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Abstract

A design and timing procedure for Model-based Predictive Controllers (MPC) was developed 

based on a ARMarkov model structure in which the user specifies the number of Markov 

(impulse response) parameters required to define the process time-delay and the initial, 

fast dynamics of the time domain response. A low order, parametric ARX model is then 

specified to model the slower dynamics of the remaining process dynamics. The advantages 

of this dual model structure are that it does not require accurate, a priori specification of 

the process time-delay or model order and includes provision for disturbance modelling. 

Furthermore, the statistical properties of the identified Markov parameters are better than 

the same properties of parameters generated using other linear regression ID methods. The 

design of the controller follows traditional MPC techniques but the use of the ARMarkov 

"dual model” and a separate disturbance model results in a flexible formulation that includes 

DMC and GPC as special cases and permits independent tuning of the closed-loop servo 

and regulatory responses.

An on-line tuning methodology is developed that linearly combines the outputs of 

any two individual controllers using a continuous parameter a. As a  is varied from 0 

to 1 the state feedback gain is a convex combination of the gains of the two individual, 

limiting controllers and the system properties vary continuously between the limits defined 

by each controller used individually, e.g. from conservative, robust control to aggressive, 

high-performance control. If the conditions stated in Lemmas 11.1 and 11.2 are met, the 

closed-loop system is stable using the combined output for all 0 <  a  < 1.

When the two MPC’s differ only in the specification of the control horizon (M  = m  

and M  =  m  +  n) or the steady-state output weighting, the second controller output can 

be obtained by a simple extension of the first controller calculation and hence there is no 

significant increase in computational requirements.

The performance monitoring approach simultaneously provides closed-loop time domain 

performance indices (e.g. rise/settling time) plus the interactor m atrix and sensitivity

/ complementary-sensitivity functions. State space based performance benchmarks such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



as linear quadratic gaussian (LQG) are also formulated.

Simulated and experimental applications are included to  illustrate the theoretical devel­

opments in this thesis.
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Chapter 1 

Introduction

Model-based Predictive Controller (MPC) has been widely accepted by academia and 

used in industrial applications because of its ability to handle constraints and large 

scale multivariable processes. Research on MPC design and analysis started in the 

1970’s and is continuing because of the ongoing demand for improved performance 

and robustness. The first step in model-based predictive controller design is to obtain 

a process model that is well suited for the controller to be designed. The controller 

can then be designed to optimize a user-specified performance index. However, when 

the designed controller is implemented on the actual process, there is always some 

performance loss due to model plant mismatch (MPM), known/unknown disturbances 

on the process, measurement errors, non-linearity and so on. Therefore, after imple­

menting the controller there is always a need for controller tuning and sometimes even 

redesign. The need for controller tuning or re-design is usually established by a per­

formance/robustness analysis of the controlled system. Therefore, process modeling, 

controller design and analysis/tuning are the major concerns in MPC applications. 

Each of these areas is addressed in this thesis.

An overview of MPC including past, present and future research directions is given 

in Section 1 .1 . The motivation for and the objectives of this thesis are described in 

Section 1 .2  followed by an outline of the thesis organization and contributions in 

Section 1.3.

1
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1.1 Overview of Model-based Predictive Control 
(M PC)

1.1.1 Basic P rincip les and A dvantages

MPC has been defined by different researchers in different ways. Garcia et al. 

(1989)defined MPC as “that family of controllers in which there is a direct use of 

an explicit and separately identifiable model” . Eaton and Rawlings (1992)said this 

definition was too general and identified the defining feature of MPC as “a repeated 

optimization of an open-loop performance objective over a finite horizon extending 

from the current time into the future” . Several other formulations and different names 

for MPC can be found in the literature. Among them Dynamic Matrix Control (DMC) 

by Cutler and Ramaker (1980), Identification and Command (IDCOM) by Richalet et 

al. (1978), Model Algorithm Control (MAC) by Rouhani and Mehra (1982), Internal 

Model Control (IMC) by Garcia and Morari (1982), multivariable optimal constrained 

control algorithm (MOCCA) by Sripada and Fisher (1985), Generalized Predictive 

Control (GPC) by Clarke et al. (1987a, 1987c)are the most commonly mentioned ones. 

Although these variations of MPC use different process/noise model structures, per­

formance criteria and optimization methodologies, all of them share some common 

features that can be summarized as follows.

•  There is an explicit process model in step/impulse response, transfer function, 

state space or other form. In many formulations there is also an explicit or 

implicit noise model.

•  Based on the process/noise model used, future outputs are predicted over a 

finite horizon called the prediction horizon.

•  The predicted output has two distinct parts usually referred to as the ‘free 

response’ that depends on the information available at the current time and the 

‘forced response’ that depends on the current and future control movements.

•  An optimization problem is formulated that includes a user-specified perfor­

mance criterion, with variable weighting (tuning) parameters, input-output con­

straints etc.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  The optimization problem is solved at each sampling instant to determine the 

present and future control moves.

•  In accordance with the ‘receding horizon principle’, only the first control move is 

implemented and the entire calculation is repeated at the next control interval.

Therefore, in general, MPC is defined as a class of controllers that, using a process 

model, determines a  set of manipulated variables by minimizing/maximizing some 

open-loop performance objectives over a finite time horizon from current to some 

extended future time. The most commonly used performance objective function is 

defined as
n 3

Jmpc =  ^ T { r ( k  + i) - y { k  + i))T Q i ( r ( k  + i) - y { k  + i))
»=i

M
+  ^  u (k -f i — 1 )T RiU (k + i — 1 )

t=i
M

+ ^  Au (k -I- i — l)T AiAu (k + i — 1 )
i = l

where y (k + i) ,i  = I , - •• N2 are the predicted future outputs over a finite prediction 

horizon N2, r (k + i) are the future reference signals tha t are assumed to be known 

and u (k + i — 1 ), A u (k +  i — 1 ) are the present/future control and incremental con­

trol moves respectively that are determined by solving the quadratic optimization 

problem. In the MPC literature, M  is called the control horizon, Qx is the output 

weighting matrix, Ri is the input weighting matrix and A, is known as the move 

suppression factor matrix. Other modifications and forms of the objective functions 

can be found in literature (Garcia and Morari 1982, Garcia et al. 1989, Cutler and 

Ramaker 1980, Eaton and Rawlings 1992, Morari and Lee 1999, Patwardhan 1999). 

The characterizing features of some commonly used M PC’s such as DMC, MAC, GPC 

are discussed by Saudagar (1995). Garcia et al. (1989)specifically discuss the algo­

rithm formulations of DMC and MAC. A detailed review of MPC basic principles 

and formulations can be found in (Garcia et al. 1989, De Keyser 1991, Eaton and 

Rawlings 1992, Patwardhan 1999).

Some of the advantages of MPC and reasons why MPC is so widely used in 

industrial applications are as follows (Camacho and Bordons 1999, Saudagar 1995,

3
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Patwardhan 1999):

•  MPC concepts such as those inherent in DMC are very intuitive and easy to 

understand even with little knowledge of advanced control theory. Therefore, 

it is easy to explain to industrial operators/technicians.

•  MPC can handle large scale multivariable systems which are often difficult to 

handle by individual feedback controllers. It can be implemented on simple as 

well as complex systems.

•  MPC can deal with hard constraints on inputs/outputs which are difficult to 

include in other control scheme implementations.

•  Because the objective function is typically finite horizon and the optimization 

problem is linear or quadratic in nature, with the present day computational 

capabilities and powerful solution algorithms, it is not difficult to solve the 

optimization problem at every sampling instant.

•  When the inequality constraints on the process inputs/outputs are inactive, the 

final control law is linear in nature and therefore easy to implement.

•  W ith its flexible and open methodology, MPC can be extended and improved in 

many different ways. Recent developments include: optimization improvements 

using different algorithms, robust design and analysis, performance diagnosis, 

nonlinear modeling and control.

1.1.2 H istorical B ackground and P re se n t/F u tu re  Research 
D irections

The origin of predictive control or finite horizon control could be traced back to the 

1960’s by some researchers (e.g. (Garcia et al. 1989, Banerjee 1996)). The term 

predictive control has been found in the literature in as early as 1962 (e.g. (Horing 

1962)) and the idea of long range predictive control (LRPC) can be traced back to 1964 

(e.g. (Banerjee 1996, Kishi 1964)). However, extensive research and applications of 

model predictive control did not start until the late 1970’s with the formulations and 

industrial applications of DMC (Cutler and Ramaker 1980), MAC/IDCOM (Richalet

4
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et al. 1978, Rouhani and Mehra 1982), and the development of GPC by Clarke et 

al. (1987a, 1987c). It has been said that MPC was rediscovered in the 1980’s and 

since then several books e.g. (Bitmead et al. 1990, Soeterboek 1992, Clarke 1994, 

Camacho and Bordons 1999) and hundreds of papers have been written on model- 

based predictive control.

In the 1990’s several review papers (Garcia et al. 1989, Ricker 1991, Eaton and 

Rawlings 1992, Muske and Rawlings 1993, Lee 1996, Morari and Lee 1999) were 

published that discussed the theoretical developments of MPC and the likely future 

research directions. Step or impulse response model based DMC has become the most 

popular of the developed MPC’s in industrial applications, particularly in the petro­

chemical industries. On the other hand, the well known transfer function model based 

GPC has not been as popular as DMC to the industrial practitioners. Morari and Lee 

(1999), Saudagar (1995)have discussed some of the reasons behind this. Proisy (1994), 

Qin and Badgwell (1996)have reviewed the existing industrial MPC technologies along 

with their limitations and discussed likely future MPC variations from an industrial 

perspective. Lists of MPC applications in chemical and petroleum industries (e.g. 

distillation column, FCC, pulp and paper making, polymerization etc.) can be found 

in Ogunnaike and Ray (1994), Saudagar (1995)and Qin and Badgwell (1996). There 

are several commercial MPC packages (e.g. DMC, QDMC, IDCOMPC, HPC, HMPC 

etc.) developed by different companies. A list of them is available in publications by 

Froisy (1994)and Saudagar (1995).

Linear state space model based predictive controller design and analysis (e.g. (Li 

et al. 1989, Lee et al. 1994, Ricker 1990, Ricker 1991)) became very common in the 

late 1980’s and early 1990’s. Issues like feasibility of the solution to the constrained 

MPC problem, closed-loop stability, performance analysis and robustness of MPC 

were the main focus of MPC research in the 1990’s and the beginning of the twenty- 

first century. Selection of a proper model, subspace model identification, nonlinear 

modeling and nonlinear MPC design also received a lot of attention during this period 

of time.

Researchers such as Qin and Badgwell (1996), Lee (1996), Morari and Lee (1999) 

pointed out that future research on MPC should include: identification improvement 

or model development in the context of MPC design, nonlinear modeling and con-

5
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troller design, better use of uncertainty estimates, multiple performance objectives, 

performance monitoring and diagnosis, improved optimization and so on. Therefore, 

with the current interest of industrial practitioners in MPC, it can be said that MPC 

research is still open and will continue for several years to come. Closed-loop perfor­

mance monitoring and/or diagnosis, robust stability design and analysis in the MPC 

context, non-linear MPC are key areas in which research and theoretical development 

scope are still open. MPC relevant modeling, integrated modeling, design & timing 

also need improvement.

1.2 Research Objectives

1.2.1 M otivation

A classical MPC system is shown in Figure 1.1. The key components are:

1 . M odel

2. C on tro lle r

3. Feedback (estimates/predicts disturbances and MPM/uncertainty)

In more sophisticated MPC formulations, especially those based on MIMO state 

space models, the model and feedback components are combined into one larger 

module that performs

•  state estimation

•  output and disturbance estimation

•  noise/disturbance filtering

•  parameter estimation etc.

These (state space based) techniques are very powerful but the MPC structure is 

not as transparent to the user, e.g. the model/prediction and (disturbance) feedback 

paths are not separated as in Figure 1.1. This “separation” is practically helpful to 

application-oriented personnel in the process control area who want to separate the 

“servo” and “regulatory” control functions.

6
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e(k)

X(k)

Model

FB

K(*) = [ y ( k ) + y (k  + \)+- - + y(k + p )  f

,i(/t)+x(i-‘-l)+--- + jr(l: + p) f  
P = Physical process or system to be controlled 

FB = Feedback

Figure 1 .1 : Classical MPC Structure

For practical applications the basic/classical MPC system shown in Figure 1.1  is 

augmented as indicated by Figure 1.2 to include

1 . model identification and parameter estimation

2 . performance assessm ent to compare the achieved control with the “best 

possible” control and/or more practical LQG or MPC benchmarks.

3. system monitoring and on-line tuning (where “system” includes all components 

of the complete MPC system) is required to adapt to changes in the physical 

process or in the performance of individual modules. For example, if the iden­

tified model is ‘poor’ or if the feedback prediction X( k)  is unreliable then the 

controller should be redesigned/retimed so that it is less aggressive and more 

robust.

7
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4. data-filtering/preprocessing that can range from simple noise filters to so­

phisticated MIMO analysis/correlation etc. techniques.

5 . higher-level functions such as process optim izers are used in many indus­

trial applications to generate set-point or target trajectories and can produce 

significant economic benefits.

Tuning

u(k)Optimizer
and/or

Scheduler

Data
Preprocessor

Y(k)
Model

PA

FB

PA = Performance Assessment 

ID = Identification

FB = Feedback

Figure 1.2: MPC System Supervisor

There are multiple methodologies and design approaches for each component in 

Figure 1.2. Therefore it is not difficult to propose a “new” MPC system using dif­

ferent design and implementation strategies for each component. The challenge is to 

select and design each MPC component so that they integrate well with the other MPC  

components and facilitate specification and on-line tuning of overall MPC-system per-

8
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formance. With this “challenge” in mind the objectives of this thesis were developed 

as outlined in the next subsection.

1.2.2 G eneral O bjectives

The overall objective of this thesis was to develop a  “complete” MPC system that 

incorporated the following characteristics.

1. A “dual-model” that combined the flexibility and ease of interpretation of step 

(or FIR) models used in DMC with the “parametric-efficiency” and computa­

tional advantages of parametric models such as those used in GPC and state 

space methods.

2. An integrated approach to the selection and formulation of each component so 

that they work well together and can be designed a priori and timed on-line to 

accommodate changes in the process and/or performance objectives.

3. A common basis for all the MPC components that facilitates design and analysis 

using modern control theory and computational packages such as MATLAB.

4. A complete MPC system that would meet the practical requirements of indus­

trial applications operated by plant personnel.

1.3 Contents and Contributions of the Thesis

Not surprisingly the key distinguishing features of any Model-based Predictive Con­

trol system is the selected m odel structure. The MPC system developed in this 

thesis uses a “dual-model” that combines a user-specified number of impulse (or FIR 

or Markov) parameters to define the time-delay and initial portion of the process 

response together with a parametric (ARIMA) model to define the balance (slow 

dynamics) of the process response. This is illustrated in Figure 1.3.

The //-point step (impulse, FIR or Markov) model of the initial process response 

means that it is NOT necessary to specify, a priori, the time delay, model structure 

etc. as required for parametric models. The slow or residual response from k  +

9
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0.

k+meuk

Figure 1.3: Dual-model Representation of a Process Step Response

/i to k  +  N2 (iV2 =M PC prediction horizon) is adequately represented by a low- 

order, parametric model as is common in the process industries. Three points are 

particularly important about the “dual-model” used in this thesis:

1. The MPC system developed using the dual-ARMarkov model is shown to be 

mathematically equivalent to DMC as p —► iV2 and to GPC as \i —► 1. Thus by 

specifying 1 < /z <  iV2 the user can obtain any desired combination of DMC 

(non-parametric) and GPC (parametric) characteristics.

2. The dual-ARMarkov model provides a sound theoretical basis for design, anal­

ysis and simulation and  is shown to have advantages for use in other MPC 

components, including identification, control, performance assessment and tun­

ing.

3. A separate “disturbance term” incorporated into the dual-ARMarkov model 

provides a basis for more accurate prediction of the process output and leads 

to a mechanism for independent timing for ‘servo’ and ‘regulatory’ control.

The main areas studied in this thesis are identified in Figure 1.2 (solid boxes) 

and in column 1 of Table 1.1. The details of the work done in this thesis project are
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contained in the Chapters listed in column 2 of Table 1.1 and summaries of the key 

contributions are in the sections listed in column 3.

However, very briefly the contributions of this thesis are:

1. M odel: a dual-ARMarkov model as discussed above

2. Iden tifica tion : a multivariable, ARMarkov identification procedure th a t uses 

conventional least-squares to directly determine the p. Markov parameters plus 

the order and parameters of the “residual response model” .

3. C on tro lle r: provides any desired combination of DMC (conservative) and GPC 

(aggressive) characteristics together with a clear separation of ‘servo’ and ‘reg­

ulatory’ control.

4. Feedback: the dual ARMarkov model permits separation of the model-based 

feedback predictions from the “disturbance” prediction analogous to Y  (k ) and 

X  (k ) in Figure 1.1.

5. P erfo rm ance: overall control performance is evaluated using familiar time- 

domain metrics such as rise time (dominant time constant), theoretical metrics 

such as sensitivity functions and/or relative to calculated (e.g. LQG) perfor­

mance objectives.

6. T uning: a single parameter, 0 <  a  <  1, provides stable, robust control over the 

full range of performance and robustness specified a priori by the user during 

the design phase.

Table 1.1: Overview of Thesis Work on MPC

MPC Component Chapter(s) with details Section with Summary
(1) Model 2, 3, 4, (9) 12.1, point #1
(2) Identification 2, 3 ,5 12.1, point #2
(3) Controller 6, 8, 9 12.1, point #3
(4) Feedback 7 12.1, point # 4
(5) Performance/ robustness 10 12.1, point #5
(6) On-line timing 11 12.1, point # 6
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Part I 

ARMarkov Identification

This part of the thesis focuses on the ARMarkov models that are used later in the 

thesis for development of Model-based Predictive Controllers (MPC). As shown in 

Chapter 2 the ARMarkov model is a combination of non-parametric and parametric 

input-output models and does not require accurate values of the process time delay 

or actual model order. At one extreme the ARMarkov model consists only of non- 

parametric terms and is equivalent to the model used for DMC (Cutler and Ramaker 

1980). At the other extreme it reduces to a parametric model identical to the model 

used for GPC (Clarke et al. 19876).

In Chapters 2 and 3 the existing identification method for ARMarkov models 

of SISO systems is extended to the multivariable case. The result is a straightfor­

ward linear regression algorithm that performs well in practical applications. The 

statistical analysis in Chapter 4 shows advantages such as better consistency, vari­

ance/covariance and confidence bounds of the estimated parameters compared to the 

same properties of the parameters estimated by other linear regression methods such 

as FIR or ARX. Chapter 5 shows how the interactor (time-delay) matrix can be 

obtained directly from the estimated Markov parameters.

MPC design and on-line tuning are presented in Parts II and III respectively.
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Chapter 2

Estim ation of Markov Parameters 
using ARMarkov Identification1

2.1 Introduction

System identification is a well known research area in the control community. It 

is important in both academia and industry. System identification is the process of 

developing or updating a mathematical representation of a process using experimental 

data. There are several reasons for developing a mathematical model such as to 

understand the process dynamics, to design a controller, to implement control-loop 

performance monitoring/assessment, train the plant operator and so on. When any 

input is introduced to a process, outputs from the process are obtained that depend 

on the dynamic behavior of the process. A model is a mathematical function that 

maps the process input(s) to the process output(s). The dynamic behavior of the 

process cam be estimated in the form of mathematical models by analyzing the process 

input(s) and output(s).

There are different methods of identification and different models have been used 

for different processes. Since the mid-sixties, several techniques have been developed 

for system identification and many textbooks have been written focusing on different 

techniques and different types of models. Most of the practical chemical processes are 

nonlinear in nature. However, linear models are used in most applications because 

Unear models are easier to identify and analyze. The most commonly used linear 

models are: time domain, state space and frequency domain models. All the Unear

'This chapter is a part of the paper published in the Chemical Engineering Science, May 2000. 
It was also presented at the 1998 CSCHE Conference, London, Ontario, Canada.
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models are equivalent and can be converted from one form to the other. However, 

each form has some advantages over the other depending on the application. The 

time domain models are easy to explain to industrial operators whereas, state space 

models can be easily used for multivariable systems and theoretical analysis is also 

more convenient for multivariable systems.

There are mainly two types of time domain or transfer function models, non- 

parametric and parametric models. Non-parametric models are higher order, but 

require less specific a-priori information on the process. On the other hand, low order 

parametric models require a-priori information such as time delay specification, model 

order etc. of the process.

The least-squares identification method along with a linear regression model is 

one of the easiest and most commonly used approaches. The use of the least-squares 

method can be traced back to Gauss (1809). Among the commonly used least-squares 

methods are the FIR (Finite Impulse Response), ARX (Auto Regressive exogenous) 

etc. The main advantage of the least-squares method is that the global minimum can 

be found efficiently (no local minimum exists) (Ljung 1987). The main disadvantage 

is that if the noise term in the linear regression model is not white noise, the estimated 

parameters will not converge asymptotically to the actual parameters. The FIR and 

ARX methods will be discussed further in Section 2.2.

Most Model Predictive Controllers (MPC) need step response or impulse response 

coefficients of the process (directly or indirectly). In most of the MPC’s, the ‘dynamic 

m atrix’ is constructed using the first few step/impulse response coefficients. It is 

important to accurately estimate the step/impulse response (or Markov parameter) 

which represent the fast or initial portion of the process response. If these Markov 

parameters can be determined accurately, performance can be improved. Plaints are 

often high order, but they are approximated by low-order models for the purpose of 

control design. In such cases, the lower order approximation must be reliable, at least 

for the fast dynamics part of the step/impulse response.

Time delay estimation plays a very important role in control system design and 

in multivariable performance assessment. In multivariate cases, the time delays are 

defined by a polynomial matrix called the interactor matrix. Huang (1997) proposed 

a method of determining the interactor matrix that does not require a priori infor-
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mation on the process transfer functions and uses a linear combination of the process 

Markov parameters. He also noted that better interactor estimation is obtained when 

the Markov parameters are estimated directly rather than transforming process trans­

fer functions into Markov parameters. The first step in his method of estimating the 

interactor matrix is to determine the Markov parameters of the multivariable system. 

Huang (1997) used correlation analysis to estimate the Markov parameters of MIMO 

systems. However, in the presence of non-white disturbances, the Markov parame­

ters estimated by correlation analysis are significantly affected by the disturbances 

(Soderstrom and Stoica 1989).

Process dynamics such as non-linearities, abnormal step/impulse behavior in the 

fast dynamics cannot be captured well by a Unear model. Therefore, direct estimation 

rather than converting input-output or state space models to Markov parameters is 

important for both interactor matrix estimation (Huang and Shah 1999) as weU as for 

MPC design since they use the Markov parameters directly. Non-parametric methods 

such as the FIR method estimate the Markov parameters directly. However, non- 

parametric methods need very high model order to capture the fuU dynamics of the 

process. On the other hand, parametric models are highly affected by disturbances 

and if inaccurate disturbance models or no disturbance models are considered, then 

the Model Plant Mismatch (MPM) becomes very high.

A better method for the determination of the impulse response or the Markov 

parameters is proposed in this chapter. It is called the ARMarkov/LS method as 

introduced by Hyland (1991) and used by Akers and Bernstein(1997, 1999). This 

procedure uses a least-squares algorithm with the ARMarkov representation of a pro­

cess model which relates the present outpui(s) with past outputs and past inputs. 

The ARMarkov model has the same form as an ARX model except that it explicitly 

contains more than one Markov parameter. Therefore, the ARMarkov model can 

be viewed as an overparameterized and structurally constrained ARX representation 

(Akers and Bernstein 1997). In other words, the ARMarkov model is a combination 

of a non-parametric model and a parametric residual model. The ARMarkov/LS 

identification method uses a  regressor vector consisting of past input-output data 

with a  least-squares criterion to estimate a weighting matrix consisting of a  user 

specified number of Markov parameters. The proposed method assures the reliabil-
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ity of the step/impulse response coefficients for the fast dynamics part. Analysis 

of the statistical properties of the estimated ARMarkov model parameters, shown 

later in Chapter 4, proves that the Markov parameters obtained by using the AR­

Markov method are consistent even in the presence of colored disturbances. Hyland 

(1991) has shown that the ARMarkov model representation is less sensitive to noisy 

measurements than the ARX or ARMA model representations. Venugopal and Bern­

stein (1997a) noted that perturbations to ARMarkov parameters have less impact 

on model behavior as compared to ARMA representations. An ARMarkov adaptive 

control (AAC) algorithm developed by Venugopal and Bernstein (19976) was used by 

Venugopal and Bernstein(1997a, 19976, 2000)for disturbance suppression purposes. 

Sane et al. (1999a) analyzed properties such as robustness of the AAC. Sane et al. 

(19996) studied the behavior of the AAC under simultaneous identification and noted 

that the algorithm neither requires nor utilizes a model of the feedback transfer func­

tion. Moreover, a recmsive algorithm can be used to update the parameter estimates 

that saves computational cost due to the overparameterized model representation.

An introduction to linear regression models and least-squares methods is included 

in Section 2.2. Section 2.3 describes the ARMarkov model representation for SISO sys­

tems and the LS identification of the model parameters. Extension of the ARMarkov 

method to MIMO systems and a reclusive algorithm for the ARMarkov least-squares 

method are discussed in Section 2.4 and Section 2.5 respectively. Applications of the 

ARMarkov method are given in Section 2.6.

2.2 Linear Regression M odels and Least-squares 
Methods

‘Regression analysis is the statistical methodology for predicting values of one or more 

response (dependent) variables from a collection of predictor (independent) variable 

values’(Johnson and Wichern 1988). As mentioned earlier, a linear regression model 

is the simplest model structure and a simple method such as least-squares can be 

used for the determination of the model parameters. In linear regression, the output 

predictor is a scalar product between a data vector, 0 and the parameter vector, 9. 

The known data vector, 0 is called the regressor vector. The classical linear regression
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model is defined as

y =  <pTe  +  e

E  (e) =  0, and Covariance (e) =  a I

where 0 and <r2 are unknown parameters. In discrete time systems, the predictor is 

defined as,

y(k)=<f>T (k)d  (2.1)

and the prediction error becomes

e(k) = y ( k ) - y { k )

=  y (k) — 4>t (k) 9

The least-squares criterion is defined as

1 N 1
nun J ( Z N,0) -<t>T (k)0]2

k= 1

and the least-squares estimate (LSE) of the parameters is
A [ C
6n =  argm in J  (Z N,9)0

N k=l

- 1 N

~  ^ 2  4> ik ) f  (k) <t>ik ) y i k )N k= 1

2.2.1 A R X  M odel

The ARX model structure is, arguably the easiest Unear regression parametric model 

to use for system identification. It uses the following input-output difference equation 

to formulate the model.

y(k) + aiy(k -  1) -I h aTWy{k -  n) =  b0u(k) + biu(k -  1) -I-----

+bnbu(k -  n) +  e (k ) (2.2)

or A (q ~ l)y{k)  =  B  (g-1) u(k) +  e (k) (2.3)

where A(q~1)y(k) is referred to as autoregressive (AR) part and B (q ~ 1)u(k)  as

exogenous (X) input part. To see the ARX model as a linear regression model,
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compare equation (2.1) with equation (2.2) or (2.3). The regressor vector consists of 

input-output sequence as

0(fc) =  [—2/(fc -  1), • • • , - y { k  -  na), u(k), ■■■ ,u(k -  n6)]r

and the parameter vector is defined as

& = [ai, , Qnai ^11 ' ' ' n̂fc]

The parameter vector is estimated using the least-squares method.

2.2.2 F in ite  Im pulse R esponse (FIR ) M odel

A Finite Impulse Response (FIR) Model is a Unear, time-invariant (LTI), non-parametric 

model structure. A LTI model can be defined by the full impulse responses of the 

process. Non-parametric models, e.g. models used in correlation analysis and/or 

step/impulse response analysis, do not explicitly employ a finite dimensional param­

eter vector. The FIR model, also known as a ‘truncated weighting function’ model is 

a simpUfied form of the LTI model

OO
y(k) =  hiu(k — i) + e (k )

t= 0

used in correlation analysis where /* are the impulse response coefficients or Markov 

parameters of the process. Assuming

hi =  0 for i > M

the FIR or ‘truncated weighting function’ model is written as

y(k) = h0u(k ) -I- hiu(k  — 1) H +  h\j-\u{k  — M  + 1) +  e (k ) (2.4)

The number of Markov parameters fi  i.e. M  should be large enough, compared 

to the time constant of the process, to avoid truncation error and to get a good 

approximation of the infinite dimensional model structure. The FIR model can also 

be obtained when na =  0 in (2.2). The Unear regression form of the model is obtained 

using a regressor vector consisting of present/past inputs only i.e.
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and

0(fc) =  [n(fc), • • • , u(k — nb)]T

0 = [&:,••• fcnbf

=  [ho,--- h\i-i]T

The Markov parameters or impulse response coefficients for this model can be esti­

mated by using LS identification or by using correlation analysis.

2.3 The ARMarkov M ethod

Let G(z) = Bt
Dt

denote the transfer function of a discrete, linear, time-

invariant SISO system having the state space form

x(k  -I-1) =  Axx(k) +  Bxu(k), 

y(k) = Cxx(k) +  Dxu(k)

where Ax G Rnxn, Bx G R nx\ C x G R lxn, and Dx G R.

The Markov parameters hj are defined by (Akers and Bernstein (1997)) as

(2.5)

(2 .6)

hj = Dx

4  CxA{~lBx

for j  =  0 

for j  > 1

(2.7)

The transfer function of equations (2.5) and (2.6) is

G(z) 4  Cx(z l  -  Ax) - lBx +  Dx

The Markov parameter representation of G[z) is

00

3=0

The ARX transfer function representation of G(z) is

bozn +  bizn~l +  • • • +  bn

(2 .8)

(2.9)

G a r x {z ) =
Z n  +  d i Z 11- 1 H---------h On

(2 . 10)
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where

det(z I  — Ax) = zn + axzn H +<bi

and bi € 9? ' xm, i =  0, • ,n

Equating the transfer functions in equations (2.9) and (2.10) and then multiplying

both sides by zn +  aizn~l H +  cin results in the relationship
ho 0

hl ’■ ’ (2.11)

(2. 12)

bo
bi

. 6" .

h.n + j

hn • h\
n

=  ^  ^ O 'ih -n + j—it

0 ' '  1
ai

0 :
ho

for

0A

i = 1

The ARX transfer function representation in (2.10) contains the first Markov 

parameter of the process i.e. h0 = bo.

The goal here is to blend the two transfer functions i.e. the non-parametric rep­

resentation in (2 .9 ) and the parametric representation in (2 .1 0 ), to incorporate more 

than one Markov parameter and maintain the rationality of the transfer function. 

The time-domain representation of the ARX model is

y (k ) =  —axy{k — 1 ) ------— any(k -  n) + bQu(k) -i +  bnu(k — n), for k > 0

(2.13)

Now substituting k by k -  1 in (2.13) yields

y(k  — 1 ) =  -a iy (k  — 2 ) — • • ■ — Ony(k — n -  1) +  b0u(k — 1 )-H-----+  bnu(k — n -  1 ),

for k > 0 (214)

and using (2.14) to replace the value of y(k — 1) in (2.13) results in

y(k) = (aj -  a2) y(k -  2) + (a ia2 -  a3)y(k  -  3) H 1- ( a i ^ - i  -  a*) y(k -  n)

+aiany(k — n — 1 ) +  bou(k) -I- (6 j — aj60) u (fc — 1 ) +  (62 — a-ibi)u (k — 2 )

H 1- (bn — ai^n-i) u (k  — n) — a.xbnu(k — n — 1) (2.15)

Using (2.11), the first two Markov parameters are: ho = b0 and hi =  61 -  axbQ. Then 

(2.15) can be written as

y(k) = a iy(k  -  2) + a 2y(k -  3 ) -\----- + any(k -  n  -  1)

+h0u(k) +  hiu (k -  1 ) -I- 0xU (k -  2 ) H-1- 0 nu(k -  n -  1) (2.16)

2 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where Qi, • • • , an € 9t and P i,---  , 0 n G 3? are defined as

Qj =  aiOt — i =  1, • • • , n — 1

=  a lan

Pi = bi+1 -a.ibi i = l , - , n - l

ĵ ti =  Q-lbn

Equation (2.16) explicitly contains first two Markov parameters, ho and hi cor­

responding to transfer function G(z). Note that the input-output model in (2.16) is 

a  combination of the ARX model in (2.2) and the FIR model in (2.4). Since this 

transfer function is a blend of the A R X  transfer function and the transfer function 

representing the Markov parameters or impulse response coefficients i.e. the FIR 

transfer function, the blended transfer function is referred to as the ARMarkov trans­

fer function.

Repeating the above sequence (/z — 1) times, produces the following ARMarkov 

representation corresponding to G (z) with /z Markov parameters

, , /lo2''+’,' 1 +  ' " + V /  +  V " ' 1 +  , " + ^
< -'A R M a T k{Z )  =   „  . - 1  1 ,----------- — j— ------------ ;----------------------------

Z * + n  1 +  Ctft'iZ” - 1 H------- h

The ARMarkov time-domain representation is given by
n  / i n

y(k ) = -  ^ 2 ^ y { k  - n - j  + 1) +  j +  1 ) + ' ^ P ju(k -  /z -  j  + 1)
j = l  j = l  j = l

(2.18)

and involves only the first /z Markov parameters ho,-, hM- i  • The parameters c*i, • • • ,q„ 

€  R lxn are functions of the ARX coefficients and the Markov parameters (Akers and 

Bernstein 1997). Here n is the order of the parametric residual model and is called 

the order of the ARMarkov model. The ARX time-domain representation is a special 

form of the ARMarkov time-domain representation with /z =  1.

2.3.1 A R M arkov/L S  Identification A lgorithm

The ARMarkov regressor vector, for equation (2.18) is written as

— [ y(k ~ V-) y { k - n - n + l )  u(k) -■- u(k -  n  -  n +  1) ]T
(2.19)
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The process output can be expressed as

(2.20)

where the weighting matrix is given by, 

W„ =  [-A „ ho hfi—i B/i]
1 x n

1 x n

(2 .21 )

(2.22)

(2.23)

Let be the estimate of the weighting matrix and y(k) be the estimated output. 

Then

y(k) =  W „«*(*) (2.24)

Define the output prediction error, e(k) as

e(k) =  y(k) -  y(k) 

and the cost function, J, in terms of the output error as

N

= £(»<*>
Jfc=l

(2.25)

(2.26)

(2.27)

where N  is the number of total data points. Then is a strict minimization of J  

iff
- l

w„ = (2.28)
fc=i J  L" fc=i

Matrix contains the covariance estimates of u(fc) and y(k) and

must be non-singular for the inverse to exist. When // =  1, equation (2.28) is identical 

to the ARX/LS identification algorithm.
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2.4 Extension of the ARMarkov M ethod to  MIMO 
Systems

Akers and Bernstein (1997) suggested that for MIMO systems, each individual input- 

output pair be considered separately to generate the corresponding Markov param­

eters. The estimated parameters could then be stacked in matrix form. However, 

as shown below, the ARMarkov/LS method can be reformulated for MIMO systems 

to estimate the Markov parameter blocks directly. The input-output relationship is 

expressed as,

Y W  =  -  E q ; Y <* -  M -  7 +  1) +  H  -  j  +  1) +  5 3  P iV (k  -  0 “  7 +  1)
j=l j=l J=1

(2.29)

where Y (k) = [yi{k), y2(k) • • • yi(k)]T, U(Ar) =  [ux(k), u2{k) ■ ■ ■ um(k)]T and a ,  H_, Sz

(.3 are of appropriate sizes. The number of outputs and inputs are I and vn respectively. 

The regressor vector is expressed as

$„(*) 4  [ Y (k  -  n)T ••• Y ( k  — fj. — n + l) r  U(fc)r  ••• U ( f c - / x - n + l ) T ] r
(2.30)

Following the same least-squares procedure used for the SISO systems, the cost func­

tion becomes

71 n

(2.31)

where e is the output error vector and the estimate of the weighting matrix, is

(2.32)

where

W„ =  [ - A„ H_! • • • B„J ,

K  =  ••• a^ ,n] € /2<xni,

B„ =  [3 m •••

(2.33)

(2.34)
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2.5 Recursive ARMarkov/LS Identification

In order to support on-line decisions such as performance monitoring/assessment and 

on-line control, in most applications, the process model must be updated on-line. This 

updating procedure is known as recursive identification. The ARMarkov identification 

technique can be formulated in recursive form as described in the following sections.

2.5.1 SISO Systems

The least-squares estimate of the weighting matrix which contains the process pa­

rameters is defined in equation (2.28). This expression can be written in a recursive 

way as described by Ljung and Soderstrom (1983) as

W „(t) =
k=l t

L fc=l

-1
(2.35)

where t represents the current time instant. Following the derivation of the recursive 

least squares (RLS) algorithm in Ljung and Soderstrom (1983) and applying it to 

the ARMarkov identification, the recursive estimate of the weighting matrix can be 

written as

W, ,(0 = w „(* -  i) +  L(t) [iKO -  w l { t -  i)*(t)]

L (0 = -
p ( t  - 1)*(0

P ( 0 = P ( * - i ) -

i + ^ ( t ) P ( t  -  m t )

p  (t - 1  )<p(t)$T(t)p (t - 1 )

(2.36)

£  +  *r(t)P(t _  i  W t)  

where a t = ^ is the coefiicient in the cost function of the output error as described 

in equation (2.26).

The initial values for equations (2.10) through (2.15) can be obtained as in Ljung 

and Soderstrom (1983). If the starting time is £o,

f 2 ^ ( k ) i T(k)Pito) =
fc=l

-1
(2.37)

W m(£0) =  P(to)
u>

^ 2 a ky{k)^T(k)
,k=i
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and if the recursion starts at time t — 0, the initial values can be started with some 

invertible matrix P(0) and a vector W M(0).

2.5.2 M IM O System s

For MIMO systems, the recursive estimation is the same as for the case of SISO 

systems described in the previous section except that the regressor vector, $(t)  is 

defined as in equation (2.30) instead of in equation (2.19) and the estimate of the 

weighting matrix, W M(t) is matrix as in equation (2.32) rather than a vector as in 

equation (10.3).

2.6 Simulation Examples

This section describes simulations carried out to estimate the Markov parameters 

from process input-output data.

2.6.1 Open-Loop SISO System s 

Exam ple 2.1

Consider the third order SISO system with the transfer function,

0.0077s-1 +  0.0212z-2 + 0.0036z-3 QO,
^  “  1 -  1.9031z-1 +  1.1514z-2 -  0.2158z-3 { ' ’

subjected to colored noise generated by passing white noise through the disturbance 

transfer function

( 2 ' 3 9 )

Since the ARMarkov method involves simple linear regression, the estimated 

Markov parameters are compared with the Markov parameters determined by corre­

lation analysis (or FIR) and the ARX method which also use linear regression. The 

ARMarkov method gives the best estimate of the process impulse response (Markov 

parameters) as shown in Figure 2.1. The Markov parameters determined by the other 

methods have much larger errors because these methods try to fit the process over the

25
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Correlation
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-0 .02, 2 3 4 5 6 7 8 9  10
Sampling Time

Figure 2.1: Impulse Response of a Third Order System

whole range. The ARMarkov method gives better estimates of the first few Markov 

parameters which are needed to determine the process delay/interactor matrix or to 

design Model-based Predictive Controllers.

2.6.2 Open-Loop M IM O  System s 

Exam ple 2.2

This example estimates the Markov parameters of a process which has different 

delays and different orders in the input-output pairs of the transfer function ma­

trix. The elements of the diagonal disturbance transfer function matrix approximate 

random step-type disturbances which are common in chemical processes.

Consider a 2 x 2 multivariable system with the transfer function matrix
.loaiz-^o.QTz-2 

1 -1 .08442  - 1 + 0 .2 6 3 6 2 "2 
0 .0 4 0 6 2 -1 -0 .0 2 9 9 z ~ 2 -0.00472

0 .0 4 0 6 2 "1 -0 .0 1 1 3 z -2-f0.00 0 9 z -3 
1 -0 .6 4 9 5 2 -‘+0.041 

n im77r-2-U1 m i 9 r - 30.00772~ 2+0.02122"
0.2158z-31 -0 .7 8 4 9 2 -1 + 0 .7902Z -2 1 —1 .9 0 3 l2 -‘ + 1 .15142-:

and the disturbance transfer function matrix

0
(2.41)

1 -0 .9 9 2 - ‘ .
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Figure 2.2: Impulse Response of a 2x2 MIMO System.

From the impulse response plots in Figure 2.2, it is obvious that the Markov 

parameters determined by the ARMarkov method are very close to the Markov pa­

rameters of the actual plant and better than the Markov parameters determined by 

the ARX and the Correlation methods (FIR). The first and second Markov parameter 

blocks determined by different methods are given in Table 2.1.

2.7 Model Identification o f a Pilot Scale CSTH U s­
ing Experimental Data

The proposed ARMarkov identification method was evaluated on the pilot scale Con­

tinuous Stirred Tank Heater (CSTH) in the Computer Process Control (CPC) lab­

oratory in the Chemical & Materials Engineering Department at the University of 

Alberta. A schematic diagram of the process is shown in 2.3. The CSTH consists of a 

cylindrical tank with an exit pipe and a steam coil running through the tank. There 

are two valves to manipulate the inlet cold water and steam flow rates. Another valve
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Table 2.1: Mar' cov Parameter blocks of a 2x2 MIMO system
Method go 91

Actual

ARMARKOV

FIR

ARX

0.1098 0.0476 
0.0246 -0.0100

'  0.1451 0.0437 
0.0447 0.0032

' 0.1091 0.0406 ' 0.1883 0.0151 '
0.0406 0 0.0426 0.0077

' 0.1063 0.0429 ' ' 0.1844 0.0143 '
0.0410 0.0060 0.0376 0.0035

0.1866 0.0194 
0.0201 -0.0099

0.1557 0.0166 
0.0385 -0.0036

at the exit pipe can be adjusted manually. A number of thermocouples are placed 

along the exit pipe to produce different time delays in the temperature measurement. 

A DP cell at the bottom of the tank measures the level and an electromagnetic flow 

meter on the inlet cold water pipe measures the flow rate. All the valves are pneu­

matic. The pressure signals for the level and the flow rate are converted to appropriate 

current signals (4-20 mA). Temperature signals obtained through the thermocouples 

are also connected to current signals (4-20 mA). The process was configured as a 2 x 2 

MIMO system. Water level in the tank and the water temperature were selected as 

the two controlled variables and the valve openings (manipulating cold water flow and 

steam flow) were selected as the two manipulated variables. The first thermocouple 

at the exit of the tank was selected for the measurement of the water temperature. 

The water level in the tank varies only with the inlet water flow and is invariant to 

changes in the steam flow rate. Thus the water level and inlet water flow rate act as 

a SISO system. On the other hand, the water temperature varies with both steam 

flow rate and the inlet water flow rate i.e. a MISO system is developed with these 

three variables.

An ARMarkov model was developed for the above process using real time, ex­

perimental open-loop input-output data and the ARMarkov identification method. 

The ARMarkov model order was n = 2 and the number of Markov parameters in the 

model was assumed to be /z =  26. The inputs and outputs were sampled every four
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Figure 2.3: Schematic diagram of a pilot scale CSTH.

seconds. The input output data (after removing any ‘trend’) are plotted in Figure

2.4. The first 1500 data points (only part of them are shown for clarity) were used 

for the model identification and the remaining 1500 data points (part of them shown) 

were used for model validation. Estimated outputs are compared with actual outputs 

in Figure 2.5. Estimated outputs are very close to the actual outputs. This model is 

used for MPC design later in Chapters 6 and 9.

2.8 Conclusions

•  The ARMarkov/LS identification method is extended to MIMO systems.

•  The estimated /j Markov parameters are closer to the actual process impulse 

response than the first // coefficients of the impulse response obtained by the 

other linear regression methods such as ARX, FIR.

•  The effect of disturbances on the ARMarkov/LS parameter estimates appears 

(by simulation) to be smaller than on the parameters estimated by the other 

Unear regression methods such as ARX, FIR.
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Figure 2.4: Experimental input-output data from a pilot scale CSTH.

•  The low order (parametric) model included in the ARMarkov model for the 

slow dynamics gives satisfactory performance in terms of parameter estimates 

and/or process response validation compared to other parametric models such 

as ARX.
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Figure 2.5: ARMarkov model validation for a pilot scale CSTH.
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Chapter 3

Estimation o f Parametric Residual 
M odel Using AUDI

3.1 Introduction

Linear regression along with Least-squares (LS) method is one of the simplest methods 

of system identification. Using LS technique, the model parameters are estimated 

using plant input-output data. The model order is selected by the user and in practical 

cases, the user has to run several LS trials to select the model order when the actual 

plant order is unknown. Therefore the computational cost and time increase as the 

number of trials increases.

To avoid having to complete several LS trials to select the model order, Niu 

et a/.(1990, 1992)proposed an Augmented Upper Diagonal Identification (AUDI) 

method to estimate the model order from 1 to n where n is the maximum order. 

Advantages of using the AUDI method include: the model order, loss function cor­

responding to each model order and model parameters corresponding to each model 

order are simultaneously available at the cost of one trial LS method. Therefore, 

it is a matter of only selecting the model order corresponding to the acceptable 

loss function. In the AUDI method, the regressor vector is re-ordered followed by 

the decomposition of the covariance matrix using LU and UD factorization methods 

(Bierman 1977, Dahlquist and Bjorck 1974). Niu et al. (1992) showed th a t the AUDI- 

ARMAX method has numerical stability provided by the LU, DU factorization. The 

AUDI method, as summarized by Niu et al. (1992),

(a) simultaneously estimates the parameters and loss functions for all model orders

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



from 1 to a user-specified upper limit n with approximately the same computational 

effort as nth  order Recursive least-squares (RLS)

(6) is inherently a least-squares algorithm

(c) has good numerical properties and stability

(d) provides a basis for adding features such as on/off mechanism in the identifi­

cation algorithm

(e) is much easier to interpret and understand than the original UD algorithm.

Banerjee and Shah (1996) formulated the AUDI method for orthonormal func­

tions to simultaneously estimate multiple model orders and the corresponding loss 

functions. They applied the AUDI method to Laguerre, Kautz, FIR and Markov- 

Laguerre models. They also pointed out the effect of noisy data and how it can be 

handled by using LU decomposition instead of UDUT decomposition.

As discussed in Chapter 2, the ARMarkov model has two parts: non-parametric 

and parametric. The order of the non-parametric part is user specified depending 

on the application such as time delay/interactor matrix estimation and/or predictive 

controller design and so on. The order of the parametric residual part of the AR­

Markov model can be approximated by a low order model. However, proper selection 

of the parametric model order would lead to more accurate parameter estimation and 

more reliable MPC design where the ARMarkov model is used to design ARM-MPC 

in Chapter 8. It is recommended in this chapter that the AUDI method be used to 

estimate the parametric residual model order in the ARMarkov model selection.

In Section 3.2, the AUDI method proposed by Niu et al.and (1990, 1992)is briefly 

reviewed. In Section 3.3, the regressor vector corresponding to the ARMarkov model 

is re-arranged. The AUDI formulation which includes the estimation of the model 

parameters and the loss functions of the ARMarkov method are described in Section

3.4. Examples of the ARMarkov-AUDI algorithm are given in Section 3.5.

3.2 Introduction to the AUDI M ethod

A linear, time invariant, discrete time model is written as

y(k)  = <fiT (k)0 + e(k)  (3.1)
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where y (k) is the process output, 9 is the model parameter vector, e is white noise 

and <f> is called the regressor vector or data vector consisting of present/past available 

input-output data such that

9 [fli, 0 3 , , Uyj, b\ , 62 , ‘ * * hn] (3.2)

<t>{h) =  [ -y  (fc -  I ) , —y (k -  2 ) -------y {k -  n) ,u {k  -  1) , u ( k  -  2)

• ■ - u ( k  — n)]T (3.3)

where n is the model order.

3.2.1 R egressor V ector and  In form ation  M atrix  for th e  AUDI 
M ethod

The basis for the AUDI formulation is the re-ordered data/regressor vector and the 

UD factorization of the information accumulation matrix (IAM). The regressor vector 

in (3.3) is rearranged as

K  (k) = [ - y ( k - n ) , u { k - n )  y { k -  l ) , u ( k -  1)]T

and then an augmented regressor vector is defined by Niu et al. (1990) as

<Pn,(k ) = ( - » ( * - « ) . « ( * - « ) -------y ( k -  1 ) . “ ( k -  l ) , - y (fc)]T

= K W . - a W f  (3.4)

The arrangement of the elements in the augmented regressor vector is different (input- 

output at each sampling time is paired) from the arrangement in the traditional LS

regressor vector in (3.3) and the current output is included. The parameter vector, 9

is rearranged as

^n =  [an,6n - - -a1,fe1, - l f  (3.5)

A covariance matrix, called the data product moment matrix (DPMM), is defined by 

Niu et al. (1990) and Niu (1994) as

k
Sn {k) =  0™ (L n) </£ (z, n)

Lt=i
(3.6)

(2 n + l)x (2 n + l)
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The information accumulation matrix (IAM) defined by Niu et al. (1990) or aug­

mented information matrix (AIM) by Niu (1994), Niu et al. (1990) is the inverse of 

the DPMM and expressed as

- l

Cn (k) =
L«=i

(3.7)
( 2 n + l ) x ( 2 n + l )

The IAM is decomposed using UDUT factorization (Bierman 1977, Ljung and Soderstrom 

1983) to get the model parameters and loss functions corresponding to the model or­

ders 1 to n.

3.2.2 D ecom position  of IA M  or D P M M  a n d  P aram ete r Es­
tim a tio n  in th e  A U D I A lgorithm

The UDUT decomposition of IAM and the LDLT decomposition of DPMM are given 

by Niu et of. (1990, 1992)as

Cn (k) = Un (k)Dn (k)Un (k) 

Sn (k) =  L ( k ) E ( k ) L ( k f

(3.8)

(3.9)

Cn (k) 

— (k) 

Un (k)

Sn (k )-1

D n ik ) -1

C  ( * )

where Un is a (2n -I-1) x (2n +  1) upper triangular matrix with l ’s in the principal 

diagonal and is expressed as

Un (k) =

1 So (k — n)
1 9i (k — n) 

1

0
■ 0n_ i ( f c - l )  S n_! (k — 1) en (k) 

1
1

1
(3.10)
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D„ is a (2n  +  1) x (2n  -t- 1) diagonal matrix of the form

Dn (k ) = d ia g {J^  (k -  n ) , Lo1 (fc -  n ) , • • • , J~l, (k -  1), L ~ i1 (k -  1), J~ l (k)}
(3-11)

and En (fc), also a (2n +  1) x (2n +  1) matrix, includes the loss functions in the form

En (k) =  diag{ J0 (k -  n) ,L 0 {k -  n ) , • • • , Jn- i  (k -  1), Ln_x (k -  1), Jn (fc)}

where 6n-i (k — i) and J„_t (k — i) are the parameter vectors and loss functions re­

spectively for the (n — i) th  order model, i € [0, n — 1]. 2 (k  — i) and Ln-i (k — i) 

are intermediate variables in U„ (k ) and Dn (k ). For example, Qn (k ) in the last col­

umn of the Un (k ) matrix gives the parameter vector in (3.5) for the nth order model 

in (3.1) and the last scalar term in the Dn (k ) matrix provides the inverse of the loss 

function corresponding to the nth  order model such that

@n (k) =  [Oni • • • flX, £>l]
k

j« (k )  = Y , ( y ( k ) - m ) ) 2
i= l

The advantage of the AUDI algorithm over LS method is that the Un (k) and 

Dn (k) matrices contain the parameter estimates and the loss functions corresponding 

to the model orders from 1 to n during the same step of identification. Moreover, 

the UD factorization is numerically more stable than LS methods. The properties 

of Un (k ) and Dn (k ) matrices are discussed in detail in (Niu et al. 1990, Niu et 

al. 1992, Niu 1994).

Detailed derivations of the LD LT and UDUT factorization for the DPMM and 

IAM are given in Appendix A.I. The algorithm for LU and/or UDUT decomposition 

and the inverse of lower/upper triangular matrix can be found in (Bierman 1977, 

Dahlquist and Bjorck 1974, Niu 1994). The following remarks apply to the decom­

position of the DPMM and IAM to obtain the model parameters and loss functions 

using the AUDI formulation (Niu 1994).

R em a rk  3.1 It is sufficient to form the IAM or the DPMM to obtain the model 

parameters and the loss functions corresponding to the models of order 1 to n since 

the IAM  or the DPMM contains all the necessary information.
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R em ark  3.2 From the UDlF factorization of the IAM, the U(k) matrix gives the 

parameter estimates and the D (k )-1 matrix gives the loss functions. From the LD LT 

factorization of the DPMM, the L(k)~l matrix gives the parameter estimates and the 

E (k) matrix gives the loss functions.

R em ark  3.3 For off-line batch processing, the recommended procedure is to decom­

pose the DPMM since it is easier to construct, involves the inversion of a lower 

triangular matrix with unity diagonal elements and the inverse is always available. It 

does not involve the inversion of a full matrix.

R em ark  3.4 For on-line process identification or for control, the decomposition of 

the IAM  is recommended because it takes the advantage of Bierman’s UD factor­

ization algorithm (Bierman 1977) in the recursive AUDI algorithms and the UDUT 

decomposition directly gives the parameter matrix, U(k ) and requires the inversion of 

scalars to obtain the loss function.

3.2.3 Sim ulation E xam ple 

E xam ple  3.1

Consider the second order process

g W - * - l +5? T 0 7 (312)

AUDI was formulated for this process following the procedure described in Section 3.2 

using the highest model order 4. The loss functions for the model orders 1 through 

4 are plotted in Figure 3.1. It is clear that model order 2 can be used reasonably for 

this process because for model order >2 , the loss function i.e. the performance cost 

does not decrease significantly.

Parameters corresponding to model order 2 is given by the ( 2 * 2  +  1) =  5th 

column of the U matrix and shown in Table 3.1 (the highlighted column). The 

estimated parameters are very close to the actual parameters (compared in Table 

3.2) that shows the reliability of the AUDI method.
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2 . 9- 2 3
n (Model Order)* 1

Figure 3.1: Loss functions for different model orders in the AUDI formulation, 

fable 3.1: Parametres corresponding to different models in the AUDI formulation
model order

Parameter vector

0.1985
-0.8881

1 .0 0 0 0

0 .0 0 0 0

0 .0 0 0 0

0 .0 0 0 0

0 .0 0 0 0

0 .0 0 0 0

0 .0 0 0 0

1.7049
-0.8881
-0.4256

1 .0 0 0 0

0 .0 0 0 0

0 .0 0 0 0

0 .0 0 0 0

0 .0 0 0 0

0 .0 0 0 0

0.4993
0.7001
1 .0 0 0 0

-1.5002
-0.0006

1 .0 0 0 0

0 .0 0 0 0

- 0 .0 0 0 0

- 0 .0 0 0 0

-0.5001
-0.7001
-0.5001
2.2002
1 .0 0 0 0

-2.5001
0 .0 0 0 0

1 .0 0 0 0

- 0 .0 0 0 0

3.3 Re-arrangement of the Regressor Vector for 
the ARMarkov Model

The key step in the AUDI formulation is the formation of the DPMM or the IAM 

that is constructed using the regressor vector.

The input-output ARMarkov model in equation (2.18) is rewritten as

n  P n

y{k)  = - 5 : a , y ( fc- | i - i  + l) + E ^ _ i « ( * - ^ l )  + E W - / ‘ - ^ l )
3=1 3= 1

(3.13) 

for k > 0

3= 1

+e (fc)
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Table 3.2: Parametres corres ponding to different models in the AUDI formulation
Actual Parameter vector 
Estimated Parameter vector

0.5000 0.7000 1.0000 -1.5000 -0.0000 1.0000 
' 0.4993 0.7001 1.0000 -1.5002 -0.0006 1.0000 '

In the AUDI formulation of the ARMarkov model, the number of non-parametric 

coefficients (i.e. the Markov parameters) is kept fixed and an upper limit, n  (e.g. 4 

or 5) for the parametric model order is specified.

The input-output data are arranged to form the regressor vector corresponding to 

the nth  order residual parametric model as

0 mira(fc) =  [~y (k) ,u (k )  • ,u (k  -  p + I )  ,u (k  -  p) , - y ( k  -  fl) ,

■■■ ,u ( k  — fj. — n + I) , —y (k  -  fi — n + 1)]T (3-14)

=  [ - » ( * ) ,  4 S L (* ) f  (315)

Note that the current output data is placed at the beginning of the regressor vector 

instead of at the last position in the original AUDI formulation by Niu (1994). The 

arrangement of the first /z elements in (3.14) is similar to the AUDI formulation by 

Banerjee and Shah (1996)for orthonormal functions e.g. impulse response functions 

and the last 2 n elements are arranged in the similar manner as was done in the 

original AUDI formulation by Niu (1994)except that the elements are placed here in 

a descending order instead of an ascending order. Therefore, the AUDI-ARMarkov 

model structure is a combination of the AUDI-ARMAX formulated by Niu (1994)and 

the AUDI-impulse response formulated by Banerjee and Shah (1996).

The parameter vector corresponding to the nth  order parametric model and the 

regressor vector (f>^ (k ) in (3.14) is

e = [ h Q hi ■■■ hp-x /?! O'! ••• 0 ^  ]T (3.16)

However, the parameter vector corresponding to the regressor vector 0 ^,rQ (k) in (3.14) 

is

&a =  [ Cl C2 "■ C/1+2n C/i+2n+l ] (3-17)
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3.4 AUDI Formulation of the ARMarkov M odel

The data product moment matrix (DPMM) and the information accumulation matrix 

(IAM) corresponding to the regressor vector in (3.14) can be written as

Sn(arm) {k) — ^ 4 > n a ra { h n )<t>lara (*, n )
i = l

Cn(arm) (fc) =  Sn (k) 1 =

(/ i+2n+1) x  ( / i+2n+1) 
1

(3.18)

(3.19)
(/x+2n+1) x ( / i+ 2 n + 1)

^ 2 < P n a r a  a (*, n )
. 1 = 1

The LD L t factorization of the DPMM and/or the UDUT factorization of the IAM 

lead to the solution in terms of the parameter vector and loss functions of the AUDI- 

ARMarkov problem.

3.4.1 Solution of th e  P a ra m e te r  Vector in  th e  A U D I-A R M arkov 
m ethod

The last column of the Uan matrix (obtained from the UDUT decomposition of

Cn(arm) {k)) includes the solution of the parameter vector 9a in (3.17) as

1 a a0 (k -  n )
1 9a\ {k -  n)

1

' • • ?an_i (k -  1 ) San_! (k -  1 ) L  {k)
1

1

1

(3.20)
This parameter vector cannot be directly used as the identified ARMarkov model. The 

solution of the ARMarkov parameter vector 9n (k ) is obtained by the modification of

9 an (^0 3S

Uan (k ) =
0

1 r~r
[1 0n}T = - [ 9 an(k) (3.21)

3.4.2 Loss Functions w ith  M ultip le M odel O rder

The diagonal matrix Dn is obtained from the UDUT decomposition of Cn(arm) (k ) as

Dn (k) = diagiJQ1 (k,0) ,■■■ , J " .1! (A:,/x ~ 1), (^ -  1), Lq 1 (fc), • • • ,

J ^ n - A k - ^ . L - i ^ k ) }  (3.22)
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and En (k ) includes the loss functions in the form

En (k ) = diag{ J0 {k, 0 ) , • • • , J^-i (k , \i -  1) , (k -  1 ), L0 ( k ) , ■ • • . J^+n-i {k -  1), 

Ln-x(k)}

where En (k ) is obtained from the UDUT decomposition of S„(arm) (fc). Ji (k, i ) is the 

loss function for the ith  order model, i 6  [0, /x +  n — 1] and Lt (k, i) are intermediate 

variables in Dn (k).

3.5 Simulation Example

Exam ple 3.2

Consider the third order SISO system in (2.38) of Chapter 2 with the transfer 

function,

, 0.0077z-1 +  0.02122- 2  +  0.00362- 3  / 0  ooX
{Z) ~  1 -  1.903U-1 + 1.15142-2 -  0.21582- 3 ( ’

The AUDI was formulated for this process following the procedure described in Sec­

tion 3.3. The number of Markov parameters was kept constant at /i =  10 and the 

highest model order for the parametric residual model was na =  4. The loss functions 

for the model orders fi + I through n + 4 are plotted in Figure 3.2. It is clear that 

parametric model order 2 or 3 could be used without significant additional perfor­

mance cost, but the actual process order is 3. Therefore, a lower order (i.e. 2) can be 

used without much loss in performance.

The first fi actual and estimated Markov parameters are plotted in Figure 3.3. 

The estimated parameters are very close to the actual parameters.

3.6 Conclusions

•  The AUDI method is reformulated for use in estimating an ARMarkov model.

•  Estimation of model order is done on the basis of loss functions for different 

model orders and compared to the actual model order for known processes. 

From simulation, the estimated model orders appear to be reliable.
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X 1f)
3.4!

2.9!-

o  1.4!-

0.9!-

0.4!-

- 0 . 0*

Parametric Model Order

Figure 3.2: Loss functions for different parametric model orders in the AUDI formu­
lation of the ARMarkov model.

•  Simulation results show that for a specified number of Markov parameters, the 

Markov parameters can be identified accurately using a parametric model order 

smaller than the actual parametric model order.
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0.01-

0 .01-

®ooe- —  Actual
-  -  Estima

0.03-

o.o:-

0  01 -

Sampling time

Figure 3.3: Actual and estimated Markov parameters using the AUDI formualtion of 
the ARMarkov model.
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Chapter 4

Statistical Analysis of the 
ARMarkov Parameter Estimates

4.1 Introduction

When a model is identified using process input-output observations, a very common 

question is “How good is the model ?” . When answering this question, a second 

question comes to any mind: “How to define a ‘good’ model ?”. One common prac­

tice in modeling or system identification is to assume a model structure and esti­

mate a parameter vector, 9 for that model by minimizing some errors in predicting 

present/future output(s) based on information available from the process. Then the 

‘goodness’ of the model is characterized by the ‘goodness’ of the parameter estimates. 

If the actual process parameters are known, the estimated parameters can be com­

pared to the actual parameters and closeness of these two sets of parameters certifies 

the model as ‘good’. But in most practical cases, the actual process parameters are 

unknown to the user and the model is a ‘black box’ type i.e. no structure and/or 

parameters of the process are known. In these cases, statistical properties of the 

estimated parameters are analyzed to assess the ‘good-ness’ of the parameters.

In the following discussion of statistical analysis, only the relevant properties in 

the present context of parameter estimation are discussed rather than bringing the 

whole statistical literature into discussion. The statistical properties of the model 

parameters commonly analyzed in system identification are: bias, consistency, vari­

ance/covariance and confidence intervals. Bias of the model parameters is defined as:

1 Contents of this chapter was presented at the 49th CSCHE conference, Saskatoon, Canada, Oct. 
1999 and is a part of the paper published in the Chemical Engineering Science in May 2000.
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when the model set does not contain the actual process, the estimated parameters 

are called biased estimates and vice versa. Since the ARMarkov model described in 

Chapter-2 is overparameterized (Akers and Bernstein 1997), the bias of the parame­

ters is not discussed here. The other properties (e.g. consistency, variance/covariance 

and confidence intervals) of the ARMarkov parameters are discussed in this chapter.

ARX and FIR are the simplest of the most widely used identification methods 

which use linear regression methods. The ARMarkov method also uses linear regres­

sion. Since the ARX and FIR methods are parametric and nonparametric respectively 

and the ARMarkov method is a blend of these two methods, it is intuitively expected 

that the ARMarkov method will have the properties which are in between the prop­

erties of the parametric and non-parametric formulations.

The consistency of the ARMarkov parameters is analyzed and compared with 

the consistency of the parameters estimated by ARX and FIR methods in Section

4.2. The variance/covariance properties are discussed in Section 4.3 and the confi­

dence intervals on the estimated parameters are analyzed in Section 4.4. Illustrative

examples on covariance analysis and confidence intervals are shown in Section 4.5.

4.2 Consistency of the Least-squares Estim ates

The consistency of the estimated parameters is defined as: ‘the estimated parameters, 

6 are consistent if 6 converges to the actual parameters 80 as the number of data  points 

N  — oo’ (Ljung 1987).

The general structure of the actual process is assumed to be

y = Gu +  He (4.1)

= f  u +  He (4.2)
A

and the model is written as

y = Gu + He (4.3)

where H  is noise structure, A, B  are polynomials in z , G and H  are different for 

different model structures and e is white noise with zero mean and covariance A21 

where A represents the variance of e.
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In input-output form, the process can be expressed as

y(k) =  <f>T(k)d0 +  v0(k) (4-4)

where <p is the regressor vector, Qq represents the actual process parameter vector and 

vQ is the process noise with v 0 = AHe.

The structures of the Unear regression models are as follows:

A R X  : y (k ) =  —aiy(k  — 1) — any{k — n) + b0u(k) +  biu(k — 1) H-----

+  bnu(k  -  n) (4.5)

F IR  : y(k) = f 0u{k) + f lU(k ~ I) + ■ ■ ■ + f iu - M k  -  M  + I) (4.6)

ARM arkov : y(k) = —a iy (k  — p.) — • • • — a ny(k — p — n + 1)

-I- h0u(k) + hiu(k — 1 ) -I- • • • -I- — fi + 1 )

+ /31u ( k ~ n )  + -----1- 0 nu(k  -  y. -  n +  1 ) (4.7)

where n  is the order of the ARX model, M  represents the number of FIR coefficients 

and /i is the number of Markov parameters in ARMarkov model. The above three 

models can also be written in terms of regressor vectors and model parameters as

A R X  : y{k) = <t>TARX(k)6ARx + VARx{k) (a)

F IR  : y{k) = <t>TFIR(k)QFia + v FiR{k) (b)

ARM arkov : y(k) = <t>TARM{k)d ARM +  v Aim{k) (c)

Now assume that the input signal is persistently exciting and the model contains 

the actual process (no bias). Then according to Ljung (1987), the Least-Squares 

Estimate (LSE) is consistent i.e. 6 converges to 60 as the number of data points, N  

—<• oo if

1 . vq is white noise (not the case in most practical applications) or

2 . the input sequence is independent of the noise sequence and there is no output

term in the regression vector.

In the FIR model, there is no output term in the regressor vector, so the estimated 

parameters converge to the actual ones as N  —* oo, but in the ARX method, the

parameter estimate is not consistent in the presence of non-white noise (Ljung 1987,

Soderstrom and Stoica 1989) because of the output terms in the regressor.
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L em m a 4.1 The estimated Markov parameters in the ARMarkov model are con­

sistent, although the residual parameters equivalent to the A R X  parameters in the 

ARMarkov model are not.

P ro o f. For the ARMarkov method, the least-squares estimate can be written as

1=1 J  *=1

=  0O +  (E(<f>(k)<f>T(k)))~lE(<p(k)vo(k)) as N  -> oo

(4.8)

(4.9)

Let

90 =  

<f>(k)iy0(k) =

, 4> =
4>Mark

<f>AR
(4.10)

(4.11)

9  M a r k  

9 a r

<t>kIaTkUoiJC)
^ARV o(ty

where <f>Mark corresponds to the present andpast input terms. Hence E((f>Mark(k)vo{k)) 

0, but E(<f>AR{k)u0(k)) ^  0 since <f>AR involves some output terms. Therefore, as 

N  —► oo

-~~LSe 9  M ark  

9 a r
+ 0

eM ark

eLSM a rk

9ar + {E{m<t>T{ k ) )Y XE{<t>\k)v o(*0 )

9  M a rk

(4.12)

(4.13)

(4.14)

E xam ple  4.1

Lemma 4.1 can be illustrated by considering the following first order process 

(Soderstrom and Stoica 1989) with non-white disturbances

y(k) =  -a iy (k  -  1 ) +  b0u(k  -  1) -I- Coe(k) +  Cie(fc -  1) (4.15)

Assume an ARMarkov model with two Markov parameters ho and hi so th a t

y(k) =  —atiy(k - 2 )  + hou(k) + hiu(k  -  1) +  0ou(k -  2) (4.16)

Here u  is an independent input sequence with variance cr2 and e is white noise with 

variance A2.
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As N  —► oo, the least-squares parameter estimates are

ho =  0
h\

=  [ R T l
Ey(k)u(k — 1)

a i Ey(k)y(k  -  2)

J o . E y(k)u(k — 2)

(4 .1 7 )

(4 .1 8 )

R m =
Eu{k -  l ) 2 

—E y(k — 2)u(k — 1) 
Eu(k — 1 )u(k — 2 )

■Ey(k — 2)u(k — 1) Eu(k — l)u(fc — 2) 
Ey{k  -  2 ) 2 -£7y(*r -  2)u(k -  2 )

-Ey(fc -  2)u(k -  2 ) Eu(A: -  2 ) 2

(4 .1 9 )

R ' =
(T2 0 0
0  Ey(k -  2 ) 2 0

0 0 a2
(4 .2 0 )

Ey{k  -  2? =
b2a2 +  (1  +  Cp — a 12co)A 2 

1 — a\
Ey(k)u(k, — 1) =  b0CT2 (4 .2 1 )

Ey(k)u{k — 2 )  =  —aibacr2,

Ey {k )y ( k -  2 )  =  a\
bla2 -I- (1  +  Cp — Q i2cq)A 2

1 — af
+ CqA

Therefore,

'  hi  ' bo
.  . —aibo

(4 .2 2 )

(4 .2 3 )

(4 .2 4 )

R em ark  4.1 The Markov parameters, ho and hi, are consistent (transformed into 

actual parameters (Akers and Bernstein 1997), also see Chapter-2); whereas, a i,  

which is a function of the noise/disturbance parameters never converges to the ac­

tual parameter. Since the ARMarkov model is a blend of the FIR and A R X  models 

(equations (4-5)-(4-7)), it is consistent in the parameters corresponding to the FIR 

models but inconsistent in the residual parameters corresponding to the A R X  model. 

Note that in the estimation of the interactor matrix (described in Chapter 5) used in 

performance assessment and in the dynamic matrix construction in MPC applications 

only the consistent Markov parameters are needed.
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4.2.1 C onsistency U n d er Closed-loop C ondition

When closed-loop data are used for the ARMarkov identification or for on-line updat­

ing of the ARMarkov model parameters e.g. during on-line recursive identification as 

discussed in Chapter 2, the input sequence is no longer independent of the noise se­

quence. In that case, the consistency of the estimated Markov parameters is discussed 

in this subsection.

Rewrite the ARMarkov model as

ARM arkov y(k) =  h,Qu(k) -I- hiu(k  — 1) -I +  h ^ - i ^ k  — y  + 1)

the process input which are NOT a function of the current and (d — 1) future noise 

values. Therefore, the estimates of the first d Markov parameters under closed-loop 

condition are consistent.

If the time delay of the process is d, then the first d Markov parameters should 

be statistically insignificant. Hence the estimate of the time delay of the process is 

consistent using closed-loop data and ARMarkov identification.

4.3 Covariance of the Estimated Parameters

4.3.1 Covariance E stim ates for Systems w ith  W hite  Noise

The output prediction error, e(k) in (2.25) and the estimated parameter vector in 

(2.28) can be rewritten as

+/31u(k  -  /i) H------b 0 nu(k -  y - n - b 1)

- a iy ( k  -  y )  a ny{k -  y  -  n + I) + xd (k)

where xd (k ) is the disturbance sequence.

Assume that the noise sequence is white and the time delay of the process is d. 

The current and (d — 1 ) future values of the output, y depend only on past values of

e(k) =  y(k) -  y{k) (4.25)

- l
(4.26)
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Assume that, for SISO systems, the error terms, e in (4.25) are statistically inde-
2 ^LS *

pendent having ‘zero’ mean and variance A and the estimates 9 denoted by in

(4.26) are the unbiased estimates of the actual parameters i.e. E(W M) =  W M. See 

(Johnson and Wichem 1988) for the proof. The covariance matrix of the estimates 

is
N

cov(W M) =  A2

- 1

(4.27)

The diagonal elements of the covariance matrix represent the estimated variances of 

the estimators. The estimated squared standard error (SSE) of can be written 

as
N

S S E  = ^ e T{k)e{k) (4.28)
jt= i

=  £  y ( k f  -  W j  (i Y1 y ^ T(k)) <4-29)
fc=l \  k=l /

and the estimate of the error variance is written as

A  -  — p   -----------------------------------------------------------------------------------------   ( 4 ' 3 0 )

where p is the total number of parameters to be estimated and N  is the number of

data points.

When the actual process is subjected to white noise, the noise estimates deter­

mined by the LS methods are independently distributed with zero mean and variance
—2
A . In this case, the linear regression method is equivalent to the Prediction Error

Method (PEM). According to Ljung (1987), for PEM, the total variance of the pa­

rameter estimates (expressed in terms of the process model variance) is proportional 

to the ratio of the number of model parameters to the number of data points, i.e.

— 2  n
var(GA r x ) oc —  (4.31)

var(GARMark) oc ^  (4.32)

var(GFi R) oc ^  (4.33)

The proportionality constant is the same for all the three models and equals the ratio 

of the input spectrum to the noise spectrum.
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Lem m a 4.2 For the same input-output data set

var(GFIR) > var(GARMark) > var{GARX) (4.34)

P roo f. Assume M  > p + 2n and p > 1. Since N  is same for the three methods, 

the proof directly follows from the expressions o f variances in equations (4-31) through

(4-33). m

For MIMO systems, where the error term e (k) in (4.25) is a vector, the above 

analysis is valid for the special case when the covariance matrix of e(k)  contains 

insignificant off-diagonal elements. For the general case i.e. when the covariance 

matrix of e (k) contains significant off-diagonal elements, the analysis can be done by 

following the procedure discussed in the next subsection for non-white disturbances.

4.3.2 C ovariance E stim ates for System s w ith  N on-w hite Noise

Now assume that the actual process is subjected to non-white noise, vq or white 

noise which contains significant off-diagonal elements in the covariance matrix. The 

covariance of the noise/disturbances can be written as

E v o Vo = R  (4.35)

where R  is a positive definite matrix. Then the covariance of the parameter estimates 

(Soderstrom and Stoica 1989) is

cov(0) = i N V 1

t=i

N

[0(1) ••• <j>{N)]R
<̂T(1 )

<fT(N)

1=1

-l
(4.36)

which is a non-minimal, positive-definite symmetric matrix. In practice, R  is always 

unknown and replaced by the estimate of the error covariance matrix,

1 N
■jy X > (* )c (* )T (4.37)R  =

»=i
AT

=  - ^ ^ 2 [ y ( k ) - y { k ) ] [ y { k ) - y ( k ) Y
i = 1 
N

= e  [»<*> -  l [»<*) -
i=i

(4.38)

(4.39)
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Since the structure of the regressor vector and hence the parameter vector is different 

in different LS model structures (ARX, FIR, ARMarkov), the methods can not be 

compared directly. However, since we are specifically interested in the first p  Markov 

parameters, one approach is to compare the total sum of the variances corresponding 

to the first p Markov parameters determined by each LS method. In the parametric 

methods such as ARX, the Markov parameters are not determined directly. Therefore, 

the proposed method of comparison is not directly applicable to parametric methods. 

However, the model parameters can be transformed into the Markov parameters and 

the variances of the model parameters can be mapped to the variances of the Markov 

parameters. But this is an indirect measure of variance. Here the sum of the variances 

of the available model parameters is used as a measure. Assuming that M  > p + 2n, 

it has been shown through simulation (results are shown in section 4.5) that

£  var(/!F,,») > £  va r(h ? KM°'tl) >  £  (var(„<"“ >) + var(&<*“ >)) (4.40)
» = 1  1 = 1  t = l

Another basis for comparison of the methods is the largest eigenvalue of the co- 

variance matrices (the largest eigenvalue corresponds to the maxima of the covariance 

matrix and hence the worst case scenario). It has also been shown through simulation 

(results are shown in section 4.5) that

^ m a *  ^ R f IR ^  --> ^ m a x  {^R -A R M ark^  ^  ^ m a x  (^ R a R X ^  ( 4 - 4 1 )

where <rmax corresponds to the maximum eigenvalue.

R em ark  4.2 The ARMarkov parameter estimates have larger variances than the 

parametric (ARX) method estimates and smaller variances than the non-parametric 

(FIR) method estimates for both white and non-white noise disturbances. This is in­

tuitively reasonable since the variances are proportional to the number of estimated 

parameters.

4.4 Confidence Intervals on the Parameter Esti­
mates

The confidence intervals on the parameters estimated by the ARMarkov method can 

be constructed, as in Multiple Linear Regression. Assume that the errors, e in the
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output prediction are normally and independently distributed with zero mean and 

variance A2 . Let
- l

C =

Then

1=1

(4.42)

W  — W
J J j  = 1,2, • • • ,p  (4.43)

J t e a

has a t-distribution with (N  — p) degrees of freedom.

The 100(1 — a) percent confidence interval on the regression coefficients WJ: 

j  = 1 , 2 , — ,p  is given by

W ,  -  tatN- py / \ 2Cj: <  W i  <  W j  +  tQ,N. p\ f¥ c ~ j ( 4 . 4 4 )

where a  is the level of significance (Johnson and Wichem 1988). The confidence 

bounds and hence the confidence intervals involve the parameter variance. As dis­

cussed in the previous section, the variance of the first p  Markov parameters deter­

mined by the ARMarkov method is smaller than the variance of the first p  Markov 

parameters determined by the FIR method. Therefore, the p  Markov parameters 

have tighter confidence bounds than the corresponding FIR parameters. The Markov 

parameters are not determined directly by the ARX method and hence this analysis is 

not directly applicable to the ARX method. However, the relationship between con­

fidence bounds and variance implies that the ARX method has the tightest bounds.

R e m a rk  4.3 As discussed in the above sections, the c o n s is ten cy  of the ARMarkov 

parameter estimates is in between the consistencies of the parameters estimated by 

the parametric (ARX) and non-parametric (FIR) linear regression methods. The 

v a r i a n t s  and hence the confidence bounds have a similar relationship. The 

A R X  method lacks an analytical measure of consistency and the FIR method has 

the largest variance due to the large number o f parameters. However, the Markov 

parameters estimated using the ARMarkov method have reasonable estimates o f both 

properties.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.5 Simulation Examples

This section describes simulations carried out to analyze the statistical properties 

of the parameters estimated using the ARMarkov method. Variance/covariance and 

confidence bounds on the Markov parameters estimated by the ARMarkov method 

were compared with the properties of the same parameters estimated by other least- 

squares identification methods such as FIR. As mentioned earlier, due to the indirect 

measure in the ARX method, the above mentioned properties were not compared by 

simulation.

Exam ple 4.2

Consider the third order SISO system with the transfer function,

. 0 .0 0 7 7 Z - 1 +  0.0212z- 2 +  0.0036z"3 „
G(2) =  1 -  1.903U-- +  1.1514;-* -  0.2158,-» «■ «)

subjected to colored noise generated by passing white noise through the disturbance 

transfer function

-  T T o k ^  ( 4 ' 4 6 )

4.5.1 Variance

The sum of the variances of the Markov parameters as well as the largest eigenvalue 

of the covariance matrix were determined as described in Section 4.3. Results for 

white noise disturbances are shown in Table 4.1 and for non-white disturbances in 

Table 4.2.

Table 4.1: Variance with white noise disturbances
ARMarkov (// =  10, n =  3) FIR (M  = 25)

total variance
^max

2.51
3.16

3.34
4.45

As expected, the ARMarkov Markov parameters have lower variance and smaller 

eigenvalue (largest) than the Markov parameters by FIR.

5 4
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Table 4.2: Variance with non-white noise disturbances 

(Same colored noise described in (4.46))

ARMarkov (/z = 10, n  =  3) FIR (A/ = 25)
total variance 6.67 12.77

^max 5.31 9.01

4.5.2 Confidence bounds

Consider the process in (4.45) subjected to white noise. The confidence interval of 

the first /i Markov parameters estimated by the ARMarkov method and by the FIR 

method were determined by following the procedure described in section 4.4.

X 103

i  0 06

—  ARMartoV 
•  FIR I

|  0  02 -

-0.02,
Sample time

o
©* 2

<3 1 
£
5
3 0
C

I
g - i

ARMarkoV
FIR

X -

4 6
Sample time

10

Figure 4.1: Confidence Bounds on Markov Parameters

The results (upper and lower confidence bounds) in Figure 4.1 clearly show that 

the ARMarkov estimates have a tighter confidence bound than the FIR estimates. 

Since the Markov parameters are not directly estimated in the ARX method, the 

confidence bounds for the ARX method were not compared here.
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4.6 Conclusions

•  The Markov parameters estimated by the ARMarkov/LS method are consistent 

even in the presence of colored disturbances. The consistency of the estimated 

Markov parameters is better than the consistency of Markov parameters by 

other parametric linear regression methods such as ARX.

•  The estimated fi Markov parameters by the ARMarkov method have lower 

variances and tighter confidence bounds than the parameters estimated by other 

non-parametric methods such as FIR.
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Chapter 5

Interactor M atrix Estim ation from 
Markov Parameters1

5.1 Introduction

Time delay is a very common characteristic of chemical processes. Even if the process 

itself does not have a delay, a  single delay is introduced when the process/model is 

discretized. Systems with time delay require special care in designing the controller 

(Garcia and Morari 1982, Sripada and Fisher 1985, Goodwin and Sin 1984) and it 

is well known that the achievable control performance is limited by the presence of 

time delays. In control loop performance assessment, knowledge of time delay is 

required to generate the basis for performance benchmark (Harris et al. 1996, Huang 

and Shah 1999). If the process time delay can be separated from the delay-free part 

of the process model, it is easier to design a controller as well as to assess closed-loop 

performance. In SISO systems, it is easy to estimate and separate the time delay 

from the delay-free process. In MIMO systems, if all the input-output pairs share the 

same delay, it would also be easy to factor out the time delay from the process. But 

in many practical MIMO systems, each input-output pair contains a different time 

delay. In these cases, it is difficult to separate the time delay part from the delay-free 

part of the process directly.

Time delays in MIMO systems are defined by the interactor matrix. Wolowich and 

Falb (1976)proved the existence of the interactor matrix and later it was introduced 

into the design procedure of feedback controllers (Wolowich and Falb 1976, Tsili-

1 Contents of this chapter was presented at the 1998 CSCHE conference in London, Ontario, 
Canada and was also published in the Chemical Engineering Science, May 2000.
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giannis and Svoronos 1988). Different forms of the interactor matrix and several 

estimation procedures have been proposed by researchers. The estimation methods 

used by Wolowich and Falb (1976), Goodwin and Sin (1984)need a priori information 

on the process transfer functions. Shah et al. (1987), Huang and Shah (1999)de- 

scribed a method of unitary interactor estimation that uses a  linear combination of 

process Markov block (impulse response block) matrices and does not require com­

plete information on the process transfer functions.

As stated in (Huang and Shah 1999), “computationally, a direct identification of 

the first few Markov parameters is more desirable than an identification of the full 

transfer function matrix first, followed by its transfer to Markov parameters. There­

fore, the factorization of the interactor matrix from the first few Markov parameters is 

preferred to the factorization of the interactor matrix from the transfer function ma­

trix”. It, therefore, follows that better estimation of the Markov parameters leads to 

better estimation of the unitary interactor matrix. The ARMarkov model described 

in Chapter 4 contains the Markov parameters explicitly. Furthermore, the ARMarkov 

method gives consistent estimates of the Markov parameters even in the presence of 

colored disturbances as shown by Kamrunnahar et al. (2000) and in Chapters 2 and 

4.

In this chapter, Markov parameters obtained using the ARMarkov identification 

method are used to estimate the unitary interactor matrix. An introduction to the 

interactor matrix including its classification is given in Section 5.2. An estimation 

procedure for the unitary interactor matrix using the Markov parameters is discussed 

in Section 5.3 and unitary interactor estimation using closed-loop data is described 

in Section 5.5. Illustrative examples comparing the time-delay/interactor matrix 

estimated using the Markov parameters obtained using different methods are given 

in Section 5.6.

5.2 The Interactor Matrix

As mentioned earlier, time delays in multivariable systems are defined by the inter­

actor matrix. Goodwin and Sin (1984) formally defined time delay in SISO systems
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meaning there exists a scalar function D(z)  =  z d such that

lim D (z) A ( z - 1) B  (z~l) = k (5.1)
Z—*00

where k is a nonzero scalar, d is the delay and A&c B  are the denominator and numer­

ator respectively of the polynomial transfer function. They specified the multivariable 

delay structure in a similar way in terms of a polynomial matrix. The definition of 

the ‘interactor matrix’, as given by Goodwin and Sin (1984)and Huang (1997), is:

D efin ition  1 Given any I x Z, proper, rational polynomial transfer function matrix 

G ( z -1), there exists a unique, non-singular I x I lower left triangular polynomial 

matrix D (z ) , known as the ‘interactor matrix’, satisfying:

(:i) de tD( z )  =  zr (5.2)

(n) lim D ( z ) G ( z ~ 1) =  lim G0 (z "1) =  K, (5.3)
Z — OC 2 —*00

where r is an integer and represents the number of infinite zeros o f G  (z -1), K  is 

a non-singular matrix and Go(z~1) is the delay-free part of the transfer function 

matrix G (z-1) and contains only the finite zeros. The ‘interactor m atrix’ D (z) can 

be expressed as

D (z) =  Dozd +  D\Zd * +  •••■+• Dd-iz

where d is knovm as the order of the interactor matrix and the D[s (i = 1, • • • d — 1) 

are coefficient matrices.

There are different forms of the interactor matrix such as diagonal, lower/upper 

triangular etc. Some of the special cases of the interactor matrix are:

(i) when D (z) = zdI, the interactor is known as a simple interactor matrix. In this

case, all the input-output pairs share the same number of delays and it is, therefore, 

easy to factor out the delay term from the delay-free part of the transfer function 

matrix,

(ii)when D T (z) D (z) = / ,  the interactor is called a unitary interactor matrix that 

has advantages over other forms as discussed by Peng and Kinnaert (1992), Huang 

and Shah (1999).

This chapter focuses on the estimation of a unitary interactor m atrix using the 

Markov block parameters obtained from the ARMarkov identification method.
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Exam ple 5.1 (Huang and Shah 1999)

Let iis consider the plant transfer function,

'  z- 1 ‘

l+ z -1 I+ 2 5 " 1
Z  1 Z 1

1+3 z ~ l  1+4 z " 1

The unitary interactor m atrix for this transfer function is

n  ( \ — ^-52 +  0.522 0.52 — 0.522
[Z) ~  [ 0.522 -  0.523 0.522 +  0.523

and has the property D T (2 ) D (2 ) = I. More details on the classification and prop­

erties of the interactor matrix can be found in the literature e.g. (Goodwin and 

Sin 1984, Shah et al. 1987, Peng and Kinnaert 1992, Huang and Shah 1999).

5.3 Estimation of the Unitary Interactor Matrix

Knowledge of the interactor matrix is important in designing high performance con­

trollers such as minimum variance (MV) controllers and in closed-loop performance 

assessment. Earlier methods (Goodwin and Sin 1984, Wolowich and Falb 1976) of 

interactor estimation required a priori information of the process transfer function. 

Shah et al. (1987)suggested a method that does not require the above mentioned a 

priori information. It uses a Unear combination of the first few Markov parameters 

of the process. The linear combination of the Markov block matrices is expressed 

as a polynomial matrix. Huang and Shah (1999)proposed the use of singular value 

decomposition (SVD) for the determination of the non-singularity of the polynomial 

matrix. The procedure is discussed in the foUowing subsections (5.3.1-5.3.2).

5.3.1 D ete rm ina tion  of the O rder of th e  In te ra c to r  M atrix

A linear, time invariant (LTI) transfer function can be written in terms of Markov 

parameters as

G (2 ~1) = f > 2 ' , ~ 1 (5‘4)
» = i

The condition (5.3) for the existence of the interactor matrix is written as
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lim D ( z ) G ( z  *) =  lim \Dozd + D \zd 1 -I b Dj-iz] [goz 1 +  gxz  2 -I 1 = K
2- 1—«o 2- 1—0

(5.5)

and can be expressed as a number of algebraic equations (Huang 1997, Huang and 

Shall 1999) that leads to the following matrix form

[ A i- i, • • • , Do ]

■ 00 0 0 •• O '

0 i 00 0 •• 0

9 d -  2 9 d - 1 •• 0

. 9 d - 1 9 d ~  2 . . . •• 0o  .

=  [/ST, 0, - - ,0]

or D G = K

(5.6)

(5.7)

where G is a block-Toeplitz matrix consisting of the first d process Markov param­

eters, D is the coefficient matrix of the interactor and AT is a full rank matrix with 

rank(K) = min(l, m). Existence of a solution of equation (5.7) which determines D 

depends on the order of the interactor matrix and the null space of G. The G matrix 

needs to be expanded by adding Markov parameter blocks until certain conditions 

(see (Huang and Shah 1999)) are satisfied and rank(G) >  rank(K).  The order of 

the unitary interactor matrix is the maximum number of Markov block-parameters 

required to satisfy the above mentioned conditions regarding the singular value de­

composition (SVD) of G. Details of the SVD expansion and the procedure can be 

found in Huang and Shah (1999).

5.3.2 E stim ation  of th e  In te rac to r M atrix

Once the order, d, of the interactor is selected, a block matrix consisting of the first 

d Markov parameter blocks is written as

A = { G l , G Tl , - - -GTd }T (5.8)

Once the block matrix, A is formed, the unitary interactor matrix, D(q) can be 

factored out from A by following the procedure of Rogozinski et al. (1987)and Peng 

and Kinnaert (1992). As noted by Huang and Shah (1999), the plant transfer function 

matrix, G (z~l ) used in their procedure would be replaced by the first d Markov 

parameter matrices.
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5.4 Markov Parameters from the ARMarkov M ethod  
for Interactor Estimation

As discussed in Section 5.3, Markov parameters are sufficient for interactor estimation 

even when a priori information on the process transfer function is not used or not 

available. Therefore, it is obvious that the better the estimation of the Markov 

parameters, the better the estimation of the interactor matrix will be since it uses 

a linear combination of those Markov parameters. Since the ARMarkov method 

produces Markov parameters directly and it was proved that the Markov parameters 

estimated by the ARMarkov method have better statistical qualities than the same 

parameters estimated by other simple Unear regression methods, it is recommended 

that the interactor be estimated using the Markov parameters obtained from the 

ARMarkov method.

This chapter illustrates the application of the ARMarkov identification method 

and the Markov parameters estimated by this method to  compute the interactor ma­

trix. The interactor estimation procedure discussed in Section 5.3 was developed by 

Huang and Shah (1999)and is applied here. The interactors estimated using Markov 

parameters obtained by different methods are compared in Section 5.6 to show that 

the Markov parameters obtained from the ARMarkov method produce a better in­

teractor matrix.

5.5 Interactor Matrix for Closed-Loop Systems

In industrial applications, closed-loop data is much easier to obtain and/or more 

readily available than open-loop data. Moreover, closed-loop data is preferred for 

on-line performance monitoring/assessment. Therefore, it is preferable to estimate 

the interactor matrix using closed-loop data. Huang and Shah (1999) showed that the 

unitary interactor matrix is “feedback invariant” i.e. the linear combination o f the 

Markov parameters o f the process under open-loop and closed-loop conditions yields 

the same interactor matrix and the interactor matrix o f the open-loop system can be 

estimated directly from closed-loop data.
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L em m a 5.1 (Huang 1997, Huang et al. 1997b) For a multivariable process as shown 

in Figure 5.1, the interactor {Dd) of the closed-loop transfer function matrix, Gd 

from Wt to Yt is the same as the interactor (D ) of the open-loop transfer function 

matrix, Gp.

P roof.

Um D G d =  lim DGP [I +  QGP)~l = K
Z ~ l —»0 2 — 1 —*0

where D  is the interactor of the closed-loop transfer matrix, Gd and since

lim DdGp =  Kd
Z ~ l

Dd is also the interactor of the open-loop transfer matrix, GP. See (Huang et al. 1997b) 

for more details. ■

Figure 5.1: Closed-loop System.

The open-loop Markov parameters and the closed-loop Markov parameters of the 

same process are different, but the linear combination of the open or closed-loop 

Markov parameters leads to the same interactor matrix. In closed-loop systems,
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identification using persistently exciting dither signals gives good estimates of the 

Markov parameters and in turn leads to a good estimate of the interactor matrix. 

In on-line performance monitoring/assessment, if step changes in the set points are 

made, they can be considered as the dither signal. In that case, correlation analysis 

may not be appropriate for the Markov parameters estimation. It was concluded that 

parametric modeling should give better Markov parameters and in turn better inter­

actor estimation (Huang 1997). The ARMarkov method uses a overparameterized 

model that explicitly contains the required Markov parameters. Therefore, it is rec­

ommended that Markov parameters obtained by the ARMarkov identification method 

using closed-loop input-output data be used to estimate the interactor matrix. This 

is illustrated in Section 5.6.

5.6 Simulation Examples

This section describes simulations carried out to estimate the Markov parameters from 

process input-output data. The time delay s/interactor matrices estimated using the 

Markov parameters determined by different linear regression methods are compared. 

Closed-loop input-output data as well as open-loop data are used to estimate the 

interactor matrix to illustrate the “feedback invariance” of the interactor matrix.

5.6.1 O pen-Loop M IM O System s 

Exam ple 5.2

This example, used by Huang (1997), illustrates the estimation of the interactor 

matrix of a  simple 2 x2  first order system with single delay in all the input-output 

pairs in the transfer function matrix.

The plant transfer function matrix is

Z~* z 1
1 -O .lr-1 1-O.lz-1

2z~* 2z-1
(5.9)

1-0.3Z-1 1-0.4Z-1

and the disturbance transfer function matrix is

1  - 0.6
_  1—0.5z-1 1—0.5z~l

0.5 1 (5.10)
. 1-0.5Z-1 1—0.5z_l .
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The unitary interactor matrices estimated by using the Markov parameters deter­

mined by different methods are shown in Table 5.1. The unitary interactor matrix 

estimated by using the Markov parameters determined by the ARMarkov method is 

exactly the same as in the actual process and the best estimate among all the methods 

used.

able 5.1: Interactor Matrix for a 2x2 First order System
Method Unitary Interactor Matrix

Actual Process

ARMARKOV

Correlation Analysis

ARX

-0.4472 * q —0.8944 * q
0.8944 * q2 -0.4472 * q2

-0.4472 * q —0.8944 * q
0.8944 * q2 -0.4472 * q2

-0.4437 * q -0.8962 *q
0.8962 * q2 -0.4437 * q2

—0.4469 * q —0.8974 * q
0.8974 * q2 —0.4469 * q2

The above example considered first order transfer functions with a unit delay 

in all the input-output pairs. For this reason, the interactor matrices estimated by 

using the Markov parameters determined by the different methods are close to the 

actual interactor matrix and close to one another. Processes with higher order transfer 

functions and higher order delays (also different delays in different input-output pairs) 

result in greater differences in the estimated parameters. The following example is 

concerned with such a process.

Exam ple 5.3

Consider a 2 x 2 MIMO system with transfer function matrices
0-3z~6 0 .0077z-1+0.0212z-a+0.0036z-3

GP(z) =

H  =

l-1 .9031z-»+ 1 .1514z-l +0.2158z-3 
0 .1 0 9 U -1+ 0 .07z-a

l - 0 .9 |z -

l-0 .7 z ->  1—1.8044z-1 +0.2636z-2

 l~=r 0l-0 .9 5 z  
0

(5.11)

(5.12)
1-0.99Z-1

The unitary interactor matrices estimated by different methods are shown in Table

5.2.
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Interactor structure:

Table 5.2: Coefficients in the Interactor Matrix
m l * q1 -1 b m5 * q5 p5 * ql H b p i * q5
p l * q 2  b p5 * q6 m5 * q2 H b m l * q6

ml m2 m3 m4 m5 Pi p2 p3 p4 p5
Actual .0680 .1957 .0897 .1087 .0609 .0043 .0203 .0353 .0517 .9639

ARMark .0722 .1939 .0896 .1146 .0539 .0040 .0196 .0360 .0524 .9637
Correl .0876 .1914 .0550 .0704 .1268 .0115 .0321 .0281 .0443 .9632
ARX .0596 .1987 .1127 .0036 .1109 .0068 .0229 .0 2 0 2 .0361 .9642

The differences between each coefficient in the actual unitary interactor matrix 

and the unitary matrix estimated by different methods are plotted in Fig. 5.2 so that 

the accuracy of the estimated parameters can be compared more easily.

0 .1*

Actual-ARMarbcv
Actual-Corre!.
Actual-ARx

0.1

0.01-

o.oc-

5 o.o: -

-0 02 ■ '

'  Parameters 1 to 5 — > m1-mS

-0.04
p1-p5Parameters 6 to 10

-0.06

-0.08

parameters

Figure 5.2: Errors in the estimated coeffiecients of the interactor

It can be clearly seen that the coefficients estimated by the ARMarkov method 

have the smallest error.

5.6.2 C losed-loop System s

Since closed-loop data are more readily available and/or easier to collect in practi­

cal/industrial applications, the ARMarkov method was also applied to estimate the 

Markov parameters from closed-loop input-output data. A simple closed-loop system
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is shown in Fig. 5.1. The purpose here was not to design a controller but to show 

that the open-loop and closed-loop unitary interactor matrices are the same as proved 

theoretically by Huang (1997). Therefore, a simple proportional controller was used. 

The next example used the same first order plant and disturbance transfer functions 

as in Example 5.2 for the open-loop case.

Exam ple 5.4

The transfer function matrices used are

GP{z) =

Q =

1-0.12- ' 
2 z ~ l  

1—0.3 z ~ l

0.4 0 
0 0.3

1— 0 . 12“ '
2  2 ~ '  

1 -0 .4 2 " '

Gw =

- 0.6
1 -0 .5 2 - ' 1 - 0 .5 2 - '

0.5 1
1 -0 .5 2 - ' 1 -0 .52“ '

, Ytsp = 0

(5.13)

(5.14)

The unitary interactor matrices estimated by the different methods using closed-loop 

input-output data are given in the Table 5.3. In this example also, the ARMarkov 

method gives the best match with the actual process and the interactor matrix is 

almost the same as in the open-loop case shown in Table 5.1. Other simulations 

(shown in Chapter 2 ) show that the disturbance dynamics have less effect on the 

ARMarkov method than on the other methods.

Table 5.3: Interactor Matrix from Closed-loop Data
Method

Actual Process

ARMARKOV Method

Correlation Analysis

ARX

Unitary Interactor Matrix

-0.4472 * q —0.8944 * q
0.8944 * q2 -0.4472 * q2

—0.4469 * q —0.8945 * q
0.8945 * q2 -0.4469 * q2

-0.4494 * q —0.8933 * q
0.8933 * q2 -0.4494 * q2

-0.4534 * q —0.8913 * q
0.8913 * q2 -0.4534 * q2
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5.7 Conclusions

•  The time delay/interactor matrix estimated from the Markov parameters ob­

tained using the ARMarkov identification method is closer to the actual time 

delay/interactor matrix than comparable results obtained using other linear 

regression methods such as ARX, FIR.

•  The Interactor matrix is theoretically feedback invariant. Simulation examples 

using the ARMarkov identification method show that the interactor matrix 

calculated from parameters estimated using closed-loop data  is almost identical 

to the one determined from open-loop data.
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Part II 

Model Predictive Controller Design

This part of the thesis describes the design of MPC’s, referred to as ARM-MPC’s 

that use the ARMarkov model developed in Part I. The ARM-MPC is formulated in 

Chapter 8  based on an extended input-output ARMarkov model. It is flexible enough 

to include the characteristics of the two widely used MPC’s, GPC and DMC, as special 

cases. The ARM-MPC does not require the solution of Diophantine equations as in 

GPC and does not need as large a number of step response coefficients or prediction 

horizon as in DMC. In Chapter 9 it was shown that the observer polynomial in ARM- 

MPC plays the same role as in GPC. However, the observer was designed without 

the solution of Diophantine equations and is independent of the process model which 

leads to advantages such as the use of different disturbance horizons and independent 

tuning for servo and regulatory control. State space models can be extended more 

easily to MIMO systems than input-output models and also are often more convenient 

for simulation and theoretical analysis. Therefore, a dual-model, state space model 

is derived from the estimated input-output ARMarkov model. It is equivalent to 

the input-output model but has a different structure than the classical state space 

formulation discussed in Chapter 9. The state space ARM-MPC designed in Chapter 

9 using a classical state space model generated from the consistent Markov parameters 

identified during the input-output ARMarkov model identification in Part I has the 

classical [A, B ,C , D] state space structure. All the classical theories and properties 

of state space MPC are, therefore, applicable to this ARM-MPC.

Closed-loop performance of different ARM-MPC’s is discussed in Part III.
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Chapter 6

Design and Formulation o f an 
ARMarkov Model-based Predictive 
Controller (ARM -M PC)1

6.1 Introduction

Model Predictive Controllers (MPC) typically use the step or impulse response co­

efficients of the process model to build the ‘dynamic matrix’’ used in the output 

prediction equation. The Generalized Predictive Controller (GPC) of Clarke et al. 

(19876) uses an input-output model with an ARIMAX structure, builds the 1dynamic 

matrix’ using the Markov parameters and requires the solution of two Diophantine 

equations (Clarke et al. (19876), Bitmead et al. (1990)). Dynamic Matrix Control 

(DMC), the most widely used MPC in industry, uses a simple step-response model 

for the output prediction (Cutler and Ramaker (1980)).

Unlike GPC, Dynamic Matrix Control does not require the Diophantine solutions, 

but needs a large number of step-response coefficients. Li et al. (1989) showed that 

MPC using step-response models can be put in state-space form. Lee et al. (1994) 

presented a state-space model in terms of step-response coefficients for systems with 

stable and/or integrating dynamics and extended the conventional MPC to handle 

stochastic and white noise disturbances without solving a large-order Riccati equa­

tion. Morari and Lee (1991) identified some deficiencies of MPC by comparing it 

with Linear Quadratic Gaussian control concepts. Camacho and Bordons (1999)

1This chapter was presented at the ADCHEM 2000 conference, June 2000 and is a part of the 
paper to be published in the Journal of Process Control
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present techniques for implementing GPC in industrial processes. Banerjee (1996) 

formulated a Markov-Laguerre model based predictive controller that uses a non- 

parametric model for the fast dynamics of the process and a parametric Laguerre 

model to approximate the slower dynamics of the process. Qi (1997) formulated an 

MPC based on a dual model (step response plus autoregressive).

Parametric model based predictive controllers, e.g. GPC, tend to be aggressive, 

less robust and require careful estimation of the parametric model and time delay. 

They often include disturbance models which increase the flexibility of tuning. On the 

other hand, non-parametric model-based controllers, e.g. DMC, are less aggressive, 

use simple step response models but require large number of step responses. Both 

parametric and non-parametric model-based predictive controllers have advantages 

and disadvantages.

In all the predictive controller designs, the dynamic matrix plays important role 

in the formulation of the controller gain matrix. The dynamic matrix is constructed 

using the first N2 step/impulse response coefficients (or Markov parameters) where 

N 2 is the prediction horizon. The better the estimation of the coefficients, the better 

the representation of the actual process and in turn the more accurate the controller 

gain matrix. For processes with unusual step responses in the fast dynamics, a  para­

metric model can not always capture the actual dynamics of the process. In these 

cases, direct estimation of the Markov parameters or step response coefficients is very 

important. Specification of the time delay plays an important role in the parametric 

model based predictive controller formulation.

The predictive controller developed in this chapter uses an ARMarkov model rep­

resentation that is a combination of non-parametric and parametric models. The 

initial or fast dynamics are defined by Markov parameters estimated explicitly using 

a standard least squares algorithm and the slower dynamics are approximated by an 

ARIMAX model structure. The ARMarkov model has the same form as an A RIM AX 

model except that it explicitly contains more than one Markov parameter (Akers and 

Bernstein (1997)). Details of the ARMarkov approach are described in Chapter 2. 

The estimated Markov parameters are consistent in the presence of disturbances as 

presented in Chapter 4 and shown by Kamrunnahar et al. (2000). In the residual 

model structures of the dual-model (Qi 1997) and Markov-Laguerre (Banerjee 1996)
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model formulations, the continuity of the dual responses is not obvious and the pa­

rameter consistency is not as straightforward as in the ARMarkov identification.

An ARIMAX structure is introduced to model the slow dynamics and the dis­

turbances in Section 6.2 and the resulting model is called the extended ARMarkov 

model. A predictive controller is then formulated in Section 6.3 by using the extended 

ARMarkov model and an approach similar to that used by other predictive controller 

designs such as GPC (Clarke et al. (1987b)) and DMC (Cutler and Ramaker (1980)). 

In Section 6.4, it is shown that the proposed predictive controller, referred to as ARM- 

MPC, is equivalent to GPC and DMC when the number of Markov parameters, fi, 

used in the model is 1 and AT2 +  1 respectively. For 1 < fi <  N 2 +  1, the proposed 

controller blends the characteristics of GPC and DMC. The ARM-MPC is illustrated 

through simulation examples in Section 6.5.

6.2 The Extended ARMarkov Model

The extended ARMarkov model with a general disturbance model is defined as

n f i - 1 n

y{k) = + + + +
j = 1 j = 0  j = 1

+ 3 ^ p £ ( f c )  (6.1)
n / i n

= a^ k ~ p ~ i  + x) + Y i  hiu(k + Pju(k ~  ̂~ i  + ^
j = l  j = 0 3=2

+x(k) (6 .2 )

where C  is a polynomial in z-1, x(k) is the disturbance or residual and A = 1 — 

z~1. For chemical process applications, it is very common to assume random step- 

type disturbances, often termed Type-I disturbances. Therefore, in this chapter, the 

ARMarkov model is modified to accommodate Type-I disturbances by putting C — l 

in (6.1). The extended ARMarkov model and the extended ARMarkov identification 

method with a general disturbance model (C  ^  1) is discussed in Chapter 7.
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The extended ARMarkov model with Type-I disturbances is defined as

n  11— 1 n  j

y (k ) =  -  m -  j  + 1) +  ^ 2 hM k -  j ) +  Y , ? A k -  v - j  +  1) +
>=i i=o j= i

(6.3)

Writing the ARMarkov regressor vector, for equation (6.3) as

«>„(£) =  M * _  1). — /i), — , Ay(<: -  /J - n  + l) ,A » (*), • ■• , Au(fc -  /i -  n +  l)]1
(6.4)

the process output can be expressed as

y(k) = W ^ ( k )  + €(k) (6.5)

where the weighting matrix is given by

Wll = [ l , - A fl,h0t--- (6.6)

Ap = [ax, • • • , a„] € R lxn (6.7)

=  [/?!,•• - ,/? n] 6 Rlxn (6.8)

The regressor vector in (6.4) differs from the regressor vector in (2.19) of Chapter 2 by 

including y(k — 1 ) and using the remaining input-output deviation variables instead 

of the absolute variables. The parameters vector in (6 .6 ) also differs from (10.3)

by including an extra 1. The minimum variance prediction of the output is

n  i i — I

Vik ) = - ^ a t j A y i k -  n - j  + I)+  ^ h j A u { k  -  j)
j = l  j =o

n

+  ^ / 3 JAu(A: -  /x -  j  -I-1) +  y(k  — 1) (6.9)
j=i

The output error, e(k) is defined as

E ( k ) — y(k) — y(k) (6 . 10)

The estimated parameter vector, can be determined by using a standard least- 

squares algorithm to minimize the cost function J  = \e 2{k) where N  is the

total number of data points.

N o te: Due to the use of differenced data in the regressor vector in (6.4), infor­

mation on the low frequency dynamics of the process may not be correctly estimated.
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Therefore, the above identification method with a type-I disturbance model is recom­

mended for process identification when there is a trend in the input /output data.

Note, however, that the type-I disturbance model should be used during the MPC 

controller design to obtain offset-free setpoint tracking as discussed in the next section.

6.3 Predictive Control Design Using th e  Extended  
ARMarkov Model

As shown below, a Model Predictive Controller can be formulated using the extended 

ARMarkov model described in the previous section. The resulting controller is re­

ferred to as ARM-MPC.

In predictive control, it is necessary to compute the future output predictions, 

y(k+ i), for i =  1, • • • , jV2 where N2 is the prediction horizon. A s s u m i n g  a single delay 

due to discretization, the output prediction equation, using the extended ARMarkov 

model in (6.3) can be written as
n /j—1

y(k + i ) = y{k +  i -  1 ) -  q; A y(k - y - j  + l+ i )  + ^  hjA u(k  -  j  + i)
j=i j=l

n
+  — /i — j  + 1 +  i) +  e(k +  i) (6 -1 1 )

j=i
The last term, consisting of future white noise, is independent of the available response 

at time k. The minimum variance prediction is independent of the white noise and 

is given by
n /i—1

y(k + i) = y(k  +  i -  1 ) -  a jA y jk  — y. — j  + l + i) + y *  h jA u jk  -  j  + i )
j= i  j=i

n

+  ^  /3j Ait(fc — y - j  + l + i) (6-12)
j'=i

After separating the prediction equation into the information available at time k  

and the future information needed, the output prediction can be written as

y{k + i) =  Gi(z~1)A u(k  +  i -  1 ) +  y(k +  i|fc) (6.13)

where Gi is a polynomial in z~l containing the first i step response coefficients $i, i.e.

G{ =  sxz0 +  s22 _1 H------ 1- (6.14)
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where s* =  hi +  Sj_i. The A u(k  +  i — 1) term in (6.13) is the present/future incre­

mental control action. y(k  +  i|fc) is the output prediction which depends only on the 

information available at time k  and usually referred to as the ‘free response’. Note 

that /?! =  in (6.12). The ‘free response’ can be written as

n n
y{k + i\k ) =  y {k) -  ^  Qj y(k  -  y  -  j  + 1 -H ) +  ^  a^yjk - y - j  + l)

j = i j=i
H + n — 1—» f i + n — 1

+  2 2  Si+ A U(k ~ j ) +  2 2  SH +n-AU( k - j )
j = 1 ; = f i + n - t

H + n —2

— SjAu(k — j  — 1) (6.15)
J = l

and can be simplified to

y(fc-H|fc) =  y (k +  i\k  — 1) +  si+iAu(k  — 1 ) for i =  1 , • • • ,y  — 1 (6.16)

y{k + i\k) =  y (k  + i - l \ k - l ) - a i y { k )  + a ny ( k - n )
n— 1

-  22 (a J+i ~  y(k ~ v - j  + 1  +  *)
i = i

n

+ s i+iAu(fc — 1) +  /3jAu(k — y  — j  + l + i )  for i = /i(6.17)
3=3

The ‘free response’ vector is defined as

/  =  [y(k +  11*:), y(k  +  2|*), ■■■,y(k + iV2|*:)]r  (6.18)

and the future control vector as

u =  [A u(k), A u (k  +  1 ), • • • , A u(k + M  — 1)]T (6.19)

where M  is the control horizon. The predicted output vector is defined as

Y  =  [y(k +  1 ), y(k + 2), • • • , y(k + N 2)]T (6.20)
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so that

Y  =

where G =

Gu + f
si 0
s2 Si 

Sm Sm- i

0

0

•si

(6.21)

(6 .22)

SN2 SaTj-i ............. SAfj_M+l .

The prediction equation in (6.21) is similar to the one used in GPC, DMC etc. 

The G matrix in (6.22) consists of the step response coefficients and is known as the 

‘Dynamic Matrix’ in Model-based Predictive Controller (MPC) design.

The future control moves, u  can be estimated by minimizing a cost function such

as,

J  = E t QE  +  Xu Ru (6.23)

where Q and AR  are the output and input weightings respectively, E  is the error 

between the predicted output and set-point. This is now a linear control problem 

and can be solved easily. The unconstrained solution of the future control vector is

u  = (GTQG + AR)~1GTQ(r -  f ) (6.24)

where the reference signal, r  =  [r (k + 1) r (k +  2) • • • r (k + iV2)]r  is the set-point 

or target vector.

R e m a rk  6 . 1  The Markov parameters determined by the ARMarkov identification 

method were shown by Kamrunnahar et al. (2000) and in Chapter 5 to be superior 

in terms of consistency, variances/covariances and confidence bounds to the Markov 

parameters determined indirectly using other linear regression methods. The controller 

gain matrix in ARM-MPC is defined as

Kmpc =  (G QG +  XR) G Q

where Q and XR are user defined and fixed. ‘Dynamic Matrix’ G is derived from 

c o n s is ten t Markov parameters and therefore in the limit as the Markov parameters
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converge, the ‘Dynamic Matrix’G is error free. In other words, the ‘Dynamic M atrix’ 

constructed by using the Markov parameters identified using the ARMarkov method, 

in the limit, leads to an error free controller gain matrix, K mpc.

Now consider the following special cases.

•  p  =  JV2 i.e. the number of Markov parameters equals the prediction horizon. In 

this case, the output prediction can be easily separated into the future response 

and the ‘free response’. The ‘free response’, y(k  +  i\k) is the same as (6.15) 

except that p. is replaced by jV2.

•  p > N 2 i.e. the number of Markov parameters is greater than the prediction 

horizon. In this case, the free response is the same as (6.15).

•  p < N2 i.e. the number of Markov parameters is less than the prediction horizon. 

The ARMarkov model cannot be used directly in this case since only p  Markov 

parameters are available and IV2 > /i Markov parameters are needed to build 

the ‘dynamic matrix’. In this case, solutions to Diophantine type equations are 

required as in GPC for the remaining (iV2 — p) Markov parameters.

R em ark  6.2 For p > A2 (the prediction horizon), the output prediction is easily 

separated into the future and the ‘free response ’ without the solution of Diophantine

equations.

6.4 Special Cases of ARM -M PC

The ARMarkov model in (6.3) can be written as

A[z- ' )y(k)  = B (z~ ')u(k  -  1) + (6.25)

where

A  =  1 +  a ^ -* 1 +  • • • +  anz - {tl+n- l) 

B  =  hlZ-° + ■ ■ ■ + h ^ z - ^  + f a - *  +  • • • +  0 nz~ili+n- l) 

C = 1

(6.26)

(6.27)

(6.28)
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The basic Generalized Predictive Control (GPC) of Clarke et al. (19876) uses an 

ARIMAX process model of the form

A(t-')y<.k) = B (z~ ')u (k  -  1) +  (6-29)

where A , B, C  are polynomials in z~l . Therefore, the extended ARMarkov model used 

in the ARM-MPC has the same form as the ARIMAX model used in GPC. However, 

the number of parameters is different in the two models.

The optimal prediction of y(k + i), as described by Bitmead et al. (1990), is

y(k + i) = Gi(z  l )&u(k +  i -  1) +  y{k + z|fc) (6.30)

where y(k +  i\k) is the ‘free response’ prediction,

y(k + i\k) = r ,( z -V (A : -  1) +  Ft(z~' )yf (k) (6.31)

uf(k) = C - 1 (z~l) Au (k) (6.32)

yf (k) = C - 1 { z ~ ' ) y ( k ) (6.33)

and r ,,  F, are the solutions to the following two Diophantine equations as shown in 

Clarke et al. (19876) and Bitmead et al. (1990).

= GJ(z-1)C(2- 1)+ ?-,r,(2-1)

The prediction equation (6.13) using the extended ARMarkov model and the GPC 

prediction in (6.30) have the same form. The ‘dynamic matrix ’ G is the same for 

both the prediction formulations. However, as shown above in Section 6.3, the ARM- 

MPC solution, unlike the GPC solution, does not require solution of a Diophantine 

equation when /x >

The limiting cases of the ARM-MPC are derived as follows.

6.4.1 G P C  structu re :

Assuming type-I disturbances and /i =  1 , equations (6.26-6.28) can be written as

A = 1 -I- c*iz~l H -I- a nz~n

B = 0\Z~l -1------h finz~n

C = 1
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which is exactly the same as the ARIMAX model used in the GPC design with C  = 1 . 

Hence the designed ARM-MPC with /i =  1 is mathematically equal to GPC.

6.4.2 DM C s tru c tu re :

W ith p = N2 + 1 and n =  0, equations (6.26-6.28) can be written as

A  =  1

B  = h lZ-° + ■ ■ ■ + hN3z~N2 

C  = 1

which is exactly the same model used in DMC (Cutler and Ramaker 1980).

R em ark  6.3 From the above analysis, it is clear that using the ARM-MPC, one 

can implement GPC, DMC or a blend of the two by appropriate choice o f the design 

parameters, p and n. Other M PC ’s based on dual models, e.g. (Qi 1997) or Markov- 

Laguerre model (Banerjee 1996), can be interpreted for the limiting case o f DMC, 

but the GPC structure is not clear and the combination is not as obvious as the 

ARM-MPC. Moreover, those non-ARM dual-models need larger number of Markov 

parameters and the continuity o f the output response at the point where the two models 

join is not clear.

6.5 Simulation Examples Using an ARM -M PC

The theory developed in the previous sections is illustrated through simulation exam­

ples in this section. The ARMarkov identification procedure and predictive controller 

design are used to control the following third order process

0.00772"1 + 0.02122- 2 +  0.00362" 3 

^  ~  1 -  1.90312"1 -I- 1.15142-2 -  0.21582" 3 ( ’

A Type-I disturbance model is used in the ARMarkov model. The model pa­

rameters are determined using the model structure in (6.3). The ARMarkov model 

order is assumed to be n =  3 and the number of Markov parameters in the model 

is p  =  10. The estimated parameters are then used in a predictive controller design 

having the structure in (6.13). The controller is designed as in section 6.3. The tuning
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Figure 6.1: Step Tracking and Disturbance Rejection using GPC ARM-MPC with a 
Type-I Disturbance Model. A unit step disturbance was added at time 100.

parameters for the controller design are as follows: N2 =  10, M  = 1 , Q = R  =  /  and 

A =  0.0.

The closed-loop responses to set-point changes and disturbances are shown in Fig­

ure 6 .1 . The ARM-MPC with a Type-I disturbance model gives satisfactory responses 

to both set-point changes and disturbances. The responses are compared with GPC 

and DMC step-tracking and disturbance rejection in Figure 6.2. GPC is aggressive 

(note large span of axis for control action) and DMC needs a large number of step 

response coefficients and a large prediction horizon for practical applications. How­

ever, as expected, the ARM-MPC responses have characteristics which are a blend 

of GPC and DMC responses. The performance of GPC, DMC and ARM-MPC in 

terms of closed-loop settling time and input variance is compared in Table 6 .1 . GPC 

and ARM-MPC settling times are essentially the same whereas DMC takes almost 

twice as long to settle. The closed-loop time constants (rise times) are approximately 

the same for the three controllers but DMC has more overshoot in the servo response
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Figure 6 .2 : Comparison of Responses from DMC, GPC and ARM-MPC with a Type- 
1 disturbance model. In (a) ‘solid’—► setpoints and ‘dash’—* outputs. A unit step 
disturbance was added at time 1 0 0 .

and overshoot/undershoot in the disturbance rejection. A larger prediction horizon 

in DMC gives overshoot-free response (not shown) which in turn makes the time con­

stant larger than those by GPC and ARM-MPC. GPC disturbance rejection is faster 

than both ARM-MPC and DMC since GPC without a T —filter is very aggressive. 

This is reflected in the control action i.e. GPC results in high control action which 

may not be acceptable for practical applications. As a trade-off between DMC and 

GPC, the proposed ARM-MPC gives adequate disturbance rejection with an accept­

able servo response. In terms of aggressiveness, it lies in between GPC and DMC. A 

measure of the performance of the predictive controller is defined as 

N i

j  = Y ,  (*) -  Y°« w )T (*) -  +A u u w  (6-35)
t=i

where N\ is the total simulation time. The performance costs for the above three
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controllers are compared in Table 6 .1 . Clearly, the ARM-MPC performance cost lies 

in between the costs of GPC and DMC showing a trade-off between the GPC and 

DMC.

Table 6.1: Close-loop Performance of Different Controllers with C  =  1

GPC DMC ARM-MPC
Settling Time 11.5 24 11

Time Constant 6 .0 6.5 6 .0

var(u) 14.47 0.32 0.33
Performance Cost, J 5.01 8.43 7.32

6.5.1 C om parison of L inear System s

The preceding comparison of DMC, G PC and ARM-MPC involves the performance 

of linear systems. In general, if the process model, controller and process inputs 

are identical, the closed-loop responses should be identical. However, in the above 

comparison there are a number of factors that result in different system responses. 

For example:

•  DMC used the first ten step response coefficients. ARM-MPC used the first 

ten Markov (impulse) parameters PLUS a third-order ARX model that was 

sufficient to accurately model the residual process response. In other words, 

DMC used a truncated model and ARM-MPC used a “complete” model.

•  The dynamic matrices for all three controllers were identical. However, the 

calculation of the control action depends strongly on design parameters such as 

the output horizon, JV2 control horizon, M  and on the “free response” (which 

depends on the model used).

•  In GPC the denominator, A, of the process input-output model automatically 

appears in the denominator of the noise model which makes the control re­

sponse much more aggressive. Also there is interaction between the process 

noise/ disturbance responses because the noise and model parameters are mixed 

in the Diophantine identities. (Saudagar 1995)
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6.6 Experimental Evaluation of ARM -M PC on a 
Pilot Scale Process

An MPC using a general state space model developed from the Markov parameters 

obtained using the ARMarkov method was implemented on a pilot scale Continuous 

Stirred Tank Heater (CSTH) in the Computer Process Control (CPC) laboratory in 

the Chemical & Materials Engineering department at the University of Alberta. The 

CSTH is described in Chapter 2 and a  schematic diagram of the process is shown in 

Figure 2.3. Water level in the tank and the water temperature were selected as the 

two controlled variables and the valve openings (manipulating cold water flow and 

steam flow) were selected as the two manipulated variables. The process considered 

is a 2 x 2 MIMO system. However, the water level in the tank varies only with the 

inlet water flow and is invariant to the steam flow rate.

The main purpose here was to complete an experimental application of the pro­

posed ARM-MPC on a real process. An ARM-MPC was designed as described in 

Section 6.3 using an ARMarkov model developed for the above process using real 

time, experimental open-loop input-output data and the ARMarkov identification 

method described in Chapter 2. The ARMarkov model order was n =  2 and the 

number of Markov parameters in the model was assumed to be /z = 26. The con­

troller parameters used were as follows: jV2 =  10, M  =  1, Q =  R  =  /  and A = 0.0. 

The inputs and outputs were sampled every four seconds. Set-points, outputs and 

manipulated variables were measured as currents signals. Servo responses from the 

CSTH are shown in Figure 6.3.

It is very clear from Figure 6.3 that the designed ARM-MPC tracks the set-point 

changes very satisfactorily. Note, however, that the inlet water flow rate was kept 

constant while controlling the water temperature to make the process simpler and 

observe the effects of each manipulated variable on the process output. The major 

process noise disturbances were due to incomplete stirring/mixing of the water.

6.7 Conclusions

•  The ARMarkov model is extended to include Type-I disturbance models.
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Figure 6.3: Responses from a pilot scale CSTH using ARM-MPC.

•  Output predictions based on the extended model are shown to have the same 

y =  Gu 4- /  form used by predictive controllers such as GPC and DMC.

•  The proposed ARM-MPC controller is equal to GPC when the number of 

Markov parameters, y  =  1 and to DMC when y  =  N 2 + 1. For 1 < y  < N? + 1, 

ARM-MPC combines the characteristics of GPC (aggressive) and DMC (con­

servative).

•  The Markov parameters determined by the ARMarkov method are statistically 

consistent and hence the ‘dynamic matrix’ formed with the Markov parameters 

from the ARMarkov identification leads to better control.

•  Experimental results showing the set-point tracking performance of the pro­

posed ARM-MPC on a physical process (pilot scale CSTH) are satisfactory.
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Chapter 7 

Disturbance Prediction in the 
ARM -M PC1

7.1 Introduction

One of the distinguishing features of Generalized Predictive Controller (GPC) (Clarke 

et al. 19876) compared to Dynamic Matrix Control (DMC) (Cutler and Ramaker 

1980) is the disturbance model. The role of the disturbance polynomial, C  (z-1) , also 

known as the prefilter for parameter estimation or the observer polynomial, T  (z-1) 

has been explored by many researchers (Astrom and Wittenmark 1984, Wahlberg 

and Ljung 1986, Clarke et al. 19876, Doyle and Stein 1979) for the ‘optimality of 

predictions’, ‘disturbance rejection’ and ‘robustness of model-based controllers’. Mo- 

htadi (1988)discussed the robust stability issue of GPC using the C  (z_1) or T  (z-1) 

polynomial and pointed out the strong ‘need for having (1 ) a prefilter for parameter 

estimation and (2 ) an observer polynomial in the control law’ in the applications of 

GPC algorithm to industrial processes.

Successful identification of the C  polynomial is not always possible for real pro­

cesses. Moreover, in MPC output predictions, the C  polynomial determines the 

dynamics of the observer equivalent to a Kalman filter. Therefore, it is usually sug­

gested that instead of using the identified C  polynomial, a design polynomial T  (z-1) 

be used to specify the observer dynamics (Clarke et al. 19876, Bitmead et al. 1990). 

When T  = C, the output predictions asymptotically reduce to the (minimum vari­

ance) ‘optimal’ predictions. The output predictions and the solutions to the GPC

1 Material in this chapter forms a part of the paper published in the Journal of Process Control.
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control problem are obtained in terms of the solutions of Diophantine equations. The 

Diophantine equations can be solved recursively to save computational effort.

Due to the structure of the CARIMA model considered in GPC, the output pre­

dictions or more precisely the ‘free response’ predictions cannot be separated from 

the predictions based on the plant model and based on the disturbance model. As a 

result, disturbances can not be predicted independent of the plant model and hence 

the controller can not be tuned independently for ‘servo’ and ‘regulatory’ control 

without designing a two-degree of freedom controller.

Saudagar (1995)introduced a method called the Separated Diophantine Predictor 

(SDP) that separates the noise model from the plant model in the prediction equa­

tion. This separation is obtained via the solution of two Diophantine equations and 

the end result is independent timing for regulatory control. However, the resulting 

observer polynomial, Fi obtained through the solution of the Diophantine equations 

is dependent on the plant model polynomial, A.

In this chapter, the ARMarkov model is extended to include a disturbance poly­

nomial, C equivalent to that included in the CARIMA model used in GPC. The 

noise/disturbance model can be estimated using plant data  as described in Section 

7.2 and then can be used for the ARMarkov model based controller (ARM-MPC) 

design. Alternatively, the C  polynomial can be user specified as a design polyno­

mial equivalent to the T  polynomial in GPC. In either case, as shown in Section 7.3, 

ARM-MPC design does not require the solution of Diophantine equations and the 

noise/disturbance model is completely separated from the plant model in the predic­

tion equation. The prediction equation is called a Separated Disturbance Prediction 

(SDP). This SDP enables independent on-fine timing of ARM-MPC for ‘regulatory’ 

control through simple algebraic manipulation and without re-calculation or re-design 

of the controller or solution of Diophantine equations. The ARM-MPC with SDP is 

shown in Figure 7.1.
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7.2 Extended ARMarkov M odel W ith Observer
Polynomial

The extended ARMarkov model with a general disturbance model is defined as

n /i-1 n

y(k) =  - ' ^ 2 a j y ( k - n - j  +  l )+ '^2hju ( k - j )  +  ^T/ (3ju { k - t i - j  + l) 
j = 1 j= o  i

(7.i)

n P 71
=  J +  1) + ~  J) +  ] C  ~  ^  _  +  X)

j = l  j =0 j =2

+*(fc) (7.2)

=  Vm (k) +  x(k)  (7.3)

where C  is a polynomial in z~l , x(k)  is the disturbance or residual and A =  1 — z~l . 

Using a Prediction Error (PE) approach, both the plant and disturbance models can 

be determined by the following steps.

step 1 : determine the model parameters assuming white noise disturbances

step 2 : estimate the residual x(k)  and filter the residual to estimate the disturbance 

model

step 3: filter the input-output data by the disturbance model and estimate the model 

parameters

step 4: iterate the above steps until satisfactory convergence is obtained.

The C {z~l ) polynomial in the disturbance model in (7.1) can be treated as a 

design polynomial similar to the T-filter in GPC or it can be identified from process 

input/output data using the ARMarkov model structure as described above.
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7.3 ARM -M PC W ith Observer Polynomial

The i step ahead output prediction equation using the model in (7.1) is written as
n  * i - l  ^

y(k-hi )  =  ~  Q' jy{k -  n -  j  + 1 +  i) +  A u(k - j  + i)
j = 1 j = 0

n 0-
+  ^  -  /x -  j  + 1 +  0

J = 1

+ ^ p e ( f c  +  i) (7.4)

For the special structure of the ARMarkov model with fi > N 2 , the output terms 

on the RHS are available a t time k. Therefore, the process and disturbance terms 

on the RHS need not be divided by a polynomial defining the process dynamics as 

in GPC (Clarke et al. 19876) and the process and noise terms can be easily sepa­

rated. The noise term is separated into past and future/present components using 

the Diophantine like expansion

(7.5)

where

E i ( z  =  1 + e\z 1 -b • • • -b e±-\z 1+1 (f-6 )

Fr{z~l) = fo + f x z - 1 + ■■■+&-< (7.7)

Since the disturbance model has only a differentiator. A in the denominator, there is 

no need to solve a Diophantine equation on-line. After some algebra, it can be shown 

that

e* =  1 -b Ci -b • • • + Ci

fo =  1 +  Ci -I---b d,  f i  = Ci+i, • • • , f i =  c2,_ 1

The minimum variance output prediction, obtained by putting the future noise com­

ponent Eit(k + i) equal to zero, is
n  *1 - 1  ^

y(k-hi )  = - ^ a j y i k - y - j - h i - h i ) + ^ 2 - ^ A u ( k - j - h i )
j = l  ; = 0

n

-b ^ 2  &u(k  -  y. -  j  +  1 -b i) -b ^ e (k )  (7 .8 )? ; a .. , , 1 , .-x . Fl .
3 = 1
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Using (7.1)

^  = 7 - M k ) - ( - ' 5 2 aM k - t i - J  + 1) + ' 5 2 hA k - j )
j = 1 j =o

+ ' 5 2 P j u (k ~ t i - j + 1))] (7-9)
j = i

— ^x(fc) =  x-̂ (fc) =  filtered residual at time k 

Therefore, equation (7.8) can be written as
n fi—l

y(k +  i) =  atjy{k -  n ~ j  +  l +  i) +  ^ 2  sj ^ u (k ~ 3 +  i)
j=l j= o

71

+  ^ ^ / 3 j A  u(k — fx — j  + l + i )  + FiX^(k) ( 7 .1 0 )

j=i

Equation (7.10) is referred to as a Separated Disturbance Predictor (SDP). The SDP 

has two parts. The first part consists of the first three terms which depend on the 

plant model. The second part, the last term in the SDP, depends only on the residual, 

x and the noise model and is completely independent of the plant model.

The prediction equation (7.10) can be written as

y(k  +  i) =  Gi (z~1)Au(k  +  i — 1) +  y(k  +  i |fc )  ( 7 .1 1 )

where Gi  contains the first z step response coefficients and the ‘free response’ is defined 

as
A* n

y(k  +  i\k) =  SjAu(k — j  +  i) +  A u (fc  — f i —j  +  l +  i)
j=  i+ l  j—2

n

- ^ c t j y i k  - f i - j  +  l +  i) +  FiXf (k) ( 7 .1 2 )

j=i

=  z~lSAu(k  +  i  — 1) +  z '^BAulk  +  i — 1 )  +  z~^~^Ay  ( k )

+FiXf (k) ( 7 . 1 3 )

where

S  = si + 1 +  si+2z 1 H 1- SpZ (/1 1

B  =  0 2 + 03z - 1 + --- + 0nz - {n- 2)

A  =  Qi + a2z~1 H 1- Q„2 -(n-1)

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The ‘free response’ includes the FiXf {k) term to accommodate disturbances. A Model- 

based Predictive Controller (MPC) can therefore be designed following the same 

procedure as described in Chapter 6 . The ARM-MPC using SDP is shown in Figure

7.1.

Free response due to 
disturbance^ 
uncertainty

Free response due to 
manipulated 

variable

Forced Response

Plant Model

z“ B

Model

Process
ARM-
MPC

Figure 7.1: ARMarkov model-based predictive controller (ARM-MPC) using the sep­
arated disturbance predictor (SDP).

The ‘free response’ vector is defined as

/  =  [y(k +  1 | k) ,y(k  +  2|fc), • • • , y(k +  AT2 |fc)]r  (7.14)
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and the future control vector as

u= [Au(k),  Au(k + 1 ), • • • , Au(k  +  M)\T (7.15)

The predicted output vector is defined as Y  =  Gu +  / .  The elements of the ‘dynamic 

matrix’, G are step-response coefficients. The unconstrained solution to the control 

problem is u = (GTQG +  XR) 1 GTQ (r — /) .  The advantage o f this SDP formu­

lation is that the servo and regulatory responses of the resulting MPC can be tuned 

independently because of the separation o f the terms in (7.10).

7.3.1 Flexibility of D istu rbance  P red ictions

It is clear from equation (7.10) and Figure 7.1 that the disturbance prediction and 

feedback is completely independent of the process model. It can, of course, be timed 

by adjusting C. However, even greater flexibility can be obtained by adjusting the 

disturbance prediction horizon, A^, as illustrated by the following cases.

1 . DMC type disturbance prediction is obtained by putting C  =  1 in (7.1) as noted 

above. This is equivalent to making Nd =  1 and holding the prediction horizon 

constant for all future intervals.

2 . GPC type disturbance prediction is obtained by using the same C  in (7.1) as 

in GPC. This would imply putting Nd = p (the output prediction horizon). 

However, any 1 < < N2 can be used and the disturbance prediction for

intervals more than Nd steps in the future either held constant (compare as 

DMC) or set to any other value, e.g. zero or decrease to zero over N2 — Nd 

intervals.

3. Different “filtering” and “prediction” methods can be used over different sub­

intervals of 1 <  Nd < N2.

This type of flexibility in the disturbance prediction permits “intuitive” algo­

rithms, e.g. implemented by an expert system, as well as theoretical ones. Obvious 

practical advantages include:

a. if a large, unexpected and unexpandable step disturbance occurs then atten­

uate the prediction. If the step disturbance is confirmed by measurements over the 

following intervals then (rapidly) increase the prediction.
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b. make Nd directly proportional to some measure of the reliability/certainty of 

the disturbance, e.g. be conservative and put Nd =  1 as in DMC or be aggressive and 

use 1 <  Nd < N2 with an aggressive C  as in GPC.

c. use historic disturbance data or disturbance patterns from files.

7.3.2 L im iting Case of A R M -M P C  
A R M -M PC  with Type-I D isturbances

In process control, it is very common to assume random step-type disturbances or 

Type- 1  disturbances, which, in the simplest case, are modelled by e(k) /A.  For the 

ARMarkov model, this is equivalent to put C  =  1 in (7.1).

W ith C  =  1 in (7.1), Et = 1 and Ft — I and the prediction equation is the same 

as (7.10) except that the last term simplifies to x(k).

7.4 Simulation Examples

The theory developed in the previous sections is illustrated through simulation ex­

amples in this section. ARMarkov identification along with an ARM-MPC is used to 

control the following third order process

0.0077z-1 -I- 0 .0212z-2 +  0.0036z"3 , .
^  ”  1 -  1.9031Z"1 +  1.1514Z-2 -  0.2158z"3 ( ‘ '

Exam ple 7.1

Assume the process is subjected to step disturbances. The ARMarkov model 

order is assumed to be n =  3 and the number of Markov parameters in the model 

is y. — 10. The controller is designed as in section 7.3. The tuning parameters for 

the controller design are as follows: N2 =  10, M  =  1, Q = R  =  I  and A =  0.0. 

The disturbance model used in the ARM-MPC is N  = 1~ ° ^ z~ 1 i.e. C = 1 — 0.8z_1 

in (7.1). Both ARM-MPC and GPC are designed for this process with the same 

C  polynomial and DMC is designed with C = 1. The results are shown in Figure

7.2. Comparison of Figures 7.2 and 7.3 shows that the aggressiveness of disturbance 

rejection is reduced significantly by the presence of the observer polynomial, C  in 

both GPC & ARM-MPC. (DMC response remains the same with C  =  1). Input 

variances and performance costs are compared for GPC & ARM-MPC in Table 7.1.
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Figure 7.2: Comparison of responses using DMC, GPC and ARM-MPC with a Type- 
1 disturbance model in DMC and with an observer polynomial, C  =  1 — O.8 2 - 1  in 
GPC k  ARM-MPC. In (a) ‘solid’—* setpoints and ‘dash’—* outputs. A unit step 
disturbance was added at time 1 0 0 .

Both Figure 7.2 and Table 7.1 show that GPC is more aggressive than ARM-MPC 

which is expected. Although the performance cost in GPC is smaller, it requires larger 

control input moves. Moreover, as discussed in Section 7.3, on-line tuning of ARM- 

MPC using C  does not require redesigning the controller or re-solving the Diophantine 

equations. This is a direct result of using the SDP.

Exam ple 7.2

Now consider the same process in (7.16), but assume tha t the process is subjected 

to colored noise generated by passing white noise through the disturbance transfer

function, N  =  i_i 903iz-'+7i59i4j’-^-o 2i58z~3 • Process responses using GPC and ARM- 
MPC are shown in Figure 7.4. The controller parameters are the same as in (7.1). 

Input variances and performance costs are compared in Table 7.2. Results similar to
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Figure 7.3: Comparison of responses from DMC, GPC and ARM-MPC with a  Type- 
1 disturbance model. In (a) ‘solid’—* setpoints and ‘dash’-* outputs. A unit step 
disturbance was added at time 100.

Example 7.1 are obtained. The outputs plotted in Figure 7.4 do not show the filtering 

effect as strongly as the control variable because the noise is added directly to the 

output.

In the above analysis, SISO systems are considered for simplicity. However, ARM- 

MPC can also be applied to MIMO systems by using the block parameters estimated 

using the ARMarkov method for MIMO systems as extended by Kamrunnahar et al. 

(2000) and described in Chapter 2.

7.5 Conclusions

•  The disturbance feedback and prediction (observer) are independent of the plant 

model. The proposed ARM-MPC controller can be tuned independently for 

servo and regulatory responses because of the Separated Disturbance Predictor
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Table 7.1: Input Variances and Performance Costs for Different Controllers with 
C  =  1 -  0.8z - 1 ______________________________________

GPC ARM-MPC
var(u)
Performance Cost, J

0.840 0.295 
5.84 9.03

Table 7.2: Input Variances and Performance Costs for Different Controllers with 
C = l -  0.8z-1 ______________________________________

GPC ARM-MPC
var(u)
Performance Cost, J

0.196 0.106 
3.820 3.924

(SDP) developed as part of this thesis.

•  As in GPC, the observer polynomial, C  can be specified by the user to modify 

the system response to disturbances e.g. to make the response slower or more 

conservative, but with ARM-MPC on-line tuning is possible without solving the 

Diophantine equations at every sampling instant.
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Figure 7.4: Responses from an ARMAX process using GPC and ARM-MPC with an 
observer polynomial, C = 1 -0 .8 z_1. In (a) ‘solid’—» setpoints and ‘dash’—► outputs.
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Chapter 8

Dual-M odel State-space 
ARM-MPC

8.1 Introduction

Linear, time invariant (LTI) models typically used in the design of model-based predic­

tive controllers (MPC) include: transfer function, state space, Finite Step Response 

(FSR) and Finite Impulse Response (FIR). The transfer function and state space 

models are equivalent in the sense that each can be transformed into the other forms. 

They can also be transformed into FSR or FIR models. The type of model to be 

used in MPC generally depends on the application of the controller e.g. for adaptive 

control, designs based on transfer function models {e.g. GPC) are more common 

whereas for complex, large scale systems with several inputs and outputs, state space 

models are more convenient. Ricker (1991)discussed the design of MPC using general 

state space models. Meadows et al. (19956) discussed implementation of MPC in the 

state space. The main advantages of using state space models are the availability of 

well-developed and established state space theory for the analysis of the MPC sys­

tems as well as the convenience of application to large scale MIMO systems. On the 

other hand, the drawback of using state space models is that the states in the model 

may not have any physical meanings to the plant operators and may require state 

estimation algorithms rather than simple direct measurement.

FIR and FSR models axe the simplest models used in MPC design. Navratil et al. 

(1988a)and Li et al. (1989)have shown that MPC’s based on step response models can 

be rearranged into a state space form and then the state space MPC can be analyzed
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for stability and other properties using the well-known state space theorems. The 

advantage is two-fold: use of a simple step response model and at the same time 

state space theorems can be used for analysis. As pointed out by Ricker (1991), FSR 

or FIR models can be viewed as a high order state space model by considering the 

past inputs (or input deviations) as the states. Morari and Lee (1991)formulated 

an MPC using this concept and extended it to processes with pure integrators. Lee 

et al. (1994) developed a state-space model in terms of step-response coefficients for 

systems with stable and/or integrating dynamics and extended the conventional MPC 

to handle stochastic and white noise disturbances without solving a large-order Riccati 

equation. Ruscio (1997a) presented an extended state-space MPC formulation and 

showed that both general linear state-space models and impulse response models fit 

into that framework.

Qi and Fisher (1993) and Qi (1997)introduced a Dual-Model Predictive Controller 

(DMPC) design that uses step response coefficients for the fast dynamics and a low 

order parametric model for the slow or unstable dynamics of the process. The state 

space form of the dual model MPC has a special (simplified) structure that offers 

several advantages. For example, Qi and Fisher (1994) showed that use of the special 

structure, dual-model MPC lead to less conservative robustness boimds than con­

ventional state space models. Another advantage of the step/impulse response type 

models in the state space interpretation of MPC’s is th a t the states of the model have 

physical meaning i.e. the states are the predicted future outputs of the plant.

The ARM-MPC described in Chapter 6 of this thesis used an input-output model 

th a t is a combination of parametric and non-parametric models. For convenience 

of analysis of the ARM-MPC system using the well-developed state space theorems 

available in the literature, an equivalent state-space formulation of the ARM-MPC is 

developed in this chapter. The input-output ARM-MPC and the state-space ARM- 

MPC are equivalent. However, the special dual-model state space structure leads 

to some useful MPC properties e.g. improved robustness boimds as discussed in 

Chapter 10. The state space formulation of the ARM-MPC is similar to the Dual- 

Model Predictive Controller (DMPC) of Qi (1997) except that the ARM-MPC needs 

a smaller number of Markov parameters and a smaller prediction horizon because of 

the full input-output model structures.
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An overview of the state space formulation of MPC using step response models is 

presented in Section 8.2. In Section 8.3, a state  space ARM-MPC is developed starting 

from an input-output ARMarkov model. A recursive control move calculation that 

avoids on-line redesign of the controller is discussed in Section 8.4. Application of the 

steady state error weighting and its implications for the ARM-MPC are described in 

Section 8.5. Simulation examples illustrating the implementation of ARM-MPC are 

given in Section 8.6.

Note: In this chapter a state space model is derived directly from the ARMarkov 

input-output model and formulated with a  special “dual-model structure” that is 

shown to offer significant advantages, e.g. in robustness analysis. The model is a 

subset of the classical [A, B, C, D] state space model derived in the next chapter.

8.2 An Overview of the State-space Formulation 
of MPC

8.2.1 M odel Form ulation

Assume that a SISO process can be represented by an FIR or equivalently by an FSR 

model. This model can be formulated in a standard state space form by defining 

the predicted output trajectory as the state variables as (Li et al. 1989, Morari and 

Lee 1991, Lee et al. 1994, Qi and Fisher 1993):

X{ k )  = $ X ( k -  l ) + 0 A u ( k -  I) (8.1)

y(k)  =  H X ( k )

where

X ( k -  1)

= [j/m (k +  l|/c) ■ • •Vm (*

= [y'm (k--  llfc- — !)•

' o  1 o ••• 0 0
0 0 l ••• 0 0

$ = : ;

0 0 0 ••• 0 1
0 0 fnr ••• n

(8.4)

J  ( n l+ l) x ( n l+ l)
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e =  [ si s2 s3 ••• s„i+1 ]T (8.5)

H =  [ 1 0 0 ••• 0 ]T (8.6)

Urn (*l^) represents the contribution of all past control actions to the future output 

trajectory, k  represents the current sample time, (sj, j  =  1 ,2 ,... ,n l  +  1} are the

discrete step response coefficients. The coefficients{r7, j  =  1 ,2 ,... ,n r } are defined

by different researchers in different ways. e.g. for a full step response model (used in 

DMC), as defined by Li et al. (1989)for a stable process,

ri =  1, nT =  1

Morari and Lee (1991)defined r, for integrating systems as

r\ =  2, r2 = - 1 ,  nr = 2

and Qi (1997)represented r} by the coefficients of a parametric model A2A  th a t rep- 

resents the slow or unstable dynamics of the process step response persisting after the 

initial { s i,s2, . . .  ,s nl+1} points and generalizes the above two definitions as special 

cases of

A2A =  1 -  r xz~ l  r v z -nr

The above formulation is valid for MIMO systems using the vector forms of the 

inputs-outputs as described in Morari and Lee (1991).

8 .2 .2  S ta te  Estim ation

Using the measurements at time k, an optimal state estimator can be designed using 

classical observer theory. For example, the two stage (Kalman filter type) state 

estimator form (Navratil et al. 19886, Lee et al. 1994), can be written as

X{k)  = Q X ' ( k - l ) + O A u ( k - l )  

y(k) = H X  (k) (8.7)

A"(fc) = X ( k )  + K ( y ( k ) - y ( k ) )

where X * (k ) is the estimated state variable vector, y (k) is the actual output mea­

surement a t time k and K  is the generalized feedback estimator gain which can be 

calculated by using the classical solution to the Riccati equation.
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8.2.3 O u tp u t P red ic tion

The estimated states consist of the predicted output components due to past control 

action. These output components are known collectively as the ‘free response’ which 

is defined as

Ym(k + i\k) = ^ 2X 9 (k) 

where iV2 is the prediction horizon and

=

(8.8)

■ 0 1 0 •• • 0 ••• 0 '
0 0 1 •• . 0 ••• 0

0 0 0 •• . 1 . . . 0

(8.9)

yVj x(nl+ l)

The output prediction due to both past and future control moves is written as

Y (k  +  i\k) = Ym(k  -I- i\k) + Gu (8. 10)

where

G =

S i 0 0 0

S2 Sl 0 0

S3 S2 s i 0

S\f % - l SM-2 ‘ Sl

. S^2 s N 2-  1 s N 2- 2 • • Sjv2-A/+1 .

(8 . 11)

ixM

is the well known ‘dynamic matrix’ present in ail MPC designs, M  is the control 

horizon and u  represents the present/future control vector

u =  [Au(k), Au(k +  1), • • • , Au(k  +  M — l)]r

8.2.4 C ontro l M ove C alculation

The unconstrained MPC solution can be obtained by calculating the control trajec­

tory, u, that minimizes a  performance criterion

J  = E t Q E  +  Xut R u (8 . 12)
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where Q and AR  are the output and input weightings respectively, E  is the error 

between the predicted output and future set-point or target vector, Y ^ = [y3p(k + 

1 ),VsP(k +  2), • • • , ysp(k + N2)\t  i.e.

E  = Ysp- Y m(k + i\k) (8.13)

=  Ysp- * N2X -(k )

Minimization of the performance index in (8.12) leads to the following least-squares 

control problem

(Gt QG + XR ) u = Gt E  (8.14)

The solution to the control problem is

u  =  A mE  (8.15)

where the M  x N2 pseudo-inverse matrix, A * is written as

A* = (Gt QG +  A R)~lGTQ (8.16)

8.2.5 Closed-loop Form ulation

In accordance with the widely used receding horizon principle, only the first control 

element, A u (k), of the control trajectory, u ( k ) , is implemented at time k  and the 

control law is executed at every sampling instant

Au  (k ) = C T u  (k )

= C TA-[Ysp-'t>S2X-(k)} (8.17)

=  - K mpcX '(k )  + R^^Ysj, (8.18)

where CT =  [ 1, 0, • • • , 0 ] . This is a state feedback controller and, in general,

the feedback gain is time invariant but is a function of the MPC tuning parameters

i.e.

Kmpc = T x { \ , N 2, M)  = C t A-4>N2 (8.19)

RmPc =  ? 2 ( \ ,N 2,M ) = C t A-
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Using the model in (8.1) for the open-loop process, the closed-loop formulation 

can be written as

X ( k + 1) =  +

y(k)  =  H X ( k )

(8.20)

After introducing the state error vector,

X  {k) = X  (k) -  X* (k) (8.21)

and combining equations (8.1), (8.7) and (8.21), the following equation is obtained 

for the feedback observer

8.2.6 Closed-loop P ro p e rtie s

The performance of the closed-loop system can be determined by theoretical analysis 

and/or simulation based on the above equations. Later sections will make use of the 

fact that:

•  For an asymptotically stable closed-loop system, all eigenvalues of the closed- 

loop system matrix, $  — 9Kmpc and the observer matrix, (I — K H ) $  must be 

within the unit circle.

8.3 State Space ARM-MPC based on the Input- 
output ARMarkov Model

Rewrite the input-output extended ARMarkov model in (6.3) with a type-1 distur­

bance model as

y(k ) = hju{k -  j ) +  y ;  PiU(k -  y -  j  +  1) -  (k -  fi -  j  -I- 1)

X (k ) =  ( I -  K H ) $ X  ( l b  -  1) (8 .22)

n n

(8.23)

(8.24)
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where

X m  = ^  Pju(k ~  V ~ 3 + 1) ~  y i  aiV (k ~  V ~  3 +  1)
j=l j=l

y(k) = y ( k - l ) + ^ 2  ^ h ju (k  -  j )  +  ^ P ju (k  “  M ~ J +  1) 
j=i j=i

n

- ^ A a t j y i k - ( i - j +  l) + e{k)  (8.25)
j=i

As was done in the definition of the states in (8.2), the ‘free responses’ are defined as 

the states of the ARMarkov model in (8.23) as

X ( k )  = f c W * ) . ! / ; ( t + l |* ) - - - ! C ( *  +  /‘l* ) C ,) x 1 (826)

* ( * - 1 )  =  [Vm (k -  l|fc ~  1) .1/m (k\k — 1) ■ • ■ (fc +  /i — l|fc — l)]r  (8.27)

where (// +  1) is the number of predicted outputs.

After some algebraic manipulation of equation (8.25), it can be shown that

y ^ ( k  + i\k) =  y ’m {k + i \ k -  1) +  st+i Au (fc -  1) for i =  0, • • • (y. -  1)(8.28) 

y ^ ( k  + n\k) = ŷ n (k + y . - l \ k - l )  + sftA u { k - l )  + P2A u ( k - l )  +

• • • +  PnAu (k — n +  1) — Qi y (k )
n

-  5 1  _  ai - ' ) y  (k ~ j  + 1) + a *y (k -  n ) (8-29)
i=2

for i = fj.. The state space form of the ARM-MPC prediction model is, then, written 

in the same form as (8.1)

X arm(k) = 4*armXarm (k 1) +  0armA u  (fc 1) 

V ( A t )  =  HarmXarrn ( f c )

(8.30)

where

H a =  [ 1 0 0

011 012 
021 022

o rU J l x ^ + n )

i @arm =
( / i+ n )x (/i+ n )

S i

s 2

(8.31)

(8.32)
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011 — [ O fixl j ^ x ^ + l ) ’ 012 0/ix(n—1)

Si — [ Si S2 ] fix 1

The structures of S2 , 021 a n d  022 v a r y  with the order of the residual parametric model 

used to represent the slow dynamics of the process. After the initial (n — 1) impulse 

response points in the ARMarkov model, (n — 1) more states are added to the state 

vector in (8.26) to represent the dynamics corresponding to X m in the ARMarkov 

model in (8.24). A low order is used to model the slow dynamics, X m and, in this 

work is restricted to be 1 < n <  3. For example, using n =  3 leads to the following 

additional states

•̂ arl y ( f c - i )
^ar2 a 3y ( k - 2 ) +  03A u  (k -  1) _X ar  =

The resulting state vector and S 2 , 02i ,  022 matrices can be written as

r x  w
Xarm (̂ *) =  2-arl 

2-ar2

(8.33)

(8.34)

021 —
— (a2 —a i)  - q 1 Olx(/j—3)

1 0 Oix^-3)
0 a 2 Oix(/j—3)

n  T
— (0 3  — Q2 ) 1

0 0
a 3 0

022 ~

and S2 =  [ Sp+i -  a^si 0 0 3 ]
n x ( n - l )  

T

n x ( f i + 1)

(8.35)

(8.36)

(8.37)

Model orders n < 3 simplify the formulation further but are not discussed here due 

to their simplicity.

State estimation, output prediction and control move calculation follow the same 

principles as discussed in subsections 8.2.2 through 8.2.4 with $>jy2 a (N2 * (/z + n)) 

matrix and other matrices of appropriate dimensions.
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8.3.1 Feedback O bserver Design

Introducing process and measurement noise, the process model (8.30) can be written 

as

X arTn(k) =  $ armX  (fc -  1) +  6armA u  (fc -  1) + TwAw  (fc) (8.38)

y (k) = HarmXarm {k)  +  V (fc)

Following the same procedure in subsection 8.2.2, an optimal, Kalman filter type, two 

stage observer for the state space ARM-MPC can be designed as

Xarm(k) = Q a r m X ^  (k  -  1)  +  QAu ( f c  -  1)

y(k)  = HarmX arm(k) (8.39)

X-arm(k) = X arm(k) + Karm( y ( k ) - y ( k ))

where X * ^  (k ) is the estimated state vector and K arm is the feedback observer

(Kalman filter) gain. Assume that Aw  (k ) , v  (k ) are white noise. Then the observer

gain, K arm can be calculated as

K a r m  =  $ a r m P H ^  (R2 +  H ^ P H ^ )

where P  is the steady state solution of the Riccati equation

p i k + i )  =

( f t  +  (k ) H U ) - '  HarmP (k)

and R \,R .2 are the covariance matrices for w (fc) and u (fc) respectively and are usually 

user-specified.

Assuming defines a step-type disturbance model and Aw  (fc) is white noise, 

the solution of the Riccati equation can be simplified as described in Morari and Lee 

(1991).

Observer Design Using Pole Placem ent

Qi and Fisher (1993)developed a state observer design for the dual-model MPC using 

pole placement and presented a simplified solution for the calculation of the dead-beat
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observer gain. Using a similar pole placement approach, a  simplified observer can be 

designed for the state space ARM-MPC as discussed below.

Define the state error vector as

x  (k ) = Xarm (k ) -  X-arm (k ) (8.40)

Combining (8.30), (8.39) and (8.40), the closed-loop observer equation is written as

X  (k) = ( I -  KarmHarm) QarmX (k -  1)

For the observer to be asymptotically stable and convergent, it must satisfy the

condition

lira X  (k) = 0
fc-» 00

and the eigenvalues of the observer must be within the unit circle. The characteristic 

equation of the observer is expressed as

det [A/ -  ( /  -  KarmHarm) $ arm] =  0 (8.41)

The poles i.e. the eigenvalues of the observer can be assigned as per desired observer 

dynamics and the observer gain K arm can be calculated assuming

X arm =  [ k\ ]

A dead-beat observer that gives fast state convergence is designed by placing all 

the eigenvalues at the origin and is common in control literature. Due to the structure 

of the state space system matrix, •farm with zeros and ones in (f>n , for an open-loop 

stable, SISO process, the dead-beat observer gain for the ARM-MPC simplifies to

Xarm — 1, 1, • • ■ , 1, 1 +  £*1, 0, • • • , 0
T

where 1 +  oi is at the ( l , n ) t h  position.

8.3.2 Closed-loop Form ulation

The unconstrained ARM-MPC solution can be obtained by using the same perfor­

mance criterion and following the same procedure as in subsection 8.2.4. The calcu­

lated current control move is

A u(k)  = C Tu (k) (8.42)

=  K arm_mpcX arm(k) +  Rarm—mpcYsp (8.43)
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The closed-loop formulation of the ARM-MPC system can be expressed as 

Xarm 4" 1) =  (^arm ^armXarm—mpc) X arm (fc) -+■ d arm E-arm-mpc^sp (fc)(8.44)

V (fc) =  Ha-mXarm (fc)

X arm (̂ -) =  ( I  X armHarm) ^arm-^arm (^ 1)

8.4 Recursive Control Move Calculation for In­
creasing Control Horizon

The control horizon, M  is a very important and effective tuning parameter in MPC. 

Increasing/decreasing the control horizon usually requires that the MPC controller be 

redesigned on-line which demands significant computational effort. Qi (1997)intro- 

duced a recursive calculation for increasing the control horizon for SISO systems and 

used it for dynamic timing of Dual Model Predictive Control (DMPC). This recursive 

calculation of control moves is applicable to any MPC design and does not require 

redesign of the controller. This saves computation which includes the advantage of 

on-line inversion of large matrices.

In this chapter, the recursive control move calculation is applied to the state  space 

ARM-MPC. It is also shown that this concept can be extended to MIMO systems by 

simply using step response block coefficients and changing some matrix dimensions.

For simplicity, assume that the output and control weightings are Q = I  and 

AR = XI respectively. Then the MPC objective function in (8.12) becomes

J  = E t E + Aur u

and minimization of this performance criteria leads to the least-squares control prob­

lem

(Gt G +  XI) u =  Gt E

For the control horizon, M  =  m, denote the dynamic matrix as Gm and the present 

/future control move vector as u£,. Assume that an extra control term Aum+i is added 

to the MPC designed with a control horizon M  = m. The new dynamic m atrix Gm+1
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can be expressed in terms of the previous matrix Gm and a new coefficient vector 

xm+i as:

(8.45)

where

■Em+l [Oj ' , 0, S \ , SjVj—m] (JV2 x l ) (8.46)

such that

G £+1Gm+i —

G l 1
[ Gm 3-m+l ]

GmXm+l 
X m + l G m  X m + l X m + l

L Xm+1 J

GmGm GmXm+i 
T  n  t -X

Gx +1Gm+i +  A = (8.47)GmGm +  XI G^Xm+1
Xm+lGm •Em+l'E”i+l ~F ^m+1

The least-squares solution to the future control problem can, then, be written as

G ^G m 4 - XI ^  G ^ x m+1 '  ^ [ ^  1
Xm+\Gm Xm _j_ 1Xm+1 “F ^m+1 ^^m+1 .  Xm+1 .

E (8.48)

L em m a 8.1 (Qi 1997, Qi et al. 2001)The control vector, u^, containing m +  1 future 

control moves (in terms of the m — vector solution, is

G? —

5 ^  =  0 ° , -  GXXTm+l (E  -  GmVtn)

Aum+i =  G2xx +1 (E  -  Gmu^)

v ^  = (GTmGm + X i y 1G lE  

G\ = G3G2

(a'm + l2'”i+ l d" Am + 1 — Xm+1G mG 3 )

G3 =  (GXGm +  XI) Gmx m+ 1

(8.49)

(8.50)

P roof. Assume a matrix

r  = A B  
B t  D (8.51)
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011 012 
021 022

and

r-1 = 0 =

Using the well known matrix inversion Lemma

0,n =  A ' 1 + A~lB  (D -  B TA~1B y l B TA ~l

(8.52)

- l

- l

Define

0 12 = - A ~ l B ( D -  B t A~1B )  

0 21 = - ( D -  B TA~1B )~ l B t A~1 

= (D  -  B t A~1B )

A  — GllGm +  XI

The proof follows from the substitution of the above definitions in (8.48). The 

proof is easily extended to the case where the control horizon varies from M = m  to 

M  = m  +  n. This is discussed in Chapter 11.

Note that the term (E  — Gmu £ j occurs in both equations (8.49) and (8.49). De­

fine (E  — Gmu^) as the residual after implementation of m  future control actions 

calculated using M  =  m  to minimize the prediction error, E. The above expression 

can be interpreted as described in the following remarks:

•  With an extra element in the control horizon, the new future control vector, 

u^j with (M = m +  1), can be obtained by using the original (M  = m) control 

vector u^, plus a modification term as in (8.49).

•  The effectiveness of increasing the control horizon can be evaluated by analyzing 

the residual term (E  — Gmu^J. From the point of view o f system optimization, 

a large residual suggests that the control horizon should be increased until the 

residual becomes sufficiently small.
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•  The recursive update o f the future control vector involves only the inversion 

of a lower dimensional (n by n) matrix, G2 instead of an (m + 1) by (m  +  1) 

matrix. For SISO systems, i f  only one control horizon is retuned from m  to 

m +  I, G2 is scalar.

R ecursive Calculation for M IM O System s

The recursive control calculation discussed above is easily extendable to MIMO sys­

tems. For MIMO systems, i m+i in (8.46) is a (/ * (N 2 +  1) x r) matrix instead of a 

vector and can be written as

x m + 1 =  [ 0 ,  • • • , 0 ,  , • • • ‘S,p - n » ] / ( jv 2+ l ) x r

where I and r are the number of outputs and inputs of the MIMO system. Am+i in 

(8.47) is a (r x r) matrix instead of a scalar. The dimensions of the other elements 

change accordingly without any difficulty. Lemma 8.1 and its proof are valid for both 

SISO and MIMO systems because only the dimensions of the matrices A ,B ,C ,D  

change for MIMO systems without changing the matrix properties. D  in (8.51) is a 

(r x r) m atrix instead of a scalar as in SISO systems.

The remarks made in Section (8.2.3) also hold for MIMO systems with appropriate 

allowance for the matrix dimensions. The residual (E  — Gmu^) is still a scalar but 

the recursive update requires the inversion of a (r x r) matrix, G2.

Application of the recursive control calculations described in this section was illus­

trated by Kamrunnahar et al. (1998)for a (2 x 2) MIMO systems using a binary distil­

lation column example.

8.5 Steady-state Weighting, 7^

Meadows and Rawlings (1993) and K.R. et al. (1994) introduced an infinite horizon in 

MPC to guarantee the stability of the feedback system. It was shown by researchers 

(Kwok and Shah 1994, Kwok 1992, Saudagar 1995) that steady-state weighting gives 

the effect of using an infinite prediction horizon without increasing the dimension of 

the problem significantly. It was also shown (Kwok and Shah 1994, Banerjee 1996) 

that it increases the robust stability of predictive controllers. Kwok and Shah (1994)
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modified the Long-Range Predictive Control (LRPC) objective function by augment­

ing a steady-state weighting and showed that the steady-state weighting, 7 ^  gives the 

effect of a large prediction horizon without actually using one. Kwok (1992) showed 

tha t the parameter gives better stability properties than  the move suppression 

factor A. Saudagar (1995) presented a simplified form of the steady-state error weight­

ing problem. Banerjee (1996) analyzed the robustness of GPC and Markov-Laguerre 

Model-based Predictive Controllers using steady-state error weighting. In this chap­

ter, the effect of 7 ^  on the state-space ARM-MPC is investigated.

8.5.1 S tead y -sta te  O u tp u t P red ic tion

Rewrite the state-space model of the process in (8.1) as

X ( k  + 1) =  $ X  (Jfc) +  9Au (k)

y(k)  = H X  (k) (8.53)

Using this classical form of the state-space model, the steady-state output can be 

predicted as

y{k + oo|A:) =  S ^ u  + Soou(k -  1) +  y (k) -  H I X  (k) (8.54)

=  SooU +  Soouft — 1) + x (k) (8.55)

where is the steady-state gain and

1S00 =  [ •Soo soo soo (8.56)

The next subsection describes how to calculate the steady-state gain, s^ .

8.5.2 C alculation  o f s teady -sta te  G ain

The transfer function corresponding to the state-space model in (8.53) is

G {z) = H  {$ -  z i y 16 (8.57)

where (z l  -  4>) must be invertible i.e. the process is Unear and stable. Since the 

model (8.53) contains an integrator, $  must be the integrator-free system matrix and 

0 consists of the impulse response coefficients rather than step response coefficients
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Rewrite the integrator-free state-space form of the ARMarkov model in (8.23) as

* a r m ( f c  +  l )  =  < M ' a r m ( f c ) + 01u ( A : )

y  ( ^ )  ~  H a r m ^ a r m  ( ^ )

and the transfer function corresponding to the state-space model as

G(z)  = Harm( * l - z I ) - 10l

(8.58)

(8.59)

where $ 1  must be the integrator-free system matrix and 9\ consists of the impulse 

response coefficients. Therefore, (z l  — $ 1) is invertible. At steady-state z =  1 and 

the steady-state gain of the process can be calculated as

Soo = G( l )  = Harm ( * ! -  I )~l 9l (8.60)

Using matrix properties

( « ,  - 1) - '  =  1
|(4>, -  /)!

£*11
Q 21

a  12 

a 22
£ * l(/i+ n —1) 

£*2(^+ n—1)

£ * ( / i+ n - l) l  a { n + n - 1)2 ' ' ‘ £*(/i+n— l) ( / i+ n —1)

where a^ /s  are the elements of the adjoint of matrix (<f>i -  I ) .

For a third order ARMarkov model i.e. n = 3,

$ 1  =

0
0

1 0 
0 1 0

—£*2 —ttl 0 
—  £*3 0 0

. . .  0

. . .  0

0 1
. . .  0

0»+2)x(|i+2) 
T

^1 — [ / l i , /i2? * ' * l i ( / ^ l  £ * l^ l)  j /^2i ^ 3 ]

Harm = [U 0, • • • , 0]lx^ +2j

For this structure of the state-space ARMarkov model, Harrn ( $ 1  — / ) _1 is the first 

row of ( $ 1  — / ) -1 . Therefore, only the first row of the adjoint matrix is calculated. 

Moreover, it is shown in the following calculations that the determinant and the 

components of the adjoint matrix have a very simplified structure for the ARMarkov 

model.
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For the third order ARMarkov model,

-1 1 0 ••• . . .  0
0 - 1 1 0 . . .  0

- q2 -Q l 0 ••• - 1  1
- a 3 0 0 ••• . . .  - 1

(* i -  /) =

Following matrix partitioning, the determinant of the matrix becomes

I ($ l  — / ) |  =  — (1 +  Oil +  02 +  0 3 )

Similarly, for an nth order model,

|(<f>i — /) | =  — (1 4- a i H h Qn)

The elements of the adjoint matrix also have a simplified form. For example, for the 

3rd order model,

Qn — |Qii|

where an =

- 1  1 0 ••• 
0 - 1 1 0

—ai  
0

0
0

. . .  0
• •• 0

- 1  1
0 - 1

and |an| =  1 -f c*i

Similarly, =  1, and Qh =  1 for i =  2, • • • , (/i + n — 1). For an nth order model, 

|an | =  1 -fc^,and =  1 for i = 2, • • • , (/z +  n — 1). Therefore, the steady-state gain

is

1
•Soo ~  Harm ( $ 1  — I)  1 Q\ — [1  + a !  1 1 ••• l ] 0 i  (8.61)

(1 +  Qi 4- • • • +  Ocn )

R em ark  8.1 The steady-state gain calculated from the special structure state-space 

model equals the steady-state gain directly calculated from the ARMarkov transfer 

function model. This is intuitive from the fact that the state space ARMarkov model 

is formulated in the time-domain. However, it is presented in the following calcula­

tions to demonstrate the simplicity and usefulness of the special-structure, state space 

ARMarkov model.
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Transfer function of the ARMarkov time domain representation in (8.23) is

G (z) =  kl +  h2Z~l +  +  ‘ +  0 nz~fi- n+1
1Z o.\Z~^ +  a2z~»~l +  • • • +  a nz-»~n+l

Substituting 2  =  1, the steady-state gain can be written as

1
Soo = G( l )  =

Ql +  0-2 +  • • * +  Qn

In (8.61), substituting the elements of 9lt

[hi + h2-\-------I- h^-i + 0 X H---- -I- 0n] (8.62)

[1  +  0! 1 1 1 ] (1 +  O i)  +  h 2 +  • • • +  h p - i  +  (/3j — Q i h i )  +  • • • +  /?„

=  [h i +  h 2 H +  i + / ? !  +  ••• +  0 n ]

Therefore, from (8.61) and (8.62),

Soo =  G( l )  = G( l )

8.5.3 C on tro l C alculations Using S tead y -s ta te  E rro r W eight­
ing

Assume the predicted steady-state output is augmented into the predicted output 

vector in (8.10). The augmented state-space model can be written as

X a (k +  1) =  <t>aX a(k) + 9aA u{k)  

y ( k ) =  HaX a {k) (8.63)

where

oarm
oT 1 , x a (k) = X arm (*) 

J ' m {k + oo|fc)
$

Soo
%  0
0T 1, Ha =  [ Harm 0 ] , ^  =

(N2 + l ) x ( f i + n + l )

and y ^  (k +  oc|fc) is the contribution of all past control actions to the predicted 

steady-state output. The dynamic matrix, Ga can be rebuilt by using the previous 

matrix G and a new coefficient vector, Soo as

Ga = G
So o
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Saudagar (1995) showed that the steady-state gain, s0a is not affected by the 

control horizon, M  and hence it does not make sense to use Soo in the form of (8.56). 

A simplified form of the augmented predicted output and the objective function are 

given by

Yn2 (k )Yoo(k) = y (k + oo|fc)

J = ( r ^ (a)- K 00(A:))7’g oo(ysp(a)- r oo(fc))+ u7’A00u (8.64)

where

sP (a )
®P 

V s p (  ao)

Q 0
o  Too

G
Xoc

Qoc =

The new dynamic matrix is defined as

Goo =

where Xoo = [soot Oix(M—i)]ixw 

Minimizing the objective function, J  in (8.64), solution of the control law is

u  =  [C^QooCoo +  ^oo] GlQooEoo (8.65)

where Eoo =  (Vsp(a) ~ Yx{k))  =
[ ÔO

Coo =  Usp(oo) ~ y {k +  Oo|fc)

8.5.4 Sim ultaneous S teady -sta te  and  C ontrol W eighting

Variables in the control solution in (8.65) can be expanded as follows:

GlQooGoo = [G 7 x l ]

= Gt QG + x ^ 00x 00

Q 0 ' G '

i8o
i Xqq

GlaQooGoo +  Aoo — GT QG +  x^y^Xoo +  A, 

The least-squares problem can, then, be written as

[GTQG + Too** +  Aoo] U = [ G 1 ] QooEoo

= [ C ?  x ^ ]

[Gt QG + x^j^X oo  + Aoo] U =  Gt Q E  +  7oo*«e-

116

' Q O '

l
Cq

*

i8o
 

__1 Cq°

(8 .66)

(8.67)
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Here

*£>700*00 =  7 0

7ooa'ooe oo 7 0

Solution to the control problem is

4  o
0 0

0 0

0
0

0

u  = A\ (Gr QE + 7oo*£>e°c)

where

(8.68)

(8 .6 9 )

•A* =  [Gt QG +  x^J70ox0o +  Aoo]
-l

(8 .7 0 )

Following the receding horizon principle, only the first control move, Au (k ) is imple­

mented. Therefore

Au(k) = C r u =  CTA\ (Gt Q E  +  7oox» eoo)

=  a" (Gt Q E +  700z £ 3e0O)

=  a*GTQE  +  a j 1s 007 oce oo (8 .7 1 )

where CT =  [ 1 0 • • • 0 ] lxM and hence a* is the first row of A\.

The least-squares problem in (8 .6 7 )  is affected by the steady-state weighting in 

two terms. The first term on the left side is 7 ^ ,5 ^  which can be added to GTQG 

and thereby related to the steady-state weighting or it can be combined with Aoo 

and considered as part of the control weighting since it can be added to the first 

component of A^ as expanded in ( 8 .6 8 ) .  The second term in ( 8 .6 7 )  on the right side 

is  7oos oo (a s  expanded in ( 8 .6 9 ) )  affects only the predicted steady-state error. If the 

latter term is omitted and the former term is added, the effect is entirely due to the 

control weighting. If the value 7 ^  remains the same in both the terms, the effect is 

the same as the complete steady-state weighting problem.

11 7
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Now if 7 ^  is splitted into two terms and 7 ^  is omitted in the right side of equation 

(8.67), it can be rewritten as

Too =  T ool +  T oo 2  (8.72)

[Gt QG + 7 oo2x £ , x 00 +  ( 7 oo1x ^ 3x 0O +  Aoo)] u  = GTQE +  a£,7 oo2eoo (8.73)

and the first control move A u(k)  in (8.71) is

A u(k)  =  a*GTQ E + a^Soc 7 oc2e° (8.74)

Keeping 7 ^  constant and adjusting 7 ^ 2  will tune the controller via both steady- 

state weighting and control weighting since, for the steady-state weighting 7 ^ 2 , con­

trol weighting can be written as

Aool — (7001*00*00 "b Aoo)

T ool

00̂ 00

4 ,  0  
0 0

0 0

0
0

+  A0

(8.75)

(8.76)

(Too 7 0 0 2 ) ^ 0 0 +  A n A 12 • • A i m

A2i A22 • • A2m

Ami A M2 ' ' • A mm

is A ooii (Too — T 0 0 2 ) s oo + ^11 and the

(8.77)

Aooi remain the same as in Aoc- Hence, increasing 7 ^ 2  from 0 to 1 (i.e. no weighting 

and full weighting respectively, as normalized in (Saudagar 1995)) will decrease the 

control weighting (on the first and implementable control element) by 700 2$ ,̂.

R e m a rk  8.2 If 7 ^  is kept constant, the inverted matrix A \ remains the same ir­

respective of any change in 7 oc2- There is no need for matrix re-inversion for the 

simultaneous steady-state and control tuning i.e. on-line tuning is obtained by adding 

a single term, a*1s0oT0o2eoo in the control calculation in (8.74) and hence does not re­

quire large additional computational effort. This flexibility in controller tuning using 

the steady-state error weighting is discussed in more detail in Chapter 11.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E
Coo

8.5.5 Feedback G ain  U p d a te  U sing 7^2

Equation (8.74) is rewritten as

Au(k)  =  C T A -^ a r Q  x£ ,7„2 ]

=  ^ a ^ c^ q  x£,7«,2 ] [Y,n«) -

=  Ct A \ [ ( ? Q  x l l x 2 ] Y ^ ) - C TA \ [ a r Q x 1 loo2} * N„X< 

The ARM-MPC feedback gain can be written as

Am 00 =  CTA \ [ C rQ x£,7oc2 ]

=  a'[CTQ<Pp x^7oc2 ]

=  [ a'CFQ4>p a*x^)7oo2 ]

=  [ Amool Amo02 ]

where

Amoo2 — (1)1) ^oo7oo2

As described in the previous subsection, for simultaneous steady-state and control 

weighting, keeping 7 X constant while varying 7 ^ 2  means Amool remains constant and 

the value of Amoo2 varies with the variation in 7 ^ 2-

L em m a 8.2 For a single input system,

Proof.

1 S T  I S  AmooA moo

|Am0c||2 — l|Amooi||2 +  11 ̂ Cmoo21| 2

= [ Am0cl Amoo2 j £ Amoci Amoc2 j

S 001 1 [ Amocl Amoc2 ]
. F moo2 ^

  Amoo j Amoo 1 A ^ocjAm0o2
^moo2 Amoo 1 A ^oo2 Amoo2

is a symmetric matrix. 

Now

|A moo||2 — max \Jeig (A ^ ^ K moo)
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For a single input system, Kmoo is a vector and it has only one non-zero singular 

value (Johnson and Wichem 1988).

Therefore,

max yjeig (A'^00/^moo) =  y /tr  (K^^Kmao)

=  \ J ( ^ m o o l ^ m o o l )  “F t r  iyK fnoo2^Tnrx2 )

= ^ ||-^mool ||2 +  ||-^moo2 ||2

(since both K moo\ and Kmoo2 are vectors 

and each has one non-zero singular value)

Therefore \\Kmoo\\l = (max yjeig ( A ^ /C o o ) )

=  H^mool || 2 +  11 ̂ moo2112

Since K moo > 0, K moo > 0 and Kmoo > 0, the following inequality between the feedback 

gain norms exists:

||-^moo||2 — ll-̂ mool II2 “F II-̂ Frioo2II2 11 ̂ moo2112 ^1 (̂ » )̂ ®oo*Yoo2

■

Since ||/fm0oi|l2 remains constant for a constant 7 ^ ,  the feedback gain ||/^moo2 II2 

can be varied by varying 7 ^ 2  and hence | f / i r m o o | | 2 .  For example, for 7 ^ 2  =  0 ,11 /Gnoo 112 =  

||Kjnooi II2 and the tuning effect can be interpreted as due to changes in control weight­

ing. For 7 ^ 2  =  7 0 0 , the effect of changing 7 oo2 can be interpreted in terms of the 

steady-state weighting. Using a value of 7 ^ 2  between 0  and 7 ^ ,  results in changes 

in the feedback gain (and hence in performance) that can be interpreted as due to 

simultaneous changes in steady-state weighting and control weighting. This gives the 

flexibility of using either control weighting or steady state weighting or a combination 

of the two weighting parameters using a single tuning knob, 7 ,302- The main advantage 

of this approach is that it is not necessary to change the controller design and repeat 

the entire calculation.

The role of 7 ^ 2  as a tuning parameter and its usefulness in the predictive controller 

tuning to obtain performance/robustness trade-off will be discussed in more detail in 

Chapter 1 1 .
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8.6 Examples

The theory developed in the previous sections is illustrated through simulation exam­

ples in this section. The ARMarkov identification along with the predictive control 

design is used with the following third order process

° ^  =  (s + 1) (3s +  1) (5s +  1)

After discretization using a sampling interval of 1, the discretized process becomes

: 0.0077Z-1 +  0.0212z-2 +  0.0036Z"3
“  1 -  1.9031Z"1 1.1514z-2 -  0.2158z-3 ( )

Exam ple 8.1

A state space ARM-MPC was designed by using the procedure described in Section 

8.53 and an ARMarkov model with order n = 3 and the number of Markov parameters 

in the model /i =  10. The controller tuning parameters used are as follows: iV2 =  10, 

M  =  1, Q = R = I  and A =  0.0. The process response is shown in Figure 8.1. 

As expected, the state space response is equivalent to the response obtained for the 

same process in Chapter 6 using the input-output ARM-MPC with the same tuning 

parameters.

Exam ple 8.2

Consider the same process in (8.78). An ARM-MPC was designed using the same 

parameters as in Example 8.1. The control horizon of the controller was increased 

on-line using the recursive calculations described in Section 8.60. Set-point tracking 

performance is shown in Figure 8.2. As the control horizon M, is increased the control 

action and speed of the output response are increased.

Exam ple 8.3

For the same process in (8.78), the ARM-MPC wras designed using the steady 

state error weighting. The controller tuning parameters used axe: iV2 =  10, M = 2, 

Q = R  = I  and A =  0.0. Step tracking performance for different y ^  is shown in 

Figure 8.3. As the value of y^o increases, the controller becomes more conservative
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Figure 8.1: Step Tracking and Disturbance Rejection using ARM-MPC with a Type-1 
Disturbance Model. A unit step disturbance was added at time 100.

and with 7 ^ 2  =  1 i.e. full steady state weighting, the controller gives mean level per­

formance. A combination of steady state weighting and control weighting is obtained 

via changing a single parameter, 7 ^ 2  and does not require on-line matrix inversion 

and reduces the computational effort.

8.7 Conclusions

•  The state-space formulation of the ARM-MPC developed in this chapter is 

equivalent to the input-output formulation developed in Chapter 6 but is better 

suited to classical performance/robustness and stability analysis.

•  The states of the special structure state-space model are the predicted present 

/future outputs which have a physical meanings for the operators of industrial 

applications. It needs smaller number of Markov parameters than the dual-
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Figure 8.2: Process response by changing control horizon on-line.

model of Qi (1997)due to the presence of the parametric part of the model.

Recursive control move calculation avoids having to redesign the controller when 

the control horizon, M  is changed as a means of on-line tuning.

Stability of the closed-loop system is increased by increasing steady-state error 

weighting used in this chapter. As a limiting case, for pure steady-state error 

weighting, closed-loop stability is guaranteed for an open-loop stable process.

The steady state error weighting is interpreted as a combination of steady state 

weighting and control weighting. It is shown later in Chapter 11 that the 

controller can be timed for different performance/robustness properties using a 

combination of the two weightings without redesigning the controller.
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Figure 8.3: Set-point tracking for simultaneous steady state error and control weight­
ing using a single parameter, 7 ^ 2.
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Chapter 9

M PC Design Using a Classical 
State-Space M odel Generated from 
Markov Parameters

9.1 Introduction

Classical state space models have been identified and used in Model-based Predictive 

Control (MPC) algorithms by many researchers (e.g. (Ricker 1991, Lee et al. 1992, 

Gambier and Unbehauen 1993, Ruscio 19976, Ruscio 1997a)). There are numerous 

methods for the identification of subspace state space models. The basic question in 

all applications is whether the states of the system can be excited which is related to 

system controllability and observability. The development of the model or realization 

of the system involves the computation of the triplet matrices A, B ,C . There are 

an infinite number of realizations that can produce the same response when the 

system is subjected to a given input. Typically minimal realization of the state space 

model, originally developed by Ho and Kalman (1965), is used to avoid higher order 

structures. Minimal realization of the system matrix starts with the construction of 

the Hankel matrix that consists of the process Markov parameters. It was shown in 

Chapter 2 of this thesis that the Markov parameters can be directly estimated by 

the ARMarkov method using process input-output data. Therefore, it is logical to 

use those Markov parameters to generate a classical state space model and design an 

MPC using that model. Moreover, it was also shown in Chapter 4 of this thesis that 

the Markov parameters estimated using the ARMarkov method are, consistent and 

hence, in the limit as the data vector increases, the Hankel matrix should converge
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to its true value and lead to a better estimate of the state space model and in turn, 

to better MPC performance than other (non-consistent) identification methods.

The Eigensystem Realization Algorithm (ERA) has been used by researchers (e.g. 

(Juang 1994, Juang and Papa 1985, Juang and Papa 1986)) to develop a state space 

realization from the Hankel matrix and it was shown that the ERA is, in practice, 

resilient to the effects of noise corrupting the Markov parameters while developing 

the minimal realization of the system.

In this chapter, the Markov parameters obtained using the ARMarkov identifica­

tion method are used to develop the block Hankel matrix and ERA is used to obtain 

the minimal realization of a classical state space model.

The primary reason for developing an equivalent state space model from the iden­

tified Markov parameters is to provide a basis for utilizing the wide variety of state 

space design, analysis and simulation techniques that are available in the literature. 

Actual implementation of the resulting MPC can be done using state space method­

ology or an input-output model-based approach as discussed in earlier chapters. The 

classical state space model (minimal realization) is developed in Section 9.2. MPC 

design using the classical state space realization is discussed in Section 9.3. Simu­

lation examples and experimental evaluation of the state space MPC are given in 

Sections 9.4 and 9.5 respectively.

9.2 State-Space M odel From the Markov Param-

The classical state space expression of a discrete-time, finite-dimensional, linear, time- 

invariant SISO system is written as

eters

x(k  +  1) =  Axx(k) + Bxu(k), 

y{k) = Cxx(k) + Dxu{k)

(9.1)

(9.2)

where Ax G Rnxn,B x G R nxl,C x € R lxn, and Dx € R.

The Markov parameters hj of this system are defined as

hj = Dx for j  =  0

=  CxA?~lBx for j  > 1

(9.3)

126

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



The time-domain ARMarkov representation of this system, as discussed in Chap­

ter 2 , is written as

n  n

y (k) = ~ S  aM k -  m -  j + 1) + 5Z hi - M k +  +  &ju(k ~  p  -  j  +!)
i = i  j = i  i= i

(9.4)

where hj, j  =  0,1 • • • , /i — 1 are the first /i Markov parameters of the system. The 

Markov parameters are estimated using the ARMarkov least-squares method dis­

cussed in Chapter 2 .

9.2.1 E igensystem  R ealization  A lgorithm  (ERA)

The first step in using the ERA to develop a state space realization is to build the 

Markov block Hankel matrix using Markov parameters.

The (r +1)1 x (s + l)m  block Hankel matrix with j  > 0 is constructed by stacking 

the Markov parameters obtained as follows.

h S

h j + r

hj+s

lj+ r + s

(9.5)

( r+ l) /x (s + l)m

where /, m are the number of outputs and inputs respectively and r, s are arbitrary 

integers.

For a system with Mcmillan degree n (where Mcmillan degree is defined as the 

degree of the least common denominator of all minors of a transfer function that is 

equal to the minimal realization of the transfer function), if r, s > n — 1 and the 

system is noise free, the rank of Hr<s, i is equal to the system order or the dimension of 

the state matrix (Kailath 1980, Juang 1994). This is a well-known fact resulting from 

the controllability and observability matrices (Kailath 1980, Juang 1994) because the 

Hankel matrix, Hr sj  can be decomposed as

Hr,SJ =  P0A’ QC (9.6)
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where

Po =

Cx
CXAX
C ,A l

C . A t '

and

Qc = [ Bx AXBX A \B X AnxB x ]

Pa and Qc are the observability and controllability matrices each with rank equal to 

the system order, n.

The ERA uses the Singular Value Decomposition (SVD) of the block Hankel 

matrix, Hr s i as

=  R E S 1

where the columns of R  and S  are orthonormal and

(9.7)

E =
0 

0 0

where £ n =  diag{cri, cr2, • • • ,<rn} and <7j > cr2 >  • • • > crn are the non-zero singular 

values of the Hankel matrix. Constructing Rn and S„ with the first n  columns of R  

and S  respectively, the Hankel matrix can be written as

(9.8)

where R^Rn  =  S ^S n = In.

The solution for the state matrix, Ax can be written as (Juang 1994)

Ax = E - ^ R ^ H r ^ S n E - 1'2

The triplet realization of the state space system is

Ax = E~1/2R^Hri3t2SnE~1/2, Bx = E l/2S ^E s,m, Cx = E ^R n E ]/2 (9.9)

hwhere E sjn = E R(*+1)j'xj , / j. is the identity matrix of order j  and 0lJX-j is
L

the null matrix of order i j  x j . For proofs and more details of the ERA algorithm, 

see Juang and Papa (1985)and Juang (1994). The minimum number of Markov 

parameters required to obtain a minimal system realization is 2 n +  1 for r, s = n — 1 .
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Therefore, in the ARMarkov model, // must be chosen such tha t /z >  2 n + 1 (n =order 

of the ARMarkov parametric model).

In practice, the process data is corrupted by noise and other interference and the 

rank of Hr<3j  is greater than the system order and may be of full rank. Then diag(Y.) 

will contain more than n  non-zero singular values. Determining the system order in 

such cases is discussed next.

9.2.2 Selection o f M odel O rd e r W hen U sing N oise C o rru p ted  
D a ta

When the data  is noise corrupted, the number of non-zero singular values of the block 

Hankel matrix is greater than the system order or the dimension of the state matrix. 

In such a case, the system order is determined by examining the magnitude of the 

singular values and truncating the smaller singular values of Hr s i while retaining 

the singular values corresponding to the dominant dynamics of the system. However, 

the question is which singular values are considered to be insignificant and truncated. 

Juang and Papa (I986)and Juang (1994)discussed procedures for order determination 

using noise-corrupted data.

In this chapter, a simple measure is proposed to determine the system order for 

noise-corrupted data. Assuming (r-t-1)/ >  (s -I- l)m in (9.5), the Hankel matrix, Hr sj  

has a maximum of (s -I- l)m  non-zero singular values a jr<7 2, • • • , cr(s+i)m- Now define

=  g l

as the percentage of the total singular values explained by the first n  singular values. 

77 can be specified depending on the user-chosen approximation or truncation error. 

Suppose rj = 95% i.e. n is selected such that the first n singular values explain 

the 95% of the total singular values. The remaining singular values are considered 

insignificant and due to the effect of noise corruption and are truncated. The system 

realization then proceeds as discussed above.

Once the minimal realization of the system (Ax, Bx, Cx, Dx) is estimated, an MPC 

can be designed using the classical state space model as discussed in the next section.
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9.3 State-Space MPC Design

Ricker (1991)presented a tutorial style formulation of a model predictive controller 

using classical state space models. In this chapter, more or less the same formulation 

is applied to develop state space MPC using the system realization obtained using 

the Markov parameters identified using the ARMarkov method. More details on the 

MPC formulation can be found in Ricker (1991).

9.3.1 A ugm ented  S tate-S pace M odel

The linear time-invariant state-space model of a process can be expressed as:

where x  (k ) is the state vector, u is the manipulated variable vector, v represents 

measured disturbances, w is the unmeasured disturbance, z is the measurement noise, 

and Ax, Bx, r v,Tw and Cx are constant matrices. This model can be expressed in 

difference variables form as:

A x(k) = AxA x(k  -  1) +  BxA u (k  -  1) +  TvA v (k  -  1) + r wAw(k  — 1 ) (9 .1 2 )  

y(k) = CxAxA x(k — 1) +  y(k  — 1) +  BxA u (k  — 1) + CxTvA v(k  — 1)

where A x(k) =  x(k)  — x(k — 1). Now the states can be augmented with the plant 

output (before the addition of the measurement noise) as:

x(k -I-1) =  Axx(k) +  Bxu{k) +  r„n(fc) +  r ww(k) 

y(k) = y(k) + z{k)

=  Cxx(k) +  z(k)

(9.11)

+Cxr wAw(k  — 1) +  z(k) (9.13)

x a(k +  1) =  Axaxa(k) +  B xaA u{k)  +  TvaAv(k) 

+T waA w (k)  

y(k) = Cxaxa(k) +  z(k)

(9.14)

(9.15)
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where xa =  [Ax(k)T y (k)T]T and

— CXAX
0
I , B x a  =

Bx
CXBX

r„
cxrv r =? L iva

x w
cx ru

cia=[o / ]

The difference form of the states is used to avoid the initialization of the process 

i.e. Ax(0) =  0 if the process is initially at steady-state.

9.3.2 S ta te  E stim ation

The generalized approach for augmented state estimation of a feedback system used 

by Flicker (1991)is:

xa( k + l / k )  =  Axaxa(k/k -  I) + BxaA u ( k ) +  r vaAv(k)

+ K [ y (k ) - y m( k / k - 1)] (9.16)

y (k /k  -  1) =  Cxaxa(k /k  -  1)

where xa(k + l /k )  is an estimate of the augmented plant state, y (k /k  — 1) is the 

prediction of the noise-free plant output, y(k) is the measured plant output, ym(k /k  — 

1) is the first elements of y (k /k  — 1) and K  is the estimator gain.

The estimator gain is

K - \ K A
K .

where Ki, K 2 are of n by and ny by respectively.

9.3.3 O u tp u t P red ic tio n  and  C ontrol M ove C alculation

Using (9.16), for a prediction horizon N2, predicted future outputs over the specified 

horizon can be written as:

Y(fc) =  SXA x (k /k  -  1) +  1 y (k /k  -  1) + Gu{k) + S„v(fc) +  Sy[y(k) -  ym{k/k — 1)]
(9.17)
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where the predicted future output vector is

Y  (fc) =

the present/future control vector is,

y(k +  1 /k )  
y(k + 2 /k)

y(k + N2/k )

A u(k /k)  
A u(k  +  1/A;)

A u(k + M -  l/k )

the dynamic matrix is,

CXBX

G = CX(AX + I)B X CXBX
0
CXBX j

and

v(fc)4

A v (k /k )  
A v (k  + l /k )

, S , —

' CXAX 
CX(A2X + AX)

,1  =

' /  ' 
I

A v (k  + N2 — l/k ) .E ,= 2i CxAi I

S„ =

cxrv o
CX(AX +  I)T V CXTV

...  o 

••• 0

sy =

••• cxrVm
k 2
CXA XK\ +  K 2

Assume that the future values of the measured disturbance, v will be equal to the 

present value (as done in DMC). Then A v(k  + l /k )  =  Av(k  +  2/k) = • • • A v (k  + 

N2 — l /k )  — 0 and equation (9.17) becomes
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Y(fc) =  SXA x (k /k  -  1) +  1 y{k /k  -  1) + Gu{k) +  S ^ A v(k) +  Sj,[y(fc) -  ym {k/k  -  1)]
(9.18)

where

T

S„0 = [Cxr vf  [Cx(Ax + I)T v]t  ••• [CX(A%*-1 +  A ^ ~ 2 + • • • +  I )T V] '

The control objective is to determine the manipulated variable, u(Ar) by minimiz­

ing the quadratic objective function,

nun J{k) = [r(fc) -  Y (*)]T Q [r(fc) -  Y(lb)] +  u{k)TR u (k ) (9.19)

where Q and R  are output and input weighting matrices respectively and

r (k) = [r(fc -I- 1 / k ) T r(k  +  2/k )T • ■ • r (k  4- N2 /k )T]T (9.20)

is the future output set-point vector.

The solution of the above unconstrained optimization problem is the control law,

u (it) =  (GTQG + R y 1GTQ [ r (k )- i(k )}  (9.21)

=  K mpc [r(fc) — f(fc)] (9.22)

where the future free response vector,

f(k ) = SXA x (k /k  -  1) +  1 y{k /k  -  1) +  S„0Au(fc) + S y[y(k) -  ym(k /k  -  1)] (9.23)

is obtained by setting u(fc) =  0 in equation (9.18) i.e. keeping the future control 

moves constant over the prediction horizon. The controller gain matrix

K mpc = (GTQG + R )-1GTQ

is constant for a given set of controller tuning parameters N 2 ,M ,Q ,R  and can be 

calculated off-line.

9.3.4 Feedback O bserver or S ta te  E stim a to r Design

The estimator gain matrix, K  can be calculated using the conventional approach 

based on a state space model and the solution of a Riccati equation. If the noise
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terms Aw (k)  and z (k) in (9.14) and (9.15) are white noise with known mean and 

covariances, then the estimator gain, K  is the steady state Kalman filter gain and 

can be calculated as

R \ R 2 are the covariance matrices of A w  (k) and z (k ) respectively. Ricker (1991)dis- 

cussed estimator design using different types of disturbance models e.g. type 1 dis­

turbances, type 2 disturbances and so on. In the simplest form, for the DMC type of 

disturbances, K\ =  0 and K 2 = I. Therefore, K  =  [0; I] and S y = 1.

9.3.5 C losed-loop Form ulation  o f the  S tate-space M P C

Using the receding horizon principle, the calculated current control move is

A closed-loop state-space formulation is shown in block diagram form in Figure 9.1 

(Ricker 1991).

The matrices in the block diagram are derived using equations (9.14)-(9.26) and 

can be written as

k  =  a„ p, cI> (Ri+ c„pxcz ,y ' (9.24)

where Px is the steady state solution of the Riccati equation

Px (k + 1) =  AxaPx (k ) A Txa + R X-  A xaPx (k ) C l  {R2 + CxaPxC l )  1 CxaPx (k) ATxa
(9.25)

Au (k ) = CTu (k) (9.26)

A =  ^ 1 ^ R — ^x ^v
CXA X I  ' D l ~  CXBX CXTV ,<?! = [() ! ] , £>:  =  [ 0  0 ]  (9.27)

B2 =  ^  ,C 2 = [  Sx 1 -  Sy ] , D2i = Sy (9.28)

(9.29)

(9.30)

(9.31)
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noise/
disturbances

A u

)/Ak)= Predicted disturbances

Process

Figure 9.1: Closed-loop MPC system with disturbance predictor.

9.4 Simulation Results

Consider the third order process discussed in Chapter 2.

x 0.0077Z"1 +  0.0212z~2 +  0.00362- 3 ,ft on,
[Z) ~  1 -  1.903U -1 +  1.15142-2 -  0.21582-3 1 J

The proposed ARMarkov/ERA algorithm was applied to this process to develop a 

sta te  space model. The step response of the estimated state space model is very close 

to the actual process step response (Figure 9.2). Performance of the state space MPC 

is shown in Figure 9.3. As expected, the step tracking and disturbance rejection (at 

sampling step i =  50 and t = 150) performance of the state space MPC is very good.

9.5 Experimental Evaluation of Classical M PC on 
a Pilot Scale Process

An MPC using a general state space model developed from the Markov parameters 

obtained using the ARMarkov method was implemented on a pilot scale Continuous
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Figure 9.2: Step resposes for the actual process and the state space model.

Stirred Tank Heater (CSTH) in the Computer Process Control (CPC) laboratory in 

the Chemical & Materials Engineering department at the University of Alberta. The 

CSTH is described in Chapter 2 and a schematic diagram of the process is shown in 

Figure 2.3. Water level in the tank and the water temperature were selected as the 

two controlled variables and the valve openings (manipulating cold water flow and 

steam flow) were selected as the two manipulated variables. The process considered 

is a 2 x 2 MIMO system. However, the water level in the tank varies only with the 

inlet water flow and is invariant to the steam flow rate.

Markov parameters were determined for the above process using open-loop input- 

output, data and the ARMarkov identification method described in Chapter 2. These 

Markov parameters were then used to develop a classical state space model following 

the procedure discussed in Section 9.2 and an MPC was designed as discussed in 

Section 9.3. The ARMarkov model order was n = 2 and the number of Markov 

parameters in the model was assumed to be // =  26. The controller parameters
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Figure 9.3: Performance of the state space MPC developed using the ARMarkov/ERA 
model.

used were as follows: N2 =  10, M  =  1, Q = R  = I  and A =  0.0. The inputs and 

outputs were sampled every four seconds. The CSTH responses shown in Figure 9.4 

are comparable to those obtained using other advanced control techniques and are 

considered acceptable.

9.6 Conclusions

•  Consistent Markov parameters identified using the ARMarkov procedure dis­

cussed in Chapter 2 were used to build a classical state space model. An 

Eigensystem Realization Algorithm (ERA) was used for building the A , B, C, D 

matrices because it is based on decomposition of the Hankel matrix constructed 

from the estimated Markov parameters.

•  Users who wish to use classical state space theory/algorithms for part of the 

design, analysis or implementation of their MPC, can do so without having to do 

a separate identification for the [A, B, C, D\ matrices and will have a guarantee
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Figure 9.4: Step tracking performance of state space MPC implemented on a pilot 
scale CSTH ( 2 x 2  MIMO system).

of the equivalence of the input-output and state space models.

•  The set point tracking and disturbance rejection performance of the state space 

MPC were illustrated by numerical simulations and experimental results from 

a computer controlled pilot scale process.
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Part III 

Analysis of ARM-MPC

Analysis of the performance/robustness properties of the closed-loop system as 

well as on-line timing of the designed ARM-MPC are discussed in this part of the 

thesis. Chapter 10 shows that ARMarkov identification using closed-loop (CL) input- 

output data provides multiple metrics for the first level of performance assessment 

i.e. a minimum variance performance benchmark, time-domain performance mea­

sures in terms of CL settling time, rise time, overshoot etc., and frequency domain 

metrics such as sensitivity functions of the closed loop system. An LQG performance 

benchmark is recommended for use as a user-specified benchmark for the perfor­

mance assessment of ARM-MPC and is discussed in Chapter 10. Robustness analysis 

using matrix perturbation techniques, also done in Chapter 10, shows that the spe­

cial structure dual-model state space ARM-MPC  leads to robustness bounds that are 

less conservative than those obtained using the Small Gain Theorem (SGT). On-line 

tuning of ARM-MPC using a single parameter a  is discussed in Chapter 11. The 

0 <  a  < 1 parameter combines the outputs of two different MPC controllers to ob­

tain user specified performance/robustness trade-offs. The two individual controllers 

can be designed such that the second controller output is obtained by updating the 

output of the first controller and thereby avoid additional computation needed for 

matrix inversion and/or Diophantine equation solution at every sampling interval. 

A surface of different controller outputs is constructed using the outputs from three 

different controllers with specific (user defined) performance/robustness properties. 

This tuning surface allows a wide range of tuning scope without much additional 

computation.
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Chapter 10

Performance and Robustness 
Analysis of ARM-MPC

10.1 Introduction

The ultimate goal of designing a controller is to produce good performance over 

the expected range of operating conditions and uncertainties. When a controller 

is implemented on a process, it is important to determine how well the controller 

is working and if it is giving the performance it is designed for. There are many 

methods of measuring the performance of a designed system but the most practical 

are those that use closed-loop process data. The desired performance is specified by a 

performance criterion or a benchmark and the actual performance is then measured 

and assessed against this criterion.

10.1.1 P erform ance Assessm ent

To assess or monitor control loop performance, there must be some measure or bench­

mark against which the actual controller performance can be assessed. DeVries and 

Wu (1978) used one step ahead prediction error as the performance benchmark. As- 

trom (1970), Harris (1989), Desborough and Harris (1993) and Stanfelj et al. (1993) 

used Minimum Variance (MV) control performance as the benchmark. Huang et al. 

(1997a) and Harris et al. (1996) extended the MV performance benchmark to MIMO 

systems. Huang et al. (2000) developed performance assessment techniques for MIMO 

feedback plus feedforward controllers and applied them to industrial cases. Kozub

(1996) proposed user specified performance benchmarks in terms of closed-loop set-
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tling time, overshoot etc. which are very realistic and easy to understand especially 

for industrial personnel/technicians. There are other measures of closed-loop perfor­

mance such as Huang and Shah (1999)’s LQG performance benchmark but it needs a 

reliable process model. Tyler and Morari (1996)’s method based on a maximum like­

lihood theory is considered a complicated method (Kozub 1996, Harris et al. 1999). 

Ko and Edgar (2000) developed an algorithm for the estimation of MV performance 

that does not require knowledge of the interactor matrix. However, it does require 

the first few Markov parameters of the process and closed-loop data from the process.

Minimum Variance (MV) control gives the best theoretically possible control per­

formance and provides information on the basic performance limitations due to time 

delay in the closed-loop system. Although MV control is not recommended for prac­

tical process applications, it can be used as the first level performance assessment.

Bitmead et al. (1990) showed that in limiting cases, LQG and GPC (or MPC) are 

equivalent since both controllers are designed based on similar performance objectives 

i.e. the GPC control law can be expressed as a receding horizon LQG control law. 

Since LQG and MPC have similar control structures, it is reasonable to use LQG 

performance as the benchmark for MPC performance assessment. Huang and Shah 

(1999) solved the LQG control problem using the GPC (or MPC) formulation and 

MATLAB MPC toolbox. Patwardhan (1999) discussed performance assessment of 

MPC using the design case as a benchmark.

In this chapter, performance assessment procedures based on a time series model 

and a minimum variance performance criterion are briefly reviewed in Sections 10.2- 

10.3. Section 10.4 discusses performance assessment using closed-loop ARMarkov 

identification and compares the advantages/disadvantages of this method with Huang 

et al. (1997a)’s FCOR algorithm and Kozub (1996)’s method using time series models. 

In Section 10.5 performance assessment of ARM-MPC controllers using LQG as a 

benchmark is discussed. Section 10.6 then extends this work to include robustness 

analysis and conditions for robust stability.

10.1.2 R obustness Analysis

In reality, plant models are only an approximation of the true plant. In most appli­

cations, lower order models are used to keep the controller design simple and hence
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modelling error or Model Plant Mismatch (MPM) is always present. Therefore, when 

designing a controller, it is wise to ensure that the closed-loop system is robust to 

model uncertainties and disturbances. Since MPC is designed based on a  plant model 

and MPM is always present, it is necessary to design an MPC that is robust to MPM 

and to monitor the robustness of the designed MPC under closed loop conditions.

Robustness analysis of model predictive controller started in the late seventies 

(e.g. Richalet et al. (1978)). Research has continued and in the last couple of decades 

several papers have been published on the robustness of MPC. Some well known books 

(e.g. (Morari and Zafiriou 1989, Skogestad and Postlethwaite 1996)) also discuss 

this issue. Campo and Morari (1986)used an formulation of MPC to attain 

robustness. Genceli and Nikolaou (1993),Rawlings and Muske (1993), Hrissagis et 

al. (1995), Nicolao et al. (1996)all presented significant research on the robustness 

of MPC systems including some work in the non-linear area (Meadows et al. 1995a, 

Scokaert et al. 1997). Kothare et al. (1996)discussed MPC robustness using linear 

matrix inequalities. There are a number of review papers (e.g. (Garcia et al. 1989, 

Froisy 1994, Rawlings et al. 1994, Lee 1996, Qin and Badgwell 1996)), in which 

significant work in this area is discussed and compared. Morari and Lee (1999), 

Qin and Badgwell (1996)discussed possible future directions for research in MPC 

robustness. Banerjee (1996) discussed the robustness of long range predictive control 

(LRPC). More recently Mayne et al. (2000) reviewed the developments in the robust 

MPC area.

The objective of this thesis was not to develop new robustness theory for MPC, but 

to apply existing tools for the robustness analysis to ARM-MPC’s and to show the 

advantages of using the ARM-MPC structure. Robustness analysis of ARM-MPC 

is discussed in Section 10.6. Section 10.6.1 shows how the closed-loop ARMarkov 

method can be used with the classical Small Gain Theorem (SGT) for robustness 

analysis and Section 10.6.2 analyzes the robustness of ARM-MPC using matrix per­

turbation methods.

10.1.3 U ltim ate  O bjective

All MPC users would like performance that approaches the best possible and robust­

ness that would handle all possible system uncertainties and changes. Unfortunately,
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this is theoretically impossible since in all practical cases an increase in performance 

is accompanied by a decrease in robustness, and vice versa. Therefore, consider­

able effort was put into developing a practical benchmark for evaluating the designed 

MPC and effective tuning methods that could be used on-line to adjust the per­

formance/robustness trade-off, e.g. when system uncertainty and disturbances were 

known to be small the system could be tuned for higher performance (since, by def­

inition, the need for robustness is lower). Alternatively, during periods of process 

upset (or poor model identification and output prediction) the robustness could be 

increased (at the cost of poorer performance). In a very real sense, this was the 

overall goal of the thesis. All of the proceeding theoretical developments and system 

formulations can be regarded as simply necessary prerequisites to  this ultimate goal 

as discussed in Chapters 10 and 11.

1 0 .2  Performance Assessment Using a Minimum  
Variance Benchmark

Minimum Variance (MV) control is, theoretically, the best possible control but it 

is impractical in industrial process control applications because of its demand for 

excessive control action and poor robustness. However, it is important because it 

defines the best possible control and provides a global lower bound on the process 

variance so that the user can evaluate whether it is worth trying to improve the cur­

rent performance of the application. The basic performance limitation of a controller 

is due to the time delay of the system because the process output variance is con­

troller invariant upto d time steps where d is the process time delay. To solve the 

MV control problem, it is necessary to know the time delay or interactor matrix. 

The interactor matrix for MIMO systems is a generalization of time delay in SISO 

systems. The MV performance benchmark has been used in many industrial appli­

cations mainly because it requires information only on time delay/interactor matrix 

and does not require the complete process model. Interactor matrix estimation is 

therefore a crucial step in MV benchmarking. There are different types of interactor 

matrices and different methods for estimating it. Huang and Shah (1999) showed the 

advantages of the unitary interactor matrix and described a procedure to estimate it
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from process Markov parameters. They also proposed an algorithm called the Fil­

tering and CORrelation (FCOR) algorithm, to obtain an MV benchmark using the 

unitary interactor matrix and correlation analysis. Kamrunnahar et al. (2000) (also 

described in Chapter 4) used the approach of Huang and Shah (1999) for the factor­

ization of unitary interactor matrix obtained using the Markov parameters produced 

by the ARMarkov-Least Squares identification method described in Chapter 2. In 

the next subsection the FCOR algorithm is briefly reviewed and later compared with 

the ARMarkov-based method.

10.2.1 F ilte rin g  and  C O R relation (F C O R ) A lgorithm

The FCOR algorithm, proposed by Huang and Shah (1999), assumes that the unitary 

interactor matrix has been estimated using open-loop, or closed-loop identification or 

any other method. The basic steps are:

•  filter the interactor-free output response, yt in Figure 10.1

•  whiten yt to get a  white noise estimate, at

•  use correlation analysis to estimate correlation coefficients, p^.

•  calculate the Minimum Variance benchmark

The FCOR method uses routine operating data and is simple in nature. However, 

two different output (or output error) characteristics (settling time, overshoot, amount 

of cychng etc.) can result in the same correlation coefficients and hence the results 

are insufficient if one is interested in closed-loop transient response rather than only 

variance. The correlation is between whitened noise at and the output yt . There is 

no extra disturbances affecting the correlation analysis.

10.3 User-specified Benchmarks for Closed-loop Per­
formance Analysis

Kozub (1996) pointed out the advantages of using time series modeling for MV bench­

marks as well as performance assessment against a  desired closed-loop settling time, 

time constant, overshoot etc. To use this method, the closed-loop system must be
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excited using a dither signal. This method also needs a priori information on the 

delay structure and/or interactor matrix estimation. The main steps in this method 

are:

•  time series modeling or parametric ARMA modeling of the output (or output 

error)

•  computing an MV benchmark

•  pulse response data generated from the identified ARMA model gives useful 

information regarding closed-loop settling time, overshoot, amount of cycling 

and closeness to MV control.

This method uses routine operating data but the parametric ARMA modeling 

requires careful model order selection and the parameters are affected by colored 

disturbances.

10.4 Performance Analysis Using Closed-loop AR­
Markov Identification

Kamrunnahar et al. (2000) have shown th a t use of the Markov parameters obtained 

using ARMarkov identification (discussed in Chapter 2) leads to more accurate inter- 

actor matrix estimation. The ARMarkov model is a combination of parametric and 

non-parametric models and contains the Markov parameters explicitly. Due to the 

model structure, the ARMarkov method gives a consistent estimate of the Markov 

parameters and in turn a better estimate of the unitary interactor matrix even in 

the presence of colored disturbances (Kamrunnahar et al. 2000). In this section a 

closed-loop (CL) ARMarkov method for performance assessment is developed. It is 

shown that without exact specification of the delay structure or the model order, the 

proposed method gives a reliable M V benchmark (unitary interactor matrix), produces 

realistic performance measures in terms o f closed-loop settling time, overshoot etc. 

without additional computation. It also generates a transfer function model that can 

be used as a measure of closed-loop performance as well as robustness and fo r  on-line 

tuning of the controller. Since the proposed method uses simple linear regression, the
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computational cost is reasonable. The following subsection explains how the CL AR­

Markov method gives different measures of controller performance as well as how it 

can be used for controller tuning.

10.4.1 T he A R M arkov Identification

The ARMarkov time-domain model of a discrete, linear, time invariant process is a

combination of a non-parametric and a parametric model and is defined as

n ** n
y(k) = ~ anjy(k -  /* - j + 1)+y**, hj-2u(k ~ j + 1)+y]  ̂-  j +1)

i = i  j = l  j = i

+ e ( k )  (10.1)

The ARMarkov representation, with p. Markov parameters, corresponding to the 

transfer function, G(z) is given by

G{z) = hoZ^ n~l +  - ■ • +  h»z* +  13 ̂  1 +  • • • +  ^ ,n  (10 2 )
V > z n + n - l  +  a # l i l z " - 1 +  • • • +  a ^ n

Note that it involves only the first /z Markov parameters ho,..., The parame­

ters , Q ,̂n € R lxn are functions of the ARX coefficients and the Markov

parameters (Akers and Bernstein 1997). Here n is the order of the ARMarkov model. 

The estimated parameter vectors using the ARMarkov method are

- A „  ho V  i B„ (10.3)

AM =  [«!,-•• ,Qn] € R lxn (10.4)

Bm = \ p x ••• /3 „ ]e f llxn (10.5)

The Markov parameters /i0,..., estimated by the ARMarkov method have better 

statistical properties than the Markov parameters estimated by other linear regression 

methods such as FIR, ARX as discussed by Kamrunnahar et al. (2000)and also in 

Chapter 4.

C losed-loop A R M arkov M e th o d

A simple closed-loop system is shown in Figure 10.1.
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Figure 10.1: Closed-loop system 

For this closed-loop system with yap =  0,

Ik =  PSw t + HSat (10.6)

and x t =  Swt — SCH at (10.7)

and when a dither signal is inserted at the set-point i.e. ysp ^  0, wt =  0

yt = P C Sysp + H Sat (10.8)

x t = C SyiP- H C S a t (10.9)

and et = S y stp -  HSat (10.10)

When the signals yt and wt are used as the outputs and inputs respectively for

the ARMarkov identification, the estimated parameter vector W  includes the Markov 

parameters ho through of the transfer function model P S  where P  is the process

transfer function and S  is the sensitivity function. When et and ysp are used, the

Markov parameters and the model for the sensitivity function, S  of the closed-loop 

system are estimated directly.

Huang and Shah (1999) showed that the interactor matrix is feedback invariant, 

i.e. the interactor matrix of the open-loop system is the same as the interactor matrix
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of the closed-loop system. As stated in Huang and Shah (1999), Identification of the 

interactor matrix under CL conditions provides a more realistic estimate than under 

open-loop conditions in the sense that it gives the interactor matrix of the process 

under the current operating point. ■■■ . Computationally, a direct identification of the 

first few Markov parameters is also more desirable than an identification of the full 

transfer function matrix first, followed by its transfer to Markov parameters. There­

fore, the factorization of the interactor matrix from the first few Markov parameters 

is preferred to the factorization of the interactor matrix from the transfer function 

matrix. The CL ARMarkov method estimates the Markov parameters directly rather 

than estimating the transfer function first and then using it to generate the Markov 

parameters. Kamrunnahar et al. (2000) showed that the Markov parameters ob­

tained using CL ARMarkov identification give a more accurate unitary interactor 

matrix than the unitary interactor matrix calculated from Markov parameters from 

other identified linear regression models. The reason behind the improved accuracy 

lies in the direct estimation of the required p. Markov parameters and the consistency 

of the Markov parameters even in the presence of non-white disturbances. For more 

information on the calculation of the interactor matrix using CL data, see (Huang 

and Shah 1999). Unlike correlation analysis or time series modelling, the CL AR­

Markov method uses a dither signal as well as the process output response during the 

identification procedure. Additional information obtained using the parameters from 

the same ARMarkov identification are described below.

R em ark  10.1 When enough Markov parameters are estimated, the ARMarkov ap­

proach gives direct CL performance measures in terms of settling time, overshoot etc. 

The achieved CL performance can be compared with desired CL response specifica­

tions.

R em ark  10.2 Typically the controller being used in the closed-loop system is known. 

Therefore, the sensitivity function and/or the complementary sensitivity function can 

be determined using the following procedure.

The transfer function, P S  is estimated using the ARMarkov method and the 

closed-loop signals wt and yt . For a known controller, C, the complementary sen­

sitivity function for a SISO system is:
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(10.11)

and the sensitivity function is:

( 10.12)

The sensitivity and the complementary sensitivity functions are obtained without

The identification method uses simple linear regression. However, the order of the 

model is high due to the overparameterized structure o f the model.

the system as discussed in section 10.6.1.

R em ark  10.3 When a dither signal is inserted at the set-point, the signals et and ysp 

in Figure 10.1 are used in the ARMarkov identification and the Markov parameters 

and the model for the sensitivity function, S  are estimated. S  is a measure of closed- 

loop performance e.g. it determines how quickly the output error, et converges to zero

i.e. the output, yt follows the set-point, ysp. S  can also be used for robust stability, and 

robust performance analysis. /15 mentioned above, the CL time constant, settling time 

etc. can be measured directly using the estimated Markov parameters o f the sensitivity 

function.

T w o-step  Closed-loop Id en tifica tion

Closed-loop identification of a process model has been an attractive field of research 

for the last couple of decades for many reasons e.g. under CL conditions, the model 

parameters are estimated under the nominal operating conditions used for a linearized 

model. Van Den Hof and Schrama (1993) used a two step method called u;-filtering 

for CL identification where the sensitivity function is estimated in the first step and 

the input signal, wt is filtered in the second step to estimate the plant model. Huang

(1997) proposed a two-step closed-loop identification procedure called y-filtering that 

filters the output signal, y  in the second step. In this subsection the y-filtering method 

is briefly reviewed and then it is shown how the CL ARMarkov identification can be 

used for the two step identification.

much additional computation and can be used as measures of closed-loop performance.

The two transfer functions, T  and S  can also be used for robustness analysis of
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The two-step ID procedure posses the CL identification into the following two 

single, open-loop ID problems

1. x t and wt are used to estimate the sensitivity function, S  using the relationship 

in (10.7) with =  0.

2. output yt and input wt Eire filtered by the estimate of S  so that using (10.6)

/  yt d  . Hyt =  -  =  P wt +  ~~a2t 
o o

where S  is the estimate of S. Then using y{ and wt as the output and input, 

the model of the plant P  is estimated. For more details on this procedure and 

the convergence of S  to S, see (Huang and Shah 1999).

R em ark  10.4 The Markov parameters which are directly available from the esti­

mated ARMarkov model of the plant can be used for the estimation of interactor 

matrix and in turn, the M V  performance benchmark.

For the closed-loop system in Figure 10.1 with y?  ^  0, wt =  0, the model C S  

is estimated using the relationship in (10.9) as the first step in the two-step ID. In 

the second step, the Markov parameters and the model of the plant P  are estimated 

using signals ^  and ystp as described by equation (10.8). The results can be used for 

performance analysis as discussed in Remark 10.4.

R em ark  10.5 In summary, the ARMarkov approach provides multiple performance 

metrics as well as the plant model. The advantage of the ARMarkov method over other 

methods is that it does not require a priori specification of the delay structure and when 

combined with disturbance model estimation (e.g. through filtering as in the prediction 

error method), it provides a reliable model identification procedure. On-line model 

updating can be done using recursive parameter estimation which saves significant 

computational cost due to the overparameterization in the ARMarkov model.

In Table 10.1, the properties of the closed-loop ARMarkov identification are com­

pared with the properties of the FCOR method of Huang (1997) and the time series 

model of Kozub (1996).
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Table 10.1: Comparison of the Advantages of Different Performance Assessment 
Methods

Method FCOR Time Series CL ARMarkov
data output (error) output (error) output-Fdither signal
time delay a priori spec, 

of Markov param.*
a priori spec, 
of Markov param.

gives Markov param., 
no a priori spec, reqd

MV benchmark available available available
statistical properties 
of Markov param.

- - consistent, 
low variance

CL settling time, 
overshoot

- from pulse response directly available**

sensitivity function - noise model 4- filtering directly available
model ID - “ 1st step in two step 

CL ID
model order spec. - needs careful spec. approx. order

*param.=parameters 
** if /x, the number of estimated Markov parameters is large enough.

Exam ple 10.1

Consider the third order process

/ \ e-2s
P(S) =  (s +  1) (3s +  1) (5s +  1)

the discrete transfer function of which, with sampling time Ts =  1, is

0.00772-3 +  0.0212*-4 +  0.00362"5 
^  ~  1 -  1.9031*"1 +  1.15142-2 -  0.21582"3

Let

C (z) = 1

For this process, the ARMarkov identification method is used with closed-loop signals 

wt and yt as the inputs and outputs respectively. The estimated impulse response 

plot for the transfer function, P S  is shown in Figure 10.2. The time delay for the 

CL system is the same as the open-loop time delay since the time delay is feedback 

invariant. Interactor matrix estimation for MIMO systems using the CL ARMarkov 

method are discussed in Chapter 5. However, to simplify the interpretation of the
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following results, only SISO systems are considered here. Using the controller infor­

mation, the Bode magnitude plots for the estimated sensitivity and complementary 

sensitivity functions are shown in Figures 10.3(a) and (b) respectively. The intention 

here was not to design the controller, but to show how the CL ARMarkov method 

can be used for performance analysis.

0.1

0 .02 -

- 0.02

Sampling Time

Figure 10.2: Markov parameters using CL ARMarkov method.

Exam ple 10.2

For the same process in (10.13), closed-loop signals wt and x t are used in the AR­

Markov method to estimate the sensitivity function in the first step and following the 

two step identification procedure outlined in subsection 10.4.1, the Markov parame­

ters and the plant model are estimated in the second step. The estimated Markov 

parameters are compared with the actual Markov parameters in Figure 10.4(a) and 

the estimated sensitivity function is plotted in Figure 10.4(b). The estimated Markov 

parameters are essentially the same as the actual ones.
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0.7r

1.6 - 0 .6 -

1 .2 -

ai a>

0 .2 -

0 .6 -

0 4

(b)(a) F requency

Figure 10.3: (a) Sensitivity and (b) complementary sensitivity functions using the CL 
ARMarkov method.

10.5 Performance Analysis Using Linear Quadratic 
Gaussian (LQG) Control as the Benchmark

Although minimum variance (MV) control provides the global lower bound on the 

output variance, it may not be possible to achieve this lower bound in practice because 

the MV controller objective does not include any penalty on the input variance and 

hence, typically requires very large control effort. It is much more practical and de­

sirable to assess the performance of the existing controller assuming some restrictions 

on the control move.

A Linear Quadratic Gaussian (LQG) controller that imposes a penalty on the 

control move provides the best achievable control performance and provides a basis for 

determining whether there is any potential to improve the performance of the existing 

controller. The objective functions of LQG and model-based predictive controllers 

(MPC) are similar as noted below.

The solution of an MPC control problem is obtained by minimizing a cost function
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1.8r0.8,

5  0.7
W1.6

s. 06
£  0.5-

0.4-

1  0.3

IS 0.2

0.6

0.4-0.1

Sam pling  tim e Frequency

Figure 10.4: (a) Markov parameters, actual and estimated, (b) estimated sensitivity 
function.

such as,

{ Nl Nu -J
^ 2  (y*+j ~ r‘+j)r Qj to+j ~ + A &uT+jRj A u t+j [ (io.i5)
j=i i=o J

where N2 and Nu are the prediction horizon and control horizon respectively. The 

cost function used in the solution of the LQG tracking problem can be written as

J  =  E  j(i/f -  rt)T Qiq (yt - r t) + j  (10.16)

As Nu =  N2 —* oo, the above two performance criteria converge to each other. For 

the solution of the LQG regulator problem, the LQG tracking problem can be recast 

into a regulator problem. Bitmead et al. (1990) showed that GPC (or equivalently 

MPC) can be embedded into the LQG receding horizon principle and can be solved 

as a special case of LQG. Therefore, it is reasonable to assess the MPC controller 

performance against the best achievable LQG performance. It is beyond the scope 

of this thesis to discuss all the relevant LQG theory and properties. However, the 

solution of the LQG is briefly reviewed below.
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Consider a state space system

x (k  + 1) =  Axx (k) + Bxu (k) + Gxw (k)

y (k ) =  Cxx (k ) + z (k )

The solution of the state feedback control law is expressed as

u(k) = - K x ( k )  (10.17)

where K  is the state feedback gain that is calculated as

K  = A XPXCTX (R 2 +  CxPxC l)~ l (10.18)

where Px is the steady state solution of the Riccati equation

P , (fc +  1) = AXPX (k ) A l  + R y -  AXPX (k ) C TX (R 2 +  CxPxC l ) -1 CXPX (k ) A l
(10.19)

R \R 2 are the covariance matrices of w (k ) and z (k ) respectively.

The feedback observer or state estimator can be written as

x{k\k) = x  (k\k -  I) + K f  (y {k) -  Cxx {k\k -  1)) (10.20)

x(fc +  l|/c) =  A xx (k\k) + Bxu (k) (10.21)

where K f  is the Kalman filter gain that can be calculated by solving another Riccatti 

equation (Bitmead et al. 1990). Huang and Shah (1999)discussed the LQG solution 

via GPC or MPC. When Nu, N 2 —► oo, the GPC solution converges to the LQG

solution. However, in practice, after a large but finite value of Nu, N 2, the solution of

LQG is obtained as the solution of MPC. Chen and Francis (1995)and Patwardhan 

(1999)discussed the LQG solution, for uncorrelated state and measurement noise, 

using the solution of a Lyapunov equation.

LQG has been used as a benchmark/metric for performance assessment by re­

searchers such as Huang and Shah (1999). When the LQG objective function in

(10.16) is modified to reflect the control weighting of the MPC objective function 

(10.15) i.e. Riq =  XR, different control laws are obtained by solving the LQG prob­

lem for different numerical values of A. For each value of A, the output variance 

can be plotted against the input variance to obtain a performance trade-off curve as
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shown in Figure 10.5. This trade-off curve represents the best achievable LQG con­

trol performance. Then the existing controller performance in terms of input/output 

variances can be assessed with respect to the trade-off curve. The distance of the 

existing control performance from the trade-off curve is a measure of the achieved 

performance and in the design of Co and C\ used with a —timing discussed in the 

next chapter.

var(y)

Achievable region LQG 
Trade-off 
Curve for 
different X

var(u)

Figure 10.5: LQG performance trade-off curve

Exam ple 10.3

Consider the third order process in (10.13). An ARM-MPC was designed for this 

process in Chapter 8. An LQG was designed for this process using the estimated 

ARMarkov model in the state space form given in (8.30). The LQG trade-off curve 

is shown in Figure 10.6. The tracking performance of the ARM-MPC is assessed 

against this LQG curve. The effect of control horizon M  and prediction horizon iV2 

are shown in Figures 10.6 and 10.7 respectively. It is difficult to say which controller is 

better because the performance (aggressive/conservative) requirement is application 

dependent. However, the performance of the controller can be easily assessed relative 

to the LQG benchmark.
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0.025-

0 . 02- 2.50.5

var(u)

Figure 10.6: Effect of control horizon on the performance of the ARM-MPC.

10.6 Robustness Analysis of ARM -M PC

Every controller should be designed such that it is insensitive to model plant mismatch 

(MPM) and the ARM-MPC should not be any exception to that. As defined by many 

textbook authors (e.g. (Morari and Zafiriou 1989, Skogestad and Postlethwaite 1996, 

Doyle et al. 1992)), MPM can be placed into two main categories:

1. S tru c tu re d  un certa in ty . This type of uncertainty is very specific because 

the model structure is assumed to be the same as the process but the model 

parameters are uncertain. Gain mismatch, time constant and/or time delay 

mismatch are the most common examples of structured uncertainty.

2. U n s tru c tu re d  un certa in ty . In many cases, the structure of the actual process 

is unknown or is approximated by lower order models. One of the advantages 

of the unstructured or disk-like uncertainty is that it includes the unmodelled 

dynamics of the process. Moreover, analysis is simpler using this uncertainty. 

Multiplicative, additive and feedback are the most common unstructured un­

certainties. Some of these uncertainties are illustrated in Figures 10.8-10.10.
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0.04-
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Figure 10.7: Effect of prediction horizon, N2 on the performance of the ARM-MPC.

The best uncertainty type to be used for robustness analysis is application de­

pendent. Structured or parametric uncertainties can also be expressed in terms 

of unstructured uncertainty.

Figure 10.8: Multiplicative uncertainty

The weighting function W2 is a fixed, stable transfer function and A is a variable 

stable transfer function such that H A ^  < 1. The robust stability of the controller is 

analyzed either in the time domain (e.g. by solving Lyapunov equations) or in the 

frequency domain. Frequency domain analysis is used in this thesis. The Small Gain
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Figure 10.9: Additive uncertainty

Figure 10.10: Feedback uncertainty

Theorem (SGT) is a very well known robustness analysis criterion that provides a 

sufficient condition for robust stability of a given system. However, the price for the 

sufficiency lies in the conservativeness of the approach.

Uncertainty estimation is not the topic covered here. For the purpose of robust­

ness analysis, model uncertainties can be estimated by following methods available 

in the literature. Banerjee (1996)used signal processing to estimate the uncertain­

ties. Patwardhan (1999) presented an approach to determine model uncertainty from 

closed-loop data.

T h eo rem  2 Small Gain Theorem (SGT)(Skogestad and Postlethwaite 1996): Con­

sider a system with a stable loop transfer function, L =  PC. The closed-loop system 

is stable if

1141 < 1 (10-22)

where ||-|| denotes any matrix norm.
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For a closed-loop system with the multiplicative uncertainty, the special form of 

the SGT is

T h eo rem  3 The closed-loop system is robustly stable if

IIWiTIL <  1 (10.23)

The SGT will produce different stability conditions for different types of uncer­

tainties.

10.6.1 C losed-loop A R M arkov model and th e  Sm all G ain  
T heorem  (SG T)

F eedback u n c e rta in ty

The family of plant models for the feedback uncertainty shown in Figure 10.10 is 

written as

V  ------- - ------r (10.24)
( 1 + A  W2P) K '

where P  is the nominal model and V  is the perturbed plant. The following example 

shows how parametric uncertainty is expressed in terms of the feedback uncertainty.

E xam ple  10.4 (Doyle et al. 1992)Consider the family of plant transfer functions

-=—  ------ , 0.4 <  a < 0 .8  (10.25)
s2 +  as -I- 1

a =  0.6 + 0.2A, -  1 < A < 1 (10.26)

This family of transfer functions can be expressed as
P(s)

1 +  A W2 {s) P  ( s ) '
where

-  1 < A < 1 (10.27)

P{s) = -z  -------- , W2 (s) = 0.2s
v ' s2 + 0.6s + 1 ’ 2 K J

The robust stabihty criteria for this uncertainty can be written as

l l ^ f s I L  < 1

Using closed-loop input-output data, the ARMarkov method directly estimates the 

transfer function, P S  as illustrated by the performance analysis in Section 10.5. The 

same transfer function can be used for robustness analysis using the robust stability 

condition for feedback uncertainty presented above.
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M ultiplicative and Additive uncertainty

Other common and simple forms of uncertainties include multiplicative and additive 

uncertainties which are illustrated by Figures 10.8-10.9. Gain and/or time delay 

uncertainties can be embedded into the multiplicative uncertainty as follows.

E x am p le  10.5 Consider the nominal transfer function

P ( S) =  _ L -  (10.28)
T S  +  1

with the family of perturbed transfer functions

V  (s) = e~TlS— -— , 0 < r! <  0.1 (10.29)
T S  +  1

=  (1 + A  W2)P,  | |A |L < 1  (10.30)

The robust stability conditions for the multiplicative and additive uncertainties

are

|| Who’lloo < l,for multipicative perturbation model V  {s) =  (1 -F AH/20UJ.31) 

HWiCSIL < 1, for additive perturbation model V  (s) = P + A W 2 (10.32)

where S  and T  are the sensitivity and complementary sensitivity functions respec­

tively for the closed-loop system.

As discussed in Section 10.5, for a known controller, the closed-loop transfer func­

tions, C S  and T are produced directly by the CL ARMarkov identification. Hence, 

robust stability can be determined for either of the two uncertainty models using the 

models produced by the ARMarkov approach and closed-loop data.

R obust Performance Analysis

Closed-loop performance and robust stability analysis have been discussed separately 

in Sections 10.5 and 10.6.1 respectively using the same CL ARMarkov model. Robust 

performance, which combines both performance and robust stability, is much more 

important from a practical point of view. The condition for robust performance, using 

multiplicative uncertainty, is (e.g. (Doyle et al. 1992))

111^51+  |w 2r | | | 00< i  
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Therefore, the robust performance of the closed-loop system can be analyzed using the 

CL models T  and 5  estimated by the ARMarkov method and choosing appropriate 

weighting functions W^and W2-

10.6.2 M atrix  P e rtu rb a tio n  M ethod

The systems and control literature is rich in well established and simple methods of 

stability analysis in the state space domain. Perturbations or uncertainties in the 

system and/or the input matrices are considered for robust design and/or analysis of 

the closed-loop system. Closed-loop pole locations, represented by the eigenvalues of 

the closed-loop system matrix, indicate the robust stability margin or stability bounds 

of the system. Typically parametric uncertainties in terms of matrix perturbations 

are posed in the additive perturbation form and the small gain theorem (SGT) is 

applied for the analysis of the robustness. Yedavaili (1985)discussed perturbation 

bounds for robust stability in the time domain and used a Lyapunov approach for the 

analysis. Both structured and unstructured perturbations were considered. Dickman 

(1987)discussed robustness using matrix perturbation theory where perturbations in 

the system matrix for a continuous time system was considered. Robust stability for 

discrete time systems using the matrix perturbation method was considered in Qu 

and Dorsey (1990). Qi (1997)developed robust stability conditions for his dual-model 

predictive controller (DMPC).

The objective here is to apply the well established theories, such as those men­

tioned above, for the analysis of the designed ARM-MPC formulated in the (special, 

dual-model) state space form presented in Chapter 8. The ARMarkov method es­

timates a time-domain parametric model but an equivalent state space form of the 

model and MPC formulation were developed to facilitate design and analysis. Since 

the ARMarkov model is an overparameterized model, there is less possibility of a 

bias error in the estimated parameters. The system matrix in the ARMarkov state 

space model includes the ARX equivalent parameters which can be considered as the 

slow dynamics of the process and the input matrix includes the Markov parameters 

which can be considered as fast dynamics. The time delay of the system is defined 

by the first few Markov parameters of the model. The closed-loop system matrix was 

developed in Chapter 8 for the observer based MPC design.
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Consider a discrete time closed-loop system

X d (k +  1) =  A d X (k ) (10.33)

and the perturbed system

X cl(k + l) = AclX ( k )  (10.34)

where, using additive uncertainty principle,

Ad = Ad + AAd

Assume that the nominal system in (10.33) is stable i.e. all the eigenvalues of Ad lie 

inside the unit circle. In other words, (eJW‘I  — Ad) is invertible for all frequencies, w. 

The system in (10.34) is said to be robust if all the eigenvalues of Ad also lie inside 

the unit circle.

The family of plants having the closed-loop system matrix, Ad is robustly stable 

if (Ad +  A Ad — eJW,I)  is nonsingular for all w, i.e. (Ad +  A Ad — eJW'I)  is invertible.

The sufficient condition for invertibility is (Qu and Dorsey 1990)

, - i(Ad -  e?w'l)~  (AAd) < 1

Since

(10.35)

(10.36)( A d I ) ~ l ( A A d )  <  ( A d - ^ ' i y l IKAAc/)!! 

a conservative condition for (10.35) is

| ( A r f - ^ / ) " 11| || ( A ^ )  || < 1

^ ( A d - ^ / J J - 'lK A A d ) ! !  < 1 

where

\(Ad-^ir\\ =  l o ( A d - ^ l ) } - '

The sufficient condition for the perturbed system to be robustly stable can be written

(10.37)

(10.38)

as

^ ( A d - ^ ' I )  > W(AAd)  
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and the robustness bound, prb of the closed-loop system in (10.33) can be expressed 

as

p rb  =  miner ( A d  -  ejw,l) (10.41)

The larger the value of prb, the larger the error for which the perturbed closed-loop 

system will remain stable.

T h e o rem  4 I f  Ad is a real matrix, then the robustness bound is

P rb  =  2  -  I )

P roo f, see (Qu and Dorsey 1990) for proof. ■

R obustness  M easure  o f A R M -M P C

Rewrite the closed-loop formulation of the ARM-MPC in (8.44) as

(10.42)

X a rm  ( k  +  1 )

Xarm ( & + ! ) .
— Ac/ _ X a r m { k )

X arm( k - l )

Ad = ( ^ a r m  9  a r m  K a r m —m p c )

0 ( /  K armHarm)
0  a rm  X a r m —mpc

MPM in this closed-loop system matrix is assumed to be in the open-loop system 

matrix (slow dynamics), 4>arm and input matrix (fast dynamics), 0arm. Therefore, the 

perturbed closed-loop system matrix becomes

Ad =

a'J =  

=

ad =

a?,2 =

a11 a12a cl a cl
21 „22  
cl a cl

( ^ a r m  ^ a rm  X a r m —m p c  ) ~b A 4 * a rm  X9 a r m  X a r m —m p c

9a r m  X a r m —m p c  ~b A $ arTn X a rm —m p c

( I  X ar m H a r m ) ( A $ a rm  A O a r m X a r m —m p c )

( I  X ar m H a r m ) 4*arm  "b ( /  K a r m H a r m ) ^ 9 a r m X a r m - m p c

(10.43)
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with the additive perturbation matrix

A Ad = ' Aad Aa^2 
A a2J  A a2J

(10.44)

A o d  =  A  4* a rm  A 0 a r m K a r m - m p c

A a d  =  A  0 a r m K a rm —m p c

Aa2J  =  (I  — K a r r n H a r m ) (A^arm A 0 a r m K a r m —m p c )

A a d  ~  (I  ^ a r m  H a r m  )  A@ a r m  K a r m —m pc

a j __ i A 4 >arm A O a r m ^ a r m —m pc  0

Cl C [ 0 A0armKarm-r
A A d  =  k cA A d

kc =

'  a rm IX a r m —m p c

I  I
( I  Karm Harm)  (I  KarmHarm)

(10.45)

(10.46)

(10.47)

where kc is not affected by the perturbations.

When the perturbation matrix, AAd  is factored out as A Ad =  kc (AAd ) as shown 

in (10.45)-(10.47), equation (10.35) can be rewritten for the special structure state 

space ARM-MPC as

(Ad -  ejml ) ~ 1 kc (AAd ) < 1 (10.48)

Now combining kc with (Ad — eJWtI) , the sufficient condition for (10.48) can be 

written as

( A d - ^ I )  kc ||(AAd

II

< 1

<
||(Ac/ — e>WiI) kc||

IKAi4y i l  < \\M (w) kc (u;)||

where M  (w) =  (Ad — eJW'I) 1

Therefore, the robustness bound for the ARM-MPC can be written as

1

(10.49)

(10.50)

(10.51)

(10.52)
Prb T ^ M H k c H ]

R em ark  10.6 As shown above, the conservativeness o f the typical robustness anal­

ysis can be reduced by factoring the known information kc out of the perturbation 

matrix and combining it with the known nominal closed-loop matrix.
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Similarly, for other specific types of perturbations, e.g. gain mismatch, delay mis­

match, there are other knovm terms that can be moved from the perturbation matrix to

the nominal closed-loop matrix. This is discussed next and illustrated in Table 10.2.

Repeat equations (8.30) through (8.37) for the ARM-MPC

X ar m  (^ 0  =  ^ a r m X a r m  (fc  1 )  +  f ? a r m A l t  { h  1 )

y  {h) = H armX arm (fc)

where

= [ l  0 0 . . .  0 ] [ x((itn)

A  _  0 1 1  0 1 2  a  _  0 ”1
*  a r m  —  ± ±  ? ' ' a r m  q

.  0 2 1  0 2 2  J  (^ + n )x ( /i+ n )  L ^  .

0 1 1  =  [ 0 »ix l I f i X f i  i 0 1 2  =  0 Mx(n - l )

Si = [ Si s2 ••• ]lxl
For n =  3,

-  (<*2 ~  <*l) -< * 1  0 lx ( p - 3 ) 1

0 2 1  — 1 0 0 l x ( / i—3) 0

0 <*2 0 i x ( / i - 3) 0

— ( a 3 — q 2 ) 1 '

T

0 2 2  = 0 0

a 3 0 n x ( n - l )

and S2 = [ v t - i - a i a i  0 /?3 ] T

Although the structure of 02i ,0 22 and $ 2  are different in ARM-MPC than in the 

equivalent structure of the DMPC of Qi (1997), it is straightforward to show that 

the MPM structure is the same for both methods but with different coefficients. The 

details of the derivation are not repeated here, only the final results are given in 

Table 10.2. As the known information (kc) in the CL system matrix is factored out, 

the conservativeness of the robustness bounds is reduced and the part A A ^ that is 

affected by uncertainties is used to get the new, less conservative robustness bounds. 

This is illustrated in Example 10.6 and in Figure 10.12.
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Table 10.2: Factorization of the uncertainty matrix for different MPMs
(a)

A I T  is defined in (10.45) (It is affected by uncertainties)

General

For A<&

For A 0  

For A(gain) 

For A (delay)

A ^ a r j j i  A0armK arm—mpc

A $arm 0 
A $arm 0

A 0armK arm—mpc
0

0
A 0 arm Karm—mpc

0
A 0arm Karm—mpc

A k
^  d .K a r m —m pc  0

_________ 0___________ ^  S C ( j K a r m  —m p c

(b)
kc (w) is defined in (10.47) (It is part of CL system

matrix that is NOT affected by uncertainties)

General 

For A $

For A 0

For A(gain)

For A (delay)

.

I  7
(7 K arTn 7/arm)  (7 K arrnH arm)

:

I  I
(7 Karm Harm) (7 K arrnHarrn

0 arm Karm—mpc
(7 7fTarm77arrn) 0armKarm—mpc (  

7 7 
(7 KarmHarm) (7 K arm H a r m )

)  J
0 armKarrn—mpc

 ̂ K armHarm) 0armKarm—mpc
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In the dual-model, special structure, state space form of the ARM-MPC the un­

certainty is defined by A Ad in (10.44). This can be factored into A Ad =  kcA A h  

as shown in (10.45). For specific forms of uncertainties, e.g. gain or time delay 

mismatch, A A ld and kc can be expressed as shown in Table 10.2. The uncertain­

ties expressed in Table 10.2 lead to less conservative designs (and higher robustness 

bunds) than can be obtained from general [A, B, C, D] state space methods and ro­

bustness theory. Examples of the improvement in robustness bounds are illustrated 

in Figure 10.12.

Exam ple 10.6

Consider the third order process in (10.13). The robustness bound, prb in (10.52) 

for the ARM-MPC was determined for this process using the matrix perturbation 

method and is shown in Figure 10.11. The tuning parameters used are: M  = 1, AT2 =  

10, A =  0.

10

*0
C3
2
inina>c
in3XIoa.

101
Frequency

Figure 10.11: Robustness bound for the ARM-MPC

The robustness bound, pTb for the same ARM-MPC system was determined as­

suming gain mismatch i.e. A k and slow dynamics mismatch i.e. A4> as shown in 

Table 10.2 (a) and (b). The robustness bounds using known information about the

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



specific MPM in the ARM-MPC structure are compared in Figure 10.12 versus the 

prb calculated assuming the general case for MPM. It is clear from Figure 10.12 that 

larger bounds are obtained for known information about A A; and A*F. The reduction 

in the conservativeness o f the robustness measure is due to the “special, dual-model 

structure” of the ARM-MPC.

general 
- t -  slow dynamics, AO 
—  gain, Ak________

*oc3
2<0
(0
©CTo3AOcc.

Frequency

Figure 10.12: Robsutness bound for the ARM-MPC with specific MPM.

The effects of control horizon and prediction horizon on the robustness bound are 

shown in Figure 10.13 (a) and (b) respectively. As expected,

•  prb decreases with an increase in M  (i.e. the system is less robust) and

•  prb increases with an increase in N 2 (i.e. the system is more robust).

However, the changes are observed mainly in the high frequency zone.

10.7 Conclusions

•  The proposed closed-loop ARMarkov approach gives multiple performance mea­

sures including minimum variance (MV) benchmark, closed-loop settling time,
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Figure 10.13: Effect of tuning parameters on the robustness bound of ARM-MPC: 
(a) control horizon M, (b) prediction forizon iV2.

overshoot etc. The sensitivity and complementary sensitivity functions are di­

rectly available from the full ARMarkov model and also provide closed-loop 

performance measures as well as an estimate of the process model.

•  The user-specified LQG performance benchmark provides a direct method for 

evaluating the performance of different ARM-MPC’s and is a key component 

of the robustly stable tuning procedure developed in the next chapter.

•  The special structure, dual-model state space equivalent of the ARM-MPC ex­

presses the system uncertainty as perturbations in the fast dynamics 6arrn or 

in the slow dynamics $„rm or gain/time-delay mismatch which provides a spe­

cific and/or different perspective than classical perturbation methods such as 

additive parametric uncertainty, A  -I- A A  Furthermore, this special state space 

structure leads to larger robustness bounds and less conservative robustness 

criteria than the classical small gain theorem (SGT).
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Chapter 11

Stable On-line Tuning of 
ARM-MPC for
Performance-Robustness Trade-offs

11.1 Introduction

The ultimate goal of designing a controller is to obtain good performance as well as 

a  closed loop system that is robust to model uncertainties and disturbances. Once 

the controller is designed and implemented on the process, it is customary to adjust 

the controller parameters rather than re-design the controller to obtain the desired 

performance/robustness. It is important that the controller tuning or parameter ad­

justm ent can be performed on-line so that the change can be done without interfering 

with the ongoing process operation.

Qi (1997)discussed the dynamic timing of his dual-model predictive control (DMPC) 

using what he called “a fractional control horizon parameter a ” . The outputs from 

two independent controllers designed using different control horizons were combined 

using the 0 < a < 1 parameter which was shown to be equivalent to changing the 

control horizon continuously from M  to M  +1. In this thesis, this concept is extended 

in an ARM-MPC context for on-line tuning. The a —controller formulation and its 

properties are posed in a general form in Sections 11.2 and 11.3. Then two specific 

methods are developed for efficient design and implementation of the two different 

controllers required to obtain two individual controller outputs. The methods used
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are: (1) recursive calculation of controller outputs for two different control horizons as 

described in Section 11.5 and (2) normalized ‘zero’ and ‘one’ steady-state weightings 

that define specific controllers (e.g. very aggressive and conservative controllers) as 

discussed in Section 11.6. Both approaches eliminate the need to do two individual 

controller calculations at each control interval and use simple algebraic calculations 

or updates of the calculations done in the previous step. The a  parameter is used to 

combine the controller outputs on-line to produce the desired closed-loop performance 

/robustness. The a —tuning is discussed in Section 11.4.

It is shown that, under the conditions given in Lemma 11.1, i f  each controller 

used individually gives robustly stable performance then the closed-loop system is ro­

bustly stable for all a  and that as the value of a  increases, the feedback gain changes 

smoothly between the limits defined by the two separate controllers. When the a  pa­

rameter is used to linearly combine two controller outputs, a performance/robustness 

trade-off curve is constructed similar to that of Figure 10.5. Different combina­

tions of performance/robustness can then be obtained along that curve by adjusting 

0 < a  < 1. A performance/robustness surface is introduced in Section 11.8 and it is 

shown that using a combination of > 3 controllers, a surface with different controller 

output combinations can be obtained. The performance at each combination point 

is assessed relative to an LQG benchmark and the robustness is measured by using 

the matrix perturbation method as discussed in Chapter 10. Simulation results are 

presented for each method of controller calculation.

11.2 Continuous Control Action

Typically the aggressiveness or the conservativeness of the closed-loop system is deter­

mined by the controller output signal (s). The performance/robustness of the closed- 

loop system can, therefore, be controlled by adjusting the controller output (s). In 

this thesis it is proposed that the control outputs from two Model-based Predictive 

Controllers (MPC) be combined linearly using a continuous parameter 0 < a  <  1. 

As q  is varied from 0 to 1 the system properties vary continuously between the limits 

defined by each controller used individually e.g. from aggressive, high-performance to 

conservative, robust control. A linear interpolation can be done along the straight line
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A  — B  in Figure 11.1 between the two control vectors Au£,(point A, for controller 

1 with controller gain K ^ )  and A u^(point B, for controller 2 with gain K *ipc). 

Defining a real parameter, a  G [0,1], and the control move A u ^ , leads to

A <  = A <  +  a  (A u^ -  A < ) ( 11 .1)

Therefore, the continuously adjustable parameter, a, can be used to vary the input, 

A u“ to the process and in turn, tune controller performance/robustness.

%

<
■5
Io

A.U. A. II

Controller Gain, K

Figure 11.1: Control Actions and Interpolations

11.3 Stability of the a —controller

As shown in Chapter 8, the control move is calculated in terms of the state feedback 

gain Kmpc as

Au = - K mpcX' (k )  (11.2)

where X * is the estimated system state vector. Typically, the larger the controller 

gain the more aggressive and less robust is the controller. The control action of the
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a —controller, expressed in terms of A u^, is bounded by the two conventional MPC 

controllers with control actions Au°and Au1. Stability analysis can be applied to 

this algorithm as discussed below.

11.3.1 C ontro ller G ain  Calculation

As discussed in Chapter 8, in the state space formulation, the controller gain vector 

Kmpc of the state feedback MPC controller is a function of the timing parameters 

A, M, jV2 and the weighting terms in the control objective function. Closed-loop sta­

bility of the MPC systems depends on the locations of the closed-loop poles which can 

be expressed in terms of the eigenvalues of the closed-loop system matrix $  -  6Kmpc.

Suppose K^pc is the gain of controller 1 with control move Au° and is 

the gain of controller 2 with control move A u1. Then the gain of the a —controller 

corresponding to the control calculation in (11.1) is

+  «  ( * U  -  (11  3 )

If the value of a  is specified, K^pc can be calculated and the closed-loop stability can 

be evaluated as discussed below.

11.3.2 S tability  of th e  a —M PC

For closed-loop stability, all the eigenvalues of the CL system matrix $  — 6Kmpc must 

lie within the unit circle. The closed-loop stability of the a —MPC with controller gain

corresponding to the controller output A uQ is given by the following Lemma.

L em m a 11.1 The closed-loop MPC system with continuous parameter a  is stable for 

all a  € [0,1], i f  the limiting two MPC systems are stable and there exists an induced 

norm |j-|| such that

| | ( * - « * y | |  <  1 ( 1 1 .4 )

and | | ( * |  < 1

P roo f. Sufficiency:

For the MPC controller urith gain K ^ ,  | | $ — QK'ihpcW < 1
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and for the MPC controller with gain K ^ ,  | | $ — < 1

Now following the proof given by Qi (1997),

| * - « C J  =  ||a  ( * - w r y + ( 1 - a )  ( # - « £ , . )  II (11.5)

<  a | | ( * - t f / f i „ ) | | + ( l - a ) | | ( * - « K V ) l l

< a  +  (1 -  a) =  1

Therefore, | |$  -  0 / ^ H  < 1 (11.6)

Since max(eig ($  — 9K îpc) ) is less than any induced norm,

m a ^ e i g ^ - e K ^ ) )  < || Q - O K ^

< 1

Therefore, all the eigenvalues of (<f> — OK*^) lie inside the unit circle and hence the 

MPC controller with gain A'"pc is stable. ■

Consider a stable controller with gain The sufficient condition for this con­

troller to be stable is

(*  - O K l ^ W  < 1 (11.7)

or equivalently ||$  4- (—O K ^ )  || < 1

and a sufficient, but more restrictive condition for this can be written as

||* || +  | | « C J  < 1 (11.8)

This condition holds if

11*11 +  ll«ll | |* U I  < 1 (11-9)

Therefore, under the more restrictive condition of (11.9), Lemma 11.1 can be 

re-stated as:

L em m a 11.2 I f  ||$ || +  ||0|| H^pcll <  1 ani* there exists a n y  controller such that

ll-^mpcll < 11 Krnpc 11 f 0T the same $  and 9, then for the continuous parameter a  €  [0,1],

the controller with gain K^pc (l-e- controller output A u £ j is stable.
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P roo f. Using the linear combination of controller gains in (11.3),

I I K J U I  ^  I I ' C J  <  l l ^ l l  ( H - 1 0 )

Then the proof directly follows from equation (11.9). ■

R em a rk  11.1 The formulations developed in this section for the a-controller are 

valid for both SISO and MIMO systems. This is obvious because Lemmas 11.1, 11.2 

and their proofs are applicable to both SISO and MIMO systems which follows directly 

from the state space form.

R em a rk  11.2 Only the unconstrained solutions to the a-controller are discussed in 

this thesis. Hard constraint handling is beyond the scope o f this thesis. However, Qi 

(1997)proposed an algorithm to handle hard constraints using a continuous control 

horizon. The general idea was “to continuously adjust the a parameter to avoid 

active constraints”.

11.4 Stable On-line tuning Using the a  Parameter

Once the two stabilizing MPC controllers with control moves Au° and A u 1 are avail­

able, the closed-loop performance of these controllers can be assessed on-line against 

an LQG performance curve as illustrated in Figure 11.2.

Suppose controller 1 with control move Au° and gain K ^ .  is the conservative 

controller and controller 2 with control move A u 1 and gain K is the aggressive 

controller. In this case, typically ||/<r îpc|J > ||Ar̂ ipc| | . Then using the a  parameter 

the control moves and in turn, the controller gains are combined linearly. The con­

necting line A — B  in Figure 11.1 will map into a performance/robustness trade-off 

curve A l — B 1 in Figure 11.2 since each point on this curve represents the perfor­

mance/robustness of a particular a-controller. The location of the points A l  and B l  

relative to the user-specified LQG performance curve is determined by the nominal 

design of the two, individual reference controllers, e.g. by the parameters A, A^, M. 

The distances from the points A l  and B l to the LQG performance curve are di­

rect measures of the controller performance relative to this user-specified benchmark. 

The shape of the curve is a function of the process dynamics. Typically, as the con­

troller gain increases, improved performance (lower var(y)) is obtained a t the cost of
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Figure 11.2: Tuning of the a  controller against the LQG performance curve.

robustness (larger var(u)) i.e. a performance increase usually means a decrease in ro­

bustness. The performance/robustness of the controller can be adjusted by choosing 

the appropriate value of a.

11.5 Controller Design Using a Continuous Con­
trol Horizon

The control horizon, M  is a very effective parameter in MPC tuning as illustrated by 

Figure 10.6. However, since M  in classical MPC design is an integer tuning parameter, 

the controller gain Kmpc and hence the controller performance for different M  changes 

in a step-wise fashion. When using the a  parameter tuning of MPC, the two limiting 

controllers with gains and K ^  can be designed for two control horizons M =  m  

and M  = m + n. For this case, varying a from  0 to 1 is equivalent to varying the 

control horizon continuously from M  = m  to M  =  m  +  n. The tuning effects are 

therefore smooth, bounded by known (nominal) limits, easy to interpret and apply to 

both SISO and MIMO systems.
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11.5.1 R ecursive C alcu lation  of C ontro l O u tpu ts  for Two 
C ontro l Horizons

To avoid two separate control calculations at each control interval, an analytical 

expression is developed so that the MPC output with a control horizon of M  = m  + n 

can be easily calculated from the output with a horizon of M  =  m by the addition of 

a simple “update term”. Qi (1997)developed the recursive control move calculation

with control horizons M  = m  and M  =  m  + 1. It is discussed in Chapter 8 in the

ARM-MPC context and briefly revisited below.

For an MPC with a control horizon, M  =  m, denote the dynamic matrix as Gm 

and the present/future control move vector as u^. Assume that an extra control 

term Aum+1 is added to the MPC designed with a control horizon M  = m. The new 

dynamic matrix Gm+i can be expressed in terms of the previous matrix Gm and a 

new coefficient vector xm+1 as:

Gm+1 =  [Gm, Xm+1] (11-11)

where

Xm+1 =  [0, ' ' ‘ , 0, Si, ■ • ' Sfi[2— m](jv2xi) (H*12)

The least-squares solution to the future control problem can, then, be written as

E  (11.13)G^Gm +  X I  G ^xm+1 r
I m+lGm x m + l x m + l  +  Am+i Alim+i • H + »

The control vector, u^ containing m  +  1 future control moves (in terms of the 

ra—vector solution, u^J is

-  G i x J n + i  { E  -  Gmu^)

Aum+i — G 2Xm+j ( E  Gmum)

where

“ m =  (G lG m + X I ) - 'G TmE  

Gi = G3G2

G2 (xm+iXm+i +  Am+1 xm+iGmG3) 

G3 = (G^Gm -I- A/) Gjnxm+1 

See Chapter 8 for proof and detailed derivation.

-1

(11.14)

(11.15)

(11.16)

(11.17)

(11.18) 

(11.19)
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11.5.2 C ontinuous C on tro l Horizon from M  =  m  to  M  = m + n

For predictive controllers with control horizons M = m  and M  =  m +  nasopposed 

to the special case of M  =  m  and M  = m  + 1 (line A — B  in Figure 11.3), a  linear 

interpolation between the two control vectors can be obtained which corresponds to 

a control horizon M  =  m +  a n  (line A —C m  Figure 11.3). The control move update, 

in this case, includes a (n by n) matrix inversion (G^1) as discussed next.

For two controllers with control horizons M  = m and M  = m  +  n, equations 

(11.11-11.19) can be re-written as

G m + n  — P m i  2-m+n] ( 11.20)

where

S \ 0 0  0

S 2 S j 0 0

X m + n  —
% - i Si

.  ^ N i —m ^  N 2—TT1—1 ■ ■ ■ m—n+1 .

(11.21)

( N 2 x n )

The least-squares solution to the future control problem can then be written as

( 11 .22 )

The control vector, u£, containing m -I- n future control moves (in terms of the 

m —vector solution, is

G m G m  +  A / G ^ X m + n r ^  1~ T
X m + n X m + n  "F ^ m + l - f n x n . X m + n  .

=  u° -  G tx l +„ (E  -  G„uS.)

AUjn+i
^ ra + n  —

Aum+ n

=  C * £ +„ (B  -  G „ o y

(11.23)

(11.24)

where

u„ =

C?2

G3

(GrmGm + \ I )  ' G l E  

G3G2

( I m + n I m + n  +  ^ m + l ^ n x n  ~  X m + n G m G 3 j

{GTmGm ^ \ I ) - l G lx m+n
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The linear interpolation between the control moves can be written as

A <  =  A <  +  a  ( A <  -  A n y  ( 1 1 .2 9 )

=  A i C - a A : m ( E - G mA i C )  (1 1 .3 0 )

where Km =  G ix^+n. It is clear th a t the control action, A u^, is a  linear combination 

of the two conventional MPC controllers, e.g. those with control horizons M  = m 

and M  = m  + n.

AU,

m+1
Control Horizon, M

m+n

Figure 11.3: Control Actions and Interpolations for Different Control Horizons

R em ark  11.3 The control horizon concept described here is valid for both SISO and 

MIMO systems without any difficulty because both Au^, and AuJ, are vectors of the 

same size (r * M  x 1) where r is the number o f inputs and M  is the control horizon 

and the linear interpolation between a  =  0 and a  =  1 is valid for both the systems. 

This is shown in Chapter 8.

In (11.3) /Cpc is the controller gain with control horizon M  = m; and is the 

controller gain with control horizon M  = m + 1 or M  =  m + n. lFor integer changes
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in the MPC control horizon, the norm of the controller gain changes as a stair type 

function. However, use of the above combination of controller outputs gives smooth 

changes in the controller gain, i.e. like the interpolation line in Figure 11.1 and can 

be interpreted as tuning the MPC by changing the control horizon continuously from 

M  = m  to M  = m  + n ’.

As discussed in Section 8.2, all the lemmas are valid for any two controllers with 

gains ^ d  However, the two MPC controllers with two different control

horizons can be calculated recursively with less computational effort.

11.5.3 Sim ulation R esu lts

The results developed in the previous sections are illustrated by the following simu­

lation examples.

Exam ple 11.1

Consider the third order process

000772-3 +  °°212z_4 +  0.0036z-5 
”  1 -  1.9031Z-1 +  1.1514r-2 -  0.2158z"3 { ’

An ARM-MPC is designed as described in Chapter 8 with p. =  10, prediction 

horizon, AT2 =  10 and the parametric model order, n =  3. The control weighting and 

the output weighting are 0 and 1 respectively. As the continuous horizon parameter, 

q, described in Section 11.2, is increased from 0 to 1 the control horizon changes from 

M  = 1 to M  =  2. The closed-loop response for this process shown in Figure 11.4 

shows that (as expected) the control action becomes stronger and the output response 

becomes faster as a  increases from 0 to 1. This is confirmed by the performance with 

respect to the user-specified LQG benchmark shown in Figure 11.5.

It is also anticipated that the robustness to uncertainties will decrease. This is 

confirmed by the robustness bounds calculated using the matrix perturbation method 

(described in Chapter 10) and plotted in Figure 11.6.

It is clear in this example that as the value of a  is increased, the controller perfor­

mance (in turn, the aggressiveness) increases whereas the robustness of the controller 

decreases. This illustrates how the controller can be easily timed on-line to obtain 

performance/robustness trade-off.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



&3o
■o
”  0.5- c
S .
9 
CO

1.5-
1

0

0

0.

co
’B<

coO.

-20,

<¥=0. M=1 a -0 .5

—  Setpoin
-  -  Output

*  — —. t  ■
t I 1

/
/

1
\ 1

t *

/
!

\
\

1
1 ' 1

, cf*1,M*2

a*0.25 a*0.75

51---------
ft

0-

1

0 ̂

0 -

ri

v—

1 ----1 -----!------- 1— -----!_
0 20 40 60 80 100 120 140 160 180 200

Sampling Time

Figure 11.4: Closed-loop response of a non-minimum phase process by changing a

11.6 On-line Tuning Using Steady State W eight­
ing

As discussed in Chapter 8  steady-state(SS) weighting gives the effect of increasing 

the prediction horizon without actually changing N 2 and can provide robust stability 

for predictive controllers. Saudagar (1995) showed that the steady-state weighting 

parameter 7 ^  gives better stability properties than the move suppression factor or 

control weighting A. Saudagar (1995) defined a normalized 7 ^  concept where 7 ^  =  0 

means no SS weighting and 7 ^  =  1 means a “heavy” SS weighting. Using appro­

priate design methods, 7 M =  0  and 7 ^  =  1 can also be considered as “aggressive, 

high performance” and “conservative, more robust” controllers respectively. Calcula­

tion of the SS gain using the ARMarkov model, state space ARM-MPC formulation 

and control calculation are discussed in Chapter 8 . The steady state gain using the 

ARMarkov model is given in equation (8.61) as

1
5 00  =  H ar m  ( $ 1  — / )  * #1 = [  1 + Q !  1  1  •  • •  1  ]  Ox
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Figure 11.5: Performance of the ARM-MPC relative to the LQG benchmark for 
different values of a .

and the control solution using the SS weighting is

U  =  [G j^ Q o o G o c  +  Aqo] G ^ Q ooE q

Ewhere = (Ysp{a) -  Yx (k)) =
L 00

e oo =  y Sp(oo) - y ( k  + oc\k)

Typically, the controller gain is calculated off-line while using the controller on­

line. Assume the gains for the two controllers using 7 ^  =  0  and 7 ^  = 1 are calculated

off-line as

/C - - °  = [Gt QG + \ Y ' G t Q (11.33)

and IQ -* 1 =  [G£<?«,G„ +  A ] 'I G& Q.) (11.34)

(11.32)

where

Gao — G
X<x> ( N2+ l ) x M

x oc — [Sooi Oix(A/-l)] ixM

Qoc =
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Figure 11.6: Robustness bound of ARM-MPC for different values of a

The controller with 7 ^  =  1 and gain KZfpT1 can be considered as the conservative con­

troller with gain K^pc corresponding to point A l  in Figure 11.2. The controller with 

7 ^  =  0  and gain corresponding to the aggressive controller with gain in

Section 11.2 and point B 1 in Figure 11.2. Then all the theoretical developments in 

Section 11.3 are applicable to these two limiting controllers and the a  parameter can 

be used on-line as described in Section 11.4 for the tuning of the controller to obtain 

different performance/robustness combinations. The limiting controllers in this case 

represent two user-specified control applications e.g. high performance with a  =  0 , 

and conservative, more robust with a =  1. For non-zero a, the a-controller is guar­

anteed stable if the conditions in Lemmas 11.1 or 11.2 are met. System performance 

can be tuned on-line without significant additional computation a t every sampling 

time since there is no matrix inversion etc.

The stability of the MPC typically increases with increasing 7 ^ ,  7 ^  6  [0,1], due 

to the detuning of the controller. As shown by Saudagar (1995), the detuning effect of 

7 ^  is higher in the lower range of 7 ^  i.e. the stability increase for 7 ^  =  0  to 7 ^  =  0 .2  

is much higher than the stability margin increase for the 7 ^  range 0.5 — 0.9.

The changes in the controller gain of the a —MPC controller are linear due to the
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Table 11.1: Robustness boimds of ARM- VIPC using different 7 ^
steady state error weighting, 7 ^ 0 .0 0 .2 0.5 1 .0

robust, bound, prb 0.0134 0.0661 0.0813 0.0883

linear interpolation of the controller outputs and controller gains as shown in Figure 

11.1. When using the SS weightings 7 ^  =  0 and 7 ^  =  1 in the boundary controllers, 

with a  =  0  to a = 1 the boundary performance/robustness are determined by the 

boundary controllers, but the intermediate performance/robustness varies as a  is 

adjusted as shown in Figure 11.8.

11.6.1 Exam ples

E xam ple  11.2 Performance o f ARM -M PC’s with different SS weighting, 7 ^ .

ARM-MPC's were designed for the process in (11.31) as described in Chapter 8  

with p. = 10, prediction horizon, AT2 =  5 and the parametric model order, n =  3. The 

control weighting and the output weighting were 0 and 1 respectively. At sampling 

time 50 a step disturbance was added. The closed-loop response is shown in Figure 

11.7 for different steady state weightings. The change in the robustness bound, prb of 

the controller was determined following the procedure described in Chapter 10 and 

is shown in Table 1 1 . 1 . As expected, with increases in the value of 7 ^ ,  the process 

output response becomes slower and more conservative. This is also reflected in the 

robustness bound i.e. prb increases with the increase of 7 ^ .  As discussed earlier, the 

detuning effect is higher in the lower range of 7 ^ .

E xam ple  11.3 : a —tuning using boundary controllers with different SS  weighting,

Too*

System performance relative to the LQG benchmark was evaluated for the same 

process in (11.31), using a —tuning of the ARM-MPC’s with 7 ^  =  0 and 7 ^  =  1 

as the two limiting controllers. The results for step tracking are shown in Figure 

1 1 .8 . Closed-loop performance with respect to the LQG benchmark is plotted in 

Figure 11.9. The effect of a  on the performance of the ARM-MPC is similar to 

changing 7 ^  directly (Example 11.2). However, as mentioned earlier, the effect of 

using intermediate a  values on the closed-loop performance is different although the
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Figure 11.7: Closed-loop response for different values of steady state error weighting,

two limiting performances are the same as shown in Figure 11.9. As observed in 

Figure 11.9, the performance of the ARM-MPC using the a —tuning is more linear 

than direct 7 ^ —timing.

11.7 Trade-off Using a Combination of Steady-state 
Error W eighting and Control Weighting

In the preceding sections it was shown that ‘a —tuning’ provides (nominal) stable, on­

line tuning of MPC over a user-specified range of performance/robustness that can 

be evaluated relative to an LQG benchmark. When the two boundary M PC’s used 

in a —tuning were designed using two different control horizons or different SS  error 

weightings, the output of the second boundary MPC could be calculated by a simple 

extension of the first controller i.e. it was not necessary to do two independent MPC 

calculations at each control interval and hence a —tuning was efficient and practical 

from a computational point of view.
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Figure 11.8: a —tuning of the ARM-MPC using 7 ^  =  0 and 7 ^  =  1 for the two 
limiting controllers.

One of the most widely used parameters in the design/tuning of independent 

M PC’s is the control weighting, A and hence it is logical to ask whether it is possible to 

develop a computationally efficient approach for a —tuning using boundary controllers 

designed using different controller weightings. Unfortunately such a controller was 

not found. However, the following discussion shows that it is possible to interpret 

a —tuning in terms of simultaneous changes in SS weighting plus control weighting. 

More specifically, the performance obtained using the boundary controllers (a =  1 

and q  =  1) can be interpreted as MPC with two different control weightings Xy and 

A2. However, for 0  <  a  < 1 the effect is interpreted as due to a simultaneous changes 

in control weighting A plus SS error weighting 7 ^ , rather th a t a change in control 

weighting alone.

To develop on-line a —tuning using simultaneous SS weighting and control weight­

ing some of the results derived in Chapter 8  are used here. For example, the control 

move using simultaneous SS weighting and control weighting is discussed in Section 

8.5.4.
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Figure 11.9: Performace comparison of the ARM-MPC for a —tuning and 'y0O tuning.

11.7.1 Feedback C on tro lle r Gain U p d a te  Using 7^2

As discussed in Chapter 8 , equation (8.74) can be rewritten as

A u(k) = CTA* [ C?Q  X^7oc2 ] n*a) -  CTA\ [ GFQ x £ 7oo2 ] *N2aXa 

and the ARM-MPC feedback gain can be expressed as

Kmoo =  a - [ G r Q * p x ^ 7 o c 2 ]

=  [ a'GPQQp a*x^,7oo2 ]

=  [ K m o c l  X f t ioo2 ]

where

■Rmoo2 — Aj (1, 1) Soo7oo2 — a ll^oo7oo2

Keeping 7 ^  constant while varying 7 ^ 2  means Amool remains constant and the 

value of K m o02 varies linearly with the variation in 7 ^ 2 - It was shown in Chapter 8
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that

I I K m o o l l a  <  l l ^ m o o l l l a  +  l | t f m o c 2 | | 2 ( 1 1 - 3 5 )

Since ||/Cm ool| |2 remains constant for a constant 7 ^ , the controller gain ||/Cm0o | | 2 can 

be updated by varying 7 ^ 2  and hence !|Armoo2 1[2- For example, for7 oo2 =  li-Kmoo| | 2 -  

|jKmoci | |2 and the result is equivalent to a change in control weighting. For 7 ^ 2  =  7oo> 

the result is equivalent to steady-state weighting. For values of 7 ^ 2  between 0 and 

7 ^ ,  an intermediate feedback gain and hence performance is obtained which can 

be interpreted as due to simultaneous changes in steady-state weighting and control 

weighting. This gives the flexibility of using either control weighting or steady state 

weighting or a combination of the two weighting parameters using a single tuning 

parameter, -y^- The tuning of the controller using the 7 ^ 2  parameter is shown in 

Figure 11.10 (the model and MPC parameters are the same as in Example 11.3). The 

controller gain update using 7 ^  is shown in Figure 11.11.

11.7.2 Equivalence w ith  th e  a —tuning

Let 7 oo =  0.5. Then varying 7 ^ 3  from 0 to 0.5 means the controller gain is changed 

linearly from K mx =  K mooi to K moc =  Kmocl +  K moo2. Therefore, considering the 

controller with Kmoc = K mooi as controller 1 in Section 1 1 .2  and K m 00 =  K m o01 +  

Kmoo2 as the gain of controller 2 , the tuning effect of 0  < 7 ^ 0  <  1 is equivalent to the 

a-tuning in Section 11.2 and all the stability and performance theory are applicable. 

Moreover, this approach to on-line tuning updates the controller gain on-line and 

saves computational effort since controller re-calculation is avoided.

11.8 On-line Tuning Surface

In the previous sections, controller tuning was accomplished by linearly combining two 

controller outputs using the a  parameter such that a performance/robustness trade­

off curve was obtained. In this section, > three controller outputs are combined 

to construct a control vector surface such that any two points on this surface can 

be used to time the controller using the a  parameter. This is illustrated in Figure 

11.12 for three specific controllers. This tuning surface allows a lot more flexibility
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Figure 11.10: Step tracking performance of the ARM-MPC using the 7 ^ 2  parameter 
tuning.

of controller tuning than the performance/robustness trade-off curve generated by 

linear interpolation between two controller outputs.

Any three stabilizing controllers can be used to construct the three limiting points 

of the surface. For example, the three controllers can be designed with

1 . control horizon M  =  1 , steady state weighting 7 ^  =  0

2. control horizon M  =  1, steady state weighting 7 ^  =  1 (most conservative)

3. control horizon M  = 2, steady state weighting 7 ^  =  0 (most aggressive)

Note that in this example, the output of the third controller can be obtained by

updating the first controller output as discussed previously.

There are several situations in wrhich three controller could be used to meet impor­

tant operating objectives. For example, under “normal” or typical operating condi­

tions tuning could be accomplished using two boundary MPC’s and 0 <  q 1 <  1 that 

provided a range of performance/robustness that would accommodate the process 

variations under normal conditions. For unusual conditions such as a major upset
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Figure 11.11: Controller gain update of the ARM-MPC using different values of

or changes in operating conditions (upstream unit failure, partial equipment failure, 

plant utility upset etc.) the output from the “normal” controller calculated using 

a l ,  could be combined with the output of a  third, ultra-conservative controller using 

0 <  q <  1 to provide “fail-safe” operation under any conditions.

11.8.1 Sim ulation E xam ples 

Exam ple 11.4

Consider the same process in (11.31). Three ARM-MPC controllers are designed 

using (1) M  =  1 , 7oo =  0, (2) M  =  1, 7oo =  1, (3) M  = 2, 7 ^  =  0. The other 

tuning parameters which are same for each controller are: // =  10, N 2 = 5, n =  3, 

control weighting XI =  0 and output weighting Q =  I. Controller gains for these 

controllers are plotted in Figure 11.13. Two different controllers (Cl and C2) are 

designed off-line whereas C3 is designed by updating controller C l. The step tracking 

performance of the three controllers are shown in Figure 11.14. Controller 2 (with 

M  =  1 , 7 m =  1 ) is the slowest (and most robust) and controller 3 (with M  =  2, 'f00 — 

0) is the most aggressive controller. The a l  controller is timed on-line by combining 

the outputs of controllers 1 and 3 by using c*i =  0.5. Then using 0 <  a  <  1, the control
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Figure 11.12: Control move surface for the a — tuning of ARM-MPC.

performance is timed to obtain performance in between the performances of controller 

2 and controller a l .  The performance of this new controller for different values of a  are 

shown in Figure 11.15. The performance of the a-controller is a combination of the 

performance of the three designed controllers. Comparing Figures 11.14 and 11.15, it 

is clear that controller performance of any degree of aggressiveness available on the 

tuning surface can be obtained without a significant increase in on-line computation.

11.9 Conclusions

•  ARM-MPC can be effectively and efficiently timed on-line using a single param­

eter 0 <  a  < 1 that linearly combines the outputs from two separate controllers. 

This is an extension of the approach used by Qi (1997)for DMPC. When both 

boundary controllers (i.e. for a  =  0 and a  =  1) satisfy the norm conditions in 

Lemmas 11.1 or 11.2, then the control obtained with 0 < a  < 1 is guaranteed 

to be stable

•  When the design of the two boundary MPC’s differs only in the choice of the
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gains and controller timing of controllers C1-C3 (a l  controller) and C2 - a l  controllers.

control horizon, M  or the steady state error weighting, 7 00, then the output 

of the second controller can be calculated by simple, extension of the first con­

troller calculations i.e. it is not necessary to perform two independent controller 

calculation at each control interval and hence a —tuning is efficient and practical.

•  The effect of the a —tuning can also be interpreted in terms of the MPC control 

weighting, A. When a = 0, control weighting is equal to the base case with 

controller gain or equivalently to using control weighting A0. When a  =  1 , 

the controller gain is K ^  or control weighting is A^ When the single parameter 

(steady state weighting) 7 ^  is varied the effective controller gain is obtained by 

a simple update of the first controller gain A' îpc and the effect can be interpreted 

as the result of changing both the control weighting, A and the steady state error 

weighting, 7 ^  simultaneously.

•  The performance of the closed-loop system can be calculated for 0 <  a  <  1 

and compared versus a user-specified LQG benchmark. For example, system
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Figure 11.14: Step tracking performace of three different controllers.

performance can be varied between “aggressive” control (a  =  1 and 7 ^  = 0 ) 

and “conservative” control (a  =  0  and 7 ^  =  large) with corresponding changes 

in the robustness bounds. This effectively meets the overall thesis objective of 

developing a practical, on-line MPC tuning approach that can be used to main­

tain system performance relative to a user-specified LQG benchmark and/or to 

adjust the trade-off between robustness and performance.

The concept of a —tuning is extended to use three or more controllers which 

provide system tuning over a surface of controller outputs rather than  along a 

single curve.
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Chapter 12 

Conclusions and Future Work

An ARMarkov, dual model predictive controller was developed in this thesis and is 

recommended for process applications such as those that occur in the chemical indus­

try. The main areas of contribution are: (a) identification of a MIMO input-output 

ARMarkov model using simple least-squares methodology, (b) design and analysis 

of a Model-based Predictive Controller (MPC) based on the ARMarkov model and 

(c) on-line timing of the controller to achieve user-specified performance/robustness 

trade-off(s). These contributions are summarized in the following section in the same 

order outlined in Table 1.1 and Figure 1.2.

12.1 Contributions

1. An input-output ARMarkov, d u a l m odel plus equivalent state space models 

were developed and used as the basis for the design, analysis, implementation 

and on-line timing of a ‘complete’ Model-based Predictive Controller (MPC). 

(See Chapters 2, 3, 4, 6, 7)

•  The dual, ARMarkov model is a combination of a non-parametric and a 

parametric model. The non-parametric part of the model consists of a 

user-specified number of Markov parameters and the parametric part is 

a residual model that approximates the slower dynamics of the process. 

This model combines the advantages of FIR models (used in DMC) and 

ARIMAX models (used in GPC).

•  The // Markov parameters (impulse response coefficients) define the time
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delay and initial (fast) response of the system. Thus it is not necessary to 

specify the process time delay, a parametric model structure, or an exact 

model order.

•  In practice, a low order ARX model is sufficient to model the parametric 

part of the residual or slow dynamics of the process response. A suitable 

order for the residual model is generated during the model identification 

step by using an AUDI form of least-squares.

• A disturbance model was added to the ARMarkov process model.

•  The most powerful and complete set of analytical methods for MPC design 

and analysis is based on state space models. Therefore, the input-output 

ARMarkov model was converted into equivalent ‘state-space’ models that 

can be directly used for MPC design, simulation and analysis.

2. An A R M arkov identification  algorithm was developed to directly estimate 

the user-specified /z Markov parameters plus the coefficients of the ARX model 

of the residual (slow dynamics) and the coefficients of the disturbance model. 

This method can be used ‘a priori' and/or ‘as required’ during plant operation 

to provide a suitable model for MPC. (See Chapters 2,5)

•  The ID method was extended to MIMO systems.

• The ‘order-recursive’ AUDI identification method was re-formulated and 

used for selecting the order of the parametric residual model.

•  The Markov parameters estimated by the least-squares ARMarkov method 

were shown to be consistent and less sensitive to noise/disturbances than 

the impulse response coefficients in the complete response estimated by 

other LS methods such as FIR, ARX. The estimated ARMarkov param­

eters have better statistical properties such as variance/covariance, con­

fidence bounds than the same properties of the parameters estimated by 

FIR, ARX.

• The dynamic matrix, present in most MPC’s, was constructed using the 

Markov parameters directly estimated using the ARMarkov method. The
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statistical “consistency” of the Markov parameters leads to better accuracy 

and, in turn, to better control than other ID methods that convert the I/O  

or state-space models to step/impulse response coefficients.

•  The interactor matrix for MIMO systems can be directly determined from 

the first /x—Markov parameters identified using the ARMarkov method. 

Consistency of the Markov parameters leads to more accurate interactor 

matrix estimation.

3. A m o d el-b ased  predictive co n tro lle r (A R M -M P C ) was designed using 

classical techniques but is more flexible and efficient than many of the other 

M PC’s described in the literature. (See Chapters 6,8,9)

•  The ARM-MPC is flexible enough to include DMC and GPC as limiting 

cases.

•  It needs fewer Markov parameters than conventional DMC and, unlike 

DMC, includes a disturbance model that allows independent on-fine regu­

latory tuning.

•  It is less aggressive than conventional GPC and does not require solution 

and/or updating of Diophantine equations at every sampling instant.

•  The consistency of the Markov parameters leads to a more accurate dy­

namic matrix and hence better control.

•  The special structure of the state-space ARM-MPC leads to higher ro­

bustness bounds and less aggressive analysis criteria than the Small Gain 

Theorem (SGT).

•  The state space ARM-MPC, which is derived from and mathematically 

equivalent to the input-output form, can be directly used to calculate the 

LQG performance benchmarks.

•  A classical state space model (A,B,C,D matrices) was derived using the 

consistent Markov parameters obtained using ARMarkov identification and 

an Eigensystem Realization Algorithm (ERA). This state space model can 

be used for all classical design, analysis and simulation procedures.
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•  The disturbance model added to the ARMarkov model enhances regulatory 

control and tuning. It can be identified using the ARMarkov method or it 

can be treated as a user-specified filter.

4. Significant design and regulatory tuning flexibility was added to ARM-MPC 

by separating the disturbance prediction in the feedback  path from the plant 

input-output model. (See Chapter 7)

•  The first of the two parts of the separated disturbance predictor (SDP) 

equation consists of terms that depend on the plant model. The second 

part depends only on the residual (error in the current output prediction) 

and the noise model and is completely independent of the plant model. 

Thus the SDP makes it easy to provide more flexible timing such as inde­

pendent ‘servo’ and ‘regulatory’ tuning of the controller through the use 

of a ‘disturbance horizon’.

5. The proposed ARMarkov model-based p erfo rm an ce  assessm ent approach 

simultaneously produces multiple metrics for closed loop performance monitor­

ing/assessment. (See Chapter 10)

•  Estimation of a  reliable and accurate interactor m atrix is a pre-requisite for 

performance assessment methods such as the conventional Minimum Vari­

ance (MV) benchmark. It can be estimated from the consistent Markov pa­

rameters directly identified by the ARMarkov method from routine closed- 

loop (CL) operating data.

•  Sensitivity/complementary-sensitivity functions plus time-domain metrics 

such as time constants are available from the closed loop ARMarkov iden­

tification. The sensitivity/complementary sensitivity function can be used 

for on-line performance assessment and tuning of the controller.

•  An LQG performance curve was constructed and is recommended as a 

relevant and practical benchmark for MPC performance assessment over 

the user-defined domain of operation.
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6 . On-line controller tu n in g  was implemented using a single parameter 0  <  a  < 1 

that permits smooth, robustly-stable tuning over a user-defined range of con­

trol and provides a  practical basis for implementing higher level supervisory 

optimization functions. (See Chapter 1 1 )

•  This timing approach is applicable to any two controllers, including MPC(s)

•  It linearly combines the outputs of two robustly-stabilizing, user-defined 

controllers using a single parameter, a  € [0 , 1]

(a) a  =  0 (MPC #0) e.g. conservative (e.g. M  = m, 7 ^  =  1 )

(b) a  =  1 (MPC #1) e.g. aggressive (e.g. M  =  m +  n, 7 ^  =  0)

(c) 0  <  a  < 1 provides smooth transition from conservative to aggressive 

performance

•  Changing the tuning parameter a  from 0  to 1 leads to smooth changes in 

the state feedback gain, —* K ^ .

•  Two independent controller calculations are not required at every sampling 

instant if the two MPC’s are designed with

(a) M  = m —* M  = m  + n, or

(b) steady state error weighting 7 ^ 3  =  0  —► 7 ^ 2  =  1

The second controller is obtained by simple updating of the first con­

troller and thereby saves computational effort.

7. The system is robustly stable for all 0 < a  <  1 if the two limiting MPC 

controllers (i.e. those used when a  =  0  and a  =  1 ) meet the conditions of 

Lemma 11.1 or 11.2, i.e. the norms of the closed-loop system matrices are less 

than one. This is a significant characteristic because most MPC’s provide only 

an “optimal” solution and do not guarantee stability and/or robustness even 

for the specified design case. Similarly, most MPC’s do not include a stability 

guarantee when design (tuning) parameters are changed. (See Chapter 11).

•  Performance and robustness over the user-specified region of operation 

( 0  <  a  < 1) can be directly compared to and evaluated versus benchmarks 

such as LQG.
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•  The single parameter a —tuning approach was extended from linear in­

terpolation (i.e. along a line) to tuning over a surface (for > 3 MPC’s). 

Off-line calculation of more than one controller output may be needed 

(depending on the user-specified limiting controllers) for this case. The 

a —controller can be timed to obtain the desired performance/robustness 

combination at every point on the surface.

1 2 . 2  Overall Conclusion and Practical Significance

From an overall point of view, this thesis provides a complete and integrated design 

and analysis procedure for a dual-model based predictive controller (ARM-MPC) that 

is easy to imderstand, flexible to implement on industrial processes, and provides the 

desired performance/robustness trade-offs through (single parameter) on-line tuning.

The proposed approach for design and tuning is particularly significant from a 

practical point of view because it provides an effective, intuitive method for use by 

plant operating personnel and/or higher level supervisory/optimization algorithms. 

(Most MPC;s have “too many” tuning parameters in the sense that their non-linear, 

interactive effects make tuning very different when attem pted over a wide range of 

operating conditions and/or applications)

The practical advantages of the ARM-MPC arise because: the tuning interval is 

closed and normalized (0 <  a  < 1); the limiting performance/robustness is known 

(e.g. a conservative C l combined with an aggressive C2); tuning is smooth (inter­

preted as changes in feedback gain) over the full tuning range; the performance and 

robustness bounds can be analyzed a priori and expressed or monitored on-line in 

terms of performance metrics or benchmarks such as LQG and MV; and a “fail-safe” 

fallback control procedure can be included to handle major, atypical disturbances 

(via multidimensional a —tuning).

In most process control applications regulatory control is more important than 

setpoint tracking. Although it may seem relatively unimportant from an MPC- 

structure point of view the separation of the disturbance feedback and prediction 

path in ARM-MPC (Figure 7.1) is significant because it allows independent design, 

implementation and tuning of the regulatory control versus setpoint tracking func-
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tions. The disturbance model/filter can be estimated or user-specified independent 

of the process model; practical timing parameters such as a disturbance prediction 

horizon (analogous to the output prediction horizon) can be added, and concepts 

such as “a —tuning” can be used to blend multiple disturbance estimation/prediction 

strategies.

Significant work is still required in the MPC area, particularly to handle very 

large systems, constraints, non-linear behavior, higher level supervisory/optimization 

strategies and practical, robustly-stable, on-line tuning. However, as demonstrated 

in the preceding chapters, the ARM-MPC offers several structural, theoretical and 

practical advantages relative to most MPC’s in the literature.

12.3 Recommendations for Future Work

1. The statistical analysis of estimated parameters discussed in this thesis does 

not include disturbance models in the ARMarkov model structure. It would 

be interesting to analyze the statistical properties of the estimated parameters 

under disturbance model estimation.

2. “Control relevant identification” has drawn a lot of attention in the MPC design 

and application areas. It has been shown in this thesis tha t the ARMarkov 

identification uses simple linear regression to generate “consistent” parameter 

estimates which, in the limit, converge to the true values. In MPC, accurate 

modeling leads to controllers that optimize the user specified performance index. 

It would be interesting to compare the approach used in this thesis versus control 

relevant identification from the point of view of controller performance.

3. In recent years, closed-loop performance assessment/monitoring has become an 

active research area. There are several very useful and important theorems and 

tools for performance assessment, but not much has been done in the robust 

performance analysis/assessment area. Future extension of the ARM-MPC de­

sign and analysis approach developed in this thesis could include robust perfor­

mance criteria. This could include on-line estimation of model plant mismatch 

(MPM); ARM-MPC design to achieve robust performance; on-line performance
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assessment using a robust performance criterion; and tuning of the controller to 

achieve robust performance. The LQG performance criterion was used in this 

thesis as a performance benchmark for ARM-MPC. In future work, a robust 

LQG performance criterion could be used for MPC performance assessment.

4. Joint identification and control is another promising area of research. Either the 

model is updated/re-identified or the controller is tuned/re-designed based on 

the achieved closed-loop performance/robustness. It is interesting to note that 

even with significant MPM, higher performance may be achieved with the result­

ing controller. Future extensions of this thesis could include joint identification 

and control in the context of ARMarkov ID and ARM-MPC design/analysis.
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Appendix A  

Factorization of Matrices in the 
AUDI Formulation

A .l LDLt and UDUT factorization for the DPM M  
and IAM

The data product moment matrix (DPMM) Sn (A:), formed using the data vector 
<pna (k ) is expressed as (Niu et al. 1990, Niu et al. 1992, Banerjee and Shah 1996)

Sn {k) =
i=l J  (2 n + l)x (2 n + l)

Writing

E,*=1 </>„ (i 1 n) (f>l (h n) E .=1 tna (h n) y  (i) 
Ef= i <fil (*. n) y  (*) E .ti y  (*)2

A = {i,n)<pl(i,n) = 5n_i (fc)
t=i
fc

B  = '%2<pna( i ,n)y( i )
i=  1

D = ^ 2 y ( r f
i=i

5„(fc) =

and the LDLr  decomposition of Sn (k) is

A B 
B T D

hn  0 A  O '

I0c

1

. B TA~l I2n 0 A B TA - '  /*,

(A.l)

(A-2)
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where

A =  D -  B TA~lB  =

B t A~1 =
-1

=  0T (k)

A  is decomposed sequentially to obtain 

where

L n ( k )  =
/2 n  0

eT (k) i 2n

h n - l  0  0
Ql0 { k - 1 )  1 0

0 0 1
90 (k — n) 1 0

0 0 / 2n_
En (k) = diag{JQ(k -  n) , L 0 (k -  n ) , • • • , J„_i (k -  1) ,L„_i (k -  1), Jn

1 0 0

Now

C„(*) =  S„(k)- '

=  { i„ ( * ) = n (A:)[L„(fc)]T} “ '

=  { i >- r W E , r ' i ; , W }
=  U„(k)D„(k)Ul (k )
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