National Library
of Canada

Bibliothéque nationale
du Canada

A

Canadian Theses Servicg,

Onawa. Canada
K1A ON4

NOTI -

The quality of th:s m|ct€)ftche i heavny dependent upon the
quality of the orlgmal thesis submitted for microfilming. Every
effort has beerf'made to ensure the highest quality of reproduc-
tion possible. |

If pages &re missing. contact the university'which granted the
degree. .

Some bag’fes'may have indistinct print especialiy if the.original
pages were typed with a poor typewriter ribbon or if the univer-
sity sent us an inferior photocopy. - :

Previoasly copyrighted materials (Journal amcles publlshed
tests, etc.) are not filmed.

Reproduction in full gr in part of this film is goverped by the
Canadian Copyright Act, R.S.C. 1970, ¢. C-30.

THIS DISSERTATION
'HAS BEEN MICROFILMED

. une photocopie de qualité inférieure

Y R -

Services des théses canadiennes

‘THESES CANADIENNES

AVIS
La qualité de cette micrdfiche dépend grandement de la duamé

de la thése soumise au microfilmage Nous avons lout fait pour
assurer une qualité supérieure de reproduction

P

w

S'il manque des pages, veuillez commumquer avec‘l unIves-
sité qui a contéré le grade .

La qualité dimpression de certaines pages peut laisser a
désirer, surtout 8i les pages originales ont été dactylogrhphlées .
a laide d'un ruban usé ou si I'université nous a fait pgrvenir

, &
Les documents qui font déja 'objet d'un droit d'auteur (arficles
de revue, examens publiés, etc.) ne sont pas microfilrhes.

. , i

La reproduction, méme partielle, de ce micrafilm @st soumise -
ala Loi canadienne sur le droit d'auteur,-SRC 1970, ¢. C-30.

it

LA THESE A ETE
- MICROFILMEE TELLE QUE

EXACTLY AS RECEIVED

R0

) oL Canadi

- NOUS L'AVONS REQUE -

NL-339(r.86/06)



Fhe University of Alberta

qumrvmonfs for a courseware preparation system’

and implementation
of an edxtor/formatter

by ‘

YIM, Hot Keung

# .
A thesis .

. 4
submitted to the Faculty of Graduate Studied and Research
in partial fulfillment of the requirements for the degree
of Master of Science

N

’ .

(BEAEBERLRIANAIY(AL

Depdrtment of Computing !

"Edmonton, Alberta
Spring, 1986



Ear- e

.Permission has been granted

to the National Library of
Canada to microfilm
thesis and to lend or
copies of the film.

The author (copyright owner)
h as reserved other
publication r#ghts, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

this
sell .

.ni la

L'autorisation a 8t& accor.i e
a la Bibliothéque nation:. .o
du . Canada - de¢ microfiluie:
cette thése et de pré&ter ou

'de vendre des exemplaires .ty

film.

L'auteur (titulaire du droit
d'auteur) se ré&serve leos
autr:s droits de publication;
th&se ni de longs
extraits de celle-ci ne
doivent @tre imprim&s ou
autrement reproduits sans son
autorisation &crite.

i IgBN ©0-315-30236-4



THE UNIVERSITY OF ALBERTA

RELEASKEORM

NAME OF AUTHOR: YIM, Hoi Keung <

TITLE OF THESIS: Requirements for a courseware preparation system and
implementation of an editor/formatter

l)lfGRl'ﬁl‘} FOR WHICH THIS THESIS WAS PRESENTED: Master of Science

YEAR THIS DEGREE GRANTED: 1986 . —~—

ta Library to reproduce

Permission is hereby granted to The University of Alb
for private, scholarly or

smglc copies of this thesis and to lend or sell ﬂuch copie
scientific research purposes only.

The author reserves other publication rights, and netther the thesis nor extensive
extracts from it may be printed or otherwise rcproduccd without the author’s written

p(‘rmmﬁmn

(Signed) L o e A
Permanent Address.

5-13, Tsat Tse Mui Road.
Cheung Fat Kok,

8/F Block "C", -
North Point, -

Hong Kong. -

’ .
Dated .o, o a



: 'I“HE.UNIVICRSITI‘Y OFF ALBERTA
- - ) ’
FACULTY OF GRADUATE STUDIES AND RESEARCH

y ‘

-

‘ The undersigned certify that they have read, and recommend to the

Faculty of Graduate Studies and Resecarch, for accéptance, a ‘thesis entitled
R AN

Requirements for a courseware preparation system and ifn.plémentat.ion of

an editor/formatter submitted by YIM, Hoi Keung in partial fulfiliment of the

requirements for the degree of Master of Science.

& ) . . ’ > oo " .
L i L LR /7 b




X ’

Fo my family

r

o,

iv



C . - , -
- . . -

- ABSTRACT - -

|
: a

R 3 T

B . . -

Inereasing demarids for quality of and accessibility to education hay stimulated

- . . . : ’ b
research i technoldgically-mediated instruction in the past few decades. This has led
. . » . ° > .
to the notion of courseware and -hence t6 the need for coursewnre preparation systems.
s o A

by . . ‘ - .- i ¥\ p . R
This tResis ;.;nvestngates‘the requirement8 of a courseware pwpar:mon Sy st('m and

presents a prellmmary desngn together wnh a high-level deqcrlptlon of courseware

-

B

materials. A document adnor Whl(‘h m part of tbe authorlng component, capabde of

e : : :

cdntmg/formattmg a,,document mth text, figures and (‘qU'Hl()IH is dowvmd and jmple-
o

' P . &

"menfed. T he ﬂtructurcs 'r(‘prmentmg the document content are compatible with the
. .x Te Lo
- , ‘ - .

‘r.correspondmg ngh l(‘vcl deqcnptlon of courseware materials. . -

A




PR ) °

3

. ACKNOWLEDGEMENTS

‘? "1 wish to express my sincere gratitude to my supervisor, Prof. W. W. Armst ronge,

. .
-

Jor his guidance, assistance, criticisms and encouragement throughout the research and

the preparation of this thesis. «

%

I am grateful for the careful reading and useful comments provided by the
members of uiy examination-committee, Drs. E. W. Romaniuk, M. W. Green and Mr.

W. Adams.  ° : "

“ .
2

Financial support from NSERC and the Department of Computing Science in the
T “ ‘ o ,
Torm of teaching and research assistantships are gratefully acknowledged.

Rl

Special thanks to all my friends, especially H. ¢ (Jh:m, P. Lau and S. Pun. for

A

,Wieir encouragements during my stay here in Edmonton.

. ®
o -
\
\
t X ?
" 3
i
‘4
’
.
»

vi



Tﬁble of Contents

~ Chapter ‘ ‘ . Page
Chapter 1: Introduction ........... U S Tl
ll Organization of the ‘(h(‘ﬂiS ........................................................... 3
(“hapter 2: Review of existing courseware preparation facilities ... ... 1
2.1 Authoring languages ... 1
¢ .
2.2 Authoring systems ... ... .. 5
2.3. Other approaches ... ... . SRR PRI IO )
‘2.4‘. Summary .......... ........................................................ 7
('_v'lyxplor 3: Roqlli.remems for a courseware development system ... . . R 9
) ’/l User imterface ... SRR 9
3.2 Courseware ... 1
3.2.1..Transportability ............................................................ e 11
.
3.2.2. Flexibility in organization ................ . SO TSP RO . S
3.2.3. Testing and modification e ST N L
 3.2.4. lncremental dev'eloprgent ....... e ST SRS 13
3.2.5. Extréction of materials ................... e / 13
326 A wide variéty of student su:pport“ ...... U ..... IS R 11
3.2.7. Individualizéd instruction ... e, SOOI 11
33. Hard’:va're and software requirement/s __ .......................... RS S 14
3.'3.1. Expla.ndabilityj.. ...... e | ..................... SUUUUT e | ............... 14
3.3.2. Portability of the system ................... ............... 15
3.4. Summafy ................................................... .......... ................ ‘ 16
N .
'- g R vii
S



A

”

C‘hapter 4: Preliminary design of the courseware prepatation system ... ...

4.1. An overview of the system U :

14.2. Courseware database ...... ... . .. . e e

4.2.1.3.1. Tuple-schemes for ldgical entities ... e I

1.2.1.3.2. Tuple schemes for graphical entities ... ... e

1.3. Authoring component ... e PRSP

4.5, Document production- facilities ................. [T TR
Chapter 5: Detailed design of the dpéument eé)itor’ ............................. e RO
5.1, Basic objectives ........... PR PP ST }
5.2. Document and document editor............................. ST e, .

».3. Document objects .............. e BTN UUSUUTURTTR

5.3.1. Text: representation and operations ......................__ e e

5.3.2. Figures: representation and operations ................. ..‘. ................. e )

5.3.3. Equations: representation and operations e oo

5.3.3.1. Representation of an equation ............. e

-

“

vii _ N



6.1. Implementation environment ........ PO SUUUTORETRO ST 15

6.2. Editing environment .................. SRR JURI SR L e 16
6.2.1. The document window ................... M 17
6.2.2. The menu bar ... 18
6.2.3. The Figure Object Meu oo e 119

N . - .

8.2.4. The Equation Symbol Table ........ ................................. ST - 50
6.3. Internal representation of a document ... . P S’l
6.1. Internal rep‘résbptati’on of afigure ... 52
8.5. lntefqal representation of adine of text ... .. [UTRTSUR T 51
6.6. Internal repf;sentation of an equation ... 5

-('h:xptcr 7: Conclusions and furthq work ... .. e e 57
7.1. Conclusions ... PO O R USRI IS SR e .'f(
7.2. Fu‘rtb-er WOT K Lot 58

References ... ............................... e RUTTIO TR S 680

! "
‘. g
) | g
/ : .

ix



i
&
List of Figures
. .
Figure - . ’ . o Page
4.1 Functional components of the Courseware Preparation System ................_.. 7
) . . ‘ - .
4.2 Logical organization of courseware materials ... . 22
5.1 Logical view of a document .................... .. SSRRUURRRORRORRR e 35
‘ | ,
5.2 Representation of afineof text ... . 37
5.3 Logical structure of a box ... 11
5.4 Logical structure of an expression ...................... Fe 12
6.1 Scrcen layout of the document editor ... e 47
~~._"‘J ) .
8.2 Data structure representing a document ... ... 51
6.3 Data structure representing a figure ... . R 53
6.4 Data structure representing an object in a figure ................ PR 53
6.5 Data structyre representing a line of text ... 54
6.6 Record structure representing a text segment descriptor .........coovvuviveeini 56
6.7 Record structure representing a bex L 55
v \
;’ ‘,'
- . R
L3
o~
1
Q.



Cbaptec 1

Introduction

High quality,‘accessible education is today cecognizcd as an cssentipl factgr in the
success of individuals and in the economic well-being of indust.’rialized n.atio 3. The
pervasive impact of computmg and other technologies means that a higher snndard of
educatlon and training must be achieved to prepare young aud older persons alike for

increased demands and opportunitics in the workplace.

.
*

However, with limited budgets for cducatlon, and lncre:Lsmeg costly traditional

instructional techmques 1t is very dlﬁicult, il not lmpossuble to meet the existing

demand for quahty and accesslblhty This has’ prompted researchers to explorc the

- possibility of more cost- eﬂ'ectlve lnstrucuonal methods Whlch would attain equiv 1lan

or better results at reduced cost. During the past two decades, much resea’rch bas been’

done in explormg computmg t;:chnology as a meaps of facyltatlng learning in particu- ,'

lar areas of ¢ducation and Lrammg such as mllltary training, training of ‘nles porson-

g

.nel, and crammg of cqulpment operators and repair. persons. Thxs has led to the

nouon of courseware and hﬁce Lo the need for courseware preparat:on systems

Dependlng on 'the cantext of apphcauon, the meanmg of the term courscware
.+ varies, There is not a universally accepted dcﬁnmon For the purpose of tbe present--
thesns we fw1ll employ Bundersons deﬁnltlon[BunBI] since the scope- and meamng

‘ lmphed more approprlately reflect our interest:- § o -

"Courseware is an economlcally repllcable and easnly porzable package

which, when used in combination with a technologlcally mediated instruc-

tional dehvery system, -is capable of medlzmng trammg and performance
: lmprovement

’
.

A Courseware preparatlon system. is a collecuon of software tools that facxhtate
the creatlon orgamzauon and modlﬁcatlon of courseware materlal Tt is dlsungunbed
from dehvery system sof&ware Wthh controls mteractnons between a student and a

computer[BunBl]

3



AR
]

¢
In a piece of courseware, there are two types of information stored: content and

ifteraction. Content refers to the knowledge or materials to be learned. Interaction
mformation .coqtrols the dialogue *between student and computer. Once they are
stored in dngltal form, economlcal replication and cex;trallzed updatmg become possi-
ble! It is the capablhty of replicating interaction economically that revolutionizes the
_tostructional procedure. We can deliver instruction to students instead of sending stu-
dents to instruction. Moreover, v?ith the interaction informationtstored, 1t is possible

to individualize instruction. Students can proceed at their own pace and convenience,

It is also important that existing materials can be modified easily to incorporate

D

A

any: cbange without major reorgamzatlon A dlgltal format of stogage means that
updatmg can ‘)mld upon godd materials while not diminishing in any wav the fidelity
of roproductlon If we.store both content and mteractnon asdataina digital format, i

13 only necessary to ¢dit the data or change the format should modification be ‘necded.
The ease of modification and portabxhty between machmcs depends on the level at

which content and interaction are described.

The work attempted in this thesis concerns the study and analysis of the require-
/s
ments of a courseware preparatlon syvtem A preliminary design is proposed together

wnh a high-level description of com'seware and the design and implementation of

document editor whlch 18 capable of autom:mc formatting of a document, with some

7 o
text, figures and equations. . -

n



1.1. Organization of the thesis

Chapter two presents a review of existing courseware preparation facilitics. In
chapter three, the requircments of a courseware preparation system are liscussed.
Chapter four provides a preliminary design of the coursewarc brep:ur:;tinn rstem
together with a discussion of various componénts associated with 1t. A hi'level
descriptiom—of courseware materials is also presented.. In chapter five. the detailed
design of a document editor, which is part of the authoring‘componel& of the overall
design presented in chapter four, will be described. Chapter six reports the implemen-
tation of the document editor. Chapter seven provides the conclusions nnd suggestions

a '

for further work.

%



N Chapter 2

Review of existing courseware preparation facilities

This chapter briefly reviews existing courseware preparation facilities. The main
objective of the review is to identify existing approaches to courseware authoring and
the related issues. It also lays the foundation for the analysis and discussion of the

requirements for a courseware preparation system presented in the next chapter.

The ‘materials presented h_ere are mainly based on research articles by Greg
Kearsley(Kea82], Richard E. Pogue[Pog80], Luis Osin[Osi76], Michael W, Allen[All84],
Stanley Voyce[Voy82] and.Jack Schwartz[Sch83], books edited by Harold F. O"Neil, JR
[Bun81,0Ne79], and the dissertation by Romaniuk[Rom70]. The above list is not

meant to be exhaustive; other references will be quoted elsewhere as appraopriate.

2.1. Authoring languages
Just as simulation languages facilitate programming of simulation models,

authoring languages (often called author languages) represent a family of special pur-

pose application lapguages which facilitate the writing of ipstructional

programs|Kea82]. The first identiﬁablé authoring language was TIP (Translator for
Interactive Programs) developed for an IBM 650 around 1960[Kea82]. Before then,
computer-based mstrucuonal materials were wrlt,ten in general purpose programming
languages such as FORTRAN. - TIP Iater evoh?’eh into. the COURSEWRITER

language. Since then, many authonng languagea have been developed and have

emerged into the market. These languages can be classified into system specific and _

system mdependent languages[KeaB?]. System specnﬁc languages were developed\? for !

and operated on a parttcular famlly of machines. For example, COURSEWRITLR was

developed for IBM machines[Kea82, Voy82] and TUTOR was developed at the Umver- ‘

sity of Illinois for the PLATO system[SghSS]. System independent Janguages such as

PLANIT (Programmed LANguage for Interactive Teachiné)[Fei68] and NATAL



C

(NATional Author Language)[Wes77] were developed to improve transportability of
courseware materials. N,A'f‘AL was developed in CCanada with the major objective of
establishing a standard au‘tlro'ring angupge. Examples of recent attempts ta address
the transportability issue of’coursewarc written in authoring languages are the
multilingual-interpreter system proposed by Stapley Voyce[Voy&2] ‘:md the deﬁni‘tion

apd implementation of microNATAL[HBF85].

2.2. Authoring systems

Authoripg systems repvreeeut a high level interface intended to minimize or eljm- "
inate the nged for learning or using a programming language during the courseware
authoring process[}\’e382‘,f’og80]. The time and expense required to develop cour-
seware using authoring languages, estimated at §0-200 hours of development per hour
of instruction[l\'caéa,Osi76,Voy82], has stimulated researchers to seck alternatives.
Around 1970, the firs; authoring systems started to appear. VAULT (Versatile

Alhhoring Langu:;ge for Teachers) was an authoring system written in PL/1, imple-

mented on the IBM System 360, Model 67[Rom70]. It praduced (OURSFWRITI R

Pl

uode which could then be assembled on the IBM 1500 system. VAULT mtroduccd the

[

mportant concept of separatipg course gontent and instructional logic during the

authoring process. It 'was d%vidcd into a logic division and a data di%ision.. A diﬂercat ‘
set of verbs (actlon words) were usedTn each division. Teachers or sub;ect matter spe-
elahsts started by selecting. a suntable programmed loglc (strategy) from a .pool of
available pre- programmed loglcs prepared by instructional specialists which formed'
tlw basic framework for entering content via the data division. A similar approach

‘was employed by IMPACT in which a generalized Instructional Decision Modcl IDM,

'incox;porated most of the logic of a ceurse. The IDM contams rules that decxdc thc'

text to be presented next based on certam factors related to the pcrform'mce of the

studept[Do‘gM].



Authoring systems can basically be divided into three categories: macro-based,
form-driven and prompting(Kea82]. In a macro-based system, authors arc provided
with a small set of high level commands (macro routines) that are similar in meaning
to the intended actions such as IF.. THEN, DISPLAY, ERASE, SHOW, etc., in
VAULT[Rom70]. Apother’ example of a macro-based system is the BOOK
system[OtT81] developed in Japan, which also possesses built-in information r(‘(ricx'al
capabilities. In a form-driven authoring system, authors are provided with online or
offline forms to fill in the information required to author a course. Examples in this
category are the T[CCIT'(Timc-Shared, Interactive, Computer-Coptrolled Information
Television) éystcm[DowM,MSFSO] and MONIFORMs[Kea82] developed for the
PLATO system. In a prompting system -(somctirnes referred to as conversational type
system{Dow74]), authors are prompted for the information necessary to create the
courseware materials. COURSEMAKER[Dea78] which prodoces COURSEWRITER 111 ,
code and an authoring system developed at the Medical College of Georgia|Pog80] are
examples in this category. In the system developed' at the Medical College of Georgia,
an instructional stratc_gy is created by defining a fra’me structure which specifies the
type of contcnt to be entered into that frame. These frame structures are stored in

table form so that new instructional strategies can be added by adding entries to the

table.

2.3. Other approaches

Thc systems lhentioned above 'represeht, | the  frame oriented
approz;ch[Keh,ﬁ?,Osi'lG] Lowhrds courseware authori&g.."ghis is also the most prevalent
approach aod represents the majority of courseware produced. For courseware materi-
als produced using thls approach the declston of what to present next mvolves mainly

' evaluation of a loglcal expression, thhout regards about Lhe contents of the materials

to be presentcd[OSn?ﬁ] Another approach is the Intelligent Computer-Asslsted Instruc-



3
3

‘;ioyn (ICAI) approach in which the system stores structured in'formation about the sub-
ject matenals in the form of,semantic k’\nets/[BoP&?], production rhlles[KoPTﬂ], pro-
cedural knowledge[RﬁoP83v]. ‘A review of r(;ent velopments L'Mng these approaches
“'has been given by Franklin and Ok-choon[RoP83]. SOPHIE (SOPHisticated: lnstruc.

. tional [invironment)[@i[3[375] and BIP (Basic Instructional Program){BBAT6] are exam-

ples. However, due to the difficulty in building the knowledge bases required and the

“a

comple;;?ity of the programs involved, it is not aﬁs‘s"".[.)o‘pul;‘u‘ a8, ('h“é- frame-oriented
approach. o

The IRO-CAI (lnformutioﬁ-Retrieval Oriented CAD[Osi76] approach suggested
by L. ‘Osin is somewhat midway between frame-oriented and l%':\l_.’xppx“oachos. In an
IRO-CAI systt.’m SMITH (Self-directed Mixed Initiative Tu'i-orinl Helper)[ONiT6],
de:elopcd by Ogin, special purpose algorithms were used to explore minimal“content

information provided by the course author for controlling the presentation of materials

to students.

2.4. Summary

In this chapter, we have briefly reviewed the development of courseware prepara-

tlon facnlmes in the past few dec‘xdes Several main factors hue mﬂuoncod the -

-

devclopment of such facnlmcs transpor’abxhLy/sharablhty of the courqow.;re materi-
als, ease of use, time required to produce the materials and the quality of the end pro-
duct. While the main ijec.tive of an émthoring system is bt'o ease the-authoringl process
and hence min;mize the time required to produce instructional materials, many
authors have complained about.the hmltauons lm.posed The mam reason for the Ilml- ‘
'tatlons is that features and functnopahtnes are often compromlsed for case of use. An
authormg system eases the life of the authors by provndmg defauits[KeaS?] Howcver

defaults ;:an never exhaust the demands for precmon which arise under various cir-

cumstances. Thus what we really need is a. system th:it provides defaults (macmq



- ' !

. .4 .. » . - . ‘
forms or prompts) for common features and activities while allowing the leeway for

p’r(-cise specifications of detailed individual needs.



Chapter 3

Requirements for a cbihrs'ewa.re development system

a

After reviewing the development of courseware preparatxon hcnlmm 4he next
step 13 to study and analyze the requ:rements for a courseware preparation system. As

mentioned in chapter one, a courseware preparation system i3 a collection of software

\

tools that interact with authors to produce, organize and modify courseware materials.

-

In formulatlng the requirements of such a system, we wnll consider the followmv

"5
aspects: “the user- interface, the courseware produced and the design and implcmcm:{a ,

tion of the system.

3.1. User interface . ‘ o

: &
N

. - . ¢ . .
Computer time and storage have traditionally ~ been considered as  scarce

LS .

resources. Thus, storage and time efficiencies were often the dominant factors during

software-development process. Nowadays, with the continual drop in fmrdW@rc cost
: » l’ : ’ @ ! - ’
and the advent of personal micro-computet technology, we can aflord to emphasize

user productivity and satisfaction with little additional cost{FoD83].

@

- In order to study the desirable features of the user interface Lomponent of an

authonng system, we need to ldenufy its potentlal users. The potontnl users of :

authonng system are teachers, faculty members or experts in- ‘sp(‘(‘lﬁc subject .xro“hv

EN

Thgy are famlhar with terms and concepts related to thenr own felds of study, but  -

£

might not and shou{d not be reqmred to know those related to computcrs and com-
puter science; Moreo‘ver, maintaining competency in their own arcas of study and

fulﬁllmg various professnonal responsnbllmes already consume most of their time and

hs)

energy, and there is little left for explormg and mastermg an authonng tool. There-
. fore the user mterface should be deslgned in such a way that i3 easy to'learn and sim-
ple to operate The user-computer dlalogue should be naﬁunl to- Lhe users. This

mlght be accomphshed by mapplng the lnteracnon wnh ‘the computer to their usual

~



10

working environment,*as is done via the desktop concept of the Macintosh micro-

computer. (

-

However, power and flexibility should pot be sacrificed for the sake of ease of use.
The users should be able to express whatever is essentjal to the system durmg the

~

authoring process. Whenever possible, avaxlable choices and options should be
- ¢

displayed so that users can always react correctly and confidently. At the same time

this reduces the burden gf memorizing system commands. .‘

In order to a&oid panic and frustration, the system should also provide appropri-
ate feedback to the author informing him/her about the current ;tatus of th;’ cour-
seware or the authoring process, and to allow undoing mistakes. Moreover. for actions
which can cause irreversible catastréph'ic effects such as deleting some materials, the
system should ask for confirmation before performing them. However, mcchan‘isms
should also exist to allow suppression of some confirmation requirements for expert
users who would ﬁnd. it annoying to have to carry out these steps every time. In gen-

eral, the system should become less verbose and more streamlined as the user learns

how to operate it.
’ ) &

As mentioned before, courseware authors seldom have the time and mclnnatxon to
learn progfammmg and programmmg Ianguages ‘Furthermore, their training and
_duties art; concentrated mostly on aspects tbat are related to educational subject
matter. Therefore, they should not be required to attend to computer related details.
Thus the need for programming should be minimized durmg the authormg process.
Instead, a mofe human- orlented mterface should exist to assxst authors in controlling
access to a wide vanety of resources(capablhtxes) Thns hum:m onentcd interface
should act,ually be employed in both courseware development and in programmmg

is the result of the activity of detailed specxﬁcatxon Without a heavy burden of for-,

. mal syntax, and- with heavy rehance on me'anmgful descnption in English(or another



natural language), the description of course content and interaction should be created

by the author in a systematic manner.

~

3.2. Courseware

Courseware is the ultimate product of the authoring process. It controls the

instructional process for students. Thus it directly affects the quality and effectivenessd

of the instruction that is received by students. Therefore, a study of its:idesirable

characteristics is both desirable and necessary.

3.2.1. Transportability

£~

Courseware portability(from one machine or technology to another) is essential

4

s o
for its sharability. In addition to increasing the costfeffectiveness of producing
. . \ . & N . - .
computer-based curriculum| sharing-ol courseware allows good materials to be distri-
buted to students across institutions. It is therefore essential that courseware matcri-

a

als be stored and packaged ig such a way that allows transportability to othcrgdf‘{t(}ms.

&> %,: . ¥ &
Among other tbmgs system specnﬁc elements should be minimized in coursgware. Q(h- :
£

erwise, wheg’ l%’ is’ transported to other systems, modifications to the system- depondem

componen
such modification may involve a substanual amount of work. lt 13 neither dc‘nmbie for

-the creator nor for the maintainer of courseware that it mvolve 9yqtom dependencies.

»

3.2,2. Flexibility in organization

Depéuding on the nature and content, different materials may re(;uire diflerent
ways of orgamzatlon An orgamzatlonal structure suitable for certain matcrmls might
not be appropnate for others:. Forcing materlals into an mappropnate structure will
cause unneces\sary overhead and degradati'on of author productivity and the

eﬁ'ectlveness of the resultmg matenals Thus the system should not dictate a pre-

deﬁned 3tructure(such as a tree structure) for organizing courseware materials,

would be unavoidable. Depending on the degree ‘of system depcndcnqiy, '

L]

[y

3



However, it is heipful to have a pool of frequently used “structures available as long as

o

their use is not m

3.2.3. Testing and modificatio

Courseware authoring is a/highly creatiye activity. Creative work is seldom the

Iastead, it 1s u

resuleof a one*gass process. ally accomplished through iterations and
Lo p ¢ g

revisions. It is thefefore irable to allow testing, modification and keeping versions
of materials at various st‘ages. If the author cannot test his/her materials before
finishing a coml;lete p_&pduct, complete perfection is required at every step during the
authoring process in order that what emerges is close to what 13 expected. However, if
the quality and effectiveness is far fro'm expectation, the author might either choose to
start the whole process again or to perform major modifications to the existing pro-
duct. Both choices involve a significant cost penalty because modifying a nontrivial
product which leads to somé preset objectvives requires a significant investment in time

and energy.

L3

. For non-changeable supports such as laser-disks and compact disks (CD-ROMs),
ctc., ease of testing and modification to ensure the quality and correctness of the

materials before resorting to these sup»ports are even more important. Once materials

" are stored in these medla they are essentially unalterable. except by usmo differential

_ﬁles or the equivalent in a magnetlc medium. Putting materials on laser disks, for
lnstance mvolves first recordmg them onto vndeo tapes. These tapes are then sent for
production of a master disk from which disks are replicated. Modification would mean

retaping some of the materials and production of a new master disk.



13

3.2.4. Incremental development

The time required to create instructional materials can be expected to be reduced
substantially if existing materials can be used in constructing new courses, and if a
course can be built in an incremental manner Such that it can be expanded by subse-

. . o
quent addition and integration of mew materials. The cost-eflectiveness of producing
-courseware matérials will likely increade as a result of higher utilization of materials.
As materials accumulate, this may imply the need for sophisticated data m:m:xgomc(nt
facilities and the enforcement of tight security and integrity policies. However, the
effort 1s totally justifiable because the‘expocted improvement in efficiency and produc-
tivity would outweigh the initial investment in establishing the required f;\cili(ios and

the cost for subsequent maintenance. This is especially true as the volume of existing

materials grows.

3.2.5. Extraction of materials

By extraction of materials, we mean retrieval of sclected portions of course con-
tent. The facility provided by the system for such activities directly :;[Tects the
efficiency and the time required to adapt the courseware for special pufposes such :;,5
preparation of a set of slide:; representing selected subsets of m'nterials. Courscware

atermls should thus be organized in such a wz?y J)hat a proqrrlbod whset of materials
could be casily and precisely specified and retrle§;d°\"1fhe speCIﬁcatlon scheme should
utilize propertxes, such as keywords, etc., related fo Lhc de‘nred materials. There
should be some support tovmake sure that the sequence selected is in a logical order

and without gaps, which can be done by using stated prerequisites among the parts of

»

a course.



3.2.8. A wide variety of student support

In addition to guided learning, a wide variety of supports should be available to
students. These might include on-line consultation and printing of documents
represcenting selected materials. This would allow students to take the initiative to

learn and to be able to locate the desjred references and documentation when necded.

Suitable aids should also exist to help students in gaining an overall view of the
organization of courseware materials, just like the table of contents of a book. and in

guiding them to the relevant materials as the index and sectjon headings of a book do.

3.2.7. Individualized instruction

Different persons tend to have different styles and paces of learning. Learning at
oune's preferred pafe and style increases his/her expected performance in achieving cer-
tain instructional objectives. Therefore, courseware materials should support indivi-
dualization of instruction such that a ?tudent' can proceed at his/her own pace and

&

conventence, and the materials can be tailored to his/her preferred style of learning.

3.3. Hardware and software requirements

In this section, we shall discuss the desirable characteristics of the hardware and
software of a courseware preparation system together with their significance and impli-

cations. . _ L

3.3.1. Exph.nda.bility

,The}_system should be designed an implemented in such a Way that allows con-
tinual expansnon New capabllmes or modules should easxly be add d wnthout makmg
fundamental changes This is mportant because the lntroducuon of iew concepts and‘
theories; and the continual drop in the price of hardwaré devices, such as audio—visu_al
equipment, is approaching the reach of ed’ucati_on‘al in.suti,tutions, would pei;mit future

incorporation of new features to an existing system. Modularity, together with

¥}



adequate documentation of the system are of fundamental importance. If a system is

clearly divided into modules whose functions and operations are well documented in a
clear a[f%'organized fashion, it is possible to incorporate new modules without painful

surgery to the existing implementation.

3.3.2. Portability of the system

While portability of software systems in general 1s important,’:. portability of a
courseware preparation system IS even more essential.v First, the constructi!)rl of a
nontrivial system involves substantial'investment. If it is only llsable on a particular
machipe or operating system, cost——ellectivcncss is drastically com&romiscd. Mol'cpvcr,
with today's rate of change of hardware technology, the chance that i:x particular
machine becomes obsolete cannot be neglected. Therefore, system specific components
In a courseware preparation system should be minimized and separa‘t(;(l from those sys-
tem independent modules. Seécondly, if the system can casily be transported from one
machine to another, it can lle,installed in more institutions that have access to com-
puter facilities. This wouldl-;ncourage sharing of materials and ldéas, which is both
beneficial to research in instruclional techniques and in téchnologic:»xlly-rnlr(lintc(l
. instructvion.v

Although comyplém portability i;; almost impossible 'Lol ‘avchiev';in practico,“it 13 a
goal that is worthwhile stx‘-lving for. Technldues slucli as emulation and metalangllagcs
exst to help in allewatlng software portab:llty problems[lan82] ‘however, systcm

implementors should not count solely on them They should try Lhclr best to, reduce

and isolate syspem/devnce dependent code. :



- B o 16

. R » R

In this chapterf a discussion of the desirable features of a courseware préparation

L o «
‘p(ém has been presented. It will serve as a gundelme for the design and implementa-

o -

}gqg of such a system. Based on Lhme roqulrcmems a pr(‘qhmmar\ design of a cour-

L]
v 2

s¢ ,;re«pr(‘pamtlon aystem is proposed together with a high- level dmcnptlon of cour-

P

o3
seware materials in the n(’xt‘, chnpt(‘r
. ¢ ¢ ‘ :

J/ / . ’ b}



.

Chapter 4

N\

Preliminary design of the courseware preparation system

. . . 4 . .
. In this chapter, a preliminary design of the courseware preparation system will be

presented. It starts with an overview which provides a global view of the whole sys-

tem. Subsequent sections describe and discuss each component and the

issues tn greater detail.

'

4.1. An overview of the system

P

associated

The following diagram provides an overview of the courseware preparation sys-

-

tem in terms of various functional components and the interactions between them,

3

0

author Authoring Interpreting student
- - DBMS o Y
Component Component
i
[ Courseware
Document Database
Converter
!
o - . [N
r { \ |
Dot matrix Laser ransparency
) } Troff and shde ceen
Printer Printery generator
Y i
v # Printed Troff Transparency
“document document and slide
Figure 4.1 Functional components of the Courseware Preparation System

As shown in the above diagram, the system consists of four main components:

&

17



1) Authoring component,

2)  Courseware database,

3) Interpreting component, 'and
-4} Document production f’acilitieg.

The author interacts with the authoring component which is capable of generat-

ing a document (one form of delivery to students) and updating the courseware data-

base. The interpreting component interprets (searches) the knowledge and course
information stored in the courseware database in response to students’ input and gen-

. 3 )
crates the appropriate output in various forms such as sound. graphic images or some

¢

text.

The performance of the interpreting component in conveying instructions to sty-
dents depends, to a large extent, on how well the knowledge and course information
are documented in the courseware database. It does not create information, it only
interprets and derives information from the materials stored. A good interpreting

(searching) algorithm derives the maximum information out of the stored data.

The output from the authoring component, whether destined for the .database or
some rmrdcopy s>upport, 1s in the form of a high-level representation. It stores infor-
malion necessary for its display instead of device specific details. Thus it is,possible to
automatically translate the document into input for specific printing devi‘ces or docu-
ment formatting tools.

In the sections that follow, a more detailed discussion of each component will be

presented. Detailed design and implementa%ion of selected parts will be given in sub-

,

sequent chapters.



19

4.2. Courseware database

The courseware DBMS is the central component of the courseware development
system and use of a DBMS constitutes a key design decisione The decision is mainly

based on the following’consideratious. _ .
1) Courseware portability,

2)  Lase of testing and modification,

3) Expandability of the system.

If courseware can be described and expressed in a machine-understandable for-
ﬁw(. it 15 possible to store and package coursewarc materials as data instead of
machine executable code. This implies that a courseware package can be transported
to any machine that has the appropriate interpreting software. In this way. the cour-
seware portability issue is transformed to that of the interpreting software, How(w-n
this is transparént to course authors. The design, implemcn;m.iou and l!l;lilll(‘n:lll('(‘ of

interpreting software are the responsibility of computer programmers and analysts,

’

Since courseware materials are directly interpreted by the interpreting software,
there 1s no need for compiling or translating (’hc materials to machine executable
codes. This may account.for savings in time for testing and modification during the
courseware development process.

The data driye‘h technicjue eﬁployed i‘n the design also facilitates ;xpzani()n of the
.é_vstcm. The data format of the courseware materigls ctan be modified to c.ompensate
for any' inadequa‘cy‘. New capabilities can. be added to the system bv mcorpor,ztmg
wols into the system that manipulate the courseware database. The mterpretmg com-
ponent c\an be modified to reflect changes in the data format. However, the
modlﬁcatlon should not render old material obsolete Any changes should be upward

i

compatible. o . @



»

4.2.1. A high-level déscriplion of courseware

The feasibility of the data-driven approach relies on whether courseware can be
described and expressed in a format that can be interpreted. in ‘a computationally

>

cconomical manner. In this section, a high-level descriptiom of courseware is

. -
.

attempted. .

4.2.1.1. Purpose and scope

Documentation is vital for communication and co-operation. Before anything can
be understood, maintained or shared, it must be documented clearly in a language
which, for this purpose, is both sufficient and eflicient. Similarly, a high-level descrip-

tion of courseware is essential for its understandability, maintainability and portabil-

1y,
In addition to providing a common conceptual view of courseware materials

between system implementors and. course authors, high-level documentation also

ves as the basis for study and evaluation of the adequacy and consistency of

UYle underlying course model. Moreover, it’is cousnderablv less expensive to iterate
over versions of a desngn using a hlgh level document than when it is implemented in

hardware and software. Thus, a high-level dcscription of courseware serves the two-

fold purpose of self-documentation and as the basis for futurc research and evaluation.

It is also important that the scope of the effort to describe courseware at a high

.

level should include all essentlal factors for the presentation of the course. They

mclude information for course managemcnt deﬁmtlon of presentation umts (lessons)

v

and creation of course content. If any essential component is embedded i in, say assem-
bly language for the 8502 . microprocessor or a part.;eular dialect of BASIC, pormbllxty
and ease of modification are dlsastrously compromnsed However, the dcscription
shoul'd be elastic enough to incorporate pre-written mstrucuonal matenals in various

‘forms such as a snmulatlon module. ‘This suggests need for a high-level programmmg



Innguage (also required elsewhere) but this is beyond our scope. In particular, the user
interface  and interaction must be taken into account. Tools exist for this
purpose{Gre85] although it is beyond the scope of this thesis to develop this asp®et of

courseware description.

A conceptual schema is developed and presented in the following sections. It
assumes the presentation of a course as a sequential process of presenting materials
and conditional branching on a student’s response[GWR81]. It does not mean to be a
universal schema, however, it serves as a prototype for further evaluation and

enhancement. 1

4.2.1.2. The description

Figure 4.2 shows the logical organization of courseware materials. \ course i 1

collection of c‘ontent elements grouped into a set of presentation units. Fach
A .

presentation unit corresponds to material which can be presented in a given scquence
to satisfy a particular objective, for examprle, to teach a method of solving second-
order differential equations. Associated with each presentation unit i3 a sct of pre-
requisite units which indicates material required of the learner before presentation of
~the unit. To provide the flexibility of referencing material as a group, a presentation
unit is allowed to refer to other presentation units as component parts, as well as to
refer dire;ily to content elements.” Thus an entire course may He described by one

; : /
presentation umit consisting of some content elements and a collection of presentation

units, each of which corresponds to a topic in the course.

The content element, which in another context might be referred 't@% a frame,

Lt . . .. . ) Lo : Qo
page or screen, i3 the basic unit of presentation’ It is also the basic clement of course
content, hence the name content element. Depending on the nature of material to be

presented, a content element may correspond to a block of information in the form of |

some text, figures or equations, etc.. Alternatively it may correspond to a decision



22

structure for Bjranching In an interactive situation. A content element might also be
augmented with sounds for illustration and explanation. Work underway at the Media
Laboratory of MIT|[BaG82, Neg81) and elsewhere has revealed the importance of simul-
tancous perception through multiple sensory channels (sight, sound, speech, etc.) for

the effectivencss of learning. -

Course Content

hoste——1

content element

\> l
D

presentation unit .

>~ basic segﬁence
Figure 4.2 Logical organization of cc;urseware materials
Content elements are s‘haf,ed'arxidng preéentation units for economy- of storage so
that "one fact is stored in one placé". This is similar to a problem encountered in for;

matted databases, and which is partly solved by normalization theory[Kro83], but is

much more difficult here because of the broader range of types of content elements.



23

Presentation units are allowed to overlap. This is because we want to allow an cduca-
tor to pick out subsets of the total materials to prepare subcourses for particular
necds. Ideally, the system would then use its knowledge of prerequisites to aid the

educator to make sure there are no gaps in the new presentation unit created.

As shown in the abosfe description, the courseware database is a collection of
objects of arbitrary complexity. The fact th.at an object may refer to a set or sequence
of objects of arbitrary complexity implies heterogeneity of the data. To describe data
of such nature precisely and accurately requires an appropriate data dvxcripli:m
language.

The Semilattice Data Model, proposed by W.W Armstrong|Arm&4), offers :nl.ﬂ('t of
data description primitives capable of cxpressing  heterogencous rclnlionﬂhipé

effectively. Therefore, we shall use it to describe the course content.

The bigh—l(jvel doscr-iptiou of a course would be st‘orod‘ as data in a (non-
normalized) relat,ion:ﬂ ,détabase and would be accessible via a browsing facility of the
courseware editor (not yet implemented). It could also be interpreted or compiled into
a more efficient form for courseware delivery. The high-level description would also be

called upon in forming presentation units involving only a part of the total course.

4.2.1.3. The conceptual schema

A

In this section, a conceptual schema of the courseware database will be presented
as a set of tuple-schemes. A tuple schéme 1S a deécriptor for a compésite value who'se'
parts are pamed. For example a presentatk’io; unit has a part called unit_header. A

_\(alué is aésigned to this name "unit_header” and to all other names (objcctivc )
calle‘d attribuie.s, in forming a composite value called a tuple. We have tric’d to give
just enough detail‘ to characterize semantically what each pr{ese»ntation unit must have,

" without limi'tiﬁg geherality of the c.once.pt,., This applies to 'othejr tuple-schemes too,”

however we do sometimes introduce extra attributes just to illustrate possible



.
variability. Some tuple schemes are built-in, others must be defined by course authors
for specific needs. Tuples are similar to frames in the sense of artificial intelligence.
M. Green has implemented a database system based on the frame concept[Gre&2|. The

use of vuple schemes differs from the use of frames in that tuple schemes never allow

’w~l;)("re tuple_scheme_name is the name of the tuple scheme with attributes attrl, attr?,

... of types domainl, domain2, .., respectively. The union type 1s written as
(tagl:domainl | tag2:domain2 |. . . .. )..

meaning one of the types occurs, depending on the tag. A set of objects of type tis

written as {t}, and a sequence of objects of type t is written as <t >.

4.2.1.3.1. Tuple-schemes for logical entities

This section defines tuple-schemes for logical entities. They correspond to objects

that are importan€ for the presentation, organization and management aspects of cour-

seware materials.

pre;entation_unit(unit_headelfzhea’dér, objective: <string>, pre_requisites:{header},
body:<('PU:pfesentation_unithE:conient_elemcnt)>)
meaning:
"anch presentation_unit t'upl‘e represents a presen.tation unit, the
unst_header! is a uniéue System-wide idéntification of the presentation units
which éoni'ains some descriptive information as well. The body represerts
“the sequence 6rmaterials to be presen'ted. It 1s a sequence of presentation

. units or content elemen‘ts. The objective attribute is a sequence of strings

! The attributes of tuples presented in this chapter appear in italics,



[

describing the objective of the unit. The pre-requisstes attribute refers to a
. set of headers of presentation units that are pre-requisites to the pf<=ﬁ<-xxt
unit. The first element of the body might be an interaction element

(described below) which displays a menu of available sub- units for selection”,

header(name:string, title: <string >, date:string, version:Real, key_word_Jist {string})
constraint:

"name and version attributes together form a unique system identification of

an object described by a header tuple.”.

meaning:
"A header tuple describes an object identified by the name, characterized by
the key_word_Jist and title, with the date of its creation and a unique version
number. The title is usually a condensed summary of the object described by
thé header and hence useful keywords may be extracted from ite The
key__‘word_ji.st contains keywords supplied by users, and those extracted from

the content of the object and the title. .

content_,elemeht(‘é"kqnent_header:beader, element:(DE:document_glement|

IE:interaction_element))

meaaqing:

"A content_element tuple represents a content eclement described and
identified by the element_header attribute as the unit_eader attribute

describes and identifies a presentation unit. The element attributé may

correspond to a document element or an interaction clement as deseribed

, -

below.".

document_element(content: <(TE:textIFlG:ﬁgure[EQNiequation)} )



26

meaning:
"A document_glement tuple describes a document element whose content is i
sequence of text lines, figures and equations. The types (text line, figure,
cquation) of the contcnt may be expanded to incorporate other materials

such as chemical formulae.”.

©

Note:

Use of a one-attribute tuple scheme allows for extension.

interaction_,elgment(typo:;tring, information:document_glement.
interaction:{(response:string. feedback:document_glement
unit_peeding_review:{header})})
meaning:
“An interaction_selement tuple contains information for a particular instance
of interaction. The information attribute consists of the information to be
conveyed to student at i,he beginning of the interaction. The type attribute
describes the: type of interaction technique em.‘ployed. It is defined by
authors using tools ;)f.(hc authoring component and is interpreted by the
interpreting component which also contains a catalogue of standard interac-
tion tcchhiques and device interfaces. The snteraction attribute represents a .
set of information entities necessary for the interactipn. The response attri-
bvute represents an expectefi response {rom students and ’the feedback attri-
bute is the feedback message from .the system corresponding to that
response. In the case that an interaction element represents a question, the
un.s't_ﬁecding_rcvi‘e‘w' attribute contains a set of headgrs of the presentation
units which hay need to be re\(iewed by students if the response indicates a
‘wrong answer. Depenv-ding on the type of interaction technique, the interac-

tion based on the inferaction attribute may take various forms such as a list



or a menu of response to be selected by students.”. (

Note:We have modeled the interaction as a process of response and feedback "

student(name:string, id:string, faculty:string, mMajor:string, year:string)

constraint: -
"The attribute id uniquely identifies a student tuple.3.

meaning: )

"Each student tuple represents a student of the name, name, identification

.

number, id. belonging to the given Jaculty and majoring in the field specified

by major in year, year.”. v

presentation_history(student_jd:string, unit:-heater.

a
ya K

history:; < presentation_segment > )

-

meaning: -

"A presentation_history tuple represents history of presentation of a presen- -

tation unit, unst, to the student of id, student_jd. The history s

represented as a sequence of presentation segments (described below) within

the unit.”.

presentation_pegment(start:(object:h.eader,‘ time:string),
; end:(object:header, time:string))
meaning:

"A presentation_segment tuple records the start and end time and object

' i . . . . . . "
(presentation unit or content element) in a session of a presentation unit.”.



4.2.1.3.2. Tuple schemes for graphicai entities

This section defines tuple schemes which correspon.d to graphical entities in the

N .
course content.” They describe graphical constructs that can be produced and
represented by the current design and implementation of the documenty editor reported
in subsequent chapters. The graphics structures defined are not meant to be built-in.
they consgitute one package among several possibilities. The fields of various data
structures in the implementation reported in chapter six might not be exactly the same
as attributes of the corresponding tuple schemes presented here. However, both forms

of representation can easily be converted to the other (except for header attribute in a

figure or an equation tuple).

-
«©

int(x:Real, y:Real
point(x:Rea y. eal) ‘ ¢

-

meaning:
"A point tuple represents a point which is expressed as an ordered-pair of

horizon{al and vertical co-ordinates, z apnd y. respectively.”.

text_line(the_Jine:string, |ine_jnfo:<segmont_header>)

meaning:

"A text_line tuple represents a line of text, the_fine, described by a sequence

of segment headers, line_info.".

segment_header(font_number:integer, font_size:integer, width:Real,

num ber_of_vcharacter:ipteger)

mpaning:
"+ "A segment header describes phe Jont, font._,u'ze,‘width and number of char-

acters, number_of_character, in a text segment.”.

ﬁgure(ﬁgure_’_hezider:he;xder, height:Real, width:Real, ijects:{object})

' .

<



P

meaning: ‘ i ) -

A figuré tuple.represents a figure described by the ﬁg‘urc_}leadeﬁ:iltribu(e
of height, height, and width width. The objects attribute refers to the set
of geometrical or document objects in the figure,”. [)

Y . a : »

- ,

" . object(type:string, coutrol_points:<point->, DocOby:(TEstext_Jine[EQN:equation))

mea‘ning:

N . ' ' : ‘ [ ¢ )
equation(equation_header:header, sequence_of_boxed:box_sequence)

[

Y

An object tuple represents a basnc geometrical object that can be dew( ribed
|

} - ! .
by a sequence of eontrol points, control_points, or iL muy e()rresponds to ’s(\.,

- ey

line of Lext or an equatlon (refers to by the [)0(‘()6] attrlbute) at a location

pomted to by‘ the only conLrol point in tbe set of control pomtﬂ (a ﬂlm;k‘l()n)

(onlrol_pomta - J I N ‘ R

\ . R ’ ) -~ [+

[ . ' -

s

»

o

meaning: -~ ' S R

"Each- G'(]U'ltlon tuple represents an equation which is headed and®deicribed
. . . )! e A

bg the cquahon_ﬁeader with tbe cquzmon (-xprevnon reprcﬂented as 4

. [

sequence ‘of boxes descnbed by the acque,n:cc of_,bozca attante
K .
P 9, .

M ' . . Lt . [

<

Throughout, the deﬁnmon of an equatlon no assumptlon has béen made

. about the dence The actual dlsplay ofaan cquzmon wlll demve Lhe necewary

mformamon from the structure _ ', R e

. : . .
- . g 4 PR
- . . . . . [ e
w . . ) VS . . o , ‘ . h

B
Y

box_sequence(bot_header box, remammg_boxes o v

)

constraimt: .~ 7,

/"width of bdi;hc'ddcr = ‘su'm of widths of . r'erriair‘i‘i'ng___bozuv,‘ upper and

<(symbols_boxbpecml_symbol__bOX)>) e

¢ . .



30

Q‘ZJ‘.
lower height of boz_header = maximum upper and lower height of
remaining_bozes respectively.”. . “
.meaning:
b
o

"A box_scquence tuple represents. a sequence of boxes with the bor_Acader
~

storing global in/formation about the remasning_bores.”.

(8

box(width:integer, local_width:integer, upper_height:integer, lower_keight:integer,
font_number:iut‘egor, font_size:integer)
m(\':ming:
| "A"box tuple represents aliata entity containing information about the font
and (.l}c dimensions of a box. The font_number attribute describes the font
and the font_size attribute describes the font size. The upper_height and
lower_height attributes ‘:eprosent the heights above and below the base refer-
‘
ence of the box. The width attribute represents the width of the box, taks..,
ing into account the expressions associated with it, while the lura/_;z'n',(lt/{
attribute stores the width of the box without regard to other expressious or
boxes.". . I &2
N

& !
-symbols_box(the_box:box, symbols:string, superscript:box_sequence,

b

subscript:box_sequence, from :box_sequence, to:box_sequence)
.o (‘) :
meaning: o l . .

<

" "A symbols_box tuple represents a box containing a string of symbols of font

- ,_@mher and size descnbed by the attribute, the_boz. The augcracnpt sub-

acnpt from and to at!nbu&s{ represents the corresponding expressions of the

box respect_lvgly. .

[N

's’p’ecial_pymboL_box(’the_box:bOx, the_sym:integer, superscript:box_sequence,




31

s subscript:box_sequence, from:box_sequence, to:box_sequence)

meaning: ,
"A special_symbol_box tuple represents a box containing a symbol that
differs in the default font size from ordinary symbols. The symbol and the

o
variation in size depend on the interpretation of the attribute ghe_sym "

Y

The above description illustrates the possibility of describing courseWware materi-
als systematically by a suitable data description language such as that offered by the
Semilattice Data Model. By providing a set of system-defined tuple schemes, novice

users could create courseware easily following the guidance of the system. With the

Sl S

capability of user Acﬁned tuple schemes, experienced users can define tuple schemes to

represent structures of any complexity needed.

4.3. Authoring compohent

~

This component is responsible for guiding the author through the authoring pro-
cess. It includes tools L'hat are relevant for the creation and modification of course
materials and allows the formation of a document from selective portions ()_f‘fhv cour-
seware materials. These tools can basically be divided into three categories: editors,

user-tnterface facilities and database management facilities.

The editors interact with the authors for entering and modifying course content,
course organization and management information. Amon.g them is a dokrumont editor
thut allows editing of course content and producing a document in the form of 4 high-
level representation. Detailed design and impleuientation of this editor will be reported

’ -
in the chapter that follows.

The user'in‘ter‘face management facilities allow definition and automatic genera-
tion of user-interfaces. The University of Alberta User Interface Management System

(UIMS){Gre85] and similar systems developed elsewhere demdnstrate the feasibility of



defining and representing user-interfaces at a high-level.

The database management facilities are responsible for updating the courseware
database and enforcing various security, consistency and integrity constraints. A Semi-
lattice DBMS is currently being developed. With its completion, tools can be built to
assist authors in defining and modifying the tuple schemes through the DBMS facili-
tics. .With all these tools, a prototype system ready for experimentation will then be

available.

4.4. Interpretation component

This component interacts with students based on knowledge and information
derived from the courseware database. Among other things, it includes an interpreting
(searching) algorithm that intofprets the course materials in determining the actions to
be performed and materials to be presented. Giver a fixed amount of information
available in the database, the cﬁ'ectiveness of Lh_e instruction delivered to students
depends’on thé intelligence of this alg?rithm. In addition, it should also include facili-
ties for retrieving and browsing through nraferials and for helping studrents in locating

the necessary references. : /

4.56. Document production facilities

The document converter, togethell with various document processing facilities
such as dot matrix printer, Iaser' printes, trofl, transparency and £lide generator, etc.,
constitute a collection of document production’ facilities that allows a document to be
produced in different forms. The document cohi'erter i'nl(’rp;‘cts the high-level
representation of a document from thg authoring .component and converts it into input

for specific printing devices or document formatting tools.



Chapter 5

Detailed design of the document editor

In chapter four, we have presented a preliminary design of the courseware
preparation system in which the authoring component is one of the major components,
In this chapt;r, detailed design of the document editor, which is part of the authoring
component, w'll be described. Discussion will concentrate on the representation of

document content and the associated editing operations.

5.1. Basic objectives

The document editor presented here allows interactive- specification and mani-

pulation of a document consisting of some text, figures and equations. "What vou sce

°

15 what you get” has been the guiding principle throughout the design process. Users |

are given immediate feedback about the operations just performed. Morcover, the

-

resulting document should be compatible. with the high-level description provided in

v

chapter four. The other objectives are:

1} to serve a wide range of users.
The editor should be d;mble by users ranging from the original author of the
\
Vdocument to his/her ty;ﬁst or secretary with oqqal ease. One of the ways to
achieve this objective is to require the users only ‘;.o have a‘two-(limonsional

interpretation of the document. R
\\ - .
2)  to represent a document in su\ch a way that allows operations to be performed on
. \ N \ ) ) ’ !
selected portionsof a documcnn\. '

This ‘would increase the eﬂicien\c\y of editing operations performed on the docu-

ment. _— i ok

\

3) to minimize the time spent in prepa}ing a document.
4)  to support editing capabilities on objects of different natures, such as text and

3!

i

33



3t

figures, ctc., in one editor.

This saves the users time and trouble 1n switching to other editors to edit docu-
ment content that cannot be manipulated by the current editor. Past experience
by some course authors[Moh85] has shown the restrictions of limiting the types of

objects that can be manipulated in one editor.

5)  to minimize the need of memorizing editing commands.
This is important for user satisfaction and productivity because of the time and

cnergy saved in memorizing and referencing volumes of manuals.

6) toenhance the transportability of the resulting document to other systems.

7) to allow easy expansion of the present system by adding modules to it without

major modification.

L
This is significant because text, figures, and equations are by no mean an exhaus-

.

\ ‘ :
tive set of possible objects in a document. _\\

5.2. Document and document editor .

The document editor is a software tool which aids the author in creating and

.

manipulating a document easily and interactively. It also performs automatic

formatting on the document. A docun:.ent i3 a sequence of document objects.

.

| 4~ . a . : . .
Document objects are represented in. such a way that each of them is a separately
. o o

selectable and identifiable entity’, hence a group or subsequence of document objects
. & .

~

can be formed. Each subsequé’nce of objects contains one or more objects; thus a

unified set of é'diting operations can be defined on a subsequence of object(s). Figure

~

5.1 shows the logical view of a document.



l

document object

document object

subsequence

“T  of objects

l

document object

++ document object

Figare 5.1 Logical view of a document

Editing operations provided by the document editor can basically be dividéd into

‘two categories: indiv'idual.‘and group. Editing operations on an individual object
depend on the type of the bbject. For example, the operation in response to a particu-

lar event, on a line of text may be very different from that of a figure. Therefore,\we

shall dlscuss editing operations on an individual object along Wlf,h the descrlptlon of

its reéresentatlon. On the other hand, editing operations on a group (subsequence) of
§

ob]ects are mdependent of the type of mdlvndual objects prcsent in the. group Thoy

correspond to operatlons to be performed on the currently selected group of documont



36

objects. Basic editing operations in this category are:

1) Delete - delete the currently selected group of document objects,

»

2)  Copy - insert the currently selected group of document objects after the object

indicated by the current cursor position,

3)  Move - move the currently selected group of document ohjects to a point follow-

ing the object indicated by the current cursor position.

Since these operations are independent of the type of objects present in the

group, they are transparent to changes in the types and representations of the objects.

5.3. Document objects

'

A document object is a separately selectable and identifiable entity present in
a document. Associated with each document object is an object header containing the

f()llov;‘ing information:
" 1)  Type - represents the type of document object,
2)  Height - records the height of the document object,

3)  Width - stores the width of the document object,

° I
4)  Default font - records the default font defined on the document object,

5)  Default font size - stores the default font size of the document object,

in addition to“object-spefiﬁc tnformation. In the present design and implementation,

. .

there are three types of document objects: text, figures and equations. However, it is ,

easy to introduce new types of document objects into the system by specifying the
corresponding object headers. The structures needed to represent the objects and the

corresponding manipulation routines can be added easily without major modifications

to the existing package. S >

-~

-



5.3.1. Text: representation and operations

A line of text is composed of a sequence text segments. A text segment is a subse-
quence of characters in a text line which is of a different font and/or font size as com-
pared to the characters to its immediate left and right. Figure 5.2 shows the represen-

tation o? a line of text.

-

segment header # segment header #2 segment header #n
FolFs{NcWd FolFsiNcW ... Fo|FsiNeMW¢
text segment #1 text seginent #2 . . text segnient #o

a string ol characters

Wd: Width of the text segment
Ne: Number of characters within the text segment
Fs: Font size of thie text segment

.

Fn: Font number of the text segment
Figure 5.2 Representation of a line of text

'
[lach segment header contains the following information about the corresponding

[N

text segment.

1)  Font: Fn;

2) Font size : Fg;

3) vNumber of characters : N;

4)  Width of th segment : Wd.

An alternate scheme is to represent a'text li gtly as a sequence of text'segments.
However, since we cannot predict the number of characters present in each segment,

we have to reserve enough space for a whole hne of text, for each of them This will

cause serious storage overhead 1f the number of text segmcnts per hne of text is large.

. | v
Edmng operauons on a line of text. are: delete, insert and move a charactor or

subsequence of characters. A subseth_¢nce F char'acters may cross text segment



38

boundaries. Each operation may cause. an update of the height and width of the

corresponding text line. ,

5.3.2. Figures: representation and operations

A figure is a collection of basic geometrical objects and document objects. Each

object in a figure is a separate entity described by the following attributes:
1) Type - represents the type of object in a figure,

2) A set of control points - stores the set of control points of a geometrical object or -

position of a document object in a figure,
3) BoundsRect - refers to the smallest rectangle enclosing the object,
1) DocObject - refers to an object in a figure other than a geometrical object

A set of control points, together with the boundary rectangle (BoundsRect).
describes an instance of a geometrical object. The interpretation of the control potnts
depends on the L“ype of the object. They are measured relative to the top-left corner (4
the figure. An object is'cre:;ted by specifying the control points thro.ugh interaction
with users. Document objects (text lines and e.quations)"in a figure are specified in t,h(;,.
same way as document objects in a document, and are given a particular base refer-

ence stored as one point in the set of control points.

Within a figure, a subset of objects may be grouped to form a subfigure. Each

subfigure consists of one or more obJect( ). A umﬁed set of editing operations can thus

v

be defined on a subﬁgure Basic operations are:

Q) DAelete - delete the currently selected subfigure,

2) Translate - translate the currently selected subfigure to a new position,

. . N
M

3) Copy - translate without deleting the old subfigure.

Since objects within a figure represent separate entities, and ‘'since they are
independent of each other, editing operations on any of them will not affect other

,'. .

<



39

N

objects in the figure. However. after each editing operation, the overall dimensions

(height and width) of the figure might be changed. Therefore, the dimensions of (he

figure must pe checked and updated after each editing operation or editing session.

5.3.3. Equations: representation and operations

Editing effects within a figure are localized, hence we only need to consider opera-

tions on a particular subfigure at a time. However, for an cquation, the situation js

much more complicated. The main reason for the complexity is due to the automatic

. .
.

formatting requirement of an cquation. Editing effects on any part of an cquation are
not localized, they propagate to other parts of the equation and, in the worst case, to

the whole equation structure. Consider the following equation,

a
4

FXs o

I the user deletes the superseript, 2, of ¢, ¢ will have to move up because it s
M ) T
the denominator of the fraction b/c, and this fraction itself have to move down

because it is the superscript expression of x wh??ﬁ"itself have to move up because it s

the denominator of the whole equation.

Observe that the updating operation on a simple equation like this onv7i~4 non-
trivial. Those bn more complex equations will be much more complicated. Therefore,

the question is, given the requxrement of interactive automatic form,zumg of an equa-

—_ - PR ——

tion, what is an appropnzﬂé structure that would represent the information necessary
for its display and, at the sarfe time, support automatic formatting of an equation in
z;n efficient manner. Moreover, lt should conform to the high-level description of an
equation presented in chapter four. A'possible structure 1s designed and presented in

the following sections.



5.3.3.1. Representation of an equation

el
An equation consists of a collection of expressions, occupying disjoint rectangu-

A

lar regions, linked together by various relations such as "subscript of " and "superscript
of” An expression is a sequence of boxes described by a header box which stores
global information about the expression such as the type. defaull font and font size.

An equation is represented as an expression of type "Equation”

Associated with each box (except a header box describing an equation expression),

there can be four expressions:
N

A T

1) a subscript exprefighn,

N

»

2)  a superscript cxpression,
3} afrom expression, and

1) ato expression.

Figure 5.3 shows the general structure of a box and the associated parameters. The

_height above and below the base reference, and the width parameters represent the
. . - . ‘. -

corresponding dimensions of the box as they appear to the outside environment, taking

into account the expressions associated with it. The local width represents the width

of the box excluding the associated expressions.

-

A box may represent a string of symbols (a sequence of Gree‘k letters or characters
of any available font), a mathematical operator such as summation integral, union,
intersection, etc., a fracmou or it may refer to the header box of an (’Xpl-‘(’ﬂ'%lon In the
latter case, the local wndth of the box is the width of the expression it rcfers to. The
reason ‘fo_r separating ordinary symbols with mathematical operators is that the default
size of an'operator is greater than tﬁat of ah érdinary symbol. ln> the case of a fraction

box, the numerator and denominator are represented by the to and from expressions

respectively.



7 v

bound

‘hl

1
'
'
a
'
]

base

) reference
)

central

reference r

0

hi
h2

width = wndth of the whole box

helght above base reference line

I

height below base refercnce Ime‘

local width =- wudth localized to box -
bl = base reference for the superscr’ipt e{preqsion

© b2 = base referenceé for the subscnpt expreqqlon :

<

b3 = base reference for the from expression

b4 = base 'reference for the to expresslon

'

E Figure .5_.3' Logical structure of a box

Notice that in the box Qtructure shown there is no need to store tbe .mrlnl !oca-

tion of the base reference of any box. A box (except. header bOxes) always belongs to

e ‘.

an expressxon whach is a sequence of boxes Boxes in the same expresﬂon refer to a

"commou base refereuce whleh 13 determmed by the relatlonshlp of the expre‘mon with
t

~'other expressions in the equat:on (as showp in ﬁgure 5. 3)

. .-
. . : T



42

The fact that no positional information is stored greatly facilitates updating
operations on an equation. As mentioned before, updating effects are not localized to a
restricted part of an equation, they affect positioning of other parts of the equation.
Since no positional information is stored, there is no need of traversing the whole equa-

tion-structure to update all the positional parameters on every updating operation.

5.3.3.2. Updating operations on equations ‘
\ .'z\
An updating operation on an equation refef"s‘ to an operation that would ¢tause a

N
%

. . - ‘\, . .
change in the structure and dimensions of a box in an expression. Plgure 5.4

’

shows the logical structure of an cexpression and the cor\respondmg sequence of boxes.

@ \\\ \ .

\ a header box
[} \ b
T T
A
) I | NS T KT 3~ F 1”777 17

I ]
]
' i
o

b width : >{

Figure 5.4 Logical stru'ctqu%'an éXpression ‘ B

L

Ay

Observe that changes in the dimensions of a box jn an expression will not aﬂ’ect

°

those of others in the same expressnon However they may affect the overall heights.
(h1 and h2) and w1dt,h of the expression. Assume that at any given mstance there is a
current box belonging to an expressnon and operations always refer to this box. Fof

N

each updaung ope,ratxon, we.fperform the following steps:

1) if the operation is box'inseftion, insert the box after the current box. GOTO ste‘pbf '

5.

S

4

4

-



Te

@?

2) if the operatiga is box_decietif)n, delete the current bpx. GOTO step 5.

3) update hi or h? of the current box; .
o ) - . . #

4) update the width and l;)cal‘widtb of the current box; L o

5) check if the oyerall dimensions of the expgession conlauﬁng the current box are
e
. . _
aﬂ'ected o ’

® %

6) ifmot, RETURN; = =~ . = o e
. : - “ ’ * ’ - S : * -«
update Lhe"corrcsponding parameters_of the header box of the expression;

-

-]
~—

8) check if the expreselon relates to a box by relatlons such a3 subﬂcript' t& or
. ‘ T o e .

superscnpt to”; T » ) . % o B

. - Q\ -

9) if not; RETURN . N _

By

10) check the effect of cilange in dimensions of the expresston on the box it relates to:

, T
N o - R ' ) : 8 )
I1) set the box as the currefit box;. : o i &
12) GOTO step (3). BT - L .
. - . o Lo E o
° " Instep(10), checking the eﬂ'ect, of a change in the dlmemlons of an exprcss:on on

8
the box related to it mvolvcs cherkmg whether Lhe paramctcrs hiy hZ md th{- sverall
-

width of the box are aﬂ'ected or not (ptease refer to ﬁgure .)3) I'or a supcrqcrnpt

expressuon a change in. h2 w1|l not aﬂ'ect the helght above the b:ne referonce hi, of the

od 3

box. Slmllarly, a change in bl ofa subscrlpt expresslon wnll not affect the hclght bclow

3

¥ v
the base reference, h2, of the box However a change m,hl .md/or he of ato or from

-

expression aflects the helght above or below the baﬂe reference of the box respectlvolyk »

- \ . . . . .

P ' cw . . P

X



5.4. Summary

. - ‘ - - . -
In this chapter, we have presented the objectives and design of a document editor
in terms of the representations and manipulation of document content. We have deli-
berately avoided specification of how it should be implemented for portability of the

design itself. In the next chapter, one of the possible implementations is reported.

'



\ : Chapter 6

Implementation of the document editor

In this chapter, the implementation of the document editor will be described.
The main objective of the implementation is to test the validity of the design

presented in the previous chapter and to provide a tool as the starting point towards

the ultimate system.

8.1. Implementation environment
>

The document editor has been implemented for the Apple Macintosh micro-
cm}nputcr, using SUMacC? on VAX3 11/780 running UNIX?T 4.2 BSD. SUMacC is o
software package which, together with the cc68 compiler, allows a Macintosh applica-

_ 4
tion written in the C programming language, with calls to various Macintosh toolbox

managers and graphics routines, to be converted into machine code that can be cxe-

cuted directly in a Macintosh microcomputer.

There are a few reasons for choosing Macintosh as the development medium.

~

First, the desktop concept of Macintosh maps close to the usual working cnvnronmcnl
of potential users (teachers students). Users manipulate objects on the screen as they
manage files and folders on their desk top. This ngturalncss of user interaction minim- -
izes the initial hurdle of gctting used to the system and the need for future consulta-
tion of system manuals. Ti;n resulting increase in user satisfaction and productivity
will increase the chance of acceptance of Lools and materials built for it. Sccondly,

various toolbox facn]mes avallable in ROM, especially the pull down menu and wmdow

N

management facilities, help to create a multi-window menu-driven'syst,cm., In cases

where pull-down menus are not appropriate, the;window management facility and oth- .

ers such as the icon definition facnhty allow alternatives such as pop up menus.

2 $UMacC was developed at qtanford Umversnty by Bill Croft. .
3 VAX is a trademark of Dlgnal Equipment Corporation. : (
4 UNIXis a trademark of AT & T BELL Laboratories. -

45



16

Thirdly, the powerful. MBR000 processor together with a versatile graphics package
(Quickdraw) allow more sophisticated applications to be written. Furthermore, the |
treatment of characters us bit-maps and the availability of various font definition
facilities allow casy addition and manipulation of fonts. This greatly increases the
variely of materials such as equations, chemical formulae and foreign languages which

can be included in courseware materials.

Last but not the least. the price of a Macintosh is within an affordable range of
cducational institutions. Thus, it is suitable to be used as a*creation and delivery
medium. Moreover. a lot of cffort has been devoted by the research community (espe-

cially in North America) to exploring the potential of the Macintosh. Improvement and

dixcovery of new possibilities are expected through sharing of ideas.
6.2. Editing environment

The editing environment of the document editor is best tlustrated by the screen

layout(shown in figure 6.1). The editor is basically a menu-driven system with the fol-

lowing major coprponents:

1) Docum;

2)  Menu bar,

3) Figure object menu,
4) Equation symbol table.

Each component represents a part of the user interface responsible for a specific subset

.

of functions. , R



Do_cum('nt
Figure Ot ect Menu Close Box Window

Men ;
Bar \File Edit Cont/& Font Sizes Operator Sperinls/

A I

. .
: G : Name

[} ]

1 ' 3
t ]

] ] -
] t

: ! (Work Area)

[} A )

: : Vertical

' ) « Scroll

! t Bar

] ]

] (]

[} '

t 1

=== I 2 et B e e S S al
" tadp
T = S
]
1 ' :
] t
1 Fommmm o I .
] - .
1! Wrevious  1Nekt 1)
I A e S Ay QA
Equation Horizontal Grow lcon
Symbol ’ - Scroll Bar

Table

Figure 6.1 Screen layout of the document edjtor

6.2.1. The document window -

The document window represents the user's view of his/her document. The
Name field displays the name of the document. The vvertiéa'l scroll bar allows scrolling
) i ,
the document upward and downward while the horizontal scroll bar permits left and
right sideways scrolling. The grow icon allows shrinkagé and Expansidh\of the docu-
ment window. Clicking the close box clo;es the doc'umept} window. The present im'ple-‘ 4

mentation handles only handle one document at a time. Therefore, closing the docu:

ment window also causes exit from the document editor. Future implementations

.‘3}‘



18

should allow several documents to viewed at one time.

Part of the documcnt‘is displayed in the work area. The user enters and manipu-
lates the document through various menus, the pquation symbol table, the keyboard
and the mouse. Notice from the screen layout that tools exist for the manipulatjon of
text, figures and equations. This allows the flexibility of handling-a document with
varied types of document (;ontelxt in one cditor, which may account for much saving in
time compared to switching back and forth among several editors each of which han-

dles one kind of document.

6.2.2. The menu bar

The menu bar displays the titles of a set of pull-down menus available in the
document editor. Other menu types are stationary and pop-up. A menu groups a set

: Ve

of itcm‘s corresponding to functions indicated by the title. For example, the File m(mm/-/\
consists of items folr file manip&latiéh'l:unctions. The use of pull-down menus has the
advantage of saving valuable screen space, however, it also increases the amount of
motor activity required to initiate a certain command. Tberef;)re, if the items in a
particular menu are comparatively little useq, we shall group them into a pull-down -
menu. 1A

The -File and Edit menus contain items for the usual file mauipulafion and cdmug
' ands respectively. The Font menu consists of the names of available foms pro-

vided by the editor and the Slzes menu contains the hst of font sizes supported.

. The Content menu lists the types of document content supported by the current
implementation. It consists of the following items:
1) . Text, : -
2)  Figure, and

3) Eduation.



19

It also serves as an indication, both to the editor and user, of the current type of (iocuj
ment content (text by default) being manipulated. The item corresponding to the
current type is checked. If item Figure is selected, the Figure Object Menu will be
displayed and the work area erased. If a figure 1s currently selected (by double-
chcking on it), it will be displayed in the work area. Otherwise, the work aréa is left

blank and is available for the user to enter a new figure. The newly created figure is

then inserted after the cursor position just before switching to Figure mode.

When Equation is selected, the Equation Symbol Table is displayed. "I‘ogoth(-r
with the Operators and Specials menus and the keyboard, the user 1% able to enter an
cquation. The Op(’ratofs menu consists of items corrcspoﬁding to commands that
would initiate the definition of a new type of expression such as fraction, subscript,
superscript, square root, from and to. It can easily be expanded to incorpor*xto new
expression types such as a pile of expresstons, et_c..- The Sbeci:xls menu contains the
names of symbols whése default sizes are greater thal; that of an ordinary symbol, and
which usually appear in ;'m equation. In the present implemenmt.ionj the default sizes
of these symbols are 1.5 times that of ordinary symbols. They in;(‘ltl(’c integral, sum-
mation, product, union and\i'n’tersogction. Again, it can be expanded by adding items.

to the menu.

e
6.2.3. The Figure Object Menu .
_ - » ) _
The Flgure Object Menu contains a catalogue of objects that may appear in a

[

figure. . To enter a geometrlcal obJecL into the figure, the user selects the appropnate

item from the menu and specnﬁes the control points that deﬁne the object through

lnteractlon thh t,he ednor Other objects such as text lines and eququons are entered
v ,

in the same manner as if they were/document, objects in a document with a glven base

roference. '



50

The Figure Object Menu appears when Figure is selected from the Content menu
and disappears when other items (Text and Equation) are selected. The Equation

Symbol Table will also appear if the user wants to enter an equation into the figure by

‘selecting the appropriate item from the Figure Object Menu, and disappears when

other items are selected. This menu can be expanded by adding items into it and the
corresponding handling routines. If the items added correspond to objects other than
text, equation and geometrical objects that can be characterized by a set of control

points, the appropriate data structures would have to be added.

6.2.4. The Equation Symbol Table

The Equation Symbol Table ¢onsists of a table of symbols (mostly (}reelr letters
and uother mathematical symbols) that are not available on the keyboard. Except for
the appearance, they possess the same properties, such as default size, as keyboard
symbols. The users enter a symuol by clickiug‘ on the appropriate table entry as if
they were typing a character on the keyboard. The Previous and Next buttons near
the bottom-right corner of the table faci‘ﬁﬂtate expansion of the table. A doubly-linked

list of symbol tables can be constructed when more symbols are required. This tuble

disappears when the users are not currently magipulating an equation.

‘In the cdmng environment discussed above e have mtroduced three modes of

. opcratlon text, figure and equation. Accordmg to the standard user-interface guide-

lmes for a Macmtosh application, modes are to be avoided whenever possible. How-

ever, a modeless editor requlres that different l(ypes of document objects be treated as

‘ homogeneous entities, whlch is not acceptable since dlﬂ'erent document objects have

A ]
different edmng/formattmg requirements. Therefore we have introduced three modes

of operatlon each of whlch corresponds to a partlcular type of document object In

domg S0, we have tried to prov:de adequate lndlcatlous of the current maode of opera-

)

“tion to users (for example dlsplay of ﬁgure object menu in ﬁgure mode ‘equation sym-



ATY

bol table in equation mode and checking the appropriate item in the Content menu).

6.3. Internal representation of a document

A document is described by a document record and the document content i<

represented by a doubly-linked list of document objects (shown in figure 6.2)

document record

Name

currentMode

theWindow

windRec

objectList

screenRect

startSelect

endSelect .
hScroll

vScroll

firstAppear,

lastAppear

Figure 6.2 Data structure representing a document

[

The document record contains descriptive information about the current status
‘and characteristics of the document . The Name® is a string of characters storing the

name of the document. The theWindow and windRec fields are pointers to the'g'raf-

“port of and a record containing descriptive attributes about the document window

respec’tively. The AScroll and vScroll are contrbl handles to the horizontal and vert-
[ 4
ical scroll bars associated w:th the document window. The acrecnRect field is the rec-

tangle bounded by the. document window on the Macmtosh screen. The  vbjectlist

.. 8 The names of fields of data structures described in this chapter will a_b;féar in italics.



52

\

ficld points to the list of document objects. The startSelect and endSelect fields .
point to the beginning and end of the current selection range of document objects and
the first and last objects appearing on the document window are indicated by the
firstAppear and lastAppear fields. The currentMode field shows the current mode of
operation (text, figure or equation}

The main reason for using a doubly-linked list, instead of a singly-linked list, is to
represent the document structure in a way that facilitates vertical scrolling of the
document. A document can thus be scrolled upward and downward with equal ease
computationally. By storing all the information about a document in 4 document -

. ‘ g
record, the document editor can easily be expanded to handle more than one document
at a time. Each document would then occupy a separate window and would be

, e
described by a different document record. An obvious'advantnge of a multiple-
Y
document editor is the possibility of transferring contents a?non«7 documents

« f
g

8.4. Internal representation of a figure

. /
The data structure representing a figuré is shown in figure 6.3. A figure record

contains descriptive attributes about a figure. A simgly-linked list of objects is used to

represent component objects in a figure.

The type .ﬁeld indicatcs the type (figure) of an instance of the object. The
objList field points to the hst of objects.in the ﬁgure and the currently active obJect is
pomted at by currcntObJ . In the current lmplementauon grouping of objects into
subfigures is not sUppc;rted Thus the edltor can oxﬂy handle one Ievel of object at a

tlme The height and w:dth fields store the helght and width of the figure respec-

" tively. The nezxt ﬁeld points to the next document obJect and the previous field

/

~points to the prevnous document obJect

i



figure record

type
objList ™ 71"
height
. width

>~
currentObjg-

next

previous

Figure 6.3 Data structure representing a figure

An objcc’t in a figure is described by a figure object record (shown i figure 6.1).
The type field tells the t_\"pc of the object bounded i)y the boundsRect. It might be a
basic geometrical object describable by a list of control points and the associated th(-.
boundsRect, or it might be a décumént object (a line of text or an equation). °ln the
latter case, the controlPoints field points to one point containing the horizontal dis-

placement and the base reference of the document object pointed at by the otherOby

ficld. The nezt field points to the next object in the figure.

figure object record

. ' —A

type
‘1 controlPoints Pos |yPos | 77—~~~ —»kPos | yPos|!

boundsRect

otherObj
next

3

Figure 6.4 Data structure rel;resenting_an object in a figure

o -



6.5. Internal représentatioh of a line of text

The data structure representing a line of text'is shown in figure 6.5 A line of text

15 deseribed by a text line record.

text line record

N

type ’ ‘ ,

height ) . - .

width

;

relBase

thel.ine "‘*"{J string of characters 1

N

currentChar

: - —-_———

segment[,ist

currentSeg ,
next
. ; ‘text segment
previous .
descriptor
'Y Figure 6.5 Data structure representing a line of text

A .

The type, height, width, next and previous fields of a text line record describe a
text line just as those of a figure record describe a figure. The relBase stores the com-

. . ' L4
mon base reference of the text segments relative to the bottom of the previous docu-

ment object. The string of é’haractérs 10 a téxt line is séored in an array pointed at by
the. theme field and is descrlbed by a list of text segment. descrlptors (shown in
figure 6.6). Thé currentChar ﬁeld stores the mdex to the current character in a text
. segment descnbed by the text segment descnptor pomted at by rurrcnlS'eg In the -
Current lmplementauon we only support single character selecuon and operations.

However, there is no conceptual'dlﬁiculty in-extending to_multiple characteréélcctions ‘

and operations.

o



()

B X))

fght

fontSize .

length

numChar

next

Figure 6.6 Record Structure representing a text segment descriptor

L]

-

6.0. Internal representation of an equation

4

An equation is represented as a sequence of boxes(shown 1n figure 6.7} headed by

a box of type Equation. , .
. type info to
hi J - font )
’ - superscript
h2 fontSize -
width = . 1 lOCal\’Vrdth _subscript j
previous next ' from .

Figure 8.7 Record structure represeniing a box

5

The sum of hl and hZ fields of a box of type Lquation tells thc hmght of the equa-

1

tlgnﬁf'zaﬁd the width field represents its width. As usual, the next and previous ﬁclds

_point to the next and prevxous document objects respectlvely The provision of the’

font and fontSize fields i in A box IS to facilitate local varmtnon of font and font ﬂn(‘q

<

though it is not yet supported by t,he current lmplementatlon

'

In updatmg an equatlon we traverse the equauon strucxure recurslvely in «o.xrch-
[4

ing for the box bemg updated whlch thus est.abhshes a path towards Lhat bov( Aftor

performing the operatlon we determme the eﬂ’ecj,s caused by the opcratxon on other

parts of the equation using the algorithm’ described in chapter®five. In the present

s
Coa

)



56

implementation, we support arbitrary positioning of the cursor in an equation and per-

forming single-symbol and box insertion and deletion. As mentioned in the previous

" ~

chapter, expressions (hence boxes) occupy disjoint rectangular regions on the screen.
A group of expressions and/or boxes' can thus be formed by specifying the region
bounded by the selected group. Thus editing operations can be extended to multiple

levels of expressions and boxes.



Chapter 7

Conclusions and further work

7.1. Conclusions

This thesis has investigated the requirements for a courseware preparation system
and various aspects related to its design and implementation. We have started by
reviewing existing.coursewnre ‘preparation facilities which heélped to identify the
difficulties involved in courseware preparation, and the existing approaches to tackling
these problems. The advantages and limitations associated w"ith‘ cach of t.ho!s(‘
approaches provide thé guidelines for formulating the requirements. We have con-

sidered the requirements for the user interface, for the courseware and for the indepen-

dence from hardware and software choices.

Based on these requirements, a preliminary design of a coursewynre preparation
system has been proposed in which the courseware datab'ase.is'tbe centrallcomponent,.
The author enters and modifies materials in the courseware database, produces a docu-
ment that represents selected portions of the total materials via the authoring com-
ponent. The intérnreting component derives the necessary informatiqn from the cour-
seware database for presentatlon of matenals to students. Thus the feasnbllny of the
whole design depends on Whether courseware can be expressed as a database schema.
This implies the need of describing courseware . at a hlgh level by a suitable ‘data
descrlptlon language A conceptual schema expressed in the data description facnlmes

.provnded by the Semilattice Data Model has been develop&l and presented.

Two basnc constructs COntent element and presentauon unit, have becn |nero-
" ~-duced for representmg course content and groupmg courseware matermls into modular
‘rvunlts for presentatlon. Informat.lon necessary for the presentatxon. orgammtmn and
‘ manavement aspects of courseware matenals are descrlbed by attrlbutcs assocmtcd
wnth ‘the correspondlng tuples Though the descnpt;on may only support a Ilmned :

Y

57



subset of all possible instructional techniques, and may not allow detailed diagnostics
based on a student’s Tesponse, it does satisfly the purposes of providing a common con-

ceptual view of courseware. materials and serving as a basis for evaluation and

n

enhancement, as stated at the beginning of the description.

— A document editor capable of editing/formatting a document with some text,
figures and. equations is designed and implemented. It is part of the authoring com-
ponent of the overall design and, in addition to producing a document. is capable of

reprgsenting document content in such a way that can be converted to tuples ax

3 . @
.
-

described in the conceptual schema. Hence an author may preparé his/her documents
at any place where an Apple Macintosh c'ter 13 accessible. The resulting docu-

ments could then be integrated with existing materials in the courseware database.

a

The formatting of document contents (text lines, figures and equations) is performed
) - <

automatically. The author is just required to specify the type and charncl,eristiq

v E

{font, font size, ete.) of the document content to.be handled. »

7.2. Further wbrk ’ ' _—
/

As the work reported in this Lhesns represents a first step toward~4 lhe actual
unplementahon of a courseware preparation system, much is left to be done. In this

' scctlo‘z, some suggestions for possible directions of further work will be proviiod.

Since courseware database 13 the central component of the system refinement of
the conccptual schema (high- level description) is of highest priority over others. More
' research is needed to explore other factors essentlal for the presentation of courseware

matcrmls Once a ﬁnahzed versnon of ‘the schema is ready, other compo’nenps of the

“,

system could then be deslgned and specxﬁed in detail. .

-

In the burre‘np design and implementation of the document editor, emphasis has
been placed on the repfesentation of various types (text, figure and equation) of docu-

“ment content. There is not much support for formatting and structuring an entire
] . .. B - ’ - . s ‘



59

™ . . .
document. Further work is suggested to incorporate more docume

nt formatting and

[y
' [

structuring facilities into the system, and to extend the variety of types of document

content in addition to text, figure and equation.



[AlI8 1)
[Arm8]
(BaGa2]

[BBAT0]

(BBBTS

[Bungl]

[Dea78]
[Dow7.4]

[FeiB8]

References ,

Michael W. Allen, A I;PW approach to authoring C'BE courseware, (‘ontrol
Data Corporation, 19841, |

W. W. Armstrong, A Semilattice Database System |, University of Alberta,
1984.

David 5. Backer and Steve Gano, f)ynamicnlly Alterable Videodisc Displays,
Graphics Interface, 1982, |

Avron Barr, Marian Beard and Richard C. Atkinson., The computer as a
tutorial laboratory: the Stanford BIP project, Int. J. A\Ian-/llarhin-e Studies
Vol. 8, (1978), pp.567-596, Institute for Mathematical Studies in the Social

Science; Stanford University,

John Seely Brown, Richard R. Burton and Alan .(;" Boll.‘. SOPHIE: A Step
Towards Creating a Reactive Learning Environment, Int. J. Man-AMachine
Studies Vol. 7, (1975), | Computer Science D.iv‘rsion, Bolt Beramek and
Newman Inc..

C. Victor Bumnderson, (‘oursew’are, in Computer-Based ]n.strurtion;;l ‘Sta.te-
o/-thc~Art-Aa.seasment, Harold F. Jr. ONeil (ed.), Acedemic Press, 1981,
pp. 91-125. A <y -

P. M. De‘jan, Computer-assiste’d instruction authoring systems, Educational
chbnolog}y Vol. 18 Number 4, (April 1978), pp.2£)-23'. |

M. W, Do-wséy,»Easy Author-entry System: 'a Review and a Protob&pe; Int. J

Man-Machine Studies, Vo(. 6 Number 4,‘(1974), pp-401-419.

Sahiue.l L. Feingo.ld. PLANIT - A language for CAl, Datamadtion 14,

(September 1968), pp.41-47.

60 | o | {A



[FoD&3]

[GWRS1]

[Gre82]
[Gregd)
"
(HBF85)
(lan82]
[Kea82]
(KoP76]

[Kro83]

[MSF80]

61

J. D. Foley and A. Van Dam, Fundamentals of Interactive Computer

(iraphics, Addison Wesley, Reading, MA, March 1983,

Robert M. Gagne, Walter Wager and Alicia Rojas, Planning and Authoring
Computer-Assisted Instruction Lessons, Educational Technology, September

1981, pp.17-21.

Mark Green, FDB: A Frame Based Database System, University of Alberta:

User Manual, 1982,

Mark Green, The University of Alberta User Interface Management System,

Proc. Siggraph'85 San Francisco | 1985, pp. 205-213.

A. M. Hlady, J. W. Brahan, B. Farley, W. H:Henneker, R. A, Orchard and

C.S. Phan! NRC/DEFE Bulletin Vol. 2 Number 5. (May 1985), pp.55-63.

Sommerville, lan, in Software Engineering, :\ddison—\\/(-sl(@ Publishers

Limited, 1982.

Greg Kearsley, Authoring Systems in Computer Based Education,

Communication of the ACM Vol. 25 Number 7, (July 1982), pp.429-1437.

Elliot B. Koffman and James M. Perry, A model for generative CAl and
concept selection, Int. J. Man-Machine Studies Vol. 8, (1976), pp. 397-410.
BN

David M. Kroenke, Database Processing:  Fundamentals, " Design,

Implementation, Science Research Associates Inc., 1983.

-

M. D. Merrill, E. Schneider and K. ‘Flctcher, Tl(,‘v(}l'l‘, Fducational

" Technology ,Publicationab, 1980.

[Moh85]

Thomas G. Moher, Videocassette Course Dcvelopm_'ent }'sing Microcomputer.

Graphics, IEEE CGHA, June 1985, pp. 34-40.

! L



62

[Neg81]  Nicholas Negroponte, Media Room, Proceedings of the SID Vol. 22 Number

2,(1981), , Massachusetts Institute of Technology.

[(SNC?Q] Harold F. Jr. ONeil, Cognitive and Affective Learning Strategies , Acedemic
Press, 1979.

[0178]  Luis Osin, SMITH: How to produce CAI courses without programming, Int.
J. Man-Machine Studies Vol. 8, (1976), pp.207-241.

[OvT81] Setsuko Otsuki and Akira Takeuchi, A Unified C.A.L Sysfem For Authoring,
Learning and Managing Aids, C'omputet:a in Education: Proceedings oj: the
Third WCCE. | 1981, pp.249-256.

[Pog&0] Richard E. Pogue, The Authoring System: Interface between Authox-' and
Computer, [Research "and Development in [:'dilrlatt'on Vol 14 Number I,
(January 1980), pp.57-68.

[RoP83] Frankfin C. Roberts and Ok-choon Park, Intelligent Computer-Assisted
Instruction: An Explanation and Overview, Educational Technology,
December 1983, pp.7-11.

[Rom70] Fugene William Romaniuk, A Versatile Authormg Language for Tearhers

- Ph.D. Thesm University of Alberta, Spring 1970,

’

[5ch83] Jack Schwartz, Languages'and System;) for Computer-aided lnstruction,
‘&Iacht'ne-.’\lcdt"ated Learning Vol..I’ Number 1, (1983), pp.5-39," Courant |
Institute of Mathemat;cal Science, New York University. '

[V 0)82] Stanley Voyce, A Functional Analysis of Courseware Authoring Languages,
AEDS Joumal 1982, | |

) [\Vesﬂ} M. Westrom Summary and current status of NATAL-74, 4FDb Journal

Vol. 10 Numbcr 4 (1977) pp 83- 89



