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Abstract 

Metabolomics is the study of all the small molecules in a given sample or organism. It is 

used to understand individual variations caused by the relationship between the individual’s 

genetics, exposome and metabolic activity. There is interest in using metabolomics for 

personalized care leading to the merging of metabolomics with other fields such as nutritional 

sciences. These nutrimetabonomic studies focus on the individual’s metabolic response to a food 

or diet.  As a note, metabolomics aims to study the effects of a stimuli on a metabolome while 

metabolomics involves metabolome fingerprinting of various samples. They are considered 

interchangeable with the more common use of the word metabolomics to describe most studies. 

Metabolomics can be used in a targeted or non-targeted manner. For non-targeted 

metabolomics, the entire set of metabolites is of interest. However, the metabolome is complex 

containing metabolites with various chemical properties. Profiling the metabolome with one 

analytical platform is impossible. However, the metabolome can be grouped by similar chemical 

properties (submetabolomes). Chemical isotope labeling (CIL) can be used to target 

submetabolomes by addition of an isotope tag to improve separation, ionization efficiency and 

provide the ability for relative or absolute quantification. In this way, the entire metabolome can 

be comprehensively studied using one or few analytical platforms such as positive mode reverse 

phase liquid chromatography mass spectrometry (RPLC-MS). 

In this work, I used CIL LC-MS to profile the amine and phenol submetabolome of cow 

milk. Milk is one of the main food groups in North America and is consumed multiple times a day. 

I first determined a sample cleanup protocol involving protein precipitation with methanol and 

lipid removal with dichloromethane. Dansylation labeling was utilized to target the amine and 

phenol submetabolome of cow milk. The differences between brands, batches and fat percentages 
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of cow milk was investigated. Once the metabolome for cow milk was determined, the short-term 

effects of cow milk consumption on the human urine metabolome was investigated. Each 

individual was analyzed independently due to large inter-individual differences that masks 

metabolome changes when the volunteers were analyzed together. By comparing the urine dataset 

with the previously determined cow metabolome, subtle changes to the urine metabolome after 

milk consumption were able to be detected with confidence.  

The ability of metabolomics to generate metabolome fingerprints can also be useful for 

quality control or product authentication purposes. Human milk is known as the best source of 

nutrition for an infant. However, not all mothers are able to produce milk. Human milk sharing 

has become popular due to easy access and low cost of online purchasing. With the high demand, 

there is potential for human milk adulteration via dilution with foreign milk in order to increase 

profits. I used CIL RPLC-MS to profile the metabolome of human milk along with 5 potential 

human milk adulterants (soy, goat, cow, almond, infant formula). Once the metabolome 

fingerprints were obtained, the human milk was investigated with varying levels of adulteration 

(5%, 10%, 25%, 50% and 75%). Overall, I was able to detect as low as 5% adulteration of human 

milk with foreign milk  

When utilizing metabolomics in a targeted manner, a particular metabolite (i.e. propionic 

acid) or class of metabolites (i.e. short chain fatty acids) are of interest. Absolute quantification 

can be done for targeted metabolomics of one or a few metabolites if their respective standards are 

available. In this work, I used p-dimethyaminoacyl (DmPA) bromide to target and absolutely 

quantify propionic acid. The labeling method was optimized and a RPLC-MS method was tailored 

for the analysis of propionic acid. 
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Chapter 1 Introduction 

1.1 Multi “omics”  

  Multi-cellular organisms are quite complex. Intricate interplay between various molecular 

networks and the adjustment of the system to perturbations to ensure physiological homeostasis 

allow for the proper functioning of the organism. Systems biology involves the study of the 

functional properties of various components of an organism at the molecular level.1 This is made 

possible through the generation of “omics” technologies which aims to holistically study the 

different levels of “omes” which include the genome, transcriptome, proteome and metabolome.2,3 

At the top of the “omes” cascade is the genome which encompasses all the DNA within a cell or 

organism, essentially the genetic makeup or genotype.4 However, the genotype does not always 

match/predict the phenotype due to other influencing factors such as the environment.5 This lead 

to the study of the transcriptome. The transcriptome is the result of gene expression and refers to 

all the mRNA in a cell or organism.4 Transcriptomics allows for the investigation of gene activity.4 

It links the genome to the proteome as the mRNAs are templates for protein synthesis through the 

process of translation.4 Proteomics is the collective study of all the proteins in a biological sample. 

These proteins can be post-translationally modified and are involved in many protein-protein 

interactions, various pathways, signaling systems and molecular networks.6 Due to these factors 

the transcriptome is not well correlated with the proteome.7 The last of this cascade is metabolome 

which includes all the small molecules, <1500 Da, in a biological sample. These small molecules 

are the intermediates or products of metabolic pathways, the end products of genomics, 

transcriptomics, and proteomics. Each tier in the “omics” cascade adds unique information that is 

unable to be obtained from the upstream “omics”. 
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1.2 Metabolomics 

1.2.1 Advantages of Metabolomics 

The most complex and dynamic of the “omes” is the metabolome. It is the final product of 

the “omes” cascade and is influenced by intrinsic genomic factors as well as external factors such 

as the exposome (the collective exposure an individual is subjected to throughout their lifetime) 

which includes the xenometabolome (exogenous compounds like drugs, chemical toxins or 

pollutants), diet, environmental conditions, gut microbiota, exercise and stress etc.4 In this way, it 

is more reflective of the phenotype.4 Metabolomics aims to quantitively profile the entire set of 

metabolites in a given sample at a given time. It also aims to investigate metabolome perturbations 

caused by external factors such as drugs, diet, environmental conditions and diseases. Depending 

on the biofluids studied, different information may be obtained. Blood collection is more invasive 

but can give a snapshot of the metabolome and physiological state of the organism at the time of 

collection whereas the less invasive urine gives insights of waste-end products from metabolic 

pathways.8  

1.2.2 Platforms of Analysis for Metabolomics 

  For metabolomics, there are two main platforms used for analysis: Nuclear Magnetic 

Resonance (NMR) spectroscopy and Mass Spectrometry (MS). 1H NMR has been one of the very 

first platforms for metabolomics studies. This mode of analysis is able to analyze unprocessed 

samples and does not need chromatographic separation techniques for complex mixtures.8,9 NMR 

is also gentle on the sample, the sample is not consumed and may be used for further analysis.8,9 

It is also quick, robust, reproducible and quantitative. As well, it allows for the detection and 

identification of compounds due to the structural information obtained from analysis.8,9 The 
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drawbacks of 1H NMR analysis is the low sensitivity, typically only detecting metabolites as low 

as the micromolar range. 8,9 It also requires a larger sample volume and the spectral information 

may be hard to interpret for complex mixtures.8,9  

Mass spectrometry (MS) is an analytical platform that provides information about the exact 

mass as well as fragmentation patterns for metabolites.8 MS, unlike NMR, does require sample 

preparation and chromatographic separation (liquid or gas chromatography) for analysis of 

complex mixtures. With the need for derivatization and generally lower-throughput associated 

with gas chromatography (GC), liquid chromatography (LC-MS) has been the more popular 

combination of analytical platforms due to its high sensitivity, easier sample preparation, quick 

analysis and robustness.10 With LC-MS, different column chemistries can be used for separation 

such as reversed phase liquid chromatography (RPLC) for separation of non-polar compounds and 

hydrophilic interactions liquid chromatography (HILIC) for analysis of polar compounds. As well, 

different ionization techniques can be utilized, such as electrospray ionization (ESI) which is more 

commonly used due to its softer ionization that does not result in fragmented metabolites.11 

Various mass analyzers can also be used for the detection of metabolites. Mass analyzers differ by 

sensitivity and resolution and range from simple MS to tandem MS/MS (for capturing structural 

information) capabilities. Some high-resolution mass analyzers include the Quadrupole Time of 

Flight (QTOF) and the Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer. 

In terms of mass accuracy and resolution, the FTICR is still the best, however the instrument has 

a slow scan rate and relatively low sensitivity.12 QTOFs are hybrid mass spectrometers beneficial 

for both targeted and non-targeted analysis.12 They have a fast scan rate, relatively high resolution, 

mass accuracy, sensitivity and a good dynamic range.13  
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1.2.3 Approaches for Metabolomics 

  Metabolomics can have differing approaches. It can be targeted; whereby the detection and 

quantitative analysis of a specific metabolite or class of metabolites is of interest. For targeted 

analysis, absolute quantification can be made possible for one or few metabolites if their standards 

are available. An clinical example of this is the quantitative analysis of vitamin D in blood 

samples.14 Metabolomics can also be untargeted where as many metabolites are detected as 

possible for that sample (biofluid, tissue etc.). For untargeted work, metabolomics can be utilized 

to profile different types of samples to obtain metabolome fingerprints. The metabolome 

fingerprints can be used for comparisons such as diseased versus healthy samples. It can also be 

used to track changes to the metabolome over the progression of a disease/condition and be used 

to find biomarkers (for early and accurate diagnosis, for drug targets or drug therapies). As well, 

metabolomics can also be used clinically or toxicologically to study the effects of a toxin, vitamin, 

natural product, prescription or illicit drug on the individual’s health or disease state.11  

More recently, metabolomics for personalized care has become of interest as each 

individual is different (genetically and in terms of their exposome).15 Population studies have 

shown large inter-individual metabolic differences and shown the need for personalized 

metabolomics as each individual may respond to the same factors differently.8,16 Metabolomics 

and the study of the exposome/xenometabolome investigates the effects of various environmental 

exposures (including diet) to the individual’s metabolome. Metabolomics can also be combined 

with nutritional sciences to generate what is known is nutrimetabonomics which studies the 

metabolic responses to a particular food or diet on an individual and how that may affect their 

health/disease status.8  
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In regards to food sciences, metabolomics is being used to characterize food metabolomes. 

The respective metabolome fingerprints can be used for quality control, food safety and product 

authentication purposes.17,18 Milk metabolomics is a relatively new direction of study, with 

increasing numbers of publications every year. Milk metabolomics can range from using 

metabolomics in conjunction with agricultural and food sciences for quality assurance purposes to 

nutrimetabonomics whereby the effects of milk on the human body is studied. Many longitudinal 

population studies have been performed to assess the effects of milk consumption on the human 

body.19,20 However there are limited studies involving the investigation of the effects of milk intake 

on the human body at the molecular level. The use of metabolomics in studying human breast milk 

is also of importance. There is great inter-individual variability in the milk produced by different 

individuals due to differences in genetics, diet, health state, social and economic status and overall 

lifestyle.21 Interestingly enough, there is also large intra-individual variability in the milk produced 

by the same individual with differences being observed within the same feeding session.21 

Understanding the changes to human milk may give insight on the proper feeding managements 

for infants or the generation of similar infant formula products.21 

In general metabolomics can be used in a variety of ways, linking various fields of studies 

including some of the following: food, agricultural, pharmacological, nutrition and life sciences.11 

Overall, many of these studies are performed in hopes of better understanding of the human 

metabolome and the biological processes associated with a healthy versus diseased state. This will 

hopefully allow for biomarkers to be discovered to assist with the early and accurate diagnosis of 

diseases and the development of accurate risk assessments associated with exposomic factors 

(food, drugs, chemicals) all working towards the final goal of utilizing metabolomics for 

personalized care in order to achieve or maintain a healthy state.  
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1.2.4 Workflow for Metabolomics 

For an RPLC-MS metabolomics study, the sample of interest first needs to undergo sample 

preparation. Sample clean up may be required prior to analysis to avoid clogging the separation 

column and dirtying the mass spectrometer. To remove large particles such as cells or debris, 

centrifugation is performed to pellet out the large compounds and the supernatant is passed through 

a molecular weight cut off filter. To get rid of proteins, solvents such as acetonitrile, methanol or 

acetone is used to pellet out the proteins from the samples. If the sample also contains lipids, those 

are removed with dichloromethane or chloroform (or retained if lipids are of interest). Once sample 

preparation is complete the sample is normalized prior to LC-MS analysis. Some samples, such as 

urine, feces, and sweat have large concentration ranges. Urine can have large concentration 

differences because of factors such a water intake, dehydration due to fever/diarrhea, diet, 

exercise/activity and sweating.22 It would be inaccurate to quantitively assess the sample based on 

similar injection volume. For example, one way to normalize urine is to normalize based on the 

amount of creatinine in the sample as there is a correlation between creatinine and the urine 

concentration.22 Other methods can also be used such as measuring the ultraviolet (UV) 

absorbance, osmolality, specific gravity or using the total ion count (TIC).22,23,24 After sample 

normalization, the sample is analyzed by LC-MS. 

1.2.5 Chemical Isotope Labeling Metabolomics 

  One of the difficulties involved with studying the metabolome is the complexity due to the 

large diversity in physical and chemical properties of the metabolites.4 There is no single technique 

or analytical platform that can account for all these metabolites. Rather, it would require the 

complementary use of many platforms to analyze the metabolome. In our lab, we utilize a “divide 



7 

 

and conquer” strategy whereby the metabolome is grouped into submetabolomes based on a shared 

chemical property. In this way, better coverage of the overall metabolome can be achieved. 

Chemical Isotope Labeling (CIL) is used to target a particular functional group (submetabolome) 

of interest. With CIL, a chemical reagent that has been differentially labeled (i.e. with 12C or 13C), 

is used to react with a particular group of metabolites. By labeling an experimental sample with 

one isotope form and a reference sample with the other, after mixing and LC-MS analysis, peak 

pairs can be identified. A peak pair are two peaks (the lighter peak and the heavier peak) differing 

by the mass between the two isotope tags. The ratio between the two peaks can be used for relative 

or absolute quantification of metabolites. Two examples of labeling chemistries include 

dansylation used to target the amine and phenol submetabolome and the use of p-

dimethylaminophenacyl (DmPA) bromide to react with organic acids.25,26 There are many benefits 

to CIL including better retention and therefore separation of polar metabolites on a RP column, 

better ionization efficiency, the ability to detect “real” metabolites by means of peak pair picking 

and the ability for relative or absolute quantification from the peak ratios.25 

1.3 Scope of the Thesis 

  The objective of this research is to develop CIL LC-MS techniques for untargeted and 

targeted metabolomics.  

  In chapter 2, CIL LC-MS is used to profile the cow milk amine and phenol submetabolome. 

A sample cleanup/metabolite extraction method is determined for fluid milk. 

  In chapter 3, CIL LC-MS is used to determine any short-term effects of cow milk 

consumption on the human urine metabolome. The data obtained from the urine analysis work is 

compared to the milk profiling data shown in chapter 2.  
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  In chapter 4, CIL LC-MS is used to profile the milk metabolomes of human milk along 

with five potential human milk adulterants. It is then used to detect varying levels of human milk 

adulteration (5%, 10%, 25%, 50% and 75%). 

  Lastly in chapter 5, CIL LC-MS is used to determine a method for the absolute 

quantification of propionic acid in plasma samples. 
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Chapter 2 Chemical Isotope Labeling (CIL) Liquid Chromatography Mass 

Spectrometry (LC-MS) for Milk Metabolomics: Comprehensive and 

Quantitative Profiling of the Amine/Phenol Submetabolome 

2.1 Introduction 

In recent years, metabolomics has been increasingly used for nutritional studies ranging 

from studies on the relations of diet, health and diseases to the development of improved nutritional 

products.1-4 Nutritional metabolomics involves characterizing the metabolomes of foods and diets 

and investigating their effects on the metabolomic profiles of a particular organism. Milk is an 

important component of many diets. In North America, dairy, which incorporates milk and all 

milk products, is one of the four main food groups. According to Statistics Canada 

(www.dairyinfo.gc.ca), individuals in North America consumed an average of 70 L of fluid milk 

per person in 2014. European countries (Finland, Ireland, UK) and Oceanian countries (Australia, 

New Zealand) consumed upwards of 100 L per person in the same year. In all species of mammals, 

milk has great importance as it is the first and only source of nutrition immediately after birth.5 

Milk is comprised of a variety of proteins, peptides, essential/free amino acids, fats, vitamins and 

minerals, making it a balanced source of nutrition for proper growth and development through all 

stages of life.5  

Compositional analysis of milk and milk products is critical in many areas of applications 

including characterization of nutrients,6 determination of health benefits of dairy consumption,7 

developing new processing technologies8 and safety and quality control of dairy products.9, 10  

*A version of this has been published as “Development of Chemical Isotope Labeling LC-MS for Milk Metabolomics: 

Comprehensive and Quantitative Profiling of the Amine/Phenol Submetabolome” Mung, D.; Li, L. Anal. Chem. 2017, 

89 (8), pp 4435-4443. I prepared all the samples, ran the samples, performed data processing and statistical analysis, 

generated the figures and wrote and edited the manuscript. 
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Current analytical methods are mainly focused on the measurement of the high abundant 

components including proteins, lipids and oligosaccharides, often expressed as the total 

concentrations of individual groups.11 Targeted analysis of a small number of compounds such as 

vitamins is also carried out using a variety of analytical tools.12, 13 Untargeted analysis of milk and 

milk products at the individual molecular level using a metabolomics approach represents a 

relatively new development in compositional analysis.1, 2 Several studies on milk metabolomics 

have been reported using NMR,14-21 GC-MS14, 15, 22, 23 and LC-MS15, 16, 20, 23 with varying degrees 

of metabolomic coverage. Recent reports from Villasenor et al23 and Andreas et al15 demonstrated 

the significant advances in analytical methods for milk metabolome profiling, which also 

highlighted the current analytical challenges that include the analysis of polar metabolites in milk. 

NMR and capillary electrophoresis (CE) MS were found to be more suitable for polar metabolite 

analysis, while GC-MS and LC-MS were particularly useful for analyzing non-polar metabolites 

such as lipids.15  

In this work, we report a high-performance chemical isotope labeling (CIL) LC-MS 

method for profiling the relatively polar metabolites in milk with very high coverage. CIL LC-MS 

is a general strategy of using chemical labeling to improve separation, detection and quantification 

of metabolites.24 CIL targets a particular submetabolome based on a shared chemical group. For 

example, dansylation labeling has been shown to be effective in analysing the amine/phenol 

submetabolome.24 Different labeling chemistries can be used to profile different submetabolomes 

in order to provide better coverage of the entire metabolome of interest.25-31 Because of the 

complexity of the milk matrix, we have examined a number of sample preparation conditions to 

develop an optimal workflow. In this report, we first describe the workflow for analyzing polar 

metabolites in milk using dansylation LC-MS. We then apply this method for profiling different 
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groups (brands, batches and fat percentages) of milk to demonstrate the overall analytical 

performance and showcase the potential utilities of the method in milk metabolomics. 

2.2 Experimental Section 

2.2.1 Milk Sample Collection and Preparation 

All cow and goat milk were purchased from a local grocery store and the human breast 

milk was donated from a healthy volunteer. Ethics approval for working with human samples was 

given by the University of Alberta Ethics Committee. Three brands of milk (Beatrice, Dairyland 

and Lucerne) along with each of the different fat percentages of the milk (skim, 1%, 2% and 

3.25%) were purchased at three time points, i.e., in January, March and April of 2015. All milk 

samples were aliquoted into 1.5 mL vials and stored in a -80 °C freezer until use. 100 µL of milk 

was mixed with 300 µL of methanol, vortexed and incubated at -20 °C for 15 min. The sample 

was centrifuged at 14 000 rpm for 15 min and 350 µL of the supernatant was taken into a new vial. 

500 µL of dichloromethane and 50 µL of water were added to the supernatant, vortexed and left 

at room temperature for 10 min. 350 µL of the aqueous layer was then taken into a new vial and 

dried down using a SpeedVac. The sample was re-dissolved in 50 µL of water for dansylation 

labeling.  

2.2.2 Dansylation Protocol 

Dansyl chloride was used as the labeling reagent to react mainly amine- and phenol-

containing metabolites to form dansyl-amine or dansyl-phenol derivative.24 The reactivity, 

specificity and type of reaction products generated have been described previously.24, 32 50 µL of 

a processed milk sample was mixed with 25 µL of 250 mM sodium bicarbonate buffer and 25 µL 

of acetonitrile and the solution was vortexed. 50 µL of 18 mg/mL 12C- or 13C-dansyl chloride in 
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acetonitrile was added, vortexed and incubated at 40 °C for 45 min. To quench the excess dansyl 

chloride, 10 µL of 250 mM sodium hydroxide was added and the solution was incubated at 40 °C 

for 10 min. Finally, 50 µL of 425 mM formic acid was added to acidify the sample. Individual 

samples were labeled with 12C-dansyl chloride and a pooled sample was labeled with 13C-danysl 

chloride. We note that for labeling amines and phenols, the reaction was carried out in an aqueous 

solution. Under anhydrous system, many metabolites such as some amino acids cannot be 

dissolved and thus not labeled by dansyl chloride. Reagent hydrolysis took place during the 

labeling, but slowly under the slightly basic buffer condition. It was only when we added NaOH 

that the excess reagent at the end of labeling reaction was consumed quickly.  

2.2.3 LC-UV Quantification 

For LC-UV, a Waters ACQUITY UPLC system with a photodiode array (PDA) detector 

was used for the quantification of dansyl labeled metabolites for sample amount normalization as 

described earlier.33 Briefly, 4 µL of each labeled sample was injected onto a Phenomenex Kinetex 

C18 column (2.1 mm × 5 cm, 1.7 μm particle size) for a fast step-gradient run. Solvent A was 

0.1% (v/v) formic acid in 5% (v/v) ACN, and solvent B was 0.1% (v/v) formic acid in ACN. The 

gradient started with 0% B for 1 min and was increased to 95% within 0.01 min and held at 95% 

B for 1 min to ensure complete elution of all labeled metabolites. The flow rate used was 0.45 

mL/min. The peak area related to the total labeled metabolite concentration in the sample was 

integrated using the Empower software (6.00.2154.003). Based on the quantification results, the 

12C-labeled sample and the 13C-labeled pool were mixed in equal amounts. 



15 

 

2.2.4 LC-MS 

All LC-MS experiments were performed on an Agilent 1100 HPLC system (Palo Alto, 

CA) connected to a Bruker Impact HD quadrupole time-of-flight (QTOF) mass spectrometer 

(Billercia, MA) with an ESI source. 

2.2.5 Data Analysis 

Bruker DataAnalysis software 4.2 was used to extract MS spectral peaks. An in-house 

software tool, IsoMS, was used to process the raw data generated from multiple LC-MS runs by 

peak picking, peak pairing, peak-pair filtering to remove redundant peaks of the same metabolite, 

such as adduct ions, dimer, multimers, to retain only [M+H]+ for a labeled metabolite (i.e., one 

peak pair corresponds to one metabolite), and peak-pair intensity ratio calculation.34 IsoMS does 

not pick up isotopmers of a molecular ion as a peak pair as their intensity pattern is different from 

that of the labeled peak pair.34 The same peak pairs detected from multiple samples were then 

aligned to produce a CSV file containing the metabolite information and peak ratios relative to a 

control (i.e., a pooled sample). A zero-fill program was used to find missing peak pairs from the 

raw mass spectral data, filling in the missing values.35 Finally, peak ratios were re-calculated by 

using chromatographic peaks, instead of mass spectral peaks, with IsoMS-Quant.36 The final 

metabolite-intensity data file was then exported to SIMCA-P+ 12.0 software (Umetrics, Umea, 

Sweden) for multivariate statistical analysis. Principal component analysis (PCA) and Partial Least 

Squares discriminant analysis (PLS-DA) were used to analyze the data after unit variance scaling.  

Positive metabolite identification was performed based on mass and retention time 

matching to the dansyl standards library consisting of 273 unique standards with 315 entries.32 

This library with information on MS, MS/MS and ion chromatogram for each dansyl labeled 
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standard is freely accessible at www.MyCompoundID.org. Putative identification was done based 

on accurate mass match to the metabolites in the human metabolome database (HMDB) (8,021 

known human endogenous metabolites) and the Evidence-based Metabolome Library (EML) 

(375,809 predicted human metabolites with one reaction) using MyCompoundID.37 The mass 

accuracy tolerance window was set at 5 ppm and the retention time tolerance window set to 30 s 

for the searches. Since we were interested in the endogenous metabolites in milk, we did not use 

other databases such as Metlin and KEGG containing many exogenous compounds for our search. 

We also note that, for multi-function compounds (e.g., containing two amines), labeling by one or 

more reagent molecules to generate multiple products may happen to some metabolites, although 

in most cases complete labeling was found. If multiple products were found from one metabolite, 

they could be readily spotted in the final list of significant metabolites for differentiating different 

groups: they would be matched to the same metabolite.   

2.3 Results and Discussion 

2.3.1 Removal of Proteins and Lipids 

Milk is composed of a variety of proteins and lipids that may interfere with the chemical 

labeling procedure and LC-MS tailored to the analysis of polar metabolites. Based on our 

experience of working with serum and plasma, as well as other reported protocols for protein and 

lipid removal,38 we have examined several experimental conditions to extract metabolites from 

milk. All method development experiments were chosen with due consideration of speed and 

convenience in sample handling. For protein precipitation, three solvents were compared which 

included acetone, acetonitrile and methanol at varying solvent-to-milk (v/v) ratios (3:1 and 5:1). 

The different solutions underwent the same sample work-up for incubation, centrifugation and the 

removal of the aqueous layer in quadruplicates. Both the aqueous layer and the pellet were dried 

http://www.mycompoundid.org/
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down using a SpeedVac, after which only the aqueous layer was re-dissolved in 50 µL of water. 

Three of the four replicates for each sample were labeled with 12C-dansyl chloride and the 

remaining sample with 13C-dansyl chloride. All samples were normalized using the concentration 

values determined by LC-UV, mixed at a 1:1 molar ratio of 12C- and its corresponding 13C-

dansylated sample and injected into the LC-MS. Two measured properties were used to determine 

solvent extraction efficiency: the weight of the protein pellet and the corresponding number of 

peak pairs or metabolites detected from the aqueous layer.  

Figure 2.1A and 2.1B show the plots of protein weight and peak pair number, respectively, 

for different protein precipitation conditions. The heavier the protein pellet (corresponding to 

better protein precipitation efficiency) the lower the number of peak pairs detected. Methanol at a 

3:1 (v/v) ratio corresponded to the lightest protein pellet observed but also the highest number of 

metabolites detected. In addition, we have compared the absolute intensities of individual 

metabolites using a heat map (see Appendix Figure A2.1), which also indicated that 3:1 methanol 

gave a visually higher overall intensity map. Thus, methanol at a 3:1 solvent-to-sample ratio was 

chosen for protein precipitation as it resulted in the highest number of metabolites detected and 

was sufficient in protein removal. Note that, after methanol precipitation, some proteins may 

remain in the sample. However, during dansylation labeling, we observed some precipitates at the 

start of the reaction. This was from the dansyl labeling of multiple amine/phenol groups in the 

remaining proteins, causing precipitation of the labeled proteins out of solution.39 In LC-MS 

analysis of labeled metabolites, we did not detect any proteins or large peptides. In addition, 

proteins would retain strongly on a C18 column, causing graduate increase in LC column pressure 

after running samples containing an appreciable amount of proteins; however, we did not observe 

any column pressure change after running hundreds of samples on a C18 column.  
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Due to the presence of a relatively large amount of lipids in milk, lipid removal was found 

to be essential to reduce column-washing time significantly and prolong the reversed phase (RP) 

column lifetime. Two extraction solvents, dichloromethane (DCM) and methyl tert-butyl ether 

(MTBE), were compared and the results are shown in Figure 2.1C. Overall, the addition of the 

lipid removal step resulted in a decrease in the number of peak pairs detected (e.g., from about 

1100 peak pairs in methanol without lipid extraction to 870 peak pairs with lipid extraction), likely 

due to the loss of some hydrophobic metabolites during the lipid extraction process. However, the 

need for lipid removal is essential especially for the analysis of milk containing higher fat content. 

Of the two lipid-extraction solvents tested, dichloromethane resulted in the detection of higher 

numbers of metabolites when performed in addition to protein precipitation using the three protein 

precipitation solvents. DCM was also found to be more convenient during the removal of the 

aqueous layer for analysis due to the large density difference between this solvent and 

water/methanol. In addition, from the heat map of the absolute intensities of individual metabolites 

(see Appendix Figure A2.2), DCM combined with methanol gave a visually higher overall 

intensity map.    

Based on the above results, we concluded that the optimal sample preparation for the 

dansylation LC-MS workflow was to use methanol at a 3:1 ratio of solvent to milk for protein 

precipitation and dichloromethane for lipid removal. 
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Figure 2.1 Method comparisons for protein removal: (A) protein pellet weight and (B) peak pair 

number detected as a function of solvent type and solvent-to-sample ratio. Method comparisons 

for lipid removal: (C) peak pair number detected as a function of protein-removal solvent and 

lipid-removal solvent types. Error bars correspond to standard deviation (n=3). 
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2.3.2 Milk Metabolite Detection 

After removing the proteins and lipids, the aqueous solution was taken for dansyl labeling. 

Dansyl labeling adds a hydrophobic tag to a metabolite and, as a result, the labeled product 

becomes relatively hydrophobic even for very polar or ionic metabolites such as amino acids. 

Thus, the labeled milk metabolites can be readily retained and efficiently separated on a reversed 

phase column. Figure 2.2A shows a representative base-peak-ion (BPI) chromatogram of 1:1 12C-

/13C-dansyl labeled milk. Many chromatographic peaks distributed along the gradient elution 

window were observed, indicating the complexity of the milk metabolome with diverse chemical 

and physical properties. The analytical separation takes 32 min, followed by 15-min column 

washing and re-equilibration. This gives an overall sample throughput of 47 min per sample. The 

washing/equilibration step was necessary to ensure that small molecule residues in the column 

were washed out and the column was properly equilibrated before the next run.  

In LC-MS operation, using an optimal sample injection amount is critical in order to detect 

the maximum number of labeled metabolites. With dansyl labeling, the total concentration of 

labeled metabolites in each sample can be measured by LC-UV as described in the Experimental 

Section. Knowing the concentration of each sample, the exact amount of sample injected into LC-

MS can be controlled. To determine the optimal injection amount, a 1:1 12C-/13C-labeled milk 

sample with a known concentration measured by LC-UV was injected in 10 µL increments from 

10 to 60 µL. Experimental triplicate runs were performed for gauging the technical reproducibility. 

Figure 2.2B shows the plot of the peak pair number detected as a function of sample amount 

injected. Peak pair number saturation occurred when 20.9 nmol of sample in 30 µL was injected. 

Thus, in subsequent experiments, we injected 20 nmol of labeled sample into the LC-MS for 

analysis.  
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Figure 2.2 (A) Base peak ion chromatogram of a 1:1 12C-/13C-dansyl labeled milk sample and 

(B) peak pair number detected as a function of the injection amount (6 x n=3). The number of peak 

pairs was determined within the data set for injection-amount optimization data set alone.  

 

Note that the number of peak pairs shown in Figure 2.2B is different from those shown in 

Figure 2.1 where less than the optimal amount of sample was injected. In addition, the number of 

peak pairs detected is dependent on the number of samples analyzed. Each sample adds some 

unique metabolites to the total number of peak pairs within a data set. An increase in the total 

number of metabolites will also translate to an increase in the number of metabolites detected in 

each individual sample run as the entire data set is used for peak picking and filling of missing 

ratio values during Zero-fill.34, 35 For the initial peak-pair picking, we used a signal-to-noise (S/N) 
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threshold of 10 in IsoMS to minimize false positives. For Zero-fill, we considered all the peak 

pairs with S/N of greater than 3, as filling the peak pair with lower S/N in a sample initially with 

a missing ratio was judged based on the presence of a true peak pair in other sample(s). In the 

following studies investigating the different aspects of the analytical work and application, the 

number of samples or runs used for each data set was different and thus the numbers of peak pairs 

detected varied. 

2.3.3 Accuracy and Precision 

In the dansylation isotope labeling LC-MS workflow, relative quantification of a 

metabolite is based on the measured peak ratio between the 12C-labeled metabolite in an individual 

sample and its 13C-labeled counterpart in the pooled sample. To gauge the overall accuracy and 

precision of the workflow for profiling the amine/phenol submetabolome, experimental five-

replicates (n=5) analysis of 1:1, 2:1 and 1:2 12C-/13C-labeled cow milk was used as an example. 

Six extractions were performed in parallel, five of which were dansylated with 12C-dansyl chloride 

and the sixth labeled with 13C-dansyl chloride.  

Figure 2.3A-C shows the plots of the peak pair number as a function of the measured peak 

ratio. A total of 2245 common peak pairs were detected in the data set of these three mixtures. For 

the 1:1 mixture shown in Figure 2.3A, 1998 (88.9%) pairs gave peak ratios in the range of 0.8 and 

1.25 or within ±25% of the expected ratio of 1.0. Only 98 pairs (4.3%) had peak ratios that 

exceeded the ±50% accuracy range (0.67>peak ratio>1.5).  For the 2:1 mixture, Figure 3B shows 

1906 (84.8%) peak pairs in the range of 1.6 and 2.5 (i.e., within ±25% of the expected ratio of 

2.0). 130 pairs (5.7%) were found outside the 50% range of the expected peak ratio of 2.0. Lastly, 

the peak pair distribution shown in Figure 2.3C for the 1:2 mixture indicates 1932 pairs (86.0%) 
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found within ±25% of the expected ratio of 0.5. 153 pairs (6.8%) were outside the 50% accuracy 

range. These examples illustrate that accurate measurement of the peak ratio can be achieved using 

the workflow for majority of the peak pairs. This is not surprising considering that the individual 

samples and the pooled sample had a similar matrix and metabolite composition. The samples 

were also processed in parallel using the same sample work-up protocol, and analyzed as a 12C-

/13C-mixture in LC-MS where the matrix, ion suppression and instrumental effects were taken into 

account by measuring the peak ratio relative to the 13C-pool.  

Figure 2.3D-F shows the plots of the peak pair number as a function of the relative standard 

deviation (RSD) of the measured peak ratio values from the 12C-/13C-mixture samples (n=5). Out 

of the 2245 common peak pairs, 2037 (90.7%), 2081 (92.6%) and 2040 (90.8%) peak pairs found 

in 1:1, 2:1 and 1:2 mixtures, respectively, had RSD values of less than 20%. These results indicate 

that reproducible peak ratio measurements can be achieved. 
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Figure 2.3 Accuracy comparison using the distribution of peak pairs as a function of the peak ratios 

for (A) 1:1, (B) 2:1 and (C) 1:2 mixtures of five 12C-/13C-dansyl labeled milk samples (n=5). 

Precision comparison using the distribution of peak pairs as a function of the relative standard 

deviation of peak ratios for (D) 1:1, (E) 2:1, and (F) 1:2 mixtures (n=5). The number of peak pairs 

was determined within the dataset of studying accuracy and precision alone. 
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2.3.4 General Applicability 

To gauge the general applicability of the sample preparation and LC-MS method for milk 

metabolomics, different milk samples including goat milk, human milk, and cow milk with and 

without heat treatment were analyzed. For the heat treatment, two types of cow milk, commonly 

called homo-milk (homogenized milk containing 3.25% fat) and skim milk (0% fat) in the US and 

Canada, were brought to a boil, heated for 5 minutes, and then cooled down. A pooled sample was 

prepared by taking an aliquot from each sample and mixing them. After 12C-dansyl labeling of the 

individual samples and 13C-labeling of the pooled sample, LC-UV was used to measure the total 

concentration of labeled metabolites in all labeled samples. Figure 2.4A shows the average 

concentration of labeled metabolites in different samples. Goat milk had significantly higher 

concentrations than human and cow milk. Thus, for metabolome comparison of different species 

of milk, sample normalization is necessary. In our work, we took an aliquot of appropriate volume 

based on the measured concentration to ensure the same molar amount of all the individual samples 

was mixed with an equal mole of the 13C-labeled pool. The resultant 1:1 mixture was analyzed by 

LC-MS. Peak pair ratio values of individual metabolites determined from all the samples reflect 

the relative concentration differences of these metabolites in different samples. For each sample, 

experimental triplicate analyses were performed.  
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Figure 2.4 (A) Average concentration of labeled metabolites from various types of milk (n=3), (B) 

PCA plot of inter-species and intra-species mammalian milk including goat milk, cow milk (heat 

treated vs non-heat treated) and human milk, and (C) metabolite distribution of the different milk. 
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Figure 2.4B shows the PCA plot of the metabolomic data generated from these samples 

analyzed in one batch. The triplicate data points within a sample cluster together tightly, indicating 

that good reproducibility was achieved. Separation of the milk samples from three different species 

is much greater than the separation between the heat-treated and untreated cow milk. The inter-

species difference is also reflected in Figure 2.4C where the numbers of peak pairs detected from 

goat, human and untreated cow milk are compared. The average number of peak pairs and the 

number of common peak pairs found in >50% of the experimental triplicates were 1290±14 (n=3) 

and 1312 pairs for goat milk, 1074±34 (n=3) and 1079 pairs for human milk, and 1398±16 (n=6) 

and 1387 pairs for the untreated cow milk. As Figure 2.4C shows, 864 peak pairs were commonly 

detected in the milk samples of the three species. We note that in working with the milk samples 

of different species, we did not observe any abnormity in preparing these samples including the 

cow milk with different fat contents (see below).  

Out of 1312 peak pairs detected in goat milk, 69 pairs could be positively identified based 

on accurate mass and retention time matches to the dansyl standards library (Supplemental Table 

S2.1A) and 1130 pairs could be matched based on accurate mass searching against the HMDB and 

EML libraries (Supplemental Table S2.1B). For the 1079 human breast milk metabolites detected, 

61 were positively identified by the dansyl-library (Supplemental Table S2.2A) and 963 were 

putatively identified by HMDB and EML (Supplemental Table S2.2B). For the 1387 cow milk 

metabolites detected, 68 were positively identified (Supplemental Table S2.3A) and 1230 were 

putatively identified (Supplemental Table S2.3B). It is interesting to note that many common peak 

pairs or metabolites were detected in goat, cow and human milk. Among the 864 common pairs 

detected in the three species, 60 metabolites including many amino acids were positively identified 

(Supplemental Table S2.4). We did not carry out MS/MS analysis of the labeled metabolites as 
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the MS/MS spectra of dansyl labeled metabolites usually do not provide adequate fragment ion 

information from the metabolite moiety for unknown metabolite identification.  

The above results indicate that the workflow described herein should be generally 

applicable for handling different types of milk samples in milk metabolomics. It should be useful 

for future studies of comparing milk metabolomes of different species using a large cohort of 

samples in both hypothesis-generating and hypothesis-driving studies (e.g., how nutritional values 

are related to the metabolome composition). In this regard, applying other labeling chemistries 

targeting different chemical-group-submetabolomes (e.g., carboxyl submetabolome25 and 

hydroxyl/thiol submetabolome40) will also increase the overall metabolome coverage for these 

studies. 

2.3.5 Metabolomic Profiling of Different Cow Milk 

To demonstrate the applicability of the workflow for milk metabolomics, we examined the 

metabolome profile differences among different groups of cow milk samples. This profiling work 

involved the analysis of three batches of milk with each batch consisting of 12 different milk 

samples from three brands (Dairyland, Lucerne and Beatrice) and four fat percentages (skim, 1%, 

2% and 3.25%). Experimental triplicates were performed for each sample. In total, 108 labeled 

samples were analyzed by LC-MS. 

From the 108 sample runs, a total of 7104 peak pairs were detected with an average of 

4573±505 peak pairs (n=108) per sample. To determine how consistent the same peak pairs could 

be detected across different samples, Figure 2.5 shows the plot of the number of peak pairs and 

the percentage of common peak pairs as a function of the number of samples. A total of 2189 pairs 

were commonly detected in all the samples, while 3820 pairs were detected in more than 80% of 
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the samples. It is clear that a large number of metabolites could be consistently detected and 

quantified in the milk amine/phenol submetabolome profiling by the dansylation LC-MS method. 

Figure 2.5 The inverse relationship between the percentages of common peak pairs detected and 

the total peak pair numbers generated by processing various numbers of samples (5, 10, 15, etc.) 

from the 108-sample milk profiling data sets. 

 

The 3820 peak pairs commonly detectable in more than 80% of the samples were searched 

against the dansyl library, by which 70 metabolites were positively identified (Supplemental Table 

S2.5A). By using accurate mass search against HMDB and EML libraries, 954 and 2987 peak 

pairs were matched to one or a few chemical structures, respectively (Supplemental Tables S2.5B 

and S2.5C). It should be noted that the cow milk metabolites were searched against the human 

metabolome database, as an equivalent resource for the cow metabolome was not available.   
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Figure 2.6 shows the PLS-DA multivariate analysis plots generated from the milk 

metabolome data set containing the metabolites detectable in more than 80% of the samples. 

Appendix Figures A2.3 shows their corresponding PCA plots. Appendix Figure A2.4 shows the 

PCA plot including the QC samples; very close clustering of the QC data indicates CIL LC-MS 

did not introduce any instrument bias in sample analysis. In Figure 2.6A and 2.6B, there is no 

apparent visual separation between the different fat percentages of milk with the exception of the 

3.25% milk. However, the plot had a poor R2 value (representative of goodness of fit) and Q2 value 

(predictability value) of 0.241 and 0.114, respectively, which did not meet the acceptable 

separation-threshold of 0.5. Therefore, the visual separation observed in the model was rejected. 

Even the comparison between skim milk and 3.25% milk showed no significant separation 

between the two after statistical analysis. The model generated in that comparison did not pass the 

validation test (see Appendix Figure A2.5 B where the Q2 y-intercept value is greater than 0); thus, 

the visual separation observed (Appendix Figure A 2.5 A) was also rejected. These results indicate 

that the amine/phenol submetabolomes of different fat percentages of milk within a batch were 

similar, which is not surprising considering that all samples had undergone lipid removal prior to 

chemical labeling and analysis. 

Differences between milk brands were also investigated. Majority of all milk purchased 

within Alberta comes from Alberta dairy farms due to the Canadian Dairy Commission’s supply 

management on domestic production and consumption. A dairy farm may house more than one 

breed of cattle (Jersey, Holstein, etc.). They may use different combinations of cattle feed and sell 

their raw milk to more than one processor. Essentially, each brand of milk may be produced from 

a combination of different local dairy farms. Lastly, milk companies have variations in their 

production methods and processing techniques of saleable milk. From the PLS-DA plots shown 
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in Figure 2.6C and 2.6D, there are some separations between the three brands of cow milk. The 3-

dimentional (3D) plot in Figure 2.6D shows a clear separation with R2 and Q2 values of 0.971 and 

0.927. Using a 50-permutation test, the model passed validation with a Q2 y-intercept value of -

0.0891, which indicates no issue of over-fitting (Appendix Figure A2.6 A). These findings are 

consistent with previous studies that showed relationships between external/internal factors and 

differences in individual cow milk composition. External factors can affect milk protein and lipid 

composition.41, 42 Factors such as nitrogen fertilization of the feed or the forage particle size can 

affect the composition of the cow milk.42, 43 Internal factors such as the breed of the cow also 

affects milk composition. Jersey cows were found to have higher percentages of protein and fat in 

their milk as compared to Holstein cows.41, 44 Overall, variances between the amine/phenol 

submetabolomes of different brands of grocery store cow milk were observed.  

Lastly, the milk samples were grouped by batch number (or collection date). In Figure 2.6E 

and 6F, there are significant separations between the different batches of milk with R2=0.978 and 

Q2=0.947. The model was validated using a 50-permutation test that provided a passing Q2 y-

intercept of -0.257 (Appendix Figure A2.6 B). This separation is more clearly shown in the 3D 

PLS-DA plot in Figure 2.6F. The three batches of milk samples were obtained at different time 

points during the year. Any changes in the milk metabolome could be attributed to changes in 

factors such as season, batches of feeds and water or stage in the lactation cycle. Previous studies 

observed changes in milk composition correlated to changes in season.45, 46 Authors observed 

changes in factors such as temperature and sunlight hours having a negative and positive 

correlation, respectively, to protein and fat concentration.45, 46 Milk protein and fat concentration 

also showed fluctuations during lactation with the highest concentrations of both near the end of 

the lactation period.46 
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Figure 2.6 Two-dimensional and three-dimensional PLS-DA plots of cow milk samples grouped 

based on (A, B) fat percentage, (C, D) brand, and (E, F) and batch number. 
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It should be noted that none of the significant metabolites found to separate the different 

groups could be positively identified using the dansyl standard library, although many of them 

could match to some metabolite structures in the HMDB and EML database (i.e., they are likely 

real metabolites). Without positive IDs, we are unable to discuss their biological significance. 

Overall, the above results of analyzing different samples show the ability of the dansylation 

LC-MS workflow to generate high-coverage and quantitative metabolome data that can reveal 

small differences in milk metabolome profiles. We note that direct comparison of metabolite 

detectability between our method and other reported work cannot be done as our focus is on the 

analysis of the amine/phenol submetabolome while other work used one or several combined 

analytical methods to detect as many different metabolites and lipids as possible. In a 

comprehensive profiling work reported recently,15 a total of 710 metabolites were detected using 

multiple-platforms including LC-MS, UPLC-MS, GC-MS, CE-MS and NMR. Majority of them 

were lipids; however, 26 amine/phenol-containing metabolites were listed. In our work of 

analyzing 108 milk samples using the dansylation LC-MS platform alone, as discussed earlier, a 

total of 3820 peak pairs or metabolites were commonly detectable in more than 80% of the samples 

with 70 amine/phenol-containing metabolites positively identified. Among the positively 

identified metabolites from our study and the reported work, there were 21 metabolites in common 

(see Supplemental Table S2.6A) with 5 unique to the reported study (i.e., Gly-Gly, cytosine, 

creatine phosphate and creatine, cytidine; see Supplemental Table S2.6B). Among the 5 unique 

metabolites, cytosine, creatine and cytidine are in our dansyl standard library; but we did not detect 

them in our samples. The other two, Gly-Gly and creatine phosphate, are not in our library so we 

could not positively identify them in our samples. Thus, most of the amine/phenol-containing 

metabolites reported were identified in our samples. More significantly, we identified 49 
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additional amine/phenol-containing metabolites (see Supplemental Table S2.6C), including some 

nucleosides (e.g., guanosine and uridine) that are bioactive compounds found in milk of several 

species.47, 48 In addition, there were 2988 putatively matched metabolites in our data set. These 

results clearly show the advantage of dansylation LC-MS for in-depth profiling of the 

amine/phenol submetabolome. We expect that, using other labeling chemistries, many more 

metabolites will be detected in milk. In addition, CIL LC-MS is a quantitative method for milk 

metabolome profiling as demonstrated in this work. We are not aware of any other studies of 

quantification accuracy and precision of profiling a large number of milk metabolites using other 

MS techniques.      

2.4 Conclusions 

In summary, we have developed an analytical workflow to address the current challenge 

of performing comprehensive and quantitative profiling of the milk metabolome. It involves the 

use of an optimized sample preparation method for protein and lipid removal from milk, followed 

by chemical isotope labeling of the milk metabolites and subsequent LC-MS analysis. We envisage 

the application of this workflow for comprehensive and quantitative milk metabolomics in future 

studies involving the dairy industry (e.g., new processing technologies, quality control and product 

authentication) and nutritional sciences with implications of dairy consumption on human health. 
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Chapter 3 CIL LC-MS for Profiling the Dietary Effects of Cow Milk 

Consumption on the Human Urine Metabolome 

3.1 Introduction 

  Metabolomics is the large-scale analysis of all the small molecules (<1500 Da) in a given 

biological sample.1 Metabolomics is a powerful analytical technique that is used to distinguish one 

set of samples from another set (i.e. diseased vs healthy) through comparison. It can also be used 

to determine the effects of a substance on a particular metabolome (i.e. drug treatment vs no drug 

treatment) within the same individuals. As we know, the metabolome is complex and dynamic. 

Along with genomic variability, the exposome of a particular individual will also influence their 

metabolome. What we put into our bodies will affect us at a molecular level. The exposome refers 

to things like nutrition, microbiota, xenobiotics, pollution and environmental exposures.2 In recent 

years, due to the interest in metabolomics for personalised care, metabolomics is being readily 

combined with nutritional sciences generating what’s more commonly known as 

nutrimetabonomics.3  

It is well known that diet heavily influences health and can play a role in maintaining a 

healthy state or developing a diseased state. Food is complex.4 In the exposome, food is one of the 

most influencing factors of human health due to the large number of nutritional and non nutritional 

components along with a variety of food and  non-food related compounds individuals are exposed 

to through eating.4,5 Non food/nutritional compounds can include pesticides and preservatives that 

provide no nutritional value to the individual but can, however, still affect their health state.4 Each 

individual will respond differently to the same foods.  

*I prepared the samples, analyzed the samples, data processed and performed statistical analysis on the dataset, wrote 

and edited this chapter. 
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Two individuals eating high fat containing diets may have vastly different outcomes. One may 

develop obesity, hypertension and heart disease while the other may remain fairly healthy. The 

reason behind this inter-individual variation is still unclear. 

Nutrimetabonomics incorporates four main goals. Firstly, it aims to understand the 

interactions of foods or diet on the metabolic system of the individual at the molecular level.1 

Secondly it looks at the effects of a nutritional regime or diet on human health and disease.1 

Thirdly, it can be used to identify food biomarkers for diet tracking and quantitively assessing the 

amounts of substances consumed.1 Lastly, it can be used to investigate the interactions between 

diet, the gut microbial composition and its overall effect on the individual’s metabolic status 

(health and disease states).1 By obtaining the information illustrated above, metabolomics can help 

play a part in developing a personalized nutrition regime for each individual that will help maintain 

or obtain a healthy state.1 It can also help predict the effects of various foods and food compounds 

to allow for changes to nutritional requirements and quality control of commercially available 

foods.1 

  According to the World Health Organization (WHO), diet is one of the main factors that 

contribute to the outcome and risk of chronic diseases.6,7 In Canada, healthy nutrition (according 

to the Canadian Food Guide) encompasses eating a balanced combination of foods from the four 

main food groups which include: fruits and vegetables, grain products, milk and alternatives and 

meat and alternatives. Milk is one of the main food groups and is consumed multiple times through 

different milk and milk-containing products daily from toddler to adulthood. Many population 

studies have been performed to investigate the effects of milk consumption on human health such 

as height, weight and bone strength.8–10 However, there are limited studies involving the study of 

the dietary effects of milk at the molecular level and how it can modulate metabolic responses. 
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In this chapter, CIL LC-MS was used to investigate the dietary perturbations of cow milk 

consumption on the human urine metabolome one and two hours after intake. 

3.2 Experimental  

3.2.1 Chemical and Reagents 

All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-

Aldrich Canada. For dansylation labeling, the 12C-labeling reagent (dansyl chloride) was 

purchased from Sigma-Aldrich and the 13C-labeling reagent was synthesized according to the 

method published previously.11 

3.2.2 Sample Collection and Processing 

Informed consent was obtained from individual volunteers, and ethics approval was 

obtained from the University of Alberta in compliance with the University of Alberta Heath 

Information policy. Urine samples were collected from 6 healthy individuals, 2 females and 4 

males. The short-term urine study involved 4 urine samples per collection day. The first sample 

was collected after 12 hours of overnight fasting and was deemed the void sample. The next sample 

was collected 1 hour after the first and was categorized as the “before” milk intake sample. After 

collection of the second sample the individual consumed 250 mL of Dairyland 1% milk. The third 

sample was collected 1 hour after which the milk was consumed. This sample was labelled as “1 

hour” after milk intake. Lastly the fourth urine sample was collected 2 hours after the initial milk 

consumption and labelled as such.  

The study was repeated on 3 separate days for each individual.  All urine samples were 

stored in the 4 °C fridge immediately after collection. Within the same day, the urine samples were 

vortexed at 4000 rpm for 10 minutes. The supernatant was filtered by 0.22 µm-pore-sized 
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Millipore filter (Millipore Corp., MA) and aliquoted into 0.6 mL vials. 12.5 µL of urine sample 

was aliquoted out and diluted 4-fold by adding 37.5 µL of water. The 50 µL diluted urine solutions 

were then ready for dansylation and stored in the -80 °C freezer until further use. 

3.2.3 Dansyl Labeling 

Dansyl chloride was used as the labeling reagent to react mainly amine- and phenol-

containing metabolites to form dansyl-amine or dansyl-phenol derivative.11 50 µL of a processed 

urine sample was mixed with 25 µL of 250 mM sodium bicarbonate buffer and 25 µL of 

acetonitrile and the solution was vortexed. 50 µL of 18 mg/mL 12C- or 13C-dansyl chloride in 

acetonitrile was added, vortexed and incubated at 40 °C for 45 min. To quench the excess dansyl 

chloride, 10 µL of 250 mM sodium hydroxide was added and the solution was incubated at 40 °C 

for 10 min. Finally, 50 µL of 425 mM formic acid was added to acidify the sample. Individual 

samples were labeled with 12C-dansyl chloride and a pooled sample was labeled with 13C-danysl 

chloride.  

3.2.4 LC-UV Quantification 

For LC-UV, a Waters ACQUITY UPLC system with a photodiode array (PDA) detector 

was used for the quantification of dansyl labeled metabolites for sample amount normalization as 

described earlier.12 Briefly, 4 µL of each labeled sample was injected onto a Phenomenex Kinetex 

C18 column (2.1 mm × 5 cm, 1.7 μm particle size) for a fast step-gradient run. Solvent A was 

0.1% (v/v) formic acid in 5% (v/v) ACN, and solvent B was 0.1% (v/v) formic acid in ACN. The 

gradient started with 0% B for 1 min and was increased to 95% within 0.01 min and held at 95% 

B for 1 min to ensure complete elution of all labeled metabolites. The flow rate used was 0.45 

mL/min. The peak area related to the total labeled metabolite concentration in the sample was 



43 

 

integrated using the Empower software (6.00.2154.003). Based on the quantification results, the 

12C-labeled sample and the 13C-labeled pool were mixed in equal amounts. 

3.2.5 LC-MS  

All LC-MS experiments were performed on an Agilent 1100 HPLC system (Palo Alto, 

CA) connected to a Bruker Impact HD quadrupole time-of-flight (QTOF) mass spectrometer 

(Billercia, MA) with an ESI source. A reverse phase column (Agilent Eclipse Plus C18 column, 

2.1 mm x 10 cm, 1.8 µm particle size, 95 Å pore size) was used for liquid chromatography 

separation of labeled metabolites. Mobile phase A was made up of 5% (v/v) acetonitrile and 0.1% 

(v/v) formic acid in water. Mobile phase B consists of 0.1% (v/v) formic acid in acetonitrile. The 

32-min gradient conditions were: 0 min (20% B), 0-3.5 min (20-35% B), 3.5-18 min (35-65% B), 

18-24 min (65-99% B) and 24-32 min (99% B). The column was then re-equilibrated at 20% B for 

15 min. The flow rate was 180 μL/min.  

3.2.6 Data Processing, Statistical Analysis and Metabolite Identification 

Bruker DataAnalysis software 4.2 was used to extract MS spectral peaks. An in-house 

software tool, IsoMS was used to process the raw data generated from multiple LC− MS runs by 

peak picking, peak pairing, peak-pair filtering, and peak-pair intensity ratio calculation.13 The 

same peak pairs detected from multiple samples were then aligned to produce a CSV file that 

contains the metabolite information and peak ratios relative to a control (i.e., a pooled sample). A 

zero-fill program was then used to find missing peak pairs from the raw mass spectral data, filling 

in the missing values.14 Peak ratios were further optimized through the use of IsoMS-Quant.15 

Volcano plots were generated by Origin 2016 Graphing and Analysis (OriginLab Corporation, 

Northampton, USA).  
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3.3 Results and Discussion 

3.3.1 Urine Collection 

Six healthy individuals, 2 females and 4 males, volunteered for this study. This study 

investigates the short-term effects of milk consumption on the urine metabolome. As mentioned 

before, your exposome directly affects your metabolome. The exposome changes daily due to 

things like consumption of different foods, different environmental conditions, chemicals, 

pollutants etc. Therefore, a short-term nutrimetabonomics study was designed. With a short-term 

study, a control sample can be obtained from within the same day and within a few hours from the 

experimental samples. This limits the chances of other factors influencing the urine metabolome 

of interest and avoids the masking of the diet effects by the day-to-day variation commonly 

observed in urine metabolomic studies. Figure 3.1 illustrates the urine collection process. Briefly, 

all individuals fasted for 12 hours overnight. The first pass of urine was collected after 12 hours 

and labeled “void”. One hour after the void sample, the next urine sample was collected and 

labeled “before”. Immediately after the second urine collection, the individual then consumed 250 

mL of 1% Dairyland cow milk. One hour after drinking milk, the individuals collected their third 

urine sample labeled “1 hour after milk”. Lastly, 2 hours after milk intake the individuals collected 

their final urine sample labeled “2 hours after milk”.  
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Figure 3.1 The urine collection workflow for the investigation of the dietary effects of cow milk 

consumption on the urine metabolome of 6 individuals, 1 and 2 hours after cow milk intake. 

 

All individuals were able to drink water throughout the duration of the collection period. 

The urine samples were collected in 50 mL sterile Eppendorf tubes. After collection, all samples 

were stored upright in the 4°C fridge. The urine was processed the same day it was collected 

(detailed process in the experimental section) and was stored in the -80°C freezer until usage.  

3.3.2 Determination of Unique and Common Metabolites to Urine and Milk 

  All individual urine samples were labeled with 12C-dansyl chloride while the pooled 

sample (generated by taking equal aliquots of all samples) was labeled with 13C-dansyl chloride. 

After labeling, each individual and pooled sample was quantified by LC-UV and the concentration 

of labeled metabolites was determined. The samples were then mixed in equimolar amounts of 

12C-individual sample and 13C-pooled sample and analyzed by LC-MS as single injections.  

  There are many other external factors that can affect the results of this study such as the 

individual’s previous meal, their metabolism, intestinal uptake, gut microbial composition and 

activity, and tolerance to milk and milk products etc. Along with inter-day variability within the 

same individual, there is also inter-individual variability which is much more pronounced. 

Therefore, the resulting dataset was grouped by each individual, and analysed independently. In 
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order to determine any milk metabolites excreted from the urine, the dataset from the urine study 

was aligned with the cow milk profiling dataset obtained from the study in chapter 2. Using the 

same criteria mentioned in chapter 2, the milk metabolites found consistently across 80% of all 

milk samples was compared with the urine metabolites before, 1 hour and 2 hours after milk intake. 

Firstly, I determined the number of unique metabolites to each collection time point (Figure 3.2 

A-F). These unique metabolites include both urine and milk metabolites.  

Then I compared the unique metabolites for each time point with the milk metabolites and 

determined the number of metabolites common to milk (Figure 3.2 G-L). As an example, Figure 

3.2A shows the Venn diagram for volunteer #1. As the purpose of this study is to see the effects 

of milk on the urine metabolome, I only focused on the unique metabolites observed in the 1 hour, 

1 and 2 hour and 2 hours after milk consumption urine samples. The numbers of those metabolites 

observed is bolded in Figure 3.2A. There are 70 metabolites unique to the 1-hour-after-milk urine 

samples, 156 metabolites unique to the 2-hours-after-milk urine samples and 563 metabolites 

found in both the 1-and-2-hours-after-milk urine samples. The above-mentioned metabolites were 

then compared with the milk metabolites obtained from the milk profiling set. Figure 3.2G shows 

the distribution of metabolites (1 hour, 2 hours and both 1 and 2 hours after milk intake) that are 

in common with milk (shown in red) or unique to urine (shown in black). Of the 70 metabolites 

unique to the 1-hour-after samples, 22 of them were in common with milk. 48 of the 156 unique 

metabolites in the 2-hours-after samples were in common with milk. Lastly, 104 metabolites out 

of the 563 unique metabolites to the 1-and-2-hours-after samples were matched with milk 

metabolites. 
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Figure 3.2 The distribution of metabolites 1 and 2 hours after milk intake for the 6 volunteers. 

Plots A-F show the distribution of metabolites in each collection time point. The metabolites 

unique to the after-milk samples are bolded in black. Plots G-L show the number of the unique 

metabolites generated from A-F that were found to be in common with milk metabolites 

determined from the previous study in chapter 2. These metabolites are bolded in red. In the corner 

of each plot is the volunteer number and gender. 
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3.3.3 Univariate analysis  

  Univariate analysis was used to determine metabolites with significant concentration 

changes after drinking milk. Firstly, the common metabolites between the 3 different collection 

time points was determined. Then the significant changed metabolites between “before” and 

“after” milk intake was identified and plotted on Volcano Plots for each individual following the 

criteria: p-value < 0.01, fold change (FC) > 1.5 and FC <0.67 refers to significantly increased and 

decreased, respectively. Figure 3.3 A-F show the plots of the significantly changed metabolites 1-

hour-after-milk intake and Figure 3.3 G-L shows the plots for the metabolites changing 2-hours-

after-milk intake. For volunteer #1, the individual had 47 and 31 significantly increased and 

decreased metabolites, 1-hour after milk intake. 2-hours after intake the numbers were 46 and 52, 

increased and decreased, respectively (Figure 3.3 A, G). For volunteer #2, they had 0 increased 

and 4 decreased metabolites at 1-hour after milk and 1 increased and 11 decreased metabolites at 

2-hours after milk intake (Figures 3.3 B, H). Volunteer #3 had 7 increased and 1 decreased 

metabolites after 1-hour of drinking milk (Figure 3.3 C). Those numbers changed to 4 increased 

and 4 decreased 2-hours after milk (Figure 3.3 I). Volunteer #4 had 17 increased and 0 decreased 

after 1-hour post milk intake and had 7 increased and 1 decreased 2-hours post-milk (Figures 3.3 

D, J). Volunteer #5 had 14 increased metabolites 1-hour post-milk intake and 0 decreased (Figure 

3.3 E). 2-hours post milk intake those numbers changed to 67 increased and 6 decreased (Figure 

3.3 K). Lastly, volunteer #6 had 13 increased and 3 decreased metabolites after 1-hour of 

consuming milk (Figure 3.3 F). 2-hours after milk intake those numbers were 42 increased and 12 

decreased (Figure 3.3 L). 
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Figure 3.3 Univariance analysis of the urine samples 1 and 2 hours after milk intake. Plots A-F 

show the volcano plots for the 6 individual’s urine samples collected 1 hour after milk intake. Plots 

G-L show the volcano plots for the urine samples collected 2 hours after milk intake. The criteria 

for determination of significant metabolites were as follows: a p-value <0.01, a fold-change (FC) 

of >1.5 was determined as increased (red data points) and FC<0.67 as decreased (blue data points). 

The volunteer’s number and gender is shown in the bottom left corner of each plot. 
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Compared to the total number of metabolites observed in the urine or milk metabolome, 

the number of overlapped features determined were much lower (~3000 metabolites vs <110 

metabolites). As well, the number of metabolites with significantly changed concentrations was 

also small. This was, in a way, expected. Past studies have found that dietary effects on the 

metabolome are less pronounced than say, a drug effect and can be easily masked by other 

variables such as inter-individual and inter-day variation within the same individual.1 As well, 

there is no observed pattern to the changes in the urine metabolome across individuals thus 

demonstrating the unique individual responses to milk consumption. It should, however, be noted 

that the effects are more complex since food is not just comprised of one component and those 

components may be involved in various metabolic pathways. Milk, for example, is comprised of 

a variety of proteins, lipids, sugars, vitamins and minerals.17 Also, the number of milk metabolites 

excreted out refers to any metabolites that have not undergone bio-transformations during the 

ingestion, digestion, absorption and elimination process. Our method, unfortunately, cannot 

account for bio-transformed metabolites. 

3.4 Conclusion and Future Work 

  Overall the results of this study show no significant effect of milk consumption on the 

human urine metabolome 1 or 2 hours after intake to warrant large changes in the metabolomic 

profiles of the individuals. However, the method is still able to detect the subtle and individually 

unique changes that do occur in the urine metabolome after drinking milk. For the future work, a 

more carefully designed double-blind (if possible) study needs to be designed with a larger group 

of volunteers. As well, different labeling chemistries can be used to investigate the effects of milk 

consumption on the other submetabolomes. 
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Chapter 4 Development of a Quantitative Metabolomics Method for Detecting 

Potential Milk Adulterant in Human Milk 

4.1 Introduction 

A mother’s milk is considered the “gold standard” of a perfect source of nutrition for a 

newborn. However, in some cases a mother may be unable to provide sufficient amounts of milk 

for their child or the milk is considered unsafe for the baby.1,2 Commercial infant-formula is an 

alternative when maternal breast milk is not available. Because of the many benefits correlated to 

breast milk consumption for infants, human milk is still preferred by many mothers.3 Donor human 

milk (DHM) is recommended as the first choice of milk in place of the unavailable maternal milk.4 

In North America, the Human Milk Banking Association of North America (HMBANA), a 

professionally governed non-profit organization, has helped establish a total of 18 human milk 

banks in the US and Canada. The milk obtained by these milk banks go through vigorous screening 

before distribution. Due to the vigorous screening and multi-step strict processing, along with the 

reliance of donations, donor human milk is very limited in supply. Because of this, the milk is 

mainly available by a physician’s prescription and for high-risk infants (typically premature or ill) 

residing in the Neonatal Intensive Care Unit (NICU). 

With the limited access to human milk from official breast milk banks, individuals are 

looking to the community for DHM.4,5 Human milk sharing allows for easier and more affordable 

access to DHM. There is a market for the buying and selling of this “superfood”, populated by the 

Internet. The cost can be as high as $5 USD per ounce. However, there are many health-related 

risks associated with milk sharing and consumption.4,6  

*A version of this has been submitted for publishing as “Development of a Quantitative Metabolomics Method for 

Detecting Potential Milk Adulterant in Human Milk” Mung, D.; Li, L. on August 26, 2017. I prepared all the samples, 

ran the samples, performed data processing and statistical analysis, generated the figures and wrote and edited the 

manuscript. 
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Purchased human milk may be subjected to milk adulteration (i.e., diluted with another 

form of milk). Recent studies have detected cow DNA in 10% of the breast milk samples 

purchased online in amounts (~10% contamination) that would suggest intentional adulteration.7 

Sellers may be tempted to adulterate their human milk with other milks to increase the amount of 

“human milk” available to be sold to inflate their profit. There are many risks associated with 

infant consumption of plant or animal adulterated human milk including iron deficiency, 

dehydration, increased potential renal solute load (PRSL), and allergic reactions.8-13  

There is a clear need for rapid detection of milk adulterants in human milk. DNA-based 

analytical techniques are powerful in identifying milk of different species as well as offering semi-

quantitative information on the level of contaminant or adulterant in human milk.7 However, they 

require a targeted DNA probe for each adulterant and do not detect adulterants with no available 

probe. An alternative approach for differentiating milk of different species is to examine the 

proteome14-17 or metabolome18-23 of milk samples. Because of the possibility of acquiring 

metabolomic data quickly, metabolomics is a promising method for rapid detection of adulterants 

in human milk. The hypothesis is that the human milk metabolome can serve as a fingerprint and 

any significant deviation of the metabolome of an unknown milk sample from the human milk 

metabolome may indicate contamination or adulteration.  

There are reports of using NMR20,21, GC-MS18,22,23 and LC-MS19,20 to study the 

metabolome differences among different types of milk. However, due to limited metabolic 

coverage of these techniques, comparison of the metabolome profiles of different species may not 

be sufficiently sensitive to detect a small amount of adulterant. To our knowledge, there is no 

report of examining the possibility of using metabolomics for detecting contaminants or 

adulterants in human breast milk. In this work, we report a high-performance chemical isotope 
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labeling liquid chromatography mass spectrometry (CIL LC-MS) method to profile the 

amine/phenol submetabolomes of human milk and five potential human milk adulterants (soy, 

almond, cow, goat and infant formula). Compared to conventional LC-MS, CIL LC-MS generates 

the submetabolomic profiles with high coverage and high quantification accuracy and precision.24 

Thus, we wish to examine the possibility of using the submetabolome profiles to detect 

contaminant in human milk mixed with different amounts of soy, almond, cow, goat or infant 

formula. We demonstrate that this CIL LC-MS submetabolomic profiling method can detect 

adulterant at a level of as low as 5% in human milk. This level of detection should be adequate for 

milk adulterant analysis, as below this level does not make economic sense for volume-based 

adulteration.25  

4.2 Experimental 

4.2.1 Chemicals and Reagents 

 All the chemicals and reagents, unless otherwise stated, were purchased from Sigma-

Aldrich Canada. For dansylation labeling, the 12C-labeling reagent (dansyl chloride) was 

purchased from Sigma-Aldrich and the 13C-labeling reagent was synthesized according to the 

method published previously.24  

4.2.2 Milk Sample Collection and Preparation 

 All cow, goat, soy, almond and infant formula milk was purchased from local grocery 

stores and the human breast milk was donated from ten different healthy volunteers. Ethics 

approval for working with human samples was given by the University of Alberta Ethics 

Committee. For the cow, goat, soy, almond and infant formula milk, three different brands were 

purchased. For the cow milk, two different fat percentages (skim and 3.25%) of milk were also 
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purchased for each of the three brands. All milk samples were aliquoted into 50 mL collection 

tubes and stored in a -80 °C freezer until use.  

A previously determined method for cow milk metabolite extraction was utilized for this 

study.26 The metabolite extraction method, involving protein precipitation by methanol followed 

by lipid removal with dichloromethane, was found to be applicable to these different types of milk 

samples. Briefly, 100 µL of milk was mixed with 300 µL of methanol, vortexed and incubated at 

-20 °C for 15 min. The sample was centrifuged at 20 800 g for 15 min and 350 µL of the 

supernatant was taken into a new vial. 500 µL of dichloromethane and 50 µL of water were added 

to the supernatant, vortexed and left at room temperature for 10 min. 350 µL of the aqueous layer 

was then taken into a new vial and dried down using a SpeedVac. The sample was re-dissolved in 

50 µL of water for dansylation labeling. 

4.2.3 Dansylation Labeling 

Dansyl chloride was used as the labeling reagent to react mainly amine- and phenol-

containing metabolites to form dansyl-amine or dansyl-phenol derivative.24 50 µL of a processed 

milk sample was mixed with 25 µL of 250 mM sodium bicarbonate buffer and 25 µL of acetonitrile 

and the solution was vortexed. 50 µL of 18 mg/mL 12C- or 13C-dansyl chloride in acetonitrile was 

added, vortexed and incubated at 40 °C for 45 min. To quench the excess dansyl chloride, 10 µL 

of 250 mM sodium hydroxide was added and the solution was incubated at 40 °C for 10 min. 

Finally, 50 µL of 425 mM formic acid was added to acidify the sample. Individual samples were 

labeled with 12C-dansyl chloride and a pooled sample was labeled with 13C-danysl chloride.  

 



59 

 

4.2.4 LC-UV Quantification 

For LC-UV, a Waters ACQUITY UPLC system with a photodiode array (PDA) detector 

was used for the quantification of dansyl labeled metabolites for sample amount normalization as 

described earlier.27 Briefly, 4 µL of each labeled sample was injected onto a Phenomenex Kinetex 

C18 column (2.1 mm × 5 cm, 1.7 μm particle size) for a fast step-gradient run. Solvent A was 

0.1% (v/v) formic acid in 5% (v/v) ACN, and solvent B was 0.1% (v/v) formic acid in ACN. The 

gradient started with 0% B for 1 min and was increased to 95% within 0.01 min and held at 95% 

B for 1 min to ensure complete elution of all labeled metabolites. The flow rate used was 0.45 

mL/min. The peak area related to the total labeled metabolite concentration in the sample was 

integrated using the Empower software (6.00.2154.003). Based on the quantification results, the 

12C-labeled sample and the 13C-labeled pool were mixed in equal amounts. 

4.2.5 LC-MS 

All LC-MS experiments were performed on an Dionex UltiMate 3000 UHPLC (Thermo 

Scientific, MA) connected to a Bruker Impact HD Quadrupole Time-Of-Flight (QTOF) mass 

spectrometer (Billercia, MA) with an ESI source. A reverse phase column (Agilent Eclipse Plus 

C18 column, 2.1 mm x 10 cm, 1.8 µm particle size, 95 Å pore size) was used for liquid 

chromatography separation of labeled metabolites. Mobile phase A was made up of 5% (v/v) 

acetonitrile and 0.1% (v/v) formic acid in water. Mobile phase B consists of 0.1% (v/v) formic 

acid in acetonitrile. The 32-min gradient conditions were: 0 min (20% B), 0-3.5 min (20-35% B), 

3.5-18 min (35-65% B), 18-24 min (65-99% B) and 24-32 min (99% B). The column was then re-

equilibrated at 20% B for 15 min. The flow rate was 180 μL/min.  
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To determine the optimal amount injection, a 1:1 mixed 12C-/13C-labeled milk sample with 

a known concentration of 1.23 mM (measured by LC-UV) was injected in 5 µL increments from 

5 to 30 µL. Injection triplicate runs were performed for gauging the technical reproducibility. From 

the plot of the peak pair number detected as a function of sample amount injected (Appendix Figure 

A4.1), we found that peak pair number saturation occurred when 24.6 nmol in 20 µL of sample 

was injected. However, many samples were less concentrated than the 1.23 mM pooled sample 

used for the injection optimization experiment and therefore will require a much larger injection 

volume. This will lead to peak broadening. Thus, in subsequent experiments, we injected 20 nmol 

of labeled sample into the LC-MS for analysis as the difference in the detected number of 

metabolites is minimal.  

4.2.6 Data Analysis 

Bruker DataAnalysis software 4.3 was used to extract MS spectral peaks. An in-house 

software tool, IsoMS, was used to process the raw data generated from multiple LC-MS runs by 

peak picking, peak pairing, peak-pair filtering to remove redundant peaks of the same metabolite, 

such as adduct ions, dimer, multimers, to retain only [M+H]+ for a labeled metabolite (i.e., one 

peak pair corresponds to one metabolite), and peak-pair intensity ratio calculation.28 The same 

peak pairs detected from multiple samples were then aligned to produce a CSV file containing the 

metabolite information and peak ratios relative to a control (i.e., a pooled sample). A zero-fill 

program was used to find missing peak pairs from the raw mass spectral data, filling in the missing 

values.29 Finally, peak ratios were re-calculated by using chromatographic peaks, instead of mass 

spectral peaks, with IsoMS-Quant.30 The final metabolite-intensity data file was then exported to 

MetaboAnalyst version 3.0 (McGill University, Montreal, Canada) for multivariate statistical 
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analysis. Principal component analysis (PCA) were used to analyze the data after interquartile 

range data filtering, sample normalization by sum and auto-scaling data scaling. 

Positive metabolite identification was performed based on mass and retention time 

matching to the dansyl standards library consisting of 273 unique standards with 315 entries.31 

This library with information on MS, MS/MS and ion chromatogram for each dansyl labeled 

standard is freely accessible at www.MyCompoundID.org. Putative identification was done based 

on accurate mass match to the metabolites in the human metabolome database (HMDB) (8,021 

known human endogenous metabolites) and the Evidence-based Metabolome Library (EML) 

(375,809 predicted human metabolites with one reaction) using MyCompoundID.32 The mass 

accuracy tolerance window was set at 8 ppm and the retention time tolerance window set to 20 s 

for the definitive identification searches and for the putative searches a mass tolerance of 0.005 

Da was used. 

4.3 Results and Discussion 

4.3.1 Metabolome Profiles of Different Types of Milk 

Using the human milk metabolome or submetabolome as a fingerprint for detecting the 

presence of an adulterant, analyzing a large number of metabolites with high quantification 

accuracy and precision is important in order to more readily reveal small changes in the 

metabolome profile when a small amount of adulterant is added to human milk. Dansylation LC-

MS offers a means of analyzing a larger number of the amine/phenol-containing metabolites in 

milk. We examined the differences of the amine/phenol submetabolomes among different types of 

milk that may be used as a human milk adulterant/diluent. This profiling work includes 6 different 

types of milk: cow, goat, almond, soy, infant formula and human breast milk; some have different 

brands and different fat contents. The 10 samples of human milk were donated from different 

http://www.mycompoundid.org/
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individuals collected at various time points postpartum. Experimental triplicates were performed 

on all samples for a total of 60 labeled samples analyzed by LC-MS. Each individual sample was 

labeled with 12C-dansyl chloride. The pooled sample was generated by combining equal volume 

aliquots of all the different milk samples, metabolite extraction, and 13C-dansylation. All labeled 

samples were then quantified by LC-UV and the concentrations of labeled metabolites were 

determined. The individual samples were then mixed with equal mole amounts of the pooled 

sample.  

The average number of metabolites detected per milk type is as follows: 4318±198 (n=9) 

goat metabolites, 4256±136 (n=18) cow metabolites, 3080±470 (n=9) almond metabolites, 

4129±297 (n=9) soy metabolites, 4444±563 (n=9) infant formula metabolites and 4020±375 

(n=30) human metabolites. These results indicate that a high coverage analysis of the 

amine/phenol submetabolome was achieved for all the milk samples. 

We next examined whether the submetabolomes are different from each other for different 

types of milk samples. Figure 4.1A shows the PCA score plots of the six different types of milk 

with the quality control (QC) injections (Figure 4.1A) and without the QC (Figure 4.1B). From 

the plots, we can see that the QC data clusters well for samples run over the span of three months, 

indicating good technical reproducibility as well as the stability of the labeled samples during 

storage. Each type of milk cluster together tightly, but different types of milk separate from each 

other. The animal milk (cow and goat) cluster closely and are apart from the plant-based milk 

(almond and soy) which form their own clusters. Although the milk samples seemingly group by 

source (animal vs. plant), they still cluster individually by milk type. Human milk groups together 

on its own and shows more variability within the milk type. This is most likely due to genomic 



63 

 

diversity as well as external factors, such as the environment and diet, which was not controlled 

for this study.  

 

Figure 4.1 PCA plots of different types of milk studied in this work with QC data (A) and without 

QC data (B). 

 

All the samples cluster together well by milk type with the exception of formula milk. Two 

of the three brands tested in this study cluster between the soy and cow milk data-points. This is 

expected as the ingredients listed on the labels for infant formula typically includes both cow and 

soy-based components. However, one of the brands separates away from the other formula milk, 

and is found closer to soy milk. The finding was confirmed by analyzing different lots of this brand 

of formula purchased over 12 months apart. This may suggest a more dominant soy-based or other 

plant-based milk recipe for this brand of infant formula, which does boast a more digestible 

formula; the dominance of plant-based components may be responsible for that. This example 

illustrates that the submetabolome profiles can be useful to differentiate these brands. 
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4.3.2 Metabolite Differences of Different Types of Milk  

The data from the metabolome profiling of the different types of milk was sorted and the 

metabolites unique to each milk type were determined. The following criteria were used: the 

metabolite must be detected in two of the three experimental triplicates for every sample (i.e., 

brand) of that milk type. For example, three brands of soy milk were purchased. Each brand was 

extracted three times for experimental triplicates. After analysis, if metabolite A is found in two 

of the three experimental replicates for one brand it is counted as a “real” metabolite of that brand. 

If that same metabolite A is also detected as a “real” metabolite in the other two brands, using the 

same criteria, it is determined as a soy milk metabolite (versus a brand-specific metabolite if it was 

only found in the first brand). 

Using the criteria mentioned above, the following number of metabolites was determined 

for each type of milk: 2925 metabolites in goat milk, 2670 in cow milk, 1348 in almond milk, 

2562 in soy milk, 1553 in formula milk and 1043 in human milk. The potential human adulterant 

metabolites were then compared to human milk. Figure 4.2 shows the number of common 

metabolites between the milk type and human milk in black. In red are the unique metabolites to 

that specific milk (i.e., only found in that milk type and not in any of the other types of milk). Of 

the 2670 metabolites detected in cow milk, 851 were in common with human milk and 352 were 

unique to cow milk. For the 1348 almond metabolites, 129 were unique to almond milk while 488 

were in common with human milk. Goat milk had a total of 2925 metabolites, 834 of which were 

in common to human milk and 510 unique to goat. Infant formula had 518 and 252 metabolites in 

common with human milk and unique to formula milk, respectively, out of the 1553 detected. 

Lastly, soy milk had 583 common metabolites with human milk and 971 unique metabolites to 

soy milk, out of the 2562 detected. 
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Figure 4.2 Comparison of the numbers of unique and common metabolites for the five different 

milk adulterants (cow, almond, goat, formula and soy) to those of human milk. 

 

We used a standard library (dansyl standards) and two databases (HMDB and EML) to 

identify the metabolites detected in each type of milk. Of the 1043 human metabolites, 47 and 863 

were matched to the dansyl library and HMDB/EML, respectively (see Supplemental Table S4.1 

for the lists). For the 1348 almond metabolites, 43 were matched to the dansyl library and 1076 

matched to HMDB/EML (Supplemental Table S4.2). Of the 2562 soy metabolites, 2026 were 

putatively matched to HMDB/EML while 73 were matched to the dansyl library (Supplemental 

Table S4.3). The 2670 cow milk metabolites were searched and 78 and 2170 were matched to the 

dansyl library and HMDB/EML, respectively (Supplemental Table S4.4). 49 infant formula milk 

metabolites were matched to the dansyl library and 1255 matched to HMDB/EML out of the 1553 

formula milk metabolites searched (Supplemental Table S4.5). Lastly of the 2925 goat metabolites 



66 

 

searched, 78 were matched to the dansyl library and 2387 matched to HMDB/EML (Supplemental 

Table S4.6).  

Figure 4.3 Volcano plot for comparison of pooled cow milk and pooled human milk.  

 

The above results show that there are many common metabolites found in different milk, 

but there are also a large number of unique metabolites found in each type of milk. Moreover, the 

concentrations of metabolites can be different among different types of milk. One example is 

shown in Figure 4.3 where the common metabolites found in pooled cow milk and pooled human 

milk are compared using a volcano plot. There are 146 metabolites (blue dots) having higher 

concentrations in cow milk than human milk and 103 metabolites (red dots) with lower 

concentrations, using a criterion of fold-change of greater than 1.5 or less than 0.67 with p-value 

of less than 0.01. We next explore this metabolome compositional difference to see if we can detect 

the presence of potential adulterant in human milk. 

Figure 3
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4.3.3 Human Milk mixed with Different Amounts of Potential Adulterants 

To investigate whether the CIL-LCMS method is able to distinguish between a non-

adulterated and adulterated human milk metabolome at various contamination levels, we prepared 

a series of mixtures of human milk and potential adulterant (see Figure 4.4). Firstly, all the 

different samples were pooled by milk type. Then the pooled human milk was diluted with a milk 

adulterant in the following percentages: 5%, 10%, 25%, 50%, and 75%. Experimental triplicates 

were performed for each level of milk adulteration (5 in total) for the 4 potential milk adulterants 

and the 6 pooled milk samples (analyzed for reference) for a total of 93 samples for LC-MS 

analysis.  

Figure 4.4 Binary mixtures prepared to study the performance of the CIL LC-MS method for 

differentiating human milk containing varying amounts of adulterant and non-adulterated human 

milk. 

 

The four potential milk adulterants were chosen based on physical similarities to human 

milk. From experience, the color and consistency along with transparency of human milk varies 

depending on the length of time postpartum, maternal weight, diet and time of collection (day vs 

night).33 Figure 4.5 shows the PCA analysis of the different levels of adulterated human milk for 
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different types of milk adulterants. The most common human milk diluent is cow milk for a variety 

of reasons. There are obvious similarities in the color and consistency (4 different fat percentages 

to choose from) of the milk. It is also easily accessible and it is the cheapest in price. A recent 

publication found that approximately 11% of the human donor milk samples purchased online 

tested positive for cow milk in levels that would suggest intentional contamination (>10% 

dilution).7 

Figure 4.5A shows the PCA scores plot of the human milk spiked with varying levels of 

pooled cow milk. On 2-dimensional plots, the first principal component (PC1) describes the 

direction that contains the most amount of variation between the metabolites. The second principal 

component (PC2) captures the direction that contains the next most variation. From the scores plot 

we see a slight separation between the 5% contaminated human milk and the pure human milk 

data points on PC2, but no separation on PC1. With 10% contamination, we see a large separation 

on PC2, but not PC1. Adding 25% or more cow milk, we see an obvious separation on PC1. Based 

on the PCA plot shown in Figure 4.5A, we can clearly differentiate the adulterated human milk 

containing 10% or more cow milk from non-adulterated human milk. To differentiate human milk 

and human milk with 5% cow milk, we used univariate analysis (i.e., volcano plots) to find 5 

metabolites in common (see Supplemental Table S4.7 including putative identities) between cow 

and human milk with concentrations much higher in cow milk than in human milk.  
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Figure 4.5 PCA plots for the pooled human milk (100%) and adulterated human milk with the 

following adulterant: (A) cow, (B) goat, (C) soy, (D) almond and (E) infant formula. The level of 

adulterant varied from 5%, 10%, 25%, 50%, to 75%. 
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Figure 4.6 shows 5 common metabolites detected in the human milk samples with different 

levels of cow milk contamination. Our technique is able to detect differences in the fold changes 

of these 5 metabolites as the human milk is spiked with increasing amounts of cow milk. Thus, 

even at the 5% level, the submetabolome profiles can be used to detect the adulterated human milk.  

Figure 4.6 Fold changes of 5 metabolites with increased levels of cow milk added to the human 

milk. The putative IDs of metabolites with corresponding Metabolite No. are provided in 

Supplemental Table S4.7. 

 

The next adulterant we studied was goat milk. Again, human milk was spiked with varying 

amounts of goat milk. Figure 4.5B shows the PCA scores plot for the data from this experiment. 

The human milk diluted with 5% or more goat milk can be readily separated from human milk.  

Moving onto the plant based milk types, Figure 4.5C and D show the PCA scores plots for 

human milk adulterated with soy and almond milk, respectively. For human milk spiked with soy 

milk we can see separation between all milk samples (non-adulterated human and 5-100% soy 
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milk). For almond milk, we also see clear separation between non-adulterated human milk and 

human milk with 5% or more almond milk. Lastly, we investigated commercially available infant 

formula which consists of cow and soy components. Here we see individual clustering of each 

milk sample. We see separation between non-adulterated human milk and human milk with ≥5% 

formula milk. 

Overall, we are able to detect significant differences between human milk and milk that 

has been adulterated with over 5% of foreign milk chosen in this study using multivariate or 

univariate analysis. It should be noted that it is less likely for purchased donor milk to contain 

levels less that 5-10% as the costs of milk adulteration would not outweigh the profits (i.e. 

transportation fees, cost of the milk purchased, recycling fee associated with the container, time 

and effort spent overall, etc.). 

4.4 Conclusions 

We have developed a CIL LC-MS metabolomics method to determine differences between 

the amine/phenol submetabolomes of human, soy, almond, cow, goat and infant formula milk. We 

have shown that this method is able to detect metabolomic differences between non-adulterated 

human milk and human milk containing 5% or more potential milk adulterant. It is a relatively 

simple and straightforward method. The overall strategy described in this work should also be 

applicable to analyze other types of food or drinks in the general application area of food 

authentication.34,35 Future technical development work will focus on optimizing the sample 

processing procedure to shorten the overall analysis time to less than 1 hour per sample. 
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Chapter 5 CIL LC-MS for the Absolute Quantification of Propionic Acid in 

Human and Rat Plasma Samples 

5.1 Introduction 

Systems biology is the holistic study of the biological system of an organism at the 

molecular level.1 It involves the integration from a variety of “omics” technologies including the 

following (from upstream to downstream): the study of genomics (DNA), transcriptomics (gene 

expression) proteomics (protein expression), and lastly metabolomics (small molecule products or 

intermediates of cellular pathways).1 However the state of an organism is inherently complex. 

There is a bidirectional relationship between intrinsic and extrinsic factors that needs to be 

regulated in order to maintain physiological homeostasis.1,2 The metabolome offers a glimpse of 

the downstream end products of the multi-interaction relationship between genes, proteins and the 

environment.1,3 It is complex and dynamic making it more representative of the organism’s 

phenotype.1 The metabolome is heavily influenced by the relationship between the host’s intrinsic 

factors (genes)  and the environment (exposome and lifestyle).1,4 The exposome encompasses any 

eternal exposures the organism may be subjected to (which include diets, medications 

(xenobiotics), gut microbiota composition, toxins, allergens, pollutants, exercise and stress etc.)1,4 

Microbiomes (external and internal) play a large role in the health of an organism.5 Microbiome 

communities occupy every aspect of our daily lives from the items we touch, the food we ingest, 

air we breathe; inhabiting our skin and colonising in our gut.5 There is a codependency between 

the host and the vast colonies of microorganisms that have co-evolved alongside the host.6 The 

microbiota plays a role in helping produce essential nutrients, assist with metabolism, boost the 

immune system and develop and maintain the gastrointestinal tract.2,6  

*I optimized the sample labeling method, generated the LC-MS method, prepared the samples, collected the data, 

processed the data, wrote and edited this chapter 
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Research has shown the importance of the gut microbiome in prevention of a variety of 

disease and conditions including the some of the following: obesity, asthma, cancer, and digestive 

disorders.5,7,8 Another role of the gut microbiota is to break down undigested carbohydrates 

(prebiotics known as fibre) thereby recovering what would have been wasted energy.6,8,9 Fibre 

metabolism helps increase the blood levels of short chain fatty acids (SCFAs) such as propionate, 

butyrate and acetate.8,9 These SCFAs have been found to play a variety of roles in maintaining the 

health and prevention of disease in the organism. SCFAs that are metabolized in the liver, tissues, 

and muscles provide about 8% of the daily energy requirements for the host.9 They also play a role 

in maintaining the intestines and have an anti-microbial, anti-tumorigenic and anti-inflammatory 

effects thereby modulating metabolism, intestinal health and the immune system.10 

In this chapter, I report a chemical isotope labeling LC-MS workflow for the absolute 

quantification of propionic acid that is applicable to both rat and human plasma samples. P-

dimethylaminophenacyl (DmPA) bromide was the reagent used for the labeling of propionic acid 

as the non-labeling approach proved ineffective due to low sensitivity and inability to retain well 

on the reverse phase LC column.  

5.2 Experimental  

5.2.1 Chemical and Reagents 

The deuterated propionic acid standard was purchased from Cambridge Laboratories 

Canada. All other chemicals and reagents, unless otherwise stated, were purchased from Sigma-

Aldrich Canada. For dansylation labeling, the 12C-labeling reagent (p-dimethylaminophenacyl 

(DmPA) bromide) was synthesized according to the method published previously.11  
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5.2.2 Rat and Human Samples 

  All rat and human plasma samples were received by Dr. Juan Gonzalez Abraldes. Informed 

consent was obtained from individual volunteers, and ethics approval was obtained from the 

University of Alberta in compliance with the University of Alberta Heath Information policy. 

5.2.3 DmPA Labeling 

   15 µL of plasma spiked with 1 µL of 0.2 mM deuterated PA (internal control) was mixed 

with 50 µL of acetonitrile for protein precipitation. The solution was vortexed for 30 seconds, spun 

down and incubated in the -20 °C freezer for 20 minutes. It was then centrifuged at 14 000 rpm 

for 15 minutes. 40 µL of the supernatant was then removed into a new vial to which 10 µL of 1.0 

M triethanolamine (TEOA) and 25 µL of 15 mg/mL DmPA was added. The solution was then 

vortexed for another 30 seconds and incubated at 80 °C for 1 hour. After the labeling reaction, the 

solution was centrifuged at 14 000 rpm for 5 minutes. 2 µL of the solution was then injected into 

the RPLC-MS for analysis. 

5.2.4 LC-MS  

All LC-MS experiments were performed on an Dionex UltiMate 3000 UHPLC (Thermo 

Scientific, MA) connected to a Bruker Impact HD Quadrupole Time-Of-Flight (QTOF) mass 

spectrometer (Billercia, MA) with an ESI source. A reverse phase column (Agilent Eclipse Plus 

C18 column, 2.1 mm x 10 cm, 1.8 µm particle size, 95 Å pore size) was used for liquid 

chromatography separation of labeled metabolites. Mobile phase A was made up of 5% (v/v) 

acetonitrile and 0.1% (v/v) formic acid in water. Mobile phase B consists of 0.1% (v/v) formic 

acid in acetonitrile. The 35-min gradient conditions were as follows: 0 min (20% B), 0-3.5 min 

(20-35% B), 3.5-10 min (35-50% B), 10-14 min (50-99% B), 14-26.5 min (99% B), 26.5-30 min 
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(99-20% B) and 30-35 min (20% B). The flow rate ranged from 250 for the analysis and 

equilibration segments and 300 μL/min for the clean segments. 

5.2.5 Data Processing 

Bruker DataAnalysis software 4.3 was used to obtain the extracted ion chromatogram for 

DmPA labeling propionic acid and DmPA-deuterated propionic acid. A mass tolerance of ±0.005 

Da was used. 

5.3 Results and Discussion 

5.3.1 Labeled Approach for Organic Acids 

  SCFAs, such as propionate, are small, volatile, polar compounds which do not retain well 

on a reverse phase (RP) column. Previously, p-dimethylaminophenacyl (DmPA) bromide has been 

shown to label carboxylic acid containing metabolites thereby increase their retention ability on a 

RP column and increasing ESI efficiency in positive ion mode.11 A modified labeling procedure 

was determined by a fellow lab-mate, Wei Han. The modified procedure was as follows: 15 µL of 

plasma was mixed with 50 µL of acetonitrile for protein precipitation. The sample was incubated 

at -20 °C for 20 minutes. Then it was centrifuged at 14 000 rpm for 10 minutes. After which, the 

45 µL of supernatant was removed into a new tube and the protein pellet was discarded. 10 µL of 

1.0 M triethanolamine (TEOA) and 25 µL of 25 mg/mL DmPA reagent was mixed with the 

supernatant, vortexted and incubated at 80 °C for 1 hour.  After which the labeled solution is ready 

for LC-MS analysis. This method was further optimized by myself. 

5.3.2 Determination of the LC-MS Method 

  As this study focuses on the targeted analysis of propionic acid (PA), the LC-MS method 

was tailored to that. The LC-MS run is shown below in figure 5.1. In blue is the change in the % 



79 

 

of MPB and in red is the change in % MPA. The LC-MS run was split into four segments (as 

colored below) including: a mass calibration/waste segment (in red), a MS collection segment (in 

yellow), a clean segment (in green) followed by a re-equilibration segment (in blue). The LC run 

starts at 80:20 ratio of MPA to MPB. The first waste segment begins with a 30 second sodium 

formate calibration section to allow for mass calibration of the individual run. During this segment, 

the solution eluting off the column is directed to the waste line. At a flow rate of 180 µL/min, PA 

elutes out from 10.6-11.0 minutes. In order to shorten the run time, the flow rate was increased to 

250 µL/min. At an 80:20 mixture of MPA and MPB the pressure is ~ 250 bar. Ideally the column 

should be able to handle pressures higher than 250 bar however there is a risk of leaking at the 

fittings which is what I encountered when running at a flow rate of >250 µL/min and therefore did 

not attempt to switch the flow rate any higher. At this flow rate, PA elutes out at 8.7-9.1 minutes. 

Therefore at 8.5 minutes, the divert valve is switched from waste to the MS source and MS 

information is collected from 8.5-9.3 minutes during the “MS collection segment”. After the 

elution of PA, the valve is switched back to waste for the “clean segment”. At this point MPB is 

ramped up to 99% and the flow rate increased to 300 µL/min and will remain so from 14-26.5 

minutes labeled sample from the RP column. The last segment is the re-equilibration segment 

which includes decreasing the flow rate back to 250 µL/min and returning the MPB and MPA to 

20% and 80%, respectively.  

For determination of the injection volume, 5 µL was chosen during the initial testing of the 

labeling and LC-MS method. Many peaks were saturated and the column carryover was a potential 

issue with repeat injections, therefore the injection volume was decreased to 2 uL to avoid dirtying 

the LC (therefore avoiding additional clean runs) and MS. 
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Figure 5.1 The LC-MS method for the targeted quantification of DmPA-labeled propionic acid. In 

blue and red is the percentage of mobile phase A and B, respectively. 

5.3.3 Optimization of the Labeling Conditions 

Once the LC-MS method was determined, the following labeling conditions were 

optimized: temperature, TEOA and DmPA concentration. For the optimization of each condition, 

only the condition of interest was changed while the remaining conditions for the labeling 

procedure were held constant. Experimental triplicates (n=3) were also performed for each 

condition. Different protein precipitation solvent was not compared due to the high temperature of 

the reaction. Therefore, temperature was first tested to investigate if the reaction could proceed 

sufficiently at lower temperatures. From Figure 5.2A we see that lowering the reaction temperature 

resulted in a lower peak area detected for propionic acid (PA). The reaction temperature of 80 °C 

corresponded to the highest peak area. Therefore, in regards to the protein precipitation solvent, 
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acetonitrile remained the best choice due to its high boiling point of ~82 °C. Other solvents such 

as methanol or acetone who have much lower boiling points (65 °C and 56 °C, respectively) would 

result in increased sample loss during the high temperature incubation period. With acetonitrile 

protein precipitation of heparin-containing plasma, the protein does not form the most compact 

pellet at the bottom of the vial. Therefore, after protein precipitation, 40 µL of supernatant was 

removed (instead of the previous 45 µL) to avoid accidental disturbance of the pellet.  

Next, the TEOA concentration was varied. Figure 5.2B shows the peak area detected for 

PA remained relatively the same when the concentration of TEOA was varied from 0.1-1.0 M. 

Lastly, the concentration of labeling reagent DmPA was investigated. Figure 5.2C shows the peak 

area for PA increasing as the concentration of DmPA decreased from 25 mg/mL to 15 mg/mL.  
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Figure 5.2 The peak area of propionic acid at varying experimental conditions including the 

following: (A) temperature, (B) TEOA concentration and (C) DmPA concentration. Experimental 

triplicates (n=3) were performed. 
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With the following information, a new optimized method was determined which involved 

the use of 0.1 M TEOA, 15 mg/mL DmPA and a reaction temperature of 80 °C.  Comparing all 

the data (Figure 5.2 A-C) from the varying conditions together (Figure 5.3), we observed that 

although the newly determined method did correspond to a higher peak area for PA observed when 

compared to the old method, it however did not correspond to the highest peak area for PA overall. 

Rather the method used during the DmPA optimization experiment (using 15 mg/mL shown in 

pale orange) proved best for the labeling of PA and was subsequently used for the analysis of the 

real samples.  

 

Figure 5.3 Comparison of the peak area for propionic acid obtained from all the optimization 

experiments including: temperature, TEOA and DmPA concentration and from the newly 

determined method versus the original method. Experimental triplicates (n=3) was performed.  
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5.3.4 Final Labeling Procedure for Quantitative Analysis of Propionic Acid 

The final labeling procedure is as follows. 15 µL of plasma spiked with 1 µL of 0.2 mM 

deuterated PA (internal control) was mixed with 50 µL of acetonitrile for protein precipitation. 

The solution was vortexed for 30 seconds, spun down and incubated in the -20 °C freezer for 20 

minutes. It was then centrifuged at 14 000 rpm for 15 minutes. 40 µL of the supernatant was then 

removed into a new while to which 10 µL of 1.0 M TEOA and 25 µL of 15 mg/mL was added. 

The solution was then vortexed for another 30 seconds and incubated at 80 °C for 1 hour. After 

the labeling reaction, the solution was centrifuged at 14 000 rpm for 5 minutes to spin down any 

remaining particles (labeled proteins that precipitate out of solution). 2 µL of the solution was then 

injected into the RPLC-MS for analysis. Using Bruker’s DataAnalysis 4.3, the EICs obtained for 

DmPA-labeled PA and DmPA-labeled deuterated PA was observed to co-elute at a retention time 

of ~8.8 minutes (Figure 5.4A). The mass spectrum shows the two labeled metabolites as a peak 

pair with a mass difference of 2.01 Da between the light and heavy peaks (Figure 5.4B).  

 

Figure 5.4 (A) The extracted ion chromatograms of the co-eluting DmPA-labeled propionic acid 

(blue) and DmPA-labeled deuterated propionic acid (red) and (B) the respective mass spectrum 

for the labeled metabolites observed as a peak pair. 
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5.4 Conclusion and Future Work 

  In this work, a chemical isotope labeling method was developed for the targeted 

quantification of propionic acid in plasma. The labeling conditions, temperature and reagent 

concentrations, were optimized. A 35-minute LC-MS method was also generated for the analysis 

of the labeled sample. For my future work, I want to extend and optimize this method for the 

targeted quantification analysis of the other SCFAs found in plasma.  
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Chapter 6 Conclusions and Future Work 

6.1 Thesis Summary 

Metabolomics using reverse phase liquid chromatography mass spectrometry (RPLC-MS) 

is being merged with other disciplines such as food and nutritional sciences. In chapter 2, I report 

an analytical workflow for in-depth profiling of the milk metabolome based on chemical isotope 

labeling (CIL) and liquid chromatography mass spectrometry (LC-MS) with a focus of using 

dansylation labeling to target the amine/phenol submetabolome. An optimal sample preparation 

method including the use of methanol at a 3:1 ratio of solvent to milk for protein precipitation and 

dichloromethane for lipid removal was developed. Experimental replicates found this workflow to 

be accurate and precise and applicable to profile milk metabolomes of different species (cow, goat 

and human) and types. In the metabolomic analysis of 36 samples from different categories of cow 

milk (brands, batches and fat percentages) with experimental triplicates, a total of 7104 peak pairs 

or metabolites could be detected with an average of 4573±505 (n=108) pairs detected per LC-MS 

run. Among them, 3820 peak pairs were consistently detected in over 80% of the samples with 70 

metabolites positively identified by mass and retention time matches to the dansyl standard library 

and 2988 pairs with their masses matched to the human metabolome libraries.  

In chapter 3, CIL LC-MS was used to determine the dietary effects of cow milk 

consumption on the human urine metabolome, 1 and 2 hours after intake. Six healthy volunteers 

were analyzed individually. Dansylation labeling was used to profile the urine amine and phenol 

submetabolomes. The data from the urine study was then merged with the cow milk metabolome 

data obtained in chapter 2 in order to detect cow milk metabolites excreted in the urine. Overall 

there is no significant differences between the before and after-drinking milk urine amine and 
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phenol submetabolomes when using multivariate analysis. However, subtle differences can be 

detected in the urine metabolome with the use of Venn Diagrams and Volcano Plots. 

Chapter 4 involved the use of CIL LC-MS to profile the metabolome of a foreign milk 

sample, followed by multivariate or univariate comparison of the resultant metabolomic profile 

with that of human milk to determine the differences. Using dansylation LC-MS to profile the 

amine/phenol submetabolome, we could detect an average of 4129±297 (n=9) soy metabolites, 

3080±470 (n=9) almond metabolites, 4256±136 (n=18) cow metabolites, 4318±198 (n=9) goat 

metabolites, 4444±563 (n=9) infant formula metabolites, and 4020±375 (n=30) human 

metabolites. This high level of coverage allowed us to readily differentiate the six different types 

of samples. From the analysis of binary mixtures of human milk containing 5, 10, 25, 50 and 75% 

other type of milk, we demonstrated that this method could be used to detect the presence of as 

low as 5% adulterant in human milk. We envisage that this method could be applied to detect 

contaminant or adulterant in other types of food or drinks. 

Lastly, chapter 5 involved a targeted approach for metabolomics involving the absolute 

quantification of propionic acid in plasma samples using RPLC-MS. P-dimethylaminophenacyl 

(DmPA) bromide was used to label propionic acid and deuterated propionic acid standard spiked 

into the sample. The following conditions were found to be optimal for labeling: 80 °C reaction 

temperature, 1M concentration of TEOA and 15 mg/mL concentration of DmPA reagent. An 

RPLC-MS method was also determined for the targeted analysis of propionic acid. 

6.2 Future Work 

I hope to expand the coverage of the different milk metabolomes (chapter 2 and 4) by 

utilizing other chemical isotope labeling methods to target the other submetabolomes. For chapter 
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4 the milk adulteration project, I hope to expand the study and investigate other foreign milk 

(coconut, hazelnut, cashew, hemp and rice milk etc.). 

For the nutrimetabonomics project, I would like to carefully design a more thorough 

experiment involving more participants and holding constant as many factors as possible without 

being too invasive to the volunteers (i.e. ask for absolutely no milk or milk-product intake at least 

24 hours prior to the urine experiment). As well, I hope to also utilize different labeling chemistries 

to investigate the effects of milk consumption on other urine submetabolomes. 

Lastly for the absolute quantification project, I hope to generate a method to absolutely 

quantify other short chain fatty acids such as formic acid, acetic acid, butyric acid, valeric acid.  
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Appendix 

Chapter 2 CIL LC-MS for Milk Metabolomics: Comprehensive and Quantitative Profiling of the 

Amine/Phenol Submetabolome 

 

Appendix Figure A2.1. Heatmap of the absolute intensities (light-labeled metabolites) of the milk 

metabolites extracted by different protein precipitation solvent (acetone, acetonitrile and 

methanol) and different solvent to sample ratio (3:1 and 5:1). 
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Appendix Figure A2.2. Heatmap of the absolute intensities (light) of the milk metabolites after 

lipid removal with either dichloromethane (DCM) and methyl-tert-butyl ether (MTBE) in 

combination with the various protein precipitation solvents. 

 



102 

 

 

Appendix Figure A2.3. PCA plots of the milk metabolome data set with colored data points 

according to (A) fat contents, (B) brands and (C) batches.   
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Appendix Figure A2.4. PCA plot of all the milk samples grouped by brand along with the QC 

samples. The QC was prepared from one cow milk sample split into two aliquots: one labelled 

with 12C-dansylation and another labelled with 13C-dansylation. The two labelled aliquots were 

mixed 1:1 and analyzed after every 10 injections. Please note that, for the profiling milk samples, 

a pooled sample labeled by 13C-dansylation was used as a reference which was different from the 
13C-labeled QC sample 
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Appendix Figure A2.5. Statistical analysis of the skim and 3.25% fat content milk with the 

corresponding (A) PLS-DA plot and (B) PLS-DA model validation results.  
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Appendix Figure A2.6. Validation plots of the milk metabolome data set with colored data points 

grouped according to (A) brands and (B) batches.   
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Chapter 4 Development of a Quantitative Metabolomics Method for Detecting Potential Milk 

Adulterant in Human Milk 

Appendix Figure A4.1. Injection optimization curve for determining the optimal sample loading 

to LC-MS. 

 

 


