
U niversity of A lberta

R e v e r s e E n g in e e r in g H e t e r o g e n e o u s S o f t w a r e S y s t e m s

by

D aniel Leontin M oise

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M aster o f Science

Department of Computing Science

Edmonton, Alberta, Canada
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-29997-5
Our file Notre reference
ISBN: 978-0-494-29997-5

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To m y lovely wife, Gabriela, who constantly encouraged me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Nowadays, the abundance of new technologies and languages used to ease ap

plication development raises new challenges for reverse engineers. During de

velopment , programmers need to understand not only the dependencies among

code in a particular language, but dependencies that span languages. This the

sis studies the problem of finding, representing and visualizing cross-language

dependencies in such diverse, heterogeneous software systems. The goal of

this thesis is to develop techniques for helping engineers to understand and

navigate multi-language software systems.

Our approach involves building a fact extractor for each language. The

produced facts conform to a common schema, and an analyzer is extended to

recognize the cross-language dependencies. We present how these statically

discovered dependencies can be represented, visualized, and explored in our

developed tool called Clare, which is a plugin in Eclipse. Some tests illustrate

the usefulness and scalability of our approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ent s

I would like to thank my supervisor, Dr. Kenny Wong, for his help and
support. He gave me a chance, and he encouraged me in all this time. Thanks
a lot Ken!

I would like to thank the members of my committee, Dr. James Hoover and
Dr. Marek Reformat, for their insightful feedback.

Also, I would like to thank Dr. Daqing Hou for our long discussions and the
help that he gave me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 M otivation.. 2
1.2 Related W o r k .. 3
1.3 Contribution... 4
1.4 O utline.. 5

2 Background 6
2.1 Reverse Engineering .. 6
2.2 Summary .. 9

3 Overall Approach 11
3.1 T ech n iq u e .. 11
3.2 Architecture O v e rv ie w ... 13

4 Extracting Facts for C /C + + and Java 15
4.1 Source N a v ig a to r ... 16
4.2 Output F o rm ats.. 19

4.2.1 Graph eXchange Language (GXL) Representation . . . 19
4.2.2 Clare XML-based R ep resen ta tio n 21

4.3 Extracting the F a c t s ... 21
4.3.1 Populating Source Navigator Internal Database 22
4.3.2 Producing the O utput F a c tb a s e 24

4.4 C /C + + and Java Schem as... 26
4.5 C /C + + and Java Results ... 30

4.5.1 C /C + + Factbase E xam ple ... 31
4.5.2 Java Factbase E xam ple ... 31

4.6 Summary .. 31

5 Extracting Facts for Perl 34
5.1 Perl In te rn a ls ... 35

5.1.1 Perl Data Types ... 37
5.1.2 Perl Subroutines ... 40
5.1.3 Perl N am esp aces ... 43

5.2 Perl E x trac to r .. 44
5.2.1 Interpreting Perl S c r ip t s ... 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Perl Interpreter Control F l o w ... 46
5.2.3 Perl Extractor Implementation .. 47

5.3 Perl S ch em a .. 49
5.4 Perl R e s u lts .. 50

5.4.1 Perl Factbase E x am p le .. 50
5.4.2 Perl Extractor T e s t .. 51

5.5 Summary ... 53

6 A nalyzing and R epresenting Cross-Language D ependencies 54
6.1 Recognizing Java to/from C /C + + ... 54
6.2 Connecting Perl to C .. 59
6.3 Connecting Tel to C .. 62
6.4 Connecting Python to C ... 64
6.5 Extension Mechanism C om m onalities... 66
6.6 Common S c h e m a .. 67
6.7 Summary ... 69

7 Evaluation and A pplications 71
7.1 Perl B Module T e s t ... 71
7.2 Win32RegKey T e s t ... 72
7.3 Java GNome T e s t .. 76
7.4 Standard Perl Modules T e s t ... 77
7.5 Summary ... 78

8 R elated Work 79

9 Conclusions and Future Work 86

Bibliography 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 The place of reverse engineering in the phases of life cycle of a.
software development process [Chikofsky90] 7

3.1 Overall A rc h ite c tu re .. 13

4.1 Source Navigator A rchitecture .. 16
4.2 Source Navigator Database Access... 17
4.3 GXL representation exam ple... 20
4.4 Clare representation example .. 21
4.5 Snippet from the extractor im plem entation................................. 25
4.6 A simple C + + example ... 31
4.7 Factbase for the C + + example in Clare representation 32
4.8 A simple Java ex am p le ... 32
4.9 Factbase for the Java example in Clare representation.............. 33

5.1 Internal Perl data type hierarchy ... 38
5.2 General Perl S V s tru c tu re .. 38
5.3 Perl operation structure h iera rchy ... 41
5.4 A simple Perl sc r ip t... 42
5.5 Perl operation t r e e ... 42
5.6 Perl internal stashes rep resen ta tio n .. 44
5.7 Perl interpreter a rc h ite c tu re ... 45
5.8 Overview of Perl call t r e e .. 46
5.9 Perl extractor p seu d o co d e .. 48
5.10 Perl s c h e m a .. 50
5.11 Factbase for the Perl example in Clare rep resen ta tion 52

6.1 Test Java c l a s s .. 55
6.2 Algorithm for finding cross-dependencies from Java to C /C + + 57
6.3 C sample code for accessing Java from C c o d e 58
6.4 A lg o rith m for finding cross-dependencies from C / C + + to Jav a 59
6.5 Listing of Test.c file for P e r l .. 60
6.6 Listing of Test.pm Perl module f i l e .. 62
6.7 Listing of Test.c file for Tel .. 63
6.8 Listing of Test.c file for P y th o n ... 65

7.1 Support Perl-to-C dependencies in E c l ip s e 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Win32RegKey source code snippet ... 74
7.3 Snippets of Win32RegKey Java f a c tb a s e 75
7.4 Snippets of Wm32RegKey C fa c tb a se ... 75
7.5 Snippets of WinSSRegKey result cross-language dependencies

f a c tb a s e .. 76
7.6 Java-GNome mistakes ... 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 Source Navigator types used for predefined lan g u ag es.............. 18
4.2 Source Navigator internal database f o r m a t 23
4.3 C /C + + Schema - Node and Relation T y p e s 28
4.4 C /C + + Schema - Attribute Types .. 29
4.5 Java Schem a.. 30
4.6 Java Schema - Attribute T y p e s ... 30

5.1 Perl data type correspondence.. 37
5.2 Selected Perl operations .. 41

6.1 Mapping Java and C /C + + T y p e s .. 56
6.2 Encoding Java Signatures .. 58
6.3 Summary of Perl, Tel and Python to C extension mechanisms 66
6.4 Common schema entity t y p e s .. 67
6.5 Common schema relation t y p e s ... 68
6.6 Common Schema - Attribute T y p e s .. 69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Chikovsky et al. [Chikofsky90] defined reverse engineering as being the “the
process of analyzing a subject system in order to identify the system’s compo
nents and their interrelationships, and to create representations of the system,
possibly at a higher level of abstraction.”

The input of a reverse engineering process might be anything regarding
the subject software system, such as: source code, building files, design dia
grams, specifications, user manuals, log files. This process uses tools and/or
techniques to ease the work of software developers, engineers or maintainers
solving a specific task. The goal of this process is to provide different per
spectives of the software system based on the implementation for a better
comprehension of the system. This should have a positive impact for the
process of maintenance and evolution of the product.

Most of the reverse engineering tools focus on finding the dependencies
within a system written in a single programming. Nowadays, with the ad
vent of new technologies, many systems are implemented using more than one
language. Therefore, the developers need urgently tools and techniques to
understand these heterogeneous applications.

In this thesis we present an approach for finding, representing and visual
izing dependencies in software systems written in more than one language.

As a simple example, let’s consider a multi-language application tha t is
coded using both Java and C languages. Most of the existing tools provide
the code dependencies only within each language, Java or C, but not across
the languages, Java to C or C to Java. Our approach finds, besides the infra-
language dependencies, the inter-language dependencies where Java code is
accessing C code, or C code is accessing Java code, for example.

From now on, we refer to a softw are sy stem w rit te n in m ore th a n one
language using one of the following terms: multi-language, mixed language,
diverse, or heterogeneous. We also use the term cross-dependencies or inter
dependencies for the connections among different languages. Cross-dependencies
do not include the connections inside the same language (referred as intra
dependencies) .

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 M otivation
The diversity of programming languages, technologies, and platforms used in
modern software systems today creates significant understanding, evolution,
and management challenges. Software developers have moved far beyond sup
port for a single language or platform, and are in urgent need of tools that can
analyze multi-language, multi-platform systems [Baxter, LammelOl, Linos03,
Eichberg05]. For instance, addressing this need is critical for the long-term
viability of Web-based applications [HassanOl], which may contain a mix of
code in Java, HTML, JavaScript, VBScript, SQL, etc. In addition, there is
a vast amount of heterogenous legacy software that must still be maintained
and/or migrated to modern environments. Many systems are written with
entity, control, and boundary layers, each implemented or generated by a dif
ferent suitable language. Ubiquitous .NET applications allow developers to
access the .NET framework by writing code in different languages.

The goal of most programming languages is to be “the one language needed
to meet all of your programming needs” , but the reality is that no one lan
guage is sufficient to satisfy all the developer’s needs. For example, developers
build systems from components written in different programming languages,
by gluing them together into a single system. In this case, all components
share information about the interfaces of the objects, typically specified in an
other language called IDL (Interface Description Language) [IDL]. Scripting
languages are another example, since they provide different techniques to be
extended by/embedded in software written in another programming language.

There are a number of reasons why multi-language systems exist.

• Efficiency

For performance reasons, a high-level language may invoke fragments
of code in another lower-level language (e.g., C with embedded assem
bly). An interpreted language may call functions written in a natively
compiled language (e.g., Perl with calls to a C library).

• Suitability

For certain tasks, some languages and notations may be more suitable
than others. For example, SQL (Structured Query Language) is the
standard notation for manipulating relational data. Scripting languages
are useful in gluing together programs. In particular, Perl is very effective
at text processing.

• Reuse

A software system may need to interoperate with another one as is,
even if written in another language, rather than rewriting everything
into a single language. The different teams working on each system may
continue to use the language with which they are most familiar.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For a diverse system, analyzing the software written in each language as an
island unto itself is not sufficient. These analyses need to be connected together
or bridged to create a comprehensive, more integrated picture [DeruelleOl,
Kullbach98]. For example, programmers often need to follow control flows in
software, and this activity should not be constrained by language boundaries.
It would be useful to know if, say, a C function was ultimately called from
Perl code to better assess the impact of potential changes. Also, a more
integrated understanding can help in looking for inconsistencies or anomalies,
such as malformed or missing stubs in the cross-language mechanism. If a C
function is declared to be called from Perl, a static program analysis can check
that the C function indeed exists. Moreover, the integrated analyses need to
be presented in a seamless form that is familiar to developers, such as in the
context of the Integrated Development Environments (IDEs) (Eclipse [Eclipse],
Visual Studio .NET, and so on). Finally, a comprehensive understanding can
aid in recovering the system architecture [Hassan02a, Hassan02b].

1.2 R elated Work
This section provides a short overview of the existing research work on tools
for analyzing multi-language software systems. See Chapter 2 for more details.

Linos et al. [Linos03] implemented a prototype tool called MT (Multi-
Language Tool) for understanding multi-language program dependencies. The
purpose of MT is to ease the process of detecting, storing, and managing
MLDPs (Multi-Language Program Dependencies) found in programs written
using a combination of C, C + + , and Java languages. The extractor used in
this tool is based on a lexical analysis. We believe that a syntactic extractor
with more precise facts is needed for analyzing such heterogeneous systems.

Hassan et al. [HassanOl, Hassan02a, Hassan02b, Hassan03] proposed a
methodology for maintaining Web applications. A set of extractors is used to
analyze the source code of Web applications. The outcome of this analysis is
a set of relationships between various components of a Web application. This
work focuses more on extracting the architecture of a web system.

Deruelle et al. [DeruelleOl] described a method for analyzing distributed
multi-language software systems. Several tools help to accomplish this: a
multi-language source code analyzer, a software change management module,
a profiling tool, and a graphical user interface. The multi-language source code
analyzer consists of a set of parsers for each of the languages considered (C,
CH—h, and Java). Each p a rse r is g en e ra ted using th e Jav aC C to o l b ased on
a language-specific grammar. The input could also be provided as bytecode,
in which case a decompiler is run first. The dependencies between languages
are extracted by parsing IDL files. This approach focuses more on analyzing
CORBA [CORBA] distributed systems.

Kullbach et al. [Kullbach98] described a tool that helps the management
of inter-program dependencies for a software application developed in vari-

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ous programming languages, database definitions and job control languages.
Their approach uses a coarse-grained conceptual model for the individual pro
gramming languages, on which an integrated model for the multi-language
application is developed. The key observation here is that the inter-program
dependencies are defined by job control procedures that coordinate a number
of programs and databases. Also, this work focuses more on providing a query
language for analyzing multi-language systems.

1.3 Contribution
In this thesis, we present a method to comprehend how diverse software is
structured and integrated. There are many mechanisms by which software
written in one language can transfer control and data to a separate piece of
software potentially written in another language. Our approach recognizes
and presents such cross-language dependencies.

Our approach consists of several tools for analyzing multi-language soft
ware. A set of extractors is used to extract the facts for each individual
language present in the application based on the source code. The factbases
conform to a common schema. Essentially, a multi-language system can be
represented as a set of namespaces, with each containing facts from one lan
guage. The common schema helps to decouple the cross-language dependency
analysis (and downstream tools like visualizers) from the individual language
fact extractors. The factbases feed different recognizers of cross-language de
pendencies. A visualization tool was developed to present the relations inside
each factbase as well as the cross-language dependencies. The recognizers
of cross-language dependencies and the visualization are under a tool, called
Clare. Clare was developed as a plug-in in Eclipse [Eclipse] to alleviate the
problem of adoption for the tool. Therefore, the developers can use Clare to
understand the cross-language dependencies at the same time while developing
heterogeneous applications.

In summary, the main contributions of this thesis are:

• extend extractors for C, C + + , Java;

• build an extractor for the Perl scripting language;

• introduce a common schema for code artifacts across several languages;

• p rov ide d ifferen t recognizers of cross-lan g u ag e in teg ra tio n o r linkage m ech
an ism s b e tw een p a irs of languages;

• develop a visualization tool to view and explore the cross-language de
pendencies under the Eclipse platform;

• reveal some mistakes made by developers when developing a software
system written in Java and C.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our toolset helps developers to understand and maintain better heteroge
neous software system, by providing the automatically extracted cross-depen
dencies between the languages, and by allowing the exploration of calls not
only within each language, but also across the languages.

The results of our research are published in several top conferences in re
verse engineering [Moise03, Moise04a, Moise04b, Moise05, Moise06a, Moise06b].

1.4 Outline
The rest of the thesis is organized as follows. Chapter 2 introduces the reverse
engineering in the life of a software system. Chapter 3 presents the technique
used and the high-level architecture of our approach. In Chapter 4 and Chap
ter 5, we describe the extractors used for individual languages. Chapter 6
describes the recognizers for several mechanisms used to transfer the control
and data between different languages, and presents a common schema used to
represent the facts. The evaluation of our approach on some case studies is
presented in Chapter 7. Chapter 8 presents some related work for different
types of extractors. Finally, Chapter 9 proposes directions for future research
and draws the conclusions.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

This chapter presents the background and the related work with regard to this
thesis. We present the place and need of the reverse engineering process in the
software development life-cycle in Section 2.1.

2.1 Reverse Engineering
Reverse engineering has its origin in the analysis of a hardware system, with
the aim of duplicating the original hardware system. Well known stories travel
around the world about “stealing” technology from an enemy or from a com
petitor company using reverse engineering of hardware systems. Probably the
most known story of reverse engineering a hardware system is how the sovi
ets copied the American’s best bomber during the Second World War [CNN],
Around 1944, three B-29 American’s planes that returned from bombing mis
sions against Japan, made emergency landings in Russia (who was America’s
ally at tha t time). The pilots did not know what was going to happen to
their planes. The Soviet leader ordered disassembling the planes and to build
similar planes for the Soviet army. The planes were copied exactly after the
American’s ones, even with the problems the planes had. This story remains
as the most well known story of reverse engineering a hardware system.

The same term of reverse engineering used in software engineering has the
meaning of understanding the design of a software system in order to improve
the maintenance, enhancement or even replacement of the software product.
While a company reverse engineers hardware systems to understand enemy
or competitor products, a company may reverse engineers software systems to
u n d e rs ta n d its ow n w ork. The reaso n is that in m an y cases the documentation
and specifications for the software product do not exist. From now on, we use
the reverse engineering term to refer to reverse engineering software systems.

Chikofsky and Cross present a taxonomy of terms (forward engineering, re
verse engineering, redocumentation, design recovery, restructuring and reengi
neering) with respect to the life-cycle phases and activities in which they are
involved [Chikofsky90]. Three fundamental activities exist in the life cycle of

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eq u irem en ts
(constraints,
objectives,

business rules) Design Im plementation

Forward
engineering

Forward
engineering

Reverse
engineering

Reverse
engineering

Design
recoveryDesign

recovery

Reenginering
(renovation)

Reenginering
(renovation)

Restructuring Restructuring Redocumentation,
restructuring

Figure 2.1: The place of reverse engineering in the phases of life cycle of a
software development process [Chikofsky90]

every software development process:

• requirements analysis: what the product should do and under which
constraints

• design: how the system will be implemented - describing a model for the
established requirements

• implementation: coding, testing, debugging and providing the solution.

Figure 2.1 illustrates the relationships among the processes defined next in
this section and the life cycle of a software development cycle.

Forward engineering is the process of moving from the high-level abstrac
tions (from the requirements and design phases) to the low level implementa
tion of the system. This process follows different scenarios depending on the
chosen software process used for developing the system. For example, in the
traditional process, the sequence of steps is to gather the requirements, then
move to analyze the requirements for building the design of the system, and
finally to im p lem en t the p ro d u c t b ased on th e design. R everse eng ineering is
the opposite process of forward engineering; thus, reverse engineering process
starts from source code (implementation) to recover the design and eventually
to provide the initial requirements. The role of reverse engineering is to un
derstand the software system using different specific tools and not to modify
or replicate the system. Chikofsky and Cross give the following definition for
reverse engineering [Chikofsky90].

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reverse engineering is the process of analyzing a software system
in order to identify the system’s components and their interrela
tionships and to create representations of the system, possible at
a higher level of abstraction.

Note that reverse engineering is a process of examination only - the software
system under consideration is not modified.

Two important subareas of reverse engineering are redocumentation and
design recovery, which are defined with respect to the levels of understanding
that they achieve. Redocumentation is the process of extracting different rep
resentations of a system in order to identify certain characteristics existing in
different versions. The prefix re from redocumentation is coming from the fact
that this process extracts the documentation even though other documenta
tion may already exist for the system. The purpose of the redocumentation
process is to recover artifacts of the early stages of development; therefore it is
not required to obtain any function or purpose of the system. The process that
complements the redocumentation process is called design recovery. Besides
the artifacts from the source code, design recovery considers domain knowl
edge, external information or other existing or deduced observations that could
help in obtaining “meaning” for the system or system’s components. The de
sign recovery process could lead to the recovery of the steps from the design
phase, and sometimes even the rationality that stands behind the decisions
taken.

Two topics related to reverse engineering are restructuring and reengi
neering. These topics are not subareas of reverse engineering because they
are not only examining the code, but are modifying it. Restructuring is the
process of transforming the source code from one representation to another
without changing the functionality of the system. A simple example is mov
ing a software system from a procedural implementation to an object-oriented
implementation. This transformation will change massive parts of the code,
but it will maintain the behavior of the system. Reengineering is a form of
restructuring that might modify the functionality of the system. Usually, the
reengineering process will follow a reverse engineering process, followed by a
forward engineering process for adding new features to the system.

The main goal of reverse engineering a software system is to increase the
comprehension of the software system. Some of the objectives of the program
understanding are: to cope with complexity, to generate alternate views, to
recover lost information, to detect side effects and to synthesize higher abstrac
tions. The need for a better comprehension of the system is required by tasks
such as maintenance, reuse or overall quality assurance. Software maintenance
is the process of “modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt the product to
a changed environment” [IEEE83]. Therefore, the maintenance process might
be categorized in four denominations: corrective (repair the bugs in a sys
tem), adaptive (moving the system to a new environment), perfective (adding

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

new functionality to the system), and preventive (modifications of the system
to ease the future changes). In addition to reverse engineering tools, some
of these maintenance tasks imply using restructuring or reengineering tools.
Reverse engineering tools help to reuse components extracted from the code
with the goal of minimizing the cost of developing applications. Also, the re
verse engineering tools could help in improving the software quality assurance
by providing formal technical reviews, different metrics or validation criteria
throughout each phase of the life cycle.

There are studies that reflect the importance of the maintenance process
played in software industry:

“Corporate computer programmers, in fact, now spend 80 percent
of their time just repairing the software and updating it to keep it
running. Developing new applications in this patchwork quilt has
become so muddled that many companies cant figure out where all
the money is going.” [Carroll88]

“Estimates that $30 billion is spent each year on maintenance ($10
billion in the United States) with 50 percent of the data processing
budgets of most companies going to maintenance and that 50
80 percent of the time of an estimated one million programmers
or programming managers is spent on maintenance.” [Corbi89]
[Parikh87]

“A Massachusetts Institute of Technology study which indicates
that for every $1 allocated for a new development project, $9 will
be spent on maintenance for the life cycle of the project.” [Corbi89]
[Parikh87]

“... programmers spent an average of 35% of their time simply
navigating between dependencies, and an average of 46% of their
time inspecting task-irrelevant code.” [Ko05]

Keeping in mind tha t reverse engineering tools help to understand a soft
ware system and that “at least half of the maintenance process is understand
ing the system itself” [Parikh83], we can deduce the necessity of the reverse
engineering tools mainly to decrease the costs of the maintenance process.

2.2 Summary
It has been estimated tha t at least one third of the software applications are
written using two different programming languages and that 10% of all soft
ware applications use three or more different programming languages [Jones98].
This estimation was made in 1998, so that today it is quite likely that the per
centage of the applications using multiple programming languages to be sig
nificantly higher than the old percentage. Therefore, program comprehension

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and maintenance have become crucial issues when dealing with multi-language
software systems.

Nowadays, the abundance of new technologies used to ease the development
of medium or large applications raises new challenges for understanding and
maintaining these systems implemented in various programming languages.
Examples of multi-language software systems are web-based applications, or
the legacy systems in which the developers have been using scripting languages
to overcome the problem of portability to different platforms. These days,
software systems are becoming more and more a “spaghetti” of languages,
using low level languages such as C, C + + or Java, to high level ones such as
scripting languages (Tel, Perl, JavaScript). Therefore, the software developers
need tools to understand these multi-language systems. However, most of the
research in reverse engineering is developed for the legacy systems implemented
in only one programming language [Muller93, Wong95, Bowman99, RivaOO,
Moise03, Antoniol03|.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Overall Approach

Software systems are often written in more than one programming language.
During development, programmers need to understand not only the depen
dencies among code in a particular language, but dependencies that span lan
guages. This chapter presents our approach used to extract and to visualize
the cross-language dependencies for diverse, heterogeneous software systems.
A high-level overview of the approach is discussed in Section 3.1. A short
introduction about the main constituents of the architecture of the approach
is given in Section 3.2. Each of the main components will be dissected into
more details in the subsequent chapters.

3.1 Technique
Reverse engineering the source code of a software system requires a fact ex
tractor that can identify the constituent entities and relationships. Depending
on the nature of the software system, and on the programming languages used,
building fact extractors is a difficult task because of the potential need to han
dle multiple dialects, missing source code, missing libraries, source code for
multiple platforms, syntax errors, and so forth. For example, we could have
individual extractors for programming languages (such as C, C + + or Java),
scripting languages (such as Perl, Tel or Python), and markup languages (such
as HTML, ASP or JSP). A combination of two or more programming languages
may exist in the software system. For example, a large software system may
embed a scripting language interpreter to ease interoperability with external
systems. Also, a Java application can call C functions to access the native
p la tfo rm , to use ex is tin g n o n -Ja v a libraries, or to improve the speed of critical
parts of the code. Therefore, for multi-language systems, we need to build
extractors tha t produce dependencies both within and among the constituent
languages of the system.

As part of the reverse engineering process, a visualization tool is needed to
illustrate the cross-language dependencies. It will be useful to have the visu
alization tool embedded into a developer environment such as Visual Studio

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IDE or Eclipse. Therefore, developers can easily visualize, while implementing
diverse software systems, the relationships inside code in each language, as
well as the cross language relationships among the code.

The space of languages and cross-language interoperability mechanisms is
huge. Rather than considering analyses between every pair of languages, it is
helpful to divide the space, narrow our focus, and look for general approaches
for each partition.

Consequently, interactions between programmatic entities can be broadly
categorized as being either loosely coupled or tightly coupled. Loosely coupled
interactions may be enabled by sharing a database or file, communicating
through network channels, or invoking procedures remotely through the use of
middleware. Such interactions typically cross process boundaries. In contrast,
tightly coupled interactions happen within a single process, including both
transfers of control and exchanges of data.

Tightly coupled cross-language components may interoperate by providing
an interface that is invoked using some common calling mechanism (e.g., C
convention with arguments pushed onto the stack in reverse order). Similarly,
cross-language components may interoperate if each is compiled into a com
mon intermediate language running on a virtual machine interpreter (e.g., Mi
crosoft Common Language Runtime [CLR], and the Perl 6 Parrot Interpreter
[Parrot]). Our approach focuses on studying tightly-coupled cross-language
dependencies.

We presents an approach for finding and visualizing tightly-coupled depen
dencies in multi-language software systems. The approach has three major
steps:

1. extract facts from code written in each individual language in the subject
diverse software system

2. find the cross-language dependencies among different languages based
on the facts discovered in the previous step

3. visualize and explore the cross-language dependencies

The first step of our approach requires building extractors for each indi
vidual language from the subject system. We developed extractors for the
following languages: C /C + + , Java, and Perl. We chose C /C + + and Java
for programming languages to show the tightly-coupled connection among
programming languages. We chose Perl language to illustrate how to build
an extractor for sc r ip tin g lan g u ag es, a n d to show th e d ep en d en cies betw een
a programming language, such as C, and a scripting language, such as Perl.
The first step produces one factbase for each individual language in the diverse
system analyzed.

In the second step, we developed an analyzer that recognizes the cross
language dependencies among the factbases obtained in the first step. This
step assumes tha t the factbases obtained in the first step conform to a common

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

schema. Essentially, a multi-language system can be represented as a set of
namespaces, with each containing facts from one language. The schema helps
to decouple the cross-language dependency analysis (and downstream tools
like visualizers) from the individual language fact extractors.

To explore and visualize the cross-language dependencies, we developed the
Clare tool. Clare is implemented as a plug-in for Eclipse IDE, and shows the
facts from each individual language, as well as the cross-language dependencies
among the languages. Clare can be used to navigate through the call tree of a
diverse system without having the limitation of stopping at the border between
the languages.

3.2 Architecture Overview
Figure 3.1 illustrates the overall architecture of our approach. Our architec
ture adopts the standard reference architecture for reverse engineering tools
[Ferenc02, HassanOl]. It consists of fact extraction, which contains several ex
tractors for revealing the facts in each language; fact analysis, which embeds
several analyzers for finding cross-language dependencies; and fact visualiza
tion identified by Clare tool for visualizing, representing, and exploring the
facts.

Fact extraction

Jav a f ile 1

Java file _rn-
Java fac tb ase —

(- / (. + + _______—_
 ----- - ^ C /C + + extractor)—► C/C++ fac tb ase -
C/C-n-file n —1 ------ ---------------

Perl file . 1

erl factbcisfr —Perl ex trac to r
°e rl f ile p

Tel extracto r Tel fac tbase

vthon extracto

CLAREFact analysis

parser

EMF o b je c ts
Fact visualization

analyzer

visualizer

Figure 3.1: Overall Architecture

Given a multi-language software system, an independent factbase is pro
duced for each language involved. Figure 3.1 contains the input files for five
different languages: m files for Java, n files for C /C + + , p files for Perl, t files
for Tel, and r files for Python. A Perl extractor is used to produce the Perl
factbase containing the facts for the input Perl source files. In the same way, a

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C /C + + extractor produces the factbase corresponding to C /C + + source files,
a Java extractor produces the factbase corresponding to Java source files, and
so on.

We developed extractors for three languages using two different approaches.
First approach is to use the Source Navigator [SN] front-end, to obtain the
facts in a common format understandable by the reverse engineering tools.
Source Navigator contains several extractor for different languages, such as
C /C + + and Java. The implementation uses predefined extractors in Source
Navigator to produce the facts inside each language. Source Navigator extrac
tors are robust, so they work on a variety of software systems without crashing,
even when the subject application has syntax errors, or the source code is in
complete. The second approach is to develop a fact extractor for a scripting
language by hooking into the language interpreter itself. We developed a Perl
extractor using this approach. We believe that the same extraction method
can be applied to other scripting languages, such as Tel. The two approaches
used to develop fact extractors is discussed in more detail in Chapter 4, and
respectively Chapter 5.

Each factbase produced by one of the extractors is represented in XML
format conforming to a common XML schema, and all factbases can be pro
cessed by a common parser. A parser reads each factbase associated with a
language, and produces an in-memory set of objects that is analyzed to dis
cover cross-language dependencies in the facts. Then, an analyzer identifies
the dependencies among different factbases. Chapter 6 describes how the an
alyzer can find the dependencies between several languages such as C /C + +
and Java, or Perl and C.

The facts and dependencies of the studied software system are represented,
visualized and explored using Clare tool. The environment of manipulating
the facts is Eclipse IDE, which gives the developers the power to develop and
explore the software system at the same time, and under the same environment.
Clare consists of two main components: one for extracting the cross-language
dependencies, and another component that allows to explore and visualize the
(cross-)dependencies.

To build Clare, we used the Eclipse platform. In particular, the Eclipse
Modeling Framework (EMF) provides services to create and edit data models,
as well as a facility to generate code to parse and validate data according to
a given schema description. If the data is valid, an in-memory Java object
model is constructed automatically. We use EMF to generate the common
p a rse r for the XML factbases, using the common XML schema. This approach
is especially useful for iterative development. Every time the schema evolves,
a new parser can be generated within seconds. Also, the Graphical Editing
Framework (GEF) from Eclipse is used to create a rich, graphical editor to
present the object model. GEF contains two Eclipse plug-ins: one for graphical
drawing and the other for defining an Eclipse workbench window.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Extracting Facts for C/C-f— \-

and Java

Two important characteristics of extractors are their robustness and their ac
curacy. The robustness of an extractor refers to its ability to deal with differ
ent special situations that might appear in the source code. For example, the
source code might contain syntax errors or might be incomplete. Sometimes, it
is useful to have an extractor that can deal with such situations. On the other
hand, an extractor should be as accurate as possible; otherwise the analysis
of the software system could lead to mistakes. In practice, when an extractor
is built, there is a tradeoff to choose either an extractor that is more robust
than accurate, or an extractor that is more accurate than robust. The decision
is taken with respect to the reverse engineering tasks tha t have to be accom
plished. Some benchmarks for testing the extractors in terms of accuracy and
robustness have been proposed. CppETS (C + + Extractor Test Suite) [Sim02]
is such a benchmark tha t contains a bunch of tests for evaluating the C + +
fact extractors.

Another interesting characteristic of an extractor is the format used to
store the output file that contains the artifacts of the software system that
the extractor produced. Most of the data formats existing in the reverse en
gineering domain are associated with the reverse engineering tool in which
they are used. For example, Rigi tool [Rigi] uses RSF (Rigi Standard For
mat) [RigiManual], CPPX (C + + Fact Extraction Tool) tool [CPPX] uses TA
(Tuple A ttribute format) [TA] or GXL (Graph eXchange Language) [GXL],
ShriMP (Simple Hierarchical Multi-Perspective) [SHRIMP] uses GXL, RSF,
XML [XML] or XMI (XML M etadata Interchange) [XMI]. At the Dagstuhl
Seminar on “Interoperability on Reverse Engineering Tools” , GXL was r a t i
fied as the standard exchange format for the tools in this domain [Winter02],
so that nowadays converters have been developed for transforming different
formats to GXL.

This chapter presents an approach for generating factbases for different
languages using Source Navigator [SN] as a front-end. Source Navigator has

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predefined parsers for C, C + + , Java, Tci, [incr Tel], FORTRAN, and COBOL,
and offers the API necessary to add your own parser to this environment.

Our approach uses Source Navigator predefined extractors to produce source
code information in a proprietary database format. The Source Navigator API
is used to interrogate the Source Navigator database and to produce the fact-
bases in a format accepted by most of the reverse engineering tools. Our
extractors output the factbases in two formats: GXL format and an XML-
based format supported by the Clare tool. Therefore, this approach ensures
the widespread use of the results in the existing reverse engineering tools.

4.1 Source Navigator
Source Navigator is a source code analysis tool that can edit the source code,
display the relationships between classes, and functions and members, display
call trees, or display artifacts from source files such as functions, variables,
“include” files, and so on. Source Navigator could be used, for example, to
analyze how a change affects external source modules, to find every place in
code where a given function is called, to find each file that includes a given
header file, or to search for a given string in all the source files.

There are two major software components in Source Navigator. One com
ponent contains the database engine and predefined parsers tha t fill the database
with the facts of a software system. The other component is a graphical user
interface (the largest part, i.e., 90%, implemented in Tcl/Tk) for viewing soft
ware projects stored in the database. Our approach uses only the first software
component to extract the facts from a subject software system in the Source
Navigator database. The steps involved in this component are illustrated in
Figure 4.1. First, the Source Navigator takes the files associated with a project.
Then, based on the filename extensions of the files the appropriate parsers are
invoked to extract the artifacts from the source code. Finally, the information
extracted in the previous step is stored in an internal database. This process
can be executed in two ways: using the Source Navigator interface or using
the command line tools provided with Source Navigator.

C/C++. Java, Fortran, Tel, mi
[incr Tel], Cobol, assembly

Standard Parsers

N e w L a n g u a g e s m i

Project Database

New Parsers
(generated with the SDK)

Figure 4.1: Source Navigator Architecture

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source Navigator provides a C API that enables parsers to insert infor
mation into a project database. This feature allows writing new parsers for
supporting additional programming languages, as illustrated in Figure 4.1.
Also, a database API for manipulating the database files and records is pro
vided for both C and Tel languages. Our approach uses the Tel API to extract
information from the Source Navigator database.

All information associated with a Source Navigator project is stored in an
internal database. The Source Navigator database consists of multiple files
(between 15 and 25 files for a project), each one representing a table that
contains symbol and index information. These files store the information in a
binary format using either a sorted and balanced tree structure or an extensible
and dynamic hashing scheme. Our approach uses the Tel API to access the
database. The Tel routines to access the database consists of the following
commands:

• dbopen - to open a table for reading/writing

• close - to close a table de-allocating any resource associated with that
table and flushing the cache information to disk

• del - to remove key/data pairs from a table using input patterns

• get - to fetch information based on index from a table

• put - to store key/data in a table

• isempty - to check if a table is empty

• seq - to fetch information sequentially from a table

The process of accessing the database using the Tel API is illustrated in
Figure 4.2.

Application TclAPI

Tel Interpreter

Low-level
database calls

Source-Navigator

dbopen, close, del, get, put

Project Database tables

Figure 4.2: Source Navigator Database Access

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T y p e C / C + + J a v a T e l
cl class, structure class nam espace

con constant static final
e enum eration

ec enum eration literal
fd function decl.
fr friend
fu function procedure
gv global variable global variable
iv variable m em ber variable m em ber nam espace variable
lv local variable local variable local variable

m a m acro
m d m ethod decl.
mi m ethod impl. m ethod impl. nam espace procedure
t typedef

un union

Table 4.1: Source Navigator types used for predefined languages

The Tel commands for accessing the Source Navigator database are built
into the Source Navigator Tel interpreter called hyper, which extends a Tel
interpreter with the new commands. Also, hyper contains some variables used
in the Source Navigator environment such as the snsep variable tha t allows
specifying the separator of the fields in the database.

Parsers in Source Navigator are predefined for the following languages:
C /C + + , Java, Tcl/[incr Tel], FORTRAN, COBOL, and PowerPC. An exten
sion of Source Navigator called Source Navigator Extensions [SNE] enhances
the collection of standard parsers with parsers for several other languages such
as: Visual Basic, Jscript, VBScript, HTML, ASP, SQL, and CSS. However,
we used only the parsers for C /C + + and Java in our approach. We have tried
also the other parsers, but they are far from being complete.

The types used by Source Navigator to represent the facts for the supported
languages are provided in Table 4.1. The first column represents the type of
the existing facts and denotes the extension of the table file of the database.
The other columns describe the meaning of the generic types from the first
column in different languages. For example, the cl type refers to a class in
Java, while in Tel refers to a namespace. The empty cells represent types that
are not used in the language for tha t column.

In addition to the type information presented in Table 4.1, Source Naviga
tor stores the relationship information in two tables with the suffixes by and to.
The to table keeps the refers-to information and the by table the referred-by
information. In theory these two tables should contain the same information,
with the key of the by table in reverse of the key of the to table. In reality, we
found that the by table has substantially less information than the to table, so
that we used only the to table to extract the relationships among the artifacts.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source Navigator database uses also the following tables (where relevant): the
/ table for keeping the files of the project, the in table to keep the inheritance
relationships among the classes, the m table to keep the includes relationships
among the files, and the fil table to keep the symbols associated with each
files.

4.2 O utput Formats
We use two output formats for representing the facts: GXL, and an XML-based
format used by the Clare tool. Following, this section presents an overview of
the two output formats.

4.2.1 Graph eX change Language (GXL) R epresentation
GXL [GXL] has been designed to be a standard exchange format for graph-
based tools - implicit for reverse engineering tools that maintain the factbases
with the nodes representing the language types (such as function, variable or
class), and the edges representing the relationships among the language types
(such as uses, friends or inheritance). GXL is designed mainly to facilitate
the interoperability of reengineering tools and components such as extractors,
analyzers and visualizers. GXL allows software reengineers to combine single
purpose tools especially for parsing, source code extraction, architecture re
covery, data flow analysis, pointer analysis, program slicing, query techniques,
source code visualization, object recovery, restructuring, refactoring, remodu
larization and so on, into a single powerful reengineering workbench.

GXL is based on XML (extensible Markup Language) [XML], and sup
ports exchanging instances of graphs together with their appropriate schema
information. Using GXL with a tool (i.e., importing or exporting GXL files
from the tool) provides the power of communication between the tool and the
related tools from the same research area. Therefore, more and more reverse
engineering tools have started to use GXL as the input format.

To provide interoperability of the graph-based tools, a standard exchange
language for graphs has to support a large variety of graph models (e.g. di
rected graphs, node attributed graphs, edge attributed graphs, node typed
graphs, edge typed graphs, ordered graphs, trees, and so on). GXL represents
typed, attributed, directed, and ordered graphs. The body of a GXL docu
ment is enclosed between <gxl> tags. The graph is defined using <graph>
tags, and a unique identifier is provided for the described g rap h . At the next
level, the nodes and edges are listed using <node> and <edge> tags, respec
tively. Every node or edge has a unique id, a type pointing to the defined
schema information (using <type> tags), and attributes (using <attr> tags).
GXL provides primitive types for the values of the attributes such as bool,
int, float, or string, and complex types specified as enum, seq, set, bag, tup,

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or locator (URI-references to externally stored objects). The direction of the
edge is given by the to and from attributes associated with the edge.

Figure 4.3 presents a simple GXL instance file. The graph example is
defined in this GXL. It contains two nodes having the ids f l and vl, with the
associated names main and i. main has the type function, while i has the
type variable. Both of them have an attribute file with the value main. c. The
graph defines also an edge from f l to v l of type uses and the attribute line
equals to 127. In reverse engineering terms, this example illustrated two node
artifacts, a function and a variable, and the relationship between them (the
main function uses the i variable at line 127).

<?xml version="l.0" encoding="UTF-8"?>
<!DOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gxl-1.0.dtd">
<gxl>

<graph id="example">
<node id="fl" name="main">

<type name="function" />
<attr name="file">

<string>main.c</string>
</attr>

</node>
<node id="vl" name="i">

<type name="variable"/>
<attr name="file">

<string>main.c</string>
</attr>

</node>
<edge id="el" to="vl" from="fl">

<type name="uses"/>
<attr name="line">

<int>127</int>
</attr>

</edge>
</graph>

</gxl>

Figure 4.3: GXL representation example

The schema that contains as nodes the language element types (such as
fun c tio n , variab le , an d class) a n d as edges the re la tio n s among the language
element types (such as calls, uses, or defines) is a graph itself. Therefore, the
schema can be represented also using GXL, in the same way the instance graph
of the facts is represented. GXL provides a tool to check if the instance graph
conforms to the corresponding schema.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gupro.de/GXL/gxl-1.0.dtd

4.2.2 Clare X M L-based R epresentation
GXL is a nice way to represent any general graph. However, the generality of
the GXL representation has some drawbacks. One of the GXL drawbacks is
that when representing factbases the size of the instance file is very big. The
size drawback implies a long time of loading the instance file.

Therefore, we develop another XML-based representation for the factbases,
mostly to improve the efficiency of the Clare tool. We will refer to this repre
sentation of the factbases as the Clare representation. This representation is
more compact then the GXL representation. Thus, the factbase file is smaller
in size than the corresponding GXL representation, while maintaining all in
formation.

We describe the Clare representation based on an example. Let’s consider
the GXL factbase illustrated in Figure 4.3. The corresponding Clare repre
sentation given in Figure 4.4. We practically eliminated one level presented
in the GXL representation given by the elements of a general graph (such as
node, edge, or attr). In the Clare representation the XML nodes become the
type of the fact from the GXL instance representation. The XML attributes
in Clare format are the GXL attribute nodes.

<?xml version="l.0" encoding="UTF-8"?>
<example>

<function id="fl" name="main" file="main.c">
<variable id="vl" name="i" file="main.c">
<uses id="el" from="fl" to="vl" line="127">

</example>

Figure 4.4: Clare representation example

4.3 Extracting the Facts
This section presents our approach for extracting the facts from a software
system in GXL and Clare representations using Source Navigator as the front-
end.

Our approach consists of two major steps. In a first step the Source Navi
gator is used as a front-end to extract information from the subject software
system and to populate its internal database. In the second step, we devel
oped several Tel scripts to extract the factbase into the two aforementioned
representations. The next two subsections present more details about each
step.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.1 P opulating Source N avigator Internal D atabase

In this step, Source Navigator is used to populate its internal database. We set
the filename extensions for the files tha t will be associated with a Source Navi
gator parser. There are by default some predefined extensions for each parser.
For example, for the Tel parser the default extensions of the files that will be
parsed using this parser are: .tel, .itcl, .itk, .tk, and .test. However, sometimes
we need additional extensions of files to be considered. For example, suppose
that a .rcl extension denotes a Tel file (i.e., the file contains a Tel script), then
we associate the .rcl extension with the Tel parser. To accomplish this setting,
we modify the %HOME-SN%/snavigator/etc/snjprop.cjg file. In this file, a
line denotes the configuration for the Tel parser in Source Navigator environ
ment (the line starts with sn-add-parser tel). A parameter of the command,
called suffix, contains the default extension for the files to be parsed using the
Tel parser. We can modify this parameter to contain the new extensions to be
supported by the parser. The same settings may be operated for each parser
supported by the Source Navigator.

After setting up the configuration for each parser, we create a new project
that contains the source code information of the input software system. There
are two ways to accomplish this: using the Source Navigator user interface or
from the command line. We chose the Source Navigator user interface mode
because it was easier to add and remove files for a project. For creating a
project in Source Navigator interface, we provide the project file name and the
directories tha t contain the source code for the subject system. A more detailed
selection of the files could be managed using the Project Editor that allows
to add/remove files to the project. Then, in a first step, Source Navigator
invokes for each file the parser associated with its extension, and produces
the facts existing in these files. In a second step, Source Navigator builds the
relationship tables based on the information extracted previously. By default,
the table files are stored under the .snprj directory that is built automatically
in the same directory where the project file name resides.

Table 4.2 shows the Source Navigator internal database format for the
records of different fact tables. A record contains two parts, the key and the
data part, separated by a semicolon character (;). The symbol ? represents
the snsep separator character, used to separate the fields in the key and the
data part. Positions consist of line and column numbers separated by a comma
(,). The hash character (#) in class names means that the symbol does not
belong to any classes. The class table has three fields for the key (name, start
position, and file name), and six fields for the data part (end position, kind,
class template, comment, and two unused fields).

In the following step, we use the Source Navigator database, populated
with the facts from the system, to produce the factbase file in two different
representations discussed before.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table Description Record Format

by referred by ref-class?ref-symbol-name?ref-type?class?symbol?type?access?position?filename;
{caller_argument_types} ?{ref_argument_types}

cl classes name?start_position?filename;end_position?attributes? {}? {class_template} ?
{}?{comment}

con constants name?start_position?filename;end_position?attributes? {dec_type} ?{}?{}? {comment}
e enumerations name?start_position?filename;end_position?attributes?{}? {}?{}? {comment}

ec enumeration
constants name?start_position?filename;end_position?attributes? {}?{}?{}? {comment}

f project
files name;group?parsing-time?highlight-file

fd function name?start_position?filename;end_position?attributes?{ret_type}?{arg_types}?
{arg names}? {comment}

fil symbols of
files

filename?start_position?class?identifier?type;end_position?high_start_pos?
high_end_pos?arg_types

fr friends name?start_position?filename;end_position?attributes? {ret_type} ? {arg_types}?
{argnames}? {comment}

fii functions name?start_position?filename;end_position?attributes?{ret_type}?{arg_types}?
{arg names}?{comment}

gv variables name?position?filename;attributes? {type} ? {template?parameter} ? {comment}

in inheritances class?base-class?start_position?filename;end_position?attributes? {} ?
{class template} ? {inheritance?template} ? {comment}

in include included_file?start_position?include from file;0.0?0x0?{}?{}?{}?{}

iv instance
variables

class? variable-name?start_position?filename;end_position?attributes? {type} ? {}?{}?
{comment}

lv local
variables

fiinction?variable-name?start_position?filename;end_position?attributes? {} ? {type} ?
{}?{comment}

ma macros name?start_position?filename;end_position?attributes?{}?{}?{}? {comment}

md method
definitions

class?name?start_position?filename;end_position?attributes?{ret_type}?{arg_types}?
{arg_names}? {comment}

mi method
implementations

class?name?start_position?filename;end_position?attributes?{ret_type}?{arg_types}?
{argnames}? {comment}

t typedefs name?position?filename;attributes? {original} ? {} ? {comment}

to refers to class?symbol-name?type?ref-class?ref-symbol?ref-type?access?position?filename;
{caller_argument_types} ? {ref_argument_types}

un unions name?position?filename;attributes? {}?{}? {comment}

Table 4.2: Source Navigator internal database format

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Producing th e O utput Factbase

In this step, the Source Navigator database is queried using some Tel scripts
to extract the facts in GXL and Clare representations.

The idea of the extractor is to traverse the Source Navigator tables pro
duced in the previous step, and to write the facts in the needed formats.

Figure 4.5 presents a snippet of script code from the extractor implementa
tion. The script takes the following input parameters: the directory where the
Source Navigator project resides, the name of the Source Navigator project, the
format of the output factbase, and optionally the name of the output factbase
file. If the name of the output factbase file is not provided, then the script
displays the output factbase using the standard output. The run.extractor
Tel procedure is the main entry point of the extractor. It interrogates the
Source Navigator database associated with the subject software system by
going over the source files, other node types (such as classes or variables),
include, friend , and inheritance relationships, and refers to relationship table.
The retrieve.files Tel procedure retrieves the facts based on the file Source
Navigator table. The snippet of code shows how to iterate sequentially over
the file Source Navigator table. A similar procedure is used to interrogate the
other entity types.

O verview E xtraction Approach
Our scripts retrieve the source files existing in the subject project from the /
table (retrieve.files procedure). Each source file is represented by a node in
the resulting factbase file having an attribute called language tha t contains the
programming language used in the source file. Then, the scripts extract the
symbol facts from all the source files from the fil table. The fil table does not
contain all the attributes for the symbols. Thus, for each symbol, the script
looks in the table associated with its type for retrieving all the attributes for
that symbol. The symbol and its attributes are then written in the output
factbase file.

Following, our approach extracts the relationships among the facts inside
each language. The include relationships among files are extracted from the
iu table. Then, the friend and inheritance relationships (if they exist for the
subject system) are extracted from the fr and in table. Finally, the script
retrieves the main part of the relationships from the to table, which contains
the referred to relations. Based on the fact types involved in the relation, we
can induce the type of the relation, which is not specified in the to table. For
exam ple , if the facts involved in a relation have the type function, then the
relation type is calls.

G enerating Unique Ids for Facts
The output factbase uses unique ids to identify the nodes and edges over the
factbase. For edges, it is easy to generate ids in this way: every edge will
have a number id increased every time a new edge occurs. This is reasonable

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if {${argc> < 3 | | ${argc> > 4} {
puts "Usage: ${argvO> projectdir projectname
puts "[GXLlClare] [outputfile]";
exit;

>

#create the factbase for a given project
proc run_extractor O {

retrieve_f iles;
retrieve_artifact_nodes;

retrieve_include_rels;
retrieve_friends_rels;
retrieve_inheritance_rels;
retrieve_to_rels;

>

#retrieve the files from the SN project (from file .f)
proc retrieve_files O {

global db;
global out_fd;
global node_artifacts;
global type_artifacts;

if {! [info exists db(f)]} {
print.message "Error! The .f file does not exist!";
return;

>
foreach def [$db(f) seq] {

set filename " [lindex $def 0]";
set language " [lindex $def 1]";
set language " [lindex $language 0]";

set node_artifacts($filename) "$filename";
set type_artifacts($filename) "f";

catch { unset attrs; }
set attrs(language) "$language";

write.node $out_fd $filename attrs;
>

>

Figure 4.5: Snippet from the extractor implementation

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because we do not need to make connections among the edges. On the other
hand, for the nodes, we build the associated ids based on the name of the fact,
the source file in which the fact is defined, and the line and column at which
the fact is defined (except the file node types, for which the id is based on
the name of the file including its path). The constituent nodes of an edge are
given as ids.

In some situations we have to identify the same fact among different tables.
For example, this case appears when the scripts extract the “referred to”
relationships. The index of the to table consists of the following information:
class, name, type, referred class, name referred, type referred facts. The data
presented in the to table contains the argument types for both the fact and
the referred fact (only in the case of functions and methods). Based on this
information, we have to be able to recuperate the id associated with the facts.
We query the table associated with the type of the fact to retrieve the file
name, column and line of the fact to be used to build the id. A problem
appears when overloading a function or method in C + + or Java languages.
In this case, we have to apply some heuristics to determine the right fact in
order to use the correct id in the output factbase file.

Some example of heuristics we used to determine the match of a function
or method among different tables are:

• match using simply the name of the function/method

• if there are more functions/methods matched, then compare their pa
rameter types

• if there are still more candidate functions/methods, then match the
source file of the candidate functions/methods with the source file where
the relation appeared;

• if there are still more candidates, then take the first match from the list
of candidates

4.4 C/CH—b and Java Schemas
A domain model represents the structure of the entities, relations, and at
tributes in a specific area. It represents the m eta-data of information in an
application. The domain model and schema have the same meaning in the
reverse eng ineering a rea . Three schem as for GXL a re th e D a tr ix schem a
[HoltOO], the Columbus schema [FerencOl, Ferenc02], and Dagstuhl Middle
Model (DMM) [DMM], which represent software graphs. DMM itself is doc
umented with a UML class diagram of the nodes and relationships that may
appear in a GXL file.

The schema for source code facts may be established fully before developing
the fact extractor. In practice, however, there is an iterative process of refining

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the schema and fact extractor together for the needs of analyzing the source
code of a software system.

The schemas for the extractors are based on what fact types the Source
Navigator parsers produce. Therefore, the types from Table 4.2 appear as
node types in our schema. The attributes are mainly based on the fields ex
isting in a record from Source Navigator tables. Source Navigator does not
provide the name of the parameters for a function or method. We extracted
this information going directly into the source file and doing a local search for
the function/method involved. We will use the name of the parameters of a
function/method in the extraction algorithm of the cross-language dependen
cies.

Following, we present two schemas for C /C + + and Java programming
languages.

C /C j—b Schem a
Our C /C + + schema is based on the elements presented in the C /C + + pro
gramming languages. Table 4.3 presents the node and relationship types for
our C /C + + schema. The C /C + + extractor generates the factbase based on
our C /C + + schema. The first column in the table represents the node types
presented in a C /C + + factbase (e.g., Class, Function, or GlobalVar). The first
row in the table denotes the relation types between the node types (e.g., uses
or calls). The other cells in the table represents the destination node type of
the relation type from the appropriate column header. Therefore, an entry in
the table is read in the following way: node type from the first column, relation
type from the first row, node type from the intersection between the node type
row and relation type column. For example, the following relation types are
in our C /C + + schema: “Method calls Function" , “Method uses LocalVar”,
or “Class has MemberVar”.

Table 4.4 presents the attribute types for both node and relation types
from our C /C + + schema. First column from the table contains all the node
and relation types from the C /C + + schema. The attribute types associated
with the node or relation type from the first column is given in column two.
For example, the File node type has the following attribute types: name (the
name of the file without the path), sourcefile (the complete name of the file
- including the path), and language (the programming language associated
with this source file). If an attribute type has only certain values, then the
possible values are given in italic font after the attribute. For example, the
kind attribute type for a Function node type might have the value inline when
the function is defined as inline. If more than one value are presented for the
kind attribute type, then the values are separated by a comma character.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

calls friend of has includes inherits finin uses

Class
Class MemberVar

Method
MethodDecl

Class Class
Union

1 n n in EnumValue
l.nmilYiiliii-
File File

rnncliiin

Function
FunctionDecl
Method
MethodDecl

Class Class
Enum
EnumValue
GlobalVar
LocalVar
Macro
MemberVar
Union

1 iinrlinnDrcl
(>lnli:il\ :u
LocalVar
Mncm
Mcmhcr\ ar

Method

Function
FunctionDecl
Method
MethodDecl

Class
Enum
EnumValue
GlobalVar
LocalVar
Macro
MemberVar
Union

McllmdDccI
I'suedef
I nion MemberVar Union

Table 4.3: C /C + + Schema - Node and Relation Types

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Node &
Relation

Ispis i
Xffiihiitc Ispc!

Kiss name, sourcefile, line, column, endline, endcolumn, kind (structdef)

name, sourcefile, line, column, endline, endcolumn
hniimX .iluc .name, sourcefile, line, column, endline, endcolumn

ile

i million

name, sourcefile, language
name, sourcefile, retumtype, arg names, arg_types, line, column, endline,
endcolumn, kind (in lin e)___

unction Duel lame, return type, arg names, arg types
C.lnh.ilX nr name, sourcefile, realtype, line, column, endline, endcolumn
i o c j IX j i

Macro
I name, sourcefile, real type, line, column, endline, endcolumn
I name, sourcefile, line, column, endline, endcolumn________

McmbirX jr

Method

in hides

I name, sourcefile, real type, line, column, endline, endcolumn,
kind (priva te , p ro tected , p u b lic)____________________________________

I name, sourcefile, retum type, arg_names, arg_types, line, column, endline,
endcolumn, kind (priva te , p ro te c ted , p u b lic , v ir tu a l, in lin e ,

) constructor , destruc tor , purevirtua l)________________________________
MelliiulDi-il name, return type, arg names, arg types

g name, sourcefile, real type, line, column, endline, endcolumn
j name, sourcefile, line, column, endline, endcolumn________
sourcefile, line, column, callee args
sourcefile, line, column
sourcefile, line, column
sourcefile, line, column

nlieiits from sourcefile, line, column
ISCS sourcefile, line, column

Table 4.4: C /C + + Schema - Attribute Types

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

calls has inherits from uses

Class
MemberVar
Method

Class Class

File
LocnIVur
MemlnrV sir

M ethod

Method Class
Enum
Local Var
MemberVar

Table 4.5: Java Schema

Node &
R il.iliun T sp is

(Mss name, sourcefile, line, column, endline, endcolumn, kind (abstract, in terface)
File name, sourcefile, language
LocalVar name, sourcefile, real type, line, column, endline, endcolumn

MimheiX .u
name, sourcefile, real type, line, column, endline, endcolumn,
kind (priva te , pro tected , p u b lic , s ta tic , fin a l)

Method
name, sourcefile, return type, arg_names, arg types, line, column, endline,
endcolumn, kind (priva te , p ro tected , p u b lic , sta tic , n a tive , synchronized ,
constructor , destructor)

i.ills sourcefile, line, column, callee args
has sourcefile, line, column
inherits from sourcefile, line, column
II sis sourcefile, line, column

Table 4.6: Java Schema - Attribute Types

Java Schem a
Our Java schema is based on the elements presented in the Java programming
language. Table 4.5 presents the node and relationship types for our Java
schema. The Java extractor generates the factbase based on our Java schema.

Table 4.6 presents the attribute types for both node and relation types
from our Java schema.

Note th a t C /C + + and Java schemas have commonalities. We will describe
later in this thesis how we combined the schemas for different languages to
obtain a common schema. A common schema helps to parse easily any factbase
containing facts from a programming language represented in the common
schema.

4.5 C /C + + and Java R esults
This section presents the results of the extractors based on Source Navigator on
some simple examples. The results of the extractors are presented in the Clare
representation. The GXL representation of the results is omitted because of
the size of the GXL file.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.1 C/CH—h Fact base Exam ple
Consider the C + + snippet of source code from Figure 4.6. The Foo C + +
class is declared in the Foo.h file, and defined the Foo.cpp file. The class Foo
contains the m_x private member variable of type int, two constructors, one
destructor, and the Pow method. The constructors and the destructor are
defined in the header file, while the Pow method is declared in the Foo.cpp
file.

Foo.h :

class Foo {
int m_x;

public:
F o o O { m_x = 0; >;
Foo(int x) { m_x = x; };
virtual ~Foo() { };
int Pow();

>;

Foo.cpp :

#include "Foo.h"
int Foo::Pow(){

return m_x * m_x;
>

Figure 4.6: A simple C + + example

The result of the extractor for this simple C + + example is illustrated in
Figure 4.7.

4.5.2 Java Factbase Exam ple
Consider the Java snippet of source code from Figure 4.8, which is the corre
spondence of the C + + code from Figure 4.6. The Foo Java class is declared
and defined in the Foo.java file. The class Foo contains the x private member
variable of type int, two constructors, and the Pow method.

The result of the extractor for this simple Java example is illustrated in
Figure 4.9.

4.6 Summary
This chapter presented a method to build extractors using Source Navigator
as a front-end. The C /C + + and Java extractors are part of the fact extraction
component in our architecture. We used the Source Navigator tables to extract
the facts and relationships in two XML-based representations. We have intro
duced in this chapter two schemas for artifacts of interest in C /C + + and Java

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<?xml version="l.0" encoding="ASCII" ?>
<cpp xmlns="http://www.cppfactbase.org">
<File id="nl" language="c++" name="Foo.cpp" />
<File id="n2" language="c++" name="Foo.h" />
<Method id="n3" endcolumn="1" endline="5" sourcefile="Foo.cpp"
name="Pow" returntype="int" column="9" line="3" />
cClass id="n4" endcolumn="l" endline="8" sourcefile="Foo.h"
name="Foo" column="6" line="l" />
<MemberVar id="n5" kind="private" endcolumn="8" endline="2"
sourcefile="Foo.h" name="m_x" realtype="int" column="5" line="2" />

<Method id="n6" kind="constructor public" endcolumn="19"
endline="4" sourcefile="Foo.h" name="Foo" column="l" line="4" />

<Method id="n7" argnames="x" argtypes="int"
kind="constructor public" endcolumn="24" endline="5"
sourcefile="Foo.h" name="Foo" column="1" line="5" />

<Method id="n8" kind="destructor public virtual" endcolumn="19"
endline="6" sourcefile="Foo.h" name="~Foo" column="9" line="6" />

<MethodDecl id="n9" sourcefile="Foo.h" name="Pow" column="5" line="7"
cincludes from="nl" to="n2" line="l" />
<has from="n4" to="n5" sourcefile="Foo.h" line="2" />
<has from="n4" to="n6" sourcefile="Foo.h" line="4" />
<has from="n4" to="n7" sourcefile="Foo.h" line="5" />
<has from="n4" to="n8" sourcefile="Foo.h" line="6" />
<has from="n4" to="n9" sourcefile="Foo.h" line="7" />
<has from="n4" to="n3" sourcefile="Foo.cpp" line="3" />
<uses from="n6" to="n5" sourcefile="Foo.h" line="4" />
<uses from="n7" to="n5" sourcefile="Foo.h" line="5" />
<uses from="n3" to="n5" sourcefile="Foo.cpp" line="4" />

</cpp>

Figure 4.7: Factbase for the C + + example in Clare representation

Foo.java :

public class Foo {
private int x;
public F o o O { x = 0; };
public Foo(int xl) { x = xl; >;
public int P o w O f

return x * x;
>;

}
Figure 4.8: A simple Java example

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cppfactbase.org

<?xml version="l.0" encoding="ASCII" ?>
<java xmlns="http://www.javafactbase.org">
<File id="nl" language="java" name="Foo.java" />
<Class id="n2" kind="public" endcolumn="l" endline="8"
sourcefile="Foo.java" name="Foo" column="13" line="l" />

<MemberVar id="n3" kind="private" endcolumn="16" endline="2"
sourcefile="Foo.java" name="x" column="15" line="2" />

<Method id="n4" kind="constructor public" endcolumn="26" endline="3"
sourcefile="Foo.java" name="Foo" column="10" line="3" />

<Method id="n5" argnames="xl" argtypes="int"
kind="constructor public" endcolumn="33" endline="4"
sourcefile="Foo.java" name="Foo" column="10" line="4" />

<Method id="n6" kind="public" endcolumn="4" endline="7"
sourcefile="Foo.java" name="Pow" returntype="int" column="14" line="5" />

<has from="n2" to="n3" sourcefile="Foo.java" line="2" />
<has from="n2" to="n4" sourcefile="Foo.java" line="3" />
<has from="n2" to="n5" sourcefile="Foo.java" line="4" />
<has from="n2" to="n6" sourcefile="Foo.java" line="5" />
Cuses from="n4" to="n3" sourcefile="Foo.java" line="3" />
Cuses from="n5" to="n3" sourcefile="Foo.java" line="4" />
<uses from="n6" to="n3" sourcefile="Foo.java" line="6" />

</j ava>

Figure 4.9: Factbase for the Java example in Clare representation

programming languages. The schemas are based on the elements recognized
by the Source Navigator extractors. Some simple examples of the extractor
results are illustrated.

Next chapter presents another method to build an extractor, by hooking
into an implementation of the language. The main focus of this method is to
handle scripting languages.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.javafactbase.org

Chapter 5

Extracting Facts for Perl

Scripting and shell languages are a highly flexible way to integrate functionality
in a software system. For example, scripts can prepare input data, sequence
the running of programs, consolidate outputs, wrap components, or implement
functionality themselves. Scripts may serve as crucial glue code to tie together
the diverse technologies used in a heterogeneous system. Scripts are generally
easy to write and run. A programmer does not typically need to declare the
types of variables, or deal with separate binary object code. Thus, scripting
languages and their support environments are well suited for rapid software
development.

Scripting languages are often dynamic in nature, and the line is often
blurred between what is data and what is code. For example, in Perl [Parrot,
PerlBible, PERL], one can put the text of a subroutine definition in a string,
and have th a t string evaluated to define temporarily a new subroutine at run
time. Furthermore, languages like Perl have evolved over time to have rich
behaviors and idioms, much like a natural language. There may be many
different ways to express the same intended effect, and the meaning of some
thing may depend highly on the context. These aspects can create problems
in understanding Perl code, especially for non-experts.

Software reverse engineering research has largely focused on traditional
programming languages, such as C, C + + , and Java. These programming
models are well understood, and many fact extractors and analyzers exist to
discover the structure of code in these languages [DeanOl, Columbus, Korn99,
Moise03, Singer97, Tilley94], There has not been as much attention on script
ing languages, such as Perl. To create a fact extractor for Perl code, one could
conceivably start by writing a lexer to scan for relevant constructs, or write a
parser to build some form of abstract syntax tree for analysis. Still, one needs
to be very fluent in Perl to develop a correct extractor for all the constructs
and subtle idioms. For example, Perl allows the same name to be used again
for entities in a package, as long as they differ in type.

The approach we take is to use the implementation of the Perl interpreter
itself to extract facts for Perl code, since the interpreter is authoritative (mod-

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ulo any defects) for the meaning of some Perl construct. We are not writing a
Perl fact extractor as a Perl script. Rather, we developed an extraction com
ponent that refers to internal data structures of the Perl interpreter, which are
populated appropriately just before running a Perl script. There is a single
insertion point where this component is invoked to generate facts about the
code of the Perl script. Since the script is loaded, but not actually run, the
technique is static.

The tradeoff here is that the internal data structures of the Perl interpreter
need to be well understood, and there is a deep dependence by the extraction
component on these data structures. Thus, much program comprehension of
the Perl interpreter is involved. Still, there is a huge benefit in reusing the
interpreter, rather than redundantly writing our own front end and program
representation. The idea is to hook into the interpreter at the latest possible
moment, just before script execution, to reuse as much of the interpreter and
its code analysis as possible, yet maintain a static technique. We believe
a similar technique would work to extract facts for other programming or
scripting languages implemented through an interpreter.

As related work, the approach is somewhat akin to the CPPX fact extrac
tor [DeanOl] for C + + , which leverages the GNU gcc compiler. Development
environments for Perl do exist [Epic, Komodo, Affrus], such as Affrus and Ko-
mado, but they are aimed toward code editing and debugging, not to create
facts for software reverse engineering and visualization tools.

The extracted facts conform to a schema that is represented in GXL and
Clare XML-based formats. A test evaluates how the extractor processes all
the Perl modules provided with the Perl distribution source code.

In this chapter, Section 5.1 details the discovered internal data structures
and interpretation process of the Perl interpreter (for which the existing docu
mentation is scattered and poor). Section 5.2 builds upon this understanding
to describe the Perl fact extractor component, and how it consults the data
structures to generate the appropriate facts. Section 5.3 describes the schema
for the facts emitted by the component, and Section 5.4 highlights the results
of a test. Section 5.5 concludes the chapter, and outlines directions for future
work.

5.1 Perl Internals
This section presents the major internal data structures in the Perl interpreter
that represent Perl language elements. Our e x tra c to r in te rro g a te s th e P erl
internals just before the execution phase of the Perl script. At that moment
the internal data structures are ready to be used for fact extraction.

Perl is a compiling interpreter. Instead of interpreting line-by-line the script
file, it reads the entire script file, converts it to an internal representation, and
then executes the instructions. This process is similar to the JVM (Java

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Virtual Machine), except that the set of basic instructions is different. There
are two major phases used to interpret a Perl script.

• P a rs in g a n d C om piling . The script is parsed and converted into op
eration trees, one tree for each subroutine. This phase also involves an
optimization process for the operation trees (such as constant propaga
tion). Each node in an optimized operation tree is linked to the next
node in execution order.

• E x ecu tin g . Traverse over the operation trees and execute the operation
in each node.

The Perl interpreter is written entirely in C language. We used Perl version
5.8.6, which contains about 150 KLOC among 90 core files.

The comprehension of the source code of the Perl interpreter is a difficult
process mainly because of the overuse of macro-definitions. That is, macro
names do not appear while debugging the source code to comprehend the flow
of the interpreter. The macro definitions are used for various reasons such as:

• to maintain the compatibility of the Perl API for different versions of
Perl;

• to provide an abstraction layer for different C functions which are not
compatible for different platforms; and

• to hide the arguments used in almost all the calls (e.g., the Perl inter
preter structure is a global variable, and a pointer to it is passed in
almost every call).

Three data types cover most of the data that are manipulated in a Perl
script: scalar (integer, floating point number, text string, or reference), array,
and hash. Perl also offers other fundamental types: filehandle (handle to an
open file or directory, including state information), typeglob or glob (composite
data type of all the other types), and undefined (undefined value).

The following snippet of Perl code presents some examples of the funda
mental types. Here, i contains an integer scalar; / contains a floating-point
scalar; s contains a string; r contains a reference to i; h contains a hashtable
with two keys keyl and key2 tha t have associated values value 1 and value2,
respectively; a contains an array of values 1, 2, 3; FILE is a handle to the file
named filename; g is a glob tha t contains both an integer scalar and an array;
and u is an undefined variable. There is no type associated with u, although
internally it is a scalar.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

$i = 42;
$f = 1.01;
$s = "text":»
$r = \$i;
7»h = (’keyl;’ => ’valuel’,

’key2:’ => ’value2’)
@a = (1, 2, 3);
open FILE, :’filename’;
*g = \$i;
*g =
$u;

\©a;

To distinguish the various types internally, Perl uses type flags (C enumera
tion literals of the svtype enumerated type). Corresponding to these type flags
are C structure types that contain pointers to structures for the actual data
(see Table 5.1). These C structure types (e.g., SV, AV, H V) all contain only 3
fields (named sv_any, sv^refcnt, and sv-flags), which have compatible types to
allow structural assignment among these structures. The actual data is stored
in a structure of a certain type, and there is a type extension hierarchy among
these structures (see Figure 5.1). Subtypes in the hierarchy add one or more
fields to a supertype.

D ata Type Type Flag S tructure A ctual D ata
Undefined SVtJNTULL SV NULL
Reference SVt_RV sv XRV
String SVt_PV SV XPV
Integer SVtJV sv XPVIV
Floating-point SVt_NV sv XPVNV
Object/Tie SVt_PVMG sv XPVMG
Array SVt-PVAV AV XPVAV
Hashtable SVt_PVHV HV XPVHV
Glob SVt_PVGV GV XPVGV
Subroutine SVt_PVCV CV XPVCV
Filehandle SVt_PVIO 10 XPVIO
Format SVt_PVFM sv XPVFM

Table 5.1: Perl data type correspondence

5.1.1 Perl D ata T ypes

Scalars
The C structure is used as the base structure for any Perl type. It has
three fields: a void pointer called sv^any, which points to the structure for the
actual data; a reference counter called svjrefcnt, which tells when to destroy
the scalar; and an unsigned 32 bit integer called sv-flags, which keeps the type
flag in the first 8 bits and uses the remaining 24 bits to encode how various

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XPVMG

XPVXRV

XPVAV

XPVFM

XPVIV

XPVCV

XPVNV

XPVIO

NULL

XPVHV XPVGV

Figure 5.1: Internal Perl data type hierarchy

field values of the actual data should be interpreted. The definition of the SV
structure and the associated macros to get and set its fields are found in the
file sv.h. For example, the SvTYPE(SV*) macro is used to obtain the type
flag from an S V structure.

The S V structure is general, since the sv-any void pointer field could point
to any kind of structure containing the actual data. Thus, any Perl data type
can be represented through an S V structure. Perl consults the sv-flags field
for the appropriate structure type pointer for typecasting the sv-any pointer.

An undefined type has the type flag equal to SVt-NULL. The sv^any field
of the S V structure has the value NULL for an undefined type.

void*

XPV*sv_any
XRV*

sv refcnt
XPVIV*
XPVNV*sv_flags

XPVAV*
XPVHV*

. t

Type Flag

Figure 5.2: General Perl S V structure

For a Perl reference, the SVt-RV type flag is used, and the S V structure
has sv-any pointing to an X R V structure. This structure contains a single field

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

called xr'LLn/, which points to a general SV structure (or compatible type).
A Perl scalar that holds a string value has the underlying type flag SVLPV,

and the SV structure has sv-any pointing to a structure of type XPV.
X P V fields:
• xpvjpv - pointer to allocated memory
• xpv-cur - length of xpv_pv as a C string
• x/pvJen - allocated memory size

A Perl integer scalar has the type flag S V tJ V , and the S V structure has
sv-any pointing to an X P V IV structure to store the actual integer. A bit
setting in sv^fiags denotes whether a value stored is valid or not. The X P V IV
structure contains, besides the fields of X P V , a field called xivNvx to keep the
integer value.

Similar to an integer scalar, a Perl floating-point scalar has the type flag
SVt-NV, and the S V structure has sv-any pointing to an XP V N V structure
to store the actual floating-point number. The X P V N V structure contains,
besides the fields of XPVIV, a field called xnv_nvx to keep the floating-point
value.

Hashtables and Arrays
For Perl objects and/or ties, the SVEPVM G type flag is used. A tie has a
special S V structure that triggers different actions (routines) when the scalar
is touched (via a get, set, clear, or free operation). Perl ties are usually used
when implementing database applications. For the SVLPVM G type flag, the
sv-any field points to an XPVM G structure. The XPVM G structure has all
the fields of the X P V N V structure, plus two more fields.

XPVM G selected fields:
• xmg_magic - linked list of magicalness
• xmg^stash - object package

The Perl array data type is identified by the type flag SVLPVAV. The as
sociated structure has type A V (assignment compatible with SV) with sv-any
pointing to an XPVAV structure.

XPVAV selected fields:
• xav^array - pointer to first array element
• xav-fill - index of last element present
• xavxmax - max index of array
• xav-alloc - pointer to allocated array of SVs

The Perl hashtable data type is identified by the type flag SVt-PVHV.
The associated structure has type H V (assignment compatible with SV) with
sv-any pointing to an XP VH V structure. Perl hashtables keep the key/value
pairs in an HE structure, and the keys in an HEK structure.

XP V H V selected fields:
• xhv-army - pointer to allocated array

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• xhv-fill - in d ex of las t e lem ent p re sen t
• xhv-m,ax - max index of array
• xhv-keys - number of elements in the array
• xhv-riter - current root of iterator
• xhv-eiter - current entry of iterator
• xhv-pmroot - list of modules for this package
• xhv-name - name, if a symbol table

The implementation of arrays or hashtables is found in av.{h,c] files or
hv.{h,c}, respectively.

Glob Values
Glob or typeglob values (or “symbols”) have the type flag SVLPVG V , and the
sv-any field points to an XPVG V structure. This structure has a field named
xgv-gp, which keeps a pointer to a GP structure tha t contains pointers to data
of various kinds: scalar, array, hashtable, routine, filehandle, and format. The
name of the symbol is given by the field xgv-name in XPVGV. Perl uses a
pointer to GP instead of including the GP structure inside X P V G V because
a GP structure can be shared by one or more glob values.

5.1.2 P erl Subroutines

A Perl subroutine is maintained using a CV (Code Value) structure (assign
ment compatible with SV) , with sv-any pointing to an XP V C V structure.

XP V C V selected fields:
• xcv-padlist - subroutine scratchpads
• xcvstash - subroutine stash
• xcv^xsub - pointer to a C function for an external subroutine (otherwise

NULL for a subroutine defined in Perl)
• xcvstart - pointer to subroutine operation tree

Each subroutine has a scratchpad list, which initially contains an array of
variable names and an array of literals used in the routine. At runtime, when a
subroutine is called, a scratchpad array is added to the list to store the values
of lexical variables (declared with my in Perl).

Each subroutine has an address to its operation tree. There are 351 prede
fined operations that can be used in an operation tree. There are 11 different
operation structures. For example, the operation node for scalar assignment
(sassign), is an instance of the BINOP operation structure. The Perl pre
defined operations appear in the opcode, h file, and each has an associated C
function to implement it. Table 5.2 presents some examples of the Perl opera
tions, their descriptions, and their C function implementions. The Perl opera
tions are defined in the files: pp.{h,c}, pp-ctl.c, ppJiot.c, pp-pack, ppsort, and
ppsys. There is the notion of a ppcode, which is a Perl-stack-based function
that implements an operation.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P e r l O p e r a to r D e s c r ip t io n C fu n c tio n
leavesub subroutine exit Perl_pp_leavesub
lineseq line sequence Perl_pp_lineseq
nex tsta te next sta tem ent P erL pp jnex tsta te
sassign scalar assignm ent Perl_pp_sassign
shift shift Perl_pp_shift
rv2av array dereference Perl_pp_rv2av
rv2sv scalar dereference Perl_pp_rv2sv
gv glob value Perl_pp_gv
padsv private variable PerL pp.padsv
prin t print Perl_pp_print
pushm ark pushm ark Perl_pp_pushmark
concat concatenation Perl_pp_concat
null null operation Perl_pp_null
gvsv scalar variable Perl_pp_gvsv

Table 5.2: Selected Perl operations

PVOPSVOP PADOPUNOPCOP

LOOPPMOP

LOGOPBINOP

LISTOP

OP

Figure 5.3: Perl operation structure hierarchy

Similar to Perl data types, the 11 Perl operation structures are related in
a type extension hierarchy (see Figure 5.3). The OP structure, which is the
“base” type, contains the following fields:

• op-next points to the next OP structure to execute after the current one;
• opsibling points to the sibling OP structure;
• op-ppaddr points to the ppcode function for this operation;
• op-targ keeps the offset in a scratchpad array;
• opAype has the type of the operation;
• opseq contains the execution number assigned by the optimizer at com

pile time;
• op-flags stores the flags common for all operations.

To access a lexical variable, an operation node maintains in the opAarg field an
offset in the scratchpad of the subroutine where the name of variable resides.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The other operation structures add further fields. For example, the LISTOP
operation structure has two more fields that point to the first and last opera
tion in a list of operation structures.

Consider the Perl script from Figure 5.4. The script defines a foo package,
which contains a scalar $x initialized with the integer 1, and a subroutine bar
to print the given arguments concatenated with the value of scalar $x (i.e., 1).
Subroutine bar is called from inside the mam package.

package foo;
$x = 1;
sub bar {

my $args = shift;
print $args . $x;

>

package main;
foo::bar "Example ";

Figure 5.4: A simple Perl script

leavesub

eseq

print ^sassign v ^ nextstate
A x — i--------

nextstate

pushmarkpadsvshift concat

' padsv mily rv2av

' ► gvsv

Figure 5.5: Perl operation tree

Figure 5.5 shows the operation tree for the foo::bar subroutine, as well as
th e ex ecu tio n order of the operations. The plain lines represent the contain
ment relation between two operations in the tree. For example the lineseq
operation has the following four operations as children: nextstate, sassign,
nextstate, and print. Perl makes several compilation optimization steps, one
of them optimizing the operations on constant scalars (e.g., scalar x is always
the constant 1). The gray nodes (lineseq and null) denote operations that
are skipped during the execution. The null operation was previously an rv2sv

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operation, which has been optimized away. The dashed lines show the execu
tion flow of the operations (a post-order traversal of the operation tree). The
foo::bar subroutine starts the execution with the leftmost operation, nextstate,
then executes a gv operation, then executes an rv2av operation, and so on.

When Perl executes a script, run-time information is stored in several
stacks, of which the most important is the argument stack. This stack keeps
only the parameters of subroutines, and is used by ppcode functions. When
a subroutine calls another subroutine, it pushes the actual parameters on the
argument stack then makes the call. The called subroutine retrieves the pa
rameters from the stack, executes its operation tree, and pushes the results
back on the stack.

5.1.3 Perl N am espaces

Each Perl module has an associated namespace, called a package. Perl assigns
a symbol table, called a stash (symbol table h ash), for each package to store
entities, such as variables and routines, defined by the package.

By default each Perl program has a main package. A single stash is defined
for main. A package can also define subpackages. In particular, all user-
defined, top-level packages are treated as subpackages of main. Therefore, a
stash may contain links to other stashes. To refer to entities from the stash
of a package, a qualified name is used. For example, in the example from
Figure 5.4, to execute the bar subroutine of the package foo, we use the name
foor.bar.

Perl allows the same name to be used again in a package for different
entities. To overcome the problem of duplicates (which cannot exist as keys in
a hashtable), Perl creates for each named entity a glob value structure, with
entries for the possible types of entities. A glob contains references to objects
of the following basic Perl types: scalar (integer, floating-point, or string),
array, hash, subroutine, filehandle, and format name. For example, the name
bar in the package foo represents the subroutine bar, but it could also have
been at the same time initialized to a scalar, an array, or a hashtable (accessed
by $bar, @bar, or %bar, respectively).

Figure 5.6 illustrates a simplified version of the internal compile-time rep
resentation of the stashes for the Perl script example given in Figure 5.4.
(Some fields and chains of links have been omitted.) The figure contains: two
stashes (main and main::foo) for the two packages, five globs (m ainrstdin,
main::foo::bar, main::foo::x, main::main::, and main::foo::) for three enti
ties and the two stashes, one filehandle structure for main::stdin, one sub
routine structure for foor.bar, and one undefined scalar structure for foor.x.
PL-defstash is a global pointer, which points to the main stash. Stashes are
internally stored as hashtables, whose elements are pointers to glob struc
tures. The main stash contains pointers to the following globs: mainrstdin,
main::main::, and main::foo::. A glob points to a stash if its name ends in ,

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PL defstash main::main::
L

m ain::foo::bar

gp cv 5 sv any

sv recnt
•sv flagsmain::foo:main ::

mam::foo
gp_hv

stdin

» bar
X •—

m ain::stdin

gp 10 sv any
sv recnt :

sv flags !

XPVIO

n stash
glob

□ sv

XPVCV

m ain::foo::\

i gp_sv ^
i-----------------------------

sv any

sv recnt
sv flags

NULL

Figure 5.6: Perl internal stashes representation

indicating a namespace. For example, the mainr.foo:: glob points to the stash
for mainr.foo. The mainr.stdin glob has a pointer to a filehandle structure (an
10 structure whose sv^any field points to an XPVIO structure). In the same
way, the mainrfoor.x and mainrfoorbar globs in the mainr.foo stash point to
an undefined scalar structure (type determined at run-time) and a subroutine
structure, respectively. Traversing the links, we can retrieve the facts from
all the stashes. The m ainrm ainr glob points back to the main stash. This
ensures that any name combinations of the main package are defined (e.g., the
stash pointer for mainrmainr.main is equal to PL-defstash).

5.2 Perl Extractor
This section describes how we “hooked” our component inside the Perl inter
preter code to extract facts from a Perl script, largely based on the Perl internal
structures explained in Section 5.1. We explain the intepretation process for
a Perl script in Section 5.2.1, the instrumentation point of our component in
Section 5.2.2, and the extractor implementation in Section 5.2.3.

5.2.1 Interpreting Perl Scripts
An overview of how Perl interprets a script is illustrated in Figure 5.7. The
script is parsed and the compiler constructs corresponding operation trees,
based on Perl predefined operations. The optimizer component optimizes these
trees. After these steps, data structures such as stashes and initial scratchpad
structures are populated. Perl is then ready to run the script by traversing the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operation tree, creating further scratchpads, modifying the argument stack,
and changing data values. We inserted our component (shaded in gray in
Figure 5.7) to output Perl facts just before actually running the script.

Perl Script

Perl Compiler
OptimizerPerlPerl Parser

Stashes
Scratchpads m odule

Operation Trees

Perl RunnerPei 11 x trs ic lor

Perl Script Output

Figure 5.7: Perl interpreter architecture

The Perl parser and compiler are interleaved in the first phase of the inter
pretation process. The Perl parser uses yacc, which works bottom-up, building
parse tree(s) from the Perl input script. The Perl compiler builds the operation
tree(s) bottom-up driven by yacc. When creating each node in an operation
tree, the Perl compiler executes check routines, which optimize the current
node if necessary. The check routines can add/delete/modify operation nodes
above/below in the current operation tree. A check routine has the name pre
fix cfc_, and is called from new*OP functions. At this point, the operation tree
does not have any backlinks for the execution.

If the Perl parser creates a node that provides context for its descendants,
then the Perl compiler invokes a top-down pass for the operation subtree for
this node, by propagating the context. This builds part of the execution order,
but not fully. The execution order is determined when the parser reduces
a subroutine or file. Here, the Perl optimizer performs neither a bottom-
up or top-down traversal, but an execution order traveral. If the operation
tree contains back-references, optimizations cannot remove certain operation
nodes. These are converted to null operations, and maintained in the operation
tree (see the example operation tree in Figure 5.5). The source code for the
Perl parser, compiler and optimizer share the following files: perly.{h,c}, toke.c
(the Perl lexer), and op.{h,c}. Code for the Perl compiler optimizer is found
in the PerLpeep function (in op.c).

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Perl Interpreter C ontrol Flow

Here, we focus on the control flow of the Perl interpreter to understand what
happens in the life of a script. Figure 5.8 illustrates an overview of the most
important functions of the call tree. The file where the function resides is added
after the function name in the square brackets. The line representing the call
to PerLrunpops-debug is dashed because in our Perl extractor this function
will not be executed. The place where our extractor is called is in bold. More
details about the extraction algorithm is given in Section 5.2.3. The interpreter
starts (as does every C program) with main. This short function calls only
RunPerl. RunPerl performs three major steps: initializes a Perl interpreter
structure; parses, compiles and optimizes the Perl script by calling perLparse;
and runs the script by calling perLrun.

main [perlmain.c]

\—►RunPerl [perllib.c]

n' parse \perl.c]

S_parse_body [peri, c]

- S_open_script [perl.c]

• boot core PerllO [perlio.c]

► bootcoreUNIVERSAL [universal.c]

• boot_core_xsutils [xsutils.c]

• PerI init_os_extras [Win32.c]

- S_init_lexer [perl.c]

• yyparse [perly.c]

►nerl run [perl.c]

*-► S r u n b o d y [perl.c]

"►Rerldumpall [dump.c]

^ T e r l Extractor [extractor.c]

->Perl runops debug [dump.c]

Figure 5.8: Overview of Perl call tree

The function perLparse initializes some global structures, and calls
S-parseJbody. SjparseJbody opens the script file by calling S.operascript, then it
initializes some core stashes with external C subroutines needed by almost ev
ery Perl script. Next S-parseJ)ody calls booLcore_PeriIO, booLcore^UNIVER-
SAL, boot_corejxsutils, PerLiniLos-extras. S.pars embody also creates some scalars
predefined in every Perl script, such as: STDIN, stdin, STDOUT, stdout,
STDERR, stderr, AR G V , ENV, and INC. Then, it calls Sjim tJexer to initial
ize some global pointers needed for the lexer and parser. The yyparse function
is called to parse and compile the script, and to optimize the operation tree.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The yyparse function also fills the stashes and the scratchpads associated with
each Perl subroutine.

If the function perLparse succeeds, then RunPerl calls perLrun. which does
some initialization, and calls S-run-body. If the Perl interpreter is built with
the macro DEBUGGING defined, then the user can use the Perl debug feature
(specified by -D options to the Perl interpreter). In this case, Perl keeps all
the structures defined in Section 5.1. We also override the flag -Dx to invoke
our component. Function S-runJbody calls PerLdump-all. which calls our Perl
extractor, instead of dumping the operation trees (what -Dx normally does).

We modified the Perl interpreter to not execute the script afterwards; we
commented out lines 1926 to 1935 in perlc. These lines call PerLrunops-debug
if the DEBUGGING macro is defined, or PerLrunopsstandard (in run.c) oth
erwise. These two functions are almost the same, the single difference being
that PerLrunops-debug dumps various information depending on the debug
options provided, while PerLrunopsstandard does not. Both of these func
tions traverse the operation trees in execution order, by executing the ppcode
function associated with each operation node visited. The source code that
achieves this process is very short, just three lines of code.

5.2.3 Perl E xtractor Im plem entation
We developed a Perl fact extractor by hooking a new C component to the Perl
interpreter. Given a Perl script for analysis, we use the interpreter to build
up the corresponding intermediate representation in data structures which are
then traversed to obtain facts. The Perl extractor outputs the facts just before
executing the script. At this time, most internal structures have been popu
lated: the stashes, the initial scratchpads, and the operation trees associated
with the subroutines. Also, the execution order for the operation trees is set
in each operation node.

The Perl extractor component contains two files: schema.h, which defines
the Perl schema used for the output factbase, and extractor, c, which contains
the implementation of the Perl extractor. The Perl extractor component con
sists of about 3 KLOC. We modified the Makefile by adding our files to be
compiled.

An overview of how the Perl extractor works is given in Figure 5.9. The Perl
extractor can be divided into five major steps: initialization of its environment,
processing the stashes, processing the scratchpads of the subroutines, revealing
the cross references, and cleaning its environment.

The Perl extractor starts by initializing its own environment. Several maps
are maintained, one map per data type, to assign a unique identifier for each
entity. The map keys are the unique complete names of Perl entities, while
the values are unique identifiers generated for the keys in the factbase. For a
fact from a stash, the key is the name of the stash appended with the name of
the entity in the stash (e.g., foor.bar). For a lexical variable of a subroutine,

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the key is the qualified name of the subroutine appended with the name of the
variable (e.g., foo::bar::args).

INPUT: Perl data structures

initialize Perl extractor environment
open factbase files
initialize map ids
create schema file
write factbase header

put main stash on stash queue
while stash queue not empty

get current stash
output package
for each entry in current stash

if entry is a CV
add entry to subroutine list
output entry

else if entry is a stash
add entry to stash queue

else
output entry (for SV,AV,HV,IO,FM)

for each subroutine in subroutine list
for each lexical in subroutine scratchpad

output lexical

for each subroutine in subroutine queue
traverse operation tree in execution order

output cross references

clean Perl extractor environment
write factbase footer
close factbase files
free map ids

OUTPUT: schema and factbase files

Figure 5.9: Perl extractor pseudocode

Next, the Perl extractor reveals global facts by traversing the stashes recur
sively by starting from the main stash (see Figure 5.6). A stash may contain
as entries links to other stashes. Each stash is processed by iterating over all
the entries in the stash. The entries in a stash (such as Perl arrays, hashta-
bles, subroutines, filehandles, and formats), as well as the name of the stash
(a package name) are written to the output files, together with their attribute

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information. We build a list of Perl subroutines, and a queue of encountered
stashes still to process. The algorithm repeats the process for the next stash
retrieved from the queue. This phase ends once the stash queue is empty.

Next, the Perl extractor takes each subroutine from the subroutine list
populated by the previous step, and processes its initial scratchpads. This
step reveals the Perl lexical variables. Then, the Perl extractor reveals cross
references, such as uses of variables or calls to subroutines by traversing the
associated operation tree in execution order. The last step closes the factbase
files and frees the maps.

5.3 Perl Schema
In this section we describe the Perl schema. The schema is mapped to two
different XML-based formats: GXL and Clare formats.

For the GXL format, the output factbase hie is perl-instance.gxl and the
schema hie is perl-schema.gxl. For the Clare format, the output factbase hie
is perl-instance.fb and the schema hie is perl-schema.xsd. All the four hies are
produced at one time.

The Perl schema is illustrated in Figure 5.10. The node types are denoted
by boxes. Each node type has its name labeling the box, followed below by its
attributes. The Perl schema dehnes nine node types: Namespace (package),
Function (subroutine), File, GlobalVar, LocalVar (lexical), Peril0 (hlehandle),
PerlFormat (format), Literal, and PerlOp (operation). Each node type has an
attribute name that denotes the name of the entity. The Function node type
has in addition the following attributes: xsub, whether the subroutine is dehned
externally in another language [XS]; sourcefile, the hie where the subroutine
is dehned; line, the starting line number of the subroutine; and endline, the
ending line number of the subroutine.

There are three possible edge types between the node types: calls (dashed
line), uses (plain line), and defines (dotted line). For example, there is a calls
edge type from Function to Function, and also from Function to PerlOp. All
three edge types have the attributes sourcefile and line. In addition to these
two attributes, uses and defines edge types have the Perl type attribute to
maintain the type (scalar, array, or hashtable) of the destination node.

There are three levels of abstraction for generating our GXL instance fact-
base. The high level represents the GXL schema that contains elements for
representing general graphs such as node, edge, rel (hyperedges), or attr (at
tributes). The middle level represents th e P erl sch em a an d is d esc rib ed using
GXL. This level defines the particular element types for the Perl language, i.e.,
the graph in Figure 5.10. Finally, the lowest level uses XML xlinks [XML], to
describe the “real” facts.

The Clare format, in contrast with the GXL format, focuses more on a
specific representation of the facts by skipping the high and part of the middle

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

name
source file
line

name

name
sourcefile
line

Literal
name

I IIIICllUII

name
xsub
sourcefile
line
endline

NamesiKui
PerlOpI name name
description

name
sourcefile
line

Legend:

name
sourcefile

node types +
attributes

— —- ► calls
uses

'*► defines

Figure 5.10: Perl schema

levels of the GXL format. The schema of the factbase in Clare format is
described in an XSD (XML Schema Definition) file [XSD]. The tags in the
instance XML file are the Perl node and edge types described in Figure 5.10.
The attributes are represented in XML in the form “attmname—attr-value” ,
where the attmname is an attribute of a node or edge type from the Perl
schema, and attr_value is the value of the attribute. Each edge has attributes
to and from denoting ids of the source and destination node of the edge. The
Clare format contains information that is easy to read from both human and
machine points of view. Also, representing the factbase in this format is more
compact than in the GXL format.

5.4 Perl R esults
This section presents and discusses the results and the performance of the Perl
extractor. First, we show the output of the extractor for the example from
Figure 5.4. Then, we provide the results of a test on all the Perl extension
modules, provided by default with the Perl distribution.

5.4.1 Perl Factbase Exam ple
Figure 5.11 illustrates the output of the Perl extractor in Clare format for
the script given in Figure 5.4. For brevity, this example factbase does not

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contain the stashes loaded by default in the Perl interpreter (i.e., attributes,
utf8, CORE, DynaLoader, 10, UNIVERSAL, XSLoader). The extractor is run
using the command:

perlextractor -Dx example.pl
where example.pl contains the Perl script.

To filter some of the Perl packages from the output, the array PerlPacka-
geOmit (in extractor, c) keeps the names of packages to omit in the resulting
factbase. Also, we can define which of the Perl operations are to be written
to the factbase. For this, the array PerlOutputOp (in schema.h) contains a
boolean entry for each of the existing Perl operations to determine whether or
not to create output.

The resulting factbase contains all the elements from the example.pl script.
The correspondence between the Perl script elements and the nodes from fact-
bases is straightforward. For example in Figure 5.11, the package main corre
sponds to node n2, subroutine bar from the package foo corresponds to node
n45, the literal 1 used to initialize the scalar x from package foo corresponds
to node n83, and so on. The factbase contains also the Perl operations shift
(node n85) and print (node n86). An interesting subroutine is main::main
(node n l), because it does not appear in the Perl script. Any Perl script has by
default an entry point represented by the mainr.main subroutine. The global
variable m a i n is predefined, and used by all Perl subroutines to retrieve the
input arguments.

5.4.2 Perl Extractor Test
We evaluated our extractor using all the modules provided with the Perl dis
tribution source code. These modules reside in the ext subdirectory in the
source code, and consists of about 100 source files (46 KLOC).

To extract the facts from all of the modules, we wrote a Perl script that
includes all the modules. This Perl script consists of lines of the form “use
<modulename> each of which forces Perl to create an intermediate rep
resentation for modulename. This is how multi-file Perl applications are con
structed. The interpreter provides this support automatically, so there is no
need to generate separate factbases, do linkage, etc.

The factbase file in GXL format is about 66 MB, while the factbase file in
Clare format is only 18 MB in size. We expected that the GXL factbase to be
much bigger than the corresponding Clare factbase, as discussed in Section 5.3.
The running time spent to the point where our component starts is 12 seconds.
The time spent specifically by our component is 40 seconds, for a total running
time of 52 seconds for the entire process, which is reasonable for the size of
the input. The machine used for evaluation was an Intel Pentium 4 2.6MHz,
1GB RAM, 40GB hard drive at 7200 RPM, running Windows XP. The Perl
extractor reveals 517 packages, 8750 subroutines, 2531 global variables, 11352

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<?xml version="l.0" encoding="ASCII" ?>
<perl xmlns="http://www.perlfactbase.org">

<Function id="nl" name="main::main" xsub="false" />
<Namespace id="n2" name="main" />
<PerlI0 id="n4" name="main::stderr" />
<PerlI0 id="n6" name="main::stdout" />
<PerlI0 id="n8" name="main::stdin" />
<PerlI0 id="n9" name="main::ARGV" />
<GlobalVar id="nl0" name="main::ARGV" />
<GlobalVar id="nll" name="main::INC" />
<GlobalVar id="nl2" name="main::ENV" />
<PerlI0 id="nl8" name="main::STDOUT" />
<GlobalVar id="n20" n a m e = " m a i n : />
<PerlI0 id="n22" name="main::STDERR" />
<PerlI0 id="n23" name="main::STDIN" />
<Namespace id="n44" name="main::foo" />
<Function id="n45" name="foo::bar" xsub="false"

sourcefile="example.pi" line="3" />
<GlobalVar id="n46" name="foo::x" sourcefile="example.pi"

line="2" />
<LocalVar id="n82" name="foo::bar::$args"

sourcefile="example.pi" />
<Literal id="n83" name="l" />
<uses from="nl" to="n83" type="int" sourcefile="example.pi"

line="2" />
<uses from="nl" to="n46" sourcefile="example.pi" line="2" />
<Literal id="n84" name="Example " />
<uses from="nl" to="n84" tjfpe="string" sourcefile="example.pi"

line="9" />
<calls from="nl" to="n45" sourcefile="ex£imple.pi" line="9" />
<Perl0p id="n85" name="shift" />
<calls from="n45" to="n85" sourcefile="example.pi" line="4" />
<defines from="n45" to="n82" type="scalar" sourcefile="example.pi"

line="4"/>
<uses from="n45" to="n82" type="scalar" sourcefile="example.pi"

line="5" />
<uses from="n45" to="n46" sourcefile="example.pi" line="5" />
<Perl0p id="n86" name="print" />
<calls from="n45" to="n86" sourcefile="example.pi" line="5" />

</perl>

Figure 5.11: Factbase for the Perl example in Clare representation

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.perlfactbase.org

lexical variables, 83 filehandles, 8477 literals, and 126585 relations among these
nodes.

5.5 Summary
This chapter presents an approach to create a fact extractor for Perl code by
inserting a component into the Perl interpreter itself. The Perl extractor is part
of the fact extraction component in our architecture. This extraction compo
nent consults Perl internal data structures, which are populated accordingly
for the input script by the interpreter. These data structures, the interpre
tation process, the component insertion point, the extraction algorithm, and
output representation are described in detail.

In general, we believe a similar approach could extract facts for another
language implemented by an interpreter. A chief advantage of the described
approach is reusing an authoritative implementation of the language’s behav
ior, rather than developing a fact extractor from scratch. The Perl interpreter
provides much support, such as dealing with globs, namespaces, implicit global
variables like and multi-file applications. One limitation is that the deep
dependence on the internal data structures makes the extractor sensitive to
interpreter implementation changes. Still, we address this issue by not refer
ring to the fields of structures directly but use the provided macros. Another
limitation is that the static analysis is lightweight, so dynamic behavior as
found in object-oriented Perl code is not fully considered.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Analyzing and Representing
Cross-Language D ependencies

The previous two chapters presented finding the entities and relationships only
inside one language at a time (for C /C + + , Java, Perl). This chapter enhances
the set of existing facts with new ones representing the cross-dependencies
among code in different languages. Section 6.1 presents how the dependencies
between Java and C /C + + can be retrieved. Following, Section 6.2 describes
the cross dependencies between from Perl to C. Section 6.3 describes the cross
dependencies between from Tel to C. Section 6.4 describes the cross depen
dencies between from Python to C. The commonalities among the extension
mechanisms of scripting languages is summarized in Section 6.5. Finally, Sec
tion 6.6 presents a common schema used to represent the same type of facts
among different languages.

6.1 Recognizing Java to /from C /C + +
In this section we discuss the Java Native Interface (JNI) [JNI] mechanism that
allows to connect Java and C /C + + languages. We present also the algorithm
that finds these relationships between Java and C /C + + .

In C + + , JNI functions are defined as inline member functions tha t expand
to their C counterparts. The underlying mechanism is exactly the same as
using C. Therefore, we will resume to discuss the JNI mechanism using C.

Calling C from Java
Java calls C or C + + functions using JNI. W ith Java and JNI, one writes a Java
program that dynamically loads a native library that contains implementations
of one or more native methods declared in the Java class. We discuss the case
when the dynamic link library is created using C. Generally, there are six
steps to follow to create such a connection between code written in Java and
C /C + + :

1. Create a Java source file tha t declares a class with one or more native

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

methods.

2. Compile the Java source file to create a .class file.

3. Use the javah generator with the -jni switch to automatically create a
header file for use in the C program.

4. Create a C source file tha t implements the native method(s).

5. Compile the C source file to create a dynamic link library that exports
the native method(s).

6. Run the Java program using the Java virtual machine.

JNI uses a standard naming and calling convention, so that the Java Vir
tual Machine (JVM) can recognize and invoke the C functions corresponding
to the Java native methods. We provide an example to understand better
the dependencies between Java and C using JNI. Suppose that we have the
following Test Java class:

public class Test {
static { System.loadLibraryC"Test"); }

public int iValue;
public Test() { }
public double compute(Vector v, float f)
{ . • • >
public native void print(String msg);

public static void main(String[] args) {
Test t = new TestO;
t.print("Hello from C!");

>
>

Figure 6.1: Test Java class

The Test class contains a print native method and a main method that invokes
the print method. The constructor, iValue instance variable, and compute
method of the Test class will be used later to illustrate the access of Java from
C. Also, the class loads dynamically a library that provides the implementation
of the print method in C. Executing the javah generator with the -jni option
for the Test Java class, we obtain a Test.h file that contains a C function
declaration corresponding to the print native method:

void JNICALL Java_Test_print(JNIEnv *, jobject, jstring);

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A cross-language dependency exists between the print Java native method
and the Java-Test-print C method. Note that the name of the correspond
ing Java native method consists of ‘Java’, ‘J , followed by the name of the
Java class for the native method (e.g., Test), and the name of the Java
native method (e.g., print). Also, the signature of the corresponding C func
tion consists of three argument types. The first two are required by the JNI
framework to access its functions. The third argument type is jstring, which
is the corresponding C type for the Java argument type String for the print
native method.

To match up signatures of Java native methods and C functions correctly,
we need to know the mapping between the Java types and C types defined by
JNI (see Table 6.1). For the primitive Java types the corresponding JNI types
defined in C have the same name preceded by lj ’. The JNI C type for a Java
array of primitive types is: lj ’, the name of the Java primitive type, followed
by ‘Array’. For example, for the Java array int[], the JNI C type is jintArray.
There are also some JNI C types defined for Java complex types.

Jav a T y p e J N I C T y p e
boolean jboolean
byte jbyte
char jchar
short j short
int jint
long jlong
float jfloat
double jdouble
void void
java.lang.Object jobject
java.lang.String jstring
java.lang.Class jclass
j ava. lang. Throwable j throwable
j ava. lang. Ob j ect [] jobject Array
Type derived from Object jobject
Array of Type derived from Object jobjectArray

Table 6.1: Mapping Java and C /C + + Types

JNI uses th e co n v en tio n s presented before to handle the n am e-m an g lin g
for native Java methods that are not overloaded. However, JNI supports to
overload the native Java methods. In this case, JNI adds in addition to the
name-mangling conventions for non-overloaded native Java methods another
component. This component adds two underscores (“__”) followed by the
mangled argument signature to the native method name presented in Table 6.2.
This case of JNI name-mangling is applicable only for the overloaded native

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Java methods. The non-native Java method does not reside in the native
library. In the following example, JNI uses the name-mangling conventions for
non-overloaded native Java methods to resolve the native method /.

void f ();
native void f(int i) ;

Figure 6.2 presents the algorithm for finding the cross-dependencies from
Java to C /C + + :

INPUT: Facts from Java and C/C++
1. for each Java class c
2. for each native method m in c
3. map arg types of m to JNI C types
4. find C function Java_c_m with the corresponding

JNI C argument types
5. dependency: m calls Java_c_m
OUTPUT: Dependencies from Java to C/C++

Figure 6.2: Algorithm for finding cross-dependencies from Java to C /C + +

The input of the algorithm consists of the facts for the Java and C /C + + lan
guages individually. This information is provided after running the extractors
for each language (these extractors were described in Chapter 4). The algo
rithm tries to find a match for every native method (line 2) of every Java class
(line 1) in the set of C /C + + functions (line 4). The matching of names and
signatures is based on the JNI standard. Finally, the algorithm outputs these
dependencies as simple calls from Java methods to C /C + + functions.

A ccessing Java from C
Conversely, a C function can create, update, and access Java objects. There
are two cases regarding how Java may be accessed from the C side. The first
case appears when a Java method is implemented as a C function, and the C
function calls back on Java objects. The second case occurs when embedding
a Java Virtual Machine (JVM) inside a C application.

In both cases, support is provided by the JNI API. JNI provides a set of
functions and mechanisms for communicating between Java and C code. That
is, JNI is a bridge between the two aforementioned languages [JNI].

To understand better how C functions can access Java classes, methods,
or fields, consider a simple example following from the Test Java class of
Figure 6.1. We modify the Java-Testjprint C function that implements the
Java native method print to access the iValue and compute members of the
Test Java class. The C /C + + code is listed in Figure 6.3.

The Java class is retrieved in C using the Get Object Class JNI function. To
access a Java method in C, we use GetMethodID with the name of the Java
method and its encoded signature (see Table 6.2). To find the desired Java

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JNIEXPORT void JNICALL Java_Test_printCJNIEnv *env, jobject obj,
jstring s)

{
jclass els = (*env)->GetObjectClass(env, obj);
jmethodID mid = (*env)->GetMethodID(env, els, "compute",

"(Ljava/util/Vector;F)D");

(*env)->CallDoubleMethod(env, obj, mid, v, l.Of);
jfieldID fid = (*env)->GetFieldID(env, els, "iValue", "I");
int i = (*env)->GetIntField(env, obj, fid);

>

Figure 6.3: C sample code for accessing Java from C code

method, JNI searches in the symbol table based on the given method name and
its encoded signature. We invoke the Java method using a Call< T > Method
JNI call, where T denotes the type returned by the method (e.g., if the method
returns an int, then T will be Int). The iValue Java field is accessed using
GetFieldID and respectively the GetlntField JNI function.

JNI provides an encoding scheme for Java method signatures and field
types. Table 6.2 illustrates the possible encodings defined by JNI. For example,
the compute Java method has two arguments of type java.util. Vector and type
float, and returns a double. The encoded signature of compute is therefore
(Ljava/util/Vector;F)D. The character used for packages in Java, is replaced
by the ‘/ ’ character.

Jav a T y p e J N I E ncod ing
boolean
byte
char
short
int
long
float
double
Java-class
type[]
method signature

Z
B
C
S
I
J
F
D

L Java-class]
[type

(arg_types) ref_.fi/pe

Table 6.2: Encoding Java Signatures

We developed an algorithm to find the dependencies from C to Java. Be
cause our approach uses a simple static analysis, some heuristics are used to
determine those points in C files where there is an access to JNI and find the
Java classes, methods and fields specified as static encoded strings in C. Deter-

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mining all these dependencies is difficult because of the potential for dynamic
string manipulation.

INPUT: Facts from Java and C/C++
1. for each c call from caller f to callee g
2. set P array to parameters of g
3. if type of P [0] is (’JNIEnv*’ or ’JavaVM*’)
4. if g is (’Call<T>Method’ or ’CallStatic<T>Method’)
5. retrieve Java class C using P [1]
6. retrieve Java method m using P [2]
7. if m is method of C
8. dependency: f calls m
9. if g is (’Get<T>Field’ or ’GetStatic<T>Field’ or

’Set<T>Field’ or ’SetStatic<T>Field’)
10. retrieve Java class C using P[l]
11. retrieve Java field x using P[2]
12. if x is field of C
13. dependency: f uses x
OUTPUT: Dependencies from C/C++ to Java

Figure 6.4: Algorithm for finding cross-dependencies from C /C + + to Java

Figure 6.4 presents the algorithm for finding the cross-dependencies from
C /C + + to Java. The algorithm takes as input the facts from Java and C. Line
1 inspects each call from the C side. Line 3 checks and report if it is a call using
JNI. Then, the algorithm checks if the callee is one of the JNI API functions
(i.e., Call<T>Method, CallStatic<T>Method, Get<T>Field, Set<T>Field,
GetStatic<T> Field, or SetStatic<T> Field, where < T> can have of the fol
lowing values: “Void”, “Boolean” , “Char” , “Byte” , “Short” , “Int” , “Float” ,
“Double” , or “Object”) for accessing Java methods (line 4) or fields (line 9).
For each specific JNI function, the algorithm finds the possible Java method
(lines 5-8), or field (lines 10-13) used by the call. The Java class is retrieved
from the arguments of the JNI functions GetOhjectClass or FindClass (lines
5,10). The Java method is retrieved from the arguments of the JNI functions
GetMethodID or GetStaticMethodID (line 6), while the Java field is retrieved
from the arguments of the JNI functions GetFieldID or GetStaticFieldID (line
11).

6.2 Connecting Perl to C
Calling C functions from Perl can have several advantages, such as improv
ing the speed of a Perl script by rewriting the time-consuming routines in C,
accessing low-level system calls and libraries, or accessing legacy applications
that expose a C interface. For example, the Perl B module (module provided
by default in the Perl distribution) uses this interoperability mechanism. Con
sequently, we need to recognize the appearance of such code in a mixed Perl

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and C system.
To call a C function from Perl, developers need to write the necessary

glue code for the Perl interpreter. The glue code usually contains two files:
a module file in Perl with the .pm extension, and a C file. The Perl module
tells the Perl interpreter how to load, dynamically or statically, the library
that contains the C function, and the C file puts the C function in the context
of the Perl interpreter and associates a new Perl routine with the C function.
When we call this Perl routine from a script, the C function associated with
the Perl routine is executed. In Perl’s terminology, such a C function is also
known as an external subroutine or XSUB function.

To understand this process better, consider a simple example. Suppose
that we want to create a Perl module Test that contains a routine called test,
and that we want to implement this test routine as a C function, instead of
a plain Perl routine. The test.c file listed in Figure 6.5 illustrates how the C
function (XS-Test-test) can be implemented, and how the C function can be
registered to the Perl interpreter via booBTest.

1. #include "perl.h"
2. #include "XSUB.h"
3.
4. XS(XS_Test_test);
5. XS(XS_Test_test) {
6. dXSARGS;
7. if (items != 0)
8. Perl_croak(aTHX_ "Usage: testO");
9.

10. printf("Test: Perl calls C!\n");
1 1 .
12. XSRETURN_EMPTY;
13. >
14. XS(boot_Test);
15. XS(boot_Test) {
16. dXSARGS;
17. char* file = __FILE__;
18.
19. XS_VERSI0N_B00TCHECK ;
20. newXS("Test::test", XS_Test_test, file);
21. XSRETURN.YES;
2 2 . >

F ig u re 6.5: L istin g of Test.c file for Perl

The perl.h header file declares C functions that access the Perl internal
data structures, and the XSUB.h header file defines a set of macros to write
Perl external subroutines. In this example, the C function XS-TesBtest is the
C portion of the glue code. In practice, it is a kind of wrapper which typically
delegates other C functions to do the real work.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Three macros from XSUB.h hide much of the details on how the C function
and Perl internals interact:

• XS - The X S macro defines the standard signature for a new XSUB:

#define XS(name) void name(PerlInterpreter *pi, CV *cv)

Note that an XSUB function takes two parameters and returns nothing.
The first parameter pi is a pointer to the current Perl interpreter. The
second parameter cv is a Perl data structure that represents this function
inside the Perl runtime. Other function-specific arguments are made
available to an XSUB function implicitly through the Perl runtime stack.
Before an XSUB function is invoked, the actual parameters are pushed
onto the Perl runtime stack, which can be accessed by the XSUB function
through the set of macros defined in XSUB.h.

• dX SA R G S - The dXSARGS macro defines the necessary variables
for manipulating the Perl stack. For instance, the variable items in the
example is an integer containing the number of arguments pushed onto
the stack by the caller.

• X S R E T U R N _ E M P T Y - The macro XSR ETU RN -EM PTY indicates
that this subroutine does not put anything on the stack as a return value.

The rest of XS-Test Jes t is explained as follows. Line 7 checks if this
function has any parameters, and if it does, a usage message is then printed,
and the function returns. Note tha t PerLcroak is a Perl internal function
which takes two parameters. The first parameter aTHX_ is a macro that
defines a pointer to the current Perl interpreter followed by a comma. The
second parameter is the string to be displayed. Line 10 prints a simple message
to standard output.

In practice, a Perl module may have a number of such C functions to
be called. These C functions comprise a module-specific extension to Perl,
and are made known to the interpreter using a specially named registration
C function. When a command is issued for Perl to load the module, this
registration function is called first. In Figure 6.6, the function boot-Test is
the registration function for the Perl module Test. This function makes the
Test:'.test Perl routine known to the Perl interpreter, and associates the C
fu n c tio n XS.TestJest with the Perl routine Test:Jest. In general, the name of
the registration function is formed by prefixing the module name with boot-

The XS-VERSION-BOOTCHECK macro checks the module version. The
newXS macro associates the XS-Test-test C function with a Perl subroutine
called test in a module called Test (Test::test).

Perl provides two mechanisms for integrating C extensions. One way is to
statically link the extension into the Perl interpreter code itself. The other way

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is to dynamically load the extension as a C library. Figure 6.6 lists the Test.pm
file that helps to dynamically load the Test module. The package statement
at line 1 introduces the namespace associated with the module. The package
name must match the module name.

1. package Test;
2. use strict;
3. use warning;
4.
5. our $version = ’1.0’;
6. require DynaLoader;
7. bootstrap Test $version;
8

Figure 6.6: Listing of Test.pm Perl module file

We can load this module using use Test;, and call the Perl routine using
Test::test;. When the Perl interpreter sees a use Test; statement, it searches
for a Test.pm file to load in all the paths in the predefined @INC array. The
required DynaLoader module is a predefined Perl module that loads shared
libraries at runtime (line 6). Perl bootstraps the Test module for the given
version (line 7). Here, Perl calls its dynamic loader routine, loads the shared
library built from the Test.c file, and executes the boot.Test C function to
initialize the Test module with the subroutines defined by newXS.

6.3 C onnecting Tel to C
The Tel scripting language allows adding new functionality implemented in
C. To call a C function from Tel, developers need to write the glue code
necessary to define the function and to register the new command with the
Tel interpreter.

We illustrate the process with a simple example tha t creates two Tel com
mands, called stest and otest. These commands are implemented as two C
functions. The test.c file listed in Figure 6.7 contains the corresponding C
functions (stest and otest), and the function (Test-Init), which registers the
C functions with the Tel interpreter.

The header file tcl.h contains the interfaces for accessing the Tel internals.
Two different ways are shown of defining and registering commands to the
Tel interpreter. The C function to be called from Tel must use one of two
signatures, as demonstrated by stest at lines 3 and 4, and otest at lines 9 and
10. The signature of stest takes four arguments: client data, the interpreter
in which the command is executed, the number of string parameters, and the
array of string parameters passed.

Function otest also has four parameters, with the first two the same as in
the signature of stest. The last two parameters are the number of parameter

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. #include "tcl.h"
2 .

3. int stest(ClientData cd, Tcl_Interp *ti,
4. int argc, char *argv[])
5. {
6. printf("Test: Tel calls C!\n");
7. return TCL_OK;
8 . >
9. int otest(ClientData cd, Tcl_Interp *ti,

10. int objc, Tcl_0bj *C0NST objv[])
U . f
12. printf("Test: Tel calls C!\n");
13. return TCL_0K;
14. >
15. int Test_Init(Tcl_Interp *ti){
16. Tcl_CreateCommand(ti, "stest",stest,
17. (ClientData)NULL,
18. (Tcl_CmdDeleteProc*)NULL);
19. Tcl_CreateObjCommand(ti, "otest",
20. otest, (ClientData)NULL,
21. (Tcl_CmdDeleteProc*)NULL);
22. Tcl_PkgProvide(ti, "Test", "1.0");
23. return TCL_0K;
24. >

Figure 6.7: Listing of Test.c file for Tel

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objects and the array of parameter objects passed to this command. Note that
in the first case the arguments to the new command are C strings, while in the
second case the arguments are Tel objects. Tel commands with the second
signature have better type-checking support, and may run slightly faster. In
the first case, C string arguments have to be converted to Tel objects. Thus
in practice, the second case is recommended for creating a new Tel command,
and the first case is supported only for backward compatibility.

Both stest and otest print a simple message. They also must return a
pre-defined integer value to indicate to the interpreter if an error has occurred
during the execution of the command. In our example TCL-OK is returned
to indicate that there are no errors.

A special C function must be defined to register C functions to Tel. New
Tel commands may belong to a Tel package (in our example, the Tel package
is Test). The name of this registration function must contain the name of the
package followed by _Init, and the single parameter of this function must be a
Tel interpreter. In the example, TestJnit registers the two new Tel commands.

Corresponding to the two signatures of C functions for Tel commands, there
are two ways of registering a new Tel command to the Tel interpreter, using
TcLCreateCommand (for C string arguments) and TcLCreateObjCommand
(for Tel object arguments). These two functions take the same parameters:
the interpreter in which the command is executed, the name of the new Tel
command, the pointer to the associated C function that implements the new
command, client data that is passed when executing the new command, and
a pointer to a function to be called when the new command is removed from
the interpreter.

The TcLPackageProvide call at Line 22 declares that a Tel package named
Test with version 1.0 is made available to Tel.

To make the extension available, one needs to compile the Test.c file and
build a new C library. To use the new Tel commands, the library must be
loaded using either of the Tel commands load or package require.

6.4 Connecting P ython to C
The Python scripting language allows adding new functionality implemented
in C. The mechanism for building new Python modules written in C follows
almost the same mechanisms as for Perl and Tel. A C function to be inte
grated with Python is written, and this function is registered to the Python
in te rp re te r . A lib ra ry is b u ilt for th e C code, an d it is loaded using an ex isting
loading method provided by Python.

A simple example illustrates this mechanism. We create a module called
Test that contains a Python function test implemented in C. The new test
Python function prints a constant string. The Test.c file listed in Figure 6.8
contains the C implementation of the test Python function, and the initializa
tion of the Test module with the new function.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. #include "Python.h"
2 .

3. static PyObject*
4. test(PyObject *self, PyObject *args) {
5. printf("Test: Python calls C!\n");
6. Py_INCREF(Py_None);
7. return Py_None;
8 . >
9. static PyMethodDef TestMethods[] = {

10. {"test", test, METH_VARARGS, "comment"},
11. {NULL, NULL, 0,NULL} /*sentinel*/
1 2 . };
13. PyMODINIT_FUNC initTest(){
14. Py_InitModule("Test", TestMethods);
15. }

Figure 6.8: Listing of Test.c file for Python

The header file Python.h contains the interfaces to access the Python in
ternals. To be registered as a Python command, a C function must possess
a predefined signature with two parameters. If the function is meant to be
invoked on an object, then the first parameter self will be a pointer to the
receiver Python object, otherwise it will be NULL. The second parameter args
contains the arguments passed to the function.

A Python C function should always return a non-NULL reference to a
PyObject. The Python interpreter treats it as an error if a Python C function
returns NULL. To express the semantics of returning nothing, a function may
return a special Python object Py_None. However, before returning Py.None,
the function must increase the reference counter of Py.None by calling the
PyJN C REF macro so tha t Py_None is not to be garbage-collected.

The Python type PyMethodDef contains an entry definition, a tuple of four
elements that define a Python command. It contains the name of the Python
command in the module, the C function that implements the functionality
of the new Python command, how to pass the arguments, and a C string
comment for the new Python command.

Lines 9-12 defines an array of entry definitions, each of which declares a
C function that comprise the Test module. In the example, there is only one
entry, which associates the Python test command with the C function test. We
use M ETH-VARARGS for passing the Python parameters, which means that
P y th o n p a ra m e te rs a re p assed as a tu p le . T h is is s im ilar to v ariab le length
argument lists in C. The tuple can be parsed using the Python API function
PyArg^Parse Tuple.

The function initTest creates and initializes the Test Python module. This
is a special function that informs the Python interpreter of the content of this
module. The name of this registration function must contain init followed by
the name of the module. PyJnitModule is a Python function tha t associates

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th e new P y th o n m o d u le T e s t w ith th e a rra y of e n try d efin itions above.
The Test.c file is compiled and a new library is built. To make the new

Python module available to the Python interpreter, the library is loaded
using the imp. load-dynamic Python command, which loads a dynamic li
brary containing a Python module (imp is a pre-defined Python module and
load-dynamic is a method of this module), imp.load-dynamic searches in the
dynamic library for an entry with a name that starts with init followed by
the name of the Python module (e.g., Test), and executes the corresponding
C function. This new module can be imported and used by other Python
modules using import Test.

6.5 Extension M echanism Com m onalities
The extension mechanisms for scripting languages (such as Perl, Tel, and
Python) are similar, mostly due to the interpreter implementations being writ
ten in C. Thus, the basic technique to identify uses of these mechanisms can be
generalized with a small language-specific portion. Table 6.3 summarizes the
extension mechanisms, with the slight differences for these languages in four
source-level respects. Considered are: the necessary header files to include,
the right signatures of C function declarations to use, the registration inter
face to make C functions known to the interpreter, and the loading commands
as scripting language code to enable the extension. Because the extension
mechanisms are so similar, code generators like SWIG [SWIG] can assist in
generating the many different scripting language dependent wrappers associ
ated with a single C function.

P erl Tel P y th o n
H ead er files perl.h and XSU B.h tcl.h Python.h
D eclara tion void (P erlln terpreter *,

C V *)
in t (ClientData,
TcLInterp*, int, char*[j)
in t (ClientData,
TcLInterp*, int,
T cLO bj*[])’

PyO bject* (PyObject*,
Py Object*)

R eg istra tio n XSY&oof-packageN ame)
newX S macro
newXSproto macro

packageN ame-Init
TcLCreateCom m and
TcLCreateObj Command

mitClassName
Py-InitM odule
PyM ethodDef array

Loading require DynaLoader;
bootstrap Test version

load Test
package require Test

im p.load-dynam ic Test

Table 6.3: Summary of Perl, Tel and Python to C extension mechanisms

The cross-language dependencies can be identified from the C facts alone
(assuming an accurate C fact extractor). For instance in Perl, one can search
for occurrences of the newXS macro and associate the new Perl subroutine
(e.g., Test::test) in the first parameter with the C function in the second
parameter (e.g., XS-Test-test). In Tel, one can search for occurrences of the

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TcLCreateCommand and TcLCreateObj Comm and!, and associate the new Tel
command (e.g., Test::stest) in the second parameter with the C function in the
third parameter (e.g., stest). In Python, one can search for occurrences of the
PyJnitModule, and associate the new Python command (e.g., Test::test) in
the values of the array of the second parameter with the C function retrieved
from values of the same array (e.g., test).

Nevertheless, we embarked on a more syntactic and thorough approach to
support the exploration of facts from all involved languages (not just C), and
to build an infrastructure tha t would allow for more complete analyses in the
future.

6.6 Com mon Schema
Facts to be extracted from each language could be modeled using separate
schemas, but this would lead to many similar entities for common notions like
namespaces, subroutines, variables, and calls. To address this problem, we
have evolved a simpler, common schema that unifies similar notions across the
languages of interest [Moise05]. The fact extractors are designed to produce
facts that conform to the common schema. This approach also simplifies the
implementation of downstream tools, such as visualizers, that use or present
the facts.

E ntity T ype C /C + + Java Perl Tel P ython
Class • • o o
Enum • o
Enum Value • 0
File • • • o o
Function • • o o
FunctionDecl •
GlobalVar • • o o
Literal • o • o o
LocalVar • • • o 0
Macro •
MemberVar • • 0 0
Method • • o o 0
MethodDecl •
Namespace • • 0 0
Typedef •
Union •

Table 6.4: Common schema entity types

Practically, the common schema is a union of the schemas presented in
Section 4.4 and Section 5.3. In addition, the common schema includes the

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

schemas for Tel and Python languages.
Table 6.4 lists the entities in the common schema, and indicates whether

each entity is relevant for C /C + + , Java, Perl, Tel, and Python. The first
column consists of all the node types of our schema, and the next columns
indicate if the node type is available in the language from the first row of the
table. For example, we have the LocalVar node type exists in C /C + + , Java,
Perl, Tel, and Python. An empty cell denotes the node type does not have
a corresponding construct in the corresponding language. For example, the
Union node type does not exist for the Perl, Tel, or Python languages. An
empty dot represents an entity that is not revealed by our extractors.

The relation types between the node types are given in Table 6.5.

calls friend n! has . includes inherits IVnin uses

Class
Class Member Var

Method
MethodDecl

Class Class
Union

(! n n hi EnumValue
l.n mu V aliir
File File

1 unction

Function
FunctionDecl
Method
MethodDecl

Class Class
Enum
EnumValue
GlobalVar
LocalVar
Macro
MemberVar
Union

1 iinciionllecl
G lobalV ar
1 .ocalY ar
M acro
M cnihcrV :ir

M il lioil

Function
FunctionDecl
Method
MethodDecl

Class
Enum
EnumValue
GlobalVar
LocalVar
Macro
MemberVar
Union

M ethod Decl
T voedef
Union Member Var Union

Table 6.5: Common schema relation types

The calls edge type covers the control dependencies among the subroutine-
like entities from different languages. The uses edge type covers the control de
pendencies between a subroutine and a member variable entities from different
languages. The mechanism attribute for the edge contains more information
about the invocation used. For an invocation between Java and C /C + + , the
m,echanism attribute has the string value JNI. The facts involved in a cross-

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dependency come from different factbases. Therefore, two attributes, fbfrom,
and fbto, are used to find the factbase of the facts involved in a cross-language
dependency.

The attribute types for both node and edge types in the common schema
are illustrated in Table 6.6.

Node &
Relation

Tvoes
Class name sourcefile, line, column, endline. endcolumn. kind ■ sum nit / 1

1 mini name, sourcefile, line, column, endline, endcolumn
1 iiiiin\ :ilin- name, sourcefile, line, column, endline, endcolumn
File name, sourcefile, language

runctio ii
name, sourcefile, retum type, arg_names, arg types, line, column, endline,
endcolumn, kind (inline)

1 iiiiciinnDeil name, return type, arg names, arg types
(.loli.ilV.ii name, sourcefile, real type, line, column, endline, endcolumn
Literal name, sourcefile
I oc.il\ ai name, sourcefile, real type, line, column, endline, endcolumn
M an o name, sourcefile, line, column, endline, endcolumn

Meiiihei \ ur
name, sourcefile, real type, line, column, endline, endcolumn,
kind (priva te , pro tected , public 1

M ethod
name, sourcefile, retum_type, arg names, arg_types, line, column, endline,
endcolumn, kind (p riva te , p ro tected , p u b lic , v ir tu a l, in lin e ,
constructor , destruc tor , purevirtual)

Met hod Dei 1 name, return type, arg names, arg types
N<tiiit'M>.ii'e name, sourcefile, line
r\|iidi-r name, sourcefile, real type, line, column, endline, endcolumn
Ciiion name, sourcefile, line, column, endline, endcolumn
calls sourcefile, line, column, callee args, fbfrom, fbto
Triend id' sourcefile, line, column
li.is sourcefile, line, column
includes sourcefile, line, column
inherits Iriini sourcefile, line, column
uses sourcefile, line, column, fbfrom, fbto

Table 6.6: Common Schema - Attribute Types

6.7 Summary
This chapter reports our work on extracting cross-language dependencies be
tween Java and C /C + + . The resulting factbase conforms to a common
schema.

T h e c h a p te r also p re sen ts th e m ech an ism s for ad d in g new co m m an d s writ
ten in C to three widespread scripting languages: Perl [PERL], Tel [TCL], and
Python [PYTHON]. We use the Perl extension mechanism as the primary ex
ample. The core commands of a scripting language can be extended by writing
new commands using either the scripting language itself or a system language
such as C. There are two main reasons for writing the new commands in C.
First, a new command implemented in C is more efficient than the equivalent

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implemented in the scripting language. Second, and more importantly, for
some tasks, it may not be possible to implement the new commands within
the scripting language (e.g., accessing a new low-level system device).

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Evaluation and Applications

This section describes fours tests and applications used to evaluate our ap
proach. For the first test, we investigated the Perl B module which is written
in Perl and C. Another small application, called Win32RegKey [CoreJava2],
written using Java and C is used as a second test. To check its scalability and
usefulness, we tested our approach on the Java-GNOME system [JavaGNome],
which is written also in Java and C. Another case study evaluates our approach
for all standard Perl modules, which come with the distribution of Perl inter
preter. The languages presented in this test are Perl and C.

7.1 Perl B M odule Test
The Perl B module is used as an example to illustrate the exploration of calls
in Perl and C code. This module implements the backend of the Perl compiler,
which can be used to create opcodes for interpretation. The B module accesses
Perl internal data structures through a set of functions defined by the XS
mechanism. Other backend utilities, such as cross-reference reports, can be
implemented in Perl code, on top of B commands.

Initially, the user specifies the factbases that comprise the system. Fig
ure 7.1 presents the visualization plug-in, after the Perl and C factbases are
loaded. The layout loosely follows Eclipse workbench conventions. From left
to right, it contains a navigation view, an editor view for cross-language depen
dencies (Perl subroutines on-the-left associated to C functions on-the-right),
backward and forward call graph columnar views, and an outline view of func
tions organized by language. Colors are used consistently in the views to
distinguish the artifacts of differing languages.

Cross-language dependencies can be used for easing the exploration of con
trol flow from one language to another. In the Calls From columnar view, a
developer can see what functions call a given one function, and follow the
calls deeper by exploring more columns to the right. Similarly, the Calls To
columnar view shows what functions a given one function calls.

A developer may want to know how a Perl external routine is imple-

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e s « .

] - f r - © * % - 1 i S a 9 ■ i .-j; 1 3 n :
lav a ■ d e p en d e n c ie s , rr.d » E tlipss SDK

! Ciava

Âsmdata.pm :
%:As*emb1er.pm ;

S.c <

mm \
^BbSock.pm \
■yfcByrecotfe.pin i
% C .pm ;
I^CC.pm j
^fcConcfse.pnr *
^O ebug.prn |
D̂eparse.pm \

^Oisassem&fer.pm }
■^Urn.pm IIftO.pm |
^•Showlex.pm :
^StackobJ.pm |
% »ash .p m |
■^Terse.pm I
IlfcXref.pm I

BModu5e.partiat.fb |
BModuie jer l.fb . j

3depantlencie».md |
Per1X-XS_c.fb (

’ * ^ e p ic j in k i |

%a.pm 'dep en dent ies.>nd S

|» B.;walkoptreei—

H 0 XSCXS.B.formfeed^

-j @ XS^S.-3. warnhook}]

-;#X S<X S.8_diehook)j

- 1 0 XS(XS_3_walkoptreejj

|> B:,«vaikoptree.debug|— - 1 0 XS<XS.a.waikoptree.debuj)i

© S^ add ressj— -|0X S D (S .8_ad dressi,

0 Bt:syref.2objtc<j— —f © XSlXS_8.svrg<_2object,4

—!© XS(X5_8.cipnumber}i

—{0 XSC’tS.S.Ppoame):

I BMW

■J= W - 1

0B::C.:Mve...data»
®8::C:iart_ro»gtc<)

0 8;.AV;ARRAY
0 B:.AV':ARRAY*« f
0B::AV::AvOACS
08:.AV-.:HLl
0B:.AV;MAX
0 8 . AV:;OFF i
©B::AVf.REAL
0B::As«mbi«r;;PUTJ3Z

0B::Assewbf*r.;PU7JV6«
© B::A*sembler ::PUT.NV
0 B: As«mbler:;PUT.PADOFFSE
0B::AssemWer::PUT.PV
0B::A5$ernblef::PUT.U16 ?
© B.'.As«mbler::PUT_U32 i
#B:.As>embler:;PUT.U8
0 B::Assembter..PtlT .comment.,
0 B Assembier PUT .double >
0 B::Assembi«r;:PUT,.lo>»fl
0 B"Aisembler:POT.nooe
0 B::Aisemb{*r:PUT_obj<nd*x r
0 B:: Assembler :f,UT_op_tr_arr*
0 8.;Asjembter;PUT.oplndex 5
0 B::Assembl«r::PUTj»vcon«rui
0 B::Asiemblen;PUT_pvtodex
0 B:: Assembler ;PUT_strconst
0 B : :Assembler:PtlT.»v>ridex : * :
} 8.: Assembler '.asm *:

Figure 7.1: Support Perl-to-C dependencies in Eclipse

mented in terms of C functions. For example, as shown in the Calls To view,
B::svref-2object is implemented by a C function XS-B..svref-.2object, which in
turn calls a number of other C functions.

A developer may also want to know what Perl subroutines could be im
pacted by a change to a C function. For example, considering Calls From
view, changing XS-Bsvref-2object may influence other Perl routines that use
it directly or indirectly, such as B::C::save-context and B::C::save^main.

7.2 W in32R egK ey Test
The Win32RegKey application is provided as an example in [CoreJava2], to
illustrate how to call C functions from Java, and how to use Java from C.
Win32RegKey application accesses the Windows registry from Java using a C-
based API. Because accessing the Windows registry is a non-portable feature
(being Windows-specific), and Java has no support for accessing the registry,
it makes sense to use Win32RegKey to gain the needed access. Win32RegKey
uses the JNI mechanism described in Section 6.1 to call the C functions.

F ig u re 7.2 show s a sn ip p e t o f code th a t i l lu s tra te s cross-dependencies b e
tween Java and C. The Java snippet contains the Win32RegKey class that can
retrieve or change values in the Windows registry. The getValue method is
declared as native, which means tha t the method is defined outside of the Java
language. Also, the Win32RegKey class contains two private members: root of
type int and path of type String. The C snippet contains the implementation of
the getValue method from the Java side. The prototype of the C function that

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implements the Java method conforms to the JNI conventions described in Sec
tion 6.1. This example illustrates the use of JNI mechanism for both directions:
Java to C, as well as C to Java. The Java^Win32RegKey-getValue function gets
the definitions from the Win32RegKey class using the GetObjectClass JNI API
function. Then, both private member values of the Win32RegKey class are re
trieved using the JNI API functions GetFieldID and GetlntFieldj GetObjectField.

Figure 7.3 contains a snippet of the Java factbase for the Win32RegKey
application. Some of the fact attributes, such as line or column, are omitted
to focus more on the facts and dependencies used by the algorithms from
Figure 6.2 and Figure 6.4.

Figure 7.4 contains a snippet of the C factbase for the Win32RegKey appli
cation. Some of the fact attributes, such as line or column, are omitted to focus
more on the facts and dependencies used by the algorithms from Figure 6.2
and Figure 6.4.

Figure 7.5 shows a snippet from the cross-dependencies factbase result for
the Win32RegKey application. Notice that the ids of the nodes in the cross
dependencies factbase are taken from the individual language factbases (in
this case from Java and C factbases).

The snippet shows one cross-dependency from a Java method to a C func
tion found by the algorithm from Figure 6.2, and two cross-dependencies from
a C function to two Java fields found by the algorithm from Figure 6.4.

The cross-dependency from Java to C illustrated in Figure 7.5 is from the
Java method with ID n6 to the C function with ID n4- The C function node
has the ID n4, the name Java-Win32RegKey-getValue, the type Function,
and the filename Win32RegKey. c. This function retrieves for a given key the
associated value from the Windows registry. The Java method node has the ID
n6, the name getValue, the type Method, its class Win32RegKey, and filename
Win32RegKey.java. The attribute kind is public native, which means that this
method has its definition outside of the Java language. The type of the cross
dependency is calls, because it involves a Java method and a C function. The
cross-dependency can be read as: Java method “calls” the C function. The
mechanism attribute provides the nature of the cross-dependency (in this case
JNI). The fbfrom and fbto attributes give the factbases from where the ids for
the facts involved in the cross-dependency .reside. For example, in this cross
dependency, the id n6 resides in the Java factbase, while the id n j resides in
the C/ C-l—(- factbase.

The two cross-dependencies from C to Java illustrated in Figure 7.5 are
from the C function with the ID n4 (presented also in the cross-dependency
from Java to C) to two Java fields. One Java field has ID nl4, the name
root, the type MemberVar, the class in which is defined Win32RegKey, and
the filename Win32RegKey.java. The other Java field has ID nl5, the name
path, the type MemberVar, the class in which is defined Win32RegKey, and the
filename Win32RegKey.java. The root and path Java fields in Win32RegKey
class indicate the place where the registry values are searched in the Windows

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W in32R egK ey.java:

public class Win32RegKey
{ public Win32RegKey(int theRoot, String thePath)

{ root = theRoot;
path = thePath;

}

public native Object getValue(String name);

private int root;
private String path;

W in32R egK ey.c:

JNIEXPORT jobject JNICALL Java_Win32RegKey_getValue
(JNIEnv* env, jobject this_obj, jstring name)

{ const char* cname;
jstring path;
const char* cpath;
jclass this_class;
jfieldID id_root;
jfieldID id_path;
HKEY root;
jobject ret;
char* cret;

/* get the class */
this_class = (*env)->GetObjectClass(env, this_obj);

/* get the field IDs */
id_root = (*env)->GetFieldID(env, this_class, "root", "I");
id_path = (*env)->GetFieldID(env, this_class, "path",

"Ljava/lang/String; ") ;

/* get the fields */
root = (HKEY)(*env)->GetIntField(env, this_obj, id_root);
path = (jstring)(*env)->GetObjectField(env, this_obj,

id_path);

Figure 7.2: Win32RegKey source code snippet

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Win32RegKey.java.fb:

<?xml version="1.0" encoding="ASCII" ?>
c j ava xmlns="http://www.j avafactbase.org">
<File id="nl" language="java" name="Win32RegKey.java" />
<Class id="n3" kind="public" sourcefile="Win32RegKey.java"
name="Win32RegKey" />

CMethod id="n4" argnames="theRoot.thePath" argtypes="int.String"
kind="constructor public" inclass="Win32RegKey" sourcefile
="Win32RegKey.java" name="Win32RegKey" />

<Method id=“n6" argnames="name" argtypes="String" kind
="public native" inclass="Win32RegKey" sourcefile="Win32RegKey.java"
name="getValue" returntype="Object" />
CMemberVar id="nl4" kind="private" inclass="Win32RegKey"
sourcefile="Win32RegKey.java" name="root" />

<MemberVar id="nl5" kind="private" inclass="Win32RegKey"
sourcefile="Win32RegKey.java" name="path" />

</java>

Figure 7.3: Snippets of Win32RegKey Java factbase

Win32RegKey.cpp.fb:

<?xml version="l.0" encoding="ASCII" ?>
<cpp xmlns="http://www.cppfactbase.org">
<File id="nl" language="c++" name="Win32RegKey.c" />
<Function id="n4" argnames="env,this_obj,name" argtypes
="JNIEnv * .jobject,jstring" sourcefile="Win32RegKey.c" name
="Java_Win32RegKey_getValue" returntype="jobject" />

<FunctionDecl id="nl9" argtypes="JNIEnv *,jclass,const char *,
const char *" name="GetFieldID" />

Ccalls from="n4" to="nl9" calledargs="env,this_class,"root",
"I"" sourcefile="Win32RegKey.c" line="31" />

<calls from="n4" to="nl9" calledargs="env,this_class,"path",
fequot;Ljava/lang/String;"" sourcefile="Win32RegKey.c" line="32" />
<FunctionDecl id="n20" argtypes="JNIEnv *,jobject,jfieldID"
name="GetIntField" />
Ccalls from="n4" to="n20" calledargs="env,this_obj,id_root" sourcefile
="Win32RegKey.c" line="36" />

<FunctionDecl id="n21" argtypes="JNIEnv *,jobject" name="GetObjectClass"
/>

Ccalls from="n4" to="n21" calledargs="env,this_obj"
sourcefile="Win32RegKey.c" line="28" />

CFunctionDecl id="n33" argtypes="JNIEnv *,jobject,jfieldID"
name="GetObjectField" />

Ccalls from="n4" to="n33" calledargs="env,this_obj,id_path"
sourcefile="Win32RegKey.c" line="37" />

c/cpp>

Figure 7.4: Snippets of Win32RegKey C factbase

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.j
http://www.cppfactbase.org

W in32R egK ey.crossdeps.fb :

<?xml version="1.0" encoding="ASCII" ?>
<crossdeps xmlns="http://www.crossdepsfactbase.org">
<calls from="n6" fbfrom="java" to="n4" fbto="cpp" mechanism="JNI" />
<uses from="n4" fbfrom="cpp" to="nl4" fbto="java" mechanism="JNI"
sourcefile="Win32EegKey.c" line="36" />

<uses from="n4" fbfrom="cpp" to="nl5" fbto="java" mechanisni=" JNI"
sourcefile="Win32RegKey.c" line= "37" />

</crossdeps>

Figure 7.5: Snippets of Win32RegKey result cross-language dependencies fact-
base

registry. The type of the two cross-dependencies is uses, because each cross
dependency involves a C function and a Java field. The cross-dependency can
be read as: C function “uses” the Java field.

7.3 Java G N om e Test
The goal of this test is to check the scalability and the accuracy of our approach
for discovering cross-dependencies between Java and C /C + + languages. Java-
GNOME1 contains a set of Java bindings for accessing GTK and GNOME
C libraries from Java applications [JavaGNome], Developers can then build
GNOME applications [GNOME] using the Java programming language. This
system involves 1,132 Java source files containing about 103 KLOC and 329
C source files containing 69 KLOC. In this test, we did not consider the Java-
GNOME sample Java files that show how to use the framework.

Our approach revealed for Java-GNOME 3,582 connections from Java to
C (Java native methods implemented in C) and 22 connections from C to
Java (C functions call/use Java methods/member variables). The algorithm
for finding Java to C dependencies also notes those Java native methods for
which it cannot find an implementation on the C side, as well as those C
functions tha t call/use Java method/member variable not presented on the
Java side.

We found 109 wrong connections from a Java method to a C function, and
6 wrong invocations from a C function to a Java method. After analyzing
each occurrence manually, we discovered the following mistakes in the Java-
G N O M E system :

• Developers did not always follow the JNI type conventions when writ
ing the C function implementation of a Java native method. For ex
ample, instead of using jin t they used int. This is a lucky case, be
cause coincidentally the two types both represent 32 bits. There were

lrThe version of Java-GNOME used is 8.3.2.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.crossdepsfactbase.org

other cases in which the developers forgot a parameter for a C func
tion, or did not follow the JNI conventions for the name of a C func
tion. For example, the Java native method gdk-point-free(int) from
Java class org.gnu.gdk. Point has the incorrect correspondence in C being
Java-org-gnu-gdk-PoinLgdk-point-free(JNIEnv *env, jclass ds, jin t obj).

• Developers sometimes omitted the second parameter of the C function
implementation of a Java native method. This will not cause a compi
lation error, but when the Java native method is invoked, an unsatisfied
link error will appear at runtime. For example, the Java native method
setAnchor(int, int) from class org.gnu.gnome.CanvasText has the corre
spondence in C being Java-org-gnu-gnome-CanvasTexLsetAnchor (
JNIEnv *env, jin t cptr, jin t anchor), which is missing the JNI object
parameter.

• Some Java native methods were missing C implementations. The system
will behave in the same way as in the previous case.

• Some C functions invoke Java methods that do not exist on the Java side.
This will result in runtime errors when the C function will be called.

The algorithm found all the cross-dependencies from Java to C, and it
missed 5 cross-dependencies from C to Java. In these cases the developers
retrieved the method ids based on a Java method name and a wrong Java
class parameter.

Figure 7.6 illustrates a snapshot of the cross-language dependencies pairs
for JavaGNome. The Java nodes are in orange rectangles, while the C nodes
are in yellow rectangles. There are two columns representing the source and
the destination nodes of the cross-language dependencies. Note that there are
some nodes that appear in the left side and do not have a correspondence in
the right side. These cases represent some of the errors in JavaGNome. Using
this picture a developer can easily fix the errors.

7.4 Standard Perl M odules Test
The goal of this evaluation is to help assess the accuracy of the discovered cross
language dependencies from Perl subroutines to C functions. We evaluated
our approach using all the modules provided with the Perl distribution source
code. T h ese m o d u les reside in th e ext subd irectory , and th e y co n ta in b o th C
and Perl source code. The C code is used to add more functionality to the
Perl side. The new C functions are added to the Perl symbol hashtable for
the appropriate package, using the external subroutine mechanism described
in Section 6.2.

We can compute the Perl external subroutines in another way. Perl in
ternally keeps some attributes about subroutines. Of particular interest is an

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ i ■ n

0 *•-*_£? 5* f .1 8V€„t*«\.Si»st* *Sr~. \ m * jsfejej’-* * , ------

I# ---
i i$ iSemoadf'Sfiav “;'<8js&3$i---

i# - ■ - ■ — --- ■■—----
-.0 --

in ' Lirte.-tfwtnwKte

• tt̂ kaMaimSs
L!MK4«Me
S)>6l(#i#*H»i*!

HI

ttlr

Figure 7.6: Java-GNome mistakes

attribute that, for external subroutines, maintains the address of the C func
tion to be called. For non-external subroutines, this attribute is NULL. The
name of the C function can come from debugger information when running the
interpreter. Consequently, we know there are at least 853 expected external
subroutines (Perl routines paired with C functions).

Our method extracted 851 external subroutines, of which 843 are found also
in the alternative way. Thus, there are 10 false negatives (recall 98.8%) and 8
false positives (precision 99.1%). There are a few false positives because the C
parser extracts facts before preprocessing; code inside # ifdef s is considered,
even though it might actually be unused.

7.5 Summary
This chapter presented for tests for evaluation and application of our approach.

The first two tests use small applications, just to illustrate the discovery
of the cross-dependencies and the use of the visualization tool. The third test
shows how the approach scales on a bigger application, called Java-GNome.
Our approach proved to be useful to find some of the developers’ mistakes.

The last test involves the discovery of cross-dependencies from Perl to
C. We evaluated our approach for all the modules provided with the Perl
distribution. Some of the Perl subroutines are implemented externally in C
language.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

R elated Work

This chapter presents different techniques to parse, analyze, and query/visualize
the source code for different types of software applications.

M ulti-language too l (M T)
Linos et al. [Linos03] implemented a prototype tool, called MT (Multi-Language
Tool), for understanding multi-language program dependencies. The pur
pose of MT is to facilitate the process of detecting, storing and managing
cross-dependencies found in programs written using a combination of three
widespread programming languages: C, C + + and Java. Linos et al. describes
via informative examples the interface protocols between the three target lan
guages. The host-to-foreign language dependencies can be identified through
specific keywords tha t the interface protocols implement. MT takes as input
several source files, written as a combination of C, C + + and Java, and invokes
a parser, which is able to detect the host-to-foreign interfacing information,
such as host-to-foreign dependencies, their positions in the source code, num
ber of lines of code or types of files.

MT user interface displays each used programming language as a circle,
where the size of the circle is proportional to the corresponding number of lines
of code, and the color of the circle indicates whether it is a procedural or an
object-oriented language. Inside the circles, various metrics are displayed, such
as total number of files or percent of lines of code. Any other programming
language except the three languages above-mentioned is displayed using an
Other circle. The host-to-foreign program dependencies are displayed and the
user can edit the source code within MT.

The extractor used in this tool is based on a lexical analysis. Our approach
uses a sy n ta c tic e x tra c to r , which we believe tha t is m ore precise for analyzing
such heterogeneous systems.

A nalysis o f distributed m ulti-language software code
Deruelle et al. [DeruelleOl] presented a method for analysis of distributed
multi-language software systems. Several tools help to accomplish this: a
multi-language source code analyzer, a software change management module,

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a profiling tool, and a graphical user interface. The multi-language source code
analyzer consists of a set of parsers for each of the languages considered (C,
C + + and Java). Each parser is generated using the JavaCC (Java Compiler
Compiler) tool based on a language specific grammar. The source code could
also be byte-code, in which case a decompiler is run first.

The parsers produce an XML-based representation of the source code,
called SCSM (Source Code Structural Model), which represents the software
components and their relationships. SCSM is able to represent software appli
cations composed of Java or C /C + + source code, relational or object-oriented
databases, and CORBA’s IDL files and their components. The extracted
components and their relationships are stored in a database, called Software
Component Repository. The SCMM (Software Change Management Module)
propagates a change performed on a component to the others. It is equipped
with a facts builder module that inserts facts into a knowledge base, where the
facts are the components and their relationships extracted from the structural
model SCSM. The propagation is based on change propagation rules that are
triggered by inserting facts.

This approach focuses on the CORBA’s IDL files, while our approach fo
cuses on the JNI mechanism.

A nalyzing C O M /C O M + software applications
Pinzger et al. [Pinzger03] presents an approach for analyzing and understand
ing the COM /COM + component-based systems. The approach is validated
using the Island Hopper application (a three-tired application of about 10
KLOC in which the business and data access logic tiers are COM+ com
ponents). For analyzing the COM+ components, the authors used the fol
lowing information sources: source code for definition (IDL) and source files
that define and implement the interfaces of COM+ components, type libraries
containing detailed information regarding the interfaces implemented and pro
vided by COM+ components, and Windows Registry tha t comprises additional
information for the configuration of components behavior at deployment time
such as transaction semantics and security settings.

The approach starts with the identification of all COM+ components used
in the client application by applying the lexical analysis tool called Revealer
(based on the method of instantiating the COM+ component tha t is dependent
of the programming language). Having the program identifiers, the authors
developed the Component Inspector tool for finding the meta-data of COM+
components (description of external visible interfaces and the corresponding
methods) existing in type libraries, and retrieves information about the COM+
components available only at deployment time (such as transaction or security
information).

The next step of the process is the source code analysis of the COM+
components using Imagix4D and SourceNavigator tools. The data collecting
during the previous steps are stored in Vienna Component Framework data

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model, which provides an abstract model to administrate (store and interro
gate) the component features (methods, properties, events and so on) in a
tree-like data structure. This semi-automatic approach allows maintainers to
understand faster the components and their interactions.

Similar to the previous approach, this approach focuses on parsing the IDL
files for discovering the COM+ dependencies.

A nalyzing Web applications
Hassan et al. [Hassan03] proposed a methodology for helping developers in
maintaining their Web applications. A set of parsers is used to analyze the
source code of a Web application. The outcome of this analysis is a set of re
lationships between various components of the Web application. The relation
ships are abstracted into a box-and-arrow diagram that shows the architecture
of the application. The developer gains a better understanding of the system
through the visualization of the system architecture. In addition, the devel
oper can interactively explore this diagram, by zooming into the components
of interest and querying relationships between participating components.

The components of a Web application considered in this approach were
the following: static pages (HTML and JavaScript code), active pages (Ac
tive Server Pages), Web objects (DCOM objects) and SQL queries. A set of
extractors is used to extract facts by parsing all the source files of the Web
application. Five types of extractors have been used: an HTML extractor, a
Server Script extractor, a DB Access extractor, a Source Code extractor, and
a Binary Code extractor. Based on the type of file, the suitable extractor is
used, and the artifacts for every involved language are extracted. A repository
called THEFACTS stores all the facts from the entire application, as well as
the relationships among them. The facts from THEFACTS are further ab
stracted through several levels of abstraction up to the architecture level and
their relationships are displayed through a box-and-arrows diagram. The de
velopers can further explore this diagram, seeing the details inside every box
at one next lower level of abstraction.

This approach is very similar with our approach in the way that they
are using static analysis for discovering the facts from HTML and JavaScript
languages.

A nalyzing Java applets
Korn et al. [Korn99] built Chava, a tool that extracts artifacts about classes,
methods, fields and their relationships, from Java bytecode (in particular
Java ap p le ts) . A b u n ch of too ls for query ing , v isualizing an d an a ly z in g th e
structural information extracted by Chava were generated automatically from
CIAO reverse engineering tool. The structural information extracted by Chava
conforms to a data model for Java based on the entity-relationship model that
is described in the paper in details. The data model covers all the Java con
structs up to the class member level of granularity, so that detailed analysis

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using statements or expressions cannot be achieved. Instead, visualization
queries such as all relationships or all members of a class could be accom
plished using this data model. Also, this approach allows performing forward
and backward reachability analysis, as well as showing the differences between
two versions of a Java program. The authors described some applications of
Chava applied to software systems or even web sites: producing the cluster
diagram of a Proxy Server, detecting the potential security flaws (finds all
methods tha t invoke a method whose parent package is java.net), extracting
the interactions between Java components, computing different metrics for ob
ject oriented design (such as weighted methods per class, depth of inheritance
tree, number of children or coupling between object classes), or analyzing web
site (using Chava to extract the information about every Java applet from a
webpage, and the WebCiao system that analyzes a HTML page). An inter
esting feature of Chava is tha t of generating the information even from the
compiled Java classes.

This approach extracts the facts from Java bytecode, while we extract the
facts based on the source files.

Grammar stealing
Around the year 2000, a lot of researchers studied how to develop an auto
matic tool to replace an old format for the year (only two digits) with a more
reliable one formed of 4 digits. The problem was a really serious one, because
many financial applications have been using the year field in a lot of computa
tions, which, in the old format, would have produced errors. The errors were
caused by the fact that in the old format the year 2000 (represented as 00)
was the same as the year 1900 (represented in the same way 00). In the be
ginning, the problem seemed not too hard to solve, but given the large variety
of programming languages, this problem became a complicated one.

Lammel and Verhoef studied this problem and described the bottlenecks
posed by this problem, as well as a viable solution to solve this problem
[LammelOl]. It has been estimated tha t at least 500 programming languages
and dialects were available in the public domain, as well as about 200 pro
prietary languages that private companies have been developing for their own
purposes. In order to analyze source code, parsers need to be constructed,
and this is a highly time- and resource- consuming process. The 500-Language
Problem (500LP problem) refers to the tremendous effort of producing parsers
for the existing languages.

Several solutions have been proposed. One idea is to convert from un
common languages to frequently used languages, but in order to perform this
task, a parser is needed. Another solution could be to extract the grammars
from the source-code only, but there is no cost-effective method for performing
this task. Yet another solution would be to use the compiler parser’s output.
However, this output does not preserve the original code, since it removes
comments, removes macros, etc.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The key to cracking the 500LP problem is to have a cost-effective way
(cheap, fast, reliable) of building the grammar for any of the 500+ languages.
Once the grammar is built, the parser can be obtained with the help of a
parser generation tool.

The solution proposed by Lammel and Verhoef, called “grammar stealing” ,
refers to the process of recovering the grammar of any language from either
the compiler sources or the language reference manual. This procedure is com
prised of several steps: automated grammar extraction, sophisticated parsing,
automated testing, and automated grammar transformation. Two examples
are presented to illustrate each of the steps. According to the authors, this
is a much more efficient solution for building a parser for a language both in
terms of time and financial expenses.

A gile parsing
Traditionally, software analysis and transformation tools are based on a single
grammar. The input source code is parsed, then one or more transformations
are applied so that all transformations must conform to the global grammar,
and finally the output is generated.

Dean et al. introduced the agile parsing paradigm for program software
comprehension systems [Dean03]. The agile parsing technique changes the
paradigm of parsing based on a single grammar. Agile parsing proposes the
use of a customized grammar of the input language that is tailored to each
particular analysis and transformation task. The customization of the base
grammar is done by overriding the non-terminal definitions according to the
task at hand. The input source code is run through a pipeline of transforma
tions, where each transformation has its own customized grammar obtained
by overriding the base grammar.

Dean et al. presented the basic techniques of agile parsing in TXL [Dean03].
TXL is a functional programming language for software analysis and transfor
mation. TXL supports agile parsing by supporting two important overriding
constructs. The first one is the “redefine” statement, which gives the effective
grammar for the tool as the original base grammar with the definition of the
overridden non-terminal replaced by the given redefinition. The second one
is the notation within a “redefine” statement, which signifies an exten
sion of the original non-terminal definition with other definitions. The paper
explains in detail several examples of cases when agile techniques have been
applied for software analysis and transformations. For example, the authors
describe the automatic translation between two languages, C and Pascal. To
conform to TXL, where the input and output of the transformation rules must
comply to the grammar, a common (union) grammar for C and Pascal has to
be defined to accept both languages. The two grammars are combined at dif
ferent levels (global declaration level, procedure level, statement level, etc.)
using agile parsing.

The key idea of the agile parsing paradigm is that the ad-hoc and tool-

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

based tuning of the base grammar is a more effective and efficient solution
for software analysis and transformation than the single-grammar approach.
The idea is not restricted to TXL, and could potentially be extended to other
transformation languages that have support for customization. However, this
solution is tightly dependent on the required task, so that the union grammar
and transformation rules have to be tweaked for every particular problem.

Island parsing
Synytskyy et al. acknowledge the problem that parsing is far from being
straightforward, when the goal is to parse source files written in multi-language
and which contain errors, as in the web applications case [Synytskyy03]. Their
idea is to use island parsing to parse the multiple languages input. Island
parsing divides the input in two types of categories: ones that are important,
called “islands” , and others tha t are less important called “water” . The parser
will emphasize more on the island parts.

Synytskyy et al. propose a multi-language parser for ASP pages, which
are a mixture of HTML, Visual Basic and Java Script languages. The parser
is able to build a single parse tree for a given ASP page, by differentiating
between the three languages occurring on the page, and by being able to
handle intertwined code (for instance, an “if” statement in Visual Basic split
by snippets of HTML). The parser is also robust to possible errors in the HTML
code, and it only recovers tables, forms, links and client-side scripts tags. As
we have mentioned before, the parser is based on island-grammars, which
have been shown to perform well at extracting multiple, dissimilar features
from documents that also likely contain errors. Each language is represented
by one or several island grammars, so that the facts corresponding to each
language are likely to be parsed in the correct way. Any input that does not
match any of the grammars is treated as uninteresting.

R epresenting and querying m ulti-language system s
Kullbach et al. [Kullbach98] introduced a tool that helps the management
of inter-program dependencies for a software application developed in various
programming languages, database definitions and job control languages. The
proposed approach uses a coarse-grained conceptual model for the individual
programming languages, based on which, an integrated conceptual model for
the multi-language application is developed. The key observation for this
specific application is that the inter-program dependencies are defined by job
control procedures, since an application is in fact a set of job control procedures
and a number of co rre la tin g p ro g ram s an d d a tab a se s . U nify ing th e in d iv id u a l
conceptual models is accomplished according to two rules: 1) similar concepts
are generalized into a super-concept; and 2) concepts from different models
that have interconnections, are further connected by conceptual relations. The
final conceptual model is stored within a repository. Filling the repository
with facts from the source code is not a trivial process, because there are a

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

large number of source files and the conceptual model needs to be invariant
to the order the source files are parsed. The conceptual model can be queried
using GReQL (Graph REpository Query Language), which is able to reveal
the program inter-dependencies.

This approach provides a conceptual model and a query tool to extract
cross-dependencies. However, the paper does not provide real cases for finding
different connections among different languages.

XOgastan
Antoniol et al. [Antoniol03] present a tool, called XOgastan, based on a novel
capability of the gcc/g++ compiler, i.e., saving to a file the ASCII representa
tion of the AST (abstract syntax tree) for each compiled source file. Xogastan
differs from previous tools in that in only uses the gcc/g++ output as it is,
without modifying the gcc/g++ compiler source code. The gcc/g++ output
is translated into GXL [GXL]. The AST produced by gcc/g++ contains dif
ferent node types, where each node has an id, attributes, and a list of possible
linked nodes. A set of translation rules is used to translate each AST node
into a GXL element. XOgastan relies on an object-oriented representation of
the AST. A note here is tha t the XOgastan is able to analyze only C + + code,
because only the g + + output can be used (the gcc output is useless for AST
analysis).

Relying on the compiler facilities is advantageous because compilers evolve
as the programming languages evolve. However, the output of the compiler
may not be readily suitable for analysis purposes [LammelOl]. In addition,
few compilers dump the AST, and working with the compiler’s source code to
recover the AST may be difficult.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Conclusions and Future Work

Nowadays, the abundance of new technologies used to ease the development
of medium or large applications raises new challenges for understanding and
maintaining these systems. In particular, a large number of software systems
are developed in more than one implementation language, ranging from pro
gramming languages such as C, C + + or Java, to scripting languages such as
Tel, Perl, or JavaScript. This situation motivates the need to adapt exist
ing fact extractors that have been developed for a single language to multi
language scenarios, where not only artifacts pertaining to a certain language
are of interest, but also their interconnections.

This thesis presented an approach for revealing the cross-dependencies
among several languages.

The first step of our approach builds extractors for each individual lan
guage from the subject system. We developed extractors for the following
languages: C /C + + , Java and Perl. We chose C /C + + and Java for program
ming languages to show the tightly-coupled connection among programming
languages. We chose Perl to illustrate how to build an extractor for scripting
languages, and to show the dependencies between a programming language,
such as C, and a scripting language, such as Perl. The first step produces one
factbase for each individual language in the heterogeneous system analyzed.

In the second step, we developed an analyzer that recognizes the cross
language dependencies among the factbases obtained in the first step. This
step assumes tha t the factbases obtained in the first step conform to a common
schema. Essentially, a multi-language system can be represented as a set of
namespaces, with each containing facts from one language. The schema helps
to decouple the cross-language dependency analysis (and downstream tools
like visualizers) from the individual language fac t ex trac to rs .

To explore and visualize the cross-language dependencies, we developed the
Clare tool. Clare is implemented as a plug-in for Eclipse IDE, and shows the
facts from each individual language, as well as the cross-language dependencies
among the languages. Clare can be used to navigate through the call tree of a
diverse system without having the limitation of stopping at the border between

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the languages.
We believe that the approach for extracting facts from Perl code may be

used to extract facts from other scripting languages, such as Tel or Python.
Also, the steps used to discover the cross-dependencies from a scripting lan
guage to C have commonalities, which can be used to develop a generalized
technique.

There are a number of directions to proceed with this work. One is to
investigate other kinds of tightly-coupled dependencies, such as those caused
by embedding an interpreter into a host application written in C. Another is
to evaluate how these cross-language dependencies can be made more useful
to programmers. Also, we are interested in developing the needed infrastruc
ture to better integrate our scripting language fact extractors into the Eclipse
environment. Currently Eclipse provides both JDT (Java Development Tools)
and CDT (C + + Development tools) for conventional programming languages.

We also propose to extend our approach for additional programming lan
guages, expand on the control and data integration mechanisms to be recog
nized, generalize to using the output of other fact extractors, and consider
recognizers that operate on the Clare XML-based format directly.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Affrus] Late Night Software Ltd., Affrus. h ttp ://w w w .la ten ig h tsw .
com /affrus.

[Antoniol03] Giuliano Antoniol, Massimiliano Di Penta, Gianluca Masone,
and Umberto Villano. XOgastan: XML-Oriented gcc AST Analy
sis and Transformations. In Third IEEE International Workshop
on Source Code Analysis and Manipulation, pages 173-182. IEEE
Computer Society, 2003.

[Baxter] Ira Baxter. Specialized Analysis and Modification Tools, h t tp :
/ / www. sem designs. com /Products/T ools.h tm l.

[Bowman99] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux
as a Case Study: Its Extracted Software Architecture. In Proceed
ings of the 21st international conference on Software engineering,
pages 555-563. IEEE Computer Society Press, 1999.

[CLR] Microsoft Common Language Runtime (CLR). h t tp : / /m s d n .
m ic ro s o f t . com /netfram ework/program m ing/clr.

[CNN] CNN: How Soviets copied America’s best bomber during WWII.
http://archives.cnn.com/2001/US/01/25/smithsonian.
cold.war.

[CORBA] OMG CORBA. h ttp ://w w w .co rb a .o rg .

[CPPX] University of Waterloo, CPPX. h ttp ://w w w .sw ag .uw aterloo .
ca/~cppx.

[Carroll88] Paul B. Carroll. Computer glitch: Patching up software occupies
programmers and disables systems. Wall Street Journal, page 1,
1988.

[Chikofsky90] Elliot J. Chikofsky and James H. Cross II. Reverse Engineering
and Design Recovery: A Taxonomy. IEEE Software, 7(1):13—17,
1990.

[Colum bus] F ro n tE n d A rt S oftw are L td ., C o lu m b u s/C A N . h t tp : / /w w w .
f r o n t e n d a r t . com.

[Corbi89] T. A. Corbi. Program understanding: challenge for the 1990’s.
IBM System Journal, 28(2):294-306, 1989.

[CoreJava2] Cay S. Horstmann and Gary Cornell. Core Java 2 - Advanced
Features. Sun Microsystems Press, 2000. Chapter 11 - Native
Methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.latenightsw
http://www.semdesigns.com/Products/Tools.html
http://msdn
http://archives.cnn.com/2001/US/01/25/smithsonian
http://www.corba.org
http://www.swag.uwaterloo
http://www

[DMM] University of Ottawa, Dagshtuhl Middle Model (DMM). h t tp :
//scgw ik i.iam .un ibe.ch :8080 /E xchange/2 .

[DeanOl] Thomas R. Dean, Andrew J. Malton, and Richard C. Holt. Union
Schemas as a Basis for a C + + Extractor. In Working Conference
on Reverse Engineering, pages 59-68, 2001.

[Dean03] Thomas R. Dean, James R. Cordy, Andrew J. Malton, and
Kevin A. Schneider. Agile Parsing in TXL. Automated Software
Engineering, 10(4):311-336, 2003.

[DeruelleOl] L. Deruelle, N. Melab, M. Bouneffa, and H. Basson. Analysis
and manipulation of distributed multi-language software code. In
International Workshop on Source Code Analysis and Manipula
tion, pages 43-54, 2001.

[Eclipse] Eclipse, h ttp ://w w w .e c lip se .o rg .

[Eichberg05] Michael Eichberg, Michael Haupt, Mira Mezini, and Thorsten
Schafer. Comprehensive Software Understanding with SEX
TANT. In International Conference on Software Maintenance,
pages 315-324, 2005.

[Epic] Epic Eclipse plugin IDE. h t tp : / / e - p - i - c .s o u r c e f o r g e .n e t .

[FerencOl] Rudolf Ferenc, Susan Elliott Sim, Richard C. Holt, Rainer
Koschke, and Tibor Gyimothy. Towards a Standard Schema for
C /C + + . In Working Conference on Reverse Engineering, pages
49-58, 2001.

[Ferenc02] Rudolf Ferenc, Arpad Beszedes, Mikko Tarkiainen, and Tibor
Gyimothy. Columbus - Reverse Engineering Tool and Schema
for C + + . In International Conference on Software Maintenance,
pages 172-181, 2002.

[GNOME] GNOME, http://w w w .gnom e.org.

[GXL] GUPRO, Graph eXchange Language (GXL). h ttp ://w w w .
gupro.de/GXL.

[HassanOl] Ahmed E. Hassan and Richard C. Holt. Towards a better under
standing of Web applications. In International Workshop on Web
Site Evolution, pages 112-116, 2001.

[Hassan02a] Ahmed E. Hassan and Richard C. Holt. Architecture Recovery
of Web Applications. In International Conference on Software
Engineering, pages 349-359, 2002.

[H assan02b] A h m ed E. H assan . A rc h ite c tu re R ecovery of W eb A pp lications.
M aster’s thesis, Department of Computer Science, Faculty of
Mathematics, University of Waterloo, Ontario, Canada, 2002.

[Hassan03] Ahmed E. Hassan and Richard C. Holt. A Visual Architectural
Approach to Maintaining Web Applications. Annals of Software
Engineering - Special Volume on Software Visualization, 16, 2003.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.eclipse.org
http://e-p-i-c.sourceforge.net
http://www.gnome.org
http://www

[Hoi.::;

[IDL]

[IEEE83]

[JNI]

Richard C. Holt, Ahmed E. Hassan, Bruno Lague, Sebastien
Lapierre, and Charles Leduc. E /R Schema for the Datrix
C /C + + /Jav a Exchange Format. In Working Conference on Re
verse Engineering, pages 284-286, 2000.

OMG IDL.
htm.

http://www.omg.org/gettingstarted/omg_idl.

ANSI/IEEE. IEEE standard glossary of software engineering ter
minology. IEEE Standard 129, page 32, 1983.

Java Native Interface (JNI).
books/tutorial/native1.1.

[JavaGNome] Java-GNOME Bindings,
proj ects/j ava-gnome.

http://j ava.sun.com/docs/

http://sourceforge.net/

[Jones98]

[Ko05]

Capers Jones. Estimating Software Costs. McGraw-Hill, New
York, 1998.

Andrew J. Ko, Htet Aung, and Brad A. Myers. Eliciting design
requirements for maintenance-oriented IDEs: A detailed study of
corrective and perfective maintenance tasks. In ICSE ’05: Pro
ceedings of the 27th International Conference on Software Engi
neering, pages 126-135, 2005.

[Komodo]

[Korn99]

Komodo
Komodo.

IDE. http://www.activestate.com/Products/

Jeffrey L. Korn, Yih-Farn Chen, and Eleftherios Koutsofios.
Chava: Reverse Engineering and Tracking of Java Applets. In
Working Conference on Reverse Engineering, pages 314-325,
1999.

[Kullbach98] Bernt Kullbach, Andreas Winter, Peter Dahm, and Jurgen
Ebert. Program comprehension in multi-language systems. In
Working Conference on Reverse Engineering, pages 135-143,
1998.

[LammelOl] Ralf Lammel and Chris Verhoef. Cracking the 500-Language
Problem. IEEE Softw., 18(6):78-88, 2001.

[Linos03] Panagiotis K. Linos, Zhi hong Chen, Seth Berrier, and Brian
O’Rourke. A tool for understanding multi-language program de
pendencies. In International Workshop on Program Comprehen
sion, pages 64-72, 2003.

[Moise03] Daniel L. Moise and Kenny Wong. An Industrial Experience in
R everse E n gin eerin g . In W orking Conference on R everse E ngi
neering, pages 275-284, 2003.

[Moise04a] Daniel L. Moise, Kenny Wong, and Dabo Sun. Integrating a Re
verse Engineering Tool with Microsoft Visual Studio .NET. In
European Conference on Software Maintenance and Reengineer
ing, pages 85-94, 2004.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

http://www.omg.org/gettingstarted/omg_idl
http://j
http://sourceforge.net/
http://www.activestate.com/Products/

[Moise04b] Daniel L. Moise and Kenny Wong. Issues in Integrating Schemas
for Reverse Engineering. Electronic Notes in Theoretical Com
puter Science, 94, 2004.

[Moise05] Daniel L. Moise and Kenny Wong. Extracting and Represent
ing Cross-Language Dependencies in Diverse Software Systems.
In Working Conference on Reverse Engineering, pages 209-218,
2005.

[Moise06a] Daniel L. Moise, Kenny Wong, H. James Hoover, and Daqing
Hou. Reverse Engineering Scripting Language Extensions. In
International Conference on Program Comprehension, pages 295-
306, 2006.

[Moise06b] Daniel L. Moise and Kenny Wong. Perl Fact Extractor. In Work
ing Conference on Reverse Engineering, pages 243-252, 2006.

[Muller93] Hausi A. Muller, Mehmet A. Orgun, Scott R. Tilley, and James S.
Uhl. A Reverse Engineering Approach to Subsystem Structure
Identification. Journal of Software Maintenance: Research and
Practice, 5(4): 181-204, 1993.

[PERL] Perl scripting language, h t t p : //www. p e r i . org.

[PYTHON] Python scripting language, h ttp ://w w w .py thon .o rg .

[Parikh83] Girish Parikh and Nicholas Zvegintzov. Tutorial on Software
Maintenance. IEEE Computer Society Press, Los Alamitos, CA,
USA, 1983.

[Parikh87] Girish Parikh. Making the Immortal Language Work. Inter
national Computer Programs Business Software Review 7, (33),
April 1987.

[Parrot] Allison Randal and Dan Sugalski and Leopold Totsch. Perl 6 and
Parrot Essentials. O ’Reilly, 2nd edition, 2004.

[PerlBible] Larry Wall and Tom Christiansen and Jon Orwant. Programming
Perl. O ’Reilly, 3rd edition, 2000.

[Pinzger03] Martin Pinzger, Johann Oberleitner, and Harald Gall. Analyzing
and Understanding Architectural Characteristics of COM+ Com
ponents. In Proceedings of the 11th IEEE International Workshop
on Program Comprehension, page 54. IEEE Computer Society,
2003.

[Rigi] University of Victoria, Rigi. h t t p : //www. r i g i . e s c . u v ic . ca.

[R igiM anual] K en n y W ong. R ig i U s e r ’s M a n u a l, 1998.

[RivaOO] Claudio Riva. Reverse Architecting: An Industrial Experience
Report. In Working Conference on Reverse Engineering, pages
42-51, 2000.

[SHRIMP] University of Victoria, SHriMP. h ttp ://w w w .th ech ise lg ro u p .
org/shrim p.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.python.org
http://www.thechiselgroup

[SN] Source Navigator, h ttp : / /s o u rc e n a v .s o u rc e fo rg e .n e t .

[SNE] Source Navigator Extensions, http://www.wellcode.com/home/
modules.php?name=Content&pa=showpage&pid=4.

[SWIG] Simplified Wrapper and Interface Generator (SWIG), http://
www.swig.org.

[Sim02] Susan Elliot Sim, Richard C. Holt, and Steve Easterbrook. On
Using a Benchmark to Evaluate C + + Extractors. In International
Workshop on Program Comprehension, pages 114 123, 2002.

[Singer97] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas
Anquetil. An examination of software engineering work practices.
In IBM Center for Advanced Studies Conference, pages 21-36,
1997.

[Synytskyy03] Nikita Synytskyy, James R. Cordy, and Thomas R. Dean. Ro
bust multilingual parsing using island grammars. In Proceedings
of the 2003 conference of the Centre for Advanced Studies confer
ence on Collaborative research, pages 266-278. IBM Press, 2003.

[TA] Richard C. Holt. An Introduction to TA: The Tuple-Attribute
Language. University of Waterloo, 1997.

[TCL] Tel scripting language, h t tp : / /w w w .tc l .tk .

[Tilley94] Scott R. Tilley, Kenny Wong, Margaret D. Storey, and Hausi A.
Muller. Programmable Reverse Engineering. Journal of Software
Engineering and Knowledge Engineering, 4(4) :501—520, 1994.

[Winter02] Andreas Winter, Bernt Kullbach, and Volker Riediger. An
Overview of the GXL Graph Exchange Language. In Software
Visualization, LNCS 2269, pages 324-336, 2002.

[Wong95] Kenny Wong, Scott R. Tilley, Hausi A. Muller, and Margaret-
Anne D. Storey. Structural Redocumentation: A Case Study. In
IEEE Software, pages 46-54, 1995.

[XMI] XML M etadata Interchange (XMI). http://www.omg.org/
technology/documents/formal/xmi.htm.

[XML] World Wide Web (W3C), Extensible Markup Language (XML),
http://www.w 3 .org/XML.

[XS] Perl XS. h t tp : / /p e r ld o c .p e r l .o r g /p e r lx s .h tm l .

[XSD] XML Schema (XSD). http://www.w3.org/XML/Schema.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sourcenav.sourceforge.net
http://www.wellcode.com/home/
http://www.swig.org
http://www.tcl.tk
http://www.omg.org/
http://www.w3.org/XML
http://perldoc.perl.org/perlxs.html
http://www.w3.org/XML/Schema

