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Abstract

We attempt to construct an alternate proof of Merkurjev and Suslin’s result that

if 2 is prime to the characteristic A of a field then we have an isomorphisin

YN /.’2(/\'.11") — ( :) NS ()
n

The key result needed is a generalization of Hithert's 90 theorem for Ay which,
althongh it can he stated in terins of explicit generators and relations. requires

surprisingly deep properties of higher K-theory.

In the first chapter we explore the relations hetween the Severi-Braver varioties
over K the skew ficlds finite dimensional and central over A and the cohomology
gronp [=(Gal(A>P). 1n the second chapter we develop the formalism of higher
K-theory as well as a Riemann-Roch type theorem. In the third chapter we
construct the BQG spectral sequence and prove Hilbert's 90 for K. [n the last

chiapter we colleet our results and prove the isomorphism above.
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CHAPTER 1

The Brauer Group

1. Introduction

The study of skew ficlds and the Brauer group of equivalence classes of central
simple algebras has a long and distinguished history tracing back nearly a century
and a half to Hamilton’s quaternions. The study reached its classical peak in the
1930’s with the proof of the Brauer-Hasse-Noether theorem that showed that all
skew fields finite dimensional and central over the rationals were products of the
cyclic @ algebras, and that a similar result held for global fields. The nataral
generalization of these results asked whether all skew fields finite dimensional
over their center N were similar to the product of cyclic algebras over K. Milnor
conjectured that the norm residue homomorphism connecting Ky of a field with
its Brauer group was an isomorphisnt, which, along with other applications to
algebraic cycles, implied the result. The conjecture resisted all attempts until
the 1982 publication of [27] which required heavy use of higher K-theory as well
as intimate cohomological know!edge of Severi-Brauer varieties. ‘The proof has
been simplified somewhat in recent years, particularly in [26] and [47). The goal
of this paper is to provide a simplified relatively self contained approach to the
theorem of Merkurjev and Suslin.

In this document A will always represent a field and 7 some field extension of K.
By a variety we mean a reduced and irreducible scheme of finite type over Spee K,
and for any scheme X over A" we denote the base extension Spee L xspee g X by

Xr.

2. The Brauer Group

Given a field K, recall that a algebra over K is a ring, not necessarily commuta-
tive, that contains A" as a subring. We call a K-algebra A central if the center of
the ring is ¥, and we call A simple if it contains no nontrivial two-sided ideals.



If we regard A simply as a module then A s just a vector space over K. The
dintension of A is rank of this veetor space and A is finetely generated if the rank

1s finite.

DEFINUTION 1. We define a diriston algebra over N to be a finitely generated
central N-algebra that is also a skew-field, and we call a finitely generated central

simple algebra over Koan Azumaya alycbra.

Exanpre 2. Classically, we have Frobenins® theorem: The only division alge-
bras over B are the real numlers, the complex numbers. and the quaternions.
Thus the only central division algebras over 2 are = and =, See proposition 51

for & proof.

FxaneLe 3. A general class of examples are the eyelic algebras, Let L/ be a
Galois extension of degree n with a cyelic Galois group gencrated by an element
o. For cach element « € K we let (f.1/N.#) be the n-dimensional vector sparce
over Lowith basis vectors (rg, ...y 1) and define a multiplicationon (a. L/ K. o)

by

ol Vg ifi4+j<n

() (el = o,
co(e" )V faig,mn i+ j2>n

and extending linearly. A dittle computation! shows that this forms an Azumaya
algebra over Iy,

Sinee all nonzero elements of a skew field are invertible, all its ideals @ st be
trivial. Thus division rings are Azumaya algebras. Some quick algebra shows
that a matrix ring of a division algebra over K is also an Azamaya algebra over

K. In fact, we have the following elassieal result.

THEOREM 1 (WEDDERBURN). All Azmmaya algebras over A are isomorphic to

Mo (D). the matrix ring of a division algebra over A

PROOF. See almost any text on non-comnmtative ring theory, sueh as shaptoer
three of {8] or section 1X.1 of [48].
We will need to understand how Azumava algebras react to tensor products.
Tueores 5. Let cband B be Azumaya algebras over K and let L/RK be a field
extension,

(1) Aoy Bs an Azumaya algebra over K

(2) If A% is the opposite algebra to 4 then A =y A? = ML (K) where nois

the dimension of -1 over K.

I\ odify the argument used in lemma 39



(3) L Ox Ais an Azumaya algebra over L.

Proor. Sce [18]. [X.1 prop 3.
We can use Wedderburn’s theorem to define an equivaler.ce class on the set
of Azumaya algebras over A by identifying algebras with the sanie underlying

division ring. We call the resulting set the Brauer group Br(K).

ProrostTion 6. Br(K') ferms an abelian group with the group operation given

by the tensor product of algehras over V.

Proor. The tensor product is closed by theorem § and, as usual, forms a
commutative and associative operation. Thus the set of Azumaya algebras formn
a commutative monoid. We compute that A, (K)o ML (K) = M, (K) and
that AL (D) = M (K) G D, so the set of algebras equivalent to I form a
multiplicative subgroup. We can thus take the gnotient mounoid, which forms a

group with the inverse of an algebra given by the opposite algebra.

PROPOSITION 7. For any extension L/ we have the (ransfer homomorphism
resp i Br(W) — Br(l)

given by the map A — L &y A

Proor. This is clear by the associativity of the tensor product.

This formalism allows some quick results.

ProprosiTiON 8. There are no division rings over an algebraically closed field
except for the field itself, so the Brauer group of an algebraically closed field is

trivial.

PrRooF. Let K be algebraically closed and let £ be a centrai division algebra
over K. If we could choose & € D with » € K, we would have a finite extension
K] of K. K[x] would be a field as it would be a commutative subring of a
skew field, but this would make it an algebraic field extension of an algebraically
closed field. Thus A is the only division ring over A" and the Braner group is

trivial.

ConrorLary 9. The dimension of an Azumaya algebra is a perfect square. We

call the square root of the dimension the indexr,

ProoF. Given an Azumaya K-algebra A we let A be the algebraic closure

of A" and compute

dimg A =dimg K ©Ox A = dimg M, (K) = n*



DEFINITION 10, Given an extension L/K and an element [A] of BriA'), we say
that Lis a splittimg ficld for {A] or that L splits [A] if the image of [A] in the
restriction map resg g is trivial. We define br(L/K) to be the subgroup of
elements sphit by L.

Proposition 8 shows that all Azumaya algebras split over some algebraie exten-
sion. We, however, will require more. W wonld like to prove that all Azumaya
algebras spiit over some finite ditensional Galois extension. We need the fol-
lowing two technical lemmas. By a subfield of a ring we mean a conumitative
sibring containing the center that is also a field. By a marimal subficld of a ring
we mean a subfield that is not a subset of any other subfield, and by a marimal
separable subfizld we mean a separable subfield that is not a subset of any other

separable subficld,

Leanta T I D s anon-conmmmtative division algebra with center K then 1)

contains a subficld that is a nonrrivial separable extension of K

Proov. Let p be the characteristic of N oand choose o 2 D = N 0f o is
not purely inscparable over N then K(D) contains a nontrivial subfield tha
ix separable over KO AE d is purely inseparable then we can assume wlog that
d¥ € KN and construet an endomorphism 7 of D by setting 7)) = drd™' We
cotnpute that (7 — 1P =0, so we can find » maximal with (7 = 1y # 0. Thus

we can pick » = (5 = D)7 D such that o= rie) — 0 Z 0 and t() = 4o We

£ 1o J
- <_ SHEL gL
i T K

so 7 induces anonteivial antomorphisin of A(e/y). which implies that oy s

compute

i

not purely inseparable,

Leaxivia 120 16 D s a division algebra over A7 then every maximal separable

subfield of 1) 15 a maximal subfield.

Proor. We let [ be a maximal separable extension of K in 2, let LS he a
maximal subficld of 1) containing L. and set F to be the subring of D of all
elements that commmnte with Lo Fis a division ring with center L. and we know
that [ C L* C F. If £ is not comnmtative. then lemma 11 would give us a
separable extension L'/ L contained in £ But then L' would be separable over

K, which would contradict the maximality, Thus F ix commutative and L = L5,

LEsaa 130 Let D be a division algebra over A and let L be a maximal subfield.
Then L is a splitting field for D and the index of D is dimy L.



Proor. Weregard D asaright L&D module by defining the action x-({®d) =
lxd, wherez € Dand I©d € L © D. We can now consider Endjep D, the ring
of module endomorphisms of D. For any y € D and ¢ € Endrep D we compute

oly) =o(1-(1Oy)) =o(1)- (i Oy) =é(1)y,

so every endomorphism is just a left scalar multiplication. Letting ¢(y) = 2y for

some r € D, ¢ is an endomorphism precisely when
lryd = ¢(y) - (1S d) = d(y - (L& d)) = rlyd,

so Endzgp D is the subring of D of all elements that commute with the elements
of L. We claim that End;qp D is exactly L. If not, we could choose an clement
z of the endomorphism ring not in L and consider the ring L(z). As above,
L(z) would be a field, which contradicts the maximality of L. The right /. < D
module structure on D induces a right L& D module structure on the i algebra

L & D, so we have a N-algebra isomorphism
Lo D= EII(ILQ;.D (L & D),

where the endomorphism ring is over L ¢ D regarded only as an £« D-module.
Let n = dimpg L and note that a basis of L over A induces a surjective right

L & D module homomorphism
f:D"— LoD

which is an isomorphism by dimension considerations. Thus we have K-algebra

isomorphisms
Lok D=Endp.p(L G D)= Endg.p(D") = M, (Endy,.pi 1)) = M,(1).
Thus D splits over L and the index of D is n.

COROLLARY 14. Every Azumaya algebra over A splits over some separable ox-
tension L/K with dimy L equal to the index of the underlying division algebra.

Every clement splits over some finite Galois extension and
Br(K) = | JBr(L/K)
L

where the union ranges over all the finite Galois extensions.

PrROOF. Any Azumaya algebra splits over a maximal separable subfield of its
underlying division algebra, and hence splits over that field’s normal closure.
We now consider an extension L/ with automorphism group I'. An Azumaya
algebra A over L is given by the ring A and an inclusion ¢ : L — A. Given

[543



an clement o of I', we can induce a new L-algebra structure on the ring A by
considering the inclusion ioe : L — L. We denote this new algebra by 7 4.
This map lifts to give a left-I" action on Br(L). An element [A] of Br(L) is thus
wvariant under the action of ¢ when A4 =7 4 as L-algebras. We denote the

subgroup of elements fixed by all @ € I' by Br!'(L).

Prorosition 15, We have an exact sequence
0 — Br(L/K) — Br(K) —=L5 31y

Proor. The restriction maps Br(A) to Be(L). but for [1] € Br(K) we com-

pute

So res[A] is invariant under the action.

FrorosiTion 16, Given an n-dimensional separable extension L/R of we can

define a homomorphism cory /e Br(L) — Br(A") such that

COTp g oresy  p [1] = H[.'ﬂ

Morcover, if L/K is Galois. we have

Fesp /i © <'0r,,/,\'[:l] = ,\',\-/1'[.-1] where N = ZHE(;HI( L/K) T

PrROOF. We set N equal to the normal closure of L. T to the Galois group of
N/K and let Ty be the subgroup of T that fix L. We choose coset representatives
{ril so that I' = ur,I' . For cach [A] € Br(L) we set

B = ® |

!
Clearly I acts trivially on o1 so B is independent of the chotee of 1 and T simply

permutes the factors of . Thus [B] lies in Br(L)Y and we can show
B=resp '8

We now compute

. [L K]
corp i oresy p[A] = I ® Lo A = n[A]
/

i=1

If L/K is Galois. 'y, is trivial and {r;} = " and



r
resp g ocorp (Al = L O Z[gA] = Np/r[A]
ger
CoRoLLARY 17. The Brauer group of a field A is torsion, with the order of an
element dividing its index.

PROOF. Given a division algebra D we set L to be a maximal separable
subficld. resy; [D] vanishes, so cory x ores L/K[D] = [L : K][D] vanishes.

3. Skolem-Noether
We require one lemma concerning automorphisms of simple rings.

LEMMA 18 (SKOLEM-NOETHER). Let B be an Azumaya algebra over A with a
K-algebra subring A. If A is simple and ¢ : 4 — B is an injective K -algebra
homomorphism then there exists b € B* such that ¢(a) = bab~!.

PRooOF. For any homomorphism ¢ we induce an A @y BP-module structure
on the group B by defining (a @ 6)a = ¢(a)zb for a &b in A G BOP and & in
B. We denote this module by B;. We can show that any two such modules are
isomorphic?, so we choose such an isomorphism f : By — By, where i : [ — A
is the inclusion map. We compute

fley=f((1@z)-)=(1ez)- f(1)= f(1)r
JMe(e) =f (o)) = f((z 1) 1) =(ze 1) f(1) = 2f(1)
Thus ¢ is given by conjugation by b = f(1) in B*.

CoroLLaRY 19. All automorphisms of a simple algebra fixing the center are
inner. In particular, all K-automorphisms of M, (K') are inner.

Proor. Choose A= B

4. Group cohomology

In order to get a cohomological interpretation of Brauer groups, we need to
introduce Galois cohomology. We will assume the derived functor formalism in
([18] section 111.1). For a complete treatment of group cohomology see ([12]
Chapter VII)

We will need to develop an interpretation of Brauer groups in terms of Galcis
cohomology. For a complete treatment of regular group cohomology sec ([42)

24 ©y BOP is simple by theorem 5, and finitely generated modules over simple rings are
classified by their dimension.

~



Chapter VII) or the excellent treatment. in ([10]). Non-abelian group cohomology
is discussed in ([42] Chapter VII appendix) and ([41] section 2). We will assume
the derived functor formalism used in ([18] section I11.1).

DEFINITION 20. Given a group (7, not necessarily abelian, we define the category
M((F) of Gi-modules to be the abelian category M(Z(7), where Z( is the integral
group ring over (7,

Note that the G-module structure of a (i-modules Al is completely given by an
action® of (¢ on A/. 'Thus we can associate to each G-module M the abelian
group M, the fixed points under the induced action. We can show that this
gives a covariant left exact functor F from M(G) to Ab. Alternatively, we can
define F(M) to be the subgroup of M whose elements are annihilated by the
ideal I in ZG generated by elements of the form 1 — g.

Since M(G) contains enough injectives ([18] I11.2), we can construct a cohomol-
ogy.

DEFINITION 21, We define the cohomology groups [7(G. =) 1 M(G) — Ab as
the derived functors induced from HO(C. -)y=F.

There exists explicit injective resolutions which allow us to compute these groups.

G M) ds given by the group of maps p from ( into M that satisfy

plah) = gp(h) + p(y)
quotiented by the subgroup of elements of the form p(g) = gm ~ m for some
m € M. H?(G, M) is given by
{p: G G—=M|fplg.h)y+p(f.gh) = p(fy.h) +p(f.9)}
{plg.h) = gr(h) = 7(gh) + 7(0)}

Note that the above representations make sense even when M is not abelian but

still has a G-action, The cocyele conditions, however, are no longer linear. so the

resulting sets are no longer groups but are pointed sets containing a zero element.
/ a4 . . . ) _

We can a sequence 4 = 3 = (" of pointed sets is cract if f(A) = g=1(0).

PROPOSITION 22. If we are given an exact sequence of groups 1 — 4 LpL
(" — I with A contained in the center of B then we have an exact sequence of
pointed sets

H"1G )

HG L) HY WG

(G B) HOG.CY = HYGL A
HYG.C) 2 112G, A)

L — HY%G,A)

1,
HYG, By HEe)

Proo¥r. See [12] proposition VI1LLA.2

Fnamely a group homomorphism from G to Aut(M)



5. Sevceri-Brauer Varieties

We will now define a geometric analogue of the Brauer group whose clements

are varietles,

DEFINITION 23. We call a variety X over K a Severi-Brauer variety if we can
choose a Galois extension L/ K such that the base extension Xy, is isomorphic, as
a variety over L, to the projective space 7. We call any such L a splitting field
for X . We denote by Gb(X') and Gb(L/K) the set of Severi-Brauer varicties
over A" and the subset of those that split over L, respectively.

PROPOSITION 24. A Severi-Brauer variety over K either splits over K or it con-

tains no points.

Proor. [7]
The geometry of these varieties connect nicely to our constructions. There is a
link [3], for example, between the Picard group of a Severi-Brauer variety over i
and the Brauer group over A'. The function fields, in particular, have a crucial

property.

PrRoPOsITION 25. The function field k(X) is a splitting field for a Severi-Brauer
variety X .
We represent. X as a subvariely of P . so we choose elements f; € KNlxg, ... ap]
such that
X = Proj ( Klzq,.. .1:,,_]_)
(filzo,...xp))

X has an #ffine subset Spec R with

]\-[t],. . .tn]
R= —lbrtal
(fi(],tl, tn)’

R is a domain, so the field of functions k(X) is the field of fractions Ry We

now compite

\ D 12(0)[%,...1-,,])
Ty = Proi ((f(wo, )

Thus k(X) splits X as it contains the rational point
p=(zo—lzy—t5,...2p — 1)

This splitting field was studied extensively by Chatelet [7] and Amitsur [I] and
is called the generic splitting field. It enjoys many universal properties (see (1]

for a detailed list), including

9



ProposITION 26. X splits over L if and only if there is a place p : £(X) — L
For a discussion on places we refer the reader to ([22], XI1.4).

Recall that if we are given a field F we let {F, >} be the unicn of F and the
clement co. We can extend the field structure of F by defining for all f € F

fftoo=oc fo=oc(f#0)

xoo=oc 1/0=z¢ 1/ =0,
and by leaving > £ 2, 0ac, 0/0, and >/ undefined. Given fields F and A we
define a place 6 : K — F to be a map from A to {F. x} such that

o(fg) =o6(f)olg) olf +4q)=o(f)+ oly)

when both sides are defined. Note, for example, that o = ¢~ (/') is a valuation
ring with maximal ideal m = ¢=1(0). We say that two places ¢, o' : K — F are

equivalent if ¢’ = ¢ » 7 for some antomorphism r of K.

LEyya 27, Let X be a projective variety over K. There is a bijection hetween

the closed points of X and places ¢ : #(X) — KA.

Proor. The inclusion of a closed point Spec A into an affine open subset

Spee 12 of X corresponds to a homomorphism f @ R — K. We now define a place
by
O k(X)) = Ry — {K.x}

by ola/b) = f(aj/ f(b). Conversely, suppose Spec I is an open affine subset of

X with R = k[ry,...2,]/a and a place

¢ MX)= Ry — K.

By composing with a suitable automorphisms of 12y that map »; — J'i_l. we

can assume that o{o;) # x. Thus 07 (A) = 0 = I and o~ 1(0) = m forms a
maximal ideal of 2. m is clearly generated by (r; — o(x;), so it forms a closed
point in Spec R and hence in X.

To prove the proposition, note that L is a splitting field for X if and only if we
have a place ¢' 1 L g k(X) = k(X)) — L. But this exists if and only if we have
a place ¢ : k(X) — L.

We will also need

ProprosiTion 28. Every Severi-Brauer variety has a splitting field finite dirmen-

sional and Galois over the base field.

Proor. For any X over N we choose an isomorphism as in proposition 25.For

any splitting field L we have

10



2, = i (ol ) g

(f(xo,...zn)) ) —

Closed points on X, are of the form p=(ro—ap,...2n —a,) with a; € L aund
filao,...ay) =0 for all I.

We claim that for any L/K and any sequence of polynomials f; € K[xo,...2,]
that have a common non-zero solution we can choose a solution (aq,...a,) with
a; algebraic over . If not, choose a counterexample with 7 minimal and a
solution (ag,...a,) over L where we assume wlog that ag is non-zero. Since
file,aq,...a,) € R'[X] with ' = K(ai,...a,) we can assume ag is nonzero

and algebraic over K. We let

filer, o zy) = H fila(an).zy, ... xy)

o€GallK'[an]/K')

with fi € RK'[21,...2,). These polynomials lift through the projection
Klzy,...xn] — Klay, .. .a,]

to give polynomials f" € K[z,,...2,). These polynomials have (ay,...a,) as a
common solution. and thus have a solution (4,,...6,) algebraic over K by the
minimality of n. Tracing back, f; has a solution {bo,...by) where by is algebraic
over N (bg,...b,). Contradiction.

To complete the proof, note that if we let L' be the splitting field of the algebraic

elements a; then X contains a point p, so L' is a splitting field.

PropPoSITION 29. Given a p-cyclic extension L/ K, let K(1./K) be the composite
of the function fields of the Severi-Brauer varicties associated to all the elements
of Br(L/K). Then K(L/K) is a field extension of k such that K( LIN)@ Lisa
p-cyclic extension of K(L/K’) and k is in the image of the resulting norm map.

ProposiTION 30. A p-cyclic extension L/K has an extension K™ (L/K) of K

such that
(1) K¥(L/K) is the direct limit of a sequence of & field extensions ky/t
where X is a Severi-Brauer varicty over F' that splits over some p-cyclic

extenston of F.
(2) (K®(L/K)Y® LY/K®(L/K) is a p-cyclic extension of fields.
(

3) The norm map N,'C°°(L/K)<:-;L/IC°°(L/K) i surjective.
Proor. We define K inductively by

K=tk

Kl' — K((Ki—l ® L) /Ki_l)

11



and let N®°(L/K) be the union.

6. Galois actions

Since Severi-Brauer varieties are étale open subsets of projective spaces. we can
regard then as fixed points of some action. We fix a Galois extension L/K with
Galois group T', choose X in &b(L/K'), and fix an isomorphism

Spec L xspee k X = X, 2 F] = Spec L Kgpee w Fl

Sinee ' acts on Spec L on the left we can use this equation to define two left I’
actions on B . If [ acts on the RIIS we get the usual group action, but if it acts
on the LHS we get asecond action that depends on X . The fixed points of this

action are
(,‘";1"1")r = (Spec L Xgpec K I)'. = Spec Lr Xspee ik X = X.

We can use this to define an additive structure. Choosing X and 9) of dimensions
n and m, we have the induced I actions on 7} and 7', We have the Segre

embedding

e s e rn4n
SR Spee LT T .

so we can give S T T action and we define X 4 Q) to be the fixed

points of this action. This 1s Severi-Brauer as

. FRTIEN rar . I - I - +m4 I’
(‘.rlr'm m n)L _ (2)1 X Sy K (A:_rln)[’ — (:xlim m n)

Prorosrrion 31, This makes Gb(L/ ) into a commutative monoid.

Proor. Associativity follows fromt the associativity of the tensor product.

The tdentity is Spee K,

7. &b and the Projective Lincar Group

We fix a Galois extension L/R with Galois greup . let PGL,, (L) be the pro-
Jeetive linear group of m x m matrices over L, and let I act on PGL,, (L) on the

left.

Prorostrrion 32. We have an injective map Q from the n-dimensional efements
of Sb(L/K) into H'(I',PGLy 4 (L))

Proor. We choose X € Gb(L/R) and let X; = 7. We will use the usual
group action notation for the natural left action by I on F}. To represent the

[-action induced by X we define an antomorphism

12



¢g 1 — ],

induced by the action of g € T
Since Py is a variety over L, we have a projection map = : B} — Spec L. 'The

morphisms g and &, factor through 7 to give a commuting diagram.

i Ji ma ¢ g sl
L L L
. [ [ . [ .
Spec L - Spec L , Spec L

T

Spec K

where ¢ : Spec L — Spec L is given by the natural action of ¢. Note that neither
actions yield automorphisms of I} that are morphisms of varieties over L as they
do not fix the base scheme. However Ty =y og~! does fix Spec L, so it forms an
antomorphism of varieties over L. We know? that Aut(P}) = PGL, 4, (L), so the
group actien is given by a map 7 : I' — PGLy 4 (L) satisfying Toh =Ty - 4 (Th).
Note that 7 depends on a choice of an isomorphism X; = 7. Siuce any two
isomorphisms would differ only by an element of PG Lut+1(L), we identify 7 and
' if we can find an eclement » € PGLu4+1(L) such that r; = .z'r_,,;r“.

Thus the induced I' action is given by an element of H'(I', PGLpny,(1)). Con-
versely, each cocyele in the image repic.. uts the conjugacy class of a I'-action

whose fixed points are the original scheme, so the map is injective.

8. Cohomology of the Brauer Group
We can construct a similar cohomological interpretation of Azumaya algebras.

ProrosiTION 33. For any Galois extension L/K with Galois group I' we have
an injective map 2» from index n representatives of Br(L/RK) to I1'T", PG L, (L)).
Choose such an Azumaya algebra 4. We first fix an L-linear isomorphism

[ Lok A— ML)

We use the usual group action no*ation for the eclement wise action of i on
A, (L) and define a second action of " on M, (L) by having it act on the RHS
of the equation. We will represent this action by the KA-linear automorphisms

"Look at the projection L™! — F7. Any automorphism of the bottom lifts to an auto-
morphism of L™*! which is an element of Glng1(L). Pushing down, we get an element of

PGLys1(L).

13



by Mo(L) — Mo(L)

We note that the center of M, (L) is L so we compute for [ € . C M, (L) that

(bgo97")(e)=Fogo T oglly=fog(g™ 1) =JU 1) =1
Thus the T-action is given by the set of waps p, = 0, 0 4~ satisfyiug

po T = Autp Mo(1)
Pabh = [y - 4 (ﬂh)

Stnee all automorphisms of M, (L) are inner by corollary 19, the group of auto-
morphismsis equal to PGL, (L) and the above construction gives a representative
of a cocyele in [IY(1. PGL, (L)), The choice of an isomorphism is unique 1up to
an antomorphisin. so the cocycle induced js unique up to coboundary and the
map is well defined. If p is in the image of this map then p induces a group
action on M, (L) whose fixed points form a K-algebra. These maps are inverse
to each other, so we have an injection.

Note that we have not shown whether this map is surjective.

Sinee both n ~ 1 dimensional Severi-Brauer varieties over A and Azunmaya alge-
bras over A of index n are both represented by elements in the same cohomology
group, we have a natural association between the algebras and the varieties. Wi

can make this mapping explicit.

ProprosiTioN 31 We have a map Qg mapping index n Azumaya algebras 1o

dimension n — I Severi-Brauer varieties such that Qp = Q4 0 Q4.

Proor. Let A be an Azumaya algebri: ofindex n that splits over L and view
A s an n-dimensional veetor space over K. We consider the Grasmannian
(1 (1) of n-dimensional subspaces of A which has the structure of an algebraic
vartety, and let 117 be the subset of (7, (4) of subspaces a C 4 that are also right
ideals when 4 considered as a ring. For any element « € A the condition ae C a
is clearly algebraic on (7, (A). 50 1 s an algebraie subset of (7,() and is thus

an algebraic variety which we denote by X(.1)
LEMMA 35, XM, (N)) = &3

Proor. For any element A € M, (K) right multipiication on A by M, ()
consists of column operations, so if A is contained in some ideal a in 1 then
a contains a matrix 7 that vanishes off of the first column (that is. B = 0if

J > 1). A dimension count shows that any such matrix /3 generates an ideal in

B



W and that B must be unique up to scalar multiplication. Thus any ideal in ¥~

is given uniquely by b11,...b,;, so
X(Ma(R)) = Proj (K [byy,...ba1]) = P
LEMMA 36. For any extension FIK, X(F O A) = X(A)r

PROOF. The Grassmanian G,(F G A) is a variety over F and is by con-
struction equal to (G4(A))r. The equations that cut out X(A), when extended
to I, are precisely the equations that cut out X(F ¢ A).

The proof of the proposition is now clear. We compute

-1

Spec L xspec k X(A) = X(L @k A) = I(Mp(L)) = P}~ = Spec L xspec i P

so, in particular, X(A) is a Severi-Brauer variety of the correct dimension. To
show that both the algebra and the variety have the same cohomological de-
scription, we need to show that the action of 4 € PGL, (L) on M, (L) induces
the same action on B} ™! as the usual action of A on P71 "The action of A on
M, (L) maps any n-dimensional right ideal a of My(L) to AaA~! = Aa, which

matches the action of A on [F’Z"'.

9. The Brauer Group and H*(I', L")

We need to construct a final cohomological interpretation. We fix a finite Galois

extension L/K of dimension n with Galois group T.

DEFINITION 37. Let Br(L/K) be the set of representatives A of classes [4] in
Br(L/K) of index n such that L is a »ubfield of A.
Note that there is at most one such representative for each class.

LEmMMA 38. Given A1 € Br(L/K) we can choose elernents ey for all g € I with

egx = g(x)e, and

A= @Leg

ger
Moreover, if we let egen = (g, h)egn then 2(g, k) € L* gives us an element, Q(A)
of H*(T, L").

ProoF. We apply lemma 18, the Skolem-Noether lemma, for the subfield I,
of A. Letting i : [ — 4 be the inclusion map, we have for any ¢ € I’ the
inclusion 7o g : L «— A. Applying lemma 18, we have that i o g(l) = e,,le_,j' for
some elements ¢, € A. Thus e,l = g{l)e, as required.

We claim that the elements e, are linearly independent over L. Suppose first that
elements e are linearly independent for all h in some subset H of G. Suppose

15



further that for some g € H we can write eg =y apcy for h € I, and compute
forany » € L
0=eyr—glrie, = Z apepr — g(xr)ape, = Z ay (h(r) —g(e))ey
heH heH

By choosing & correctly, we can show that @, = 0 for all h. contradicting the
supposition. The claim now follows by induction. The collection ¢, now forms
a basis for A by a dimension count.

Suppose that )~ a,r, commuted with all elements of L. We compute for [ € [,

that
)= Za,,r,, (=1 Zﬂ,,(.'g = Z (gll)y = Hyaye,.
g 4q g
By choosing l correetly we can conclude that ay = 0for g # 1. Thus 3 aye, € L

and L is a maximal subfield. We now compute for all > € . and g.h & T

-1 =1 =1
et = g (h(r)) = egerreyeq

Thus CJ,(‘/,(';’II = r(g.h) commutes will all elements in L. and so must be an

element of L by maximality. We use the associativity of -1 to compute

Ll h)r(fg hYepon = (g h)egpen = cregen = eprlg h)e

=flelg M) egepm = flatg- M) r(foah)egyn
Which is just the cocyele relation in multiplicative form. Suppose ¢, and f, are
two choices of the hasis elements. We compute that y, = ('gf_,;'l commutes with
all elements of L. so it must lie in L by maximality. Substituting this back into

the definition of r( f.4) gives us the coboundary condition.

Lesivia 39, Given afinite Galois extension L/K with Galois group K we can
associate to every clement ¢ of [/#(I', L7) an Azumaya algebra A in Br(L/K)

such that Q(4) = ¢.
PrOOF. Choose symbols ¢, for all ¢ 2 U and define the vector space
A= @ 1,('y
g€l

We choose a representative x(g. h) of a cocycle and make A into an ring by
defining reg-yey = rg(y)e(y. hicgn and extending linearly® Associativity follows

“The identity is w(1.1)~'e;. Note that we can assume via a correct choice of cacycle that
1) = 1.
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directly from the cocycle condition. We embed I into A by the mapping [ —

lz(1.1)" !¢y, and compute that for any &r € L

x Zageg - Zagey x:Z(J'—!/(J:))agey.

g€er ger gerl

Since x — g(x) # 0 for some z if g # 1, the only elements that commute with 1,
are those in L. Thus L is a maximal subfield. Since cgl = g(l)ey for all L € L
we conclude that L' = K is the center of 4. We need now only show that A is
simple.

Let a be a two sided ideal of A containi, g an element a represented by 3~ ayey.
and define |a| to be the number of nonzero coefficients ag. If la| = 1 theu a is
clearly invertible and a= A. If la] > 1 then we choose clements g1 and g» such
that a,, # 0. We pick { € L such that g1(l) # g2(1) and compute

a—gmhal™ =) ag [1 = gy (Dg(™")] = 3 bic;

ger g€er

Since by, = 0 and by, # 0 we have [b] > 0 and [b] < |a|. By induction we have
that a must contain an element « with Ja| =1, s0 a = A.
‘The lemma follows as the two constructions are obviously inverses. We now have

ProrosiTion 40. We have a bijection Q : Br(L/K) — H*(T', L"),
We have now for any element A € Br(L/K') two cohomological representatives
-one in HY(I', PGL,(L)) and one in H(T, L*). To compare them. we consider

the exact sequence of non-abelian MNmodules
I - L — GL, (L) — PGL,(L) — |

By proposition 22, the analog of the long exact sequence gives us a Bockstein

operator
&: HYT,PGL, (L)) — H*I'. L")

ProposiTION 41. We have a commutative triangle

Br(L/K)

a

HY(T,PGL, l L")

Proo¥r. Computation. We have to construct the Bockstein explicitly via a

diagram chase.
We summarize our results in a large diagram.
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PRrOPOSITION 42. Let L/K be a finite Galois extension with Galois group I'. let
Br, (L/ ) be the set of index n representatives of Br(L/K). and let SBry,_y(L/K)
be the subset of n ~ 1 dimensional varicties in SBr,,_(L/A). We have the fol-
lowing commutative diagram of injective maps.

SBr, - 1(L/K)

Q N
Q.

nr. Pt (L) : Bro(1/K)
| I
AT L") ~— = Br(l/K)

CoroLLARY 13, For any Galois extension L/K, HY T, PGL, (L)) classifies Azu-

maya algebras of index n that split over L

Proor. A diagram chase proves the result for finite extensions, and we can

take the direct limit by corollary 11,

CoroLLARY . For any Galois extension L/K, [NV . PGL, (L)) classifies n-

dimensional Severi-Brauer varieties over K that split over [..

Proor. The finite case is. again. by a diagram chase and we can take the

direet limit by proposition 28

COROLLARY -5, For a finite extension L/K. Be(L/KN) = Br(L/K). Thus [ is a
splitting field for 4 if and only if A is equivalent to some A of index n containing

L oas acsubfield.
Proor. A diagram chase shows that 7 is a bijection.

COROLLARY 16 There is aone to one carrespondence hetween index n Azumaya
algebras over K that split over L and «-dimensional Severi-Brauer varietios that

split over L. This correspondence preserves the additive strueture

Proor. A diagram chase shows that Q3 is surjective and the structure on

SBr, _i(L/RK) was is compatible by construction.

COROLLARY 7. If we quotient SB(L/K) by the projective spaces over N we

obtain a group isomorphic to Br(L/A').
PROOF. Diagram chase.
COROLLARY 8. We have an isomorphism Q: [{*(I'. L") = Br(L/K)
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ProoF. We need to construct an isomorphism
My (@ (G- C2)) 2w () Ok (C2).

This is done via an explicit computation in ([8] Thm 1.12.3).

CoROLLARY 49. We have an isomorphism § : H2(Gal(K'S°P), KS°P) = Br(K')

10. Brauer Groups of Cyclic Extensions

To conclude this chapter, we will explicitly compute some Brauer groups. Let
L/K be a cyclic: an extension with a cyclic Galois group. We also choose a
generator ¢ of Gal(L/R).

Recall that in example 3 we defined the cyclic algebras (f, L/ K. 7).

ProposiTION 50. The product of (f.L/K.o) and (fy. L/K,a) in Br(L/K) is
(fg.L/K o)

Proor. ([8] 10.4).

ProposiTion 51. (f L/K, o) splits if and only if f € N L, where N =5 o' is

the norm element

Proor. Compute the associated Severi-Brauer varioety.
ProrosiTION 52. If L/K is cyclic then Br(L/K) «vondists entirely of cyelie al-
gebras.

PROOF. Let n = dimg L. Using corollary 45 we can choose for any element
of Br(L/K) a representative A of index n containing I as a maximal subficld.

We choose elements ¢, for all 7 €< o > as in proposition 33 and compute
3 _] —_— 1
enl(e)™ = eo™(1)

so we can assuine by a correct chose of cocycle that ¢, = ¢i for 0 < 1 < n.
Identifying f = ¢ € K and z; = ¢!, A is equivalent to (f, L/ K, 7).

COROLLARY 53. Br(L/N)= KN/NL

CoOROLLARY H4. Br(R) = Z/27.

FrooF. The unly algebraic extension of I is C, and B"/NC™ == 71/27.

The proposition raises the following conjecture.
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CoNJECTURE 55. Are all Azumaya algebras the tensor preducts of cyelic alge-
bras?

A counterexample was discovered by Amitsur, Rowen. and Tignol who produced
an algebra of index eight that was not the product of index two algebras. We
can weaken the conjecture if we only require that every Azumaya algebra is

equivalence to some such product.

CONJECTURE 56. Are all elements of the Brauer group over A the tensor prod-
ucts of cyclic algebras?

Classically, this was known for 7., 2, 7. and Spe TR contains the n'th roots of
unity the conjecture for elements of order n is equivalent to Merkurjev-Suslin.

To make the conjeeture clearer, we construct a second set of eyelic algebras.
X ) B

DEFINITION 5T. Suppose L/R is cyclic, K contains the n'th roots of unity y,,.
and the characteristic of A deoes not divide n. We fix an element «» € p,, and
define for a.b € K= the cyclic algebra A, (a.b) to be the algebra generated over

K by the symbols » and y with the relations vy = wyr, +™ = ¢ and ¥ = b.
Prorostriox 38, .1, (a,b) forms an Azumaya algebra of index n over /.
“ A g

Proor. The indexis clear by the construction. Toshow that it is an Azumaya
algebra, modify lemma 39 as required.
We fix an clement [ € L — K and note that ol = «! for some root of unity

w. Thus {" is invariant under the action of o, so [ = /a for some ¢« € K and
L= K[y4q].

Prorosrrion 59, Choosing L/K ., o, and w as above then (b, L/RK.a) = A_(a. b).
Proor. Construct a map taking o — r and y— a. Verification is trivial.

CoroLLary 60. If L = KN{{/u] then Br(L/K) consists entirely of algebras of
the form A (a.b) for all be K-,

Note that all our cyehic algebras are of index n. so they have order dividing n by
corollary 17 I we let Br,(K') be the subgroup of Br(#') of elements of arder

then we can assign to cach pair a.b € A" and element of Br, (K).

ProrositioN 61. We have a homomorphisnt g A° 0 K" — Br,, (K) given
by mapping a - h— A, (a.b). The map satisfies

(1) afa = h)a(e b)) = alac 3 b)

(2) ala by =alba)!

(3) a(c" b)) =1

(1) IfaZ 0.1 then a(an (1l —a)) =1
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CHAPTER 1l

Category Theory

1. Exact Categories

We will be studying the properties classes of categories that have a well defined
notion of an exact sequence. See [19], [18], [36], [46], or any standard text on

category theory for more details.

DEFINITION 62. We call an additive category C ezaci if we can regard it as a full
additive subcategory! of some abelian category C° that is closed under extensions

ir: the following sense. [f we are given an exact sequence in C"
0— A —A—A4A"—0

with both A" and A" in € then the entire sequence is in € . We call a sequence in
C eract if it is an exact in C°, and we call a morphism in C admissible if it occurs
as either the epimorphism or the monomorphism of some such exact sequence.
We call a functor between exact categories ezact if it maps all exact categories
to exact categories.

Thus we have an interesting new category, €: the category of exact categories
whose morphisms are exact functors. If C and D are exact categories, we also
define the category €t(C, D), the category of exact functors F : C — D together

with their natural transformations.

ProrositioN 63. &r(C, D) is an exact category.

Proor. (sketch) €(C, D) has a natural zero object. given by 0(M) = 0. Given

a sequence of natural transformations

0 —F —F—F"'—0

I'That is, ObjC is a subset of ObjC® with homg (A, B) equal to homgo(A, B) as abelian groups.
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We say that this sequence is exact if
0 — F'(M)— F(M)— F'(M) — 0(M)

is exact for all elements A7 of €. We can show that this satisfies an intrinsic
criterion for exactness without reference to an embedding category (see [36] for

details).

Prorosition 64. The following categories are abelian.
g B

e AUb, the category of abelian groups.

o V(N'). the category of vector spaces over a field A,

o M(R). the category of finitely generated R-modules for a commutative
ring I

e Qco(X). the category of quasi-coherent sheaves over a scheme X

o M(X). the category of colierent sheaves over a Noetherian scheme X
Proor. See ([IN]. 11 2.2-2.4)

Provrosition 65. The following categories are exact,

o P(R). the category of finitely generated projective modules over a ring
It
o P(X). the category of locally free sheaves of finite rank over a scheme X

o M(RR). the category of finite length modules over a a local ring 2.

Proor. Since P(R) and P(X) are full additive subcategories of M(1?) and
Qco(X) respectively. we need only check the extension properties. These are
standard properties of the categories.

One of the more important categories that we will require is the eategory of

codimension p supported modules on a Noetherian scheme.

DeriNtrrton 66, Given a module A in M(X) we define the support of M, sup M,
by

sup M = {r e X] M, # 0}
Prorosirion 67. The support has the following properties:
o sup M = onlv if M = 0.
e sup(M - V) =sup M Nsup N
o Given f: X — 2 and m € M(D) then sup (S~ M) = f~Vsup M.
e sup(d V) =sup M Nsup N

e sup M is a closed in X.



o Given any z € X we define I, € M(X) by
I = (Rf/p)
Where 7 : Spec R — X is the inclusion map of an affinc cover with

z € Spec R corresponding to the prime ideal p and ]f/p is the Ospec p-
module corresponding to R/P. For all such I, we have

sup{l,) =&

PROOF. These results are all local so we can reduce to the affine case. Since
the support of Spec R corresponds to the usual support on R, the proposition is
Just a restatement. of ([4] Ex. 3.19).

DEFINITION 68. Given M € M(X) we define the codimension of support of M
to be the supremum of the codimension of the points z contained in the support

of M.

DEFINITION 69. For X Noetherian we define M'(X) to be the full additive sub-
category of M(X) of sheaves whose codimension of support is at least . This

gives a filtration
- C MP(X) C MY (X) € MO(X) = M(X)
called the filtration by codimension of support or the filtration by Coniveur.
ProrosiTion 70. The category M'(X) is exact
PROOF. Suppose we are given an exact sequence of sheaves
0—F —F—=F" -0

with both ' and F” in M'(X). For any point x with codimension less than {

we localize to get an exact sequence
0= F, —F,—r; =0
with 7. and F7 both vanishing. Thus F, vanishes and M'(X) is closed under
extensions.
2. The Grothendieck group Kk,C

DEFINITION 7T1. If C is an exact category, we define the Grothendieck group
Ko(C) to be the free group generated by the objects in ¢ modulo the ideal
generated by [A'] — [A] + [A”] for all exact sequences

0—-4A"—A—-4"=0
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T'his map is funetorial.

PrOPOSITION 72. Ny forms a covariant functor from the category of exact cat-

egories to the category of abelian groups.

Proor. An exact functor F : ¢ — D of exact categories induces a natural ho-
momorphisin from 72C to ZD. Since F takes exact sequences to exact sequences,
this Jifts to define a homomorphism KNo(F) : Ko(€) — KNo(D).

If a category has additional structure then the Grothendieck group inherits fur-
ther properties. ‘The existence of a tensor product, for example, turns Ay(C)

into a ring.

ProposimioN 73, If Xis 2 eme then Ky(P(X)) is a commutative ring, This

map is also functorial,

Proork. ZZP(X). the free group generated by the objects of P(X) forms a comn-
mwtative ring with nltiplication given by extending the tensor product linearly.
An exaet sequence of locally free @y modules splits locally, so the functor A —
imaps maps is exact. The the subgroup of elements in ZP(X) equivalent to zero

in Ko (P(X)) forms an ideal, so the quotient Ko(X) is a commutative ring.

3. The Classifying space of a category.
We will need to associate to eaclt eategory a topological space with similar prop-
erties,
We first define o category A with objects o= {0, L....n} for n > 0 and whose

morphisms are non-decreasing funetions.

DErmNirton 710 A simplicial set is a contravariant functor from A to the cate-
gory of sets,

Reeall that a n-simplex is the topological space

Ay = (g ey € = e > ().ZJ‘, =1}

Given an element of homa(n, m) we define a continnous map f - A, — A, by

f(J'(J----J'n): Z &y Z i Z ¥

Pef10) ES-1(1) €S~V m)
For a simplicial set F we regard the set F(u) as a diserete topological space, so
F(n) x Ay is the disjoint union of [F(n)] copies of A,,. We then take the disjoint

union



X =] 7@ x a,
n>0
For every element [ of homa(m.n), every ¢ in F(n), and every x € A, wr
identify the point (4, f(J:)) of X with (F(f)é, r)

DEFINITION 75. We call the resulting topological space the gcome tric realization
|F| of F.

Note that the geometric realizations is a C'W complex with the compact open
topology. Note also that the construction is functorial, so that a natural transfor-
mation of simplicial sets yields a continuous map on their geometric realizations.
Finally, to each small category € we define a simplicial sets A’C called the nerre

of the category. Let NC(n) be the set of all diagrams
Ao 2hoqy B0y

and for cach f € hom(m, n) let A’C(f) be the map sending the above sequence
to

CI1{0).f11) C1).1(2) Pin—1).f(n)

Ageo) Ay Apim

where ¢ ;0 A; — A s defined as 8y, O Qsi-1)0  Dfli)t1-

DEFINITION 76. We call the geometric realization of the nerve of a small cate-
gory C the gecomelric realization of the category, and write BC for IAC.

Note that this construction is also functorial. If we are given a functor F:C — D
of small categories then this induces 2 natural transformation on the nerves which
gives a continuous function BF : BC — BD.

The properties of this space depend closely on the base space. [C] is an infinite
dimensional C'W complex with zero simplicies given by the objects of ¢ . The
one simplicies are morphisms ¢ : A — B with end pomts A and 3. The two
simplicies are diagrams A L L wi boundaries 3 2~ ¢ A4 2L ¢ and
AL B we can even compute the homology.

We define a homomorphism dy, : ZANC(n) — ZNC(n = 1) by

n

d o — Ay — A, ] =3 [Ag — Ay — o,y

i=0
Where A; indicates that this object is deleted. This gives us a complex

dn_)

L INC(n) G ZNC = 1) L L EAC0) — 0

ProposITION 77. The cohomology of the above complex is I11(]C], Z).
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Proor. Clack through the constructions or see [16] and {36].
One s tempted to study the geometric realizations of exact categories. but nnfor-
tunately these spaces contain little information. Every exact category contains

a zero object which is both imtial? and final.

ProPOsITION T8, IF ¢ has either an initial or a final object then H™(|C).70)

vanishes for n > ().

Proowr. We represent a coeyele in 2AC(n) by “he sumn
I ] '
r= 2 n; [.A\,, — Ay = .~1,,]
i
and assume the category has an initial object 1. We compute
n
d n [()——'1'——--~-1i] = s+ e |0 — AL — ]
n+! ] BR Y] “in - ! it ) . ”J
i 1og=1
This second term vanishes as

0 =dyr= Zi:n, [y —

oy =l )

— s

We can even compute the homotopy gronps.
Note that the fundamental group of a simplicial ccmplex depends only on the
zerosone, and two simplicies. We fix a base element 0 in o siall eategory C.

Loops in 7 ([C]. 0) correspond to dingrans

T "y W

Ao=024) 2l g, 2

-'LI

where a; 0, — 4y s either o member of C or the opposite algebra €. The
composition of two loops are given by the concatation of the two diagrams. and
the reverse loop is given by the dual of the diagram. The contractable loops are
given by diagrams of the form
' J . Lyony”
A—=DB=C .
Where (jo ) is the dual of joi

4. Quillen Categories

We noted in the previous section that the geometrie realization of an exact
category is contractable and thus is not a useful invariant. To alleviate this
problem, we need to develop a functor from Erto Catthat will *fiber” the category

2An object s indtial if hom(1, A) contains precisely one morphism for ail 4. An object is
Sinalif hom(A, 1) contains precisely one morphism for all A.
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so that the resulting geometric realizations are non-trivial and take into account
the exact structure. The simplest and most useful is Quillen’s original Q-functor.

DEFINITION 79. We define a functor Q : €& — @at as ‘ollows. If we fix an exact
category C , we let the objects of QC be the objects of C . Given A, B € C. we
define homQC(A, B) to be the set of triplets (q,7, Z) where

o Z is au object in C

e ¢ is an admissible epimorphism in homp(Z, )

¢ ¢ is an admissible monomorphism in homp(Z, B)
We identify (q.7,7Z) with (¢/,i, Z') if Z is isomorphic te Z' and we have a
commuting diagram:

A

N
S

N\

B

N

7’
Given morphisms (¢,7,2) € homQC(;l. By and (4.7, 7") € hanC(l},(')' wo
define the composition of the morphisis by the triplet (g o ", i o i, 2" if 2"
is given by the folowing push-out diagram

A

A A

IHF € — Dis an exact functor of exact categories, we can define QF(A) =
F () for all objects in €. Given a morphism (¢,7, %) € I|(>mQC(A.1, 1), we define.
Flg i, Zy=(Fq,Fi,FZ).

The Q construction enjoys several nice properties. Any admissible monomor-
phism 7 : 4 — I3 induces an element of holeC(.fl,B) given by the triplet
(It A=A, 4,i: 4 — B) which we will denote by . Dually, for any adinissible
epimorphism ¢ : 4 — B we construct the element ¢ € homQC(B,A) given by

(q: 40— B, A T — A).

3This is well defined as an exact functor preserves exact sequences, and thus preserves

admissibility



ProrositioN 80. QC has the following properties

(1) Any morphism in QC is of the form ivoq’ for some admissible morphisims
i and j which are unique up to a unique isomorphisn.

(2) If i and j are admissible monomorphisms that can be composed then
(ioj) =1ioj.

(3) Il p and ¢ are admissible epimorphisms that can be compased then (i o
No=iel

(1) H1:4 — s the the identity map then 1" = 1 is the identity map in
hom(.1. ).

(5) If we have abicartesian squarc

A—t—e

B —
with 7. admissible monomorphisms and pog admissible epimorphisms
then jvop =¢ o .
Proor. Any morphism (¢ Z — A 2.0 7 — B)in lnomQC(xl. B) is clearly

equal to ivoq . The assertions all follow by direct computation,

Pirorosrrion 81, Suppose we have an exact category € equipped with a cate-
Pl £or} [upy

gory C such that Ohj(C) = Obj(C). If we can associate to each admissible map

in C the morphisms « and + as above such that they satisfy proposition 80 then

there is a unigue functor from C to QC compatible with these constructions.
Proor. See [3!5} section 2.2,
5. Quotient Categories

For any integral domain £¢ with field of fractions & we let Myops be the full
subeategory of M(R) of tarsion modules® and let Mg, be the subeategory of
of free It modules. The tensor product K i = induees a functor from M(R)

to M(A) which, since M(K) is equivalent to M. (12). gives us a functor
T M) — Mipeel 1)

- Note that T is just the identity when restricted 10 Moo} and that M, (1)
is the subcategory killed by T Thus, in some sense. Mg (1) is the “quotient’
of M) by My 12).

We will need to make this notion more explicit,

1A module in torsion if rA = 0 for some nonzero r in K.
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DEFINITION 82. We call a subcategory € of an abelian category D a Serre sub-
category if it satisfies the following.
(1) Cis a full subcategory of D such that € inherits the structure of an

abelian category.
(2) All the zero objects of D are in C .

(3} Given any exact sequence
0— A" —A4—4"—~0

in D then A € C if and only if both A’ and A" are in £ .

DEFINITION 83. If C is a Serre subcategory of D we define the quotient subcal-
egory D/C to be the category with ObjD/C = ObjC with honlp/(g(.»l, B) given
by the direct limit of the system of groups homp (At (k) under the natural

maps
homp (A, Cy) — homp (K, C5).

where iy : Ky — Apis a monomorphism with cokernel in € | ¢ : By — 4 is

an epimorphism with kernel in C . K is a subobject of A; and (5 1s a quotient

object of C;. We let T': D — D/C be the natural functor.

The basic result is

PRroposiTION 84. If C is a Serre subcategory of D then D/C is an abelian cate.
gory such that 7' is an exact functor with Tr = 0 if and only if » € C.

Proor. ([46] B.7)

PROPOSITION 85. Myqrs(R) is a Serre subcategory of M(2) with My..(12) nat-
urally equivalent to M(R)/ Mqors(R).

PrROOF. We let T'be the functor to the quotient as above. For any M in M(I?)
we choose n such that K Gr M = K If we choose a basis then this lifis to a
morphism f : " — M such that both the kernel and the cokernel are torsion
elements. Thus T'f : T(R") — T(M) and we can define S : M(R) — Mo )
by S(M) = R". Thus we have T : Mg.o(R) — M(R)/ Mipee( 1) such that So T
is the identity and 7"0 S is isomorphism to the identity. The result follows fron

the computation

home ()(M, N) = hom My (TM.TN)
- ree

tors{f?

We can generalize this to any localization.
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ProrosiTion 86. If C is a prime in R we let Mp(RR) be the full subcategory
of M(R) such that +M = 0 for some = ¢ p. Mp( ) is a Serre subcategory of
M(R?) and M(R)/ Mp(R) is naturally equivalent to M(Rp).

Proor. ([46] B.7).

Similarly,

PROPOSITION 87. Let X he a Noetherian scheme with a closed subscheme 3 .
and let .M-z)(l') be the full subcategory of sheaves supported on X. . M(X = 3) is
naturally equivalent to .M(I)/,M:)(I).

Proor. ([16] B.8).

We will be coneerning ourselves chiefly with the following quotient.

PROPOSITION 88, If X is a Noetherian scheme then we have an equivalenee of

categories between
M)
—_—— = MO .
'wl"rl(x) j.;r ( IJ-)

where MP(X) the eategory of codimension p modules and M;(R) is the category

of finite length modules over a local ring.

Proor. We claim that if M € M (X) then the set of codimension p points in
the support of A7 is finite, If we set My = M we define a sequence of modules M,
inductively by choosing (if possible) a codimension p element #; in the support
of M; and defining M, 41 via the sequence

00—\ ';(')

Iy, — My — Mgy — 0

where [ € M(X) is as in proposition 67. Locallizing, we see that
sup(Mip) N XY = sup(M)eapX? ~ {a).

Thus we have constructed a descending chain of nested closed subsehemes of a
Noetherian space, so we know the chain terminates and

"

sup U N = U{.z',}

r=1

which proves our elain.
Note that if M is a coherent O y-module then the localization M, is a Ox ,-

module, so we can define a functor

s MN(X) — EB .\A[(Ox'r)
reX’
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by S(M) = &, xrM.. Note that this is an exact functor that kills MPH(X),

so it lifts to give
M) .
S m —_— j‘;r -/Vtt(cl)x.r)

which we can show is an equivalence.

6. Higher A-groups

Combining the geometric realization and the Quillen functor we get a map that
takes an exact category (7 to the topological space BQC. We let A7 be the point
in BQC represented by the object A and let 0 be the zero object.

DEFINITION 89. We define the higher K '-groups of a small exact category C by
Ki(C) = #(BQC,0)

ProPosiTIoN 90. The higher A-group Ko(C) is equal to the Grothendieck group
Ko(C).

PRrooF. (sketch)
For every object .1 in QC we have the canonical monomorphism i4 : () — A and
the canouical epimorphism ¢4 : A — 0. Together, these maps give us morphisms
i, j4y in hom,,¢2(0. A), which give us paths from the point 0 to the point A in
|QC. Thus we can associate to A the closed loop I(A) = (j4)~" 0 i, where
(4')7" denotes the inverse path of j% from A to 0. This gives us a map from Z(C
to 7, (]QC, 0).
Since every morphism in QC is of the form ¢' o /1, we can factor the diagrams in
example so that the fundamental group is given cntirely by morphisms of this
form. We can then use the formal properties in proposition 80 to show that
every diagram is constructed from loops of the for /(A), so the homormorphism
1s surjective. If we are given a short exact sequence A" — A4 — A” then {(A)o
I(A")ol(A)™" turns out to be the boundary of a collection of two two-simplicies.
Moreover, if we are given any two-simplex we can show that the boundary is
the composition of loops of this form. Thus the kernel of the map from 7L to
m(]QC,0) is generated by elements of the form [A] = [A’] 4 [4”] for each exact
sequence above, so the map lifts to give the desired isomorphism.
This method is computational, but can he done using the universal properties of
QC. The original methed is siicker, but requires developing some covering space
theory for |QC|. See [36] for details of this argument.
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7. Properties of K-groufps

We will state several useful propertics of the higher A groups omitting all the
proofs. There are many useful surveys of algebraic N'-theory. including [1-1] and
[15]. The best starting points are Quillen’s original paper [36] or [46].

Let F : C — D be an exact functor of exact categories. This induces a func-
tor QF : QC — @D, which in turn lifts to give a continnous map BQF :
BQC — BQD. This map induces a map on the homotopy groups a;( BQF) :
Ti(BQC,0) — 7 (BQD. V), which we write as F. : £,(C) — K:(D). So the
K-groups are covariant functors.

We now recall the category €r(C, D) of exact funciors from € to D . Each element
F of €{C. D) now gives us a group homomorphism F. : K,(C) — N;(D). so we

can construct a pairing

() T LEHC. D) NC) — Ki(D)
Where #(F.r) = F.(r).

Prorosrriox 91, If we are given an exact sequence® of exact funetors

(2) 0—F L Fip gy

then the homomorphism Fo = FL — F7' o N (C) — KN {D) is the zero map. Thus

Equation 1 hifis 1o o homomorphisim
o WA (€. DY - N(C) — N(D)
Proor. [36]
Provosrrion 9200 we have an adisstble long exact sequenee
00— Fo 2o p, Ie o m

between exact categortes C and D then

"

Y (=D (Fe) s Ky = Ko(D)

P =)

“We say that sequence 2is cractif £ and ¢ are natural transformations of funetors sueh that
for all objects A the sequence

[V t'L M
0 — FIA) —2 F(M) L P — o

is exact



is the zero homomorphism.
Proor. We say the sequence is admussible if for each natural transformation
fi we have an exact sequence of exact functors
ke Tk S
0 — (ker fi) — Fy =~ Fiq.
The result is immediate if we apply proposition 91 to the short exact sequences
. ik S
0 — (ker fi) — Fr — (ker fip1) — 0

DEFINITION 93. Let € be a full additive subcategory of an exact category D
such that D induces the structure of an exact category on € *. Suppose also that

if we have an exact sequence in D
0— M —C—("—0

such that C"and (" are objects in € then Al is also an object in € and that every

object Ml in D has a finite resolution
0—0C,), —Choy— -y — A —0
with Cp in €. We call C a resolution subcategory of D .

ExampLE 94, If I is a Noetherian ring then every finitely generated module has
a projective resolution if and only if It is a regular ring. Thus for Noctherian rings
the notion of regularity is equivalent to having P(R) a resolution subeategory of
M(R).
ExampeLe 95. Similarly, P(X) is a resolution subcategory of D if X is regular
and Noetherian.
TuroremM 96 (ResoLuTion). If Cis a resolution subcategory of D then h;(C) =
Ki(D).

Proo¥r. See({46] Thm 6.11)
An immediate consequence of this explores the relations between the cohomology
of a caregory and its N-groups.
THEOREM 97. Let 11" be any cohomology functor on an exact category € such
that every ohjects in C has a finite cohomological dimension and every element

is the image of an admissible epimorphism from an acyclic element. The full

subcategory A of acyclic elements is a resolution subcategory of € and thus

KRi(A) = Ni(C).

¢To be precise, we require that C is closed under extensions in the sense of definition 62.

33



PROOF. See ([16] Theorem 4.7).

Prorosirion 98. If C; is an exact category then

N; @ Ci ] = @ Ki (€;)

Proor. ([16] lemma 5.9).

Lastly. we will need the following.

DeriNtrion 990 We call a full abelian subcategory C of an abelian category D
devissage if s elose under subobjects, quotient obhjects and direct prodiets,

We also require that every clement M of D has a finite filtration
O=M,cMycC M, =V
such that Mg /My is an object in €.

TuroreEM 100 (DEvissaGe)., 0 C s a devissage subeategory of D then K (C) =
N, (D).

Proor. See ([16] Theorem 1.8).

8. i-thcory of rings

For the convenience of the reader we will summarize some of what is known
about the KN-theory of rings and fields. A recent survey of the subjeet can he

found in {11].
DeriNrrion 101, Foraring I let K (R) = K, (P(R) and K{R) = N {(M(R)).
Proprosirion 102, K, (R) = K/(17) when R s a regular Noetherian ring.

Proor. Combine theorem 97 and example 94,
The classical” KN-theory of rings was developed as an analog of topological -
theory and involved explicitly defining K (R) as the quotient of the infinite
general linear group CL(R) by its commutator subgroup [(GL(R). (7 L{R)] and
setting Wo(R) to be the homology group Iu([GL(R). GL(R)].ZZ). In the early

seventies several different definitions of the higher K-groups were developed for

"\begin{irony } We define the classical e ra to he before the 1973 publication of [36]. \end {irony
) A A
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rings extending the above definitions, such as Quillen's ‘plus’ construction®. Un-
fortunately, although the @ construction is defined in the most general setting
possible, it does not lend itself for explicit computations.

ProrosiTioN 103. If Ris a domain then we have natural decompositions Ko(R)
Z & No(R) and K4(R) = Z® KI(R).

ProoF. Every R-module M has a length given by (M) = dimp, Mg,. The
length is additive on exact sequences, so it lifts naturally toamap £ : Ko(R) — 72
or {: K{(R) — Z such that {{R") is n.

1\"0(11’) measures to what extent projective modules fail to be free.

PROPOSITION 104. For any Dedekind domaiu R (ie. a one dimensional Noethe-
rian domain) Ko(R) is the ideal class group of R.

PROOF. See [31].
The basis theorem of basic linear algebra states that all projective modules over

a field are free, and one can also show that this also hol for local rings. Thus

ProrosITION 105. Ko(R) = Z for all local rings R.
For most other rings the Grothendieck group is difficult to compute. Using the

classical definition and some computation we can show
PRropPosITION 106. K'j(R) = R” for all local rings R

PROPOSITION 107. We can construct a product # : Ni(R) G Ky (R) — KNigj(RR)
such that & * y = (=1)Yy * 2. This product makes KN.(RR) into a graded skew

ring.

Proor. See ([16] section 2) or ([31]). The proof involves constructing a ho-
momorphism GL(R)®GL(R) — G L(1) which induces a continuous map on the
‘plus’ spaces as used in the plus construction. The product is then induced by

the smash product of spheres.

8The +-construction involves constructing for any ring R the Eilenberg-Maclane space BGL(11)
of the infinite general linear group GL(R). By definition this is a connected space with trivial
higher homotopy groups with ) (BGI{R),1) = GL(R) and can be constructed by taking the
classifying space of the one point category with GL(R) being the group of morphisms. It can
be shown that by adding a two-cell and a three-cell to BGL(R) we get a space BGL(R)Y such
that
GL(R)
[GL(R),GL(R)]

and w2 (BGL(R)*, 1) = Hp([GL{R), GL(R)],Z). Quillen defined K,(R) = =, (BGL(I)*, 1) for
i>0"

m(BGL(R)*,1) =
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For a local ring 12 the isomorphism K (R) = R™ and the product induces a map
R 2 " — Ko(R). The image and kernel of this map was first computed by

Matsumoto in his thesis.

Prorosirion 108 (MatsumoTo). If R is a field or a local ring with more than
twelve elements then the map R* < R — Ko(R) is surjective with kernel gener-

ated by the elements a @ (1 —a) with a € R and a £ 1.
Proor. See [31].

DEFINITION 109, If A is a field we define the Milnor K-groups K (K) to be the
i'th graded component of the tensor algebra of R™ modulo the Steimberg relation
a (I —a)y=0. Wedefine a map m : K — Ky to be the map induced by the
product on K.

Clearly Ki(KN) = KM(K)if i <2, Example 1.6 and Cor 16.2 in [11] shows that
m s, i general, neither injective nor surjective,

To conclude this seetion, we will list some computations of some higher K-groups.

Prorosrriox 110, If A is a finite field on o elements then

. =10
e 0 {15 even
KNi(KN) = . )
-——'*:J—— IS ()(l(‘
(n_:'_ —l)':
Proor. See [32].
Proprosirion 111,
- =0
- P=
Ni(3) = o ® (:j;)' -
— o 1 bad 1=
2o I prime {70 -
—m =3
AR
Morcover, for 7 > 3 the rank of K;(2) 1s one when ¢+ = | mod 4 and 1s zero

otherwise,

Proor. See [12] and [11].
There is a wonderlul conjecture for the values of K;(Z2) in [15] which has been
verified for i < 1. See [23] and [10]. The higher K-groups for Z and T are also

known, and are computed in [14].



9. K-theory of schemes

DEFINITION 112. If X is a scheme we define Ki(X) = Ky(P(X)) and K{(X) =
Ki(M(X)).
These two groups are equal if X is Noetherian and regular by theorem 97 and
example 95. Note that we have natural equivalences of categories between M(R?)
and M(Spec R), and P(R) and P(Spec 1?). so Ki(R) = Ki(Spee RY and KI(R?) =
K/(Spec R).

PROPOSITION 113, If f: X — Q) is a morphism of schemes we have a natural
functor f* : Ky(2)) — Ri(X). Morcover, if [ is flat, we can also define f*
K{(9) — K{(X).

PROOF. See [46] or [31]. The functors are just the lifting of the usual S
M) — M(X) and f*: P(Y) — P(X).
If the morphism [ is sufficiently nice we can construct a covariant functors [
Ni(X) — Ni(D) and f. . KY(X) — K{(9) from lifting the push-forward of Ox
modules. One can also show that the usual projection formula lifts to operations

on the K-groups. See ([46] proposition 5.12) for details.

10. Torsion in Ka{A)

Recall that if we are given a field A" then both Ko(K) and N{(K) are trivial
to compute. The higher K-groups, however, are far more difficult to commpute,
Even Ka(K), although given by an explicit set of generators and relations. is
still highly nontrivial. To demonstrate this complexity we will develop some

technical tools that we will need later concerning the torsion of Ny(K).

DEFINITION 114, If p is a prime different to the characteristic of K, we define
pN(R) = Wy N )//f/\'r_»(l\' ).
We will also write A" for K" /pK~.

ProposiTioN 115. Let G be the subgroup of K ¢ K generated by elements of
the form ¢ y where y = N gz a for some a € N( /7). Then
Ko R

pNa(R) = o

Proor. The natural projection map K™ ¢ A" — K o A tefls to give a
surjection
NN

G

7: KNo(KN) —
as
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(J"- - J‘) = (‘I" ‘\'I\'( {7?/[\(1 - \'/'T))

The kernel of 7 is generated by elements (o, Na) € Ko(W) with @ € ¢/r. We

compute

(r. Na) = corpe gy (a) = peor Yo a) e pha(l.)

As the kernel of 7 is precisely pRo(L). the result follows.
We will require some notation. We will write § for the set (f,. .. ) and write
¥ for the produet PP 5 AWe need to develop some method 1o determine

if an clement of 282 vanishes.,

ProrosirtioN 16, Suppose we have elements 2.y, € K such that

n

E {riomt=0e, N(h)

1=
with the set o, forming a linearly independent set™ in A where i is regarded
as i veetor space over 75/ pTl Then we ean choose anintegers Land . elements
o€ N (<0 < om)a collection 7,2 T (] < @ < Uyoand elenents p, S

Ignerag

N(&Fmy) (1 <

1<y such that (F we sty = tnas 1, = 1)

. -1 v KEYY
() 788 ) RN

is o p'th power in N for all j with | < j <.

Proor. If we let 7 be the map in proposition 115, we can choose g, and r;

such that
n i
0=rx Z‘{J"‘”’} = Z"’ = E"' N eFT R
1= 1= 1=1

The set {ey, . orgoqre oo} span some subspace in W oof rank . so we choose
a basis {1 . o b of this space. We now use this basis 1o select £ such that

¢i = I We now compute

ISince the symbols are linear, this condition can always be satisfied.
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! A .
2iz14i @ N (V7T 1

- IRohY ..

=2 in @ AA(W";/I\"’

—_ 5! Lvah (rdm o s ..
=Yg e Nl\'( YFRT

— m (,,’)
Z:-lz —l'lJKJ"\/]\(\"/ﬂ1 )/;\( )

_ m I—Il (! ),
Z = T i=1? l\(%_-)/h

= Zj:l i O Y

Since the r; form a basis of A', we have that for all j

(ll)y
U] = Hl\l\( l‘/—o )/,\ f

i=1
as elements of . Hence they must differ only by a p'th power.
ProprosiTiON [17. The converse of proposition 116 also holds: Given elements

Ui i i, and ypoas above and if equation 3 holds then Z'- {ei ui} vanishes in
Ii[\’g(l\-).

ProoF. We compute

7 (Syodes 1)
= Z"'_l JJ

m - ! (" N
= Z Hx—] ARV
m ! KL ), o N .
=2j= T,_, N A‘rV:FT;//\"'
_Zi_l" I\((’/" )/l\
=0

We now come to an overly complicated corollary.

CoroLLARY 118, Let L = K (/). Every clement of ker(res : pa (W) —
pIu(L)) is of the form

n
> sy
j=1

with r; linearly independent over K /ph'™ such that we can choose
(1) Positive integers {, m
(2) vyelforl <i<land 1 £j<m.
(3) riy € Nforn<i<mand 0 < j < p.
(1) rijpeNfor 1 <i<m,0<j<p,and 0 <k <p.
(5) sy € Kforl<i<mand 0< j < p.
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such that if we set

t
m p—1 "

(1) o= HJ.‘}" H Z.l‘jk(\'/l_l)k .
1=1

J=n+1 \k=0

then
! p-1 o P r
- 1 . r i
() v H‘\I\'lr. Y KCYE) Z ry! (a)! = Z:ji (V)
i=1 fog=0 1=0)

Proor. This is clear if we substitute into the previous proposition the fol-

lowing:

p-l J
I = Z:J:“Jl_](\r/(_')
= (rll~~ 'I‘l"l)
J .
p—1 s =k
J k=0 Fijk ( J"‘) (u)
T - J
~! _ZJ:()"'](\"/r_I)

P/
o= NI

|

11. A-rings

In this section we will let X he avschieme over a field A and exploit the propertios
of PLX) to develap some additional structures on the ring F,(X). We will need
to develop the A-ring formalistn in order to construet a shichtly stronger version
of the Grotheudieck-Riemanu-Roch theorem. First, we need 1o define some
universal polyaomials,

For any i > 0 we choose indeterminates oy o ory, and write

" n , — . . . . .
n::l(l+‘,.') :l+Zl:l'r’+"'> u(n""!"""l*"‘JIH"'”

Lai<n<

—oltal . 04 o

n
n

where o = (oo 0y, ) s the sum of all the degree & monomials in the ex-
pansion. These polynomials are independent of nosinee, if i > 0 then

m"m

op{ryory) = ol e, 00 0)

DeriNtrion 19 We call the polynomials o, = o the elementary symmetric
polynonnals,

We can show that every symmetric polynomial in tn »y .. .r, can he written
iquely as a function of the elementary symmetric polynomials, We also define

for any nom the polynomials Pe(ay, . oane) and Pig(ay. .. a;p) by

A0



n m nm

HH 1 +1'.'--I/jt = Zpk (('71(.1?1,...1',,),... v”l(.’/lw-~.1/n)v---”k(.‘/lv-w!/n))’k

i=1j=1 A=0

k )
H Tiy ooy Dby, oyt = Z <;)Pik(01(-1‘1~--)-~--m-(l-‘l--~-))/'

I<ii< ik <n =0
Suppose we have a natural functor from linear algebra, say F : V(N) — V(N).
Given any P € P(X) we can, by definition, choose an open cover {7, of X such

that
P'u, = c)(r_,', = Oy, Gy K.

We construet the sheal FP on X given by defining locally
}-Plul =Ou, &g F(RT™).

This patches together nicely by the naturality assumption. so we have an induced
functor F : P(X) — P(X).

Now suppose that A’ : V(') — V(K) is the exterior product, and note that
these functors are exact and respect tensor products. Thus AP induces an exact

functor from P(X) to itsell that induces an endomorphism of K (X).

DEFINITION 120. We define A © Ky(X) — Ko(X) to be the endomorphisin in-
duced by the exterior product A7, We also define a map A 0 Ko(X) — KNo(X)[[1]

by

PrROPOSITION 121. The operations A" have the following properties on Ky(X)
for any scheme X.

(1) A%z) = 1

(2) A%(r) = s

(3) Az +y) = 0L, N () - Mi(y), so

Ade +y) = Alx) - M(y)

(4) If & = [P] for some P € P(X) then we say & is a postlive element and
denote the rank of z by ¢(x). ¢ extends to a nontrivial homomorphism
from the group Kp(X) to Z, and we call all positive elements » with
¢(x) =1 linc clements. If z is positive then A)(x) #0and M(x) =0
if k> c(2).



(5) Every element is the difference of positive elements, so A, is a 1, ol
the group Ay(X) to the multiplicative group K(£)*. We say a positive
element o splits if it can be written as the sum of line elements.

(6) If & and y split then A (ry) = PN (), .. DU UML)

(7) If & splits then A" o A" () = P, (A (). .. SATTHr)).

(8) We will also assume that we have an involution r «— r. By this we mean
a ring endomorphisin that maps the line elements to their inverses and

the composition of the involution with itself is the identity.

Proor. (1) ‘This follows as A"(A") = K and A°(f) = | for all S R —
K™, so the patching operation builds the rank one trivial module.
(2) Al is the identity functor.
(3) This follows from the tdentity

H

AAE B = (N A) (AT )
=0
(1) XNy isoa line bundle and thus is nonzero.
(5) The fiest part is elear from the definition of Koo e is positive then A, (J’)
i5 Just apolynomial, so property 3) shows that M (o — ) = A (/A ()

is arational funetion.
(6) Wewrnite =y + .y and y =y + . g, We compute that

Ae(w) = H nA(ry) = Hn] + o, = Zn,"(.rl.....r,,)t' =N

1=l 1= r=i}
Thus @l (e ooory) = M) 5oy < given by the £th symimetric poly-

nomial. We now compute

"

[T= n:,”—1 ey =TT, [To U+t

= S pon Petey(r)oiey o). (a1

Asiay)

= lak=0
= U0 P (A NS A )L A )

(7) This follows from expaading Ao, ().
We can now define a A-ring
DEFINITION 1220 We call a commutative ring A a dering if it comes ((]lllp[n d

with aset of operations '+ K — K. anontrivial ring homomorphism e : A — 7,

and asubset Bof positere elements such that:

(1) A%) =1

(2) /\](J ) =r

(3) Mo +y) = T2, M (e )\‘ ().

(1) A¥ (.r_z/) = Pe(A(@) AR (@) A ) N () when x and y are positive.,
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(5) A" o A™(x) = P, (AN (1), .. LAT(2)) when r is positive.

(6) If z is positive then ¢(xr) > 0 and A(r) is a uit in A Moreover,
M(z)=0ifn> e(x).

(7) Every element is the difference of finite elements. We say that a positive
element r is a line element if ¢(x) = 1, and say that an element, splits il
it is the sum of line elements.

(8) K also coines equipped v:ith an involution mapping line elements to their
multiplicative inverses. Thus the line clements have the structure of a

multiplicative group called the Picard group.

DEFINITION 123. A homomorphism f: I — K’ between two lambda rings is a
lambda ring extension if M(x) = A (fr), (r) = c(fr). and fis injective,

EXAMPLE 124. If X is a smooth compact manifold then we can regard X as a
scheme with the local rings being smooth functions. P(X) is then equivalent
to the category of smooth vector bundles over X. Since we have partitions of
unity, any vector bundle P contains a line subbundle L, so we can construct. the
quotient bundle and write P = L& P/L. Thus every vector bundle is the direct
sum of line bundles and every positive element of Ko(X) si-liis. and we can show
that No(X) is a A-ring. It was shown by Grothendieck that all vector bundles
over rational curves split, but this is not true for all algebraic varicties. See the

excellent paper [4] by Atiyah on the splitting of vector bundles on elliptic curves,

EXAMPLE 125, We will show that the Grothendieck groups KNo(12) for a Noethe-
rian mtegral ring and Ko(X) for an algebraic variety are A-rings. The positive
elements correspond to the projective modules or O x-modules, and the line el -
ments correspond to the rank one modules. Thus the Picard group of a ring or
variety corresponds to the Picard group of the A-ring.

The next proposition is crucial.

ProprosiTION 126. Let X be ain integral Noetherian separated scheme over a
field. If z is a positive element of Ko(X) then there exists a scheme ) of finit
type over A" such that the induced map 7+ K(X) — Ko(Q)) is an injective map

preserving the A structure such that =°(x) splits.

Proor. (sketch) Given P € P(X) we construct a new scheme Proj P of finite
type over X as follows: We choose an afline open trivialising cover /; = Spec f¢;
such that Ply, = Oy, @ K™ and record the patching information by choosing
maps fi; : U; NU; — GL,(K). We define Proj P by

Proj Plu, = Proj (Ri[xy,...xn])
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Where construct the patchings by interpreting the maps fi; as endomorphisms
of N[ry,...ry]. A calculation shows that () has n line subbundles and that

T 18 injective.
COROLLARY 127, Ny(X) is a A-ring for all integral schemes of finite type.

Proor. If » and y do not split, we construct by the proposition an inclusion
KNo(X) — Ko(Q) such that » and y split in the extension. We then verify
properties 4) and 5) in Ky(Q)) so they must also hold in K (X).

This result can be generalized

PROPOSITION 128 Ko(X) is a A-ring for every separated scheme X . Moreover.
there exists a A-ring extension f: KNo(X) — A such that ail posttive clements of

Ny(X) split in K.

Proor. See ([11] 1.5.3)

This splitting phenomenon is a general property of A-rings.

PrROPOSITION 129 If A is a A-ring then for all positive elements there exists a

A ring extension such that the element splits in the extension.

Proor. We consider the ring
N
Z'H'HI(_”r/\z(_l.}/e(rv«é-l—x

1=

KN =

and make it into a A-ring by making ¢ a line elnent and adjoining £ and » — ¢
to the set of positive elements. This gives us a A-ring extension of K with
r=Ad 4+ (e =) Wweaterate this process then ris decomposed into the sum of
line elements. See ([13) for details.

An nnmediate consequence of this is the verdfication proneiple: 15 we are given a
relation between the A elasses that holds for all sphit eletents then it holds for
all positive elements. This is the argument we nsed i Corollary 127, We also

prove, for examgpl.

Prorosition 1300 1f A is o A-ring with Picard group L then we have a homo-

morphisnn det - N — [ taking the additive group to the multiplicative group.

Proor. We define det e = M0 0 is a positive element. We choose an

extension such that »splits, so r = ry +---»,,. Then
,\”(J') =, (ry.... ) = Ly,

Sinee this is the product of line elements, X (r) is a line eloment. For any xr

and y positive we have the equation A (#)A (1) = A (0 + ). so if we look at the



1Y) term we get the equation det x det y = det 2 + y. Thus det is linear and we
can define det : A" — L by det r — y = det z/ det y.

12, Adams Operations

We now need to define the Adams operations and the g-filtration in order to
build the Grothendieck-Riemann-Roch. We will fix a A-ring A and and write

for any » € N and s € K'(t)

™
= Z AT,
i=0
Note that A (o + y) = A (2) - Ac(y).
For any & > 0 we have an natural endomorphism of the Picard group given by
mapping a line element & to «*. In the case where the ring has characteristic
k then this corresponds to the Frobenius endomorphism and is defined for the

entire ring. We would like to extend the k'th power map to the entire ring for a

general k.

DEFINITION 131. We define the Adams character o N— K™ and the

Adams operations o¥ : K — K by
li
—/\_((J,')
oy = —pd ) s A
vt A_i(2) I o8 ;p

ProPOSITION 132, o 1 N — KN isa ring endomorphism such that ¢" o 27 (r) =

™" and ¢*(r) = 2% if z is a line element.

Proor. If r is a line element then

4 tr ;
dt__ - = sum2 o't

si(r) = ~1 =
i(7) ]l -tx 1 -te

so ¢(r) = r¥. For any positive r and y we also have

ol + 1) —ld#ll- logh_i(e +y) = —t— log A_ (#)A_i(y)
—tglog A_((r) = tLlogA_ ()

= @) + wily)

s0 ¥ (2 4+ y) = oF () + ¢ (y). Assuming » and y split we also compute

(1) Zp riy5) Z¢ ) = ¢*(2)ek(y)

m I)‘Z‘P (P Zsanm — ”'"(.L‘)



and apply the verification prineiple,

Recall that, unfortunately. the lambda operations are not additive homomor-
phisins like the Adams operations. It can be shown that the exterior products
induce a A-ring like operation on the higher K-groups which turns out to be a
group homomorphisms. We introduce the s-operations in an attempt to repair

this non additivity.

DEFINITTON 133, We define the s-class 5, 0 K — KN4 and the = operations

N — K by

elr) = Z:’{r) = '\.—i—.“"

1=0)
Wesay that that an element & € K ois s-posthire if we can find y positive such
that v =y —(y). and we say that »is o s-line element if we ean choose gy 1o
be adine element. Note that every element of rank zero is the difference of two

-I.-[m.\“i\"' eletment s

PROPOSITION 131 =~ hias the following properties:

(hy ~"(ry =1 and = 1r) = r
(2] =l =y =)=y (y)

() () = U=t at i~ o ~<line element

CH I aas =cpositive then <500 ) vanishes Tor & sufficrently farge. Me reover,

if o splhits as the s of ~-line elements »y0 L ry, then

H

~Ser = oatiee oo

'ioor. i1

o

o = Ao - ,\;I.I'l—:——[_-—r--r,\-_v‘.l'j(,.—it-)
=+ ) A (e 2 )
=t s (s At +
2) hnnnediate
(3) If oot o hine clement we compute
() |+J'|—;_—l

() T+

el =~ 1) = =1+ (o= 1)t
1y We nse the s-splittng prineiple: For every s-positive element o we can
find a4 A-ring extension sueh that » splits as the sum of 5-line elemnents,

If s 5-positive and splits then we compute

n n "
Tr) = ZJ‘, = H“;;(.I',‘) = H Lot = sumlo' (e, o)t
! 1 1
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We now wish to define a filtration on our lambda ring of the form
N=RO DD o g

DEFINITION (35. For all A-rings K we define the subring K = ker e : A — 70,
and for £ > 1 we define

N = UI\'I"!: {r12o-rplei€ KD 0> 1}
N

where the summation runs over all A-ring extensions A of I
PROPOSITION 136, For any A-ring extension A of N we have N AR = 1D
Proor. Clear.

ProrosiTion 137. The sets K are ideals and thus form a filtration called the
weight filtration.

Proof. KN is closed under addition and if 2 € K) and y € K then yr =

(y — «(y))x + <(y)e with both terms in A
ProPosITION 138, N =2 {34 ()3 (y2) 1% ()l € N T > 1)

Proor. Given a collection y; and a; as above, we choose K such that the g, s

F-split. Setting y; = Zj. yij with yi; a 5-line element in K.

n
T ) 1t () = Hc'a.(.un‘y:u. )
=]
Which is homogeneous polynomial with integral coefficients of degree S a;, and
thus is an element of K'Y, Conversely, every generator of £ must have sym-

metric 5-roots and so can be placed into this form.

ProposiTION 139. We have group homomorphisms ¢ @ KO/ K0 227
det : KD/ RE — [ where L is the Picard group of line bundles.

The first isomorphism is elear. A quick computation shows that the determinant
map is surjective and vanishes on K and we construct an inverse map ¢ : [ —
KUY /R by v(a) = r — 1. We compute

e(ry) = v(x) + o(y) + olx)e(y) = v(x) + o(y)

as v(r)e(y) € N'*), so v is a homomorphisn: and

M)

det v(z) = det(r — 1) = (1)

= r



We now have a key relation between the Adams operations and this weight

filtration
PRoOPOSITION 140. For any A-ring K and » € K we have
F )= e KD
Proor. For the £ =0 case, we assume by the linearity of both sides and the
splitting principle that »ris a line element. YWe compnte
(P =S = =2 =0

For £ > the lincarity and splitting principle indicate that we need test only for

r={ry—1)-(rr = 1)t with r; € L. We compute

r‘d("')n::[ YJ(-I'l -1) = I_I:‘:I J'f -
=TT, = DT (10 02
=] 1=1 i 1

en't

iy i = DTy [ T+ P+l it

=1

gt e
= L v = 1 mod KD



CHAPTER 11

Hilbert 90

1. Introduction
We now comie to the technical heart of this exposition: The proof of Hilbert’s 90)

theorem for K.

DErFINITION 141, If K is a field and p is a prime different to the characteristic

of I we say a field extension L/ is p-cyclic if it is a degree p Galois extension.

CoNJECTURE 142 (HILBERT’S 90 FOR Ip). If L/A is p-cyclic with ¢ a gener-

ator of Gal(L/K') then we have an cxact sequence

. 1— . COTLIK L. .
Kn(L) —=2 K, (L) =5 K (K).
Note that in the case n = 1 this reduces to
-0 Cory t ke R

Lr—1r

which is the usual Hilbert’s theorem 90.

2. The Codimension Quotient
We first need to complete our study of the categories M'(X).

ProrosiTioN 143, If X is a regular Noetherian scheme then we have a natural

isomorphism

- f MM X — I
K, (m) = Ko (Oexr MdOx,))
= K; (@rexn M (L(.I)))
= @Iexr K (k(l))
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Proor. Combine proposition 88, the devissage theorem. and proposition 98,
We let X be a Noetherian integral regular scheme of dimension n and consider

the filtration by codimension of support
MO =M"(X)DM(X)D - M (X)=0.
If we apply the functor Ky, to this equation we get a sequence of maps
Jp i Ky (MP(X)) — K, (MP71(X)).

If we now apply the localization theorein and use proposition 143 we ae1 an exact

fragiment

B Kuwr (ki) — KM (X)) L2 i, (v (1))
J'Ex,'

so we see that the map f, is, in general, not injective.
DeriNrrioN 1. We define the filtration by codimension of the support} on I,

0=t Ny (X) C= Fr Ny (X) C-..= I'-h':’\w(x) = Ky (X)
by sething
FIR(X) = image(fio- f 0 Ky (MP(X) — K, (X))

We wdl only be nterested i studying the filtration on Ky, (See (3] for a dis-
cusston of the hegher Chow groups resulting from the higher werght filtrations ).

Applying the localization theorem again with n = 0 we hare a sccond Sfragment

Ko (MIF10) 25 Ky (70 — @D W th() — 0

J'EI"
whech gives

FIFERG(MX) — FIRGM0) — () K (kr)) =0
J'EI"

Recall that Ko(X) has the structure of a A-rimg and thus has an Adams chara e,
It turns out that the filtration by codimension of support respo A= the = calt
filtration

Prorosirion M5, Given » € FPRo(M(X)) then o, (1) = i € FPHU(X).

LEMMA 116, If 7 0 9) — X be the scheme constructed in proposition 126 then

L ET(X) — FP)

A



Proor. We need to show that #* preserves codimension. By construction,

there exists an open cover of 9) such that locally = is of the form
T :Spec R[zy,...x,,] — Spec R,

which weduces to a simple affine computation.

PROOF. Since the codimension of support respects A-ring extensions, we can
assume the y-splitting principle. The entire calculation reduces to showing that
if & is a codimension one point then I, represents an element of Ko(X)!"). By
definition, I, = ffyp where p is a minimal non-zero prime ideal, and thus is of
the form p = (f) for some irreducible element J of R. We have an exact sequence

R R
0—fR—R— —— =2 _
! (iR p

50 I is the form 1 — ! where [ is a line element. Thus I+ is a y-line element and
we are done.

Lemma 146 can be generalized

PROPOSITION 147, If f : ) — X is a flat map of Noetherian schemes then
P = 1)

Proor. ([46] 5.19).

3. BQG: Level One

THEOREM 148 (BROWN-QUILLEN-GERSTEN SPECTRAL SEQUENCE). Given X of
finite Krull dimension we have a convergent fourth quadrant spectral sequence

g - 8 .
Iyt = @ K_p—y (L,,x) = Gopy(X),
IEIP
where X7is the set of points of codimension p. The induced filtration is by
codimension of support, aud the spectral sequence is contravariant under flat

morphisms.

Proor. We know that that M?T1(X) is a Serre shbeategory of MP(X), so we
can construct the quotient MP(X)/M"*1(X) and apply the localization theorem
to get an exact sequence

MP(X)

l\',' (JMP'f'l(x)) LR ]\’i (MP(I)) L I\". (m) - l"i—l ('Mp+l(x))

By proposition 143 we have a natural equivalence



My , |
ks <-M"+1(I)> =K y.W.‘(UI‘I) = @ INTURE
reX! reX!

so we cain define bi-graded algebras 4y and I hy
AT = KoL, (M)

EVY = Kooy (MP(X)/MIH(X)
@J‘Exl’ I\'—A]\—-r] (I‘.J‘)

1l

The maps a, b and e can be interpreted as bi-graded morphisins with bi-degrees
(=1.1). (0.0), and (1,0} respectively. Sinee X is finite dimensional we have a
direet limit

A=l A" = (G (X))

where the direet it is taken over the maps a0 A7 G =it l oy ey

tduee a filtration on A" by
FrAPH = Tmiage (a2 AV e A2HT)

This is exactly the filtration by codimension of support of (P We now set
dy = cod and consider the spectral sequence with base {£77 d;}. Since X has
finite Krull dinension, M" = M"™! for psufliciently large. Thus the EL 7 terms
vanish except for a band of finite width. so the spectral sequence converges. Wi

now consider the exact couple

4 X A

This couple gives rise to the spectral sequence {7741} which, sinee it con-
verges, converges to A" = (72, (X). To show the functoriality, note that a flat
morphism f © X +— 9 induces a functor f* from .M({Q)) to M(X). Proposi-
tion LIT tells us that codimension of support is compatible with flat maps. so
J7 induces a natural contravariant functor from M”(2)) to .M”(X) compatible

with K and (7 for flat maps and the result follows.

Note that this implies that the spectral sequence commutes with direet limits.



4. BQG: Level Two

We wish to study the second level of the above spectral sequence. We first

characterize the schemes where the second level 18, in some sense, trivial.

DEFINITION 149. A Noetherian scheme is Gersten if it satisfies the following
equivalent conditions.

e The natural map
Ki (MPFHX) = Ky (M7 (X))

vanishes for all nonnegative p.

e 5% vanishes for all p # 0.

® The spectral sequence converges at the second level with the filtration
on the abutment concentrated in codimension zero!.

o We have an exact sequence

0 — Gn(X) 2= @ Kolk,) 2 P Ko (k) P Ku-zlks)

reX® reX! reX?
ProPosITION 150. Let R be a regular semi-local ring essentially of finite type
over a field. Then R is Gersten

PROOF. [36]
One can prove that all regular semi-local rings essentially of finite type over a
field are Gersten, and it is conjectured that all regular local rings are Gersten.
We define a scheme to be locally Gersten if it satisfies Gersten's conjmlurv for
all points on the scheme. If X is such a scheme, we can sheafify the groups 1)

y—n

by defining ™" to be the sheaf given by

U @ Nuoi(hs) = EF"(10)
reunX’

Over a Gersten subscheme D of X we have, by the definition, a natural exact
sequence

dl {O.n dy In dy 2n d, 3n L

“—"’%xl@ €y = €y - @y S @y,

Patching together, we have an exact sequence of sheaves giving a flasque reso-
lution F; _,, of 61:,1" But the global sections I'(X, €; _,,) are just EYT" with

maps dl, so the p”’ cohomology group of & n X is given by the p th cohomology
of E;" . Since a scheme of finite type over a field is locally Gersten,

'In other words we have an isomorphism A,( )= Eg'""



THEOREM 151, For a scheme of finite type over a field X we have
P P
Eyt =11, (X, &_, x)

Since we have explicit representations of the lower A-groups we can analyse the
spectral sequence near the diagonal. Let X be a field of finite type over a field.

and note that d; has bi-degree (1,0). This gives us a diagram

(l) (I] (II

L1 ——— —— [p=l.-p Err 0

@),EIP - ()

™~
T~
\

@J_exr—: [\”—’ (l"_r) —}—> ®IEIF_l A';

,

X
Where Z2XP is the {ree group generated by subschemes of codimension p and the
image of ord is a subgroup of algebraic cycles. Examining ord locally. we find
the image is precisely the cyeles rationally equivalent 1o zero. ‘Thus ERT s the
Chow group of codimension p eyeles. We can not obtain tuueh more information

from the spectral sequence as the higher K-groups are difficult to compute®.

5. A Steinberg Relation
We require a small lemma which will allow us to define a symbol.

Lesama 152, Given a p-cyelie extension L/K with o a generator of the Galois

group and any & in L* with Ny g () # 0. we have

{r. 1 — Neyw (el =)ol )

Proor. Let f(£) be any irreducible monic polynomial in [t] dividing 7 —
Ny (r) with a splitting field /- oand @ root y. As usual, the automorphism

group of L wip /1 s generated by o, <0 we can compute

Newryp(2) = Ny =o' = Nppye(u).

2 This would be a good place to do the examples for .y} (T pl)r. ). and projective spaces.
The first is interesting as the secand and zeroth codimensions are related while the first codi-
mension is composed of the K groups of curves. The second and third cases provide results
as both the irreducible polynomials and the & groups are known. The last provides not much
more than a computation of Ky, but is useful.

o
-—



Thus Niarir(x/y) = (1 — o) for some = in F by Hilbert 90, and we have

{e. SO} = {2 . Niar/r(l = p))
=corpzprp{z, 1 -y}
= (‘Ol‘]‘\-.)[.'/l.'{]—:?, 1—y)
=l =ea)corpep/r{z.1 -y}
If we decompose 7 — Npyk(x) as the product of irreducible monic polynomials

fi we have that

{r,1-Npg(0)} = H{-"vfi(l)}
and the result follows.

6. Injectivity of K

Given a field k and a central simple algebra D of dimension p? over k, we can
choose a cyclic extension L of order p over k such that D splits over L. If X is

the Severi-Brauer variety associated to I we have an étale inclusion i - X, — X.

ProPOsITION 153. The map i* induces a natural inclusion Ni(X) — KNy(X;)
that respect the codimension of the support.

This comes from calculating

. . 1—1 -] .
Ry (X1) = Ky (B ) =@z mi(L)
KNy (X) = @VZ) Ky (D)
and by explicitly computing i*. The first is proved by viewing l\'l(ﬁ",i_]) as the
quotient of the category of finite positively graded Lity. . 4p-1] modules by the
Serre subcategory of those of finite length. We then apply devissage to get a

special case of the projective homotopy theorem
Ry (P) = Ko () Ok Ki (L)

The computation of Ky(X) can be done étale locally followed by a patching

argument.
7. The Diagonal £I""" and the Limit £} ~*

PROPOSITION 154. Let L/ K be afield extension of order p and let. X be a Severi-
Brauer variety associated to a central simple algebra 1 over & that is split by
L. 'Then the spectral sequence of X converges along the diagonal at the second
level, that is, 7757 "(X) = EB~P(X).

To prove this, note that the inclusion map i : Xz, — X induces a sequence

CHi(X) 2 cIrf(x,) = cni(x).



For any y € CHY(X) the projection formula yields
LT = (X Ty =y i (X)) = 1KYy =

Since ('n"(x,‘) = . is free, we can ronclude that all the torsion of CH'(X) is
p-torsion. But by a consequence of our Riemann-Roch theorem we know that
the kernel »f the map from K577 to E2:=7 s annihilated by (p — 1)1[45). so the

kernel must be trivial.

COROLLARY 155, CH'(X) has rank at most one with all 1orsion p-torsion.

Our next result concerns the sheaf cohomology groups 1H'(X.8). Note that.
although we have an explicit representation of Ky via Matsumoto’s theorem, we

stifl require the machinery of higher K'-theory to obtain our results.

Prorostrion 156, Let L/A be a p-cyelic extension and let X be a Severi-Braner

variety over k split by Lo If i Xy — X then we have an injection
(X R) — HYX) . 8R)

We note that 1= 7347() = ) for all n > 2 as the spectral sequence s fourth
quadrant. and the image of d}=% ¢ E1=2 e p1F7 =141 aniches by proposi-
tion 151 Thus we have that for all n > 2

ker (dyy 0 B} =% e plenon=l _ AT

image ((/” Cplemesin I'.',l,'~"’) ]

oyl =
Thus HYX R2) = KOV which maps injectively into 111X, ) = Ko(X,)Y?

by praposition 153,

8. Coprime lifting

As usualo we let L2 be a peeyelic extension and fix a generator @ of the Galois
. P-e) ¢
gronp. Forany 77k we note that /o L s a fintte Fealgebra with an automor-
phisin given by @ acting on the right, so we can define
ker (1\'-_,(/, By e /\'._.(/f))
(I =)o (L i 1)

Vip(F) =

The standard relations between the restriction and the corestriction lift to prop-

erties of Vg 1 (F). For any tower of fields & C F C 1 we can define maps

res DV e (87) — Vi (F7)
cor Vi (F') — 17 e (F)

I



such that corores is multiplication by [F’ : F]. We can also ‘lift" the base
extensions by noting that, Vi (F) = Vg p(F) L FS L s afield. Our eventual

goal is to show that Vise(k) = 0. but we first try something less ambitious.

ProprosITION 157. Vige(L) =0

To see this, we fix I € L such that k() = L and note that 1, ¢ L is a regular
zero dimensional ring with maximal ideals M; = (¢ =3 ai(e)). We can compute
(use Theorem 148) that

Ke(LovLy= @ Kalks) = 0i_, Ka(l)
ré(Spec Lig)0
and that the cores'r’ 4 hy
o - . _ <
COTLanyi/l, & i = No(L) corpmyryrfar....ap) = 38,
For any clemeni v ae kernel of equation 157 we set b; = ay + - - - a;
and, since the Gudois o . acts with o Ar = Miyr. we can compute

(1=ea)bi. .. by) = (ay + (a) + .. Sap)an,.ap) = (ay. .. ap)

COROLLARY 158. ply (k) = 0 and for any finite extension F/k with [F k]

coprime to p we have an injective map res Vipe(k) = Vi e (1)

Proot. The first follows as the following is multiplication by p and trivial,

cor

Vigelk) == Vo e(h) =25 Vi n(k)

[
0

The second is from noting that the composite Vije(k) RS Vige(l) R Vii(h)
has no kernel killed by p.
9. Scveri-Brauer Lifting

‘The main goal of this section is to prove the following proposition.

ProrosiTioN 159. Let L/K be a p-cyclic extension and let. X he a Severi-Braner

variety over k that is split by L. The map
resiy/k P Vi/e(k) — Vii(ky)

is injective.
For any v € I\'-_:(kxl ) we will first construct an element 7, of I[/1(X, ). Recall

that in diagram 150 we had a map

ot
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So we can define a map

i) = @ ().

.'/Ex/,l

Note that for any point r in X' we have

Lok, y=TTkx,

nel,
where the produet is taken over the clemments of X7 that lie over -, so we can

define an element . (e) by

Oqry = H il (r) & H k!/.IL = (/. A-J,‘I)

wel, uel,
Note, however, that the action of the Galois group simply permutes the order of
~ 13 - ]

the factors, so de(e) s fixed and thus defines an element of k. 1

Leasta 160 I we have ¢ € [\"_)(A'I[ ) such that d.(¢) is trivial for all ¢ in X°.

then v = resy, sts) for some = in Ko(1)

o see this note that by equation 159, é,(¢) is trivial only if iy, (r) is trivial
for all y over ». Sinee the map from X1 s an ftale inelnsion. we must have
() vanishing for all y of codimension one in X7, Recall that we have an

exact sequence

0 — Ka(L) — K (1['—*) 2 @ Iy (/\J

re(Fh)!

which, since X splits over L. gives us an exact sequence

0= KoL) = K2 (X)) 2= P (k, x,)
reX'
Thus v = resy, /3) for same = in KNa(L).

We now examine the following commuting diagram.

X
W



MYXND YOU, MOOSE BITES KAN BE PRETTY NASTI

. U: - ori —
I\ - (A'I) _— @rexl k.r'x @yex;’ v

| res’ | res’ | res
h (Al’r.) SERE kx, ®Byex,

and let g be the element of the middle torm in the top row given by €, d.(v).

LEANMA 161, 5 = du(?) for some elemient  in I\""(A"r).

Note first that

res”(n) = [ 0a(v)

vele
and that
res™ oord(y) = ordores”(n) = H ordoth(e) = 1.
yelr

Since res™ s clearly injective, ord(n) vanishes. If we take the homology of hath

rows at the center term. we get a map

res” : [T X, Ry) — HTHXp, 82)

with 7 representing an element of //'(X, £). We know the nap is imjective by
proposition 153 and that res” y vanishes by equation 159, so i represents the
trivial element.

We can now prove the proposition. We choose a in the kernel of cor - Na() —

Ka(k) to represent an element of Vi (k) and note that
resy, a)=(1—-o)r
AIL/I,( ) = ( )
for some v & I\'-_,(A'rl ) when a is in the kernel of res : Vigelk) — Vigelky) We
choose & as above, and compute that (v — res’(#)) = 0 for all »w in X0 Thus

ros g, /00 = (L= @0~ e/ (3) = (1= o) ressp ()

a=(l-o0):

10. Reduction to the Extension

ProrosiTion 162. Given a p-cyclic extension L/K we can find an extension €
of k such that

(1) We have an injective map res : Vigr(h) — VC:-:I,/C(ﬁ)

(2) L& L/L is a p-cyclic extension of fields.

(3) The norm map NL'@L/E Is surjective.

(1) £ has no finite ficld extension with degree prime to p
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We define a sequence of extensions £ of & induetively, Let £ = & and assume
that £ i Lis a tield. We consider the elass € of algebraie field extensions of
L" with the property that any finite index suboxtension has degree coprime to
poanduse a Zorn argnment to choose a maximal -tension L2 . Note that every
element Fin C has the property that £ Lisa ficid, so for every finite extension

F7F in € we have an injection

Voo )Y = Vg () — Ve (B = 1, crcn
by corollary 158 Thus L7 s o field extension of £ sneh that every finite field
extension of L7 has order dividing p. £7 - Lis o fieldand we have an injection

. e

Voo (60 =1, crycn i)
We now use proposition 30 and =1 £ =K (L L7 LT ) which gives ns an

mjection

Vg T = e e

We nor define £ 1o he the unton of all £7

11. Generators of AL(/)

Given A peyelic extension LR of fields, we know that KoL hias apresentation
given by Matsumote's theorem so we can define the subgroup N ol Wal
gencrated by elements (roa) with o 2 Loand a & b0 We wish to find a condition
under which these two groups are equal.

Choosing an elewent € Losuehothat L= k(0) allows us, for each ol ment € 1.
to choose aomugue polynomial f @ k] such that the degree of f s less than
poand i) =0 Wecan then consider foas the product of an clenvent of b by

recducible nonie polvnonnals in ki so for roand oy in Lowe ean compute

<(l nl f,“),/'lnj gt p))
= I A = (BT, i) + 52, (g,

1

i)

Thus we are redueed to stadying elements (f(60g(0) where f and ¢ are irre-
ducible monie polynomialsin A{t]. The most direct approach would be 1o assune:
that degg < deg £ and use the Chinese remainder theorem to write f = eq + df
where degd < deg g We can now define an element of Ky(L) by
(2 40 = (e d() + (@l d()) + (). ()
=(e(O) fLO) + (10 g(O) = (SO . d()).

The left side vanishies by the Steinbery relation, so we could hope (o express

(]



(fL0). g(€) as a combination uf elements of lower bi-degree and proceed by in-
duction. Unfortunately, the induction jiocess fails when deg f is less than half

of degg. We can. however, prove the following.
LEMMA 163, If 2 and y are elements of [, with x —y € k then (r.y) € Ky™(L).

ProoF. If » = y then we note that (r,2) = (. =1) + (r. =) = (.~ 1) as
(r.—x) vanishes for all ». If £ # y, we set @ = ¢ — y and compute
ay ‘
0= (2. 4) = (@) + (s = (a.2) = (2.p).
r oz
so (royYisin Ny"(L).
Note that lemma 163 gives us that (f;(£), g;(()) is an element of K" (L)if both

fi and f; are of degree one. So we can conclude

ProrosiTion 161, Let L/ be a p-cyelic extension. KoL) = Ky*(L) if all

elements of kft] of degrer less than p sphit completely.

12. Hilbert 90

We can now jrove the main result of this chapter

THEOREM 155 (HILdERrT's 90 ror Ka). For any j-cevelie extension L/K with
o generating the Galois group we have V7 (k) = 1 Thus we have an exact
sequence

corg K

Ra(L) 222 KoLy = 2 jo(l)

Proor. By Proposition 42 we can assume that all finite extensions of & have
degree coprime to pand that Ny is surjective,

We define a bilinear map
@ kT x kT — KoL)/ (1 ~a)No(L)

by setting ¢(a.b) = (x,b) where Ny g (x) = o. Proposition 152 siates tha
o(a. 1 — a}) vanishes, so ¢ lifts to give us a map from Ku(k) to Ku(L). We now
compute that the composite
) cory 1| .
Na(k) 2 KoL) —50 Ko (k)

is just the identity mnap, so we are reduced to proving that ¢ is suriective.

But since & has no extensions of degree coprime to p, any clement of £[f] with
degree less than p must split completely. The image of ¢ is just K§"(L), so ¢ is

surjective by proposition 164.
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CoRrOLLARY 166. If L/K is a p-cyclic extension with o generating the Galois

group then we have an exact sequence

Ko(L) 222 Koty ZTH5 1 (1)



CHAPTER 1V

Merkurjev-Suslin

1. Galois Lift

In this section we will study the commutative diagram

pKa(K) 0K p Br(K)
PO /K ‘ Fesp /K
(6) pKa(L) a7 p Be(L)

where L/K is a p-cyclic extension. We will assume for this section that G s
injective, and prove that this will imply that a is also injective in preparation
for a Galois descent argument.

We choose @ € A such that I, = KN(¥/a) and a generator o f the Galois gromy.
LEMMA 167, I ay is injective then
ke ( K2(K) S5 K1) = {{abllbe K)
PProor. One direction is trivial, as

res{a,b} = {a,b} = p{ Y, b} = 0.

Conversely, if we are given an element » € , Ko(A') of the kernel then the com-
mutivity of the diagram implies that resoay () = 0. Note that the kernel of
res : p Br(XA) - -, Br(L) is justBr(L/N'), which was computed in corollary 60.

Thus for some b € K we have
ap(r) = Ayla,b) = res{a,b)
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so o = {a,b} as g is injective.
Since we know the kernel of this restriction map, we would like to compute the

image.

LEMMA 168, Suppose g is injective and we have an «-lt*lno-nt re(l=e)NallL
Then ag(x) = o () if and ouly if € image (Wl ) ,.I\ 4(L))

Preor. The if direction holds as @ acts trivially on the image of the restrie-
tions. "To prove the other direction, we claim that we can proditce a sequenee

ricceponsuch that (=) = o (1 = o) ag(r,) = 0 and
(I—a)o, = (1 =a)t ey € image (,.l\'-_-(l\') S T I.))
7 < p=2then recall that
(l—ay " ' =l4o4+a’+. ot = Niwo
SO We compute
resocoronyr(r,) = Ny o) = (1 - aV T =y () = 0

By corollary 60 and sinee the corestriction commutes with o we can find b 7

stuch that
apfa bl = A {a. b)) = coreng () = ap ocor(r,)
and again by the mjectivity of g we have {a b} = cor(e,). We now . apute
cor ({Va b} —r) = {a b} = cor(e,) = 0

We now nse corollary 166 of Hilbert™s 90 for Ky 10 choose elements y pNo ()

and w41 € pNo( L) sueh that

N {\’/ﬂ’} =res(y)+ (1 —a)r gy

Thus
(1 =) (1 —(r) {a b+ (1 —a) res(u) + (1 — Ve gy
{ }+(l — )t g,
{rb}+ (1 =) tr

Sinee 7is a p'th root of unity, it lies in A by assumption and {7, b} € res pa ().
Using the above equaticn we can also show that (I —a) oy (2,41) = 0 and the
claimn follows.

We now note that (1 — rr)"‘l.z',,_l = FeS O COT ). SO

3R]



p—3
r=(l-o)r;—(l-a)~ ‘-I"p—] +Z [(l - rr)i“"IJ',+1 - (1 - (7)'&?,-] € res y Na( )

i=1
Having proved the above, heavily computational, lenisa, we can now prove
PROPOSITION 169, Hf ay is injective then Diagram 6 is a pushout. square.

Proor. We need only show that is we are given « € p Br and y e Ny(1)
with o (y) = res(2) then we can find 2 unique element = € pNa(N) making the
diagram commute.

Since the corestriction commutes with the norm we have
ap ocor(y) = corony(y) = corores(a) =1

Thus, by the assumption on ag, cor(y) = 0. We now apply corollary 166 of

Hilbert's 90 for Ky to choose u € pho(K) and v € JNo(L) such that y =

res(u) + (1 —a)e. Ifset o' = (1 — o) then
(I-a)apt' = (1 —a)ary—(1=0)ay res(u) = (1 - a) res r=(l=a)apresu =0

Thus v satisfics the conditions of lemma 168, so (I — a)e = res e for some
v’ € p e ().
The sum v + v is almost what we are looking for, as

g

res(u+ ") =resu+ (1 —a)’ = y.

However,

resop(i+ ")y = apores(u+v") = ap(y) = res(ry,
so, by letma 167 one, last, titne, we can choose b € K™ suelr that

r=ap(u+v")+ Agla,b) = ag (w4 "+ {a, b)) = g(z)
and
resz = res(u+ 0" 4+ res{a, b} = y -+ 74 Va. b} = y.

Since ay s Injective, z must be unique,
COROLLARY 170, If ay is injective then o s aiso 1:gective,

PROOF. Setting « = § and y to be any element of ker(evy, 0 No(L) — |, Br L),

wo seleet 2 as above, Siice o4:(2) = 0, = vanishes by the injectivity assumption



2. Ny and Places

We need o relation between |, Ko (K') and p ol L) if we have a place between the
twes diclds,
Propostrion ITH Given a place p o K — L we can choose homomorphisms

0 - K* L*

CpReY T T

i We(N) — W ]L)

Such that 0(r) = plar) whenever p(ar) # > and
ooyl = {0(r). 0y)

Proor. 3. A Large Construction

We now came to the main construetion, We let L= K(/a) as usual and
construet the following fields.
Let Ky be the smallest subfield of K containing the p'th roots of unity and .
Thus Ny is either ';:"(w'.(l) or G(w.a) so it is either a global field or a purely
transcendental r-.\:lv')uAsirm of a glabal field,
For any positive integers and meowe choose integers vy, where 1< 0 < L anid
I <y < omeand define the following variables:

by o for b <0 <.

(2) mfor b <

() forn s 7 <m o and 0 <0 <

) rppfor 1< im0 <j<pand o<k

5y 4, for L <2i < mand U<, p
Wenow set Ky o= No(F g dyy ) 1o be the purely transeendental extension
of Noogenerated by these variables. We now reeall equations Fand 5 and wiite
them in icerms of these new variablis, which gives us cquations in terms of

new variables 1,

vIV
" i =1
.1, . —\ K
o= 4 H ) ZJ",(.(\'H)
=1 = bl \k=0
i p=1 o p-1 r
- ~— 1 . 5 = . q _ o '
(V) .'/J H-\I\(r.)/l\' Z Crfa Ty (\’//‘_;) = E ~)1 \\"/‘7)
=1 =0 =0

We can expand ont the above and colleet the terms containing the saune powers
of Ya. This gives us a total of pm equations Jiooo fpm in 1\'1[5,J]. We now
define No = N2 /(- Spm ) and define Ly = N, (¢/q).
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ProrostTion 172. L, is a p-cyclic extension of A and dimy, Ky = p™?.

Proor. We choose a field K # [, such that Ly = K(¢/a), and let & be
the element. of'inl(l,g/[;') that maps V/a to w/a. We now define pij € La by
(1<i<m0<j<p)

r-1 ) r-1 )
Pii = Z:j,‘ul"j ( "’(7)' =al Z:J‘,’w‘i (\"/(_I)’
i=0 =0

Since the determinant of Aij =@ (Ya) is nonzero, we know the system ahove
is invertible and the elements pij generate Ly over Ly, We now let LHS; be the

left_hand side of equation 7 for a fixed vaiue of j.

/p—1 A\
ot (LUIS;) = ot (ler (Va)' | =
=0

Thus Ly is constructed by adjoining to Ly a total of g p'th roots. The result
follows as clearly ¢/a £ K.

We now consider the diagram

I,l\.'_g I\-()) —'—’}-,\L> r Br(l\'())

res res

» I\-'_g( I\.'_») —ar Bl‘( I\';_t)
PROPOSITION 1T3. ap,, ag, . and ag, are injective,

Proor. We know by [6] that the norm residue homomorphisn is an isomor-
phism for global fields and pure trancendental extensions of global fields. Sinee
Ky is etther global or a purely transcendental extension of a global field and
Ky 1s a purely transcendental extension of Ky, we know ag, and O, oare ine
Jective. Since Ny is formed from continuousty adding p’th roots. we can apply
proposition 170 pu: times so conclude that ay, is also injective.

With these preliminaries out of the way, we come 1o the penultimate theoren

before Mercury-Suslin .

THEOREM 174, If L/K is a p-cyclic extension with L = KN (y/a) then the kernel
of res 1 ) Ka(K) — o L) is precisely {{a,b}|b e K"},

Proor. We choose n, I, m, vij, ri, yi, xij, Tijk, and zj; as in corollary 118,

so any element of the kernel is given by
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n

Y frem}.

i=1

We now consider the following diagram:

"

PN &4 Br(Ky)

res res

\4
p el L) ey Br( L)

Netethat 37 {5 g} € ker(res: Kol Ny) — pIo(Lo)) as Fpoand g satisly, by

construction, corollary 'INC Sinee o, is injective by proposition 17

proposition 171 one, final, time to conclnde that

1

Z{f'z.!/ b= {a a0}

1=}

for some g € Koo We have a natural homomorphism

o Nl . N N N

AL F, g e g, ele

b owe apply

whiel s well defined by construetion. This

B to the dicld o frwtions Ny o wive aplace poo Ky — A We now apply
proposition 171 10 chioose maps
NS h*
o rh - TN

T Na (WD) — NG OR)
such that

H

Z{-"r-.'/l} - Z{,)j.!"7l} = 7

b= 3 Vit ) = s (faah) = o)
re | 1

4. More Lifting
We also hiave,

Prorostrion 1o I L/KN bs a finite Galois extension with [/
poand both ag and o, are injective then

(R}
PRy 7 Be( L)
|

1

l res

p 2L gy Br( L)

res

H&

S K1 eaprime to



is a pushout square.

Proor. We consider the diagram

pRa(R) —2E . Br(K)

I‘CS[ ) res
. (g,

pIa(L) ——ﬁ—-—,, Br(L)

ros[ Jl‘(‘.\‘

P [\-'_g( l\.) T—" r Br( N ) '
Since cor o res is multiplication of an invertible element, the vertical maps are all

isomorphisms.

5. Mercury-Suslin

We ean now prove the full Mercury-Suslin theorem.
THEOREM 1T6. For all K, o is injective.

Proor. We choose n minimal such that we can find a field & sueh that

0# Z{J.‘,‘. i} € kerag.

i=1
Ifn=1then Au(ry, 1) = ax{ri, ;) is a trivial cyclic algebra. Proposition 53
shows that y = Ny ey k@ for some a € K(/x), so {ry. 41} = 0 by proposi-
tion 115. Contradiction.

If > 1 then we set [ = K{(y/r1). We compute

n n

: n
0=resay Z{J',“y,‘} = (rf Tes Z{J?,‘,y,‘} =ty ()+r<'sZ{J',-,_1/,-}

i=1 =1 i=2

so res y_{r, g, vanishes by the minimality of n. Using theorem 174,

2]

Z{li‘!/i} = {x;,a}

i=1

which implies n = 1. Contradiction.
THEOREM 177, For all N, erge is an isomorphism.

Proo¥. Choose any element u € , Br(A') and let L/ be afinite dimensional

Galots splitting field. We construct a filtration
N=ILycl,c...l, =1L
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such that dimy,, L;qy is either poor is not divisible by p. We claiin we can choose
i € p KoLy, such that ag(r;) = resp i . We can choose »,, = O as L s a
splitting field for u. and if r; exists we consider the diagram
[ (41 .1 -
P (L B L)

res res

pN2(Li) o p Br(Ly)

We have »p € W RN(1) and u; = resp,_owesuch that o () = resu,. so by
cither proposition or proposition 175 We can choose »_y € pWol(Li2) with the
right property.

Thus we can construet vy € W KNo(K) with agrg = .

0
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