
University of Alberta

S p r e a d s h e e t R e v e r s e E n g i n e e r i n g

by

Dabo Sun

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-30030-5
Our file Notre reference
ISBN: 978-0-494-30030-5

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents and Xiaolei.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Spreadsheet applications are very popular end-user programming environments, and many

spreadsheet documents are crucial because they keep records of important information, cal­

culation, and analysis. Researchers have discovered, however, that spreadsheets are often

error prone, hard to understand, maintain, and reuse. In this thesis work, reverse engi­

neering and visualization techniques are applied to reveal the hidden dependencies between

cells and computation units, as well as high-level structural and conceptual abstractions of

spreadsheets. A toolkit is developed to ease end-user understanding of spreadsheets by ex­

tracting the artifacts and dependencies, analyzing and visualizing the facts, and detecting

anomalies. Various evaluation techniques have been used to assess the usability of the tool.

In particular, a user study has been conducted to validate the usability and effectiveness of

the tool. Results show that our method is very effective in detecting dependencies hidden

in spreadsheets, and the tool is easy to learn and use.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Ken Wong, for his ideas, advice, guid­

ance, and encouragement throughout my study. This work would not be possible without

his support.

I would like to thank Dr. Jim Hoover, as well as other members in the software en­

gineering group at the University of Alberta, who gave me many good suggestions on my

work.

I am very grateful to my committee members, Dr. Eleni Stroulia and Dr. Marek Refor­

mat, for their time to read my thesis and valuable feedback on my work.

Many thanks go to Dr. Margaret-Anne Storey, Robert Lintem, and Chris Callendar,

from the CHISEL research group at the University of Victoria for their support on SHriMP,

a software visualization tool.

I thank all the participants in the user study for their time and effort.

Thanks also go to my friends Marianne Morris, Chunyan Meng, Zhenchang Xing, Stan­

ley Oliveira, Yingtao Jiang, Daqing Hou, Ying Liu, and Daniel Moise for their help in my

studies, research and everyday life.

I cannot express my appreciation in words to my parents for their constant love, care,

and understanding. Whenever difficulties occur, they are always there to support me.

Last, but definitely not least, I thank my girlfriend, Xiaolei, for her love, support, and

encouragement. She makes my life beautiful.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 M otivations... 1
1.2 P rob lem ... 2
1.3 A p p ro ach .. 3
1.4 Contributions.. 3
1.5 Organization... 4

2 Background 5
2.1 Spreadsheet concep ts ... 5
2.2 Spreadsheet errors.. 6
2.3 Software reverse engineering... 8
2.4 Program comprehension ... 10
2.5 Information visualization... 11

3 Approach and system architecture 13
3.1 Requirem ents.. 13

3.1.1 Basic requirem ents.. 13
3.1.2 Additional requirem ents... 13
3.1.3 Notebook requirements.. 14

3.2 System architecture... 15
3.2.1 E x c e l .. 16
3.2.2 SH riM P... 16
3.2.3 Interactions.. 17

3.3 Spreadsheet A nalyzer... 18
3.3.1 Reading Excel f ile s .. 18
3.3.2 Graph eXchange Language (G X L)... 19
3.3.3 Extracting a rtifac ts .. 21
3.3.4 Parsing fo rm u las ... 22
3.3.5 Building abstractions... 23
3.3.6 Detecting an o m alies... 26
3.3.7 Generating GXL g r a p h s .. 28

3.4 Tool integration.. 28
3.4.1 Integrating the Spreadsheet Analyzer with SHriMP and Excel . . . 30
3.4.2 Bridging SHriMP-Cell and E x c e l ... 30

4 Evaluation 33
4.1 Guideline-based evaluation.. 33

4.1.1 Heuristic evaluation ... 34
4.1.2 Cognitive dimensions... 36

4.2 User s tu d y .. 39
4.2.1 G o a ls .. 39
4.2.2 Pilot experiments... 39
4.2.3 Participants.. 40
4.2.4 Experiment d e s ig n .. 40
4.2.5 Phases... 41
4.2.6 Experiment variables... 42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.7 Experiment r e s u l ts ... 43
4.3 Discussion... 51
4.4 Theory-based eva lua tion .. 52

4.4.1 Theories of percep tion .. 52
4.4.2 Perceptual organization.. 53
4.4.3 Perceptual segregation.. 55
4.4.4 Applying perceptual theories... 56

5 Related work 58
5.1 Spreadsheet visualization.. 58
5.2 Spreadsheet a u d it in g .. 59
5.3 Tool com parisons.. 59

6 Conclusions and future work 61
6.1 Lessons learned ... 61
6.2 Recommendations.. 62
6.3 S u m m a ry ... 64
6.4 Future w o rk ... 64

Bibliography 66

A Solicitation Letter 71

B Pre-study questionnaire 73

C Consent form 74
C.l Purpose of the study... 74
C.2 P rocedure ... 74
C.3 Your rights ... 74
C.4 Principal investigators... 75
C.5 Agreement... 75

D Experimenter’s handbook for SHriMP-Cell 77
D.l General p rocedures.. 77

D.1.1 Phases.. 77
D .l.2 Principles.. 78

D.2 Orientation ... 78
D.3 T rain ing ... 79

D.3.1 S e tu p .. 79
D.3.2 Background... 79
D.3.3 Key features of SHriMP-Cell.. 80

D.4 P ra c tic e ... 81
D.4.1 S e tu p .. 81
D.4.2 Practice ta s k s ... 81

D.5 Formal tasks.. 82
D.5.1 S e tu p .. 82
D.5.2 Formal tasks ... 82

D.6 Post-study questionnaire.. 83
D.7 Post-study interview and debriefing ... 83

E Experimenter’s handbook for Excel 84
E.l General p rocedures... 84

E.1.1 Phases.. 84
E .l.2 Principles.. 85

E.2 Orientation ... 85
E.3 T raining ... 86

E.3.1 S e tu p .. 86
E.3.2 Background.. 86
E.3.3 Key features of E xcel... 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E.4 P ra c tic e .. 87
E.4.1 S e tu p ... 87
E.4.2 Practice ta s k s .. 87

E.5 Formal task s .. 88
E.5.1 S e tu p .. 88
E.5.2 Formal tasks ... 88

E.6 Post-study questionnaire .. 89
E.7 Post-study interview and debriefing .. 89

F Post-study questionnaire 90

G Post-study interview questions 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 The VisiCalc user in terface.. 6
2.2 Classification of spreadsheet e rro rs .. 7
2.3 An example of the formula view and trace results in Excel 8
2.4 High-level abstraction in R ig i... 9
2.5 A Hangman program presented in SHriMP... 12
2.6 Spreadsheet s truc tu re .. 12

3.1 The system architecture.. 16
3.2 The architecture and data flow of the Spreadsheet A nalyzer......................... 18
3.3 A structural view of the weather spreadsheet.. 24
3.4 A cell’s possible adjacent c e l l s .. 24
3.5 A structural view of the weather spreadsheet.. 25
3.6 A customized view of the weather spreadsheet... 27
3.7 An anomaly detected in the weather spreadsheet.. 28
3.8 An example of partial GXL f ile .. 29
3.9 A spreadsheet menu extension to S H riM P ... 30
3.10 The installer program to install/uninstall the Excel e x ten s io n 31
3.11 Pop up menu from SHriMP n o d e ... 31
3.12 Add a cell block using the Excel extension... 32

4.1 The evaluation framework in this thesis .. 34
4.2 Two sets of experiments.. 41
4.3 Results from the Query View tool for Task 2 .. 45
4.4 Results from the trace dependents tool in Task 2 ... 47
4.5 Arrow directions in Excel and SH riM P-Cell.. 47
4.6 Results from the Query View tool for Task 4 .. 48
4.7 Results from the trace precedent tool in Task 4 ... 49
4.8 Examples of the law of similarity.. 54
4.9 Examples of the law of proximity.. 54
4.10 An example of the law of connectedness.. 55
4.11 An example of the law of orientation.. 55
4.12 User D’s answer to Task 4 .. 57

6.1 An example SHriMP view with column-based la y o u t 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 Formal tasks correctness results .. 43
4.2 Formal tasks time sp en t... 43
4.3 Post-study questionnaire results .. 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Motivations

Spreadsheet applications are very most popular end-user programming environments, and

many spreadsheet documents are crucial because they keep records of important informa­

tion, calculation, and analysis. Spreadsheet users are considered as end-user programmers.

When they create spreadsheets, especially when creating formulas, they are writing soft­

ware programs. Since computers are widely used, and end-user tools such as office suites

and web development tools have become very powerful, the number of end-user program­

mers has substantially increased. It is estimated that, in 2005 in the United States alone,

there are about 55 million end-user programmers, which constitutes nearly one sixth of the

US population [21]. It is also observed that a large portion of these end-user programmers

are spreadsheet users [60]. However, researchers have discovered that spreadsheets are of­

ten error prone, hard to understand, maintain, and reuse. Furthermore, it is often difficult

for the original spreadsheet authors to document the design of a spreadsheet, and explain

it to others [38]. The reality is that many business people and politicians make critical de­

cisions depending on data gathered and calculated by spreadsheet documents, even when

they contain wrong numbers. Consequently, millions of dollars are lost each year due to

spreadsheet errors.

End-user programmers, who write far more software than professional programmers,

usually do not have professional knowledge and training in information technology. They

rely much on end-user tools and their domain knowledge. For example, spreadsheet users

usually do not have much knowledge of programming in a procedural or object-oriented

programming language, but they know what needs to be computed and presented. They can

simply input numbers, create formulas, and compute the results, since spreadsheet docu­

ments merge the computation model with the presentation. Also, traditional software engi-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

neering approaches on quality control do not apply well to the end-user community. As a

result, about 40% to 50% of software created by end users contains non-trivial errors [60].

How to better support end-user programmers to reduce errors and improve quality has be­

come an emerging research area.

1.2 Problem

There are many reasons why spreadsheet documents are so error-prone and hard to main­

tain, such as the lack of professional training and “programming” conventions for spread­

sheet users, the complexity of the problem domain, and the limitations of spreadsheet ap­

plications. Most importantly, many researchers point out that the major problem of spread­

sheets is their hidden structure; i.e., the computation layer is often hidden under the presen­

tation layer [26, 69]. The invisibility of the structure of a computation adds great difficulties

to spreadsheet users to understand and audit spreadsheets. Moreover, it is not easy to ob­

serve the computational data flow and the high-level structures of spreadsheet documents,

because the actual data dependencies are often too dense to see at-a-glance overlaid on the

tabular view.

In the early stage of this thesis work, we informally interviewed a few spreadsheet users

and asked them about the problems they had with spreadsheet applications and documents.

One user told her story. Once, she went on vacation for a while. When she came back to

work, she was very upset to find that some of her report spreadsheets were totally destroyed.

Many formulas were removed and replaced by hard-coded numbers. She was told that the

company needed an updated report for a conference, but no one could completely under­

stand how her spreadsheets worked. They tried to change some numbers, but the results

were not what they expected. So, they had to remove some formulas in order to create a

“correct” report and keep the same presentation style.

This thesis addresses the following questions:

• What is an effective way to reveal a spreadsheet’s hidden structures?

• What tool support can we provide for end users to ease spreadsheet understanding?

• Is such a tool effective and easy to use?

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Approach

This thesis applies reverse engineering and visualization techniques to reveal the hidden

dependencies between cells and computation units (a block of cells), as well as the high-

level structural and conceptual models of a spreadsheet document. We believe that reverse

engineering can help users to understand spreadsheet structures, potentially reduce errors,

and improve quality. A toolset is developed to extract spreadsheet artifacts, analyze and

visualize spreadsheets, and detect anomalies.

Reverse engineering techniques are used to extract low-level facts from cells and their

dependencies. Based on the fact extraction, spreadsheet artifacts are analyzed and visual­

ized using nested graphs to provide alternative views of high-level and low-level structures.

Furthermore, anomalies (i.e., areas where errors might occur) are detected and highlighted.

The major steps are listed below.

• A Spreadsheet Analyzer reads the spreadsheet document and extracts low-level facts,

such as cells, formulas, comments, and cell referencing information.

• The Spreadsheet Analyzer automatically clusters the low level artifacts into higher-

level blocks based on the spatial layout and the computational data flow.

• Anomalous formulas can be identified by the Spreadsheet Analyzer.

• Using an Excel add-on tool, users can cluster cells based on their understanding of

the spreadsheet.

• GXL graphs are generated based on the low-level artifacts and the high-level abstrac­

tions (clusters).

• SHriMP, an information visualizer, is integrated with the Spreadsheet Analyzer to

visualize spreadsheets in different views, and present direct and indirect cell depen­

dencies.

1.4 Contributions

The main contributions of this thesis on reverse engineering spreadsheets are:

1. A reverse engineering methodology has been proposed to improve the understand-

ability of spreadsheet documents.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A platform-independent Spreadsheet Analyzer was developed to extract low-level ar­

tifacts from spreadsheet documents, build high-level abstractions, and detect anoma­

lies.

3. A visualizer was extended and integrated with the Spreadsheet Analyzer to visual­

ize spreadsheet documents using multiple views to support various comprehension

needs.

4. Various evaluation techniques have been used to evaluate the usability of our toolset.

In particular, a user study has been conducted to evaluate the usability and effective­

ness of the toolset.

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 provides an overview of the back­

ground knowledge to understand this thesis. Chapter 3 introduces the proposed method and

design of the toolset. Chapter 4 evaluates the proposed method and the toolset. Chapter 5

reviews the related work, and compares our toolset with some other tools. Finally, Chapter 6

draws conclusions, summarizes lessons learned, and proposes future work.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

2.1 Spreadsheet concepts

A typical spreadsheet document looks just like a table, which contains many cells orga­

nized into rows and columns. A cell has a coordinate (also called a cell reference), which

is usually labeled by its column (a letter) and its row (a number) position in the table. For

example, “A l” represents the cell in the first column and first row. A non-empty cell con­

tains a value, which is either a literal, or a result computed from a formula. A cell can refer

to other cells by using a formula. Formulas provide powerful computation capabilities to

spreadsheet documents and distinguishes them from normal data tables. A cell may also

have a comment attached, which often contains important information about the cell. Many

modem electronic spreadsheet applications have the ability to visualize tabular data in var­

ious kinds of charts such as bar charts, line charts, and pie charts, etc. Some spreadsheet

applications even allow users to add multi-media objects such as pictures and videos. Since

the focus of this thesis work is on the structure of spreadsheet documents, i.e., how cells

are related to each other, these presentation-oriented objects are not considered for analysis

and visualization.

The first electronic spreadsheet application was VisiCalc, designed and developed by

Dan Bricklin and Bob Frankston in 1979 [23]. The original idea of VisiCalc was to extend

a calculator so that it can be more effective for their business school projects [45]. Later,

VisiCalc evolved into a fully functioning spreadsheet application, and became very popular

in industry. Figure 2.1 shows the main user interface of VisiCalc. The tabular view is

very similar to modern spreadsheet applications. VisiCalc uses the “A l” format for cell

coordinates.

Since VisiCalc was invented, many software companies have released their electronic

spreadsheet applications. Although different spreadsheet applications may provide different

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bb C:\VC.com
Al (L) Pnwefbook-15

C a n a d a US D i f f
q u l a r P 2 3 9 9 2 3 3 8 . 8 3 6 0 . 1 '
u c a t I o n 2 1 9 9 2 1 0 4 . 8 3 V 4 . 1 ‘

1 a c s Ft* i c e
i Mar. lib 14W ! . (>f>
iB o o k (I4 1 0 6 0 . 6 6
I’o w e W Ia o k 2 1 0 4 . 8 3

Figure 2.1: The VisiCalc user interface

features, core concepts such as the cell-formula model remain. Examples of popular spread­

sheet applications are Microsoft Office Excel [49], Lotus 123 [40], OpenOffice Calc [6],

Gnumeric [3], etc. Excel, a component of Microsoft Office Suite, is probably the most

popular spreadsheet application because of the popularity of Microsoft Office. Therefore,

Excel spreadsheet documents were investigated in this thesis.

One of the unique features of spreadsheet documents is that computation and presen­

tation are combined together, and a user can see what has been done incrementally. In

contradiction, professional software engineers usually try to separate computation and pre­

sentation in program design to improve maintainability and reusability; e.g., Model-View-

Controller (MVC) is one of the most often-used design patterns [30]. Although the mix

of computation and presentation may increase comprehension and maintenance difficulties,

end users like the convenience of What You See Is What You Get (WYSIWYG), especially

if they do not have any programming skills or professional training.

Spreadsheet applications are widely used in many domains such as finance, science,

and engineering. In the finance world, spreadsheet documents have become the “de facto

language of business” [46]. In science and engineering, spreadsheet documents are used in

many fields for modeling, statistics, and equation computation [19, 20]. From here on, we

use the term “spreadsheet” to refer to spreadsheet document, not spreadsheet application.

2.2 Spreadsheet errors

Spreadsheet error studies are the foundation of spreadsheet research, as errors not only

reveal the problems people have in using spreadsheet applications and documents, but also

indicate the limitations of spreadsheets themselves.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Panko did some pioneering work on spreadsheet errors. He estimated that as the size

of a spreadsheet increases, its error rate may rise from 20almost 90%, which means that

for very large spreadsheets, the question is not whether errors exist, but rather how many

errors there are. He observed that errors often occur in a small percentage of cells [60, 61].

Panko also found that despite the high error rate in large spreadsheets, end users are still

very confident about their work and believe that they can create error-free spreadsheets.

Rajalingham and his colleagues proposed a framework to classify of spreadsheet errors

as shown in Figure 2.2 [65], The classification reveals the nature of spreadsheet errors,

and it is useful to study specific types of errors, and design tools and techniques to prevent

certain types of errors.

SPREADSHEET ERRORS
> SYSTEM-GENERATED
> USER-GENERATED

o QUANTITATIVE
■ ACCIDENTAL

« DEVELOPER (workings)
o Omission
o Alteration
o Duplication

. END-USER
o DATA INPUTTER (input)

■ Omission
■ Alteration
■ Duplication

o INTERPRETER (output)
■ Omission
■ .Alteration
■ Duplication

■ REASONING
♦ DOMAIN KNOWLEDGE

o REAL-WORLD KNOWLEDGE
o MATHEMATICAL REPRESENTATION

. IMPLEMENTATION
o SYNTAX
o LOGIC

o QUALITATIVE
■ SEMANTIC

. STRUCTURAL

. TEMPORAL
■ MAINTAINABILITY

Figure 2.2: Classification of spreadsheet errors

Tool support has been designed to audit spreadsheet errors. For example, Microsoft

Excel has a formula auditing mode (also called “formula view”), which displays the con­

tent of all formulas if any, instead of the resulting values. Excel also has a built-in trace

tool (called “formula evaluator”), which allows users to trace a selected cell’s precedents

(cells that the selected cell refers to) and dependents (cells that refer to the selected cell).

Figure 2.3 shows the formula view and trace results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^ M k r tn o f t E ^«i Weatliei

S t # : ^ ' W t : 'Format .look

I r a m # m « » - & . . , j * 10 b / u

W « a th e r W a tc h • D ally T e m p e r a tu r e s • M a y 2 0 0 0

Dally High Tamo Dally Low Temp
Din train Nnnti

5 =36647
6 136846

9 I36B51
10 136662
11 136653
i2';3SB4

0<«iE>20."
1<-$EttO

U*2<-$Et20
J<-tE$20
1<-5E$20

AGE7E5:EUt7%AVI RAG AVEI AGE(C5:C14) ^
MINI' 5:C14) iHSas MINI! 5:E14)
MAXfc5:Ct41

HISTORICAL Normal Him Recorrl Hkih Nftmml Low Reconl Low

K|S.W eatherW atch/

Figure 2.3: An example of the formula view and trace results in Excel

2.3 Software reverse engineering

Reverse engineering techniques were originally used in the hardware industry to decipher

designs from finished products. In the software engineering community, reverse engineer­

ing is defined as analyzing a software system to identity its subsystems, components, and

their relationships [28].

A typical process to reverse engineer a software system involves fact extraction, analy­

sis, and visualization [50, 85].

• Fact extraction: The source code (e.g. Java, C/C++) is transformed into another for­

mat, which can be further analyzed or loaded into a visualizer. At the fact extraction

stage, various software artifacts such as files, classes, methods, etc., are extracted and

stored depending on the nature of the subject system and user need.

• Analysis: The raw graph of a software system is often huge, and it needs to be de­

composed and clustered into higher levels of abstraction to be more understandable.

Common tasks in the analysis stage include system decomposition, metrics calcula­

tion, and structure recovery.

• Visualization: To make the software artifacts and their relationships readable and

understandable, they can be visualized, often in a graph presentation. The graphs not

only present various entities and attributes, but also highlight relationships so users

can easily tell which components are related to a specific artifact.

Figure 2.4 shows a reverse engineered system in Rigi, a visual tool for understanding

legacy systems [7]. The graph on the left-hand side shows all the artifacts extracted from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the subject system. A huge graph with millions of nodes and arcs is not very helpful,

and it only highlights the complexity of the subject system. Through system analysis and

decomposition, a high-level abstraction of the system can be created which represents the

user’s mental model of the subject system, as shown on the right-hand side.

Hie fcdiV navigate se lec t Filter Scate Layout Report Wndow Demo

v

Domain: C** 3
> puls

Hotfy 7y!*M'o!Uip»’ rcl_w*i.close [rcJ_wln_flet_ki]

Are sypti level i R a Command: 1

- T •

. Dpthms Reip |

.. ... A . .1 - V

m S9%

fl.

Figure 2.4: High-level abstraction in Rigi

Reverse engineering does not have to be applied only to finished systems. It can and

should be used at any phase of the software life cycle to improve quality, reusability, and

maintainability. Wong proposed a Reverse Engineering Notebook approach to continuously

apply reverse engineering in various stages of a software system [83]. Unfortunately, re­

verse engineering is often not widely accepted because software engineering has focused

more on software construction than software maintenance and evolution [55]. Also, reverse

engineering is usually hard to achieve, and not everything can be reverse engineered from

source code; some design ideas might only be in the original designer’s mind. Unlike for­

ward engineering, which has strong theoretical foundations (e.g., programming languages,

compilers, etc.) and various techniques such as data structures, design patterns, application

frameworks, and softw are product lin es, softw are reverse en g ineering is u su a lly perform ed

in an ad-hoc manner and heavily depends on a reverse engineer’s experience [54],

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Program comprehension

The main purpose of software reverse engineering is to help people understand a software

system to ease maintenance and reuse activities. Such systems are often old, large, and

poorly documented. Source code becomes the most reliable resource [54]. Thus, one of the

main tasks of program comprehension is to develop mental models of the current state of a

system from source code.

It is observed that people often use different methods to understand a software system,

and various comprehension models have been proposed [73]:

• Bottom-up: understanding by reading source code, and then mentally grouping the

source code statements into higher-level abstractions.

• Top-down: applying higher-level domain knowledge into understanding source code,

driven by hypotheses.

• Knowledge-based: assimilating a knowledge base (programmer’s expertise and back­

ground knowledge) and mental model (programmer’s current understanding of the

program).

• Systematic and as-needed: reading the code in detail or only focusing on code re­

lated to a specific task.

• Integrated approaches: switching between different models depending on the task

since program comprehension is usually not an end goal, but rather a prerequisite to

achieve some other objective [72].

Most of the studies done to create these comprehension models are based on profes­

sional programmers and software engineers. However, the question is whether end-user

programmers have the same comprehension models. Hendry and Green did an empirical

study on how spreadsheet users create, comprehend, and explain spreadsheets. The results

show that spreadsheet users use similar strategies to understand spreadsheets as professional

programmers do in other software systems [38]:

• Bottom-up: end users might start from a formula, trace all the dependent cells of the

formula to understand how the calculation works.

• Top-down: end users might read the title, labels, and comments of each worksheet

to understand what the spreadsheet is about.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Knowledge-based: end users might try to use their domain knowledge to understand

a spreadsheet. For example, when they see the term “income tax” in a spreadsheet,

they will use their knowledge of the tax system to understand the spreadsheet.

• Integrated approaches: end users might switch between various strategies to under­

stand a spreadsheet.

This interesting study on spreadsheet “programmers” indicates that reverse engineering

techniques and program comprehension tools designed for professional programmers could

be applied to end-user programmers, since they have similar ways to understand a system

as professional programmers do.

2.5 Information visualization

Information visualization can be defined as “the use of interactive, sensory representations,

typically visual, of abstract data to reinforce cognition” [10]. The visual representation of

data may include graphs or animations. An example of information visualization is a city

map, which transforms and represents complicated geographical and social information on

a two-dimensional diagram to help users better understand and retrieve data. According to

Ware, the advantages of visualization include the following aspects [82],

• Visualization is capable of summarizing huge amounts of data.

• “Visualization allows the perception of emergent properties that were not antici­

pated”.

• Visualization can often make non-trivial problems apparent. This is very useful for

error detection; with an appropriate visualization, errors can be revealed easily.

• Visualization can help to understand both large-scale and small-scale features of data.

Information visualization can be applied to many domains as presented in [35]. In

software engineering, visualization is often used to explore software structure and navigate

source code [74]. SHriMP (Simple Hierarchical Multi-Perspective) is a software visual­

ization environment and technique to visualize and explore software systems in multiple

perspectives [8, 74]. Figure 2.5 shows how SHriMP can present a Hangman program writ­

ten in C.

The SHriMP visualization technique uses nested graphs to present the hierarchical

structure of a software system and its subsystems. The technique effectively avoids multiple

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5: A Hangman program presented in SHriMP

windows, which could be disorienting. Spreadsheet structures can be viewed as a hierarchy

where the top level is a workbook which contains one or more worksheets. In each work­

sheet, there might be many ranges (or blocks) which could be physical, computational, or

conceptual groupings, and each range has low-level cells. This spreadsheet structure is

shown in Figure 2.6. Therefore, SHriMP views can be applied to visualize the hierarchical

structure of a spreadsheet.

Workbook j

i Hi ~ i i..
|W orksheet 1 j W orksheet2 I ‘W orksheets

Range 1-1 Range 1-2 i ::i

_ . . . i : __J[' : : l

, Ceil 1-1 Cell 1-2 | j

Figure 2.6: Spreadsheet structure

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Approach and system architecture

This chapter describes the requirements, architecture, and process of the developed toolset

that parses, analyzes, and visualizes spreadsheets in both low-level artifacts and high-level

abstractions.

3.1 Requirements

3.1.1 Basic requirements

To implement the spreadsheet reverse engineering approach, the toolset should support

three key requirements [79]:

• Extraction: The toolset should be able to read a spreadsheet file and extract various

artifacts such as worksheets, cells, and dependencies between cells.

• Abstraction: Spatial and computational relationships between cells and ranges should

be identified to build higher-level abstractions to help users build a mental model of

a spreadsheet.

• Visualization: The toolset should provide alternative views for both low-level cells

and high-level abstractions to aid comprehension.

3.1.2 Additional requirements

Furthermore, based on our observation of spreadsheet users (by literature review, inter­

viewing spreadsheet users based on an early toolset prototype, and studying the questions

on an Excel newsgroup [48]) and our experience on building software tools, we propose the

following requirements to improve usability and adoptability.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Interaction: Visualization techniques can provide the user alternative views of spread­

sheets, perhaps graph-based. However, the user might also get lost in nodes and arcs,

and their correspondence with the original cell columns and rows. Thus, integration

between the spreadsheet application and the visualization tool is required to avoid

disorientation. Nevertheless, we find that many spreadsheet visualization tools do

not support interactions between a graph view and the original spreadsheet tabular

view well [14].

• Persistence: Artifacts and abstraction information should be stored persistently, and

be easily retrievable, since they contain both the physical and conceptual structure of

spreadsheets. This information, over time, also reveals the evolution of a spreadsheet,

as well as the users’ past mental models, which could be useful to analyze for research

and educational purposes. Thus, an efficient way to store and retrieve this information

is required.

• Extensibility (or interoperability): The toolset should be extensible to improve

adoption. For example, the toolset should be easily extended to support another visu­

alization interface, such as a web-based interface.

3.1.3 Notebook requirements

Wong proposed a continuous program understanding notebook infrastructure, which has

been referred by many reverse engineering tool builders as a design framework [83]. We

briefly preview how some of the Notebook requirements are addressed.

Requirement 2 (Program Understanding): “Recognize that design abstractions

are useful not only for the initial design but also as a way to convey high-level

understanding during evolution”.

Structural and computational views can be used throughout the evolution of a spread­

sheet, as they are always consistent with the latest version of the document.

Requirement 6 (Reverse Engineering): “Produce useful summaries o f software

structure while highlighting anomalies and filtering irrelevant details".

Anomalies can be detected by the Spreadsheet Analyzer and visualized by SHriMP.

A computational view filters out all the non-computational nodes. At any time, users can

show or hide specific types of nodes (representing cells or blocks) and arcs (representing

dependencies).

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Requirement 11 (User Needs): ‘‘Support the continuous understanding o f soft­

ware”.

SHriMP-Cell can be used at any time, and abstraction graphs can be persisted for further

analysis.

Requirement 15 (Cognitive Issues): “Provide interactive, consistent, and inte­

grated views, with the user in control

Interaction has been implemented to allow the user to take control. Also, users can

group cells in the customized view.

Requirement 17 (Process): “Organize the diverse array of information arti­

facts involved in software understanding

Low-level artifacts, high-level abstractions, and their relationships are organized in

GXL graphs.

Requirement 18 (Documentation): “Provide consistent, continually updated,

hypermedia software documentation

Users can zoom into any cell node to check the details of an artifact. When spreadsheets

change, the toolset can reload updated GXL graphs.

Requirement 20 (Human-computer interaction): “Integrate graphical and tex­

tual software views, where effective and appropriate”.

SHriMP views have been integrated with the spreadsheet view to ease comprehension.

3.2 System architecture

Figure 3.1 shows the overall architecture of the toolset. There are three main components:

Excel, SHriMP, and Spreadsheet Analyzer. SHriMP provides graph views based on the

artifacts and abstractions extracted from a spreadsheet. SHriMP views and Excel tabular

views together serve as the front end. The analyzer, which serves as the back end, reads and

parses Excel files, extracts useful information, and builds higher-level abstractions.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.xls gxi

Interaction

.cm d

.blk Files

Command
Q ueue

SHriMPExcel

Analyzer

Figure 3.1: The system architecture

3.2.1 Excel

Excel is the spreadsheet application used to read and edit spreadsheets. Excel has powerful

calculation capabilities, rich graphical tools, and a scripting interface. Visual Basic for

Applications (VBA) allows programmers to add functionality. An extension of Excel is

developed in VBA as part of the toolset, which supports interactions between Excel and

SHriMP, and offers user assistance in building high-level abstractions. This Excel extension

will be described in Section 3.4.2.

3.2.2 SHriM P

SHriMP is a domain-independent information visualization tool designed to help people

navigate complex information spaces and hierarchical structures. SHriMP visualizes an

information space in one nested graph, and users can zoom into any level of abstraction.

This avoids multiple windows, which can be disorienting to users. SHriMP has been in­

tegrated with the Spreadsheet Analyzer to provide both high-level and low-level views of

spreadsheets. SHriMP is adopted because it supports various comprehension strategies in­

troduced in Section 2.4. SHriMP is well designed and implemented using a Java Beans

architecture [78], which is easy to extend and reuse.

In SHriMP, various data input formats such as GXL (Graph eXchange Language) [39],

RSF (Rigi Standard Format) [7], XML (Extensible Markup Language) [2], and XMI (XML

Metadata Interchange) [11] are supported. GXL is chosen as the input data format to repre­

sent spreadsheets, because it is widely used as a graph format in reverse engineering tools.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is also an XML-based language, so it is easy to store and retrieve. We have explored

an efficient way to classify XML-based data so that they can be stored and retrieved effi­

ciently [64].

3.2.3 Interactions

As mentioned before, interactions between SHriMP and Excel are important, but the com­

munication is not easy to achieve because SHriMP is implemented in Java, and Java cannot

“talk” to VBA directly. To address this issue, we considered three design solutions.

1. Implement a message “server”, which allows SHriMP and Excel to communicate by

sending messages (a set of commands). The “server” can be implemented in different

ways:

• Simply create a “command queue file” to store commands for each tool. SHriMP

and Excel can communicate by reading and writing the appropriate file.

• Using a database to store “commands”. SHriMP and Excel can communicate

by accessing the database.

2. Using “Com-bridge” middleware such as the commercial tool J-Integra for COM [4]

or an open source tool Jacob [9] to fill the gap between Java and Excel.

3. Reengineer SHriMP in Microsoft Visual J++ (VJ) or J# so that it can interact with

Excel by using VJ or J#’s functions [5].

The last two solutions are discarded because they have to be implemented on Microsoft

Windows. Our design philosophy is to increase the adoptability of the toolset. Therefore,

the toolset itself should not heavily depend on a certain operating system. The “command

queue” solution is adopted, and we choose to use files instead of a database since the toolset

currently only supports single-user interaction (i.e., there are no command data consistency

issues). As shown in Figure 3.1, a “.cmd” file will be generated for each Excel file once it is

loaded into the toolset. When the user selects a cell node in SHriMP and chooses “Show in

Excel”, a com m and will be pushed into the command queue for Excel. Then, the user can

switch to Excel and click on the “Do SHriMP Request” icon. The corresponding cell will

be highlighted in Excel so that the user can get a mapping between SHriMP and Excel.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Spreadsheet Analyzer

The core component of the toolset is the Spreadsheet Analyzer, which can be seen as a

“bridge” between SHriMP and Excel. The Spreadsheet Analyzer reads and parses Excel

files into Java objects, identifies cell types and cell relationships, builds high-level abstrac­

tions, and generates GXL graphs, which can be visualized in SHriMP. Figure 3.2 shows the

modules and data flow of the Spreadsheet Analyzer. There are four modules in the analyzer:

Excel Reader, Fact Extractor, Abstraction Builder, and GXL Generator.

Excel Reader

Excel files
POI & JXL

m Java objects

Fact Extractor Abstraction Builder
'

[c o b * , , f Structural ^ ^C om pu ta tiona l^]: Customized ^
^ abstraction J ^ abstraction J abstraction J

GXL Generator

GXL graphs

Figure 3.2: The architecture and data flow of the Spreadsheet Analyzer

3.3.1 Reading Excel files

Excel uses a type of Binary Interchange File Format (BIFF) to store spreadsheets. Different

versions of Excel use different versions of BIFF. For example, Excel 10.0 (Excel XP) and

11.0 (Excel 2003) use BIFF8X, while Excel 8.0 (Excel 97) and 9.0 (Excel 2000) use BIFF8.

Rentz wrote a very detailed document on the Excel file format as part of the OpenOffice

project [66]. Application Programming Interfaces (APIs) have been developed to support

reading Excel documents in various languages, such as C, Java, Perl, Tel, and PHP.

Two Java APIs are adopted to read Excel files: Apache Jakarta POI [1] and Java Excel

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

API (JXL) [43]. POI (Poor Obfuscation Implementation) provides APIs to manipulate

various Microsoft office file formats such as Word and Excel. HSSF (Horrible Spreadsheet

Format) is POI’s subproject to read and write Excel files using Java. Similar to POI-HSSF,

JXL is another Java API to read, write, and modify Excel files. After testing both APIs,

we found that neither of these two APIs is “perfect” to fit our needs. POI-HSSF is more

powerful dealing with Excel formatting information such as frame borders, outlines, etc.,

but has limited formula support. JXL supports almost all Excel built-in functions, but cannot

handle some formatting information, such as outlines, which might be useful for future

analysis. POI also has a “shared formula” problem: if a spreadsheet has formulas that are

copied from other formulas, Excel will create a shared formula to represent these formulas,

and POI will fail to read them. The only solution we could find is to somehow “reenter”

these formulas (i.e., copy each formula string and paste it into each formula cell one by

one). However, every time the spreadsheet is changed, and saved again, these formula

strings need to be retyped again. This problem made scalability testing impossible, and we

hope the POI development team can fix this problem in the next release. Therefore, both

POI and JXL APIs are used to read Excel files to fully extract the low-level facts in this

thesis work.

After the original Excel file is read into Java objects, various artifacts can be extracted.

We are interested in the following kinds of artifacts.

• Cells: A cell could be a data cell (also called a literal, such as a number or string), or

a formula (which can refer to other cells).

• Cell referencing: Cell referencing happens in formula cells. There are two kinds of

cell references: relative reference (e.g., “A l”) and absolute reference (e.g., “$A1”,

“A1”). These references should be represented separately because spreadsheet

users often make mistakes when dealing with these two kinds of cell references [38].

• Comments: A comment is usually a piece of text attached to a cell. Since we observe

that comments usually contain important information, we treat them as a special kind

of cell and cell reference.

3.3.2 Graph eXchange Language (GXL)

GXL (Graph eXchange Language), an XML sublanguage, has been developed as a stan­

dard exchange format for graph-based data to support interoperability between different

software engineering tools. GXL is able to represent typed, attributed, directed, ordered

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

graphs, and it supports hypergraphs (graphs with n-ary edges) and hierarchical graphs

(graphs which contain subgraphs). GXL graphs are generated based on the spreadsheet

artifacts for SHriMP to then visualize. The following kinds of GXL nodes and edges can

be created in the fact extraction stage.

Data cell node: contains a cell’s address (reference represented in the “A l” style) and

value. For example, for cell B5 with a cell value “-5.0” on the “WeatherWatch” worksheet,

the GXL node looks like:

<node id="WeatherWatch!B5">
<type xlink:href="spreadsheet-schema.gxl#Data"/>
<attr name="value">

<string>-5.0</string>
</attr>

</node

Formula cell node: contains a cell’s address, value, and the formula string. For ex­

ample, the following GXL node represents cell C5 in the “WeatherWatch” worksheet. Its

value is “-23.0”, and its formula string is “B5-B$20”.

<node id="WeatherWatch!C5">
<type xlink:href="spreadsheet-schema.gxl#Formula"/>
<attr name="value">

<string>-23.0</string>
</attr>
<attr name="formula">

<string>B5-B$2 0</string>
</attr>

</node>

Comment node: contains the original cell’s address, and the comment content. For

example, the following GXL node represents cell C4’s comment.

<node id="WeatherWatch!C 4 !Comment">
ctype xlink:href="spreadsheet-schema.gxl#Comment"/>
<attr name="value">

<string>Column C:
The difference between the observed high temperature
for the day and the historical normal (average) high
temperature for this date.
... omitted ...
</string>

</attr>

</node>

Absolute cell reference edge: represents a formula’s reference of another cell by ab­

solute cell referencing. For example, the following GXL edge represents that cell C5 refers

to (depends on) B20 using absolute referencing.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<edge to="WeatherWatch!B20" from="WeatherWatch!C5">
ctype xlink:href="spreadsheet-schema.gxl#Absolute-reference"/>

</edge>

Relative cell reference edge: represents a formula’s reference of another cell by rela­

tive cell referencing. For example, the following GXL edge represents that cell C5 refers to

B5 using relative referencing.

<edge to="WeatherWatch!B5" from="WeatherWatch!C5">
<type xlink:href="spreadsheet-schema.gxl#Relative-reference"/>

</edge>

Comment reference edge: represents the relationship between a cell and its comment.

Note, comments are not cells in spreadsheets, but they often contain important information.

Therefore, comments should be captured as well. For example, the following GXL edge

ties cell C4 to its comment.

<edge to="WeatherWatch!C 4 !Comment" from="WeatherWatch!C4">
<type xlink:href="spreadsheet-schema.gxl#Comment-reference"/>

</edge>

3.3.3 Extracting artifacts

“Interesting” facts need to be extracted from spreadsheets, and stored in a format that can

be further analyzed by the Spreadsheet Analyzer. From the implementation perspective, the

basic goal of fact extraction is to build a list of GXL nodes and a list of GXL edges. GXL

nodes contain various types of Excel cells such as data cells, formula cells, and comments.

GXL edges contain inter-cell relationships such as relative reference, absolute cell refer­

ence, and comment reference. Cells are parsed one by one using both POI and JXL. For

each cell, there are the following possibilities based on the JXL cell object types.

1. Empty cell: if a cell is empty, this cell will be ignored.

2. Comment cell: if a cell has a comment, a GXL node will be created based on the

current cell address and the content of the comment. A GXL edge will also be created

which has a “comment reference” type, and points for the current cell node to the

comment node.

3. Formula cell: if a cell contains a formula, this cell needs to be further analyzed. JXL

can identify four different types of formulas based on the resulting value: boolean,

date, number, and string. If the formula does not refer to other cells, only one GXL

node needs to be created, and no GXL edge needs to be created. If the formula refers

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to other cells, not only a GXL node needs to be created from the current cell, but also

one or more GXL edges need to be created pointing the current cell to all the cells

referred to by the formula. Parsing these formulas will be explained in Section 3.3.4.

4. Data cell: if the current cell is non-empty and it does not contain a formula, it is a

data cell (could be a label or a number). Only a GXL node needs to be created for a

data cell.

At the fact extraction stage, the physical structure of a spreadsheet is revealed, i.e.,

cell-level artifacts and data dependencies from formulas are identified.

3.3.4 Parsing formulas

If a formula cell refers to other cells, all these dependencies need to be discovered. JXL’s

formula parser is used to find all the referred cell references in a formula. The class

jxlbiff.formula.StringFormulaParser can parse a formula string into a parse tree, and list

all the tokens such as cell references, operators, function names, etc. Since it is much easier

to grab a formula cell’s formula string in POI than in JXL, POPs method getCellFormula()

in class org.apache.poi.hssfusermodel.HSSFCell is used to retrieve a formula string. Then,

the formula string can be passed to the StringFormulaParser class, which has been extended

to get a list of the parsed tokens. From the inter-cell dependency perspective, it does not

matter what functions or operators are used. Only the cell references that the current for­

mula cell refers to are important. Therefore, any tokens that are not cell reference or range

reference tokens are filtered out by Java regular expressions.

In an Excel worksheet, the maximum number of columns is 256, and the maximum

number of rows is 65536. Thus, based on the “A l” cell reference style, a cell reference

could start from letter A to IV, and end with a number from 1 to 65536. A dollar sign

($) could appear before either a column or a row to specify absolute cell referencing. The

following Java regular expression is used to detect cell references and functions.

\ \ $? ([A - Z] | [A - H] [A - Z] | [I] [A - V]) \ \ $? \ \ d +

For succinctness, the regular expression does not check the row boundary 65536. For

example, IF is an Excel built-in function, while IF2 is a cell reference. To match a range

reference (e.g., A1:B5), two cell reference regular expressions can be concatenated with

a colon (:). For range references, every non-empty cell within each range needs to be

considered as an individual reference.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.5 Building abstractions

In the fact extraction stage, the physical artifacts such as cells, formulas, comments, and

their relationships are identified and stored in lists of GXL node and edge Java objects.

Based on these physical artifacts, a spreadsheet can be analyzed to build higher-level ab­

stractions. We define three kinds of abstractions.

1. Structural abstraction: structure is based on the spreadsheet’s spatial layout. Cells

close to each other will be grouped as a block.

2. Computational abstraction: identify the input, calculation, and result blocks in each

worksheet. Calculation-based spreadsheets (documents that contain formulas) usu­

ally have a visually hidden data-flow. Input data will be computed upon to generate

results.

3. Customized abstraction: users can group cells into blocks arbitrarily to build “con­

ceptual” abstractions. In each problem domain, users usually have certain types of

cells based on their domain knowledge. For example, in a finance report spreadsheet,

there might be conceptual types such as income, balance, interest, etc. Grouping cells

based on semantics would help users to better understand their spreadsheets.

Structural abstraction

Structural abstraction focuses on the spatial layout of a spreadsheet. We observe that spread­

sheet users usually follow certain conventions to design their spreadsheet layout so that

spatial patterns imply design semantics [36, 56]. Figure 3.3 shows a structural view of the

weather spreadsheet. Green rectangles represent data cells, green ellipses represent com­

ments, and green triangles represent formulas. Solid lines represent relative references, and

dotted lines represent absolute reference. Users can easily tell the types of cells and cell

references at a glance.

The basic idea of the structural abstraction is to partition all non-empty cells into clus­

ters based on the distance between two cells. Cells that are “close” to each other are par­

titioned into the same cluster. Euclidean distance is used to compute the distance between

two cells [34], The distance between Cell i and Cell j is defined as following:

d(Celli , Cellj) = y (Columrii — C olum nj)2 + (Rowi — R o w j)2

A cluster can be defined as a group of cells, in which the distance between each pair

of adjacent cells is equal to or less than a threshold k. Observation of spreadsheets shows

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* SHriMP Spreadsheet
=*>” '&)« Node- Navigate Tools Help Wnoow De

v W eather .S tructuralV iew .gxt

for helpc** oo Hefc»»

V***V*'MA» V»i*«'MtfciAS VA«J*VMM8U VfOl.i'WlcWDU ’,Vi»«»i.V/«WBlf MMhc'V«NBU <ik«lwV**bCl4 Wi»t«i'V«4dU VMwrĴ ditBV

vaAB'AWtwai va«Ikv»*wb4 v,v<a.i-,vn,iiiB; '.lA.fc-iVWMBe ■'tt.avv'&MtWBf ■jA.awWa.hiw W«ityi‘j/.iiiiiBio v**h«v*miDli v*i«"V*iiiiiBi!

VN«„>J/«il6f 'W-tf.lW-fWDil V*-<lw'eM.K't>J V-JyVJAtdltDS ,\lfart*.*WI3JO*

V»«UlW*4,-** v>ntrjIMBhlB . VtulM'Mfrti'B)/ V4nbrVM<]>>M«WWi«l r*#-4*lW«*ICie V-MtwWWOICll VtrM W lCl! V4«t*V»»>,IC

■JiXViVA«l.lca. ',".A..Wdl'C> ^uNtVArjilO V*nUi‘J*rfiltll 1

▼ ▼ ▼
▼ ▼ ▼ ▼ ▼ ▼

■QntriuMir-^cW^Wj^etMP''. v » * i ! t w n t s t S ' «*«)*'«: urn

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
aurvMfhien : w.*«.w*wai3r.v*<<»ww!'*t»i:: ^*»rtNvwoii- ^^m xi.i4> t/>'>(v«t4<is«iw4 -''v/T*aM'4V(!iiot wm^wihUB

▼ ? ▼ ▼ r ? ? v ▼

’."W'tM'VKea.fflS

p s m
t- 'X iftR r • vihuM zM u .-i

'Y W ▼
W W w W

J g u g _ g — -

Navigation: Magnify v :

Figure 3.3: A structural view of the weather spreadsheet

that most people just use an empty row or column to separate different groups of cells.

Therefore, y/2 is chosen for the distance threshold k. That is, cells that are next to each other

vertically, horizontally, and diagonally are in the same group. For a given Cell(ij) (i is its

column index, and j is its row index), there might be 8 adjacent cells: Cell(i-l,j-l), Cell(i,j-

1), Cell(i+l,j-l), Cell(i-l.j), Cell(i+l,j), Cell(i+l,j-l), Cell(i+l,j), and Cell(i+l,j+l) as

shown in Figure 3.4.

C e l l . i - 1 . j - l) C e l l (i J - l) C e l l (i+ 1 , j - 1)

C e l l (i -1 .j)_ jC e l l (i . j) ' C e l l (i + i , j) ’ ’

C e l l (i - 1 . j + 1) C e l l (i , j + 1) ;C e l l (i + 1 . j + i)

Figure 3.4: A cell’s possible adjacent cells

Therefore, the goal of structural abstraction is to find a set of cell blocks. In each block,

cells are all adjacent to each other directly and indirectly. Cells from different blocks are

not adjacent to each other. The algorithm to structurally partition a worksheet is as follows.

Input: a list of cells from one worksheet

Output: a set of cell blocks

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Method:

1. Create a hashtable based on the given list of cells (denoted as
"cell hashtable");

2. Create a list to hold cell blocks (denoted as "block list");

3. WHILE the cell hashtable is not empty
4.
5.
6 .
7 .

1 0 .
1 1 .

Create an empty cell list;
FOR each cell in the cell hashtable

Find the cell's adjacent cells in the cell hashtable;
Insert the found adjacent cells into the cell list if

they do not exist;
Remove them from the cell hashtable;
Recursively repeat step 6 for each currently found

adjacent cell until no more adjacent cells can be found;
END FOR
Insert the cell list to the block list;

12 .END WHILE

Computational abstraction

■ Pa
..

.iti.iwiishcia ,3 . . i . ' . i . c i s i. hii. i**;.'! h

X 3 Z J Z J Z J Z

▼ " W ' w W w

ISiS: 3E It
J Z J L ▼ ▼ ▼ ▼

F igure 3.5: A structural v iew o f the w eather spreadsheet

Computational abstraction identifies high-level computational ranges such as input, cal­

culation and output (result) blocks. In the computational abstraction, only input cells and

formula cells are considered. Non-referred data cells such as label cells and stand-alone

data cells are filtered out, because they do not contribute to any calculation. Figure 3.5

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shows a computational view of the “weather” sample spreadsheet.

The goal of computational abstraction is to find all input cells and formula cells, and

partition them into three blocks: inputs, calculation, and results. At the fact extraction

stage, each non-empty cell has a corresponding GXL node. For each formula, each cell that

it refers to has a corresponding GXL edge (pointing from the formula cell to the referred

cell). Therefore, it is easy to filter out all the non-referred data cells; those cells that do

not exist in any absolute or relative reference GXL edge must be a non-referred cell. The

algorithm to partition a worksheet into computational blocks is as follows.

Input: a list of cells (GXL nodes) and a list of cell referencing pairs (GXL edges) from

one worksheet

Output: input, calculation, and result cell blocks

Method:

1. Build a list of computational cells (input cells and formulas) by
filtering out all cells that do not exist in any cell referencing
pairs (GXL edges);

2. Create three cell blocks: inputs, calculation, and results;

3. FOR each cell in the created computational cell list
4. IF the cell's GXL node type is not the formula type
5. Insert it into the inputs block;
6. ELSE IF the cell's reference appears in a cell referencing pair

(GXL Edge), and the cell is a referred cell ("target" node)
7. Insert it into the calculation block;
8. ELSE Insert the cell into the results block;
9. END IF
10.END FOR

Customized abstraction

Customized abstraction allows the user to build cell blocks based on their domain knowl­

edge and preferences. First, the user needs to specify cell blocks in Excel (how Excel

interacts with SHriMP-cell will be explained in Section 3.4.2). Then the Spreadsheet Ana­

lyzer will build blocks based on the user’s inputs. Figure 3.6 shows a customized view of

the “weather” spreadsheet.

3.3.6 Detecting anomalies

Anomalies are cells or ranges that might contain errors. Automatically detecting anomalies

can significantly reduce the workload of spreadsheet auditing. Sajaniemi’s absolute-direct

and relative-offset (ADRO) cell referencing representation is adopted to detect anomalies

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* jH i IMP G p r ra d i lw e l

f W ea th e r_ (u ? 1 o n i1 /c d lV ie w .g * t

1 3 * . ? ^ < 3 a "

VAfhiriB.tEXI w.-Mwiaorismm ▼ ▼▼ ▼VAafratCId WxtviH’t?

▼ ▼
— ii w . ▼▼

) ■■

Diaif
-

B - J i l 11 L J
i«>>itw<DU tKtnt^P-y. - VArtwlc*-' W.tu!lL'

m m M m
m m

> <CUl *C11

WOU.HOIU VAMwltlU vAVfji 1 SIT.:-. V* Vs. !Sli

▼ ▼ ▼ ▼
VAnlaffiFW VA4ta3'll MifcllFli

▼ ▼ ▼ ▼ V V V7 V
VAalrt'OH WmiIhiG? WoKjIW VAvI.riOr

▼ ▼ ▼ ▼
MAvhaT.4 ■ . WtiKrtr- • .

▼ ▼ ▼ ▼
MKbwt' w.A.i»> wntMin

▼ ▼ ▼ ▼
▼ ▼ ▼ ▼ ▼ ▼

| NtfeUbet*. Above Noda (fued) v j A r c (j Navlgaloa Magnify:-

For Kelp efc* cn Hat>»> Manual

Figure 3.6: A customized view of the weather spreadsheet

among formulas which follow certain patterns [69]. The basic idea of ADRO is to rep­

resent a formula’s absolute cell references using direct reference (the physical cell refer­

ence) and relative cell references using offsets to the formula’s cell reference. In ADRO,

a cell reference (for cells referred to by a formula) is a quadruple (c s ,c ,r s ,r), where c

and r are integers representing column index and row index, cs and rs are column and row

symbols which may be either A (absolute) or R (relative). For example, for a given for­

mula cell E9 with a formula string =D9-D$20, the ADRO representation of E9 will be:

= (R,1 ,R,0) - (R, 1,A,20)

ADRO representation isolates the formula’s cell references from its physical location.

Therefore, ADRO is very capable to compare whether or not a group of formulas follow

the same “pattern”. For example, in the “weather” spreadsheet, formulas in Range E5:E14

follow the same pattern because their ADRO cell references are the same: — (R. 1, R. 0) —

(R, 1, A, 20). If Cell ElO’s formula is changed to =D11-D$20 by mistake, the ADRO cell

references will be changed to: = (R, 1, R, 1) — (i?, 1 ,A , 20) which violates the pattern of

its adjacent formulas. SHriMP-Cell can detect such anomalies and visualize them using

an anomalous type of node as shown in Figure 3.7. Red is chosen to represent anomalous

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

formulas.

ii t, ivc-:? . ssjf; -a;

\ \

▼
. T

I.J NtvlgatiOfv Magntty. v

ftit h*t> cldron Help»

Figure 3.7: An anomaly detected in the weather spreadsheet

3.3.7 Generating GXL graphs

Finally, GXL graphs are built based on the extracted low-level facts and high-level abstrac­

tion information. SHriMP uses the “contains” type of GXL edge to represent nested graphs.

Therefore, to put cell nodes, blocks, and worksheets in a hierarchy, “contains” edges need to

be generated. For each worksheet, each non-empty block inside the worksheet will generate

a “contains” edge pointing from the worksheet node to the block node. For each block, each

cell node inside that block will generate a “contains” edge pointing from the block node to

the cell node. Figure 3.8 shows part of the computational view GXL graph of the “weather”

spreadsheet.

3.4 Tool integration

Tools should be integrated to improve usability and enhance the capabilities of each indi­

vidual tools [51]. This section describes how SHriMP, the Spreadsheet Analyzer, and Excel

are integrated together.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gxl-1.0.dtd">
<gxl>

<graph id="Weather">
<node id="WeatherWatch!B5">

<type xlink:href="spreadsheet-schema.gxl#Data_WeatherWatch"/>
<attr name="value">

<string>-5.0</string>
</attr>

</node>
<node id="WeatherWatch!C5">

<type xlink:href="spreadsheet-schema.gxl#Formula_WeatherWatch"/>
<attr name="value">

<string>-23.0</string>
</attr>
<attr name="formula">

<string>B5-B$20</string>
</attr>

</node>

... omitted ...

<node id="Results_WeatherWatch">
<type xlink:href="spreadsheet-schema.gxl#Block"/>

</node>
<node id="WeatherWatch">

<type xlink:href="spreadsheet-schema.gxl#Worksheet"/>
</node>
<edge to="WeatherWatch!B5" from="WeatherWatch!C5">

<type xlink:href="spreadsheet-schema.gxl#Relative-reference"/>
</edge>
<edge to="WeatherWatch!B20" from="WeatherWatch!C5">

<type xlink:href="spreadsheet-schema.gxl#Absolute-reference"/>
</edge>

... omitted ...

<edge to="WeatherWatch!C7" from="Calculation_WeatherWatch">
ctype xlink:href="spreadsheet-schema.gxl#contains"/>

</edge>

... omitted ...

<edge to="Results_WeatherWatch" from="WeatherWatch">
<type xlink:href="spreadsheet-schema.gxl#contains"/>

</edge>
</graph>

</gxl>

Figure 3.8: An example of partial GXL file

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gupro.de/GXL/gxl-1.0.dtd

3.4.1 Integrating the Spreadsheet Analyzer with SHriM P and Excel

SHriMP is integrated with the Spreadsheet Analyzer by a menu extension as shown in

Figure 3.9. Users can choose one of the three views to visualize a spreadsheet. Once a view

option is chosen, a file chooser dialogue will appear that asks the user to pick an Excel file.

Once an Excel file is selected, a GXL graph (named as the Excel file name followed by the

view’s name, and with a .gxl file extension) will be generated if the graph does not already

exist and opened in SHriMP. If the graph already exists, another dialogue will appear asking

the user whether or not to re-generate the graph.

5) S ll i iM t ' S |in-atlslieot

File Edit

- j . nl
Tools Help WiritioW: Demo tS j

O p e n StructurelV iew ...

O penC o m p u ta tio n aiv iew ...

tCustom teedV iew

| For help dick on Help > > Manual

Figure 3.9: A spreadsheet menu extension to SHriMP

To extend the SHriMP menu, the class ca.uvic.csr.shrimp.ShrimpApplication. Stan-

dAloneApplication.StandAloneApplicadon.java needs to be extended. Each new menu item

has a corresponding action which opens a file chooser. If an Excel file is selected, a Shrim-

pApplication object will be created based on the GXL graph generated by the Spreadsheet

Analyzer.

3.4.2 Bridging SHriM P-Cell and Excel

As introduced in Section 3.2.3, SHriMP-Cell and Excel can “talk to each other” by reading

and writing command files. The interaction features are accessible by adding an add-on

menu and toolbar in Excel. This solution was proposed by Sajaniemi et al. in designing the

S3 visualization technique [68]. Figure 3.10 shows the installer of the Excel extension.

To install the Excel extension, users just need to click on the ’’Install Excel Extension”

button. Toolbar icons will be created as shown on the top left comer in Figure 3.10. The first

icon is for performing requests from SHriMP; the second icon is for customized clustering

of cells into blocks; the third icon is for removing existing customized clusters.

Do SHriMP request: For example, to select an Excel cell corresponding to a SHriMP

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Excel Extension Installer

Install Excel Extension

Help

Uninstall Excel
Extension

it ■< * w \in s ta H e r^ H e lp /
Ready

Figure 3.10: The installer program to install/uninstall the Excel extension

node, users first need to right-click on a data or formula node in SHriMP, and click on the

“Show - Cells in Excel” menu item as shown in Figure 3.11. Then, users can switch to

Excel and click on the “Do SHriMP Request” icon. The cell will be highlighted in Excel.

W e a th e rW ateh!E2Q I I

Labels ►

Arrange Children ►

Arrange Selected Items ►|

Select ►
{
j......................

Show ► □ Closed

HD Children

Expand All Descendents *** Cells in Excel

■ Collapse Annotation

Coliapssi Ail fecrendents Attributes

Filter

Unfilter All

Figure 3.11: Pop up menu from SHriMP node

To extend the SHriMP pop-up menu, three classes need to be extended:

ca. uvic. csr. shrimp. PanelModeConstants.java,

ca.uvic.csr.shrimp.DataBean.AbstractArtifact.java, and

ca. uvic. csr. shrimp. DataBean.SimpleDataBean. SimpleA rtifact.Java

Add/remove blocks: As introduced in Section 3.3.5, the customized abstraction needs

the user’s input of cell clustering. This can be done by using the Excel extension as shown

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Figure 3.12. Users can group cells as a block, and specify the name of the block. The cell

range reference is the default name of a block. Currently, blocks are not allowed to overlap.

iM- i ' 1 " ' >
:« 3 ^ 6.* imwt vsn** Iwb „ . •« „r _ a x

;J'* J i i S _ CL *■ '-iJ'rtL'„«./• * ^ *
1 J ScU r- *L J “ . • .o • f i] / » *, ^ U 3 * « J 3

_ | y f e ■■ | p - - - -E- i p-- § h i r=
1 I W eather W a tch -D a lly T e m p e ra tu re s -M a y 2000
2;
2 i Date Daily Hrnli Temp Daily Low Temp Record?

: Observed DifF from Norm Observed Diff from Norm Hi rih Low
5 loi-Mav : -5.0 -23.0 -26.0 -36.0 *

02-Mav 6.0 -12;0 -4.0 -14.0
03-Mav 15.01, •____ -2LQ . .„..m,o Q,Q
04-May 19.5 jj Set B kxk Marne
05-Mav 18.0

ter Bock I.10 06-Mav j_(-i Ptaara enter .a name23.0-'; ' 1
11 07-Mav ..26.0 . Cancel 1.

: : 08-May 30.0 . --
1 3 09-Mav 27,0
1 4 10-May 25 5 • jWeatheriB3:$C(14

1 5
1 6 , AVERAGE 18.5 0.5 8.4 -1,6
17 MINIMUM -5,0 -23.0 -26.0 -3.6,0
18 MAXIMUM 30.0 12.0 19.0 9.0

, 1 9
20 HISTORICAL 18,0 30.0 10,0 -25.0

Normal hit|lt Record Hl<tl> Normal Low Record Low
22-i
.11.1

: ,.2©]................77 : VI m ”"*iB■"><j’. ; ;v ..vv—---.............. |<j : . . j i
Sam-190.0 .•:

Figure 3.12: Add a cell block using the Excel extension

Block cell references are added to a “.blk” file so that the Spreadsheet Analyzer can

read them to build customized views. If users want to build new blocks, they can remove

all the existing blocks easily by clicking on the “Remove All Blocks” toolbar icon.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Evaluation

Evaluation is important for software visualization tools because tools need to be evaluated

to show their effectiveness. However, evaluation is often a challenging task, especially

when time and resources are limited. Ideally, a tool should be evaluated for real-world

projects with real users (field studies). This is usually hard to achieve in academia. Even in

industry, the limited number of subjects and the variety of tasks restricts the usefulness of an

evaluation. Therefore, various alternative evaluation techniques such as “quick and dirty”

evaluations, controlled user studies, and predictive evaluations have been introduced [63].

Besides these “inexpensive” evaluation techniques, we also proposed an evaluation method

based on perceptual theories, and it has been successfully used to evaluate the SHriMP

visualization [76], and the layout of UML diagrams [84],

SHriMP-Cell is designed to assist end users to better understand spreadsheets. Thus,

both the usability and effectiveness of the tool need to be evaluated. The goal of the eval­

uation is to validate whether this toolset is easy to learn, pleasant to use, and effective in

helping to understand spreadsheet structures. This chapter introduces how SHriMP-Cell

has been evaluated by guideline-based methods, a user study, and theory-based principles.

Figure 4.1 shows how these different evaluation techniques are used in this thesis.

4.1 Guideline-based evaluation

As mentioned earlier, usability is one of the key issues that need to be addressed in end-

user tool design and evaluation. However, many people, especially those from academia,

find that many usability methods are often too expensive, too difficult, and time-consuming

to use. Therefore, many “discount” usability inspection methods have been developed,

such as heuristic evaluation, pluralistic usability walkthrough, claims analysis, cognitive

walkthrough, feature inspections, etc. [58]. These usability inspection methods usually

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G en era l
S p re a d s h e e t

SHriM P-Cell Excel

U ser
E xperim en ts

P ercep tu a l
T h eo rie s

C ognitive
D im ensions

H euristic
E valua tions

G u id e lin e -b a se d U se r-b ase d T h e o ry -b ase d

E ffectiv en essUsability

Figure 4.1: The evaluation framework in this thesis

only require a small number of users and are still effective [67],

4.1.1 Heuristic evaluation

Heuristic evaluation is adopted, because it is an inexpensive technique to evaluate the us­

ability of a user interface. It only requires a few evaluators, yet it is still effective [59].

Nielsen found that the optimal number of evaluators for the best ratio of the benefits to

the costs is three to five [58]. The ideal evaluators should be user interface design experts.

Heuristic evaluation is used in this thesis work as a discussion technique, and as a question

source for the user experiments.

The original criteria used in heuristic evaluation were presented in [52]. After a factor

analysis of 249 usability problems, Nielsen revised the usability heuristics to the following

list of criteria [57, 58]. We briefly explain each heuristic and add our toolset analysis.

1. Visibility o f system status: “The system should always keep users informed about

what is going on, through appropriate feedback within reasonable time.”

SHriMP-Cell has good visibility in general: the system usually keeps the user in­

formed of what happened. This criterion will be further analyzed in Section 4.2.

2. Match between system and the real world: The system should use the terminologies

familiar to the user, rather than system-oriented terms. The system should follow

well-accepted conventions, making information appear in a natural and logical order.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The terminology used in SHriMP-Cell are common terms used in software and com­

puter graphics.

3. User control and freedom: The system should provide a clearly marked "emergency

exit” to leave the unwanted state. The system should also support undo and redo.

SHriMP provides “Back”, “Forward”, and “Home” icons to ease navigation and to

prevent users getting lost. “Back” and “Forward” bring the user to the previous and

next state. “Home” can bring the user back to the start state.

4. Consistency and standards: “Users should not have to wonder whether different

words, situations, or actions mean the same thing.”

Naming is consistent in SHriMP-Cell. For example, “cell” and “block” from Excel

are also called “cell” and “block” on the SHriMP side.

5. Error prevention: Good design should prevent a problem from occurring in the first

place.

In SHriMP-Cell, the Excel extension prevents users from making a mistake by giv­

ing warnings. For example, if the user clicks on the “Remove All Blocks” icon, a

confirmation dialog will appear asking the user to confirm the deletion.

6. Recognition rather than recall: Things should be visible so that the user does not

have to remember much information.

When a user mouses over any icon in SHriMP and the Excel extension, there is

always a description about the function of that icon so that users do not have to

remember.

7. Flexibility and efficiency o f use: Short cuts should be provided to speed up the

interaction.

In SHriMP, many features have shortcut keys. For example, “h” will go to “home”,

“+” will zoom into a node, etc.

8. Aesthetic and minimalist design: D ialogues should not contain any irrelevant or

rarely needed information.

Dialogs in SHriMP-Cell are usually concise.

9. Help users recognize, diagnose, and recover from errors: error messages should be

defensive, precise, and constructive.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Error messages in SHriMP-Cell are clear. For example, if the user tries to add a

cluster that overlaps with existing clusters using the Excel extension, a dialog will

appear with the error message, “clusters cannot overlap each other”.

10. Help and documentation: The system should contain instructive help and documen­

tation.

In SHriMP-Cell, the Excel extension has a complete help document. While for

SHriMP, since it has been evolving for many years, the help documentation is not

up-to-date, and some features such as the “Query View tool” have no documentation.

We added help documentation in the tutorial for all the SHriMP features used in the

user study.

4.1.2 Cognitive dimensions

Heuristic evaluation is useful to evaluate the user interface of a system, and is usually per­

formed by user interface design experts. However, spreadsheet systems might also have

notational issues, and the evaluators in our user study are not experts in human computer

interaction. To address the limitations of heuristic evaluation, cognitive dimensions are

also adopted to evaluate spreadsheets and SHriMP-Cell. This is a framework (discussion

tool) designed for people, including non-specialists, to evaluate the usability of information-

based artifacts and notations [17]. Cognitive dimensions have been applied to evaluate the

usability of spreadsheets and their extensions [18, 37, 42, 80].

In this section, we discuss how SHriMP-Cell addresses some spreadsheet usability is­

sues from the cognitive dimensions perspective. This discussion is based on previous stud­

ies done using cognitive dimensions, our analysis, and observations from our user study

which will be introduced in Section 4.2. A complete description of the cognitive dimen­

sions framework is available in [33].

1. Viscosity (‘‘resistance to change”)

Viscosity should be minimized.

Spreadsheet: not a problem for small changes because users can simply change cell

content. However, larger changes that might affect the whole spreadsheet need more

care.

SHriMP-Cell: SHriMP-Cell can easily highlight cell dependencies both direct and

indirect. Therefore, large changes in spreadsheets can be less problematic if cell de­

pendencies have been well checked carefully before making the changes.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Hidden dependencies (“important links between entities are not visible ”)

Hidden dependencies should be minimized.

Spreadsheet: there are hidden dependencies in spreadsheets, and it is hard to check

all the cell dependencies at a glance. Checking indirect cell dependencies is even

harder.

SHriMP-Cell: SHriMP view shows all the direct cell dependencies at a glance, and

the Query View can detect all direct and indirect cell dependencies for one or more

nodes.

3. Visibility andjuxtaposibility (“ability to view components easily")

Visibility and juxtaposibility should be maximized.

Spreadsheet: visibility is satisfactory for spreadsheets in general, especially if users

combine the spreadsheet normal view and the formula view.

SHriMP-Cell: SHriMP-Cell can enhance visibility by showing all worksheets at the

same time in the same graph.

4. Secondary notation (“extra information in means other than program syntax”)

Secondary notation should be minimized.

Spreadsheet: a trace feature can add arrows to a spreadsheet, which can be considered

as a secondary notation.

SHriMP-Cell: SHriMP view brings a separate secondary notation, which will be dis­

cussed further in Section 4.2.

5. Closeness o f mapping (“closeness o f representation to domain”)

Closeness of mapping should be maximized.

Spreadsheet: formulas and cell values are closely related to calculation needs, and

they can describe the problem domain easily.

SHriMP-Cell: the SHriMP view and the spreadsheet view can be closely mapped

if the layout of SHriMP views can keep the spatial order of cells (e.g., layout by

columns).

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Progressive evaluation (“work-to-date can be checked at any time ”)

Progressive evaluation should be maximized.

Spreadsheet: the progress in creating a spreadsheet can be easily checked at any time.

SHriMP-Cell: SHriMP can be updated any time when the spreadsheets are changed,

so the progress can be presented by SHriMP-Cell.

7. Hard mental operations (“high demand on cognitive resources”)

Hard mental operations should be minimized.

Spreadsheet: formula creation and tracing dependencies usually require hard mental

operations.

SHriMP-Cell: SHriMP-Cell can ease tracing cell dependencies and reveal computa­

tional data flow.

8. Diffuseness/Terseness (“verbosity o f language”)

Diffuseness should be minimized, and terseness should be maximized.

Spreadsheet: notations in spreadsheets are concise.

SHriMP-Cell: SHriMP’s graphical view is also succinct because artifacts and rela­

tions are all embedded in one nested view.

9. Abstraction (“types and availability o f abstraction mechanisms ”)

Abstraction should be maximized.

Spreadsheet: Abstraction can be implemented using macros or VBA scripts.

SHriMP-Cell: SHriMP-Cell provides three kinds of abstractions: structural, compu­

tational, and customized.

10. Role-expressiveness (“the purpose o f a component is readily inferred”)

Role-expressiveness should be maximized.

Spreadsheet: role expressiveness in a spreadsheet depends on how well it is laid out,

and how meaningful the labels are.

SHriMP-Cell: the computational view improves role expressiveness by illustrating

data flow.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11. Error-proneness (“notation invites mistakes")

Error-proneness should be minimized.

Spreadsheet: it is easy to make mistakes in creating formulas and making cell refer­

ences.

SHriMP-Cell: The anomaly detection and trace dependency features in SHriMP-Cell

can help reduce errors.

12. Perceptual mapping (“important meanings conveyed by position, size, color, etc.")

Perceptual mapping should be maximized.

Spreadsheet: perceptual mapping in spreadsheets is normally weak because all cells

look similar in terms of size, and shape, although good use of color might help.

SHriMP-Cell: SHriMP-Cell conveys very good perceptual mapping by using color,

size, and nesting, which will be discussed in Section 4.4.4.

4.2 User study

4.2.1 Goals

A user study was conducted to evaluate SHriMP-Cell based on real spreadsheet users. The

main goal of the user study is to evaluate the usability of SHriMP-Cell, i.e., whether or

not it is easy to learn, and pleasant to use. We also have the following goals besides the

usability evaluation.

• Observe what strategies end users use to navigate and understand spreadsheets.

• Evaluate the effectiveness of SHriMP-Cell by comparing it with Excel 2003 ’s for­

mula evaluator tool (trace tool).

• Ask users questions from the heuristic evaluation and Cognitive Dimensions frame­

works that are difficult to analyze.

The user study followed the design and procedure of Storey and Wong’s study on eval­

uating software comprehension tools [75].

4.2.2 Pilot experiments

A pilot user, a professional software developer, was asked to use both Excel and SHriMP-

Cell in two separate pilot experiments. The purpose of the pilot experiments was to find

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

potential problems in the user study early and improve its design. Through the pilot ex­

periments, we realized that the training for each tool should be more detailed, and some

tasks were too big to be finished under the time limit. Also, by reviewing the pilot study

videos, inappropriate actions such as giving the user too many hints during the formal tasks

were identified. We believe that the pilot experiments significantly improved the real user

experiments.

4.2.3 Participants

Four participants (two males and two females) with a diversity of backgrounds were re­

cruited at the University of Alberta. User A is a multimedia developer; User B is an e-

learning design specialist; User C is a senior undergraduate engineering student minoring

in business; User D is a chemistry graduate student. Each participant has at least 5 years

experience with spreadsheets, and most of them have worked on over 200 spreadsheets.

Prior to the experiments, each participant was asked to complete an on-line pre-study ques­

tionnaire to collect their experience with spreadsheets. Appendix B lists all the questions.

The answers were compared to help divide the participants into two groups of similar ex­

periments.

4.2.4 Experiment design

Two sets of experiments were designed to evaluate SHriMP-Cell and Excel. In the SHriMP-

Cell experiments, users were allowed to use SHriMP-Cell and the formula view in Excel,

but they were not allowed to use other auditing tools in Excel such as trace precedents and

dependents. In the Excel experiments, users were allowed to use the formula view and the

trace features, as well as common tools such as text search in Excel. The objective of run­

ning these two sets of experiments is to evaluate whether SHriMP-Cell is more effective

than Excel in finding cell dependencies. Based on the users’ expertise with spreadsheets

collected through the pre-study questionnaires, two intermediate-advanced users were as­

signed to the SHriMP-Cell experiments. One advanced user and one beginner-intermediate

user were assigned to the Excel experiments. Figure 4.2 shows how tool features are divided

for the experiments.

In each experiment, there were six phases in total, and all of them were audio recorded.

The training, practice, and formal task phases, which required users to use the computer,

were also video recorded for further analysis.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SHriMP-Cell Query
View Excel Trace

Excel with Formula View

Figure 4.2: Two sets of experiments

4.2.5 Phases

Each user experiment took approximately 90 minutes and contained six phases: orientation

(5 minutes), training (15 minutes), practice (15 minutes), formal tasks (40 minutes), post­

study questionnaire (5 minutes), and post-study interview (10 minutes). For the SHriMP-

Cell experiments, training and practice took a bit longer, because SHriMP-Cell has more

new features for the user to learn than Excel.

Orientation: In the orientation phase, each user was informed of the purpose of the

user study: to explore how end users understand spreadsheets, and evaluate tools to help

end users in better understanding spreadsheets. Users’ rights were reviewed and they were

asked to sign the consent form in Appendix C. We stressed the point that this study is meant

to evaluate tools, not users, to make sure the users felt relaxed and comfortable.

Training: In the training phase, basic spreadsheet concepts were reviewed, such as

formulas, input cells, absolute and relative cell referencing, etc. A good understanding of

these concepts is essential to finish the required tasks. A subset of tool features, which we

believe necessary to finish the tasks, were demonstrated. The demonstration was based on

a very small spreadsheet called “Macs.xls” that basically compares various prices of Mac­

intosh computers. More detail of the training is described in the experimenter’s handbooks

in Appendix D and Appendix E.

Practice: In the practice phase, users were first asked to browse over a small spread­

sheet called “Weather.xls”, and try all the features of the tool introduced in the previous

training session. This is to ensure that users have learned how to appropriately use the tool

for comprehension tasks. Also, we observed how the users browsed over the spreadsheet,

i.e., what strategies they use to understand the spreadsheet. Then, users were asked to do

a few simple cell referencing and cell dependency tracing tasks to get them ready for the

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

formal tasks. During the practice session, users can ask any questions about the tool, or

how to do a task if they have no clue.

Formal tasks: This is the main phase of the whole study, because observing how users

use the tools to work on formal spreadsheet understanding tasks provides valuable feedback

about the usability and effectiveness of each tool. Time is strictly limited to 40 minutes in

this phase. The landline phone in the lab was disconnected and the users were asked to turn

off their cell phones to minimize potential interruptions. Users can ask questions regarding

tool features and clarification of the given tasks, but they were not supposed to ask questions

on how to solve a problem. Tasks were given to each user one by one in the same order.

The users did not see the next task until they finished or gave up the current one.

Post-study questionnaire: After the formal tasks phase, each user was given a list of

questions regarding the ease of use, ability to find cell dependencies, and overall satisfac­

tions of the tool. They were encouraged to finish the questions quickly based on their first

impressions.

Post-study interview: In the last phase, users were asked informally about their expe­

rience using the given tool. They were encouraged to express any issues raised and provide

suggestions to improve the tool.

4.2.6 Experiment variables

This subsection discusses some factors that might affect an experiment and the participants’

performance.

Experiment environment: All the user experiments were conducted in the Software

Engineering lab at the Department of Computing Science, University of Alberta. The com­

puter used is an IBM PC workstation with Pentium 4, 2.4 GHz CPU and 1 GB RAM. The

workstation has dual 18-inch monitors, and it is running Windows XP Professional. A video

camera was set up to record the dual screens, over the participant’s head. We observed that

the dual-monitor is very useful for the study, especially for the SHriMP-Cell users, because

they could see both the SHriMP view and the Excel view without switching back and forth.

This observation is consistent with Storey’s discovery that programmers nowadays often

take advantage of larger screens and multiple monitors for complex tasks [72].

Chosen spreadsheets: Three spreadsheet documents were chosen for the user exper­

iments. For the training, a very small spreadsheet was used which compared Mac com­

puter prices, and it had two worksheets. For the practice, a small spreadsheet (18 rows

and 7 columns in one worksheet) was used which lists the daily temperatures for a month

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and computes the average, minimum, and maximum temperatures. This weather spread­

sheet has only one worksheet (“WeatherWatch”), and it is taken from an education technol­

ogy course [81]. For the formal tasks, a mid-size spreadsheet called “Historical-Income-

Statement-and-Balance-Sheets” (“Income & Balance” for short, which has about 100 rows

and 5 columns in two worksheets: “Finances” and “CashFlows”) is taken from a financial

spreadsheet modeling textbook [71].

4.2.7 Experim ent results

It was very interesting to observe how users used the tools introduced in the training session

to work on the formal tasks. The five formal tasks cover a wide range of spreadsheet

comprehension work, including getting a high-level understanding of the given spreadsheet

(Task 1), finding patterns in cell ranges (Task 3), tracing cell dependencies (Task 2 and 4),

and identifying input cells (Task 5). Table 4.1 highlights how correctly each user finished

each task. The scores are in a five-point scale from fail (1), bad (2), satisfactory (3), good

(4), to excellent (5).

Table 4.2 shows how much time they spent on each task in minutes.

Table 4.1: Formal tasks correctness results
SHriMP-Cell Excel

Tasks User A User B User C User D
T1 N/A N/A N/A N/A
T2 5 5 4 4
T3 5 5 5 5
T4 5 3 4 5
T5 5 5 5 3

Total 20 18 18 17

Table 4.2: Formal tasks time spent
SHriMP-Cell Excel

Tasks User A User B User C User D
T1 5.5 7.0 7.0 12.0
T2 6.0 13.0 3.5 4.0
T3 3.0 4.5 3.5 3.0
T4 5.0 7.0 13.0 11.5
T5 6.0 4.0 12.0 9.0

Total 25.5 35.5 39.0 39.5

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Task 1

Browse the given spreadsheet and explain what it does, and how it is structured. In addition,

explain how the calculation works?

This task allows the experimenter to observe what strategies end users use to under­

stand spreadsheets. To get a high-level understanding of the given spreadsheet, most users

started from reading the headers and labels to get a sense of what a spreadsheet is about

(the top-down strategy), and quickly switched between the normal spreadsheet view and

the formula view to see where the formulas were and how many of them there were. How­

ever, one user started from reading formulas first (the bottom-up strategy). He said that

headings and labels could be vague and misleading sometimes, while formulas can always

tell you how things are done. Domain knowledge, i.e., knowledge in finances in this study

definitely helped to understand the given spreadsheet. A couple of users mentioned that it

would be much easier for them to understand the “Income & Balance” spreadsheet if they

had some finance and business background. This observation is quite consistent with the

results from a literature review that end users use similar strategies to understand spread­

sheets as professional programmers do in understanding software systems, as described in

Section 2.4.

One interesting observation is that most users only looked at a portion of the spread­

sheet and guessed the rest. One of the users said he usually looked at things in blocks, trying

to understand one block, and guessing other blocks. The users made educated guesses, be­

cause most documents follow certain patterns and conventions. Although guessing helped,

sometimes it could be misleading. A couple of users realized that their initial guesses

were wrong, and they had to look at labels and formulas carefully to “re-understand” the

spreadsheet. Guessing works well when the spatial layout of the spreadsheet is intuitive and

consistent.

Most users spent about six to seven minutes on this task, and only User D spent twelve

minutes. She read all the labels carefully, and tried to understand the whole spreadsheet

in detail. Her deep understanding helped her to later finish Task 3 easily. SHriMP-Cell

users did not spend much time browsing the SHriMP graphical view of the spreadsheet.

One of them said this is because SHriMP-Cell only showed cell references instead of labels

and values at a glance, and cell references cannot help much in understanding what the

spreadsheet does. However, SHriMP-Cell users could quickly identify how data flows in

the spreadsheet, and they could easily tell that the CashFlows worksheet is a computational

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sheet, i.e. has no input cells. There was no score for this task, because it was meant for us

to observe how users understand the given spreadsheet.

Formal Task 2

Suppose you changed the value o f cell Finances!B27, what other cells’ value might also

have been changed?

This task requires the user to find the dependents of cell Finances !B27, i.e., cells that

refer to or depend on Finances!B27. There are only 4 cells in total depending on it directly

and indirectly: Finances!B31 (direct), Finances!B40 (indirect), CashFlows!C33 (direct),

and CashFlows!C35 (indirect).

In SHriMP-Cell, this task can be done by using the Query View tool. There are two

ways to query a node’s neighboring nodes. A user can select a node first, and a query

can be done based on the selected node, or a user can search for a node based on its cell

reference, and query on the search result. Figure 4.3 shows the results obtained from the

Query View in SHriMP-Cell.

J2]Shp^:Neighbpurs::. / P e r f o r m i n g Q u e r y . . .
rAfi'.ptrectibn:............. Found 1 no d e .

I g ro u n d 4 n e la b o u r s ,
i / ' ' . : Found 4 a r c s .
: O Outgoing Arcs

i (•/Incoming Arcs :

[j Restrict Levels

* —i

7

Fi»ancefK2?

m.
VX > ' {.!(/£!

.

Figure 4.3: Results from the Query View tool for Task 2

Both SHriMP-Cell users quickly realized that they should use the Query View Tool to

45

f&dM of In te re s t: :....................... : or-Interest..........

0 U5eSetect«d(Rnanci5lB2?) ■ Restrict Arc Types

OSflW theyNann* ••• -contains
^ •.................................. mntamsriode

............................ ReWJve-rtference

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

answer this question. One user used the first way: he used the SHriMP built-in search tool

to find the cell, selected it, and then did the query. He struggled a bit with whether to choose

the “Incoming Arcs” or “Outgoing Arcs” option. He found the right answer at the end, but

was not very confident because he was new to the tool. He recommended that it would be

nice if the Query View nodes can be zoomed in to see a formula in the same way as the

main SHriMP view. To validate the result, he had to switch back to the main SHriMP view,

and zoomed into one of the result nodes. The formula in the node showed that his result

was correct. The other SHriMP-Cell user used the second way, but did not get any results

due to wrong query options. She did not refer to the mini tutorial provided in the training

phase, but just tried changing query options. She eventually found the answer, and this task

took her 13 minutes.

In Excel, both users used the trace tool to trace dependents of Finances !B27. However,

if a dependent appears in another worksheet, Excel can only show an external sheet icon

as shown in Figure 4.4. The users had to go to the other worksheet, and search for the cell

reference manually. Both Excel users missed an indirect cell dependent: one user missed

tracing the indirect dependents in the Finances worksheet, and the other user missed tracing

the indirect dependents in the CashFlows worksheet.

SHriMP-Cell and Excel use different arrow directions to show cell dependencies as

shown in Figure 4.5. Excel’s arrow direction shows how data flows, and SHriMP-Cell’s

arrows show the direction of cell dependencies.

Formal Task 3

In the “CashFlows ” worksheet, the column o f year 1999 is blank. Do you think this is a

mistake or something is missing or unfinished here? Why or why not?

This task requires the users to check the patterns of the columns next to the year 1999

column. The answer is that it is not a mistake or something is missing. Column 1999 needs

to refer to the previous year’s data, which does not exist. Although the first two cells could

be calculated, they do not make too much sense if they are listed without the rest of the

column.

No user actually used SHriMP view for this task, because SHriMP-Cell does not show

formulas and values at a glance. All four users gave the right answer, and the average

time spent on this task was 3.5 minutes. Two users initially thought that it was a mistake

or something was missing in the year 1999 column, but they changed their minds after

checking the formulas more carefully. The user who spent much time on Task 1 already

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tw»IH *niw n^lislork«llnco*i»S»«tM n»ntan<lB «laiK tSh«ets:3

p#""..I(*; ta**, ln*ert; fa r1* * .. IOC's 6<c Idth&w yelp

' ■* *' i ' * * “ :-i.:» .:X ,a j.K .» :aM IJ,,A ,,l,.a ,:aJ ,l» t,m :i,
B27 SSI '" '" '" " " ’ ~ ^

I I iH istorical incom e S ta tem en ts and B alance S h e e ts fo r v itex C orp.

[11 "
| 3 jincom e S ta tem en t (t Million}
••Tj..J;s j

|\6 .|S s le 9
j. 7 . jC cst of Sales
j 8 1 Gross Operating IncomeIII
| 10 [Selling, General & Admn. Expenses
j 11 iDepreciation
i ‘;12.jOlh#rnet (IncomeJ/Expenses -11
[13 i EBIT .. -

}«; ...115 ilntarest (Income)
1 16 iimerest Expense
s 17 I Pre-Tax Income118 i
1 19 [Income Taxes
[2 0 ; Net Income

! 2?lDMdends
[23 i Addition to Retained Earnings
•24 >........................
251 B alance S h e e t ($ Million)
2G [[Assets
27jCash anp Marketable Securities
2B jAceounts Receivable
2911 rrven t or i o s
3Q jbthsr Current Assets
31! Total Current Assets
'32 [
33 ^Property. Plant and Equipment. Gross
34 lAccurnulaled Depreciation
35 ; Property. Plant and Equipment. Net

[4 0 ; Total Assets
[41 !
; 42 ’liab ilities and S ha iehelileis ' Equity

43 >Accounts Payable
44 i Short-Term Debt

: 45 [Other Current Liabilities
46 s Total Current Liabilities
47]
46 iLongTerm Debt

[49-jDeferred Income Taxes
. SO jOther NqrvCurrent LiatHlitiee
L-Si.L..Total Liabilities
H < ► m \R n an c es /.C etfLfk)*?../
Ready ■

Vaiii Endmu l>ai. i l ,
1M9 2000 2001 2M2
1234.9 1251.7 1300.4 43344
679.1 659 601.3 ;667
=06-87 =C6-C7=06-07.............................. ,=E6-E7

339.7 348.6 351 2 373.3
47.5 52 55.9 75.2
-11.0 •7.6 •7 -•0.2
=BB-SUM(B10:BI2) =C8-SUM(C10 C12) *D8-SUM(D10:D12) =E0-SUM(E1O:E12)

-1.3 -1.4 -1.7
16.2 15.1 205 23.7
=B13-SUM(B15 B16) =C13-SUM(C15:C16) =D13-SUM(D15 D16) =E13-SUM(E15 EI6)

56.8 64.2 67.5 72.6
-017-819 ■C17-C19 ■017-019 ■E17-E19

38.3 3 8 .7 398 401
=020-622 =C20-C22 =D2Q-D22 =E20-E22

125.6

f
\

__
32.1 28.4

994 102.9 107.3 •120 1
■109.6 708 114.9 1168
"96.7....91.4................................ 1037 •97 5
=SUM(127:830) =SbM(C27:030)............ =SUM(D27:D30) =SUV(E27.E30;

680 9 734.3 020 8 913.1
2448 :=B34+C11 =C34+D11 =D34+E11
=E33-E 14.......................=C33-C34 =033-034 >E 33-E34

203.2 " 205 1'407................................... 456.3
=E35-f. 137.................. =235*037=035*D37......................... :=E35+E37

-031* 38 -C31+C38 -03U D 38 -E31*E38

82.8 77.1 71.8 .00.5
39.1 297 79 0 ' 110.3
152 123.8 172.1 111 3
=SUM(B43:B45) :=SUM(C43.C45) =SUM(043:D45)............ =SUM(E43 E45)

163.5 1 4 5 201.0.................................. 218.1
22 3 19.6 15 1127
700.6 60.1 115 :94.5
.=B4S4SUM/B4a;B5a......=C46+SljMfC40;.C5Cil =D.4G+S.UM.C48;D50) :=.E46.+SUM€48:E5bl........ :>

Figure 4.4: Results from the trace dependents tool in Task 2

Figure 4.5: Arrow directions in Excel and SHriMP-Cell

wondered about why year 1999 was blank when she did Task 1. Since she was very familiar

with the whole spreadsheet, she quickly found the answer for this task.

Formal Task 4

What cells does cell "CashFlows!El6 ” depend on (i.e., refer to) directly and indirectly?

This task is similar to Task 2, but the query or trace is in the opposite direction. The

result contains 35 nodes which is time-consuming for the Excel users to trace because they

have to click on the trace icon multiple times, and switch between two worksheets to find

indirect precedents.

In SHriMP-Cell, the users still struggled with the arc direction option. Both users re-

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quired more explanations of the arc directions. User A found the right answer, but User B

chose the wrong arc direction and only found one cell node. The average time to finish this

task for the SHriMP-Cell users was six minutes. The correct result from the SHriMP Query

View tool is shown in Figure 4.6. Users can easily tell the level of indirect reference for

each cell in the hierarchy.

« a ji A<rv a. v '

 " 'r

- r > .

Figure 4.6: Results from the Query View tool for Task 4

In Excel, both users started by looking at the formula views, and quickly found the

direct precedents. However, finding the indirect precedents was not easy, because all of

them are on the Finances worksheet as shown in Figure 4.7. User C used the trace tool

by multiple clicks to trace indirect precedents. He found all the precedents, but he also

listed a wrong cell range in his result. User D did not use the trace tool. She said that too

many arrows confused her. She just read the formulas one by one, and found the precedents

manually. She was very careful in checking cell references, and checked her answers twice.

Her answer was complete as shown in Figure 4.12. The average time spent by the Excel

users was about twelve minutes.

Formal Task 5

Find all the initial input cells and list their cell and/or range references.

Input cells are data cells that are referred by other formulas, i.e., non-formula cells that

contribute to the computation.

In SHriMP-Cell’s computational view, it is very easy to find all the input cells, because

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 .# Mfciwoft £xc*t -Hermon_^tMoiuA< Income Statement ai»<t Baktncs-flteeK 2

?:lSJ B1* 6 * :: iflW" Fgrmat loch goto '&ndi»i Help

^ A “■ *■ ' [f]^ 8. I l l ' i i ' • * ' .r ;
El 6 =4>UM(E7:E1S)'

r . } : ' a ' b • !
j i |S ta tem en t* o f C ash F low s for Vltex C orp.
I 7 [Millions of Dollars

: i , a

1 .6 jc « h Flows from Operations
| 7 j Nat Income
I 8 IDepreciation Expense
1 9 pecrease/(lncrease) in Accounts Receivable
| IQiDecreasef(lncfease) in Inventories
s 11 >Decrease/(lncrease) in Other Current A ssets

12 ilncrease/(Decrease) in Accounts Payable
: 13 llncrease/(Decrease) in Other Current Liabilities
: 14]lncrease/(Decrease) in Deferred Income Taxes
15 >lncrease/(Decrease) in Other Non-Current Liabilities

Total Cnah Flows fiom Operations
17 i
18 iCasli Flows from investing

.19 ^Additions to) Property. Plant 4 Equipment
31 s (Investment) in Other NorvCurrent Assets
21! Total Cash Flow* from Investing
•22-;
23; Cash Flows from Financing
24 Tram lesuance/(Repaymant) of Short-Term Oebl
2 5 1 From Issuance/fRepayment) of Long-Term Debt
28 |FromSale/(Repurchase) of Equity
27 iCash Dividends Paid to Shareholders
261 Total Cash Flows from Financing
..33J
■ 30 j Net Change In Cash & Marketable Securities
3V!
32!
.33 [Beginning Cash & Marketable Securities
34 jEnding Cash & Marketable Securities
35 i Net C hange in Cash & Marketable Securities

m \ FhancM;\CashJPtows j

1999 2000 I!???2001 2002

:=Fmances!C20 l^ l= FirTanf'6'5lBXI--------
=Finances!C11 B n^FinandgslBVI------------
•=Fin8ncee!B28-FinanceslC^^FnnanCestC26-FinaoceslD28
:=Finances!B29-FinanceslC^^?iffanC05!C29-F-(natu:j|!D25
=Finances|B3CLFinancflslCJ»T=FinVifgsiC30-F-maaceslD3fl
=FinancesiC43-Financesl8jfn=Fmarii!!eB!B4-3-F-manC88!C4,3

.=Finance8lC45-Fmance9lBf!^yinarigBStP45-F-ir>ance8lC4B
;=Finances!C49-FinanceslB49 =FinanCg5tE)49-F-inaac{s!C43
:=Fmarees!C5D-FinanceslB50 =Fmaneesl050-FmanceslC5d
:-SUM(C7:C15) -SUM{D?:D15)

=Rnat
-Fffiafl
=Flhan
*Finar

=Fftaf
==FITiari
^F m ati
=Flhat II

I1
11

1
:

-SUM :7:F1fi1

=FinanceslB33-FinanceslC33 =FmanceslC33-FwanceslD33 a FinanceslD33-FinancaslE33
-Fmanc.es!B37-Finances!C37 =Fmsnces|C37-Pinances!D37 =Fmances!D37-FinanceslE37
-SUM(C19;C20) -SUM(O19:D20) -SUM(E19:E20)

=Finances!C44-FinanceslB44 =Financesi044-FinanceslC44 =Financea!E44-FinanceslD44
=Finance8|C48-Finance8©48 =Fmances|D48-Fmances!C48 =Financeg!E48-FinanceslD48
=FinanceslC53-FmanceslB53 =Ftnances!D53-Fman:eslC53 =FinanceslE53-FinanceslD53
=-Fmances!C22 =-FinancesiD22 —FinanceslE22
r=SUM(C24’C27) «SUM(D24D27) *SUM(E24 E27)

-C16*C21*C28

=FinanceslB27
=FtnanceslC27

;=C34-C33

'-D16+D21»D28

=FmanceslC27
=FinanceslD27
=D34-D33

-E16+E21+E28

=FinanceslD27
=FmanceslE27
“ E34-E33

Figure 4.7: Results from the trace precedent tool in Task 4

non-input data cells are filtered out, and all input cells are in the same block. Both SHriMP-

Cell users successfully found the input cells, and the average time for them to finish this

task was five minutes.

In Excel, finding all the input cells is more time-consuming, because the users have to

make sure that the data cells are referred by other formulas. The two Excel users used two

different strategies to find the input cells. User C found the data cells first, and used tracing

to check whether they were referred by other formulas. Excel does not support tracing a

group of cells. He had to trace the dependents of data cells one by one. He found all the

input cells after checking the results twice. User D used the trace precedents feature to

check formulas. However, she listed many formula cells that she thought were input cells,

and she did not have enough time to finish this task. The average time for the Excel users

spent on this task was eleven minutes.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Post-study questionnaires

The post-study questionnaire questions basically focus on the users’ experience and satis­

faction using the tool. All questions are in a five-point scale from strongly disagree (*),

disagree (**), neutral (***), agree (****), and strongly agree (*****). A complete list of

the questions is available in Appendix F. Table 4.3 shows the results:

Table 4.3: Post-study questionnaire results
SHriMP-Cell Excel

Questions User A User B User C User D
Qi **

Q2 ***** ***** *****
Q3 **** *****

Q4 **** **** ***** ****
Q5 * **** *****

Q6 *** *** ***** *****
Q7 ** ***** *****

Q8 *** **** *****

Q9 ** ***** ***** *****

Q10 *** **** **** ****

The results show that User B, C, and D are quite satisfied with the tools, while User A is

not very satisfied. In particular, User A strongly disagreed with Question 5: “The interface

of this tool was pleasant to use”. Ironically, User A was the only user who perfectly finished

all the tasks within the shortest time (25.5 minutes).

Interviews

The interviews were valuable to explain the results of the post-study questionnaire. They

also allowed us to collect answers about the questions we had in Section 4.1. A complete

list of the interview questions is attached in Appendix G.

For SHriMP-Cell, both User A and B agreed that SHriMP-Cell is easy to learn and use

in general, and it is very powerful to find relationships between cells. User A said that this

tool would be very handy to find relationships in complex spreadsheets. User B expressed

her opinion of SHriMP-Cell: “the tool has more (features) than I expected, and it is less

complicated than I thought”. Both users pointed out that the terminology used in SHriMP-

Cell is somehow confusing to them. For example, User A did not like the term “arc”, as arc

to him should be curvy, while all the “arcs” in SHriMP-Cell are normally straight by default.

User B also mentioned that it would be hard to use the tool without dual monitors. User A

explained why he was not satisfied with the tool. He did not like the slow response, and he

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

was not confident with his results because he was new to the tool. Since he is a professional

graphic designer, he was very picky about the interface. He tended to compare this tool

with professional graphic design tools such as Adobe Photoshop [13] when he evaluated

SHriMP-Cell’s usability. For example, when he was in the zooming mode in SHriMP-Cell,

he expected that the tool should provide a little “grabber” mouse pointer so he could drag

the viewed portion easily.

For Excel, both users claimed that they were satisfied with the tool. It is easy to learn

and simple to use. The formula view is especially helpful for them to check range patterns.

Both users experienced the inconvenience of not being able to trace precedents or depen­

dents that are on another worksheet. To find these, they had to switch to the other sheet

and find the cell references manually. User C suggested that it would be nice if the Excel

trace toolbar icons have short-cut keys. Often, users have to move the mouse pointer a lot

to trace multiple cells and multiple levels of dependencies. Also, he would like to be able

to trace precedents or dependents for a range of cells, rather than just one single cell at a

time. However, we suspect that the lack of support to trace multiple cells in Microsoft Excel

must have its reason, perhaps because the results of the trace for multiple cells would be

too “messy” visually.

4.3 Discussion

Both SHriMP-Cell users struggled with the arc direction option in the Query View tool,

even though it was introduced and listed in the mini tutorial. This might be because the arc

directions used in SHriMP-Cell are opposite to arrow directions in Excel. Arc direction in

SHriMP-Cell means the direction of dependency, while arrow direction in Excel means the

direction of how data flow.

Dual screens are essential in effectively using SHriMP-Cell. Both SHriMP-Cell and

Excel users took advantage of the dual monitors. SHriMP-Cell users can put the SHriMP

view on one screen and the Excel window on another screen to check them at the same

time. Excel users can lay two worksheets side by side using two screens so that they can

easily switch between two worksheets to trace dependencies across worksheets.

Limitations: Here are limitations of the conducted user study.

• The sizes of the spreadsheets used in the experiments are relatively small compared

to real-world spreadsheets. Still, the spreadsheet chosen for the formal tasks is not

simple; there are many cell dependencies crossing worksheets. If the spreadsheets

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were too big, users would not be able to learn the tool features easily, and finish the

tasks under the time limit.

• The number of participants is relatively small, not enough to even out different back­

ground and domain knowledge. Thus, the results cannot be used for statistical analy­

sis. However, we believe the users have many years of experience with spreadsheets.

Therefore, they should be able to validate the usability and effectiveness of SHriMP-

Cell.

• We tried to use some criteria from heuristic evaluation in our post-study questionnaire

and interview questions. However, most of the participants are not user interface

design experts. Therefore, their answers might not be very solid.

4.4 Theory-based evaluation

To further analyze the usability of SHriMP-Cell, perceptual theories can be applied to eval­

uate the readability of the SHriMP views, because perceptual factors are important for ef­

fective information visualization [35]. In this section, we outline several fields in cognitive

science, such as the theory of perception, perceptual organization, and perceptual segrega­

tion. The laws of perception explain how our visual system identifies objects and how we

put together basic features to observe a coherent, organized world of things and surfaces.

From a software visualization perspective, the principles of perceptual organization provide

the basic design rules to organize multiple artifacts, so that users can group related infor­

mation and segregate useful information easily and without ambiguity. Perceptual theory

can also be applied to evaluate the effectiveness of software visualization tools [76, 82], In

our previous work, we have successfully evaluated the SHriMP visualization [76] and the

layout of UML diagrams [77, 84]. To evaluate SHriMP-Cell, perceptual principles can be

applied to validate whether the visualization is readable and potentially understandable.

4.4.1 Theories o f perception

It is widely accepted that visualization helps people to understand information, but how the

brain processes, transforms, and interprets visual stimuli is still unclear. Various theories of

perception have been proposed [62].

• Marr’s theory [47]:

Cognitive functions are filters that operate on raw visual stimuli and turn them into

information.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Gibson’s theory [31]:

We shift our attention based on the structure of the environment and create a cognitive

map to interact with the world.

• Gestalt theory [16, 53]:

We restructure our perception in ways that make it unified and coherent. This theory

formulates the principles of organization to explain why some displays are better

than others. Perceptual organization will be discussed in more detail in the next

subsection.

• Theory of notation [62]:

Many researchers try to find good notations for visualizations, including symbol sys­

tems in graphs to help convey semantics.

4.4.2 Perceptual organization

Perceptual organization refers to how objects that we perceive in the world are located

and related with one another [22]. Research in perceptual organization studies how small

elements are grouped into larger objects [32], which is important for tool designers to devise

a clear visualization of a software system. The following are several important principles

of perceptual organization, most of which are from the Gestalt Laws [22, 32].

• Law of good figure (Pragnanz):

Pragnanz is a German word which means “suggestive figure”. The law of good figure

is also called the law of simplicity. That is, images are perceived in a way such that

their structures are as simple as possible. The “goodness” is sensitive to the amount

of information necessary to describe a figure. Usually, a simpler and more stable

figure is considered a “good” figure [70].

• Law of similarity:

Similar elements (e.g., common shape or color) appear to be grouped together. For

example, in Figure 4.8, (a) can be perceived as either horizontal rows or vertical

columns of circles, but (b) would most likely be perceived as vertical columns of

squares and circles because of the similar shapes.

• Law of continuation:

Points tend to belong together if they result in straight or smoothly curved lines when

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o o o o o D O D
o o o o o D O D
o o o 0 o D O D
o o o o o D O D

(a) (b)

Figure 4.8: Examples of the law of similarity.

connected, and lines are grouped together in such a way as to follow the smoothest

path.

• Law of proximity:

Elements that are close to each other are grouped together. For example, in Figure 4.9

(a), the circles are more likely to be perceived as horizontal rows since they are closer

horizontally. In Figure 4.9 (b), the shapes are still more likely to be perceived as hor­

izontal rows because the law of proximity overpowers the law of similarity discussed

before.

o o o o o o c o c o o n
OOOOOO ODODOD
OOOOOO ODODOD
OOOOOO ODODO D

(a) (b)

Figure 4.9: Examples of the law of proximity.

• Law of connectedness:

Elements that are physically connected are perceived as a unit. In Figure 4.10, we

perceive three dum bbells rather than som e pairs o f dots. N ote that the dots that are

next to each other in adjacent dumbbells are actually closer together, and according

to the law of proximity, they should be grouped together. However, in this case, the

law of connectedness overpowers the law of proximity.

• Law of common fate:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o — o o — o o — o

Figure 4.10: An example of the law of connectedness.

Things that are moving in the same direction will be grouped together.

• Law of familiarity:

Elements are more likely to be grouped together if the groups seem familiar or mean­

ingful.

4.4.3 Perceptual segregation

Compared to perceptual organization, research in perceptual segregation basically studies

the problem of “figure-ground segregation” to determine when objects (figures) are seen

as separate from the background (the ground) [32]. The fundamental figure-ground theory

was proposed by Gestalt psychologists, who believed that a figure is more familiar and

memorable than the ground. They also stated that a figure is perceived as being in front of

the ground, and the contour of a figure and the ground more likely belongs to the figure.

Experiments show that the following factors make an object more like a figure.

• Law of symmetry:

Symmetric areas are usually seen as a distinct figure.

• Law of orientation:

Horizontal or vertical orientations have higher probabilities to be seen as a figure

than other orientations. For example, in Figure 4.11, the vertical/horizontal “plus”

propeller shape is more likely to be perceived as figure than the tilted “cross” shape.

Figure 4.11: An example of the law of orientation.

• Law of contour:

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Modern theories about figure-ground segregation discovered that contours (i.e., bound­

ary edges) help in figure-ground perception [44].

4.4.4 Applying perceptual theories

In this section, we discuss how perceptual principles can be applied to evaluate the SHriMP

tool in the SHriMP-Cell toolset.

Law of good figure (Pragnanz): To produce a “good” figure, SHriMP has a powerful

show/hide feature: certain types of nodes and arcs can be shown and hidden. A node can

be collapsed to hide all its child nodes and related arcs.

Law of similarity: SHriMP-Cell takes full-advantage of shape and color to separate

different kinds of nodes and arcs. Different shapes are used for data cell nodes, formula

nodes, and comment nodes. Different colors are used for nodes belonging to different

worksheets. The users can easily tell at a glance what type a node is, and which worksheet

it is from.

Law of continuation: Arc crossing is a problem in SHriMP, especially when there are

many arcs. Too many crossings make the arcs less continuous and hard to follow, which

violates the law of continuation.

Law of proximity: The objective of the abstractions is to put “closely related” nodes

together. For example, in the structural view, all the cell nodes that are spatially close

together will be grouped into one block.

Law of connectedness: Nodes do not overlap in SHriMP. However, node labels overlap

as the number of nodes increases. This makes the label hard to read. SHriMP’s solution is

to allow users to choose whether or not to show the node labels, as well as adjust the font

and size of the labels.

Law of common fate: Some animations in SHriMP follow the common fate principle.

For example, when the user changes the layout to the radial layout, the artifacts that will be

grouped together move in the same direction. This explains why User A was so fascinated

with the different layout options.

Law of familiarity: Spreadsheets use grids to organize data which is familiar to people.

SHriMP views might not be familiar to most spreadsheet users.

Law of orientation: SHriMP’s node layout is based on a grid. Nodes are ordered in

rows and columns by default which make them easy to group.

Gestalt theory: Gestalt theory states that the whole is more than the sum of its parts [22,

70]. SHriMP-Cell’s computational view shows the dataflow as a whole, which is easier to

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

understand than the cell level dependencies if the user wants to get a high-level sense of

how a calculation works.

Task 4

What cells does Formula Cell “CashFlows!E16” depend on (i.e., refer to) directly and
indirectly?
Note, to save time, if the cell is in the “CashFlow” sheet, you don’t need to write the
sheet name. If the cell is in the “Finances” sheet, you can just underscore the cell

£ % * e j * y

E - 7 ' j : 5 ^

e p i i - fea 1——t ̂ —

£ H ~ S i - °

e ^ i

g - S - i i

£ (<f - £> *4 <7

e i $■ "i £ $ c. - oj_°

Figure 4.12: User D’s answer to Task 4

reference.

£ 1 6 IS".

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Related work

5.1 Spreadsheet visualization

Researchers have explored different ways to visualize spreadsheet documents to improve

understandability:

CogMap [37]: To improve the communicability of spreadsheet documents, Hendry

and Green designed a “cognitive map” representing a spreadsheet’s structure and tried to

use it to fill the gap between the tabular view and the computational layer. The authors

believe that CogMap is closer to a user’s cognitive representation of spreadsheet documents.

Therefore, such a simple tool can improve the comprehensibility and communicability of

existing spreadsheets. CogMap allows the user to annotate spreadsheet documents with

tags (“types”) and links (“relationships”) in various colors. Users can arbitrarily define the

display color, specify the line style, and show/filter tags and links.

S2/S3 Visualization [69]: Sajaniemi introduced the “formulae, formats, relations (FFR)

model” to formalize spreadsheet documents and designed the S2 and S3 visualizations for

spreadsheet auditing. The S2 visualization identifies areas that contain equal type values,

equal format, and similar formulas. References between areas are also identified, and ar­

rows are drawn to represent range references. The S3 visualization improves the S2 visual­

ization by using dashed lines to separate subareas, and arrows for subareas are unbroken to

reduce the number of arrows.

Fluid Visualization [41]: Igarashi et al. introduced a few techniques to visualize

spreadsheet documents to ease the accessibility of formulas and dataflow structures dur­

ing maintenance. The fluid visualization provides both local views to visualize dataflow

structures associated with individual cells, and global views to present the dataflow for the

entire worksheet.

Ballinger’s Visualization [14]: Ballinger et al. used various visualization techniques

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such as utilization diagrams, clustering views, data dependency flow, fisheye view, and for­

mula view. In the “real-estate utilization diagram”, any coordinate where cells appear is

assigned a colored circle similar to a heat-map effect. The data dependency flow diagram

shows the trend of how the data flows. Clustering visualizations is based on spatial rela­

tionships between cells. The precedent cell dependency diagram represents Excel’s trace

precedents feature in a different way.

5.2 Spreadsheet auditing

Research in spreadsheet auditing focuses on finding irregularities or anomalies, i.e., ar­

eas that might contain errors in spreadsheets. These dangerous spots need to be carefully

checked. The auditing technique shrinks the testing scope of spreadsheets so that errors can

be revealed effectively.

Clermont’s Visualization [24, 25, 26, 27]: Clermont proposed a spreadsheet auditing

technique based on the logical structure of a spreadsheet document, and clusters cells based

on equivalence classes such as copy equivalence, logical equivalence, and structural equiv­

alence. He also designed a structure browser to visualize different classes of cells. His

auditing approach and toolkit have been evaluated in various contexts.

Header Inference [12, 29]: Erwig and his colleagues proposed a unit and header infer­

ence approach to cluster spreadsheet cells. They implemented header assignment views in

Excel for spreadsheet auditing.

5.3 Tool comparisons

This section compares SHriMP-Cell with other spreadsheet visualization tools, including

CogMap, S2/S3 Visualization, Fluid Visualization, and Ballinger’s Visualization as intro­

duced in Section 5.2.

Distinct features of SHriMP-Cell:

Here are the distinct features of SHriMP-Cell:

• SHriMP-Cell uses a reverse engineering technique, and the views are based on fact

extraction from the current version of a spreadsheet document. Therefore, the views

are always up-to-date when a document changes.

• Three different views are proposed and implemented to fit different comprehension

needs.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The Spreadsheet Analyzer has been integrated with SHriMP and Excel. Users can

use SHriMP, the Spreadsheet Analyzer, and Excel together as a whole.

• SHriMP-Cell takes full advantage of SHriMP for visualization, which supports var­

ious comprehension strategies. SHriMP has powerful filtering functions such as the

show/hide feature, dependency analysis such as the Query View, and zooming to

show different levels of abstraction.

Comparison to CogMap: CogMap allows users to annotate spreadsheets by introduc­

ing types and relations. However, it cannot automatically extract any information such as

data cells, formulas, comments from existing spreadsheet documents as SHriMP-Cell does.

All the operations have to be done manually by the end-user, which might be tedious and

time-consuming for large documents. For example, if users want to annotate all the cells

referred by a formula, they have to look at the formula and find all the cells and/or blocks

involved in the formula one by one.

Comparison to S2/S3 Visualization: S2/S3 visualizations can be seen as extensions

to Excel’s trace feature. They draw arrows between cells and ranges to highlight computa­

tional dependencies. However, S2 and S3 are based on Excel’s tabular view, which is hard

to express high-level abstractions. Also, when there are many arrows on the tabular view,

it is hard to read because of the overlapping. Furthermore, S2 and S3 visualizations still

cannot visualize data dependencies across worksheets.

Comparison to Ballinger’s Visualization: Ballinger’s visualization also uses reverse

engineering to identify cell dependencies. Ballinger adopts a few different visualization

techniques as shown in Section 5.1. However, these visualizations seem hard to map to the

spreadsheet view, and no evaluation has been performed to validate the usefulness of these

visualizations. Furthermore, no interactions are available between the visualizations and

the spreadsheet application.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and future work

6.1 Lessons learned

During the design, implementation, and evaluation process, we had successes and failures.

The following lessons were learned during this thesis work:

• Third-party libraries and APIs need to be well tested before adoption. In our early de­

sign stage, we chose POI to read Excel files, because it was very popular in the Excel

Java developer community. However, after testing it on more complex spreadsheets,

we found that POI could not fit all our needs as we expected, because the way we use

POI is quite different from most Java developers. Therefore, JXL, a less well-known

API, was also adopted and extended to address the limitations of POI.

• “Thinking aloud” should be balanced in user studies. Thinking aloud is the technique

we adopted to observe how users understand spreadsheets. However, if we interrupt

the users too often to encourage them to talk, it would be hard for them to focus on

performing complex tasks, increasing the time they spend on each task and creating

a potential bias.

• End users are often over-confident about their work. Error prevention is important

in designing end-user tools. We observed that end users often neglect testing their

results thoroughly. In the user study, a couple of users mentioned that the given

spreadsheets w ere easy, and they gave their answ ers q u ick ly without further testing.

A few of the answers turned out to be wrong or incomplete.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Recommendations

This section presents recommendations to tool builders in designing tool support for end

users. Here is a list of general recommendations.

1. Integrate different evaluation techniques to validate the tool, and start the evalua­

tion in the early design stage. In this thesis work, we informally interviewed a few

spreadsheet users once the toolset prototype was available to gather their opinions

and potential issues. Guideline-based evaluation was used before the user study to

partly evaluate the usability quickly and inexpensively. The user experiments were

valuable to further evaluate the toolset’s usability, as well as its effectiveness. Fi­

nally, perceptual theories were applied to validate and explain the results from the

guideline-based evaluation and user study.

2. Tool builders should use terms that end users are familiar with, rather than terms that

are familiar to the tool designers. For example, in the SHriMP Query View, spread­

sheet users had difficulties understanding terms such as “Restrict Node Type”, “In­

coming/Outgoing Arcs”, and “Restrict Levels” unexpectedly, although these terms

are familiar to computer scientists.

3. Tools should try to adopt notations that are commonly accepted by the majority of

users, even though these notations might not always convey the best semantics. For

example, one SHriMP-Cell user still chose the wrong arc direction even after this

was explained over again in the user study, probably because the arc directions in

SHriMP-Cell are opposite to the arrow directions in Excel. SHriMP-Cell arc direc­

tions show the dependency direction, while Excel arrow directions show how the data

flows. It would be easier for spreadsheet users to learn SHriMP-Cell if arc directions

were the same as Excel arrow directions, since end-users are already familiar with

the Excel notation.

4. Working on spreadsheets, especially large ones, is very error-prone. Engineering

principles can be applied. For example, pair programming techniques might be ap­

plied for spreadsheet users to reduce errors and improve quality [15]. During the

user experiments, we observed that spreadsheet users often have to switch between

different views, trace dependencies in various parts of the spreadsheet, and memo­

rize or write down intermediate results. All these tasks could be eased and made less

error-prone by two people working together, or with better tool support.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Based on our experience designing and evaluating SHriMP-Cell, we recommend that

the following features in SHriMP be improved.

1. Provide an option to lay out nodes by column (or row). It would be nice if the SHriMP

view can keep the column (or row) structure of a spreadsheet, because cells in the

same column (or row) may follow the same pattern. An example SHriMP view of

the “Income & Balance” sheet is shown in Figure 6.1 (where the layout was adjusted

manually based on the cells’ columns). This layout could help organize the nodes to

reduce arc crossings, and be easier to map to the spreadsheet tabular layout.

. ■""ra.iawifirannm-ii

«jsr''s8a. ^ ‘aaa ■
, S r

M, tjgfc;; Jil* “:m%;
* msg-.-. t<u*timMe»PnS8$ic4

Figure 6.1: An example SHriMP view with column-based layout

2. Make the graph in the Query View interactive. The Query View tool is a powerful

tool to detect indirect dependencies. It would be nice if users can check a node’s

attributes in the presented graph. Otherwise, users have to memorize the node name,

and switch back to the main view to the check the node’s attributes.

3. In the overview window, users should be able to click on anywhere inside the small

red rectangle to move the overview focus, not just the edge, to ease interaction.

4. We propose a “selective arcs mode” to ease graph exploration when there are too

many arc crossings. In this mode, all arcs are hidden by default. Arcs that are associ­

ated to a node will be shown when the user mouses over the node, and all direct and

indirect arcs will be shown when a node is selected.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Add more user assistance or wizards for complex tasks. For example, both SHriMP-

Cell users struggled with choosing the Query View options. It would be helpful if

there were some descriptions about those options using spreadsheet notions.

6. Extend the search tool to support searching attributes. One user asked us whether he

could search a cell node based on its label. This requires searching by attribute which

is currently not supported in SHriMP.

6.3 Summary

This thesis proposes a reverse engineering method to extract artifacts from spreadsheet doc­

uments, build various abstractions, and represent spreadsheets in graphical views. A spread­

sheet analyzer has been built and integrated with SHriMP and Excel to visualize spread­

sheets, analyze cell dependencies, and detect and highlight anomalies. Both guideline-

based and theory-based evaluation techniques have been applied to evaluate the usability of

the toolset. Finally, a user study was conducted to further validate the usability and test the

effectiveness of the dependency analysis features of the toolset by comparing it with Excel

2003’s formula evaluator feature. The results show that our reverse engineering method is

applicable to help end users better understand spreadsheets. The tool, SHriMP-Cell, is easy

to use in general, and very effective in finding cell relationships, especially in detecting di­

rect and indirect cell dependencies that cross different worksheets or referred cells that are

beyond the boundaries of the screen.

6.4 Future work

We propose the following future work.

• Run a larger user study, and give users spreadsheet auditing or reuse tasks such as

finding errors or extending a spreadsheet. Also compare how different abstractions

help users to do certain tasks.

• Develop more clustering heuristics by studying more real-world spreadsheets. Add

user assistance and layout information criteria such as spatial distance threshold and

formatting rules to cluster cells more effectively.

• Try other visualization techniques, and investigate better techniques to integrate the

spreadsheet analyzer with the spreadsheet application and the visualizer seamlessly.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, when a spreadsheet is changed, the visualization could be updated au­

tomatically without further user interaction.

• Once POI’s “shared formula” defect is fixed, larger spreadsheets can be analyzed

automatically to validate the tool’s robustness and scalability.

• Find effective ways to detect and visualize the difference between different versions

of spreadsheets so that things that are added, deleted, or changed can be easily high­

lighted.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Apache POI Framework, http://jakarta.apache.org/poi/hssf/.

[2] Extensible Markup Language. http://www.w3.org/XML/.

[3] GNOME Gnumeric. http://www.gnome.org/projects/gnumeric/.

[4] J-Integra for COM. http://j-integra.intrinsyc.com/products/com/.

[5] Microsoft Visual J#. http://msdn.microsoft.com/vjsharp/default.aspx.

[6] OpenOffice Calc, http://www.openoffice.org/product/calc.html.

[7] Rigi home page, http://www.rigi.csc.uvic.ca/.

[8] SHriMP (Simple Hierarchical Multi-Perspective) website.
http://www.thechiselgroup.org/shrimp/.

[9] The JACOB Project: A Java-COM Bridge, http://danadler.com/jacob/.

[10] Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Information_visualization.

[11] XML Metadata Interchange, http://www.omg.org/technology/documents/formal/xmi.htm.

[12] R. Abraham and M. Erwig. Header and unit inference for spreadsheets through spatial
analyses. In VLHCC ’04: Proceedings o f the 2004 IEEE Symposium on Visual Lan­
guages - Human Centric Computing (VLHCC’04), pages 165-172, Washington, DC,
USA, 2004. IEEE Computer Society.

[13] Adobe. Adobe Photoshop website, http://www.adobe.com/products/photoshop/.

[14] D. Ballinger, R. Biddle, and J. Noble. Spreadsheet visualization to improve end-
user understanding. In CRPITS ’24: Proceedings o f the Australian Symposium on
Information Visualisation, pages 99-109, Darlinghurst, Australia, Australia, 2003.
Australian Computer Society, Inc.

[15] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

[16] J. G. Benjafield. Cognition. Prentice Hall, 1992.

[17] A. Blackwell. Cognitive Dimensions of Notations Resource Sites.
h ttp ://1 2 8 .2 3 2 .0 .2 0 / a fb 21 /C ogn itiveD im en sion s/in d ex .h tm l.

[18] A. F. Blackwell, M. M. Burnett, and S. P. Jones. Champagne prototyping: A research
technique for early evaluation of complex end-user programming systems. In VLHCC
’04: Proceedings o f the 2004 IEEE Symposium on Visual Languages - Human Centric
Computing (VLHCC’04), pages 47-54, Washington, DC, USA, 2004. IEEE Computer
Society.

[19] S. C. Bloch. Spreadsheet Analysis for Engineers and Scientists. Wiley-Interscience,
1st edition, 1995.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://jakarta.apache.org/poi/hssf/
http://www.w3.org/XML/
http://www.gnome.org/projects/gnumeric/
http://j-integra.intrinsyc.com/products/com/
http://msdn.microsoft.com/vjsharp/default.aspx
http://www.openoffice.org/product/calc.html
http://www.rigi.csc.uvic.ca/
http://www.thechiselgroup.org/shrimp/
http://danadler.com/jacob/
http://en.wikipedia.org/wiki/Information_visualization
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.adobe.com/products/photoshop/
http://128.232.0.20/

[20] S. C. Bloch. Excel for Engineers and Scientists. Wiley, 2th edition, 2002.

[21] B. W. Boehm, B. Clark, E. Horowitz, J. C. Westland, R. J. Madachy, and R. W. Selby.
Cost models for future software life cycle processes: COCOMO 2.0. Annals o f Soft­
ware Engineering, 1:57-94, 1995.

[22] K. R. Boff, L. Kaufman, and J. R Thomas. Handbook o f Perception and Human
Performance. Volume II. Cognitive Processes and Performance. Wiley-Interscience
Publication, 1986.

[23] D. Bricklin and B. Frankston. VisiCalc. http://www.bricklin.com/visicalc.htm.

[24] M. Clermont. Finding high-level structures in spreadsheet programs. In WCRE ’02:
Proceedings o f the 9th Working Conference on Reverse Engineering, pages 221-232,
Richmond, VA, USA, 2002. IEEE Computer Society.

[25] M. Clermont. Analyzing large spreadsheet programs. In WCRE ’03: Proceedings o f
the 10th Working Conference on Reverse Engineering, pages 306-315, Washington,
DC, USA, 2003. IEEE Computer Society.

[26] M. Clermont. A Scalable Approach to Spreadsheet Visualization. PhD thesis, 2003.

[27] M. Clermont, C. Hanin, and R. Mittermeir. A spreadsheet auditing tool evaluated in
an industrial context. In EuSpRIG 2002 symposium, Cardiff, Wales, 2002.

[28] J. H. Cross II, E. J. Chikofsky, and C. H. May Jr. Reverse engineering. Advances in
Computers, 35:199-254, 1992.

[29] M. Erwig and M. M. Burnett. Adding apples and oranges. 4th Int. Symp. on Practical
Aspects o f Declarative Languages, pages 173-191, 2002.

[30] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements o f
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[31] J. J. Gibson. The Ecological Approach to Visual Perception. Boston: Houghton Mif­
flin, 1979.

[32] B. E. Goldstein. Sensation and Perception. Wadsworth-Thomson Learning, 6th edi­
tion, 2002.

[33] T. Green and A. Blackwell. Cognitive Dimensions of Information Artefacts: a tutorial.
http://www.cl.cam.ac.uk/ afb21/CognitiveDimensions/CDtutorial.pdf.

[34] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann,
2001 .

[35] C. D. Hansen and C. Johnson. The Visualization Handbook. Academic Press, 2005.

[36] D. Harrison and J. W. Yu. The Spreadsheet Style Manual. McGraw-Hill Education,
1990.

[37] D. G. Hendry and T. R. G. Green. Cogmap: a visual description language for spread­
sheets. Journal o f Visual Languages and Computing, 4(1):35—54, 1993.

[38] D. G. Hendry and T. R. G. Green. Creating, comprehending and explaining spread­
sheets: a cognitive interpretation of what discretionary users think of the spreadsheet
model. International Journal o f Human-Computer Studies, 40(6): 1033-1065, 1994.

[39] R. C. Holt, A. Schtirr, S. E. Sim, and A. Winter. GXL home page.
http://www.gupro.de/GXL/.

[40] IBM. IBM Lotus 1-2-3. http://www-142.ibm.com/software/sw-
lotus/products/product2.nsf/wdocs/123home.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bricklin.com/visicalc.htm
http://www.cl.cam.ac.uk/
http://www.gupro.de/GXL/
http://www-142.ibm.com/software/sw-

[41] T. Igarashi, J. D. Mackinlay, B.-W. Chang, and P. T. Zellweger. Fluid visualization
of spreadsheet structures. In VL ’98: Proceedings o f the IEEE Symposium on Visual
Languages, page 118, Washington, DC, USA, 1998. IEEE Computer Society.

[42] S. P. Jones, A. Blackwell, and M. Burnett. A user-centred approach to functions in
Excel. In ICFP ’03: Proceedings o f the eighth ACM SIGPLAN international confer­
ence on Functional programming, pages 165-176, New York, NY, USA, 2003. ACM
Press.

[43] A. Khan. Java Excel API. http://www.andykhan.com/jexcelapi/index.html.

[44] R. Kimchi, M. Behrmann, and C. R. Olson. Perceptual Organization in Vision: Be­
havioral and Neural Perspectives. Lawrence Erlbaum, 2003.

[45] S. Lammers. Programmers at Work: Interviews With 19 Programmers Who Shaped
the Computer Industry. Tempus Books, 1989.

[46] J. A. Lawrence and B. A. Pasternack. Applied Management Science : Modeling,
Spreadsheet Analysis, and Communication for Decision Making. John Wiley & Sons,
2nd edition, 2002.

[47] D. Marr. Vision: A Computational Investigation into the Human Representation and
Processing o f Visual Information. W H Freeman, 1982.

[48] Microsoft. Microsoft Excel Newsgroups. news:microsoft.public.excel.

[49] Microsoft. Microsoft Office Excel. http://office.microsoft.com/en-
us/FXO 1085 8001033.aspx.

[50] D. L. Moise and K. Wong. An industrial experience in reverse engineering. In WCRE
’03: Proceedings o f the 10th Working Conference on Reverse Engineering, pages
275-284, Washington, DC, USA, 2003. IEEE Computer Society.

[51] D. L. Moise, K. Wong, and D. Sun. Integrating a reverse engineering tool with Mi­
crosoft Visual Studio .NET. In CSMR ’04: Proceedings o f the Eighth European Con­
ference on Software Maintenance and Reengineering (CSMR’04), pages 85—92. IEEE
Computer Society, 2004.

[52] R. Molich and J. Nielsen. Improving a human-computer dialogue. Commun. ACM,
33(3):338-348, 1990.

[53] P. Moore and C. Fitz. Gestalt theory and instructional design. Journal o f Technical
Writing and Communication, 23(2): 137-157, 1993.

[54] H. A. Muller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley, and K. Wong.
Reverse engineering: a roadmap. 22nd International Conference on the Future of
Software Engineering, pages 49-60, 2000.

[55] H. A. Muller, S. R. Tilley, and K. Wong. Understanding software systems using re­
verse engineering technology perspectives from the Rigi project. In CASCON ’93:
Proceedings o f the 1993 conference o f the Centre for Advanced Studies on Collabo­
rative research, pages 217-226. IBM Press, 1993.

[56] J. M. Nevison. The Element o f Spreadsheet Style. Prentice Hall, 1987.

[57] J. Nielsen. Enhancing the explanatory power of usability heuristics. In CHI ’94:
Proceedings o f the SIGCHI conference on Human factors in computing systems, pages
152-158, New York, NY, USA, 1994. ACM Press.

[58] J. Nielsen and R. L. Mack. Usability Inspection Methods. John Wiley & Sons, 1994.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.andykhan.com/jexcelapi/index.html
http://office.microsoft.com/en-

[59] J. Nielsen and R. Molich. Heuristic evaluation of user interfaces. In CHI ’90: Pro­
ceedings o f the SIGCHI conference on human factors in computing systems, pages
249-256, New York, NY, USA, 1990. ACM Press.

[60] R. R. Panko. What we know about spreadsheet errors. Journal o f End User Computing
(Special issue on Scaling Up End User Development), 10(2):15—21, 1998.

[61] R. R. Panko and R. P. H. Jr. Spreadsheets on trial: A survey of research on spreadsheet
risks. Proceedings o f the Twenty-Ninth Hawaii International Conference on System
Sciences, January 1996.

[62] M. Petre, A. Blackwell, and T. Green. Cognitive questions in software visualisation.
Invited chapter in: Stasko, J., Domingue, J., Brown, M., and Price, B. (Eds.), Software
Visualization: Programming as a Multimedia Experience. MIT Press, pages 453-480,
1998.

[63] J. Preece, Y. Rogers, and H. Sharp. Interaction Design: Beyond Human-Computer
Interaction. John Wiley & Sons, 2002.

[64] D. Rafiei, D. Moise, and D. Sun. Finding syntactic similarities between XML docu­
ments. In Proceedings o f the 1st International Workshop on XML Data Management
Tools and Techniques (XANTEC’06), 2006.

[65] K. Rajalingham, D. R. Chadwick, and B. Knight. Classification of spreadsheet errors.
European Spreadsheet Risks Interest Group (EuSpRIG), 2001.

[66] D. Rentz. Microsoft Excel File Format, http://sc.openoffice.org/excelfileformat.pdf.

[67] M. B. Rosson and J. M. Carroll. Usability Engineering: Scenario-Based Development
o f Human-Computer Interaction. Morgan Kaufmann, 2002.

[68] J. Sajaniemi. Spreadsheet Visualization - The S2 and S3 Visualizations.
http://www.cs.joensuu.fi/pages/saja/ui/ss-visual.htm.

[69] J. Sajaniemi. Modeling spreadsheet audit: A rigorous approach to automatic visual­
ization. Journal o f Visual Languages and Computing, 11:49-82, 2000.

[70] H. R. Schiffman. Sensation and Perception: An Integrated Approach. John Wiley &
Sons, 5th edition, 2001.

[71] C. Sengupta. Financial Modeling Using Excel and VBA. Wiley, 2004.

[72] M.-A. Storey. Theories, tools and research methods in program comprehension: past,
present and future. Software Quality Control, 14(3): 187-208, 2006.

[73] M.-A. D. Storey, F. D. Fracchia, and H. A. Muller. Cognitive design elements to
support the construction of a mental model during software exploration. Journal of
Systems and Software, 44(3): 171—185, 1999.

[74] M.-A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Muller. On integrating visualiza­
tion techniques for effective software exploration. In Proceedings o f IEEE Symposium
on Information Visualization (InfoVis’97), 1997.

[75] M .-A . D . Storey, K . W ong, and H . A . MUller. H ow do program understanding too ls
affect how programmers understand programs? Science o f Computer Programming,
36(2-3):183-207, 2000.

[76] D. Sun and K. Wong. On understanding software tool adoption using perceptual theo­
ries. In ACSE 2004: Proceedings o f the Fourth International Workshop on Adoption-
Centric Software Engineering, pages 51-55. Institution of Electrical Engineers, 2004.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sc.openoffice.org/excelfileformat.pdf
http://www.cs.joensuu.fi/pages/saja/ui/ss-visual.htm

[77] D. Sun and K. Wong. On evaluating the layout of UML class diagrams for program
comprehension. In IWPC 2005: Proceedings o f the 13th IEEE International Work­
shop on Program Comprehension, pages 317-326. IEEE Computer Society Press,
2005.

[78] Sun Microsystems. Java Beans, http://java.sun.com/products/javabeans/.

[79] S. Tilley and D. Smith. Coming attractions in program understanding. Technical
Report CMU/SEI-96-TR-019, Software Engineering Institute, Carnegie Mellon Uni­
versity, Pittsburgh, PA, 1996.

[80] M. Tukiainen. Evaluation of the cognitive dimensions questionnaire and some
thoughts about the cognitive dimensions of spreadsheet calculation. In PPIG-13:
Proceedings o f the 13th Annual Workshop o f the Psychology o f Programming Interest
Group, pages 291-301, 2001.

[81] University of Alberta - Faculty of Education. EDIT 202: Technology Tools for Teach­
ing and Learning, http://www.quasar.ualberta.ca/edit202/.

[82] C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann Pub­
lishers, 2000.

[83] K. Wong. The reverse engineering notebook. PhD thesis, 2000. Adviser - Halisi A.
Muller and Adviser - Frank Ruskey.

[84] K. Wong and D. Sun. On evaluating the layout of UML diagrams for program com­
prehension. Software Quality Journal, 14(3):233—259, 2006.

[85] K. Wong, S. R. Tilley, H. A. Muller, and M.-A. D. Storey. Structural redocumentation:
A case study. IEEE Software, 12(1):46—54, 1995.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.com/products/javabeans/
http://www.quasar.ualberta.ca/edit202/

Appendix A

Solicitation Letter

Dear xxx (fill in name of potential participant),

You are being invited to participate in a study entitled “evaluation of a spreadsheet visu­

alization tool”. The purpose of this study is to evaluate the usability and effectiveness of a

spreadsheet visualization tool developed to ease end users understanding spreadsheets. We

are interested in your participation because you have experience working with spreadsheets.

The procedure of this study will be the following: at the beginning of this study, we

will introduce background knowledge related to the tool such as spreadsheet structures,

visualization, etc. We will demonstrate the features that the tool provides and teach you

how to use these features for some sample tasks. You will try using the tool and go over

its functions. Then, you will be given some tasks related to understanding a spreadsheet,

and asked to complete these tasks using the tool. After these tasks are finished, there will

be a post-study questionnaire and an informal conversation to discuss the usability and

effectiveness of the tool, your concerns, suggestions and issues you had using the tool.

The whole study will take about 90 minutes. Your activities will be videotaped for further

analysis. If you can complete the entire study, you will receive a gift certificate afterwards

as a reward.

Your participation in the study is completely voluntary. You can withdraw from the

study at any time, without explanation. You can take breaks and ask questions at any time

during this study. Any data collected in the study will remain confidential and be kept on

secure m ach in es. A n y an a lysis results that w ou ld b e p ublished w ill rem ain anonym ous (that

is, not identifiable to you).

If you are interested in participating in this study or have further questions, please con­

tact me by email: dabo@cs.ualberta.ca or by phone (780) 492-9438.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:dabo@cs.ualberta.ca

Thank you and I look forward to hearing from you.

R egards,

Dabo Sun

M.Sc. Student

Department of Computing Science

University of Alberta

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Pre-study questionnaire

Please note: you have the rights to refuse to answer any of these questions.

1. What is your background? e.g. your field of study, your profession, etc.

2. How long have you been using spreadsheets? How intensive have you been working

on spreadsheets?

3. What spreadsheet applications have you used, e.g. Microsoft Excel, StarOffice Calc,

etc.?

4. How many spreadsheets have you roughly made or worked on? What was the size (in

cells) of the largest spreadsheet that involved calculation (i.e., it has formulas) you

have done?

5. What do you mainly use spreadsheets for?

6. Have you had to understand other peoples spreadsheets? If so, did you feel it is hard

to understand those spreadsheets created by other people?

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Consent form

C.l Purpose of the study

The purpose of this research study is to explore how we can design and build a tool to facili­

tate end users better understand spreadsheets. This study is important because spreadsheets

are often error prone, hard to understand, maintain and reuse. As part of this study, you are

invited to participate in evaluating the usability and effectiveness of the tool. Anonymized

results will form part of a thesis, and might be published in computer science and software

engineering journals.

C.2 Procedure

At the beginning of this study, we will introduce background knowledge related to the tool

such as spreadsheet structures, visualization, etc. We will demonstrate the features that the

tool provides and teach you how to use these features for some sample tasks. You can try

using the tool and go over its functions. Then, you will be given some tasks related to

understanding a spreadsheet, and you will be asked to complete these tasks by using the

tool. After these tasks are finished, there will be an informal conversation discussing the

usability and effectiveness of the tool, your concerns, suggestions and issues you had using

the tool. The whole study will take about 90 minutes. Your activities will be videotaped for

further analysis. You will receive a 25 CAD gift certificate afterwards if you can finish the

entire study.

C.3 Your rights

• Your participation in the study is completely voluntary.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• You can withdraw from the study at any time, without explanation. Please note: you

will not receive the gift certificate if you withdraw before you complete the entire

study.

• You can take breaks and ask questions at any time.

• Any data collected in the study will remain confidential and be kept for five years on

secure machines. At the end of this time, all data including questionnaires, videotapes

and notes will be destroyed. If you choose to withdraw form this study, your data will

be destroyed right away.

• Any analysis results that would be published will remain anonymous (that is, not

identifiable to you).

C.4 Principal investigators

Dr. Kenny Wong and Dabo Sun

Department of Computing Science

University of Alberta Edmonton, Alberta,

Canada T6G 2E8

Please contact Dabo Sun by email dabo@cs.ualberta.ca or by phone (780) 492-9438 if

you have further questions.

C.5 Agreement

Name of Participant:

As the Participant, I have been fully informed of the following statements before pro­

ceeding with the study:

• I understand the intent and purpose of this research, and my participation is com­

pletely voluntary.

• I understand that, upon my request, I have the right to withdraw from this study at

any time and not have the data collected about me included in the analysis.

• I understand that during the course of the study, my activities will be videotaped.

• I understand that the experiment data will be kept for five years on secure machines.

At the end of this time, all data including questionnaires, videotapes and notes will

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:dabo@cs.ualberta.ca

be destroyed. If I choose to withdraw form this study, my data will be destroyed right

away.

• I understand that my identity will be kept confidential, and my name will not be

released in any publication about this research.

• I understand that after I finish the entire study, I will be given a 25 CAD gift certifi­

cate.

Participant’s Signature:

Date:

Researcher’s Signature:

Date:

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Experimenter’s handbook for
SHriMP-Cell

D.l General procedures

The purpose of this user study is to explore how end users understand spreadsheets, and

evaluate tools to facilitate end-users in better understanding spreadsheets. The key of this

study is to observe how users navigate and comprehend spreadsheets, to test whether the

tools used in this study are easy to learn and use (good usability), as well as to examine what

features of the tools are effective, and what could be improved. This is a controlled study

in a laboratory environment. Therefore, the users should always be in control. However,

experimenters should make the users feel as relaxed as possible and ease them not to feel

any pressure to give the “right” answer.

D.1.1 Phases

All users are asked to fill out a pre-study questionnaire in order to collect and compare

their experience in spreadsheets. Each experiment takes about 90 minutes and contains the

following phases with approximate time limits in minutes indicated in brackets.

1. Orientation and consent form (5): Introducing this study and ask the user to sign the

consent form.

2. Training (15): G oin g over the features that the tool provides to navigate and under­

stand a spreadsheet.

3. Practice tasks (15): Some small tasks to help the user get familiar with the tool.

4. Formal tasks (40): Formal tasks to test the tool.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Post-study questionnaire (5): Evaluating the user’s satisfaction and usability of the

tool.

6. Post-study interview and finishing (10): Further discussing issues and debriefing.

The following table lists all the phases and time expected to finish each phase.

Tasks Time (in minutes)
Orientation and consent form 5
Training 15
Practice 15
Formal tasks 40
Post-study questionnaire 5
Post-study interview and finishing 10
Total 90

D.1.2 Principles

The following principles should be followed during the experiments:

• Quietness: The lab should be quiet during the study. Disturbance should be min­

imized, especially during the formal task phase. Casual visitors should be avoided

(post a sign on the door saying “user study in progress”) and telephone calls need to

be stopped.

• Think aloud: Always encourage the user to talk and let the experimenter know what

he or she is thinking and doing (“think aloud”).

• Observation: Experimenter should take as much notes on this handbook as possible.

Write down how long each task actually takes and issues raised if there are any.

• Questions: Experimenter should be as helpful as possible answering user’s questions

in terms of tool features and clarifications, but NOT directly to the answers, especially

in the formal tasks session.

D.2 Orientation

Time: about 5 minutes

Greet the user and introduce the purpose of this study. Outline the phases of the exper­

iment and how much time expected to complete each phase.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stress the point: the purpose of this study is to evaluate tools, not people. Relax and

enjoy. If you have any questions regarding the questions or tool features at any time, feel

free to ask the experimenter.

Review the consent form and inform the users about their rights.

D.3 Training

Time: about 15 minutes

Introduce some background of spreadsheet and the features in Excel 2003 that might be

helpful to understand a spreadsheet by going through some simple tasks.

D.3.1 Setup

Open the computational view for the “Macs.xls” spreadsheet in SHriMP-Cell, and open the

“Macs.xls” in Excel 2003.

D.3.2 Background

Talk about formula cell references including direct references and indirect references, as

well as absolute and relative references. Identify data cells, input cells and formulas (calcu­

lation cells). The following concepts should be gone through in detail:

• Formulas: starts with a “=” sign, usually contains operators, functions, and operands.

A formula can refer to other cells by using cell references.

• Data cells: Non-empty and non-formula cells.

• Input cells: Special kinds of data cells which are used by other formulas, i.e. input

cells are used for calculation.

• Absolute and relative references: Cell reference describes a cell’s address, e.g., A l

means cell in the first column and first row. Absolute reference is denoted with a

dollar sign ($), e.g., -$A$1+$B1+C$1. If a cell reference has no dollar sign, we call

it a relative reference (default in Excel).

• Direct and indirect references: if a cell (say A l) (could be an input cell or a formula)

is referred by a formula (say Bl), we call formula B1 directly refer to cell A l. If B1

is also referred by another formula (say Cl), we call formula Cl indirectly refer to

cell A l. For example, in the Powerbook worksheet, C3 directly refers to Dl\ D3

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indirectly refer to D l, because D3 (directly) refers to C3, and C3 (directly) refers to

Dl.

D.3.3 Key features o f SHriM P-Cell

SHriMP-Cell (SHriMP for short) provides a nested graph view of a spreadsheet with nodes

and arcs. In SHriMP view, nodes and arcs use different shapes to represent different artifacts

and their relationship, e.g. triangles for formulas, and rectangles for data cells. Different

colors are used to represent different worksheets.

SHriMP has different views representing a spreadsheet. SHriMP Computational View

will be used in this study. It visualizes all the worksheets in one graph, and only cells

involve in computation show up in this view, i.e. non-referred data cells are filtered out,

because they have no contribution to the calculation.

Blocks: A block in SHriMP is a cluster of block nodes or cell nodes. Nodes inside a

block are called “descendants”.

• Input block: input data cells, i.e. non-formula cells that are referred by other formu­

las

• Calculation block: formulas that are referred to by other formulas

• Result block: the final result cells, i.e., formulas that no other formulas refer to (or

depend on).

IMPORTANT: draw a diagram to show how the three blocks work.

The following features need to learned in this study:

1. Excel Formula view (formula auditing mode): from Excel Menu “Tools” —> “For­

mula Auditing” —> “Formula Auditing Mode” (or by shortcut key Ctrl + ‘)

2. Node & Arc: Shape (different types: formulas are triangles; data cells and blocks

are rectangles), color (different sheets: orange for the first sheet, and green for the

second sheet, ...), and filtering (check/uncheck the checkbox in the Node/Arc Filter

window.).

3. Arc directions:

• Incoming: other cell nodes depend on this cell node, i.e. this cell is referred by

other cells.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Outgoing: this cell node depends on other cell nodes, i.e., this cell refers to

other cells.

4. Navigation: nodes can be moved around, especially when nodes or arcs overlap.

Multiple nodes can be selected by holding the Ctrl key.

5. Collapse node: to Collapse/Expand All Descendants, double click on a “Block”

node.

6. Show node attributes (mouse middle click, or shortcut Key “X”), If a block node is

selected, all nodes inside it will be laid out.

7. Home icon (or shortcut key “h”).

8. Search & select: in the search window, input “Search Pattern”, and click on the

“Search” button. Select one or more of the results, and click on the “Select” button.

9. Query View: only interesting nodes and their “neighbors” (connected by incoming

or outgoing nodes) will be shown. Select one or more nodes, then open the Query

View. “Restrict Node Types”, “Restrict Arc Types”, “Neighbors”, and “Arc Direc­

tion” options need to be explained by examples.

10. Zooming feature: zoom in (shortcut key “=/+”); zoom out (shortcut key “-”).

11. Thumbnail view: you can move the rectangle around by clicking on the border and

dragging. The rectangle can also be resized by dragging the small red box in the

lower right corner.

D.4 Practice

Time: about 15 minutes

D.4.1 Setup

Open the computational view for the “Weather.xls” spreadsheet in SHriMP-Cell, and open

“Weather.xls” in Excel 2003.

D.4.2 Practice tasks

Ask the user to do the following tasks and help them if needed:

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Browse the “Weather” spreadsheet, and switch between the formula auditing mode

and editing mode in Excel. Try how trace precedents and trace dependents work, as

well as the arrow removal icons.

2. Identify data cells and formula cells.

3. Identify absolute cell references and relative cell references.

4. Which cells do Cell “E5” and “F5” refer to, i.e., which cells do “E5” and “F5” depend

on?

5. Which cells use cell “D5” for calculation, i.e., which cells refer to “D5”?

D.5 Formal tasks

Time limit: 40 minutes (strict)

D.5.1 Setup

Open the “Historical-Income-Statement-and-Balance-Sheets.xls” spreadsheet in Excel 2003.

Make sure no potential interruptions: put a sign on the door; turn off the phone and cell

phones.

Note: This session is strictly 40 minutes. There are 5 questions. The user should not

spend more than 15 minutes on each question.

D.5.2 Formal tasks

Give the user a copy of the formal task sheets page by page. Give user the next question

sheet when he/she finishes the previous task or he/she has spent more than 15 minutes on

the task.

Ask the users to try their best to finish these tasks, but do not feel any pressure. They

are not expected to complete all the tasks perfectly. Record how much time the user spends

on each question.

List of the formal tasks:

1. Browse the given spreadsheet and explain what it does, and how it is structured. In

addition, explain how the calculation works.

2. Suppose you changed the value of Cell “Finances !B27”, what other cells’ value might

also have been changed?

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. In the “CashFlows” worksheet, the column of year 1999 is blank. Do you think this

is a mistake or something is missing or unfinished here? Why or why not?

4. What cells does Cell “CashFlows!E16” depend on (i.e., refer to) directly and indi­

rectly? Note, to save time, if the cell is in the “CashFlows” sheet, you do not need to

write the sheet name. If the cell is in the “Finances” sheet, you can just underscore

the cell reference.

5. Suppose the results of the given spreadsheet is wrong, and you know that the problem

is probably in the input cells, as the person who manually input those numbers is

careless. Now, you will need to find all the input data cells. Please list the cell

references and/or ranges. Hint: input cells are non-formula data cells that are referred

by other formulas. Note: to save time, if the cell is in the “Finances” sheet, you do

not need to write the sheet name. If the cell is in the “CashFlows” sheet, you can just

underscore the cell reference.

D.6 Post-study questionnaire

Time: about 5 minutes

Give the questionnaire form to the user and encourage the user to complete the questions

quickly; first impressions are fine.

D.7 Post-study interview and debriefing

Time: about 10 minutes

Interview should focus on the user’s experience with the tool.

Thank the user for their time and effort!

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E

Experimenter’s handbook for Excel

E .l General procedures

The purpose of this user study is to explore how end users understand spreadsheets, and

evaluate tools to facilitate end-users in better understanding spreadsheets. The key of this

study is to observe how users navigate and comprehend spreadsheets, to test whether the

tools used in this study are easy to learn and use (good usability), as well as to examine what

features of the tools are effective, and what could be improved. This is a controlled study

in a laboratory environment. Therefore, the users should always be in control. However,

experimenters should make the users feel as relaxed as possible and ease them not to feel

any pressure to give the “right” answer.

E.1.1 Phases

All users are asked to fill out a pre-study questionnaire in order to collect and compare

their experience in spreadsheets. Each experiment takes about 90 minutes and contains the

following phases with approximate time limits in minutes indicated in brackets.

1. Orientation and consent form (5): Introducing this study and ask the user to sign the

consent form.

2. Training (15): Going over the features that the tool provides to navigate and under­

stand a spreadsheet.

3. Practice tasks (15): Some small tasks to help the user get familiar with the tool.

4. Formal tasks (40): Formal tasks to test the tool.

5. Post-study questionnaire (5): Evaluating the user’s satisfaction and usability of the

tool.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Post-study interview and finishing (10): Further discussing issues and debriefing.

The following table lists all the phases and time expected to finish each phase.

Tasks Time (in minutes)
Orientation and consent form 5
Training 15
Practice 15
Formal tasks 40
Post-study questionnaire 5
Post-study interview and finishing 10
Total 90

E.1.2 Principles

The following principles should be followed during the experiments:

• Quietness: The lab should be quiet during the study. Disturbance should be min­

imized, especially during the formal task phase. Casual visitors should be avoided

(post a sign on the door saying “user study in progress”) and telephone calls need to

be stopped.

• Think aloud: Always encourage the user to talk and let the experimenter know what

he or she is thinking and doing (“think aloud”).

• Observation: Experimenter should take as much notes on this handbook as possible.

Write down how long each task actually takes and issues raised if there are any.

• Questions: Experimenter should be as helpful as possible answering user’s questions

in terms of tool features and clarifications, but NOT directly to the answers, especially

in the formal tasks session.

E.2 Orientation

Time: about 5 minutes

Greet the user and introduce the purpose of this study. Outline the phases of the exper­

iment and how much time expected to complete each phase.

Stress the point: the purpose of this study is to evaluate tools, not people. Relax and

enjoy. If you have any questions regarding the questions or tool features at any time, feel

free to ask the experimenter.

Review the consent form and inform the users about their rights.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E.3 Training

Time: about 15 minutes

Introduce some background of spreadsheet and the features in Excel 2003 that might be

helpful to understand a spreadsheet by going through some simple tasks.

E.3.1 Setup

Open the “Macs.xls” spreadsheet in Excel 2003.

E.3.2 Background

Talk about formula cell references including direct references and indirect references, as

well as absolute and relative references. Identify data cells, input cells and formulas (calcu­

lation cells). The following concepts should be gone through in detail:

• Formulas: starts with a “=” sign, usually contains operators, functions, and operands.

A formula can refer to other cells by using cell references.

• Data cells: Non-empty and non-formula cells.

• Input cells: Special kinds of data cells which are used by other formulas, i.e. input

cells are used for calculation.

• Absolute and relative references: Cell reference describes a cell’s address, e.g., A l

means cell in the first column and first row. Absolute reference is denoted with a

dollar sign ($), e.g., =$A$1+$B1+C$1. If a cell reference has no dollar sign, we call

it a relative reference (default in Excel).

• Direct and indirect references: if a cell (say A l) (could be an input cell or a formula)

is referred by a formula (say Bl), we call formula B1 directly refer to cell A l. If B1

is also referred by another formula (say Cl), we call formula Cl indirectly refer to

cell Al. For example, in the Powerbook worksheet, C3 directly refers to Dl\ D3

indirectly refer to Dl, because D3 (directly) refers to C3, and C3 (directly) refers to

Dl.

E.3.3 Key features of Excel

1. Formula view (formula auditing mode): from Excel Menu “Tools” —> “Formula

Auditing” —► “Formula Auditing Mode” (or by shortcut key Ctrl + ‘)

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Formula Evaluator: introduce “Trace Precedents”, “Trace Dependents”, and “Re­

move All Arrows”

3. Precedents: precedents are cells that are used by (referred by) the current selected

cell. Only formulas have precedents. Why? A cell’s precedents could be input cells

or formulas.

4. Dependents: dependents are cells that use (refer to) the current selected cell. Both

input cells and formulas can have dependents, and dependents can only be formulas.

Why?

IMPORTANT: Draw a diagram to explain trace precedents and dependents. Arrow

directions shows how data “flows”.

Ask the users whether there are any other features that they often use to understand a

spreadsheet.

E.4 Practice

Time: about 15 minutes

E.4.1 Setup

Open the “Weather.xls” spreadsheet in Excel 2003

E.4.2 Practice tasks

Ask the user to do the following tasks and help them if needed:

1. Browse the “Weather” spreadsheet, and switch between the formula auditing mode

and editing mode in Excel. Try how trace precedents and trace dependents work, as

well as the arrow removal icons.

2. Identify data cells and formula cells.

3. Identify absolute cell references and relative cell references.

4. Which cells do Cell “E5” and “F5” refer to, i.e., which cells do “E5” and “F5” depend

on?

5. Which cells use cell “D5” for calculation, i.e., which cells refer to “D5”?

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E.5 Formal tasks

Time limit: 40 minutes (strict)

E.5.1 Setup

Open the “Historical-Income-Statement-and-Balance-Sheets.xls” spreadsheet in Excel 2003.

Make sure no potential interruptions: put a sign on the door; turn off the phone and cell

phones.

Note: This session is strictly 40 minutes. There are 5 questions. The user should not

spend more than 15 minutes on each question.

E.5.2 Formal tasks

Give the user a copy of the formal task sheets page by page. Give user the next question

sheet when he/she finishes the previous task or he/she has spent more than 15 minutes on

the task.

Ask the users to try their best to finish these tasks, but do not feel any pressure. They

are not expected to complete all the tasks perfectly. Record how much time the user spends

on each question.

List of the formal tasks:

1. Browse the given spreadsheet and explain what it does, and how it is structured. In

addition, explain how the calculation works.

2. Suppose you changed the value of Cell “Finances 1B27”, what other cells’ value might

also have been changed?

3. In the “CashFlows” worksheet, the column of year 1999 is blank. Do you think this

is a mistake or something is missing or unfinished here? Why or why not?

4. What cells does Cell “CashFlows!E16” depend on (i.e., refer to) directly and indi­

rectly? Note, to save time, if the cell is in the “CashFlows” sheet, you do not need to

write the sheet name. If the cell is in the “Finances” sheet, you can just underscore

the cell reference.

5. Suppose the results of the given spreadsheet is wrong, and you know that the problem

is probably in the input cells, as the person who manually input those numbers was

careless. Now, you will need to find all the input data cells. Please list the cell

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

references and/or ranges. Hint: input cells are non-formula data cells that are referred

by other formulas. Note: to save time, if the cell is in the “Finances” sheet, you do

not need to write the sheet name. If the cell is in the “CashFlows” sheet, you can just

underscore the cell reference.

E.6 Post-study questionnaire

Time: about 5 minutes

Give the questionnaire form to the user and encourage the user to complete the questions

quickly; first impressions are fine.

E.7 Post-study interview and debriefing

Time: about 10 minutes

Interview should focus on the user’s experience with the tool.

Thank the user for their time and effort!

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix F

Post-study questionnaire

This post-study questionnaire gives you an opportunity to tell us your opinions of the us­

ability of the tested tool. Please read each statement carefully and indicate how strongly

you agree or disagree with the statement by circling a number on the scale.

1 - Strongly disagree

2 - Disagree

3 - Neutral

4 - Agree

5 - Strongly agree

If you have any additional comments, please write them down in the space provided to

record them.

Questions

1. Overall, I was satisfied with how easy it was to use this tool.

2. The given spreadsheet was well organized in such a way that I was certain about the

answers I gave.

3. I could effectively complete the given comprehension tasks using this tool.

4. Using this tool, I could effectively discover the dependencies between cells and

formulas easily.

5. The interface of this tool was pleasant to use.

6. Using this tool, I was able to comprehend the structure of the given spreadsheets

with ease.

7. This tool was simple to use.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8. I felt comfortable using this tool.

9. This tool was easy to learn.

10. This tool had all of the functions and capabilities that I expected it to have.

If you do not strongly agree with question 10, are there any features you wish it has, but

not currently provided?

Other comments

Please write your comments here:

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix G

Post-study interview questions

1. After using the tool, what is your overall satisfaction? Are there any issues raised or any

things could be improved?

2. Is the tool easy to learn in general? If there are some parts of the tools are hard to use,

what are they?

3. Does the tool always keep you informed about what is going on, through appropriate

feedback within reasonable time?

4. Is the tool good at discovering dependencies between cells and formulas?

5. Is the SHriMP view hard to map to the spreadsheet view? If so, what makes it hard?

(for SHriMP-Cell)

6. For those tasks you have worked on, which ones can be easily done by using the

SHriMP view, which ones can not? Why? (for SHriMP-Cell)

7. What features in the tool are most helpful in completing specific tasks? Users can refer

the formal task sheets, (for Excel)

8. Do you have any suggestions to the procedure of this user study in general?

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

