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Abstract 

Both the observed and projected temperature in Canada increase faster than the global temperature, 

which has extensive implications on snow and river ice breakup regime, and then can greatly affect 

the timing and magnitude of snow and ice affected spring streamflow. This research is to expand 

our knowledge of river ice breakup timing through collecting and analyzing scientific data 

describing and driving such events, and simulating snow and ice induced spring streamflow 

through the development and application of the physics-based hydrologic and river ice models. 

The biggest challenge of large-scale spatial and temporal analyses of river ice breakup timing 

across Canada is there are no long-time and uniform river ice breakup timing records. This study 

used the date of last ‘B’ symbol in the discharge record as breakup timing and constructed a long-

term (1950-2016) and uniform river ice breakup timing dataset using nearly 200 hydrometric 

stations form Water Survey of Canada HYDAT database. It provides a way for researchers to 

construct the river ice breakup timing database and investigate the breakup timing trends under 

historical climate change. The spatial-temporal variations of breakup timing over terrestrial 

ecozones and five selected river basins of Canada were investigated based on the constructed long-

term data record. The links between the discovered patterns and climatic drivers (e.g., air 

temperature, snowfall and rainfall), as well as elevation and anthropogenic activities were also 

analyzed. An overall earlier breakup trend was observed across Canada and the spring air 

temperature was found to be the main driver behind it. However, the most pronounced warming 

trends across Canada was observed in winter. Spring warming trend was not as strong as winter 

warming and even became weak in some periods. Other factors, such as snowfall, rainfall, 

elevation and flow regulation, also contributed to changes of river ice breakup in various ways. 
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Their combined effects made river ice breakup patterns display evident spatial and temporal 

differences. In addition to providing evidence of climate changes in Canada, the findings can 

provide theoretical support in modelling breakup processes. 

The choice of proper input data and suitable calibration scheme is challenging in hydrologic 

modeling of higher-latitude watersheds with their unique hydro-climatic conditions. Based on the 

hydrologic model SWAT (Soil and Water Assessment Tool) and the calibration tool SWATCUP, 

this study revisited various climate data and calibration schemes, and developed a multi-objective 

calibration framework that can automatically eliminate unrealistic snow parameters combinations 

and calibrate Snow Water Equivalent (SWE) and streamflow simultaneously in a large cold region 

watershed, the Peace River Basin (PRB) in western Canada. It demonstrated that the proposed 

multi-objective calibration framework can effectively limit the uncertainty of snow-related 

parameters and significantly improve the simulation of snow-affected spring streamflow in the 

PRB. The evaluating workflow developed in this study can provide insights in modelling cold 

region watersheds and calibrating the hydrologic models. 

Modelling snow and ice affected streamflow in cold region rivers is challenging. Ignoring the 

streamflow from the ungauged zones/subbasins of a river basin in preparing inflow boundaries for 

river ice modes could add further challenges and uncertainties. This study firstly attempted to 

combinedly use the river ice model River1D with the hydrologic model SWAT model to investigate 

the impacts of ungauged subbasin streamflow on peak flow simulation under open water and rive 

ice breakup conditions in the PRB. Ungauged subbasin streamflow in each inflow boundary was 

estimated by both simple drainage-area ratio (DAR) method and the sophisticated hydrologic 

model. Compared with DAR method, the hydrologic model was proved to be a promising and 

robust tool for estimating ungauged subbasin streamflow for the river ice model. The results 



iv 

 

showed that ungauged subbasins of the PRB can greatly affect the peak flow simulation for both 

open water and river ice breakup events, especially for flood events. The peak flow simulation was 

significantly improved when the ungauged subbasin streamflow was properly considered and/or 

estimated. The findings can contribute to open water and river ice breakup flood simulation, and 

water resources planning and management in the PRB. The hydrologic and river ice modelling 

framework developed in this study can be applied into other cold region watersheds to explore the 

effects of the ungauged subbasins and/or forecast snow and ice induced flood events. 
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Chapter 1. Introduction 

Snow and ice are major elements of cold regions and play critical roles in the climatic and 

hydrological systems (Adam et al., 2009; Barry and Gan, 2022). In Canada, most of the land 

surface is covered by snow during winter and ice is present in nearly every river for some period 

of the year. It was reported that Canada’s climate has warmed and will warm further in the future 

(Bush and Lemmen, 2019), which could have extensive implications on the snow and river ice 

regime. The increased winter temperatures generally cause less ice production, thinner ice cover, 

and shortened ice cover season (Burrell et al., 2021). In addition, more winter precipitation falls 

as rain and snow melting occurs earlier in spring as winter temperatures increase (Barnett et al., 

2005). Earlier snowmelt can dramatically affect the timing of spring peak flow and river ice 

breakup processes.  

River ice breakup may evolve as a thermal breakup or a dynamic breakup depending on the relative 

importance of the climatic and hydrodynamic factors (Hicks, 2016). Thermal breakup tends to 

occur when mild weather is accompanied by low spring runoff. In contrast, dynamic breakup is 

typically related to significant spring runoff events due to rapid melting of large snowpack. River 

ice breakup has received wide attention since it can greatly affect winter ice road system and travel 

safety (e.g., Clark et al., 2016; Hori et al., 2018a, 2018b), hydraulic structures and bridges (e.g. 

Beltaos et al., 2007; Jobe et al., 2017), aquatic ecosystem (e.g. Blackadar et al., 2020), frequency 

and severity of ice jam flooding (e.g., Das et al., 2020; Rokaya et al., 2019; Turcotte et al., 2019). 

The estimated annual costs of ice jam related damage in North America is about 300 million CAD 

(French, 2017).  

River ice breakup and snowmelt under the changing climate have extensive and significant 
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implications on cold-region hydrological, ecological and river morphological systems, as well as 

riverine communities. It’s of great importance to investigate (1) how river ice breakup timing has 

changed; (2) what drives the changes of river ice breakup timing; and (3) how to better simulate 

snow and ice affected streamflow. The objective of this thesis is to improve our knowledge of the 

trends and drives of river ice breakup timing, and snow and ice affected streamflow through 

statistical analysis and modelling. 

1.1 Literature review  

A variety of methods have been undertaken by researchers to study river ice breakup, including 

trend analysis of historical breakup data (de Rham et al., 2008; Fu and Yao, 2015; Rokaya et al., 

2018), identification of drivers behind river ice breakup (Beltaos, 2013; Goulding et al., 2009a; 

Newton et al., 2017; Prowse et al., 2002), forecasting the timing and severity of breakup (Beltaos, 

2003, 2013; Chandra Mahabir et al., 2006; Morales-Marín et al., 2019; Zhao et al., 2012), 

assessment and mapping of ice jam flood (Das et al., 2020; Lindenschmidt et al., 2016; Rokaya et 

al., 2020).  

1.1.1 Trend and driver analysis of river ice breakup timing over Canada 

Many studies with respect to trends and drivers of river ice breakup timing in Canada focused on 

individual rivers and local regions (Beltaos, 2002; de Rham et al., 2008; Doyle and Ball, 2008; Fu 

and Yao, 2015; Goulding et al., 2009b; Janowicz, 2010; Jasek and Shen, 1999). The country scale 

breakup timing trend analysis was conducted by Zhang et al. (2001) and Lacroix et al. (2005) using 

ice data from approximately the second half of the 20th century. Researchers have examined many 

factors that may influence the ice breakup timing, such as air temperature (Fu and Yao, 2015; 

Ghanbari et al., 2009; Obyazov and Smakhtin, 2014), snowfall and rainfall (Ariano and Brown, 

2019; Jensen et al., 2007; Nõges and Nõges, 2014; Vavrus et al., 1996). Cloud and elevation 
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(Jakkila et al., 2009; Jensen et al., 2007; Lopez et al., 2019) have also been evaluated but relevant 

studies mainly focused on lake ice breakup instead of river ice breakup. In general, country scale 

trend and driver analyses of river ice breakup timing are still very sparse in Canada.  

1.1.2 Modelling snow and ice affected streamflow during breakup period 

In terms of forecasting the timing and severity of river ice breakup, many researchers and 

practitioners employed empirical or statistical methods to determine the onset and/or severity of 

breakup, such as the cumulative degree days of thawing (Beltaos et al., 2006; Rokaya et al., 2019b), 

threshold models (Shaw et al., 2013; Turcotte and Morse, 2015), multiple regression models 

(Mahabir et al., 2006), soft computing methods (such as fuzzy logic and artificial neural networks) 

(Mahabir et al., 2006; Mahabir et al., 2007; Zhao et al., 2012), partially physical equations (Beltaos, 

2013), and multiple model combination methods (Sun and Trevor, 2018). Some common critics of 

this kind of methods are that they are site specific with high false positive results and limited 

warning time (Turcotte and Morse, 2015; White, 2008).  

More efforts needs to be devoted into effectively coupling physics-based river ice models with 

hydrologic and/or climate models (Brown, 2019; Prowse et al., 2007). Generally, hydraulic models 

that have the capability of simulating various river ice processses, are refered as river ice models, 

such as River1D (Blackburn and She, 2019), CRISSP (Chen et al., 2006; Liu et al., 2006), Mike-

Ice (Thériault et al., 2010), and RIVICE (Lindenschmidt, 2017). Compared with hydrologic 

models, river ice models can consider the detailed physical characteristics of river geometries, 

provide better solution for both open water and ice-related flooding, and be applied to dynamic 

problems, such as dam breaches and ice jam release events (Blackburn and Hicks, 2003, 2002). 

Nevertheless, hydrologic models can simulate many crucial climatic and hydrological processes 

(e.g., snowmelt) that greatly affect river ice breakup process. The streamflow simulated by a 
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hydrologic model can be used as indicators for breakup timing and severity or as inputs for river 

ice models to simulate snow and ice induced spring floods and assess the effects of climate change.  

Some studies have been conducted to forecast river ice breakup timing and severity and assess 

future river ice regime using hydrologic models with other models, such as water temperature 

models, simple ice thickness models, and river ice models. Employing a 1D physics-based river 

ice model Mike-Ice driven by future climate forcing from the Coordinated Regional Downscaling 

Experiment (CORDEX, https://na-cordex.org/) and inflow data simulated with a hydrologic model 

(HBV), Timalsina et al. (2013) evaluated the impact of climate change on river ice regime (e.g., 

frazil ice and ice cover) in a regulated medium-scale river but breakup timing and severity were 

not their focus. Morales-Marín et al. (2019) set up a hydrologic and water temperature modelling 

framework to simulate the breakup timing as the time when water temperature increases above 

0°C, which can be used to assess the impacts of climate change on breakup timing. The framework 

was also used for operational forecasting of river ice breakup timing (Rokaya et al., 2020). Brown 

(2019) forecasted the breakup timing and assessed the severity of breakup based on the outputs 

from the Raven hydrologic modelling framework (Craig et al., 2020) and Ashton's (2011) ice 

thickness model. Breakup timing was determined based on the timing of the initial rise on the 

hydrograph and its severity was evaluated with a simple threshold model based on flow, 

accumulated shortwave radiation and ice thickness. Hydrologic models have also been used in 

conjunction with river ice model for operational real-time and future ice jam flood hazard 

assessment and mapping in terms of probability of flood extents and depths (Das et al., 2020; 

Lindenschmidt et al., 2019). However, they focused on the simulation of water level profiles 

caused by ice jam instead of peak flow during river ice breakup period. Work towards improving 

the capability of the hydrologic and river ice modelling framework simulating snow and ice 

https://na-cordex.org/
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induced floods in cold region river basins is in great demand. 

1.1.2.1 Uncertainties in hydrologic modelling 

Turcotte et al. (2019) pointed out that estimating and forecasting the river runoff during breakup 

season will be the most limiting factor to evaluate ice jam floods once breakup/ice jam models 

have reached a suitable development stage. It is vital to explore new discharge quantification 

methods or improve runoff simulation during the spring breakup period (i.e., snow and ice induced 

spring streamflow). To accurately simulate streamflow using a hydrologic model, 

uncertainties/errors in the input data and parameter estimation need to be reduced and relevant 

physical processes need to be properly accounted for. Setting up the hydrologic model properly 

through analyzing various combinations of input data can limit uncertainties in input data and 

improve overall model performance (Faramarzi et al., 2015). Ficklin and Barnhart (2014) found 

that the issue of hydrologic model parameter uncertainty and equifinality can lead to significantly 

different hydrological results. To address this, one could use multi-objective calibration methods 

(Hanzer et al., 2016; Rajib et al., 2016; Tuo et al., 2018a), calibrate multiple sites instead of one 

outlet site (Abbaspour et al., 2007; Nkiaka et al., 2018; Schuol et al., 2008), and calibrate 

hydrologic models under various sets of conditions (wet vs. dry) during historical period (Poulin 

et al., 2011). In cold regions, the land surface hydrology is dominated by winter snow accumulation 

and spring snowmelt (Barnett et al., 2005). Multi-objective calibration that includes both 

streamflow and snow measurements can be useful in improving the snow processes of hydrologic 

models (Tuo et al., 2018b). However, relevant studies are still sparse, especially in large cold 

region river basins. 
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1.1.2.2 Ungauged streamflow estimation and verification 

Many river basins in the world are ungauged or poorly gauged, and the ungauged catchment 

streamflow estimation and/or prediction is challenging in hydrological science (Guo et al., 2021a; 

Hrachowitz et al., 2013; Mishra and Coulibaly, 2009; Sivapalan, 2003), which can bring huge 

uncertainies and/or errors into hydraulic/river ice models in simulating flood events. In 2003, the 

International Association of Hydrological Sciences (IAHS) launched the initiative for Predictions 

in Ungauged Basins (PUB) (Sivapalan et al., 2003). Numerous studies regarding ungauged 

catchment streamflow estimation and/or prediction have been presented since the launch of the 

PUB initiative, the methods range from simple draninage-area ratio (DAR) method (Asquith et al., 

2006; Emerson et al., 2005; Ergen and Kentel, 2016; Gianfagna et al., 2015; Q. Li et al., 2019; 

McCuen and Levy, 2000) to the hydrologic model based regionalization methods (Booker and 

Woods, 2014; Pagliero et al., 2019; Parajka et al., 2013; Salinas et al., 2013; Singh et al., 2022; 

Viglione et al., 2013; Zelelew and Alfredsen, 2014; Zhang and Chiew, 2009). However, the 

ungauged catchment stremflow estimated by various methods can still be unsatisfactory because 

of the large heterogeneity of catchment attributes (e.g., soil, land cover, and slope), and 

uncertainties of input data and model structures and calibrations (Guo et al., 2021b; Hrachowitz et 

al., 2013; Sivapalan, 2003). 

In the hydrologic and hydraulic modelling framework, the hydraulic models can be used to verify 

the hydrologic model simulated ungauged catchment streamflow. The hydrologic model estimates 

the ungauged catchment streamflow and provide inflows to the hydraulic model. The hydraulic 

model simulates water suraface area, water levels and/or flows, and by comparing to their observed 

values, provides verification of the ungauged streamflow estimated by the hydrologic model. For 

example, Liu et al. (2015) coupled the SWAT (Soil and Water Assessment Tool) hydrologic model 
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and the XSECT hydraulic model for estimating streamflow and water levels for ungauged 

subbasins in the Red River Basin (U.S. portion). Zhang et al. (2017) coupled the SWAT model 

and the Delft3D hydraulic model to simulate the streamflow for the ungauged zones of the Poyang 

Lake Basin. Despite there are a large amount of studies with respect to estimating and/or predicting 

streamflow in ungauged cathcments, and verifying the estimated results using the hydrologic and 

hydraulic modelling framework, the effects of ungauged subbasins on peak flow, especially snow 

and ice induced peak flow, in a large cold-region watershed is remaining to to be explored through 

the hydrologic and river ice modelling framework. 

1.1.3 Summary 

The above literature review shows that large-scale trend analysis of river ice breakup timing based 

on long-term and uniform data across Canada is still needed because the majority of related studies 

focused on individual rivers and local regions. Frameworks that coupling hydrologic models with 

river ice and/or other models for simulating and assessing river ice regime, the timing and severity 

of river ice breakup, and ice jam floods have been initiated and developed, but developing a robust 

modelling framework that couples physics-based river ice models with hydrologic models to 

simulate snow and ice affected streamflow is still a challenge and in great demand. More work 

needs to be done to assess the uncertainties of data inputs, and hydrologic model calibration 

methods to better simulate the snow affected streamflow in large cold region river basins. 

Streamflow from ungauged subbasins of a river basin could add huge uncertainty to river ice 

models in simulating flood events. The effects of ungauged subbasins on peak flow, especially 

snow and ice induced peak flow, in a large cold region river basin is remaining to be explored 

through the hydrologic and river ice modelling framework. 
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1.2 Research objectives  

The objectives of this research are to investigate the trends of river ice breakup timing and the 

potential drivers behind it, and to improve the performance of the hydrologic and river ice 

modelling framework in simulating snow and ice affected spring streamflow (particularly during 

rive ice breakup). The three specific objectives are described below: 

Objective 1: Examine the spatial-temporal trends and drivers of river ice breakup timing across 

Canada (Chapter 2) 

Large-scale trend analysis of river ice breakup timing based on long-term uniform data is needed 

to show how river ice breakup timing has changed under historical climate. Further exploration of 

the possible drivers of rive ice breakup is required to better understand the effects of climate change 

and provide reliable forecast indicators of such events. The following tasks were conducted to 

achieve this objective: (1) identifying the spatial and temporal variations of river ice breakup 

timing across major Canadian rivers; (2) analyzing detailed regional patterns over terrestrial 

ecozones and five selected river basins; (3) exploring the relationship between identified breakup 

trends/patterns and climatic factors (e.g., air temperature, rainfall and snowfall), as well as other 

factors (such as elevation and flow regulation). 

Objective 2: Improve the performance of a hydrologic model in simulating snow affected 

streamflow in a large-scale regulated and snow-dominated river basin (Chapter 3) 

Hydrologic model is a key component in hydrologic and river ice modelling framework to provide 

reliable inflow boundaries to river ice models. It is critical that the effects of uncertainties/errors 

in input data and model calibration are assessed and relevant physical processes (e.g., snowmelt) 

are properly accounted for. Utilizing the SWAT model, this objective was achieved by: (1) 
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evaluating observed and gridded climate data to find the optimal weather input; (2) automatically 

eliminating unrealistic snow parameter combinations, and calibrating streamflow and Snow Water 

Equivalent (SWE) simultaneously; (3) determining the proper calibration scheme through 

comparing the choice of objective function, number of simulations in each iteration, sequential 

calibration from upstream to downstream, and calibrating snow parameters first and then all other 

hydrological parameters; (4) improving the simulation of snow-affected spring streamflow using 

multi-objective calibration (streamflow and SWE). 

Objective 3: Investigate the effects of ungauged subbasins on open water and river ice breakup 

peak flow in a large partially gauged basin with the hydrologic and river ice modelling framework 

(Chapter 4) 

Many river basins are ungauged or partially ungauged. If the ungauged subbasin streamflow in a 

river basin is unconsidered or not probably estimated, it could bring large uncertainties and/or 

errors into the river ice models in simulating flood events. Through the combination of the SWAT 

hydrologic model and River1D river ice model, this objective was achieved by: (1) evaluating 

ungauged subbasin streamflow estimation methods, (2) investiagting the impacts of ungauged 

subbasins on peak flow simualtion under open water and river ice breakup conditions, and (3) 

analyzing the peak flow contribution of the gauged and ungauged subbasins for the open water 

and river ice breakup events. 
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Chapter 2. Long-term Variations of River Ice Breakup Timing across Canada 

and its Response to Climate Change 

2.1 Introduction  

The cryosphere is very sensitive to climate variability and can provide some of the most visible 

signatures of climate change (IPCC, 2013). River ice is one of the main components of the 

cryosphere, and thus its long-term records can serve as good indicators of climate change and 

variability in northern regions (Magnuson et al., 2000; Prowse et al., 2011, 2007). In Canada, ice 

is present in nearly every river for some period of the year and is an important aspect of winter 

hydrology. River ice breakup in particular, can greatly affect water quantity and quality of the river 

system, and can be both harmful and beneficial to human (Beltaos and Prowse, 2009; Hicks, 2009; 

Prowse et al., 2011; Weyhenmeyer et al., 2011).  

Many previous studies have shown that breakup in Canadian rivers had generally become earlier. 

For example, Jasek and Shen (1999) discovered that breakup of the Yukon River had advanced by 

approximately 5 days per century from 1896 to 1998. Beltaos (2002) found that the date of breakup 

of the Saint John River had become 11 days earlier per century for the period of 1927-1997 and 

the trend had become more noticeable since late 1950s. Earlier breakup was also found in several 

local regions of Canada, such as southern British Columbia rivers (Doyle and Ball, 2008), 

Mackenzie River Basin (de Rham et al., 2008; Goulding et al., 2009b), northwest rivers (Janowicz, 

2010) and south-central Ontario waterbodies (Fu and Yao, 2015). Although historical trends of rive 

ice breakup at a variety of spatial and temporal scales have been investigated, large-scale spatial 

and temporal analyses across Canada remain sparse. By far the most comprehensive such studies 

were conducted by Zhang et al. (2001) and Lacroix et al. (2005) using ice data from approximately 
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the second half of the 20th century, and both studies reported an overall trend towards earlier 

breakup.  

Numerous studies examined the factors that may have contributed to the changes in the breakup 

timing. Air temperature during certain winter/spring months is probably the most significant 

influencing factor of river ice breakup events (Fu and Yao, 2015; Ghanbari et al., 2009; Obyazov 

and Smakhtin, 2014). However, river ice breakup is not controlled by a simple heat index (e.g., air 

temperature), other factors such as snowfall and rainfall may also be contributing factors (Beltaos 

and Prowse, 2009). Snow can impede heat flux into the ice cover and increase the albedo of the 

ice surface, and thus increased snowfall tends to delay spring breakup (Jensen et al., 2007; Vavrus 

et al., 1996). Rainfall during ice season may have a negative feedback on breakup timing as the 

heat released from rain can rapidly melt the ice (Nõges and Nõges, 2014). However, Ariano and 

Brown (2019) found that mid-winter rain can refreeze to form white ice, leading to increased ice 

thickness and delayed breakup. In addition, cloud cover and elevation can indirectly affect breakup 

by altering the solar radiation and air temperature (Jakkila et al., 2009; Jensen et al., 2007; Lopez 

et al., 2019), but these studies focused on lake ice breakup.  

Most previous studies that analyzed breakup trends were based on individual river or rivers in 

small-scale regions. The two large-scale spatial analyses across Canada (Lacroix et al., 2005; 

Zhang et al., 2001) analyzed periods before 2000s. Therefore, it is of great necessity to investigate 

large-scale spatial and temporal patterns of river ice breakup in response to climate change, using 

long and uniform river ice data. This study focused on trends and changes in breakup timing for 

major Canadian rivers over the period of 1950-2016. Periods of 1960-2016 and 1970-2016 were 

also analyzed to explore how the discovered trends may change with the period of analysis. 

General trends and changes, as well as spatial and temporal patterns over terrestrial ecozones and 
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selected river basins were discussed. Studies have shown that Canada warms faster than the rest 

of the world and precipitation is projected to increase in most of Canada (Bush and Lemmen, 2019). 

Those observed trends in breakup were thus connected to the trends in climatic variables including 

air temperature, snowfall and rainfall since these factors are the primary drivers of the variability 

and change in the cryosphere. The potential effects of elevation and flow regulation on breakup 

timing were also evaluated as these factors further complicate how river ice breakup responds to 

changes in climatic factors and their effects have mainly been studied for specific rivers and from 

ice jam flooding perspective. Additionally, the impact of missing values in the dataset was 

discussed.  

2.2 Material and methods   

2.2.1 Data 

The dataset of breakup dates used in this study was extracted from the Water Survey of Canada 

(WSC) HYDAT database. The ‘B’ symbol in the discharge record denotes when the gauge station 

is affected by ice; thus the last ‘B’ can be considered an indication of breakup. To ensure data 

quality, breakup dates extracted from HYDAT database were examined by cross-checking with 

other sources including the National Snow and Ice Data Center (NSIDC) and Alberta Environment 

and Parks river ice reports (Chen and She, 2019). The dates of last ‘B’ had been found to be 

relatively consistent with the “ice off” dates obtained from these two sources.  

In addition, abnormal breakup dates (those dates are notably earlier or later than the mean date in 

a time series) indicated by the last ‘B’ were checked through examining the changes of the water 

level or streamflow during breakup period to decrease the potential errors. The HYDAT database 

has good spatial and temporal coverage, and thus provide a long and uniform record of the breakup 

dates across Canada.  
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WSC gauge stations were extracted based on the following three criteria: 1) station is active at 

present; 2) station records are continuous instead of seasonal; and 3) the drainage area of the station 

is at least 5000 km2. This minimum drainage area ensures the inclusion of most major rivers 

(including main headwaters and tributaries of those large rivers) and free floating ice (de Rham et 

al., 2008). However, most WSC stations located in Quebec have not been active since mid-1990s. 

To cover the data void region, stations from the Centre d’expertise hydrique du Québec (CEHQ) 

satisfying the first two criteria were also included. The third criterion was dropped because it 

significantly limits the number of stations for analysis in the Quebec region. Breakup dates were 

then determined as the last ‘B’ dates (WSC stations) or the last ‘R’ dates (CEHQ stations). Three 

periods (1950-2016, 1960-2016 and 1970-2016) were selected for trend analysis. Only stations 

with more than 70% complete record of breakup dates were used, resulting in 125, 162, and 190 

stations in the three periods, respectively. Figure 2.1 shows the percentage of stations that have 70-

80%, 80-90%, and >90% data records, which reflects the data quality in terms of missing values. 

Breakup dates were converted to day-of-year format or Julian days (e.g., January 6 = 6 Julian days) 

in statistical analysis. 

Monthly and seasonal mean air temperature and total precipitation (snowfall and rainfall) used in 

this study were from the second generation adjusted historical Canadian climate data (AHCCD) 

database (Vincent et al., 2018, 2015, 2012). The database provides temperature data at 338 

locations and precipitation data at 463 locations, and these stations have been selected and adjusted 

in consideration of data quality, longevity, spatial and temporal coverage (Vincent et al., 2018, 

2012). For the meteorological data, only those stations with a minimum of 70% complete record 

of monthly and seasonal data were used in this study. The nearest meteorological station to the 

hydrometric station was selected to represent the climate for this breakup location. Time series of 
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temperature, rainfall or snowfall from this meteorological station were then correlated with the 

corresponding time series of breakup dates. 

 

Figure 2.1 Percentage of stations having 70%-80%, 80%-90% and 90%-100% data records in 

the breakup date dataset for the three analyzed periods. 

2.2.2 Methodology 

Commonly used non-parametric Mann-Kendall (MK) trend test was used to analyze the trends of 

breakup dates, and climatic variables due to its resistance to the effects of extreme values (e.g., 

Chen et al., 2016; Zhang et al., 2001). The statistic Z-value of MK test indicates if a time series 

exhibits upward or downward trend. For breakup dates, positive Z indicates a trend of earlier 

breakup and negative Z indicates a trend of later breakup. Critical values of Z at 99%, 95% and 

90% confidence level are ±2.576, ±1.96 and ±1.645, respectively. Sen’s method (Sen, 1968), a 

robust non-parametric slope estimator, was used to estimate the rates of changes in river ice 

breakup timing and climatic variables. In addition, non-parametric Spearman’s rank correlation 

coefficient was employed to assess the correlations between breakup dates and climatic or other 

influencing factors. When analyzing the trends over a river basin or terrestrial ecozone, change 

rates of breakup dates (or magnitude of breakup trends) for all the stations within the specific river 

basin or the terrestrial ecozone were calculated based on Sen’s slope method and averaged to 

represent the regional trend. Similar method was applied to show the trend of temperature over a 
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river basin or terrestrial ecozone. 

2.3 Historical trends in breakup timing 

2.3.1 General trends 

Figure 2.2 shows the results from the trend analysis of the breakup date datasets. It can be seen 

that the majority of stations showed trend towards earlier breakup (including both significant 

earlier and non-significant earlier) in all three analyzed periods. During 1950-2016, about 70% or 

more of the stations showed earlier breakup. This is in agreement with previously studies (Lacroix 

et al., 2005; Vincent et al., 2015) that reported earlier breakup trends at the vast majority of 

locations across Canada for periods of 1950-1998 and 1950-2012. However, percentage of stations 

displaying later or significant later trends increased as the period of analysis became shorter and 

more recent.  

The effect of data completeness on the trend analysis results can also be seen from Figure 2.2. For 

1950-2016 and 1960-2016, the percentage of stations showing either earlier or significant earlier 

breakup markedly increased while the percentage of stations showing either later or significant 

later breakup apparently decreased with the increase of data completeness. However, the change 

was much subtler for 1970-2016 and was in opposite direction. The percentage of stations showing 

earlier breakup decreased slightly and the percentage of stations showing later breakup increased 

slightly as data completeness improved. This can be explained by the fact that data completeness 

improved in more recent years. Percentage of stations containing a minimum 90% complete record 

for 1950-2016, 1960-2016 and 1970-2016 was 29.6%, 45.1% and 66.8%, respectively (Figure 2.1). 

It indicated that the missing values were mostly concentrated in the 1950s and 1960s. Given that 

breakup timing was relatively later during these times, the missing values probably weakened the 

earlier breakup trends detected in the periods of 1950-2016 and 1960-2016. Missing values had 
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much less impact on the detected trend in 1970-2016 due to the high data completeness in this 

period.  

Missing value is a common issue in river ice data due to the difficulties in documenting these 

events. It is often inappropriate to fill in the missing ice data by interpolation because of the highly 

complex non-linear ice processes. Therefore, many rive ice data were analyzed with missing values. 

For example, Lacroix et al. (2005) analyzed trends in river ice breakup dates using stations with a 

minimum 2/3 completeness, Bonsal et al. (2006) set a minimum of 20 relevant ice-date 

observations over 50-year period for a freshwater-ice location to be included in the trend analysis, 

and Schmidt et al. (2019) required at least 20 ice-off dates over various data length. The missing 

values in breakup data increase the uncertainties of trend analysis results and this can be seen from 

the data completeness analysis based on Figure 2.2. It is therefore important to consider the impact 

of data completeness when interpreting trend analysis results. Given that similar trends were found 

with data of minimum 70% and 80% completeness, the dataset with a minimum 70% completeness 

was used in the following discussions as it has the highest observation density. 
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Figure 2.2 Trends in breakup dates across Canada for different periods of analysis and with 

different data completeness: results presented as percentage of stations showing a specific trend. 

NSE, NT and NSL mean non-significant earlier trend, no trend and non-significant later trend, 

respectively. SE90% and SL90% indicate significant earlier and later trend at confidence level of 

90% and above. 
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2.3.2 Spatial variability by terrestrial ecozones 

Spatial pattern was investigated through regional analysis in 15 terrestrial ecoregions based on the 

geographical areas and Canadian ecozones classified by Environment Canada (1996) (Table 2.1). 

The 15 ecozones were grouped into seven major ecozone groups, including the Arctic (1), Atlantic 

(2), Boreal (3), Central Plains (4), Great Lakes – St. Lawrence (5), Pacific and Western Mountains 

(6) and Taiga (7) as shown in Figure 2.3a. The ecozone groups were used to show the overall trend 

while the individual terrestrial ecozone was more suitable for discussing more detailed spatial 

pattern.  

Figure 2.3 shows the trends of breakup timing over the major ecozone groups for the three periods 

analyzed. Three confidence levels (99%, 95% and 90%) were used to differentiate the degree of 

significance of earlier or later trend. It was observed that remarkable earlier breakup trends were 

mainly in the western part of Canada for all three periods, including the Pacific and Western 

Mountains, and Central Plains. However, no significant earlier breakup trend was found in the 

western part of the Taiga region (i.e., Taiga Plain) except one station in the period of 1970-2016. 

In the Arctic region, 4 of 6 stations showed earlier breakup for the period of 1960-2016 and 6 of 8 

stations displayed earlier breakup for the period of 1970-2016. Two stations in these two periods 

showed significant earlier breakup and no station showed significant later breakup. There were 

mixed trends with both significant earlier and later breakup in the Atlantic and Great Lakes – St. 

Lawrence regions for all three periods. Zhang et al. (2001) reported similar spatial pattern that 

breakup had advanced in most regions of Canada except Atlantic Canada for 1947-1996, 1957-

1996 and 1967-1996 using the same data source. Lacroix et al. (2005), using river ice data from 

the Canadian Ice Database (CID) spatially augmented with data from WSC, also found an overall 

earlier breakup in Canada but evenly mixed trends of earlier and later breakup in the Great lakes 
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– St. Lawrence regions. Figure 2.3 also shows that later breakup became more evident for 1970-

2016, particularly in the eastern part of Canada. Noticeable change can be observed in the Boreal 

and Taiga regions where almost no stations showing significant trends for 1950-2016 and 1960-

2016, but several stations with significant later or earlier breakup showed up for 1970-2016. 
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Table 2.1 Summary of terrestrial ecozones and average change rate of breakup timing over each ecozone for periods of 1950-2016, 

1960-2016 and 2017-2016. 

Id Ecozone Group 
Terrestrial 

Ecozones 

T_Area 

(km2) 

L_Area 

(km2) 

FW_Area 

(km2)  
D_Cover 

r_1950 

(day/decade) 

r_1960 

(day/decade) 

r_1970 

(day/decade) 

1 Arctic 
Arctic 

Cordillera 
239,216 219,499 19,717 Perennial Snow/Ice / / / 

2 Arctic Northern Arctic 1,433,362 1,283,915 149,447 Barren Lands -1.25 -1.25 -0.43 

3 Arctic Southern Arctic 775,734 716,385 59,349 
Arctic/Alpine 

Tundra 
0.53 -0.99 -0.83 

4 Atlantic 
Atlantic 

Maritime 
196,449 176,677 19,772 Mixed Forest 0.36 0.33 -0.64 

5 Boreal Boreal Shield 1,773,894 1,609,776 164,118 Coniferous Forest 1.04 1.32 1.56 

6 Central Plains Prairie 440,537 432,108 8,429 
Agricultural 

Cropland 
-1.47 -1.41 -0.89 

7 Central Plains Boreal Plains 656,970 599,139 57,831 Coniferous Forest -0.59 -0.92 -0.68 

8 
Great Lakes and St. 

Lawrence 

Mixedwood 

Plains 
113,431 57,422 56,009 

Agricultural 

Cropland 
0.22 0.09 0.47 

9 
Pacific and Western 

Mountains 
Taiga Cordillera 245,865 245,505 360 Coniferous Forest / 1.00 -1.19 

10 
Pacific and Western 

Mountains 

Boreal 

Cordillera 
432,128 427,208 4,920 Coniferous Forest -0.93 -0.35 -0.12 

11 
Pacific and Western 

Mountains 

Montane 

Cordillera 
461,198 448,145 13,053 Coniferous Forest -1.58 -0.12 -0.43 

12 
Pacific and Western 

Mountains 

Pacific 

Maritime 
195,554 181,749 13,805 Coniferous Forest -0.50 0.06 -0.93 

13 Taiga Hudson Plains 350,318 341,322 8,996 Transitional Forest -0.48 0.06 -0.19 

14 Taiga Taiga Plain 563,241 496,380 66,861 Coniferous Forest 0.10 0.15 0.05 

15 Taiga Taiga Shield 1,268,623 1,156,110 112,513 Transitional Forest 3.33 1.28 2.65 

Notes: T_Area, L_Area and FW_Area are total area, land area and freshwater area. D_Cover is dominant plant/land cover. r_1950, r_1960 and 

r_1970 indicate the rate of change of breakup timing for 1950-2016, 1960-2016 and 1970-2016, respectively; Positive values are later breakup and 

negative values indicate earlier breakup. Average change rates of breakup timing over 1 day/decade are indicated in bold.
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Figure 2.3 Trends in breakup timing over ecozone groups of Canada for different periods. SE90% 

and SL90% indicate significant earlier and later trend at 90% confidence level (the absolute values 

of Z are between 1.645 and 1.96); for SE95% and SL95%, the absolute values of Z are between 

1.96 and 2.576; the absolute values of Z for SE99% and SL99% are over 2.576. 

Figure 2.4 shows the regional pattern of trend and change rate of breakup date over the 15 

terrestrial ecozones. The values of the average rate of change for each ecozone over the three 

periods are given in Table 2.1. Some variabilities within specific ecozone group were noticed. 

Rapid advancement of breakup date was seen in Prairie and Boreal Plains (both within the Central 

Plain group) for all three periods, but Prairie had a much higher change rate. For 1950-2016, the 

rate of advancement was high in Boreal Cordillera, Montane Cordillera, and Pacific Maritime, all 
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were in the Pacific and Western Mountains group. However, the rates in these regions decreased 

for the periods of 1960-2016 and 1970-2016 except that Pacific Maritime showed a fast 

advancement rate of 0.93 day/decade in 1970-2016. Pacific Maritime also had the most number of 

stations in this period. Although all belong to the Taiga group, later breakup was seen in Taiga 

Plain (<0.15 day/decade) and Taiga Shield (>1 day/decade) while Hudson Plains experienced 

earlier breakup (1950-2016 and 1970-2016) or negligible change (1960-2016). Although there 

were not many stations, the Arctic region showed evidently earlier breakup. Breakup in Boreal 

Shield had on average become over 1 day/decade later. Later breakup with small average change 

rate of below 0.5 day/decade was observed in Mixedwood Plains (Great Lakes-St. Lawrence) for 

three periods. Atlantic Maritime had a similar small change towards later breakup for 1950-2016 

and 1960-2016 but became 0.64 day/decade earlier for 1970-2016.  
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Figure 2.4 Average rate of change in breakup timing over each terrestrial ecozone of Canada. 

Positive and negative values in the legend indicate later and earlier breakup, respectively.  

2.3.3 Breakup trend in selected major river basins 

Five major river basins were selected for further analysis since the ice breakup processes are often 

linked with the entire river system (Figure 2.5). Table 2.2 summarizes the averaged change rate of 

breakup timing and its other statistical indices (such as median, range and standard deviation) to 

depict the changes of trends for the major river basins. The Fraser River Basin experienced 

remarkable change of 1.56 day/decade earlier on average during 1950-2016 while no significant 

overall earlier or later breakup was observed for the periods of 1960-2016 and 1970-2016. The 
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high standard deviations suggested significant heterogeneity of trends in this river basin. The 

opposite changes canceled out the overall trend, and thus no evident consistent trend was found in 

the Fraser River Basin for these two periods. However, it is important to note that more extreme 

earlier and later breakup changes were observed in this basin as period changes from 1950-2016 

to 1970-2016. Heterogeneous trends were also identified in the other maritime river basin, St. 

Lawrence River Basin, but pronounced later breakup trends dominated and the average decadal 

change rates were over 1 day/decade for all three periods. The median values of the change rates 

were evidently less than the average values, indicating that there were some extreme later breakup 

trends which may have skewed the overall trend in this river basin. Heterogeneous trends were 

also notable in the Nelson River Basin but the trend towards earlier breakup was evident, and the 

mean and median change rates were over 1 day/decade for all three periods. 

Smaller variation in the change rate of breakup timing was observed in the Mackenzie River and 

Yukon River Basins. The Yukon River Basin experienced an overall significant earlier breakup 

trend with regional change rates ranging from 0.82-1.27 day/decade for the different periods. Jasek 

and Shen (1999) found that the breakup of Yukon River had become ~0.5 day/decade earlier during 

1896-1998. The earlier breakup trend in the Yukon River Basin had greatly enhanced recently. 

There was no significant regional earlier or later breakup trend in the Mackenzie River Basin and 

the average change rate was small.  

  

 

 



39 

 

Table 2.2 Summary of change rate of breakup timing in five selected river basins for the three 

periods of analysis. 

Period River Basin Mean_r (day/decade)  
Median_r 

(day/decade) 

Range_r 

(day/decade) 
std_r 

Number 

of Station  
 Fraser -1.56 -1.20 -7 to 2.3 2.8 11 

 Mackenzie -0.34 -0.30 -3 to 1.4 0.9 25 

1950-2016 Nelson -1.29 -1.20 -5.2 to 1.4 1.4 33 

 St. Lawrence 1.14 0.40 -4.1 to 10.9 3.2 22 

 Yukon -1.27 -1.30 -2.1 to -0.5 0.6 6 

 Fraser 0.24 0.19 -6 to 6.1 3.3 14 

 Mackenzie -0.09 0.00 -3.4 to 1.8 1.0 36 

1960-2016 Nelson -1.69 -1.43 -14.3 to 1.5 2.6 36 

 St. Lawrence 1.38 0.44 -3.8 to 10.9 2.9 25 

 Yukon -0.83 -0.95 -2.1 to 0.5 0.9 8 

 Fraser -0.08 -0.15 -7 to 6.1 3.7 14 

 Mackenzie 0.01 0.00 -3.3 to 1.8 1.0 41 

1970-2016 Nelson -1.36 -1.64 -12.3 to 3.3 2.3 40 

 St. Lawrence 2.08 1.07 -4 to 12.8 3.4 26 

 Yukon -0.82 -1.00 -2 to 0.5 0.8 10 

Notes: Mean_r, Median_r, Range_r and std_r, are mean, median, range and standard deviation of 

the change rate of breakup timing of each river basin, respectively. Mean and median change rates 

over 1 day/decade are in bold.  
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Figure 2.5 Five selected river basins. Gauge stations with regulation condition for the period of 

1970-2016 are also shown. For international river basins (e.g., Yukon River Basin), only gauge 

stations in Canada are analyzed. The mainstreams and major tributaries of Mackenzie and Nelson 

River Basins are highlighted for the following analysis. 

Detailed changes of breakup pattern in five selected river basins were further explored for 1970-

2016 as this period had the most number of stations and least missing values (Figure 2.6). Most 
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stations in the Mackenzie River Basin showed no significant change in breakup timing, but some 

stations in the headwaters and smaller tributaries showed remarkable changes. Stations showing 

significant earlier breakup of over 1 day/decade were mainly observed in the Peace River basin 

while significant later breakup of over 1 day/decade were mainly identified in the Athabasca River 

Basin. Most stations in the Yukon River Basin experienced earlier breakup, with 5 of 10 stations 

showing significant changes of over 1 day/decade earlier. These bigger changes were all on the 

tributaries of the Yukon River while the only available station on the mainstream showed 

negligible change.  

In the Fraser River Basin, significant later breakup changes were identified mainly in the upper 

reach of the Fraser River (2.6 day/decade), the Nechakon River Basin (1.6 day/decade), and the 

Chilcotin River Basin (3.3 and 6.1 day/decade). Breakup dates were significantly earlier for the 

middle reach of Fraser River (-3.9 day/decade) and the Thompson River Basin (-1.4, -3.6 and -7.0 

day/decade), except that one station showed a change of 5.1 day/decade later.  

Most stations in the Nelson River Basin experienced earlier breakup of 1 to 2.5 day/decade. One 

station (Fairford River near Fairford) showed dramatic change of 12.3 day/decade earlier. Only 6 

of 40 stations displayed later breakup and these are mainly in the upper Nelson River Basin (North 

Saskatchewan River and North Saskatchewan River Basins); 5 of the 6 stations showed rapid 

change of over 1 day/decade later. Significant trends towards later breakup dominated the St. 

Lawrence River Basin with only 5 of 26 stations showing earlier breakup. Some dramatic delays 

in breakup dates were found in this basin, including the stations at North Arm (12.8 day/decade), 

Saint Anne (6.7 day/decade), Rimouski (6 day/decade), Red (5.5 day/decade), and Montmorency 

(5 day/decade). Obvious earlier breakup was only identified in Richelieu (Riviere) Aux Rapides 

Fryers (-4 day/decade).  
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Figure 2.6 Changes in breakup dates within five selected river basins during 1970-2016; numbers 

indicate the change rate in day/decade, positive and negative values mean later and earlier breakup 

respectively, and the absolute values greater than or equal to 1 day/decade are in bold. 
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2.4 Influencing factors of river ice breakup  

This section assesses the influencing factors on the observed trends in breakup dates. Five 

parameters, air temperature, snowfall, rainfall, elevation, and flow regulation, were selected based 

on the literature review. Other factors, such as large-scale atmospheric and oceanic circulation 

patterns (e.g., NAO, PNA and ENSO), may also contribute to the change of river ice breakup 

(Bonsal et al., 2006; Schmidt et al., 2019) but are not discussed here. 

2.4.1 Surface air temperature 

2.4.1.1 Relationship with monthly/seasonal air temperature  

The relationships between breakup dates and monthly (October-May) and seasonal (winter, spring 

and autumn) mean air temperature were analyzed for all three periods. Three periods showed 

similar results and breakup timing was negatively correlated with air temperature. It was found 

that 84.9% of the correlations were significant at 95% confidence interval when the correlation 

coefficients of breakup and monthly/seasonal air temperature were below -0.5, and thus the 

correlation coefficient < -0.5 was considered good correlation and used as a criterion to evaluate 

the correlations with other parameters in the following sections. Breakup date was mainly 

correlated with monthly mean air temperature from February-May, particularly March and April. 

Mean air temperature during March-April and spring (March-May) also had good correlation with 

breakup date. There seemed to be weaker or no discernible correlation with monthly mean air 

temperature from October-December and mean air temperature during autumn (September-

November) and winter (December-February). The results are consistent with previous studies 

(Benson et al., 2012; Fu and Yao, 2015; Hodgkins et al., 2005) which reported that breakup date 

is closely correlated with air temperature for March through April or spring.  

Figure 2.7 provides the spatial pattern of the correlation between breakup date and 
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monthly/seasonal mean air temperature. Breakup of most stations analyzed in this study occurred 

sometime in March or April, which explained why the breakup date was better correlated with 

March and April mean air temperature. Moving towards the high latitude regions, good 

correlations were found with later month as breakup tended to occur later. This is generally 

consistent with previous studies which consider the air temperature of 1-3 months before breakup 

as the dominant factor for lake ice phenology (Duguay et al., 2006; Livingstone, 2000; Nõges and 

Nõges, 2014). It is also important to note that the correlation between breakup date and air 

temperature in higher latitude regions (roughly north of 58°N) was not as good as those in lower 

latitude regions. 
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Figure 2.7 Spatial pattern of correlation between breakup date and monthly/seasonal mean air 

temperature for the period of 1970-2016. 
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2.4.1.2 Trends in winter and spring air temperature 

The trend and magnitude of trend in winter and spring air temperature are shown in Figures 2.8 

and 2.9. Only the results of 1950-2016 and 1970-2016 were displayed because significant 

differences were identified between these two periods. Strong winter warming trends were 

observed almost all over Canada for 1950-2016, especially for the western part where most stations 

had warmed by 0.5-1°C/decade. The spring warming pattern was similar although most stations 

had relatively lower warming rates of 0.05-0.5°C/decade. The spring warming trend explains the 

general trend towards earlier breakup across Canada that was found in 1950-2016 and 1960-2016 

(see Figure 2.3). Relative weaker spring warming trend in the Atlantic and Great Lakes – St. 

Lawrence to some degree explains the mixed signals in these regions. River ice breakup in these 

regions may still be sensitive to climate change as both significant earlier and significant later 

trends were found here. Vincent et al. (2015) observed a modest cooling over 1940-1970s, but a 

markedly rapid warming afterwards. Figures 2.8 and 2.9 show that winter warming trends became 

stronger in terms of magnitude and coverage from 1950-2016 to 1970-2016. However, significant 

spring warming trends (0.5-1°C/decade) were only identified in the Arctic and part of Pacific 

regions for 1970-2016. Spring warming trends in other regions became weak and some stations in 

Atlantic and Great Lakes – St. Lawrence, and Central Plains even showed apparent cooling trends 

as compared to the period of 1950-2016. This was consistent with more stations showing later 

breakup during 1970-2016. 
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Figure 2.8 Trends in winter and spring mean air temperature for the periods of 1950-2016 and 

1970-2016. SU90% and SD90% indicate significant upward (warming) and downward (cooling) 

trends at 90% confidence level (the absolute values of Z are between 1.645 and 1.96); for SU95% 

and SD95%, the absolute values of Z are between 1.96 and 2.576; the absolute values of Z for 

SU99% are over 2.576. 
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Figure 2.9 Rate of change in winter and spring mean air temperature for the periods of 1950-2016 

and 1970-2016. 
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2.4.1.3 Regional sensitivity of breakup timing to spring warming 

Regional spring warming rates over 15 terrestrial ecozones of Canada for different periods are 

shown in Figure 2.10. The most rapid warming rates were mainly observed in the Arctic region for 

all three periods. Multiple factors, such as ice-albedo feedback due to diminishing sea ice, ocean 

heat transport and cloud feedback, have been proposed to be the potential causes of the faster 

warming in the Arctic (Rantanen et al., 2022). The spring warming rates in the western Canada 

(e.g., Pacific Maritime, Montane Cordillera, Boreal Cordillera, Taiga Plain, Prairie, and Boreal 

Plains) were evidently greater than the southeast (e.g., Taiga Shield, Boreal Shield, Mixed wood 

Plains, and Atlantic Maritime), especially for 1950-2016 and 1960-2016. Prominent spring 

warming trend was mainly observed in the north part of Canada and Pacific Maritime during 1970-

2016. The spring warming pattern was in good agreement with the pattern of the change in breakup 

timing (see Figure 2.4), especially for 1950-2016 and 1960-2016. There were strong correlations 

between regional warming rate and the change rate of breakup timing for 1950-2016 (R = -0.79) 

and 1960-2016 (R = -0.73). This suggested that temperature was a main driver behind river ice 

breakup. The correlation was not as good for the period of 1970-2016 (R = -0.42). It is likely due 

to breakup was more sensitive to air temperature in southern regions, while noticeable spring 

warming was only identified in the north part of Canada for 1970-2016. 

Average rates of change in spring air temperature for the selected five major river basins are given 

in Table 2.3. Fast spring warming was observed in the Yukon River Basin which was consistent 

with the significant earlier breakup found earlier. The Mackenzie River Basin also had fast spring 

warming rate (for 1950-2016 and 1960-2016) but the average change of breakup date in this 

watershed was not apparent (see Table 2.2). About half of the Mackenzie River Basin is in the 

north of 58°. As discussed above, breakup in this region was not very sensitive to warming trends. 
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Additionally, it was found that breakups in larger rivers were not very sensitive to warming trend 

as compared to smaller rivers and headwaters. Beltaos and Burrell (2003) pointed out that the ice 

regime could be modified by climate change in different ways over various parts of Canada 

because regional and local climates are also greatly affected by topography, latitude, altitude, and 

the proximity of large water bodies (e.g., Great Bear Lake and Great Slave Lake). Those factors 

may support the weak earlier breakup trend found in the Mackenzie River Basin, as well as Taiga 

Plain which is mainly in the north of the Mackenzie River Basin and contains the mainstream of 

Mackenzie River.  

The spring warming rate in the Fraser River Basin was relatively high during 1950-2016 while 

decreased for 1960-2016 and 1970-2016. This corresponded well to the significant trend towards 

earlier breakup found in 1950-2016 and mixed trends observed in the other two periods. In the 

Nelson River Basin, breakup at most stations advanced by over 1 day/decade even for the relatively 

low spring warming rate of 0.13°C/decade. The least significant spring warming rate was found in 

the St. Lawrence River Basin, where the regional mean change rate of breakup timing was over 1 

day/decade later.   

Magnuson et al. (2000) reported earlier breakup trend of 0.65 day/decade for Northern Hemisphere 

waterbodies during 1846-1995 along with warming rate of 0.12°C/decade. In this study, the 

average change rates of breakup date observed in the Fraser, Nelson and Yukon River Basins 

during 1950-2016 are evidently faster than the rate reported by Magnuson et al. (2000). In addition, 

the spring warming trends became weaker for almost all river basins as the period of analysis 

changed from 1950-2016 to 1970-2016.  
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Figure 2.10 Average spring warming rates over each terrestrial ecozone of Canada.  
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Table 2.3 Summary of spring air temperature changes in five river basins for periods of 1950-

2016, 1960-2016 and 2017-2016. 

Period River Basin 
Mean_Q 

(°C/decade)  

Median_Q 

(°C/decade) 

Range_Q 

(°C/decade) 
std_Q 

Number 

of Station  
 Fraser 0.30 0.30 0.02 to 0.43 0.11 12 

 Mackenzie 0.38 0.35 0.11 to 1 0.17 23 

1950-2016 Nelson 0.37 0.37 0.05 to 0.66 0.12 58 

 St. Lawrence 0.13 0.14 -0.18 to 0.31 0.11 47 

 Yukon 0.39 0.39 0.16 to 0.62 0.21 6 

 Fraser 0.24 0.24 -0.16 to 0.42 0.16 12 

 Mackenzie 0.34 0.30 0.03 to 1.1 0.20 23 

1960-2016 Nelson 0.30 0.29 -0.06 to 0.6 0.13 58 

 St. Lawrence 0.16 0.18 -0.32 to 0.38 0.13 47 

 Yukon 0.38 0.39 0.16 to 0.61 0.19 6 

 Fraser 0.16 0.18 -0.5 to 0.4 0.24 12 

 Mackenzie 0.12 0.09 -0.3 to 1.18 0.28 23 

1970-2016 Nelson 0.13 0.13 -0.24 to 0.6 0.16 58 

 St. Lawrence 0.12 0.14 -0.53 to 0.38 0.17 47 

 Yukon 0.22 0.25 0 to 0.33 0.12 6 

Notes: Mean_Q, Median_Q, Range_Q and std_Q, are mean, median, range and standard deviation 

of spring warming rates over each river basin, respectively.  
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2.4.2 Snowfall 

Snowfall generally affects ice breakup through insulation (reduce heat transfer between ice and air) 

and/or albedo effects (higher albedo reflects more solar radiation) (Jensen et al., 2007). Vavrus et 

al. (1996) found that an increase in snowfall results in a monotonic delay in breakup timing due to 

higher albedo of snowfall, the increased creation of snow ice, and the added mass of the frozen 

snow and ice layers. In addition, a decrease in snowfall generally advances breakup. These explain 

the positive correlation between breakup timing and snowfall shown in Figure 2.11, though the 

impacts of snowfall on the breakup timing were not as strong as those with the air temperature. 

Breakup date had better correlation with monthly total snowfall from February-May, particularly 

during March-April and spring (March-May). Snowfall during winter (December-February) and 

autumn (September-November) contributed slightly or negligibly to breakup timing. The spatial 

pattern of correlation between breakup date and monthly/seasonal total snowfall shown in Figure 

2.11 was similar to that with air temperature, and breakup timing was closely correlated with the 

total snowfall for about 1-3 months before breakup. However, it is important to note that the 

correlation between breakup date and total snowfall was relatively good in higher latitude regions 

(roughly north of 58°N) which was not the case for the correlation pattern with air temperature.  
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Figure 2.11 Spatial pattern of correlation between breakup date and monthly/seasonal total 

snowfall for the period of 1970-2016. 
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The trends and rates of change in spring and winter total snowfall are shown in Figures 2.12 and 

2.13. Significant increasing trends of snowfall in spring and winter were mainly found in northern 

Canada for the period of 1950-2016. Remarkable decreasing trends of snowfall were observed in 

the south part of the Pacific and Western Mountains, and Central Plains. Decreasing rate of 

snowfall in winter was faster as compared to in spring. Mixed trends of significant increasing and 

decreasing snowfall were seen in Great Lakes – St. Lawrence regions. Increased snowfall in the 

higher latitude regions may impede heat flux from air to the ice through insulation and/or albedo 

effects. On the other hand, decreased snowfall in the lower latitude regions makes heat flux from 

air to the ice easier. This may partly explain why breakup timing in the higher latitude regions is 

less sensitive to climatic warming than the lower latitude regions. 

The snowfall pattern for the period of 1970-2016 was similar to 1950-2016, but the increasing 

trends in the north became weaker while the decreasing trends in the south became stronger, 

especially for spring. This may be attributed to a rapid increase in temperature after 1970s, but 

snowfall pattern tended to be more complicated and there were more chances of extreme events. 

For example, both pronounced increase and decrease in snowfall were observed in Atlantic and 

Great Lakes – St. Lawrence, and Central Plains (Figure 2.13), which in part contributed to the 

mixed trends of breakup timing mentioned above. 
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Figure 2.12 Trends in winter and spring total snowfall for the periods of 1950-2016 and 1970-

2016. 
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Figure 2.13 Rate of change in winter and spring total snowfall for the periods of 1950-2016 and 

1970-2016. 
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2.4.3 Rainfall 

The correlation between breakup date and monthly (October-May) and seasonal (winter, spring 

and autumn) total rainfall were investigated. It was found that breakup date was mainly negatively 

correlated with monthly total rainfall from January-May, especially for March and spring. The 

results are consistent with Nõges and Nõges (2014) who found that increased rainfall during ice 

season can contribute to ice breakup. However, no significant negative correlation between 

breakup timing and rainfall was found during October-December, autumn (September-November) 

and winter (December-February). Mid-winter (e.g., January and February) rain during ice season 

may also contributed to later breakup (red point in Figure 2.14). These positive correlations were 

mainly observed in high latitude regions and east part of Canada where mean air temperature was 

very low or warming trend was weak. The positive feedback of rainfall on breakup timing may be 

attributed to that midwinter rain can also favor white ice formation through refreezing, and thus 

delay breakup (Ariano and Brown, 2019). However, those positive correlations observed in 

Maritime and temperate regions from March to May probably have no physical meanings since 

river ice probably has already melted out in these regions in those months (Figure 2.14). 
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Figure 2.14 Spatial pattern of correlation between breakup date and monthly/seasonal total rainfall 

for the period of 1970-2016. 
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Figures 2.15 and 2.16 show the trends and rates of change in spring and winter total rainfall, 

respectively. Both spring and winter total rainfall showed remarkable increasing trends across 

Canada during 1950-2016, especially for spring total rainfall in the southern Canada. The 

increasing trend in spring and winter total rainfall became weak for the period of 1970-2016, and 

some significant decreasing changes in spring total rainfall showed up. For the northern Canada, 

noticeable increase (over 1-3 mm/decade) in spring total rainfall were only observed in the north 

part of the Pacific and Western Mountains. Overall increased spring rainfall in the southern Canada 

may also advance breakup and thus breakup timing in the lower latitude regions appeared to be 

more sensitive to climatic warming than the higher latitude regions. 
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Figure 2.15 Trends in winter and spring total rainfall for the periods of 1950-2016 and 1970-2016. 
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Figure 2.16 Temporal changes in winter and spring total rainfall for the periods of 1950-2016 and 

1970-2016. 
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2.4.4 Elevation 

Table 2.4 shows the correlations between elevation and the change rate of breakup date in the five 

selected river basins. Two correlation methods both suggested strong positive correlations (over 

0.7) in the Fraser River Basin for all three periods. Higher elevations generally experience colder 

temperature because of adiabatic cooling. It is not difficult to understand that those stations in 

maritime and temperate regions with higher elevations often experience later breakup. Similar 

findings had been reported for lake ice, for example, Williams and Stefan (2006) reported weak 

positive correlation between lake ice breakup dates and elevations in North America, and Lopez et 

al. (2019) found that 46% of the variation in lake ice breakup trends can be explained by spring air 

temperature and elevation across the Northern Hemisphere. However, the impacts of elevations 

were not evident in other river basins. Poor positive and negligible correlations were found in the 

Nelson River Basin and the St. Lawrence River Basin, respectively. In addition, weak negative 

correlations were observed in high latitude regions, such as Mackenzie and Yukon River Basins. 

It indicated that breakup tended to occur earlier at higher elevations in high latitude regions. A 

possible explanation for this is that stations at high elevations are generally those stations in the 

headwaters and smaller tributaries. As discussed earlier, these stations are more sensitive to climate 

change. Breakup at higher elevations may occur earlier in high latitude regions when spring 

warmed rapidly (see temperature change in Figure 2.9). 
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Table 2.4 Correlation between elevation and change rate of breakup timing (day/decade) in five 

river basins for the three periods of analysis. 

Period River Basin r_Spearman  r_Pearson Range_elev (m) std_elev 
Number of 

Station  
 Fraser 0.83 0.84 466 to 806 112 11 

 Mackenzie -0.28 -0.21 57 to 1,027 242 25 

1950-2016 Nelson 0.19 0.03 205 to 1,073 219 33 

 St. Lawrence 0.05 0.20 18 to 354 87 22 

 Yukon -0.43 -0.28 349 to 907 216 6 

 Fraser 0.78 0.72 466 to 806 107 14 

 Mackenzie -0.34 -0.30 6 to 1,027 239 36 

1960-2016 Nelson 0.44 0.23 201 to 1,073 217 36 

 St. Lawrence 0.08 0.09 18 to 633 131 25 

 Yukon 0.21 0.19 358 to 907 192 8 

 Fraser 0.78 0.72 466 to 806 107 14 

 Mackenzie -0.34 -0.30 6 to 1,027 239 41 

1970-2016 Nelson 0.44 0.23 201 to 1,073 217 40 

 St. Lawrence 0.08 0.09 18 to 633 131 26 

 Yukon 0.21 0.19 358 to 907 192 10 

Notes: r_Spearman and r_Pearson are correlation coefficients using Spearman and Person 

correlations methods separately; Correlation coefficients over 0.5 were indicated in bold. 

Range_elev and std_elev indicate range and standard deviation of elevations over each river basin, 

respectively.  

2.4.5 Human activities 

The smallest warming rate was found in the St. Lawrence River Basin. However, it cannot fully 

explain why many stations in this river basin show extreme later breakup trends and the regional 

change rate can be as high as 1.1 day/decade. Nilsson et al. (2005) assessed the effects of 

fragmentation (by dams) and flow regulation (resulting from reservoir operation, irrigation, and 

inter-basin diversion) on the world’s large river systems. They grouped those large river systems 

into unaffected, moderately affected, and strongly affected river watersheds. The St. Lawrence and 

the Nelson River Basins are both strongly affected river watersheds, the Fraser and Mackenzie 
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River Basins are moderately affected, and the Yukon River Basin is unaffected. The effects of flow 

regulation for those river basins also can be assessed using the regulation conditions of WSC gauge 

stations (Figure 2.5). For example, most gauge stations in the St. Lawrence and Nelson River 

Basins are regulated, which is consistent with the labels of strongly affected river watersheds by 

Nilsson et al. (2005). Flow regulation by dams modulates changes in flood frequency due to 

climate change typically by reducing spring floods resulting from snowmelt and increasing winter 

flows (Ashmore and Church, 2001). This increases the chance of thermal ice breakup instead of 

mechanical ice breakup in those regulated rivers. In other words, flow regulation to some degree 

delays river ice breakup or prolongs the breakup period. Many large and small tributaries in the 

basin are fragmented by dams and only 25% to 49% of the main channel segments lack dams in 

St. Lawrence River (Dynesius and Nilsson, 1994). Therefore, the significant later breakup trends 

occurring at many stations in the St. Lawrence River Basin is likely due to the combined effects 

of climatic factors and human activities. Flow regulation also can advance river ice breakup or 

contributes to mechanical breakup. For instance, the flow regulated station of Peace River at Peace 

River trended towards earlier breakup of over 3 day/decade for all three periods. This significant 

earlier breakup trend is probably due to the winter releases and regulation thermal effects (Prowse 

and Conly, 1998). Other extreme earlier breakup trends were also observed in flow regulated 

stations, such as Bow River at Calgary (4 day/decade earlier), Fraser River near Marguerite (3.9 

day/decade earlier), and Fairford River near Fairford (12.3 day/decade earlier) during 1970-2016. 

The impacts of human activities on rive ice breakup are yet to be further explored and quantified 

based on more detailed data and sophisticated methods. 
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2.5 Conclusion 

This study constructed a long-term and uniform river ice breakup timing dataset and explored 

large-scale spatial and temporal variations of river ice breakup timing across Canada. An overall 

earlier breakup trend was found across Canada, especially for the Pacific and Western Mountains, 

Central Plains and Arctic. Mixed trends were identified in the Atlantic and Great Lakes – St. 

Lawrence regions while later breakup trends were observed in Boreal Shield and Taiga Shield. 

Breakup date was found to be mainly correlated with spring air temperature even though warming 

trend was stronger for winter than for spring. Breakup pattern tended to be consistent with the 

spring warming pattern, especially for 1950-2016 and 1960-2016. Later breakup trends became 

more evident for 1970-2016 in accordance with the weaker spring warming trend found in the 

south and west parts of the country during this period. Evident spring warming was mainly found 

in the north part of Canada (Arctic) for this period. However, in higher latitude regions, the breakup 

timing appeared to be less sensitive to spring warming mainly because its effect was counteracted 

by the increased spring snowfall, which delays breakup. This explained why the breakup and 

spring warming patterns were not in as good agreement for 1970-2016 than for the other two 

periods. Rainfall generally advances breakup during ice-covered season though midwinter rainfall 

also can contribute to later breakup through refreezing in some colder or weak warming regions. 

Increased rainfall in southern Canada in part explained why breakup in lower latitude regions are 

more sensitive to climate change and variability. Additionally, river ice breakup in headwaters and 

small tributaries appeared to be more sensitive to climate change as compared to main streams and 

large rivers. Higher elevation tended to delay river ice breakup through adiabatic cooling in regions 

with large elevation variations and maritime or temperate climate, but can also experience earlier 

breakup in high latitude regions. Flow regulation and fragmentation can both advance and delay 



67 

 

river ice breakup. Extreme later breakup trends in the St. Lawrence River Basin and earlier breakup 

trends in the Peace River basin are likely due to the combined effect of climatic factors and flow 

regulations. Furthermore, large number of missing values in the breakup dataset can lead to biased 

trend analysis results and thus data completeness should be considered when interpreting trend 

analysis results. This study offers a way to construct long-term and uniform river ice breakup 

timing database in Canada. The findings from this study not only highlight the temporal and spatial 

variations of river ice breakup across Canada and the drivers behind the observed patterns, but also 

provide theoretical support for modelling the breakup process. 
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Chapter 3. Evaluation and Uncertainty Assessment of Weather Data and 

Model Calibration on Daily Streamflow Simulation in a Large-scale Regulated 

and Snow-dominated River Basin 

3.1 Introduction 

Distributed and/or semi-distributed hydrologic models are crucial in water resources planning and 

management and have been widely used in investigating the effects of climate and land-use change 

on water quantity and quality (Faramarzi et al., 2017; Gizaw et al., 2017; Loiselle et al., 2020; 

Scheepers et al., 2018; Yan et al., 2013). The reliability and robustness of hydrologic models 

generally depend on accurate model representations, appropriate input data, and proper model 

calibration (Abbaspour et al., 2017; Beven, 2000; Faramarzi et al., 2015). An accurate model setup 

is the prerequisite of a successful hydrologic model. Calibration might be of little help if pre-

calibrated model performance is very poor (Abbaspour et al., 2017). Various types of input data 

(e.g., climate, soil, and land-use) could bring in different sources of uncertainties in model results, 

and each type often has more than one data source for a region. Climate data is crucial for 

hydrologic modelling; however, it is often difficult to collect high-quality observed climate data 

for large-scale regions, especially in mountains (Zaremehrjardy et al., 2021). In addition to 

meteorological data, there are numerous gridded climate data products available, such as Climate 

Forecast System Reanalysis (CFSR), gridded climate data provided by Natural Resources Canada 

(NRCan), and ERA5 (Dile and Srinivasan, 2014; Hersbach et al., 2020; McKenney et al., 2011), 

but their applicability for reliable hydrologic modeling in large snow-dominated watersheds 

remains challenging. The performance of the recently released ERA5 reanalysis data (Hersbach et 

al., 2020) in hydrologic models has drawn lots of attention globally (Champagne et al., 2021; Tarek 
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et al., 2020; Xiang et al., 2021). However, studies regarding the performance of ERA5 data in 

distributed and/or semi-distributed hydrologic modeling and in reproducing daily streamflow in 

mid-to-high latitude watersheds are still very sparse. 

Hydrologic models can be unreliable if not correctly calibrated. Model calibration involves several 

considerations including calibration algorithm, parameters to be calibrated and their range, 

calibrating all the parameters together or separately, choice of objective function, number of 

simulations, number of objective variables to calibrate the model, and sequential calibration of a 

river basin from upstream to downstream versus calibrating the watershed as a whole (Arsenault 

et al., 2014; Kouchi et al., 2017; Muleta, 2012; Yang et al., 2008). While most of the studies 

reported that different choices can lead to different calibration results, the choice of proper input 

data, realistic parameter combination, and suitable calibration scheme has remained challenging 

in hydrologic modeling of higher-latitude watersheds with their unique hydro-climatic conditions. 

Despite a wide range of studies on model calibration and uncertainties, applying a particular 

approach or data is often extemporary in process representation, particularly in the cold watersheds. 

Moreover, less attention has been paid to the effects of the number of simulations through iterations 

of the calibration processes. The inherent model equifinality issue, i.e. multiple parameter sets 

provide equally good model performance (Beven, 2006; Beven and Binley, 2014), introduces 

uncertainty that can deteriorate the reliability of hydrologic models in forecasting future water 

resources (Ficklin and Barnhart, 2014; Her and Seong, 2018). This issue can be more critical in 

cold regions where hydrological cycle is governed by snow processes (Zaremehrjardy et al., 2021). 

Multi-site (Abbaspour et al., 2007; Nkiaka et al., 2018; Schuol et al., 2008) and multi-objective 

calibration (Hanzer et al., 2016; Rajib et al., 2016; Tuo et al., 2018a) schemes have been reported 

as useful means in limiting model equifinality. Although multiple variables (e.g., soil moisture, 
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evapotranspiration, and water quality) have been used in multi-objective calibration (Cao et al., 

2006; Molina-Navarro et al., 2017; Puertes et al., 2019; Rajib et al., 2016; Rientjes et al., 2013), 

snow data is seldom utilized in simulation of cold watersheds. Snowfall is a vital source of 

streamflow in cold regions, and thus multi-objective calibration that considers both streamflow 

and snow measurements can be beneficial in improving the snow processes of hydrologic models 

(Tuo et al., 2018b). However, relevant studies are minimal, especially in large-scale watersheds of 

mid-to-high latitude regions. 

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998), a semi-distributed hydrologic 

model and public domain software, has been widely used in various regions from small catchments 

to continental scale to simulate the streamflow and water quality (Abbaspour et al., 2015; 

Faramarzi et al., 2015; Ficklin et al., 2012; Musau et al., 2015; Neupane et al., 2018; Tuo et al., 

2016). The model delineates a basin into many subbasins, which are further divided into hydrologic 

response units (HRUs), each consisting of unique soil, land cover, and slope combinations. The 

Sequential Uncertainty Fitting Program (SUFI2) of SWATCUP is often employed to calibrate the 

SWAT model (Abbaspour, 2015; Ha et al., 2017; Yang et al., 2008). SMFMX and SMFMN, the 

maximum and minimum snowmelt rates, are among the most sensitive parameters in snow mass 

balance simulations in the SWAT model. However, the standard SUFI2-SWATCUP approach does 

not systematically assess nor control the relationship between various snow parameters (for 

example, if SMFMX is greater than SMFMN). Consequently, the parameter set generated by 

SWATCUP can contain parameter combinations where SMFMX is less than SMFMN, which does 

not make physical sense. In general, previous studies either did not control or exclude such 

unrealistic snow parameter combinations, or manually calibrated for Snow Water Equivalent 

(SWE) after completing an automatic streamflow calibration (Liu et al., 2020; Peker and Sorman, 



77 

 

2021; Tuo et al., 2018a, 2018b). This laborious effort may reduce the reliability of the final 

calibrated model. Therefore, developing an automatic calibration scheme to reject unrealistic 

parameter combinations related to snow simulation and simultaneously calibrate streamflow and 

SWE in a multi-objective calibration framework is necessary (Tuo et al., 2018b). 

The main objective of this study is to revisit the commonly used climate data and calibration 

approaches and develop a more automatic calibration framework for a thorough analysis and 

assessment of model performance in simulation of snow processes and resulting streamflow in 

cold region watersheds. Our specific objectives include: (1) evaluate observed and gridded (e.g., 

ERA5) climate data to find the optimal weather input, as the first necessary step to drive the semi-

distributed hydrologic model (SWAT model) before calibration; (2) modify SWAT and/or 

SWATCUP for automatic elimination of unrealistic snow parameter combinations resulted from 

SUFI2-SWATCUP parameter sampling, and for multi-objective calibration of streamflow and 

SWE; (3) find the proper calibration scheme through investigating the uncertainties of the 

objective function, number of simulations in each iteration, sequential calibration from upstream 

to downstream, and calibrating snow parameters first and then all other hydrological parameters; 

(4) improve the simulation of snow-affected spring streamflow using multi-objective calibration 

(streamflow and SWE). We focused our modeling efforts on the Peace River Basin (PRB) in 

western Canada. The PRB is characterized by heterogeneous soil, land use and geospatial 

conditions, and represent cold region hydrology (e.g., Pomeroy et al., 2007). The basin has also 

been regulated by several large dams in the upstream. Therefore, the PRB is a suitable study area 

for assessing our research objectives and a watershed worth to be explored. 
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3.2 Data and methodology 

3.2.1 Study area 

The Peace River Basin (PRB) is in western Canada, and its area is about 306,000 km2. It begins 

from the Rocky Mountains in the east-central British Columbia and extends towards the northeast 

side of Alberta. The modelled area in this study is around 277,286 km2 (Figure 3.1). The altitude 

varies from 3,286 m in the west to about 200 m in the east side of the PRB. The river basin is 

mainly covered by forests (over 60%), and the majority are evergreen needle leaf and deciduous 

forests. Based on the historical climate data from Environment and Climate Change Canada 

(ECCC) for the 2004-2013 period, the air temperature ranged from around -50 ℃ in winter to 

about 30 ℃ in summer, and the average annual temperature in the basin was from -1.8 to 3.9 ℃. 

The range of average annual total precipitation was between 386 mm to 1,278 mm across the study 

area. The low temperature in the PRB generally lasts from October to April, during which snowfall 

dominates the river basin. The watershed typically experiences peak flows during spring due to 

snowpack melting (Toth et al., 2006). The PRB has been regulated by the W.A.C. Bennett Dam, at 

the Williston Lake reservoir, in the upstream tributaries since 1968. Williston Reservoir covers 

approximately 1,773 km2 at full pool and has active storage of 39,471 million m3. The Peace 

Canyon Dam was constructed in 1980, forming the 23 km long Dinosaur Reservoir just behind 

W.A.C. Bennett Dam. The Dinosaur Reservoir covers approximately 9 km2 at full pool and has 

limited active storage of 24.69 million m3. The Site C dam, the third dam and hydroelectric 

generating station located downstream of the two existing dams, was approved in December 2014 

and construction is expected to be completed in 2025 (https://www.sitecproject.com/about-site-

c/project-overview). 

 

https://www.sitecproject.com/about-site-c/project-overview
https://www.sitecproject.com/about-site-c/project-overview
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Figure 3.1 Map of Peace River Basin and the black line encloses the study area: (a) location of 

dams, lakes, and hydrometric stations; (b) & (c) location of ECCC meteorological stations 

(temperature and precipitation); color of circles indicates the number of years with missing daily 

data during 2001-2013. 

3.2.2 SWAT model 

The SWAT2012 model (version 670) is a daily continuous-time, semi-distributed, and watershed-

scale hydrologic model (Arnold et al., 1998; Neitsch et al., 2011). Simulation of watershed 

hydrology in SWAT contains the land phase and the routing phase of the hydrological cycle. The 

first phase controls the amount of water in each subbasin to the main channel, and the second phase 

routes the water to the outlet through the channel network of the watershed. The climatic inputs 
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for the model include daily precipitation, maximum and minimum air temperature, solar radiation, 

relative humidity, and wind speed, which provide the moisture and energy that drive all other 

hydrological processes in the watershed.  

The model categorizes rain or snow using a user-specified threshold value of the mean daily air 

temperature. The stored format of snowfall at the ground surface is a snowpack, and the amount 

of water stored in it is expressed as SWE. The snowpack increases with snowfall and accumulation 

or decreases with snowmelt or sublimation. The air and snowpack temperature, areal coverage of 

snow, and melting rate are the main factors that control the snowmelt process. Snowmelt and 

rainfall are contained in the computation of runoff and percolation. To account for the orographic 

effects on both precipitation and temperature, the model allows up to 10 elevation bands to be 

defined in each subbasin. Temperature (maximum and minimum) and precipitation are computed 

for each band as a function of the respective lapse rate and the difference between the station 

elevation and the average elevation specified for the band. Reservoirs are impoundments located 

on the main channel network, and they receive water from all upstream subbasins. SWAT provides 

four methods to calculate the volume of outflow, including measured daily outflow, measured 

monthly outflow, average annual release rate for the uncontrolled reservoir, and controlled outflow 

with target release. More details about the theory of the model can be found in Neitsch et al. (2011). 

To automatically calibrate streamflow and subbasin-scale SWE, some changes in the original code 

of SWAT were made. SWAT only calculates the SWE at the HRU scale. Therefore, the SWAT code 

was modified to calculate the subbasin SWE based on the existing HRU data, and output to 

output.sub file based on SUFI2-SWATCUP requirements so that the SWE can be automatically 

calibrated together with streamflow. 
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3.2.3 Data and model setup 

Data used for building the SWAT model of the PRB are summarized in Table 3.1. The digital 

elevation model (DEM) at 90 m resolution (Jarvis et al., 2008) was used for sub-basin delineation, 

while a detailed stream network was initially delineated using a 30 m resolution DEM and used 

for watershed delineation. With the threshold of 100 km2, the study basin was delineated into 808 

subbasins, which were further divided into 6,243 HRUs. Five elevation bands were defined for 

each subbasin, mainly in the upstream regions, to account for the orographic effects on 

precipitation and temperature. The land-use map was obtained from the GeoBase Land Cover 

Product, which identified 23 classes of land-use and land-cover for the study area. Soil data were 

from two sources, including Soil Landscapes of Canada (SLC) V3.2 from the Agriculture Agri-

Food Canada and FAO soil database. SLC was pre-processed by Cordeiro et al. (2017) in a format 

that can be easily used in SWAT, and it has a more detailed soil classification and parameterization 

scheme. However, the existing SLC data does not cover a small portion of the upstream areas and 

the global FAO soil map and its attributed parameters (Fischer et al., 2008) were used to fill this 

gap. 

For the study period, the Williston and Dinosaur Reservoirs need to be considered on the Peace 

River Basin. The outflow from the Williston Reservoir flows immediately into the Dinosaur 

Reservoir. The storage of the Dinosaur Reservoir can be ignored compared with the storage of the 

Williston Reservoir. Therefore, the two reservoirs were considered a combined reservoir in the 

hydrologic model. The reservoir was simulated using the measured daily outflow method, and the 

reservoir input data for SWAT (Table 3.2) was extracted and/or estimated from the Williston and 

Dinosaur Reservoir specifications in a BC Hydro report ("Peace River Water Use Plan - Revised 

for Acceptance by the Comptroller of Water Rights”, 
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http://www.bchydro.com/content/dam/hydro/medialib/internet/documents/environment/pdf/peac

e_river_water_use_plan.pdf). The volume of water and surface area at the emergency/principal 

spillway elevation are not provided in the report. In this study, the volume of water needed to fill 

the reservoir to the emergency and principal spillways was estimated based on the stage-storage 

relationship for the Williston Reservoir provided in the report. The reported surface area of the 

Williston Reservoir at full pool (maximum normal operation elevation) is 1,773 km2. We used 

these information to estimate the reservoir surface area at the emergency/principal spillway 

elevation assuming the reservoir is a conical frustum. Water level data at the WSC station 07EF002 

for the Williston Reservoir was used to estimate the initial reservoir storage on a given date. 

Streamflow data at Hudson Hope (07EF001), several kilometers downstream the Peace Canyon 

Dam, was used as reservoir outflow. 

Weather inputs for SWAT model include precipitation, temperature (maximum and minimum 

temperature), solar radiation, relative humidity, and wind speed. Three data sources were used to 

assess the uncertainty in weather data, including ECCC, National Centers for Environmental 

Prediction's Climate Forecast System Reanalysis (CFSR), and the ERA5. Daily precipitation and 

temperature data of 136 meteorological stations were obtained from ECCC. For the study period 

(2001-2013), only 38 stations have less than 60% missing values and these were used in the model. 

The meteorological stations available from ECCC do not have reasonable spatial distribution 

across the PRB as only a few of them are in the mountainous regions and the downstream part of 

the basin, and the observed climate data collected from these stations are dominated by many 

missing values (see Figure 3.1b, c). CFSR has all the required weather data for the model. In this 

study, the missing solar radiation, relative humidity, and wind speed data in ECCC and ERA5 were 

completed from the nearest CFSR grid stations and combined with their precipitation and 

http://www.bchydro.com/content/dam/hydro/medialib/internet/documents/environment/pdf/peace_river_water_use_plan.pdf
http://www.bchydro.com/content/dam/hydro/medialib/internet/documents/environment/pdf/peace_river_water_use_plan.pdf
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temperature data to drive the SWAT model. In addition, the missing values in the precipitation and 

temperature data of ECCC meteorological stations were filled using the weather generator module 

built in the SWAT model. Daily streamflow and SWE were used for model calibration and 

validation. 14 WSC stations that had less than 20% missing values of daily flow, and 14 point 

stations near the streamflow stations from ERA5 providing daily SWE data during 2004-2013 

were used in this study (Table 3.3). 



84 

 

Table 3.1 Data sources used in SWAT Model 

Data Type Sources Resolution Region Reference 

DEM 
OpenTopography 30m Global https://portal.opentopography.org 

SRTM 90m Global http://srtm.csi.cgiar.org 

Weather data 

ECCC / Canadian http://climate.weather.gc.ca/ 

CFSR 0.3° grid Global https://globalweather.tamu.edu/ 

ERA5 30km×30km Global 
https://www.ecmwf.int/en/forecasts/datasets/reanalysis- 

datasets/era5 

Landuse and land 

cover map 
circa 2000 30m×30m Canadian 

https://open.canada.ca/data/en/dataset/97126362-5a85-

4fe0-9dc2-915464cfdbb7 

Soil data 

Soil Landscapes of 

Canada V3.2 
1:1,000,000 Canadian http://sis.agr.gc.ca/cansis/nsdb/slc/index.html 

FAO soil map 1:5,000,000 Global 
http://www.fao.org/geonetwork/srv/en/metadata.show?id=

14116 

Streamflow WSC / Canadian 

https://www.canada.ca/en/environment-climate-

change/services/water-

overview/quantity/monitoring/survey.html 

Daily operation of 

reservoirs/dams 
BC Hydro / Local 

https://www.bchydro.com/toolbar/about/sustainability/con

servation/water_use_planning/northern_interior/peace_riv

er.html 

SWE ERA5 30km×30km Global 
https://www.ecmwf.int/en/forecasts/datasets/reanalysis- 

datasets/era5 
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Table 3.2 SWAT reservoir input parameters and data 

Reservoir/Dam Specifications Input 

Volume of water needed to fill the reservoir to the emergency spillway (RES_EVOL 104 m3) 4,120,001 

Reservoir surface area when the reservoir is filled to the emergency spillway (RES_ESA ha=104 m2) 177,300 

Reservoir surface area when the reservoir is filled to the principal spillway (RES_PVOL 104 m3) 1,432,411 

Volume of water needed to fill the reservoir to the principal spillway (RES_PSA ha=104 m2) 114,728 

Initial reservoir volume (RES_PVOL 104 m3) 2,740,320 

The year the reservoir become operational 1967 

Daily outflow of the reservoir (IRESCO=3) Hudson Hope station 

Emergency spillway elevation (m) 672.02 

Principal spillway elevation (m) 653.53 
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Table 3.3 Hydrometric station information of Peace River Basin. 

ID Station Number Subbasin ID Station Name Latitude Longitude Gross Drainage Area (km2) 

1 07HF001 115 Peace River at Fort Vermilion 58.388 -116.029 227,000 

2 07JD002 223 Wabasca River at Highway No. 88 57.875 -115.389 35,800 

3 07EF001 364 Peace River at Hudson Hope 56.027 -121.909 73,100 

4 07FA004 399 Peace River above Pine River 56.199 -120.815 87,200 

5 07FD002 421 Peace River near Taylor 56.139 -120.672 101,000 

6 07FC001 422 Beatton River near Fort St. John 56.278 -120.7 15,600 

7 07FD010 436 Peace River above Alces River 56.127 -120.057 121,000 

8 07FB001 464 Pine River at East Pine 55.718 -121.212 12,100 

9 07EE007 523 Parsnip River above Misinchinka River 55.082 -122.913 4,930 

10 07HA001 524 Peace River at Peace River 56.245 -117.314 194,000 

11 07FD003 572 Peace River at Dunvegan Bridge 55.919 -118.607 135,000 

12 07GJ001 637 Smoky River at Watino 55.715 -117.623 50,300 

13 07GH002 702 Little Smoky River near Guy 55.456 -117.162 11,100 

14 07GE001 717 Wapiti River near Grande Prairie 55.071 -118.803 11,300 
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3.2.4 Model calibration and evaluation schemes 

The examination of the performance of the SWAT models in this study is based on their ability to 

reproduce historical SWE and streamflow data. The input data of 2001-2003 was used to warm up 

the models and then the models were calibrated with 2004-2009 and validated for 2010-2013. The 

commonly used SUFI2 of SWATCUP was used to perform the sensitivity analysis, calibration, and 

validation (Abbaspour, 2015). For the purpose of uncertainty analysis, a total of 25 parameters 

were selected based on an extensive literature review and their values were constrained by the 

published or physically realistic ranges (Anand et al., 2018; Grusson et al., 2015; Sospedra-

Alfonso et al., 2015; Zaremehrjardy et al., 2021). A sensitivity analysis was performed for three 

SWAT projects driven by the CFSR, ECCC, and ERA5 climate data, respectively. Specifically, we 

used a Latin Hypercube Sampling Technique within the SUFI2 algorithm to generate 1,000 

samples of parameter sets from the given ranges and fed them into the models to perform 1,000 

simulations for each model. Based on P-value and t-Statistic provided by Global Sensitivity 

analysis of the SWATCUP (Abbaspour, 2015), four insensitive parameters were dropped, and the 

remaining 21 parameters shown in Table 3.4 were used for calibration. To evaluate the effects of 

the objective function on model calibration, two commonly used efficiency coefficients, the Nash–

Sutcliffe efficiency (NS) and a modified version of the efficiency criterion (bR2) defined by Krause 

et al. (2005), were selected as the objective functions.
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Table 3.4 Selected parameters for calibration. 

ID Name Description Range 

Snow parameters 

1 v__SFTMP Snowfall temperature (ºC) [-5, 5] 

2 v__SMTMP Snowmelt base temperature (ºC) [-5, 5] 

3 v__SMFMX Maximum melt rate for snow during the year (mm/ºC-day) [0, 10] 

4 v__SMFMN Minimum melt rate for snow during the year (mm/ºC-day) [0, 10] 

5 v__TIMP Snowpack temperature lag factor [0, 1] 

Elevation band parameters 

6 v__TLAPS Temperature lapse rate (°C/km) [-7.5, -5.5] 

7 v__PLAPS Precipitation lapse rate (mm H2O/km) [0, 250] 

Hydrological parameters 

8 v__ALPHA_BF Base flow alpha factor (days) [0, 1] 

9 v__REVAPMN Threshold depth of water in the shallow aquifer for ‘revap’ to occur (mm) [0, 500] 

10 v__GW_DELAY Groundwater delay time (days) [0, 500] 

11 v__GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm) [0, 5000] 

12 v__RCHRG_DP Deep aquifer percolation fraction [0, 1] 

13 r__SOL_AWC Soil available water storage capacity (mm H2O/mm soil) [-0.5, 0.5] 

14 r__SOL_K Soil conductivity (mm/hr) [-0.8, 0.8] 

15 r__SOL_BD Soil bulk density (g/cm3) [-0.5, 0.6] 

16 v__EPCO Plant uptake compensation factor [0, 1] 

17 v__ESCO Soil evaporation compensation factor [0, 1] 

18 r__OV_N Manning’s n value for overland flow [-0.2, 0] 

19 r__CN2 SCS runoff curve number for moisture condition II [-0.3, 0.3] 

20 v__CH_N2 Manning’s n value for main channel [0, 0.3] 

21 v__CH_K2 Effective hydraulic conductivity in the main channel (mm/hr) [0, 500] 

Note: “v” indicates the parameter value is replaced by a given value or absolute change; “r” means the parameter value is multiplied by 

(1± a given value) or relative change.
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During calibration, the Latin Hypercube Sampling Technique within the SUFI2 algorithm 

generates samples of parameter sets based on the simulation number specified by the user. The 

samples of parameter sets can contain both realistic and unrealistic snow parameter combinations 

(i.e., those containing SMFMX<SMFMN) as SWATCUP does not control the relationship between 

various snow parameters. In this study, the parameter sets that contained unrealistic snow 

parameter combinations were removed, and the remaining realistic parameter sets were written 

into the SWATCUP files (par_val.txt and str.txt) for further calibration. R and batch scripting were 

used to automatically eliminate unrealistic parameter sets and perform simulations. This new 

automatic calibration process is referred as the modified SWATCUP hereafter to distinguish from 

the original one.  

The workflow of this research is summarized in Figure 3.2. The CFSR, ECCC and ERA5 data 

were assessed by checking their magnitude, spatial patterns, and the model performance before 

calibration. The climate data that led to better pre-calibration result was used in the subsequent 

steps. Step 2 evaluates the various model calibration schemes using the original and modified 

SWATCUP. Step 3 compares the model performance with single-objective (streamflow) and multi-

objective (SWE and streamflow) calibrations. For computational time efficiency, a parallel 

program developed by Du et al. (2020) was used to parallelize our simulations over multiple cores 

in an advanced computer. 
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Figure 3.2 Diagram of the methodology adopted for this study. 
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The model performance was evaluated using NS, coefficient of determination (R2), and Percent 

Bias (PBIAS) (Moriasi et al., 2015). The evaluation criteria from Moriasi et al. (2015) was adapted 

and shown in Table 3.5. 

Table 3.5 SWAT model performance criteria for daily streamflow. 

Measure Very Good Good Satisfactory Unsatisfactory 

R2 R2>0.85 0.75<R2<=0.85 0.6<R2<=0.75 R2<=0.6 

NS NS>0.8 0.7<NS<=0.8 0.5<NS<=0.7 NS<=0.5 

PBIAS (%) |PBIAS|<5 5<=|PBIAS|<10 10<=|PBIAS|<15 |PBIAS|>=15 

 

3.3 Results and discussion 

3.3.1 Climate data evaluation 

SWAT uses the weather station closest to the centroid of each subbasin. The daily precipitation and 

temperature from CFSR, ECCC, and ERA5 were analyzed for modeled subbasins and displayed 

in Figure 3.3. Precipitation and temperature from the three sources in the western mountain regions 

(where observed data are sparse, see Figure 3.1) were significantly different. The average annual 

precipitation from gridded CFSR was larger than ECCC and ERA5, ranging from 358 to 1,762 

mm per year. The observed annual mean precipitation of ECCC varied from 386 to 1,278 mm. 

Overall, the gridded ERA5 precipitation followed a similar pattern as the ECCC, ranging from 403 

to 1,386 mm per year across the study region. The temperature difference among the three sources 

was not distinct in regions where there were relatively dense gauging stations. The annual average 

temperature of ECCC in the PRB varied from -1.8 to 3.9 ℃. The long-term average annual 

temperatures were lower in the gridded CFSR and ERA5 datasets than ECCC data. They varied 

from -4.8 to 3.6 ℃ and -4.3 to 4.2 ℃ across the basin for CFSR and ERA5, respectively. In addition, 
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the annual mean temperature of ECCC in the western Rocky Mountains was above zero and higher 

than CFSR and ERA5 data. It is probably due to very sparse ECCC stations available in the 

mountains, and SWAT used outlying stations for these subbasins.  
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Figure 3.3 Spatial distribution of the 10-year-average (2004-2013) annual total precipitation and 

mean air temperature. Note: pcp and temp indicate precipitation and temperature, respectively. 
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The three climate data sources were also assessed by comparing the pre-calibrated reservoir 

outflows (see Figure 3.4). The ERA5 data performed the best as most simulated reservoir outflow 

fit their measured counterparts. The ECCC data cannot generate enough runoff for the reservoir to 

discharge, while the CFSR data generated too much runoff exceeding the reservoir's capacity, 

likely due to the larger values of precipitation in this dataset. 

 

Figure 3.4 Comparison of the observed and simulated reservoir outflow with various climate 

inputs. 
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Figure 3.5 shows the pre-calibration performance of the model based on the three climate data 

sources. The ERA5 data performed the best judged by any of the three efficiency criteria, i.e., R2, 

NS, and PBIAS in the study. The CFSR data performed better when judged by R2, but worse than 

the ECCC data according to the NS and PBIAS values. It can be seen from Figure 3.4 that using 

the CFSR data, the historical low flows were reproduced but the peak flows were significantly 

overestimated. This likely explained the acceptable R2 values but significantly large negative 

values for NS and PBIAS. The poor performance of the CFSR data using various model efficiency 

criteria is likely due to its abnormally large precipitation (Faramarzi et al., 2015). In general, ERA5 

climate data showed the best pre-calibration performance in driving the SWAT model simulating 

daily streamflow. This agrees with the findings of Tarek et al. (2020), which suggested that the 

lumped hydrologic model driven by the ERA5 data generally preforms well over most river basins 

in North America. 

 

Figure 3.5 Pre-calibration model performance of various climate data sources for daily streamflow 

during 2004-2013 at 14 hydrometric stations. The boxplots show model performance with R2, NS, 

and PBIAS. 
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3.3.2 Evaluation of various model calibration schemes based on ERA5 data 

3.3.2.1 Results from the original SWATCUP 

A total of 14 projects (the combinations of 2 objective functions and 7 calibration schemes, see 

Table 6) were built based on ERA5 climate data and calibrated using the original SWATCUP. A 

total of 14 projects of different calibration schemes (Table 3.6) were built based on ERA5 climate 

data. Figure 3.6 shows the calibration results, with the model performance evaluated by the three 

model efficiency criteria. The multi-site ccalibration results showed that the objective function of 

bR2 was more sensitive to the use of various calibration schemes than NS. Calibration results based 

on the NS objective function were overall better than those using bR2. The objective functions of 

NS and R2 are both very sensitive to peak flows, but R2 can produce very high values of streamflow 

for some bad model results (Krause et al., 2005). Although integrating R2 with the gradient b (bR2) 

can somewhat counteract that effect, our results showed that bR2 still can produce very high values 

of streamflow for some poorly simulated stations. This partly explained why the objective function 

of NS outperformed the bR2 here.   

The results showed that larger number of simulations did not result in better model performance 

when bR2 was used as the objective function (ERA5_bR2 in Figure 3.6). In contrast, better model 

performance was achieved with more simulation numbers in each iteration when the objective 

function was NS (C1-C4 of ERA5_NS in Figure 3.6). C3 was an exception but its calibrated snow 

parameters were unreasonable with the objective function of NS (see Table 3.6). The calibration 

scheme C5 using NS as the objective function produced the best performance with reasonable 

snow parameters and smaller total number of simulations. During model calibration using SUFI2 

of SWATCUP, the range of parameter set progressively reduces with more iterations. Therefore, 

calibrating SWAT with decreasing simulation number during the iteration process (C5) is probably 
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more effective than using equal number of simulations in each iteration.  

The sequential calibration scheme from upstream to downstream (C6) performed well at the 

upstream hydrometric stations. Fixing the parameters of the upper basin and only calibrating those 

of the lower basin led to difficulty in simulating the downstream stations that are close to the upper 

basin. The overall performance of the sequential calibration was worse than that simultaneously 

calibrating all hydrometric stations across the entire basin (e.g., C3-C5 versus C6 of ERA5_NS in 

Figure 3.6). These results do not agree with Nkiaka et al. (2018), who found that sequential 

calibration outperformed simultaneous multi-site calibration. Apart from the different study sites, 

opposite results were probably due to difference of the location and number of calibrated 

hydrometric stations. Nkiaka et al. (2018) only used three stations to calibrate the SWAT model 

and they were mainly in the lower region of the watershed. A total of 14 hydrometric stations 

across the river basin were used for the calibration calibrated in this study. In addition, how to 

separate a river basin into various calibration segments may also greatly affect the model 

performance.  

The author of SWATCUP commented that snow-related parameters (e.g., TLAPS, PLAPS, SFTMP, 

SMTMP, SMFMX, SMFMN, and TIMP) should not be calibrated together with other hydrological 

parameters because they could negatively affect the simulation results (Abbaspour et al., 2017). 

This was explored by C7 (Table 3.6), in which the snow-related parameters were calibrated first 

with fewer number of simulations (e.g., 100-300), and then fixed while calibrating the remaining 

parameters. Our results indicated that when examining fewer number of simulations (e.g., 300), 

SWATCUP generally suggested reasonable values for the snow-related parameters (SMFMX does 

not exceed SMFMN). In this case, the best calibrated parameter set did not contain unreasonable 

snow parameter combinations. However, the simulated results in the PRB based on the suggestion 
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from Abbaspour et al. (2017) were not satisfactory compared with other calibration schemes when 

NS was used as the objective function (see C7 in Figure 3.6). This was likely due to the effect of 

parameter interaction (Qi et al., 2016), which was not considered in this calibration scheme. C7 

performed well among those calibration schemes when using the objective function bR2, but the 

overall performance was still worse than those using the NS objective function. It was also noted 

that the optimal calibrated parameter sets resulting from both objective functions contained 

unreasonable parameter combinations (SMFMX<SMFMN) when the original SWATCUP was 

used (see Table 3.6). Those parameter sets may be mathematically optimal but not physically 

meaningful. 
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Table 3.6 Calibration projects based on ERA5. 

Scenario 
Objective  

Function 

Calibration Scheme Total  

Simulation # 

Are Par Set 

 Reasonable? ID Calibration Stations Calibration Parameters Simulation Scheme 

S1 

bR2 

C1 14 streamflow stations 21 parameters 200*6 1200 yes 

S2 C2 14 streamflow stations 21 parameters 500*6 3000 yes 

S3 C3 14 streamflow stations 21 parameters 1000*6 6000 no 

S4 C4 14 streamflow stations 21 parameters 2000*6 12000 yes 

S5 C5 14 streamflow stations 21 parameters (1500, 500, -200) 6000 no 

S6 C6 
2 upstream stations + 12 

downstream stations 
21 parameters 1000*3+1000*4 7000 yes 

S7 C7 14 streamflow stations 
(1) pars 6-7 (2) pars 1-5 (3) 

pars 8-21 
100+300+1000*5 5400 yes 

S8 

NS 

C1 14 streamflow stations 21 parameters 200*6 1200 yes 

S9 C2 14 streamflow stations 21 parameters 500*6 3000 no 

S10 C3 14 streamflow stations 21 parameters 1000*5 5000 no 

S11 C4 14 streamflow stations 21 parameters 2000*5 10000 yes 

S12 C5 14 streamflow stations 21 parameters (1500, 700, -200) 5500 yes 

S13 C6 
2 upstream stations + 12 

downstream stations 
21 parameters 1000*3+1000*4 7000 no 

S14 C7 14 streamflow stations 
(1) pars 6-7 (2) pars 1-5 (3) 

pars 8-21 
100+300+1000*5 5400 yes 

Par is short for parameter; pars 6-7 indicate parameters of TLAPS and PLAPS; pars 1-5 are five snowfall parameters (SFTMP, SMTMP, 

SMFMX, SMFMN, and TIMP). 

The title of last column denotes if the calibrated parameter set of each scenario is reasonable; if SMFMX is less than SMFMN in a 

calibrated parameter set, it is considered not reasonable. 

bR2 is an efficiency criterion defined by Krause et al. (2005) which integrates the slope of the regression line (b) and the coefficient of 

determination (R2). 
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S5: use the objective function of bR2, calibrate 14 stations of the watershed for all the 21 selected parameters for 5 iterations, the 

simulation number of each iteration decreasing from 1,500 to 500 by a step of -200. 

S6: use the objective function of bR2, the model is calibrated at 2 stations within the upstream river basin for 3 iterations, the simulation 

number of each iteration is 1,000, the 21 parameters upstream are fixed; then the model is calibrated at 12 downstream stations for 4 

iterations and the simulation number of each iteration is 1,000. 

S7: use the objective function of bR2, simulate 100 times for the whole basin with TLAPS and PLAPS, choose the best parameter set 

and fix them; simulate 300 times for 5 snow parameters, choose the best parameter set and fix them; calibrate the remaining 14 

parameters for 5 iterations and the simulation number of each iteration is 1,000.
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Figure 3.6 Model performance of ERA5 data with various model calibration schemes for daily 

streamflow during 2004-2009 at 14 hydrometric stations. The boxplots show model performance 

with R2, NS and PBIAS. The title of each boxplot indicates the climate data source and the 

objective function used during calibration. 

3.3.2.2 Results from the modified SWATCUP 

The calibration schemes C1, C6 and C7 did not show good potential based on the analysis of the 

results from the original SWATCUP. Therefore, only C2 to C5 were selected to evaluate the 

performance of the modified SWATCUP. All C2 to C5 calibration schemes (see Table 3.6) were 

recalibrated using the modified SWATCUP and compared with the results obtained from the 
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corresponding calibration schemes using the original SWATCUP (Figure 3.7). The model results 

of most calibration schemes using the modified SWATCUP were significantly improved after 

removing unreasonable snow parameter combinations. This suggested that the unreasonable snow 

parameter combinations can negatively affect the SUFI2 of SWATCUP, making it hard to search 

for the optimal parameter set while calibrating the hydrologic model. In addition, the models 

calibrated using NS as the objective function again outperformed those using bR2 as the objective 

function.  

The use of a smaller number of simulations (e.g., C2_2 in Figure 3.7) during calibration was more 

likely to cause a few poorly simulated stations. The calibration scheme with the highest number of 

simulations (2,000) in each iteration (C4_2) did not always give the best results. For example, 

model performance of C3_2, using 1,000 number of simulations in each iteration, performed better 

than that of C4_2 with bR2 as the objective function. A possible reason is that the large number of 

simulations during early iterations can lead SUFI2 into local optimal (Mousavi et al., 2012). Using 

NS as the objective function, the C4_2 performed the best among all the calibration projects with 

reasonable calibrated parameters. However, C5_2 had similar performance to C4_2 but used only 

nearly half of the number of simulations. The total number of simulations during calibration 

significantly decreased with the modified SWATCUP as the unrealistic parameter combinations 

were automatically removed. As can be seen from Figure 3.8, a reduction of the total simulation 

number from 13.9% to 45.5% was seen among the four calibration schemes. This would be very 

efficient for large SWAT projects since it can notably save time.  
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Figure 3.7 Model performance of ERA5 data with various model calibration schemes for daily 

streamflow during 2004-2009 at 14 hydrometric stations using the original and modified 

SWATCUP. Symbols of C2_2-C5_2 refer to those calibrations conducted with the modified 

calibration method. The boxplots show model performance with R2, NS and PBIAS. The title of 

each boxplot indicates the climate data source and the objective function used during calibration. 
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Figure 3.8 Total number of simulations of various calibration schemes during calibration using 

the original and modified SWATCUP. The numbers above the bars show the percent change of 

the total number of simulations resulting from the modified SWATCUP compared with the 

original SWATCUP. The title of each bar plot indicates the climate data source used for modeling 

and the objective function used during calibration. 

3.3.3 Model performance with single-objective and multi-objective calibration 

The modified SWATCUP with the objective function of NS was used to evaluate the model 

performance with single-objective (streamflow only) and multi-objective (streamflow and SWE) 

calibration. The calibration scheme C3 is often used in SWATCUP while C5 showed good potential 

in single-objective calibration (see details of C3 and C5 in Table 3.6). Therefore, the calibration 

schemes of C3 and C5 were further examined in multi-objective calibration. 14 stations were 
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calibrated for the single objective (streamflow), while 28 stations (14 stations of streamflow and 

14 stations of SWE) were calibrated for the multi-objective calibration. Each station was given 

equal weight during the calibrations. The model results for both the calibration and the validation 

periods are shown in Table 3.7. The calibration scheme C5 used decreasing number of simulations 

during the iteration process. This calibration scheme performed better than when using the same 

number of simulations in each iteration (calibration scheme C3) for the single-objective calibration 

(P3) during the calibration and validation periods, but this was not the case in the multi-objective 

calibration (P3multi). Nonetheless, both calibration schemes can provide satisfactory performance 

for the single and multi-objective calibration. Given that the same calibration scheme could 

perform differently with the single and multi-objective calibration, it is advisable to use at least 

two calibration schemes (e.g., C3 and C5) in order to get more optimal result.  

Figure 3.9 compares the subbasin SWE from the single and multi-objective calibration during the 

calibration and validation periods. It can be seen that the simulated SWE of multi-objective 

calibration matched well with the observed SWE at most stations as compared to using single-

objective calibration. To further explore the significance of using multi-objective calibration with 

both streamflow and SWE, the observed and simulated spring streamflow of two mainstream 

hydrometric stations in 2007 (in the calibration period) and 2013 (in the validation period) are 

shown in Figure 3.10. The multi-objective calibration with the calibration scheme of either C3 or 

C5 had similar performance, and thus the calibration scheme C3 was selected to compare the spring 

flow simulated by the single-objective and multi-objective calibrations. It can be seen that the 

simulated spring streamflow (primarily the rising limb) based on the multi-objective calibration 

performed much better than using the single objective calibration during the calibration period. 

During the validation period, the multi-objective calibration model accurately simulated the rising 
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limb of spring flow, but underestimated the peaks. Without the constraint of SWE, the single-

objective calibration tried to match the spring peak flow through magnifying the SWE and delaying 

the time of snow melting (see Figure 3.9). However, the simulated start of the spring freshet was 

significantly later than the observed for both the calibration and the validation periods. Moreover, 

it significantly overestimated the peak flow during the validation period (Figure 3.10).  

In a snow-dominated river basin like the PRB, snow is vital in contributing to the streamflow, 

especially to the spring freshet. The calibrated parameters from single-objective (streamflow) 

cannot not properly represent the actual snow process, and thus cannot accurately simulate snow 

affected spring streamflow. Calibrating SWE together with streamflow can limit the uncertainty of 

snow-related parameters, and produce more reasonable parameter sets. Consequently, the spring 

streamflow simulated by multi-objective calibration notably outperformed that using single-

objective calibration.  

The poorer performance of simulating spring peak flow was likely due to uncertainties and/or 

errors in data source and model structure. The precipitation, temperature and SWE were from 

ERA5 reanalysis data. Although they have a good potential to replace the observations, deviations 

from real values still exist. Most of the streamflow is derived from the mountain headwaters of the 

Peace River, where the data errors can be more significant due to station scarcity in the 

mountainous regions. In addition, the method used to calculate the subbasin SWE was not very 

accurate because the snow is not evenly distributed in each subbasin, especially those in the 

mountainous regions. Peace River generally experiences spring peak flow during the river ice 

breakup period (late April to early May). For example, ice jam events were reported in major 

tributary (Smoky River) in late April 2013 and main reach (Fort Vermilion) in early May 2013 

(Alberta Environment and Parks Peace River Ice Observation Reports 2013), which resulted in 
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spring peak flow combined with snow melting. However, river ice breakup effects are not 

appropriately accounted for in the routing process of SWAT. These issues above all increase the 

uncertainties and difficulties of accurately modelling the spring peak flow. The poor prediction of 

spring streamflow in the PRB was also noted by Toth et al. (2006) who attributed it to the inherent 

difficulties of hydrologic modelling of the complex snowmelt related physical processes. The 

underestimation of high streamflow due to snowmelt by the SWAT model was also noted by Tuo 

et al. (2018b) in the alpine catchments though they mainly ascribed it to the effects of river 

damming. This study showed the significance of including SWE as an additional calibration 

objective when simulating spring streamflow in snow-dominated river basins.  

 



108 

 

Table 3.7 Model performance of calibration (2004-2009) and validation (2010-2013) periods at 14 hydrometric stations. 

Calibration 

Scheme 

Station 

Number 

P3  P3multi 

Calibration Period  Validation Period  Calibration Period  Validation Period 

R2 NS 
PBIAS 

(%) 
 R2 NS 

PBIAS 

(%) 
 R2 NS 

PBIAS 

(%) 
 R2 NS 

PBIAS 

(%) 

C3 

07HF001 0.66 0.61 -6.7  0.68 0.66 -6.6  0.82 0.8 -3.8  0.78 0.77 -0.1 

07JD002 0.59 0.54 22.8  0.66 0.63 7.9  0.73 0.66 32.9  0.87 0.75 37.2 

07EF001 0.96 0.96 -0.6  0.99 0.99 -1.3  0.99 0.99 -1  0.96 0.96 -0.7 

07FA004 0.8 0.78 -3.8  0.85 0.85 -2  0.88 0.87 -3.3  0.86 0.86 0 

07FD002 0.69 0.65 -4.1  0.83 0.82 -2.7  0.64 0.59 -4  0.79 0.79 -1.2 

07FC001 0.63 0.62 7.3  0.46 0.46 -2.1  0.4 0.38 9.4  0.51 0.48 13.8 

07FD010 0.67 0.61 -0.5  0.76 0.76 0.1  0.62 0.52 -0.2  0.75 0.73 2.7 

07FB001 0.77 0.74 5.3  0.87 0.83 1.8  0.57 0.56 2.3  0.76 0.72 2.1 

07EE007 0.71 0.59 18.6  0.78 0.57 24.7  0.68 0.55 17.9  0.74 0.57 22 

07HA001 0.65 0.64 -2.7  0.69 0.69 0  0.72 0.72 -1.1  0.79 0.77 4.6 

07FD003 0.65 0.61 -0.8  0.72 0.71 5.3  0.63 0.58 0.6  0.73 0.68 8.6 

07GJ001 0.71 0.67 -16.5  0.75 0.72 -17  0.86 0.85 -10.6  0.87 0.87 -6.5 

07GH002 0.58 0.49 1.2  0.5 0.49 -6.8  0.58 0.56 -1.4  0.52 0.5 4.2 

07GE001 0.64 0.62 -18.9  0.72 0.67 -29.2  0.73 0.72 -16.2  0.8 0.77 -23 

Average 0.69 0.65 /  0.73 0.70 /  0.70 0.67 /  0.77 0.73 / 

Nr. of 

satisfactory 

stations 

12 13 10  12 12 11  11 13 11  12 13 11 

C5 

07HF001 0.71 0.62 -10.2  0.65 0.61 -9.7  0.73 0.6 -14.1  0.72 0.66 -13.4 

07JD002 0.6 0.54 15.1  0.62 0.54 0.6  0.71 0.67 9.2  0.84 0.82 -13.7 

07EF001 0.98 0.98 -0.8  0.99 0.99 -1.3  0.98 0.98 -0.9  0.96 0.96 -1.1 

07FA004 0.86 0.84 -4.4  0.88 0.88 -1.9  0.88 0.87 -3.8  0.85 0.85 -1.2 

07FD002 0.73 0.67 -5.1  0.86 0.85 -2.8  0.67 0.62 -4.6  0.8 0.79 -2.9 

07FC001 0.62 0.58 -2.8  0.55 0.52 -17.2  0.44 0.37 -40  0.38 0.27 -63.2 

07FD010 0.72 0.65 -1.9  0.79 0.79 -1  0.61 0.54 -2.9  0.73 0.72 -1.9 



109 

 

07FB001 0.81 0.81 3.1  0.9 0.89 0.2  0.69 0.65 2.1  0.81 0.74 1.4 

07EE007 0.72 0.68 21  0.77 0.71 21.2  0.67 0.51 17.4  0.77 0.59 22.2 

07HA001 0.72 0.7 -5.3  0.72 0.72 -1.6  0.61 0.56 -8.3  0.72 0.7 -5.3 

07FD003 0.67 0.63 -2.9  0.73 0.72 3.6  0.56 0.48 -4  0.67 0.66 1.9 

07GJ001 0.78 0.72 -20.9  0.79 0.77 -16.6  0.74 0.69 -26.2  0.82 0.78 -23.4 

07GH002 0.67 0.5 0.9  0.44 0.37 3.3  0.57 0.44 -24.5  0.38 0.32 -14.4 

07GE001 0.73 0.71 -22.7  0.81 0.76 -30.8  0.71 0.66 -25.6  0.77 0.72 -34 

Average 0.74 0.69 /  0.75 0.72 /  0.68 0.62 /  0.73 0.68 / 

Nr. of 

satisfactory 

stations 

14 14 10  12 13 10  11 11 9  12 12 10 

The calibration scheme C5 is calibrated with the simulation number in a decreasing order during the iteration process (from 1,500 to 

700 by -200) while the C3 has the same simulation number (1,000) of each iteration; P3 indicates the model is calibrated with streamflow 

while streamflow and SWE are both used to calibrate the model for P3multi; No. of satisfactory stations indicates the number of 

hydrometric stations that at least are rated as satisfactory (see the criteria in Table 3.5); The precipitation and temperature inputs for 

these projects are all from the ERA5 data; Here, only streamflow simulation results were shown for P3multi in order to compare with 

P3. 
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Figure 3.9 Observed and simulated daily SWE at 14 stations (the right title indicates the subbasin that each station locates) during 

calibration and validation periods. 
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Figure 3.10 Observed and simulated daily streamflow for two selected hydrometric stations, Peace River at Fort Vermilion (a) and 

Peace River at Peace River (d); Streamflow in 2007 (b & e) and in 2013 (c & f) were enlarged to display the spring streamflow during 

calibration and validation periods. 
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3.4 Conclusion 

This study quantitatively assessed the uncertainties in various climate data sources (ECCC, CFSR 

and ERA5) and calibration schemes based on the semi-distributed hydrologic model SWAT. 

Assessment of the model performance using daily discharge data at 14 hydrometric stations and at 

the outlet of the reservoir in the study region showed that the gridded ERA5 precipitation and 

temperature data performed the best among these three data sources and can be used to drive the 

SWAT in simulating daily streamflow in the Peace River Basin. 14 calibration projects were built 

and calibrated to investigate the impacts of the objective function (NS and bR2) and the simulation 

number of each iteration based on the SUFI2 of SWATCUP. The objective function of bR2 had 

greater uncertainty than NS in guiding the SUFI2 to search for the best parameter set. It was found 

that the objective function of NS had overall better performance than the bR2 during calibration as 

the objective function bR2 can produce too high peak flow at some poorly simulated stations in 

multi-site calibration. Therefore, the objective function of NS is recommended to use in SUFI2 of 

SWATCUP. The number of simulations during calibration iterations had a notable influence on the 

model performance. Lower number of simulations in each iteration (such as 200 and 500) could 

lead to significant uncertainty, while larger number of model runs (e.g., 2,000) could lead to local 

optimal. The new calibration scheme using decreasing number of simulations (e.g., from 1,500 to 

500 by -200) was shown to have good potential in calibrating the streamflow. 

Sequential calibration from upstream to downstream did not improve the model performance as 

expected and could lead to worse performance than calibrating the river basin as a whole. 
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Calibrating the snow-related parameters separately from the other parameters did not perform well 

in comparison with calibrating all parameters together when the objective function of NS was used. 

This calibration scheme may have avoided unrealistic snow parameter combinations, but it was 

difficult to get an optimal model performance likely because parameter interactions were not 

accounted for. A modified SUFI2 of SWATCUP approach was developed to automatically remove 

the unrealistic snow parameter combinations generated by SWATCUP. The modified tool showed 

improved performance than the original SUFI2-SWATCUP under various calibration schemes, and 

was more computationally efficient as it greatly reduced the number of simulations.  

To limit model equifinality and parameter uncertainty, multi-objective calibration (streamflow and 

SWE) was applied and compared with single-objective calibration. Modification of SWAT was 

done to automatically calibrate subbasin SWE and streamflow using SWATCUP, providing an 

efficient tool for calibrating large-scale SWAT models in snow-dominated regions. It was found 

that the multi-objective calibration better limited the parameter uncertainties and improved the 

reliability and robustness of the hydrologic model in simulating future streamflow. Simulation of 

the snow process was improved due to the additional calibration variable of SWE. Consequently, 

the simulated spring streamflow affected by snowmelt was in better agreement with the observed 

data. In addition, various calibration schemes (e.g., the choice of the simulation number) was 

shown to have significantly different performance in single-objective and multi-objective 

calibrations. It is therefore suggested to try at least two calibration schemes in calibrating a 

hydrologic model to find more optimal result. The work presented in this paper is expected to 
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contribute to water resources planning and management in the Peace River Basin, and provide 

insights for researchers on modelling and calibrating large-scale snow-dominated river basins. 

Future studies should focus on further improving the simulation of spring peak flow affected by 

snowmelt and river ice breakup. 
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Chapter 4. A Hydrologic and River Ice Modeling Framework for Assessing the 

Impact of Ungauged Subbasins on Open Water and River Ice Breakup Peak 

Flow in a Large Cold-region River Basin 

4.1 Introduction 

Disastrous river floods have caused fatalities, displacement, and huge economic loss globaly (Merz 

et al., 2021), and it is projected that more global population will be exposed to floods in the future 

(Tellman et al., 2021). In addition to heavy rainfall, flood dynamics could also be driven by 

snowmelt and river ice processes in cold region rivers (Das et al., 2020; Mishra et al., 2022). Snow 

and ice are major components of the hydrological regime in northern latitudes, and their combined 

effects can greatly affect streamflow. During spring, significantly increased streamflow due to 

rapid melting of large snowpacks can result in mechanical breakup of a river ice cover (Beltaos 

and Prowse, 2009). Unlike a thermal breakup, during which the ice cover deteriorates in place with 

minimal movement, the mechanical breakup is often associated with ice jams formed by broken 

ice arrested by downstream intact ice cover or constrictions such as bridge piers and islands 

(Beltaos, 2008). Breakup ice jams can lead to fast rising water levels and cause severe flooding 

even at lower streamflow as compared to open water floods (Beltaos and Prowse, 2001; Burrell et 

al., 2021). The anuual cost of ice jam related damages in North America is nearly 300 million CAD 

(French, 2017).  

The hydrologic and hydraulic modelling framework has been widely used for flood forecasting 

and risk assessment (Bonnifait et al., 2009; Grimaldi et al., 2019; W. Li et al., 2019; Nguyen et al., 
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2016). Previous studies mostly focused on open water floods, while ice-induced floods are more 

complex and chaotic (Turcotte et al., 2019). The effects of ice should be taken into consideration 

in order to correctly simulate the river hydraulic conditions. A number of hydraulic models have 

the capability of simulating various river ice processses, herein refered as river ice models, such 

as River1D (Blackburn and She, 2019), CRISSP (Chen et al., 2006; Liu et al., 2006), Mike-Ice 

(Thériault et al., 2010), and RIVICE (Lindenschmidt, 2017). Few studies have used hydrologic 

model in conjunction with river ice model to assess future ice regime and ice-jam flood risk. 

Timalsina et al. (2013) evaluated the impact of climate change on river ice regime using the indices 

of water temperature, frazil ice and ice cover in a Norwegian regulated medium-scale river using 

Mike-Ice and the HBV hydrologic model. Lindenschmidt et al. (2019) and Das et al. (2020) used 

RIVICE and MESH hydrologic model for operational real-time and future ice jam flood hazard 

assessment and flood mapping. The focus was on the simulation of water level profiles caused by 

ice jams instead of peak flow during river ice breakup period. More work is needed to improve the 

capability of the hydrologic and river ice modelling framework for simulating snow and ice 

induced floods in cold-region river basins. 

Many drainage basins of the world are ungauged or poorly gauged (Mishra and Coulibaly, 2009; 

Sivapalan, 2003; Sivapalan et al., 2003). Even for basins with a good number of well distributed 

gauge stations, flow from certain regions or subbasins can still be ungauged. For example, the 

hydrometric stations on tributaries are often located at a distance upstream the confluence to the 

mainstream, and thus the streamflow from the area between the hydrometric station and the 
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confluence is ungauged. Some catchments or subbasins in a river basin are often not gauged as 

they only have significant flows during flood periods. The total ungauged subbasins usually take 

a large portion of a river basin (Dessie et al., 2015; Viglione et al., 2013). However, the ungauged 

catchment streamflow is not easy to estimate and often not taken into account in modelling inputs 

(Zhang et al., 2017), which can introduce significant uncertainies and/or errors into hydraulic 

models for simulating flood events. 

Estimation or prediction of ungauged streamflow is a challenging research field (Guo et al., 2021b; 

Hrachowitz et al., 2013; Sivapalan, 2003). The International Association of Hydrological Sciences 

(IAHS) launched the initiative for Predictions in Ungauged Basins (PUB) in 2003 to stimulate the 

development of new and advanced predictive approach (Sivapalan et al., 2003), and numerous 

studies have been carried out since then (Booker and Woods, 2014; Pagliero et al., 2019; Parajka 

et al., 2013; Salinas et al., 2013; Singh et al., 2022; Viglione et al., 2013; Zelelew and Alfredsen, 

2014; Zhang and Chiew, 2009). Most of these studies are to identify donor gauged catchments that 

are hydrologically similar to the target ungauged catchments, and then transfer information (e.g., 

streamflow or calibrated hydologic model parameters) from gauged catchments to ungauged 

catchments. Such process is generally refered as regionalization (Blöschl and Sivapalan, 1995; He 

et al., 2011). The simplest regionalization method is probably the draninage-area ratio (DAR) 

method, which generally estimates the streamflow in an ungauged catchment using the streamflow 

information of nearby gauged catchment and the ratio of the drainage areas of the donor and target 

catchments (Asquith et al., 2006; Emerson et al., 2005; Ergen and Kentel, 2016; Gianfagna et al., 
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2015; Q. Li et al., 2019; McCuen and Levy, 2000). The DAR method can produce reasonable 

results when the ungauged catchment and its donor gauged catchment have homogeous 

hydrological characteristics (Ergen and Kentel, 2016). The more sophisticated and widely used 

regionalization methods are based on hydrologic models (Guo et al., 2021b; Parajka et al., 2013; 

Razavi and Coulibaly, 2013), which generally use hydrologic model parameters calibrated for 

donor gauged catchment(s) to derive the model parameters for the target ungauged catchment, and 

estimate or predict the ungauged streamflow. However, it is not uncommon that these methods 

sometimes produce unsatisfactory simulation results and low prediction accuracy due to large 

heterogeneity of land surface conditions, spatial and temporal variability of climatic inputs, unclear 

hydrological similarity indicators, and uncertainties arising from model structures and calibrations 

(Guo et al., 2021b; Hrachowitz et al., 2013; Sivapalan, 2003).  

A hydraulic model can be a useful tool to verify the hydrologic model simulated ungauged 

catchment streamflow. For example, Liu et al. (2015) coupled the SWAT (Soil and Water 

Assessment Tool) hydrologic model and the XSECT hydraulic model for estimating streamflow 

and water levels for ungauged subbasins in the Red River Basin (U.S. portion). The SWAT model 

was used to estimate streamflow to provide inflows to the XSECT model, which then simulates 

water levels and water surface area. By comparing to their observed values extracted from satellites, 

the XSECT model results provide a verification to the ungauged streamflow simulated by SWAT. 

Zhang et al. (2017) used the SWAT model to simulate the streamflow of the ungauged zones in 

the Poyang Lake Basin, and the verification was achieved with the Delft3D hydraulic model 



129 

 

through comparing the simulated flow and lake water levels with the observed. Although there are 

numerous studies on how to estimate and/or predict streamflow in ungauged catchments, and 

verify the estimated results using the hydrologic and hydraulic modelling framework, the effects 

of ungauged subbasins on peak flow, especially snow and ice induced peak flow during river ice 

breakup in large cold-region river basins, is yet to be explored through the hydrologic and river 

ice modelling framework.  

The objectives of this study are to (1) assess ungauged subbasin streamflow estimation methods 

(i.e., the simple drainage-area ratio method and sophisticated hydrologic model); (2) investiagte 

the impacts of ungauged subbasins on peak flow simualtion under open water and river ice breakup 

conditions; and (3) analyze the peak flow contributions of the gauged and ungauged subbasins for 

open water and river ice breakup events. A modelling framework was established utilizing the 

public-domain hydrologic model SWAT and the hydraulic/river ice model River1D, and was 

applied to the Peace River Basin (PRB), a large cold-region watershed in western Canada. Two 

open water and three river ice breakup periods were simulated and the impacts of ungauged 

subbasin streamflow on peak flow of these periods were evaluated. 

4.2 Data and methodology 

The process for estimating and evaluating the ungauged subbasin streamflow in a river basin is 

shown in Figure 4.1, including (1) delineating a basin into gauged and ungauged subbasins, and 

simulate the streamflow of each subbasin using the hydrologic model; (2) coupling the hydrologic 

model outputs and river ice model inputs through: (a) allocating ungauged subbasins into various 
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inflow boundaries for the river ice model, (b) estimating ungauged subbasin streamflow using the 

DAR method and/or the hydrologic model, and (c) setting up different inflow boundary scenarios 

based on how the ungauged subbasin streamflow is considered (partly or fully) and/or estimated; 

and (3) evaluating ungauged subbasin streamflow with the river ice and hydrologic models. In the 

modelling framework, the river ice model simulated results can provide feedbacks for the 

hydrologic model, or the ungauged subbasin streamflow estimated by the hydrologic model can 

be verified by the simulated results of the river ice model. The hydrologic model would be further 

calibrated or tuned until the hydrologic model can provide satisfying simulated streamflow in 

ungauged subbasins for the river ice model.  
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Figure 4.1 Flow chart for estimating and evaluating ungauged subbasin streamflow in a river basin 

through combined use of hydrologic and river ice models. 
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4.2.1 Study area and data 

The Peace River originates in the Rocky Mountains, flowing ~1,923 km through the British 

Columbia and Northern Alberta before joining with the Athabasca River and forming the Slave 

River. The Peace River Basin (PRB) has an area of approximately 306,000 km2, with the elevations 

ranging from approximately 3,286 m to about 200 m from upstream to downstream (Figure 4.2). 

The area enclosed by the black line indicates the modelled area in the hydrologic model in this 

study which has an area of around 277,286 km2. The modelled reach in the rive ice model (blue 

line in Figure 4.2) extends from Hudson Hope to approximately 100 km downstream of Fort 

Vermilion for a total length of 932 km. The river stationing is the distance from the W.A.C. Bennett 

Dam. 

Streamflow data are available from the Water Survey of Canada (WSC). 23 gauge stations were 

used for calibrating and validating the hydrologic model, shown as black dots in Figure 4.2. 14 of 

these stations (circled in red) were used to determine the inflow and tributary inflow boundary 

conditions for the river ice model. Water levels from 7 gauge stations located on the Peace River 

(hollow black squares) for calibrating and validating the river ice model. Details of the gauge 

stations used are summarized in Table 4.1. 
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Figure 4.2 Map of the Peace River Basin and study reach with location of hydrometric gauge stations used in this study. 
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Table 4.1 Hydrometric stations in the Peace River Basin used in this study. 

ID Station Station Name Longitude Latitude Data Used Usage 

1 07EF001 Peace River at Hudson Hope -121.91 56.03 Flow 

Hydrologic model 

calibration/validation and River ice 

model inflow boundary 

2 07FA006 Halfway River near Farrell Creek -121.63 56.25 Flow 

3 07FB008 Moberly River near Fort St. John -121.37 56.09 Flow 

4 07FB001 Pine River at East Pine -121.21 55.72 Flow 

5 07FC001 Beatton River near Fort St. John -120.7 56.28 Flow 

6 07FD001 Kiskatinaw River near Farmington -120.56 55.96 Flow 

7 07FD009 Clear River near Bear Canyon -119.68 56.31 Flow 

8 07GJ001 Smoky River at Watino -117.62 55.72 Flow 

9 07GE001 Wapiti River near Grande Prairie -118.8 55.07 Flow 

10 07HA003 Heart River near Nampa -117.13 56.06 Flow 

11 07HC001 Notikewin River at Manning -117.62 56.92 Flow 

12 07HF002 Keg River at Highway No. 35 -117.63 57.75 Flow 

13 07JF003 Ponton River above Boyer River -116.26 58.46 Flow 

14 07JD002 Wabasca River at Highway No. 88 -115.39 57.88 Flow 

15 07EE007 Parsnip River above Misinchinka River -122.91 55.08 Flow 
Hydrologic model 

calibration/validation 
16 07FD006 Saddle River near Woking -118.7 55.64 Flow 

17 07GH002 Little Smoky River near Guy -117.16 55.46 Flow 

18 07FA004 Peace River above Pine River -120.82 56.2 Flow & Level 

Hydrologic model and river ice model 

calibration/validation 

19 07FD002 Peace River near Taylor -120.67 56.14 Flow & Level 

20 07FD010 Peace River above Alces River -120.06 56.13 Flow & Level 

21 07FD003 Peace River at Dunvegan Bridge -118.61 55.92 Flow & Level 

22 07HA001 Peace River at Peace River -117.31 56.25 Flow & Level 

23 07HF001 Peace River at Fort Vermilion -116.03 58.39 Flow & Level 

24 07FD901 Peace River above Smoky River Confluence -117.44 56.16 Level River ice model calibration/validation 
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4.2.2 Hydrologic model 

The SWAT2012 model, a semi-distributed and river basin scale model (Arnold et al., 1998; Neitsch 

et al., 2011), was used to divide the river basin into gauged and ungauged subbasins, and to 

simulate streamflow. The model delineates a watershed into subbasins, which is further divided 

into hydrologic response units (HRUs). A HRU is a combination of unique soil, land cover, and 

slope. The watershed delineation is based on the digital elevation model (DEM). The ArcSWAT 

interface for the SWAT2012 model can automatically create streams and outlets for the watershed 

based on the DEM (Winchell et al., 2013). However, outlets are not necessary situated at the 

locations of the actual gauge stations. The ArcSWAT interface allows users to manually edit the 

outlets for the subbasins during watershed delineation. In this study, redundant outlets were deleted 

to reduce the model complexity. Meanwhile, additional outlets were added based on the locations 

of the gauge stations used in this study for delineating the gauged and ungauged subbasins, as well 

as for model calibration (see Table 4.1). Detailed model setup and calibration has been previously 

conducted for the PRB (see Section 3.2 in Chapter3).  

The SWAT model was calibrated with both daily streamflow and Snow Water Equivalent (SWE) 

from 2004 to 2013 based on the widely used Sequential Fitting program (SUFI2) of SWATCUP 

(Abbaspour, 2015). Daily streamflow at the 23 selected stations shown in Table 4.1 were used and 

daily SWE at 23 point stations near the flow stations were obtained from ERA5 reanalysis data 

(Hersbach et al., 2020). Two commonly used efficiency coefficients, the Nash–Sutcliffe efficiency 

(NS) and a modified version of the efficiency criterion (bR2) defined by Krause et al. (2005), were 

tested as the objective function for model calibration. Tests showed that the bR2 performed better 

in capturing the peak flows and when there were many missing values in observed streamflow data. 

As the peak flow during open water and river ice breakup periods were the focus of this study and 
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some of the flow stations on the tributaries have many missing values, bR2 was used as the 

objective function in SUFI2 of SWATCUP.  

4.2.3 River ice model 

The open water and river ice hydraulic modeling was conducted with the University of Alberta’s 

public-domain River1D model. The model originated as a hydrodynamic model (Hicks and Steffler, 

1992, 1990), and gradually expanded to simulate various river ice processes (Andrishak and Hicks, 

2008; Blackburn and She, 2019; She et al., 2009; She and Hicks, 2006). River1D can simulate the 

mechanical breakup of ice cover via different breakup criteria and a systematic evaluation was 

provided by Ye and She (2021). However, validation of these breakup criteria is limited. To reduce 

the uncertainties of simulating the progression of ice breakup and also because the ice front 

location on the Peace River has been observed relatively frequently, ice cover breakup was not 

modelled with a breakup criterion, but rather with the observed ice front locations provided to the 

River1D model. Ice front locations during river ice breakup were mainly obtained from the River 

Ice Observation Reports Archive of the Government of Alberta (https://rivers.alberta.ca/#), 

supplemented by information extracted from the Landsat Data (https://www.usgs.gov/landsat-

missions/data).  

A static ice cover was assumed to initially present in the study reach mimicking the pre-breakup 

condition. The initial ice thickness was set according to the observed stable ice thickness available 

at two WSC gauge stations on the Peace River from the Canadian River Ice Database (De Rham 

et al., 2020). At each time step, the model checks where the ice front is located. Upstream of the 

ice front, the ice cover was assumed to be fully broken up and offered no resistance to the flow. 

This was simulated by removing the ice resistance in the model. Following Ye and She (2021), a 

transition zone of five channel widths was assumed to exist between the freely flowing broken ice 
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and the intact ice cover, within which the ice offers reduced resistance to flow. The ice velocity 

within the transition zone was assumed to decrease linearly from open water velocity to zero from 

upstream to downstream. 

The geometric model is a combination of surveyed and approximated cross sections (Blackburn 

and Hicks, 2002; Ye and She, 2021). Sub-daily discharge data was requested from Environment 

and Climate Change Canada (ECCC) and used as inflow boundary conditions at the upstream end 

of the study reach and incoming tributaries (see Table 4.1). The daily streamflow that is publicly 

available from the WSC Hydrometric database was used to fill in the missing values in the sub-

daily dataset for some stations. No water level data was available at the downstream boundary of 

the modelled reach but since it is about 100 km downstream of the reach of interest (i.e., Hudson 

Hope to Fort Vermillion), a constant water level boundary could be assumed without impacting 

the hydraulic conditions in the reach of interest. 

Sub-daily streamflow and water levels at 7 hydrometric stations on the Peace River (see Table 4.1) 

requested from ECCC, were employed to calibrate the river ice model for open water and river ice 

breakup events. Model calibration for open water events was completed by adjusting the main 

channel bed roughness values of the study reach. Once the bed roughness values were calibrated, 

the ice roughness values for the reach were adjusted for the river ice breakup periods. The model 

performance was evaluated using the Nash–Sutcliffe efficiency coefficient (NS) and the coefficient 

of determination (R2) (Moriasi et al., 2015). The range of R2 is 0 to 1 while NS is from -∞ to 1. 

The perfect value of both R2 and NS is 1.  
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4.2.4 Model coupling 

4.2.4.1 Gauged and ungauged subbasins delineation 

The PRB was delineated into 818 subbasins using the SWAT model. The 14 hydrometric stations 

(Table 4.1) used to set the inflow boundaries for the river ice model were used to distinguish the 

ungauged subbasins from gauged subbasins (Figure 4.3a). The drainage area of a hydrometric 

station contains all the subbasins upstream of this station, and the 14 inflow boundary zones 

(colored area) for the River1D model are corresponding to the 14 hydrometric stations. The 

remaining (grey) area of the PRB covers all the ungauged subbasins, which takes about 26.54% of 

the whole modelled area. The ungauged subbasins were manually allocated into the nearby 14 

inflow boundary zones so that the impacts of ungauged subbasin streamflow on the inflow 

boundaries of the river ice model can be evaluated (see Figure 4.3b). Manual allocation was mainly 

based on the final outlet location of each ungauged subbasin to the mainstream and the locations 

of the mainstream gauge stations.  
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Figure 4.3 Delineated subbasins of Peace River Basin (a) gauged inflow boundary zones (various 

colors) and ungauged subbasins (grey); (b) ungauged subbasins allocated into 14 inflow boundary 

zones. 



140 

 

4.2.4.2 Ungauged subbasin streamflow estimation 

The inflow boundary hydrometric stations on the tributaries (Table 4.1) are not located right at the 

confluence to the Peace River (see Figure 4.3). The streamflow from subbasins between the 

tributary gauges and the confluence therefore is not considered if the gauge data is directly used 

as the inflow boundaries for the river ice model. To account for these ungauged flows, Hicks (1996) 

used a set of multiplication factors from Alberta Environment (Taggart, 1995) to adjust the 

tributary inflow boundaries of the Peace River when simulating open water flood events using the 

River1D model. These multiplication factors were computed based on the ratio of the catchment 

area at the confluence to the catchment area at the tributary gauge (i.e., the DAR method). These 

multiplication factors were used in this study as the base scenario (S1 in Table 4.2). Not all inflow 

boundaries were adjusted by the multiplication factors in the study of Hicks (1996). Additionally, 

this scenario does not consider the ungauged subbasins outside the subbasin between the tributary 

gauge station and the confluence of the mainstream.  

A second scenario was constructed by manually allocating all the ungauged subbasins into the 

nearby gauged drainage area (Figure 4.3b) and re-calculating the multiplication factor for each 

inflow boundary using the DAR method: 

𝑚𝑖 =
A𝑔𝑎𝑢𝑔𝑒𝑑,𝑖 + 𝐴𝑢𝑛𝑔𝑎𝑢𝑔𝑒𝑑,𝑖

A𝑔𝑎𝑢𝑔𝑒𝑑,𝑖
 

(4-1) 

where mi is the multiplication factor for the ith inflow boundary (i = 1, 2, …, 14); Agauged,i and 

Aungauged,i are the area of the gauged and ungauged drainage area for the ith inflow boundary zone, 

respectively. 

As can be seen from Table 4.2, the ungauged subbasins are far greater than the gauged subbasins 

for some of the inflow boundary zones (e.g., B07, B08 and B11-B13). In this case, the simple DAR 
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method that amplifies the gauged streamflow by a multiplication factor could misestimate the 

ungauged subbasin streamflow to a great extent, while a hydrologic model may provide better 

estimate. Therefore, a third scenario was constructed by using the SWAT model to calculate the 

ungauged subbasin streamflow for these inflow boundary zones with large ungauged subbasins, 

while keeping the same multiplication factors from scenario 2 for all other inflow boundary zones.  
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Table 4.2 The three scenarios of inflow boundaries of River1D. 

Boundary Station 
Gauged Area 

(km2) 

Ungauged Area 

(km2) 
Scenario (S1) Scenario2 (S2) Scenario3 (S3) 

B01 07EF001 70,042.28 0 1*Qgauged01 1*Qgauged01 1*Qgauged01 

B02 07FA006 9,238.09 2,830.87 1*Qgauged02 1.306*Qgauged02 1.306*Qgauged02 

B03 07FB008 1,505.69 433.54 1.4*Qgauged03 1.288*Qgauged03 1.288*Qgauged03 

B04 07FB001 11,956.05 1,443.2 1*Qgauged04 1.121*Qgauged04 1.121*Qgauged04 

B05 07FC001 15,297.17 774.6 1.03*Qgauged05 1.051*Qgauged05 1.051*Qgauged05 

B06 07FD001 3,584.24 694.74 1.26*Qgauged06 1.194*Qgauged06 1.194*Qgauged06 

B07 07FD009 2,840.49 11,049.39 1*Qgauged07 4.89*Qgauged07 Qgauged07+Qungauged07, swat 

B08 07FD006 523.44 3,275.62 1*Qgauged08 7.258*Qgauged08 Qgauged08+Qungauged08, swat 

B09 07GJ001 48,553.39 2,385.76 1.02*Qgauged09 1.049*Qgauged09 1.049*Qgauged09 

B10 07HA003 1,737.2 473.55 1*Qgauged10 1.273*Qgauged10 1.273*Qgauged10 

B11 07HC001 4,636.73 16,352.69 1.39*Qgauged11 4.527*Qgauged11 Qgauged11+Qungauged11, swat 

B12 07HF002 735.81 11,147.58 1*Qgauged12 16.15*Qgauged12 Qgauged12+Qungauged12, swat 

B13 07JF003 2,370.11 8,869.65 1.26*Qgauged13 4.742*Qgauged13 Qgauged13+Qungauged13, swat 

B14 07JD002 33,043.97 11,490.48 1.1*Qgauged14 1.348*Qgauged14 1.348*Qgauged14 

Note: Qgauged is the streamflow data at each of the inflow gauge station; Qungauged, swat indicates the ungauged streamflow in an inflow 

boundary zone simulated by SWAT; Number in the subscript indicates the number of the inflow boundary; A multiplication factor of 1 

is used in S1 for those inflow boundary stations not found in Hicks (1996); The multiplication factors in S2 are computed from 

Equation 1; the multiplication factors greater than 1.5 in S2 are shown in bold.
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4.2.4.3 Evaluate the impacts of ungauged subbasin streamflow 

Two open water periods and three river ice breakup periods were selected to evaluate the impacts 

of ungauged subbasin streamflow on the River1D model in simulating the streamflow and water 

levels. For open water periods, both flood (June 10 to August 10, 2011) and non-flood (May 20 to 

June 20, 2012) years were selected to better evaluate the contribution of ungauged subbasins. For 

the breakup periods, the simulations started from the date when the ice front began to retreat. Two 

mechanical river ice breakup years (modeling period from March 28 to May 15, 2007 and February 

7 to May 15, 2013) and one thermal breakup year (modeling period from March 3 to May 15, 2012) 

were simulated. In addition, the contributions of ungauged subbasins to streamflow in the PRB 

were roughly evaluated based on the simulated streamflow from the SWAT model. 

4.3 Results and discussion 

4.3.1 Open water periods 

The 2012 open water period has better data quality in terms of the amount of missing values, and 

thus was used to calibrate the bed roughness and the 2011 open water period was used for model 

validation. The bed roughness was calibrated for the three inflow boundary scenarios (S1-S3 in 

Table 4.2) separately and the used values are shown in Figure 4.4. The calibrated roughness values 

are in general agreement with those used in Andres (1996), which ranged from 0.017 to 0.03 for 

discharges between 1,000 and 10,000 m3/s at the station of Peace River at Fort Vermilion (PRFV), 

and 0.02 to 0.04 for discharges between 1,000 and 5,000 m3/s at the station of Peace River at Peace 

River (PRPR). The calibrated manning’s n values also are also overall in line with those calibrated 

by Huang et al. (2021), whose calibrated bed roughness of the Peace River were mainly between 

0.01 and 0.03.  

The simulated results for the two open water periods are showed in Figures 4.5-4.8, in comparison 
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with the observed water levels and streamflow. In general, the simulated water level and 

streamflow in all three inflow boundary scenarios showed good agreement with the observed data. 

For water levels, the values of NS and R2 at all stations were over 0.8. The values of NS and R2
 

for streamflow at most stations were greater than 0.8 for the 2011 modelling period; however, for 

2012 two of the three scenarios showed poor agreement with the observed flow at PRFV. 

Comparing the observed streamflow at PRPR and PRFV, a nearly 1,700 m3/s reduction of the peak 

flow occurred over this distance (~450 km). Such a reduction was not seen in any of the model 

routed hydrographs no matter which inflow boundary scenario was used. As the magnitude of peak 

flow is mainly affected by channel roughness (Blackburn and Hicks, 2002), the Manning’s n value 

for the PRPR to PRFV reach was varied to see the change in the peak flow reduction. It was found 

that a flow reduction comparable to the observed can only be achieved by increasing the Manning’s 

n value by over 0.02 for the nearly 450 km reach. Such an increase in roughness caused the water 

levels at both PRPR and PRFV to increase significantly, resulting in poor agreement with the 

observed water levels. It is therefore suspected that the observed flow at PRFV during this period 

was lower than the actual. This is also supported by the simulation of the 2011 open water flood 

period. It can be seen from Figure 4.6 that the routing of the two flood waves from PRPR to PRFV 

agreed very well between the modelled and observed. 

Looking closely to the peak flows, S1, using the multiplication factors from Hicks (1996), 

significantly underestimated the peak flow at many hydrometric stations, especially during the 

2011 open water flood period. For example, the observed largest peak flow at PRPR in 2011 was 

about 13,630 m3/s while the simulated value in S1 was only 8,966 m3/s. This is likely due to 

streamflow from large parts of the ungauged subbasins was not taken into account in S1.  

S2 used the updated multiplication factors which account for the streamflow from all the ungauged 
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subbasins. It significantly improved the open water peak flow simulations at most of the 

hydrometric stations as compared with S1 (see Figures 4.6 and 4.8). However, S2 still evidently 

underestimated the largest peak flow of the 2011 open water flood event with the simulated value 

at PRPR around 10,091 m3/s. This could be due to the underestimation of streamflow in the inflow 

boundary zones of B07 and B08, located just before PRPR. Despite the underestimation of the 

largest peak flow at PRPR, the corresponding largest peak flow at the downstream station of PRFV 

showed good agreement with the observed. This may be due to the overestimation of ungauged 

subbasin streamflow in B11 and B12, located between PRPR and PRFV. As mentioned earlier, the 

ungauged area far exceeds the gauged area in B07, B08, B11 and B12 (see Table 4.2), and thus the 

runoff production mechanisms for the ungauged subbasins are probably very different from the 

gauged subbasins. In this case, the DAR method has large uncertainty and may significantly 

misestimate the ungauged subbasin streamflow. The uncertainty arising from applying the DAR 

method to large ungauged area was small during the 2012 open water period. It is likely due to the 

streamflow from the large ungauged subbasins (such as those in B07 and B08) had a small 

contrition to the peak flow in the non-flood period.  

S3 used SWAT to estimate the ungauged streamflow for the inflow boundary zones containing 

large ungauged area (B07, B08, B11 and B12). Like S2, S3 overall improved the peak flow at most 

stations (see Figures 4.6 and 4.8). Moreover, S3 provided more reasonable simulation of the largest 

peak flow at both PRPR and PRFV in 2011, though the simulated value was still a little lower than 

the observed peak value. However, S3 significantly overestimated the second peak flow at the 

Peace River at Dunvegan Bridge (PRDB). These results suggested that the SWAT model may have 

overestimated the ungauged subbasin streamflow in B07, while somewhat underestimated the 

streamflow from those ungauged subbasins in B08 and B09 In addition, S3 overall tended to 
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overestimate during the first peak and low flow periods at PRPR and PRFV in 2011. The simulated 

rising times of the hydrographs and the peaking times were also earlier than the observed. These 

discrepancies are likely due to uncertainties and/or errors of both observed data and the SWAT 

model. The geometric data may be another source of uncertainty as hundreds of kilometers of the 

study reach used approximated geometry and many of the surveyed cross sections were obtained 

in the 1990s.  

In general, the comparison of the three inflow boundary scenarios demonstrated that the 

streamflow from the ungauged subbasins greatly contributed to the open water flood. The 

hydrologic model is useful in simulating the streamflow in the ungauged area and has a good 

potential to provide inflow boundaries for the hydraulic model. Nevertheless, the hydrologic model 

still needs to be further improved to well capture open water flood. 
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Figure 4.4 Bed profile, bed roughness in three inflow boundary scenarios (S1-S3), inflow boundary and mainstream hydrometric station 

locations used in the River1D model; the inflow boundaries with larger ungauged subbasins are indicated in bold. 
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Figure 4.5 Comparisons of observed and simulated water level for the 2011 open water period. 
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Figure 4.6 Comparisons of observed and simulated streamflow for the 2011 open water period. 
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Figure 4.7 Comparisons of observed and simulated water level for the 2012 open water period. 
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Figure 4.8 Comparisons of observed and simulated streamflow for the 2012 open water period.
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4.3.2 River ice breakup periods 

Before comparing the modelled results with observed, it is worth noting that the WSC flow data 

can contain greater uncertainty when the gauge is affected by ice. WSC uses station-specific open 

water rating curves (i.e., water level-discharge relationship) to derive flow from continuous 

measurement of water levels. However, the presence of ice causes the water level-discharge 

relationship to greatly deviate from the rating curve, and the flow derived from the rating curve 

only represents the maximum possible discharge in the presence of ice. Turcotte and Rainville 

(2022) explained the procedure that WSC takes to correct the derived discharge. Direct flow 

measurements provide a good basis for such correction but are only done a couple of times during 

winter when the ice cover is safe to work on. When such data is not available, the correction can 

be subjective. Figure 4.9 shows the observed retreat of the ice front during the three simulated 

years, which provides a rough idea on when a gauge station may have been affected by ice. In the 

upstream steeper reach where the ice caused backwater does not extend very far upstream from 

the ice front, stations Peace River above Pine River, Peace River near Taylor, and Peace River 

above Alces River were not affected by ice. In the downstream reach where the channel slope is 

mild, the backwater from ice can extend tens of kilometers upstream depending on the thickness 

and roughness of the ice cover. The date when the downstream gauge stations like PRDB, Peace 

River above Smoky River Confluence (PRSRC), PRPR and PRFV were not affected by ice was 

estimated based on ice front locations, the last “B” symbol in the flow data (used by WSC to 

indicate a gauge station is affected by ice), and available satellite images of the study reach. The 

dates when PRDB, PRSRC, PRPR and PRFV were not affected by ice were April 18, 25, 26 and 
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29 in 2007, April 2, 13, 15 and May 7 in 2013. In 2012, PRDB was not affected by ice since the 

beginning of the simulation while PRSRC, PRPR and PRFV were not affected by ice starting from 

March 16, 30 and April 29, respectively. These dates are shown in the result figures (Figures 4.10-

4.15) where the simulated water levels and streamflow are compared with their observed values. 

Note that the streamflow during river ice breakup prior to these dates could have larger uncertainty 

than the rest of the simulated periods. 
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Figure 4.9 Observed ice front locations of Peace River during the retreating period for 2007, 2012 

and 2013. 
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Except for PRDB in 2012, the stations that were not affected by ice, i.e., Peace River above Pine 

River, Peace River above Taylor, and Peace River above Alces River, were well simulated 

regardless the inflow boundary scenario. The simulated water levels at most of the ice affected 

stations showed good agreement with observed, and the water level drop as the ice front passed a 

gauge station was also well captured. The less satisfactory water level simulations were mainly in 

three situations: (1) when an ice jam formed or released as such events are not accounted for in the 

river ice model. For example, an ice jam formed near PRPR on April 21, 2007 (Alberta 

Environment Peace River Ice Observation Report NO. 52 – 2006/2007), which caused water level 

of PRPR to increase by 0.5 to 1 m. This water level increase and later the sharp drop due to the 

jam release was not well simulated by the River1D (see PRPR in Figure 4.10); (2) when the ice 

front moved long distance in relatively short period, or when the ice front location was not 

observed for longer time. For example, Figure 4.9 shows that in 2007 the ice front moved nearly 

100 km near PRPR and PRSRC between April 23 and April 25, and its location was not tracked 

between April 26 and April 29 during which the ice front moved about 357 km from near PRPR 

to PRFV. In the former case, the ice breakup was very dynamic and cannot be well represented by 

a fixed length transition zone and specified ice velocity. In the latter case, the ice front may have 

stalled and restarted during the period without ice front location data, and thus linearly 

interpolating the ice front location between the known data points led to errors in simulating the 

hydraulic conditions. As a result, the simulated water levels showed poor agreement with the 

observed data at PRSRC, PRPR and PRFV during the above mentioned time periods; (3) when the 

ice cover had broken up at a gauge station. The simulated water level was relatively high as 
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compared to the observed values after the ice cover had broken up and the hydraulic conditions 

near the gauge had returned to near open water conditions. For example, the simulated water levels 

at PRDB in 2007, PRSRC, PRPR, and PRFV in 2012 were all overestimated after the water level 

dropped significantly. This is likely due to the effect of remnant ice in the river channel. 

Additionally, the bed morphology and roughness may have changed due to ice caused sediment 

deposition and scouring, while these changes were not accounted for in the model. 

 Figures 4.11, 4.13 and 4.15 show the comparison of simulated and observed streamflow during 

the three breakup periods. The streamflow was well simulated at all the gauge stations that were 

not affected by ice. The only exception was PRDB in 2012, where the simulated flow with either 

of the three inflow boundary scenarios was lower than the observed. This is likely due to snowmelt 

in ungauged subbasins upstream this station was not well simulated in 2012. Compared with the 

other two simulated breakup periods, late winter to early spring of 2012 had higher temperature. 

By checking snow depth data, it was found that the inflow boundary zones (e.g., B07) just before 

PRDB experienced two large snowmelt events from early March to early April. The River1D 

simulated streamflow at PRDB should be underestimated if the streamflow from the two large 

snow melting was not properly considered in the inflow boundaries. The SWAT model was 

calibrated with multiple years of data, and the calibrated parameters can well represent the snow 

processes of most years. But the SWAT model probably cannot provide good simulation for one 

or few years that has obvious different snowmelt conditions than others. This likely explains the 

underestimation of streamflow from early March to late April in 2012. 
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For the ice affected stations, the inflow boundary scenario S1 again significantly underestimated 

the peak flow. The only exception was PRFV flow in 2007 where S1 simulated flow better matched 

the observed than the other two scenarios. Based on a satellite image from LANDSAT7, the river 

condition near PRFV was in complete open water in 2007-05-01 18:36:44. Therefore, the 

streamflow at PRFV should have not been affected by ice from 2007-05-01. The streamflow after 

this date should have been calculated using open water rating curve but was found to be 

significantly lower than the values computed from the rating curves of PRFV. The WSC published 

peak flow was about 5,760 m3/s on 2007-05-08 while the value computed from the rating curve 

was about 7,135 m3/s. Therefore, the discrepancy between simulated and observed flow at PRFV 

is likely due to error in observed data.  

S2 improved the peak flow at some stations (e.g., PRPR and PRFV in 2013), but significantly 

underestimated the snow and ice affected peak flow while overestimated the peak flow when river 

just turned into open water conditions at many stations (e.g., PRFV in both 2012 and 2013). S2 

had a large uncertainty in estimating snow and ice affected streamflow for the ungauged subbasins. 

S3 generally performed the best as it captured the snow and ice affected peak flow at most stations 

very well (e.g., PRDB and PRPR in 2007, PRFV in 2012, PRPR and PRFV in 2013). Nevertheless, 

the discrepancy was still obvious at some stations (e.g., PRPR in 2012) as there were still some 

deviations for the streamflow provided by the SWAT model. Moreover, the daily streamflow 

calculated by SWAT model was probably not fine enough to capture the very dynamic flood 

occurring during river ice breakup. However, the comparison among the three inflow boundary 
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scenarios still demonstrated that the ungauged subbasins did contribute a large amount of 

streamflow and can greatly affect the peak flow during snow melting and river ice breakup period.
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Figure 4.10 Comparisons of observed and simulated water level for the 2007 river ice breakup period (vertical dashed line indicates 

the rough date when the station is not affected by ice). 



160 

 

 

Figure 4.11 Comparisons of observed and simulated streamflow for the 2007 river ice breakup period (vertical dashed line indicates 

the rough date when the station is not affected by ice). 
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Figure 4.12 Comparisons of observed and simulated water level for the 2012 river ice breakup period (vertical dashed line indicates 

the rough date when the station is not affected by ice). 
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Figure 4.13 Comparisons of observed and simulated streamflow for the 2012 river ice breakup period (vertical dashed line indicates 

the rough date when the station is not affected by ice). 
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Figure 4.14 Comparisons of observed and simulated water level for the 2013 river ice breakup period (vertical dashed line indicates 

the rough date when the station is not affected by ice). 
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Figure 4.15 Comparisons of observed and simulated streamflow for the 2013 river ice breakup period (vertical dashed line indicates 

the rough date when the station is not affected by ice).
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4.3.3 Streamflow in gauged and ungauged subbasins 

In previous sections, it was demonstrated that the calibrated SWAT model generally performed 

good in providing inflows for the River1D model. Before the calibrated SWAT model was used to 

investigate the streamflow contributions of gauged and ungauged subbasins across the PRB, it was 

further evaluated by comparing the simulated gauged subbasin streamflow in the 14 inflow 

boundary zones with the corresponding observed data (Table 4.3). Based on the index of multi-

year (2004-2013) average annual mean streamflow (MAMS) and annual peak streamflow (MAPS), 

the streamflow contributions of each inflow boundary zone were roughly quantified. For the 

observed gauged streamflow, the MAMS index indicated that B01 contributed the most, followed 

by B09 and B04. However, the most contributing inflow boundary became B09 based on the 

MAPS. This is because B01 is regulated by the dam and its outflow is reduced during flood season. 

A similar contributing pattern was also seen in the SWAT model simulated results. The relative 

errors between the observed and simulated gauged subbasins in each inflow boundary zone were 

also computed (Table 4.3). The absolute relative errors for the first three most contributing inflow 

boundaries were less than 35%. The large deviations were often seen in less contributing inflow 

boundaries. In general, the calibrated SWAT model had a good performance and can provide 

reasonable streamflow for both gauged and ungauged subbasins across the PRB.  

The contribution from the gauged and ungauged subbasins to the peak flow during the simulated 

open water and river ice breakup periods are shown in Figure 4.16. It is important to note that near 

the end of each simulated river ice breakup periods the river had returned to open water condition, 

and these open water periods were excluded when determining the peak flow during river ice 

breakup. For the non-flood periods, such as the 2012 open water and breakup periods, the 

ungauged subbasins both contributed about 26% and 27% of the peak flow, respectively. This is 
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nearly the same as the percentage area of the ungauged subbasins to the whole modelled area, 

which is ~26.54%. However, the ungauged subbasins contributed 41% to 42% of the peak flow 

for the 2011 flood period and the mechanical river ice breakup periods (i.e., 2007 and 2013). The 

inflow boundary zones for which the ungauged area far exceeds the gauged area, such as B07, B08, 

B11 and B12, contributed a large amount of streamflow for the open water and breakup flood years. 

Given the peak flow simulated by Scenario 3 during river ice breakup was still underestimated, 

the ungauged subbasins could have contributed more to the peak flow. This emphasized the 

importance of considering the ungauged subbasin streamflow when setting up a river ice model or 

hydraulic model. 
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Table 4.3 The summarize of observed and simulated multi-year (2004-2013) average annual mean streamflow (MAMS) and annual 

peak streamflow (MAPS) for gauged area in each inflow boundary zone. 

Boundary Station 

Gauged 

Area 

(km2) 

Observed Gauged Streamflow  SWAT Simulated Streamflow  Relative Error (%) 

MAMS 

(m3/s) 

Ratio 

(%) 

MAPS 

(m3/s) 

Ratio 

(%) 
 MAMS 

(m3/s) 

Ratio 

(%) 

MAPS 

(m3/s) 

Ratio 

(%) 
 MAMS MAPS 

B01 07EF001 70,042 1,115.8 59.64 1,881 23.49  1,122.7 55.12 1,879.7 26.94  0.62 -0.07 

B02 07FA006 9,238 64.4 3.44 717.5 8.96  89.2 4.38 726.9 10.42  38.44 1.30 

B03 07FB008 1,506 11.6 0.62 84.1 1.05  14.2 0.70 218.9 3.14  22.58 160.39 

B04 07FB001 11,956 190.3 10.17 1,539.3 19.22  182.2 8.95 1,003.1 14.38  -4.27 -34.84 

B05 07FC001 15,297 45.3 2.42 528.3 6.60  93.1 4.57 448.5 6.43  105.57 -15.10 

B06 07FD001 3,584 9.9 0.53 167.4 2.09  19.4 0.95 128.1 1.84  95.27 -23.47 

B07 07FD009 28,40 6.2 0.33 84.5 1.05  11.8 0.58 122.8 1.76  89.82 45.43 

B08 07FD006 523 1.6 0.08 36.5 0.46  4.0 0.20 59.6 0.85  153.16 63.14 

B09 07GJ001 48,553 327.4 17.50 2,242 28.00  401.6 19.72 1,848.1 26.49  22.66 -17.57 

B10 07HA003 1,737 2.6 0.14 46.1 0.58  8.6 0.42 91.1 1.31  227.27 97.51 

B11 07HC001 4,637 10.9 0.58 158.2 1.98  8.0 0.39 29.2 0.42  -26.70 -81.52 

B12 07HF002 736 2.7 0.14 29.4 0.37  1.0 0.05 9.9 0.14  -61.57 -66.21 

B13 07JF003 2,370 15.6 0.83 104.8 1.31  11.3 0.55 112.5 1.61  -27.80 7.35 

B14 07JD002 33,044 66.7 3.57 388.3 4.85  69.8 3.43 298.7 4.28  4.62 -23.07 

Note: The ratio indicates the percentage of MAMS and MAPS of each boundary gauged area to the total gauged area; the ratio over 5% 

is indicated in bold; the relative error is computed from the simulated and observed MAMS and MAPS.  
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Figure 4.16 Peak flow contributions of gauged and ungauged subbasins in various inflow boundary zones; the values on top of each 

column show the peak flow contrition of each inflow boundary zone. 
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4.4 Conclusions and recommendations 

This study constructed a hydrologic and river ice modelling framework with SWAT and River1D 

to investigate the impact of the streamflow from ungauged subbasins on peak flows during open 

water and river ice breakup periods in the Peace River Basin (PRB). In the framework, the 

drainage-area ratio (DAR) method and the hydrologic model were employed to estimate the 

ungauged subbasin streamflow within the PRB and improve the inflow boundaries for the River1D 

model. Comparing to the simple DAR method, it was shown that the hydrologic model can provide 

more accurate estimation of the ungauged subbasin streamflow for regions with large ungauged 

subbasin area during flood events. In particular, the SWAT model outperformed the DAR method 

for simulating the ungauged streamflow during river ice breakup periods, which is mainly due to 

the SWAT model can reasonably simulate snow affected streamflow. Nevertheless, there were still 

some discrepancies because of the uncertainties in both the observed data and model structures. In 

general, both the DAR method and the hydrologic modelling method can significantly improve 

the River1D model in capturing the peak flow when the ungauged subbasins within the PRB were 

fully considered. Meanwhile, the River1D simulation results demonstrated that the streamflow 

from the ungauged subbasins of the PRB can greatly affect the peak flow simulation of the river 

ice model for both open water and river ice breakup flood events. Based on the simulated 

streamflow from the SWAT model, it was found that the ungauged subbasins can contribute to 

nearly half of the peak flow for the open water and river ice breakup flood events even though they 

are only about 26.5% of the whole study area. Overall, the findings in this study can contribute to 

open water and river ice breakup flood simulation, and water resources planning and management 

in the Peace River Basin. The proposed methods also can provide insights on modelling flood 

events in other ungauged or partially ungauged basins. 



170 

 

The hydrologic and river ice modelling framework can be a useful tool for forecasting snow and 

ice related flood events. The hydrologic model can provide necessary inflow boundaries for the 

river ice model while the channel routing method used in the river ice model can be used to 

simulate the ice affected streamflow. In this study, the river ice breakup conditions were only 

considered in the mainstream of the Peace River. The effects of river ice breakup on streamflow 

should be considered in the whole Peace River networks through deeply coupling the physics-

based river ice models with hydrologic models in future work, to better simulate snow and ice 

affected spring streamflow. The SWAT model developed in this study can only provide daily scale 

streamflow which is probably not enough for capturing the more dynamic flood events such as 

those associated with mechanical breakup. The hydrologic model with the capability of providing 

high temporal resolution streamflow data in large cold-region watersheds should be developed in 

future studies. Calibrating a sub-daily hydrologic model in a large river basin can be super 

computationally expensive and time consuming. Therefore, more efforts should also be devoted 

into improving the efficiency of hydrologic model calibration. The ability of river ice models for 

simulating the onset of the mechanical breakup and determining whether, when and where an ice 

jam may form can be further developed. Furthermore, the uncertainties in the observed streamflow 

data due to ice effects will need to be reduced in order to better calibrate and validate the modelling 

framework.  
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Chapter 5. Conclusions and Recommendations 

5.1 Summary and conclusions 

Both the observed and projected warming in Canada are about double the magnitude of the average 

global warming (Bush and Lemmen, 2019), which can greatly affect the snow and river ice regime, 

as well as the timing and magnitude of snow and ice induced spring peak flow. A good 

understanding of river ice breakup and a reliable prediction of snowmelt and river ice breakup 

induced spring peak flow is vital in helping cold region communities mitigate snow and ice related 

damages and adapt to climate change. This study investigated the trends and drivers of river ice 

breakup timing through constructing and analyzing long-term river ice breakup timing data across 

Canada, and improved snow and ice affected spring streamflow in a large cold-region river basin, 

the Peace River Basin (PRB) in western Canada, through the development and application of the 

physics-based hydrologic model SWAT and the river ice model River1D. 

This study provides several key original contributions as follows: 

1. Constructed a long-term and uniform dataset of river ice breakup timing for Canada and 

investigated the breakup timing patterns and how various factors (e.g., climatic factors, 

elevation and flow regulation) affect river ice breakup over Canada. This study provided 

evidence for climate change and theoretical support for modelling river ice breakup 

processes. 

2. Proposed a multi-objective hydrologic model calibration framework that can automatically 

remove unrealistic snow parameter combinations and calibrate streamflow and Snow Water 

Equivalent (SWE) simultaneously. The proposed multi-objective calibration framework 
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effectively limited the uncertainty of snow-related parameters and provided better 

prediction of snow-affected spring streamflow in the PRB. It can be applied in other snow-

dominated river basins to help improve the simulation of snow affected spring streamflow. 

This study evaluated various climate data sources and calibration schemes, which can help 

limit and/or reduce the uncertainties/errors of model inputs and calibrations and provide 

insights in modelling cold region river basins and calibrating hydrologic models. 

3. Constructed a hydrologic and river ice modelling framework and improved the snow and 

ice affected peak streamflow though properly considering and estimating ungauged 

subbasin streamflow in the PRB. The study greatly contributes to open water and river ice 

breakup flood simulation, and water resources planning and management in the PRB. The 

hydrologic and river ice modelling framework developed in this study can be applied to 

other cold region river basins to investigate impacts of the ungauged subbasins and/or 

forecast snow and ice induced flood events. 

The details of these contributions were discussed and presented below. 

5.1.1 Trends and drivers of river ice breakup timing across Canada 

River ice records often differ in length, observation site, and documented event among various 

sources, making large-scale spatial and temporal analyses challenging and scarce. In Chapter 2, 

nearly 200 hydrometric stations form Water Survey of Canada HYDAT database were used to 

construct a long record of river ice breakup timing from 1950 to 2016. Based on the constructed 

river ice breakup timing dataset, the spatial and temporal variations of river ice breakup timing 

over terrestrial ecozones and five selected river basins of Canada were explored, and the drivers, 

such as air temperature, rainfall, snowfall, elevation and human activities, behind the identified 
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breakup patterns were analyzed. Like previous studies (Fu and Yao, 2015; Lacroix et al., 2005; 

Obyazov and Smakhtin, 2014; Zhang et al., 2001), it was found that Canada presented a general 

earlier breakup trend and the air temperature was the most contributing factor behind the river ice 

breakup. However, this research found that the river ice breakup timing was mainly correlated with 

spring air temperature even though the winter warming trend across Canada was the most 

pronounced. Less strong and/or weak spring warming trend can even result in many stations 

showing later and significant later breakup in some periods. Spring snowfall usually delayed 

breakup while rainfall can both advance and delay breakup depending on whether they were in 

spring or winter. Breakup timing appeared to be more sensitive to climatic warming in lower 

latitude regions than in higher latitude regions likely due to the increased snowfall in the north and 

increased rainfall in the south. In comparison with main streams and large rivers, river ice breakup 

in headwaters and small tributaries was found to be more sensitive to climate change. Elevation 

and human activities (e.g., flow regulation and fragmentation) also contributed to the changes of 

river ice breakup. Chapter 2 provides a way for researchers to construct long-time and uniform 

records of river ice breakup timing, and an opportunity to conduct large-scale spatial and temporal 

analyses of breakup timing trends. Moreover, the findings from Chapter 2 can provide evidence 

for climate change, and theoretical support for modelling the river ice breakup processes. 

5.1.2 The effects of climate data inputs and model calibration on streamflow simulation 

Chapter 3 aimed to improve the performance of the hydrologic model in simulating snow affected 

spring streamflow in a large-scale regulated and snow-dominated river basin (PRB). Through the 

application and modifications of the hydrologic model SWAT and the calibration tool SWATCUP, 

Chapter 3 (1) evaluated the observed and two commonly used gridded climate data, (2) proposed 

a multi-objective calibration framework that can automatically remove unrealistic snow parameter 
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combinations, and calibrate both streamflow and subbasin-scale SWE, and (3) investigated the 

uncertainties of various model calibration schemes, such as the choice of objective functions, 

number of simulations, single-objective (streamflow) versus multi-objective calibration 

(streamflow and SWE). The results showed that the gridded ERA5 climate data performed the best 

in driving the SWAT model in the PRB. The proposed multi-objective calibration framework was 

shown to effectively limit the uncertainty of snow-related parameters and provide better prediction 

of snow-affected spring streamflow in the PRB. It has a good potential to be applied in other snow-

dominated river basins to help improve the simulation of snow affected spring streamflow. The 

workflow of evaluating climate data sources and calibration schemes developed in this study can 

help limit and/or reduce the uncertainties/errors of model inputs and calibrations and provide 

insights for researchers in modelling cold region river basins and calibrating the hydrologic models. 

5.1.3 A hydrologic and river ice modeling framework for assessing the impact of ungauged 

subbasins on open water and river ice breakup peak flow 

Work towards improving the simulation of snow and ice induced spring peak flow, and particularly 

reliable estimation of ungauged subbasin streamflow, through the hydrologic and river ice 

modelling framework are challenging and in great demand. In the proposed modelling framework, 

the hydrologic model is used to simulate streamflow and provide inflow boundaries for the river 

ice model while the river ice model is utilized to simulate ice affected streamflow and water levels. 

Based on the hydrologic model SWAT and the river ice model River1D, Chapter 4 explored the 

effects of ungauged subbasin streamflow on peak flow simulation under open water and rive ice 

breakup conditions in the PRB. The results showed that the simple drainage-area ratio (DAR) 

method had a large uncertainty in estimating the ungauged subbasin streamflow (especially during 

river ice breakup period) while the sophisticated hydrologic model SWAT can be a promising and 

robust tool for estimating ungauged subbasin streamflow for the river ice model. It was found that 
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the peak flow simulation was significantly improved when the ungauged subbasin streamflow was 

properly considered and/or estimated. Moreover, the ungauged subbasins of the PRB can 

contribute nearly half of the peak flow for the open water and river ice breakup flood events with 

around a quarter of the whole modelled area. The findings from Chapter 4 are of great importance 

to open water and river ice breakup flood simulation, and water resources planning and 

management in the PRB. The hydrologic and river ice modelling framework developed in this 

study can be applied into other cold region river basins to investigate the impact of the ungauged 

subbasins and/or forecast snow and ice induced flood events. 

5.2 Recommendations for future work 

The large-scale teleconnections, such as El Niño/Southern Oscillation (ENSO), the Pacific 

Decadal Oscillation (PDO), the Pacific North American (PNA) pattern, the North Pacific (NP) 

index, the North Atlantic Oscillation (NAO), and the Arctic Oscillation (AO), could also greatly 

impact river ice breakup dates (Bonsal et al., 2006, 2005). The impacts of large-scale 

teleconnections on the river ice breakup timing across Canada should be analyzed based on the 

constructed long-time and uniform river ice breakup timing records (1950-2016) in the future. 

The breakup of the ice cover is a common hydrological regime in cold region rivers. However, 

river ice breakup processes are seldom considered in hydrologic models due to their complex 

thermal and dynamic processes and the simplicity of river geometries in hydrologic models.  

River ice models can consider the detailed physical characteristics of river geometries, provide 

better flow routing methods for both open water and river ice breakup periods and simulate various 

river ice processes (Blackburn and Hicks, 2003, 2002; Blackburn and She, 2019). The effects of 

river ice breakup on streamflow in the whole Peace River and tributary networks should be 

considered through deeper coupling of the physics-based river ice models with hydrologic models 



186 

 

in future work, to better simulate snow and ice affected spring streamflow. 

The hydrologic modelling was conducted on a daily scale in this study, which may not be adequate 

for capturing highly dynamic flood events. There have been many studies to simulate sub-daily 

hydrological process with the SWAT model and the calibration tool SWAT-CUP (Koltsida et al., 

2021; Maharjan et al., 2013; Meaurio et al., 2021; Shannak, 2017; Yang et al., 2016; Yu et al., 

2018). However, these studies mainly focused on simulating and calibrating sub-daily streamflow 

in small-scale river basins. More work will need to be done for modifying the SWAT model and 

developing and/or improving the calibration tool before applying to large-scale regulated snow-

dominated river basins. For example, the reservoir module in the SWAT model is specific for 

simulating daily or larger scale streamflow (Neitsch et al., 2011), and thus will need to be modified 

for better simulating sub-daily streamflow. To limit the uncertainty of snow-related parameters in 

the SWAT model, Chapter 3 realized automatic multi-objective calibration with both daily 

streamflow and subbasin-scale SWE but new calibration tool will need to be developed to calibrate 

sub-daily streamflow with SWE. In addition, calibrating a sub-daily hydrologic model in a large 

river basin can be computationally expensive and time consuming. Therefore, more efforts should 

also be devoted into improving the efficiency of calibrating the hydrologic models. 

Existing river ice models have some limitations in simulating mechanical river ice breakup, mainly 

in terms of predicting the onset of the mechanical breakup, whether, when and where an ice jam 

may form (Shen, 2010). River ice models still evolve along with the progress in theory. Future 

work should go toward advancing the development of the River1D and improving its capability of 

simulating mechanical breakup events and in a more automatic way. 
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