anada

l*. National Library Biblipthéque nationale
of Canada du
L4

Canadian Theses Service Service des théses capadiennes

4
Ottawa. Canada

K1A ON4

NOTICE

The quality of this microform is heavily dependentupon the
quality of the original thesis submitted for microfitming
Every effort has been made to ensure the highestquality of
reproduction possible

It pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially it the
original pages were $§yped with a poor typewriter ribbon or-
if the university sent us an inferior photocopy.

/

Previously copyrighted materials (journal articles, pub-
lished tesls, etc y.are not filmed

Reproduction in full or in part of this microform s governed
by the Canadian Copyright Act, R.S.C. 1970. c. C-30

NL-330 {r. 88/04)

AVIS

L a qualité de cette microforme dépend grandement de la

gqualité de fa thése sounuse au nucroimaqge Nous avons

tout tait pour assurer une qualué supéneure de reproduc
t

tion -

Sl manque des pages, veuwlles commumiquer avec

funiversité qui a conféré le grade

La qualité dimpression de certaines pages peut laisser a
désirer, surtoul si les pages originales ont éte dactylogra
phiées & l'aide d'un ruban usé ou si l'universite nous a tar
parvenir une photocopie de quallté infténeure

Les documents qui font déji l'objet d'un droil d'auteur
(anticles de revue, tests publi¢s, efc) ne soft pas
microfilmés

A
La reproduction, méme partielle. de cétte microforme est
soumise 4 la Lot canadienne sur le droit d'auteur, SRC
1970, c C-30



THE UNTVERSITY OF ALBERTA

A HYDROGEOLOGICAL INVESTIGATION
OF THE ORIGIN OF SALINE SOILS AT

BLACKSPRING RIDGE, SOUTHERN ALBERTA

BY

RICHARD STEIN

A THESIS
SUBMITTED\TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
"IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
[4

OF MASLER OF SCIENCE

5? DEPARTMENT OF GEOLOGY

EDMONTON, ALBERTA

FALL, 1987



Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyrigﬁt owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from (it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a été accordée
4 1la Bibliothdque nationale
du Canada de wmicrofilmer
cette thése et de prédter ou
de vendre des exemplaires Adu
film.

L'auteur (titulaire du droit
d'auteur) se Téserve les
autres droits de publication;
ni la thése ni de longs
extraits de celle-ci ne
doivent @étre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-41007-8



b THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Richard Stein
TITLE OF THESIS: A Hydrogeological Investigation of the Origin of

Saline Soils at Blackspring Ridge, Southern Alberta

DEGREE : Master of Science

YEAR THIS DEGREE GRANTED: Fall, 1987

—~

-

P;rMT;sion is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY
to reproduce singie copies of this thesis and to lend or sell such
copies for private, scholarly or scientific research purposes only.

The author reserves other publigation rights, and neither the
thesis nor extensive extracts from it may be printed or otherszg

reproduced without the author's written permissiqn.
w-

f

). .
(sygned) R N \.6.‘.%".{. . g o T

(permanent address) ?¥;$ﬂ?.T.L:VSZ..inQdF‘D..fiJ'
Al

...................



THE UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they havé read, and recommend to the ¢
Faculty of Graduate Studies and Resgarch for actéptahce. a thesis f
entitled A HYDROGEOLOGICAL INVESTIGATION OF THE ORIGIN OF SALINE SOILS
A} BLACKSPRING RIDGE, SOUTHERN®ALBERTA submitted by Richard Stein in .
partial fulfilment of the requirements for the degree of MASTER OF

SCIENCE.

VAN : . A
{Supervisor
A
.




ABSTRACT -

Soil salinity occurs 1n a variety of topographic sett{;gs and has a
broad range bf severity in thé Blackspring Ridge area of Southern
Alberta. Black5pr1ng Ridgé“is a structural bedrock high that 1is
underlain by upper Cretaceous sediment of the Horseshoe Canyon
Formation. vBedrock‘ﬁs overlain by stratified, till, lacustrine, and
aeolean sediment whose thickness rangeS from-about 2 mon ;oplof the

ridge to 110-m within buried valleys located west and north of the .
ridg?. ‘ ; |
Piezometric data indicate that groundwater i3 recharged on and
atong upper flanks of B]ack;pring Ridge gnd discﬁarges in southern pqrts

of a lacustrine plain thél surrounds the ridge. Regiéna}‘gfoundwater
flow is strongly 1nfluenced by basal sandstone of thé’Horséshoq’Canyon
Formation and by highly pe;gfable sand and gravel sedlment in the burwed
valleys. The bedrock valleys act as line sinks, transmit mést '
groundwater along their axes, and cause predominantly downward flow in
northern part$ of the lacustriﬁe plain. g
Local groundwater flow is ;trongly‘influqnced by bedrock fracturing
to a depth of about 30 m along the west flank of t‘g ridég. Hydradiic
éonduqtivity data, water-level }luctuqtions, stable isotopes, and
hydrécﬁemical data indicate that the fractured near-surface bedrock and
'overlying thin drift sediment congtitutes a zone of active groundwater
'-‘}1ow within which salts are generated and transportédl and from which
they eventually‘discﬁarge to saline ‘?easvat the base of\tpe ridge. The

zone of active flow contains by far the dominant salt load, and ﬁas a

TDS ‘content' from 6000 to more than 50. 00® mg/L. Salt fluxes that exceeqd

"iv
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2 _ . . :
2 kg/m /year exist in areas where groundwater from the dc$1ve-flow zone

discharges to the water table.

-

Highiﬂgter 4¢ables in satine areas are maintained by infiltration

from runoff of snowmelt, rain, and groundwater discharge. Surfdce

.

runoff water of the spring-melt evefit assimilates up to 500 mg/L of sait
as it traverses saline groundwater discharge areas along the flanks and
base of Blackspring Ridge. This water and dissolved salt 1s the pramary

s

cause of salinity in low-lying por{}ons of the lacustrine pJaiﬁ.
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1. INTRODUCTION

Dryland salinity 1s a serious problem affecting agriculture 1n the
southern parts of the Prairie Provinces and northern Great Plains of the
United States. It has been estimated that more than 800 000 ha of
dryland are affelted and that the problem is i1ncreasing (Vander Pluym,
1978). In addition to the loss of soitl productivity, seeding delays,
poor soil trafficability, and contamination of surface and subsurface

» water resources have resulted. *

The causes of dryland salinity are reasonably well understood 1n
general terms (Vander Pluym, 1978; Hendry and Schwartz, 1982; Brown,
et al., 1983). €Essentially, soil salinization occurs in areas where
groundwater carrying dissolved salts discharges at or near the soil

surface. The salts originate from chemical weathering of carbonaceous,
sulfur-bearing Cretaceous bedrock and associated glacial tilT\geposits
(Hendry et al., 1986; Wallick, in preparation). Oxidation of organic
sulfur derived from lignite and from organics disseminated in shale 1is
shown to be the primary source of sulfate in weathered till of Sougpern
Alberta (Hendry et al., 1986). Oxidation is postulated to have occurred
‘relatively thick unsaturated zone that existed during the drier and
er climate of the Altithermal Pe}iod (1T 000 to 3000 years B.P.). .
The location and intensity of groundwater discharge . is controlled
and influenced by configuration of the water Xable (major and minor
topographic . lows, breaks in slopé), relative position of geologic units
and their permeabilit; contrasts, shapes, and slopes (Freeze, 1969).

Because many different combinations of these factors are possible in

nature, it is apparent that the contribution of groundwatef\flov to soil )
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salinity may be difficult to evaluate.
The lmpo}tant role of groundwater in forming saline soils has been
clearly established. Meyboom (1966) related major areas of saline s01 1

occurrences in south-central Saskatchewan to both regional and local

groundwater discharge from artesian aquifers. He presented evidence

that flowing wells and strong upward hydraulic gradienis are associated
with the occurrences. Doering and Benz (1972) showed that discharge of
saline water from the Dakota Sandstone is responsible for soil
salinization in North Dakota. Brown et al..(1983) ident ified seven
distinct types of saline seeps resulting from the interplay of several
combinations of hydrologic, geolegic, and topographic features in
Alberta, Saskatchewan, and the northern Great Plains of the United
States. Henry et al. (1985) implicated upward Hydraulic gradients and
groandwater discharge in soil saligization at 15 sites in Saskatchewan.
They calculated that observed soil salt'loads could have accumulated by
upward movement from underlying aquifefs in, 500 to 5300 years.

Recent increases in area affected bytdryl nd saltinity are
attributed to farming and other cultural practices (Ballantyne, 1963;
Doering and Sandoval, 1975; Brown and Miller, 1978; Hendry and Schwartz, .
1982; Brown et al., 1983). Of.particular importance in this respect are
plowing of native grasses, planting cereal or other crops that make less
efficient use of available soil moisture, summer fallowing, and
widespread use of effective herbicides. All of these factors result in
increased availability of soil moisture to the groundwater system; a
general naising of the water table, and an increased water and salt flux
through zhe ;ystem.

Control measurds are aimed at'reducing the amounts of water



available to the groundwater §yst€m. These measures are most effective

if applied at the sowrce - the areas of groundwater recharge (Brown et

al., 1983; Vander Pluym, 1982). Methods to intercept water before 1t
can reach the ‘water table in recharge areas include:

(a) mechanically draining depressions and dugouts;

(b) p]antiqg deep-rooted, high water consuming crops such as alfalfa
that will use soil water; and,

(c) fncreasing the efficiency of water use by flex cropping. or by
growﬂ%g crops -every year when spring soil moisture is sufficient
for seed germination. *\\%;X
Control measures useful in areas of grouudwd{ér discharge all

involve lowering the water table. This can be accomplished by

intercepting laterally flowing groundwat®dr before it reaches saline soil

areas, tile drainage of the affected areas, or by lowering of

piezoﬁetric heads in relatively permeable units below saline soil areas.
A clear understanding of the various underlying.processes and the

2 J
groundwater flow regime is essential for the successful management of

soil salinity. In particular, many investigators feel that it 1is
important to identify the location and relative importdhce of' areas of
recha(ge that contribute to the development of saline soils, ho; changes
in land management practices will affect the amount of water entering
the 3andscape in those recharge areas, and how that will affect the
amount and quality of discharge water. _ £

The goal of this study is to develop a-quantitatixg understanding [/
of thé dynamics of water and salt movement in an area with an identified

salinity problem. While much is known about the general factors that

cause salinity, the number of. site-specifiE studies is limited.



Detailed studies are needed to examine the role of groundwater and other
water sources in dissolving, transporting, and eventually depositing
salts in the soil zone. The objectives of this study are to determine
the rates of recharge and discharge, Qhere these processes occur,
factors that control the groundwater chemistr& and flow distribution
between the areas of recharge and discharge, and factors that’are
responsible for high water tables, groundwater discharge, and salt
accumulation at specific sites. .
.The Blackspring Ridge area offers a unique opportunity to study the
relative importance of these factors because salinity is developed in &
variety of topographic settings and to different degrees of severity.
Salinity thus is likely to have a number of different causes or
combinations of causes. Results of the research should therefore be

representative of a broad range of salinity types and can hopefully be

extrapolated to other geographic areas.



2. PHYSICAL SETTING

2.1 Lacation. Physiography, and Drainage

The Blackspring Ridge area s located in southwestern Alberta near
the Town of Carmangay, approximately midway between the Cities of
Calgary and Lethbridge (Figure 1). The dominant topographic featyre of
the area is Blackspring Ridge, a till-covered bedrock ridge trending
approximately north gp south, ébout 20 km long and 9 km wide.- It rises
about 50 m above a surrounding lacustrine plain that gently slopes to
the west and northwest toward the Little Bow River (Figure 2). The
river ts incised about 50 m into this plaih and is super imposed on a

ma jor prgqiacial bedrock valley - the Carmangay Valley.

Alberta

Edmonton s

o Calgary:
Study Area
o 100 200 n.
— { Lethbridge |

Figure 1. Location of the Blackspring Ridge study area.



Figure 2.

Topography and drainage.
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Locﬂhef on the ridge is about 5 to 8 m. Drainage is poorly
integrated and a significant number of closed depressions exist. A
number of steep-sided ﬁoulees originate on the west flank of
the ridge and terminate at about the uppermost Timit of the lacustr1né
plain. Thé coulees are dry for most of the yeaf, but carry large

’
volumes of snowmelt water for short periods of time in the spring and
occasionally runoff from summer rains, when-these are of sufficient
intensity and duration. \ ,/

Except for the northernmost tip of the ridge, no surface drainage
originatihg from the west ridge flank leaves the lacustrine plain, but
follows a series of road and field ditches and minor natural depressions
to low portions of the plain. Drainageiis somewhat better integrated on
the east flank and reaches Travers Reservoir and the Little Bow River to
the north and east via intermittent streams.

Distinct lineations exist in the southern and northern boundaries
of the ridge, in coulees, and in other drainage channels originating
from the ridge. Although no rigorous statistical analysis wés
performed, lineations are or;ented at about 127° and 55° azimuth. These
directions are close to those reported by Babcock (1974) for sqythern
Alberta and indicate that strong structural control o% bedrock
morphology exists. =

The area receives about 380 mm of precipitation annually, of which
about 255 mm falls from April to September (lLongley, 1968). Potential
evapotranspiration is about 555 mm (Government_and University of
Alberta, 1969). The years 1984 and 1985 had below normal summ;r
precipitation, with 105 and 194 mm recorded at the study site,

respectively.



So1ls are Dark Brown chernozemic (Agriculture Canada, dnpuﬁiished
information) and farming consists almost entirely of dryland cereal crop
production.

The investigation proceeded in two phases. An initial regional
investigation focused along two regional’cross-sections, A-A' and B-8',
whose location is $hown on Figure'Z. A detailed study was then
conducted in a smaller area shown onAthe figure where severe soil
salinization was noted. Section C-C' is located in this local area

(Figure 2).

2.2 Soil Salinity

The main occurrences of saline soils are shown regionally and for
the local investigation in Figures 3 and 4, respectively. Both are
probably underestiq:tes because only areas with actual white salt crusts
on the ground surface are shown. _Salinity, as determined by EM38
traverses (Appendix 1), is shown above each hydrogeologic cross sectioh
(Figures.s, 6, 11 and 24). Saturation paste extract results and depth
profiles are given in Appendix 2 and 3, respectively.

These surveys show that the salinity occurs in several distinct
topographic settings:
a) fromb5 to 10 m below the first major dé&l{ne in slope from the top

of the ridge; ’
b) near the base of the ridge;
¢) from bedrock outcrops along coulee sides; and,
d): as diffuse“saline occurrences on the lacustrine plain.

Those on the lacustrine plain appear as more concentrated linear

= . . . ;
occurrences where thin aeolian sediment overlies lacustrine deposits

{
BN
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west of the northern half of the ridge.

The intensity of surface expression of soil salinization varies
greatly with location and time, even within the various Iaédscape
settings. The most severé salinization ocghrs at the base of
Blackspring Ridge near the intersection of Sections 1. 2, 11, and 12 of
13-24 W4 Mer (Figure 4). Sa]i?};y is manifested by large areas of
severe salt crusting on the surface, areas of salt-tolerant vegetation

[[including Salicornia rubra (samphire),
and Eggnig scoparia (kochia)], and areas thﬁi{;uppo t only poor, or no,

crop'pro&ﬁctfon (Plates 1 and 2). Trafficabitity in the more severely

(wild barley),

affected areas is so poor that in some ygars cultivation is not
attempted. EM38 readings indicate salinity rangesAfrom 12 to 19 dS/m in
the upper 1.2 m.

A reasonably long history with respect to salinity andxland
management is available for 11-13-23 W4 (Mr. Roy Mcleod, personal
communication). The section came into the MclLeod family in 1917 with
abbut 86 ha broken. From 1934 to 1950 the re’ainder of the section was
gradually brought into production. Mr. Mcleod feels that prior to 1934
only minor salinity existed at the east border of the section, but that
the white salt-crusted area at the southeast corner was present. In
about 1953, after the entire section was broken, salinization
intensified, with spreading from the eagt and southeast to thq point
where presently more than half of the section is affected to some ‘
degree. Remedial measures that have been attempted on Section 11
include surface drainage by ditEhing, and cropping of seyére]y affected
areas with alfalfa and crested wheat grass. e

From about the centre of Section 11 to the Peacock Slough (in NW

>



aﬁ¢‘3ﬂ~of‘10-13—23 Wa) salinity exists, but 1s not intense enough to

4

§ﬁow strong surface expression. Salt crusting is moderate to l;iht and

d&ﬁ;jrs only 1ntermittently 1n the vicinity of the Peacock Slough. The

préségé_\s reflected mainly by uneven grop growth. EM38 traverses,
howeiﬁ%?kshow that salinmity ranging from 5 to 9.5 dS/m exists n the
upper fc2 m.
« T
A E‘}ghq area of salinity similar in size and intensity to that n
and nea# Sectlon 11-13-23 W4 exists about 3 km to the south. North of
Section 11, areas of salinity along the base of Blackspring Ridge are
generally much smaller in areal extent (S19-13-22 W4; S5 and 16 of 14-22
W4). These are also\considened to have ex1sted prior to cultivation.
Salinity developed i dunal areas is typified by occurrences in
Sect ions 36-23-13 W4 and 31-13-22 W4 (Plate 3). Dunes and depressed
areas between dunes trend at about 45° azimuth and salinity occurs 1n
* much of the depressed areas. It 1; estimated that at least 15 percent
of the sdrface area of these two sections is affected.
Mr. John McFarland (personal communication) reports that prior to
breaking and cultivation of Section 36 no salinity existed. In fact,
areas that are now saline produced the best crops immediately after
breaking, BJE started tb become saline about four to five y » later.
. Salinity distribution with depth as shown by saturationaghste
extract results is giyen in Appendix 2 and 3. Results are in good
agreement w‘ith field and air-photo observations in that areas with
strong surface expression also show salinity at depth.
In severely affected areas (Sites A4, C4, C5, and C6) salt gontent

is high to aepths of 15 m or more. Salinity generally decreases with

depth but reversals are not uncommon. The main constituents are sodium
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and sulfate with magnesium and calcum being secondary. Electrical
conductivity 1s generally above 4 dS/m and reaches a maxmfgn of 22 dS/m
at the ground surface at Site (4. | 1;
Non-saline areas, represented by profiles Al. A2, Bi, B2, B3, BS,
and B6, generally show strongly leached conditions 1n the upper 2 to
about 7 m and then 1i1ncrease only slightly 1n total salt content with
depth. Calcium and magnesium salts are dominant 1n leached portions of
profiles but sodium increases with depth and total salt content.
Electrical conductivity ranges from less then 1 dS/m 1n near-surface
leached zones to about 2 or 3 dS/m in deeper areas. Conspicuous
increases in total salt content exist at bedrock contacts overlain by

thin drift sediment at Sites Al, A2, and BZ.

2.3 Geology

2.3.1 Bedrock geology

An important part of this study involved both auger and mud-rotary
dr11ling to better define geologic conditions. Details on the drilting,
sampling and logging are provided in Appendix 1. Bedrock of the area
consists of continental sandstone, si1tstone. claystone,” and coal beds
of the upper Cretaceous Horseshoe Canyon Formation. This unit overlies
silty shale and sandstone beds of }he mar ine Bearpaw Formation (Figures
5 and 6).

Th{ geologic béfe for the regional investigation was taken to be a
sanastone unit within the Bea;paw Formation consisting of one to two
beds with a coal seam above the lower bed. The sandstone beds range in

thickness from less than 1 m to about 20 m, and are generally separated

> -
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from the hasal sandstone of the overlying Horseshoe Canyon by about 20 m
of silty shale. This unit is termed the Ryegrass Sandstone by Link and
Childerhose (1931) and the Thelma and Oxarat Members by Lines (1963).
Structure testhole and oil well geophysical log data for the area show
that, except for two minor sandstone occurrences, the 190 m of Bearpaw
Formation below the Ryegrass Sandstone 1s shale. )

Only the lowermost 100 m of Horseshoe Canyon Formation were
encountered during drilling. For this study this section is divided
into three units. JThe basal unit, which is -from 15 to 35 m thick,
consists mainly of sandstone, but contains as much as 10 m of claystone
and siltstone. This unit is overlain by a 45-m thick unit of clayst6ﬁe,
silt;tone and minor sandstone containing two to three coal seams in the
lower half. Along the southern cross section another unit of increased
sandstone content was encountered above the second unit; no appreciable
increase in sandstone content was encountered at the equivalent
stratigraphic position of the north section. r

The structure contour map for the top of the Kipp Sandstone
(Figure 7) shows Black;pring Ridge to be a structural high, with beds
beneath and east of the ridge dipping to the north-northwest at about
8 m/km. West of the ridge, bedsidip to the west at up to 55 m/km, then
decline to about 20 m/km. The structure contours, along with pronounced
lineations in topography and drainage that were mentioned previously,
strongly suggest that faulting may account for much of the offset in the
Kipp Sandstone shown in Figure 7.

In‘an attempt to verify the possibility of faulting, two deep

seismic reflection profiles were obtained from Canadian Occidental

Petroleum Ltd. Although specific data and locations of profiles are

\v
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confidential, some general information can be related. The profiies
were independently examined by geophysicists at the Universitx of
Alberta (E.R. Kinasewich and Z. Berkes, personal communication) and both
concluded that it was highly likely that a number of apparent major
displacements constitute faulting. Primary evidence was taken to be a
series of diffraction patterns associated with a number of the
displacements.

Depths to a major reflecting horizon were determined using a
travel-time versus depth plot constructed from sonic log data from an
exploration borehole. Inferpretation of the seismic data showed that
beds immediately above the Precambrian surface at depths from 2600 to
3000 m below g%ound level are displaced vertically from 130 to 316 m.
Both vertical displacement and resolution of reflection horizans
decrease higher in the section. Wo data are available for the uppermost
450 m. The seismic data must thus be considered circumstantial but they
do lend credence'to the postulation that faulting may exist in
near-surface bedrock. .

Furthermore, portions of Blackspring Ridge, particularly the
western, and perhaps the eastern, flanks aré deformed, fractured, and
faulted by glacial overriding. This type of deformation was documented
by Sauer (1978) and Moell et al. (1985) for southern Saskatchewan and
central Alberta. The né@f surface influence of glaciation has resulted
in fracturing of the sha]%ow bedrock. Evidence is provided by the
following:

a) at Drill Site A2, circulation was lost in bedrock at 25 m and could
only be regained with great difficulty; ¢ , ;

') rotary bedrock drill cuttings from most holes of the C-Line and

»



from as deep as 25 m contained iron stains on fracture planés; and,

c) hydraulic conductivity of very fine to fine grained sandstone
. -6 -

ranging from 10 to more than 10 ¢ m per second.

According to I. Shetsen (personal communication) the area
experienced at least two glaciations, one from the northwest and the

'

other from the northeast. It is not unreasonable to ;xpect a dominant

bedrock high such as Blackspring Bidge to undergo deformation by glacial

overriding, particularly along edges exposed transverse to ice advances.

2.3.2 Surficial geology a

Drift thickness ranges from 2 to 5 n:on top of the ridge to about
110 m along the Little Bow River. A preglacial buried valley, thg_
Carmanggz Valley, is located at appraximately thé'position of the Little
Bow River and Travers Reservoir (Geiger, 1967). Drilling located deep
preglacial gravel at the A5 Site, which is interpreted as flooring
another south-to-north trending preglacial valley, probably a tributary
to the Carmangay Valley.

Within the buried valleys, the basal sand and gravel is capped by a
' lacustrine unit,  as much as 10 m thick, which is in turn overlain by as
much as 25 m of diamicton or glacial debris flow sediment. Overlying
- this sequence, and covering the entire area, are two till units. The
‘contact between the two till units is marked in places by glacial
stratified deposits ranging in composition from silt and clayey silt to
sand and grayel. -As much as 10 m of these stratified deposits exist
above the buried valleys. At the C6 drill site about 20 m of stratified
sedimeni exist below the upper till but lie directly on bedrock. This

configuration suggests that erosion of the lower till was associated
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with deposition of the stratified 3n1t. It is thus probable that the
unit was deposited in a channel. The channel may be continuous from
Site €6 through Sites 6NT, 5WT and to B3 and B4, but because no data are
available for about 5 km between Sites 5WT and Bj&*this connection
remains unproven. At a number of places along the Qestern flank of the
ridge as much as 3.5 m of sand lie directly on bedrock (Figures 10 and
11). This sand may be equivalent to the glacial stratified deposits or
may be preglacial in age. ,

A glaciolacustrine unit of clay, varved silt and clay, amd sand
covers the upper till to an elevation of about 955 h. Glacial outwash
sand over lies the lacustrine unit along the Little Bow River. A series
of thin sand dunes .extends from the outwash sand toward northern
portions of the ridge. \A}though not confirmed by dri]]ing: it is
probable that alluvial fan deposits are present where coulees meet the
lacustrine plain at the west ridge flank.

Both the till and the lacustrine-deposits are weathered near the

surface. Co]ours\indicative of oxidation, fracturing, and iron staining

were generally found to a depth of 15 m and in places to 20 m.

2.4 Hydrogeology

2.4.1 Hydraulic conductivity

A 4
Hydraulic conductivity values determined for the various

R «
hydrostratigraphic units are presented in tabulated form in Appendix 4.
»
and graphically in Figures 8 and 9. Values presented in Figures 8 and 9
are derived from in-situ hydraulic tests that were anaiyzed-by methods

appropriate for the hydrauli; settings at individual test sites

4
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(Appendix 1). For purposes of calculation, digital modelling, and flux
determinat ions, hydraulic conductivity 6f till was assumed to be
isotropic; all other units were assumed to have vertical hydraulic
conductivity one order of magnitude less than horlzontal.. Permeameter
tests (Appendix 5) conducted on near-surface lacustrine deposits
indicate that for these deposits the ratio of horizont;: to vertical
hydraulic conductivity is about 6.5. The latter data were not available
at thée time digital modelling was performed and a value of 10 was used
for these solutions. Generally, ranges and geometric mean values of the
various units are similar to those reported by others for southern
Alberta (Hendry, 1983; Forster, 1984; Chan and Hendf&n 198%).

The relatively high hydraulic conductivity values and the broad
rang: of values (about 3.5 orders of magnitude) of glaciolacustrine
deposits are probably a reﬁu]t of a combination of textural variq}ion
and near-surface weathering. This unit ranges texturai\y from clay with,
thin silt laminae, to clayey and silty sand. Colours indicative of
oxidation and occasional fracture planes with iron stains were noted

)
during core sample inspection. The highest hydraulic conductivity

ERath

values were measured in shallow water-table wells (less than 6 m deéb) -
and in deposits with high silt or sand content.

Hydrauli; conductivit ies greater than 1 x 10_6m/sec were determined
from four wells (C5, C6, 6WT, and 17WT) that are located at the base of
the ridge in a topographic setting that suggests alluvial deposition
from coulees may be occurring. A high proportion of silt and very fine
grsined sand was noted in the upper 1 to 5 m of sediment from testholes
C5, C6 and 6WT, and very-fine to medium grained sand to 4 m at 17WT. .It

i

could nof, however, be determined if these deposits are alluvial or
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represent a glaciolacustrine shoreline facies; hydraulic conductivity
data are grouped with those of lacustrine deposits.

Hydraulic conductivity measured in the laboratory for the
lacustrine deposits islgenerally from one to two orders of magnitude
lower than that obtéined by in-situ testing of water-table wells at
coinciding locations. This difference between measurements is-likely
caused because the larger scale field tests are influenced by thin
layers of texturally coarse materials and perhaps near-surface
fracturing. Because a much smaller volume of material is sampled by a
core, the probability of either of these features influencing a
laboratory test is much lower.

The hydraulic conductivity of bedrock units, especially sandstone
units, is considerably more variable than that of drift units
(Figure 9)., No systematic pattern in variability could be found. The
pattern of variability could however be expected, given the strong
structural control and deformation produced by glacial overriding, which
likely produces a strong joint and fracture control on hydraulic
conductivity. In addition, the lenticular nature of continental deltaic
deposits such as those of the Horseshog Canyon Fafmation, €an also
contribute somewhat to the high degree of variability. Because of the
very-fine to Fﬁﬁé-grained texture of most sandstone beds, this
contribution to variability probably only influences the lower end of

the range.
Al&bst all of the sandsfohe with hydraulic cbnductivity greater
than the mean vglue determined for fractured sandstone (1.0 x

10-6 m/sec) was encountered during 1986'drilling of the.C-Line. Two

possible explanations are:
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a) completion zones during i986 drilling were deliberately made longer
to increase the probability of sampling a representative fractured
rock unit volume; and,

b) bedrock of the western flank of Blackspring Ridge is more highly
fractured than elsewhere.

Hydraulic conductivity values obtained for claystone and shale
range from 1.6 x 10 '© to 9.5 x 10  m/sec. Again. this variability is
caused by the extent to which fracturing has occurred. At some sites
(16-2, C3, C2), fractured sandstone 1s observed in close. proximity to
apparent 1y unfractured argillaceous units. Thus, argillaceous units as .
one might expect have a much smaller fracture density than the sandstone

units.

2.4.2 Hydraulic head and groundwater flow distribution

2.4.2.1 Regional investigation )

The regional groundwater flow distribution was investigated by
matching observed values of hydraulic head derived from wate:—level data
with hydraulic head va]uFS determined with a digital flow model
developed by Schwartz and Crowe (1980), (Figures 5 and 6). This
theoretical approach was used for two reasons.

First, spacing between individual piezometer nests or observation
points is generally relatively large (about 1.5 km). The position of
the equipotential lines thus can only be defined very crudely because of
the distance between data points in the'horizohtal direction. Digital

simulation becopes a way of using specified values of hydraulic

conductivity consistently throughout the flow region to avoid

P
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investigator bias. This approach s particularly important in regions

of lateral flow where slight deviations of equipotential lines around
&

the vertical can change the interpreted direction of flow components

from up to down.

o

Second, the trial and error method involved in matching observed

#d simulated head values 1s 1n 1tself a process that leads to

additional knowledge about the flow distribution. By repedtedly

changing hydraulic parameters, unit boundaries, or boundary conditions
in attempting to match observed values, a significantly better
Qnderstanding of hydraulic conditions of the simulated region is
developed’

‘Thedhodel for Section A was set up using 64 and 48 nodes in the
vertical and horizontal direction, respectively. The.B-Line was
discretized using 41 vertical and 58 horizontal nodes. In both cases,
vertical node spacing was 5-m and horizontal spacing was 127 m.

Thé best-fit digital simulations of the hydraulic-head shown in
Figures 5 and 6 are the result of a large number of trial and error
runs. Various model parameters such as water-table configuration,
hydraulic conductivity values, and boundary conditions were adjusted
until a reaSOnable fit with piezometer-derived head measurements waij" 5
obtained. Generally hydraulic conductivity values close to the
geometric mean for the various rock units available at the time prior to
C-Line drilling could be used (Table 1). .

One major feature of the model was the necessity for a barrier
boundary tQigroundwater flow situated approximately near the upper break

in slope of B1ackspr\ng Ridge. The predominantly vertical gradlents and

measured hydréulic head values at piezometer nests A2 and B2 could not

w
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Table 1. Horizontal hydraulic conductivity* assigned to various
hydrostratigraphic units of digital models (m/sec).

A-l 1ne B-L1ne Hydrostratigraphtc Unit

3.7 x 40 3.7 x 10:; Surface glacrolacustrin® unit
3.0 x 10_g . at B6
i 2.0 x 10_g . at Bé6
2.0 x 10 2.0 x 10 Deep glaciolacustrine unit in buried valleys
1.9 x 105, 1.9x 10, Weathered till
1.0 x 10 1.0 x 10 Unweathered till
-7 _
2.0 x 10 _g Glacial stratified deposits
1.0 x 10_,, at B5.5 and B6
1.0 x 10 . at B3 and B4
1.7 x 10 1.7 x 10:: Preglacial valley gravel and sand
1.7 x 10 . as terrace Joining basal unit to
3 uppermost sandstone, B5.5 to Bb
1.0 x 10 . as terrace west of B3
-9 -9
2.0 x 10_4 2.0 x 10__ Siltstone, claystone, shale; Horseshoe Canyon
2.0 x 10 5.0 x 10 . fractured
-7 -6
4.0 x 10_4 2.5 x 10 Sandstone, basal Horseshoe Canyon and Ryegrass
5.0 x 10 7 . Upper Horseshoe Canyon
3.5 x 10 . deep
-7 -7
5.0 x 10_g 1.0 x 10 Coal, Horseshoe Canyon
2.2 x 10 . Bearpaw
-10 -1
1.0 x 10 1.0 x 10_g Bearpaw Shale
2.0 x 10 . fractured

k ; for all other units k, = 10 k
v h A

N

* For till k,
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otherwise be replicated. The barrver was simulated with the model by
moving the right (eastern) vertical impermeable boundary from about the
middle of Blackspring Ridge to the assgmed pos»tion of the fault. The
discrepancy in head values obtained 1n simulation trials without the
barrier was 15 ahd 5 m for Sections A and B, respéctively.

The presence of this feature is supported by field observations
including thé structural control 1mplied by Figure 7, the strong bedrock

——
lineations developed in the region, and especially the deep.reflectvon
seismic data for the area. An alternative explanation is that the lower
head values are a three-dlmehsional effect caused by the presence of
steep-sided coulees both north and west of piezometer nest AZ2. The much
less pronounced discrepancy near B2 and high degree of fracturing in
near-surface, bedrock along the C-Line support the latter explanation.

It can be argued that the effect of both postulated situat{ons on
deep groundwater flow should be similar and result in less groundwater
flowing toward the lacustrine ptain. If a'fgult bar\ger exists, then
groundwater that would normally constigﬁte part of a deep flow system
originating on top of the ridge and discharging to low portions of the
plain, is diverted eastward. 1If the,éoulees are exerting a strong
influence, then groundwater flow is/div:rted toward, and discharged in
and along, coulee bottoms and side§. In either case, there would be

less regional groundwater flow to the wegt.

A combiraticn of three major changes to Section B was required to

adequately simulate the obseryed distribution of hydraulic head: the
measured head within thefburied valley basal gravel had to be specified;
a hydraulic connection bat n. it and the sandstone units of the

Horseshoe Canyon and Bearpaw Formations had to be provided along the
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bedrock contact; and, hydraulic conductivity of the sandstone beds had
to be increased by a factor of 6. The change 1n hydraulic-head
dlstr(but1on resulting from this combination of changes was major and
dramatic; 1t provided the only means of simulating the extremely strong
downward gradient that exists in upper central portions of the section.
The required changes to Section B can be justified in view of
three-dimensional effects of groundwater flow 1n the vicinity of the
buried Carmangay Valley Aquifer at, and northeast of, the section.
_ Fixing hydraulic head in basal gravel of the buried valley is required
because groundwater flow along the liné of section is not conservative.
Groundwater both enters and leaves the section through this unit. Most
of the groundwater flow along the se®tion eventually exits from the unit
in the third-dimension. Direct hydraulic connection between the
sandstone units and the/;asal gravel causes lower heads in the
sandstone, which in turn increases the downward, vertical gradient above
the sandstone. The increase in hydraulic conductivity of the sandstone
units was required to decrease the horizbntal gradient within the
sandstone. It is thus highly likely that the hydraulic connection
provided between the sandstone units and the basal gravel by the terrace
deposits extends northeast of the section and that a significant
component of flow exjsts in that direction within the sandstone units.
Although the simulation could still benefit from fuither ad justments,
particularly in bedrock units, it is felt that it adequately represents
the gross characteristics of hydraulic gradients and flow distribution
within the shallow drift along portions of the section affected by soil
salinity. o

The potential and groundwater flow distribution along Section A are
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characterized by the following: predominantly recharging conditions
along the west flank of the ridge; lateral and slightly upward flow in
weathered units of the saline lacustrine plain; and, predominantly
upward flow 1n unweathered drift units and bedrock underlying the
lacustrane plain.

Cross section B presents a strikingly different picture with
respect to potential and groundwater flow distribution. The only
discharging conditions that could be simulated on the lacustrine plain
are very minor énd are located in the §1c1nity of Testhole B5.5. The
hydraulic gradient within weathered drift of the lacustrine plain is
primarily horizontal, within the underlying unweatheéed units it is
strongly vertical, and almost complete drainage is provided by the basal
buried valley sand and gravel, through the bedrock sandstone units.

Groundwater discharge conditions exist in the Little Bow River Valley.

2.4.2.2 Local investigation

Water-level data of mid-1986 were used to derive the potential
distribution along the C-Line (Figures 10 and 11). For visual ease and
to allow approximate derivation of groundwater flow directions, the
section is presented at a vertical exaggeration of {10 (Figure 11)¢ flow
lines should thus be approximately at right angles to equipotential
lines in bedrock units. The -head value of 978.8 m in coal at the base
of the section at Site 16-2 is projected from Site A3. Figure 10. is
included to show geologic detail that was omitted from Figure 11 because
of vertical scale. In view of the extreme complexity of flow conditions
that exist along the C-Line, digital simulation was not attempted.

Drilling and hydraulic testing along the C-Line revealed important
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Figure 10. C-lLine, geology and hydraulic head distribution.
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geologic information about th1$ part o(rfhé\stnﬁy area. Two features,
the very high degree of bedrock fractuRiiB and the existence of a sand
and gravel filled channel have already been discussed. In addition, a
thin, but extensive, sand unit lies on bedrock along the lower slopes of
Blackspring Ridge (Sites C2, C3, and (4).

The water table is very deep in upper portions of the section
(about 21 m at C1 and 10 m at C2) and reflects lateral drainage (out of
the section) toward sandstone outcrops in the coulee located about
one-half kilometre to the north. Perche&r;onditions within sandstone
beds above the water table are probable.

The potential distribution is characterized by large changes in
hydrau]it gradients and gradient directions. In particular, a claystone
unit (located from about 24 to 30 m at Site C2) partitions groundwater
flow above and below the unit. Abové the unit, groundwater flows
pfeferentia]]y in fractured sandstone beds. Upward‘directed components
exist downslope from about midway between Sites C1 and C2. Groundwater
flows downward through the claystone unit and into underlying sandstoﬁé
beds from Site Cl to just upstope from Site 16. From this poini on down
the section, all flow is upward.

The potential configuratioé near Site 16 1is aléo unique in other
respects. The lateral gradient within a thin sandstone bed above the
claystone dnit becomes very steep between Sites C3 and 16, indicatiﬁg
that a discontinuity in hydraulic conductivity (either textural or
structﬁral in origin) must exist. %g*ween Sites 16 and C4, the lateral

~hydraulic gradient in the same ;andstone changes again to becoﬁ;]much
lower. Limited water-level data indicate that the low-gradient zone

also extends below the sandstone unit.
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The low-gradient region below the sandstone may result from one or
more of the following conditions:
1) the region could be highly fractured and permeable and thus require
a lower gradient to transmit water;
2) the hydraulic-conductivity discoﬁtinuity mentioned above disgipates
gradients uestream from the discontinuity; or,
3) it could represent a stagnant point at a junction of fiow systems.
A significant cha:ge in hydraulic gradient also exists above the
thin sandstone bed ment ioned above from about Site 16-2, upslope and\\
midway to Site C3. The differencg here is that the steep cross-
formational gradient normally associated with claystone units of low
hydraulic conductivity is absent, and groundwater flow has a high
lateral component even in claystone units. This distribution may be
caused by localized fracturing in this region, which has also affected
the claystone/units.
The high hydraulic conductivity measured in claystone and shale at
Site 16WT (k, = 4 x 10-7 m/sec) and extreme brecciation and 1ron
staining noted in auger and rotary drill cu;tings support this
fnterpretation. Fracturing thus probably provides a good vertical

hydraulic connection between the thin sandstone bed at about 25 m and

/
/

the water table in thi; region. )
Downs lope from Site C4 the hydraulic gradient and groundwater flow
continue to be strongly upward, particularly above the stratified
channel deposits in the Yicinity of Site Cé6.
A final observation with respect to grounQWater flow alodb the
C-Line is worth mentioning. A three-dimensional effect should be

evidsnt in the hydraulic head distribution downslope from approximately
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the location of Site C4. Upslope from Site C4, *he section is oriented
approximately normal to the topographic slope. Flow out of the section
is directed toward the previously ﬁent1oned coulee. Between 64 and C5,
however, the line is Jocated at the base of a roughly bowl-shaped
depression formed by several coulees. Flow from the sides of the .
depression should be directed toward the C-Line and thus intensify

groundwater discharge in this region.

2.4.3 Water leyel fluctuations and responses

Hydrographs for the various piezometers and water-table wells are
given in Appendix 6 along with rainfall data. Selected plots are
presented in this section to illustrate specific characteristics.
Symbols used to represent free-flowing and frozen conditions on
hydrographs are plotted at the elevation of the top of the respective
piezometer. Gaps in hydrographs represent cleading, sampling, and
Hydrau]ic—testing intervals.

In general, water-level fluctuations are greatest in shallow wells
and piezoﬁeters and can usually be correlated to precipitation events.
Piezometers typically respond with reduced amplitude and increased tﬁhé‘
delays with increased depth. While the demarcation line between high
and low amplitudes of fluctuation is obviously subjective, it s
considered here that fluctuations of about 0.2 m or more result from
host-rock conditions with respect to hydraulic conductivity that allow
hydraulic head perturbations to be transmitted rapidly. Such
fluctuations typically occur in water-tabTe wells, i piezometergrdf

completed in weathered drift sediment less than 18 m jeep, and iﬁ

‘regions of bedrock with*evidence of fracturing as described in previous
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sections. ' )

The last bedrock zone correlates especially well with a zone of
high TDS and 504= content (Figures 13 and 14) extend1ng"to about 30 m
below the water table and the bedrock surface. In this region water
level fluctuations from about 0.2 ta 1 m occurred in 1986 (see
hydrographs C2-40, C3-30, 16-2-38, C4-36, C4-65, C4-100, C5-45, (5-135
and C6-170; Appendix 6). Water-level fluctuations of this type probably
correlate with zones of relatively éctive groundwater flow.

Water level fluctuations in several other deep yslls in bedrock
exhibit trends that may support previous geologic 1nterpretatlons
Specifically, water Yevels in some piezometers situated é;/;;drock units
of Section B that were postulated to be in hyd}aulic connection with
basal gfavel of the buried Carmangay Valley via terrace iﬁnd and gravel
deposits, [Plezometers 33 258 and B5 (83, 118, 194 and 228)] exhibit
water level behav16¥ ar to that in the piezometer completed in
buried valley deposits (86—355). The trend for 1984 to 1986 is, in all
cases, a drop of about 1 m.

Similarly, the water level in piezometer Al-197 shows a decline of
about 1 m while that of A2-232 stays essentially the same. Both are
completed in the same coal Seam and hydraulic conductivity is similar at
both sites. It is possible:that the difference in behavior is due to

their location with respect to the fault postuiated to exist near

Site A2. In other words, they are located on different sides of the

postulated hydraulic barrier. East of the barrier, tfe coal seam may be v

draining toward its subcrop, whereas west of the barrier, it is not in

hydraulic connection with the subcrop.

’\\ - !

(
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2.4.4 Depth to wé&gf table

There is a considerable range 1n the depth to the water table.
Although rigorous proof 1s not avaflab]e. relative water levels, 1ron-
stained fractures to 23 m at Site Cl, loss of circulation at 25 m at
Site A2, and shapes of slug test response cugves indicate that a
discontinuous series of perched water tables exist along about the upgfr
half of the western ridge flank. A vefy steep vertical hydraulic
gradient (>1.0), mirabilite and gypsum occurrences at 14 m, and an
oxidized till zone at 23 m at Site B5 indicate that perched conditions
may also exist in drift sediment for a considerable distance from the
Littte Bow River.

In general, the depth to the water table on top of Blackspring
Ridge ranges from 5 to 6 m. Discontinuous unsaturated zones may occur
to a depth of 25 m along the western upper edge of the ridge and for a
distance of more than 3 km from the Little Bow River. On the lac&sttine
‘plain the depth raqges,from less fhan 1 to abgut 3 m.

Values of the shallowest depth to the water table measured in 1986
in the area of detailed 1nvestigation.are contoured in Figurg 12.
Shallowest water-table occurrences are in saline areas ;}ong the base of
| Blackspring Ridge and in the vicinity of the temporary Peacock Slough
(Site A5). Depths greater than 3 m at Sites C5 and 11 result from minor

surface elevation increases in areas of sandy surface deposits.

2.4.5 Hydrochemistry

The major-ion chemistry of samples from piezometer nests of the
C-Line are given in Figures 13 td 19 Tabulation of pydrobhemical

analyses from the A, B, and C-Lines, is given in Ap&endix 7, and Piper

\
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trilinear diagrams of hydrochemjstry from individual piezometer nests

are given in Appendix 8. ‘

The most striking feature with respect to hydrochemistry along the
C-Line is the very strong zonation of total dissolved soltds (TDS) and
suifate ion (SO‘:) distribgtion within areas extending about 30 m below
the water table and the bedrock surface. The dominant cation in this
region 1s Na*, but Ca*" and MgH exist in significant amounts (up to
about 35 percent of cations) in upper portions, particularly at Site C3
and in stratified channel and drift sediment at C6 and A4. TDS and 504:
content of groundwater of this 2one are generally above 6000 mg/L and
3000 mg/L, respectively, and increase toward the water table to values
exceeding 20 000 and 10 000 mg/L, respectively.

Below the upper zone, SO‘= and TDS content decrease rapidly to
values of less than 100 and 2000 mg/L, respectively, and groundwater
tends toward a NaHCO3 typt of compasition. This‘is in turn underlain by
a zone of increased TDS content and water tending toward a NaHC03/C1
type of composition.

The distribution of dissolved consyituents is such that the
following conclusions appear valid.

1. The majority of the dissolved salts within the groundwater flow
region are generated and transported within the shallow regfoh'less
than 30 m bé]ow the water table. The generation of sulfate occurs
over very short distances of vertical travel as evidenced by
contents of 2200 and 430G, mg/L in water from Well Al-WT and
Piezometer B1-34, respectively. '

2. Anaegrobic reduction of sulfate appears to be occurrihg in the

intermediate and lower zones as evidenced by severe decreases in

»
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- - ¢
S0, content and general increases of HCO3 content with increased

4
depth, along the same flow path.

3. The substantial Ca'' and MgH content of groundwater 1n the upper
bedrock zone may be additional evidence that groundwater flow 1s
predominantly fracture oriented. Ffracture-dominated flow should
result in a restricted degree of coqtact with clay particles and
thus inhibit cation exchange processes which would otherwise be
occurring.

4. There exist two distortions in hydrochemical patterns {:::\are
significant in terms of recharge to the water table. The first is
situated at the C2 Site and constitutes a plume of water with very
high TDS and 504= content which is being added to the system at the
water table. Tﬁe interpr;tation is that perched water-table

conditions exist in sandstoné beds stratigraphically and

topographically above the wWater table in this region and that water

N
and dissolved salts are agded to the saturated zone by flow from

these sandstone beds. The second is a plume of water with low TDS
and 504- content being added in the vicinity of Site C3. In this
' area, however, a sandstone bed comes into contact with a shallow

drift sand layer and relatively fresh water is added to the system.

2.4.6 Environmental isotopes

2.4.6.1 Tritium
Results of tritium analyses are tabulated in Appendix 9. Those for
water extracted from cores are shown as depth profil or selected

sites "in Figure 20. Depth profiles are prgiented both for areas



T80

Totewm umts

100 150

Tetgm units

84 0 50 100
e

Depth 10 metres

_Figure 20a. Tritium content of core-water extracts from Sites A4,
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characterized by downward hydraulic gradients (Sites B4 and B5), and by

{ Al

upward gradientg (Sites A4, A5, C4, C5. and C6) 1n near-surface
sediment. -The profiles show that tritium levels well above detection
limits are present to depths of generally 5 m, or about 3 m below the
water table.

The peak in activity occurs near, or above, the water table at
values of about 90 to 110 tritium units. Activities as high as 130 and
240 tritium units were measured in core-water samples from Sites 10 and
13, respectively. Because the peak values are substantially higher than
those determined for 1984 to 1986 Alberta precipitation water and
Blackspring Ridge area surface and gnow water, they may represent water
emplaced after 1952 and mixing éf this with more recent water. The
close association of the peaks with the position of the water table also
suggests that some degree of evaporative enrichment is occurring above
the water table.

Zones of'high tritium content are not confined to areas of downward
hydraulic gradients but appear to occur everywhere in the upper 2 to 3 m
of the saturated zone. Recharge to the water table by infiltration of
precipitation and snowmelt water is thus occurring both in areas of
groundwater recharge\and groundwater discharge. This concept is

corroborated by the relationship between recharge events and water-table

fluctuations (see discussion in 3.4.1).

2.4.6.2 Stable isotopes
Stable isotope values determined for the various waters of the <
region are plotted as 5180 versus-8D diagrams (Figure 21), and along the

C-Line (Figure 22) to show variations within the gfoundwater flow
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domain. Individual determinations are given 1n Appendix 10.

Snow samples were collected from December 1983 to fFebruary 1986.
Snow samples were taken 1f 1t was felt that no significant melting had
occurred. These are thus felt to generally represent snow 1n a #resh
condition. Surfdce water was sampled from the Peacock Stough (1985 and
1986), from a small temporary slough 1n SW 5-22-13 W4 (1985). and from a
small dugout located about 00 m south of Site Al (1985). Water was
sampled biweekly from the time of the spring snowmelt event to dryness.
Groundwater was sampled from piezometers and water-table wells 1n July
of 1986.

Deuter ium versus 18O ata were grouped with respect to water type.

Linear regresston equatiofs characterizing these data are given 1n

Table 2. v ‘ll'

18
Table 2. Deuterium and 0 relationships.

Water tyJ; Equation n rZ
Spring snowmelt/runoff water *8D = 4.;5 5 %0 -5a.80 18  0.99
Peacock and upland sloughs
Dugout water *6D = 4656 0 -64.16 6 0.9
Water-table water | 50 - 5786 '%-37.37 38 0.94
Shallow bedrock water 50 = 4.76 & '°0 - 58.59 20  0.91
Deep bedrock water 04935 '% 5175 13, 0.9

* Two values that plot along the Craig meteoric.water line are omitted
from the regression analysis. ‘

[ 4
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The line through samples from the two sloughs 1s considered to
represent an evaporation line for the area. There 1; a slight, but
distinct, difference b;tween the intercepts, of these and the
evaporation line for samples from the dugout, with the meteoric water
l'ne. The dugout probably contained a larger proportion o? snow that
fell during colder winter months than did the snowmelt waters that
accumulated 1n the two sloughs.

Water-table and drift water plots on or between the evapérated—
water line and the Crajyg meteoric water line. Sources for this water
are thus consistent with precipitation, evaporated precipitation, and
mixtures of the two, all having occurred under climatic conditions
similar to the present. )

Bedrock water plots alona two sliightly, but d1st1nctly; different
lines (Figure 21d). The stable isotopic composition of shallow bedrock
water is very close to present-day evaporated and nonevaporated water;
intercepts with the meteoric water line are essentially identical.
Deeper bedrock water appears to have recharged under slightly warmer
climatic conditions. The intercept of the deep bedrock water line with
qthe meteoric water line is displaced upward, consistent with

precipitation under warmer conditions. This is thus considered to be

considerably older water than shallow bedrock and drift water.

.2.5 Surface Water Hydrology
As the study proceeded, it became increasingly apparent that
"surface water, and in particular snowmelt water, plays an important role
in recharge to the water table. A quallitative examination was carried

out to definé‘the essential framework of the Jocal setting.
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About 25 km2 of surface area contributes drainage to\the Peacock
Slough directly from the east (Figure 23), but the total area 1s likely
at least twice as large considering contributions from the south and
west . The basin 1s poorly defined due to the gradual slope between the
base of Blackspring Ridge and the Peacock Slough.

t To d%t a general feeling for rynoff volumes and disposition of
water on the landscape during the spring melt, a survey was conducfed on
March 4, 1986 with a smal) fixed-wing aircraft. Photographs, with drill
and piezometer-nest sites for location reference, are given in Plate 4.
The survey followed a late February snowstorm and much of the water
appearing in Plate 4 is the result of snowmelt from this storm.

Winter temperature, chinook and other wind conditions in the region
are such that usually snow remains on the landscape for relatively short
periods of time only. It is felt that much of the snow sublimates, and
melting during winter months is common. Severe winds generally
redistribute the snow such that it accumulates in significant volumes
only in natural or man-made depressions. Road ditches, especially those
along north-south road allowances, commonly still contain snow and
somet imes ice, up to the time of the spring snow melt. The largest and
most persistent snow accumulaiions occur, however, 1in coulees, and 1n
particular at the head of the coulee located in Section 7 of 13-22 W4.

Ouring the time of spring thaw, snowmelt from the coulees, from
ditches, and from late snowstorms, flows down the coulees gnd onto the
lacustrine plain. A significant aspect of the surface drainage is that
the natural, or pre-agricultural, drainage pattern has been severely
disrupted. Surface water .is now artificially routed along road-

allowance and in-field ditches. Ditches along road allowances are
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aligned in reqular compass directions and not with topographic slope,
with the result that runoff water cannot, in general, follow the
shortest (or pre-agricultural) route to low areas in the landscape.
Both residence time of surface water on the landscape and total surface
area exposed to infiltration are now increased.

The large amount of runoff water on the landscape during the spring
thaw in the three years of observation was alggys surprising. The
culvert shown in Plate 5 was estimated to discharge at about 65 L/sec
and, during the years of investigation, discharged for as much as two
weeks. Similar rates of surface flows were observed to discharge onto
the areas of interdunal salinity of Section 35-13-23 W4. None of thig
water, however, left Section 35 and 36 as surface runoff.

Duriﬁg the time of runoff, road ditches are commonly full and
overflow onto fields, where minor drainage depressions and tillage
furrows continue to uistribute the surface water. When observing this
phenomenon, both on the ground and from the air (see Plate.4), the
impression is that the recharge to the water table that is caused by the
spring thaw is only in part closed-depression oriented. A major portion
of ‘this recharge is more accurately described as a "flood irrigation”

event. .
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3. EVALUATION OF THE ORIGIN OF SALINITY

3.1 General

Profiles of saturation extract results (Appendix 3) and EM38
traverses (Figures 5, 6, and 11), show that in the Blackspring Ridge
area there exist regions of salt leaching, and regions of salt
accumulation. Leached profiles occur in upland areas with a deep water
table and in areas where the neaf—surface hydraulic gradient is strongly
downward (Sites Al, A2, Bl, B5, B6). This leached zone may be thick (7
and 10 m at Sites B5 and B6, respectively) or thin (2.5 m) and confined
to thin drift sediment (as at Sites Al and A2).

For example, at Sites Al and A2 the presence of essentially
unleached bedrock sediment near the surface indicates that although
leaching of sulfate salts in shallow drift zones may have gone almost to
coégletion, the process is still active in near-surface bedrock.

Leached drift iprofiles to about 3 m at Sites Cl, CZ; and (3 indicate
that the thin sandy drift sediment overlying bedrock of much of the west
flank of Blackspring Ridge is not now a major contributor of sailt to the
groundwater system. Thicker drift sedimént (7 T at Site 17) and
sediment tﬁat does not have appreciable sand content (Sites 4 aﬁd 18)
may however still be significant contributors.

The one agent comﬁon to the process of leaching, transport,
redistribution, and eventual accumulation of salts is water. Trahsport
of salts to their eventual location of accumulation may occur along

_ . -
1. groundwater of deep, regional flow syStemd originating from the top

several pathways and may involve: /
of Blackspring Ridge and discharging in low-lying portions of the

59.
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lacustrine plain, ~

2. groundwater of flow sy;tems of shallow and intermediate depths and
contained within fractured bedrock units to depths of about 30 m,
and weathered drift units to depths of about 15 to 20 m, and

3. precipitation or surface runoff water that reaches the water table
by infiitration from above.

Data from tke Blackspring Ridge area indicate that accumulations of sait

result from a complex interplay of all the above pathways, but that the

relative importance of sources differs from place to place.

To differentiate regions of local, inter;ediate, and regional
-groundwater flow so that thejr relative importance with respect to
groundwater and sélt contributions to various areas could be determined,
a quantifative flow net was constructed for the A-Line. The fiow net
used the digitally determined potential distribution and is given in
simplified, form in Figure 24.

Luthin (1957) and Harr (1962) showed that anisotropic flow regions
can be represented by equivalent isotropic regions by suitably expanding
or contracting spatial coordinates, and that the equivalent hydraulic
conductivity of the transformed region k,, is Yk, k . For a medium in
which k, = 10k _ the transformation requires an expansion of YID in the
vertical direétion, after which an isotropic flow net can be drawn.

Harr (1962)}discussed methodology of constructing such flow nets.
The method involves drawing curvilinear squares in one unit of
homogeneous hydraulic conductivity using equipotential lines at a
consistent interval as two sides of the squares; the other two sides are
then flow lines or stream lines bounding flow channels of constant

discharge rate. In other homogeneous units with hydraulic conducftvity
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different from the unit of curvilinear squares, curvilinear rectahgles
with a length to.width ratio of kx/ksq (where k = hydraulic
conductivity of the new unit and ksq is that of the unit of curvilinear
squares) are drawn. Once the flow lines have been determined ‘the flow
region can be subdivide? into flow systems as defined by Toth (1962) and
the disposition of all water within the flow region is known.

Freeze (1969) showed that the discharge in each flow channel

derived in this manner, can be calculated by Darcy's Law as:

Q = k - gﬂ - Am-w

where s
Q = discharge through a segment of the flow net,
k = hydraulic conductivity,
Ap = drop in hydraulic head betieen equipotential surfaces,
As = length of flow path in the segment of the flow net,
Am = width of the segment of the flow net perpendicular

- to the direction of flow, and

>

w = thickness of the flow system perpendicular to the
plane of the diagram.

Since As = Am for any square portion of the flow net, and if a unit
thickness of flow system is considered, this reduces to: Q = k.

Figure 24 is a transformed sect}on in which flow lines form
curvilinear squares with quipotential lines spaced at 5-m head
intervals in the siltstone, claystone, and shale unit of the Horseshoe
Canyon Formatton; every second such line is shown. The equivalent
hydraulic conductivity for this unit is [(2.0 x 10-9) (2.0 x 10—{0)]1/2,
or 6.3 x 10—10 m/sec; Ap is 5 m. The discharge per flow tube is then

3.2 x 10-9 mS/sec or 0.1_m3/year for a cross-section width of 1 m



Dividing this rate by the length of cross section over which each flow
tube recharges and discharges yields the annual recharge and discharge
rates along the line of section and is also given in Figure 24. )

Analysis of the flow net 1n Figure 24 gives the following results.
The region can be divided into five local, one intermediate, and two
regional flow systems. Local systems have adjacent areas of recharge
and discharge; those of the intermediate and regional system are

separated by ofe or more other systems. Total discharge of each

system is given in Table 3.

Table 3. Groundwater discharge rates simJ:;§gS/for Section A.

Flow system No. of Discharge
Flow Channels per year, (m )

(a) Regional RI1 3.9 0.4

‘ 17.9

R2 14.0 1.4

(b) Intermediate I 8.7/8.7 ' 0.9

(c) Local L1 =2.0 0.2

L2 =5.0 0.5

L3 =4 0] 19.1 0.4

L4 7.4 0.7

L5 =1.0 0.1

Total 46.0 4.6

R 5

Groundwater discharging at the base of the ridge (at and below
piezometer nest A3) originates from about the lower half of the ridge
flank whereas that discharging under the lacustrine plain originates
from about the upper half. Almost all of the flow within intermediate
and regional systems‘is transmitted through the basal Horseshoe Canyon

g

and Upper Bearpaw sandstone gnits and abolt 20 percent of the regional

—

¢ 9



flow leaves the section via the buried valley gravel aquifer. A number
of local systems are developed in response to local changes in water-
table configuration, the most notable being associated with the coulee

and with the lower ridge flank near piezometer nest A3.

3.2 Regional Groundwater Flow

&The regional configuration of groundwater flow is strongly
influeﬁééd by two major sets of geologic units of high hydraulic
conductivity. First, two major bedrock valleys, the Carmangay and
Peacock Valleys, act as line sinks. Deep groundwater flow is diverted
toward, and transmitted along these units. The influence of the bedrock
valleys is transmitted for great distances through the second set of
major units - the basal sandstone of the Horseshoe Canyon formation and
the Ryegrass Sandstone within upper portions of the Bearpaw Formation.
Hydraulic continuity between the two sets of units is provided by direct
contact, or by terrace deposits along the flanks of the huried valley.

The overall éesult.is that downward and lateral hydraulic gradients

exist in bedrock and drift units of the lacustrine plain for distances
of 5 km or more from the Little Bow River. The strength of the
hydraulic influence decreases with distance from the Carmangay Valley
for two‘reasons. Firstly, the gradients are simply dissipated over
distance, and secondly, bedrock units dip more steeply south of the
B-Line. The influence of the direct hydraulic connection between
sediment of the bedrock valley, basal units of the Horseshoe Canyon
Formation, and the Ryegrass Sandstone thus Eeases to exist at some pbint
b;tween the A and B Lines and gradients under the lacustrine plain |

become directed upward. Where all regignal groundwater flow (to the

\
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depth of the Ryegrass Sandstone) along the B-Line is diverted to the

Carmaﬁgay Valley aquifer, only about 20 percent is diverted to the
Peacock VYalley aquifer of tﬁe A-Line.

Regional groundwater flow does, therefore, discharge to the
lacustrineeplain in sguthern portions of the stu?y area. The rates of
regional discharge were determined by flow net construction along the
A-Line and by calcu]atio; of the vertical Darcy flux between 5 and 10 m
below the water tablie (that is, across the second, cell below the water
table) during digital simulations for both the A and B-lLines.. Values in
mm/year are given dbove each section in Figures 5 and 6 for comparison
with salinity, as determined from EM38 readings., and with the regional
distribution of hydraulic head.

The comparison gives mixed results. Along the B-Line all deep,
regional groundwater flow is eventually directed toward the basal gravel
of the Carmangay Valley; most water flows laterally within the basal
gravel but from 2 to 4 mm/year discharges to the water table along the
bottom of the Little Bow River valley. Soil salinity is not evident in
the Little Bow River valley however, indicating that saits reaching the
water table from below must be removed by some meepanism. The most
likely mechanism is drainage toward the Little Bow River through coarse
amd permeable alluvium deposited by the river. It is clear however that
regi&hal groUndwaier flow cannot contribute to salinity. in the vicinity
of the B-Line. '

' Along the A-Line, diffuse salinity on the lacustrine plain does
correlate with regional groundwater discharge. Calculations of the
Jvertical Darcy flux however, indicate that only about the equivalent of

1 to 2 mm of precipitatibn discharges to the lacustrine plain annually
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from the regional flow system R2d (Figure 24). Such a discharge rate
should not in itself cause the water table to be as close to the surface
as it 1s under the plain (1 to 3 m).

The low discharge rate of the regionai system (System RZ2,

Figure 24) results, at least in part, from a combination of topographic
and geologic factors. Firstly, the size of the recharge area is smaller
than the discharge area by a factor of more than 4. Secondly, all
discharge from the regional system originates from the basal Horseshoe
Canyon and Ryegrass sandstone units which dip away from the surface in
the direction of floY. The net effect is that regional groundwater
discharge is diffusee over a large area rather than focused to a small
area. The same volume of water that recharges over a distance of 1 km
discharges over a distance of 4 km.

An important consideration with respect to regional groundwater
discharge is that the composition bf salts in the soil profile should
reflect the chemistry of the source water. Two aspects of deep
groundwater cemposition are important. Firstly,'deep groundwater
contains very small quantities of SO‘= because it has evolved through
the stage of sulfate reduction (for example, 11, 15, and 110 mg/L from
piezometer A5-343, B3-268, and B5-265, respectively). Secondly, deep
groundwater, and especially that from the Ryegrass Sandstone, contains
-large concentrations of C1” in solution (for example, 380, 3850, and
4!@? mg/L from piezometers Ab-343, B3-268, B5-265, respectively).

If the primary source of salts on the lacustrine plain were deep
grouzi;;{er, the dominant anion associated with the salts should be
chloryde. Saturation extracts from Sites A4 and A5 clearly show that

this is not the case. In both cases, 504= is the dominant anion and C1~

‘



content is negligible in comparison.

Thus, ihe main load of dissolved mass must be assimilated a; water
from tﬁe regional systemréasses through the near-surface weathered zone.
Water samples from pieiometers A5-90 and A5-61 are stil} subétantially
undersaturated with respect to gypsum (log SI -0.373 and -0.160,
respectively) and dissolution of gypsum by upward moving regional
groundwater can be occurring.

Results of the digital simulation show that about 1 mm of
groundwater discharges annually at the Peacock Slough (Figure 24).

Water from piezometer A5-61 contain 3159 mg/L of TDS. The total salt
flux to the water table is then (1 x 107> m/year) (3.2 kg/m’) or 3.2 x
10_3 kg/mzl year. A salt flux of this magnitude should onf@ be
significant if very hu::time periods for discharge (2000 to 5000 years)
are considered. The regional groundwater 81scharge is thus not directly

responsihle for high water tables and is not éﬁmtributing significant

volumes of salt.

3.3 Groundwater Flow in Shéllow Fractured Bedgfck and Weathered Drift
Sediment "

The most severe area of soil salinity in the:&uc{y area is located
in the vicinity of Sites A3, 16, and C4, and the general correlation of
specif{c discharge dé%%rmined from the flow net construction to saline
soil occurrences is positive. The/}nfeﬁéitj of salinity as determined
by EM38 traverses and from soil e;tfdtt analysis, however, bears little
or no relation to simulated inténsity of groundwater discharge.

This discrepancy is explained by the fact that the flow net is of

regional scale and vital data, which became available only during the

™S~
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. later local 1investigation, could not be incorporated. In particular. a
higher degree of bedrock fracturing with assocrated hydrdulnp °
conductivity values as much as two orders of magnitude higher than
previously measured exists 1n near surface portions of flow systems I
and L4. This indicates that the total discharge of these systems may
as much as 100 times higher than i1ndicated 1n Figure 24 and Table 3.
Also, a previously unknown sand and gravel filled channel with high
ih$-ﬁ.1hydrau11c heads exists-upslope from Site A4 and should have a maJor
‘ ) modlfying affect on groundwater f13w 1n that region. The digital
s1Mulét1on of hydraulic conductiv!{y. hydraulic he;g\ and groundwater
flow distraibution, wh?gh was based oh regional data., 1s czfarly no; a
true representation of the field situation.- The general recharge
-d1scharge distribution ;nd the very low amounts of groundwater flow
within regional systems éischarglng lower portions of the lacustrine
plain, however, appear to constitute valid conclUS)qns. X
In view of- the above, discussions of salinily and hydrogeology 1n

this region are based largely on datAobtaineg during the later, more
& ’

detailed, investigatidn, especially along the C-line.” These data

provide four_ lines of qvidence that groundwater from 16cal, relatively"
‘ : N s M

shallow (to about 30 m) flow systems is re5p0n31b1¢ for the severe
salinity in the area.
+Correlation between g;oundwater discharge and areas of high
| salinity along the C-Line is firstly very good {Figure-1l). A vertical
and upward grodndwater contribution éxists éverywhere where salin{ty
ex1sts‘ and the correlation 1s stronqest where ‘units of high "hydraulic
conduct1v1ty are near the ground surface. The condition of groundwater

YU 7 discharge to a ‘deep water table that exists upslope from Site 16 is not

f“l-&j .
i . . -4
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anomalous to the correlation when lateral drainage to coulees 1is
considered.

Secondly, a sertes of geologic circumstances are responsible for
significantly higher hydraulic conductivity and greater groundwater flux
in this area. Bedrock along the west flank of Blackspring Ridge 1s
highly fractured due to glaciotectonic activity. The fracturing imparts
high hydraulic conductivity primarily to sandstone and siltstone units,
but locally also to intervening units of claystone and shale, to a depth
of about 30 m below the bedrock surfage. Draft overlying the fractured

{
bedrock 15 generally thin (less than 5 m) on the ridge flank and
contains a higher proportion of permeable sediment than elsewhere. A
sand un1t (up to 3.5 m thick), lres on bedrock 1n a number of places.
Till is generally very thin (1 to 3 m) and 1s weathered and fractured.
Glaciolacustrine sediment 1s sandier than e]sthere, perhaps as a result

of shoreline development near upper boundaries of the unit, or the unit

may be overlain by alluvial fan sediment. Where the draift thickness

¢

does increase near the béie of Blackspring Ridge. a thick deposit of
1nte;glacial sand and in places gravel, lies between the upper ti1] and
bedrock (Sites SWT, 6WT, and (6). *
Tq:rd1y. the distribution of groundwater chemical tonstituents .
given in Figures 13 to 19 show that the region within about 30 m of the
bedrock. surface contains the dominant dissolved salt load. The majority
of the dissolved salts are generated and transpor{ed within this zone.
Flow is probably active enough to maintain water at an oxidation state
such that significant sulfate reduction does not occur, and fraéture

dominated flow may be implied by high calcium and magnesium contents.

Fourthly, the zone is characterizedrby stdble isotopic compositions
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of present-day water. Water from deeper regions has a distinctly
different composition that suggests emplacement under different and
warmer climatic conditions. The latter condition suggests very long
residence times (1n the order of thousands of years) for deep
groundwater and 'mplies that this water cannot be contributing directly

and significantly to discharge at the surface.

3.3.1 ] 1 raf r roundwater r
In view of the complex hydraulic head distribution atong the

C-Line, flow-net construction and quantification of groundwater flux was

not attempted. It 1s concluded however, that the major salinity near

Sites A3, 16, and C4 is caused by discharge of groundwater and salts

primarily from bedrock units less than 30 m deep, but the possibility of

a significant contribution from flow through shallow drift sediment

exists. The following analysis will evaluate if the discharging

groundwater is primarily of drift or shallow bedrock origin.

The major-ion composition of groundwater results from a variety of
complex processes and interactions. In general terms these may be
broken down as follows:

1. A natural evolution of groundwater with respect to major-ion
combosition that is in part a function of the host-rock\assemblage
interacting with groundwater aloné its travel path,

2. Mixing of groundwaters that have evolved to different stages of
ma jor-ion composition to form water of some new, intérmediate
composition, and finall¥j‘

3. A change in composition at the water table as water becomes more

mineralized as a result of evaporative concentration, and minerals



of low solubili{y p’ecipitate.

Thejpattern of evolution of ‘water that has undergone these
processés 1s shown on the Piper trilinear diagram of Figure 25. Water
from Sites Al and B5 was chosen to show these patterns. Both sites are
1n areas of strong downward gradients and 1n hydraulic settings that
preclude significant mixing. The B5 Site 1ncludes water that initrally
evolved through contact with drift sediment; Al-Site water has had only
minimal drift contact.

In the Blackspring Ridge area the major-ion composition of
groundwater evolves as follows:

1) from Ca + Mg/S0, to Na + K/50,

2) from Na + K/50, to NaHCO,, and

3) from NaHCO, to NaCl.

The dominant processes thought to be responsible for the first two
changes are exchange of ca'* and MgH fé; Na' as clay minerals are
encountered, and anaeorobic reduction of sulfate. . Sodium chloride waber
is found 1n relatively deep regions. Except for water from Site B6, the
change from Ca + Mg/S0, to Na + K/S0, occurs with a bicarb?nate content
of . about 20 percent on an equivalents per million (e.p.m.) basis.
Throughout the entire evolutionary sequence ca’® and MgH exisd on an
approximately equal e.p.m. basis.

kixing of wa;er that has evolved through various compositional
stages can occur at junctions of flow systems or where more than one
aquifer carrves groundwateq tg the same region. On the Piper trilinear
presentation, water compq;ﬁ%don that results from mixin@. will plot
along straight lines joining individualﬁcomponent compositions.

Changes in major-ion composition that are caused by evaboration
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result from differences in solubiiity of various mineral phases. As
water becomes increasingly mineralized by evaporative concentration, the
less soluble minerals will precipitate first, eventually resulting in a
brine enriched 1n components qf very highly soluble minerals.

Nowhere in the Blackspring Ridge.reg1on does near-surface
groundwater have appreciable C1 content. In terms of possible, \
precipitation reactions, it 1s only the carbonate and sulfate minerals
that require consideration. Solubﬁlities for various common mineralg
are given by@®reeze and Cherry (1979): those for cafbénate and sulfafe
minerals are shown in Table 4.

Table 4. Solubility of carbonate and sulfate minerals
(in mg/L, 25°C, pH7)

-4 -
Mineral ' : Solubility (mg/L)
< -
Dolomite CaMg(C03)2 90* 480«
Calcite CaCO, 100* 500+
Gypsum Cas0,-2H,0 2100 \
Epsomite MgS0,-7H,0 267 000
Mirabilite Na,50,10H,0 280 000 \
* Partial pressure of CO, = 10:? bar )
+ Partial pressure of CO2 = 10 bar
Evaporati%s'concentration will result in precipitation of dolomite, "

‘calcite and gypsum before epsomite .and mirabil_i' leavisg the water
depleted in Ca’", and HCO,™ + CO,”, and enriched in Na', Mg"*, and S0,".
Water that has undergone evaporative concéntfation will tﬁégefore plot rY

at characteristic departure from water that has undergope only ndtural .
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evelut1on ana mixing. This departure will be in the direction of
increased Mg*", Na®, and SO,  content and is also shown graphically in
Figure 25.

Computer simulation was used to verify possible compositional
changes resulting from mixing and evaporation. Water from well B5-40 /}
was chosen to represent a typical shallow drift water at an early stage
of chemical evolution. Water from well C4-65 was chosen to represent
shallow bedrock water tha{ has undergone cation exchange and evolved to
a Na » K/SOJ ébmposition. Chemical analysis results frw these two
waters were then combined‘&P an equal molar basis to form a composite
water representing a mixed source. The geochemical model PHREEQE
(Parkhurst et al., 1980) was used to simulate evaporation of this
combined water to approximately the DS content of water from the
water-table well at Site C4. Simulated evaporation to;b.l of the
original volume was required to approximately match thé TDS of the
evaporated Composite water with that of water from Well C4-WT. The
mode] was run with the constraints of Poo at 107 bar, and with the
same slight supersaturation with respect :o'calcite and dolomite that
was exiribited by the composition of water from C4-WT. The evaporation
simulation was {hen pe}formed separately for water with the same ’
composition as frza.wells B5-40 and C4-65."

Re;ult; of the simulations are given in Table 5 and Figure 26.
Water with the specified mixed composition evapqrates to approximately.
the. chemical composition of near-surface groundwaterrat Site C4. The
mixing is requﬁred’ as evapbration of water from either of the ’ 5

1ndvv1dual sources. alon‘ could not produce compos1t1ons that resemble

that of water from C4-HT. Results do not prove that a e}1ft water
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source is required because very shallow bedrock water (for example water
from Al1-34) is chemically similar to drift water. They do imply
however, that water discharged at Site A4 should have a mixed source and
are conclusive 1n showing that water from sandstone at depths of 20 m

(C4-65) and 30 m {C4-100) cannot be the sole source.

Table 5. Groundwater evaporation simulation results.

Drift Water Bedrock Water Composite Water Water Table at
B5-40 (mg/L) C4-65 (mg/L) (equal molar C4-WT (mg/L)
basis) {(mg/L)

obs. evap. obs. evap. calc. evap. obs. .
ca*’ ‘408 1102 67 40 238 423 418
Mg** 266 3713 20 137 143 1414 1765
Na" 160 1606 2075 20997 1118 11234 14240
k' 13 125 6 62 9 94 T
ﬁcos‘ 569 2153 1260 10911 915 3382 1530
S0,” 2100 21074 3540 35650 2820 28350 35220
< 7 70 40 413 24 236 55

Two apparent discrepancies in the simulation results are the much
higher concentration.of K* and C17 content predicted by the model. The
discrepancy ih‘l' concentration exists because the simulation does not
account for fixation t; abundant clays in the near-surface $ediment
whi¢h occurs in the natural system. Chlo;ide, however, is considered to
behavg tn a conservative:manner and the relatiOely 1ov'.amo>unts in water

from £4-WT can not be adequately accounted for. A mechanism involving '

e\)aporation to precipitation of mirabilite but not NaCl, ldter.
L. 4

»
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transport of chlorides in solution, and later dissolution of salts
previdusly precipitated in the soil profile, could be %nvo]ved. The
discrepancy in C1 concentration should, however, have little bearing on
the primary conclusion that a mixed source is required, because no
difference in C1~ concentration of shallow drift, shallow bedrock, and
water-table water exists in the vicinity of the C-lLine.

Piper plots for samples from water-table wells, are given 1n }
Figures 27 and 28. Those for samcies from piezometers completed in
drift and bedrock sediment are given in Appendix 8. 1In keepinq with the
lines of reasoning developed earlier in this section, there exists an
entire spectrum of possibilities for groundwater sources to the water

-~

table.

In the vicinity of the C-Line the composition of water at the water
table ranges from Ca + Mg/S0, to Na + K/S0,, indicating source water
that has undergone.cation exchange to various degrees. Higq\ﬁegrees of |
evaporation are indicated in a number of cases. Water samples from
water-table wells located'in the area of severe salinity, however, ((4,
C5, C6, A3, A4) are fgfthest along the evolutionary path and thus appéar
most likely to be made up in part.of bedrock water from the shallow
h{gh-sulfate zone. The.mixing model postulated earlier allows the
possibility that the greater the relézive Na* » Kf’content, the greaier
the possibility for a contributioﬁ from that zone. Strong upward
hydraulic gradients and,h{gh hydraulic conductiyityvin*underiying

bedrock units suéport’this interpre?ation: .
Figure 29 shdws éhe areal pistribution of Na' + k¥ content of
water-table watef as perceqF of total Catfons on an e.p.m. basis. High
Na® + K" content correlates well with areas of high salinity and those

— o - o\
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enclosed by the 60-percent contour are 1nterpreted’to consfitute regiong
influenced by either gréundwater influxes of relatively distant origin,
or as having significant input from bedrock sources.

The combihatiop of hydrogeologic and hydfochemical data ;uggests
that groundwater from various sources and at various stages of chemical
evolution 1is responsibie forvle salinity s the regionvs of the A and
C-Lines. The hydraulic head and groundwater'flow distrstbution of the '
regiom (Figure 11) imply that bedrock water 1is discharged to the water
table in regions topographically below the approximate elevation of Site
Eiipﬁ§trong upward hydraullc gradients and high Na® + K' content befween
’ S1tes 16 and C5 suggests that this is the region of maximum bedrock
groundwater contribution. Occurrences of permeable sand on the bedrock
surface oF lower stopes-of Blackspring Ridge (Sites €2, C3, C4 and 2)
provide the means to transport locally recharged ngllow drift‘f 3

*

groundwatef to topographically lower areas, mixing with discharging

bedrock water along the way. 8§Eh of these sources feed channel sand ’\'ﬂf,‘
and gravel in the vicinity of Sites C6, 6‘and:5, which in.turn also
coﬁtributes groundwater to the surface. Groundwater dis;harged in this
manne} moves laterally and dowhslope~in silt and sand-rich clay deposits
of the lacustrihe shore{iﬁe or él{Jvial fan facies and continues to

discharge in the region between Sites C4 and 8.

Along the B-Line the Hydrbgeologic setting is:such that fewer .

odportunities exist for salinity to develop. bIhis situatﬁon‘is
reflected-by’the much sméller size and mére séattered diEtFibution d?.
“sa11re area;.than those along the A ;;d C Lines. Th%s; and thé regional
scale of the B-Line, make site- SpeCIflc 1nterpretat1on quest1onable

Several swgnif1cant relationships do, however, exist. \Vateg.from BZ-3@f'

(



1y haghly mineralized and of a Na « K/50, tvpe of composition This,

the very thin draft, apnd numerous thwn <andstone and coal subcrops
[}

. - .’

(Fhrgure b) are good evadence that salinity in the vicinity of Site BY
’ ‘
results from shallew-bedrock groundwater discharging as small seeps from
.
|

these units. y

Water -table water at Sites B3 and B4 also exhibits the effects of
cati1on exchange. Both sites are located 1n areas where aeolean sand

oyer lres lacustrine c}dy and s)1t. and where hydraulic gradients d(?

lateral and downward. Discharge of groundwater from below 1s thus

.
>

precluded at these sites. Compositionally tﬁe water from Sites B3 and
B4 1s similar, ?1ffer1ng only 1n that at B4 the water shows wm much
higher degree of ev&pordtlon. Both. however, appear to be 11nfluenced by
groundwater of bedrock origin. . . ~

The saturation extract profile fq: Site B4 (Appendix 3)_ shows that
the maximum salt load 1s within the sand un1§'a: a depth of about 7 to
10 m 1n the upper weathered till. The CaH/MgH ratio mmplies that ~/
water within the zone evaporated prior to being emp1aced. Deuteryum and
6’80 values (-151.7 and -19 .35 per mille, respectively) howeyer,
indicate that-the water 1S5 only very slightly evaporated. Thus., salts
within the sand unit were at some time deposited above the water table
by evaporation concentration and then re-entered the saturated zone by
downward flushing by prec1p1t3tion or runoff water.

The nearest upslope occurrence of sites at which groundwater
discharge and evaporative concentration occurs is a series of northeast
trending saline seeps located a]qng the base of B?ackspring Ridge in NW

of 30, E 1/2 of 31, and SW of 31-13-22 W4. The seeps are small, have an

intense and permanent appearance, and are considered to result from

v
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——

arounawetes” discharged from shallow bedrock sources 'n a manne® similar
.

to that at the (4 Site.

A

It 15 concluded that salts deposited at these seeps re;éﬁfer the
xuhsWdece by downwar d flushing. move downslope within the intert:1)
sand unit and along upper portions of the lacustrine unit, and cause
salinization 1n 1nterdunal dreds where the sand cover 1s thinnest.
Mixing of this water with locally recharged precipitation and surface
water results 1n the chemical composition being skewed 1n the direction

of higher ca'’ . MgH content. This mechanism satisfies b@th the

evaporated nature of salt composition and the unevaporated nature of the

water .

3.3.2 Maxing of drift and bedrock water
»

A significant aspect of the hydrochemical distribution shown 1in

F1gures‘l3 to 19 1s a dramatic increase 1n TDS content within 15 to 20 m
below the water table 1n the region downslope from Site 16-1. Sulfate,
sodfum plus potassium, and calcium 6Ius magnes 1um contenis all show a

mafked increase, and the increase 15 1n the general direction of
wgroundwater flow as indicated in Fiqure 12. An 1ncrease of this
magnlEZde could be attributed to evaporative concentration at the water
table Sut should not manifest itseli at depths of 15 to 20 m unless
other mechanisms of salt solution, mixing, or transport are operative.
.The following mechanisms are proposed as possible cause? for the

N »

phenomenon:

s

-

1. gypsum dissolution by upward moving grofindwater 1n the region of
increased TDS content, particularly in drift units, and

2. continuous mixing of upward moving bedrock water w‘ﬂh shallow,
i {



EN

¥a0

laterally moving drift water The Jlatter water contdins salts that

~
» “
weQQ;prevnously formed by evdaporablion near and above the water r
«tS . . v
AL j A

td@{fl”dﬂd later dissolved 4Qd1n 1n recharge trom runoff and
..-,,Y"az o
pref@bltdtwon. \
B
To examine these possible me(h:ﬁ1sh§. the following analyses were
pefformedA SR
1. Results of chemical analyse of water from piezometers and water-
table wells of the C-lLine were processed using WATEQF (Plummer -et
al., 1976). A p&rtion of the model output 1ncludes indices for ~
saturation with respect to various mineral phases ana mole ratios
for various ions such as the Ca /Mg’  ratio. Results for
saturation with respect to gypsum and Ca”/MgH ratios are

tabulated in Appendix 7 and are given for the C-Line wn Fiqure 30.
2. The degree of evaporation of pilezometer and water-table well water

was examinéd by 6‘80 and 6D ré]attonsh1ps.

The first mechanism, that of gypsum dissolution as upward moving
groundwater passes through drift sediment, appears unlikely to be
responsible for the noted increases for two reasons. Firstly, the
dﬁstr1bution of sqturation indices with respect to gypsum, which are
given in Figure 30, indicate that within tfe region 1n question water s
sﬁpersaturated with respect to gypsum. Gypsum precipitation rather than
dissolution should therefore be occurring 1n this zone. This
observation is corroborated by abundant occurrences of gypsum crystals
noted during drilling in drift sediment.

The interpretation based on results of the saturation indices 1§,

however, not conclusive. The WATEQF model, that was used to calculate

saturation indices, used extended Debye-Huckel equations to calculate

.
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8b .

activity coefficients. These equations are 1naccurate for olutions of
high ronic strength (~0.5) (Harvie and Weare, 1980 Crowe and
Longstaffe, 1987). Tlonic strength of water samples from the zone that
1s indicated to be supersaturated with respect to gypsum by the WATEQF
simulatrons s between 0.1 and 0.45, and 0.9 1n water from Well C4-WT.
Ionic strength s therefore in the range for which unreliable results
are possible. Refinements to geochemical models, that use Pitzer ¢
equdtions to accurately determine activity coefficients for solutions of
high 1onic str;ngth. have recently been introduced (Crowe and
Longstaffe, 1987) but were not commercially available at the time the
simulat 1ons were perfogmed. .
Secondly, the 1increase in TDS and SO‘= concentration along the
general direction of groundwater flow, and toward the water table does
not occur only as water passes through drift units. At sites 16-2 and
C4, the same pattern occurs in bedrock sedftment before the véter has

contacted drift (for example, SO, concentrations of 4605, 6405, 3540,

4
and 7350 mg/L 1n water from piezometers 16~2—;2, 16-2-38, C4-65, and
C4-36, respectively). The increase in TDS and SO‘: conceg%rat1on 1s
thus not limited to areas where groundwater moves through drift

sediment . \

The strong decrease 1n the Ca’*/Mg"‘rat1o-that accompanites the
increase in TDS can be accounted for by the much lower solubility of the
calcium mineral gypsum as compared to the magnesium mineral epsomite.
With th continued precipitation of gypsum, groundwater becomes enriched
in MgH relative to Cé*‘. Tﬁe Ca‘*/Mgf’ ratios are thus considered

further evidence that gypsum is prg%tpi;ating and that solution of

gypsum is not responsiblie for increases in the total dissglved solids

e



content and 50‘: concentration.
-
The concept of mixing of upward moving bedrock water with laterally

moving dri1ft water requires what appédrs to be @& paradoxical situaton
of laterallv and downwa;? moving water 1n areas of strong upward ’
hydraulic gradrents. The pd#ddox can however be resolved 1f the
magnitude and geometry of heterogeneity in hydraulic coﬁductwvlty'that
exi1sts in the region 1s cons1dereé.

Drift units between S;;es 16 and C5 aloﬁg Section C f&rm a wedge
that thickens 1n the downslope direction and contains a layer DU highly

"0

\

permeable sand at 1ts base (Figure 10). This wedge overlies bedrock -
comprising layers of hiéh]y fractured and permgablq‘sandstone
alternating with less permeable layers of clgystone and shale. Bedrock
strata dip 1n the direction of topograph1c'slope. but at a substantiglly
greater degree than topographic slope. One highly fractured sandstone
bed intercepts Ja shallow water table ét Site 16-2 in a region of 1intense
5011 salinizat oW Horizontal hydraulic conductivity of the relevant
geologic strata 1s summarized in Table 6. The geometric mea: of highly
permeable units exceeds that of poor ly permeable units by about three

ordeS; of magnitude. X
A fundamental concept of groundwat3£ flow is that as flow occurs
across boundaries of units of different hydraulic conductivity the

direction of flow is refracted (Harr, 1962; Freeze and Cherry, :1979).

The amount of refraction is governed by the tangent law

k, _ tan 6,
k, tané, \

r _
where k, and k, are hydraulic conductivity of, and 6, and 02 are angles
L 4 -
" ! / -
between a perpendicular to the boundary between, respective units as

;,\'
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Table 6. Horizontal hydrdull( conductivity near 1te. 16 and (4

»
Site Materaal k, (m/sec) Geometr i Medn
€4-20 Sand 36 x 10 © High k units
16-2-WI Sandstane 48 x 10°° > 7 x 100
16-2-38 Sandstone 8.5 x 10 (4.1 x 107 1
C4-65 Sandstone 41 x 1077 1gnore C4.100)
€4-100 Sandstone 2.3 x 10

e e o -

16-1-WT Claystone 4.1 x 10 : low k units

-9 _
C4-36 Claystone 8.3 x 10 42 x10°
C5-45 Claystone 19 x 10°°
_____ . IR [

shown in Figure 31.

Figure 31 and the presentation of the concept by Freeze and Cherry

e

.

(1979) are for the\spec1a1 case of a horizontal boundary for which
solution of the tangent law cannbt~y1eld flow lines directed below
horizodtal. Applijcation to the Wgre general case of dipping strata, as
ex1sts along the C-Line, gives the result that groundwater flow becomes
1ncre;§ingly or1ented(9aralle] to the perﬁ\fb1lity boundary in units of

high conductivity, and transverse to the boundary in units of low

conductivity.

-~

To 11lustrate this point a highly simplified but representative
geometry describing conditions between Sites 16-2 and A5 1svgiven in
Figure 32. Unit 1 represents poorly permeable units such as cla;stong
or shale; Unit 2 represents highly transmissive units such as sand,
fractured sandstone, or other fractured bedrdck material. The dip 1s

<

'slightly exaggerated for the purpose of illustration.
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Figure 31. The tangent law for refraction of groundwater flow lines.

\

'/Equlpotem-al

Figure 32. Approximation of flow-line refraction in area of
upward gradients along the C-Section.
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Solving the tangent law fom,f, gives 6, = t!&f‘ [k /k, (tan 6 )]

F}gure 32 shows results for a hydraulic conductivity contrast of 100 and

L4

A

6, of 10 degrees from a perpendicular to the h1§hly conductve unit. or

10 degrees plus strata dip from vertical. Table 7 gives results for
[ .

hydraulic conductivity contrasts of 100 and 1000. and for three angles

v .

of flow:l1ine approach.

(3

]
Table 7. Flow-line refraction for different 1nitial flow-11ne angles
and hydraulic conductivity contrasts.
.
kz/k1 81 82
(degrees) (degrees)
e p
100 1 60.2
100 10 . 86.8 *
100 30 89.0
&
1000 ’ 1 86.7
Qo
1000 10 - . 89.7
1000 - 30 89.9

Figure 32 and Table 7 clearly show that for large permeability
contrasts flow-line refraction is extreme and that flow essentially
orients itself along units of hiq: hydraulic conductivity. For
contrasts of about three orders of magnitude-as exist 1n the area of
investigation, flow is generally in the direction of pérmeable strata

“within sucﬁ strata. In areas of upward hydraulic gradient.\dUdition and
subtraction of water occués below and above the units, respectively.
Within highly permeable strata that dip downward in the direction of

groundwatér flow, flow will thus follow the dip direction and will also
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I
be oriented downward.

If the above modifications to flow directyon are taken 1into
. AJ

account. 14 1s possible for groundwater that discharges at, or comes
. -

near enough to, the water table in the region between Si1tes 16-2 and (4
to become concentrated by evaporatlpn. to be subsequerm iy diverted
downward along the highly permedbjeisand and sandstone -layers.

Continual upward discharge from these layers provides the large
amounts of dissolved salts that characterize the region 15 to 20 m below
‘the water table a{rSites C4 and C5. High-TDS waier that progressively

—_——

discharges from the top of the highly permeable zones 1s progessively
-

replaced by less mineralized water from below with the result that IDS
content gradually decreases in the dlrecfion of refracted flow.

Stable isotope composxtioh of water in tﬁe region can also be
explained by this mechanism. Fiqure 33(a) and (b) are 6180 versus 80
plots for groundwater from Sites 16, 16-2, C4, and (5. Water-table

-
water, from Sites 16-1 and 16-2 is clearly evaporated whereas deeper
water (16-2-72 and 16-1-85) 1s not. Water at. Site C4 1s progressively
A

less evaporated with de§th; that ffom C4-65 and C4-100 is essentially

unevaporated. Water from C5-WT and C5-45 is slightiy less evaporated

than that from Site C4. >
The isotopic composition of water at the water tablegresults from
. :

gyaporation after discharge' and subsequent mixing with precipitatfion and
_ . \
runoff water. The fact that .some degree of evaporation is apfarent in

water from C4-20, C4-36, and C5-45 results from previous contact with

2

the water table. The progressive change with depth and in the'diréction

of refracted flow is caused by repiacement of evaporated-water by

r

unevaporated water from below and mixing\gf the two.
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Fufther evidence that‘the mechanism of flow refraction 1s operative
1s provided by hydrochemical patterns near Sites C2 and C3. Both sites
are characterized by upward gradients and groundwater discharge to the
water table (Figure 12). At Site C2 however, a plume of water with high
DS and sulfate content extené:~downward gMt along dip; from Site C3 a
plume of r\elatlvely fresh water e?tends downs lope and downd:p. Both
sttuations require that downward and laterally directed groundwater flow
exist in areas of upward hydraulic gradients.

A second mechanism that appears to be operative 14 conjunction with
flow refraction 1s a fluid density effect. Maathuis and Vander Kamp
(1986) summarize behaviour of variable density greundwater flow n the
vicinity of brine ponds 1n Saskatchewan and indicate that increased
fluid den;Ity results in increased downward movement .

In areas of gr:undwater and salt discharge, high fluid densities
can occur at the water table. Discharging, groundwater moving upward
from the water table by capillarity, evaporates, and Ieaveé salt in the
unsatufated soi1l zone and at the.ground surface. Because the process
proceeds to evaporation, even the moSt highly soluble mineral phases
(mirabilite and epsomite) pmecipitate. Water f#om post-growing season
rainfall eveats, and éspecia]ly spring melt runoff water, then
preferentially redissolves\these minerals during infiltration to the
water table. The resulting chemical composition of infiltrating water
will be skewed toward high Na*, Mg"", and S0, content.

Infiltrating water that reaches the water table in saline areas
should thus be mineralized and of higher density than upward or
laterally moving weter below the water tab]g. ?ecause the solubility of

mirabilite and epsomite is very high, it is not unreasonable to expect
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the infiltrating water to have a mineral content of about 100 000 mg/L

and a density of about 1.1. The denser water would pertodically, create

transient downward components of flow below the water table during the

-
i

infiltration events. If the situation exists above a downward dipping,
highly permeable unit, such ae that near Sites 16 and C4. entry of

highly saline water from above and subsequent down-dip movement 1n the

. . ¢ /

zone of refracted f]owﬂli possible.

3.3.3 Rates of groundwater and salt discharge from shalldw groundwater

flow systems -

Harr (i§62) and Bear (1972) showed that a stratified medium
consisting oftlayers with different hydraulic conductivity can be
_represented by an equivalent single homogenous layer. The equivalent
hydraulic conductivity of the single homogenous layer in the vertical
digection 1svthen:
n U
keqv = d /i§1 ki

Q
where d is the total thickness of the layered medium, and di and k1 are

the thickness and hydrauliE conductivity, respectively, of each

. e
individual layer.

This relationship was used at Sites C4, C6, 5, and 6, where
hydraulic gradients between different drift layers were measured, to
determine an approximate rate of groundwater discharge. The TDS content
of the discharging water was used together with groundwater discharge
rates to deteﬁm}pe the approximate salt flux to the water table. A

ary of results is provided in Table 8; calculations are given in

Appendix 11.
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flux to the water table

.

. v
kK ass1gned Groundwater discharge rate (m /m /year )
v

to intervening Salt flux (kg/m° “vear) in brackets
Tacdotr 1ne
sediment  (m/sec) (4 (6 b t
0 130 0013
(.4 kq) (0.09 kg)
-8
{(a) 3.2 x 10 0 130 (0 468
(0 .86 kq) (¢ 1 kq)
9 ~.
(b)y 3.0 x 10 0076 0 069
(0.17 kq) (0.3 kyg)
10 /
(c)y 3.0 x 10 0.003 0.007
(0 02 kg) (0.03 kq)

In all cases. the value of vertical hydraulic conductivity of
weathered ti11] was assumed to be 2.0 «x 107a m/sec. Values for the
uppermost {generally sandy or silty) ‘acustrine (or alluvial fan)
deposits were based on water -table well response tests (1.7 «x 10_7 and
2.6 x 10*7 at Sites (b and 6, respectively). Where intervening clayey
lacustrine sediment ex\its. the mean value determined for all weathered,
non-sandy lacustrine deposits (3.2 «x 10—8 m/sec) was used. This latter
value 1s very close to the value of 3 7 «x 10‘8 m/sec established 1n
trial and error simulatyons designed to fi1t the observed regicnal
hydraulic ‘head distribution. Because much lower values were measured on

ecores. however, the calculations were repeated using hydraulic
conductivity values one and two orders of magnitude less.

The salt fluxes, as expected, are strongly dependent on the

—

hydraulic conductivity of the intervening clayey lacustrine setiment.
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tactor n determining the quant ity of groundwater and <alt that can be
carraed to the water table foom under lyving permeable units Mor ¢
tntormat von vs required on the hydraulic conductivity and lateral
containuaty of the Tacustrane unit to enable determination ot dyachar ge
rates from stratifred channel depostts at “ates (6 and b Fluxes
(alculated using the hydraulrc conductaivaty value ot 3.0 x 10 Qvnﬂww

are probably redgondble.

Because the clayey sediment 15 thin or absent at Sites (4 and HYW1,
the calculated groundwater discharge rates and salt fluxes can be
determined more exactly. It s therefore., highly likely that the
thinning. 11ncreased sand content, and eventual absence of the clayey
lacustrine unit at higher elevation plays a major role in salinity
development, particularly where this topology coincides with strong
upward hydraulic gradients 1n under lying bedrock units The ma jor
saline occurrences 1n the vicinity of Sites 16, A3, and (4 are developed
in this type of setting.

Electrical conductivity (EC) of saturated paste extract 15 a
commonly accepted measure of so1) salinity. A value of 4 dS/m s
considered high enough to adversely affect growth of most plants and at
values exceeding'fg‘aS/m only very few salt-tolerant crops can produce
sati1sfactory yrelds (Black et al., 1965) Chang et al. (1983) derived
the empirical relationship: TDS = 765.1 EC1 087 between total dissolved
solids content and electrical conductivity of saturation extracts for
sulfate-rich soils of southern Alberta. This equation can be used to
determine the total salt content of the soi1l, and with the calculated

fluxes, the time required for soils to become salinized.



A caturatron extract ot tC 4 dS/m contains about 3450 mg of salts

per litre Avsuming the saturation paste was prepared using 0.%% g of

waleo perogram ot sord, then one qram of such so1l contains 3450 mg/l x
\ , P

055 x 10 L or about 1 9 mg of salts. This concentration Wquates to

0. 19 percent of salt by we 1ght Similarty, a so1l yrelding an extract

of tL - 16 d5/m would contain about 0 8b percent salt by weighy .

these calculations dare based on the total salt content of the
saturation extract. which may or may not be equivalent to the total
soluble salt content of the so1l. Chang et al. (1983) found that
comparison of total salt content of saturation extracts to extracts
obtained using a 1:10 so1l to water ratio yrelded significant
differences. with the 1:10 extracts generally being higher. They
attributed the difference to the limited solubility and slow rate of
dissolut ton of gypsum (CaSO‘-ZHZO) relative to other sulfate salts.  The
saturation extracts should. however, give a reasonably good estimate of
the total content of the more soluble sulfate salts such as ep;om1te‘
(MgSO‘-7H20) and mirabilite (NazSO‘-IOHZO). The above calculations thus
probabiy underestlmgte the total salz content .

Assuming further that salts, precipitating close to the water
table, are dispersed within n cubic metres of soil (where n = depth to
the water table), with 30 percent porosity, a specific gravity of 2.6,
and therefore a mass of (0.7 x 0.0026 kg/cc x n x 106cc/m3) or 1820 x n
kg, Phen the annual salt discharge can be expressed in terms of percent
salt by weight of soil. Time required for salt accumulation to EC
values of 4 and 16 dS/m can then be estimated. Results of these

calculations are presented in Table 9.

The calculations indicate that groundwater and salt fluxes are
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suffrcient tO-CdUSG extreme so1l salinization .in very short time
periods. Assuming that the hydraulic conductaivity of the intervening

¢ layey lacustrine sediment 15 3 x 1()‘9 m/sec [case (b). Table 9]}, the
maximum t1me needed for salinization to an tC of 16 dS/m 15 about

220 years. The same degree Of‘Sd]1HIZdt10n can result from groundwate;
discharge at Site (4 over a tme span as short as 7 years. These
calculations thus show that discharge of shallow groundwater can daccount

for the severe so1] salinity observed 1n the area.

3.4 Surface water and shallow unsaturated/saturated flow

3.4.1 wWater table fluctuations

Because the water-table fluctuates 1n response to the addition or
subtraction of water, the timing and nature of such fluctuations can
help to 1dentify sources of waler at the water table. Water table rise
can be attributed to infiltration of precipwtét1on and runoff, and
lateral or vertical inflow of water below the water table. Lowering of
the water table may be caused by evaporation, evapotranspiration, and
lateral or vertical outflow of water below the water table. Barring
barometric effects and air éntrapment duriné recharge events, ti%es
during which the sum of factors responsible for a water-table rise
exceed that of factors responsible for water table decline, will be
characterized by a rise in the water table. The water table will fall
when conditions are reversed.. 7

Typically, a major rise in the water table begins at about the end

qﬁ February, about 2 to 3 weeks before the first rainfall event of the

year. The rise is usually rapid, ranges from 0.4 to 1 m, and coincides



with the spring snowmelt and subsequent sprang precipitation events.
large quantities of water were observed on the surface during the 1984,
1985, and 1986 snowmelt events and these resulted 1n a large but
temporary slouéh near Peacock {at Site A5, 11, and 12). About the
beginning of May, evaporation. and later possibly evapotransparation,
cause the water table to fall unt1] rain after the growing season dgdln
produces an 1ncrease. In late September or QOttober., the water table

begins to decline gradually until the snowmelt ®vent of the following
~

spring. -— @

Response of deeper water tables 15 typically more subdued and Ilés
relative to the shallower water levels. The hydrograph does not éxh1b1t
the'general peaky nature that 1s apparént\ln shallow settings. In both
cases, the water table rises 1n response to the spring snowmeltl and
runoff event and to spring ra1ns.\§nd then declines during the summer
growing season. Reversals in direction caused-by post growing season
rainfall are., however, génerally absent or very slight at deep
water-table sites, but may be as large as 0.8 m at shallow sites.

Water-table hydrographs exhibit several different types of response )
depending on depth, the hydrogeologic setting, ipd tge landscape. Those
differences related to depth are best illustrated by comparing
hydrographs of water-table wells at Sites Al and B3 to those of others
such as A5, B4 and gg (Appendix 6). During the three years of
monitoring, depth to the water table ranged from about 4.5 to 5.3 m(at
Site Al and from about 3.3 to 3.8 m at Site A3. Ranges of fluctuation
at Sites A5, B4 and B5 were about 1.1 to 2.4 m, 0.8 to 1.9 m, and 1.5 to

2.5 m, respectively.

Water-table fluctuations can also bg\grouped with respect to



characterastac hydrograph shapes. Much of the following discussion 1s
based on hydrographs of water-table wells installed early in 1986, which

were not avarlable for monitoring during the spraing snowmelt events.
i

i

The period of measurement related t6 this discussion 1s from May 1986 to
February ‘1987 ’

The main differences in observed water-table fluctuation 1n this
case 15 the response during the growing season. The first typé of
response 1s typified by that at 18WT. Other hydrographs following this
pattern are at (5. 6, 12, 15, 16, 16-2, and A3) WT (Figure 34). Depth
to the water table at thes? sites ranges from about 1.2 to 2_6JT. The
decline that follows the initial rise caused by the spring thaw and
spring rains begins 1n about mid-May, 1s steep., nearly linear, and edual
to about 0.6 m. Response }o post growing season rainfall is positive
and 1inversely related to water-table depth.

The second response type is that shown on hydrographs of water-
table wells at Sites C4, €5, and (b (Figure 35). The water téb]e at
these sites 1s characterized by an increase in water-table elevation to
about mid-July. The water level then stabilizes or declines slightly
after this time. Rains following the post growing season result in very
slight to no reéponse. Depth to water table at these sites ranges from
about 0.6 to 3.3 m. The deep water table at Site C5 is probably the
result of steepening topographic gradieﬁts and the high hydraulic
conductivity of the near-surface sediment.

The third type of water-table responée is intermediate between the
first two and is typified by water-table hydrographs (2, 4, 7, 8, 9, 186,
11, 13, 14, 17, lé, A4, and A5) WT (Figure 36). Depth to the water

table at these sites ranges from 0.9 to 3.3 m. The hydrographs decline
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during the growing season but the decline 15 less (0.1 to 0.4 m) and
begins later (early June to early July) than for wells with a Type 1
response. The hydrographs typically have convex upward shapes during
the decline. The water level typically responds to rains following the
growfhg.season. with the magnitud® of the change being inversely related
to water-table depth.

Changes 1n the water table can be related to water fluxes at the
water table. That 15,.dssum1ng the hydraulic character of the sediment
to be the.same, factors causing increased water-table elevation
{(tnfiltration of snowmglt and precipitation, dand lateral or vertical
addition of groundwater) must be greater at s1te§ with Type 3 and
espec1aily Type 2 responses than at sites with the first type of
response. Although groundwater discharge is strongly implicated at, and
near, the b%ée of Blackspring Ridge, lateral 4bredding of a water-table
mound from the Peacock Slough should Sé the primary reason for continued
and later addition of water to the water table 1n its vitinity. At‘
sites with a relatively deep water table (2, 8, 10, and 11) WT the
delayed spring response may result from restricted evaporation rates and
more water being held in the unsaturated zone. However, at sites with a
water table of less than about 2.5 m (less than or equal to sites with
Type 1 response) addition of grounanter i1s wmplicated (4, 7, 9, 13, 14,
17 and 19) WT.

It shobld be noted that none of the Type 1 hydrogragh
configurstions precludes additions of groundwater laterally or from
below. The configurations simply 1mply'thét factors responsible for
removal of water from the water table (evaporation and

evapofranspiration) during the summer decline exert a greater influence



than those responsible for addition. This situation s partlculafly
true for Type 1 sites with a shallow water table (15WT). |

The winter wdter:tdble decline that 15 observable on water-table
hydrographs of the A and B-Line in{late Fall and Winter means that a net
loss of water from the water tdble{>s occurr;ng during this taime. Some
of the loss may reflect lateral or downward movement of water away from
the water table, particularly at B-lLine Sites with downward hydraulic
gradients. Because this feature exists also at sites with upward
gradients, such as A4 and A5, however, 1t 1s almost certain that
continued upward 1:5395 from thg water table exist during winter months.

Similar declines were attributed by Schneider (1961) to upward
movement of capillary moisture under the i1nfluence of thermal gradients
toward the frost layer. Willis et al. (1964) showed Ih;t upward
transfer of water to the frost zone can also occur 1n the vapor phasé.;
Schneider (1961) attributed initial spring rises in water-table
elevation to melting of the frost layer from below. It 1s thus probable
that not all of the spring water-table rise noted 1n the study region
can be attributed to recharge by snowmelt. Some unknown but possibly
significant component of the water table rise merely represents a
temperature-dependent vertical redistributidn of groundwater and soil
water at individual sites.

The conspicuous water-table rise that occurred in mid-January of
1986 represented such a frostmelt event. Early Jangary was
characterized by above-freezing daxfime temperature~and a major snowfall
occurred in late February. The snow melted within days and wet and

muddy conditions existed during field monitoring at the end .of February.

The January water-table rise thus corresponds to a temperature increase

—



v

and not to nfiltration of "snowmelt.
/

The concept of nfiltration to the water table 1in dareas of upward
groundwater flow, orf areas of groundwater dischargé, may be important
from several points of view. Farstly, 1n the Blackspring Ridge area 1t
1s generally true (but with exceptlgns) that the water table 15
shallower 1n areas where groundwater discharge 1s indicated by strong
upward gradients than elsewhere. It was shown in the preceding
discussion of water-table responses that infiltration effects are more
strongly apparent 1n areas with a shallow water table (less than- 2.5 m).
The combination of these features suggests that infiltration will in
general cause a larger rise of the water table in gréundwater discharge
areas than 1n areas with Strong‘downward components to flow.

Also, areas of groundwater discharge generally occupy -
topdgraphically low areas and thus experience greater surface water
accumulations, 1n response to runoff from snowmelt and high-intensity
rainfall events, than upland areas. Therefore, water will be available
for infiltration in larger quantities and for longer periods of time in
low-1ying areas than in upland areas. In addition to the net influx of

groundwater that characterizes discharge areas, the increased and

combined effects of infiltration of precipitation and runoff water

probably play a greatér role in maintaining a high water table in areas

of groundwater discharge than elsewhere.

3.4.2 Iritium content of water from water-table wells

Tritium content determined for water samples from water-table wells
in the area extending from the Peacock Slough to the west flank of

Blackspring Ridge is shown in Figure 37. Depths of water-table wells
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“”rebxc‘(ru’d in bagqure 37 generally range from 3.5 to 6 b m Mot were

‘¥;;dnst'U(th to o depth of about 5 5 m, with the exception of BWI

ki

gq 1 m), IbW! (7.6 m), CIWD (12 my, C2WD (12 m), and (3Wl (9 m) With
';-._the .geptmns noted, therefore., mo<t wells dare constructed t'd(‘pth\

KO by
"% at, dre generally assoc1ated with hagh tratium content 1n pore waters

Voo

S
{A- .:|
IQI% qualitative sense. the water sampled from water table wells should

re§§;sent a composite value of tr3t1um content that exists 1n the
pro;JWe at each site, and should be weighted toward that of the largest

§ <

(ont;;iﬂflng water source.

’in th1slsense, and to the degree allowed by laboratory detection
Jimits, primary scurces of water to the water table can be qualitatively
derived. Three groups of primary sources are 1dentified:

1. Water 1n the vicinity of the Peacock Slough (Sites A5, 10, 11, 12
and 13) has trit1dm content ranging from 46 to 67 TU (mean = 59) or
about twice the mean of present-day snowmelt and runoff water. The
prime soutce to the water table 1s here considered to be the runoff
accumulated 1n the Peacock Slough and water emplaced during time of
peak activity 1n precipitation water (post 1952) st1ll'appears to
be present.

l. Water-table water at Sites C4, C5, Cb, A4, 4, 5, and 15, contains a

lar ge component of pre-1952 water which, because of upward

A
gradients and hydrogeologlc setting, 1s considered laterally
- and vertically contributed groundwater. Water from C3 30 and £2-40

1s pr8-1952 and has a distant bedrock source (see Figure 29).
3. Primary-source determination for water-table water at the remaining
sites-is somewhat more problematic since several scenarios are

possible. Water at Sites 7, 8, and 9 is likely a combination of

N 0



recent precapirtatoaon and runott mixed with groundwater transpor ted
| .
laterally trom Sites (o, and A4 and & Due to upward hydraulig
,
gradrents a deep groundwater contrabut ron cannot be dismissed
High tratrum values ¢t Sates b, 180 and 19 ndicate that the ma jor
water source 1s g mixture of recent and post 1957 watér . G ecent
precaprtation and runoff o or combinations of these and groundwater .
are possible tor the remaining sites (2, 14, 1b. 16-2, and 17)
The above qualitative analysis must . however . be tempered with the
fact that many tritium determinations are well below laboratory

detection 11mits at a confidence level of 95 percent. Group three

interpretations are thus particularly suspedt.

3.4.3 Surface water

The timing of water table fluctuations and tritium content of water
at the water table 1ndrcate that surface water from the spring melt
event s an mportant cause for the shallow water table on the
tacustrine plain (sections 3.4.1 and 3.4.2). The following analysis
examines the amount of salt that this same water can transport to
low-lying areas.

Surface water was sampled periodically 1n 1985 from the time of the
spring-melt event (March 11) to June 20. Samples were collected from a
small temporary slough on top of Blackspring Ridge (Al1.3). at two
locatons near the base of the ridge (the culvert shown on Plate 5, and
runoff entering the area of interdunal salinity at the SW corner of
30-13-22 W4), and at the Peacock Slough. Chemical analyses are given 1n
Appendtx 7. »

An important characteristic of the surface runoff 1s that 1t flows

»
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GO 08s aréu\ of sabinity that are (du%vh by qroundwater discharge (as
described 1n 3 %) before 1t reaches 1ts final destinathyon. In doing so,
the salts ihdt were previously brought to the surface by groundwater
divcharqe are r¥dissolved and redistributed to topographically lower
areds For example, runott water flows along the sdaline bottoms of
coulees 1n Sections 6 and 7 of 13 27 WA, across the severely saline drea
near Sites A3, 16, and (4. and across saline areas in Section 11 and

NW 12 of 13 23 W4 (;idte 4, Figure 4) before 1t reaches the Peacock
Slough.  Similarly, surface runoff that enters the areas of 1nterdunal
salinity 1n 25 13-23 W4 farst crosses areas of saline groundwater
dlschgtge located at the base of the northern part of Blackspring Ridge.

The process of salt redistribution by surface runoff 15 reflected
1n the dissolved salt load of the surface water. Samples collected on
March 11. 1985 had a TDS content of 112 mg/l on top of the ridge,

532 mg/L at the base of the ridge (culvert on Plate 4), and 492 mg/L at
the Peacock Slough. Water that entered the 1nterdunal saline area had a
DS content of 292 mg/L.

The total v%lume of water that forms the Peacock Slough annually
can only be crudely estimated, but the following calculations are
probably conservative. Assuming that the average annual area covered by
water 1s 1 kmz. and the average depth 1s 0.2 m, then the total volume of
water 1n the slough 1s 2 x 105 m3 per spring-melt event. Given a TDS
content of 500 mg/L, or 0.5 kg/mJ, the total salt load brought to the
Peacock Slough annually 1s about 1 x 105 kg or 100 tonnes. On an areal
basis, the average assumed depth of 0.2 m and TDS of 0.5 kg/m3 mean that
about 0.1 kg of salt per square metre of slough is available for

addition to the soil.
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Comparison of the above value to that of 3.2 x 10 kg/m /yr

calculated as the salt flux from groundwater of regional origin
(sectron 3.Z2) shows that the salt load contributed by spring runoft
water 1s about 30 times greater than that from groundwater dischar ge.

Nedar surface salts at Site Abh. which s located adjatent to the
Peacock Slough, are marnly distributed n the upper 3 5 mJAppendix 3).
This zone also correlates with the active recharge z;ne indicated by
Trithrum content of pore water, and with sandy lacustrine surfacg
sediment. EC of saturation extracts from cores 1n the upper 3.5 m 1s
about 5 dS/m.

Application of the conditions and concepts derived 1n section 3.3.3
to the salt load within the upper 3.5 m at Site A5 gives the following
results. Saturation extracts with an £EC of 5 dS/m should contain about
4400 mg/L of salt. One gram of so1l yilelding such an extract should
therefore contain about 4400 mg/L x 0.5 «x 107> U or about 2.2 mg of
salt, which equates to about 0.22% by weight. To a depth of 3.5 m, the
so1l should thus contain about (3.5 m x 1820 kg/m} x .0022) kg/m2 or
about 14 kg salt per square metre of surface area. If the rate of
accumulation by surface water inflow 15 0.1 kg/mz/year. then the
ex1sting salt load 1n the upper 3.5 m near the Peacock Slough required
only 140 years to accumulate.

If it 1s assumed that climatic and runoff conditions similar to
those of the present time have existed for the past 5000 years, then
about 35 times the required time for salt accumulation is available. In
other words, the degree of salinization at the Peacock Slough should be

much higher than exists at present. This situation has three possible

ramifications:

i (’ .
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1 the calculated salt nflux 1s grossly overestimated,

2. the Peacock Slough 15 not a closed system with respect to wqter, or
3. high salt 1nfluxes have only occurred for a very short period of
time .

The farst possibility 1s not likely the cases Discussions with
local residents i1ndicate that the average annual amount of surface
runoff to the Peacock Slough is probably higher than thst used i1n the
preceeding calculations. In some years the slough receives more water
than can 1nfiltrate and evaporate and exists from one year to the next.
Also, the calculations do not consider runoff from occastonal o
high-intensity rainfall. The salt influx to the area of the Peacock
Slough s thus probably underestimated.

The second condition 1s probable. The elevation of the water table
near the §eacock Slough was about 941 .1 and 940.5 m at Sites AL and 12,
respectively, 1n 1986. A hydraulic gradient of about 0.6 m/km or 0.0006
therefore exists at the water table and toward the north. The average
hydraulic conductivity of the surface sand unit fs 3.9 x 10~7 m/sec, and
its thickness 1s about 5 m. An average llg;ar velocity of:

v = [(3.9 x 1077 m/sec)(6x10"*)(5 m*)1/0.1
(assuming an effective porosity of 0.1) or 1.2 x 10-8 m/sec 1s thus
possible to the north. This value equates to about 0.4 m/year. In
5000 years, the possible distance of water and salt movement away from
the Peacock Slough is thus about 2000 m.

The third condition is also possible, although the argument can
only be qualitative and in part speculative. Because native grasses
would havé existed along and on élackspring Ridge in pre-agricultural

time, the water'table would have been lower. Saline areas would thus
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1 .
have been smaller 1n areal extent and the amount of salt on the ground

surface at the base of the ridge would hdave been less. The
pre-agricultural drainage pattern would also have been different.  The
present pattern 1s conductve to exposing a greater surface area to
surface runoff for longer periods of time (see se;twon 2.5). It 1s thus
probable .that more salt, that 1s distributed over larger areas of
groundwater discharge, 1s now avarlable for solution and redistribut 1on
by the surface water. The influx of salt to the Peacock Slough may thus
have i1ncreased with the onset of agriculture.

The concepts developed 1n this section are more genenally
applicable than just to the area of the Peacdock Slough. The latter was
cﬁosen for analysis hecause the siough s a well-defined areaAfor which
reasonable assumptions regarding salt and water fluxes can be made. The
amount and TDS content of surfﬂﬁe water entering the interdunal saline
areas in 525 and 36 of 13-23 W4 are similar to those of the Peacock
Stough. Soil salinity in the area of dunes may thus have a similar
cause. Also,—a large slough exists on the same lacustrine plain about 4
km SSW of the Peacock Slough. Its position with re;pect to
hydrogeology, hydrology, and saline areas along the base of Blackspring
Ridge 1s also similar to that of the Pegcock Slough. Runoff water and

its contained salt load may thus be fesponsiblé for so1l salinity over

large areas of the lacustrine plain.



4. SUMMARY AND CONCLUSIONS

4.1 Regional groundwater flow .

Direct transport of solutes 1n deep, regional flow §ystems does not
contribute significantly to the development of saline soils 1n the
Blackspring Ridge area. The regional configuration of groundwater flow
1s strongly lnfluénced by two major sets of geologic units of high
hydraulic conductivity. Firstly, two major bedrock valleys, the
Carmangay and Peacock Valleys, act as Tine sinks. beep g}oundwater
moves laterally toward, and eventually 1s transmitted algng’ these
units. The influence of the bedrock valleys 1s reflected for relatively
large distances 1n the seQPnd set of major units - the basal sandstone
of the Horseshoe Canyon Formation and the Ryegrass Sandstone. Hydraulic
continuity between the two sets of units {s provided by either direct
contact w1£hvpermeab1e valley sediment, or by terrace deposits along
bur jed-valley flanks. Thus, downward and lateral hydraulic gradients
exist 1n‘bedro;k and drift units of the lacustrine plain for distances
of 5 km or more from the Little Bow River. |

The strength of the hydraulic inf luence of the Carmangay Valley
decreases with distance for two reasons. Firstly, the gradients are
simply dissipated over distance, and secondly, bedrock units dip more
strongly south of the B-Line. The influence of the d}rect hydraulic
connection between bedrock valley sediment, basal units of the Horseshoe
Canyon'Formatidn and the Ryegrass Sandstone thus ceases to exist at some
point between the A and B-Lines and gradients under the lacustrine plain
become directed upward. Where all regiona1 groundwater flow (to the
depth of the Ryegrass Sandstone) along the B-Line ends up in the
~
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tdrmangay Valley aquifer, only about 20 percent flo:s to the Peacock
Valley aquifer along the A-lLine.

Regional groundwater flow discharges to the lacustrine plain 1n .
southern regions of the study area. Calculation of the groundwater flux
shows, however, that a1schdrge from the rgg]ondl\s)stem 's generally

less than the equivalent of 2 mm of precipitation per year anfl should

not 1n 1tself be a direct cause of salinity 1n these regions.

4.2 Local groundwater flow

Investigations 1n the vicinity of the C-Line lead to the conclusion
that groundwater flow from local, relatively shallow (to about 30 m)
systems is responsible for severe soill salinization 1n that region.
Cateulations based on combinations of hydraulic condbct1v1ty and
hydraulic heads 1in near-surfacé unconsolidated sediment show that
salt-fluxes in excess of 2 kg/mz/yr are posg1ble in extreme cases. The
following generalized model 1s proposed to explain the severe so1l
salinity.

Bedrock along the west flank of Blackspring Ridge 1s highly
fractured as a rgsult of glaciotectonic activity. The fracturing
imparts ﬁigh hydraultic conductivity primarily to sandstone units, but
locally also to 1;terven1ng units of claystone and shale, f;‘; depth of
about 30.m below the bedrock surface. The fractured-bedrock zone
constitutes a region of active groundwater flow in which salts are
generated and transported, a;;hfrom which highly mineralized water s
discharged to the surface or to other drift units in the area between

Sites 16 and Cé6.

Where fractured bedrock units subcrop or crop out along coulees and
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upper portions of the west -flank of Blackspring Ridge. groundwater
discharge from the units 1s a direct cause for so1l salinmity. FExamples
of such dreas are the localized saline dareas 1n NE of 6, West half of 7,
and SW of 29 of Township 13, Range 22, W4.

Several draft units of high hydraulic conducf1v1ty are also
important féatures that help create salinity 1in the vicinity of the
C-Line. Firstily, a preglacial sand as much as to 2 m thick exists on
portions of the western flank of Blackspring Ridge and acts as a conduit
to move shallow groundwater to lower portions of the ridge. Secondly,
an interglacial sand and gravél unit exists in channel form at the base
of the Ridge (Sites C6, 6 and 5). This unit receilves water from
adjacent fractured bedrock and from the preglacial sand unit. The
hydraullc gradient in the channel unit is strongly upw;rd and
groundwater discharges to the surface. Thirdly, a highly permeable
lacustrine or ~alluvial unit exists at the surface in, and
topographically below, the area of major groundwater discharge and Qalt
accumulation. This unit receives groundwater and dissolved salts from
the fractfured bedrock, from tﬁe preglacial sand unit, and from the
channel unit. Water and salt then move laterally downslope within the
unit and are redistributed to areas of the lacustrine plaiq that are
downs lope from the original points of discharge.

The conclusion that the severe salinity in the vicinity of the
C-Line is caused by groundwater discharge from relative]y\§ha110w
(<30 m) zones is supported by chemical and isotopic data. / The shallow
zone contains the dominant salt load. TDS and 504= concéntration is
always above 6000 and 3000 mg/L, respectively and increases to as much

as 52 800 and 35 200 mg/L, respectively at the water table. Groundwater
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flow appears active enough to maintain an ox1daton state such that
sulfate reduction does not occur: fracture-dominated flow may be 1mplied
by high CgH and MgH ;onteptA Concentration of Ca’ " and MgH relatve .
to Na' and K", 1n water at the water table of saline areas. implies that
a mixed draft dﬁg\shallow—bedrock groundwater source 1% required.

Water fromshe shallow active-flow zone has 6180 and Deuter 1um
content similar to present-day precipitation; deeper water h;; an
tsotopic composit:on of water emplaced during climatic conditions
different from the present. This lmplles‘d very long residence time and
sluggish flow in deeper zones and 1ndicates that significant discharge
from deep systems 1s not likely. Ffurthermore, deep groundwater has a
much lower salt load than shaliow water because the former has undergone

sulfate reduction. Thus significant discharge of neither groundwater

nor salt is possible from the deeper zone.

4.3 Topography and surface water hydrology

Several topographic factors are important with respect to soil
salinization in the Blackspring Ridge area. Firstly, the major salinity
n the area {near Site C4) exists in a topographic setting dominated by
a broad, bowl-shaped depression on the flank of the ridge., which
contains several coulees. The depression focuses flow of both surface
water and groundwater, resulting 1n larger volumes of inflow than would
ctherwise exist. This increased groundwater discharge.transports the
necessary guantities of salt to the area, and abundant surface water
input maintains a higher water tablé and facilitates salt deposition at
or close to the ground surface.

Secondly, the surface drainage is such that topographically low
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areas will be more influenced by surface-water runoft than high areas.
Low areas will experience larger volumes of runoff whose residence time
on the surface will, 1n general, be longer. than the higher dreas. A
longer time thus exlStS}{OW/lnfllEfiilon to the water table. Also,

. because groundwater dischdarge areas generdlly occupy low portions of the
ldndscape. surface water contraibutions to the water tabtle can. 1n
general, not drain vertically because of an hydraulléfperch effect. The
combinaticn of these two factors results 1n a higher water table 1n
affected areaslthan elsewhere.

Water-{able hydrographs show that the depth to the water table and
the magnitude of positive response to precipitation gvents are
negatively correlated. Thus, 1n addition to receiving larger valumes of
surface runoff and a possible groundwater contribution, the high water
ta%le n to&ograph1ra&ly low areas 1s also more strongly affected by
recharge from prec1p1tatéon. A1l of the above factors are combined to
the greatest éxtent in the region of the temporary Peacock Slough. This
feature constitutes a low point in the landscape, has no surface outlet,
is fed by a large catchment area, and has lateral and upward d1;ected
hydraulic gradients.

In addition to causing a high water table, the surface water
carries a substantial salt load to low-lying areas and is the prime
cause for soil salinity on much of the lacustrine plain. The salt load
is picked up as surface water from the spring-melt events flows across,
areas in which salt has been brought to the surface by groundwater
discharge and is then }edistributedllo topographically lower areas. In

areas where surface water accumulates, such as at the Peacock Slough, as

much as 100 tonnes, or 0.1 kg/m>/year of salt is added to the soil.
> .
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This rate 1s high enough to cause salinization to an £C of 5 dS/m. to a

depth of 3.5 m. 1n as hittle as 140 years.
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Plate 1. Severe developmennt of soil salinity near the base of Blackspring Ridge.
SWvs-12-13-23W4 " . '



Plate 2. Poor cereal production in a salt affected area. SEVa-11-13-23W4



Plate 3. Salinity developed in an interdunal setting in 31-13-22W4. Distance across the
photograph is 1.5 km.



Plate 4. Spring runoff, March 4, 1986.



Plate 5. Spring runoff, 1985. Culvert is located about 0.2 km north of site 6 in NEVs-11-
13-23W4. .
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caline sorl distributaion

Areas of saline so1l were determined by visual 1nspection of
1:10 000 scale colour arr photogrdﬁhs {where available). 1:40 000 scale
black a q\zplte air photographs, and from published 1:250 000 scale soi)
sa11nltz maps (INTERA tnvironmental Consultants Ltd. 1983a. 1983b)

In addition to visual checks, electrical conductivity was measured
at 100-m 1intervals along the lines of section using a Geonics £M38
ground conductivity meter. The meter was positionéd with both
transmitter and receiver ends 1n contact with the ground surfage.
%gasurements were taken with both ends aligned normal to the ground
surface (vertical position) and parallel to the ground surface
(hortzontal position). Rhoades and Corwin (1981) correlated
conductivity values obtained in the vertical position to salinity in the
root zone (0 to 120 cm). To convert field measurements to e]ectrjcal
conductivity requires calibration equations. The equations here are
based on correlation of EM38 data with saturation extracts of 110
samples taken at coinciding locations. The resulting equations are:

0.996 In (R) - 3.435 -

0.940 In (R) - 3.085 r?

(a) horaizontal In (EC) 0.675

(b) vertical In (EC) 0.682

where EC is electrical conductivity in dS/m (deci1Siemens per metre) and

R is the meter reading.

Geologic Studies

Regional geological studies involved constructing maps gad_.

cross-sections. A structure contour map was constructed on an easily
recognizable bentonite and sandstone horizon (top of the Kipp Sandstone)

within the Bearpaw/Jormation, using structure testhole and oil well

. &
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electric logs. This map helped to define geologic structure and to
correlate bedrock stratigraphic and hydrostratigraphic units. Two deep
sersmic reflection profiles, provided courtesy of Canadian Occidental
Petroleum Ltd., were used to evaluate whether deep-seated faulting
influences the structure and continuity of geologic units.

Deep testholes were drilled using conventional mud-rotary
techniques to the anticipated base of regional groundwater flow or about
150 m, ;hlchever was less. Ten mud-rotary testholes, spaced 1.5 to
2.5 km apart, were drilled for the initial reg}onal investigation,
These ranged 1n depth from 97 to 150 m and wer;fdrllled along two lines
of section. A further six testholes, 30 to 80 m deep and at about
0.4 km spacing, were drilled during the detailed phase of the
1hvest1gation. Drall cuttings were collected at 1.5-m 1ntervals,

described in the ﬂie}d: and stored for further examination. Borehole
PR ~

XconSisted of caliper, linear density, gamma ray,

Y/ b
s

neutron-neutron, so?ﬂc, spontaneous potentTal, focused electric and

geophysical sur

temperature logs. Spontaneous potential and resistivity logs only were

run 1n the ]atter six rotary testholes.

1
/

Shallower test-holes in drift were completed with an auger rig. A
20-cm diameter hole was augered at each regional drilling site. Depths
ranged from 5.5 to.31 m and were coqiigl]ed by geologic and machine
constraints. Metal tube push cores were taken continuously for the

first 1.8 m, ét 1.5-m intervals to 15 m, and at 3-m intervals from 15 m

J

to bottom. Deviation from this sampling ptan was not unusual and wase"

-
necessary due to changing borehole conditions such as quick conditions

>~
or boulders. k

Core samples were sealed immediately after collection C;%ﬁ rubber
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caps and electrical tape. Llater they were extruded, split, and vacuum
sealed 1n polyethylene sleeves. One split waé used for visual
examination for lithology. fracturing. degree of weathering. and
secondary mineralization. A subset of samples was submitted to Research
Counc1l laboratories for saturation paste extract preparation and
analyses . 1

The second set of split cores was shipped to the Alberta
Environmental Centre (Vegreville) Radiocarbon and Tritium Laboratory for
pore water extraction (by a toluene reflux process) and tritium
analysis. Seventy-six intervals were selected for pore water \\

extraction, based on core depth and results of the visual examination.

Piezometer and Water-Table Well Construction and Testing

Completion zones for piezometers were selected using geophysical
Togs of rotary éestholes. lTithologic logs of rotary and auger holes, and
noted occurrences of wappr during auger’ drilling. The completion zones

-

were chosen to represent the diverse hydrochemical and hydraulic
environments in the area, and to provide hydrdul1c\}onduct1V1ty data
representative of different geologic units.

Piezometers were emplaced in boreholes drllleq using etther
hollow-stem or solid augers, or conventional mud-rétary techniques. In
hollow-stem auger construction, a 20-cm hole was drilled to the bottom
of the comﬁletion zone and the piezometer assembly installed through the
auger. The dri)l pipe was retracted to expose the completion zone and a
gravel pack and bentonite-pellet seal were 1nst;11ed. Proper placement

7
of the gravel pack and seal was checked with a weighted tape. Next the

avgq:i\were backed out of the hole, leaving cuttings on the auger

/
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flights to f11] the annular space between the piezometer pipe and
auger-hole wall. In holes drilled using solid augers, the pirezometer
assembly was 1nstalledmlﬂ an open, l5-cm hole, that 1n most cases was

dry. The gravel pack anéﬁbentonxte-pe]let seal were placed down the

\.‘\

open hole. The remaining open hole was backfilled with auger cuttings.
The following procedure was used for piezometer construction in
Y]
rotary—dr1lleq holes. Depending on expected geologic conditions, holes

ranging from 13 to 17 cm 1n diameter were drilled to the bottom of the
completion zone. Natural mud ;as used at all sites except AZ, where
circulation loss occurred. The deepest piezometer at each si1te was
installed in the previously drilled testhole after 1t was backfilled and
sealed with bentonite pellets below the completion zone. DOrilling mud
was lightened by circulation with cledn\water qﬁd the piezometer
assembly installed. C(lean water was théhycirculgted through the screen
and washdown fitting until returns were clégn. A gravel pack and
bentonite—pellet/seal were installed a%d depfhs checkqg with a we%éﬁted

4
tape. A slurry consisting of about 0.3 kg of gganular or, powdered

A}

bentonite per litre of water was used to seal thé annu1ar space between
. .

N,

the piezometer pipe and borehole wall. RN

Five-cm schedule 40 plastic pipe was used for p{é}ometer\and
water-table well casing. Sixty-cm long; continuous wound plastic,
20-slot screens were used for piezometer tips during the regional‘
investigation. Because the regional investigation indicated that
fracturing of bedrock sedjment is an important mechanism of hydraulic
conductivity modification, most bedrock piezometers installed during the
later, more detailed investigation, were cohpleted using 3 p/of léislot,

4

machine slotted pipe., The intention was to sample a rock volume
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sufficiently large to have a high probability of encountering a
representative number of fractures. Piezometers installed in the rotary
drilled boreholies were equipped with a washdown valve to 1mprove
circulation while washing. Plastic centralizers. to prevent screen
contact with the borehole wall and to allow an even gravel pack around
the piezometer tips, were used 1n prezometers constructed with rotary
and solid auger drilling machines.

Water-table wells were completed with 15-slot, machine slotted
plastic pipe and were gravél packed from bottom to within about 1.2 m of
the ground surface. The annular space above the gravel pack was sealed
with bentonite pellets and drill cuttings to prevent surface water
contamination.

Gravel packs used in all wells and pilezometers consisted of No. 9
S11 Silica sand. AIll piezometers and wells were developed twice by
production with compressed air or bailing. Completion details of
individual wells and piezometers are given in Appendix 12.

Piezometers and water-table wells were hydraulically tested and
results analyzed by methods appropriate to individual hydraulic
settings. The Bouwer and Rice (1976) solution was used for unconfined
settings and Hvorslev (1951) metﬁodology for confined situations.
Piezometers C4-65 and C4-100 flow freely if open to the atmosphere.
These were produced by air 11ftihg and the solution of Cooper and Jacob
(1946) was used to analyze chdvery data. The basal sand and gravel
aquifer of the Peacock Channel was tested with a pumping well and iwo
piezometers. Data were analyzed using the soldtinggf Vandenberg (1976f

for a leaky artesian aquifér in a parallel channel. The latter solution

uses computer generated type curves for the configuration of well
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positian and aquifer boundarres specifac to the test sates
‘
\

Waler Level Menitorang

S Water levels were monitored. 1natially darly, then weekly. and
biweek ly beginning 1n late January 1984 A'bdtlevv operated 011 tape.
accurate to within 0.25 ¢n, was used to measure depths of water levels
from the top of each prezometer and water-table well. Selected water
table wells and prezometers were fitted with Stevens type F. weight

driven, automatic water-level recorders locat ton and elevation were

surveyed.

| Water Safipling

Waters from prezometers and water-table wells were sampled using a
Bennett Model 180-500, compressed-gas operdated. peraistaltic,
noncontaminating pump. In cases where water levels were too low for
pump use, samples were collected with a stainless steel bailer equipped
with a plastic foot-valve. At least one casing volume of water was
rempved from each well prior to sample collection and the sample pump
purged with compressed air after each samplie was collected.

Samples were collected 1n 1-1L, 250-mL, and 20-mL polyethylene
bottles. One-litre and 250-mL sample bottles were soaked in deionized
and demineralized water for at least one week.pr1or to use and kept
sealed until the time of,sampling. A few drops of concentrated nitric
acid were added to the soaking bath of the 250-mL bottles to bring the
pH to less than two.

Temperature, conductivity, and dissolved oxygen were measured

immediately wpon sampling using a YSI Model 57 dissolved oxygen and

-
v



temperature meter and a HACH Model 2510 conductivaty meter . Two
one 11tre samples were kept on ace tor transport to a mobile field
Taboratory.

Samples for major 1on analysis were faltered nto J0 ml vials,
sealed. and refragerated untl deiivery to erther (hemex Ltd. n
Calgary, or the Research (Council laboratory Unfailtered 1 1 samples
were collected for tritrum analysis and were sedaled with tape to prevent
alr and water transfer Samples for 18O and deuter1um analysis were
collected 1n 20 -mL bottles. Deuter tum and 18O analyses were performed
by the Un1vefs1ty of Calgary. Physics Department lsotope laboratory.
Total alkalinity and pH were determined 1n the field laboratory using
standard titration methods Electrodes. buffers, and samples were kept
refrigerated until analysis Total 1ron was determined using a filtered
25-ml sample and a spectrophotometric method.

Snow and ponded surface water from snowmelt were perjodically
sampled 1'n both upiand and lowland settings and analysed for 3H. 6‘80

and deutertum content .
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SITE DEPTH SAT'N  fC Na K Ca Mg S04 pH Cl ALK

m kg/kg dSm § —emmol /Ll > <---ppm-->
B1 3 .655 .60 7 3 2.4 ) 4 7.2 7.6 286
.9 545 .45 5 o1 1.9 7 K 7.8 5.5 216
1.5 475 .44 i 1 8 1.6 4 8.2 5.8 169
B2 23 .590 .68 5 .4 2.9 ) 43“' 7.7 7.7 211
7 .485 .62 .8 .3 2.3 1.1 .3 7.8 6.6 224
1.1 .420 .39 1.1 1 8 1.0 .3 8.2 5.8 167
1.5 .455 .66 8.1 .0 1 .2 .5 8.8 6.8 337
3.3 .590 576 39.9 .6 11.1 12.9 22.3 7.6 5.6 127
B3 .3 .460 .44 ) .6 1.8 b .4 7.6 7.6 207
9 .375 .30 5 2 1.3 .4 2 8.0 5.9 162
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APPENDIX 3

Saturation Paste Extract Profiles
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.~ Bedrock contact
O Mirabilite occurrence
A Gypsum occurrence
Saturation extract results

= -—-—k  Ca'(m mol/L)

o———a Mg (m mol/L)

O-----0 Na'(m moliL)

* - —-—x SO, (m mol/L)

o————=0 Electrical conductivity (dS/m)

[—-—I CI (ppm)

Appendix 3 Saturation Paste Extract Profiles
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APPENDIX 5 )
Hydraulic Conductavaty Determimdations
from {aboratory Permeameter Tests
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APPENDIX 8
' ¥
Piper Tri-linear Diagrams for Water Samples
from Individual Piezometer-nest Sites and for Samples

from Piezometers glompleted in Drift and Bedrock Sediment.
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APPENDIX 9

Tratium Activity Determinations
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* 239.

Water samples from A-Line pie{ometefs and water-table wells.

Feb/84 Nov/84 Dec/84
Al WT 46418

34 0417 <45(0415)
55 45416 42(23220)°
87 11218 <36(0+23)
130 39416 41(10+22)
197 | 20516% 41(16+22)
295 58417 (31(15217)

A2 92 61+18 <44(37+24)
232 8215 <37(26120)
315 S 70,.18* 46+17*

A3 WT 39418 ¢39(18219)

33 36416 <37(312+24)

98 24418 <37(2120)

233 . 22415* [ <37(722)

357 53+15% 43420*

A4 WT 30413 <14(10412)

50 15416 ‘ <14(7+11)

64 0217 <14(0212)

90 1951 <14(10+11)

122 15416 19512*

(T’ 260 13216 17512*
A5 WT 56+19 66212
61 15418 1749

90 4+19 <15(8+13)

135 0+18 . <35(25+17)

297 0420 l <14(0212)

343 0+18 14(12+12)

* water considered contaminated with drilling mud. Piezometers
recleaned before November 1984 sampling. Piezometers not
resampled in December 1984 were reduced to 1.9 cm diameter by
installing new pipe..



240.

Water samples from B-lLine piezometers and water-table wells.

Feb/84 - Nov /84 Dec/84
B 34 1+18 €32(2+20)
65 74418 <32(0+19)
176 0+17 <32(0+17)
278 46+18*
B2 50 32+17 <15(4+11)
105 35417 <31(17218)
198 59+16% «32(244+20)
320 52+15% 55+21*
B3 WT 81215 44418
60 17+14 <34(6+21)
130 49.17 <33(29:22)
170 41221 <33(3224)
148 18+16 <34(6217)
268 3+15 <33(14:21)
298 56+14* 36+21*
B4 WT 15421 18+12
29 6+17 <15(5+11)
73 0219 <15(9213)
B WT 49418 53421
40 5420 <43(0+21)
83 1419 €33(3+19)
118 0218 <34(0+20)
194 12221 <37(11220)
228 9422 <37(2+15)
265 61+419* <31(13+18)
B6 50 0420 <35(0+20)
80 46418 <39(0+22)
130 27417 38220
230 51+20% <31(25+17)* -
3565 9+19 <37(7+20)
41% . 9+19 <38(14+21)

* water considered contaminated with drilling mud.

recleaned before November 1984 sampling.

Piezometers
Piezometers not

resampled in December 1984 were reduced to 1.9 cm diameter by
installing new pipe.



Water samples from C-Line and vicinity piezometers

wells (sampled August 1986).

241.

»

/

and water-table

i
1 70 <25(16+17) 2 WT €39(30+19)
125 41+17 4 WI <39(6+20)
230 <25(14217) 5 WT <39(2+23)
32 <39(0124)
C2 40 <26(4116) 6 WT 52+21
66 <27(8+18) 70 <39(0225)
93 <27(4+16) 7 WT <39(14218)
125 <27(0+18) 8 WI <3915+23)
. 9 WT <39(16+21)
€3 30 <27(0+18) 28 <39(15+17)
76 <27(0+15) 10 WT 46+22
140 27(1215) 11 WI 63+19
12 WI 51220
C4 WT <27(6+17) 13 WT 67+21
20 <28(0+15) 14 WT <37(22+25)
36 <27(4+16) 15 WI <38(12+20)
65 <40(0+19) 24 <38(4+21)
100 <38(12220) 16 WI <39(17+18)
85 <38(0+21)
C5 WT <39(13+21) 17 WT <38(21+22)
45 <39(3+19) 18 WT 19217
135 <39(2+20) 19 WT 51+21
C6 WT <39(9222)
50 <39(8+22)
170 <39(0+19)
16-2 WT <39(29+20)
38 <39(2+22)
72 <39(12218)
135 <39(1+21)



Snow and surface water samples

Snow Dec/83 22+12
Mar /84 23+12
Nov/84 <31{13+20)
Feb/85 15+12
Feb/85 <14(8+11)
Mar /85 <36(0+23)
Apr /85 <36(0+26)
Peacock Mar 29/85 <36(13+20)
Slough Apr 11/85 <37(19+20)
Apr 24/85 <38(2+17)
May 9/85 <38(17+22)
May 16/85 <38(35+22)
June 6/85 49.23
June 20/85 <37(35+24)
Dugout at Apr 4/85 <37(21+23)
Al Apr 17/85 <39(0+21)
May 2/85 <37(28+23)
May 30/85 <41(23+22)
June 6/85 43427
June 20/85 <37(27+23)
Little Bow Mar/81 81+15

River

242.



water extracted from cores

243.

A-Line:

Core site and Activity Core site and Activity

depth (metres) (TU) depth (metres) (TU)

A4 0.0(a) 49.25 B5 0.0(a) 105422
0.0(b) 74420 0.0(b) 99421
0.6 76221 0.6 95423
1.2(a) 91+20 1.2 74420
1.2(b) 58+22 3.0 67420
3.0 20421 4.6 <21(9+12)
4.6 <19(4+21) 6.1 <22(8+16)
7.6 <22(11+20) 9.1 <30(15+22)

12.2 <38(13+27) 12.2 <18(8+15)
19.8 <25(11+22) 16.8 <23(10+18)
25.9 <23(21+22) 22.9 <30(10+20)
B-Line B6 4.6 133424
9.1 34416

15.2 <20(3+20)

B2 0.0 44422 21.3 <18(7+14)
0.6 <39(19+25) 24 .4 <18(10+20)
1.2 78+24 27 .4 <24(20+16)

"3.0 107422
4.6 91.24

B3 3.0 41421

7.6 <18(2222)
13.7 <20(12+23)
18.3 <«21(1+22)
30.5 <20(0+20)

B4 0.6(a) 44+21 r
0.6(b) 80+20
1.2(a) 96421
1.2(b) 70+21
3.0 43+22
6.1 <27(12222)

7.6 <20(14+20)
10.7 <22(6+22)
16.2 <21(10+22)
19.8 <22(10+20)



C Line and Vicinity:

Water extracted from cores.

244

Core site and Activaty Core site and Activity

depth (metres) (TU) depth (metres) (TU)

C4 0.3 60+21 12 0.3 <39(19+24)
1.8 56+23 1.7 40422
3.4 <36(36+22) 3.2 «39(32+22)
4.9 <36(13+19) 4.8 <39(28+26)

6.5 <40(0+17)

5 3.4 <37(22+20) 13 0.3 <39(19+22)
4.9 <40(23+22) 1.7 <24(3+25)
6.4 <39(26+25) 3.2 180422
7.9 <40(27+23) 4.7 63424
9.4 <39(28+20) 6.4 <39(31+21)

€6 0.3 <40(34+20) 14 0.3 <41(244+21)
0.9 80+21 1.8 <41(12+21)
1.8 67421 3.4 <40(6+23)
2.4 <39(9+21) 4.8 <41(7+18)
3.4 <39(0+20)

4.6 <45(38+16)
6.1 <40(25+19)
7.6 <40(1+19)

2 0.3 47419
0.8 54418
1.4 58+22
1.8 64422
2.4 <39(32+23)
3.0 39422

5 1.8 47419
3.4 <40(13+18)
4.9 <38(17+23)
5.6 <38(14+22)

10 0.3 <39(37+19)
1.8 132421
3.4 69420
4.9 45420

11 0.3 <40(36+18)
1,8 54426

, QS".4 72121
: g@;ﬁ/ 4.7 <39(312+24)



APPENDIX 10

Stable Isotope Determinations
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Snow and surface water samples.

Locat ion Date 5180 50
Sampled

A5 29-MAR -85 -18.93 -152.1
AS 03-APR-85 -17.59 -143 .4
AS 11-APR-85 -16.68 . -135.5
Al.3 04-APR-85 . -18.15 -144 .4
Al.3 10-APR-85 -16.25 -132.0
Al.3 17-APR-85 -11.69 -113.7
A5 17-APR-85 , -11.91 -112.6
A5 24-APR-85 -15.06 -128.5
A5 02-APR-85 -13.31 -119.8
A5 09-MAY-85 -11.98 -113.3
A5 16-MAY-85 -10.03 -106.0
AS 23-MAY-85 -7.38 -91.5
A5 30-MAY-85 -8.18 -95.6
A5 06-JUNE -85 -6.99 -91.7
A5 13-JUNE -85 -6.99 -89.0
A5 26-FEB-86 -23.61 -174 .4
A5 13-MAR-86 -20.95 -158.0
A5 27-MAR-86 -16.40 -136.2
A5 ) 22-APR-86 -8.70 -98.3
A5 08-MAY-86 -8.52 -94 .6
Al 02-MAY-85 ©-21.43 -163.2
Al 09-MAY-85 . -20.77 -156.0
Al 16-MAY -85 -19.03 -153.1
Al 23-MAY-85 -18.66 -150.4
Al 30-MAY-85 -17.61 -146.1
Al 06-JUNE -85 -16.79: -141.3
Al 13-JUNE -85 -15.97 -139.5
Al 20-JUNE -85 -15.15 -134.2
SNOW 29-MAR-85 -21.19 -187.0
SNOW 04-APR-85 -22.11 -161.6
SNOW 12-FEB-86 -21.13 -151.5
SNOW MAR-83 -19.34 -143.1
SNOW DEC-83 -23.35 -176.2

246.



247 .

Water samples from water table wells

locatron Date 6180 5D
Samp led
Al WT JULY-86 -19 .42 182
A3 WT JULY-86 -18.94 -150.
Ad WT JULY-8b 18 .82 144
AS WT JULY-86 16.04 ) -130.
Bl 34 JULY-86 -19.00 150.
B2 34 JULY-86 17.21 -139.
B3 WI JULY-86 ) -21.23 -159.
B4 WT JULY-86 -19.35 -151.
BS WT JULY-86 -19.62 -150.
B6 50 JULY-86 -18.43 -142.
Cl 70 JULY-86 -19.89 -152.
C2 40 JULY-86 -19.19 -149.
C3 30 JULY-86 -22.82 -167.
C4 WT JULY-86 ~17 .48 -137.

WT JULY-86 -19.36 -147.
Wi JULY-86 -19.90 -148.
Wil JULY-86 -18.65 -146.
2 Wl JULY-86 ~-17.15 -140.

Wl JULY-86 ' -19.28 -147.
Wl , JULY-86 ~18.87 148
W1 ) JULY-86 -19.22 -147.

€5
C6

16

16

2

4

5

6 WT JULY-86 -19.17 -149.
7 WY JULY-86 -20.24 -155.
8 Wi JULY-86 -19.31 . -148.
9 Wl JULY-86 -20.97 -160.
10
11
12
13
14
15
17
18
19

N

WT JULY-86 . -18.39 -141.
W1 JULY-86 -17.11 -133.
WT JULY-86 -15.70 -125.
WT JULY-86 -20.20 -152.
WT JULY-86 -18.08 -140.
WT JULY-86 -18.2¢2 -144.
WT JULY-86 -19.34 -149.
WT JULY-86 -19.49 -150.
WT JULY-86 -20.17 -153.
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. _ 248 .

Water samples from prezometers completed 1n draft.

location Date 6180 50
Samp led
”

A4 50 JULY 86 20 37 151 6
A4 64 JULY-86 20.37 2153 5
A4 90 JULY-86 2078 152 .6
A5 90 JULY 86 2074 59
AS 297 JULY -86 19 70 148 9
B3 60 JULY-86 .20 64 154 8
B3 130 JULY-86 20,78 1584
B4 29 JULY-86 120 .40 2156 3
84 73 JULY-86 22051 159 1
BS5 40 JULY-86 22.57 1698
B6 80 JULY-86 19 13 149 5
B6 355 JULY-86 19.87 153 .4
ca 20 JULY-86 18.56 -143 6
C6 50 JULY-86 -21.00 1595
5 32 JULY-86 21967 153 9
6 70 JULY-86 20 .87 -159.8
A5 61 JULY-86 -18.80 147 2



Wat sr samples from pirezometars completed 1n bedrock.

Type 1

Type 2

Locaton

Al
Al
Al
A2
A3
A3
Bl
B1
B2
B2
B3
BS
€2
€3
16
16
16
C4
C4
C4
€5
cs
15

A2
A3
A5
B1
B3
B3
BS
BS
B6
C1
€2
16
Cé

55
87
92
33
98
34
65
50
34
170
118
66
76
85
2 38
2 72
65
36
100
45
13%
24

232
233
343
176
198
268
194
228
415
230
125
2 135
170

EVR

Jate
Sampled

JULY-86

JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-B6
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86

JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86
JULY-86

-19
-18.
-18.
-19.
-19.
-19.
-19.
-18.
.02
-17.
-20.
-20.
-18.
-19.
.89
.97

-19

-21
-17

-20.
-20.
-19.
-20.
-19.
-19.
-18.

214

09

10
39
29
54
48
00
75

21
56
31
68
68

78
47
46
55
95
07
18

.68
-12.
-16.
-16.
-16.
-10.
-16.
-14.
-13.
-13.
-15.
-16.
-16.

07
71
79
42
56
33
11
08
23
50
13
39

L0 VO OO WO N NN~ WD O WO
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APPENDIX 11

Calculations of Salt Flux
to the Water Table
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251.

Groundwater discharge and salt flux to the water table #

d
Ed /K,
\

where k.q = vertical hydraulic conductivity of an equivalent
homogeneous layer (L/T)

from Harr (1962): k -

K = hydraulic conductivity of each individual layer (L/T)
d « total thickness of the Jayered medium (L), and

d = thickness of each individual layer (L).

By Darcy’'s Law, Q_ = k13

3
where Q= discharge rate of water (L7/T),
k = hydraulic conductivity (L/T),
1 = hydraulic gradient, = Ah/d, (L/L).

. 2
a = cross-sectional area over which discharge occurs (L),
and

Ah < head loss across thickness d, (L).

Substituting k.q for k gives

‘ Q, - d . an . &, which reduces to
Ld, /k, d
o, -
Id, /k,

3
For untts T = sec and L = m, Q, = m /sec. Multiplying by 3.16 x 10
sec/year and considering a cross- sectional area of discharge of 1 m
gives:

3.16 x 10 an
Id,/k,

m /yoar/m of surface area

The salt flux 0. - Q' x TDS, where

)= »

Q, = salt flux (ML}), and
T0S = total dissolved solids (M/L>).

For units of M « kg,

0, - 3.16 x 10" ah (105) kg/year/m’ of surface ares
Ld, /k,




252.
C4
AH=065m
d2. 1.7m
Ky =1.7x10 8m/sec
|
,\'o_‘\’, s dy;11m
SEHERN
’\IO\:‘ ’ kV =2 OX‘O em/SeC
o b :
(3.16 x 10 /) (0.65) 3 2
Q, = = 0.13 m /year/m

(1172 x 107%)5 + [1.7/(1.7 x 107%)]

-

105 of water from sand unit - 18660 mg/L = 18.7 kq/m’

Q, =0.13 x 18.7 = 2.4 kg/year/m’



AH=15m

ds.23m

ky=17x10 'm/sec

d3,47m

ky =3.2x10 8m/sec '’

dz; 25m

kv =2.0x10 8m/sec

d1: 36m

ky =4.4x10%m/sec

253.

assuming x of uwnit ay » ) 2 x 10 ® m/sec
4 [
Q, - [(3 16 2 10 )(1 5))/{[3 6/4 4 x 0 ] « {2520« 10
L] o
[4 7/¢(3 2 v 10 )] - [23/17x 10 ]}
.3 2
« 01" m /year/m

-9
assuming x of unit dy - 3.0 x 10~ m/sec

3 2
Q, » 0026 m /year/m

-ve
assuming k of unit ay = 3 0 x 10 m/sec

3 2
Q_ ~ 0003 m /year/m

)
DS of water from unit g, « 6604 mg/L » 6 6 kg/m

then. for case

(a) Q, -0 13166 086 kg/year/m'
(b) Q, - 002 x662:0 17 xg/year/m2

() Q, ~0003x66~002kg/year/n’



i

TDS of water from sand and gravel unit

Q

SWT

AH=04m

d,,27m

ky =3.4x10 °*m/sec

d,:3.1m

Ky =2 0x108m/sec

. (3.16 x 107) (0.4)

(3.1/(2.0

= 0.013 x 7.18 = 0.09 kg/year/m2

¢

= 0.013 ms/year/m2
x 10°°)] « [2.7/(3.4 x*107%)]

7180 mg/L

7.18 kg/m’

254
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6WT

AH=30m
\
di;.14m
L}

ky =2 6x10 'm/sec

d,.39m

ky =3.2x10 8m/sec

d,;1.5m

ky =2.0x10 ém/sec /\

Note. Head i1n sand and gravel assumed equal to head at base of ti!l
because gravel pack extends to within one metre of t111

-8
(a) assuming k_of unit d, = 3.2 x 10  m/sec

0 - (3.16 1 107) (3.0)

(1.5/(2.0 2 10°%)) + [3.9/(3.2 1 10°%)] « {1.47(2.6 1 107)]

- 0.47 mJ/ynrln2

(b) assuming k_of unit d, = 3.0 x 10_9 m/sec

Q, = 0.069 m'/year/m’

{(c) assuming k_of unit d, = 3.0 x 107'* m/sec

Q, = 0.007 m’/year/n’

TDS of water from sand and gravel = 4392 mg/L = 4.4 ko/ms;

then, for case b4
3

(4) Q, = 0.47 x 4.4 « 2.1 kg/year/n’

(b) Q, = 0.069 1 4.4 » 0.3 kg/year/n’

(¢) Q, = 0.007 x 4.4 « 0.03 ko/year/m’"



APPENDJIX 12

Pi1ezometer and Water-table
well Completion Details

256.
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