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Abstract

The classical depth averaged de St. Venant equations, which are used for most of the
computational models in open channels, are based on the fundamental assumptions of
uniform velocity and hydrostatic pressure distributions. The depth averaging process
used to derive de St. Venant equations neglects flow details over the vertical
dimension to reduce computational effort. Thus, they are limited in their applicability
to cases where vertical details are not of importance. Alternative two-dimensional
vertically averaged and moment equations are developed to account for problems
where more vertical details are significant and essential. These problems include flow

cases with non-uniform velocity and non-hydrostatic pressure distributions.

The wvertically averaged equations are derived by vertically integrating the
fundamental three dimensional Reynolds equations, whereas the new moment
equations required to solve for the extra degrees of freedom are derived by a moment
weighted residual method from the same Reynolds equations. The equations are
derived in a general way that can suit different shapes of velocity as well as pressure
distributions. The derivation of the two-dimensional vertically- averaged and moment

equations is presented in detail.

The implicit Petrov-Galerkin finite element scheme is applied in this study.

Triangular elements with linear basis functions are used for all variables.



The vertically averaged and moment equations model is used to analyze a wide
variety of hydraulic problems involved in open channel flow. These problems include
flow in channel transitions with rapid contraction and/or expansion and flow in
curved channels with different degrees of curvature. Linear and quadratic distribution
shapes are proposed for the horizontal velocity components. In addition, quadratic

vertical velocity and pressure distribution shapes are considered in these simulations.

The numerical model developed in this study is applied to two sets of experimental
data. Computed values for water surface profile, depth averaged longitudinal and
transverse velocities across the channel width and vertical profiles of longitudinal and
transverse velocities are compared to the observed experimental data. For the rapidly
varied flow simulations, the proposed model simulates the observed water surface
profile slightly better than the conventional de St. Venant model. For the curved open
channel simulations, this study recommends the replacement of the standard
conventional de St. Venant model by the proposed model in terms of depth or
vertically averaged modeling. This should be true for large-scale models where the
generated numerical meshes are not very fine. This study also recommends that very
fine finite element meshes, in which the numerical discretizations are of the order of
the flow depth, be used when a high degree of accuracy of the predicted secondary

flows near the channel walls is sought.

The present vertically averaged and moment model is found to be efficient, robust

and converges to the correct solutions in a 2-D setting.
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Chapter 1

Introduction

Most open-channel computational models are based on the conventional depth
averaged de St. Venant equations. The derivation of the de St. Venant equations is
normally based on the assumptions of uniform velocity and hydrostatic pressure
distributions. Other distributions may be used but must be pre-specified with respect
to both magnitude and shape. The depth averaging process used to derive de St.
Venant equations sacrifices flow details over the vertical dimension for simplicity and
substantially reduced computational effort. Thus, they are limited to cases with
horizontal length scales much greater than the channel depth (very shallow flows,

with wavelength to depth ratio in excess of about 20 (Henderson, 1966)).

Loss of vertical distribution information makes consideration of secondary flows
limited as in case of river meandering and channel bends. With only the mean
velocity and depth available from the de St. Venant equations, uniform flow bed
shear relationships are used even for cases which involve highly non-uniform
velocity. As a result, the de St. Venant equations are inapplicable for modeling flow
situations that involve non-hydrostatic pressure and/or non-uniform velocity
distributions and with length scales close to channel depth (Steffler and Jin, 1993).
These flow situations include: bed form growth and migration, rapidly varied flows in
hydraulic structures, sudden contractions and expansions. These are important

practical problems and require relatively accurate solutions.



A number of approaches have been proposed in the past to model short length scale
flow problems. Most of these attempts were based on the assumption that the flow
could be approximated as potential flow. In such cases, the vertical velocities and
non-hydrostatic pressure distributions were used to predict the flow field
characteristics. Another approach is to use the Boussinesq equations. The Boussinesq
equations represent the next higher level of approximation compared to the traditional
de St. Venant equations as they assume linear vertical velocity and non-hydrostatic
linear pressure distributions (Henderson, 1966). These equations are applicable for
moderately shallow flows with wavelength to depth ratio of about six (Steffler and

Jin, 1993).

A further alternative in this area was the introduction of the vertically averaged and
moment equations by Steffler and Jin (1993). They assumed linear longitudinal
velocity distribution, and quadratic vertical and pressure distributions. They derived
the equations for the one-dimensional case. In their approach, the plane Reynolds
equations were vertically averaged and the moment equations were derived by
vertically integrating the same Reynolds equations having been multiplied by the
vertical coordinate. They showed that their equations are valid up to a wavelength to

depth ratio of about one.

Application of a 3-D model would overcome all of the above limitations. However,

the additional non-linearity caused by the free surface, the much greater



computational effort required and the difficulty in finding a suitable numerical

scheme are the limiting factors.

In this study, a new set of two-dimensional vertically averaged and moment (termed
VAM) equations model is developed. This development could be considered as the
extension to the one- dimensional vertically averaged and moment equations
introduced by Steffler and Jin (1993). Alternatively, it could be represented as a quasi
three-dimensional model where more vertical details are included, without extending

to the full three- dimensional Navier Stokes equations.

The VAM equations are derived by vertically averaging or integrating the three-
dimensional Reynolds equations after multiplying them by the vertical coordinate.
This derivation is equivalent to the first moment about the mid-depth of the channel.
Vertical distributions for the velocities as well as the pressure are considered in

general form to derive the equations as generally as possible.

The VAM equations are discretized and modeled using a hybrid Petrov-Galerkin and
Bubnov-Galerkin finite element scheme. The Characteristic Dissipative Petrov-
Galerkin finite element scheme recently used by Ghanem et al. (1995) is employed to
upwind the continuity, horizontal momentum and moment of horizontal momentum
equations. The rest of the equations are modeled using the Bubnov-Galerkin finite

element scheme.



Triangular elements with linear basis functions for all variables are used. The time
derivatives are approximated using a weighted-implicit finite difference formulation.
For the resulting implicit set of non-linear algebraic equations a Newton-Raphson
technique is used to advance the solution to the next time. Transient and steady state

solution methods are used to solve the system of obtained non-linear equations.

Generated meshes with generally uniformly distributed elements are used in this
study. When it is necessary, a non-unuform discretization is used so that elements are
concentrated in areas where gradients are large, while fewer elements are used in
areas where the flow is more uniform. This allows for optimization of computational
effort. An existing finite element code (Ghanem et. al, 1995) is modified to suit the

new set of developed equations. The new code (R2D_VAM) is written in standard C

language.

The developed general VAM equations are adapted to allow for the use of definite
pre-assumed distribution shapes of velocities and pressure for comparison and
convenience purposes. Two different sets of horizontal velocity distributions, linear
and quadratic, while quadratic vertical velocity and pressure distributions are

considered.

The details of the derivation of the VAM equations and the analysis of the numerical

methods applied are presented in chapter two.



As a first test, the proposed VAM model is tested for the uniform steady state case.
Then, a one-dimensional laboratory scale test is carried out to check if the developed

equations are derived and coded correctly. These tests are carried out in chapter two.

In chapter three, the proposed VAM model is investigated for simulating rapidly
varied flow transitions with relatively small wavelength to depth ratios of about seven
where non-hydrostatic pressure and non-uniform velocity distributions might be
expected to be significant. The main goal is to see if there is an improvement of the
proposed model over the conventional de Saint Venant model in simulating flows
with such transitions. Two channel laboratory scale experimental tests are selected for
validation and comparison purposes. These experiments include: flow through a rapid
contraction and flow through sudden contraction and expansion interconnected with a
throat section with parallel side walls. Comparisons of numerical predictions and the

corresponding experimental results are presented.

In chapter four, the proposed VAM model is investigated for modeling curved open
channel flows. The proposed model is tested for simulation of the secondary flow
variation in curved channels and the effects of the secondary flow on the depth-
averaged flow field. Evaluation of the sensitivity of the results to different
approximations of the pre-assumed velocity and pressure distribution shapes is
carried out. Comparison between different approximations of the pre-assumed
velocity and pressure distribution shapes in terms of computational effort and time

necessary for simulation is also presented. Finally, comparison between different



approximations of the numerical discretization of the generated applied finite element
meshes in terms of degree of accuracy attained, computational effort and time

necessary for simulation is carried out.

Five curved channel laboratory scale experimental tests are selected for validation
and comparison purposes. These experiments include: flow in a 180° channel bend
with mild curvature, flow in a 90° channel bend with a very irregular cross section,
flow in a 270° channel bend, flow in a 180° channel bend with very strong curvature,
and flow in two reversing 90° channel bends respectively. In addition, a field case is
chosen to test the ability of the proposed model to simulate real situation flows.
Comparisons of various numerical predictions and the corresponding experimental

results are presented.

The summary, major conclusions and recommendations for future work follow in
chapter five. The full details of the numerical scheme applied are provided in

appendix A.
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Chapter 2
Derivation of the Two Dimensional Vertically Averaged and Moment

Equations

2.1 Introduction
Most of the computational medels in open channel flow problems use the classical

depth averaged de St. Venant equations which can be written in the form (Liggett,

1974):
O By 2
o x| oy

A + &ox ol +£6h‘ = gh(Sox -—S,,) e (2.2)
ot Ox oy 2 ox

aq, +6uoqy +6voqy +£6h2 _
o  ox | oy 2 o

QS =85 ) oo (23)
Where # is the depth of flow; g« is the flow discharge in longitudinal direction per
unit width; g, is the flow discharge in transverse direction per unit width; u, is the
depth averaged longitudinal velocity; v, is the depth averaged transverse velocity; S
is the friction slope in x-direction; S, is the friction slope in y-direction; S is the bed
slope in x-direction; S,, is the bed slope in y-direction; g is the acceleration due to

gravity; ¢ is the time; and x and y are the Cartesian coordinates in the horizontal plane.



Equation (2.1) is the continuity equation, while equations (2.2) and (2.3) are the x and
y-direction momentum equations, respectively. Together with appropriate initial and
boundary conditions, de St. Venant equations define a ‘model’ for two-dimensional

flow in open channels solving for three dependent variables: “A”,”g<” and “g,”.

The derivation of de St. Venant equations is based on the assumptions of uniform
velocity and hydrostatic pressure distributions. The depth averaging process used to
derive de St. Venant equations sacrifices flow details over the vertical dimension for
simplicity and substantially reduced computational effort. Thus, they are valid only
for horizontal length scales much greater than the channel depth (very shallow flows,
with wavelength to depth ratio in excess éf about 20 (Henderson, 1966)). Loss of
vertical distribution information limits consideration of secondary flows as in case of
meandering rivers. In addition, with only the mean velocity and depth available from
the de St. Venant equations, only uniform flow bed shear relationships are used even
for cases which involve highly non-uniform velocity. Developing pressure gradients

may cause considerable local difference effects.

As a result, the previous equations are inapplicable for modeling flow situations that
involve non-uniform velocity and/or non-hydrostatic pressure distributions and with
length scales close to channel depth (Steffler and Jin, 1993a). These flow situations
include: rapidly varied flows in hydraulic structures, sudden contractions and

expansions, and flow over bed form and around alluvial channel which may result in



scour and erosion. These are important problems and require relatively accurate

solutions in open channel hydraulics.

A number of attempts or approaches have been proposed in the past to model short
length scale flow problems. Most of these attempts were based on the assumption that
the flow could be approximated as potential flow in which vertical velocities and non-
hydrostatic pressure distributions were used to predict the flow field characteristics.
A prediction of potential flow field over dunes and antidunes was provided by
Kennedy (1963). Boussinesq equations, which assume linear vertical velocity and
non-hydrostatic linear pressure distributions, represent the next level of
approximation compared to the de St. Venant equations (Henderson, 1966). These
equations are applicable for moderately shallow flows with wavelength to depth ratio
of about six (Steffler and Jin, 1993a). Dressler (1978) introduced a bed curvilinear
coordinate system into the Euler equations to come up with more general depth

averaged equations.

Application of a 3-D model would overcome all of the above limitations. However,
due to the additional non-linearity caused by the free surface; the much greater
computational effort required and the difficulty in finding a suitable numerical
scheme and mesh or grid generation system, the application of 3-D model is not an
easy task or alternative. An attempt to apply a three-dimensional model was carried
out by Shimuzi et al. (1990). They found that a three-dimensional model gave better

results than a two-dimensional depth averaged model including secondary flows for
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predicting flow fields for a curved channel bed topography problem. Odgaard et al.
(1998) developed a three-dimensional model for simulating flow through natural river
reaches. The model solved the Reynolds averaged Navier Stokes equations. The k-&
turbulence closure model was used in their model. Calculations were carried out for
flow through a 4-km stretch of Columbia River downstream of the Wanapum Dam.
Comparisons of computed mean velocity profiles with field measurements were

presented.

Steffler and Jin (1993a) introduced a further alternative in this area to recover more
vertical details. They developed a new set of vertically averaged and moment
equations. They derived the equations for the case of one-dimensional model in
which they assumed a linear longitudinal velocity distribution, and quadratic vertical
and pressure distributions. In their approach, the vertical plane Reynolds equations
were vertically averaged and the moment equations were derived by vertically
integrating the same Reynolds equations having been multiplied by the vertical
coordinate. Three extra equations were developed which allowed specification of
three further flow parameters due to their assumed flow distributions. Successful
numerical applications for that model were carried out by Khan (1995). He applied
the model to cases with rapidly varied changes, e.g. free overfalls, smooth transition

from a horizontal to a very steep bed, flow over curved beds and a hydraulic jump.

Naef (1996) extended the same model, depth-averaged and moment equations,

derived by Steffler and Jin (1993a) for the 1-D case, to a 2-D model. The turbulent

11



stresses were neglected. The model was verified for partial dam-break problems. A

fairly reasonable agreement was obtained.

Jin and Li (1996) improved the two-dimensional depth-averaged model derived by
Steffler and Jin (1993b) to account for the effects of non-hydrostatic pressure
distribution. The non-hydrostatic pressure distribution was added to the z-direction
momentum equation and assumed to be linearly decreasing from the bed up to the
surface. Thus the pressure-effect terms were modified in both the moment of
momentum and momentum equations. The resulting set of one-dimensional nonlinear
equations was solved by a finite element Galerkin method. The model was verified
for uniform open-channel flow over dunes, free surface flow over a sill and flow

through a rectangular free overfall.

The objectives of this study are as follows:

1. To derive and establish a 2-D vertically averaged and moment free surface flow

model in which more vertical details concemning velocity and pressure

distributions can be recovered.

2. To derive the new set of equations as generally as possible to be able to
accommodate different kinds of distribution shapes assumed for velocities as well

as pressure.

12



The derivation of the new equations could be considered as the extension to the one-
dimensional vertically averaged and moment equations introduced by Steffler and Jin
(1993a). Alternatively, it could be represented as a quasi three-dimensional model
where more vertical details are accounted for, without extending to the full three-

dimensional Navier Stokes equations.

2.2 Derivation of the Vertically Averaged and Moment Equation Model

The vertically averaged and moment equations can be derived by applying the
conventional laws of mass, momentum and moment of momentum conservation to a
prismatic vertical water column bounded by the bed from the bottom and the free
water surface from the top (Van Rijn, 1990). Alternatively, they can be derived by
vertically integrating the full three-dimensional Reynolds equations after being
multiplied by the vertical coordinate (Steffler and Jin, 1993a). Herein, the latter

approach is chosen.
With reference to the definition sketch shown in Figure 2.1, the x-y direction forming

the horizontal frame while the z direction forming the vertical coordinate, the

fundamental full three-dimensional Reynolds equations read:

oy

2 5
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Where « is the longitudinal velocity, v is the transverse velocity, w is the vertical
velocity, tis the total turbulent shear stress, o is the total turbulent normal stress, p is
the pressure, and p is the density of water. Equation (2.4) represents the continuity
equation, equation (2.5) represents the horizontal momentum equation, equation (2.6)
represents the transverse momentum equation, and equation (2.7) represents the

vertical momentum equation.

The vertically averaged equations (termed VA) are derived by vertically integrating
the above three-dimensional Reynolds equations over the vertical from the bed level

up to the surface. This can be explained as follows:

=y +h
“(ou ov ow
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Where z; is the bed elevation. Vertical distributions for the velocities as well as the
pressure are required to perform the above integrations. Herein, the distributions are

treated as general functions to derive the equations as generally as possible.

The following distributions are assumed for the horizontal velocity components

(Figures 2.2-2.3):
R N G R T ) L (2.12)

V S Vo fy (1) T V) @ (1)errrersersmresmessssmnesinns et e (2. 13)

Where f;(1), g:1(n), f2(n) and gx(7) are functions defining the distribution shapes of

1 1
the horizontal velocity components. In both cases J.g1 (mdn = I g.(mdn =0 and
0 [o]

1 1
I Sfi(mdn =J' f,@dn=1 so that u, and v, are the depth averaged velocity
0 (Y]

components. In addition, g,(7=1)=g,(n=1)=1. As a result, #; and v, can be
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interpreted as the velocities at the water surface in excess of the means #, and v,

respectively.

1 1
It should be mentioned that the assumption of _[ g (mdn =_|'g2 (n)dn =0 implies that
0 0

there is no net transverse transport of fluid in the channel. That is to say that the rate
at which fluid is transported outward over the upper half of the profile equals the rate

at which fluid moves inward over the lower half.

The non-dimensional vertical coordinate 77 is defined as:

The following distribution of vertical velocity is considered (Figure 2.4):

W=wW,fi(n) tWogs ()~ Wy H; (1)) eeveeemmreimeirinicneninie seeineeeen e (2. 15)

Where f;(7n), g3;(n) and Hj3(m) are functions defining the distribution shape of the
vertical velocity, w; is the vertical velocity at the bed, wj is the vertical velocity at the
surface and w; is the mid-depth vertical velocity in excess of the average of vertical

velocities at the surface and bed.
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The vertical velocity at the bed, wy, is given by the following kinematic bed boundary

condition:

This condition assumes that the bed stays fixed with time and the flow is parallel to
the bed. C; is a constant that depends on the pre-assumed distribution shapes of the

horizontal velocity components.

The surface vertical velocity ws is given by the following kinematic surface

condition:
W, =%+(u,, +u[)§;(h+z,,)+(vo +v,)§(h+zb e (221T)

The following pressure distribution is considered (Figure 2.5):

P=pghf,(m)+D,fi(n) +p2g4(7y(218)

Where f«(7) and g«(7n) are functions defining the different distribution shapes of the
pressure, p is the pressure intensity in excess of the hydrostatic at bed and p: is the

mid-depth pressure in excess of the average of pressures at the bed and surface.
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The water surface dynamic conditions are given by p» = 7 = on = 0.0 which assume
that the pressure is atmospheric and turbulent shear and normal stresses at the surface

are negligible (Steffler and Jin, 1993a).

Having inserted the previous proposed distributions into equations (2.8)-(2.11),
applied the aforementioned kinematic and boundary conditions, made the use of
Liebintz rule, we are left with four vertically averaged equations. These equations

may be written and described as:
The vertically averaged continuity equation is:

éh 0

—a—t-+a(qle —i—ulhjz)+-gy—(qyj'3 +v[hj4)=0 ............................................. (2.19)

The vertically averaged momentum equation in the x-direction is:
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The vertically averaged momentum equation in the y-direction is:

o . . 0(494, . . . .
51‘(%:-’3 + Vlhh)"'é;'( h iy +qvdy, +1q, 0 ’*‘“1"1}”14)
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The vertically averaged momentum equation in the z-direction is:

d . . .
g(wblu‘ s +Wohi +w,hi,)

+ [Wb (qx‘ils + ulhjlg) +W, (qszo + ulhj21) +w, (qx'i‘.‘2 + ulhj23)]
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Where #’s represent integral constants and are given in Appendix B.

Four further equations are required to close the above system of equations provided
that all turbulent stresses are modeled by relating them to flow parameters. Basically,
the additional required equations (vertically averaged and moment equations, termed
VAM) are models for the four additional flow parameters u,, v,, p, and w,. These
equations are derived by vertically averaged or integrating the same four Reynolds
equations after they have been multiplied by a weighting function F* = 2(z-Z )/,
7 being the vertical coordinate at the middle of the channel and is equal to z, + A/2.
This derivation is equivalent to the first moment about the mid-depth of the channel.

This can be done as follows:

oy+h
2 J’ (z-z U O W ) e 0 (2.23)
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Having integrated, we are left with four further equations. These equations may be

written and described as follows:

The moment of continuity equation is:

o(n 0 . ) . . 0 . . . .
—(,}7( 2 J-i-é;[q,(h.zn +2z, 11)+u1h(h.133 +z, 12)]+5[qy(h134 +2z, 13)+ vlh(h135 + 2,0y, )]
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The moment of momentum equation in the x-direction is:
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The moment of momentum equation in the y-direction is:
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The moment of momentum equation in the z-direction is:
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The vertically averaged total turbulent shear and normal stresses appearing in

equations (2.19)-(2.22) and (2.27)-(2.30) are approximated (assuming laminar

stresses are negligible) according to the Boussinesq model as follows:

p+h -

-}1- T, =2pv, G e (2.31)
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Where C; is a constant that depends on the pre-assumed distribution shapes of the
horizontal velocity components;w = ijs Wy + i16 W2 + {17 Wh; Vi is the vertically
averaged turbulent exchange coefficient or eddy viscosity in the horizontal direction
(x-y plane); and v; is the vertically averaged turbulent eddy viscosity in the vertical
direction. For simplicity, the case of bed-dominated turbulence is assumed and values

of the order of v, = 0.5u.h and v, =0.07u.h are used (Fisher et al., 1979). u« is the

shear velocity and is defined as:

It should be mentioned, herein, that the present proposed models for turbulent shear
stresses represent the simplest models available. More sophisticated models are

possible and their incorporation may be an interesting topic for further research.

The bed shear stresses, appearing in equations (2.19)-(2.22) and (2.27)-(2.30), are

approximated according to:

T, = pz U, U VWD (2.38)
_P 22 w2
Vol AV T e e e (2.39)
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C. is the dimensionless Chezy Coefficient and is related to the effective roughness

height, &, through:
h
C.=5.75 log(lzk—) ........................................................................ (2.40)

For small depth to roughness ratios (A/k; <e/12), e being the natural logarithmic

constant and equal to 2.71828, equation (2.40) is replaced by:

This equation gives a smooth, continuous, non-negative relation for any depth of
flow. This is necessary for numerical solution in very shallow areas where the

velocity is essentially negligible.

The mathematical character of this set of equations has not yet been studied, and as a
result, definitive boundary and initial condition requirements have not established.
For practical purposes, the following approach to boundary conditions seems to work:
the continuity and horizontal momentum equations are essentially the shallow water
equations and use the appropriate set of boundary conditions for sub- and
supercritical inflow, outflow and no flow cases. For the case of subcritical flow, a
given total flow is specified at the upstream cross-section as an inflow boundary,

whereas a fixed water surface elevation is specified at the downstream cross-section
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as an outflow boundary. For case of supercritical flow, both the flow and the water
surface elevation are given at the upstream cross-section as inflow conditions,
whereas no conditions are applied at the outflow boundary. A no cross-flow condition

is specified at any vertical wall boundaries.

The equations of moment of horizontal momentum appear to have the characteristic
of transport equations. As a result, values for the velocities in excess of the means at
the surface, #; and v,, are given at the upstream cross-section for inflow boundary
case, whereas they are left free at the outflow boundary case. It is found that
assuming constant definite values other than zero for #; and v; at the inflow boundary
does not affect the output results. This arises from the fact that the upstream boundary
is placed far enough upstream of the domain of interest such that different constant
values assigned to ; and v; does not affect the solution in the domain of interest. For
the sake of simplicity, «#; and v, are assumed to be zero as boundary conditions at the
upstream boundary. At the walls, a slip velocity condition is specified for #; and v;,.
That means the velocities in excess of the means at the surface, #; and v;, may have a

component parallel to the wall, but not perpendicular to the wall.

In the rest of the equations, the primary dependent variable being evaluated is not

differentiated with respect to the spatial coordinates. As a result, the variables: w or

W2, Ws, Wp, D1, and p; are left free at all boundaries.
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At time ¢ = 0, all variables are defined to have initial values at each point of the
domain of interest. Having defined the initial values of the variables and specified the
boundary conditions, we are left with a closed system that defines a ‘model’ for 2-D
or a quasi 3-D flow in open channels (equations (2.16)-(2.17), (2.19)-(2.22) and
(2.27)~(2.30)). This model solves for “w;”, “wy” “A”, “q<”, “qy”, “p1 Or h”, “wor
w,”, “u,”, “v,”, and “p; or h,” dependent variables respectively. A, is the pressure

head in excess of the hydrostatic at the bed and is equal to p,/pg. A: is the mid-depth

pressure head in excess of the average of pressure heads at the bed and surface and is

equal to pa/pg.

Essentially, equation (2.16) solves for “w;”, equation (2.17) solves for “wy”, equation
(2.19) solves for “A”, equation (2.20) solves for “q;”, equation (2.21) solves for “q,”,
equation (2.22) solves for “p, or h;”, equation (2.27) solves for “Ww ™ or “wy”,
equation (2.28) solves for “u,”, equation (2.29) solves for “v,” and equation (2.30)
solves for “p> or k.. This results in a ten-equation by a ten-unknown (10 x 10)

model.

If a hydrostatic pressure distribution is assumed, 4, and hy are set to zero, their
corresponding equations ((2.22) and (2.30)) are eliminated, and substitution for the
vertical velocities included in equations (2.19)-(2.21) and (2.28)-(2.29) from
equations (2.16), (2.17) and (2.27) this will result in a reduced set of 5 equations in 5

unknowns.
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If we even go further and force u; and v; to zero and eliminate their corresponding
equations ((2.28)-(2.29)), then we’ll be left with the traditional de St. Venant
equations. These equations are used in most of the applications of this study as to
compare their results with those of the proposed VAM equations. It should be
mentioned that the code has been written in such a way to accommodate 10, 5 or 3

equation models.

2.3 Vertically Averaged and Moment Linear and Quadratic Models

For convenience and comparison purposes, the developed equations ((2.19)-(2.22)
and (2.27)-(2.30)) are adapted to allow for the use of linear or quadratic distribution
shapes of horizontal velocity components. This is carried out in the following

sections.

Two different sets of horizontal velocity distributions, linear and quadratic, are

considered. The linear horizontal velocity distributions read (Figure 2.6-2.7):

U =Up+ UML) oo e (2.42)

(<7

1 1
In both cases fgl(n)dn=fgz(n)dn=0, g(n=1)=g,(n=1)=1 and
[+] 0

[ Aman=[ f,ean=1.
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The quadratic horizontal velocity distributions read (Figure 2.8-2.9):

u =u,+ u,(—2+677-3r]2)(244)

V=V F VY C2HOTFTT) s (2.45)

The assumed quadratic horizontal velocity distributions are found to be physically
reasonable as compared to a Reynolds model and also consistent with the applied
Boussinesq turbulence models. For the case of steady and uniform flow (assuming a

one-dimensional flow in the x-direction), equation (2.5) is reduced to:

. ou . . .
Substitution of 7. = pv. % into equation (2.46) and assuming; a constant pressure

’4

gradient,-gxﬁ, along the x-direction; constant density, p; and constant eddy viscosity

vz, results in:

2u

5 — CONs 147 12 3 S0 g ettt

oz
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Integrating equation (2.47) yields the following quadratic distribution:

U(Z) =, + QT+ AyZ” oot e (2.48)
or
u(n)=u, +u, (b, +B+0,1% ) oo (2.49)

Where a,, a;, a>, bo, b; and b, are constant coefficients, u, # u, (17) and u; = u; (7).

The following three conditions are applied to solve for the constant coefficients b,, b,

and by:

j)' GU(TI)ATI =0 oo e, (2.50)
BT = 1) = Lo e (2.51)
BT =1) =0 oo e (2.52)

The first condition (equation (2.50)) implies that there is no net transverse transport of
fluid in the channel. The second condition (equation (2.51)) implies that »; can be
interpreted as the velocity at the water surface in excess of the mean u,. The third

condition (equation (2.52)) implies that at the water surface the dynamic shear stress
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r_vanishes. Applying these three conditions results in b, = -2, b, = 6 and b; = -3

respectively.

A quadratic vertical velocity distribution is considered (Figure 2.10). This distribution

reads:

W =Wy (I-1) + Wy dT(1-T) + Wy T (2.53)

A quadratic pressure distribution is also considered (Figure 2.11). This distribution

reads:

P=pg(h+h)(I-1) + pg A, 41(I-T) oo (2.54)

Making the use of the above distribution shapes into equations (2.16)-(2.17), (2.19)-

(2.22) and (2.27)-(2.30) results in:

w, =(u, —C,u, )%xb—+(va —Clvl)og; SOOI URURPRRURURRPURPORORRURISORR (73 1) |
W, =g§+(uo +ul)§(h+zb)+(vo " )gy.(mz,,)‘_.....................................(2.55)
5 5

L P L TN ¢ X-7

o & oy

33



2 2 3
_eq_x+z[q_x)+i(‘1qu]+c{a”“l +0hgyl”'j+gh§(h+zb)+£%

ot o\ h) &\ h ox 2 ox

..... (2.58)
5 5h& OhT
+§6hh2+ h‘ozb _Loiio; _1 T”'+L‘r,_. —0
3 ox x p &x p oy p
2 2 ~

o,  9(4,9- 04 |, c, Shv! S ), 0 (s 2 )4 80P

o ox\ h ) &y h oy 2 2 ¢
... (2.59)
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S g — =P =0 e (2.61
F» q,ay (2.61)

9 Ou 1 v, 2 ou +4u,2 o h 3
"10'ax 2'ay 5 'y h ool 20 10°
| 0 & 2 W v « o (2.62)
duv 6(_h 3, )
h dy\ 20 10°

- - ~— -_— 4“ o -
ot gt whE €.E CoE s 2 )
3h &x 3 ox 3h ox hp &x hp & hp hp

”_9 1, o le“ﬂl_+4vfa( h+3zbj

¢ ! h 20 10
+C, 'y 2t s » cern(2.63)
4"1"1 6( h 3 )
| -—+—2,
L h ox\ 20 10

-~

=0

oC (gh oh goh 8gh & 40, % A.& 4. 2 J
\3hdy 3a 3hdy hpdy hoox hp “hp
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wont Ok — -3
—4——67—'67[—(“’5 —Wh)]—hw- + —

The average vertical velocity, W, and the mean square vertical velocity, w”, are

given by:
w=—w, +gw2 + lw,, .................................................................... (2.65)
— ., W owl ww

=w?+-2 k W =W, =W, ) e (2.66)

The above set of equations ((2.55)-(2.64)) is termed in this study as VAM linear or

quadratic model.
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The values of the constants C;, C3, C3, Cy, Cs, Cs, C7, Cs, Cs and Cyp for the VAM
linear read 1, 2, 1/3, 0, 1/6, 0, 3/2, 1, O and 2/3 respectively, while for the VAM
quadratic read 2, 3, 4/5, 1, 1/4, 1, 1, 0, 1 and 1 respectively. The values of the integral
constants /’s are listed in Appendix D. It should be mentioned that the derived
equations for the VAM linear model ((2.55)-(2.64)) are identical to those obtained by

Naef (1996).

2.4 Steady Uniform Flow Solution
A comparison between the different approximations of the pre-assumed velocity
shapes for the case of steady uniform flow in the x-direction is made. Since all

derivatives vanish, the moment of momentum equations in the x- direction reduces to:

Making use of equations (2.35) and (2.38) in equation (2.67), neglecting w (for small

bed slopes), results in:

The depth averaged eddy viscosity v,can be estimated from uniform flow

considerations as follows:
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u,

V.=0.070, n=007 2R oo (2.69)

Using this value in equation (2.68) and combining (2.68)-(2.69) results in:

014G, Uy = (2.70)
2" C

For the VAM linear and quadratic models respectively, equation (2.70) may be

written as:
u, =3.571% 2.71)
1 R s
u, =2381 % (2.72)
l e

Making use of equations (2.71) and (2.72) in equations (2.42) and (2.44) respectively

results in:

Ry (2.73)
u, C.

38



u 2381
=1+

u, .

(=267 =317 oo e (2.74)

Figure 2.12 shows a comparison of the well-known logarithmic, predicted linear
(represented by equation (2.73)), and quadratic (represented by equation (2.74))
velocity profiles for C. = 10. It can be easily seen that the proposed VAM linear and
quadratic models offer a significant improvement over the simple depth averaged
model (« = u,). The slope of the predicted linear profile seems to approximately
match the average of the logarithmic one, whereas the quadratic profile seems to
closely match the surface velocity of the logarithmic profile. This indicates that the

VAM quadratic model may be more accurate than the VAM linear model.

2.5 Numerical Solution of the Equations

The finite element method is used for this study as it readily facilitates efficient
definition of the regular features common to natural channels and rivers. In addition,
non-uniform discretization may be used so that few elements are located in areas
where the flow is more uniform, while more elements are located in areas where large
gradients are anticipated. This allows for optimization of computational effort

necessary for simulation (Hicks and Steffler, 1990).

2.5.1 Finite element formulation
The vertically averaged and moment equations are discretized and modeled using a
hybrid Petrov-Galerkin and Bubnov-Galerkin finite element scheme. The vertically

averaged continuity, longitudinal and transverse momentum, and moment of
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longitudinal and transverse momentum equations are upwinded using the two-
dimensional Characteristic Dissipative Galerkin finite element scheme recently used
by Ghanem et al. (1995). This scheme has the ability of providing selective artificial
dissipation for shock capturing and modeling both progressive and regressive waves
accurately (Hicks and Steffler, 1990, 1992 and Ghanem et al., 1995). The rest of the
equations are modeled using the Bubnov-Galerkin finite element scheme. This may

be briefly explained as follows:

Equations (2.16)-(2.17), (2.19)-(2.22) and (2.27)-(2.30) or equations (2.55)-(2.64) can

be written in the following conservative form:

Ow(¢)  OF, (¢) , OF, (4) _
a o T o FGO) =0 (2.75)

Where bold letters represent vectors and matrices. ¢ represents a N, x 1 vector, N,
being the number of unknown variables. For example ¢ is equal to (A, gx, gy, uy, v,
W, ws, wn, hy, h2)" for the 10-equation model (N, =10). wy(d) represents the time-

variation vector. F, (¢) and F, (¢) represent the flux vectors in the x- and y-directions

respectively. G(¢) represents the sink and/or source vector. o is the solution domain.

Equations (2.75) represents the actual conservative form of equations (2.19)-(2.21) or

equations (2.57)-(2.59). As a result, the y and ¢ vectors are identical and Fy and Fy

represent the fluxes. Equations (2.62)-(2.63) originally represented the conservation
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of the angular momentum but they still can be written in the form of equation (2.75).
The rest of the equations ((2.16)-(2.17), (2.22), (2.27) and (2.30)) or equations (2.55)-
(2.56), (2.60)~(2.61) and (2.64) can also be written in the form of equation (2.75) for

the sake of convenience.

The application of the Petrov-Galerkin (Streamline Upwind) finite element scheme to
equations (2.19)-(2.21) or equations (2.57)-(2.59) in the form of equation (2.75)

results in the following weak statement equation:

j‘ﬁ(a“’(‘b) LOE(0) , OF, (@) +G($)Jd§2 =0 o (2.76)

A ot ox dy

Where:

B =B+ 0AxW, B oW, B ) 2.77)
ox T &y

-~

B is the matrix of test functions and is of size (M, x NS) x N,, NS being the total
number of shape functions. B is the matrix of basis functions and is of size (N, x NS)

X N. In this study, triangular elements with linear basis functions for all variables are

used.

® is an upwinding coefficient set equal to 0.5 for this study. Wy and Wy are the

upwinding matrix coefficients in x and y directions respectively which control both
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the amount and the direction of the numerical diffusion. The upwinding matrices, W
and Wy, are calculated according to Hughes and Mallet (1986a and 1986b) and

Hughes et al. (1986), these are:

W, =Ax( A§+A§T ..................................................................... (2.78)
W, = A, (AT AT ] o 2.79)

Where A and Ay are the advection matrices of (2.19)-(2.21) or (2.57)-(2.59) system
of equations in x and y directions respectively. The inverse of the matrix (,/Ai + Ai )

is calculated numerically using Hoger and Carlson’s (1984) method. Hoger and
Carlson pointed out that by applying the Cayley-Hamilton theorem, the inverse of a
square matrix can be obtained directly without recourse to the eigenvalues of the

matrix. They added that this should be true when the underlying vector space has

dimensions less than five. Ax=Ay = —‘/—Z—Z— is used, 4 being the element area (Ghanem

et al., 1995).

The approximation, 6 , to the unknown vector is defined as:
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where @ is the nodal-value vector of the unknowns and is of length (M, x N§) x 1.

The application of the Bubnov-Galerkin Scheme to the rest of the equations ((2.16)-
(2.17), (2.22) and (2.27)-(2.30)) or equations (2.55)-(2.56) and (2.60)-(2.64) in the

from of equation (2.75) results in the following weak statement equation:

jB(a“é(td’) + 5F1(¢) + aFg)Ed’) +G($)JdQ = 0 e (2.81)

2 ox
Integrating equation (2.76) by parts results in:

(B +0AXW_($) %B + wAyW, () -‘Zg}

v 4,
ot

O ey

- i (F (5)%% +F, (E)%:ij 4O+ ;[B[ OF, (¢) BF;;@ . G(?S)] o

ox
............ (2.82)
- B ~ B\ oF,(3) oF,@® . -
+ i (waWx(¢)—a;+wAy\Vy(¢)gj( % 5 +G(¢)Jd§2

+ J'B [Fx (&.f)nx +F, (E)ny] dl =0

The same expression with @ = 0 is obtained on integrating equation (2.81) by parts.
I is the boundary domain. », and #, are the x and y components of the unit normal

vector n.
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2.5.2 Treatment of boundary conditions
The boundary integral in equation (2.82) represents natural convective fluxes across
the boundaries. This provides an accurate and easy means for specifying boundary

conditions. For example, the boundary integral term for the continuity equation is

f—B(q-n)dl" . To specify a no-flow boundary condition (wall condition), qa
r

(=q-n ) is set equal to zero, and the term is simply not computed. In addition,
specified boundary conditions are implemented directly by specifying given values in
that term. For example, for an inflow boundary qa has a specified distribution and the
integral term is evaluated and the contributions summed to the appropriate residuals.
For an outflow boundary q. has an unknown value and thus the integral boundary

term is treated as an unknown term in the equations.

2.5.3 Time discretization
The time derivatives are approximated using a weighted-implicit finite difference

formulation. As a result, equation (2.82) becomes:

([ - AB - aB n+l h
6| B + wAxW, (§) == + wAyW, (d’)*_J _ ~
( ox oy v@®™ -v@r] g

_E) At

DA

Yy

+(1- 9)(3 + wAXW, ($) %g- +wAYW, ()

-
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(5 5,8 g 5B oF,(§) , OF,(%)
‘_[(F,m)axu«",m) Jdg+£n( Y

3
+G¢d§2

v

~ ~ $) OF (%
+ 6+ +I[a;AxW,(d))%h—wAyWy(d))ili)(aF(‘;w+ g;d))

G($) | dQ
) % + (¢)J

+ [BlE.(§)n, +F,(%)n,|ar

r

' - B _ - OB OF.(%) OF,(%) _ -
_i(Fx(¢)—a7+Fy(¢)5JdQ+£B( = 5 +G(¢)JdQ

+(1-6)4 +(J;(a)AxWx(E)g%+wAyWy($)a—BJ(anai¢) + aF’a)(/(b)

% +G($)}dg> =0

+ [BF.(§)n, +F,(Fm, |ar
r

g

................... (2.83)

Where superscript » refers to evaluation of the quantity at the n™ time step (assumed
known) and n+1 represents evaluation at a time At later (generally unknown). @is the

implicitness factor.
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2.5.4 Solution of the non-linear equations

Equations (2.83) may be generally represented by:

RS 0o e (2.84)

R represents the vector of the residuals and is of length (N, x NS) x 1. R actually
represents an implicit set of non-linear algebraic equations. An iterative technique is
thus necessary to solve this system of non-linear equations. This may be explained as

follows:

Two methods are used to solve the resulting system of non-linear equations. These

methods are the transient and steady state methods.

2.5.4.1 Transient solution

The objective of the transient solution method is to get the correct distributions of the
flow at a certain time or to actually follow the time history of the flow. For the
resulting implicit set of non-linear algebraic equations, a Newton-Raphson technique,
where the derivatives are evaluated analytically where possible, is used to advance
the solution to the next time level. The corrections vector necessary to update the

variables after each iteration, 8@, is obtained from:

o G o R e (2.85)
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Where the superscript m refers to evaluation of the quantity at the m™ iteration. J is

the Jacobian matrix of size (¥, x NS) x (N, x NS) and is given by:

As a result, the system of equations represented by equation (2.85) becomes linear in
5®™"" A LU decomposition matrix solver, with a skyline matrix storage for the

Jacobian J, is employed to solve this system of linear equations to obtain 5@™! . After

each iteration, the values of the variables are updated through:

D o D™ ™ L S ™ e e (2.87)

Where the superscript m+1 refers to evaluation of the quantity at the m+1" iteration.

n+l.m
_ [ 5®)’ : :
Finally, when the error norm g™"® = Z( ) is < a user specified tolerance

i\

(typically 10'®), the solution proceeds to the next time step.

2.5.4.2 Steady state solution

The objective is to reach the final steady state with as few calculations as possible
while remaining stable under any flow circumstances. To control convergence, the
steady state is found to be essentially simulated as unsteady and with one iteration per

time step. The starting guess for the solution at the next time step is the solution at the
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end of the previous time step. The equations are solved with &= 1 (fully implicit). To
speed the process to final completion an acceleration procedure is used. This may be

explained as follows:

The time increment is increased according to:

Where &, is a user-specified goal relative change of all the variables and ™" is the

n+1.1
( 5®)*
error norm and is equal to ZgTR . Typically a value of & of the order of

0.1 is used. After each time step, the values of the variables are updated through:

D™ = D™ BB ™ e (2.89)

As the solution progresses toward steady state, usually the overall rate of change
£/ At decreases and longer time steps are possible. The progress toward a final steady
state may not be uniform. The program logic proceeds as follows. At the end of each
time step the overall relative change¢ is calculated and compared to the goal change
&. If the actual change is less than 1.25 times the goal change &, then the current

iteration is accepted and the increment for the next time step is then calculated

according to equation (2.88). If the actual change is greater than 1.25 times the goal
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change &, then the current iteration is rejected and a new time increment is calculated
as half of the result of equation (2.88) and the iteration is retried. This process may
repeat a few times until a small enough time step is achieved to allow the solution to

progress.

In most cases, the time step eventually becomes large and the solution converges
quickly to steady state. At each successful iteration, the overall change ¢ and the net
outflow discharge (g» = g« 4y — g, Ax) are printed on the screen as indicators of how
close the solution is to a final steady state. When the net outflow discharge indicates a
constant value and the overall change approaches zero (typical value of the order of
10° is used), the solution is considered to be steady state. More details are found in

Steffler (1997a).

2.5.5 The mesh generation

An automatic mesh generation program R2D_Mesh (Steffler, 1997b) is used to aid in
the generation of appropriate two-dimansional triangular meshes. A finite element
mesh is defined interactively and graphically by the user by placing nodes
individually or in pattern coverages. The mesh is then generated on the basis of a
boundary constrained Delauney triangulated irregular network including breaklines
(Steffler, 1997b). As a result, the meshes generated are limited to linear triangular

elements.
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2.5.6 The finite element code

The code used (R2D_VAM) is written in standard C language and executes on any
system which supports direct 32-bit addressing. Versions for Windows 95 and various
Unix systems are compiled. In general, fast floating point performance and large
memory (at least 80 MB) spaces are required. The R2D_VAM program is based on
existing code (Ghanem et. al, 1995). The element matrix calculations are replaced. In
addition, the input-output commands and file formats are adapted to accommodate the

increased number of variables suggested by the proposed model.

It should be mentioned that more details regarding the model development and the

numerical solution of the derived equations are presented in Appendix A.

2.6 A Preliminary Numerical Test
A preliminary numerical test is carried out in this section to check if the equations are
derived and coded correctly. A one-dimensional channel laboratory scale

experimental test is selected for this purpose.

The finite element grid is designed to be fine enough to meet the requirements of
reasonable accuracy as well as execution time. The R2D_VAM program is run till a
steady state solution is obtained. The VAM linear model (the 10-equation model) and

the VA model (the 3-equation modet) are used in this simulation.
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A symmetric bed profile test

The proposed model is compared and tested with the experimental results obtained by
Sivakumaran et al. (1983). They performed experiments in a horizontal flume 0.915
m long, 0.65 m high and 0.3 m wide. The flume had symmetric and asymmetric bed
profiles. The symmetric profile was shaped according to a normal distribution and

was 0.2 m high and 0.12 m long.

The upstream undisturbed depth was measured at 0.16 m form the leading edge of the

profile. Different discharges were used.

Measurements of water surface and bed pressure profiles were plotted. The
experiment with a discharge of 0.11197 m?*/s and a symmetric bed profile is selected

in this study.

The simulation is performed using a finite element mesh composed of 4467 triangular
elements and 2399 nodes (Figure 2.13). The mesh is designed such that additional

nodes are added to the parts of the flume where high velocity variations are expected.

The boundary conditions are specified as subcritical inflow, supercritical outflow and
no-flow across the vertical side walls. The boundary conditions specified at the
inflow section at the entrance on the left are total discharge = 0.033591m’/s, u; = 0.0,

and v; = 0.0. No boundary condition applied at the outflow section on the right. Initial
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values for the depth A are assumed while the rest of the variables (G qy, 1, Vi, W, W,

wr, A; and h;) are set to zero.

The results are shown in Figures 2.14-2.15. Figure 2.14 compares the experimental
and numerically water surface profiles for the symmetric bed profile. Figure 2.15
compares the experimental and numerically bed pressure profiles for the symmetric

bed profile.

It can be clearly seen from Figures 2.14-2.15 that the proposed VAM model predicts
the water surface and bed pressure profiles very well. It can also be noticed from

Figures 2.14-2.15 that the VAM model behaves better than the VA model.

2.7 Summary

A full two-dimensional (2-D) frame-work model, in which more vertical details are
recovered, is established. The new equations, vertically averaged and moment
equations, are derived by a moment weighted residual method from the fundamental
three-dimensional (3-D) Reynolds equations. The equations are developed in their
general case that accommodate different distribution shapes of velocities and

pressure.

The developed general equations are adapted, for convenience and comparison

purposes, to allow for the use of linear or quadratic distributions of horizontal

velocity components.
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The vertically averaged and moment equations are discretized and modeled using a
hybrid Petrov-Galerkin and Bubnov-Galerkin finite element schemes. The vertically
averaged continuity, longitudinal and transverse momentum, and moment of
longitudinal and transverse momentum equations are upwinded using a two-
dimensional Characteristic-Dissipative Galerkin finite element scheme. The rest of

the equations are modeled using the Bubnov-Galerkin finite element scheme.

Triangular elements with linear basis functions for all variables are used. The time
derivatives are approximated using a weighted-implicit finite difference formulation.
For the resulting implicit set of non-linear algebraic equations a Newton-Raphson
technique is used to advance the solution to the next time level and to reach a steady

state solution as well.

The proposed model is tested for a uniform steady state case. A preliminary
numerical one-dimensional test shows that the derivation and the coding of the

proposed equations are correctly done.
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Chapter 3

Rapidly Varied Flow

3.1 Introduction

The flow of water in an open channel is classified as rapidly varied if the depth of
flow changes rapidly or abruptly over a relatively short distance; examples are the
hydraulic jump and the rapidly varied transitions. Rapidly varied flow may have
streamline curvature such that the pressure distribution can no longer be assumed to
be hydrostatic and the velocity distribution can not be assumed to be uniform. The
rapid variation in flow regime often occurs in a comparatively short distance and thus
the boundary friction is relatively small and in most cases is insignificant (Chow,

1959).

Rapidly varied flow encompasses many different applications in open channel
hydraulics. These applications include: flow through bridge contractions, design of
channel transitions, abrupt rises and drops, rapid operation of flow control structures,
catastrophic failure of a dam and so forth (French, 1985). Therefore, an accurate
description and understanding of the rapidly varying flow regime is highly important.
Most of the literature addresses specific topics, for example different kinds of
hydraulic jumps or rapid transitions. A brief review of rapidly varied flow problems,

mainly transitions, is considered in this chapter.

67



3.1.1 Rapid transitions

Open channel transitions are commonly used in structures between canals and flumes
and between canals and tunnels to reduce energy losses. They are also used in some
critical flow measuring devices (Chow 1959). The design of channel transitions has
received the attention of hydraulic engineers for a long time and has been formulated

into a number of suggestions and procedures (Ippen and Dawson, 1951).

Rapidly varied transitions, such as rapid contractions or expansions of the flow in a
horizontal or vertical plane, typically involve flows with high curvature of the
streamlines. The length of these transitions is relatively small. As a result,
nonuniform velocity and non-hydrostatic pressure distributions may have an effect. In
addition, the bed shear stress may be no longer attributed to the corresponding
uniform flow conditions. Determining the depth of flow is complicated in such
transitions because of the boundary features of these transitions. These boundary
features in supercritical flow cause disturbances that can result in a significant
increase in the local flow depth. As a result, an accurate description and
understanding of the rapidly varying flow regime in such transitions is highly

desirable.

The presence of transitions in high velocity channels can cause the flow to choke, to
form a hydraulic jump or to produce a series of standing waves. Complex wave
patterns due to multiple reflections of the boundary and their subsequent interactions

with one another are possible. These flow disturbances complicate the structure
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design. In addition, both sub- and supercritical flows are more likely to be present
when the standing waves interact with one another. That makes the analyses even
more complicated. A three dimensional model would be able to model these rapidly
varied flow situations satisfactorily. However, the computational effort involved and
the difficulties in defining the geometry and treating the boundary conditions are

usually the limiting factors (Berger and Stockstill, 1995).

Studies considering supercritical flow passing through transitions have been
conducted by several researchers. Among them, Rouse et al. (1951) and Ippen and
Dawson (1951) made noteworthy analytical and experimental studies of supercritical
flow in transitions. Herbish and Walsh (1972) tested the suitability of the method of
characteristics, as developed by Bagge and Herbich (1967), for predicting the form of
supercritical flow passing through a rectangular expansion. The angle of the
expansion was larger than 5°. They recommended that the method of characteristics
be redeveloped with the friction term included to provide a proper check of its

suitability for predicting supercritical flow.

Pandolfi (1975) and Rajar and Centina (1983) solved the two-dimensional steady
flow equations numerically to simulate the supercritical flow in transitions. Fennema
and Chaudhry (1990) used two-dimensional finite difference to simulate mixed sub-
and supercritical flows in transitions. They recommended that extreme care should be

taken on including the side wall boundaries. Bhallamudi (1992) used two-
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dimensional, depth-averaged, unsteady flow equations in a transformed coordinate

system to analyze flows in channel expansions and contractions.

Berger and Stockstill (1995) applied a two-dimensional finite-element model to
simulate a supercritical flow passing through a contraction. The model utilized a
characteristic based Petrov-Galerkin method and a shock-detection mechanism.
Rahman and Chaudhry (1997) used a two-dimensional, second-order accurate finite
difference scheme to simulate supercritical flow passing through a contraction. An
adaptive grid system, instead of a fixed grid system, was used for a better resolution
of the flow properties. Hydrostatic pressure and uniform velocity distributions were

assumed in their approach.

3.1.2 Free overfalls

Rouse (1936, 1943) experimentally studied the end depth of a horizontal rectangular
free overfall. Rajaratnam et al. (1976) conducted a detailed experimental study in the
upstream portion of a rectangular free over fall for various bed slopes. They measured
pressure, velocity and shear stress distributions. In addition, they studied the effect of

bed roughness on the velocity, pressure and shear stress distributions at the brink.

Clarke (1965) used a two-dimensional potential flow to solve for the surface profile
upstream of a rectangular free overfall and the boundaries of the free jet. Moayeri
(1970) applied potential flow theory with numerical integration to solve for the free

rectangular overfall. Hager (1983) used an analytical approach using an extended
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Bernoulli equation to solve for the free rectangular overfall. Marchi (1993) obtained
an analytical solution for the potential flow and used it to solve for the free
rectangular overfall. Montes (1992) obtained a solution for the free rectangular

overfall problem after solving the potential flow equations numerically.

3.1.3 Hydraulic jump

McCorquodale and Khalifa (1983) used the two dimensional Reynolds equations to
solve the hydraulic jump problem. Their approach was based on integrating the
Reynolds equations. Gharangik and Chaudhry (1991) applied a one-dimensional
unsteady, rapidly varied flow finite-difference numerical technique with an explicit
artificial viscosity to study the hydraulic jump problem. Hicks and Steffler (1992)
used a finite element Petrov Galerkin scheme to analyze the hydraulic jump
phenomena. Garcia-Navarro et al. (1994) applied a finite difference numerical
technique with flux limiters to calculate the length and the location of a hydraulic
jump. Younus and Chaudhry (1994) incorporated the k-& model in their numerical
model to calculate the hydraulic jump length. They showed that the length was found
to be mainly governed by the artificial viscosity or the numerical diffusion

coefficients applied.

3.1.4 Unsteady rapid flow
Vide (1992) made a review on the classification of rapidly varied unsteady flow from
continuity and momentum principles. Non-dimensional equations, in a purely

algebraic way, were proposed for analyzing the combinations of super- or subcritical
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regimes in a one-dimensional surge. Uniform velocity and hydrostatic pressure
distributions were assumed. The friction and weight forces were neglected. Chanson
(1997) made a review on several near-critical flow situations. These flows included:

undular surges, undular hydraulic jumps and undular flow above a broad-crested weir

Most of the previous computational models used to model rapidly varied flow
situations were based on the depth or vertically averaged classical de Saint Venant
equations due to their efficiency and reasonable accuracy. These equations are based
on the fundamental assumptions of uniform velocity and hydrostatic pressure
distribution conditions. As a result, these equations are applicable for flows in which
large width-to-depth ratios exist and the vertical variation in the mean flow quantities,
due to strong vertical mixing induced by the bottom shear stresses, is not significant
(Henderson, 1966). Yen (1973) showed that correction factors or coefficients could
be applied, on using these equations, for velocity or pressure distributions to account
for cases where non-uniform velocity and non-hydrostatic pressure distributions are
significant. He added that these distributions should be established a priori to evaluate

such correction coefficients, though.

Another set of equations that have been used to model rapidly varied flow is the
Boussinesq equations. These equations represent the next higher level of
approximation compared to de St. Venant equations as they assume linear vertical
velocity and linear non-hydrostatic pressure distributions. They are thus applicable

for moderately shallow water flows with wavelength to depth ratios of about six
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(Steffler and Jin, 1993). Abbott (1979) noted that it is necessary to employ third- or
higher-order accurate methods to solve the Boussinesq equations numerically. Montes
(1994) pointed out that these equations are limited to problems with mild slopes,

though.

A further alternative in terms of depth or vertically averaged modeling was
introduced by Steffler and Jin (1993). Therein, more vertical details are incorporated
in their one-dimensional model compared to the classical de St. Venant model.
Moment equations were developed by vertically integrating the plane Reynolds
equations having multiplied by the vertical coordinate. The extra equations allow
solution of the extra degrees of freedom introduced by the extra vertical parameters.
A linear longitudinal velocity and quadratic vertical velocity and pressure
distributions were assumed. The equations were then rewritten in terms of the
parameters of these distributions.

Steffler and Jin showed that the new equations are applicable for flows with
wavelength to depth ratios as small as one. They added that the assumed longitudinal
velocity distribution may allow for direct and better representation of bed shear stress
in non-uniform flow. The method suffers, however, from the crudeness and
arbitrariness of the assumed distributions. The long and complex equations that result
are difficult to derive and model correctly. Khan (1995) applied this method to some

one-dimensional rapidly varied flow problems successfully.
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This study uses the proposed model, vertically averaged and moment model derived
in chapter 2, with assumed linear distributions of horizontal velocity components and
quadratic vertical velocity and pressure distributions (the VAM linear model). The

model is used to simulate the flow passing through transitions.

The main objectives of this study are as follows:

1. To test the proposed model for simulating rapidly varied flow transitions with
relatively small wavelength to depth ratios (¥4 =~ 7, A being the wavelength)
where non-hydrostatic pressure and non-uniform velocity distributions might be

expected to be significant.

2. To see if there is an improvement of the proposed model over the conventional de

St. Venant model in simulating flows with such transitions.

The hybrid Petrov-Galerkin and Bubnov-Galerkin finite element schemes, mentioned
earlier, are used in the simulation. Two channel laboratory scale experimental tests

are selected for validation and comparison purposes.

3.2 Applications
Comparisons of the model predictions are made with the experimental results
obtained by Ippen and Dawson (1951) and Parshall (1926). These two channels are

selected as they have transitions with relatively small wavelength to depth ratios
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(A/h ~ T) where non-hydrostatic pressure and non-uniform velocity distributions
might be expected to be significant. As a result, a noticeable difference between the

proposed model and the conventional de St. Venant model could be anticipated.

In both cases, the finite element grids are designed to be fine enough to meet the
requirements of reasonable accuracy as well as execution time. The program is run till
a steady state solution is obtained. The 10 and 3 equation models are used in these

simulations.

3.2.1 Ippen and Dawson’s (1951) experiment

The numerical model is compared and tested with the flume results reported in Ippen
and Dawson (1951). The channel had a straight entry length and then contracted from
2 ft (0.6096 m) to 1 f (0.3048 m) wide in a length of 4.78 ft (1.457 m), i.e., an angle
of 6° on each side. The channel had a rectangular cross section. The layout of this

channel is shown in Figure 3.1.

The test is performed for an approach Froude number of 4, with a total discharge of
1.44 f*/s (0.0408 m’/s), an upstream depth of 0.1 ft (0.03048 m) and a velocity of

7.15 ft/s (2.19 m/s).
The simulation is performed using a finite element mesh composed of 3623 triangular

elements and 1954 nodes (Figure 3.2). The mesh is designed such that additional

nodes are added to the contracted part (the transition part) of the flume to
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accommodate the expected high velocity gradients in this area. Conversely, fewer
nodes are placed in the straight parts of the flume as less velocity variation is to be

expected in these areas.

The boundary conditions are specified as supercritical inflow at left side, supercritical
outflow at the right side and no-flow across the vertical side walls. The boundary
conditions specified at the inflow section are total discharge = 0.0408 m’/s, flow
depth = 0.0305 m, «; = 0.0 and v; = 0.0. The initial conditions are prescribed as # =
0.0305 m, ¢, = 0.0408 m*/s and the rest of the varaibles (q,, uy, vi, W, ws, wi, h; and

hy) are set to zero. The program is run till a steady state solution is obtained.

The results are shown in Figures 3.3-3.5. Figure 3.3 shows the measured depth
contours obtained by Ippen and Dawson. Figure 3.4 shows the simulated depth
contours obtained by the proposed VAM model, while Figure 3.5 shows the

simulated depth contours obtained by the VA model (de St. Venant model).
It can be seen from Figures 3.3-3.4 that the overall quality of the simulated solution

compares reasonably well with the measured values. In addition, the VAM model

seems to behave almost the same as the VA model (see Figures 3.3-3.5).
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3.2.2 Ye and McCorquodale’s (1997) experiment

The flume results of Ye and McCorquodale (1997) are invoked to test the ability of
the model to simulate the near critical flow conditions. The experiment was
conducted at the University of Windsor in a Parshall flume. The Parshall flume,
which was developed by Parshall (1926), is considered one of the most widely
installed open channel devices for field flow measurements. The flume consisted of a
contracting section with a flat floor to create the critical depth; a throat section with
parallel side walls and a sloping bed in which supercritical flow occurs; and a
diverging section with an adverse sloping bed. The flume had a rectangular cross
section. The layout of the flume is shown in Figure 3.6. The flow discharge was equal

to 0.0145 m’/s.

The simulation is performed using a finite element mesh composed of 2485 triangular
elements and 1383 nodes (Figure 3.7). Additional nodes are added to the part of the
flume in the vicinity of critical flow where velocity gradients are expected to be high.
Conversely, fewer nodes are placed in the other parts of the flume where less velocity

gradients are expected.

The boundary conditions are specified as subcritical inflow, supercritical outflow and
no-flow across the side vertical walls. The boundary conditions specified at the
inflow section are total discharge = 0.0145 m’/s, u; = 0.0, and v, = 0.0. Initial values
for the depth 4 are assumed while the rest of the variables (g, gy, u;, vi, W, ws, wp, h;

and h;) are set to zero. The program is run till a steady state solution is obtained.
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The results are shown in Figures 3.8-3.15. Figure 3.8 compares the experimental and
numerically predicted cross channel averaged water surface elevation. Figures 3.9-
3.15 compare the experimental and numerically predicted depth averaged longitudinal

velocity distributions across the flume at different cross sections.

It can be clearly seen from Figure 3.8 that the proposed VAM model simulates
favorably the cross channel averaged water surface elevation. In addition, the
proposed model seems to predict the flow better than the traditional de St. Venant

model (VA model) in the vicinity of the critical flow section.

It can be noticed from Figures 3.9-3.15 that the agreement with the experimental
results is generally good. The model seems to underestimate the results particularly
near the walls at some cross sections (cross sections 2, 3, 4 and 7). In addition, the

VAM and VA models seem to behave almost the same.

As a result, the overall quality of the VAM simulated solutions compare well with the
measured values and the VAM model seem to predict the flow better than the VA

model.

3.3 Comparison of Computational Effort

For both the transition and the Parshall flume, a comparison between the VAM 10-

equation and the conventional 3-equation de St. Venant (VA) models in terms of
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computational effort and time necessary for simulation is made. It is found that the
time required for the VAM 10-equation model to converge to a final steady state
solution is approximately four times larger than that of the VA model. The memory
allocated for the VAM 10-equation model is found to be eleven times larger than that

of the VA model, though.

3.4 Summary and Conclusions

The proposed model with assumed linear distributions of horizontal velocity
components and quadratic vertical velocity and pressure distributions (the VAM
linear model) is used in this study. The 3-equation and 10-equation models are used
in the simulation. The finite element hybrid Petrov-Galerkin and Bubnov-Galerkin

schemes are used.

The obtained derived equations are investigated for modeling rapidly varied flow
transitions with relatively small wavelength to depth ratios (A/4 ~ 7) where non-
hydrostatic pressure and non-uniform velocity distributions might be expected to be

significant. Two experimental hydraulic problems, from the literature, are selected.

A comparison between the VAM 10-equation and the conventional 3-equation de St.

Venant (VA) models in terms of computational effort and time necessary for

simulation is made.
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The conclusions of this study are stated as follows:

1. Generally, a satisfactory agreement is obtained between the numerical predictions
and the experimental measured data. The obtained results show that slightly
improved water surface profile details are gained by the proposed model

compared to the conventional depth or vertically averaged de St. Venant model.

2. This study suggests that the test cases considered don’t contain wavelength short

enough to show the significance of the non-hydrostatic and non-uniform effects.

3. It is found that the time required for the VAM 10-equation model to converge to a
final steady state solution is approximately four times larger than that of the
traditional de St. Venant model (the 3-equaion VA model). In addition, the
memory allocated for VAM 10-equation model is found to be eleven times larger

than that of the VA 3-equation model.
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Figure 3.4 Numerical prediction of depth contours for Ippen and Dawson’s (1951)
experiment (VAM model)
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Figure 3.5 Numerical prediction of depth contours for Ippen and Dawson’s (1951)
experiment (VA or Standard De St. Venant model)
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Figure 3.9 The comparison of longitudinal velocity distribution across the
flume for Ye and McCorquodale's (1997) at cross-section 1
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Figure 3.10 The comparison of longitudinal velocity distribution across the
flume for Ye and McCorquodale's (1997) at cross-section 2
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Figure 3.11 The comparison of longitudinal velocity distribution across the
flume for Ye and McCorquodale's (1997) at cross-section 3
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Figure 3.12 The comparison of longitudinal velocity distribution across the
flume for Ye and McCorquodale's (1997) at cross-section 4
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Figure 3.13 The comparison of longitudinal velocity distribution across the
flume for Ye and McCorquodale's (1997) at cross-section 5
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Figure 3.14 The comparison of longitudinal velocity distribution across the
flume for Ye and McCorquodale's (1997) at cross-section 6
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Figure 3.15 The comparison of longitudinal velocity distribution across the
flume for Ye and McCorquodale's (1997) at cross-section 7
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Chapter 4

Curved Channel Flows

4.1 Introduction

The smooth sinuous or curvature pattern of a natural stream has attracted the interests
of both geologists and engineers. As noticed by Leopold and Wolman (1960), it is
almost impossible to find a straight stream with length longer than ten channel
widths. The engineering importance of channel curvature stems largely from the fact
that they affect the flow of water in open channels or streams in many ways. These
effects include super-elevation, secondary flows, redistribution of longitudinal
velocities, migration of meanders, bank erosion and shifting, bed migration and bed

scour in mobile boundary channels.

Many experimental and mathematical studies have been carried out to give an attempt
to a clear understanding of the flow characteristics in curved open channels or river
bends. Rozovskii (1957) was among the pioneers who conducted a series of
experiments on a tight 180° bend of rectangular cross section with straight inlet and
outlet reaches. The channel was considered strongly curved and exhibited 3-D flow
characteristics (R/2b = 1), R. and 2b being the radius of curvature to the centerline of
the flume and the flume width respectively. As a result, strong secondary velocities
were produced. He measured velocity profiles near the channel walls, with the
maximum velocity occurring below the water surface. Rozovskii obtained and

presented results for depth average tangential velocities, surface elevation contours
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and vertical distributions of tangential and transverse velocity components. By
performing an order of magnitude analysis, he derived a solution for transverse

velocity for turbulent flow.

Ippen and Drinker (1962) investigated and described the distributions and the
magnitudes of boundary shear stresses in the curved reaches of smooth trapezoidal
channels. That was carried out under conditions of subcritical flow. A series of
experimental tests was conducted in a 60°-curved channel to determine the effects of
variation in discharge and bend geometry on the shear pattern. Ippen and Drinker
found that the locations of the shear maxima were generally found associated with the
course of the filament of highest velocity and with the zones of local accelerated
motion. Thus, at lower curvatures, the increased stresses are found along the outer
bank, in the downstream portion of the curve, while at large curvatures, high shear
appears near the inside bank in the curve and near the outside bank below the curve
exit. In addition, the relative shear patterns were found to be not greatly modified by
variations in depth and velocity at the entrance section but rather by the channel
geometry. They also demonstrated the importance of boundary shear stress patterns
with respect to the ultimate understanding of erosion and deposition processes in

channel curves.

Yen (1965) utilized an indirect way to determine the eddy viscosity field based on the

assumption of a logarithmic or power-law vertical distribution of the tangential
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velocity (Leschziner and Rodi 1979). He found an approximate solution for the

development and the decay of the secondary circulation.

Engelund (1974) described briefly the theory of helical flow in circular bends. The
theory was developed for the case of steady fully developed uniform channel in a
wide rectangular channel. Only the middle part of the channel, where the vertical
velocity components are negligible, was considered in the theory. A constant eddy-
viscosity model, a slip velocity condition at the wall, small bank slopes, a quad:-atic
velocity distribution along the depth described by the defect law and a hydrostatic
pressure distribution were assumed. The theory was then extended and applied to a

more complicated problem of flow in meander bends with movable bed.

De Vriend (1976) developed a mathematical model to describe 3-D flow features in
bends. That model, however, seems not to behave well in case of dealing with
strongly curved bends. Kupiers and Vreugdenhil (1973) applied a depth-averaged
model to account for axial flow features. As the model was based on a depth averaged
process, it completely didn’t account for secondary flows or in other words the

transverse motion (Leschziner and Rodi 1979).

Kalkwijk and DeVriend (1980) developed a mathematical model based on dealing
with curvilinear coordinate system for steady flows in shallow rivers with gradual
depth changes and moderate curvatures. They explained that accounting for the

convective influence of the secondary flow on the main flow is essential to a
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mathematical model of curved flow. Kalkwijk and DeVriend used the depth-averaged
method to simplify the 3-D curved channel problems into 2-D problems. They
believed that by depth averaging the complete 3-D incompressible flow equations
(having included the convective influence of secondary flow), a more convenient and
appropriate approach would be developed other than applying the expensive full 3-D
calculations.

Further simplifications were then applied. Kalkwijk and DeVriend assumed dealing
with rivers of which the ratios of depth to width and width to curvature are small and
the flow is controlled by friction. A final set of differential equations which accounted
for the bottom friction, the flow curvature and the transverse convection of
momentum by the secondary flow was derived. The influence of the secondary flow
was analyzed and the results were compared with experimental data. The results from

their simplified model tended to underestimate the effect of secondary flow, though.

Harrington et al. (1978) used the depth-averaged model, without including necessary
extra terms to compute secondary flows or transverse motion, to predict the flow in
180° bend. The results were underestimated because of the lack of the secondary flow

effect (Jin and Steffler 1993).

Shimizu and Itakura (1990) made an attempt to calculate 3-D flow and bed
deformation with bed load as well as suspended load. A new 3-D model was
developed to improve the defects of the 2-D shallow water flow model proposed by

Shimizu and Itakura (1986). The model was tested for an experimental flume having
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a 180° bend with fixed bed. A hydrostatic pressure distribution was assumed. The 3-D
model seemed to predict the flow field more precisely than the 2-D model. Shimizu
and Ttakura found that the evaluation of the transport of momentum caused by the
secondary flow, which was not considered in the 2-D model, is necessary to predict
the flow field precisely.

A simplification of the full 3-D model was made to reduce the computational time
and effort, in which the vertical distribution of the longitudinal velocity was assumed
to be logarithmic. The simplified model was tested in a meandering channel
experiment with movable bed. The simplified 3D model was also applied to the
computation of bed deformation by bed load as well as suspended load transport in
meandering channels. The agreements were found to be good when compared with
experimental results. Shimizu and Itakura explained that appropriate estimation of the
secondary flow is very important for the bed deformation of meandering channels
because it is necessary to predict the direction as well as the magnitude of the flow

velocities at the channel bed.

Molls and Chaudhry (1995) developed a general 2-D mathematical model to solve
unsteady, depth-averaged equations. Boundary fitted coordinates were used and
effective stresses were included. The 2-D depth-averaged equations were obtained by
integrating the Navier-Stokes equations from the channel bottom to the water surface.
Uniform velocity in the vertical direction, incompressible flow, hydrostatic pressure
distribution, small-channel slope, negligible wind shear at the water surface, and

negligible Coriolis acceleration were assumed to make it possible to derive the
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equations. The depth-averaged stresses were neglected. A constant eddy-viscosity
turbulence model was incorporated to approximate the turbulent Reynolds stresses.
The time differencing was discretized using a second-order accurate Beam and
Warming (1978), while the spatial derivatives were approximated by second-order
accurate central differencing approximation. The model was tested to simulate the

flow in a 180° channel bend.

Ye and McCorquodale (1997) developed a 2-D depth-averaged free-surface
mathematical model in a boundary-fitted curvilinear coordinate system. The
convective terms of their model were discretized by a second-order finite volume
scheme. A collocated grid system was used in the simulation. The time marching
technique was used to reach a steady state solution. The model was applied to a
meandering channel. The computed results were compared with experimental data

and the agreement was good.

Attention was rather concerned in the previous work on the semiempirical and
analytical description of flow features by adopting simplified assumptions that did not
show more information regarding, for example, the streamwise development and
secondary circulation. This would become more pronounced on dealing with strongly
curved bends. In addition, an accurate representation of turbulence models hasn’t
received much concern in their work. Application of a 3-D model would be sufficient
to account for the transverse motion caused by secondary flow. Recently, Ghanmi et

al. (1997) formulated a 3-D finite element hydrodynamic model to simulate
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secondary flows and their damping in channel bends and flow around obstacles. They
focused on the formulation of the viscous terms responsible for developing the

secondary flows. Comparisons of experimental and numerical results were presented.

However, the computational effort involved, the additional non-linearity caused by
the free surface flow and the complexity of the applied equations make the
application of a 3-D model not an easy task. Alternatively, application of 2-D depth-
averaged models with extra degrees of freedom or more vertical details would be
more reasonable and less expensive form accuracy and computational points of view

respectively.

Falcon Ascanio (1979) employed the principle of dealing with the moment of
momentum equation in his mathematical model to axisymmetric flow situations (Jin
and Steffler, 1993). Odgaard (1986a) developed an analytical model to simulate the
flow and bed topography in a meandering alluvial channel or a natural bend with
nonuniform approach flow and non-constant radius of curvature. The basis was a
solution to the equations for conservation of mass and momentum and for lateral
stability of the streambed to account for net lateral mass shift. The bed-stability
equation used related the transverse bed slope to primary flow variables. A simple
mass-flux balance was used to relate the bed stability equation to the momentum one.
Relations for depth and depth-averaged mean velocity were developed. Predefined
velocity distributions were substituted into the momentum equations. The analyses

showed that the behavior of the transverse bed slope depended on the secondary flow
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component as well as the transverse mass shift due to the change in channel
curvature. The model was tested with both experimental and field data (Odgaard,
1986b). The main important feature of the model was its account for the net lateral

mass shift in relation to streamwise variations.

Johannesson and Parker (1989) developed an analytical model for calculating the
lateral distribution of the depth-averaged primary flow velocity in meandering rivers
with laterally flat or sloping inerodible beds. They used a small perturbation method
to linearize the governing equations. They also used the moment method to make it
possible to take into account the convective transport of primary flow momentum by
the secondary flow. Johannesson and Parker believed that the convective transport of
primary flow momentum by the secondary flow leads to a significant outward
redistribution of primary flow velocity. Several researchers ( Kalkwijk and De Vriend
1980; and Leschziner and Rodi 1979) have also emphasized on the importance of the
same mechanism. Johannesson and Parker explained and quantified the phenomenon
of redistribution of primary momentum by secondary flow at a linear level, in the
simplest possible fashion to the case of uniform bend flow. The bed topography was
assumed to be horizontal in the transverse direction. The model was tested with

experimental data.
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Yeh and Kennedy (1993a) derived a hybrid integral-differential formulation of free-
surface nonuniform, fixed boundary, channel-bend flow in constant-radius open
channels. Conservation of flux of moment of momentum and depth-integrated
momentum and continuity equations were developed. The integrated equations for the
flux of moment of momentum were utilized to formulate the secondary flow and the
effects of curvature on the primary-flow velocity profile. Boundary shear stresses
were related to the primary-flow shear stress and the primary and secondary
velocities. The channel section was treated as rectangular and fixed.

Yeh and Kennedy explained that the consideration of moment formulation is
necessary to elucidate the interplay among the secondary and primary flows,
particularly the observed flattening of primary velocity profiles and radial
redistribution of the depth-averaged primary velocity. By considering conservation of
moment of momentum, the phenomenon of the change of the primary flow passing
along a long bend was observed by their model. The equations were solved
numerically and the results were tested with laboratory data. The analysis was
extended in Yeh and Kennedy (1993b) to the case of erodible-bed and fixed wall

channels.

Jin and Steffler (1993) introduced a depth-averaged 2-D mathematical model in the
Cartesian coordinate for simulating the velocity distribution in curved open channels.
The mathematical model consisted of the depth-averaged continuity equation, the
momentum equations, and two moment of momentum equations. Parabolic similarity

profiles were assumed for the longitudinal as well as the transverse velocities and
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were substituted into the moment of momentum equations. A hydrostatic pressure
distribution was assumed to simplify the 3-D Reynolds equations into 2-D ones by
integrating them over the depth. The effect of secondary flows was included in these
profiles.

Jin and Steffler extended the commonly used Chezy bed shear formula to account for
the eflect of secondary flow on the bed shear stress. The finite element method was
used in the numerical simulation as it is more flexible in case of dealing with
channels of varying plan curvature. Two experimental data sets from the literature
were selected to test and verify the model. Generally, the numerical analysis predicted
reasonable secondary flow calculations as well as satisfactory depth-averaged
longitudinal and transverse velocities. The characteristic features of the curved
channel such as the longitudinal velocity redistribution and longitudinal and

transverse velocity profiles seemed to be satisfactorily preserved.

This study uses the derived proposed model, the vertically averaged and moment
model derived in chapter 2, with assumed linear and/or quadratic distributions of
horizontal velocity components and quadratic vertical velocity and pressure
distributions (the VAM linear and/or quadratic models). The proposed model is used
to simulate the secondary flow variation in curved channels and the effects of the
secondary flow on the depth-averaged flow field. One of these effects is longitudinal
velocity redistribution. Curved channels with rigid beds and regular patterns are

considered in this study.
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The objectives of this study may be stated as follows:

1.

To verify and test the validity of the vertically averaged and moment (VAM)
equation model for modeling curved open channel flows. In other words, the
improvement provided by the proposed model over depth averaged de St. Venant
model in simulating the main characteristic features involved in curved channels
is to be tested. These features include water surface super-elevation, secondary

flow and longitudinal velocity redistribution.

To evaluate the sensitivity of the attained results or solutions to different
approximations of the pre-assumed velocity and pressure distribution shapes.
Comparison between linear and quadratic distributions of horizontal velocity
components is to be made. Hydrostatic and quadratic distributions of pressure will

also be compared.

To evaluate the sensitivity of the attained results or solutions to different
approximations of numerical discretizations of the generated finite element

meshes.
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4. To compare the computational effort and time necessary for different
approximations of the pre-assumed velocity and pressure distribution shapes. The
question to be answered is whether it would be worthwhile to go from one level
of approximation of the pre-assumed velocity and pressure distribution shape to

another in terms of attained accuracy, computational effort and time consumed.

The hybrid Petrov-Galerkin and Bubnov-Galerkin finite element schemes are used in
the simulation. Five curved channel laboratory scale experimental tests and a field
test case are selected for validation and comparison purposes. The experiments
include flow in a 180° channel bend with mild curvature (DeVriend, 1976), flow in a
90° channel bend with a variable and irregular cross section (DeVriend, 1980), flow
in a 270° channel bend (Steffler, 1984), flow in a 180° channel bend with very strong
curvature (Rozovskii, 1961) and flow in two reversing 90° channel bends respectively
(Chang, 1971). Coarse and fine finite element meshes are applied in this study.
Comparisons of various numerical predictions and the corresponding experimental

results are made.

4.2 Experimental Verifications and Comparisons

Comparisons of the model predictions are made with the experimental results
obtained by Rozovskii’s (1961) run 1, DeVriend (1976 and 1980), Steffler’s (1984)
runl, and Chang (1971) in curved flumes. Jin and Steffler (1993) used the DeVriend
(1976 and 1980) and Steffler’s (1984) runl experiments to test the numerical

predictions of their model. The same experiments are selected here to see if the
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proposed model gives improved results. Rozovskii’s (1961) run 1 experiment is
selected as it has been used extensively by other investigators for verification of their
numerical and analytical results. The experiment is interesting because the relative
curvature is very strong. Chang’s (1971) experiment is chosen to check the suitability
of the proposed model to predict the features of a reversing flow. Moreover, the most
important factor in selecting these experiments is the availability of good detailed

data.

In most cases, the finite element grid intensities are designed primarily to meet the
requirements of a reasonable execution time. As a result, caution should be exercised
in attributing the observed difference between measured and computed results to

differences in formulations as numerical discretization errors may not be negligible.

The R2D_VAM program, with both the VAM linear and VAM quadratic models, is
run till a steady state solution is obtained. The 10, 5 and 3 equation models are used

in these simulations.

4.2.1 Experimental Errors

On comparing predicted and measured velocity distributions consideration must be
given to the expected experimental errors. Two kinds of velocity measurement errors
can be expected in curved channels. The first one is in measuring the velocity
magnitudes, whereas the second one is in measuring the velocity angles or directions.

Usually, the relative error in velocity magnitude measurements is estimated to be
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fairly small (typically 2%). On the contrary, the relative error in velocity angle
measurements may be quite large (typically 20% or higher). As a result, the
longitudinal velocity measurements are typically more accurate than the transverse
velocity measurements. This may be explained as follows. Consider dealing with the

s-n system of coordinates, s and n being the longitudinal and normal to the

longitudinal axis respectively. Consider [V/| is the velocity magnitude. The

longitudinal (V) and transverse velocity (V) components are then given by:

Where 6 is defined as the angle between the velocity vector and the longitudinal

direction. For small &, equations (4.1)-(4.2) are approximated as:

If the estimated error in the transverse velocity, V. is &, , theng, may be

approximately calculated from:
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Where g, is the estimated error in measuring the velocity angle. The relative estimated

error in transverse velocity is then given by:

Assuming, for example, an estimating error in measuring the velocity angle of g, =1

degree and 8= 5° the expected relative error in measuring the transverse velocity, V,,

. . . gVn 89 1
is estimated from equation (4.6) as % = ) = 3 100 =20%.

n

Similarly, it can be concluded from equation (4.3) that the expected relative error in
measuring the longitudinal velocity magnitude, V;, is of the same order of that of the

velocity (2% as mentioned above).

4.2.2 DeVriend’s (1976) experiment

De Vriend (1976) conducted a series of experiments in a 180° rectangular open
channel curved flume at the fluid mechanics laboratory of the Civil Engineering
Department, Delft University of Technology. One of these experiments is chosen to
test the ability of the present model to simulate the flow in curved channel with

moderate curvature (R./2b = 2.5). R, and 2b are the centerline radius and the width of
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the flume respectively. The flume had a width of 25 = 1.7 m with the centerline radius

of R. = 4.25 m. Figure 4.1 shows the plan view of the flume.

Total discharge Q of 0.19 m’/s, Froude number of 0.215 and Chezy coefficient C of
57 m'?/s were used. The downstream water surface elevation was kept constant at a

value of 0.18 m.

Neither measurements of the transverse velocity nor the method of measuring could
be found in the collected materials of the literature for this case. The error estimates

in measuring the velocity magnitude and direction could not be found either.

The simulation is performed using a finite element mesh composed of 1488 triangular
elements and 876 nodes (Figure 4.2). The designed mesh, shown in Figure 4.2, is
considered the coarsest mesh that could be expected to give reasonably accurate
answers. It can be seen that additional nodes are added along the measured cross
sections to facilitate the extraction of the cross section data for comparison purposes.
In order to preserve the curvature of the boundary domain, the boundary points are set
at one-degree intervals around the bend. This can be observed from the relatively

small elements along the inside bank.
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The boundary conditions are specified as subcritical inflow, subcritical outflow and
no-flow across the vertical side walls. The boundary conditions specified at the
inflow section on bottom left are total discharge = 0.19 m%/s, u; = 0.0, and v, = 0.0.
The boundary condition specified at the outflow section on bottom right is flow depth
=0.18 m. The initial depth 4 is set to 0.18 m. The rest of the variables (g, g, u;, vi,
W, ws, wi, h; and h>) are set to zero. Based on the measured Chezy coefficient, the

corresponding roughness height is estimated to be & = 0.0015 m. (obtained from

< =62+5.75 log(kiJ . The program is run till a steady state solution is obtained.

Je

L 4

The results are shown in Figures 4.3-4.16. Figures 4.3-4.9 compare the experimental
and numerically predicted depth averaged longitudinal velocity distributions across
the flume at different cross sections. Figures 4.10-4.13 show the predicted surface,
mean and bed velocity distributions by the VAM model and mean velocity
distribution by the VA model respectively. Figures 4.14-4.15 show the simulated
results of mean velocity contours by the VAM quadratic and VA models respectively.
Figure 4.16 shows the simulated results of water surface elevation contours by the

VAM quadratic model.
It can be seen from Figures 4.3-4.9 that the proposed models, VAM linear and/or

VAM quadratic, simulate the longitudinal velocity distributions across the flume at

different locations very well and behave significantly better than the VA model.
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It is evident from Figures 4.3-4.9, 4.10-4.12 and 4.14 that the longitudinal velocity, as
the water enters the curve, is accelerated near the inner bank and retarded near the
outer bank. The situation is reversed at the exit of the bend (i.e., the inner bank
velocity is smaller than the outer bank velocity at the downstream). The predicted
flow velocity distribution by the VAM model is uniform before entering the bend,
then the maximum velocity first occurs at the inner bank of the entrance to the bend,
then the velocity distribution tends to be uniform. The maximum velocity then starts

to shift to the outer bank till it reaches a maximum at the exit.

Such velocity variations are typical of bend flows and were experimentally observed
by Ippen et al. (1962), Yen (1965) and Rozovskii (1957). That means the
phenomenon of the velocity redistribution is well simulated. This is not the case by

the VA model, though (Figures 4.3-4.9, 4.13 and 4.15).

This is due to the fact that the VAM model contains more terms and more equations,
which are responsible for generating longitudinal velocity redistribution. Mainly the

Chuv, Chu,v, .
and ———), appearing in the momentum

momentum convection terms (

equations of the VAM model, are the key factors responsible for such phenomenon.
As these important factors are shown in the 5-equation model, then the effect of the

10-equation model, as a preliminary conclusion, would be expected to be small.
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The results of the numerical predictions of the water surface elevation by the VA and
VAM models appeared to be virtually identical and thus only the results of the VAM

quadratic predictions are plotted in Figure 4.16.

A comparison between the full VAM 10-equation and S-equation models is made.
The comparison is carried out in terms of degree of accuracy obtained. This
comparison is shown in Figures 4.17-4.19. These figures show clearly that the higher
accuracy attained on applying the full VAM 10-equation model is insignificant
compared to the VAM S-equation model. It should be mentioned that this observation

substantiates the above preliminary conclusion.

A comparison between the VAM 10-equation, 5-equation and the conventional 3-
equation de St. Venant (VA) models in terms of computational effort and time
necessary for simulation is made. It is found that the time required for the VAM 10-
equation model to converge to a final steady state solution is approximately 2.5 times
larger than that of the 5-equation model and 3.4 times larger than that of the VA
model. In addition, the memory allocated for the VAM 10-equation model is found
to be four times larger than that of the S-equation model and eleven times larger than

that of the VA model.

4.2.3 DeVriend’s (1980) experiment

To test the ability of the present model to simulate the flow in a 90° curved flume

with uneven bed configuration or with varying cross-sectional area, the experiment
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results conducted by DeVriend (1980) are invoked. De Vriend conducted his
experiments at the Delft University of Technology and the Delft Hydraulics
Laboratories in a hydraulic flume model. The flume had a small depth to width and
width to radius of curvature ratios (R/26 = 8.3). The flume consisted of a 39 m
straight part with a symmetric parabolic cross-section followed by a curved part
(radius R. = 50 m), in which the deepest point of the bottom gradually shifted from
the middle of the channel to the outer bank. The length of the curved part was about
80 m. Figure 4.20 shows the plan view of the flume. The channel had a width of 26 =
6 m and the cross sections A, to B, were parabolic with zero longitudinal bed slope,
whereas the cross sections C; to E, were skewed with an average slope of 0.0003.
The cross sections B, and C, formed a smooth transition zone. The geometry of
channel sections is plotted in Figure 4.21. The areas of the wet cross-sections in the
straight and curved parts of the channel were about the same. Figure 4.22 illustrates

the bottom configuration in detail.

The flow was mainly friction controlled, the longitudinal component of the velocity
was predominant and the Froude number was small. The Chezy coefficient = 60
m'?/s was used. The bed of the channel had a small inclination to compensate for the
friction losses. The experiment with discharge of 0.463 m’/s is chosen to test the
numerical predictions. A non-uniform slope varying from 0.0 up to 0.0003 is used in

the numerical simulation.
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The degree of accuracy in measuring the magnitude and the direction of the velocities
was not recorded in the literature for this case. The method of measuring wasn’t

found either.

The simulation is performed using a finite element mesh composed of 1260 triangular
elements and 796 nodes (Figure 4.23). The designed mesh, shown in Figure 4.23, is

similar in characteristics to the mesh of the previous case.

The boundary conditions are specified as subcritical inflow, subcritical outflow and
no-flow across the vertical side walls. The boundary conditions specified at the
inflow section on the bottom are total discharge = 0.463 m/s, u; = 0.0, and v; = 0.0.
The boundary condition specified at the outflow section on the top is flow depth =
0.32 m. Initial values for the depth 4 are assumed while the rest of the variables (g,
qy, U1, VI, W , Ws, Wh, h; and ) are set to zero. The corresponding roughness height to
the measured Chezy coefficient is estimated to be s = 0.0015 m. The program is run

till a steady state solution is obtained.

The results are shown in Figures 4.24-4.45. Figures 4.24-4.32 compare the
experimental and numerically predicted depth averaged longitudinal velocity
distributions across the flume at different cross sections. Figures 4.33-4.41 compare
the experimental and numerically predicted transverse velocity distributions across

the flume at different cross sections. Figures 4.42-4.45 show the predicted surface,
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mean and bed velocity distributions by the VAM model and mean velocity

distribution by the VA model respectively.

It can be observed form Figures 4.24-4.32 that the proposed models, VAM linear
and/or VAM quadratic, simulate the longitudinal velocity distributions across the
flume at different locations very reasonably. This is not true near the walls as might
be expected, though, as a slip velocity condition is used and the wall friction effects
are not well treated or included in the proposed model. Also, it can be seen that the
predicted values are overestimated near the inner bank at sections Do-Eo. It can be
noticed that both VAM models behave almost the same and predict very slightly

more accurate results than the VA model.

Figures 4.42-4.44 show that the phenomenon of the velocity redistribution (as
mentioned before) is well predicted by the proposed model. The difference, in this
case, between the VAM predicted results (Figure 4.43) and those of VA (Figure 4.45)

is in fact very small.

Figures 4.34-4.41 suggest that the proposed numerical model simulation the
secondary flow is quite reasonable, particularly away from the walls, as the trends or
tendencies of the secondary flow are well preserved. The predicted values are,
however, underestimated at sections A;-B, and E,. This discrepancy is expected at
sections A;-B, as they represent the non-curved uniform part of the flume. As a

result, the secondary flow is expected to be too small or non-existent at these sections.

116



Locating the downstream boundary a bit further might adjust the underestimated
predicted values at section E,. In addition, these discrepancies in the results could be
due to the difficulty in measuring very small values of secondary flow in the
laboratory, particularly in a flume with such complicated bed topography. These
figures also suggest that both the VAM models give better results than the VA model
and the VAM linear model gives results slightly closer to the measurements than the

VAM quadratic model, though.

Despite the aforementioned discrepancies, the overall quality of the VAM simulated

solutions compare reasonably well with the measured data.

A comparison between the full VAM 10-equation and S-equation models is made.
This comparison is shown in Figures 4.46-4.50. From these figures, it can be easily
seen that the attained higher accuracy on applying the full VAM 10-equation model is

insignificant compared to the VAM 5-equation model.

A comparison between the VAM 10-equation, S-equation and the conventional 3-
equation de St. Venant (VA) models in terms of computational effort and time
necessary for simulation is made. It is found that the time required for the VAM 10-
equation model to converge to a final steady state solution is approximately 2.2 times
larger than that of the 5-equation model and 3 times larger than that of the VA model.

In addition, the memory allocated for the VAM 10-equation model is found to be four
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times larger than that of the 5-equation model and eleven times larger than that of the

VA model.

4.2.4 Steffler’s (1984) experiment

The experimental results conducted by Steffler (1984) at the Hydraulic Laboratory of
the University of Alberta in Edmonton are employed herein. The key reason behind
selecting these experiments is that detailed data of the longitudinal and transverse
velocity profile measurements are found for comparison purposes. Experiment run 1
is selected to test the predictions of the numerical model. Steffler performed his
experiments in a 270° curved rectangular flume, with a moderate curvature (R./2b =
3.4). The flume was 1.07 m in width, 0.21 m in depth, and the radius of curvature to
the centerline of the section was R, =3.66 m. Figure 4.51 illustrates the flume and the
locations of measurement stations used in his experiment. Cross sections at 0°, 90°,

180° and 270° stations are chosen for comparison with the numerical simulation,

though.

The experiments were run for two different flow conditions: run 1 with a velocity =
0.36 mV/s, a depth = 0.061 m and a Froude number = 0.491; and run 2 with a velocity
= 0.42 m/s, a depth = 0.085 m and a Froude number = 0.460. The bed slope was kept

constant at a value of 0.00083 and the dimensionless Chezy coefficient C. was equal

to 16.
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Measurements of velocity and turbulence were made and recorded in Steffler’s
(1984) thesis by using the Laser Doppler Anemometer (LDA). The error estimates in

measuring the velocity magnitude and direction were not recorded, though.

The simulation is performed using a finite element mesh composed of 1226 triangular
elements and 748 nodes (Figure 4.52). Similar criteria, as before, are applied on

designing the mesh shown in Figure 4.52.

The boundary conditions are specified as subcritical inflow, subcritical outflow and
no-flow across the vertical side walls. The boundary conditions specified at the
inflow section at the entrance on the right are total discharge = 0.0235 m%/s, u; = 0.0,
and v; = 0.0. The boundary condition specified at the outflow section is flow depth =
0.061 m. Initial values for the depth / are assumed while the rest of the variables (gx,
qy, U1, Vi, W, W, Wi, h; and h;) are set to zero. The corresponding roughness height to
the measured Chezy coefficient is estimated to be 4, = 0.0013 m. The program is run

till a steady state solution is obtained.

The results are shown in Figures 4.53-4.110. Figures 4.53-4.56 compare the
experimental and numerically predicted flow surface elevation across the flume at the
selected cross sections. Figures 4.57-4.60 compare the experimental and numerically
predicted depth averaged longitudinal velocity distributions across the flume at the
selected cross sections. Figures 4.61-4.80 compare the experimental and numerically

predicted longitudinal velocity profiles over the vertical direction. Figures 4.81-4.84
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show the experimental and numerically predicted transverse velocity distributions
across the flume at the selected cross sections. Figures 4.85-4.104 compare the
experimental and numerically predicted transverse surface velocity profiles over the
vertical direction. Figures 4.105-4.108 show the predicted surface, mean and bed
velocity distributions by the VAM model and mean velocity distribution by the VA
model respectively. Figures 4.109-4.110 show the simulated results of mean velocity

contours by the VAM quadratic and VA models respectively.

It can be clearly seen from Figures 4.53-4.56 that the proposed VAM models predict
identical values of the water depths across the flume at the selected locations. That

implies that the super-elevation phenomenon is very well preserved.

It can be noticed form Figures 4.57-4.60 that the proposed models, VAM linear
and/or VAM quadratic, simulate very accurately the longitudinal velocity
distributions across the flume at the selected locations and behave significantly better

than the VA model.
Figures 4.57-4.60, 4.105-4.107 and 4.109 illustrates that the phenomenon of velocity
redistribution, mentioned earlier, is well simulated. This is not the case by the VA

model, though (Figures 4.57-4.60, 4.108 and 4.110).

From Figures 4.61-4.80, it can be seen that the VAM models simulate the

longitudinal velocity profiles at different locations across the channel very
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satisfactorily and give significantly better results than the VA model. The surface
velocities close the inside wall (for example at y/b = -0.8 at sections 180° and 270°
respectively) are slightly overestimated, though. These discrepancies near the wall are
to be expected, though. This can be explained as a consequence of the lack of
numerical resolution near the wall and the omission of the physical mechanism of the
boundary layer near the walls. Figures 4.61-4.80 don’t only suggest that the VAM
models predict the depth-averaged flow significantly better than the VA model but
they also show that the VAM models simulate measured profile data accurately. The
VAM quadratic model seems to capture the shape of the longitudinal velocity profiles

much better than the VAM linear model.

As can be seen from Figures 4.81-4.84 that the VAM linear model simulates quite
well the secondary flow, while the results predicted by VAM quadratic model are
fairly good, particularly away from the wall. Apparently, the VAM models behave

significantly better than the VA model.

From Figures 4.85-4.104, it can be said that the agreement between the measured and
the VAM predicted results is fairly good. The main characteristic features of the
secondary flow such as the slope, the tendency of the velocity profile and the
development and decay mechanisms are well preserved at most of the compared
locations. The VAM linear model seems to simulate the slope of the secondary flow
profiles slightly better than the VAM quadratic model away from the side walls.

Noticeably, the VAM quadratic model simulates the secondary flow much better than
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the VAM linear model near the walls (y/b = -0.8 and 0.8). Obviously, the VAM

models behave significantly better than the VA model.

As a result, the overall quality of the VAM simulated solutions compare very well
with the measured values and the VAM model seem to predict the flow significantly

better than the VA model.

A comparison between the full VAM 10-equation and S5-equation models is made.
This comparison is shown in Figures 4.111-4.122. From these figures, it can be easily
noticed that the difference between the two solutions suggested by the full VAM 10-

equation and the VAM S-equation models is insignificant (as mentioned earlier).

A comparison between the VAM 10-equation, 5-equation and the conventional 3-
equation de St. Venant (VA) models in terms of computational effort and time
necessary for simulation is made. It is found that the time required for the VAM 10-
equation model to converge to a final steady state solution is approximately 2.3 times
larger than that of the 5-equation model and 3 times larger than that of the VA model.
In addition, the memory allocated for the VAM 10-equation model is found to be four

times larger than that of the 5-equation model and eleven times larger than that of the

VA model.
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4.2.5 Rozovskii’s (1961) experiment

Another set of experiments data that is suited for validating the capability of the
present model to simulate the flow field and predict the secondary flows in a bend
that exhibits strongly three dimensional characteristics is due to Rozovskii (1961).
Rozovskii performed his experiments in a 180° curved rectangular flume with a very
strong degree of curvature or a very sharp bend (R/2b = 1). Rozovskii’s experiments
have been used extensively by other investigators (e.g., Leschziner and Rodi (1979),
Johannesson (1988), Shimizu et al. (1990)) for verification of their analytical and
numerical models. The secondary velocities produced in his experiments were very
strong due to the sharp curvature of the channel used. Only the results of run 1 are
presented here to test the numerical predictions of the proposed model. Rozovskii’s
channel consisted of a 180° bend with a 6-m-long straight approach and a 3-m-long
straight exit. The width of the channel was 26 = 0.8 m, and the radius of the channel
centerline was R. = 0.8 m for the circular reach. Figure 4.123 shows the plan view of

the flume.

The entire channel was set on a horizontal bed. The flow depth at entrance was 0.063
m, the flow rate was 0.0123 m’/s and the mean entry velocity was 0.25 m/s. The flow
depth at the downstream end was 0.053 m. The channel bottom was smooth and

Chezy coefficient was 60 m"%/s.

Rozovskii obtained and presented results for surface elevation contours as well as for

depth averaged tangential velocities. In addition, he presented results for vertical
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profiles of tangential and transverse velocity components. The degree of accuracy in
measuring the magnitude and the direction of the velocities could not be found in the
collected materials of the literature for this case. The method of measuring was not

found either.

The simulation is performed using a finite element mesh composed of 2060 triangular
elements and 1332 nodes (Figure 4.124). The mesh is designed such that additional
nodes are added to the curved part of the flume to accommodate the expecied high
velocity gradients in this area. Conversely, fewer nodes are placed in the straight parts
of the flume as more uniform flow is to be expected in these areas. It can also be seen
in Figure 4.124 that additional more nodes are added along the measured cross

sections to facilitate the extraction of the cross section data for comparison purposes.

The boundary conditions are specified as subcritical inflow, subcritical outflow and
no-flow across the vertical side walls. The boundary conditions specified at the
inflow section at the entrance on the left are total discharge = 0.0123 m3/s, u; = 0.0,
and v; = 0.0. The boundary condition specified at the outflow section at the exit on
the left is flow depth = 0.053 m. Initial values for the depth / are assumed while the
rest of the variables (¢, gy, %1, Vi, W , Ws, Wi, By and h2) are set to zero. Based on the
measured Chezy coefficient, the corresponding roughness height is estimated to be &;

= 0.0004 m. The program is run till a steady state solution is obtained.
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The results are shown in Figures 4.125-4.184. Figures 4.125-4.127 compare the water
surface elevation along the left side, the center and the right side of the channel
respectively. Figures 4.128-4.137 compare the experimental and numerically
predicted depth averaged longitudinal velocity distributions across the flume at
different cross sections. Figures 4.138-4.158 compare the experimental and
numerically predicted longitudinal velocity profiles over the vertical direction.
Figures 4.159-4.177 compare the experimental and numerically predicted transverse
velocity profiles over the vertical direction. Figures 4.178-4.181 show the predicted
surface, mean and bed velocity distributions by the VAM model and mean velocity
distribution by the VA model respectively. Figures 4.182-4.183 show the simulated
results of mean velocity contours by the VAM quadratic and the VA models
respectively. Figure 4.184 shows the simulated results of water surface elevation

contours by the VAM quadratic model.

It can be obviously seen from Figures 4.125-4.127 that the proposed VAM models
predict favorably the water surface elevations along the flume at different locations. It
can be observed from Figures 4.128-4.137 that the proposed models, VAM linear
and/or VAM quadratic, simulate the longitudinal velocity distributions across the
flume at different locations very well and behave significantly better than the VA
model, particularly inside the bend, as to be expected. This is not true near the walls,
though. The reason for this discrepancy was mentioned earlier. Both VAM models

seem to behave almost the same.
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Figures 4.128-4.137, 4.178-4.180 and 4.182 show clearly that the phenomenon of the
velocity redistribution, mentioned earlier, is well simulated. This is not quite the case
by the VA model, though (Figures 4.128-4.137, 4.181 and 4.183). Figure 4.184

clearly shows that the super-elevation phenomenon is well predicted.

From Figures 4.138-4.158, it can be clearly seen that the predicted longitudinal
velocity profiles reveal very satisfactory agreement with the observed ones. The
surface velocity at cross-section 8 (at y/b = -0.5) is slightly overestimated, though.
The VAM quadratic model appears to predict better results than the VAM linear
model at most of the locations, except at cross-section 3 (y/b = 0.5), cross-section 6
(y/b = -0.25), cross-section 8 (y/b = -0.5) and cross-section 12 (y/b = -0.5 and 1)
where the reverse is obviously true. It is clear that the VAM models predict the flow

significantly better than the VA model.

From Figures 4.159-4.177, it can be said that the agreement between the measured
and the VAM predicted results are good in general. The predicted results by the VAM
models at cross-section 3 are said to be only fair (Figures 4.159-4.163). That could be
expected, as cross-section 3 is located at the uniform part of the flume where the
measured secondary flow is expected to be too small. As a result, any error in
measuring could lead to such discrepancy. From Figures 4.164-4.172 (cross section
6), it can be seen that the VAM linear model gives better results than the VAM
quadratic model, except near the wall where the reverse is obviously true. This is not

the case at cross-section 8, however, as the VAM quadratic model seems to give
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better results particularly near the walls (y/b =-1 and 1). These observations suggest
that there is not much difference in the results for different assumed distribution
shapes for the velocities. Obviously, it can be observed that the accuracy attained by

the VAM models is significantly better than that of the VA model.

Despite the above discrepancies, the main characteristic features of the secondary
flow such as the slope, the tendency of the profiles, and the development and decay
mechanisms are still well preserved. It should be mentioned, herein, that Yeh and
Kennedy (1993a) recommended that circumspection must be evaluated on comparing
any predicted or calculated secondary flow results with those measured by Rozovskii
(1961). They believed that some uncertainty surrounded the interpretation of
Rozovskii’s reported secondary velocities, as their translational and rotational

components could not be separated.

Despite the aforementioned discrepancies, the overall quality of the VAM simulated
solutions compare reasonably well with the measured values and the VAM model

seems to predict the flow significantly better than the VA model.

A comparison between the VAM 10-equation, S-equation and the conventional 3-
equation de St. Venant (VA) models in terms of computational effort and time
necessary for simulation is made. It is found that the time required for the VAM 10-
equation model to converge to a final steady state solution is approximately 3.2 times

larger than that of the S-equation model and 5 times larger than that of the VA model.
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In addition, the memory allocated for the VAM 10-equation model is found to be four
times larger than that of the 5-equation model and eleven times larger than that of the

VA model.

4.2.6 Chang’s (1971) experiment

Chang (1971) performed a series of experiments in rectangular meandering channels
measuring with both flow and pollutant concentration. One of his channels with a
single meander, which consists of two reversing 90° channel bends, is used to test the
reliability of the proposed model to predict the features of a reversing flow. Chang
performed his experiments in a channel with moderate curvature (R./26 = 3.6). The
channel had a smooth bed and uniform 90° bends in alternating directions
interconnected by a straight reach. The channel was 2.34 m wide, the radius of the
channel centerline was R, = 8.53 m, the interconnected straight part was 4.27 m, and
the straight inlet and outlet reaches was 2.13 m each. Figure 4.185 shows the plan

view of this channel.

The water depth was 0.115 m and the velocity was 0.366 m/s. The measurements

were carried out along the second bend of the channel.

Measurements of the longitudinal and secondary flow profiles, the surface transverse
velocity or the method of measuring could not be found in the collected materials of
the literature for this case. The error estimates in measuring the velocity magnitude

and direction could not be found either.
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The simulation is performed using a finite element mesh composed of 1955 triangular
elements and 1200 nodes (Figure 4.186). The designed mesh, shown in Figure 4.186,

is similar in characteristics to the first three experimental cases.

The boundary conditions are specified as subcritical inflow, subcritical outflow and
no-flow across the vertical side walls. The boundary conditions specified at the
inflow section on the left are total discharge = 0.0985 m’/s, u; = 0.0, and v, = 0.0. The
boundary condition specified at the outflow section on the right is flow depth = 0.115
m. Initial values for the depth 4 are assumed while the rest of the variables (gx, g,, 4,
Vi, W, wp, wp, h; and h;) are set to zero. The roughness height is estimated to be ;=

0.0015 m. The program is run till a steady state solution is obtained.

The results are shown in Figures 4.187-4.199. Figures 4.187-4.193 compare the
experimental and numerically predicted depth averaged longitudinal velocity
distributions across the flume at different cross sections. Figures 4.194-4.197 show
the predicted surface, mean and bed velocity distributions by the VAM model and
mean velocity distribution by the VA model respectively. Figures 4.198-4.199 show
the simulated results of mean velocity contours by the VAM quadratic and VA

models respectively.

It can be observed form Figures 4.187-4.193 that the proposed models, VAM linear

and/or VAM quadratic, simulate the longitudinal velocity distributions across the
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flume at different location very well and behave significantly better than the VA
model. This is not, however, quite true near the walls. It can be also observed that the
VAM quadratic model simulates the flow slightly more accurately than the VAM

linear model.

Figures 4.187-4.193, 4.194-4.196 and 4.198 reveal that the phenomenon of the
velocity redistribution is well predicted. This is not the case by the VA model, though

(Figures 4.187-4.193, 4.197 and 4.199).

A comparison between the full VAM 10-equation and S5-equation models is made.
The comparison is carried out in terms of degree of accuracy obtained. This
comparison is shown in Figures 4.200-4.201. These figures show clearly that the
attained higher accuracy on applying the full VAM 10-equation model is insignificant

compared to the VAM S-equation model.

A comparison between the VAM 10-equation, S-equation and the conventional 3-
equation de St. Venant (VA) models in terms of computational effort and time
necessary for simulation is made. It is found that the time required for the VAM 10-
equation model to converge to a final steady state solution is approximately 2.6 times
larger than that of the S-equation model and 3.6 times larger than that of the VA
model. In addition, the memory allocated for the VAM 10-equation model is found
to be four times larger than that of the 5-equation model and eleven times larger than

that of the VA model.
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4.3 Effect of Numerical Discretization on the Accuracy of the Results

The finite element meshes generated for De Vriend (1976), Steffler (1984) and
Chang’s (1971) experiments are refined to test the effect of numerical discretization
on the accuracy of the results. These refinements are limited only by the available
computer memory. The refined finite element meshes for these three cases are shown
in Figures 4.202-4.204 (the applied numerical discretizations Ax and 4y are of the

order of 4). The program is run till a steady state solution is obtained.

The results are shown in Figures 4.205-4.235. Figures 4.205-4.216 compare the
experimental and numerically predicted depth averaged longitudinal velocity
distributions, by the coarse and fine meshes, across the flume. Figures 4.217-4.224
compare the experimental and numerically predicted longitudinal velocity profiles, by
the coarse and fine meshes, over the vertical direction. Figures 4.225-4.232 compare
the experimental and numerically predicted transverse velocity profiles, by the coarse
and fine meshes, over the vertical direction. Figures 4.233-4.234 show the
distributions of the extra non-hydrostatic terms A; and A> across the flume for
Steffler’s (1984) run 1 at cross section 180 degrees. Figure 4.235 shows the
distribution of the vertical velocity, w, across the flume for Steffler’s (1984) run 1 at

cross section 180 degrees.

From Figures 4.205-4.232, it can be seen that the results obtained by the fine meshes

are generally more accurate, particularly near the wall, than those obtained by the
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coarse meshes. It can be noticed from Figures 4.205-4.224 that the improvement of
the results obtained by the fine meshes over those by the coarse meshes is small
particularly away from the wall. This is not however the case for the secondary flow
profiles (Figures 4.225-4.232). It can be clearly observed from Figures 4.225-4.232
that the results obtained by the fine meshes are significantly more accurate than those
of the coarse meshes. In addition, it can be observed from Figures 4.233-4.235 that
the extra non-hydrostatic pressure terms 4; and h> and the vertical velocity, w,

become of more importance near the wall and are only captured by the refined mode.

A comparison between the model with fine and coarse meshes in terms of
computational effort and time necessary for simulation is made. The number of nodes
for the coarser meshes of DeVriend (1976), Steffler (1984) and Chang (1972) reads
876, 748 and 1200 nodes respectively, while for the finer meshes it reads 5738, 5872
and 5881 nodes respectively. It is found that the time required for the model with a
finer mesh to converge to a final steady state solution is approximately 6.5 times
larger than that of the model with coarser mesh. In addition, the memory allocated for
the model with finer mesh is f01.;nd to be 14 times larger than that of the model with

coarser mesh.

As a result, this study recommends the use of very fine finite element meshes, in
which the applied numerical discretizations Ax and Ay are of the order of /4, when a
high degree of accuracy of the predicted secondary flows near the channel walls is

sought.
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A comparison between the full VAM 10-equation and S-equation models, for the
finer meshes, is further made. The comparison is carried out in terms of degree of
accuracy obtained. This comparison is shown in Figures 4.236-4.243. These figures
show clearly that the attained higher accuracy on applying the full VAM 10-equation
model is insignificant compared to the VAM S-equation model. This is may be due
to the fact that even though the non-hydrostatic extra terms 4; and /> become more
significant near the wall their values are still small such that no significant

improvements are obtained over the 5-equation model.

4.4 A Field Test Case

De Vriend and Geldof (1983) compared the results of an intensive numerical study
with measured field data in two consecutive sharply curved short bends in the river
Dommel, The Netherlands. They studied a 285 m long reach of the river Dommel,
approximately 3 km downstream of its crossing with the border between Belgium and
The Netherlands. The same reach is chosen in this study to test the applicability of the
proposed model to simulate real flow cases in channels of rather simple
configuration. This reach contained two opposite bends of almost 90° with a short
straight reach in between and almost straight reaches upstream and downstream. The

location and the layout of the study area are shown in Figure 4.244.

Measurements of the bed geometry as well as flow velocity were performed. A

contour map of bed level in central part of the study area is shown in Figure 4.245.
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The derived discharge from the velocity measurements varied from 1.21 to 1.53 m’/s.
For a discharge of 1.27 m®/s, a water surface width of 6.1 m and an average water

depth of 0.5 m were recorded. That corresponded to a Chezy factor of about 30 m'?/s.

The simulation is performed using a finite element mesh composed of 6487 triangular
elements and 3561 nodes (Figure 4.246). Similar criteria, as before, are used to design

the mesh shown in Figure 4.246.

The boundary conditions are specified as subcritical inflow, subcritical outflow and
no-flow across the vertical side walls. The boundary conditions specified at the
inflow section on the bottom right are total discharge = 1.27 m’/s, u; = 0.0, and v; =
0.0. The boundary condition specified at the outflow section on the top left is water
surface elevation = 26.75 m. Initial values for the depth 4 are assumed while the rest
of the variables (qx, qy, w1, Vi, W, Ws, Wi, h; and h;) are set to zero. The roughness
height is estimated for the given Chezy to be ks = 0.129 m. The program is run till a

steady state solution is obtained.

The results are shown in Figures 4.247-4.254, d, being the reference depth and is
equal to 0.5 m. Figures 4.247-4.254 compare the measured and numerically predicted
depth averaged longitudinal velocity distributions across the study section of the river

Dommel at different locations.

134



It can be observed form Figures 4.247-4.254 that the proposed model, VAM linear,
simulates the longitudinal velocify distributions across the river at different locations
reasonably well. The model seems however to underestimate the velocities near the
wall at most of the cross sections particularly in the deeper parts (for example
sections 21 and 33). It can be also noticed that the VAM model simulates the flow

only slightly more accurately than the VA mode:.

4.5 Summary and Conclusions

In this study the developed vertically averaged and moment (VAM) equation model is
investigated for modeling curved open channel flows. The VAM with assumed linear
and/or quadratic distributions of horizontal velocity components and quadratic

vertical velocity and pressure distributions are used in the simulations.

The vertically averaged and moment equations are discretized and modeled using a
hybrid Petrov-Galerkin and Bubnov-Galerkin finite element schemes. The vertically
averaged continuity, longitudinal and transverse momentum, and moment of
longitudinal and transverse momentum equations are upwinded using a two-
dimensional Characteristic-Dissipative Galerkin finite element scheme. The rest of

the equations are modeled using the Bubnov-Galerkin finite element scheme.
Triangular elements with linear basis functions for all variables are used. The time

derivatives are approximated using a weighted-implicit finite difference formulation.

For the resulting implicit set of non-linear algebraic equations a Newton-Raphson
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technique is used to advance the solution to the next time level and to reach a steady

state solution as well.

The proposed model is tested for simulating the main as well as the secondary flow
features in curved open channels with encouraging success. Five experimental data
sets and a field case from the literature are selected. One of the merits of the proposed
VAM model, that should be mentioned herein, is that the evaluation of the secondary
flow obtained by applying the moment of momentum equations only and no further
assumption or experimental constant is required for the prediction of the secondary

flow field.

Coarse and fine generated finite element meshes are used in this study. A comparison
between the VAM 10-equation, 5-equation and the conventional 3-equation de St.
Venant (VA) models in terms of computational effort, time necessary for simulation

and degree of accuracy obtained is made.

The conclusions of this study are stated as follows:

1. This study suggests the validity of the proposed vertically averaged and moment
model for predicting the flow features in curved open channels. Mainly, the
characteristic features of the flow in curved channels such as water surface super-
elevation, secondary flow and longitudinal velocity redistribution are well

represented. This study explains that not only does the proposed model represent
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the depth-averaged flow velocities significantly better than the conventional VA
model, but it also captures the shape of the longitudinal velocity profiles and the
tendency of the secondary flow profiles over the vertical direction. The
satisfactory performance of the VAM equations in these cases may be attributed
to the fact that a higher degree of vertical detail incorporated in the model. This is
not however true for the field case used in this study as the two models seem to

behave almost the same.

The VAM quadratic model seems to behave somewhat better than the VAM
linear model in simulating the vertical distribution of longitudinal velocity,
whereas it seems to behave almost the same in predicting the secondary flow.
Predictions of overall flow characteristics are very close, though. These
observations suggest that the results are not very sensitive to different

approximations of the pre-assumed velocity distribution shapes.

More accurate results are obtained by the finer meshes compared to those of the
coarser meshes. This is to be expected as the numerical discretization errors

become smaller (Ax and Ay are of the order of 4).

It is found that the time required for the VAM 10-equation model to converge to a
final steady state solution is approximately 2.5 times larger than that of the S-
equation model and 3.4 times larger than that of the VA model. In addition, the

memory allocated for the VAM 10-equation model is found to be four times
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larger than that of the S-equation model and eleven times larger than that of the

VA model.

5. It is found that the attained higher accuracy on applying the full VAM 10-
equation model is insignificant compared to the VAM S-equation model. This is
may be due to the fact that even though the non-hydrostatic extra terms become
more significant near the wall their values are still small such that no significant

improvements are obtained over the 5-equation model.

As a result, this study suggests that the VAM 5-equation model should be adequate to
be applied for cases involving calculation of secondary flow. Thus computational

effort and computer memory are conserved while remaining the similar accuracy.

Finally, this study recommends the replacement of the standard conventional de St.
Venant model by the vertically averaged and moment 5-equation model (VAM linear
or quadratic) in terms of depth or vertically averaged modeling on simulating curved
open channels where the secondary flow and its effects are important. This should be
however true for large-scale models where the generated numerical meshes are not
very fine. In addition, this study recommends the use of very fine finite element
meshes when a high degree of accuracy of the predicted secondary flows near the
walls is sought. The applied numerical discretizaions in this case should be of the

order of the flow depth.
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Figure 4.3 The comparison of the longitudinal velocity distribution across
the flume for DeVriend (1976) at cross-section O degrees
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Figure 4.4 The comparison of the longitudinal velocity distribution across
the flume for DeVriend (1976) at cross-section 30 degrees
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Figure 4.5 The comparison of the longitudinal velocity distribution across

the flume for DeVriend (1976) at cross-section 60 degrees

X-Sec 90 degrees

0.80
. 0704 e VAM Linear
® o Experiment
E 060 { To—To e RS L VA
Z 0.50 - — — — VAM quad.

0.40 x T ;

-1.00 -0.50 0.00 0.50 1.00
y/b

Figure 4.6 The comparison of the longitudinal velocity distribution across

the flume for DeVriend (1976) at cross-section 90 degrees
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Figure 4.7 The comparison of the longitudinal velocity distribution across
the flume for DeVriend (1976) at cross-section 120 degrees
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Figure 4.8 The comparison of the longitudinal velocity distribution across
the flume for DeVriend (1976) at cross-section150 degrees
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X-Sec 180 degrees
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Figure 4.9 The comparison of the longitudinal velocity distribution across
the flume for DeVriend (1976) at cross-section180 degrees
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VAM 10-eq Linear
X-Sec 30 degrees o Experiment
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Figure 4.17 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity distribution across the flume for DeVriend's
(19786) at cross-section 30 degrees
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Figure 4.18 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity distribution across the flume for DeVriend's
(1976) at cross-section S0 degrees
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X-Sec 180 degrees
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Figure 4.19 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity distribution across the flume for DeVriend's
(1976) at cross-section 180 degrees
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Figure 4.21 Cross-sections geometry of DeVriend’s (1980) experiment (adapted from
DeVriend, 1980)
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Figure 4.22 Depth contours and characteristics of DeVriend’s (1980) experiment
(adapted from DeVriend, 1980)
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Figure 4.24 The comparison of the longitudinal velocity distribution across the
flume for DeVriend (1980) at cross-section A,
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Figure 4.25 The comparison of the longitudinal velocity distribution across the
flume for DeVriend (1980) at cross-section A,
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Figure 4.26 The comparison of the longitudinal velocity distribution across the

flume for DeVriend (1980) at cross-section B,
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Figure 4.27 The comparison of the longitudinal velocity distribution across the

flume for DeVriend (1980) at cross-section B,
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Figure 4.28 The comparison of the longitudinal velocity distribution across the
flume for DeVriend (1980) at cross-section C,
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Figure 4.29 The comparison of the longitudinal velocity distribution across the
flume for DeVriend (1980) at cross-section C,
| 4
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Figure 4.30 The comparison of the longitudinal velocity distribution across the
flume for DeVriend (1980) at cross-section D,
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Figure 4.31 The comparison of the longitudinal velocity distribution across the

flume for DeVriend (1980) at cross-section D,
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Figure 4.32 The comparison of the longitudinal velocity distribution across the

flume for DeVriend (1980) at cross-section E,
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Figure 4.33 The comparison of the transverse surface velocity distribution
across the flume for DeVriend (1980) at cross-section A,

X-Sec A,
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Figure 4.34 The comparison of the transverse surface velocity distribution
across the flume for DeVriend (1980) at cross-section A,
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Figure 4.35 The comparison of the transverse surface velocity distribution
across the flume for DeVriend (1980) at cross-section B,
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Figure 4.36 The comparison of the transverse surface velocity distribution
across the flume for DeVriend (1980) at cross-section B,
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Figure 4.37 The comparison of the transverse surface velocity distribution
across the flume for DeVriend (1980) at cross-section C,
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Figure 4.38 The comparison of the transverse surface velocity distribution
across the flume for DeVriend (1980) at cross-section C,
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Figure 4.39 The comparison of the transverse surface velocity distribution
across the flume for DeVriend (1980) at cross-section D,
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Figure 4.40 The comparison of the transverse surface velocity distribution
across the flume for DeVriend (1980) at cross-section D,
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Figure 4.41 The comparison of the transverse surface velocity distribution
across the flume for DeVriend (1980) at cross-section E,
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Figure 4.46 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity distribution across the flume for DeVriend's

(1980) at cross-section B,

X-Sec C,
0.75 - s

VAM 10-eq Quadratic

Experiment
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Figure 4.47 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity distribution across the flume for DeVriend's

(1980) at cross-section C,
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Figure 4.48 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity distribution across the flume for DeVriend's
(1980) at cross-section C;
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Figure 4.49 The comparison of applying VAM 5- against 10-equation models
for transverse velocity distribution across the flume for DeVriend's
(1980) at cross-section B,
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Figure 4.50 The comparison of applying VAM 5- against 10-equation models
for transverse velocity distribution across the flume for DeVriend's

(1980) at cross-section C,
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Figure 4.53 The comparison of surface elevation across the flume for Steffler's
(1984) run 1 at cross-section O degrees
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Figure 4.54 The comparison of surface elevation across the flume for Steffler's
(1984) run 1 at cross-section SO degrees
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Figure 4.55 The comparison of surface elevation across the flume for Steffler's

(1984) run 1 at cross-section 180 degrees

X-Sec 270 Degrees

0.10
VAM Linear

-— O OO O O o o OO0 o Experiment
E O 05 e 5 N R VA
< — — — VAM quad.

0.00 r . ;

-1.00 -0.50 0.00 0.50 1.00
y/b

Figure 4.56 The comparison of surface elevation across the flume for Steffler's

(1984) run 1 at cross-section 270 degrees

181



X-sec 0 Degrees

0.50
e e O O VAM Linear
) S O Experiment
E 0 25 o VA
3 — — — VAM quad.
0.00 . . .
-1.00 -0.50 0.00 0.50 1.00

y/b

Figure 4.57 The comparison of longitudinal velocity distribution across the
flume for Steffler's (1984) run 1 at cross-section O degrees
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Figure 4.58 The comparison of longitudinal velocity distribution across the
flume for Steffler's (1984) run 1 at cross-section 90 degrees
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Figure 4.59 The comparison of longitudinal velocity distribution across the
flume for Steffler's (1984) run 1 at cross-section 180 degrees
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Figure 4.60 The comparison of longitudinal velocity distribution across the
flume for Steffler's (1984) run 1 at cross-section 270 degrees
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Figure 4.61 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section O degrees and y/b = -0.8
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rigure 4.62 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section O degrees and y/b = -0.4
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Figure 4.63 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 0 degrees and y/b =0

X-sec 0 Degrees (y/b) = 0.4

1.00
0.80 A
0.60 -
0.40 -
0.20 -

(z-zb)/h

0.00 +o

0.00

o

VAM Linear
O Experiment

— — — VAM quad.

Oy

b i

0.40 0.80 1.20
u(m/s)

Figure 4.64 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section O degrees and y/b = 0.4
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Figure 4.65 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 0 degrees and y/b = 0.8
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Figure 4.66 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 90 degrees and y/b = -0.8
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Figure 4.67 The comparison of longitudinal velocity profile for Steffler's (1984)

run 1 at cross-section 90 degrees and y/b = -0.4
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Figure 4.68 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section S0 degrees and y/b =0
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Figure 4.69 The comparison of longitudinal velocity profile for Steffler's (1984)

run 1 at

cross-section 90 degrees and y/b = 0.4

188



X-sec 90 Degrees (y/b) = 0.8
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Figure 4.70 The comparison of longitudinal velocity profile for Steffler's (1984)

run 1 at cross-section 90 degrees and y/b = 0.8
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Figure 4.71 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 180 degrees and y/b = -0.8

X-sec 180 Degrees (y/b = -0.4)
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Figure 4.72 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 180 degrees and y/b = -0.4
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Figure 4.73 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 180 degrees and y/b =0

X-sec 180 Degrees (y/b) = 0.4
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Figure 4.74 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 180 degrees and y/b = 0.4
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Figure 4.75 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 180 degrees and y/b = 0.8
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Figure 4.76 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 270 degrees and y/b =-0.8
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Figure 4.77 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 270 degrees and y/b = -0.4
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Figure 4.78 The comparison of longitudinal velocity profile for Steffler's (1984)

run 1 at cross-section 270 degrees and y/b = 0

X-sec 270 Degrees (y/b) = 0.4

u(m/s)

1.00 o
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Figure 4.79 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 270 degrees and y/b = 0.4

194



X-sec 270 Degrees (y/b) = 0.8

1.00
< 080 1 VAM Linear
= 0.60 - o Experiment
S o404  J e VA
=~ 0.20 — — — VAM quad.

0.00 o : :

0.00 0.40 0.80 1.20
u(m/s)

Figure 4.80 The comparison of longitudinal velocity profile for Steffler's (1984)
run 1 at cross-section 270 degrees and y/b = 0.8
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Figure 4.81 The comparison of transverse surface velocity distribution across
the flume for Steffler's (1984) run 1 at cross-section O degrees
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Figure 4.82 The comparison of transverse surface velocity distribution across
the flume for Steffler's (1984) run 1 at cross-section 90 degrees
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Figure 4.83 The comparison of transverse surface velocity distribution across

the flume for Steffler's (1984) run 1 at cross-section 180 degrees
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Figure 4.84 The comparison of transverse surface velocity distribution across
the flume for Steffler's (1984) run 1 at cross-section 270 degrees
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Figure 4.85 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section O degrees and y/b = -0.8
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Figure 4.86 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 0 degrees and y/b =-0.4
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Figure 4.87 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section O degrees and y/b =0

X-sec 0 Degrees (y/b) = 0.4
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Figure 4.88 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section O degrees and y/b = 0.4
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Figure 4.89 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 0 degrees and y/b = 0.8
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Figure 4.90 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 90 degrees and y/b = -0.8
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Figure 4.91 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 90 degrees and y/b = -0.4
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Figure 4.92 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section S0 degrees and y/b =0

X-sec 90 Degrees (y/b) = 0.4
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Figure 4.93 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 90 degrees and y/b = 0.4
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Figure 4.94 The comparison of transverse velocity profile for Steffler's (1 984)
run 1 at cross-section 90 degrees and y/b = 0.8
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Figure 4.95 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 180 degrees and y/b = -0.8
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Figure 4.96 The comparison of transverse velocity profile for Steffler's (1984)

run 1 at cross-section 180 degrees and y/b =-0.4
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Figure 4.97 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 180 degrees and y/b =0
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Figure 4.98 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 180 degrees and y/b = 0.4
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Figure 4.99 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 180 degrees and y/b = 0.8

206



X-sec 270 Degrees (y/b = -0.8)

1.00 —p
= 0.80 1 VAM Linear
= 0.60 ] o Experiment
4040 | & VA

0.20 % — — — VAM quad.

0.00 : o8 :

-0.40 -0.20 0.00 0.20 0.40
v(m/s)

Figure 4.100 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 270 degrees and y/b = -0.8
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Figure 4.101 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 270 degrees and y/b = -0.4
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Figure 4.102 The comparison of transverse velocity profile for Steffler's (1984)

run 1 at cross-section 270 degrees and y/b =0
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Figure 4.103 The comparison of transverse velocity profile for Steffler's (1984)

run 1 at cross-section 270 degrees and y/b = 0.4
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Figure 4.104 The comparison of transverse velocity profile for Steffler's (1984)
run 1 at cross-section 270 degrees and y/b = 0.8
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1

0.00 ; I - .

-1.00 -0.50 0.00 0.50 1.00
y/b

Figure 4.111 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity distribution across the flume for Steffler's
(1984) run 1 at cross-section 180 degrees
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Figure 4.112 The comparison of applying VAM 5- against 10-equation models
for transverse velocity distribution across the flume for Steffler's
(1984) run 1 at cross-section 180 degrees
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Figure 4.113 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity profile for Steffler's (1984) run 1 at cross-

section 180 degrees and y/b = -0.4

X-sec 180 Degrees (y/b = 0.0)
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Figure 4.114 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity profile for Steffler's (1984) run 1 at cross-

section 180 degrees and y/b =0
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Figure 4.115 The comparison of applying VAM 5- against 10-equation models
for transverse velocity profile for Steffler's (1984) run 1 at cross-
section 180 degrees and y/b = -0.8
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Figure 4.116 The comparison of applying VAM 5- against 10-equation models
for transverse velocity profile for Steffler's (1984) run 1 at cross-

section 180 degrees and y/b = 0.8
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Figure 4.117 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity distribution across the flume for Steffler's
(1984) run 1 at cross-section 270 degrees
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Figure 4.118 The comparison of applying VAM 5- against 10-equation models
for transverse velocity distribution across the flume for Steffler's
(1984) run 1 at cross-section 270 degrees
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Figure 4.119 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity profile for Steffler's (1984) run 1 at cross-
section 270 degrees and y/b = -0.4
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Figure 4.120 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity profile for Steffler's (1984) run 1 at cross-
section 270 degrees and y/b =0
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Figure 4.121 The comparison of applying VAM 5- against 10-equation models
for transverse velocity profile for Steffler's (1984) run 1 at cross-
section 270 degrees and y/b = -0.8
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Figure 4.122 The comparison of applying VAM 5- against 10-equation models
for transverse velocity profile for Steffler's (1984) run 1 at cross-
section 270 degrees and y/b = 0.8
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Water Surface Elevation

H (m)

VAM Linear

0.12 - O  Experiment
------ VA
— — — VAM quad.
0.08 -
Q——0-—Qa o o o
0.04 -
0.00 - T T : )
2.00 4.00 6.00 8.00 10.00 12.00
L (m)

Figure 4.125 The comparison of surface elevation for Rozovskii's (1961)
run 1 along the left side of the channel
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Figure 4.126 The comparison of surface elevation for Rozovskii's (1961)
run 1 along the center line of the channel
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Figure 4.127 The comparison of surface elevation for Rozovskii's (1961)
run 1 along the right side of the channel
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Figure 4.128 The comparison of longitudinal velocity distribution across
the flume for Rozovskii's (1961) run 1 at cross-section 1

X-Sec 2

0.50

0.40 -
- 0.30 4 VAM I..inear
E c:ﬁsmc-n-naaamg-:m-—ha o Experiment
5020y ] p VA

0.10 - ~ — -~ VAM quad.

0.00 T T T

-1.00 -0.50 0.00 0.50 1.00

y/b

Figure 4.129 The comparison of longitudinal velocity distribution across
the flume for Rozovskii's (1961) run 1 at cross-section 2
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Figure 4.130 The comparison of longitudinal velocity distribution across
the flume for Rozovskii's (1961) run 1 at cross-section 3
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Figure 4.131 The comparison of longitudinal velocity distribution across
the flume for Rozovskii's (1961) run 1 at cross-section 5
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Figure 4.132 The comparison of longitudinal velocity distribution across
the flume for Rozovskii's (1961) run 1 at cross-section 6
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Figure 4.133 The comparison of longitudinal velocity distribution across
the flume for Rozovskii's (1961) run 1 at cross-section 9
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Figure 4.134 The comparison of longitudinal velocity distribution across
the flume for Rozovskii's (1961) run 1 at cross-section 10
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Figure 4.135 The comparison of longitudinal velocity distribution across
the flume for Rozovskii's (1961) run 1 at cross-section 11
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Figure 4.136 The comparison of longitudinal velocity distribution across
the flume for Rozovskii's (1961) run 1 at cross-section 12
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Figure 4.137 The comparison of longitudinal velocity distribution across
the flume for Rozovskii's (1961) run 1 at cross-section 13
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Figure 4.138 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 3 and y/b = -1
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Figure 4.139 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 3 and y/b =-0.5
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Figure 4.140 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section3andy/b =0
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Figure 4.141 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 3 and y/b = 0.5
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Figure 4.142 The comparison of longitudinal velocity profile for Rozovskii's

(1961) run 1 at cross-section 3 and y/b = 1
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Figure 4.143 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b =-0.5

X-Sec 6, y/b =-0.25

1.00 —10
0.75 4 VAM Linear
- i o Experiment
|08+ £ . VA
0.25 A — — — VAM quad.
0.00 +—o0-2 : :
0.00 0.50 1.00

u(m/s)

Figure 4.144 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b = -0.25
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Figure 4.145 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b =0
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Figure 4.146 The comparison of longitudinal velocity profile for Rozovskii's

(1961) run 1 at cross-section 6 and y/b = 0.25
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Figure 4.147 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b = 0.5
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Figure 4.148 The comparison of longitudinal velocity profile for Rozovskii's

(1961) run 1 at cross-section 6 and y/b = 0.75
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Figure 4.149 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b = 1
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Figure 4.150 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 8 and y/b = -0.5
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Figure 4.151 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 8 and y/b =0
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Figure 4.152 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 8 and y/b = 0.5
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Figure 4.153 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 8 and y/b = 1
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0.50 1.00
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Figure 4.154 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 12 and y/b = -1
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Figure 4.155 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 12 and y/b = -0.5
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Figure 4.156 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 12and y/b =0
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Figure 4.157 The comparison of longitudinal velocity profile for Rozovskii's
(1961) run 1 at cross-section 12 and y/b = 0.5
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Figure 4.158 The comparison of longitudinal velocity profile for Rozovskii's

(1961) run 1 at cross-section 12 and y/b = 1
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Figure 4.159 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 3 and y/b = -1
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Figure 4.160 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 3 and y/b = -0.5
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Figure 4.161 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 3 and y/b =0
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Figure 4.162 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 3 and y/b = 0.5
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Figure 4.163 The comparison of transverse velocity profile for Rozovskii's

(1961) run 1 at cross-section 3 and y/b = 1
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Figure 4.164 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b = -1
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Figure 4.165 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b = -0.75
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Figure 4.166 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b = -0.5
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Figure 4.167 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b = -0.25
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Figure 4.168 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b =0
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Figure 4.169 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b = 0.25
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Figure 4.170 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b = 0.5
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Figure 4.171 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 6 and y/b = 0.75
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X-Sec 6, y/b = 1
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0.25 |

0.00 .
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VAM Linear
0o Experiment

— — — VAM quad.

Figure 4.172 The comparison of transverse velocity profile for Rozovskii's

(1961) run 1 at cross-section 6 and y/b = 1
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X-Sec 8, y/b = -1
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o
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0.25 - of — — — VAM quad.
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Figure 4.173 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 8 and y/b = -1

X-Sec 8,y/b=-0.5
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Figure 4.174 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 8 and y/b = -0.5
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X-Sec 8,y/b=0
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Figure 4.175 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 8 andy/b = 0O

X-Sec 8,y/b=0.5
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ﬁ 0.50 - o Experiment
~~~~~~ VA
0.25 A — — — VAM quad.
0.00 — T
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Figure 4.176 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 8 and y/b = 0.5
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X-Sec 8,y/b =1
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Figure 4.177 The comparison of transverse velocity profile for Rozovskii's
(1961) run 1 at cross-section 8 and y/b = 1
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X-Sec 1

0.50
a— \-?f;-..o. ey & Tt @ ] —MKQO-; VAM Linear
g 0.25 | o Experiment
‘; ------ VA

' - — — VAM quad.
0.00 T . ;
-1.00 -0.50 0.00 0.50 1.00
y/b

Figure 4.187 The comparison of longitudinal velocity distribution across the
flume for Chang (1971) at cross-section 1

X-Sec 3
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] o Experiment
% 0254 = "

— — — VAMquad.
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Figure 4.188 The comparison of longitudinal velocity distribution across the
flume for Chang (1971) at cross-section 3
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Figure 4.189 The comparison of longitudinal velocity distribution across the
flume for Chang (1971) at cross-section 5

VAM Linear
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— — — VAM quad.

0.00 ‘ I T
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Figure 4.190 The comparison of longitudinal velocity distribution across the
flume for Chang (1971) at cross-section 7
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Figure 4.191 The comparison of longitudinal velocity distribution across the
flume for Chang (1971) at cross-section S
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- VAM Linear
g 0.25 - o 0 Experiment
= VA
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0.00 T - :
-1.00 -0.50 0.00 0.50 1.00
y/b

Figure 4.192 The comparison of longitudinal velocity distribution across the
flume for Chang (1971) at cross-section 11
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X-Sec 13
0.50
---------- L e T e O e T | VAM Linear
@ /’T o Experiment
go024y © Al VA
S — — — VAM quad.
0.00 ; T .
-1.00 -0.50 0.00 0.50 1.00
y/b

Figure 4.193 The comparison of longitudinal velocity distribution across the
flume for Chang (1971) at cross-section 13
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X-Sec 7

VAM 10-eq Linear
O  Experiment
(o)

o — = — VAM S5-eqLinear
‘aT —’—\\N\—w
£ 0.25 -

=

0.50 1.00

Figure 4.200 The comparison of applying VAM 5- against 10-equation models

for longitudinal velocity distribution across the flume for Chang's
(1971) at cross-section 7

X-Sec9 VAM 10-¢q Linear
O  Experiment
0.50 1 — — — VAM 5-eq Linear
[}
° o
0 Som—es
£0.25 o
b=}
0.00 ‘ — 1 l
-1.00 -0.50 0.00 0.50 1.00
y/b

Figure 4.201 The comparison of applying VAM 5- against 10-equation models

for longitudinal velocity distribution across the flume for Chang's
(1971) at cross-section 9
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Cross-Section at 30 degrees

Mesh 876 nodes
- — — Mesh 5738 nodes

O  Experiment
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__0.70 - Q0 x
Y o
£ 0.60 | , o2
J 0.50 A

0.40 T T T

-1.00 -0.50 0.00 0.50
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1.00

Figure 4.205 The comparison of the longitudinal velocity distribution across
the flume for DeVriend (1976) at cross-section 30 degrees
for two different generated finite element meshes

Cross-Section at 120 degrees

0.80
Q 0.70 _‘_ © 0 0 o . Mesh 876 nodes
E 0604 © ~ — — Mesh 5738 nodes
® 0.50 - o  Experiment
0.40 T r T
-1.00 -0.50 0.00 0.50 1.00
y/b

Figure 4.206 The comparison of the longitudinal velocity distribution across
the flume for DeVriend (1976) at cross-section 120 degrees
for two different generated finite element meshes
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Cross-Section at 150 degrees

0.80
& 070 e @ o0 o o . Mesh 876 nodes
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£ 0L -~ — ~ Mesh 5738 nodes
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Figure 4.207 The comparison of the longitudinal velocity distribution across
the flume for DeVriend (1976) at cross-section 150 degrees
for two different generated finite element meshes

Cross-Section at 180 degrees
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Figure 4.208 The comparison of the longitudinal velocity distribution across
the flume for DeVriend (1976) at cross-section 180 degrees
for two different generated finite element meshes

278



Cross-Section at 0 degrees
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Figure 4.209 The comparison of longitudinal velocity distribution across the

flume for Steffler's (1984) run 1 at cross-section O degrees
for two different generated finite element meshes

Cross-Section at 90 degrees
0.50
@ 0.40 __...9,____0 o o 0 o o . Mesh 748 nodes
E - ~—=O=xd |~ — — Mesh 5872 nodes
3 0.30 - ) )
O  Experiment
0.20 . T .
-1.00 -0.50 0.00 0.50 1.00
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Figure 4.210 The comparison of longitudinal velocity distribution across the

flume for Steffler's (1984) run 1 at cross-section 90 degrees
for two different generated finite element meshes
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Cross-Section at 180 degrees
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w 040 TR ———— Mesh 748 nodes
E == — — — Mesh 5872 nodes
3 0.30 1 °7] o Experiment
0.20 T T T
-1.00 -0.50 0.00 0.50 1.00
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Figure 4.211 The comparison of longitudinal velocity distribution across the
flume for Steffler's (1984) run 1 at cross-section 180 degrees
for two different generated finite element meshes

Cross-Section at 270 degrees

Mesh 748 nodes
— — — Mesh 5872 nodes

O  Experiment

-1.00 -0.50 0.00 0.50 1.00
y/b

Figure 4.212 The comparison of longitudinal velocity distribution across the
flume for Steffler's (1984) run 1 at cross-section 270 degrees
for two different generated finite element meshes

280



Cross-Section 1
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Figure 4.213 The comparison of longitudinal velocity distribution across the
flume for Chang (1971) at cross-section 1 for two different
generated finite element meshes

Cross-Section 5
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Figure 4.214 The comparison of longitudinal velocity distribution across the
flume for Chang (1971) at cross-section 5 for two different
generated finite element meshes

281



Cross-Section 9
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-1.00 -0.50 0.00 0.50 1.00
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Figure 4.215 The comparison of longitudinal velocity distribution across the
flume for Chang (1971) at cross-section 9 for two different
generated finite element meshes

Cross-Section 11
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Figure 4.216 The comparison of longitudinal velocity distribution across the
flume for Chang (1971) at cross-section 11 for two different
generated finite element meshes
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Cross-Section at 0 degrees (y/b =-0.8)
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Figure 4.217 The comparison of longitudinal velocity profile for Steffler's

(1984) run 1 at cross-section 0 degrees and y/b = -0.8 for
two different generated finite element meshes

Cross-Section at 0 degrees (y/b = 0.8)
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Mesh 876 nodes
— — — Mesh 5738 nodes

O  Experiment

0.40

u(m/s)

T

0.80 1.20

Figure 4.218 The comgarison of longitudinal velocity profile for Steffler's

(1984) run 1 at cross-section 0 degrees and y/b = 0.8 for
two different generated finite element meshes
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Cross-Section at 90 degrees (y/b = -0.8)

1.00 e
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Figure 4.219 The comparison of longitudinal velocity profile for Steffler's

(1984) run 1 at cross-section 90 degrees and y/b = -0.8 for
two different generated finite element meshes

Cross-Section at 90 degrees (y/b = 0.8)
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Figure 4.220 The comparison of longitudinal velocity profile for Steffler's

(1984) run 1 at cross-section 90 degrees and y/b = 0.8 for
two different generated finite element meshes
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Cross-Section at 180 degrees (y/b = -0.8)
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Figure 4.221 The comparison of longitudinal velocity profile for Steffler's

(1984) run 1 at cross-section 180 degrees and y/b = -0.8 for
two different generated finite element meshes

Cross-Section at 180 degrees (y/b = 0.8)

Mesh 876 nodes
— — — Mesh 5738 nodes

O  Experiment

—

0.80
u(m/s)

1.20

Figure 4.222 The comparison of longitudinal velocity profile for Steffler's

(1984) run 1 at cross-section 180 degrees and y/b = 0.8 for
two different generated finite element meshes
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Cross-Section at 270 degrees (y/b = -0.8)

1.00 ?,

Mesh 876 nodes
— — — Mesh 5738 nodes

O  Experiment

u(m/s)

0.80 1.20

Figure 4.223The comparison of longitudinal velocity profile for Steffier's

(1984) run 1 at cross-section 270 degrees and y/b = -0.8 for
two different generated finite element meshes

Cross-Section at 270 degrees (y/b = 0.8)
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u(m/s)

0.80 1.20

Figure 4.224 The comparison of longitudinal velocity profile for Steffler's

(1984) run 1 at cross-section 270 degrees and y/b = 0.8 for
two different generated finite element meshes
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Cross-Section at 0 degrees (y/b = -0.8)
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Figure 4.225 The comparison of transverse velocity profile for Steffler's

(1984) run 1 at cross-section 0 degrees and y/b = -0.8 for
two different generated finite element meshes

Cross-Section at 0 degrees (y/b = 0.8)
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Figure 4.226 The comparison of transverse velocity profile for Steffler's

(1984) run 1 at cross-section O degrees and y/b = 0.8 for
two different generated finite element meshes
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Cross-Section at 90 degrees (y/b = -0.8)
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Figure 4.227 The comparison of transverse velocity profile for Steffler's

(1984) run 1 at cross-section 90 degrees and y/b = -0.8 for
two different generated finite element meshes
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Figure 4.228 The comparison of transverse velocity profile for Steffler's

(1984) run 1 at cross-section 90 degrees and y/b = 0.8 for
two different generated finite element meshes
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Cross-Section at 180 degrees (y/b =-0.8)
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Figure 4.229 The comparison of transverse velocity profile for Steffler's

(1984) run 1 at cross-section 180 degrees and y/b = -0.8 for
two different generated finite element meshes
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Figure 4.230 The comparison of transverse velocity profile for Steffler's

(1984) run 1 at cross-section 180 degrees and y/b = 0.8 for
two different generated finite element meshes
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Figure 4.231 The comparison of transverse velocity profile for Steffler's

(1984) run 1 at cross-section 270 degrees and y/b = -0.8 for
two different generated finite element meshes
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Figure 4.232 The comparison of transverse velocity profile for Steffler's

(1984) run 1 at cross-section 270 degrees and y/b = 0.8 for
two different generated finite element meshes
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Figure 4.233 The comparison of extra non-hydrostatic pressure head (h;)

distribution across the flume for Steffler's (1984) run 1 at cross-
section 180 degrees for two different generated finite element

meshes
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Figure 4.234 The comparison of extra non-hydrostatic pressure head (hy)

distripution across the flume for Steffler's (1984) run 1 at cross-
section 180 degrees for two different generated finite element
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Figure 4.235 The comparison of average vertical velocity distribution across
the flume for Steffler's (1984) run 1 at cross-section 180
degrees for two different generated finite element meshes
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Figure 4.236 The comparison of applying VAM 5- against 10-equation models

for longitudinal velocity profile for Steffler's (1984) run 1 at cross-
section 180 degrees and y/b = -0.8 for the finer finite element mesh
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Figure 4.237 The comparison of applying VAM 5- against 10-equation models

for longitudinal velocity profile for Steffler's (1984) run 1 at cross-
section 180 degrees and y/b = 0.8 for the finer finite element mesh
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Figure 4.238 The comparison of applying VAM 5- against 10-equation models
for longitudinal velocity profile for Steffler's (1984) run 1 at cross-

section 270 degrees and y/b = -0.8 for the finer finite element mesh
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Figure 4.239 The comparison of applying VAM 5- against 10-equation models

for longitudinal velocity profile for Steffler's (1984) run 1 at cross-
section 270 degrees and y/b = 0.8 for the finer finite element mesh

294



1.00
0.80
0.60
N 0.40

(z-zp)lh

0.20
0.00

5-Equ. Model
% — — — 10-Equ. Model
° % O  Experiment
T ~ o T
-0.20 -0.10 0.00 0.10 0.20
v(m/s)

Cross-Section at 180 degrees (y/b =-0.8)

Figure 4.240 The comparison of applying VAM 5- against 10-equation models

for transverse velocity profile for Steffler's (1984) run 1 at cross-
section 180 degrees and y/b = -0.8 for the finer finite element mesh
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Figure 4.241 The comparison of applying VAM 5- against 10-equation models

for transverse velocity profile for Steffler's (1984) run 1 at cross-
section 180 degrees and y/b = 0.8 for the finer finite element mesh
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Figure 4.242 The comparison of applying VAM 5- against 10-equation models

for transverse velocity profile for Steffler's (1984) run 1 at cross-

section 270 degrees and y/b = -0.8 for the finer finite element mesh
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Figure 4.243 The comparison of applying VAM 5- against 10-equation models

for transverse velocity profile for Steffler's (1984) run 1 at cross-

section 270 degrees and y/b = 0.8 for the finer finite element mesh
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Figure 4.247 The comparison of longitudinal velocity distribution across the
river Dommel at cross-section 19
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Figure 4.248 The comparison of longitudinal velocity distribution across the
river Dommel at cross-section 21
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Figure 4.249 The comparison of longitudinal velocity distribution across the
river Dommel at cross-section 24

Cross-section 26
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Figure 4.250 The comparison of longitudinal velocity distribution across the
river Dommel at cross-section 26
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Figure 4.251 The comparison of longitudinal velocity distribution across the
river Dommel at cross-section 31
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Figure 4.252 The comparison of longitudinal velocity distribution across the
river Dommel at cross-section 33
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Figure 4.253 The comparison of longitudinal velocity distribution across the
river Dommel at cross-section 35
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Figure 4.254 The comparison of longitudinal velocity distribution across the
river Dommel at cross-section 37
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Chapter 5

Summary and Conclusions

A two-dimensional (2-D) model framework, in which some vertical detail is included,
is established. The new equations, called the vertically averaged and moment
equations, are derived by a moment weighted residual method from the fundamental
three-dimensional (3-D) Reynolds equations. The equations are developed in a
general way that can accommodate different shapes of velocity and pressure

distributions.

The vertically averaged and moment equations are discretized and modeled using a
hybrid Petrov-Galerkin and Bubnov-Galerkin finite element scheme. The vertically
averaged continuity, longitudinal and transverse momentum, and moment of
longitudinal and transverse momentum equations are upwinded using a two-
dimensional Characteristic-Dissipative Petrov-Galerkin finite element scheme. The

rest of the equations are modeled using the Bubnov-Galerkin finite element scheme.

Triangular elements with linear basis functions for all variables are used. The time
derivatives are approximated using a weighted-implicit finite difference formulation.
For the resulting implicit set of non-linear algebraic equations a Newton-Raphson
technique is used to advance the solution to the next time level and to reach a steady

state solution as well.
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The developed general equations are then adapted, for convenience and comparison
purposes, to allow for the use of linear or quadratic distributions of horizontal

velocity components. An existing finite element model is modified to suit these

equations.

As a first application, the proposed model is tested for a uniform steady state case. A
preliminary numerical test is then carried out to check if the equations are derived and
coded correctly. A one-dimensional channel laboratory scale experimental test is

selected for this purpose.

The results show that the derivation and the coding of the proposed equations are
correctly done. In addition, the VAM model seems to behave significantly better than

the VA model.

Next, the obtained vertically averaged and moment equations are investigated for
modeling rapidly varied flow transitions with relatively small wavelength to depth
ratios (/A =~ 7) where non-hydrostatic pressure and non-uniform velocity
distributions might be expected to be significant. The proposed model with assumed
linear distributions of horizontal velocity components and quadratic vertical velocity
and pressure distributions (the VAM linear model) is used. Two experimental
hydraulic problems, from the literature, are selected. In each case the simulated

results are compared with the measured data.
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Generally, a satisfactory agreement is obtained between the numerical predictions and
the experimental measured data. The obtained solutions show that better results are
gained regarding the water surface profile by the proposed model compared to the
conventional depth or vertically averaged de St. Venant model (the VA model). In
addition, this study suggests that the wavelengths involved in the applied test are not
short enough for the non-hydrostatic pressure and non-uniform velocity effects to be

of significance.

The proposed model is then investigated for modeling curved oper channel flows.
The VAM with assumed linear and/or quadratic distributions of horizontal velocity
components and quadratic vertical velocity and pressure distributions are used in the
simulations (the VAM linear and quadratic models). The proposed model is tested for
simulating the main as well as the secondary flow features in curved open channels.
Five experimental data sets and a field case situation from the literature are selected.

The predicted results are compared with the measured data for each case.

A comparison between coarse and fine finite element meshes is considered. A
comparison between the VAM 10-equation, S-equation and the conventional 3-
equation de St. Venant (VA) models in terms of computational effort, time necessary

for simulation and degree of accuracy obtained is made.

A satisfactory agreement is generally obtained between the numerical predictions and

the experimental measured data. The proposed model predicts flow depths and
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vertically averaged longitudinal and transverse velocities very favorably as well as
reasonable secondary flows. Mainly, the characteristic features of the flow in curved
channels such as water surface super-elevation, secondary flow and longitudinal
velocity redistribution are well represented. One of the merits of the proposed VAM
model is that the evaluation of the secondary flow is obtained by applying the
moment of momentum equations only and no further assumptions or experimental

constants are required.

This study shows that not only does the proposed model represent the depth averaged
flow velocities significantly better than the conventional VA model, but it also
captures the shape of the longitudinal velocity profiles and the tendency of the
secondary flow profiles over the vertical direction. Predictions of the overall flow
characteristics obtained from the VAM linear and quadratic models are seemingly
very close. These results suggest that the results are not very sensitive to different

approximations of the pre-assumed velocity distribution shapes.

More accurate results are obtained by the finer meshes compared to the coarser
meshes. This is to be expected as the numerical discretization errors become smaller

(4x and Ay are of the order of A).

It is found that the time required for the VAM 10-equation model to converge to a

final steady state solution is approximately 2.5 times larger than that of the 5-equation

model and 3.7 times larger than that of the VA model. In addition, the memory
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allocated for the VAM 10-equation model is found to be four times larger than that of

the 5-equation model and eleven times larger than that of the VA model.

It is also found that the attained higher accuracy on applying the full VAM 10-
equation model is insignificant compared to the VAM 5-equation model. This is may
be due to the fact that even though the non-hydrostatic extra terms become more
significant near the wall their values are still small such that no significant

improvements are obtained over the S-equation model.

As a result, this study recommends the replacement of the conventional de St. Venant
model by the vertically averaged and moment 5-equation model (VAM linear or
quadratic), in terms of depth or vertically averaged modeling, on simulating curved
open channels where the secondary flow and its effects are important. This should be
true for large-scale models where the generated numerical meshes are not very fine.
In addition, this study recommends that very fine meshes, in which the applied
numerical discretizations are of the order of the flow depth, be applied when a high

degree of accuracy of the predicted secondary flows near the channel walls is sought.

It should be mentioned that the proposed model was also tested for 2-D applications

with drying areas.

The satisfactory performance of the VAM equations in the previous cases may be

attributed to the fact that a higher degree of vertical detail incorporated in the model
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compared to the VA model. The new model thus extends the application of the depth
averaged open channel flow models to cases where non-uniform velocity and non-
hydrostatic pressure distributions are significant. Compared with the full application

of a three dimensional model, the new approach would require less computational

effort.

This model suffers, however, from the crudeness and arbitrariness of the assumed

distributions. The long and complex equations that result are difficult to derive and

model correctly.

Recommendations

The present model could be used for fish habitat studies because of its ability to
predict approximate near bed velocity and its high flexibility of accommodating

different sets of assumed velocity and pressure distributions.

More tests with very short wavelengths to depth ratios (/4 = 1-3) are recommended

to be investigated.

More work is needed in the development of this new model or method. For example,
the extension of the development of the new proposed two dimensional model to
accommodate for situations that require consideration of sediment transport, e.g.
scour around piers and aggradation/degradation of a river regime, should be worked

out. Also, a full extension of the derived two dimensional model to accommodate for
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flow cases that deals with dispersion is required. More accurate methods to resolve
the boundary layer near the bed as well as near the walls (no slip boundary

conditions) are needed.



Appendix A

Model Development

In this section, details of the numerical model applied are presented. The derived

vertically averaged and moment (VAM) equations are:
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Where

To obtain the previous equations, the following general distributions are used for

horizontal velocity components, vertical velocity and pressure respectively:

U =Uofy (1) T UL GL (Tt e (A.12)
V = Vo fo (1) ¥ Vg2 (1) e (A1 3)
W =W, fi(n) T Wags () T WaH; (1) (AL 14)
D =P8RS (1) ¥ D1 fe () +Pa@uTheoreoeomeeimeeeeieneee e e (AL 15)

Where u; is the velocity at the surface in excess of the mean velocity u,; v, is the
velocity at the surface in excess of the mean velocity v,; ws and w, indicate the
vertical velocities at the bottom and at the surface respectively; w; is the mid-depth
vertical velocity in excess of the average of the vertical velocities at the surface and
bed; p; is the pressure intensity in excess of the hydrostatic at bed; p; is the mid-depth

pressure in excess of the average of pressure at the bed and surface; 7 is non-
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dimensional vertical coordinate and given by 1 = (z-z,)/h; fi(1), g:1(n), f2(1), 210,
f3(n), g3(n), Hi(1), f«(1) and gy(my) are functions defining the different distributions of
the velocities as well as the pressure; D, is a constant that depends on the pre-
assumed distribution shapes of the horizontal velocity components and i’s represent

integral constants and given in Appendix B.

It should be mentioned that the functions f,(7) and f3(7) are kept constant and equal

1 1
to one. In addition, the integralsj.g[ (mdn and J'gz(r])dn should vanish, i.e. they
0 o]

should be equal to zeros.

Equations (A.1)-(A.10) represent VA continuity, VA x-momentum, VA y-

momentum, VAM x-momentum, VAM y-momentum, VAM continuity, “w;”, “ws”,

VA z-momentum and VAM z-momentum equations respectively.

The vertically averaged turbulent shear and normal stresses appearing in equations

(A.1)-(A.10) are approximated according to Boussinesq model and given by:

G =7, =2pv, a;c .................................................................... (A.16)
ov
G,=7, =2pv, 8; ....................................................................... (A.17)
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?x},:z"'yx—pv,,( °+av°) ............................................................ (A.19)
T =T, = pv:[D;l”‘ +%j ............................................................... (A.20)
7z =7, =pv_(D2 w%f-) ............................................................. (A21)

Where v is the vertically averaged turbulent exchange coefficient or eddy viscosity
in the horizontal direction (x-y plane), and v~ is the vertically averaged turbulent eddy
viscosity in the vertical direction. For simplicity, the case of bed-dominated

turbulence is assumed and values of the order of v, =0.5u.h and v, =0.07u,h are

2 r 2
used (Fisher et al., 1979). u. being the shear velocity and equal to 4 [TL‘] +[iJ .
P P

D; is a constant that depends on the pre-assumed distribution shapes of the horizontal

velocity components.
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The bed shear stresses, appearing in equations (A.1)-(A.10), are approximated

according to:

T, = C’i W A2 VW (A.22)

p L Cz [ o o
.

C. being the dimensionless Chezy Coefficient and is related to the effective

roughness height, &, through:

C.= 5.7510g(12—£} ....................................................................... (A.24)

5

For small depth to roughness ratios (#/k; < e/12), e being the natural logarithmic

constant and equal to 2.71828, equation (A.24) is replaced by:

For practical purposes, the following approach to boundary condition seems to work:
the first three equations ((A.1)-(A.3)) are essentially the shallow water equations and

use the appropriate set of boundary conditions for sub- and supercritical inflow,
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outflow and no flow cases. For case of subcritical flow, a given total flow is specified
at the upstream cross-section as an inflow boundary, whereas a fixed water surface
elevation is specified at the downstream cross-section as an outflow boundary. For
case of supercritical flow, both the flow and the water surface elevation are given at
the upstream cross-section as inflow boundaries, whereas no conditions are applied at

the outflow boundary. A no cross-flow condition is specified at the walls.

The equations of moment of momentum in horizontal and transverse directions
((A.4.)-(A.5)) appear to have the characteristic of transport equations. As a result,
values for the velocities in excess of the means at the surface, »; and v,, are given at
the upstream cross-section for inflow boundary case, whereas they are left free at the
outflow boundary case. At the walls, a slip velocity condition is specified for z; and
v;. That means the velocities in excess of the means at the surface, #; and v,, may

have a component parallel to the wall, but not perpendicular to the wall.

The rest of the equations ((A.6)-(A.10)) are mostly reactive type of equations; that is,
the dependent variables being evaluated from each of these equations do not involve
the temporal or spatial derivative of that variable. As a result, the rest of the variables:

W, ws, wa, p), and p; are left free at all boundaries.

At time ¢ = 0, all variables are defined to have initial values at each point of the

domain of interest. Having defined the initial values of the variables and specified the

boundary conditions, we are left with a closed system which defines a ‘model’ for
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2-D or a quasi 3-D flow in open channels (equations (A.1)-(A.10)). This model solves
for “A”, “q”, “qy", “u,”, “v,”, “Wor w,”, “wy”, “w;”, “h; or p,” and “h:> or p,”
dependent variables respectively, #; and h; being p,/pg and p./pg respectively.
Essentially, equation (A.1) solves for “h”, equation (A.2) solves for “q.”, equation
(A.3) solves for “q,”, equation (A.4) solves for “u;”, equation (A.5) solves for “v,”,

equation (A.6) solves for “w ™, equation (A.7) solves for “w;”, equation (A.8) solves

for “wy”, equation (A.9) solves for “A; or p,”, and equation (A.10) solves for “A; or

33

P2

It should be mentioned that all the extra degrees of freedom, introduced by the
proposed VAM model, are perturbations to those of de St. Venant and Boussinesq.
Thus the above system of equations can easily be reduced to the de St. Venant or
Boussinesq equations by forcing the appropriate perturbations to zero and eliminating

the corresponding equations.

The vertically averaged and moment equations are discretized and modeled using a
hybrid Petrov-Galerkin and Bubnov-Galerkin finite element scheme. The vertically
averaged continuity, longitudinal and transverse momentum, and moment of
longitudinal and transverse momentum equations are upwinded using the two-
dimensional Characteristic Dissipative Petrov-Galerkin finite element scheme
recently used by Ghanem et al. (1995). This scheme has the ability of providing
selective artificial dissipation for shock capturing and modeling both progressive and

regressive waves accurately (Hicks and Steffler, 1990, 1992 and Ghanem et al.,
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1995). The rest of the equations are modeled using the Bubnov-Galerkin finite

element scheme. This may be explained in the following sections.

Equations (A.1)-(A.10) may be written in the form:

dw($) . IF.(9)  oF,(6) _
% e Py +G(6)=0.0 . e (AL26)

Where bold letters represent vectors and matrices. ¢ represents N, x 1 vector per
element, N, being the total number of unknowns. For example ¢ is equal to (A, qx, gy,
uy, vi, WOrw,, ws, Wi, pi, pg)T for the 10-equation model (N, =10). Q is the solution

domain.

'Wl (4) ]
v, ()
v;(9)
v.(9)
ws(4)
y(d) = . () B et eeteeeenae et (A.27)
7210
ws ()
ws ()

W@
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W) =q dy Fuhiy (A.29)

Wi(®) =G dy + ViRl (A.30)
Wo(®)=q (Pisy + 2,5 )0 h(Prisg + 20y ) oo (A31)
ws@) =q,(hiy, +z,4; )+ vih(Ris + 2,0, ) oo (A.32)
we(9) = ;Z: ................................................................................. (A.33)
Wa(0) = 0 L (A.34)
Wa(0) = = (A.35)
Wo() =Wyhdig +WoRd o + W, Rdig (A.36)
W10 (0) = woh(hig + 2,0 )+ woh(hiyg + 2, dig )+ woh(Rig + 2,4, ) oo (A.37)
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<\

(F, (¢)
F. (®)
F, (4)
F. ()
F. (¢
F(0)=1," @3 TSRS (A.38)
F. ()
F_ ()
F (b

0)

/ N,,xl

Fo(@) =Gy 0By oo (A.39)

9

F_ (®)= %;_:..is +qu i +ulhi, + gh’ iy, + Pihiy + 2 Py hT, (A.40)

P P

hT
F () =%jn Ny F UGy uvhi - — (A.41)

F. ()= qf(hjss +2z, 0 )+ qu(hiy +z,i )+ ulh(hiy +z,.i,)

, , , T (A.42)
+gh2(hj39 +2, iy, )+ Plh(h-’39 +2z, 130) + ch(h-’w +2Z, -’31)
P P
9.9, ¢, . . . . . .
F_ ()= P (}”44 +2z, 'Ill)+qxvl (}”45 +2, 112)'*‘%-“1 (}”45 + 2z, ~’13) ............ (A.43)

+vauh(hi, +z,4,)
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F () =0 (A.45)

F () =0 (A.46)
. . . . . .\ hT_

F (¢ =w, (g, dyg +1,hiyg ) +w, (g, dng +uhiy )+ w, (g, dpy +2,hiny )~ P (A.47)

F @) =w, [qx (hjSI + 2, dig )'*' l‘xh(h-is-s +2, 4y )]
+w,[q (Rig, + 2, dn )+ uhlhig +2,0y )] (A.48)

+w, [qx (hj53 + 2,0y ) + ulh(h.i56 +2Zy 0y )]

(F, ()]
F, ()
F, ()
F, ()
F, ()
F, (¢) =1 F. @) OSSP (A.49)
F, (¢)
F, (¢)
F, ()

gFYm (¢) J

N, xl
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Fy (0)= Gy dy + YRy oo (A.50)
9.9, . : : _ hT,
F:v1 @ = h Iy +g. v 1y, YU q, 10, +u[v1h114 I T TR R TR (A.51)
: R hi hiy, ho,
F, (¢)= %’js £ qvidy +Vihiy +gh® iy, + B0 P 2;3‘ Sl (A.52)
qqu . . . . . .
Fh 4)= (hf.u +2Zy 0, )+qxvl (h'l-té +2z, 112)+qy”1 (h-’45 +2, 113) ............ (A.53)
+vuh(hi, +z,4,)
Fy, )= %(hj4x +z, j8)+qul(h'i42 +zbj9)+v12h(hj43 +zbjlo)
, , , e (AL54)
+gh2(h.i39 +z, j30)+ Plh(h139 +“b"30) + pzh(hjw +2Z, -’31)
P p
F, (§)=q,(hiy, +z,d )+ vA(Riss + 2, 0,) ..o (A.55)
By ()20 oo e (A.56)
B () =0 oo (A.57)
. . ) : ) ) ht,
F, )= w[,(qy.t24 +vlh125)+wz(qy.126 +vlh127)+ w,,(qyj28 +v,h.129)— p .....(A.58)
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F, (®)=w, [qy(h'i57 + 2,0y )+ Vlh(hjso 2,4y )]

+w, [q'v (Rig + 2, dp )+ vih(hig + 2, iy )] ................................... (A.59)

+w, [qy (Rigy + 2, dng )+ v h(Rigy, + 2, 0 )]

G(d) =< e e (A.60)

;Gm (¢)‘ N, xt

GLd) = 0 e (A.61)

G, (%) = l{(pgh ep) s } ....................................................... (A.62)
P ox

G,($) = —{(pgh + P, )%+ T, } ....................................................... (A.63)
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_ . )
%(qx'il +"1hjz)+g(%.i5 +q uhig +u,2h.i7)
(229

G, (¢) =-7| 5(4q.9
+5(_%j“ +q Vi, v qu b+ vlulh.iu)

- [wb (qijB +u1hj19)+w2 (qx'iZO +uhi, )+wh(qszz +uhiy, )](A64)

gl 2O 13 Gpiin _ pih 22,
L1 & 2 & & 2 ox

P Pahly -ha, gf-—hf
x xy

—
-

—fl—rr_, +hT_
2 [

-~

ox

Q|8

15} . . °0(49.9, . . . }
-a—t-(qy Iy +vlh14)+a( hy Byt qvid, +qudy +vlulh1“J

Gs(d)): -Z|
3
+—

\

.
qy . T
7.18 +q, v iy +V hiy

—[wb(qy'i24 +vlh'i25)+w2(qyj26 +vlh-iz7)+wh(qy~i28 +V1hjz9)] ----- (A.65)
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gt-(wbh.i15 +w,hi +w,hi,)

g

Gy (§) = =24 +§["’b (qijB +ulh'i19)+ W, (qx-i:o +uhi, )'*' L (qszz +ihiy )]

+_a—[wb(qyj24 +vlhj‘5)+w2 (qy'i‘.’G +vlh'i‘.'7)+wh (qy'iZS + VAl )]J

[ &

27 . . 27 . 27 -
—(wb hig +w,w,hic, +w,w hi, +w hi, +w,w hi_ + wth“) ......

—hz“s—?"——hf,yT—"+(——hj30)(pgh+pl)—p2h_i3l
LT T
P +£’-[r}_ P +7T_ &J+ha

21 08 oy

The application of the Petrov-Galerkin (Streamline Upwind) finite element scheme to
(A.1)-(A.3) equations (VA continuity, momentum in the x-direction and momentum
in the y-direction) in the form of equation (A.26) results in the following weak

statement equation:
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~ ow(d)) oF, (d)) oF, ($) e _
j [ . > G(d:))dQ—0............................................(A.7l)

where:

B =B +wAW, %:immy B (A.72)

A

B is the matrix of test functions. B is the matrix of basis functions. @ is an
upwinding coefficient set equal to 0.5 for this study (Ghanem et al., 1995). W; and

W, are the upwinding matrix coefficients in x and y directions respectively which

J4

control both the amount and the direction of the numerical diffusion. Ax =Ay = -

is used, A being the element area (Ghanem et al., 1995). The approximation, ¢, to the

unknown vector is defined as:

Where B are the shape function matrices and are of size N, x (N, x NS), NS being the

total number of shape functions, and ® is the nodal-value vector of the unknowns and
is of length (M, x NS) x 1. ® is equal to {;, qx, Gy, 11}, Vij, W2, Wej, Whj, P1j> P3} - The

subscript ; refers to a specific node number.
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Making the use of equation (A.72) into equation (A.71) results in:

B v® , F.®  FE® =)o
!}(B+a)AxW (d>) +wAYW, (d’)ayJ( > e 5 G(d))]dQ—O,..

Expanding equation (A.74) yields:

ot

+ j’ B[ 6Féi¢) + 6F(;JE¢) + G(&J)]asz ............ (A.75)

~ 3B - 3BY oF, @)  F, @ =) . _
j(waW‘(d))ax-i»a)AyWy(d))ay)L S o +G(¢)JdQ_O

%) 9B %) 9B | ow(®)
i [B + wAXW_() = + oAYW, () @J dQ

Q

Integrating the underlined part in equation (A.75) by parts results in:

j (B + WAXW, (¢)—— +wAYW, (§) ‘;‘; J 2w($) A AN 2o

_ B 2] oF,@) K@ . =
i( (¢) F(¢)ayde IB( e T +G(¢)JdQ

oF (¢) oF,(§) . -
+ j(amxw (¢)—+ wAyW ((b)—é_y—J( e Py G(¢)}d§2

+ Jr' B [Fx (5)", +F, ($)ny ]dl‘ =0
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Where IB[Fx (5))1, +F, ($)lzy]df represents natural convective fluxes across the
r

boundaries and are defined as:

[BIF,@)n, +F,($)n,1dl = [BIF,($)7]dl = [BF,($)dy - [BF, (§)dx .....(AT7)
r r y x

I is the boundary domain. ». and »n, are the x and y components of the unit normal

vector x. 11 is the unit inward vector normalto I'.

The boundary integral (equation (A.77)) represents natural convective fluxes across
the boundaries. This provides an accurate and easy means for specifying boundary

conditions. For example, the boundary integral term for the continuity equation is

I—B(q-n)dl" . To specify a no-flow boundary condition (wall condition), qn
r

(=q-n) is set equal to zero, and the term is simply not computed. In addition,
specified boundary conditions are implemented directly by specifying given values in
that term. For example, for an inflow boundary qa has a specified distribution and the
integral term is evaluated and the contributions summed to the appropriate residuals.
For an outflow boundary q. has an unknown value and thus the integral boundary

term is treated as an unknown term in the equations.
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Triangular elements with linear basis functions for all variables are used. The time

derivatives are approximated using a weighted-implicit finite difference formulation.

As a result, equation (A.76) becomes:

v

Ny n+l

[ ]
B
6| B +wAxW, (d))—+a)AyW (¢)0—) - -
1 ( & [v@®™ -v@r]
~ _ aa\" At
a ~+ a _e)(BmAxw, (d))%];-+cuAyWy (¢)%/Bl) |
(e 5B g 5B F® F® -
i[F‘(d’)ax +F,(¢)ay)da+£n( i +G(¢)Jd§2
) 5 3B ~ BY F®  EF®D =
+ 05+ (j} (waw,@) ~ +cuAyWy(¢)ay T o +G(¢)Jd§2
+ _[B[Fx @, +F, @, Jar
r
L
5 ~ B . B oF, (5 | oF, (&) . -
i(Fx(cb)ax +Fy(d>)ayde B[ z Py +G(¢)Jd§2
- 3 -
+(l—6)7+ | (waw,(q)) +oAyW, (§) ayj(aFaid)) ay(d)) G(d))JdQ
+ J.B[Fx ($)nI + Fy ($)ny ]dl'
r
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Where superscript n refers to evaluation of the quantity at the n™ time step (assumed
P p q P

known) and n+1 represents evaluation at a time Af later (generally unknown).

The upwinding matrices, Wy and W, are calculated according to Hughes and Mallet

(1986a and 1986b) and Hughes et al. (1986), these are:

1
“’x =%—1=AI( Ai +A§) .................................................... (A.79)
,/Ax +A,
Ay 2 2 !
VVy =—2__2'=Ay Ax +A;, .................................................... (A.80)
AL +A

Where A, and A, are the advection matrices of (A.1)-(A.3) system of equations in x

and y directions respectively and are given by:

[oF, oF, @&F, |
oh o8q, &g,
oF, OF, oF,
A =[—=2 B B (A.81)
oh 0oq, &,
oF, OoF, OoF,
| oh  8q. @&,
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oF " oF - oF "

ch oq., 0q,

_ oF. e 6Fy2 oF 1

6h oq. 0q,

oF A oF ' 6Fy3

i ch dq, qu ]
As a result:
0

2

x 2. .
—h._,—15 +u i, +2ghi,

— 494, .

T Iy TV,

~9:9, .

hz Ill +ulvlll4

2

q, . 5. .
—h2 iy + v/ i,, +2ghi,,

2q,

is +u,ig

Iy + Vi,

—q’i + Vi
11 1°12
h

q_xin +ui,
h

&iu +u i,
h

qy . .
—=is + Wi,
h
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The inverse of the matrix (JAi +A§) is calculated numerically using the Cayley-

Hamilton theorem (Hoger and Carlson 1984). The details of these calculations are

found in Appendix C. The upwinding matrices Wy and W, are then obtained

numerically from (A.78)-(A.79) equations respectively. The obtained upwinding

matrices may be written in the form:

xq qu

w* = x21 W-‘z:
W‘n W‘n

p41 W.Vlz

W, =\W,, W,
W}'Jl W.Vsz

W-'u

A DO OO (A.85)
H/}'u

By | e (A.86)
/4

Y13

Substituting of equations (A.85)-(A.86) into equation (A.78) and multiplying and

expanding through, results in:
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oL, + )" B - @ B -, B )+ e, B s B )]

J

Q,

[ (. -5 A @ o (5
- | Fxl(d’)'(ib_l"‘F,,('b)a,inQe.,_J'bi[ .®,5®
at x oy o ox ay
[ (oF,. @) oF, B _ - F 5 5 (G
Wu(o ;x((b)+ ’j(¢)+G[(¢)J+WI{C 5 (®) 2 ,:(¢)
+ GAt{+ - _
f{ [6&(4» oF,, (&) ~]
M P —+G;(¢)
+[b,F, dy, - [b,F, dx,
dy, dr,
L
(F. 52 32 eF, (§) ¢F, (&
] F«“)-ai%w)ii]dne+ja,[c ORI
Q,\ éx cy 2 &x
r £y Y o~ —
OF, OF - S .
;Vu[o :(¢)+o ’.‘<¢)+Gl(¢)J+Wu(o ‘:(¢)+° 5 (@)
« cv
+(1-0)Ard+ N _
‘{ oF, (¢) oF, (&) . -
I i et O
ox oy
+ j b,F, dy, - j b,F, dr,
dy, dr,

+

($)Jd9=

Gz@?)]

+G, ($)J

dQ2

e

+-0)6, +7.) b B 1 @ s B - @l T v @)

3 -l

dQ

+G, ($)] dQ,

dQ
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oz b @™ —u @)+ 6, W) 1 B - @ o, B - )]

dQ)

e

o '*'(1"0)["/2’;(’»"1(5)'”l ¥ ($)")+ b, '*'sz)“(’/’z("i;)n+l ‘Wz(“i;)")'*'W;S(Ws(s)"*l ¥ ($)")

[

+ G At

+(1-8)AtH

-]

oF. () oF, (9
-~ + -~

( ~
F,@®

\
uf
+1 (

ab, ~_ &b,
ZLbF, ()= |d, +| b
L F, B2 J i (

Q,

&F, (9) 5, @

oF, (9 L @
&y

-~

+G, (TS)]HVu(

+]

Q,

oF,, () O, )
= 2

+G, (’6)]

+ [b,F, dy, - [b,F, dx,
dy, dr,

oF,, (3)
= +

cx

:

+j'b ang((b)

Q

(

([ ~ &b, ~ &b
F, ®)ZL+F, («b)—%}me
\ ox oy

oF, (§) ©F, (9)
- + -

+ GZ ($)J dQe

+G, (?6)] dQ,

3 n+l

+G, (“S)]
dQ,

oF, (&) 0F, (&)
-~ + -

ox

+G, (?5)] +W3,[

a
+ sz(

oF, ® o, @
ox 3y

+G, ($)]

+ [b,F, dv, - [b,F,dx,
dy, dr,

L

+G, ($)]
as,
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oz . B~ B )+ B =, @) )+ b, + 7 ) s B =, )|
&C

“lra-olmil @ v @) il @ - @6 ) B -y )

( -~ ~ n+l
~_ b, ~ &b, OF, (§) oF, ($) -
—i(F,,(¢)g+F,,(¢)E)@C+£b{ x> T > +G3(¢)}iﬂe
[ (oF. @) oF, @) _ -~ oF,.® oF, & . -
Ws{o ;c(‘b + gy(¢)+Gl(¢)J+W3Z( éx(q))*' azy(d))'*'Gz('#))
+ 0At<+f G - ax, ¢
Q, %) OF, ~
+ [b,F, v, - [b,F, dx,
dy, dr,
(. ~ o, ~ b, 8F, (§) oF, ) . ~ "
Ws{a&: ® FH® ($)J+ W ( or,® 5@ @J
ox oy ox oy
+(1-0)At{+ J . EH 3 aQ,t =0
+Wys Fw + c‘;y +G,(d)
+ [b,F, dv, - [b,F, dx,
dy, dx,
.............. (A.89)

Equations (A.87)-(A.89) represent the equivalent Petrov Galerkin finite element
model for VA continuity, VA momentum in the x-direction and VA momentum in the
y-direction equations respectively (equations (A.1)-(A.3)). The subscript e refers to an

element and implies integration over the element. &; is one of the entries of the test
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function matrix B. For example, the test function matrix B for the 3-equation model

(equations (A.87)-(A.89)) is defined, over the element, as:

O

oS o o

Qe
™

oS o oY o o™>o
o o o

(=]
]
o oS oo™ oo

Qe
w

The subscript 7 refers to a specific test function number and has the value, over an

element, of 1, 2 or 3 for triangular finite elements.

The different parts of equations ((A.87)-(A.89)) are defined as follows:

Wnw W, W;
W=W, W, Wy
Wy Wy Wy
AxWru—-Bi Ay W, 92 AxW . %+wAyWy -ﬁ a)AxWx“%+wA Wyu-;—yq
“loacw, Zronyw, B onew, LB ionyw, B onew, B s onyw, L
b4 ay b= ay 273 5X Y ay
acw, B ongw B o, Bronyw B onew. B ionyw, B
| ax ¥ ay 32 ax Yz ay 33 ax Y13 ay
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Wol®) =G 0y +U Py oo (A.93)
v, ($)=q,1, +D]}7 U (A.94)
Fo (@) =Gy #0 Ay oo (A.95)

F, () =—~— s+ G0 dg +ihA, +gh iy, + Bihiy + Bhiy _h&, (A.96)
p p p

(d))— 1 I+ G dy + G, A BV R, —Ej"‘ .............................. (A.97)

Fy @) =G, dy # TRy oo (A.98)

F, (d>)— q —=L iy + GV Ay UG,y UV, Vhi, - ;j" ............................. (A.99)

F, () jgijg +G,Vdy + VPR + ght iy + 5"Zi3° + 52’;’3‘ - ;f” oreren(A100)

341



(A .101)

ﬂFX: (6) _

+ 2 j:l is dul . dh

.........................................

5FX3 (a) . aQy -~ ol . dvl . qu
ol T L

3 aﬁz - . aﬁ - - EZ dﬁ =
24q, . . a
+ il.? q} ﬁl + E 14 adV tll 1l;> aq}: VI
+ Fl i14 adul \71 + il-l —gh b, ‘71

..........................................

(A .103)



JdF, (&) o3,
= e (A .104)

JFy, (&) ag, - . av & -
A (ill b4 q\:) /h + 1o 1 é.‘( + (i11 _‘};- q,)/h

du; dh ~2 6h =
— ., - |1i;;: G h - | = t.
T ( dy ‘q)/( ) (dyt /p
243, &, 5
+ 1;:; i g; + h K] 97, G; + 1;- &' v:
T dy 7 dy © oy i
+h 1 9U; U; + 1 —dﬁ a; v
14 Jy 1 oS : Vi

5F;"y($)= 2gﬁlvo-g—§-+(2ig d;i @:)/E+1c d‘;" g,
- (13 =2 g, qy)/(ﬁ;')
+ 1 d;irf V; + 2 h i dd‘;l Vi i :ﬁ v U,
+ (130 b, % + 151 P %YE—
N Y

................................................ . (A .106)
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Gi(B) = 0 e (A.107)

G,(%) = —})—{(pgz +5 )%%u 7 } ..................................................... (A.108)
G,(®) = /—;—{(pg; + 5, )% 7, } ...................................................... (A.109)
G, =1_=2pv, Eax_(%j ............................................................... (A.110)
&,=7,=2pv, gy{%} ................................................................ (A.111)
%xy = %}x = pv, [%(%j%-%[—;%n ................................................. (A-112)

f’s-) O T (A.113)
h h

]



% . 50

The quantities ¢, — and — are respectively given by:
ox oy

3

B= "B R, o, (A.116)

=l

3
Zix = Z quxj
J=1

.............................................................................. (A.117)

.............................................................................. (A.118)

e (A.119)
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3
Bl =3By, e (A.124)
7=l
- 3
P = be’ D, oo (A.125)
J:
ch _&.0b,
== Bl e A.126
bl (A.126)
87, 3. 0b,
e e e A.127
D Pl 8 (A.127)
eq, & 0b,
Y e A.128
ax jle = % (A.128)
o, 3 0b,
Y T el e A.129
2 ; P u, ( )
v, _<0b;
S o S oy e A.130
P ; ox Y1, ( )
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.....(A.131)

~

«Q

&

2]

&

(A.132)

(A.133)

(A.134)

cb

3
2%

D _
o

..(A.135)

Py
Q

ks

L] )
-~

)

&

.....(A.136)

(A.137)

(A.138)

85,

y &

oq,
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- 3 ab
T o S U e (A.139)
&y =Ty

5 3.5,
P 3 e (A.140)
@1 J=1 @ /

o, 3. 0b

S W e (A.141)
gy @Fag

W 3.0b.

G S W e, (A.142)
y =Sy

~ 3 ‘\b-

M = e (A.143)
oy =t CY !

B, _ 3,

- = 7 2 (A144)
oy ,Zl oy

B, 3 b,

e S D e, (A.145)
a}l 7=l 8}’ /

b; is one of the entries of the basis function

matrix B. The subscript j refers to a

specific node number and has the value, over an element, of 1, 2 or 3 for triangular

finite elements.
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The application of the Petrov-Galerkin (Streamline Upwind) finite element scheme to
(A.4)-(A.5) equations (VAM momentum in the x- and y-directions respectively) in

the form of equation (A.26) results in the following weak statement equation:

fﬁ[ w(e) , oF.(@) &, G(&S)]dn =0 e (A.146)

2 ot ox oy

where:

B =B+ AW, B, wAYW,, B (A.147)
ox oy

W, and W, are calculated according to Hughes and Mallet (1986a and 1986b) and

Hughes et al. (1986) and are defined as:

B = e (A.148)
u? +v?
v
B = e e (A.149)
u® +v?
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Substituting of equations (A.122)-(A.123) into equation (A.120) and multiplying and

expanding through, results in:

[o6,+7. ) . @ v, B )+ -0 6, + W) v B - v &y 2.
Q,

r _ a _ a “‘F ~ aF ~ _ 3 n+l
| GG ACEA T, b,[o =9, ’:(4’)+G,<¢)Jdn,
oy &y

a. a ox

+ 6Az4+IW“[aFf(d))+8F%,(¢)+G4($)Jaﬂe (

Q, ox

+ [b,F, dv, - [b,F, &,
dy, dx,

r - ~ o —~ n
~ - a F F -
—I[F, ® 2, (¢)°—”")doc+jb.-[° =) 2 f(¢)+64(¢>]doe
a 7] ox Q ay 2 ox dv
+1-0)A1{+ | W,,{OF’:@)+6F’:(¢)+G4($>]dne =0
Q, ox
+ [b,F, dy, - [b,F, d,
L ' J
........... (A.150)
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I[g(b +W )“"(Ws(dy)""—yls(d)) )+(1 5) b, +W (Ws(‘”n l"'/’s(‘i’) )]

Ql

3 n+l

- (Fx, B2+ F, @%—)dﬂeﬂ b.-[aF‘: @, 2y (¢)+Gs($)}dn
Q, ox ’ oy cx oy

Q

+ 9Az<+j’W,y

Q'

oF,, (%) o, )
éx 3y

+ GS (“E)J arzc (

+ [b,F, v, - [b,F, &,
&, dx,

( -3 ~ 5F. () OF, (3 -
- § (F,, B2+, (¢)@)dae of b.[o =) 0 ’:“’)+Gs(¢)Jdo
a & A& o
oF, (& o ~
+(1-0)Au+jw,,[ Ff(¢)+apf(¢)+G5(¢)Jdﬁe L o
Q, ox
+ [b,F, dy, - [b,F, &,
e . J
........... (A.151)

Equations (A.150)-(A.151) represent the equivalent Petrov Galerkin finite element

model for VAM momentum in the x-direction and VAM momentum in the y-

direction equations respectively (equations (A.4)-(A.5)).
The different parts of equations ((A.150)-(A.151)) are defined as follows:

wo (@) =By, + 2,0 )+ TRy +2,0,) oo (A.152)
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(A.153)

ws () =§y(;.i34 +z,,js)+vli{(ﬁjss +z,,14)

F. () =£(fo 2,4 )+ G0, (B dy + 2,0, )+ iR by + 2,0,
. R (A.154)
+gh (;”39_*_‘_61 ) (}”39"'%130) pzh(h1w+zb131)
p

Fx,($)’ql-§ (; +2z, '11)'*"]; (h'146+"b'11 )+(I,"1(h145+25113) ............ (A.155)
+ V1, }7(;147 +zb114)
F, (5) = q}:v]y (iz'.i_,_, +"le[)+ q.v (hf-us + 2,00 )+Eiyi71(h'145 +2, ’13) ___________ (A.156)
+i71171}~2'(}1~.i47 +z,,jl4)
F, ()= A (Aiy +2,4,)+ .7, (i +2, 5 )+ 520 iy + 2, 410)
N e e (A.157)
_*_gi;z(iz‘j z i )+ P:h(h-lsg +zb-’30)+p2h(h14o +zb-’3x)
39 T 2543 P P
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Gy(@) = —(iy g, + B iy G;) W,
- (119 G + h 139 O;) Wp - (122 &, + b iy3 TO;) Wy

s B n) /re s B (s 8 o) /)

- . du; . . &h
h
5 i; + 2 1z % ; + 17 I

t; 4;

4

oy oy Y
+ 1-'-1 14 °v 1
oy
(o )e, G, A
+ 133 —& \71 + B 1;.; du' Vi + 15 ﬂl— :."11 ‘71
Ay oy Y

_~(c9]71/ gz S (65/ gz =
ox Ix * gy Sy ¥
- (E t’-b) / 2 -+ E ‘;_\_:
. J@h = ap -
- (130 joF T h 13, apl ) (h/ 2. +2z)
- . 5]
- (131 D, -g—?{- + h 13; d§7) (h [/ 2. +2z)
~2 0 éh
+gp(_(h’ di:)/ -2 h iz — (A/ 2. +2zy)

............................................... (A .158)



Gs(®) = -(i &, +h iy, ¥;) W,

- (i24 @, + B 125 U1) Wp - (di25 G, + B 129 ©;) W,

- ( (ill ) / i aVz g, + (111 aaa; 5]},) /}'1

-'

. eu; . . a, _
* 1 5o 9y - (111 ) / (h ) + i i;
+ B 114 avl tll + 12 qx 1

X X
+ B Igy ﬂ. ¥ o+ i14 _a_h a; ¥,
gx

- ov _ Jd - o~

+ 2 h ij dyl 1 lio 5 %1 Vi J (h/ 2. +2zp)

- dz

t|-(re F=) /

_-(0"171/ dz: ~ _E(dﬁ/ dz. )| =

Ay y ’ dx dx =
- (B 7-:&-‘..) / 2. +h z,-

. dh - a
+ (-(140 D, oy | " 50 ;;1 ) (h/ 2. +2zy)

. Oh b,

- (151 2 ?;' + h 13g 3 ) (EI !/ 2 + Z3)

.................................................. (A .159)
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_ ~ =
z_ = pv:(-l—)%ll+§z;— .................................................................. (A.160)

ox
~ o=\

7 e ov | D (A.161)
P o)

The application of the Bubnov-Galerkin Scheme to the rest of the equations (A.6)-
(A.10) (VAM continuity, ws, ws, VA momentum in the z-direction and VAM
momentum in the z-direction respectively) in the from of equation (A.26) results in

the following weak statement equation:

jn[a‘"(¢) ) aFé)fd’) +G($)jd§2 =0 e (AL162)
Q

ot ox

Multiplying and expanding through equation (A.136) results in:

() b ® ™ -v® )+ 1-06.) b @ v @,
Q,

N -l

- (F,, B2 F, (3)@}19: +f b{op‘: @, 2. +GG($)}d0,
a, cx cy a cx
+ 8 At L
+ [b,F dv, - [b,F, dx,
~. Ob, ~. b, oF, (6) oF, ($) ~
_‘{[F,‘(¢)-§;+Fh(¢)gldo,+£b,.[ xa‘-x +—2 +G6(4>)Jdac
+(1-6)At4 [ _o

+ [b,F dy, - [b,F, d,
dy, dr,

........... (A.163)
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[l @)y b ®™ -1, @)+ 1-0)6.) @ —v, |2
Q,

r _ _ "F ~ aF ~ N 4 n+l
-f (F;, ®2+F, (¢)—‘3:”—'Jdﬂe+ f b..[o =), ’:(4’)+G,(¢)}dn
Q, ox ay 0 ox oy
+ BAA .
+ [b,F, dy, - [b,F, d,
dy, dx,
[ -~ & ~ 3 oF, &) oF - i
- f (ﬂ,(@ff’—'w,,(@o.i) «f b[ ® o, ® G,(¢>Jdﬂ
Q, ox &y
+(1-8)At] L =0
+ [b,F, dv, - [b,F,
dy, dx,
........... (A.164)
(66 e v @)+ a=-0)6,) s @ ~u ) a2
Q,
r A 4 F aF N 4 onel
| (Fx,w)"”—bwf‘y.(mi) Ib{o ®,2,® Gs<¢>]dn
Q, ox oy
+ G AL <
+ [b,F, dy, - [b,F,dx,
dy, dx,
r _ A _ - ‘\F ~ ‘\F ~ - WNn
-j[F,,<¢>%bi+F,, (¢)°.—”'Jdnc+Ib.[° 2@ 0 ’:“’)+Gg(¢>JdQ
Q, ox oy ) ox id
+(1-6)At [ o
+ [8.F dy, - [b,F, dx,
dy, dx,
........... (A.165)
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[l @) e B —va @)+ 0-0)6.) b ~v, Br)| 2,
Q,

N n+l

( _ &b, . ~ b, oF, (8 oF, @ _ -
—(_j'(i’,, (¢)§+F,, (¢)—5;Jd9< +‘_[b.( > 5 +G9(¢)]dﬂc
+ 8 AL L
+ [b,F, dy, ~ [b,F, dx,
dy, dx,
- B _ “F ~ — _ n
_I(qu (¢)-af’—'+1~“y, (¢)@L]dne+fb{0 ,:(¢)+6Fy: (¢)+Gg(¢)]d0,
Q, ox i Q ox oy
+(1-8)Ar s =0

+ [b,F, dy, - [6,F,dx,
dy, dx,

........... (A.166)
(6. @™ -vu®)+1-6)6,) oGy ~v0@®" e,
Q,
r N N " “F —~ "‘F —~ _ nel
_J‘(F, (¢)$+Fy (¢)o+h)doe+jbi(o ,1:(¢)+o Yo ((t>)+Gw(¢)]ng
a. 10 &S o C:V' 5 Ox @
+ 9A[< >
+ [bF dy, — [b,F,, &,
dy, dx,
L
' . &b, . 3b, eF, &) oF, ® . - "
- ;! [F @)=+ F,, (¢)—.O;]doe+ I b,[ Y +Gm<¢)Jdn,
+(1-6)At4 L =0
+ [b,F, dv, - [b.F, &,
.............. (A.167)
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Equations (A.137)-(A.141) represent the equivalent Bubnov Galerkin finite element
model for VAM continuity, “w,”, “w;”, VA momentum in the z-direction and VAM

momentum in the z-direction equations respectively (equations (A.6)-(A.10)).

The different parts of equations ((A.137)-(A.141)) are defined as follows:

6] = (A.168)
WD) =0 e (A.169)
Wa(B) = = oo (A.170)
Wo(®) = Wy idig +Wydig + Wy Rdiy oo (A.171)

W, (9) = f‘v,ﬁ(ﬁ.&s +zbj15)+ﬁ72i7(ﬁj49 +zbjw)+1"1},,l~1'(}z~1'So +z,,jl7)...............(A.172)

F @) =iy +2,0)+iady + 2,82 oo (A.173)
Fo(0) =0 oo, (A.174)
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Fo () =0 e (A.175)

~ —

~ _ . - .~ ~f~ . . h
F (d)=w, (qxj,,3 +uhig )+ w, (‘I:-I:o +uhiy, )+ w, (qx.l22 +uhiy, )—% .-(A.176)

Fo @) =[G, (Fig + 2y i J+ i by 4 2,0, )
e, [G (B sy + 2y g )+ T g + 2y oo (A.177)

+w, [c~1x(hj53 +z, jn)+ z"ilh(hjs6 +z, ju)

F,8)=3,Fiy, +2,4,)+ 5 hlfiy +2, 2y e (A.178)
F () =0 e (A.179)
F () = 0 e (A.180)

~ o~

~ e . — e o~ - e . — hz'__y
F, (9) =wb(qy.124 +vlh125)+ wz(qyj25 +vlh.127)+w,, (qy.l28 + VA )— P .(A.181)
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F, (¢)=1, [% (7{1’5, +z, 1’24)+ iﬁ(ﬁjw + 2, ds )]
+W, [qy (i + 2,436 )+ VRl gy + 2,y )] .................................. (A.182)

+W, [qy(hjssv + 2,05 )‘*‘ -ﬁh(hfsl +1z, .izg)

G, (®)= —?{-a%(?jx.il viih jz)+-6%(qy13 e )}(w,ﬁ.ils T+ T i)
.......... (A.183)
G,(@®) = %—ﬁl)%-(%--q)‘?; e (A.184)
G,($) = -(%4-771)-5;(5”1,)— (%+7]§(Z+zb)+ By oo (A.185)
G, (@) =-%{;p'l ’7, %4—?% —iji} ................................................ (A.186)
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G (@) = (-(5 iz:; B:)

- -~ . - - - = - 0z ~
+ (h/ 2. - h i30) (pl+ghp)+ha'3-(h d}f l‘xzb)/-?-
-~ dzb ~ - dﬁ aZb
- (B T3 r*’zb)/z"h(b?/z'* 3%
5 (2E /o . 0z
Sy oy

)/

-h ige Wy Wy - h igy Wy Wp - h isy Wr Wp
~hig; Wy Wy — R iss Wp Wy - B isg Wy Wy

=X

(6&_227; (i;53 &, + b 150 @)
5;7; (i20 G, + B 1i:; @;) + ddu?}: (i22 @, + h i; ;)
+ i —(%i—" + h i 6(;11 + 1- gi a-| w-
+ |ig ddéj;‘; + h i;q adt;l + I;jg gi ;| wg
+ | 21:; -‘-;QT" h 3 CZ;-;I + 1-3 g—i G, wy

ow - -
( b (is; G, + R i ¥))
oy
LA (1256 . + h 137 T;) + Al (i:6 ., + h i-0 ¥;)
o - oy
aqg. - 7
+ i_)g Q', + h 1I:7 dvl + .37 V; W
oy oy
(. a3, ) 0¥, . -
+ 1.y Y + h i-g 25 —— U;| Wy
oy Oy
+ (i °g, + A 1 9%; + 1 oh T, w
ST % 5y 2 5, N h

(A .187)

..................................................
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& =% =2pv, w’*%“’b ................................................................. (A.188)

~ D,i, &w

T = PV m et | ot e e A.189

==P ( P ax) ( )

A s N L (A.190)
h cy

It should be mentioned that the turbulent diffusion terms, appearing in the F, ($)and
F, (¢) parts, are omitted in those of the boundary integral terms. That means the wall

friction effects are not included in the current formulations. Equations (A.87)-(A.89)
in the form of equation (A.71), Equations (A.150)-(A.151) in the form of equation
(A.146), and Equations (A.163)-(A.167) in the form of equation (A.162) may be

generally represented by:

R0 oo e (AL19T)
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R represents the vector of the residuals and is of length (V, x NS) x 1 and is defined

as:

(R [ Equation(A.87))
R, Equation( A.88)
R, Equation( 4.89)
R, Equation( A.150)

fi .
R B L JEquation( A LS (A.192)

R, Equation( A.163)

R, Equation( A4.164)
R, Equation( A.165)
R, Equation( A.166)
(Ro] |Equation(A.167))

R actually represents an implicit set of non-linear algebraic equations. Special
iterative techniques are thus necessary to solve this system of non-linear equations.

This may be explained as follows.

Two methods are used to solve the system of obtained non-linear equations. These
methods are transient and steady method solutions. Two techniques, with slight
differences, are used in this study to solve the transient and steady problems. This

may be briefly explained as follows.
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For the transient solution, the objective is to get the correct distributions of the flow at
a certain time or to actually map the time history at a certain domain. For the resulting
implicit set of non-linear algebraic equations, a Newton-Raphson technique, where
the derivatives are evaluated analytically where possible, is used to advance the
solution to the next time level. The corrections vector necessary to update the
variables after each iteration, or on other words the vector of differences between

the @ vectors at two successive iterations, §&, are obtained from:
Jo e D T = R (A.193)

Where superscript m refers to evaluation of the quantity at the m™ iteration. J is the

Jacobian matrix of size (¥, x NS) x (N, x NS) and is given by:

-~ n+l.m
Jrbe = [35] ........................................................................................... (A.194)

Or

364



n+im

6R, OR, ©OR, 6R, OR OR, ©6R, OR CR ©CR
oh, &q. oq, Ou, ov,

oR, OR, @R, OR, @R, @R, &R, &R, &R, &R
on, oq, oq, Oou, Ov

0rR, O6R, ©6R, OR, OR, 0GR, ©OR, OR, OR, OR,
oh, éq., ©&q, OCu, Ov, Cw, Ow, Ow, 0Op, 0p,

6R, OR, ©R, ¢&R, OR, OR, ©OR, OR, OCR, CR,
ch; aqx, eq, Cu, Ov, ow, 2 &Vh, P, P,

0R, ER; ©6R;, ¢oOR, OR, &R, OR, OR; OR;, CR,
¢h, ¢&q, &q, ou, ©ov, ow, ow, Oow, 0Op,  0p,

an»l.m -
oR, ER, OR, OJORy, 0GRy, OR, CR, ©CR, OR, CR
ch, ¢&q, ¢&q, Oou, 0ov, 0w, Oow, 0w, 0p, {p,,
6R, ©OR, ©R, ¢&R, ©R, &R, OR, OR, OR, OR,
ch; aqx_, aqy, 6"1, 6"1, awzj 6wb, &th 5171, apz,
0R, OR, ©OR, O8R, OR, OR, OR, OR;, O &
¢h; ¢&q., ¢&q, o, Ov Ow, Ow, Ow, Cp, 0D,
éR, ©CR, O ¢R, ¢ER, ¢oR, ¢C 6R, ©GR, CR
¢h, &g, ©&q, ow 0Ov ow, ©&w, Cw, Cp 0,
aRlO 612[0 5 10 6R10 aRlO 6R10 6R10 aRlO a1210 6Iel()
i oh, ¢&q, 0Oq, cu,, avl, ow,, oW, Cw,,  Cp, ps, ]
.............. (A.195)
5R n+l.m )
{—a—é} is calculated as follows:
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+6 At I<
Q,

+0At I<
Q,

+ (1 - 0)[(bi + FVn )n

an,lrlu-l

P

Ay, (&)™

oW

[’/’1 @)™ -v,(@)" ]+

BWIT‘

[V/s (cb)"+l —VY; (¢) ]

(oF, () cb,
50 ox

aj ¥ (¢) C«bi
; L

9[(5.- w, e SVl AN s a%ogg)m W Ay, (6)™

ang-{-l

oo

|

LA MR-l C)
o B0

L dQ)

|

T ®™ -y
dQ

N n+l.m

dQ

N\ n+l.m

+W,

12(@]

+W;
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N\ n+lom

[ o, (aF, @, F® (E)J
cd ox
f|+ 2% [cd? @) | oF, (¢) G 0¢)) Q.
al o | &
+@ At L
s [aF,, @, @ @J
cd ox oy
Fr g — [ Fn
+a£‘bx &@e a;':bx 6¢‘ke

OR

{

cd

Q,
n+l
W,l
+ I9<
Q, OW n+l
+
c®

.

( TN\ n+l
e[w;;l W®™ ()

n+l.m
2 } is calculated as follows:

cd

Tyn+l 2 Tyn+l Ty n+l
+(1—9)|:W2';%L(‘§£)_+(bi+W’)n O‘//zafg) + W] oy;(¢)

A, ]+

Lo @™ -, @]

et W@ s Y5 (9)

n

(A.196)

cd

|

c®
s dQ

|

cd
n+l

T —va@r]
dQ

\
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N n+l.m

,— ; oF,, @) &b, N OF, @) b,
@ & @ Y
+0 At f< ( “2
Q, [0 oF., (%) . oF, ($) +6G2($)
bl éx cP| oD
- 5 (5]:‘:[(4))}4. o [th(d>)]+aGl($)}
el bx o\ oo
— /A ~ . - Ty - T
von [lewa 2 OF‘:(“’)}LF (OF-":“’) +OC§“’)}> .
a. _G‘D\ cx cd ay J
S Ar TV -
o, 8 | oF, () L0 oF, (9) L 9G:(9)
00| ox o oy ) oo
5;; l [6F3;¢)+5Ff;(¢)+61 @)J
- ( P 2 ®
f +05pfq/;2 aF,2 (¢)+0ng(¢)+ G, ($)J da,
+OAL{ ™ . >
P
LA OO
B oy ]
oF,, , ¢, OF,
+a;[b,- 5D @e d_!: i od k’ J

(A.197)
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n+lm
{?ﬁ} is calculated as follows:
cd

+f&
Q

\

+0AIL

Q,
bi { Aa {
cP

+0At I<
Q,

+(1- 9){7737

cd

Tyn+l Tyn+l
Wm»l allyl (d)) +H/3';-rl aW.’Ia((i) (

(
-

+Wy

)n+l

n+l

+(6, + W

W"H [‘//1 (d’)m’l

n+l
OW33

r

oF. () &b,

oy, (E)Ml W oy, (5)
8¢ 32 -

m@ﬁ+

Lo @™ v, Gy

LOF,®) 3,

1

P ox

oF, (6)

5o oy

-

o

|

oF, ()

n+l
3"

yn

&G, ($)

-

ox

oF,

. ()

-

-l

)

ay

co

%

0
c®

+W,

Wy,

ox

}

oy, (§)™!

M@W‘m@ﬂ

|

na 3~n+l
) ¥, (9)

o]

cd

dQ,

~l,m

dQ,

N\ n+lm

dQ)
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oW,
cd

oF, () O, )
ox &y

+G, ($)J

[

oF, (¢) oF, (d>)

GZ(ES)J
+8 At

+G (¢)]

/—"\

%’

-
b

OF,

X3

= dx
oD

ayz__"bi

t‘

cP

are calculated as follows:

}}m-l.m

a{R“
Ry
{___

oo

ol B
R

5 }}nd.m -

s =

H(b,. +

{

. [o _ {% OREXC

ws(@)" v ()"

},

N n+l.m

dQ

(A.198)
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N n+l.m

JE@  SR®
| E5 (@) b, . F, ($) .ab,.)
c® ox cd oy
+6 At | . dO,
8, . 128, 8
o 2 AE® o 5@ la®
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As a result, the system of equations represented by equation (A.193) becomes linear
in 8™ . A LU decomposition matrix solver, with a skyline matrix storage for the

Jacobian J, is employed to solve this system of linear equations to obtain5®™"' . After

each iteration, the values of the variables are updated through:

D™ D L SO T e (A.201)

Where superscript m+1 refers to evaluation of the quantity at the m+1™ iteration

n+l,m
5D)*
Finally, when the error norm g™*"® = Z—(-—) is < a user specified tolerance
2.’

(typically 10), the solution proceeds to the next time step.
P

For the steady state solution, the objective is to reach the final steady state with as
few calculations as possible while remaining stable under any flow circumstances.
Herein, the 3-equation model is firstly run till a final steady state solution is obtained.
This final steady solution is then used as an input file to run the full 10-equation
model. It is found that by this way the convergence to a final steady state solution

becomes faster.

A special technique is used to accelerate the convergence The equations are solved
with =1 (fully implicit) & being the implicitness factor. To control convergence, the
steady state is found to be essentially simulated as an unsteady but with number of

iterations equal to 1 per time step. This process is actually a pseudo-transient one. A

373



time step acceleration procedure speeds the process to final completion by
systematically increasing the time increment. The time increment is increased

according to:

g
AL = AL e, (A.202)

where & is a user specified goal relative change of all the variables. Typically a value
of & of the order of 0.1 is used. After each time step, the values of the variables are

updated through:

D™ = D™ D™ (A.203)

As the solution progresses toward steady state, usually the overall rate of change
&/ At decreases and longer time steps are possible. The progress to toward a final
steady state may not be uniform. The program logic proceeds as follows. At the end
of each time step the overall relative change ¢ is calculated and compared to the goal
change g, If the actual change is less than 1.25 times the goal change &, then the

current iteration is accepted and the increment for the next time step is then calculated

according to equation (A.202). If the actual change is greater than 1.25 times the goal
change &, then the current iteration is rejected and a new time increment is calculated

as half of the result of equation (A.202) and the iteration is retried. This process may
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repeat a few times until a small enough time step is achieved to allow the solution to

progress.

In most cases, the time step eventually becomes large and the solution converges
quickly to steady state. At each successful iteration, the overall change £ and the net
outflow discharge (¢, = g= 4y — g, Ax) are printed on the screen as indicators of how
close the solution is to a final steady. When the net outflow discharge indicates a
constant value and the overall change approaches zero (typical value of the order of
10% is used), the solution is considered to be steady state. More details are found in

Steffler (1997a).

It should be mentioned that few of the equations listed beforehand are printed out by
Mathematica application package. That is why the shapes of the equation boxes in

this Appendix are not consistent.
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Appendix B

List of the Integral Constants in the Derived Equations

List of the little integral constants i’s appearing in the general derived equations

i, = [ fi(mydn i, = [ g (m)dn i, = [ fmdn
i, = [ g.(ndn iy = [ £,(n) £, (mdn is = [2£,(mg.(mdn
i, = [ g, (Mg ()dn iy = [ f.(n) fo(m)dn iy = [2/,(m)g: (mdn

iy = [ £2(Mg, (m)dn by = [ £ ) fo(mdn in = [ fi(mg.(m)dn
iy = [ g.(0).f2(m)dn i = [ &, (e, (mdn is = [ f,(mdn
P =fg3(ﬂ)dﬂ I =IH3(U)dU Iig =If1(77)f3(77)d77
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g.(mg;(mdn

© Ly —

he = [ 2, i (m)dn in = [ £i(Me(mdn iy =

iz = [ fm)H,(m)dn i = [g.(mH; () dn b = [ £, ()
i = [ &2 (M) f(m)dn i = [ £2(m)gs(mdn iz = [ 82 (m)gs (medn
i = [ f(MH;(m)dn i = [ g2 (MH () dn i = [ fo(m)dn

iy = [g.(mdn iy, = [ fi(m)dn iy = [n g (mdn
1 i 1
iy, = [ fo(m)dn iss = [ng:(mdn e = {1 £,(1) £ ()l

20 fimegmdn iy =[ng(m) gmdn iy = [nf.(ndn

© ooy —

I3 =

iv = [ng.(m)dn iy =[nfim fitdn iy =[2nf.(De,m)dn
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ng () f.(mdn

© Ly —

ng.m) g:(mdn iy =[nfi) frtmdn iy =

ol—_'....

Iy =
is=[nfi) g.(mdn i, =[ng () g,(mdn iy =[nf@mdn

Iy =

ng,(mdn Iy =

© Loy —
© ey

nH,(n)dn iy, = [n f.(n) fi(mdn
1 1 1

io = [nfi) gs(mdn iy =[nfi@ Hymdn iy = [ng.() £,

iss = [ng(m) g;(mdn i = [ng @) Hymdn iy, = [nf,(m) £ (mdn

is=[nfom) gsmdn iy =[nfim) Himdn i = [ng.(n) fi(m)dn

io=[ng.(m) gs(mdn  in=[ng.() Hy(mydn  is =[ £,G1) fi(m)dn

i = (2,0 &smdn  is=[2£,m Hmdn i =[ g g;(mdn
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2g,(m) Hi(m)dn i = [ H,(n) Hy()dn
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Appendix C

Evaluation of the Square Root of the Convection Matrix

The inverse of the matrix (,/Ai +A} ) is calculated numerically using Hoger and

Carlson’s (1984) method as follows:

212 Azu
Ay =AT+AI={ A, Ay Ay | (eR))
C2u CZI: 23
Co=A2=|C.. Co Co | (C2)
CZJI C'-'x: Cln
T, = Ay A Ay F Ay o (C.3)
I, =05[(dy, + 4, +4, ) =(Co, +Cay +Co M oecoiroiiireeeeicee e (C.4)

I, =Det.[A,]
— (A, Ay Ay )+ Ay Ay Ay ¥ Ay Ay Ay (C.5)
~ A, Ay A, —A, A, A, +A, A

2 42,

IL, = JTIT, oo (C.6)
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25

E= 5_7(213 COIIT, +2TIIL ) oo (C.7)

n= 2%(4113 —~I2IT2 QI T ST I I, +2TIIZ) oo (C.8)

4=—§Ic+(§+\/5)”3 =) (C.9)

. ={§(m+\/2a ~¢H6fIL I ) g=2l, 10
VI 211, ¢ =21,

I, = I 42T T, oo (C.11)

(,/Ai +A2 Tl =i, +1,1)+ 12 0L, + 1)
{I (r,1r, -11)C, - (I, 11, - I Y111, +[u[C)A2} ............ (C.12)

u

+[IL 1L (I, +1,1. )+ I2(ZL 1L, + I )T

u-c

Where I is the identity matrix given by:
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Appendix D
List of the Integral Constant Values in the Derived Linear and

Quadratic Models

The list of the values of the integral constants i’s for the VAM linear model:

=1 i2=0 is=1
iy=0 is=1 is=0
i7=1/3 ig=1 io=0
ilo=1/3 inn=1 i;2=0
i13=0 ie=1/3 iis=1/2
is=2/3 ir7=1/2 irg=1/2
ijo=-1/6 iz =213 iy =0
=172 i =1/6 =12
is=-1/6 iz =2/3 i7=0
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ig=1/2
i3 =2/3
iz3p=1/2
i;7=1/3
is=1/3
ii3=1/6
l4=1/6
ivv=1/3
is2=1/3
iss=1/15
iss=1/3

i29=1/6
is=1/2
i;s=1/6
izg=1/6
iy =112
Iyy=1/2
iy7=1/6
isp=1/3
is3=1/3
iss = 1/6
iso=1/3

i3p= 1/2

i;3=1/6
i;s=1/2
izp=1/6
iyp=1/3
iys=1/6
isg=1/6
is;j=1/6
isy=0

is7=1/6
isp=0
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i51 = 1/15
i64=2/3
f67=2/3

is2=1/6
iss=1/3
iss=1/3

igz3 =1/3

iss = 8/15

The list of the values of the integral constants i’s for the VAM quadratic model:

=1
iy=0
i7=4/5
ijp=4/5
i;3=0
i16=2/3
i9g=-1/4

=0
is=1
ig=1
in=1
iy=4/5
i;7=1/2
ig=2/3

iz=1
is=0
ig=0
i1>2=0
i;s=1/2
iig=1/2
iy =1/15

385



i22= 1/2

ig5 =-1/4

izg =1/2

i31 =2/3

= 12

i37 =1/2

i40 =1/3

i;3=3/10

i45= 1/4

i49 =1/3

i52 =1/3

iss=2/15

i33 =1/4

i35= 2/3

i29= 1/4

i32= 1/2

i35= 1/4

i33=3/10

i41 =1/2

iyy= 172

i47 =3/10

i50= 1/3

i53 =1/3

i56 =17/30

i24 =1/2

i30= 1/2

i33 =1/4

f56= 1/2

i39 = 1/6

i.;g =1/2

Iys= 1/4

i48 = 1/6

is; =1/6

isy=1/60

i57 =1/6
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i53 =1/3 i59 =1/3 igo = 1/60

i61 =2/15 i6_7 =7/30 i53 =1/3
i64=2/3 i55= 1/3 i66=8/15
isc7=2/3 isgs=1/3
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