odels(P, B' U {x}) returns true th en  

re tu rn  tru e
endif
B' := B' U {not x} 
enddo 
re tu rn  false 

endif

function csp-expand(P, B)
B  := Cl{P,B) 

re tu rn  B

Figure 3.19: The csp-smodels and csp-expand procedures
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atoms. This program contains all the facts of the form sat(ci) for all c*. In 

addition for any variable Vj which does not have a positive atom of the form v f i v a l j )  

in B, all clauses corresponding to variable assignments of Vj are converted to a set of 

facts V j ( v a l j i )  ; Vj ( v a l j 2) for all domain values of Vj.  But corresponding to a

variable Vi which has an assignment Uj(uaZ,-) in B, there is only one fact Vi(vali) <— in 

the program and there is no rule has as its head an atom of the form Vi(valk) where 

k i. Hence for all Vi such that there is an assignment i/ i ( u a Z ,)  is present in B, 

none of the atoms of the form Vi(valk) where k /  i are derivable from Dcl(Pg, not{ 

Neg(P'))). Hence for all atoms x  of this form Vi(valk) where k ^  i and Vi(vali) is 

in B, not x  can be added to expand(P, B). But all these literals of the form not x  

are added trivially by application of the inference rule IR3 to the program P \  Hence 

csp-expand(P, B) =  expand(P, B). □

We now state and prove the main theorem.

T heorem  3.5 The algorithm csp-smodels is sound and complete for solving a finite 

CSP.

Proof. In csp-smodels, the algorithm uses csp-expand for expanding a set B 

consisting of a set of literals. We have seen that csp-expand(P, B) =  Cl(P, B). 

Hence csp-expand is correct.

The soundness is trivial because csp-smodels is a special restriction of the gen

eral sm odels procedure which has been shown to be sound for the translated logic 

program obtained by trans2 .

To prove completeness, we need to show that no solution of CSP is lost by restrict

ing sm odels to csp-smodels. Suppose there were a solution S  to the original CSP 

which does not have any corresponding B which is output by csp-smodels when 

applied to the logic program P  output by trans2. Clearly since S  is a solution of the 

CSP, it is an assignment to all the variables which satisfies all the constraints in the 

CSP. Let {vi =  vali,v2  =  val2, . . .  ,vn = valn} be the assignment in S. The set of
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atoms S* representing {ui(vali), v2{yal2) , . . . ,  vn(valn)} corresponds to a set of assign

ments which is a solution of the CSP. Hence each assignment is mutually consistent 

with the other assignment. Thus there is no possibility of a pair Vk{valk), not Vk{valk) 

to be ever generated. Consider a set B  which contains all atoms in S' and in ad

dition all atoms of the form satfe) where c* is a constraint. Further let B contain 

all literals of the form not Vk(valj) where valj ^  valk- Further B  does not have a 

pair Vk(valk),not Vk(valk) in it by virtue of the mutual consistency of the value as

signments. Thus B  will not exit from the csp-smodels procedure due to a conflict. 

Hence there is a node in the search space of csp-smodels which generates this B. 

Since such a B  satisfies the exit condition of csp-smodels, this particular B  is output 

by csp-smodels. This contradicts the assumption that no such B  corresponding to 

S  is output by csp-smodels. Hence csp-smodels is complete. □

Having proved the soundness and completeness of csp-smodels, we now go ahead 

and state a result concerning the search space of the algorithm.

Theorem  3.6 The worst-case search space traversed by csp-smodels based CSP 

solver has the same number of nodes as the worst case of the backtracking algorithm.

Proof. In the worst case of the csp-smodels procedure, all possibilities of the positive 

combinations of atoms of the form Vj(valk) should be tried. Let us assume d as the 

uniform domain size of each of the n variables in the problem. In the worst case, let vi 

be the first variable selected. The procedure csp-smodels can select any of the atoms 

corresponding to the d possible values. Suppose vi(vali) is selected. By application of 

csp-expand, all negated literals of the form not v\(valk) where valk #  vah are added 

to B  before the next call to csp-smodels. Thus there are d possible nodes at the first 

level of the search space. In the worst case, the propagation of csp-expand might 

not be able to add to B  any atom corresponding to any other variable Vj (j  ^  1). 

In that case, for the second level for each of the d values of vi a set of d values are 

possible for the next variable, say v2. Clearly at this layer, the number of nodes is d2.
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Going by this logic, we get the total number of nodes in the search space as 

which is the same as the worst-case search space of backtracking in CSP. Hence the 

proof. □

It is established that csp-sm odels is a restricted version of the sm odels proce

dure which is fine-timed for the restricted logic programs generated by a CSP, which 

has the same worst-case search space as the backtracking algorithms for CSP. we can 

identify the exact relationships between the techniques employed in sm odels and the 

corresponding techniques in CSP.

3.5 Conclusions

The modeling power of SLP and languages based on SLP have been evaluated in 

context of constraint programming. In particular L P s m  has been compared with 

existing constraint programming languages in context of modeling power. We find 

that LPsm shares the declarative nature as these other languages and also find that it 

has some definite advantages in constraint programming situations involving dynamic 

constraints as compared to other modeling languages.

We have explored the different issues in the modeling of finite CSPs in L P s m . a 

subset of the class of function-free normal logic programs. Later the problem of en

coding CSPs directly in sm odels was studied. We find experimentally that applying 

sm odels directly to the ground program representing a finite CSP is more efficient 

than the method proposed to model CSPs in L P s m  by Niemela in [41]. We perform 

theoretical and experimental comparison of the techniques of solving CSPs by sm od

els and chronological backtracking. Even though the worst-case search space bounds 

are worse for sm odels based finite CSP solving method, it is found experimentally 

that the average case of sm odels based method scores marginally. We then suggested 

improvements in the basic sm odels procedure to improve the worst-case bounds for 

the class of logic programs generated by CSPs.

Overall in this chapter we have provided insights into the modeling of finite CSPs
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and other constraints by L P s m  and sm odels.
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Chapter 4 

Mapping smodels techniques to  
CSP techniques

The paradigm of constraint programming has proved itself to be a practical one in ar

tificial intelligence with widespread industrial scale applications. The applications of 

constraint programming have been in diverse areas like scheduling, configuration, user 

interfaces, design, diagnostic reasoning, and resource allocation. The main contrib

utor to the success of constraint programming has been the development of efficient 

techniques for solving constraints. Massive research has gone into the devising of 

special CSP techniques which endow the constraint programming implementations 

the high degree of efficiency.

It is natural to expect that the inclusion of the efficient techniques from constraint 

programming into any problem-solving system is bound to yield an efficient imple

mentation. In Chapter 2, we showed how the techniques in sm odels mapped to 

some well known techniques in SAT solvers. It is however also well known that SAT 

and CSPs have a close relationship because SAT problem itself is a variant of the 

CSP problem specification. This chapter attempts to extend the abovementioned re

lationship between sm odels techniques and SAT techniques by establishing a direct 

relation between the important techniques in smodels and some well-known efficient 

CSP techniques.

There are mainly three techniques employed in smodels, namely, propagation,
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lookahead and backjumping. We show that they are mappings from the three cor

responding techniques of constraint propagation, dynamic variable ordering (DVO), 

and backjumping in finite CSPs. The precise relationship between the three corre

sponding pairs of techniques is explored in four steps : (i) by illustrating the effect of 

the particular technique in the solving process by an example in both CSP and sm od

els, (ii) by identifying sufficient conditions under which the technique in CSP exactly 

matches the corresponding technique in smodels and vice-versa, (iii) by pointing out 

possible improvements in the technique of smodels based on ideas from implemen

tation of the same idea in the CSP paradigm, and (iv) by performing experiments on 

random constraint satisfaction problems and comparing the relative efficiency of the 

techniques in terms of search space. The implementations of various CSP techniques 

like forward checking, backjumping, backtracking etc were all taken from the public 

domain CSP library of C routines developed by van Beek et al. available at [58].

However some important points are to be taken into consideration while looking 

into the mapping process. The points are:

•  The smodels proof procedure is programmed to perform constraint propagation 

in the default case. Only the techniques of backjum ping and lookahead 

have the option of being excluded. In that case, the comparison of lookahead 

or backjum ping with corresponding technique in CSP needs to ensure that 

constraint propagation is employed in the CSP alongside DVO or backjumping 

respectively.

•  Another important difference is in the instantiation order of the variables which 

is fixed in many CSP algorithms. But in sm odels this order is not fixed before

hand. But this does not prevent us from identifying the relationship between 

the corresponding pairs of techniques except for the backjum ping case.

•  In experimental comparisons of the corresponding pairs of techniques it is as

sumed that for smodels, trans2  (the direct method of solving in sm odels ) is
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used with the additional assumption that all atoms of the form sat(c) (where c 

is a constraint in the CSP) are in the initial B.

In the end we also perform a relative comparison of the three techniques in sm od

els experimentally in order to determine the singular contribution from each towards 

the efficiency of sm odels . It turns out that lookahead dominates totally over the 

other two techniques by orders of magnitude. Moreover, sm odels employing looka

head turns out to competitive to the best techniques in finite CSPs. Because the 

technique of sm odels with lookahead turned out to be competitive to the best CSP 

techniques we performed a comparison of smodels including lookahead with the 

techniques of forward checking with DVO (FC-DVO), forward checking with full arc- 

consistency (FC-arc), forward checking with backjumping (FC-BJ), forward check

ing with both arc-consistency and DVO (FC-arc-DVO), and forward-checking with 

conflict-direct backjumping (FC-CBJ) on the hardest constraint satisfaction problems 

identified by phase transitions, briefly described in the previous chapter. The results 

show that smodels with lookahead competes with the best among these techniques.

4.1 Constraint propagation in CSPs vs. smodels

4.1.1 Constraint propagation in CSPs

In finite CSPs, the primary process of constraint propagation involves ensuring that 

the final form of the CSP, becomes fc-consistent, for a predetermined value of k. Many 

variants of constraint propagation algorithms have been proposed in the CSP litera

ture. These algorithms differ in the relative amounts of propagation and backtracking 

involved in the process of solving a CSP. The value of k which represents the level of 

consistency (k—consistency) of a CSP, determines the further amount of backtrack

ing required. In one extreme, strong n-consistency for the CSP would completely 

eliminate the need for search. But since the consistency algorithms (propagation) 

algorithms are costly for higher values of k, it is desired to apply lower orders of
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consistency (lower value of k) before proceeding for backtracking. Commonly CSP 

propagation methods limit themselves to a value of k =  2 , meaning they strive to 

achieve arc consistency before applying backtracking. In some rare cases, pure prop

agation can achieve a backtrack-free solution process for a finite CSP. In [14] Freuder 

presented a sufficient condition for a finite CSP to return a solution without any 

backtracking.

Various constraint propagation algorithms based on arc-consistency have been 

proposed in constraint programming literature. Any basic algorithm employing arc- 

consistency involves alternate assignment and propagation steps, where an assignment 

step incrementally expands a partial assignment like chronological backtracking (BT) 

and a propagation step propagates the partial assignment to make the resulting CSP 

arc-consistent to some degree. In forward checking (FC) [25], the propagation step 

is limited to enforcement of arc-consistency is limited to that between the current 

(latest instantiated) variable and all future variables. On the other hand, MAC 

(maintaining arc-consistency) [25, 17] enforces arc-consistency not only between the 

present variable and the future variables but also between all future variables.

In the example studied in Section 3.4, we shall show how application of MAC, 

which achieves a solution for this problem without any backtracking, by just an 

initial application of one arc-consistency step. The CSP P  here is defined on four 

variables Vi,u2 ,u3 and u4  with domains of d\ =  {1 }, <f2  =  { lt 2 ,3}, d3  =  {1 , 2 }, 

and d4  =  {1,2} respectively. P  contains five constraints Ci(ui,v2) =  {(1 , 2 ), (1 , 1 )}, 

C2 (u2 ,u3) =  {(2,1), (3,2)}, C3 (i/3 ,u4) =  {(1,1), (2,2)}, C4 (u2 ,u4) =  {(2,1)} and 

Cs(ui,v4) =  {(1 , 1 )}. Consider starting with the arc between vi and u2. Because 

there is only one value for vi, the domain of vx remains intact at {1}. But there are 

only two values in domain of u2  which have a corresponding value in v\, namely 2  and 

1 . So 3 is removed from the domain of u2. Next the arc between vi and t/4  is studied. 

Here there is no further change to domain of V\. But there is only one value of u4  

which has a corresponding value in vi, namely 1 . So the value 2 is removed from the
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domain of 1/4. Next the arc between v2 and v3 is explored. Since the domain of v2 

now contains only the values 2 and 1, we need to consider only these two values. But 

since the value 1 of v2 has no corresponding value in v3l we remove 1 from the domain 

of v2. Further, since now we do not have any value of v2 after this corresponding to 

the value 2 of v3, this value is removed from domain of 1/3. At this stage the domains 

of V\, u2, t/3 and 1 /4 are {1}, {2},{1} and {1} respectively. No further change in P  

is possible. At this stage we observe that if any solution exists, it can be obtained 

directly without any backtracking and by simply checking if the only remaining tuple 

is a solution or not. Here it is a solution of the CSP. Hence the resulting solution is 

{t/i = 1, v2 = 2, u3 =  1, t/4 = 1}.

C o n s id e r  a p p ly i n g  F C  t o  t h e  s a m e  e x a m p l e .  S t a r t  w i t h  { t / i  =  1 } .  P r o p a g a t i n g  t h i s  

v a lu e  t o  t/2, t/3, t/4 w e  r e d u c e  t h e  d o m a in s  o f  t/2 , 1/3, a n d  t/4 t o  d2 =  { 1 , 2}, d3 =  { 1 , 2}, 

a n d  d 4 =  { 1 }  r e s p e c t iv e ly .  E x p a n d in g  t h e  a s s ig n m e n t  b y  {v2  =  1 } ,  fu r t h e r  p r o p a 

g a t i o n  a n n ih i la t e s  t h e  d o m a i n  d  ̂ o f  t/3 c a u s i n g  b a c k t r a c k  t o  {v2 = 2}. P r o p a g a t io n  

r e d u c e s  d o m a i n s  o f  1/3, a n d  1/4 t o  d3 =  { 1 } ,  a n d  c/4 =  { 1 }  r e s p e c t iv e ly .  E x p a n d in g  

t h e  a s s ig n m e n t  b y  {1/3 =  1 }  d o e s  n o t  c h a n g e  c/4 in  t h e  p r o p a g a t i o n  s t e p .  T h e  f in a l  

e x p a n s i o n  {t/4  =  1 }  g iv e s  a  s o l u t io n  t o  t h e  C S P  a s  { t / i  =  1 , t/2 =  2, t/3 =  l , t / 4 =  1 } .

The above is an extreme example of an application of constraint propagation, 

which involved no backtracking.

In the next section, we shall recall how pure propagation component is able to 

derive a solution for the same example in case of the finite CSP representation by 

smodels .

4.1.2 Constraint propagation in smodels

It has been shown earlier that in smodels the function expand is used to propagate 

the effects of a partial assignment of values in B  to add as many new literals to B 

as possible without having to call smodels again. Recall that the function expand 

is defined by a set of inference rules applied to a current partial solution B  till no
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changes in B  occur. The inference rules of Cl(P,B), the principal component of 

expand(P, B), are defined here. Let Pb, the reduct of P with respect to B, be the 

set of rules

{/ i<- /1, . . . , zn e P | 0pp(fi) 2 £ }

where are literals and we know that for an atom x, opp(not x) = x  and

opp(x)= not x. The inference rules IRl, IR2, IR3 and IR4 for C l(P ,B ) are defined 

below:

Inference rule l(IR l)  If the body of the rule h <— l i , . . . ,  ln is a subset of

B, then the head h belongs to every stable model agreeing with B.

Inference rule 2 (IR2) If Pb contains no rule with head h, then h is not an element 

of any stable model agreeing with B.

Inference rule 3 (ER3) If h 6 B  is the head of only one rule h <—1\ , . . . ,  ln in Pb, 

then 6 A U not(A) for every stable model A agreeing with B.

Inference rule 4 (IR4) If not h e  B  and h is the head of the rule h l i , . . . ,  /„ in 

P b  for which h , . . . ,  k -i, h+i, -■ - ,ln 6 B, then every stable model that agrees 

with B agrees with B  U {opp(It)}.

For the example CSP P studied in Section 4.1.1, application of one step of arc- 

consistency was sufficient to solve the CSP. Here we solve the same example by 

application of smodels to the logic program corresponding to P  generated by trans2. 

We make the simplifying assumption that smodels is invoked with an initial B  =  

{sat(ci),sat(c2 ),sat(c3 ),sat(ct),sat(c5)}. This assumption is justified because any 

stable model will necessarily contain all atoms of form sat{c) where c is a constraint. 

We show the execution of this example in Figure 4.1. Here one call of expand is 

sufficient to return a solution without any further calls to smodels . This is an
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B = {sat(cl),sat(c2),sat(c3),sat(c4),sat(c5) }

expand  , IR1
B = BU  {v l( l}

IR3 (tosat(c5))
B = B U {v4(l)}

|  IR3 (tov4( ) )

B = BU {notv4(2)}

IR3 (tosat(c3) }

B = B U {v3(l)}

i IR3 (to sat(c2))

B = BU  (v2(2)}

,, IR3(tov2(2))

B = B U {not v2(l), not v2(3)} 

IR3 (to v3 (l))

B = BU {notv3(2)}

B covers Neg(P). Check for stable model.

Stable Model: {sat(cl),sat(c2),sat(c3),sat(c4),sat(c5),vl(l),v2(2),v3(l),v4(l)}

Figure 4.1: Execution of the CSP in Section 4.1.1 by sm odels

extreme case but it suffices in our case to explain the pruning power of the propagation 

achieved by expand function. Thus this example is able to achieve a backtrack- 

free solving process by application of pure propagation in both sm odels and CSP 

methods.

4.1.3 Relationship between expand and arc-consistency

A close look at the way the same example is solved by application of arc-consistency 

in CSP, and by expand in sm odels suggests that the inference rules employed by 

expand are related to the inference rules enforcing arc-consistency. We shall try 

to see the relationship between these two sets of inference rules. Unless otherwise 

mentioned, we shall consider only binary CSPs in this section. Further, we assume
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the use of the translation algorithm trans2  to translate a CSP to the corresponding 

ground logic program. Additionally we assume that sm odels is invoked with an 

initial B  consisting of all atoms of the form sat(c) where c is a constraint in the CSP.

It is known that expand(P,B ) is derived by repeated applications of Cl(P,B) 

which is in turn defined by the four inference rules IR1, IR2, IR3, and IRA. So, 

to compare the propagation in arc-consistency and expand, it suffices to study the 

relationship between inference rules used in Cl(P,B) to the inference rules used in 

arc-consistency. The closure Cl(P,B) is quite restrictive in its applicability to the 

specific form of logic programs generated by trans2. We present here two sufficient 

conditions under which Cl(P,B) and arc-consistency coincide in effect.

Let B  contain a set of positive atoms of the form {vi{val\), u2 (uaZ2) , . . . ,  Vj(valj)} 

corresponding to an assignment A  of values {ui =  val\,vv =  ua/2, =  valj} for

a subset of the set of n variables V  =  {vi, u2, . . . ,  u„}. Clearly B  also contains all 

negative literals of the form not ui(valj) where valj ^  vali. Likewise for all variables 

which are assigned a value in A. Similarly B  also contains all positive set of atoms of 

the form sat(ck) where ck is a constraint. Assume we are trying to satisfy a constraint 

Cj such that c, is defined over two variables vi and vt. Further assume that vt is not 

yet assigned any value in A but vi has been assigned the value vali in .4. Hence 

vi(vali) is already in B. Now we attempt to satisfy sat(cj) in B  (it is already in 

B  by assumption) signifying an attempt to satisfy the constraint Cj. FC and other 

dynamic methods of achieving arc-consistency would make the arc between vt and 

vi consistent by removing all values from the domain of vt which are not consistent 

with the value vali of uj. If there is more than one value valt in the domain of vt 

which is consistent with vali of vi, the inference rules of expand or arc-consistency 

cannot pick a specific value of vt which satisfies Cj. No propagation to a value of vt 

can be achieved by expand without a separate call to sm odels. But if there is only 

such value valt in the domain of vt consistent with vali of vi, both arc-consistency 

and expand successfully assign valt to vt. With this setting we state the following
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sufficient condition:

Theorem  4.1 I f  there is only value valt in the domain of the variable vt such that 

the pair {valt,vali} is in the constraint Cj, then Cl(P, B) makes the arc between vt 

and vi consistent.

Proof. For any further expansion of B, vt cannot get a value different from valt. 

The proof is obtained by looking at the inference rules used in Cl(P, B). When B  is 

passed to expand, we first generate the program Pb which is the set of all clauses r 

such that none of the literals lm in the body of Tj is such that opposite literal of lm is 

in B  (For a negative literal of the form not t the opposite is t and for an atom t the 

opposite is not t). By an earlier application of the inference rule IRl, because of the 

presence of vi(vali) in B, B  also contains all literals of the form not v^val?) where 

val? valt. Because of this, Pb has none of the clauses with sat(cj) at the head, 

which corresponds to a tuple in the constraint Cj having a value for uj other than vali. 

More precisely, there is no clause in Pb of the form sat(cj) <— vi(vali>),vt(val?) where 

vali> is in the domain of vi, valt> #  vali and valt> is in the domain of vt. Further, 

since constraint Cj has only one value valt of vt that occurs with vali, Pb has only 

one clause with sat{cj) at the head. Applying inference rule IR3 we can then add 

vt(valt) to B. Further, there is only one rule in Pb with vt{valt) as head, namely the 

mutual exclusion rule corresponding to vt{valt). By applying IR3 again we then add 

all literals of the form not vt(valt>) where valt> is in the domain of vt and valt> ^  valt. 

Hence in any future expansion of this B  any such valt> cannot be assigned to vt. 

Hence the proof. □

Next, we state a much simpler condition which trivially achieves arc-consistency.

Theorem  4.2 I f  a constraint Cj has only one tuple in it, Cl(P, B) establishes arc- 

consistency between the variables forming Cj.

Proof. Trivially proven by applying the inference rule IR3 of Cl{P, B). □
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We have shown that there are certain restricted conditions under which the prop

agation achieved by expand is the same as achieved by algorithms like FC which 

dynamically enforce arc-consistency.

4.1.4 Experimental comparison o f FC and expand

In this section we explore the relative efficiency of applying pure constraint propa

gation in sm odels and CSPs. We choose to execute sm odels without any looka

head or backjum ping. We compare it with FC, which dynamically enforces arc- 

consistency. We use the measure of search space, as described in a previous section. 

As explained earlier, the concept of a node in the context of expand refers to every 

non-deterministic choice of a new literal to be added to B  when a new call to smodels 

is made. The processing of expand is polynomial, and is considered as the processing 

overhead at a node. In contrast, in case of FC, whenever a partial assignment is ex

panded with a assignment of a value to a variable. The forward checking component 

of the current assignment with future variables is polynomial and considered part of 

the processing at a node.

In the experimental set-up, binary constraints were considered. The number of 

variables was fixed at 2 0  and each variable was considered to have a fixed domain size 

of 5. Further all constraints were considered to contain 16 randomly chosen tuples 

(of the possible 25). An ensemble of 100 random finite CSPs was generated for each 

value of w ( constraint density). The value of w (in %) varied from 1  to 100. The 

average number of nodes for each value of w was taken by taking the median of the 

number of nodes for each of the 100 CSPs. The graph in Figure 4.2 shows the relative 

comparison of the number of nodes in sm odels and FC.

From the experimental results it is clear that the propagation achieved by ex

pand  is a quite limited in comparison to the propagation achieved by arc-consistency 

enforced in FC.
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Figure 4.2: Comparison of average number of nodes of sm odels and FC
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4.1.5 Can expand be improved further?

A question which arises in such comparison of the two techniques is whether any of the 

techniques can be enriched by application of ideas from the other technique? Since 

expand of smodels has been shown to perform a less amount of propagation as com

pared to FC (an arc-consistency enforcing algorithm), we can incorporate inference 

rules of arc-consistency in expand to work for the class of logic programs generated 

by trans2 for finite CSPs. Consider a CSP P  defined on three variables ui,u2, and 

vz with domains d\ =  {1,2,3,4}, d2  =  {1,2}, and dz =  {1,2} respectively. Let 

P  contain the constraints ci(ui,u2) =  {(1,2), (2,1)}, and c2 (ui,u3) =  {(3,1), (4,2)}. 

On applying expand to the initial set B  =  {sot(c1 ),saf(c2 ) } 1 we do not add any 

further literal to B  because none of the inference rules apply. But if arc-consistency 

is applied to the problem we can immediately eliminate all values from the domain 

of v\, by removing v\ =  3 and v\ =  4 while considering constraint C\ and removing 

vi =  1, ui = 2  while considering constraint c2. The semantics of arc-consistency can 

thus be used to enrich the definition of Cl(P, B). We can add the following inference 

rule (let us term it as IR5) to the existing inference rules of Cl{P,B).

Inference R ule 5 (IR5) Let Cj is a constraint defined over the two variables vt and 

V[ such that at least one of them does not have an assigned value in B. For any 

value valt in the domain of vt such that there is no value vali in the domain 

of vi such that there is a clause of the form sat(cj) <— vt(valt),vi(vali) in Pb, 

add not vt(valt) to B. Likewise, for a value vali in the domain of vi such that 

there is no value valt in the domain of vt such that there is a clause of the form 

sat(cj) <— vt(valt),vi(vali) in Pb, then add not vi(vali) to B.

The above inference rule is a direct enforcement of the arc-consistency in the 

translated logic program corresponding to the CSP. The CSP P  discussed above 

can be now shown to lead to a conflict in the first call to expand. By IR5, add 

{not v l(l),no t ul(2), not ul(3), not wl(4)} to B. Then again by applying IR1 , add
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•ui(l) to B  causing a conflict. Hence smodels stops with one call to expand. The 

inference rule IR5 enriches the propagation achieved by Cl{P,B) causing greater 

saving in search space in the application of expand to reduce the size of the search 

space traversed by smodels. This inference rule IR5, enforces full arc-consistency 

not only between variables in B  and variables outside B, but also between variables 

outside B. In that sense it is a stronger version of arc-consistency as employed in 

MAC [17] than FC.

4.1.6 Conclusions on the constraint propagation in both sys
tems

In this section, we saw the close semantic similarity between the propagation achieved 

by expand function in sm odels and arc-consistency based constraint propagation 

techniques in CSPs. We first examined the role of constraint propagation in both 

systems by examples. We established sufficient conditions under which expand had 

exactly the same semantics as arc-consistency. We experimentally examined the rela

tive amount of propagation performed by expand and FC. We found that the limited 

arc-consistency enforced by FC itself outperforms expand.

Further, we also saw how semantics from arc-consistency could be used to enrich 

the propagation in expand by adding a new inference rule which will work specifically 

for the logic programs representing binary CSPs.

4.2 Lookahead of sm odels vs dynamic variable or
dering of CSP

Lookahead, is a technique which employs a thorough examination of all future 

choices before committing to a choice. We study a related technique employed in 

CSPs, which semantically tries to achieve the same result as the lookahead tech

nique in smodels . The corresponding technique in CSP is that of dynamic variable 

ordering (DVO).
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4.2.1 Dynam ic variable ordering in CSP

In a previous chapter, many classes of algorithms for solving constraint satisfaction 

problems were presented. These ranged from the simplest and costliest chronolog

ical backtracking through intelligent backtracking like backjum ping to techniques 

involving combinations of propagation and backtracking like forward checking. In 

all these algorithms the order of instantiation of the variables was always fixed or 

predetermined. In other words the order of the instantiation of variables could not 

be changed during the process of obtaining a solution. In addition any constraint 

satisfaction requires the order in which the values are assigned to the variable on 

backtracking. The choice of the right order of variables (and values) can significantly 

improve the efficiency of constraint satisfaction [59].

The very notion of changing the order of variables to be instantiated during the 

process of solving, implies that if there is no change to the state of a CSP during a 

problem, then the dynamic variable ordering achieves nothing extra. In other words, 

if there is no change to domains of variables remaining to be instantiated during the 

solving process, the number of values corresponding to each remaining variable still 

remains the same as at the start of the solution. Hence the dynamic variable order 

would be the same as the fixed order of variables based on domain sizes selected at 

the start of the solution process. Hence a necessary requirement for the dynamic 

variable ordering to be effective is that there be a change in the state of the CSP, in 

terms of number of values for all remaining variables.

The above requirement is not satisfied by naive backtracking because the state 

of a CSP is not changed on the fly based on the partial solution at any stage. On 

the other hand, any constraint satisfaction algorithm which involves constraint prop

agation, ensures that the partial solution at any stage of the backtracking process, 

has an effect on the remaining variables yet to be instantiated. Thus any constraint 

satisfaction algorithm which involves the use of constraint propagation in conjunc-
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tion with backtracking is a good choice for dynamic variable ordering. FC perfectly 

fits the case, as it consists of a certain amount of propagation interleaved with every 

incremental assignment of a value to a new variable. In FC the state of a CSP is 

changed after a new variable is instantiated, and the number of values corresponding 

to a variable is changed. This makes the application of any heuristic for dynamically 

re-ordering the variables worthwhile.

In the field of constraint satisfaction, several heuristics have been developed for 

selecting variable ordering. The most effective one is based on the first-fail idea, which 

described in simple words means that trying a variable which is likely to lead to a 

failure the fastest, is the best because of the enormous savings in the space possible 

by detecting this early failure.

The translation of the above semantics of the first-fail procedure is achieved in 

finite CSPs by assigning the variable with the fewest possible remaining values, next 

for instantiation. Thus at any stage during the process of solving the CSP, all the 

future variables are examined for all the remaining values and the variable with the 

least remaining values is chosen as the next variable to be instantiated. This leads to 

a different variable at a level in different branches of the search tree, unlike the case 

of the fixed variable ordering. This heuristic is effective because if the current partial 

solution does not lead to a complete solution, then the sooner we discover this the 

better it is. This heuristic reduces the average depth of branches in the search tree 

considerably by triggering early failure. We shall show the effect of dynamic variable 

ordering with the abovementioned heuristic, on forward checking, with an example 

below:

Consider a finite CSP P  defined on four variables v\, v2, u3 and u4 with domains of 

di — {1,2}, d2  =  {1,2,3}, dz =  {1,2}, and d4  =  {1,2} respectively. Let the problem 

P contain four constraints Ci(ui,u2) =  {(1,2), (1 , 1 )}, C2 (v2 ,v3) =  {(2,1), (3,2)}, 

£ 3 (^3 , W4 ) =  {(1,1 ), (2,2)}, and C4 (ui,u4) =  {(1 , 1 ), (2 , 2 )}. At the outset, since the 

variable v\ has the least number of values, namely 1 , it is selected. Once Vi =  1  is
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fixed, in the propagation phase of forward checking, it is checked against the future 

variables, v2 ,v 3 and U4 . The variables v3 ,v 2  are not connected to ux. The variable 

v4  which is connected to the variable ux is then tested and by propagation, the value 

of 2 is removed from the domain of V4 . At this stage among the remaining variables 

v2 ,v 3  and v4, the variable v4  has the least number of remaining values, namely 1. By 

the heuristic, v4  is instantiated to 1  next and the partial assignment t/x =  1 , v4  =  1  is 

propagated among v2  and v3. Since only v3 is connected to v4, the propagation takes 

place on v3 and the value of 2  is removed from the domain of v3 as it is inconsistent 

with v4. At this stage, among the two remaining variables v2  and 1/3 , the one with 

least remaining values is v3  with one value. The partial solution then expands to 

U3  =  1. Propagating to v4  the values of 3 and 1 are removed from the domain of 

v2, leaving the only value 1, which is used to derive the final solution {wx =  1, 1/4 = 

1 , v3 =  1, v2  =  2}. With the use of dynamic variable ordering in this case, we are able 

to avoid backtracking altogether.

4.2.2 Lookahead in smodels

In sm odels with lookahead, the idea is to use a literal which is assured to give rise to 

an immediate conflict, thereby allowing us to filter a portion of the search space early 

on. At a point in sm odels when no further literal can be added to B  by expand, a 

new literal is chosen by sm odels to be added to B. The function lookahead tries 

to expand with all literals and adds a literal I to B  such that expand(£  U {opp(l)}) 

leads to a conflict.

Consider the same CSP P  as the one considered for demonstrating DVO. P  

is defined on four variables vi,v 2 ,v 3  and v4 with domains of dx =  {1 , 2 }, d2  =  

{1,2,3}, d3 =  {1,2}, and d4  =  {1,2} respectively. P  contains four constraints 

C dvuvt) = {(1 , 2 ) ,( 1 , 1 )}, C2 (v2 ,v3) =  {(2,1),(3,2 )}, C3 («3 ,u4) =  {(1 , 1 ),(2,2)}, 

and C4 [v\, v4) =  {(1,1), (2,2)}. We assume working with the logic program out

put by trans2  on the CSP with the further restriction that initially sm odels is in-
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voked with B = (sat(cl), sat(c2), sat(c3), sat(c4)} representing the four constraints. 

The initial call to expand does not add any new literal to B, as no inference 

rules are applicable. In the next step, lookahead checks with each literal I if 

expand(£ U I) leads to a conflict. On choosing I =  ul(2), expand (B U I) causes 

conflict. Hence, lookahead enforces not ul(2) to be added to B. Hence B  is now 

{sat(cl),sat(c2),sat(c3),sat(c4),not ul(2)}. A call to expand adds u l(l)  to B. 

Next, lookahead finds a conflict with I =  u4(2) thereby adding not v4(2) to B. In 

a call to expand, literals t/4(l),u3(l),not u3(2),u2(2),not u2(3), and not u2(l) are 

added to B  by repeated application of inference rule IR3. At this stage, B  covers 

Neg(P) and the stable model (sot(cl), sat(c2), sa£(c3), sa£(c4), u l(l), u2(2), u3(l), u4(l)} 

corresponding to the assignment {vi =  l,u 2 =  2, v3 =  l,u 4 =  1}.

4.2.3 Relationship between DVO and lookahead

The use of lookahead in sm odels guarantees that the variable chosen next will 

fail first. On the same note, dynamic variable ordering in CSP ensures that the next 

variable to be chosen is the one with the least remaining values, so that it fails earliest. 

Hence the two notions of lookahead in sm odels and dynamic variable reordering 

are used with the same intent. The rationale in either case is to cause an early failure 

in the expansion of a current partial solution to allow for a greater pruning of space.

We present some sufficient conditions when both the heuristics DVO and looka

head coincide for finite CSPs. DVO is applicable to variables with domains of any 

size. On the other hand, the lookahead in sm odels operates on literals with only 

two values (I can be either I or opp(Z)). To make the situations comparable, con

sider the setting in case of DVO applied to forward checking. Let us consider an 

intermediate stage where we propagate the latest assignment Vi = valt to all future 

variables. Of all the future variables, at this stage let Vj be a variable with two values 

{vali, val2} remaining in its domain. Further assume that Vj =  val2  is consistent with 

Vi =  vali. Assuming that the domain of none of the future variables after i/,• annihi-
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lates in the propagation step, the following sufficient condition shows the equivalence 

of the lookahead of sm odels and DVO of CSP.

T heorem  4.3 I f  the value assignment Vj = val\ is inconsistent with Vi = vali, both 

DVO and lookahead would select vj as the next variable to be instantiated.

Proof. The DVO heuristic will pick Vj as the next variable, because it has the least 

number of remaining values, namely 1. There is no variable such that its domain has 

zero values, for in that case the forward checking would stop at Vi = vali with no 

scope for any further assignment to any other variable. On the other hand, lookahead 

would select the variable Vj because assignment of one of the two possible values to 

Vj leads to a conflict. Hence the equivalence. □

4.2.4 Experimental comparison o f lookahead and FC variants 
involving DVO

W hich CSP algorithm s to  choose?

Let the forward checking procedure employing the heuristic of DVO be termed as 

FC-DVO. Similarly, let us term the algorithm where FC is employed with full arc- 

consistency as FC-arc. FC-arc-DVO refers to the FC-arc algorithm where DVO is 

employed instead of static variable order. Similarly FC-B J refers to the FC algorithm 

with plain backjumping, and FC-CBJ refers to FC algorithm with conflict-directed 

backjumping. From the CSP literature, various experimental studies on random as 

well as benchmark problems [18,19,59,47,31] have shown that the above FC variants 

are among the most competetive among all CSP algorithms. In particular, previous 

experimental studies have shown that both CBJ and DVO invidually contribute max

imum to the FC algorithm in terms of efficiency and reduction in search space. Based 

on these earlier results in the literature of constraint satisfaction, we decided to pursue 

the studies of sm odels with lookahead with the abovementioned FC variants. 

E xperim ents
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Before we proceed further, let us clarify the notion of node in case of sm odels with 

lookahead. In sm odels with lookahead, on a call to lookahead a deterministic 

expansion of B  occurs with opp(l) whenever B  U {I} leads to conflict. A series of 

calls to the lookahead procedure (number of calls is linear) is still polynomial in 

complexity. Thus all the processing that takes places between successive calls to a 

non-deterministic expansion of B, is considered as polynomial in nature. Because 

of this the number of nodes which are counted are the non-deterministic choices for 

expansion of B. Similar to FC, the node in FC-DVO and other FC variants refer to 

the expansion of a partial assignment by assigning a new value to a new variable.

The results in this section turned out to be quite exciting, and prompted us to 

perform a thorough experimental analysis of the two techniques. Only binary random 

finite CSPs were considered in the experimental set-up. The CSPs were all defined 

on n =  20 variables, each variable with a fixed domain size of k =  5. Random binary 

CSP instances were generated by varying two factors:

1. Constraint density (w) - It represents the number of constraints as a fraction 

of the number of possible constraints in the CSP.

2. Constraint tightness (d) - It represents the total number of tuples present in a 

constraint as a percentage of the total number of possible tuples.

Three sets of data were generated for experimental comparison. In all cases, mea

surements were taken to either generate one solution if it existed or to report that no 

solution was possible.

1. By keeping w (constraint density) fixed and varying the constraint tightness d.

2. By keeping d fixed and varying w (varying the the number of constraints).

3. By performing experiments on the hardest CSPs identified by the phenomenon 

of phase transitions [62, 61].
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In ail the cases, 100 random CSPs were generated for each value pair < w ,d>  and 

the average (median) number of nodes computed for each <w,d>  combination.

The first set of experiments were performed by varying constraint tightness for a 

fixed constraint density w. In Figure 4.3, the number of nodes for FC-DVO (and other 

FC variants) and smodels is plotted for a fixed value of w =  0.61. In Figure 4.4, 

the execution times for FC-DVO and other FC variants and smodels is plotted for a 

fixed value of w =  0.61. The tightness d (in %) is varied from 10 to 90. The number 

of nodes is plotted against d. The results have been shown for a representative value 

of w and are expected to exhibit similar behavior for any value of to.

The second set of experiments were performed by varying the constraint density 

(varying the number of constraints) for a fixed tightness of constraints d. In Figure 

4.5, the number of nodes for FC variants and sm odels is plotted for a fixed value 

of d =  64% (16 tuples in each constraint). In Figure 4.6, the execution time for 

FC variants and smodels is plotted for a fixed value of d — 64% (16 tuples in each 

constraint). The number of nodes is plotted against w. The results have been shown 

for a representative value of d and are expected to exhibit similar behavior for any 

value of d.

W orking w ith  the  hardest CSPs

In the literature of CSPs many experimental studies have proved the existence of 

phase transitions [62, 61, 48, 55]. Phase transitions, as explained in the previous 

chapter, refer to the phenomenon of sudden spikes in cost of search at specific points. 

This spike is observed due to the transition from the region of over-constrained CSPs 

(which do not admit a solution) to the region of soluble CSPs (which admit a solution). 

All these studies also point to the fact that the hardest CSPs fall in the region of 

phase transitions. The locations of the hardest problems have been shown to be 

independent of the search algorithm used in solving the CSP [55]. Experiments on 

random binary CSPs has confirmed this for various CSP algorithms like BT, and FC.

114

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



No
 

of 
no

de
s 

vi
si

te
d

Comparison of FC variants with smodels
120

Forward Checking with DVO — i—  
Forward Checking with arc-conijstency — x—  

Forward Checking with DVO and arc-consjstenc
smodels with lookahead

100

80

60

40

20

0
10 60 70 90 10020 30 40 50 80

Constraint tightness in %

Figure 4.3: Comparison of median number of nodes of FC variants and smodels with 
lookahead for varying constraint tightness

115

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Tim
e 

(S
ec

)
0.3

0.25

0.2

0.15

0.1

0.05

Comparison of FC variants with smodels

Forward Checking w^Td VO —  
Forward Checking with arc-consistency — x- 

Forward Checking with DVO and arc-con$fetency
smodels with lookahead —a-

111

o-a
p - b - b - b - b -q

U~0*€H3 x-x x x -x x x x 
0 x x-x -------1—

10 20 30 40 50 60 70
Constraint tightness in %

100

Figure 4.4: Comparison of median execution times of FC variants and sm odels with 
lookahead for varying constraint tightness

116

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Comparison of FC variants with smodels
300

Forward Checking with DVO — ■—  
Forward Checking with arc-consistency — x—  

smodels with lookahead

250

200

T3
©
CO
'>
CO
% 150
oc
o
oz

100

 , I / nt'*.

* -* -3K.„JK-3K X
X -X -X -X - -X -X -X --X -X -X -X -X -X --X -X -X --X -X  

)l[ X K l K 1 X X I lK K I l lt  3K- 3IC 3IP 3lf 3lt 3lt  Tit 3lt-------

40 50 60 70 80 90 10010 20 30
Constraint density in %

Figure 4.5: Comparison of median number of nodes of FC variants and smodels with 
lookahead for varying constraint density

117

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Comparison of FC variants with smodels
0.09

Forward Checking with DVO — i—  
Forward Checking with arc-consistency — x—  

smodels with lookahead — •*—

0.08

0.07

0.06

0.05
o
©<n
©
E

3jg.4g.gt.3jg. g g .3jt^jg. 4£- £H 0.04

0.03

0.02 -x-x-*-x-x-x-

0.01

10 20 30 40 50 70 8060 90 100
Constraint density in %

Figure 4.6: Comparison of median execution times of FC variants and smodels with 
lookahead for varying constraint density

118

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



w d FC-DVO smodels FC-BJ FC-CBJ FC FC-Arc Fc-Arc-DVO
0.20 0.43 42 0 853 323 899 5 5
0.40 0.65 78 6 1059 895 1353 10 8
0.60 0.75 109 25 1536 1302 1798 27 19
0.80 0.81 202 48 1820 1634 2193 63 38

Table 4.1: Comparison of nodes in CSP techniques with sm odels employing looka
head for hardest CSPs

In [55], a theoretical approximation of the location of phase transition was provided 

which was corroborated by experimental results. To get results on the hardest CSP 

problems, we performed experiments on random CSPs with parameters defined by 

the theoretical location suggested in [55].

The location of the phase transition point [55] for a fixed w is given by

d =

where d denotes the tightness of the constraint (fraction of the number of possible 

tuples in a constraint), n is the number of variables, k is the uniform domain size of 

each variable, and w is the constraint density. Here n =  20 and k= 5. Hence d is 

given by the equation

d =  5~2/19w

Experiments were performed on random CSPs with <w,d>  combination defined 

by the above equation. 100 samples were generated for each < w ,d>  combination 

and the median number of nodes computed. Table 4.1 gives the number of nodes for 

some representative <w,d>  combinations. The techniques which have been used for 

the comparison are variants of FC algorithm.

The table shows that at all values of d and w, sm odels with lookahead performs 

comparable to FC-Arc and FC-Arc-DVO, the most efficient of all the CSP techniques 

above. It beats all other techniques (FC,FC-DVO,FC-BJ,FC-CBJ) comfortably. The 

same set of experiments were measured for execution time, and the resulting data is 

shown in Fig. 4.2. It is immediately evident that the measure of solution nodes does
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w d FC-DVO smodels FC-BJ FC-CBJ FC FC-Arc Fc-Arc-DVO
0.20 0.43 0.00 0.01 0.03 0.03 0.01 0.00 0.00
0.40 0.65 0.01 0.04 0.05 0.07 0.04 0.02 0.01
0.60 0.75 0.01 0.22 0.10 0.14 0.07 0.02 0.01
0.80 0.81 0.01 0.44 0.12 0.17 0.12 0.04 0.01

Table 4.2: Comparison of execution times of CSP techniques with sm odels employing 
lookahead for hardest CSPs

w d FC-DVO smodels FC FC-Arc Fc-Arc-DVO
0.20 0.66 271 6 56,028 17 13
0.40 0.81 981 84 183,920 245 165
0.60 0.87 2103 304 473,026 398 265

Table 4.3: Comparison of number of nodes of CSP techniques with sm odels employ
ing lookahead for hardest CSPs for n=40

not quite present the exact picture as the execution time. The execution time of some 

techniques like FC-BJ and FC-CBJ are costlier than FC because of the overhead of 

bookkeeping.

Scaling th e  results

The experiments above were scaled for higher number of variables, and then the 

execution times and number of nodes both were compared for two sets of data: a). 

Varying w in <w, d> for n =  40 and d =  5, and b). varying n where for each value of 

n, a fixed point (w =  0.30 ) was used to compute the relevant < w ,d>  combination 

for a fixed d = 5.

For the first set of experiments, n was fixed at 40, and d was fixed at 5. For this 

set-up, both execution time and number of nodes were used for the measurement. 

The relevant phase transition point is computed for each value of w and the relevant 

measurements made. The number of nodes for this set-up for different w is shown in 

Table 4.3. The execution times for the same set-up is shown in Table 4.4. For each 

point < w ,d> , the median value out of 20 sample runs were taken.

In the second set of experiments, for a fixed w, the relevant phase transition point 

d is computed for varying values of n and the median value computed for 20 sample
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w d FC-DVO smodels FC FC-Arc Fc-Arc-DVO
0.20 0.66 0.04 0.24 1.02 0.08 0.06
0.40 0.81 0.09 3.55 4.27 0.25 0.22
0.60 0.87 0.13 14.5 9.85 0.53 0.29

Table 4.4: Comparison of execution time of CSP techniques with smodels employing 
lookahead for hardest CSPs for n=40

runs for each point. The plot of execution times for varying n is given in Fig. 4.8. 

The number of nodes for the same set-up is shown in Fig. 4.7.

4.2.5 Incorporation of DVO in smodels

The experimental results in the previous section show that DVO is able to prune 

search space better for many CSPs as compared to sm odels with lookahead, espe

cially for CSPs with higher density and tightness. Here we explore if DVO can be 

applied to sm odels keeping in view the specific structure of the program generated 

by trans2 for finite CSPs. To apply the principle of DVO in sm odels, let us consider 

how DVO can be used as the lookahead instead of the version of lookahead used 

in smodels. The modified lookahead should be looked upon in the context of csp- 

sm odels which has been shown to be more suited (in terms of worst-case bounds) for 

the class of logic programs generated by trans2 . The enforcement of full semantics 

of DVO in lookahead is used in the dvo-smodels procedure shown in Figure 4.9.

Let X  be the set of all variables in a CSP whose translation by trans2 is the 

program P.  At any intermediate point in the search space, B  contains some atoms 

of the type u,(ua/,) and some negated atoms of the form not vt(valt) . Atoms(B) 

contains all the atoms of the form Vi(yalt) such that either Vi(valt) or not Vi(yalt) 

appears in B.  Let Neg(P)  represent all atoms of the type vt(valt ) in P. Let Vars(B)  

be the set of variables Vj such there is at least one atom of the form Vj(valj) in B.  

Let Nvar{B)  =  X  — Vars(B).  Further let Pos(vj ,A)  represent the set of atoms 

Vj(valk) for all valk in the domain of Vj such that an atom of the form Vj(valk) 

appears in A. We assume the function lookahead(P, B)  to return a set of atoms of
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the type Vi(valk) corresponding to a single variable Uj. The modified dvo-lookahead 

and the associated dvo-sm odels procedure is presented in Figure 4.9. The dvo- 

sm odels procedure modifies the csp-smodels procedure to take into the account 

the heuristic of least-constrained variable as the next one to be instantiated. The 

function dvo-lookahead returns the set of all possible values of the least-constrained 

variable among all the remaining variables. The dvo-smodels procedure then selects 

one of the possible values among these. We show that dvo-sm odels is complete and 

sound.

T heorem  4.4 dvo-smodels is sound and complete.

Proof. The soundness follows from the observation that the procedure of dvo- 

sm odels traverses through only consistent nodes, i.e. any node traversed by dvo- 

sm odels does not have a value of B  such that B  contains an atom of the form Vi(vali) 

as well as a literal of the type not Vi(vali). Out of the consistent nodes, any solution 

node has a B  such that B  contains at least one atom of the form Vi(val{) for every 

variable So any such B  corresponding to a solution node has a corresponding 

solution to the original CSP. Hence dvo-smodels is sound.

For completeness, we show that no solution is lost by the dvo-smodels procedure. 

Let 5  =  {i>i =  vali,V2  = ual2, . . .  ,un = valn} be a solution to the original CSP. 

Further let us assume that the set Bs (the set B  corresponding to 5) containing 

all the atoms (ui(ua/i), u2(uol2), • • •, vn(valn)} is not output by dvo-smodels. Since 

S  is a solution, Bs represents a consistent node. Now consider a partition of a set 

A, a set of disjoint subsets of A  such the union of all the subsets is A. B s  can 

be partitioned in a number of ways. Each partition P  contains a set of disjoint 

subsets {{wii(ualji), Uj2(uaZi2) , Vin(valin)}} .  There is at least one 

such partition P  such that the first set of atoms in P  correspond to the set of atoms 

instantiated in the first propagation step of dvo-smodels, followed by the second set 

of atoms in the partition in the second step in dvo-smodels and so on. Clearly this
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function dvo-lookahead(P, B)
counter := Infinity % A large number 
val := 0
A  := Neg(P) - Atoms(B) 
for all Vi in Nvar(B) 
do
£ := Pos(v{, A)
tempcounter := 11 \ % Size of t 
if  tempcounter > counter then  

counter := tempcounter 
val := t 

endif 
enddo 
return val

function dvo-sm odels(P, B)
B' := csp-expand(P, S) 
if conflict (P, B') returns true then  

return false
else if for all Vi 6 {vl t . . . ,  vn} there is an atom of the form Vi(vali) in B' 

then
return true

else
Let S  := dvo-lookahead(P, B )
For all x  € S  
do
if dvo-sm odels(P, B' U {a:}) returns true then  

return true
endif
B' := B' U {not x) 
enddo 
return false 

endif

Figure 4.9: The lookahead procedure for DVO
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partition corresponds to a particular sequence of steps taken by the dvo-sm odels 

procedure. Since the union U of P  contains an atom of the form Vj(valj) for all 

variables Vj, the set U along with all the other literals consistent with the atoms 

forms a set B  which is output by dvo-smodels. Since Bs is a subset of such a B, Bs 

represents a solution node in the search tree of dvo-smodels. This contradicts the 

assumption of such a set B  not being output by dvo-smodels. Hence dvo-smodels 

outputs all the solutions of the CSP and is complete. □

4.3 Backjumping in CSPs and backjumping in sm od
els

In smodels, backjum ping is employed as one of the speed-up techniques for pruning 

the search space. Backjumping refers to a kind of intelligent backtracking, which is 

able to prune a larger search space than naive backtracking. In this section, we 

shall try to examine the relationship between the techniques of backjum ping as 

employed in sm odels and CSP. To make things clearer let us refer to the technique 

of backjum ping as used in CSPs by the term csp-backjumping.

4.3.1 Backjumping in CSPs

The technique of csp-backjumping in finite CSP makes the process of backtracking 

intelligent by keeping track of the dependency relation between a current variable and 

a past variable. In contrast to chronological backtracking which backtracks to the 

immediately previous variable, csp-backjumping backtracks directly to a past variable 

which is the source of the conflicts at the current level. The backjump point is the 

deepest past variable in conflict with the variable at the present level.

The improvement in efficiency occurs due to the fact that the variables which are 

between the present level and the backjump point are bypassed.

Consider the CSP P  defined on 6 variables vi,V2 ,V3 ,V4 ,v5, and v6 each with the 

same domain d =  {0,1,2,3,4}. Let P  contain 4 constraints ct (u3, u6) =  {(0,1), (1,3),
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^  -►  Backjumps

Figure 4.10: Search space of csp-backjumping

(4,4)}, c2(ul ,i;4) =  {(2,0), (2,4)}, c3(7/2,u3) =  {(1,4), (4,1), (0,3)}, and c4(u5,u3) = 

{(4,0), (2,2)}. The search tree of csp-backjumping is shown in Figure 4.10. At the 

point {t?i =  0,t/2 — 0, u3 =  3}, all values of u4 are in conflict with V\. So any 

further value of or u3 does not resolve the conflict between Vi and u4. Hence csp- 

backjumping directly directly jumps to the next value of vi, namely 1. A total of 94 

nodes are traversed by csp-backjumping in this example.

4.3.2 Backjumping in smodels

In the context of smodels, backjum ping is not literally used to represent the same 

technique as used in CSP. In plain smodels without backjumping, on reaching a 

conflict at a present literal I, backtrack occurs to opp(l') where l' is the literal chosen 

immediately prior to L But if the literals l' and I are not connected by a path, 

then following the path of <xpp{t) will again lead to a conflict. The technique of 

backjum ping in smodels ensures that if there is no path between (  and I, then
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the path along opp(l) is avoided causing a backtrack to the literal l" immediately 

preceding {. Again if there is no path between l" and I, the path of opp(l") is 

avoided. This process continues till a literal ln is reached such that ln (let us call it 

the backjump point) is connected to I. Thus backjum ping jumps over a series of 

literals immediately prior to a conflict-point I, none of which is connected to I.

Consider the same CSP P  as used to illustrate plain backjumping in CSPs. The 

search space explored by sm odels with backjum ping is shown in Figure 4.11. At 

the conflict point u2(3), the immediately preceding literal is u4(l). But t/4(l) is not 

connected to u2(3). Thus backjump takes place over t/4(l). This backjump jumps over 

literals t/4(2),t/4(3),ul(0), u l(l),u l(3 ),u l(4) all of which are not connected to u2(3) 

till it reaches u6(0) which is connected to u2(3). A total of 23 nodes are traversed by 

sm odels with backjum ping.

4.3.3 Relationship between backjumping in CSPs and sm od
els

Both CSPs and smodels use backjum ping with the same intent, i.e. to make the 

process of backtracking more intelligent. However, there is one fundamental difference 

between the two notions of backjumping. In smodels, all intermediate variables l' 

between the jump point lj and the conflict-point I are not connected to the conflict- 

point I. On the other hand, there is no such restriction on the intermediate variables in 

csp-backjum ping. We state a condition (based on certain simplifying assumptions) 

under which backjum ping achieves the same results in both CSPs and smodels.

Consider a point in the search by smodels where a conflict is reached on a literal 

Vi(val). Let Vj(val') represent the literal which is the deepest literal in the path from 

the root to Vi{val) (in the search tree of smodels ) such that there is a path between 

the variable Vj and v, in the constraint graph of the CSP. Further assume that for 

each variable t/*, there is a maximum of one literal Vk(valk) in the path from the 

root to vi(val). Clearly this identifies a unique choice of a value for each variable
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Points backjumped over by smodels

Figure 4.11: Search space of sm odels with backjum ping
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involved in the path from the root to Vi(val). Assume further that the CSP is solved 

by csp-backjumping such that the order of instantiation of the variables is the same 

as the one instantiated by sm odels. If Vj represents the deepest variable which is 

in conflict with the current variable u,-, both situations are comparable. Then the 

variables responsible for conflict at Vi(val) are either at or above the node vj(val') in 

both smodels and csp-backjumping. Based on this situation, the following condition 

precisely states when backjump occurs to Vj(val') in both cases.

T heorem  4.5 If the deepest variable Vj in conflict with the current variable Vi is 

also the deepest variable connected by a path to Vi in the constraint graph, then both 

sm odels and csp-backjumping would jump to Vj.

Proof. The result follows from the observation that the procedure of csp-backjum ping 

would jump to Vj because it is the deepest variable in conflict with V{. The procedure 

of smodels jumps to a literal / as it is the deepest literal in the search path not 

connected to Vi{val) by a path in the program reduct Pb■ But since Vj is the deepest 

variable in the original constraint graph connected to t/j, there is no path between 

any intermediate literal (between Vi(val) and Vj(val‘) and the literal Vi(val). Hence 

backjum ping in sm odels falls through to Vj{yai)  and thus the proof. □

A question now arises if either variety of backjum ping can be incorporated in 

the other. First let us consider the possibility of incorporating csp-backjumping in 

smodels. Csp-backjum ping relies on the chronological order of the instantiation of 

the variables in the CSP. Hence it is possible to conclude that the source of conflicts 

at the present level are all either at or above the jump point. But in sm odels the 

conflict at any level is not necessarily due to the literals above the jump point, it 

may be due to future literals added after the conflict point. The checking of conflict 

does not rely on the order of instantiation of the variables in the CSP. Hence it is 

not possible to state that precisely the literals present above or at the jump point 

are responsible for the conflict. Thus csp-backjumping cannot be incorporated into
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smodels directly.

On the other hand, if backjum ping of sm odels is to be incorporated in csp- 

backjum ping, we only need to ensure that the intermediate literals between the 

jump point Vj (as determined by smodels style backjum ping) and the conflict point 

u*a re not connected to u, in the constraint graph. But in any such situation, triv

ially csp-backjumping would backjump over all these intermediate variables because 

none of these would contribute to the conflict at u*. The deepest variable in conflict 

with Vi would be either Vj  or a point above Vj.  Thus csp-backjumping subsumes the 

backjum ping of smodels.

This observation leads us to believe that the technique of backjum ping in sm od

els is a special case of the technique of backjumping in CSPs in terms of situations 

where it can be applied.

4.3.4 Experimental comparison of backjumping in smodels 
and CSPs

We compare the effectiveness of backjum ping on random constraint satisfaction 

problems using the csp-backjumping method of CSPs and sm odels with backjum p

ing. The comparison was made for a fixed constraint density u/=0.15, number of 

constraints n =  20, and fixed domain size k=5. The average number of nodes tra

versed by each method was taken as the average of 100 random CSPs generated for 

each value of constraint tightness d. The value of d was varied from 1 to 90 (in %). 

The graph is shown in Figure 4.12.

The technique of smodels with backjum ping performs better than csp-backjumping. 

This can be attributed to the fact that csp-backjum ping does not employ any con

straint propagation in between successive choices. On the other hand smodels per

forms constraint propagation steps in between choice of literals. A natural extension 

then would be to compare it with a CSP technique employing both csp-backjumping 

and constraint propagation. One such technique is forward checking with backjump-
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ing (FC-BJ). FC-BJ employs forward checking alongside csp-backjumping. The 

results of experimental comparison of smodels with backjum ping and FC-BJ are 

shown in Figure 4.13. We find that the both algorithms perform nearly the same. 

This is explainable as both involve interleaved propagation and backjum ping steps.

4.4 R elative comparison of the techniques in sm od
els

As already seen, the three primary techniques responsible for the efficiency of the 

smodels system are :

1. Constraint propagation.

2. Lookahead.

3. Backjumping.

Constraint propagation is inherent in the definition of the smodels system. The 

smodels system interleaves the calls to expand function and the smodels function 

while finding a stable model. The role of expand function is to delay the choice of 

the next literal by smodels as much possible. By delaying this choice, expand could 

add a large number of literals to the set B  before the next call to the smodels func

tion. Thus expand function performs the operation of constraint propagation in the 

sm odels system. On the other hand, the techniques of lookahead and backjum p

ing are additional efficiency techniques incorporated into the smodels procedure. 

In this section we shall present the relative effectiveness to find the answer to the 

question: Which technique is responsible for the efficiency of smodels ?

4.4.1 Experimental comparison of backjumping and looka
head

In this section we shall present experimental results related to the relative effective

ness of the main techniques used in smodels, backjum ping and lookahead. The
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Figure 4.13: Comparison of FC-BJ in CSPs with smodels employing backjum ping
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experiments were conducted on two dimensions: execution time and size of search 

space.

In the first set of experiments, binary CSPs were considered on n =  20 vari

ables, each with a domain size of k= 5. The experiments were conducted by varying 

constraint tightness d, keeping the constraint density w fixed at w = 0.15. The exper

iments were run on programs generated by trans2  with the assumption that initially 

B  contained ail atoms of sat(c), where c is a constraint. In all the cases, either it was 

tested if no solution existed or one solution was returned if one existed. The number 

of nodes in search space was considered for four different cases:

1. With both backjum ping and lookahead

2. With only backjum ping

3. With only lookahead

4. With neither backjum ping nor lookahead

The graphs comparing the number of nodes in the four cases is shown in Figure 4.14.

In the second set of experiments, the relative measurement is conducted by exe

cution time. All these experiments were carried on Pentium PII machines with 400 

MHz clock, running RedHat Linux version 5.1. The graphs showing the relative ef

fectiveness of these techniques on random constraint satisfaction problems is shown 

in Figures 4.15 and 4.16. This set of experiments was performed on finite constraint 

satisfaction problems of arity m =  3, defined over a set of n =  40 variables, each of 

domain size k =  5, and each problem having 15 constraints. To scale the problems 

we use the number of tuples in the CSP on x-axis instead of the tightness. Both 

give the same graph except for the scaling factor. The time is again measured in 

terms of the average over a sample of 20 problems sampled over the ensemble for 

each value of tightness of the CSP. The relative effectiveness of the two techniques
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Figure 4.14: Relative comparison of the techniques in sm odels for random CSPs
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Figure 4.15: Relative effectiveness of both techniques for n=40, m =  3 and k=5

of backjum ping and lookahead, is shown in the above setting. When no looka

head or backjum ping was employed, the execution time in certain problem cases 

was crossing a quantum of 0.5 hr. In these cases we approximated them to infinity 

as compared to normal data values.

4.4.2 Discussion of experimental results

The graphs show that of lookahead and backjum ping, the lookahead is a more 

effective technique as compared to backjumping. In fact the dominance of looka

head over backjum ping is such that there is absolutely no additional savings in 

terms of pruning of search nodes by addition of backjum ping to lookahead (shown 

by the fourth graph in Figure 4.14). The other fact to be noted is that the presence 

of at least one of the techniques (backjum ping/lookahead), significantly enhances 

the efficiency of the system, though baclgum ping is not as effective as lookahead. 

Another significant observation is the occurrence of the phenomenon of phase
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Figure 4.16: Comparison against no technique employed for n=40, m =  3 and k=5

transitions in all the techniques in smodels. This corroborates to the universality 

of the phenomenon of phase transitions which has been shown to be exhibited by all 

search algorithms including CSP techniques, and SAT procedures.

To summarize, the results from the experiments can be described below:

• The presence of at least one of the techniques lookahead or backjum p has a 

considerable impact on the efficiency than when neither of them is present.

•  When both lookahead and backjum ping are used, lookahead dominates the 

search process, as evident from the graphs.

•  In all the techniques, phase transitions has been observed.

4.5 Conclusions

Here we have studied the implementation techniques in smodels, and showed the 

mapping between the techniques used in smodels and CSP techniques. There are
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mainly three implementation techniques in sm odels - constraint propagation, looka

head and backjum ping. We showed how these techniques map from the common 

constraint satisfaction techniques of constraint propagation, dynamic variable order

ing, and backjumping in CSPs. We also performed experimental comparison of the 

corresponding techniques. The technique of lookahead turned out to be compet

itive to the best finite CSP techniques even for the hardest constraint satisfaction 

problems.

In the end we performed a study of the relative effectiveness of the main tech

niques involved in sm odels for the purpose of solving finite CSPs. We showed that 

lookahead outperforms backjum ping in sm odels .

Overall, a firm link between the areas of finite constraint satisfaction and sm odels 

has been established with special stress on the correspondence of the implementation 

techniques in both. Further, smodels with lookahead promises to be an efficient 

constraint programming system.
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Chapter 5

A Critique of Over-constrained 
Semantics and Solution M ethods

5.1 Introduction

In Chapter 2, we discussed the semantics of the most common frameworks for over

constrained systems. In this chapter, we highlight the deficiencies of the semantic 

notions of solution in these over-constrained frameworks. We illustrate two main 

factors contributing to this critique: Higher computational complexity of these se

mantics, and non-preservation of semantics in translation from non-binary to binary 

representations. In the end of this chapter, we also provide a critical analysis of the 

solution methods for maximal constraint satisfaction problem (max-CSP) and related 

over-constrained problems.

In Section 5.2 of the chapter, we provide a complexity-theoretic analysis of various 

semantics of over-constrained systems. The results show that use of the common 

semantics of over-constrained problems is responsible for their falling into a higher 

computational complexity class than the pure CSPs.

Later in Section 5.3 we show that the most common methods of translation from 

non-binary to binary representations do not preserve the semantics of max-CSP. A 

bulk of research in the CSP community has been restricted to binary representations, 

based implicitly on the assumption that any non-binary CSP can be converted to a 

binary CSP still preserving the semantics. In this part of the chapter, we show that
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this assumption cannot be extended to max-CSP and other over-constrained problem 

semantics, thereby justifying the need for concentration of research on non-binary 

representations of over-constrained systems.

Finally in Section 5.4, we present extensions to the present techniques for solving 

max-CSP and related over-constrained problems. We critically analyze the solution 

techniques and provide a theoretical characterization of these techniques.

5.2 Com plexity analysis of over-constrained sys
tem s

5.2.1 CSP and NP-com pleteness

NP-complete problems [20] represent a gamut of known computationally hard decision 

problems in computer science. A decision problem is said to be in P if it can be 

answered by a deterministic Turing machine in polynomial time. In contrast, any 

decision problem is said to be in NP, if a non-deterministic Turing machine returns 

a positive answer to a non-deterministic ’’guess” of a solution in polynomial time 

assuming a polynomially bounded size of the encoding of the ’’guess”. Informally, 

NP refers to the class of decision problems which are solvable by polynomial time 

nondeterministic algorithms. Further, F N P  is the class of all functions from strings to 

strings that can be computed by a polynomial-time non-deterministic Turing machine. 

On the other hand, the class co-NP refers to the class of problems P  such that the 

complement P c is in NP.

If a decision problem, say S, is in NP and any problem in NP can be reduced in 

a polynomial transformation to 5, then the problem S  is said to be NP-complete. 

Any NP-complete problem can be reduced to any other NP-complete problem in 

polynomial time. NP-complete problems refer to the class of hardest problems in 

NP, in the sense that if any one NP-complete problem can be solved in polynomial 

time, so can all the problems in NP be. Using this equivalence relation, we usually
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need to find the proof for one of the NP-complete problems, and then we can use 

a polynomial reduction from this proved one to any other NP-complete problem. A 

problem P  whose complement Pc is NP-complete is termed as a co-NP-complete.

Historically, the satisfaction problem (SAT) was the first problem to be shown 

as NP-complete [20]. Later thousands of problems in computer science, engineering, 

mathematics and other areas have been proven to be NP-complete.

We recall the SAT problem definition below:

Let V  be a set of boolean variables {t/i, v<i, . . . ,  vn}. A satisfying truth assignment 

t is a function t: V  —► {T, F}. A literal v is satisfied if the variable v is assigned T. A 

literal v is satisfied if the variable v is assigned F. A clause C*, which is a collection 

(disjunction) of literals is satisfied iff at least one of the literals in C{ is satisfied. So 

a set of clauses C is satisfied iff all the clauses in C are satisfied. The SAT decision 

problem is stated as follows [20, 8]:

Definition 8 (SAT) Given a set V of boolean variables (each variable Vi is present 

either as a literal Vi or a literal vl), and a collection of clauses C over V, where each 

clause represents a disjunction of literals, is there a satisfying truth assignment for 

C?

In [8] SAT was shown to be NP-complete.

Theorem  5.1 (Cook’s theorem ) [8 ] SAT is NP-complete.

The decision problem in finite constraint satisfaction problem (CSP) has been 

shown to be NP-complete [35]. Recall that a finite CSP involves a set X  =  {xi, x2, . . . ,  xn 

of n variables, and a set C  of constraints, where each variable Xi € X  takes a value 

from its finite domain d, and each constraint c, 6 C, defined on a subset X c of the 

set of variables X , is a relation expressed as an implicit function over the variables in 

X c. Each constraint Ci implicitly specifies the admissible combinations of the values 

of variables involved in the constraint. An assignment A  of values to variables in
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Y  C X  satisfies a constraint c such that X e C Y  iff the tuple formed by X c in A  is 

admissible by the function associated with c. An assignment of values to a subset Y  

of the variables is consistent iff it satisfies all the constraints c such that X c C Y . A 

solution is a consistent assignment of values to all the CSP variables. A CSP is con

sistent iff it has at least one solution. Formally, the decision problem corresponding 

to a finite CSP is defined as follows:

D efinition 9 (F in ite  C SP) Given a CSP defined over a set X  of variables with 

finite domains, with a set C of constraints, is the CSP consistent?

The finite CSP decision problem has been shown to be NP-complete by reduction 

from SAT [35].

T heorem  5.2 Finite CSP is NP-complete.

5.2.2 Polynom ial hierarchy

In this section we shall be dealing with problems which are supposedly computation

ally harder than the class of NP-complete problems. The material in this section is 

from [20, 44]. The class of NP-complete problems simply require a non-deterministic 

polynomial time decision procedure to solve the NP-complete problem. The class 

of problems which shall be studied in this chapter are more complex than the NP- 

complete problems, because a simple non-deterministic polynomial time decision pro

cedure cannot solve them.

P NP class o f problem s

Consider a special machine of the following nature: We assume the availability of 

an oracle which answers the SAT decision problem in constant time. We also make 

use of another machine which calls the SAT oracle a polynomial number of times, 

and then returns an answer. Clearly this is a machine which gives an answer after a 

polynomial number of queries to the SAT oracle. Such class of problems which can
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be answered by a polynomial time Taring machine with a SAT oracle, is termed as 

P SAT. Since SAT is NP-complete, any NP-complete problem can be used instead 

of SAT. PSAT can be written as P NP, because any NP-complete problem can be 

used in place of SAT. Extending the definition of this class, F P np is the class of all 

functions from strings to strings that can be computed by a polynomial-time Turing 

machine with a SAT oracle. Not all problems in P NP can be in NP, because for some 

problems in P NP a ’’guess” cannot be verified by a non-deterministic Turing machine 

in polynomial time. Moreover, since a polynomial number of calls to the SAT oracle 

are required, any problem in P NP is harder then any problem in NP. This is reflected 

by the polynomial hierarchy explained below.

The hierarchy

The class P NP represents the first in the series of classes in the polynomial hierarchy 

higher than NP. The hierarchy of increasingly complex classes is defined as below:

E 0 =  n 0 =  Ao =  P

and for all k > 0:

A *+ i =  P s ‘

£*+1 =  NPSfc 

n*+i =  co—Efc+i.

Based on this hierarchy, the classes at the first level are Eli =  co-NP, Si =  NP and 

=  P. The class P NP falls in the second level in the hierarchy as A2  =  P Np. The 

polynomial hierarchy is based on the general assumption that P ^  NP, as it would 

collapse if P =  NP.

T he class P NP

Sometimes a problem does not require the full power of P NP in order to return an 

answer to a query. These problems require a much weaker class to describe the
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problem. The difference comes in the number of queries made to the SAT oracle in 

order to get the problem output. The number of SAT queries in such problems is in 

the order of 0 {log n) for an input n. p Np[l°a nl refers to this class of problems which 

are decided by a constant-time oracle machine which for an input of size x  asks a 

total of 0 {log x) queries. F P npV° 9  "1 refers to the corresponding class of functions.

5.2.3 M ax-SAT variants and their com plexity classes

The maximal satisfaction problem (max-SAT) and its weighted variant max-weighted 

SAT, both have been shown to be harder than NP in [44, 32]. Before we give the 

complexity result of these problems, we give the definitions of the corresponding SAT 

problems.

Definition 10 (M ax-weighted SAT) Given a set of clauses (in conjunctive nor

mal form) each with an integer weight, find a truth assignment that satisfies a set of 

clauses with the most total weight

Definition 11 (Max-SAT) Given a set of clauses (in conjunctive normal form), 

find a truth assignment that satisfies a maximum number of clauses.

Here we state a result from [32, 44] concerning the complexity of max-weighted 

SAT. a

T heorem  5.3 [44, 32] Max-weighted SAT is F P NP-complete.

We can reduce max-weighted SAT to the problems in over-constrained systems 

and hence show that the problems in over-constrained systems are computationally 

harder than NP, and that they require a higher complexity class to be characterized.

Max-SAT, which is the unweighted version of the max-weighted SAT problem, 

does not require the full power of F P np in order to return a answer to a query. In 

fact the following result from [44] captures this weaker class of max-SAT precisely.

T heorem  5.4 [4 4 , 32] Max-SAT is F P Np^-c o m p le te .
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This lower class of max-SAT is due to the 0(log x) number of calls to a SAT 

oracle for an input x.

5.2.4 Complexity o f various types o f over-constrained prob
lems

In this section, we study the complexity of two types of over-constrained problems - 

max-weighted CSP, and max-CSP.

M ax-weighted CSP

Recall that a max-weighted CSP P  involves a set X  =  {x]., x2). . . ,  xn} of n variables, 

a set C of constraints {ci, c2, . . . ,  Cm}, where each variable x* € X  takes a value from 

its domain di, and each constraint Cj 6 C  is defined as a relation on a subset X c of the 

set of variables X , and associated with each constraint Cj 6 C, is a numerical value 

Wi, Wi being a real number. An assignment A of values to variables in X , satisfies a 

constraint c iff the tuple formed by X c in A is satisfied by the intensional function 

associated with c. Let w(A) = £{w i I A satisfies Ci}. Let Wp represent the set of 

all possible assignments A , assigning values to all variables in X . Then the solution 

set S  of the problem is defined as

S  = {A! e W P | w(A') = max{w{A) \ A  6 WP}}

Any member of such a solution set 5  is a solution to the max-weighted CSP. We state 

and prove the theorem about the complexity class of max-weighted CSP.

Theorem  5.5 Max-weighted CSP is F P np-complete.

Proof We prove this in two steps:

1. We first reduce max-weighted SAT to max-weighted CSP. Consider a max- 

weighted SAT instance C. Let C  be defined over a set of boolean variables X . The 

problem C consists of a set of clauses, each of which is a disjunction of literals. 

Corresponding to C, let us construct a max-weighted CSP C'. Let C' be defined over
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the same set of variables X . Since any variable x  in X  is boolean, let x  take any of 

the two values T  or F , standing for true or false respectively. So Cf consists of the 

same set of variables as in C, each variable with a fixed domain of {T, F}. We then 

construct the set of constraints in C'. Corresponding to each clause c in C of the 

form (L\ V £-2 V . . .  L*), let X c represent the set of variables which appear in c. The 

only assignment Ac which falsifies c, is the one which assigns values to variables in 

X e such that all literals in c are false. Corresponding to a clause c in C, we create a 

constraint d  in C' over the variables in X c, which intensionally allows any assignment 

to variables in X c other than Ac. The time required to construct constraint d  is linear 

in the number of literals in c. Further, whenever c is satisfied by any assignment in C, 

the same assignment also satisfies d. Likewise, when an assignment does not satisfy 

c, it does not satisfy d  either. E.g. If c =  (Xi VX2) then the corresponding constraint 

d  can be defined an intensional relation over {A\, X2} as the one allowing all tuples 

except the tuple {F,T}. Further, we assign the weight of c to d. We translate all the 

clauses in original SAT problem C to their corresponding constraints in C".

Based on this construction, we see that if a truth assignment violates a specific 

clause c, then the constraint d  corresponding to c is not satisfied. Hence based on this 

one-to-one correspondence, we can conclude that if a truth assignment A  satisfies a 

maximal weighted subset of clauses in C, the same assignment in the CSP C1 satisfies 

a maximal weighted subset consisting of the constraints corresponding to clauses 

satisfied by A. Similarly if some assignment A  is not satisfying a maximal weighted 

subset of clauses, there is another assignment A' which satisfies a subset of clauses 

with a greater combined weight. Accordingly the assignment of values in the CSP 

corresponding to A  does not satisfy a maximal weighted subset of constraints because 

of the assignment corresponding to A’.

So max-weighted SAT is polynomially reducible to max-weighted CSP.

2. For the second part of the proof we need to show that max-weighted CSP is 

in F P NP. For a given choice of an integer N , we ask whether there is a sequence
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of non-deterministic choices which lead to an assignment with a total weight greater 

than N . This question can be answered in NP. Nma*, the maximum sum of weights 

of satisfied clauses, can be derived by asking the above question for various integers 

and converging by binary search. The variable assignment that achieves iVmax is then 

obtained by assigning values to variables one-by-one. The number of questions (each 

in NP) is polynomial in size of an instance and hence the problem max-weighted CSP 

is in F P NP.

Based on the above two steps, max-weighted CSP is F P NP-complete.

Hence the proof. □

M ax-CSP

Recall that max-CSP is a simplification of max-weighted CSP, where all constraints 

are of weight 1. Here we seek a solution satisfying the maximum number of con

straints and all constraints are of equal weight, namely 1. A solution is defined as an 

assignment to the variables satisfying the maximum number of clauses.

Based on this observation it is obvious that max-CSP is the equivalent of max-SAT 

and shares the complexity class of max-SAT. We state the following result:

Theorem  5.6 Max-CSP is F P NPl̂o3T̂ -complete.

Proof. The proof as in max-weighted CSP case proceeds in two steps:

1. We reduce any instance of max-SAT problem C polynomially to a max-CSP 

instance C' by following the same translation as used for the max-weighted CSP 

case except for the lack of weights. The translation once again preserves the one-to- 

one correspondence between an instance of a max-SAT problem and an instance of 

the translated max-CSP. If any truth assignment in max-SAT problem C does not 

satisfy a specific clause c, the same assignment in the max-CSP translation C1 does 

not satisfy the constraint corresponding to the clause c. Hence any assignment A 

which is a maximal solution of max-SAT is also a maximal solution to the max-CSP, 

satisfying the set of constraints in C' corresponding to the clauses in C satisfied by A.
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Conversely any assignment A  which is not a maximal solution of C is not a maximal 

solution of C ' , because of the presence of an assignment which satisfies a greater 

number of clauses/constraints.

2. To show that max-CSP is in F P n p 1̂° 9 nl, we know that max-CSP can be solved 

in log2 (N) steps, N  being the number of constraints and each step being in NP. For a 

given choice of an integer K , we ask whether there is a sequence of non-deterministic 

choices which lead to an assignment which satisfies a greater number of constraints 

than K . This question can be answered in NP. By a binary search starting from 

K  =  iV(the number of constraints), the maximum number of satisfied constraints 

can be determined. Then by construction, the assignment satisfying the maximum 

number of constraints can be identified. The binary search process takes a total of 

log2 (N) steps, N  being the number of constraints.

Hence max-CSP is in F P NP

Based on the two steps, max-CSP is F P npV° 9  nl-complete.

Hence the proof. □

The theorems about the complexity of the over-constrained problems, provide 

an intuition into the nature of the notion of priority considered in the case of over

constrained problems. Any form of priority structure which involves the comparison 

of a solution with another solution on a global scale, pushes the complexity to the 

second level in the polynomial hierarchy.

5.2.5 Discussion of com plexity results

The results discussed in this section highlight the fundamental difference between 

over-constrained problems and CSPs. While CSPs strive to either find a solution if 

one exists or to stop of no solution exists, over-constrained problems try to overcome 

the incomplete information by identifying the best partial solution. To identify the 

optimal partial solution, it is often necessary to compare among different partial 

solutions.
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In this section, the commonly used semantics of over-constrained problems have 

been shown to fall in the second level of the polynomial hierarchy. The reason for 

their falling into the second level of complexity lies in the fact that we are comparing 

between solutions to find the optimal solution thereby necessitating the generation of 

a multiple number of ’’guesses” for the comparison. A max-weighted CSP needs to 

go through a polynomial number of queries to an NP oracle, while max-CSP needs a 

log-polynomial number of queries to an NP oracle.

An impact of this also occurs on the algorithms necessary to solve the max-CSP 

and max-weighted CSP problems. It is shown in Section 5.4 that backtracking based 

algorithms used for CSPs cannot be used to solve max-CSP or max-weighted CSPs 

because of the abovementioned differences in complexity. Backtracking algorithms 

would end up with no solution to any over-constrained problem because there is no 

provision for bookkeeping of an optimal partial solution in these complete algorithms 

based on backtracking.

5.3 Non-binary versus binary representations of 
over-constrained problems

In the recent past there has been considerable interest in non-binary representations of 

CSPs as opposed to binary ones, for they are more expressive and general in nature. In 

the past research concentrated on efforts to optimize and improve the performance of 

binary constraint reasoners implicitly based upon the assumption that any non-binary 

CSP could be transformed into an equivalent binary CSP in polynomial time. Only in 

the recent past has there been some work [3] in comparing the relative effectiveness of 

working directly with non-binary CSP representations versus working with translated 

binary representations.

If we use binary representations, we need to measure the overhead of translation 

of non-binary constraints to binary constraints, and also verify the preservation of 

correctness of the problem in going from one representation to the other. The initial
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observations from the study in [3], suggests that the effectiveness of algorithms for 

the translated binary CSPs depends upon many factors like the number of tuples 

satisfied by the constraints etc. The study also highlights the need to modify the 

algorithms based on backtracking and its variants considerably to be applicable to 

the translations.

In finite CSPs, a solution satisfies all the constraints. In contrast, in max-CSP 

there is no solution satisfying all the constraints in the problem. In such a case, 

the notion of solution is relaxed and it is defined as an assignment of values to 

variables that satisfies a maximal number of constraints. Research till date in max- 

CSP algorithms has concentrated on binary representations [15].

In this section we will try to answer questions pertaining to preservation of seman

tics in translation from non-binary representations of max-CSP to binary max-CSP 

representations.

5.3.1 Two m ethods of conversion from non-binary to binary 
representations

There are mainly two methods for translating non-binary constraint satisfaction prob

lems to binary constraint satisfaction problems - dual graph method [12] and hidden 

variable method [50, 3].

Dual Graph method

In this translation method, the constraints of the original problem become variables 

(called C-variables) in the new representation. The domain of each C-variable is 

exactly the set of tuples that satisfy the original constraint, each tuple representing 

a possible value for the C-variable. A binary constraint between two C-variables 

exists iff the original constraints share at least one variable. The binary constraints 

dictate explicitly that the shared variables between the two C-variables, carry the 

same values.
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Ct(X, JCjHU, 1).(0.2)| 
Ĉ lXj X3)»{( 1.2). (0,2)1 
CalX, I),(1.0.1)1

Figure 5.1: An example of the dual graph method

Consider the problem P  with three constraints C\, C2  and C3  on three variables, 

Xi, X2 and X3 respectively. Let C\ be the constraint on {X]., X 2} consisting of the 

tuples {(0,1 ), (1 , 1 )}, C2  be the constraint on {X 2, X 3 }  with the tuples {(1 , 2 ), (0 , 2 )} 

and C3  be the constraint on {Xi,X2)X3} with the tuples {(0,0,1), (1,0,1 )}. The 

Dual graph for this constraint satisfaction problem P  is shown in Figure 5.1. Each 

of the constraints C\, C2  and C3  now becomes a C-variable. The domain of each C- 

variable is precisely the set of tuples in the corresponding constraint. The C-variable 

Ci takes two values 1  and 2  representing the tuples (0 , 1 ) and (1 , 1 ) respectively. 

Likewise, C2  and C3  take two values representing the two tuples in each of the con

straints. Coming to the constraints, let DG\ represent the constraint between Ci and 

C2. £>Gi(Ci,C2) is written as Ci[X2] =  C2 [X2], specifying that Ci and C2  should 

agree on X2. DG2 (Ci,C3), the constraint between Ci and C3 , dictates that Ci and 

C3  agree on Xi and X2, and DG3 (C2, C3 ), the constraint between C2  and C3, dictates 

that C2 and C3  agree on X2 and X3.
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Hidden variable method

In the hidden variable representation, the set of variables includes all of the variables 

of the original problem (with no changes to their domains) plus a new set of hidden 

or h-variables. For each constraint C, in the original problem an /i-variable Hi is 

added. The domain of Hi consists of a unique identifier for every tuple in the original 

Ci. The new representation contains only binary constraints, and these constraints 

are constructed by the following method: For every h-variable Hi we impose a binary 

constraint between Hi and each of the variables involved in C<. Suppose Hi and X k are 

thus constrained. Every value of Hi corresponds to a tuple of values for the variables 

involved in Cu defining a unique value for X k- The binary constraint between Hi and 

X k consists of a unique value for X k for every value of Hi.

Consider the same CSP as in Figure 5.1. The hidden variable representation is 

shown in Figure 5.2. Here the constraints Cu C2  and C3 each spawn off a hidden 

variable each Hu H2  and Hz respectively. Each of the hidden variables Hu H2  and 

Hz each take two values {1 , 2 }, {1 , 2 } and {1 , 2 } respectively because there are two 

tuples in each constraint. A value of 1 for Hi stands for the first tuple of Hi ({Xi =  

0, X 2  =  1 }), and likewise for other values of hidden variables. Next a constraint is 

added between any hidden variable and the variable involved in the corresponding 

constraint. This constraint contains the pairs formed as follows: If a value Vj of Xj 

occurs in tuple t of hidden variable Hi, then a pair (vj, t) is part of the constraint. E.g., 

here (0 ,1 ), (1 ,2 ) form the constraint between Xi  and Hz as the first tuple (Hz =  1 ) 

in C3  has Xi  =  0  and the second tuple (Hz — 2 ) has Xi  =  1 .

5.3.2 Semantics o f m ax-CSP under translation with both  
methods

In case of max-CSP, no solution satisfying all the constraints can be found. The 

semantics of the problem is specified in terms of a solution satisfying a maximal 

number of constraints in the problem. No studies have been undertaken to study
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TRANSLATED CSP

Variables: X,JC,JCj.

Domains: X1(0>l)J{7(0.1.2)Ji3(2).
H,(1.2)M3(l.2)M3a.2).

Constraints:

C,CX, .HjlaKO.l),(1,2)| C jC X j^ H d  

C3IX, .HJ-KO.l),(1,2)) C4(Xi J f J -K l 

CJXa .HjH(0.1),(0,2)) C6IX, J Lfa)=((2.1).(2.2)>

C7U^.H3M(l.l).(i.2)|

Figure 5.2: An example of the hidden variable method

the relative merits and demerits of translations between non-binary and binary forms 

of constraints in the case of max-CSP. In the following subsections we examine the 

soundness and completeness of the dual graph and the hidden variable methods of 

translation from non-binary to binary representations of max-CSP.

The questions which need to be answered are two fold:

Soundness Is a solution to the translated binary max-CSP a solution to the original 

non-binary max-CSP (in either of the two translation methods)?

C om pleteness Is a solution to max-CSP in the original non-binary representation 

still a solution in the translated binary max-CSP (with hidden variables or dual 

graph)?

T ransla tion  by th e  dual g raph  m ethod

In translation from the non-binary representation of a max-CSP to the binary repre

sentation using the dual graph method, the role of constraints and variables is inter-
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changed. In the translated binary max-CSP, the constraints in the original representa

tion become C-variables. Constraints in the translated representation are introduced 

between C-variables iff the original constraints corresponding to the C-variables share 

a variable. The constraints are semantically enforced to make sure that any two C- 

variables, whose corresponding constraints in the original CSP share a variable, agree 

on the values of all the variables common to both constraints.

The semantics of the solution of a binary maximal constraint satisfaction problem 

dictates that it return an assignment of values that satisfies maximum number of 

constraints.

Now we show that the dual graph method is not sound in preservation of semantics 

of max-CSP.

Theorem  5.7 The dual graph method of translation from a non-binary max-CSP to 

its binary equivalent is unsound.

Proof. We show the unsoundness of translation by the counterexample in Figure 

5.3. The original CSP has four constraints C\{X\,Xz)  =  {(1,1), (2,0)}, Cz(Xx,Xs) 

=  {(1,8), (1,2)}, Cz(X5 , X 6) =  {(3,2)} and CA(X2 ,X.5,X 3) =  {(0,9,2), (2,3,1)}.

In the dual graph, there are four C-variables Ci, C2, C3 and C4. The domain of C\ 

is {1,2} representing the tuples {(1,1), (2,0)} respectively. Similarly the domains of 

C2, C3, and C4 are {1,2},{1}, and {1,2} respectively representing the corresponding 

tuples in the original constraints. The dual graph CSP consists of four constraints 

DGi(C\, C2), DG2 {Ci,Ci), DG3(C2,C3), and .DG4(C3,C4). .DGi(Gi,C2) states that 

Gi[-X”i] =  C2[X}], DG2  states that Gif-X̂ ] =  Gjf-X ]̂, DG$ states that C3[.X6] =  

C2[X6], and DGA states that C3psT5] =  C4[X5].

Now, consider the assignm ent A  (including values assigned to C-variables), namely 

{Cx =  1,C2 =  2, C3 =  1,C4 =  2, Xx = 1,X2 =  0,X3 =  1, ^ 5  =  3, X 6  =  2}. This 

assignment satisfies three constraints,namely DGx, DGz, and DGA, in the translated 

dual CSP. This is the maximum satisfied by any assignment. Hence A is a solution
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C1(X ,^Z) = {(1,1), (2,0)} 

C2 (X1,X<j) = {(1,8),(1>2)} 

C3 (X5 X̂6) = {(3̂ 2)}

= {(0,9,2),(2,3,1)}

Figure 5.3: Dual graph method - counterexample for soundness

to the binary translated max-CSP. The implicit original assignment corresponding 

to A in the original CSP is {Xi =  1 ,X 2  = 0, X 3  =  1, X 5  =  3, X6  =  2}. This 

satisfies only two constraints in the original CSP, which has a solution {Xt =  1, X2  =  

l ,X 3  =  1 ,X 5  =  3, X 6  =  2} satisfying three constraints. Hence the implicit original 

assignment corresponding to A is not a solution to the original max-CSP though A 

is a solution of the translated max-CSP. Hence we have a solution to the translated 

max-CSP whose original corresponding assignment is not a solution in the original 

max-CSP.

We have shown that the translation method using dual graph is not sound for 

max-CSP.

Hence the proof. □

We now show that the dual graph method of translation is not complete either.

Theorem  5.8 The dual graph method of translation from a non-binary max-CSP to 

its binary equivalent is not complete.
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Example:
C,lX,JCIJCJW(1.2.0))
cJtta.x«.xy=i(2.o.o)i
Q ,tA iJC ,jy-{(2.1.3)1
C4IX, JKf rXy=((l,8,3).(1.7,2)|

M a x im a l  C S P :  Solution satisfying MAXIMUM number of constraints

{X, = 1. X2 = 2. X3 =0. X4=0. X5=0. X6 = 2.X7= 7}sa tis f ie s3
constraints.

{X, = 1.X2 =2. X3 =0. X4=0. Xs=0. Xd = 3. X7= 8 > s a t i s f ie s 4
c o n s tra in ts .

Figure 5.4: Dual graph method - counterexample for completeness

Proof. We show that the dual graph method is not complete by the coun

terexample in Figure 5.4. The max-CSP in Figure 5.4 contains four constraints

m d C , ( X u X 7 , X 6) =  {(1,8,3), (1,7,2)}.

In the dual graph, there are four C-variables C\, C2, C3  and C4. The do

main of Ci is {1} representing the lone tuple {(1,2,0)}. Similarly the domains of 

C2, C3, and C 4 are {1},{1}, and {1,2} respectively representing the corresponding 

tuples in the original constraints. The dual graph CSP consists of five constraints 

DGi, DG2, DGZ, DG4 , and DG$ respectively. £>Gi(Ci,C2) states that Ci[X2] =  

C2[X2], DG2(Ci,C3) states that CifX*] =  C3[X2], DG3(Ci,C4) states that Ci[Xi] =  

C4[-X|], DG4(C2, C3) states that G2[^ 2, -^5 ] =  ■X's], und DGZ(CZ, C4) states

that CZ[X6] =  C4[X6].

In the original max-CSP, the assignment A, namely {Xi =  1, X 2 =  2, X3 =  

0, X 4  — 0, X 5 =  0, X6 = 2 , X 7 = 7}, is a solution because it satisfies maximum
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number of constraints, namely 3. But in the translated max-CSP, when the same 

assignment is supplemented with the values of the C-variables C\ =  1  (stands for 

the first tuple of C\ constraint), C2 =  1 ,C 3  =  1, and C\ =  2 , the corresponding 

translated assignment of A satisfies only 3 constraints in the translated max-CSP, 

namely DG i,D G2, and DG2. But there exists another assignment =  l ,X 2 =

2 , X 3 =  0, X 4 =  0, X 5  =  0,^6 =  3, Xy =  8 , Ci =  1, C2  =  1, C3  =  1, C\ =  1} which 

satisfies 4 constraints DGi, DG2, DG3, and DG5 . Hence the translation of A  is not 

the solution to the translated binary max-CSP. So a solution in the original non

binary representation is no longer a solution in the translated binary representation.

The dual graph method of translation for max-CSP is thus not complete.

Hence the proof. □

We have shown that the dual graph method of translation of non-binary max-CSP 

to binary max-CSP problem is neither sound nor complete.

T ranslation  by hidden variable m ethod

In this section, we shall explore if the semantics of max-CSP is preserved when an 

original non-binary max-CSP problem is translated to the binary representation using 

the hidden variable method.

We show by counterexamples that the translation method using hidden variables 

is neither sound nor complete. We first prove the unsoundness of the translation using 

hidden variables.

T heorem  5.9 The translation of a non-binary max-CSP to its equivalent binary 

max-CSP by the hidden variable method is unsound.

Proof. We shall prove the unsoundness by a counterexample. Consider the max- 

CSP as shown in Figure 5.5.

The max-CSP in Figure 5.5 has 4 constraints Ci(Xi,  X 2) =  {(1 , 1 ), (2,0)}, C4 (X2,

X s, X 3) = {(0,9,2), (2,3,0)}, C3 p rs, X e, X 3)=  {(3, 2,1)} and X 6) =  {(1,8 ), (1,2)}.
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C1(X1̂ 2) = {(1,1), 
C2(X1̂ 6) = {(1,8), 

C3(X5̂ 6̂ 3)= {(3,
C4(X2̂ 5̂ j )  = {(0,9,2),(2,3,0)}

Figure 5.5: Hidden variable method - counterexample for soundness

Consider the assignment A , namely {Hi = l,H 2 = 2, Hz =  1, H4 =  2,Xi  = 

1, X 2 = 1, X 3 =  0, Xs =  3, X6 =  2}. A  is a solution to the translated max- 

CSP with hidden variables, as it satisfies 8 constraints, the highest by any as

signment. The original assignment corresponding to A in the original max-CSP is 

{Xi =  \,X-i =  1, X 3 =  0, X 5 =  3, X 6 =  2}. This satisfies two constraints while there 

exists an assignment {X\ = 1 ^X 2 = 1, X 3 = 1, X$ = 3, X$ = 2} which satisfies three 

constraints. Hence the original assignment corresponding to A is not a solution to 

the original max-CSP.

So we have a solution to the translated max-CSP whose corresponding assignment 

in the original max-CSP is not a solution.

Hence the hidden variable method of translation is unsound.

Hence the proof. □

We now show that the hidden variable method is not complete either.

Theorem  5.10 The translation of a non-binary max-CSP to its equivalent binary
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Example:
c , ix , j f e jy « ( ( i .2.o)i 
C jiX jjc, jy=K 2.o.o)i

C3P£iJC,jy=((2.1.3)1 
C«[X, Jf7jg=l(1.8.3).(1.7.2)|

Maximal CSP: Solution satisfying MAXIMUM number of constraints
{X, = 1 .X2 = 2. X3 =0. X4 = 0. X5 = 0. X6=2. X7= 7} sa tisfie s  10

c o n s tra in ts ,

{X, = 1.X2 = 2 ,  X3 =0. X4=0. Xs=0. Xt = 3. X7= 8} sa tisfie s  11
c o n s tra in ts .

Figure 5.6: Hidden variable method - counterexample for completeness 

max-CSP by the hidden variable method is not complete.

Proof. Consider the same max-CSP as shown in Figure 5.4. The hidden variable 

translation of this max-CSP is shown in 5.6.

Here the original max-CSP admitted the variable assignment A, namely {Xi =  

1 , X 2 =  2, X 3  =  0, X 4 =  0, X 5 =  0, X$ =  2, X 7 =  7} as a solution to the max-CSP, 

because it satisfies three constraints C\, C2  and C\ in the original problem which is 

the maximum number of constraints possible to be satisfied as all four constraints 

Ci, C2, C3  and C4  cannot be satisfied at the same time. But in the translated binary 

constraint representation with the hidden variables Hu # 2 , H3 and H4, the associated 

tuple {X i =  l ,X 2  =  2,X3 =  0,X4 =  0 , X 5 =  0, X6 =  2,X7 =  7, Hx = 1 ,H 2  = 

1 , H4 =  2, H3  =  1} satisfies only 10 constraints. But there exists a solution {Xi = 

1,X 2  =  2, X 3 =  0,X i =  0, X 5 =  0 ,X 6  = 3, X 7  =  8, Hx =  1 ,H 2 = 1, H4 =  1 ,H 3 = 1} 

to the translated binary max-CSP which satisfies 1 1  constraints and hence is the 

solution to the translated problem. So a solution in the original max-CSP is no
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longer a solution in the translated max-CSP.

Hence the translation method using hidden variables is not complete. Hence the 

proof. □

So the hidden variable based method of translation from non-binary to binary 

representation of max-CSP is neither sound nor complete.

5.3.3 Discussion and conclusions

The results in this section lead us mainly to the following two conclusions:

1. In the absence of sound translation mechanisms for translation from non-binary 

over-constrained problems to binary over-constrained problems, the translation 

of non-binary over-constrained problems should be accompanied with alterna

tive mechanisms to compute equivalent solutions.

2. The argument vis-a-vis conducting research extensively into binary representa

tions of maximal and other over-constrained problems, based on the existence of 

a sound translation from non-binary to binary over-constrained problems falls 

apart. The research into binary over-constrained problems falls into a very nar

row domain of applicability given the succinct form of representation in binary 

case.

In the following section, we study the solution methods for max-CSP and critically 

analyze them.

5.4 Extended analysis of intelligent branch and bound 
algorithm s for max-CSP

In this section we shall critically examine the existing solving methods for max-CSP, 

and improve them.

In the first part of this section, the background material concerning application 

of branch and bound methods and its variants to the max-CSP is presented [16].
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The material in the initial part of this section is cited from [16]. The methods of 

depth-first branch and bound (DFBB) and backjumping for max-CSP were discussed 

in [16]. We extend the methods to incorporate conflict-direct backjumping (CBJBB) 

and in the end critically analyze the different branch and bound variants theoretically.

5.4.1 Depth-first branch and bound

In naive backtracking for constraint satisfaction problems(CSPs), a partial assignment 

of values to the variables is consistently expanded till a dead-end is encountered. A 

dead-end refers to a situation when any value assigned to the latest variable does not 

lead to a solution. In such a case, backtracking occurs and the next possible value for 

the immediately previous variable is tried till a value assignment to all variables is 

reached which satisfies all the constraints in the CSP. Backtracking clearly indicates 

that we need to go through an exponential number of nodes in the worst case to solve 

the CSP. This prompts the possibility of extension of backtracking based algorithms 

for the problem of computing one solution to the max-CSP. It is clear from the 

definition of the max-CSP, that naive backtracking will ultimately end for a max- 

CSP without returning any solution because the CSP is known to be insoluble. Thus 

backtracking cannot be used directly for the maximal constraint satisfaction problem 

(max-CSP) [16].

In [16], it was shown that the natural analogue of the naive backtracking algo

rithm for max-CSP was the depth-first branch and bound (DFBB) algorithm. In 

DFBB for max-CSP a partial solution is expanded along the way. But unlike the 

backtracking algorithm, a partial solution is expanded even on encountering of an 

inconsistent partial solution. A counter N  is kept for the current best solution dur

ing the solving process, and a counter C  keeps track of the number of constraints 

violated by the current assignment of values. We may begin with a large N , close 

to infinity. Then on encountering the first assignment of values to all variables, this 

figure N  is updated by C, the number of constraints updated by the current solution.
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Then search backtracks and proceeds with a different value for the preceding variable 

and C is recomputed. On encountering a partial assignment of values during the 

search process which violates > N  constraints, search along that path is cut short 

and backtracking occurs to the next value of the preceding variable. This is because 

any further assignment along the same path cannot lead to a better solution. This is 

the bounding process of the branch and bound algorithms.

Consider the max-CSP shown in Figure 5.7. Here we use three variables C and N  

and S  which represent the number of constraints violated by the current assignment 

of values, the number of constraints violated by the current best solution and the 

current solution respectively.

The algorithm begins with the value N  =  infinity. Then we proceed along X \ = 

1 , X 2 = 1 till X 3 =  1  without any problem. But X 3 =  1  is inconsistent with X x — 1 . 

In naive backtracking this would have resulted in a backtrack to X 3 =  2. But here 

we proceed further and try X 4  =  1. Here we have a possible solution which violates 

4 constraints. Hence N  is now updated to 4 and S  (the current best solution) is 

{Xi =  1 , X-i — 1 , X 3 =  1, X \ — 1}. Next we backtrack and reach X \  =  2 and 5  now 

becomes =  1,X 2  =  1, X 3 = 1 ,X 4 =  2} as the number of inconsistencies in this 

solution is 3 which is less than 4, the current value of iV, and N  is updated to 3.

Further backtrack to X 3 = 2, X4  =  1  gives an even better solution S  =  (Xi = 

1 , X 3 =  1, X 3 =  2 , X A =  1 }, which gives N  =  2. In the next branch, this result is 

further improved with S  ={Xi =  1 , X2  =  1 , X 3 — % X\ — 2 } giving N  =  1 . So this 

assignment violates just one constraint namely constraint C3, the constraint between 

X 4  and X \.

Further backtrack leads us to X \ =  1, X 3  =  2 which violates 1 constraint and thus 

any further expansion of this assignment can’t lead to any better solution than the 

current best solution S. So we bound the search here and backtrack to the next level 

X i =  2, and then proceed to X 3  =  1 . Here again the number of constraints violated 

is greater than or equal to the current N, which is 1 . So we bound it here and face a
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0 2
N-2

0 4
N-4

- SOLUTION 
NODE

CONSTRAINTS:

Cj(Xr X̂ =((M)}
0 ^ X 0 = ((2.1))
C£X} Xj) = {(2 )̂,( 1,2))
C^XyX^ = ((22),(1,2),(2.1)|

Figure 5.7: Depth first branch and bound (BB) for max-CSP

similar condition at X \ = 2 ,X 2  = 2.

This concludes the search process and we get the solution S={Xi =  1, X 2 = 

1, X 2 =  2, X 4 =  2} which violates N  =  1 constraints.

5.4.2 Backjumping

Depth-first branch and bound [16] has been formulated as the equivalent of the naive 

backtracking algorithm for max-CSP. In backjumping proposed by Gashnig [21], the 

naive backtracking method for CSPs was modified with a provision for some bookkeep

ing to achieve a significant reduction in the search space than the naive backtracking 

algorithm. Backjumping as applied to max-CSP shall be termed as BJBB and was 

presented in [16].

When backtracking occurs from a dead-end at a variable, the control passes to the 

chronologically previous variable. But it is possible that the variables responsible for 

the dead-end at that node are actually much higher up than the immediately previous
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SOLUTION 
NODE IS BYPASSED 
BY PLAIN BACKIUMPINC

AREA AVOIDED BY 
PURE BACKJUMPING

CONSTRAINTS:

cpc,.x «̂Ki.i)l
C J X jX j l - 1(2.01 

Cp^X^-(02).(U)l 

e ^ V y - f O A H A a i M

Figure 5.8: BJ for max-CSP

variable. Let X } be the deepest variable responsible for creation of the dead-end at 

a node X*, and let Xi be the variable immediately chronologically prior to A*. In 

naive backtracking the control passes on to Xi after X*. But since X j is the deepest 

variable responsible for the dead-end at X k, any exploration of the nodes between 

X j and Xfc, will not prevent the dead-end at X*. So if instead of jumping to X*, 

if we jump directly to Xj, skipping across all variables between Xj and Xit we still 

preserve the solution and save a lot of search space too. Backjumping results in a 

significant reduction in search space which overshadows the slight overhead involved 

in the bookkeeping of the deepest variable in conflict with the current node X k.

But this technique cannot be directly translated to the max-CSP case, and cannot 

be incorporated in depth-first branch and bound method in the same manner as is 

done in adding backjumping to backtracking in CSP [16]. Consider the example in 

Figure 5.8. This is the same as the example in Figure 5.7. Here we follow depth 

first branch and bound till we reach the node representing {Xi =  1, X2  =  1, X 3 =  

1, X 4  =  2}. At this node we find that the node Xi itself is in conflict with both 

values of X 4. So we can backjump from X4  to X i  directly instead of X 3 or X2.
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So we can backjump to X i =  2 directly. But in the process we avoid a significant 

portion of the search space, which is a considerable savings in the normal case. But 

from the figure it is also clear that the search space we are avoiding actually contains 

the maximal solution,namely, {Xi = l ,X 3  = 1 ,X 3  =  2 ,X 4  = 2 }. So backjumping 

algorithm for CSP when directly applied to the max-CSP leads to incorrect results. 

The phenomenon occurs because of the fact that X 3  = 1  was an inconsistent node in 

one branch while in the avoided part of search space X 3 =  2 was not an inconsistent 

node, and this lead to the possibility of a better solution along that path. Hence 

the correctness of backjumping is lost. The solution proposed in [16] to overcome 

this keeps track of the latest inconsistent node encountered in the current path, and 

backjump occurs to the later of the two variables, the backjump point or the deepest 

inconsistent variable encountered. This ensures that the correctness of the algorithm 

is not compromised even though the savings in search space due to backjumping 

may be lost in some situations. Consider the situation above. At X 4 =  2 , we have 

to choose between the backjump point namely X i, and the last inconsistent point, 

namely X 3. Since X 3  is deeper than X \, backjump occurs to X 3 and we have no 

savings in space though we preserve the correctness of the algorithm.

5.4.3 Applicability of conflict-directed backjumping to max- 
CSP

It has been shown that in backjumping an extra variable is needed to keep track of 

the deepest inconsistent variable at any time, to decide the next backjump point. 

The backjump took place to the deeper of the two variables, the deepest variable in 

conflict with the current node or the deepest of the inconsistent nodes.

In this section we apply conflict-directed backjumping (CBJ) to max-CSP, the 

resulting algorithm termed as CB JBB. In contrast to backjumping, in conflict-directed 

backjumping, the backjump point is not just dependent upon the variable at the 

current level but also upon the variables at levels below. At each level of x, an array
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Ĉ XjX̂ sUI.D)

Figure 5.9: Depth first BB for CBJ example

conflict-set, keeps track of all the past variables in conflict with the current level. 

Every time an inconsistency is encountered between X* and some past variable, the 

past variable is added to the conflict set of X{. In the event of all values of Xi being 

exhausted, the algorithm backjumps to the deepest variable x/, in the conflict-set of 

Xi. In the process of this backjump, the variables in the conflict-set of Xi (excluding 

x/t) are added to the conflict-set of X/,, because none of these valuations can lead to 

a successful solution. The bookkeeping in conflict-directed backjumping (CBJBB) is 

more complex than that in plain BJBB case.

We show that sim ilar to BJBB, CBJBB algorithm cannot be applied as it is to 

the depth-first branch and bound algorithm. Consider the example in Figure 5.9. In 

Figure 5.9, the depth-first branch and bound traversal for the CSP is shown. The 

depth-first branch and bound algorithm traverses the search space and returns with 

the maximal solution {Xi =  1 , X 2  =  2, X 3  =  1, X 4  = 1}.

Now, consider the same example with conflict-directed backjumping(CBJBB) as
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shown in Figure 5.10. In CBJBB, at X 4  = 1  in the first pass at {Xi =  1 , X 2 = 1, X 3 = 

1,X 4  =  1 } the conflict-set consists of the set {Xi}. Next at {Xi =  1 , X i =  1 , X 3 =  

1, X 4  =  2}, the conflict-set now becomes {X l 5  X3} for X 4. So backtrack occurs to the 

deepest variable in the conflict-set namely {X3}. At the same time the conflict-set 

of X 3  is changed to {Xx}, since that is the only remaining element in the conflict-set 

of X i  other than X 3 itself. So the search proceeds along {Ax =  1 , X 2  = l ,X 3 = 2}. 

But at this point we reach a bound and now need to backtrack or backjump to the 

deepest variable in the conflict-set of X 3, which is X \. The search will then proceed 

to X \  =  2  onwards. So in this process, we have jumped across a major portion of 

search space. But this search space contains the actual maximal solution found by 

DFBB. So in applying CBJ to the branch and bound algorithm, the correctness of 

the algorithm is lost in CBJBB.

The phenomenon occurring here is similar to that occurring in the plain back- 

jumping case as shown in [16]. The anomaly occurs because of the presence of an 

inconsistent node X 2  between the point to which conflict-directed backjumping oc

curs and the current level. The inconsistent node in the present branch leaves the 

prospect of a better solution in an alternative branch at the inconsistent node (X 2  

here). Here the maximal solution {Ax =  1 ,A 2  =  2 ,X 3  =  1 , X 4  = 1 } occurs in one 

such alternative branch.

The solution suggested by [16], can be extended to the CBJBB case, but with ad

ditional bookkeeping. The idea is to backjump to the deepest of the two variables, the 

backjump point or the deepest inconsistent node prior to the current node. In BJBB 

case, a variable was kept to keep track of the deepest inconsistent node encountered.

But in CBJBB case, we need to keep track of the information of the deepest incon

sistent node prior to every level, not just for the present level because backjumping 

requires only conflict information corresponding to the present level while in CBJ, 

the conflict information of the present level is passed on to the upper level to which 

backjumping occurs. So the information pertaining to the inconsistent nodes should
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Figure 5.10: CBJ example

be kept corresponding to each level. Let inconsistent^] correspond to the deepest 

inconsistent node prior to the level i. This information is maintained and passed on 

in the following manner. Initially all are initialized to 0. Then as the partial solu

tion is expanded on in the CBJBB algorithm, all entries still remain 0, till an actual 

inconsistent node say X j is encountered. Then as this partial solution is expanded 

to Xj+1 , then inconsistent^' +  1] is updated to Xj .  The same value X j  is passed 

on to all entries till the next such inconsistent node is encountered, say X c. Even 

inconsistent[c] is made to Xj .  For any further expansion of this value X c will be used. 

This goes on till an actual backjump takes place. At a level k, let Xi be the deepest 

of the two variables inconsistent [A:], and the deepest variable in conflict-set [A:]. Now 

when backjumping takes place to Xi, two changes are done. Conflict-set[i] is updated 

to the union of conflict-set [i] and conflict-set [A;] minus the variable Xi. Further ex

pansion along the alternate value of the variable Xi then proceeds again as before by 

keeping tracking of the deepest node prior to any variable X j in inconsistent [7'].
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This minor additional bookkeeping ensures the correctness of the CBJBB algo

rithm.

5.4.4 Analysis of branch and bound algorithms for the max- 
C SP

In this section we shall explore some theoretical results associated with the branch 

and bound algorithms for max-CSP. The results are analogous to ones discussed for 

plain constraint satisfaction problems in [31]. Here we observe that since in max-CSP, 

we cannot usually satisfy all the constraints at one time, we need to concentrate on 

the problem of satisfying a subset of constraints at a time.

The main idea of this section is to present a characterization of static conditions 

under which a particular backtrack algorithm visits a node in the search. In doing 

so, it is possible to sometimes obtain a rough idea of the behavior of the backtrack 

algorithm. A characterization in terms of dynamic conditions is not of practical use 

since the checking of conditions in such case itself will be a costly process. By dynamic 

characterization, we mean a characterization in terms of a variable which dynamically 

changes during the search process.

The main difficulty in extrapolating the results from [31], to max-CSP is that the 

mere presence of an inconsistency at a node does not stop the search at that point in 

branch and bound algorithms.

In depth-first branch and bound method, N  (the number of allowed constraint 

violations) varies as we proceed along the way in the search process. Hence it is im

possible to obtain any static condition dependent on N  for measuring the effectiveness 

of any branch and bound algorithm. So we need to fix our value of N, the necessary 

bound on the number of constraints violated in the max-CSP, in order to get static 

quantified results pertaining to the performance of the individual branch and bound 

algorithms. So from now on in this section we concentrate on the problem of max- 

CSP, with a predetermined N, for the conditions to be applicable. In other words,
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in the modified formulation of the max-CSP, we would like to find the best possible 

solution to the CSP subject to the condition that no more than N  (predetermined or 

fixed) constraints are violated.

Based on a measure of N, we can now elucidate sufficient and necessary conditions 

for the different variants of the branch and bound methods to work for this version 

of the max-CSP.

D ep th  first branch and  bound

In plain depth first branch and bound (DFBB) method, the search proceeds by as

signing a value for a variable and then expanding the variable sets till either all 

variables are exhausted or we reach a point where the limit of N  constraint violations 

is reached.

Because of the presence of the predetermined bound N  on the number of incon

sistencies, we can elucidate a sufficient condition for the DFBB algorithm to visit a 

node.

Theorem  5.11 If DFBB visits a node, its parent is a node with less than N  incon

sistencies.

Proof. If the parent of the node had greater than N  inconsistencies, then by virtue 

of the algorithm the current node will never be reached and bounding will occur at 

the parent node itself. Hence the proof. □

Unfortunately, it is not possible to give a static necessary characterization of the 

algorithm. Because during the course of the algorithm, if on the way, a solution is 

found with less than N  inconsistencies, then N  can be updated in such a case and this 

process can be dynamic. But if we know beforehand that any solution has a minimum 

of Nmin inconsistencies, then it would be possible to give a necessary condition similar 

as above:
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T heorem  5.12 I f  a node is such that its parent is node with < Nmin inconsistencies, 

then the node is visited by DFBB.

Proof. Because Nmin represents the lowest number of inconsistencies in the entire 

search space of DFBB, any node visited by DFBB has either Nmin or higher number 

inconsistencies. Hence the proof. □

The above results show that the condition analogous to the consistency of a node in 

backtracking case [31], is the condition that the node have less than N  inconsistencies. 

This is explained by the fact that in DFBB, a failure is triggered by a partial solution 

with greater than N  inconsistencies while in backtracking the failure is triggered by 

an inconsistency.

Backjum ping

Before we give a sufficient condition characterizing the branch and bound algorithm 

with backjumping, we state the following lemma. We assume the presence of a bound 

N  as in DFBB case.

Lem m a 3 Any node visited by BJBB to aj after Oi such that (i > j) , is such that 

(ai,ci2 ,  , af) along with any of the value of Xi will have > N  inconsistencies.

Proof. The proof follows from the fact that backjump occurs from the node Xj to Xj. 

Irrespective of the fact whether Xj represents the deepest inconsistent node before Xj 

or the deepest variable in conflict with Xj, no variable between Xj and Xj is inconsistent 

or has conflict with Xj. So any of these variable instantiations do not add any further 

inconsistencies caused by a i , ..., aj with a*. And we know that backtracking occurs at 

ai, so it follows the a i,a 2 , ....,Oj with a* have > N  inconsistencies. □

Based on the above condition the sufficient condition for the BJBB algorithm can 

be written as follows:

T heorem  5.13 I f  BJBB visits a node, its parent node has less than N  inconsistencies 

when combined with any other variable.
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Proof. The theorem directly follows from the lemma above. □

Again, it is difficult to elucidate a necessary condition for the BJBB algorithm, 

because of the same problem as in case of DFBB. We change the value of N  when

ever a partial solution having lesser number of inconsistencies is encountered. Once 

again if we are ensured that we have a measure of the best solution having iVmin 

inconsistencies, the necessary condition for the BJBB algorithm can then be stated 

as follows:

Theorem  5.14 I f a node is such that its parent has less than Nmin inconsistencies 

when combined with any other variable, then BJBB visits the node.

Proof. Along the lines of the proof for DFBB. □

Conflict-directed backjum ping

Strengthening the argument along the lines of DFBB and BJBB, for the case of 

CBJBB we deduce similar results for CBJBB too. As in DFBB and BJBB, we need 

to assume predetermined bounds N  and Nmin.

Extending the results along the same line of argument to CBJBB, we get the 

following necessary and sufficient conditions which we state without proof.

Theorem  5.15 I f CBJBB visits a node, its parent node has less than N inconsisten

cies when combined with any other set of variables. Conversely, if  any node is such 

that its parent node has less than Nmin inconsistencies in combination with any set 

of variables, then CBJBB visits the node.

5.4.5 Conclusions on solution methods for max-CSP

In this section we studied the problem of max-CSP in detail with stress on the intel

ligent retrospective branch and bound techniques. We extend the observations made 

in [16] to conflict-directed backjumping. The other contribution of this section is a 

detailed theoretical analysis of the intelligent backtrack algorithms in the domain of 

over-constrained problems, along the line pursued in [31] for CSPs.
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5.5 Summary of the chapter and discussion

In this chapter we have provided a critique of the existing semantic notions of solution 

in over-constrained problems. In particular we show two theoretically negative results 

pertaining to the existing semantics of over-constrained problems.

The first class of these results pertain to the computational complexity of these 

over-constrained problems. All the semantics studied for over-constrained systems 

were shown to fall in the second level of the polynomial hierarchy, which represents a 

class of problems computationally harder than SAT and other NP-complete problems.

The second result pertains to the translatability of non-binary to binary represen

tations of the over-constrained problems. We show that in max-CSP the two most 

commonly used methods for translation from non-binary representations to binary 

representations, namely the dual graph method and the hidden variable method, fail 

to preserve the semantics of max-CSP in the translation process. Thus semantics of 

over-constrained problems is not preserved in translation from non-binary to binary 

CSP problems.

Finally, we critically examine the solution methods for max-CSP based on intel

ligent branch and bound. We provided theoretical characterizations for these algo

rithms in terms of necessary and sufficient conditions for these algorithms to visit a 

node.

Let us briefly discuss the causes leading to the first two results in the chapter.

The diversity of the types of priority information present in over-constrained sys

tems studied in this chapter stresses the need to distinguish between global and 

local optimality criteria of solutions. All the existing over-constrained frameworks 

max-CSP, max-weighted CSP, and comparator based HCLP, base their definition of 

solution on global comparison measures. These global comparison measures define 

a concept of a preferred solution among a set of candidate solutions. The measures 

often used in such systems are extra-logical in the sense that they are external mea-

174

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



sures outside the logical semantics of the problem. The extra-logical nature of such 

measures is precisely the reason for their erratic behavior in otherwise semantics- 

preserving logical transformations.

It is the requirement of comparison among multiple solutions, which is responsible 

for the higher complexity class of max-CSP, max-weighted CSP and other similar over

constrained semantics. On the other hand, the extra-logical nature of the measures 

is responsible for the non-preservation of semantics in translation from non-binary to 

binary over-constrained representations. These two factors suggest the need to look 

for an alternative reasonable semantics for over-constrained problems which is neither 

extra-logical nor involves any inter-solution comparison.
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Chapter 6 

Conclusions and Scope for Future 
Work

6.1 Contributions

In the thesis our goals have been two-fold - (i) to explore the viability of the use of non

monotonic logic programming based on stable models as a constraint programming 

paradigm, and (ii) to explore the semantic notions of of solution in existing over

constrained frameworks.

6.1.1 Logic programming with stable models for constraint 
programming

Logic programming with stable models has been evaluated in this thesis in the context 

of its capacity to represent and solve constraints. This thesis extends the recent work 

in the area of logic programming [37, 41, 43, 56] on the promotion of stable model 

based logic programming as a constraint programming paradigm. The task is made 

easier by the development of effective implementations for computing stable models 

of ground logic programs like smodels [42, 43], followed by introduction of languages 

based on stable models like LPsm and SLP [37]. Though these languages are restricted 

versions of the general class of logic programs with variables, they have been shown to 

be capable of capturing a wide class of AI problems. Fundamental to these languages 

is also the interpretation of logic program clauses as constraints on the solution sets.
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As a representative language we concerned ourselves with the language LPsm  and its 

underlying stable model computation engine smodels.

On the representation angle, we extended the observations made by Niemela in

[41] on the capacity of L P s m  to model constraint satisfaction problems. Further any 

constraint problem which can be captured in L P s m  can be captured by a function-free 

normal logic program (FFNLP). LPsm has been shown to be declarative in nature, an 

essential requirement for a good modeling language. This feature it shares with other 

constraint programming langauges like Oz [53], Eclipse [38], and OPL [26]. Further, 

certain classes of constraint programming situations like dynamic CSPs [56] seemed 

to be better captured in L P s m -

On the efficiency angle, we studied the important techniques incorporated in the 

implementation of smodels, which is by far the most competitive implementation 

developed for computing stable models. We find that the three main techniques used 

in smodels (constraint propagation, lookahead, and backjum ping) are mappings 

from well known efficient techniques in finite constraint satisfaction problems (CSPs) 

because of their having originated from erstwhile SAT techniques and SAT itself 

being a specific type of CSP. Our investigation of these techniques was two-fold:

(i) to measure the relative effectiveness of each technique in terms of contribution 

to the efficiency of smodels, and (ii) to conduct a preliminary comparison of the 

efficiency of these techniques in smodels with the corresponding techniques in finite 

CSPs. This study was performed in the context of logic programs modeling finite 

CSPs. Our investigation reveals that lookahead dominates the other two techniques 

in smodels, and that sm odels employing lookahead can be as efficient as some of 

the efficient techniques in finite CSPs.

This corroborates some of the contentions which motivated our search for the 

correspondence between finite CSP techniques and sm odels techniques. Some con

tentions which are given added credence based on our observations are:
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1. Techniques which render efficiency to a specialized representation can be gen

eralized to more general representations.

2. General purpose knowledge representation systems can be built which are as 

efficient as some special domain specific solvers.

6.1.2 Semantics of over-constrained systems

In the latter part of the thesis we started out with an interest in representing and solv

ing the over-constrained problems by logic programming with stable models. However 

the computation and representation of these problems would be impossible without 

a thorough understanding of their semantics. During the pursuit we observed that 

the semantics of over-constrained problems has not been adequately dealt with in the 

literature. Since time only permits us to investigate the computational and semantic 

difficulties with the standard notions of solution in the over-constrained context, our 

goal is only partially achieved.

Our studies of over-constrained semantics nevertheless produced interesting con

clusions with leads for new directions of research. In particular we have shown and 

corroborated that the existing notions of solutions in over-constrained problems suffer 

from the following semantic problems:

1. ad-hoc semantics;

2. higher computational complexity;

3. semantics not preserved in translation from non-binary to binary representa

tions; and

4. techniques used in solving finite CSPs cannot be used directly.

We therefore leave the original goal of this part of the thesis to future investigation.
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6.2 Scope for future work

The work presented in the thesis can be extended along many directions. Some 

important directions are discussed here.

6.2.1 Alternative semantics for over-constrained problems

The discussion in Chapter 5 motivates us to look for an alternative reasonable se

mantics for over-constrained problems which is neither extra-logical nor involves any 

inter-solution comparison.

One possible candidate which fits the bill for such a semantics is the idea of a 

solution based on maximal consistency. Instead of comparing between candidate 

solutions, in any solution semantics based on maximal consistency, we just verify 

if a particular partial solution can be expanded any further without generating a 

contradiction. The notion of a maximal consistent solution does not resort to any 

extra-logical theory solution preference criterion involving a global measure of com

parison among solutions. Clearly, such a maximally consistent partial solution can 

be computed in polynomial number of steps by expanding a partial assignment till 

no more variables can be added to it without generating inconsistency. At the same 

time the notion of maximal consistency must respect the CSP, i.e. it must be ensured 

that if there is a solution S  satisfying all the constraints, then S  must be the desired 

answer. This is analogous to the requirement of a comparator in HCLP to respect 

the constraint hierarchy (i.e. if there is a solution satisfying all constraints till a level 

k in the constraint hierarchy then any answer returned by a comparator must also 

satisfy all constraints till level k). Based on the above, we can conclude that the 

complexity of computing a maximal consistent solution is related to the following 

decision problem of D :

D efinition 12 (M axim al consistency decision problem ) Does a finite CSP P 

have no solution satisfying all the constraints in P?
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Clearly the decision problem P  is co-NP-complete because the complement of P  

is the finite CSP decision problem which is known to be NP-compIete [35].

T heorem  6.1 The maximal consistency decision problem is co-NP-complete.

Proof. Trivially follows from the fact that finite CSP decision problem is NP- 

complete. □

Thus the semantics based on maximal consistency restricts the complexity to 

within the first level of the polynomial hierarchy (fli =  co-NP). In spite of this, there 

are some potential disadvantages of using maximal consistency. The main disadvan

tage of using maximal consistency is the number of solutions that can be generated. 

Maximal consistency can generate a large number of partial solutions. One possible 

way to restrain the number of solutions is by using some kind of priority informa

tion which allows filtering of candidate solutions. Thus the search for alternative 

reasonable semantics of over-constrained problems is one future direction of research.

6.2.2 Relationship between over-constrained semantics and 
logic programming with stable models

Our original goal in the latter part of the thesis was to extend the logic programming 

techniques to capture over-constrained semantics. We leave this original goal as a 

future direction of research. We identified the semantic problems with existing notions 

of solution in over-constrained systems.

The paradigm of logic programming with stable models bears a close relation

ship to other paradigms of non-monotonic reasoning like default logic [49]. In the 

literature relationships have been established between non-monotonic reasoning for

malisms and over-constrained formalisms. Notable among them are [1, 52, 2, 6]. In 

[1, 2] a relationship is established between default logic and partial constraint satisfac

tion (an over-constrained formalism). In [6] different variants of constraint relaxation 

have been related to non-monotonic reasoning. In [51] a relationship is established 

between HCLP and circumscription.
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Given the abundance of these relationships it is a worthwhile task to look into 

the feasibility of stable model based logic programming to capture over-constrained 

problem semantics.

6.2.3 Comparing smodels techniques with non-binary CSP 
techniques

In this thesis, most of the finite CSP techniques which were mapped to smodels 

techniques were restricted to binary representations of constraints. In the finite CSP 

literature however, there are two schools of thought in terms of generalization of these 

techniques to non-binary representations.

• Solving the non-binary problems by converting them to binary representations 

first and then solving the binary problems.

• Solving the non-binary problems by directly employing the generalizations of 

the techniques used in solving binary finite CSPs.

The future direction of research suggested in this section is to study empirically 

and theoretically the results of comparison of smodels techniques and non-binary 

finite CSP techniques. The representation of smodels is general enough to capture 

non-binary constraints. In view of the comparable performance of some smodels 

techniques restricted to logic programs representing binary finite CSPs (when com

pared to their corresponding binary CSP techniques), our conjecture is that smodels 

should perform as well as the finite CSP techniques generalized to non-binary rep

resentations. We also conjecture that the performance of sm odels should be better 

than the performance of the two-stage non-binary solvers involving the additional 

overhead of translation to binary representations.

The study of non-binary constraint satisfaction problems is still in a nascent stage 

where significant methods need to be developed for the generalized representation 

scheme followed in non-binary CSPs. In view of the large scope for development of
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comprehensively efficient techniques for non-binary CSPs, smodels holds promise in 

terms of solving generalized representations of finite CSPs.

6.2.4 Enhancing the smodels proof procedure

The present version of the implementation of the sm odels proof procedure employs 

three main speedup techniques: constraint propagation, lookahead, and backjum p- 

ing. In contrast, in the finite CSP literature many additional techniques have been 

developed with significant results. To name a few like generalized arc-consistency 

(GAC) [34], generalized arc-consistency with conflict-directed backjumping (GAC- 

CBJ) [47], and iterative repair.

The constraint propagation in smodels has been shown to be a restricted version 

of the technique of arc-consistency when applied to binary CSPs. We saw how the 

propagation achieved by expand can be enriched by incorporating arc-consistency for 

the binary CSPs. In GAC the arc-consistency for binary CSPs has been generalized 

to take care of non-binary representations of constraints. So it would be interesting 

to see if GAC can be mapped to a more efficient and general version of the expand 

procedure in smodels. The idea is to exploit the structure of the programs to be able 

to achieve a more effective propagation than that achieved by the generic propagation 

rules used by expand in the current version of smodels.

Iterative repair based techniques have been proved to be successful for a large 

class of scheduling [66] and planning problems encoded as CSPs. The iterative repair 

methods start from an imperfect solution and gradually move towards a perfect solu

tion by a constant repair and mix process. It would be interesting to see if smodels 

can accommodate iterative repair to arrive at a solution faster.

Thus the line of research advocated in this section is to look into the feasibility of 

application of more general and efficient CSP techniques to enhance the efficiency of 

smodels.
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6.2.5 Performance and structural analysis of stable model 
computation methods

Comprehensive research of finite CSPs has revealed the intricate structure of the 

search space of CSP problems. It makes the possibility of identification of the regions 

of hardest CSPs possible. Further, structural characteristics of CSPs have been iden

tified to provide sufficient conditions under which polynomial time algorithms exist 

for CSPs.

Similar studies needs to be undertaken for the stable models. Although smodels 

and similar implementations of stable models are proving to be successful, there is a 

lot of work remaining in the structural and performance analysis of these systems. A 

comprehensive set of benchmarks need to be developed for the evaluation of stable 

model implementations. This type of performance analysis is only possible if it is 

possible to analyze the structures of stable models in a comprehensive manner. This 

is an area of research which requires immediate attention if the paradigm of logic 

programming were to be pushed further as a practical problem-solving paradigm.
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