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Abstract

Just as colour image quantization can be viewed as simplification of three dimen-
sional colours in a two dimensional image, model simplification can be viewed as
quantization of three dimensional normal vectors on a two dimensional surface. Thus
many of the approaches used in quantization can be applied to the problem of model
simplification.

A model simplification algorithm is presented that is based on the splitting al-
gorithm from quantization literature. The algorithm works in reverse by expanding
from a coarse to a fine model. Traditionally, curvature is defined in an infinitely
small local area. This algorithm measures orientation change in larger patches with
techniques inspired by definitions of curvature from differential geometry. With these
measures, the algorithm determines which portion of the model to partition next,
and how to partition it. The algorithm can accept non-manifold input models and is
capable of simplifying topology. It produces good quality simplifications and is faster

than most other simplification algorithms.
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Chapter 1

Introduction

Many of todays computer graphics applications, such as virtual reality environments
and data visualization, require the ability to display very large and complex models
and/or datasets. Both types of environments require the data to be rendered as
quickly as possible. While hardware is getting faster the size and complexity of
models and data sets continue to grow and surpass the hardware’s ability to render
them in the required amount of time. No matter how fast the hardware is there will
always be a model or dataset that it can not display fast enough.

One way to display these large models and datasets is to reduce their size and
complexity, but they have to be reduced in such a way as to resemble the original
as much as possible. This is where model simplification algorithms come in. Model
simplification algorithms are able to reduce the model’s size and complexity such that
the hardware is able to display the model in the required amount of time, but still

have the simplified model resemble the original.

1.1 Background

Model simplification is the process of reducing the number of polygons in a model
while preserving the shape and/or appearance of the original. There are three main
approaches to model simplification; each approach makes a tradeoff between simpli-

fication speed and the quality of the simplification.



1.1.1 Vertex Clustering

The fastest approach is vertex clustering but it produces the poorest simplifications.
Vertex clustering algorithms simplify by subdividing the model’s volume into clusters
and then selecting a representative vertex from each cluster. The simplified model is
formed by retriangulating the representative vertices. The size of the clusters dictate

the size of the simplified model; the larger the clusters the smaller the model.

1.1.2 Decimation

Decimation techniques tend to produce better simplifications than vertex clustering
but they are slower. These algorithms locate roughly planar regions on the surface of
a model and retriangulate them with fewer polygons. The amount of simplification
is controlled by setting a coplanarity threshold, which dictates how flat the regicn
has to be before the region can be approximated by fewer polygons more closely

approximating a plane.

1.1.3 Vertex Merge & Edge Collapse

Vertex merge and edge collapse approaches produce the best simplifications but they
are the slowest of all the approaches. These algorithms simplify by determining
the best pair of vertices to merge, they then merge them. compute a representative
verteX, and repeat the process until the required model size is reached. Edge collapse
algorithms are vertex merge algorithms with the constraint that only vertices that

are connected by an edge are merged.

1.2 Motivation

As stated above, model simplification is the process of reducing the number of poly-
gons in a model while preserving the shape and/or appearance of the original. Quan-
tization is the process of taking a set of values and creating a smaller set of values to
represent the larger set. These two processes are similar since both find a smaller set
of elements to represent a larger set as optimally as possible.

By viewing simplification as a kind of quantization, it is possible to form a new

taxonomy of existing model simplification algorithms. This quantization-based tax-
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onomy also suggests possible avenues for the creation of new model simplification
algorithms.

Most simplification algorithms trade speed for quality. Algorithms that produce
good quality simplifications tend to be very slow and algorithms that produce low
quality simplifications tend to be fast. The problem is that the good quality simpli-
fication algorithms are very slow with large input models because their complexity is
nlogn. The fast algorithms have a linear complexity but produce very poor simpli-

fications. Thus, there is a need for an algorithm that is:

l. fast,

[SV]
.

the simplification speed should be linear with model size, and

3. produces reasonable quality simplifications.

1.3 Objectives

‘The goal of this research was to develop a simplification algorithm that is fast and
produces reasonable quality simplifications. The algorithm had to fulfill the following

criteria:

L. The complexity of the algorithm had to be linear or near linear so that it is
able to simplify very large input models in a reasonable amount of time. For
example, to simplify a model consisting of a million polygons should take a

couple of minutes or less.

o

The algorithm will be used to do drastic simplification of large input models:
on average the output model size will be one or two percent of the original size.
Thus, there was an implicit suggestion that the simplification should be done

in reverse; from coarse to fine.

3. Edges that are visually significant needed to be better preserved than in simpli-
fications created by conventional vertex clustering algorithms, especially large

features.

4. Disjoint components in a model should not be merged.

3



5. The computations in the algorithm should be simple and cheap since the em-

phasis of the algorithm is on simplification speed.

The solution was gleaned from quantization research. The result is a simplification
algorithm that uses vertex clustering techniques to track vertex connectivity and uses
splitting to simplify the model.

The following two sections, 1.3.1 and 1.3.2, briefly describe the algorithm and how

its performance is evaluated.

1.3.1 A Quick Overview of R-Simp

The algorithm tracks vertex connectivity (edges) using clustering techniques similar
to the ones described in Rossignac and Borrel[Ross93]. but unlike [Ross93] it does
not use this technique to simplify the model. Instead of uniformly subdividing the
model’s volume and clustering the vertices in each subdivision, the algorithm varies
the size, orientation, and location of clusters based on the curvature of the surface.
The algorithm begins with the entire model contained within a single cluster. Clusters
are selected and split on the basis of the amount of curvature of the surface in the
cluster. This process iterates until the desired number of clusters (vertices) is reached.
Since the algorithm begins with the coarsest simplification and gradually increases
its complexity. it simplifies in reverse; most other simplification algorithms start with

a fine model and go to a coarse approximation.

1.3.2 Evaluation of Simplification Quality

The evaluation of the simplification quality was done qualitatively and quantitatively.
To provide reference points for comparison the results from two existing algorithms
were compared to R-Simp’s simplifications, a vertex clustering algorithm similar to
one proposed by [Ross93] and QSlim [Garl97]. The vertex clustering algorithm is
extremely fast but produces very poor simplifications. QSlim is a vertex merge al-
gorithm that is considerably slower but produces good simplifications. In terms of
quality and speed R-Simp is positioned between these two algorithms, and thus there

are reference points for comparison on either side.



Quantitatively, the algorithm was judged on its speed and geometrical quality.
The geometrical quality was assessed by Metro [Cign97], a tool that geometrically
compares two polygonal models and reports the maximum and mean geometrical
error (difference). Qualitatively, the simplified models of all three algorithms were
examined visually and informally to determine how well major features such as creases

and surface protrusions were preserved.

1.4 Contributions

This research makes several important contributions:

¢ Two measures, called curvedness measures. were developed to approximate cur-
vature at large scales. Most curvature measures from differential geometry work
locally around a point on a surface. These measures are sensitive to the orien-

tation change in large patches.

o The algorithm simplifies in reverse: from coarse to fine. This enables the algo-

rithm to find coarse simplifications quickly.

¢ The simplification process is linear for a fixed output model size. The algo-
rithm’s complexity is n; log n,, where n; is the input model size and n, is the
output model size; most vertex merge and edge collapse algorithms have a com-

plexity of n;log n;.

o The algorithm is based on splitting from quantization literature. [t is believed

to be the first algorithm to use this quantization approach.

1.5 What Follows

In chapter 2, a brief introduction to quantization is presented and a quantization al-
gorithm taxonomy is described. Chapter 3 presents the previous work in the area of
model simplification. Several algorithms from each class of the quantization taxonomy
are presented and their strengths and weaknesses analyzed. The chapter also presents
several algorithms that preserve attributes on the surface of a model during simplifi-

cation, several algorithms that create level of detail hierarchies, and several adaptive



display algorithms. In chapter 4 a brief overview of curvature is given. Chapter 5
presents R-Simp, the simplification algorithm, and chapter 6 discusses the results
obtained from comparing R-Simp to QSlim[Garl97] and to a simple vertex clustering

algorithm. Finally, chapter 7 presents conclusions and possible future work.



Chapter 2

Quantization

Quantization is the process of selecting representative values for ranges of input val-
ues. The challenge is determining the representative values such that they optimally
represent the entire range of input values.

The work in this thesis relies specifically on vector quantization. This chapter
reviews the basics of vector quantization and several vector quantization algorithms

are presented.

2.1 Vector Quantization

Vector quantization is the process of selecting representative vectors from ¢ ¢ R™ for
ranges of input vectors from § C R™. A quantizer is a function Q : § — C where
C={ueR"|1<:i< N} Cis called the codebook. The challenge is finding C
such that it optimally represents S. The codebook C partitions the set S since each
v; represents multiple vectors from S. A single partition of S is called a cell and
v; is called a centroid. The difference between a vector v; and an input vector u is
called the distortion. When the distortion for all © € S is minimal the codebook is
considered optimal.

In [Gers92], Gersho and Gray present several quantization algorithms. Below, five

of the algorithms are reviewed.

2.1.1 Product Codes

Product code algorithms can be viewed as multilevel hash tables. They use scalar

~1



quantizers that are applied to each element of the input vector; i.e:

Q(Ui) = {Q(vil )7 q(vfz)v A Q(Uin)}

where g(u) is a scalar quantizer and the centroid is usually the weighted mean of
the elements in a cell. Unlike the other algorithms, those using product codes create
codebooks with cells of uniform size. Most other algorithms dynamically vary the size
of the cells to reduce distortion. This results in codebooks that are very suboptimal,
but because the algorithms do not have to dynamically vary cell size they are quite

fast.

2.1.2 Splitting

Splitting algorithms start with the codebook containing a single cell. The cell with
the most distortion is located and split. The splitting continues until the required
distortion or codebook size is reached. As in product codes the centroid is usually the

weighted mean of the elements in a cell.

2.1.3 Pruning

Pruning algorithms work by removing unnecessary entries from the codebook or by
adding elements to the codebook so that the distortion remains below a given thresh-
old. When the algorithm works by removing unnecessary entries from the codebook,
the codebook initially contains all the vectors in the input set S. Then, the cells that
increase the distortion least are removed. The number of entries that are removed
depends on the required size of the codebook or the distortion threshold. Alterna-
tively. the codebook is initially empty. Each input vector is considered in succession,
and if representing a vector v with the current codebook results in distortion greater
than a given threshold, the vector v is added to the codebook. Pruning algorithms
do not need to compute the centroid because the elements in the codebooks after the

quantization process are the centroids.

2.1.4 Pairwise Nearest Neighbour

Pairwise nearest neighbour algorithms work in reverse of splitting by merging pairs

of cells. These algorithms also set the initial codebook to contain all the vectors in
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S. All possible cell pairs are considered and the pair that would introduce the least
distortion if merged is located. This pair is then merged to become a single cell. A
new centroid is computed for the new cell, which is usually the weighted mean of the
elements in the cell. Merging continues until the desired codebook size or distortion

tolerance is reached.

2.1.5 LK-Means

The A'-means algorithm creates the most optimal codebooks, but due to its complex-
ity it is to slow to be used. Also, there is a one to one mapping between the above
quantization techniques and simplification algorithms; no such mapping is known for
the A'-means algorithm. This algorithm iteratively improves the codebook and the
centroids. During an iteration a new centroid is computed for each cell and then the
elements in the codebook are requantized, based on the new centroids, to minimize
the distortion. This process continues until the centroid values converge. The A'-
means algorithm is the slowest of all the algorithms presented. Other algorithms are

often used to provide a good initial guess as input to A-means.

2.2 Quantization & Model Simplification

Simplification relates to quantization as follows: A centroid equates to a primitive in
the simplified model. For most vertex merge algorithms the centroid is the resulting
vertex from the merging of two vertices. For vertex clustering algorithms the centroid
is the representative vertex in a cluster. A cell equates to a collection of faces or
vertices. In this thesis a cell equates to a set of faces, which is called a patch, in the
original model.

There are a few ways in which model simplification differs from vector quanti-
zation. For example, on a three dimensional bunny model, a face from the ear and
tail would be a poor cell. In a colour image of the same bunny, two pixels of sim-
ilar colour, even if located on the ear and tail, make an acceptable cell. Thus, in
model simplification, two disjoint faces do not make up an ideal cell, while in image

quantization a cell with two widely separated pixels is perfectly acceptable.



Chapter 3

Previous Work

Much research has been done in model simplification. Model simplification deals with
the problem of polygonal mesh simplification, with preserving colour and texture on
model surfaces, and with creating level of detail hierarchies. This chapter will present
work done so far in these areas with a strong focus on polygonal mesh simplification.

Model simplification can be viewed as quantization of three dimensional normal
vectors on a two dimensional surface. Casting model simplification as quantization is
convenient because there is a strong correlation between the quantization technique
and the quality of simplification. Thus, quantization provides a good taxonomy for

existing simplification algorithms.

3.1 DPolygonal Mesh Simplification
3.1.1 Background

Polygonal mesh simplification is the process of reducing the complexity of a polygonal
mesh by reducing the number of vertices, and hence the number of faces that make up
the mesh. Any simple polygon may be used to define a surface; most simplification
algorithms use triangles. This thesis assumes, without loss of generality, that all
surfaces are composed of triangles because any simple polygon can be triangulated
in linear time [Chaz9l]. There are two main goals of mesh simplification, one, to
produce a simplified mesh that best approximates the original, and two, to do this as
quickly as possible. Unfortunately, these are opposing goals.

The problem of mesh simplification is cast as a vector quantization problem be-

cause quantization provides a good taxonomy for classifying existing algorithms based
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on the algorithm’s simplification quality. Most simplification algorithms use one of
three quantization techniques: product codes, pruning, or pairwise nearest neighbour.
When applied to model simplification, Product code based algorithms are fast but
tend to produce low quality simplifications. Model simplification algorithms that
are based on pairwise nearest neighbour tend to be slow but produce better quality
simplifications. Model simplification algorithms that use pruning are in between the

other two techniques in terms of simplification speed and quality.

3.1.2 Algorithm Comparison Criteria

Several criteria are used to compare model simplification algorithms. The main two
criteria are the quality of the simplification and the simplification speed. Simplifi-
cation speed refers to the time it takes to process an input model and produce the
simplified output model.

Quality refers to how similar the simplified model is to the original. Both quanti-
tative and qualitative approaches are used to determine how well a simplified model
approximates the original. Most quantitative approaches measure the distance be-
tween the original and the simplified surface; the smaller the distance the better the
approximation. There are many different measures that can be used to compute this
distance. To determine qualitatively how good the simplification is a human visually
examines the simplified model. Currently computers are not able to qualitatively
measure quality; this is an open research problem. An unbiased qualitative evalua-
tion of several simplification algorithms would require a user study. We are not aware
of any such study.

Preservation and/or the simplification of a model’s topology are also important
criteria to consider when comparing simplification algorithms. Intuitively, the topol-
ogy of a model is the number of holes it has. In some applications it is desirable to
close up small insignificant holes. In other applications, like medical imaging, it is
important to maintain the topology and preserve all holes no matter how small.

The ability of an algorithm to accept non-manifold models as input and the ability
of an algorithm to preserve the manifoldness of a surface are two additional character-
istics that need to be taken into account when comparing simplification algorithms.

A surface is considered to be a two dimensional manifold if the local topology is ev-
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erywhere homeomorphic to a disc [Lueb99, Weis98]. A homeomorphism is a function
that transforms a geometric figure into another geometric figure by an elastic defor-
mation'. Intuitively, a manifold is a surface that cuts the space into two parts, such
as a blanket. In a manifold triangular mesh every edge is shared by exactly two tri-
angles and every triangle has exactly three neighbouring triangles. If the triangular
mesh has a border then it is considered manifold if everywhere on the border the
local topology is is homeomorphic to a half-disc; some edges will only belong to one
triangle [Lueb99]. A border, or a boundary edge as it is sometimes referred to, is an
edge that is only shared by one polygon. A surface that does not meet the above
criteria for manifoldness is said to be non-manifold. It is advantageous if an algo-
rithm can accept non-manifold surfaces as input because many models, when initially
created, are non-manifold. Also, if the surface is manifold then the algorithm should
preserve this characteristic because when a manifold surface becomes non-manifold
severe visual distortions are usually introduced and some algorithms require manifold
surfaces.

The final two criteria are whether the simplification algorithm can propagate sur-
face attributes, like colour, texture, and vertex normals, from the surface of the
original model to the new surface and if border edges are preserved. This is the basic
set of criteria that is used to compare the model simplification algorithms presented

in this chapter.

3.1.3 Summary of Simplification Algorithms

Table 3.1 summaries the algorithms reviewed in this chapter using the criteria pre-
sented in section 3.1.2. All the speed and quality comparisons presented in Table 3.1
are relative to the other algorithms listed in the table. Some algorithms are not rated
in terms of speed, quality, or both because there was not enough data to rank them.
To properly rank these algorithm their implementations need to be obtained and run
on a single machine using the same model. This was not feasible in the scope of this
thesis, but some rankings were obtained from various papers [Kalv96. Lind98b]. The
algorithm by Rossignac and Borrel [Ross93] is considered to be the fastest and pro-

duces the worst quality simplifications of all these algorithms. Thus, the algorithms
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[| Class ]I Alg. | Spd. | Qu. TS. [ T.O. | M.I. [ M.O. | Attr. [ Bdr. |
Product [Ross93] | > [Low97] < [Low97] v v
Codes [Low97] | < [Ross93] | > [Ross93] | v
[He95] < [Ross93] | > [Ross93] | / v
Pruning [Kalv96] v v v
[Hink93] v v v
[Turk92] v v
[Schrg2] v v v |V
Pairwise [(Hopp93] | < [Hopp96] | > [Lind98b] v v
Nearest (Hopp96] | < [Lind98b] | > [Lind98b] v v4 v
Neighbour || [Garl97] | < [Ross93] | < [Lind98b] | / v x v v
[Lind98b] | < [Garl97] | > [Garl97] v v v v
[Cohed7] | < [Garl97] v v v v4
[Ronf96] ~ v
[Algo96] v v
Legend
v This characteristic is preserved.
x The algorithm can preserve or not preserve the characteristic. It is the user’s
decision.
= This characteristic is mostly preserved.
>[x]  The algorithm is faster or produces better simplifications than algorithm [x].
<[x]  The algorithm is slower or produces worse simplifications than algorithm [x].
Class The class the algorithm belongs to in the quantization taxonomy.
Alg.  The algorithm being compared.
Spd.  The speed of the algorithm relative to the other algorithms.
Qu.  The simplification quality of the algorithm relative to the other algorithms.
T.S. Can the algorithm simplify the model’s topology.
T.O. Can the algorithm preserve the model’s topology.
M.I.  Can the algorithm accept a non-manifold model as input.
M.O. Can the algorithm preserve the model’s manifoldness.
Attr.  Can the algorithm preserve the attributes, such as colour and texture, on
the model’s surface and transfer them to the simplified model.
Bdr. Does the algorithm preserve the borders explicitly, if they exist.

Table 3.1: Summary of existing model simplification algorithms.

that are not ranked are implicitly slower than [Ross93] and produce better quality

simplifications than [Ross93].

3.1.4 Product Code Based Algorithms

Vertex clustering algorithms use product codes as the basis for simplification. These

algorithms

simplify by quantizing the vertices into codebooks whose cells are of pre-

determined size. The centroid is the representative vertex and it is usually computed
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as the mean of the vertices in a cell. A representative vertex is a vertex on the sim-
plified model and represents a set of vertices from the original. Once the centroids
are computed they are retriangulated to form the simplified model. A cell (cluster)
is a collection of vertices from the original model. The quantizer is a simple function
that maps the vertex into a cell by quantizing the vertex’s coordinates independently;
thus, Q(v) = {q(z).q(y),q(z)}. These algorithms are fast and produce low quality
simplifications, because Q(v) is usually simple distance function that largely ignores

the surface’s geometry and topology.

Rossignac and Borrel

Rossignac and Borrel [Ross93] developed one of the first vertex clustering algorithms.
This algorithm is fast because it only has to do a linear pass through the vertices,
but produces low quality simplifications. The model is read into memory and a list
of vertices and a list of faces are created. The codebook is a three dimensional grid
that uniformly subdivides the volume of the model's bounding box. The number of
cells depends, proportionately. on the size of the simplified model; i.e. the larger the
simplified model the more cells there are in the codebook. A pass is made through
the vertices and each vertex is quantized into the cell at that location. Afterwards the
centroid is computed for each cell and the model is retriangulated. Faces that end up
having one or two vertices are usually thrown out. The centroid can be computed in
several ways: by finding the mean of the vertices in a cell, by computing a weighted
mean of the vertices in a cell, or by taking the vertex of greatest weight. The weight
of a vertex represents its importance and may be computed in several ways; e.g. the
surface area of the surrounding faces or the largest angle between two adjacent edges.

This algorithm can accept non-manifold vertices as input, but because it mostly
ignores the geometry and topology during simplification it may create non-manifold
surfaces which can add large distortions to the simplified model. This algorithin is
able to simplify a model’s topology, which in certain applications is desirable. It is
extremely fast but produces poor quality simplifications. This algorithm does not
take into account any additional attributes on the surface and it does not explicitly

preserve border edges.
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Low and Tan

Low and Tan [Low97] improved on [Ross93] by having vertex clusters form around
important vertices rather than around locations in the model’s bounding volume.
Unlike [Ross93], the algorithm does not uniformly subdivide the model's volume.
Initially the vertices of the model are weighted and sorted. The weighting is done
using two criteria: the size of faces adjacent to the vertex and the probability of
the vertex lying on a silhouette. The face size criterion is determined by finding the
longest edge adjacent to the vertex. The probability of a vertex being on a model’s
sithouette is computed by taking the cos (%), where § is the maximum angle, between
any two edges adjacent to the vertex. Once all the vertices have been weighted they
are sorted. The vertex with the largest weight is removed from the list; if there is a cell
at that location then the vertex is added to that cell. If multiple cells are intersecting
at that point. then the vertex is added to the cell whose centroid is closest to the
vertex. If no cell exists at that location, then a new cell is created and the vertex
becomes the centroid of the cell. The process iterates until the list is empty. The
size of the output model depends on the cell size; the larger the cell the smaller the
output model.

This algorithm has several advantages over [Ross93]. First feature edges are better
preserved because the cells are centred on vertices that make up the feature edges.
A feature edge is a ridge or a crease in a surface that contributes a significant visual
detail. Second, because the weighting of vertices is always the same, the difference
between consecutive levels of detail is smaller since cells will always be positioned at
the most important vertices. This algorithm is slower than [Ross93] because it needs
to initially weight and sort the vertices, which is an n log n operation. but it produces
better simplifications than [Ross93|. In terms of the other comparison criteria, it is

equivalent to [Ross93].

He et al.

He et al. [He95] proposed a voxel based simplification algorithm. This algorithm
starts off by subdividing the bounding volume of the object into a regular three

dimensional grid. Then at each grid point, a low-pass filter is used to compute the



centroid. Once all the grid points have been processed a mesh fitting technique,
marching cubes [Lore87], is employed to produce a simplified mesh. The density of
the grid and the size of the low-pass filter dictate the size of the simplified model.
Since marching cubes is known to create models with very many polygons, models
with a higher number of faces than the input may result. To avoid creating too
many triangles each voxel is limited to five triangles. To reduce distortion due to
the simplification higher detailed translucent meshes are then added on top of the
simplified surface.

An advantage of this algorithm is that it is not only applicable to polygonal models
but also to spline models, volume datasets, objects derived from range scanners, and
algebraic mathematical functions such as fractals. This algorithm is slower than
[Ross93] but produces better results. [ts abilities with respect to the other comparison

criteria are equivalent to [Ross93].

3.1.5 Pruning Based Algorithms

The next class of simplification algorithms use the pruning quantization technique.
When applied to polygonal mesh simplification. pruning techniques generally pro-
duce better codebooks than product codes. and therefore the algorithms that employ
them produce better simplifications. Unfortunately the improved quality has a price;
because the pruning technique is more sophisticated than product codes. it is more
expensive to compute, and therefore the simplifications take longer to produce than
simpler product codes. These simplification algorithms work by locating relatively
planar regions in a model, approximating the relatively planar regions with a plane,
and then retriangulating the area with fewer polygons. Some of these algorithms have

trouble simplifying models that contain many sharp edges and few planar areas.

Superfaces

The Superfaces [Kalv96] algorithm simplifies a model by growing roughly planar
patches on the surface of a model until the entire surface is covered. Once the whole
surface is covered the patches are retriangulated with fewer polygons. The algorithm
performs the simplification in three stages. In the first stage the superfaces are created

or the codebook is populated; initially the codebook is empty. Faces are added to
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the codebook in the following way. A face is added to an existing cell if the face is,
1), adjacent to the patch in the cell, and 2), the face and the patch are relatively
coplanar; the patches in the resulting cells are called superfaces. If the face does not
meet the above criteria then it starts a new cell. The process stops when all the faces
in the original model have been added to the codebook.

Several criteria are used to determine relative coplanarity. The first criterion is
the distance of the superface to the original surface. This distance is determined by
computing the maximum distance between the centroid and the vertices of the faces
in the cell. The centroid is the average plane of all the faces in a cell. If adding the
face to the cell causes the distance threshold to be exceeded then the face is not added.
Another criterion is the face-axis rule that states that the angle between the normal
of the centroid and the normal of the face can not exceed a certain threshold angle.
The last criterion is the no fold-over rule. To be able to retriangulate the superface
no faces are allowed to fold onto the superface (in general this is an expensive check
and so it is not used when a superface is initially constructed). The terms fold or
fold-over describe the change in orientation of two planes; if the angle between planes
p1 and p, was greater than 90 degrees and then the angle became less then 90 degrees
then it is said that p, or p; has folded onto p, or p,. Once the superface is completed
it is checked for fold-over faces. If a fold-over face is found the patch is regrown
with the third criterion enforced. An optional criterion that can be used is called the
Gerrymandering check that ensures that the superfaces do not get too thin or too
long.

In the second stage the number of edges at the superface parameter is reduced.
This is accomplished by creating superedges from the boundary edges of the superface.
This procedure is similar to the one used to create the superfaces except it works on
edges. A superedge is a single edge that represents many smaller edges. The criterion
used to determine if a superedge can be created for a set of edges is if all the vertices
in the original boundary are within a certain distance of the superedge.

In the third stage the superfaces are retriangulated. The final codebook is a set
of planar patches that completely cover the original surface.

An advantage of this algorithm is that it is on average linear in the number of

faces in the model. Although the average performance of the algorithm is linear,
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the processing that needs to be done for each face gives it nlogn complexity in
the worst case. This algorithm is significantly slower than [Ross93] but produces
significantly better simplifications. It can not accept non-manifold surfaces as input
but it preserves both the topology and the manifoldness of a model. Also, it does
not handle additional surface attributes, such as colour and texture, and it does not

explicitly preserve boundary edges.

Hinker and Hansen

An algorithm similar to [Kalv96] was proposed by Hinker and Hansen [Hink93]. The
algorithm constructs near-coplanar sets of faces and then retriangulates them with
fewer polygons. As in [Kalv96] the codebook is initially empty. A face, F,, with
normal :V,, is selected as a starting element for a cell C,. Faces are added to C, as
long as they are adjacent to the patch in the cell and do not cause the mear normal of
the cell to exceed a user specified angular threshold between it and V,. The process
iterates until all the faces have been placed into the codebook.

Once all the faces have been added, the patch in each cell is examined to determine
if it has any holes (see Figure 3.1). If a hole is detected the faces that make up
the patch are adjusted so that the hole remains undisturbed. The patch is then

retriangulated.

No Hole Hole

Figure 3.1: A patch with and without a hole.

This algorithm is faster than [Kalv96] because the decision metric used to decide
if a face is to be added to a cell is simpler compared to the one used in [Kalv96]. This
algorithm works well on models that contain many flat surfaces, but it does not work
well on surfaces that have a great deal of high frequency curvature such as terrains
of mountain ranges. This algorithm is easily parallelizable because once a patch has

been located no external information to the patch is required to perform the other two
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stages. Its quality is comparable to that of [Kalv96]. It does not simplify a model’s
topology and explicitly preserves a model’s borders. It can not accept non-manifold
surfaces, but it preserves the manifoldness of a surface during simplification. This

algorithm does not preserve additional surface attributes.

Turk

Turk [Turk92] developed an algorithm that simplifies the surface by retiling it with
fewer polygons. The algorithm randomly sprinkles a new set of vertices onto the
original surface. The original vertices are then deleted, if possible, and the local area
around the deleted vertices is retriangulated. The simplified model consists of the
new vertices plus the original vertices that could not be deleted.

To position a new vertex an original face is selected using a random, area-weighted,
and curvature-weighted choice, then the new vertex is randomly positioned in the
face. The curvature measure is the smallest angle between the vertex normal and
an adjacent edge. The area is the area of a face. A new vertex is more likely to be
positioned in faces that are bigger and/or have high curvature at their vertices: it is
possible that a face may receive several new vertices. A global relaxation technique
is then applied to the new vertices. Each vertex repels the other vertices in its local
area forcing the vertices to be evenly distributed on the surface. To speed up the
process the repulsion forces drop of linearly with respect to distance and hecome zero
at a fixed radius. The repulsion force in areas of high curvature is scaled by the
inverse amount of curvature so that the vertices repel less and therefore areas of high
curvature will contain more vertices. Next, a mutual tessellation is performed on the
surface. Mutual tessellation involves the retriangulation of faces to include the new
vertices (see Figure 3.2).

Lastly, the original vertices are removed. This involves taking an original vertex
R and all vertices that share a triangle with R, call this set T, and projecting them
onto a plane that is tangent to the surface at R (see Figure 3.3).

Several checks are performed to ensure that if R is removed the new surface will
remain valid. The first check ensures that the resulting surface around R will not
contain any folds because otherwise unwanted artifacts are created. The second check,

ensures that two surfaces will not be joined (preserving manifoldness). For example,
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Figure 3.2: Mutual Tessellation

Figure 3.3: Removal of original vertices. Key: Vertex @ € T and Vertex o € R.

removing the top vertex of a tetrahedron will collapse it. joining two surfaces. If
these two checks succeed then R is removed and the vertices in T are retriangulated
with the restriction that no new edges are to be created. When all possible original
vertices are removed the result is a simplified model. I[nitially the codebook starts off
with just the new vertices. In the original vertex removal stage any vertex that can
not be removed is added to the codebook. This algorithm can also create multiple
levels of detail and interpolate between them, an aspect that is discussed later.

This algorithm performs well on surfaces that have smooth curves, and which
are mostly continuous. According to Turk, this algorithm does not work as well on
surfaces that contain many edges and sharp corners, e.g. man made objects. One
aspect of model simplification that [Turk92] does not handle is additional vertex
information such as colour and texture. Since [Turk92] introduces a complete new set
of vertices it becomes difficult to propagate additional vertex information from the
original to the simplified model. No simplification speed results were presented and

therefore it is difficult to say how fast this algorithm is, but its quality is comparable
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to [Kalv96]. This algorithm requires that the input models be manifold and it also

preserves topology. The borders are not explicitly preserved.

Schroeder et al.

Schroeder et al. [Schr92] developed an algorithm that simplifies the model by pruning
away the “least important” vertices. Initially the codebook is initialized with the
vertices from the original model. In the first pass, the algorithm classifies all the
vertices based on their local geometry and topology. A vertex is classified into one
of five classes: A vertex is classified as simple if it is manifold and not a boundary
edge, and complex if it is non-manifold. If a vertex is part of a boundary then it is
considered a boundary edge. Furthermore, if a simple vertex has two adjacent faces
that have a dihedral angle smaller than some specified threshold angle then the vertex
is further classified as part of an interior edge. If there are three adjacent faces that
have a dihedral angle smaller than some specified threshold angle then the vertex is
classified as a corner.

[n the second stage, the algorithm removes vertices from the original model by
traversing a list of classified vertices: the list is traversed until all possible vertices are
removed. A vertex is removed using the following criteria. If the vertex is a simple
vertex and the distance from the vertex to a mean plane is below some threshold then
the vertex is deleted and the area of all adjacent faces is retriangulated. The mean
plane is constructed using the vertex’s adjacent face normals weighted by the face
area and the mean of all the face centres. If the vertex is a boundary vertex or an
edge vertex, then the threshold is compared to the distance from the vertex to the
the new edge that would be created if this vertex were to be removed. Usually, corner
vertices are not eliminated, but if the corner is not a significant visual detail then
the distance to plane criteria is used to decide whether to remove it. The decision
to remove corner vertices is left up to the user. For each vertex removed, additional
checks are made to ensure that topology is preserved. The process stops when either
no more vertices can be removed, according to the given distance threshold, or the
number of vertices for the simplified model has been attained.

The simplification quality of this algorithm is comparable to that of [Turk92], but

it is unclear how fast it is relative to the other algorithms in its class, because no speed
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data was published. This algorithm can accept non-manifold models as input and
it preserves topology. Since the new model consists of vertices from the original, all
the vertex information is preserved. It is not evident that additional face information
is preserved or can be preserved. This algorithm also does not explicitly preserve

borders.

3.1.6 Pairwise Nearest Neighbour Based Algorithms

The last class of polygonal mesh simplification algorithms use the Pairwise nearest
neighbour approach of quantization.

Simplification algorithms based on Pairwise nearest neighbour are similar to al-
gorithms based on pruning but are more complex and produce the highest quality
simplifications. In terms of model simplification, pairwise nearest neighbour involves
merging vertices in a polygonal mesh. These algorithms start with the codebook
consisting of all vertices in the input model. The pair that would introduce the least
distortion. if merged, is located. This pair is then merged. This process continues
until the required model size or distortion is reached. A simple distortion measure is
the distance between the vertices, but it is not often used because it does not take
into account such things as the curvature of the surface. These algorithms usually
have a complexity of n logn.

Many algorithms add an additional constraint that only vertices that are con-
nected by an edge are merged. This constraint is useful because it helps to preserve
feature edges by guiding the simplification along these edges rather then across them.
The constraint also helps to preserve topology.

The algorithms discussed below all simplify in the same way. The primary differ-
ences between them are how they compute the distortion between cells (the cost to
merge the cells) and how they determine the centroid. In all these algorithms a cen-
troid is the representative vertex. A representative vertex is a vertex in the simplified

model and represents several vertices from the original.

Hoppe et al.

One of the first algorithms that used this simplification technique was developed by

Hoppe et al. [Hopp93]. This algorithm minimizes an energy function to compute the
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distortion and the centroid. These two computations are unified in a single equation
because they are interdependent and it is simpler to optimize both of them at the
same time. The algorithm constrains the vertex merges to vertices that are connected
by an edge and uses two additional transformations to simplify the model: edge split
and edge swap. The algorithm randomly selects an edge from a set R of possible
edges to be collapsed, split, or swapped.

The energy function used to compute the distortion and the centroid takes into

account several characteristics of the surface and consists of three parts:

E(RVV) = Eiine(K V) + Erep(K) + Eppring (K, V) (3.1)

In equation 3.1 A" represents the topology, the connectivity of the surface, and
V' represents the geometry, the location of the vertices. Eaist (K, V) is equal to the
sum of squared distances from the vertices of the new surface to the original surface.
&rep(R) is a penalty function that penalizes meshes with large number of vertices.
Since the algorithm allows cells to be added and removed. there needs to be a term
that forces the cell count to decrease. otherwise cells would be added indefinitely. It is
not enough to minimize 4, (A, V) and €., (A’) because a minimum might not exist,
so a third term, &, ring (A, V'), is added to the equation to help guide the simplification
and to reach a desired local minimum. The term Espring(A. V') is a spring energy term
that places a spring of rest length zero on every edge.

The algorithm randomly selects an edge from the set R and applies one of the
three transformations. An edge collapse is applied first, then an edge swap, and finally
an edge split. If any one of them reduces the energy function the transformation is
performed and the edges affected by the transformation are added to the set R. If
none of the transformations lower the energy function the edge is removed from the set
and a new edge is selected. An edge collapse and an edge swap change the topology
of the surface, hence checks are performed on the result of a transformation to ensure
that the simplified surface still remains topologically equivalent to the original.

The location of the centroid is computed by minimizing the £, (A, V) and
Espring( K, V') terms of the energy function.

The simplifications produced by [Hopp93] are better than the simplifications pro-
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duced by the algorithms already presented, but it is one of the slowest algorithms. The
algorithm preserves the model’s topology but no care is taken to preserve additional
surface information. This algorithm requires that the input model be manifold and
it preserves the manifoldness of the surface. In the algorithm described in the next
section the same author(s) simplify and extend this algorithm to provide the ability

to create levels of detail hierarchies and preserve additional vertex information.

Progressive Meshes

The approach taken by Hoppe in [Hopp96] is similar to [Hopp93] but has several
important differences. The algorithm still uses and minimizes an energy function to
compute the distortion, but it contains several new terms to account for additional
values at the vertices. Instead of random selection a priority queue is used to order
edge transformations, which has the benefit that all edges that cause the least amount
of distortion are collapsed first. The number of edge transformations has also been
reduce to one: edge collapse. Simplification quality is not appreciably changed. The
computation of the distortion becomes simpler because only one transformation needs

to be considered. The new energy function changes slightly from equation 3.1 to:
E(M) = Epige(M) + Eapring(M) + Escatar (M) + Egise( M) (3.2)

The first two terms. Eqise( M) and E,pring (M), are identical to those in equation 3.1.
The last two terms are added to preserve vertex attributes associated with mesh M.

This algorithm produces comparable quality to [Hopp93] and is faster than [Hopp93],
but it is still considerably slower than many other simplification algorithms. This al-
gorithm also tries to preserve attributes associated with each vertex and it tries to
correct any discontinuities that may happen as the surface is simplified. This algo-
rithm preserves topology and requires the input model to be a manifold surface. It

does not explicitly preserve boundary edges.

QSlim

The algorithm developed by Garland and Heckbert [Garl97] is considerably faster
than those described in [Hopp96, Hopp93]. The algorithm merges vertices that are

connected by an edge or are within a certain threshold distance. The goal of [Garl97]
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is to find and merge a pair of cells such that the resulting centroid (representative
vertex) will be as close to the original surface as possible. Two cells will nct be merged
if the merge will cause a face to fold over onto another face.

Distortion in [Garl97] is a distance measure that measures the sum of squared
distances from a vertex v to a set of planes (similar to [Ronf96]). Each vertex v in the
original model has an associated set of planes (polygons); these planes are adjacent
to v and the sum of squared distances between these planes and v is zero. When two
vertices are merged their associated plane sets are also combined.

Equation 3.3 computes the sum of the squared distances from v to its associated
set of planes.

A) = Aue v 0dN) = T (pTv)? (3.3)

p€planes(v)

where p = {[a, b. ¢, d]7 represents the plane defined by the equation ar +by+c=+d = 0.

The above equation can be rewritten as follows:

Alw) = Y (WTp)pTe) (3.4)
pEplanes(v)
= > v (3.5)
pEplanes(v)
= vT( > ppT) v (3.6)
pEplanes(v)

Thus. the distortion measure is:
A(v) = vTQu (3.7)
where
Q= ( > PPT) (3.8)
pEplanes(v)

@ represents the set of planes for every cell. This is convenient because when cells
: and j are merged their respective Q’s are added, Qnew = Q; + Q,. The distortion
measure favours cells that, when merged, produce a centroid that is closest to the
original surface. For example, two vertices on a feature edge are merged before a

vertex on a feature edge and a vertex that is not on the feature edge.
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The computation of the centroid in [Garl97] is cast as a minimization problem.
The algorithm finds the centroid that is closest to all the planes in Q. This happens
when 9A/dr = A /Jdy = DA /D= = 0; this is a linear problem and is quick to solve.

Boundary edges and vertices are handled by placing a perpendicular plane at the
edge and weighting the distortion with a large penalty factor; fold-overs are handled
in a similar fashion.

This algorithm is faster, by several orders of magnitude, than [Hopp96. Hopp93).
[ts simplifications are usually not as good, but are considerably better than that of
[Ross93]. It can simplify well those surfaces that are simplified poorly by pruning
based algorithms. A big advantage of this algorithm is that it is possible to specify
whether or not to preserve topology. By setting the vertex merge threshold distance
to zero the algorithm becomes a regular edge collapse algorithm and topology will be
preserved, or by setting it to a value greater than zero topology will not be preserved.
This algorithm explicitly preserves borders but does not preserve additional surface

information. Also, it expects a manifold model as input.

Turk and Lindstrom

The algorithm by Turk and Lindstrom [Lind98b] is fast and memory efficient. Like
[Hopp96, Hopp93] it constrains the vertex merges to vertices with edges between them.
Unlike many simplification algorithms, it does not compare the current simplified
model to the original after every simplification step. Instead. it tries to preserve the
current simplification’s geometric properties, such as volume and area. in the locality
affected by each simplification step. For example, when an edge is collapsed the local
shape of the surface usually changes and there is a corresponding change in volume,
or if there is a border edge in the local area then the border may change in length
and the local area it surrounds may change. This algorithm tries to minimize both
of these changes. The centroid is an optimization problem that tries to minimize the
change in volume and area. The distortion computation is based on the change in
volume and area computed during the centroid computation.

The optimization problem combines and solves several linear equality constraints.
Ideally only three constraints are needed, in circumstances when two or more con-

straints are linearly dependent additional constraints are added in a predetermined
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order of importance. The first constraint is volume. The centroid should be placed
such that the change in volume is minimal because otherwise the surface will usually
deform. This constraint may not exist if the surface is not manifold in the local area
of the vertex merge. The next two constraints are used to maintain boundaries (bor-
ders), if they exist. This is accomplished by preserving the local area enclosed by the
boundaries. If these constraints are not enough, volume and a boundary optimiza-
tions are added that involve the minimization of an objective function. Finally, if the
constraints still do not provide a single solution, a constraint is added that optimizes
the triangle shape. The volume and boundary optimizations are always computed
because they are used in the distortion computation.

The distortion is the weighted sum of terms minimized in the volume and boundary
optimizations. The squared length of the edge is included as a scale in the distortion
to ensure scale invariance. The triangle shape optimization is not included because
it tends to penalize edges that otherwise have low values. As with other algorithms,
simplification stops when the required size of the model is reached or no more edges
can be collapsed.

This algorithm is faster than [Hopp96] but slower than [Garl97]. Also, the simplifi-
cation quality is in between [Garl97] and [Hopp96]. The algorithm preserves topology
and is able to accept non-manifold models as input. [t explicitly preserves borders,
but it ignores any additional attributes. such as colour and texture, that are on the

original surface.

Cohen et al.

Cohen et al. [Cohe97] present an algorithm that bounds surface deviation between
a simplified surface and the original, and it also minimizes the surface deviation
between consecutive levels of detail. A simplified model of size n is considered to be
a specific level of detail of an original model. This algorithm also restricts the vertex
merges to those vertices that are connected by an edge. The algorithm selects the
edge that introduces the least amount of distortion (surface deviation), if collapsed,
and collapses it. The process iterates until the required model size or maximal surface

deviation is reached.

The distortion is based on the surface deviation, which is computed by enclosing
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every simplified triangle, and its matching face(s) on the original model, with an axis
aligned bounding box. The larger the bounding box, the greater the deviation, and
hence the distortion. Initially the bounding boxes have no volume.

To determine the centroid location, the algorithm analyzes the cells to be merged,
and the triangles that are adjacent to the centroids of the cells. The centroids and
the adjacent triangles in the cells to be merged are projected onto a plane. A check is
made to make sure that no faces have folded over onto the plane. Then the centroids
are merged and a new vertex position is found using a linear programming approach.
The location of the new vertex cannot make any faces fold over onto the plane. The
new vertex is then moved in the direction of the projection to find the position where
this new surface deviates least from the surface created by the two cells that are being
merged. Once the position is located the new vertex becomes the centroid of a new
cell.

The algorithm maps texture coordinates from the original model to the simplified
model by taking a vertex v on the simplified model, finding the corresponding texture
value on the original surface, and mapping this value onto v.

This algorithm is slower than [Garl97] but produces better results. The input
model has to be manifold, but the algorithm preserves topology and texture informa-
tion that is on the original model. This algorithm does not do any explicit preservation

of border edges.

Ronfard and Rossignac

Ronfard and Rossignac [Ronf96] developed an edge collapse algorithm that uses an
interesting approach for computing the centroid and the distortion. The distortion is
the maximum of two measures. The first measure measures the amount of orientation
change a face has gone through after an edge collapse. The second measure computes
the maximum distance between the centroid of a new cell and the set of planes
associated with the cell. This latter measure was later used in QSlim [Garl97, Garl98].

The first distortion measure is a penalty function f, that ensures that the mesh
remains unfolded and smooth. When an edge is collapsed, the faces in the neighbour-
hood of the collapsed edge change orientation; f, measures this change: f,(V;,V2) =

K max A;, where A" is a constant that is sufficiently large so face flips are heavily
]
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penalized, and A; is the angle between the face normal i before a merge and the face
normal : after a merge.

The second distortion measure is a is a geometric error function f, that measures
the distance of vertices as they move perpendicular to the original surface. Every
vertex in the original model has a set of adjacent faces. Initially the distance from
a vertex to its planes is zero. When cells are merged their plane sets are combined
and the distance from the centroid to each of the planes is computed. The geometric
error function f, is the maximum of these distances.

[nitially the location of the centroid is selected as one of the positions of the
two vertices being merged: e.g. V. = V3 « (11, V3). V. is used by f.. After the
merge, the location of the centroid V; is optimized by applying the quadratic vertex
placement technique already described for [Garl97]. Ronfard and Rossignac [Ronf96]
acknowledge that it would be more elegant to include this optimization into the
distortion computation.

This algorithm is slower than [Ross93], but it is unclear what is its speed relative
to the algorithms in its class since speed results were not published. Its quality seems
to be comparable to the other edge collapse algorithms. This algorithm only accepts
manifold surfaces as input. It is able to simplify topology and it is unclear if it
preserves the manifoldness of a surface since there seems to be a possibility of faces
flipping, even if A’ is set sufficiently high. This algorithm does not explicitly preserve

borders and it does not preserve additional surface attributes.

Algorri and Schmitt

The algorithm developed by Algorri and Schmitt [Algo96] combines the pruning with
the pairwise nearest neighbour approaches. This algorithm simplifies an object in
four steps. In the first step, the entire model is scanned and edges are swapped if the
result will flatten and smooth the mesh. The second step classifies all the vertices.
A vertex is classified by the number of feature edges adjacent to it. A vertex in a
planar region has a classification value of zero. A vertex lying on a feature edge has a
classification value of two, and a corner has a classification value of three. Next, these
classification numbers are used to create clusters. Clusters with classification value

of zero are simplified first because these are roughly planar surfaces. Within each
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cluster the simplification is accomplished by applying a pairwise nearest neighbour
based algorithm. The distortion is the edge length and the centroid is the mean of
the centroids of the cells being merged. This is a fast and easy approach but it has
drawbacks. Potential edge collapses are not performed because the mean position
might cause a face to fold over, this is not permitted and other possible locations are
not examined. When all the zero valued clusters have been simplified the edge (two
valued) clusters are analyzed. If the angle between two feature edges that join at an
edge vertexis less than a certain threshold then the vertex is slid along the feature edge
and placed on one of the existing vertices on the feature edge; i.e. V5 « (V},V32). The
last step involves removing isolated vertices. These vertices are left in the middle of a
planar region because cell merges always leave one vertex in a planar cluster. These
vertices are removed and the cluster is retriangulated.

[t is difficult to tell how fast this algorithm is relative to the other algorithms that
use the pairwise nearest neighbour approach because speed results were not published.
This algorithm is slower than [Ross93] and produces comparable results to the rest
of the algorithms in the pairwise nearest neighbour class. The algorithm expects to
have a manifold model as input and it preserves the topology of the model. It does

not explicitly preserve borders and it ignores all additional surface attributes.

3.2 Preservation of Colour, Texture, and Other
Attributes

In section 3.1 several algorithms were presented that reduce the complexity of a
polygonal mesh. Many of these algorithms simplify the geometry and ignore the
distortion caused to attributes associated with the surface such as colour, texture, and
vertex normals. Some of the algorithms described above try to solve this problem,
but generally this is difficult because model geometry and attributes, usually do not
coincide. These algorithms use linear interpolation to determine the correct attribute
value on the new surface [Cohe97, Hopp93]. It is not always feasible to use linear
interpolation because certain values, like colour and texture coordinates, are not
linear. That is, if vertex V| has attribute a; and vertex V, has attribute a», it is not

generally correct to compute the attribute for merged vertex V}; as a;2 = ﬂiz’—“l
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Garland and Heckbert

Garland and Heckbert [Garl98] proposed an extension to their original algorithm
[Garl97] that takes into account vertex attributes. This algorithm uses the exact
same approach to simplification but extends the dimension of the quadratic error
measure to include colour, texture, and vertex normal attributes. For example, for
colour attributes, centroids would become (r.y,z,r,g,b) vectors. This algorithm
makes the assumption that all attributes are linear and that their distance metrics
are Euclidean. This is not true for colour and other attributes, but it simplifies the
problem and allows the attribute distortion measure to be integrated into the overall
distortion computation. If each face were to have a different texture, this algorithm
would break down, but for sufficiently uniform surfaces it works well. Moreover, the
algorithm is extensible to any number of attributes at a vertex, because additional

attributes only increase the dimension of the quadratic error matrix.

Cohen et al.

An algorithm developed by Cohen et al. [Cohe98] extended their earlier work [Cohe97]
to preserve vertex normal vectors, colour. or texture attributes. Although [Cohe97]
preserved texture attributes. it did it in a very simple way that allowed a strong
possibility of texture distortion. This algorithm does a better job of preventing texture
distortion by measuring the amount the texture attributes have slid across the surface
it then tries to minimize the sliding.

The algorithm begins by creating a (u, v) parameterization of the surface and an
attribute map A, such as a normal map, colour map, or texture map. If the surface
already has an attribute map the first step is skipped. The distortion is the Euclidean
distance between a point on the simplified surface and a point on the original surface
that have the same coordinates (values) in map A. [t seems that the algorithm can
only preserve one attribute at a time. This deviation measure is sufficient because
the attributes are bound to the surface and so the movement of these properties
corresponds to the movement of the surface and thus the surface deviation is also
minimized.

Since vertex normals, colour, and texture attributes are not assumed to be linear,
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and the differences are not measured with a Euclidean distance measure, the problem

of attribute distortion is greatly reduced.

Hoppe

Hoppe [Hopp96], as part of his algorithm, developed a way to preserve other mesh
attributes. As part of the energy function used to compute distortion, there is a
term that computes distortion for mesh attributes, called &£,cq0r. The &,cqrar function
treats these attributes as linear quantities and tries to minimize the distortion due to
a merge. As in [Garl98], problems can arise due to the fact that these quantities are
treated as if they were linear. The algorithm will work fine on surfaces that have a
sufficiently continuous texture or colour spread, but not on surfaces that have many

high frequency texture or colour changes.

Cignoni et al.

Cignoni et al. [Cign98] proposed an approach to mesh attribute preservation that
separates the attribute preservation step from the simplification step, rather than
tackling these two steps at the same time.

Instead of remapping attribute values from the original to the new surface, this
algorithm creates a texture that contains the attribute values and maps it onto the
new surface. The input consists of two models, a full resolution model M with all
the mesh attributes, and the simplified model S containing only the simplified mesh
of M. The output is the simplified mesh S with a (u,v) parameterization and an
attribute map.

The procedure to create the attribute map is straight forward: The user sets a
sampling rate which is used to sample the faces in the simplified surface S. For each
sample point p € S a point p,, € M is located. The point p,, is the closest point to p
in terms of Euclidean distance. Once point p,, is obtained its corresponding face in
M is found and the attributes are computed by interpolating the values found at the
vertices. Once all the attribute values have been computed for a face in the simplified
model an attribute map is created for that face. The attribute maps for all the faces
are then merged into one large attribute map for the entire model.

This algorithm has several advantages; one being that it can be extended to
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convert procedural textures (defined as functions, not images). The user can also
control the amount of mesh attribute detail by setting the sampling rate. Linear
interpolation is minimized to a face on the original model rather than across multiple
faces; this reduces distortion. The algorithm is fast and because it is decoupled from

the simplification stage, the simplification component can be chosen independently.

3.3 Level of Detail

Interactive environments require several levels of detail for the objects they are dis-
playing for maximum display efficiency. For example, a user who sees a car one meter
away should see the door handles while a user who is 50 meters away does not nec-
essarily need to see the handles to recognize that the object is a car. Hence, there is
a need for two things. First, level of detail hierarchies need to be created to enable
moving from one level of detail to another without jarring visual discontinuities; and
second. a method is needed to determine the best level of detail for an object for a par-
ticular viewing distance and angle. These two tasks are usually handled by different
applications. The creation of the level of detail hierarchies usually falls to the sim-
plification algorithms because many can create them as the simplification progresses.

The control of the level of detail is handled by adaptive display algorithms.

3.3.1 Adaptive Display Algorithms

[n an interactive environment. frame rates must be high to maintain the illusion
of reality. Each environment might have several objects that need to be displayed
in each frame, and the detail of each object should vary depending on the user’s
viewpoint. The job of an adaptive display algorithm is to manage this variation
of detail. Adaptive display algorithms usually do not perform mesh simplification,
rather they are given the objects at different discrete levels of detail as input. This

is known as “static” level of detail control.

Funkhouser and Sequin

Most virtual environments vary wildly in model complexity: one portion may be very

detailed, another portion quite simple. The goal of Funkhouser and Sequin’s [Funk93]
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algorithm is to keep the frame rate constant in such discontinuous environments.
Other algorithms [Hopp97, Lueb97] have trouble in these environments because they
determine the level of detail they can display by the time taken to display the previous
frame, assuming that if NV polygons were displayed in the previous frame, then they
will display N + € in the upcoming frame. This is not always true. Instead of relying
solely on the previous frame, Funkhouser also computes the maximum allowable level

detail for each object for each frame, using various heuristics.

Luebke and Erikson

Luebke and Erikson [Lueb97] designed an algorithm that controls the level of detail
of entire scenes, rather than the level of detail of individual objects in the scene.
This algorithm uses a vertex tree to do the dynamic level of detail selection; this is
known as “dynamic” level of detail control because much of the displayed detail is
determined at runtime. A vertex tree is a hierarchical structure that contains the
entire scene and the graph of the simplification process. The leaves contain the entire

scene at full detail and moving up in the tree simplifies the scene.

Hoppe

Hoppe [Hopp97] developed an algorithm that uses the output of progressive meshes
[Hopp96] to create an adaptive display algorithm. The algorithm is similar to that of

[Lueb97].

3.3.2 Creation of Level of Detail Hierarchies

Level of detail hierarchies are most often created during the model simplification
process. A level of detail hierarchy is a log of all the local simplifications that were
performed during the simplification process. The key to creating levels of detail
hierarchies is that there needs to be a sufficiently fine granularity between levels of
detail so that a switch from one level to the next does not cause visible discontinuity.
Level of detail hierarchies have been created by all types of simplification algorithms
and a stand-alone algorithm [Cohe96] has also been developed.

Any simplification algorithm can be run n times to create n levels of detail. How-

ever, this approach is inefficient, and in some instance the levels of detail contain too
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many discontinuities between them.

Algorithms that are based on product codes do not inherently build level of detail
hierarchies. However, these algorithms can easily be extended to do so by adding an
oct-tree and simplifying the model at each level of the tree. This type of level of detail
hierarchy corresponds to a vertex tree and can be used with minor modifications with
adaptive display algorithms that use vertex trees.

Algorithms that are based on pruning do not lend themselves explicitly to the
creation of level of detail hierarchies except the algorithm by Turk [Turk92]. The
[Turk92] algorithm builds level of detail hierarchy by incrementally adding vertices at
the retiling phase and saving the result. The results of this algorithm could be used
in the adaptive display algorithm described in [Funk§3].

Algorithms that use pairwise nearest neighbour are well suited for creating level of
detail hierarchies. To create a level of detail hierarchy all that is required is to record

the order of merges.

Cohen et al.

Cohen et al. [Cohe96] developed a framework to create static levels of detail. The
main focus of the work is to have the ability to use any algorithm and to ensure that
the distortion between levels of detail is smaller than a specified threshold. Level
of detail is controlled by the amount of deviation that is allowed from the original
surface. The framework drops an envelope (interior/exterior “images” of the surface
at a distance €) around the original surface and the simplification algorithm must work
within this envelope. A legal move is one that keeps the surface within the envelope
and keeps the surface manifold. Although this scheme slows down the simplification
algorithm. feature areas are better preserved, and if the error is finely controlled then

the difference between two closely adjacent levels of detail is small.

3.4 Conclusions

This chapter has presented and compared several simplification algorithms. Several

conclusions can be reached from the comparison of these algorithms.

35



Product codes based simplification algorithms are the fastest but usually produce
the worst simplifications. Vertex clustering algorithms are well suited for creating
previews of very large models. These algorithms are not well suited for simplifying
models that have many high frequency details. Applications that require medium to
high quality simplifications and do not require high speed should use simplification
algorithms that are based on pruning or pairwise nearest neighbour.

Simplification algorithms that are based on pruning usually produce considerably
better results than vertex clustering algorithms but they are slower. These algorithms
produce medium to high quality simplifications, but they are limited in the types of
surfaces that they can simplify well. They do not work well on surfaces that contain
a great amount of high frequency noise such as terrain maps.

Algorithms that are based on the pairwise nearest neighbour approach tend to
produce the best simplifications. Although these algorithms are the slowest, they work
well for all types of surfaces. Any application that requires high quality simplifications

should use this sort of algorithm.
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Chapter 4

Curvature

Curvature describes the manner in which surface orientation changes across a surface.
Most of the algorithms discussed in chapter 3 use approximations of curvature to guide
simplification. In effect, these algorithms are quantizing surface orientation. This
thesis will explicitly adopted an orientation quantization approach. In this chapter.

the basic elements of curvature are reviewed.

4.1 Importance of Curvature

Determining curvature is important because it provides information about the shape
of a surface. Given a simple polytope, like a tetrahedron, it is possible to determine
its shape by the location of vertices. [t is much more difficult to determine the shape
of a more complex surface from vertex location alone. By determining the curvature

of a surface, it becomes easier to characterize the surface’s shape.

4.2 Normal Curvature

One common measure of surface curvature is normal curvature [O'ne72]. Normal
curvature is based on the rate of change of the normal vector field U/ on a surface S
in direction u, where u is a unit vector tangent to the surface S at point p. If the
normal vectors are pointing towards p then normal curvature is negative, otherwise it
is positive. Thus, normal curvature is sensitive to concavities and convexities. There
are two important normal curvature extrema called principle curvatures; these are

the maximum (k,) and minimum (k;) values of normal curvature. The directions
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corresponding to these principle curvatures are called principle directions. k, and k,
are used to define two additional curvature measures that describe how the surface is
behaving in the local area surrounding p.

The first measure, called mean curvature (R,), is computed by taking the mean of
ki, and ky, K, = &1{—‘1 If Az > 0 then the surface is an elliptical bump and if A, <0
then the surface is an elliptical hollow. If k; = k; and A, = 0 then the surface is
relatively planar. The magnitude of A, indicates the sharpness of the elliptical bump
or elliptical hollow.

The second measure, called Gaussian curvature (A}), is the product of k, and
k2; Ky = kiks. If ki and k, have the same sign, then A, > 0 and the surface is an
elliptical bump or an elliptical hollow. If &, and k, have opposite signs, then A, < 0
and the surface is hyperbolic, a saddle point. If A, = 0 then the surface is planar or
it is a cylindrical ridge or hollow.

By combining these two measures it is possible to characterize the shape of the

surface around point p (see Table 4.1).

Surface k; and k, K. | K¢
Elliptical Bump same sign >0]>0
Elliptical Hollow same sign <0]|>0

Hyperbolic different signs | =0 | <0

Cylindrical Ridge ~0,<0 >0 =0
Cvlindrical Hollow ~0,>0 <0|=0
Plane ~0.=0 =00

Table 4.1: Characterization of surfaces using mean and Gaussian curvature [Dill$1].

4.3 The Gaussian Map

“A Gaussian map is a function from an orientable surface in Euclidean space to a
sphere. [t associates to every point on the surface its oriented normal vector” [Weis93].
An orientable surface is a surface that has a top and a bottom side; a mobius strip is
not orientable. Intuitively, a Gaussian map is created by taking all the unit normals
at every point on surface S and translating them to a point p that is the centre of

a sphere (see Figure 4.1). The convex hull created on the surface of the sphere by
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the normals is a measure of the change in orientation of the surface and is called the
coverage patch. The larger the change in orientation, the larger the coverage patch.

Normals
. Coverage
_.-Patch

Gaussian
Sphere

Figure 4.1: The Gaussian map.

4.4 Approximating Curvature

The above curvature measures are defined for infinitely small patches and thus provide
a good description of the local surface around a point. However, they do not work
well for larger surface patches with multiple scales of curvature; e.g. a carpet from far
away looks flat but at close quarters it has a great deal of curvature. Hence there is a
need for a measure to approximate curvature at large scales. on large surface patches.

Two measures that approximate curvature at large scales were developed, one to
determine the “amount” of curvature, and the other to determine the direction of
maximal curvature. Both of these measures will be discussed in chapter 5, but it is
important to note that in both cases neither measure is computed in the differential
geometry sense. Instead of measuring the curvature in an infinitely small area around
a point p on a surface, the orientation change is measured on the entire surface. The
term curvedness will be used to refer to surnmaries of orientation change and the term
normal curvedness, similar to normal curvature, will be used to refer to summaries

of orientation change in a given direction from a specific point.
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Chapter 5
The R-Simp Algorithm

The R-Simp algorithm tracks vertex connectivity using the clustering technique of
[Ross93] and simplifies using the splitting algorithm. The verter connectivity of a
model describes how the vertices in a model are interconnected; i.e. the edges. Using
the splitting algorithm to quantize the surface enables R-Simp to quickly simplify
large models and to vary detail based on the amount of curvedness. The ability to
vary detail with curvedness ensures a minimum level of quality.

The R-Simp algorithm consists of three stages: pre-processing, simplification, and
post-processing. This chapter describes the R-Simp algorithm. with focus on the
simplification stage. Section 5.1 describes the system, the pre-processing and post-

processing stages and gives an overview of the simplification stage.

5.1 Overview

5.1.1 The System

R-Simp can be integrated into an application or used as a stand-alone simplification

tool. As a stand-alone simplification tool R-Simp’s usage is:
rsimp -n # [-o <output file>] input file

The parameter -n # is required and specifies the required number of vertices in the
simplified model. R-Simp will accept the input file on standard in, so it may be
used with the standard unix shell pipes. The parameter -o <output filename> is
optional and specifies the name of the output file. If it is not given then the output

file is written to standard out.
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Currently a matrix condition threshold, described in Section 5.4.3, is hardcoded.
Ideally it should be made into a parameter controlled by the user because the ability
to modify this threshold may improve the simplification quality for certain models.
Currently it is hardcoded to reduce the complexity of the user interface.

The input file must be in the PLY format. The PLY file format was developed at
Stanford University by Greg Turk!.

5.1.2 Pre-Processing

The pre-processing stage is responsible for setting up the required data structures.

The preprocessing stage does five important tasks.
1. Computes the unit normal for each face in the model.
2. Computes the area of each face in the model.
3. Computes the total surface area of the model.

4. Creates a vertex adjacency list for each vertex v in the model. A vertex adja-

cency list consists of all vertices that are connected by an edge to .

Creates a face adjacency list for each vertex v in the model. A face adjacency

(W1}

list consists of all faces that contain the vertex v.

5.1.3 Simplification

The simplification stage is responsible for simplifying the model to the desired size.

The algorithm begins with the model in a single cell. A cell contains a collection of
faces from the original model called a patch. The centroid of a cell is the representative
vertex that is used in the post-processing stage to triangulate the model. The cell with
the greatest curvedness is selected and subdivided. The cell is subdivided based on
its patch’s curvedness resulting in new cells containing less curvedness. This process
is iterated until the target number of cells (vertices) is reached.

The algorithm consists of four main steps:

L. Select the cell containing the greatest distortion (curvedness).

'http://www-graphics.stanford.edu/data/3Dscanrep/
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2. Split the selected cell.

(a) Compute the cell’s normal curvedness.

(b) Split the cell; produce new cells.
3. Compute the centroid of each new cell.

4. Iterate, until the required codebook (model) size is reached.

In practice it is possible to speed up the simplification stage by subdividing the first
cell (the model’s bounding box) into eight uniform cells without taking curvedness into
account. These eight cells become the current codebook and the algorithm proceeds
as outlined above. This step does not reduce output quality but improves execution
time considerably.

Even if the entire model is topologically connected, a cell may contain two or
more disconnected components. Approximating these disjoint components with a
single centroid will usually introduce severe distortion. To solve this problem. a

simple topology check that places disjoint components in separate cells is used.

5.1.4 Post-Processing

The post-processing stage is responsible for retriangulating the model. The end result
of the simplification stage is a set of cells. Each cell contains a centroid and a number
of vertices that reference the centroid. The triangulation algorithm iterates through

all the faces in the model and for each face does the following:

1. For each vertex in the face determine the corresponding centroid.

2. If two or more of the vertices point to the same centroid then the face has

degenerated into a line or a point and is not included in the new set of faces.

The final result is a simplified polygonal model.

5.2 Selecting a Cell to Split

The first step in a simplification iteration is to select a cell to split. R-Simp selects the

cell with the greatest distortion. R-Simp’s distortion measure should to be sensitive
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to the amount of curvedness of the patch in a cell, the patch’s size, the scale of
curvedness (e.g. carpet looks flat from a distance but is quite curved close up), and
be inexpensive to compute.

Most curvature measures are only valid in a infinitely small local area around a
point p. What is needed is a measure that is applicable to large surface patches. An
inexpensive way to approximate the curvedness of a patch is to measure its coplanarity
by examining the magnitude of the area weighted mean normal of its faces. The
smaller the magnitude, the greater curvedness of the patch. Figure 5.1 shows a two

dimensional example of three different patches with different amounts of curvedness.
W >/\< /

i A
AN

Figure 5.1: Measuring the curvedness of a surface using the magnitude of the area
weighted mean normal.

=

(a) (b) (c)

The patch in Figure 5.la has the most curvedness and has the shortest mean
normal, while the patch in Figure 5.1c is completely coplanar and has the longest
mean normal. If all the faces are coplanar, the magnitude of the mean normal will
equal the area of the patch. The curvedness (coplanarity) component D, of the

distortion measure is defined as:

D. =

L84

v N,~A,-
_E_'_V__ (5.1)
X A

where N is the number of faces in the patch, V; is the normal of face i, and 4; is the

area of face :.
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One could compute the mean normal without area weighting but that would make

the measure less sensitive. Figure 5.2 shows this problem in two dimensions.
(a) (b)

Figure 5.2: Patches (a) and (b) have the same amount of area but the area is dis-
tributed differently in the two patches. The sum of unit normals in patch a equals
the sum of unit normals in patch (b) without area weighting. Thus. this implies that
the curvedness in both patches is the same. This is incorrect because patch (a) has
more curvedness.

The patch in Figure 5.2a has considerably more curvedness (less coplanarity) than
the patch in Figure 5.2b. The measure in equation 5.1, without area weighting, would
return equal values for both patches because the measure would just be summing
the unit normals and computing their magnitude. which in this case is the same in
both patches. Thus, area weighting is necessary to correctly measure the amount of
curvedness in a patch.

Even if a cell is extremely small it can contain a large amount of curvedness. In
order to prevent small. highly curved details (e.g. a small spring in an engine) from
dominating the simplification, it is necessary to make the distortion measure sensitive
to the size of the patch relative to the surface area of the entire model. Figure 5.3

demonstrates this in two dimensions.

(a) (b)

Figure 5.3: Patches (a) and (b) have the same amount of curvedness. but focus should
be put on patch (b) since it is bigger than patch (a).

Figure 5.3 shows two patches with identical curvedness, except that the patch in

Figure 5.3a is smaller than the patch in Figure 5.3b. In these circumstances, the
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focus should be placed on the larger patch in Figure 5.3b. If just the curvedness
component D, is used, then the focus could be placed on either patch. To make the
measure sensitive to the patch’s size, D, is scaled by the ratio of the patch’s area to

the model’s surface area:

N 4.
Distortion = %i,—A'(l -D.) (5.:

[V
[QV]
N’

oA
where M is the number of faces in the model. D, is complemented so that the
distortion increases as curvedness increases.

The distortion measure should also be sensitive to the scale of curvedness. Scale
of curvedness relates to the visual importance of the curvedness. Figure 5.4 illustrates
the differences between small and large scale curvedness. Small scale curvedness is
curvedness that may be approximated by a plane without loss of significant detail;
e.g. a carpet. Large scale curvedness is curvedness that contributes significant visual
detail. It is desirable to be sensitive to the scale of curvedness because small scale
curvedness regions could be detected and approximated with a plane, and regions
with large scale curvedness could be given more focus. Unfortunately this distortion
measure is not sensitive to the scale of curvedness. In Figure 5.4 both patches are

equivalent in area and have the same amount of curvedness. However, focus should

be put on the patch in Figure 5.4a because the curvedness is visually more significant.

ANANANANNNNANNN
(a) (b)

Figure 5.4: Selecting a cell: large and small scale curvedness.

The use of normal curvedness. discussed in section 5.3, was experimented with to
add sensitivity to curvedness scale; it resulted in no significant improvement in quality
and a 20 percent decrease in speed. In theory, an improvement in quality should have
resulted. It is believed that no improvement was seen because the models used to
test R-Simp did not contain surfaces like those in Figure 5.4; i.e. the models did not

contain surfaces that had small and large scale curvedness of the same magnitude.
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5.3 Splitting A Cell

Once a cell is selected, it must be partitioned. The goal is to partition it such that
the features in the patch are preserved well. This is accomplished by computing the
normal curvedness of the patch and using this curvedness information to split the

cell.

5.3.1 Overview & Objectives

The objective when splitting a cell is to create cells that contain patches that are

roughly planar, that is. to reduce their curvedness as much as possible (see Figure 5.53).

Splitting Line

N ]I Cell with original
B ‘ surface patch

v !

' |

' N i

: |

f ‘/ i Sub-Cells
SN

Figure 5.5: Splitting a cell to reduce the amount of curvedness in a patch.

There are several reason why creating planar patches and doing it with as few
splitting planes as possible is desirable. Creating planar patches is beneficial because
the features on the surface are better preserved. Consider Figure 5.5. Assume that
the centroid (the representative vertex) is the mean vertex of the cell. The centroid
for each sub-cell would be the mean of the line segments in the sub-cells. After
triangulation the result will be that of Figure 5.7a. If the cell is cut the other way, like
in Figure 5.6, the sub-cells will contain the top and the bottom of the line segments.
The centroids will collapse the area under the original line and the result will be that

of Figure 5.7b.
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Figure 5.6: Splitting a cell the wrong way.

Clearly the surface patch is better preserved by the approximation in Figure 5.7a.

Figure 5.7b has lost almost all its curvedness.

/ T

(a) (b)

Figure 5.7: Results of good (a) and bad (b) splitting.

The curvedness measure also minimizes the number of splitting planes necessary
to split a cell into roughly planar sub-cells. This is quite efficient. Areas of high
curvedness are partitioned into more cells, while planar areas are partitioned into
fewer cells.

The information necessary to determine the orientation and the number of sub-
cells to create is found by sampling normal curvedness in various directions around
the mean vertex V.; V, is the unweighted mean of vertices in a cell. From the normal
curvedness samples, the minimum and maximum directions of normal curvedness and
their associated magnitudes are then obtained. These values are used to determine

how to split the cell.



The next section (5.3.2) describes the method used for computing the normal
curvedness in a patch. The following section (5.3.3) describes how the normal curved-

ness information is used to split a cell.

5.3.2 Sampling Normal Curvedness

Normal curvedness is an approximation of normal curvature. Normal curvature mea-
sures the rate of change of normal vectors in an infinitely small area at a point on a
surface in a specific direction. Normal curvedness measures the orientation change at
a point P on a surface in a specific direction k. This is accomplished by computing
the area-weighted mean angle, plus one standard deviation, between the mean normal
of a patch and all the normals of faces that lie in direction k.

The normal curvedness for a patch is computed around the mean vertex, V., the
unweighted average of all the vertices in a cell. A cell’s patch can be quite complex.
This complexity is reduced by projecting each face in the cell onto a reference plane,
P., located at V. and perpendicular to the area-weighted mean normal .V, (see Fig-
ure 5.8). The normal curvedness is sampled in j directions represented by vectors.
The vectors point away from V. and are embedded in P.. It was found sufficient to
sample in five degree increments around V., thus j = 72.

The goal is to compute the normal curvedness for each of the j normal curvedness
directions. For each direction, the L faces are collected whose midpoint falls within 2.5
degrees of the direction vector k. The contribution to normal curvedness in direction
k of each face i is computed in two steps. First, twist (sometimes called geodesic
torsion) is removed by performing a projection of the face normal .V; onto a plane,
PP, defined by .V, and the vector from V. to the midpoint of face i (see Figure 5.9).
The result is called Vpp,. Second. the contribution for face i is computed by finding
the angle, 8;, between A'pp, and V.. If Npp, points towards V. then §; is negated since
it represents negative curvedness. This negation step adds sensitivity to curvedness
scale, allowing small scale ripples in the patch to cancel.

The normal curvedness computation K for a direction & is the area weighted mean
of 6; of the L faces associated with the direction plus one standard deviation:

i (Kmean — 0:)2A;
oA

K = (5.3)

K:mean + \l
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Figure 5.8: Computing normal curvedness in direction .

where

Lo A

Kmean = =7
>F A

(5.4)

In differential geometry, normal curvature is the rate of orientation change in the
chosen direction. However, in practice, it was found that Keqn does not capture the
full extent of the normal curvedness; the addition of one standard deviation increases
sensitivity to the orientation change.

A representation of the final result is depicted in Figure 5.10. The vectors on
the plane represent the direction of sampled normal curvedness and their magnitude

represents the amount of curvedness in that direction.

5.3.3 Determining How to Split a Cell

Splitting a cell involves three steps. First, determine how many splitting planes are

needed. Second, orient the planes, and finally position them in the patch.
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Figure 5.9: Removing twist from face :

Splitting depends on the pattern of curvedness in the patch. To determine the
pattern of curvedness the direction of maximum curvedness (Kn,.) and the direction
of minimum curvedness (K;n) are computed. The computation involves summing
the [K{s for opposing normal curvedness sample directions and selecting the minimum
and maximum of the sums. The directions of maximum and minimum curvedness
are called the principle axes of curvedness, A, and A,ix.

In order to determine how many splitting planes are needed, the coverage on the
Gaussian sphere is estimated. If |KnazKmin| > —'} then more than half the sphere is
covered; this implies that there is high curvedness in the direction of the mean normal
N as well as in the A, and A,.r directions. In this case the patch is split by three
planes. Otherwise, the ratio %:: is computed. If this ratio is greater than 0.5 then
the curvedness in the A, and A, directions are roughly equal and the patch is
split with two planes. If the ratio is less than 0.5 then the curvedness in the An..

direction is dominant and the patch is split with one plane. Recall that the distortion

measure includes not just the amount of curvedness, but also the size of the patch.
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Figure 5.10: The end result of sampling normal curvedness on a cylindrical ridge. As
expected there is a great deal of curvedness from side to side but almost none along
the ridge of the cylindrical surface.

[n some cases, even if a patch is relatively planar. it may still be desirable to split it
because it may have some important smaller scale curvedness that is not evident at
the patch’s current size. In such cases, patches with less then one degree of normal
curvedness are split with two planes.

In all cases one splitting plane is orthogonal to An... [t is desirable to split
orthogonal to Am,; because it reduces the curvedness in the surface by the greatest
amount. In Figure 5.11a the splitting planes divide the surface parallel to Ap,..
The surface area of the patch becomes smaller but the amount of curvedness in each
sub-patch remains the same. In Figure 5.11b the splitting planes split the patch
orthogonal to A, and the patch size and the amount of curvedness in each patch
is reduced. Figure 5.12 shows a cylindrical patch that is split by a single plane.

In the cases with two and three splitting planes, one plane is parallel to V. and
perpendicular to the plane orthogonal to Am... Since there is curvedness in the
Amaz direction and in the Apn;, direction, the patch is probably an elliptical bump,
an elliptical hollow, or a saddle surface. To maximize the creation of planar regions,
these patches are split into four sub-cells. Figure 5.13 shows an elliptical hollow being

partitioned with two splitting planes.
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Figure 5.11: Splitting parallel and orthogonal to ;.

[n the case with three splitting planes, one plane is perpendicular to .V.. Since
there is high curvedness in all directions it is not clear how the patch is behaving
except that more than half of the Gaussian sphere is covered. By splitting with
three planes it is more probable that the sub-cells will contain patches on which the
curvedness can be computed more accurately, and thus determining the behaviour of
the surface; Figure 5.14 shows a sphere that is split by three planes.

Finally, it is necessary to position the splitting planes in the patch. I[deally the
surface should be split along any ridges (hollows) or through any elliptical bumps
(hollows). Locating such features would require finer sampling of the patch. One
technique that works well is to compute the mean midpoint of the faces associated
with Ama; and ensuring that all splitting planes contain this point. In degenerate
cases it is possible that this positioning technique will not split the cell (meaning that
all vertices would be placed into single sub-cell). If this occurs, the mean vertex V.,

is used to position the splitting planes.

5.4 Computing the Centroid

One of the drawbacks of clustering algorithms is that the centroid computation is
often poor. In [Ross93] the representative vertex for a cluster is the mean or the
weighted mean of the vertices in a cluster. This approach can poorly approximate

curvature within a cluster; e.g. smoothing sharp edges and corners.
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Figure 5.12: Splitting a cell with one plane.

5.4.1 Approaches Tested

[nitially, for simplicity, the mean vertex was used as in [Ross93]. The overall simpli-
fication was good but creases and small features disappeared quickly. To solve this
problem two different approaches were tried. The first proved too expensive, so the
second was used.

The first approach was to try to align the mean normal of the simplified patch
with V.. However, since changing the mean normal in one patch affects the mean
normal in a neighbouring patch, such a technique would require the solution to a set
of non-linear simultaneous equations. This approach was rejected as incompatible
with the objective of high speed simplification.

The second approach, which was implemented, is the quadratic vertex placement
policy described in [Garl97, Garl98]. This approach proved to be fast and improved
quality.
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Figure 5.13: Splitting a cell with two planes.

5.4.2 Quadratic Vertex Placement Policy

The quadratic vertex placement policy is a minimization process that optimizes the
location of the centroid with respect to the faces in a cell. The idea is to place the
centroid as close as possible to all the faces in a cell. Intuitively, placing the centroid
close to all the faces in a cell will result in edges and corners being better preserved.

This process minimizes the sum of squared distance between a vertex v and all the
faces (planes) in a cell. Each face in a cell defines a plane that satisfies the equation®
nTv+d =0, where n = [ne,ny,n:]T is the unit face normal and d is a constant. The

squared distance between a vertex and a planes is:

D?* = (nTv+d)? (5.5)
= (nTv+ d)(nTv +d) (5.6)
= vT(nnT)v + 2dnTv + d? (5.7)

2By convention, all vectors are column vectors. The inner product of two vectors is n-v = nTv.
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Figure 5.14: Splitting a cell with three planes.

Equation 5.7 is a quadratic plus a linear term plus a constant that can be repre-

sented by Q:

Q(v) = vT Av + 26Tv + ¢

—_
(1]
[09)

N

where

A=nnT b=dn,c=d*

Representing the quadratic in the form of Q is convenient because component wise

addition can be defined as:
Q1(v) + Q2(v) = (Q1 + Q2)(v) (5.9)
where
(@1 + Q2)(v) = vT (A + A)v +2(by + b2)T + 1 + (5.10)
Thus, all that is needed is one quadratic Q, to compute the sum of squared
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distances between a vertex v and all the faces in the cell. Where Q,:

N
Q= > @ (5.11)

1€ Faces

The next step is to determine v such that @,(v) is minimum. Since Q, is a
quadratic, the minimum occurs where the partial derivatives are equal to zero. Thus,

a solution is found to:

?‘ vz 0
J
3 v, | =0 (5.12)
“ﬁ vs 0
Jz h
which is equivalent to:
v=-A"'b (5.13)
where
a’? ab ac
A=1]ab b be (5.14)
ac bc c?

Equation 5.13 is just a simple system of linear equations for which a solution can
be found in constant time. The solution represents the optimal vertex position by

the squared distance criteria.

5.4.3 Problems with the quadratic vertex placement policy

[n some instances the system (Equation 5.13) may be unconstrained or ill-conditioned.
[n these circumstances the optimal vertex position is undetermined and the mean
vertex is used.

The system becomes unconstrained when the number of non-coplanar planes is less
than three. The matrix A becomes ill-conditioned when the system is unconstrained,
but due to floating point error the system becomes constrained. This can happen in
two cases. In the first case, the surface is planar except there is a point that is elevated
a small distance from the plane, in the second case, the surface is a cylindrical ridge
(hollow) and a point on the ridge lies a small distance above or below the ridge. These

distances are extremely small, almost equal to the system’s floating point resolution,
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Figure 5.15: The cause of an ill-conditioned matrix A; € = 0.

and when they are incorporated into the matrix A, they cause the matrix to become
ill-conditioned. Figure 5.15 is a two dimensional example.

Such surfaces are difficult to detect, so instead the condition of matrix A is de-
termined using a standard approach from numerical analysis [Buch92]. The matrix

condition value is computed by:

[W1]
p—
(W)}
~——

Cond = || A, ”A-'L (5.1

where ||A||, is the infinity norm of A.

The closer the Cond value is to unity the better conditioned the matrix is. Matrix
A is usable if its condition value is less than a certain threshold. Ideally this threshold
should be adjusted by the user since the threshold can vary due to the geometry and
the topology of the model. To reduce the complexity of the user interface to R-Simp
the threshold was fixed at 1000 which worked well for the majority of the models
tested. It was found though that for models of man made objects that contained

many planar regions and sharp corners. such as a table, the threshold value should

be set lower.

5.5 Topology Check

Even if the entire model is topologically connected, a given cell may contain two
or more disconnected components. Approximating these components with a single
centroid can introduce severe distortion. The algorithm uses a topology check to
determine if a cell contains topologically disjoint components.

The topology check is done as a breadth-first traversal on the model’s original
vertices in a cell. Initially, the algorithm has a list £ of all vertices in a cell. [t

removes a vertex from L and inserts it into a queue. The algorithm is:
1. Remove a vertex v, from the queue.
2. For each vertex in the adjacency list of v,:
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(a) Insert it into the queue if the vertex is in L.

(b) Remove it from L.

3. Iterate until the queue is empty.

If £ is empty when the queue is empty, then the cell contains only one component
and the simplification algorithm proceeds normally. If £ is not empty, then the cell
has disjoint components. The component that was just removed from £ is put into a
separate cell and the topology check algorithm is rerun on the rest of £. The process
continues until £ is empty. Each component is put into a separate cell. Although this
topology check increases the simplification time, the increase in simplification quality

is considerable.
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Chapter 6

Evaluation & Discussion

Every simplification algorithm makes a tradeoff between quality and speed. R-Simp
emphasizes speed over quality. At the same time, it ensures a minimum level of
quality that is much higher than many existing vertex clustering algorithms.

One has to be careful when discussing the quality of simplifications because qual-
ity is more difficult to measure than speed. An author of an algorithm may claim
that the algorithm produces better quality simplifications than other algorithms, but
that claim depends on the models simplified and the quality measure used for the
comparison. As was discussed in chapter 3, different algorithms are suited for differ-
ent surfaces. In the same manner, the suitability of a quality measure may depend
on the simplification algorithm. In most cases, the quality of a simplification should
be qualitatively judged by the end user of the simplified model.

This chapter evaluates and discusses the performance of R-Simp. To remove
some bias, several different models were used for comparisons and quantitative and
informal qualitative analyses of the simplifications were performed. The chapter first
introduces the concepts of simplification speed and simplification quality and, how to
measure them. Second, simplification results are presented along with comparisons to
two existing simplification techniques. Finally, the chapter discusses the limitations

of R-Simp, and the applications that suit its strengths.

6.1 Simplification Speed

Simplification speed is a measure of how quickly a simplification algorithm can pro-

duce the output model. given an input model. Normally, speed is not difficult to
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measure, but certain conditions need to be present for the results to be valid. The
first condition that should be satisfied is that all the speed trials be run on a dedicated
machine with a large amount of memory. The speed measure should only include the
processing time required to simplify a model. If the machine being used for the speed
trials is used for other purposes at the same time, then the time measures will include
time when the simplification algorithm was suspended. If the machine has a lim-
ited amount of memory, then the timing result will also include system paging time.
The next condition that should be met relates to the timing of the actual simplifica-
tion algorithms. The implementations that are run usually contain code to read into
memory the input file and write the output file. It is desirable not to measure the
time taken to do these tasks, because these tasks are irrelevant to the performance
of the simplification algorithm (and all algorithms must perform this step). Only the
routine that performs the simplification should be timed. If both conditions are met,

then the speed results obtained should be relatively meaningful.

6.2 Quality of a Simplification

The quality of a simplified model is a measure of similarity between the simplified and
the original model; i.e. how much does the simplified model resemble the original.

This comparison can be done quantitatively and qualitatively.

6.2.1 Quantitative Measures of Quality

Quantitatively, the quality of a simplified model can be assessed in several different
ways. The most common way is to compare the simplified model’s geometry and
topology to that of the original. Usually, this comparison is accomplished by mea-
suring the distance between the original and the simplified surface; the smaller the
distance the better the simplification. If the original model is an enclosed surface then
comparing the volumes of the simplified model and that of the original may provide
an indication on the accuracy of the simplification. This measure alone can be mis-
leading because two objects may have the same volume, but have completely different
shapes. If the model has boundaries, than an analysis of how well the boundaries are

preserved may also provide an indication as to the quality of the simplification.
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One such quality measuring tool is Metro [Cign97]. Metro computes the maximum
and mean geometric errors of the simplified surface with respect to the original. The
error is computed. first, by point sampling both the simplified and the original surface,
and second, by finding the two-sided Hausdorff distance between the sample point
and the other surface. If the surface is a closed manifold, then Metro computes and
compares the volume of the simplified surface with the original.

All these measures are good at quantifying the quality of the geometrical and topo-
logical simplification. However, if the surface is textured or coloured, these measures
can not quantify how well the texture or colour was preserved.

One possible way of measuring the preservation quality of colours and textures on
a surface is to do image based comparison. Image based comparison involves making
an image of the simplified and the original model from the same viewing position
and then comparing the differences at the pixel level. One way of doing this is by
computing the root mean square error:

n Y
Epms = \/Z:l(po P:) (6.1)

n

where n is the number of pixels in the image. p, is a pixel in the image of the original
model. and p, is a pixel in the image of the simplified model. This quality measure
is not able to measure the quality of the whole model because it compares images of
the model and not the models themselves. This measure does not only depend on
the model itself but also on the model’s surroundings such as lighting and rendering
techniques. Hence, an evaluation of only the model is not possible, and surrounding
factors can contribute to the quality computation of the model. Moreover, there is
little evidence that root mean square error has a strong correlation to image quality.

Substitutes for this measure are an active area of research.

6.2.2 Qualitative Measures of Quality

Currently machines are not able to do qualitative assessments and therefore this task
is left to humans. Given that humans are all different there does not exist a single
set of criteria that may be used to asses the quality of a simplification. But with
a review of visual perception literature it is possible to determine several criteria

that may be used to judge the quality of a simplification. Humans use contrast and
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the spatial arrangement of the contrast to perceive the form of an object [Seku94].
Informally, contrast is change of colour across the visual field. In polygonal models,
the spatial arrangement of contrast is produced by the model’s edges. Since edges
play an important role in object recognition, the criteria used to assess the quality
of a simplification should be based on how well edges are preserved in the simplified
model.

The first criterion is how well the silhouette is preserved. The silhouette is one
of the most prominent edges in a model and therefore it is important that it be
preserved since silhouettes depend on viewpoint, models should be viewed from many
viewpoints. The second criterion is how well significant model features, such as ears
on a bunny or the legs on a cow, are preserved. Such features are important because
they tend to contribute large edges to the interior of the model and to the silhouette.
The third and least important criterion is how well smaller edges and creases are
preserved. By employing these criteria one could informally evaluate the quality of
a simplification algorithm. Biederman [Seku94] proposed that object recognition is
based on geons (for geometrical icons). A geon is a basic shape such as a cylinder or
a tetrahedron. He proposed that the human visual system initially breaks down an
object into geons to quickly do object recognition. Large features, such as a bunny's
ears or a cow’s leg, would be considered geons. Thus, how well large features in a
model are preserved is important.

Since every person is different and each has their opinion of what is good and bad,
a good way to evaluate the quality of a simplification algorithm is to perform a user
study. One possible user study would involve the simplifying of several different mod-
els with various simplification algorithms and asking individuals to rank the models
based on their perception of quality. Another would ask them to name the displayed
objects, and the naming time would be recorded. A final and a more psychophysical
approach would ask individuals to adjust low pass filters until the filtered view of an

original and a simplified model were not distinguishable.



6.3 Evaluation

Simplification algorithms are usually judged by two criteria. The first criterion is
speed, the time required to simplify a model. The second and more difficult to
measure criteria is quality.

To assess the performance of R-Simp its runtime and simplification quality was
compared to two other algorithms. The first is a simple vertex clustering algorithm,
similar to the one developed by [Ross93]. The second is QSlim [Garl97], an algorithm
that uses the pairwise nearest neighbour technique to simplify the surface. These
algorithms were used to simplify seven different models to several levels of detail.
Seven different models were used to remove bias due to the suitability of the algorithm
for a particular surface. The simplification times and the geometrical error between

the simplified surface and the original were recorded.

6.3.1 Measures Employed

To measure the geometrical error between a simplified surface and the original a tool
called Metro [Cign97] was used.

The detro tool was used because it was written by a third party, and thus possibly
eliminating one source of bias. Metro is not without its faults. Running Metro on
two identical models produced results that showed that the models were slightly
different. This is probably due to floating point error. Also, Metro's results are
only meaningful when the models being compared are fairly similar. Yet in general,
informal qualitative assessment of quality correlated well with the results produced

by Metro.

6.3.2 The Test Bed

The models used for the comparisons are listed in Table 6.1 and are shown in Fig-
ure 6.1. All the simplifications were performed on a 195Mhz R10000 Onyx2 with
512MB of memory. Simplification run-times reflect the time to simplify the model:

they do not include the time to read in and write out the model.
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Model | Number of Polygons | Number of Vertices
Bunny | 69451 34834

Cow 5782 2903

Horse | 96966 43485

Torus | 20000 10000

Chair | 2481 1318

Dragon | 871306 435545

Spring | 9386 4695

Table 6.1: Statistics of models used in the comparisons.

S="0

a) Bunny ) Cow ) Horse ) Torus
e) Chair f) Dragon g) Spring

Figure 6.1: Models used in comparisons.

6.3.3 Comparisons

The R-Simp algorithm was assessed on its speed and the quality of its simplifications.
The first task was to assess R-Simp’s speed. Two speed assessments were performed.
A primary speed assessment compared the run-times of all three algorithms on the
seven models. The results are summarized in Table 6.2. A more in-depth assessment
was done using only QSlim for comparison and two of the seven models.

The second speed assessment determined the effect of output model size on sim-
plification time. For this assessment only QSlim was used, because it is comparable in

speed and quality to R-Simp. The bunny and the dragon were used for this compar-
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ison because they provided the required range in input model size and surface types.
Figures 6.2 and 6.3 show the speed of the R-Simp algorithm with respect to QSlim

on the bunny and the dragon models.

Simplification Time for Bunny using R-Simp and QSlim
100 . v .

T v T - T

R-Simp —
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Time In Seconds
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10 100 1000 10000 100000
Output Model Size - Number of Faces

Figure 6.2: The effect of output model size on simplification time for the bunny.

Figures 6.2 and 6.3 also illustrate the advantages of simplifying from coarse to fine.
Even before QSlim removes a single polygon, R-Simp is able to produce a simplified
model of 2 bunny containing between zero and 1200 polygons, and a simplified model
of the dragon containing between zero and 10000 polygons. However, as the output
model size increases R-Simp, slows down in a sub-linear fashion. When output model
size is relatively large, R-Simp becomes slower than QSlim. Clearly, R-Simp should
be used for drastic simplification, when the required output model size is a small
fraction of input model size.

Table 6.2 the shows speed results with other models, and using the vertex cluster-
ing algorithm. It is evident that the vertex clustering algorithm is considerably faster
than R-Simp or QSlim, and that R-Simp is on average two to four time faster than

QSlim for an output model size of about 1500 to 2000 polygons.
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Simplification Time for Dragon using R-Simp and QSlim
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Figure 6.3: The effect of output model size on simplification time for the dragon.

The quality of the simplifications was assessed in two parts. First, Metro was used
to compare geometrical error. These results are presented in Table 6.2. As expected,
the simplifications produced by the vertex clustering algorithm tend to have the
largest geometrical error, because the algorithm emphasizes speed. Simplifications
produced by QSlim tend to have the least amount of geometrical error; R-Simp has
slightly more error than QSlim. There are two anomalies in Table 6.2. First. Metro
judged R-Simp’s simplified chair better than QSlim's. The possible reason for this
is that R-Simp’s matrix condition check is more accurate than that of QSlim’s (see
Section 5.4.3). Second, Metro could not evaluate the simplified spring produced by
QSlim and the vertex clustering algorithm. When Metro was run on these models it
crashed. It is unclear why this happened.

Next, an informal qualitative assessment was performed, from multiple views, of
the simplifications. Figures 6.7, 6.8, and 6.9 show the simplifications done with all
three algorithms along with the originals; the three models shown are the bunny, the

dragon, and the cow.
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Model Vertex Cluster R-Simp QSlim
Polys | Time (s) | Error | Polys [ Time (s) [ Error | Polys | Time (s) | Error
Bunny | 1602 | 0.09 0.7659 | 1601 | 5.86 0.3615 | 1600 | 14.09 0.2042
Cow 1598 | 0.03 23.787 | 1600 | 0.72 15.382 | 1600 | 0.76 7.6146
Horse 1598 | 0.29 0.0072 | 1602 | 6.79 0.0020 | 1600 | 19.41 0.0014
Torus 1 | 1616 | 0.05 0.0063 | 1602 | 2.10 0.0029 | 1600 | 3.26 0.0017
Torus 2 | 400 0.0 0.0228 | 400 1.33 0.0094 | 400 3.35 0.0073
Chair 796 0.00 0.2974 | 815 0.21 0.0830 | 800 0.32 0.1616
Dragon | 2122 | 2.65 0.0011 | 2068 | 51.10 0.0007 | 2068 | 195.60 0.0003
Spring | 1634 | 0.04 N/A 1600 | 0.78 0.0171 | 1600 | 1.48 N/A
[ Mean | 0.40 3.5554 | | 8.61 1.9823 | 29.78 1.1416

Table 6.2: Comparison of R-Simp with QSlim and vertex clustering on a variety of
models. The simplified size, execution time, and geometric error are shown. The
error is the mean total error returned by Metro [Cign97]. On the spring model Metro
was not able to compute the error on the QSlim and vertex clustering simplifications.

In all three models the vertex clustering simplification looks the worst. The regular
subdivision is noticeable. especially on the bunny, and hence small details are not
preserved. Finer details on the dragon have disappeared. like the horns and the claws
on the feet. The hind legs on the cow are in two parts. This is due to the regular
subdivision used by vertex clustering algorithms like [Ross93]. Figure 6.4 shows how

features like the legs can disappear when regular subdivision is used.

Voxels
Model .-.-e.-?-.---..‘
(a) (c) (d)

Figure 6.4: The disappearing cow leg. The leg is regularly subdivided in (b) and
simplified as shown in (c). Since the middle portion is just a single line it is deleted
and a break is created as shown in (d).

QSlim’s results look the best. The creases are well defined and much of the detail

has been preserved from the original models. It is possible to make out the eyes on
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all three models and the claws and horns on the dragon have been preserved.
R-Simp’s results are comparable to QSlim’s. More of the smaller details have
disappeared and the creases are not as well defined. QSlim is better able to preserve
the creases and small details, because it merges vertices and hence can simplify along
the feature edges. R-Simp does not have problems with large features such as the
bunny’s ears. Figure 6.7c shows the simplified version of the bunny done by R-Simp.
The ears are long, smooth, and almost identical to the ears in the original model.
The dragon in Figure 6.8 has many small details, and therefore R-Simp did not do

as good of a job simplifying it as it did the bunny.

6.4 Other Criteria

Table 6.3 shows how R-Simp compares to the other two algorithms in terms of the
comparison criteria presented in Section 3.1.2. All three algorithms are able to sim-
plify topology. QSlim has the overall advantage because it has the most control on
what topology to simplify. R-Simp does not have as much control but is still able
to prevent disjoint components from being represented by one vertex. Only QSlim
can guarantee the preservation of topology. Both the vertex clustering algorithm and
R-Simp are able to accept non-manifold input. but QSlim is able to preserve the

manifoldness of a surface.

Algorithm T.S. | T.O. | M.I. | M.O. | Attr. | Brdr.
Vertex Clustering | / v

R-Simp v v

QSlim v v x vV2.0 |/

Table 6.3: R-Simp in relation to QSlim and the vertex clustering algorithm in terms
of the other comparison criteria. See Table 3.1 for legend.

QSlim version 2.0 can preserve additional surface attributes, such as colour and

texture, and both versions of QSlim explicitly preserve borders.

6.5 The Pros of Simplifying in Reverse

The R-Simp algorithm simplifies in reverse; from coarse to fine. Simplifying in reverse

has several advantages.
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One advantage is that as the input model size increases, simplification time in-
creases linearly. R-Simp has complexity n; log n,, where n; is the model input size and
n, is the model output size; most other algorithms are n; log n;. Figure 6.5 shows how
the size of the input model affects the simplification time. To determine the affect
of input model size on simplification time, a large model was obtained and simplified
down to various levels of detail using a good quality simplification algorithm. The
dragon was used as the test model and QSlim was used to simplify it down to various
levels of detail. The levels of detail of the dragon were then simplified by R-Simp and
QSlim to 2100 polygons. As the graph shows, the bigger the input model, the longer
it takes to simplify. However, QSlim’s curve is significantly steeper than R-Simp’s.

The Effect of Input Model Size on Simplification Time To 2100 Faces
180 T T T 1 T v 1 T

160 J
R-Simp -—+—
140 + QSlim -+-- L i

Time In Seconds

O L L L L i L 1 1
0 100000 200000 300000 400000 500000 600000 700000 300000 900000
Input Model Size

Figure 6.5: The effects of input model size on simplification time. Output model size
is 2100 polygons.

Simplifying in reverse enables R-Simp to arrive more quickly at the final result.
The reason for this is that R-Simp has to do less work. If the original model is
100000 vertices, then an algorithm like QSlim would have to do approximately 95000

iterations to reduce the model to 5000 vertices. R-Simp would only have to do 5000

iterations.
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Simplifying in reverse allows for R-Simp’s simplification process to be limited by
several different bounds. Like many other algorithms, R-Simp can be given a vertex
budget; i.e. it can create a simplified model with a given number of vertices. R-
Simp can also be bounded by a time constraint: given a time limit in which it has
to produce a simplified model, R-Simp can return a simplified model of unspecified
size. The size of the output model will depend on the size of the input model; the
larger the input model the smaller the output model will be. This is a big plus,
because algorithms that simplify from fine to coarse can not be bound by this type of
a constraint because after the time limit has expired there is no guarantee that any
size of model will be produced. The vertex bound and the time limit constraints can
also be combined. For example, R-Simp can be directed to produce a model that is

a given number of polygons or less in a given number of seconds.

6.6 The Cons

R-Simp has two main limitations: simplifications to low polygon counts and optimally
placing the centroid in certain cases. R-Simp emphasizes speed over quality and thus
the quality of the simplifications suffers at low polygon counts. At low polygon counts,
(and after only a small number of splits) the curvedness measure is not accurate
enough to determine the optimal way to split a cell and to position the representative
vertex. Figure 6.10 shows the bunny at ten different levels of detail, ranging from 50 to
1600 polygons. At approximately 600 polygons most of the creases have disappeared
and at 200 polygons the bunny no longer looks like a bunny. Figure 6.11 shows models
with the same number of faces created with QSlim. The bunny at 200 polygons still
looks like a bunny. This can also be seen with models that contain many small, highly
curved features, like the horns on the dragon. For example. the dragon in Figure 6.8¢
is composed of 2063 polygons, yet it does not look as good as the model simplified by
QSlim (Figure 6.8d) whereas the bunny and the cow models are more comparable.
R-Simp has also problems when placing the representative vertex in certain patches.
These include fairly planar patches and patches that have regular, sharp edges, both
of which are usually found in models of man-made objects. The problem arises when

the condition of the system of linear equations used to determine the optimal position
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of the representative vertex (Section 5.4.2) is ill-conditioned, but the threshold says
that it is not. This results in a vertex being placed somewhere off at infinity, and the
simplification containing a long spike. There are several solutions to this problem.
One possible approach is to vary the condition threshold, but that is not desirable
because the end user should tweak as few knobs as possible, and if the algorithm is
integrated into an application there might not be a possibility for the necessary user

input.

6.7 Enhancements

There are several small enhancements that could improve the algorithm's quality and
speed.

The first enhancement would improve R-Simp’s speed. Currently the optimal
position for the vertex is being computed for every cell. This procedure should to be
moved to the end of the algorithm and the optimal vertex should be computed only
for the vertices that are in the simplified model.

The second enhancement would improve R-Simp's quality and solve the problem
with the ill-conditioned matrix. Currently all cells are put through the optimal cen-
troid placement procedure. What should be done is to classify each patch in the cell
depending on its curvedness. There would be three classifications; a planar patch,
a cylindrical patch, and everything else. By only applying the optimal representa-
tive vertex placement routine to the everything else category the problem should be
solved. Planar patches do not need the optimal placement routine because a set of
polygons can meet at any position on a planar patch to approximate it. Patches that
are cylindrically shaped can use the optimal placement routine but it is more likely
that the computation matrix will be ill-conditioned. A possible solution would be to
set the condition threshold low and check the condition of the computation matrix.
[f the result is an ill-conditioned matrix then the representative vertex could be po-
sitioned at the location of the splitting plane, since the position represents the ridge
of the cylindrical surface.

An optimization that should be made is to make R-Simp more memory efficient.

Inefficient memory usage limits the size of the models R-Simp can effectively simplify,
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and slows the algorithm down. Currently R-Simp needs 4-5 times the input model
size in memory. This memory requirement can be reduced significantly.
Portions of the code can also be optimized to improve the overall efficiency and

speed.

6.8 Applications of R-Simp

R-Simp is a fast simplification algorithm that ensures a minimum level of quality
that is higher then many vertex clustering algorithms. R-Simp can be bounded at
the same time by model size and simplification time because it simplifies in reverse.
These two attributes make R-Simp an ideal tool for previewing very large models in
modeling, visualization, and CAD/CAM applications, because such previews need to
be produced quickly. Another application of R-Simp is in a two step simplification
process. [n the first stage, R-Simp would simplify a very large model down to a
moderate size. In the second stage. an algorithm that emphasizes quality could be

used to simplify the model further down to a very low polygon count.

6.9 QSlim Version 2.0

All the above comparisons were done with QSlim version 1.0. Shortly before this
thesis was finished, QSlim version 2.0 was released. The main difference between
versions 1.0 and 2.0 is that version 2.0 was recoded and optimized for speed; algorithm
complexity remained the same.

Figure 6.6 shows the results of version 2.0 as compared to version 1.0 and R-
Simp. On average there was a two times increase in speed as the graphs show, but
the complexity of the algorithm remains unchanged.

The comparisons presented in this chapter are still valid. The quality of QSlim
is still the same, but R-Simp is now only 1.25 to 2.0 times faster on the models that
were used for the comparisons. The graphs still show the same relationships; R-Simp
is still considerably faster for creating low polygon count simplifications. As noted

above, further optimizations of R-Simp for speed are still possible.

-]
(S



Simplification Time for Bunny using R-Simp and QSlim V1.0 & V2.0
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Figure 6.6: The effect of output model size on simplification time for the bunny and
the dragon for QSlim version 2.0.
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Figure 6.7: The bunny model.
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Figure 6.8: The dragon model.
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Figure 6.9: The cow model.
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Figure 6.10: The visual quality of R-Simp generated simplifications decreases as poly-
gon count decreases.
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Figure 6.11: The visual quality of QSlim generated simplifications decreases as poly-
gon count decreases.



Chapter 7

Conclusion

This thesis presented a fast polygonal model simplification algorithm. This algorithm
is considerably faster than many of the vertex merge and edge collapse algorithms
and preduces significantly better simplifications than many of the vertex clustering
algorithms. This thesis also reviewed existing simplification algorithms and analyzed

their strengths and weaknesses using a quantization taxonomy.

7.1 Summary of Objectives and Results

The main objective of this research was to create a fast simplification algorithm that
produced reasonable quality simplifications. The other objective was to create an
algorithm that was linear or nearly linear.

The result was an algorithm that was fast but did not sacrifice quality. For
models of 2000 polygons or less it was two to four times faster then one of the fastest
vertex merge algorithms [Garl97] and produced simplifications that were comparable
in quality. The algorithm had a complexity of ninyu: 10g outpur, Which made it linear
for constant output size. And since it simplified in reverse, from coarse to fine, it is

able to adhere to both a vertex count constraint and a time constraint.

7.2 Summary

Throughout this thesis model simplification is viewed as quantization. Quantization
provides an elegant taxonomy by which to classify existing algorithms and provides

a different approach for finding solutions for problems in model simplification.



7.2.1 Existing Algorithms

Most existing algorithms fall into three classes of quantization algorithms.

¢ Vertex clustering algorithms are based on the product codes approach to quan-

tization. They tend to be the fastest of all the algorithms but also tend to

produce the worst simplifications.

R-Simp is based on the Splitting algorithm. It produces better results but is

slower than some vertex clustering algorithms.

Algorithms such as [Kalv96, Schr92, Turk92] are based on the pruning approach
to quantization. They are slower than R-Simp and vertex clustering algorithms

but tend to produce better simplifications.

Pairwise nearest neighbour based algorithms tend to produce the best simpli-
fications, but also tend to be the slowest. These are mostly vertex merge and

edge collapse algorithms.

7.2.2 R-Simp

The R-Simp algorithm uses vertex clustering techniques to track vertex connectivity

and it employs splitting to simplify the model. Splitting works by iteratively sub-

dividing cells that contain the largest distortion. Initially the codebook contains a

single cell. The cell with the largest distortion is split. The process continues until

the required distortion or codebook size is reached. The basic algorithm is outlined

below:

—

N

[nitially the model is contained in a single cell, its bounding box.

Select the cell containing the most distortion. The distortion measure is a
measure of orientation change in a large surface patch. Intuitively, this measure

gauges the coplanarity of a patch.

Split the selected cell. Splitting is based on a second measure of orientation
change in a large surface patch that is similar to the measure of normal curva-

ture.



(a) Compute the cell’s normal curvedness. Determine the magnitudes and the

directions of maximum and minimum curvedness.

(b) Split the cell; produce new cells. Depending on the magnitude of the
minimum and maximum curvedness split the cell into two, four, or eight
new cells. The positioning of the splitting planes is based on the direction

of maximum curvedness.

4. Find the centroid of each new cell. This is a technique that minimizes the
distance between the centroid and the associated planes in a cell. This approach

is similar to the one used in [Garl97, Garl93|.

[terate, until the required codebook (model) size is reached. Each cell represents

Ut

a vertex in the new model. After the required number of vertices is reached the

vertices of the simplified model are triangulated to form the new model.

[n practice, it was found that the initial cell could be subdivided into eight uniform
sub-cells without any reduction of quality in the output model, which greatly sped
up the simplification process. A simple topology check was used to separate disjoint
components in a cell into separate cells. It was found that this topology check greatly

improved the quality of the simplification.

7.3 Summary of Contributions
This thesis makes several contributions in the area of polygonal model simplification.

L. Most curvature measures measure the curvature in an infinitely small area
around a point on a surface. It is difficult to determine the overall orienta-
tion change of a large surface patch using these curvature measures. Several
large scale curvature measures, called here curvedness measures. were developed
to measure orientation change in large surface patches. These measures do not

measure curvature in the differential geometry sense.

The first measure computes the orientation change on large surface patches.

This measure is analogous to measuring the coplanarity of a surface.



The second measure approximates the normal curvature on a surface patch

around a point; including the minimum and maximum direction of curvature.

o

Coarse simplifications are found more quickly than fine simplifications because

R-Simp simplifies in reverse.

3. Simplifications are found in linear time for a fixed output size. The algorithm
is n;log n,, where n; is the input model size and n, is the output model size:

most other algorithms are n, logn,.

4. R-Simp’s simplification algorithm is based on splitting from quantization litera-
ture. Splitting allows R-Simp to control the size and placement of clusters, thus
enabling R-Simp to use vertex clustering to track vertex connectivity, which

results in a fast algorithm that does not sacrifice quality.

7.4 Future Work

The research and development of R-Simp has uncovered several possible avenues for

future research.

7.4.1 Level of Detail Hierarchies

With a minor modification R-Simp is able to create level of detail hierarchies. R-Simp
already creates an implicit hierarchy, but the hierarchy is not kept due to memory
constraints. By keeping the internal nodes and linking the children to the parents
(and vice versa), a vertex tree could be created. This vertex tree could be used to
produce discrete levels of detail, or with a few more modifications the vertex tree

could be used by an adaptive display algorithm like [Lueb97].

7.4.2 Preservation of Colour, Texture, and other Attributes

A possible extension to R-Simp would be to make the simplification sensitive to
attributes on the surface. Currently R-Simp bases its simplification decisions on the
orientation change of normal vectors on a surface. Since colour and textures are also
vector quantities, it would be possible to include the change of these quantities in the

simplification decision. Care must be taken to treat these attributes in an appropriate
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manner since they are not linear and usually do not coincide with the geometrical
change of the surface. Both the optimal vertex placement policy and the procedure
that decides how to partition a cell are easily expandable to include other vector

quantities.

7.4.3 Progressive Transmission

As the web becomes more popular and models become larger there is a need to do
progressive transmission of polygonal models. Two algorithms that do progressive
transmission of polygonal meshes are [Hopp96, Taub98]. The problem with [Hopp96,
Taub98] is that they create a fine to coarse mesh progression, which implies that the
modeis need to be put through the algorithms beforehand. Because R-Simp simplifies
from coarse to fine, it is ideally suited for creating simplifications for progressive
transmission on the fly. The big hurdle that needs to be cleared is how to track
vertices from one mesh to another. The problem is that the vertices of a coarser mesh
are not a subset of the vertices in the finer mesh. Ideally if mesh m, has V vertices
and a finer mesh m, has M vertices then to create mesh m, from m; only W — NV

vertices should be sent. Currently all M vertices would have to be sent.

7.4.4 Search & Simplification

The quality of the simplification could be improved by adding a look ahead feature to
the subdivision decision. Currently the cell with the largest distortion is selected to be
subdivided. Quality might be improved by selecting a cell such that the reduction in
distortion achieved by splitting it is greatest. This potential improvement in quality
will come at some cost, since all leaves in the cell hierarchy would have to be split.

In the end the increase in quality may not justify the decrease in speed.

7.4.5 Parallelization

Many of todays systems contain more than one processor. For R-Simp to take advan-
tage of these systems it should be parallelized; i.e. modified to use many processors
at once. Currently, R-Simp does not lend itself naturally to parallelization. R-Simp

always splits the cell with the greatest distortion first, implying that the selection
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and the splitting have to be done serially. For example, cell C, is selected to be split
and cell Cy is next in line. If the sub-cells of C, have less distortion than Cy then
Ca and Cp can be split in parallel, but if the distortion of C,’s sub-cells is greater
than C’s then C, and C, cannot be split in parallel. Once sub-cells are created the
computation that is done for each sub-cell could be parallelized, but the computation
is minimal and so parallelization may not bring any benefit.

If the look ahead feature is implemented, then parallelizing R-Simp will definitely
be beneficial because each sub-cell created will need to be split and that can be done

in parallel.

7.4.6 Memory Constraint

A memory constraint could be implemented that would work in the same way as the
time constraint. The memory constraint would limit the amount of memory R-Simp
could use when simplifying. If R-Simp runs out of memory it will return a simplified
model that is smaller than the requested size. This constraint is useful on systems

that have a small amount of memory.

7.4.7 Error Bound

Currently R-Simp uses a vertex bound as its stopping criterion. Instead, a geometrical
error bound could used for a stopping criterion. A simple error bound would be the
maximum distance from a vertex in the original model to the centroid of the cell it
is in. This type of error bound would be useful in several instances. If only the error
bound is used then R-Simp could be very easily and effectively parallelized because
each branch of the tree can be expanded by a separate thread. The error bound could

also aid in the traversal of a vertex tree for adaptive display.
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