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Abstract 

The understanding of strain history during a metal forming operation is important 

as the continuous plastic deformation may alter yield stress of the finished product 

via work hardening. A non-invasive digital imaging procedure has been developed 

to quantify the local strain behavior during metal forming. From digital images, 

obtained during the forming process, discrete spatial data of the object profile was 

acquired. A B-spline approximation method with an optimal number of control points 

was then applied to obtain a continuous profile. The weights of the B-spline function 

were calculated using linear least square regression. The deformation strains were 

calculated from the curvature of the continuous profile, and a local averaging approach 

was used to smooth the fluctuations of the calculated curvature. The proposed 

procedure was applied to an electric resistance welded (ERW) pipe forming process, 

and validated using measured strain gauge data. 
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Introduction 

In the pipe-rolling industry, accurate roll production is one of the major concerns for 

producers. Roll forming is a complex metal deformation process. The cyclic plastic 

deformation may alter yield stress of the finished product through work hardening 

or the Bauschinger effect (Wiskel et al, 2004). However, measuring deformation 

in roll forming processes involves several challenges, including the large scale of the 

forming process, the in-plant environmental conditions, and the complexities of the 

arrangement and type of the forming equipments (Wiskel et al, 2008). 

Several techniques have been developed to measure or in addition to analyze the 

deformation imposed in forming systems. These techniques include: strain gauges 

(Rieder, 2003), grid measurements (Hsu, 2003), finite element method (FEM) (Yoshida 

et al., 1995; Seki et al., 1995), and digital imaging with the application of circle grid 

arrays. Both the strain gauges and grid measurements are invasive and relatively time 

consuming. Strain gauges provide only discrete forming information at the points 

where strain gauges are placed, while grid measurements are unavailable to provide 

1 



1.1. Objectives 

the dynamic information. FEM simulation enable the designer to obtain very precise 

information about the deformation through the entire process without applying exper­

iment. However, a full finite element computation may be computationally expensive 

and time-consuming. 

Digital imaging is a suitable technique for analysis of roll forming processes. 

Although the strain measurement using digital imaging in combination with circle 

grid arrays is efficient and accurate (D.W.Manthey et al, 1996), this method still 

has some disadvantages. First, marking and reading grids for roll forming are time 

consuming. Second, the grid may be damaged by the forming equipment. Given 

these challenges, the digital imaging measurement procedure presented in this work 

is conducted without the application of a grid. 

1.1 Objectives 

The aim of this work is to develop and implement an accurate and efficient digital 

imaging based numerical analysis method for the roll forming process. This method 

will be useful in the analysis of the geometric and mechanical properties of deformed 

materials. The specific objectives of this work are to: 

1) Develop a non-invasive digital imaging procedure to quantify local strain 

behavior in roll forming; 

2) Apply the proposed technique to an electric-resistance-welded (ERW) pipe 

forming process; 

3) Select an effective and accurate numerical approximation method to describe 

the deformed-skelp geometry; and 

4) Confirm the veracity of the proposed procedure by comparing the predicted 

strain values with the measured strain gauge data. 
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1.2. Thesis outline 

1.2 Thesis outline 

In this thesis, a non-invasive digital imaging procedure has been developed to quan­

tify the local strain behavior during a forming process. Chapter 2 presents the 

background on the issues related to this work. These issues include: the importance 

and problem in roll forming study, the existing strain measurement techniques, the 

properties of the processed digital image data, and the available mathematical geo­

metric modeling algorithms for the image data reconstruction. Chapter 3 describes 

the proposed digital-imaging-based-strain-measurement procedure, uses an ERW pipe 

forming operation to illustrate this procedure, and validates the results with the strain 

gauge measurement data. Chapter 4 investigates three different geometric modeling 

methods (one-dimensional, two-dimensional and trigonometric B-splines) in order to 

achieve an accurate description of the deformed-skelp geometry. Chapter 5 sum­

marizes the results of the present work, concludes the entire thesis, and recommends 

directions for future work. The MATLAB scripts of the B-spline approximation (1-

D, 2-D, and trigonometric), the curvature calculation and smoothing, and the strain 

calculation used in this work are presented in Appendix A 

This thesis has been presented in a paper-format according to the requirement 

of the Faculty of Graduate Studies and Research (FGSR), University of Alberta. In 

order to connect the materials in different chapters and at the same time ensuring 

completeness of individual chapters, there is some overlap between chapters. 
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Background 

2.1 Roll forming study 

Roll forming is a general term used to describe a large class of manufacturing processes 

by which a strip of sheet metal is deformed continuously into a desired shape (Walker 

and Pick, 1990). The flat strip of sheet metal, or skelp material, is uncoiled from a roll 

and passed through a series of forming rolls that bend and shape it into any desired 

shape. The forming process studied in the present work is the cage roll forming of 

thin walled pipe. 

The geometry of the deformed sheet metal is a highly complex three dimensional 

shape. In a roll forming process, the complex skelp shape is difficult to control. 

Any error in the roll production will lead to scrapping rolls, re-machining rolls, 

and increasing set-up times (Halmos, 2006). These complexities also result in the 

unique strain histories during and between the forming steps. If the maximum strain 

occurring in the material exceeds a certain limit, various defects can be observed in the 

final section, such as edge waves and spring back (Halmos, 2006). If strain values are 

controlled within specified limits, section defects can be minimized. Therefore, it is 

important to develop an effective technique to measure or analyze these deformations. 
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2.2. Strain measurement and prediction techniques 

2.2 Strain measurement and prediction techniques 

Strain describes the amount of deformation in a body. When a body is deformed, 

points in that body are displaced. Strain must be defined in such a way that it 

excludes effects of rotation and translation (Hosford and Caddell, 2007). Strain 

evolution in a forming process may alter yield stress of the finished product, or may 

lead to failure (Wiskel et al., 2004). The current strain measurement and prediction 

techniques for roll forming process include strain gauges (Rieder, 2003), grid marking 

(Vogel and Lee, 1990), finite element method (FEM) (Yoshida et al, 1995; Seki et 

al., 1995), and digital imaging with the application of circle grid arrays (Hsu, 2003). 

2.2.1 Strain gauges 

A strain gauge is a device used to measure the strain of an object. The gauge is 

attached to the object by a suitable adhesive. As the object is deformed the gauge 

is also deformed, causing the change of electrical resistance. Using strain gauges 

to measure the strain during roll forming can obtain dynamic strain measurements 

accurately (Wiskel et al, 2008). 

Since the location of the maximum strain is unknown prior to the measurement, it 

is difficult to use strain gauges to measure the maximum strain value or other critical 

values of interest (Das, 2003). Therefore, strain gauges can only determine local 

strains at specific points, not the deformation over the whole object. Surface prepa­

ration procedures are time-consuming and relatively difficult under plant conditions 

(Rieder, 2003). In addition, very small voltage differences can generate significant 

noise in the measured data (Rieder, 2003). Moreover, the material on which the 

strain attached has a maximum service temperature of approximately 200° C. These 

factors limit the application of strain gauges. 

Rieder (2003) performed the strain gauge tests on CSA Grade 359 pipes with an 

outer diameter of 114.3 mm and a wall thickness of 4.0 mm. The measured data by 

Rieder (2003) was used in the present work to validate the digital imaging procedure. 

Strain gauges were applied to the inside surface of the skelp after the preform rolls 

and were oriented primarily perpendicular to the rolling direction (transverse). A set 

of strain gauges applied to the skelp surface is shown in Figure 2.1. After the gauges 
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2.2. Strain measurement and prediction techniques 

were applied, the mill was operated as usual. The skelp was slowly moved through 

the process while data was collected. 

Q 

I 

<= Transverse Direction => 

Figure 2.1: Strain gauges applied on the deformed skelp(Rieder, 2003) 

The strain gauges were positioned for transverse measurements at 22.5°, 45°, 90°, 

135°, 180°, 270°, 315°, and 352.5° on the completed cross section, shown in Figure 2.2. 

The strain gauge data obtained form this test is shown in Appendix B. 
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2.2. Strain measurement and prediction techniques 

H43mm 

m 

Figure 2.2: Strain gauge locations (Rieder, 2003) 

2.2.2 Grid marking 

Strain analysis by grid marking has been used effectively in metal forming (Vogel 

and Lee, 1990). By the grid marking method, the areas of high strain can be easily 

identified. The sheet is marked with the circle grids, before the forming process is 

carried out. After the sheet metal is deformed into the desired shape, the marked 

grids will deform into ellipses of different sizes (Figure 2.3). The strain distribution 

can be visualized and critical areas of strain can be found using the forming limit 

diagram (FLD) (Hsu, 2003). 

Circle grid array (CGA) is relatively insensitive to measure low magnitude strain 

values in pipe forming (Wiskel et al., 2008). Even under ideal conditions, the mag­

nitude of strain errors using CGA measurement is around 0.7%. In pipe forming 

operations, the magnitude of strain values is usually less than 10%; therefore, the 

relative error is considerably high (approximately ±7%). In addition, only the total 
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2.2. Strain measurement and prediction techniques 

Major 
strain Original 

Minor 
strain 

Deformed l 
2.5 mm \ 

Stamped 
circle grid 

Deformed interior 
*j y* surface of pipe 

Original interior 
£ ~ / > - - / / ; - • - - / > ^ J ^ surface of pipe 

t 
Figure 2.3: Circle grid arrays, before and after deformation 

strain at the end of the process can be obtained unless the grid is re-marked and 

examined at each stage in the process. Furthermore, this technique is difficult to 

apply under plant conditions and cannot provide dynamic strain information. 

2.2.3 Finite element method 

The finite element method (FEM) is a numerical technique for finding approximate 

solutions of field problems in solid and fluid mechanics, heat transfer and other 

areas. Most of these problems are described by partial differential equations (PDE) or 

integral equations over complex domains. The key steps of FEM are the division of a 

continuous and complex domain into a finite number of small and simple elements, and 

the application of simple algebraic equations on each element in order to approximate 

the equations to be studied. 

Compared with the other direct measuring methods, finite element method (FEM) 

is a convenient technique to analyze strain distribution without performing costly and 

time-consuming plant trails or even small scale experimental tests (Alsamhan et a/., 

2003; Rieder, 2003). Several finite element models (McClure and Li, 1995; Duggal et 

al., 1996) and commercial FEM software packages (Senanayake et al, 1994; McClure 

and Li, 1995) have been developed for strain analysis in metal forming. These FEM 
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2.3. Digital image 

simulations enable the designer to get very precise information about stress and strain 

through the entire process. 

A full finite element computation may be computationally expensive and time-

consuming, as its iterative nature (Sedlmaier, 2005). Generally, the FEM simulation 

process needs to run on a separate computer, and it may take several days. 

2.2.4 Digital imaging 

Digital imaging is a technique that acquires a series of visual images from a physical 

object. Compared with traditional measurement devices, digital imaging techniques 

have several advantages. First, this technique is generally insensitive to environmen­

tal factors, for example high temperatures and electromagnetic fields. Second, the 

measuring process is non-invasive to the object being studied and is not limited to 

the position and type of forming equipments. Therefore, it can be applied either in 

close proximity or remotely to the object being considered. Third, the qualitative 

information included in digital images can be subsequently processed to provide the 

quantitative information as a continuous function, i.e. at every point on the studied 

object. These advantages of digital imaging make it a suitable technique for the strain 

measurement in the pipe roll forming. 

2.3 Digital image 

Computers have been used to process pictures for approximately fifty years (Green, 

1988), and the technology of using digital imagery is continuing to develop rapidly. 

This technology has spread widely in diverse application fields for several reasons: 

first, a digital image has a wider dynamic range than the human eye or a photographic 

film; second, a single digital image can present a very large amount of information in 

a compact and easily interpretable form; third, a digital image can be processed and 

manipulated using methods that cannot be duplicated with non-digital technology 

(Green, 1988). 

A digital image can be thought of as a matrix of numbers. A simple example of a 

digital image is shown in Figure 2.4 (Green, 1988). The scene is a black square on a 

10 



2.3. Digital image 

white background. One possible digital representation of this scene is shown on the 

right of Figure 2.4. The digital representation of the scene is a sampled version of the 

continuous scene that is present in the object space (Green, 1988). Each point in the 

digital representation corresponds to an area in the object space, and a digital value 

is assigned at each point in the digital image that is related to the intensity of that 

area in the object space (Green, 1988). 

Object Image 

255 255 255 255 255 255 255 255 

255 255 255 126 132 255 255 255 

255 255 119 3 2 120 255 255 

255 255 123 2 4 119 255 255 

255 255 255 121 118 255 255 255 

955 955 P55 PS5 955 255 255 355 

Figure 2.4: Digital image example (Green, 1988) 

The quality of the digital representation relates to two important parameters: the 

spatial sampling frequency and the intensity resolution. 

The sampling frequency decides how many matrix elements will be used to rep­

resent the object. In Figure 2.4, the black square appears in the digital image as 

a 2-element by 2-element object (Green, 1988). The spatial resolution within a 

sampled digital image (finite) is less than the resolution of the actual continuous scene 

(infinite). As Green (1988) shows, the attempt to represent a continuous signal with 

a set of discrete points would cause the lack of sharp transition in the sampled digital 

image at the boundaries of the object. In Figure 2.4, the black-to-white transition at 

the edges of the black square is over a 3-pixel range, for example in line 3 from 255 

to 199 to 3 (Green, 1988). 

The digital intensity is represented by the value of individual component elements 

within the digital image which are referred to as picture elements (pixels). In Fig­

ure 2.4, digital intensity values can range from 0 to 255, with 0 representing black 

11 



2.4. Geometric modeling 

and 255 representing white (Green, 1988). The 4 pixels representing the uniform 

black square have digital intensity values of 3, 2, 2, and 4. Most systems that provide 

sampled digital representations of a scene introduce random noise into the sampled 

image (Green, 1988). If no noise was introduced during the sampling process, the 

digital intensity values of the 4 pixels would be the same (Green, 1988). 

A higher sampling frequency and a higher intensity resolution would generate a 

higher quality image of the same scene, but a larger size of digital file and a more 

expensive equipment cost. The aim of the present work is neither to find the optimal 

sampling frequency nor the optimal intensity resolution, but rather to develop a 

procedure which is able to handle the constraints of the resolution and noise level. 

Digital images used in this work were acquired in JPEG format, at a resolution 

of 640x480 pixels with 24-bit color depth, using a standard digital camera (3Com 

HomeConnect PC Digital Camera, 3Com Corporation) (Rieder, 2003). 

2.4 Geometric modeling 

As described in Section 2.3, the information provided by the digital image is inherently 

discrete and noisy. Interpolation or other mathematical techniques need to be used to 

reconstruct a continuous and smooth geometry of the object from digital image data. 

The free-form curve or surface fitting are commonly used to generate an arbitrary 

curve or surface from measured data points. In the metal forming process, examples 

of free-form curves that have been used include cubic Bezier, B-spline and cubic 

B-spline. 

Donovan (2002) proposed a numerical approximation method in the research of 

object recognition from a digital image. The proposed algorithm used cubic Bezier 

curves to represent identified the edges of the studied object in an image. The 

captured image was processed to find critical points on edges of the studied object. 

The least squares regression was used to represent these critical points as Bezier 

curves. 

Cheng et al. (2002) developed a full-field speckle-pattern image-correlation method 

to directly determine the complete, two-dimensional deformation field. In the image 

correlation process, digital images were obtained using computer vision systems. A 
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2.4. Geometric modeling 

B-spline function was used to represent the deformation field of the researched object 

through the entire image area. 

Tong (1997) evaluated a whole-field, in-plane strain-mapping technique for mon­

itoring plastic deformation patterns in sheet metals. Cubic B-splines and their first 

derivatives were used in computing the displacements and displacement gradients 

in this investigation. Displacement derivatives obtained directly by digital image 

correlation are highly oscillatory because of the high sensitivity to the displacement 

data noise. A method based on one-dimensional B-spline data smoothing routines was 

used to generalize the cross validation. The mean square prediction error criterion 

was used to automatically determine the optimum smoothness of the given data set. 

2.4.1 Spline 

Polynomial and spline functions are the two most common methods of representing 

arbitrary curves and surfaces in geometric modeling. 

A polynomial function f(x) is defined by 

f(x) = anx
n + an_ixra_1 H (- a2x

2 + axx + a0 (2.1) 

where n is a nonnegative integer and a®, ax, a^ • • • , an are constant coefficients. 

One of the attractive properties of polynomial functions is the smooth represen­

tation of a curve or surface. However, using just one polynomial segment to fit an 

arbitrary curve is often difficult. A high degree is required in order to satisfy a large 

number of constraints, or to accurately fit some complex shapes (Piegl and Tiller, 

1997). For example, an (n - l)th degree is needed to pass a polynomial curve through 

n data points (Piegl and Tiller, 1997). However, high degree curves are inefficient to 

process and are numerically unstable (Piegl and Tiller, 1997). Moreover, there exist 

a number of curve types that cannot be represented precisely using polynomials, e.g. 

circles, ellipses, hyperbolas, etc. (Piegl and Tiller, 1997). 

13 



2.4. Geometric modeling 

Spline is a special piecewise function defined by polynomials. A spline curve can 

be represented in the form (Piegl and Tiller, 1997): 

n 

c{u) = Y<f^Pi (2-2) 

where Pi are control points, and {/j(«),0 < i < m} are piecewise polynomial basis 

functions with the desired degree and continuity (for a fixed knot sequence, U = {ui}). 

The continuity is determined by the basis functions. Therefore, the control 

points can be modified without altering the curve's continuity. Any of the standard 

polynomial forms can be used to represent fi(u) (Piegl and Tiller, 1997). 

2.4.2 B-spline function 

The B-spline function is one of the most efficient curve representation methods, and 

has been extensively used in computer-aided design and computer graphics. The 

B-spline functions possess very attractive properties such as convex hull property, 

transformation invariance, variation diminishing property and local support (Piegl 

and Tiller, 1997). 

Given n + 1 control points P0, P1; • • • , Pn and a knot vector U = [M0, «i, • • • , um], 

a B-spline curve of order k (i.e. degree k — 1) defined by these control points and 

knot vector is: 

n 

i=0 

where Nitk(tj) is a B-spline basis function of order k, and {tj} is a set of parameter 

values. 

Each parameter tj is corresponded to a data point Dj. The Wj's are called knots, 

and the half open interval [ui,Ui+i) is the ith knot span. U = [uo, • • • , wm], where 

m = n+k, is a nondecreasing sequence of real numbers (i.e. u^ < Wj+i, i = 0, • • • , m—l). 

There are a number of ways to define the B-spline basis functions, such as De Boor 

(1978) recursion formula, divided difference of the truncated power function, conti­

nuity conditions, etc. (Ding and Davies, 1987). In this work, two recursion relations 

respectively defined by De Boor (1978) and Sanchez-Reyes (1992) were implemented. 
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2.4. Geometric modeling 

The ith B-spline basis function of order k defined by the De Boor (1978) recurrence 

formula is: 

1 if Ui < tj < Ui+i 
NiAtj) - | 0 otherwise 

(2.4) 

Nub) = -JL-JO-Nfo) + Ui+k tj AW-ife) 
Ui+k-l — Ui Ui+k — Ui+i 

Computation of a set of basis functions requires specification of a knot vector U 

and the order k. Once the degree is fixed, the function Ni,k(tj) is only determined 

by the knot vector. Modifying the position of one or more knots will change the 

association between basis functions and knot spans, and hence change the shape of 

the curve. Knot vectors can be uniform, non-periodic, and nonuniform (Anand, 1993). 

In this work, only non-periodic knot vectors were considered. 

A non-periodic knot vector has repeated knot values at the ends with multiplicity 

equal to the order of the B-spline function k and internal knots equally spaced (Anand, 

1993). The non-periodic knot vector provides basis functions defined in the complete 

parameter range, and the curve always interpolates the first and last control points 

(Figure 2.6). A non-periodic knot vector can be calculated by the following equation: 

Ui = 0 for i < k 

m = i — k — 1 for k < i <n (2.5) 

Ui = n — k + 2 for i > n 

Given a parameter value tj, which is in a knot span [u^ Ui+i), Niti(tj) is the only 

non-zero basis function of order k on the ith knot span [wi? Mi+1). For A; > 1, N^tj) 

is a linear combination of two B-spline basis functions of order (k — 1) in the ith and 

(i + l)th knot spans. Therefore, Ni>k(tj) can be generated using a truncated triangular 

table (Figure 2.5). All derivatives of Nitk(tj) exist in the interior of a knot span (Piegl 

and Tiller, 1997). 
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[Ui,ui+1) Ni^tj) 

X 
0 elsewhere ^ *** 

y 

_ Ni-2t3(tj) 

Wi-i,2(t;) 

. ( * j ) ^ f ^ ^ - 1 , 3 ^ ) ^ 
^ * , ,S* ^ 

^ , 2 ( * j ) 

^ NUtj) ^ 
•*» 

0 elsewhere *•>» 

^ 

Ni-, 

Ni. 

iV 

-k,k{tj) 

fe+i,fe(*j) 

• 
• 
• 

• 
• 
• 

-i,fc(*j) 

i,k(tj) 

Figure 2.5: The truncated triangular table (Piegl and Tiller, 1997) 

An example of a quadratic B-spline curve, interpolates a set of data points, is 

shown in Figure 2.6. The given data points are Do(0,1), Z?i(0.2,1.5), D2(0.5,1.8), 

1)3(0.8,1.2), and D4(0.99,0.6), which correspond to a set of parameter values t0 = 0, 

h — 0.2, ti — 0.5, t% = 0.8, and t± — 0.99. This B-spline curve is defined by five control 

points P0, P1, • • •, and JP4, and a non-periodic knot vector [0,0,0,1/3,2/3,1,1,1]. A 

plot of the basis functions for this non-periodic quadratic B-spline over five control 

points is shown in Figure 2.7. 

In summary, the shape of a B-spline curve can be changed by modifying one or 

more of these control parameters: the number and positions of control points, the 

number and positions of knots, and the order of the curve. The aim of the present 

work is modifying these control parameters correctly and efficiently in a B-spline 

curve fitting method. 
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2.4. Geometric modeling 

i i i i i i i 

tQ = 0 t1 = 0.2 t2 = 0.5 t3 = 0.8 t4 = 0.99 

Figure 2.6: A quadratic B-spline curve 

2.4.3 B-spline curve approximation 

The mathematical approaches of curve fitting include interpolation and approxima­

tion. In interpolation, the curve passes through every data point precisely (Fig­

ure 2.8(a)). In approximation, the constructed curve passes near the original points 

smoothly (Figure 2.8(b)), rather than precisely satisfy the given data. The digital 

image data obtained from optical equipment are inherently noisy. In this case, using 

an interpolation approach introduces an unnecessary over-fitting. In the present work, 

an approximation approach was chosen because it can capture the general trend in 

the data and eliminate the undesired effects of noise. 

In approximation, the fitting error need to be checked to assure it is within a 

tolerance (Piegl and Tiller, 1997). Usually, it is difficult to know in advance how 

many control points are required in order to obtain the desired accuracy. The iterative 

numerical optimization procedure is computationally expensive and time-consuming. 
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1 

0.8 

0.6 

0.4 

0.2 

0 " " 1/3 2/3 " ' '1 

Figure 2.7: Plot of B-spline basis functions for a non-periodic quadratic B-spline over 
five control points 

A better approach is to reformulate the problem in order to minimize the distance 

between the given data points and the curve. The key element of this method is to 

fit an approximation curve to the given data with a fixed number of control points. 

This is a linear optimization problem, as the control points are the only unknowns 

(degree and knots have been preselected). 

The given data points are Do, D\, • • • ,Dh- Each data point Dj is corresponded 

to a parameter £,-. The corresponding point of tj on the B-spline curve is C(tj). The 

fitting error is the distance between Dj and C(tj). The sum of all squared error 

distance is: 
h 

/ (Po,--- ,Pn) = £ l A - - C f e ) | 2 (2.6) 
i=0 

The aim of the curve approximation is to find the control points that minimize the 

function /(Po> • •' •> Pn)- This optimization problem can be solved using linear least 

square regression. 
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(a) Interpolation 

'• o~ na . o 
-6 "oUT.To.9o...a. 

(b) Approximation (10 control points) 

(c) Approximation (3 control points) (d) Approximation (18 control points) 

Figure 2.8: B-spline interpolation and approximation 

The accuracy of the B-spline approximation depends on the number of control 

points. In the approximation, the number of control points should be greater than 

the order of the spline (Piegl and Tiller, 1997). In general, the fit of the B-spline 

improves as the number of control points increase. However, as the number of control 

points approached the number of data points, undesirable shapes can occur (Piegl 

and Tiller, 1997). There exists a trade-off between approximation error and the 

number of control points. Figures 2.8(b) to 2.8(d) show examples of B-spline curve 

approximation with different number of control points. In Figure 2.8(b) a fit with ten 

control points gives an accurate approximation. Figure 2.8(c) shows a fit with three 

control points (inaccuracy), whereas Figure 2.8(d) depicts a fit with 18 control points 

(over-fitting). 
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Procedure for Strain Measurement by 
Digital Imaging x 

3.1 Introduction 

Digital imaging is a technique that acquires and subsequently processes a visual image 

of a physical object into a digital format. The digital image can be readily processed 

to provide quantitative information about the object being studied. Use of digital 

imaging ranges from large scale deformation analysis (Yoneyama et al, 2007) to 

localized elastic stress behavior (Chu et al., 1985). The advantages of digital imaging 

are that it is non-contacting, is technologically accessible (i.e. equipment necessary to 

obtain and manipulate digital images is readily available) and can be applied either 

in close proximity or remotely to the object being considered. These attributes of 

digital imaging make it a suitable technology for evaluation and analysis of material 

processing techniques such as pipe forming. 

In the present work, a digital imaging procedure has been developed to calculate 

1A version of this chapter has been accepted for publication by Materials Science and Technology 
on 8 February 2008 
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3.2. Background 

local strain in a forming process. An electric resistance welded (ERW) pipe forming 

operation was used to illustrate the proposed procedure. The procedure involves 

obtaining a series of digital images along the length of the pipe forming process. 

These images were processed to obtain discrete spatial data, i.e. x-y positioning, 

of the pipe shape as it is formed. A B-spline curve was fit to the discrete spatial 

data and used to compute the curvature of the profile. The curvature was then 

used to calculate the deformation strains around the circumference of the pipe. The 

deformation strains calculated from the digital imaging technique were compared to 

strain gauge measurements to validate the proposed technique. 

3.2 Background 

Digital imaging has been successfully used to obtain deformation information from 

large scale systems, i.e. deformation of a bridge (Yoneyama et al, 2007), to micro scale 

behaviour such as elastic stress analysis (Chu et al, 1985) or sheet metal forming 

(Lee and Hsu, 1994). For the large scale bridge analysis (Yoneyama et al, 2007), 

displacement values were obtained by direct comparison of digital images of the bridge 

before and after loading. Conversely, in sheet metal forming (Lee and Hsu, 1994), 

measured strains are determined from imaging of a circle grid array applied to the 

sheet metal. 

3.2.1 Deformation measurements using digital imaging 

To quantify the effect of loading on bridge displacement Yoneyama et al. (2007), 

acquired digital images of a main bridge girder surface before and after loading. 

Using a digital image correlation technique, light intensity patterns of the bridge 

were obtained from both the unloaded bridge and loaded bridge. A subset from the 

undeformed image was chosen, and its location in the deformed image is then found. 

The displacement of this subset can be determined by the correlation calculation. 

Chu et al. (1985) developed a digital imaging technique for use in experimental 

stress analysis in which a digital camera was used to record the intensity patterns 

of deformed and undeformed objects. From each image, a set of discrete intensity 

values (grey-level) were obtained with intensity value corresponding to a geometric 
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3.2. Background 

coordinate on the object surface. Bilinear and polynomial interpolation was used to 

fit surfaces to the discrete data. Finite-strain-tensor equations were applied to the 

continuous intensity pattern to obtain the stress profile. 

Circle grid array (CGA) is a well established method of strain analysis in sheet-

forming processes (Hsu, 2003). In this procedure a circle grid (of known dimensions) is 

physically etched on to the surface of the undeformed sheet metal. During the forming 

process, the grid will deform with the sheet metal. By comparing the deformed grid 

with the original grid, the major and minor forming strains can be obtained. To 

efficiently measure grid deformation, an automated digital-image-processing system 

has been developed by Lee and Hsu (1994). In this system, by applying pattern 

recognition algorithms, images of the deformed grids are digitized. The mathematical 

relationship between the deformed grid and the x-y coordinates of the sampling points 

is constructed by curve optimization (regression analysis). The localized major and 

minor strain can then calculated by using the length of major and minor axis of the 

deformed grid and the original circle radius. 

Although the measurement of strain using digital imaging in conjunction with 

CGAs is efficient and accurate, the method has some disadvantages. Firstly, a grid 

must be applied to the sheet metal (non-contacting advantage of direct digital imaging 

is nullified). Secondly, to obtain dynamic forming information, the grids must be 

continually in the line of sight of the digital camera. For a sheet metal bulge test 

this is not difficult. However for other forming process, such as ERW pipe forming, 

the equipment may surround the pipe and limit the line-of-sight of the camera. Also, 

damage to the grid (by the forming equipment) can occur if the grid is applied to the 

outer surface of the pipe. If the grid is applied to the interior of the pipe (away from 

the damaging effects of the forming equipment) then it is difficult to keep the grid in 

the line-of-sight of the digital camera. 

3.2.2 Electric resistance welded (ERW) pipe forming 

Electric resistance welded (ERW) pipe forming is a technology used to produce steel 

pipe (< 600 mm) from skelp. Figure 3.1 is a schematic of the ERW forming process 

and shows the different forming stages in this process including: perform rolling, a 

series of adjustable cage forming rolls and finishing rolls. Each stage in the forming 

25 



3.2. Background 

process combines together to convert the initial fiat steel skelp into a near circular pipe 

in preparation for the actual ERW welding process. The complexity of forming process 

can result in different strain histories at different positions around the periphery of 

the pipe. These complex strain histories may affect the final mechanical properties of 

the pipe via the Bauschinger effect (Wiskel et al., 2004). An effective and non-invasive 

strain measurement is required to understand these strain histories particularly as the 

forming setup is frequently changed to accommodate different pipe size. 

Flattening Rolls 

Figure 3.1: Schematic of ERW pipe forming process (Rieder, 2003) 

Strain measurements during ERW pipe forming can be made using grid measure­

ments (subject to the limitations discussed in the section on 'deformation measure­

ments using digital imaging'), or strain gauges. Application of the latter is relatively 

time consuming, provides only discrete forming information (i.e. only where strain 

gauges are placed) and, as with a CGA, is invasive. A digital image based approach 

to strain measurement can overcome some of these issues. 

In this work, a procedure to obtain local strain measurements in an ERW pipe 

forming process using digital imaging (without the application of grids) is proposed 

in which the forming strains are obtained directly from the localized curvature of the 

pipe profile. The procedure developed to achieve this requires firstly, acquisition of 
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3.3. Acquiring spatial data by digital imaging 

spatial data from digital images, secondly, the application of B-spline curve fitting to 

obtain a continuous pipe profile and finally, calculation of the local curvature (and 

hence strain) from the continuous B-spline pipe profile. These procedural steps are 

detailed in the following sections. 

3.3 Acquiring spatial data by digital imaging 

The acquisition of spatial data from a digital image was done in two steps. First, 

digital images of the object were captured by an image acquisition device. Second, 

image processing procedure was used to extract the spatial information of the object 

from the digital images. 

3.3.1 Image acquisition 

The most commonly used image acquisition device is Charge Coupled Device camera 

(CCD), which is a very mature technology and has high sensitivity at low illumination 

levels. CCD camera converts the captured visual image into a continuous electrical 

signal. These electrical signals are then converted into a digital image, i.e. a set 

of discrete picture elements or pixels. Each pixel contains a tonal value, e.g. grey 

scale value, which is stored in the form of binary code for future image processing. 

Figure 3.2 shows the image acquisition system inside the ERW forming process used to 

obtain the digital image at the cage 1 location for a 114.3 mm outside diameter (NPS 

4) pipe (Rieder, 2003). The circular target at the centre of the image is a calibration 

target. The calibration target plane was orthogonal to the cameras line of sight. The 

magnetic tape was in the same plane as the calibration target (Rieder, 2003). 

3.3.2 Image processing 

Image processing involves extracting the pertinent features from the digital images, 

e.g. Figure 3.2. In the present work, image processing was carried out in two 

steps: image formation processing and feature extraction. Image formation processing 

includes geometric transformation, e.g. rotation or scaling, and colour corrections, 

e.g. brightness and contrast adjustments (Rieder, 2003). Feature extraction involves 
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3.4. Profile fitting calculation 

Figure 3.2: Digital imaging acquisition at cage 1 

filtering out the less relevant information and preserving the important features of the 

image (Rieder, 2003). In the present work feature extraction amounts to obtaining 

x-y coordinates that correspond to the pipe profile in the raw image. 

Feature extraction of the pipe profile was obtained in several steps. Firstly, image 

processing software was used to obtain the pipe image by evaluating the grey scale of 

each individual pixel of the image relative to a critical value. To enhance the ability 

to distinguish the pipe profile from extraneous information, a magnetic strip of low 

grey scale value was placed on the pipe prior to digital image acquisition. From a 

known calibration target, the local image coordinates (of each pixel exceeding the 

critical value) were converted to Cartesian coordinates (Rieder, 2003). Figure 3.3 

shows the inside profile after processing, which is extracted from Figure 3.2. 

3.4 Profile fitting calculation 

The digital image processing discussed in Section 3.3 results in a spatial plot of the 

inside profile of the pipe, e.g. Figure 3.2. To obtain strain information it is necessary 
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Figure 3.3: Cartesian plot of cage 1 (extrated digital image from Figure 3.2) 

to fit a continuous curve to the discrete data. Mathematical approaches to curve 

fitting can be based on either interpolation, which constructs a curve, passes through 

every point, or approximation, which represents a curve that passes near the original 

points smoothly (Piegl and Tiller, 1997). In most digital imaging, data obtained from 

optical equipment will be inherently noisy. As a result an approximation approach is 

used because it can capture the general trend in the data. 

Polynomial and spline functions are commonly used to approximate an arbitrary 

curve (Dewey, 1988; Anand, 1993). In this work, a B-spline curve approximation was 

chosen. The advantages of B-spline include the following. First, a very accurate 

approximation can be obtained using low-degree B-spline curves (Anand, 1993). 

Second, any degree of differentiability of the approximation can be guaranteed by 

choosing a sufficiently high-degree B-spline curve (Anand, 1993). 
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3.4. Profile fitting calculation 

3.4.1 B-spline curve fitting 

The discrete data points are (xi,yi), which can be represented by the following 

equation: 

Vi = f(xi) + u (i = 1, • • • , m) (3.1) 

where {X{} is a nondecreasing sequence (i.e. Xi < xi+x), f(xi) is an B-spline function 

fitting the curve, e» is the error of the ith point. 

The general form of B-spline function is given by (Anand, 1993): 

n 

3=0 

where {pj} is the set of control points which can be considered as the coefficients of 

the B-spline function, and Njjk(xi) is the j t h B-spline basis function of order k which 

can be calculated from the De Boor (1978) recursion relation: 

"j,iw) - s 0 o t h e r w i s e 

Nijcfa) = +Xi tj, Nj^ixi) + *j+k
 +

Xi Nj+1M1(Xi) 

(3.3) 

Let T = {t0, • • • ,tj,- • • , tn+k\ be a nondecreasing sequence of real number, i.e. tj < 

tj+i, (j — 0, • • • ,n + k). The {tj} are called knots, and T is the knot vector which is 

chosen with the following rule: 

{ a if j < k 

b if j > n + 1 
where a is the minimum value of {xi}; b is the maximum value of {xi}. 

The coefficients of the B-spline function {pj} can be estimated by minimize the 

objective function Equation (3.5): 

m 

m i n y > - f(Xi))
2 (3.5) 

Pi 1=1> 
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3.4. Profile fitting calculation 

Consider Equation (3.1) as a system of linear equations: 

/ iVo>fc(a;i) Nu(Xl) . . . Nn<k(Xl) \ ( p0 \ 
V2 No,k(x2) Nltk(x2) ... Nn>k(x2) 

\ y m J \ N0,k(xm) Nitk(xm) . . . Nntk(xm) J \Pn ) \ em / 
v ' N v ' V v ' > v ' 

Pi 
+ 

C2 
(3.6) 

y N 

The linear least-squares estimator for p is: 

p = (N T N)" 1 N T y (3.7) 

where p = {pQ, • • • ,pj,- • • ,pn}- This method is computationally easy to do for large 
data sets. 

Thus the B-spline curve approximation values /(#*) are: 

n 

f(xi) = J2PJ
 NiAxi) 

3=0 

(3.8) 

A kth order B-spline basis function generates a piecewise (k — l)st degree poly­

nomial that is Ck~2 continuous, which means the position and [ 1 to (k — 2) ] 

derivatives are continuous. Considering the continuity of the curvature, i.e. the second 

derivatives are continuous, the third degree continuity of the curve must be satisfied, 

which means the order of the curve must be at least four. However, an order higher 

than fifth could produce undesirable shape perturbations (Piegl and Tiller, 1997). As 

a result, the ideal order for a B-spline for estimation of curvature is either four or 

five. 

The accuracy of the B-spline fit also depends on the number of control points 

chosen. The number of control points must be greater than the order of the spline. 

In general the fit of the B-spline improves as the number of control points increases 

(Piegl and Tiller, 1997). However, as the number of control points approaches the 

number of data points, undesirable shapes can occur if the data exhibits noise or 

unwanted artifacts (Piegl and Tiller, 1997). The trade-off between approximation 

error and the number of control points can be calculate by the following equation. 

SSE(n) 
min<S(ra) = 

SSE(n - 1) 
+ n x weight (n > k) (3.9) 
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3.4. Profile fitting calculation 

where n is the number of control points, k is the order of B-spline curve, SSE(n) is 

the Sum of Squared Error: 

SSE(n) = ; > > - £ £ j V j ) f e ( ^ (3.10) 

and w is a weighting factor chosen to ensure that the two terms on the right-hand side 

of Equation (3.9) will be of the same order of magnitude. In this work a weighting 

value of 0.05 was used. The value of n which can give the minimum value of S(n) in 

Equation (3.9) is the optimal number of control points. 

3.4.2 Application of B-spline curve fitting to cage 1 

The proceeding mathematical concepts are applied to the Cartesian data for cage 1, 

Figure 3.2. The optimal number of control points for cage 1 was determined to be 11 

and was obtained by minimizing the value of S(n) in Equation (3.9), minimization is 

shown graphically in Figure 3.4. 
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Figure 3.4: Optimal number of control points in cage 1 is 11 
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3.4. Profile fitting calculation 

As detailed in Section 3.4.1, a fifth-order B-spline curve, 11 control points, was 

then used to approximate the image data for cage 1. A comparison between the fitted 

B-spline curve and the image data is shown in Figure 3.5. 

-50 0 50 
X coordinates (mm) 

Figure 3.5: Measured curve for cage 1 v.s. calculated fifth order B-spline curve 

3.4.3 Curvature of image 

(3.11) 

The bending strain along the pipe can be computed using the estimated pipe curva­

ture. An equation for the calculation of the bending strains in the circumferential 

direction is presented by Noronha et al. (2005): 

_ t ( 1 J_ 
£~ 2 V ^ ~ ^ . 

where R0 is the radius of curvature of the undeformed pipe surface which is close to 

infinite, t is the wall thickness in the longitudinal direction, and Ri is the external 

surface radii of curvature which is the inverse of curvature. Thus to obtain strain 

values from the digital image it is necessary to determine the local curvature of the 

pipe from the B-splines. 
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3.4. Profile fitting calculation 

3.4.4 Local curvature calculations 

The B-spline curve function f(xi), calculated in Equation (3.8), can be used to 

compute the curvature of the B-spline curve at any point, X{, using the following 

equation (Stewart, 1994): 

tt(Xi) = 
l/"(*«)l 

1 + (/'(*i))2] 
21 3/2 

(3.12) 

Since the basis function N3^{xi) is a function of Xi, and satisfies the second-degree 

differentiability, the first and second derivatives of the B-spline curve are (Barone, 

2001): 

3=0 

n 

j=0 

(3.13) 

where {pj} is the set of control points, which are calculated by Equation (3.7), and 

Njtk(xi) and N"tk(xi) are the first and second derivatives of the B-spline basis function 

(Noronha et al, 2005): 

N'M) 
Nj,k-i(xi) + (xt - t^N^^Xi) (tj+k - s«)iVj+i,fc-i(3:0 - JVj+i,fc-i(^) 

t •j+k—l *j + tj+k — tj+l 

(3.14) 

AT" ( \ _ N3*-l(Xi) + (X* ~ tj)Njfi-lfa) {tj+k - ^)^"+l,fc-l(^) - Nj+1,k-l{Xi) 
Iyij,k\xi) — 7 7 1 7 7 

tj+k-1 — tj Cj+fe ~~ Ej+1 

Calculated predicted curvature values, using Equations (3.11-3.14), can exhibit 

fluctuations caused by numerical differentiation. In order to eliminate these process­

ing artefacts, a local averaging approach was used. The averaged curvature value K 

is related to the raw curvature value n by the following equation: 

i rxo—S 

K{x) = -z / K{x)dx 
z<-> Jx0+S 

(3.15) 
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3.5. Summary of proposed procedure 

where the span S can be used to specify the radius of smoothing, the larger the span 

the smoother the result. An example of the effect on local averaging on the calculated 

curvature is shown in Figure 3.6, for cage 1, which compares the calculated curvature 

and the smoothed curvature. 
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Figure 3.6: Curvature for cage 1 before and after smoothing 

3.5 Summary of proposed procedure 

Step 1: Obtain Cartesian coordinates of 2D pipe images at each forming stage using 

digital imaging processing described in Section 3.3 

Step 2: Use fifth-order B-spline curve to fit the data points. The number of control 

points can be chosen to minimize the value of Equation (3.5). The weight 

{pj} of each spline curve in Equation (3.2) can be chosen by using linear 

least square parameter estimation as shown in Equation (3.7). 

Step 3: Calculate the first and second derivative of B-spline curve function by using 

Equation (3.13). 
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3.6. Comparison of digital strain measurements with strain gauges 

Step 4: Calculate the local curvature of the B-spline curve by using Equation (3.12). 

Step 5: Smooth the curvature of B-spline curve by using the Local Averaging ap­

proach using Equation (3.14). 

Step 6: Calculate the bending strain in the circumferential direction by using Equa­

tion (3.11). 

3.6 Comparison of digital strain measurements with 
strain gauges 

The veracity of the proceeding procedure can be confirmed by comparing the cal­

culated strain obtained via digital imaging with the measured strain obtained using 

strain gauges applied to the inside of 114.3 mm outside diameter (NPS 4) pipe. 

As the strain measurement sensors are located along the pipe profile, the measured 

strain values are known as a function of arc length of the pipe profile. Therefore, the 

predicted strain values also need to be represented as a function of arc length. The 

first derivatives of the B-spline curve f'(x) is continuous on [c, d], then the length of 

the curve y = f(x), (c < x < d) is (Stewart, 1994): 

L= y/1 + [f'(x)]2dx (3.16) 

Adapted Simpon's Rule (Cheney and Kincaid, 1999) was employed to calculate the 

integral in Equation (3.16). 

The strains in the circumferential direction of the pipe were calculated by using 

Equation (3.11), where RQ is infinite, and 1/R\ is the smoothed curvature value and 

t, the wall thickness in the longitudinal direction, is 4.0 mm. The predicted strains 

for cage 1 are shown in Figure 3.7. The procedure and comparisons were repeated 

for cage 2 and cage 3 (Figure 3.8 and Figure 3.9 respectively). The strains obtained 

from the strain gauges at the respective cages are included in Figures 3.7-3.9. 

36 



3.6. Comparison of digital strain measurements with strain gauges 

2%r 

1.5% • 

1%-

0.5% 

S3 0 % 

> 
c 

W5 

-0.5% • 

- 1 % 

-1.5%-

-2%-

-2.5 

1 

V^.Q. 

i i i i i 

——Predicted strain values (cagel) 
O Measured strain values (cagel) • 

"»-». ° y 

i i 

o 

Oyr 

O^. 

^^ 

0 50 100 150 200 250 300 350 
Arc length (mm) 

Figure 3.7: Comparison between predicted and measured strains (cage 1) 

2%r 

1.5%-

1%-

0.5% 

§3 0% 

•a 
% -0.5% • 

1 
55 - 1 % • 

-1.5%-

-2.5% • 

.... a V 

^ ^ . Q 

i i i 

— Predicted strain values (cage2) 
O Measured strain values (cage2) -

• • • © 

byf 

i 

O / i 

i 

50 100 150 200 250 300 350 
Arc length ( mm ) 

Figure 3.8: Comparison between predicted and measured strains (cage 2) 

37 



3.7. Conclusions 

2% 

1.5% 

1% 

0.5% 

$ 0% 

% -0.5% 

53 - 1 % 

-1.5% 

-2% 

-2.5% 

0 50 100 150 200 250 300 350 
Arc length (mm) 

Figure 3.9: Comparison between predicted and measured strains (cage 3) 

In all three figures, the trend in the predicted strain values obtained by the 

proposed procedure agrees reasonably well with the trend obtained (independently) 

by strain gauges. While specific strain gauge values may be slightly different than the 

values predicted by our approach, this difference maybe attributed to the physical 

dimensions of the strain gauges (10 mm long) and/or deviations in the exact forming 

setup between the digital image pipe analysis and the strain gauge measurements. 

3.7 Conclusions 
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Digital imaging based techniques can be used to quickly and efficiently to analyze 

process information from a physical object. In this work, a method is proposed for 

measuring strain values in a pipe forming process, using a spatial pipe profile obtained 

from a digital image. Following spatial digitization of the image, a fifth order B-spline 

curve, with the optimal number of control points, was used to generate a continuous 

image profile. The weight of the B-spline function is calculated by using linear least 

square regression and a local averaging approach is applied to smooth the fluctuations 
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3.7. Conclusions 

of the calculated curvature of B-spline curve. The strain values are calculated by 

using the mathematical relation between the strain and the radius of curvature. The 

procedure was implemented for an electric resistance welded (ERW) pipe forming 

process and the technique validated against the strain gauge data. 

39 



References 

References 

Anand, Vera B. (1993). Computer Graphics and Geometric Modeling for Engineers. 

John Wiley & Sons, Inc. 

Barone, S. (2001). Gear geometric design by B-spline curve fitting and sweep surface 

modelling. Engineering with Computers 17(1), 66-74. 

Cheney, W. and D. Kincaid (1999). Numerical Mathematics and Computing. 4th ed.. 

Brooks/Cole Publishing Company. 

Chu, T. C , W. F. Ranson and M. A. Sutton (1985). Applications of digital image 

coorelation techniques to experimental mechanics. Experimental Mechanics 

25(23), 232-244. 

De Boor, C. (1978). A Practical Guide to Splines. Springer. 

Dewey, Bruce R. (1988). Computer Graphics for Engineers. Harper & Row. 

Hsu, Q. C. (2003). Comparison of different analysis models to measure plastic strains 

on sheet metal forming parts by digital image processing. International Journal 

of Machine Tools and Manufacture 43(5), 515-521. 

Lee, R.S. and Q.C. Hsu (1994). Image-processing system for circular-grid analysis in 

sheet-metal forming. Experimental Mechanics pp. 108-115. 

Noronha, Dauro B., Ricardo R. Martins, Breno P. Jacob and Eduardo Souza (2005). 

The use of B-spline in the assessment of strain levels associated with plain dents. 

Instituto Brasileiro de Petroleo e Gas - IBP. Rio de Janeiro, Brazier. 

Piegl, Les and Wayne Tiller (1997). The NURBS Book. 2nd ed.. Springer. 

Rieder, Manuel Dominique (2003). Mathematical modeling of the Bauschinger effect 

in ERW pipeforming. Master's thesis. University of Alberta. 

Stewart, James (1994). Calculus. 3rd ed.. Brooks/Cole Publishing Company. 

Wiskel, J.B., M. Rieder and H. Henein (2004). Kinematic behavior of micro alloyed 

steels under complex forming conditions. Canadian Metallurgical Quarterly 

43(1), 125-136. 

40 



References 

Yoneyama, S., A. Kitagawa, S. Iwata, K. Tani, H. Kikuta, A. Kitagawa, K. Tani 

S. Iwata and H. Kikuta (2007). Bridge deflection measurement using digital 

image correlation. Experimental Techniques 31(1), 34-40. 

41 



Numerical Approximation Methods for 
Geometric Modeling 

4.1 Introduction 

In the pipe-rolling industry, accurate roll production is one of the major concerns 

for producers. The complexity of the roll forming process can result in unique 

deformation histories within and between forming steps. An accurate understanding 

of these deformations is necessary to access their effects on mechanical properties 

of the material, and subsequently to improve the pipe quality. Several techniques 

have been developed to measure deformations in the roll forming process. These 

techniques include: strain gauges (Rieder, 2003), grid measurements (Hsu, 2003) and 

digital imaging (Deng et al, 2008). Both strain gauges and grid measurements are 

invasive and relatively time consuming. Strain gauges provide only discrete forming 

information at the points where strain gauges are placed, while grid measurements 

are unavailable to provide the dynamic information. 

Digital imaging is a technique that acquires a series of visual images from a phys­

ical object. Compared with the other two measurement devices, the digital imaging 
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4.1. Introduction 

technique is generally insensitive to environmental factors, e.g. high temperature and 

electromagnetic fields. It is non-invasive to the object being studied, and is non-

limited to the position and the type of forming equipment. Therefore, it can be 

applied either in close proximity or remote from the object being considered. The 

qualitative information included in digital images can be subsequently processed to 

provide the quantitative information as a continuous function, i.e. at every point on 

the studied object. These advantages of digital imaging make it a suitable technique 

for analyzing pipe forming processes. 

Deng et al. (2008) developed a digital imaging based technique to quantify the 

local strain behavior in the metal forming process, using an electric resistance welded 

(ERW) pipe forming operation as a study case. The continuous curve function of 

the deformed skelp profile was generated from the discrete digital spatial data by 

one-dimensional B-spline approximation method. The local strains were calculated 

by evaluating the curvature of the skelp profile. The effectiveness and accuracy of 

this technique was confirmed by comparing the strains calculated from the digital 

imaging technique with strain gauge measurements. 

The digital imaging based technique proposed by Deng et al. (2008) can be used to 

analyze the strain histories in a roll forming process quickly and efficiently. However, 

the one-dimensional approximation method implemented in this technique is only 

suitable for curves that project one-to-one onto the x-axis or y-axis. Because of this 

limitation, one-dimensional B-spline approximation method is difficult to be applied 

on the skelp profiles in the last few stages of the ERW pipe forming. Therefore, it 

is necessary to implement a suitable numerical approximation method for generating 

an accurate description of skelp profile and subsequently calculating the transverse 

plastic strains from the local curvature. 

In the present work, three B-spline approximation methods (one-dimensional, 

two-dimensional and trigonometric B-spline) were investigated to reconstruct the 

continuous curve of the skelp profiles from the discrete digital data. These preceding 

mathematical concepts were applied to approximate the spatial data of cage 9 in 

an ERW forming operation, and subsequently to estimate the deformation strains 

using the procedure proposed by Deng et al. (2008). The strain values calculated 

respectively from the three B-spline approximation methods are compared with each 

other and validated against the strain gauge measurements. 
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4.2. Background 

4.2 Background 

The digital imaging based technique has been successfully used to measure strain 

values in an electric resistance welded (ERW) pipe forming process (Deng et al, 2008). 

The digital images of the pipe were captured at a series of locations along the length 

of the forming process. These images were processed to obtain the spatial data of 

pipe profiles, which was subsequently used to predict the strain values. 

4.2.1 Electric resistance welded pipe forming 

Electric resistance welded (ERW) pipe forming is a technique used to produce thin-

walled small diameter pipe with high strength steels. A schematic of this process is 

shown in Figure 4.1. The forming process is typically comprised of a series of stages: 

flattening rolls, preform rolls, adjustable cage forming rolls and finishing rolls. 

Flattening Rolls 

Top Preform Roll 

Cage Rolls 

Bottom Preform Roll 

Top Fin Roll 

I ERW, Annsakr 
I Sizing Rolls 

J I 

Bottom Fin Roll 

Figure 4.1: Schematic of ERW pipe forming process (Rieder, 2003) 

The starting material (coiled steel skelp) is sent into the flattening rolls to create 

the fiat steel skelp. Then the skelp is deformed into a curved cross-section by several 

preform rolls before entering the cage forming section. A series of adjustable cage 

rollers guide the edges of the skelp from the preform section to the fin section. At 
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4.2. Background 

the end of the cage section, the cross-section shape of the skelp converts into a half 

ellipse. The opposing concave rollers in the fin section produce a progressively rounder 

shape. After the final fin roller, the two edges of the skelp are pressed together for 

the following electric resistance welding. 

The complexity of this forming process, particularly as the forming setup is 

frequently changed to accommodate different pipe sizes, can result in different strain 

histories at different positions around the periphery of the pipe. To understand these 

deformations and their effect on subsequent geometry and mechanical properties of 

the pipe, it is necessary to develop an effective strain measurement for this process. 

4.2.2 Acquiring spatial data by digital imaging 

The acquisition of spatial data from a digital image was done in two steps: image 

acquisition and image processing. A series of digital images of the studied object were 

captured by an image acquisition device (CCD camera) at discrete locations (i.e. at 

each forming stage) along the length of the forming process. A bright identification 

strip was used to provide the inside profile of the pipe. The image processing 

software was used to enhance the contrast of the identification strip against the dark 

background. An imaging process software was used to isolate the identification strip 

from the dark background. Figure 4.2 shows the processed pipe profile image at 

cage 9. 

Each digital image is composed of a series of pixels which contains a tonal value 

(e.g. gray scale value) and a position value (e.g. pixel coordinates). A MATLAB code 

was used to evaluate the gray scale of each individual pixel of the image relative to 

a critical value (the white strip provided the necessary contrast). The local image 

coordinates were converted to Cartesian coordinates by using the calibration target 

(Rieder, 2003). Figure 4.3 shows the Cartesian coordinates of the inside pipe profile 

obtained from the image shown in Figure 4.2. 
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4.2. Background 

Figure 4.2: Digital imaging acquisition at cage 9 

155 

140-

120-

100-

« • 

c 
T3 
k> 
O 

o o 

80 

60 

40 

20-

o \ 
- o : • • • % • ; -

- 6 fy -
b % 

" o b " 

-• ! O I I : • £ I -

-80 -60 ^10 -20 0 20 40 60 80 
X coordinates (mm) 

Figure 4.3: Cartesian plot of cage 9 
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4.3. Numerical approximation method 

4.3 Numerical approximation method 

The digital image processing discussed in the Section 4.2.2 results in a spatial plot 

of the inside profile of the pipe (see Figure 4.3). To obtain strain information, it 

is necessary to generate a mathematical model that describes the skelp profile. A 

B-spline approximation method was chosen to generate the numerical model because 

it can capture the general trend in the data (Piegl and Tiller, 1997). 

The accuracy of the B-spline fitting depends on the number of control points 

chosen (Piegl and Tiller, 1997). In general, the accuracy of the approximation 

improves as the number of control points increases. However, as the number of 

control points approaches the number of data points, over-fitting can occur if the 

data exhibits noise or unwanted artifacts. The trade-off between approximation error 

and the number of control points can be calculated by the Bayesian information 

criterion (BIC) (Sanchez et al., 2007) (Equation 4.1): 

BIC(w) = wln(m) + m l n / 'R S S ( n )N j (4.1) 

where n is the number of the control points, m is the number of the data used for 

approximation, and RSS is the sum of squares error between the spatial data and the 

approximated curve with n control points. 

The optimal number of control points can be calculated by minimizing the value of 

BIC from the same group of spatial data. For different spatial data sets, the optimal 

number of control points are different. 

Before proceeding with an analysis of the strain information obtained by digital 

imaging, a comparison among the three B-spline approximation methods (1-D, 2-D 

and trigonometric) was given. These preceding mathematical concepts were applied 

to approximate the spatial data of cage 9, and to estimate the curvature of the 

approximated B-spline curve. 

4.3.1 One-dimensional B-spline approximation 

A one-dimensional B-spline approximation algorithm has been used to generate the 

geometry of the skelp in ERW pipe forming (Deng et al., 2008). The constraint 
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4.3. Numerical approximation method 

imposed on this algorithm is: the knot vector T — {to, •• • ,tj,--- ,tn+k} must be 

a non-decreasing order, i.e. tj < tj+i (De Boor, 1978). This non-parametrical 

representation is the easiest one with which to work, but only curves that project 

one-to-one onto the x-axis can be described (Sanchez-Reyes, 1990). 

For a curve which is not a single-valued function of x coordinates, the approxima­

tion needs to be applied to three or more separate segments of the curve. The profiles 

of cage 9, shown in Figure 4.4, is a curve sweeping more than 180°. For this curve, 

a given x-coordinate value X\ has two corresponding y-coordinate values y\ and yi. 

Before proceeding with the one-dimensional B-spline approximation, the profile curve 

was separated to left segment, middle segment and right segment (Figure 4.4). 
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Figure 4.4: A curve sweeping more than 180° 
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The discrete data points at left, right and middle segments are (xit,yit), (xn,yri), 

and (xmi, ymi), which can be represented by the following equation: 

%h = fi(Vh) + eh 

xrt = friVn) + £n (4.2) 

„ Vrxix = Jm\xmi) > €wii 

where {yh}, {yn} and {xmi} are nondecreasing sequences, fi(yit), fr(yn) and fm{xm) 

are B-spline functions fitting the segments, and %, tri and emi are the errors of the 

ith point on each segments. 

The B-spline function of each segment is given by (Anand, 1993): 

fi(yii) = ^2pijNijtk(yii) 

n 

(4.3) 
3=0 

where {p/,J, {prj} and {pmj} are the sets of control points which can be considered 

as the coefficients of the B-spline functions of each segment, and iV/ fc(j//J, Nr k(yri) 

and Nm.ik(xmi) are the j t h B-spline basis functions of each segments with order k, 

which can be calculated by Equation (4.4). 

The general B-spline basis function Nj^iui) is defined by the De Boor (1978) 

recursion relation: 

3,1 K l' 1 0 otherwise 

NiA*) = r ^ A - ^ i W + !j+k ^AW-i(0 

(4.4) 

* •j+k-l - t i tj+k — tj+1 

where k is the order of the B-spline, T = {a, • • • , a, 4 , • • • ,tn,b,--- , b} is a nonperi-

k k 

odic knot vector (Anand, 1993). The first and last knots have multiplicity k. Here a 

is the minimum value of {iti}, b is the maximum value of {ui}, and {ifc < • • • < tn}. 
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4.3. Numerical approximation method 

The coefficients of the B-spline function {pj} can be estimated by minimizing the 

objective function Equation 4.5: 

/ m 

i=Q V j = Q 

m / n \ . 

i=0 ^ j=0 / 

m , n s 

/ j I Vrrii ~~ / J Prrij ^mjik {xrm) 

(4.5) 

^ «=o 3=0 

The linear least-squares estimators for p/, p r , and p m are calculated by: 

f ft = ( N ^ N O ^ N ^ x , 

p r = (N P
T N P ) - 1 N P

r x r (4.6) 

where p i = {p t o , • • • ,ptj, • • • , p i n } , p r = {pro, • • • ,pr., • • • ,prn}, a n d 

P m \Pmo i ' ' ' i Prrtj i * " * j Pmn } • 

Thus the B-spline curve approximation values for each segment are given by 

Equation (4.7). 
( n 

j=0 
n 

friVn) = X)PrAM( l / r<) (4-7) 
3=0 

n 

Jm{xmi) = 2_^ Pmj mj,k \xrrii) 
3=0 

A comparison between the three approximation B-spline curves and the image data 

is shown in Figure 4.5. For each segment, the approximation is accurate. However, 

the conjunctions between each segment are discontinuous (Figure 4.6). 
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Figure 4.5: Approximated 1-D B-spline curve v.s. the spatial data 
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Figure 4.6: The combination of the three separated segments 

After the approximation of each segment, the curvature of each segment was 

obtained by using the local curvature calculation described by Deng et al. (2008). 

The smoothed local curvatures of the three approximation segments are shown in 

Figure 4.7. These curvatures are not continuous between each segment. The dis­

continuous parts can be connected smoothly by using local interpolation with weight 

functions (Pobegailo, 1991): 

Q(xi) = (1 - w(xi)) Di(xi) + w{x{) D2{xi) (4.8) 

where D\(xi) and DI{XJ) are the points on the two segments need to be connected, 

w(xi) is a specified weight function which satisfy 0 < w{xi) < 1. The smoothness 

can be achieved by changing the weights. The connected curvatures are show in 

Figure 4.7. The conjunction of these curves leaves sharp edges in the final strain 

estimation (Figure 4.12). 

52 

( 

\ 

1 
1 
1 44 

J34 

31 

30 

28 

/ \ " ^ 

( \ ) 

- < » " ^ ^ ^ S ^ - 5 0 ^ * ^ - 4 5 - 4 0 

r̂  
X \ ; 

\ 
% 

^ 
* ^ _ - - - -

• 

- * 

\ 

\ 

\ 

1 
i 

i / / 
/ 

\ 

\ 
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Figure 4.7: Calculated curvature of cage 9, 1-D B-spline 

4.3.2 Two-dimensional B-Spline approximation 

In the one-dimensional B-spline approximation method, a linear optimization problem 

was set up with the control points as the only unknowns. The least square regression 

was applied to minimize the sum of the error between the fitting points and the 

approximated curve. The control points lie over abscissas regularly spaced along the 

x-axis. 

In two-dimensional B-spline approximation, the least square regression is em­

ployed to solve two linear optimization problems, one with y = fx(ui) that minimizes 

the sum of the vertical distances and the other with x = fy(ui) that minimizes the 

sum of the horizontal distances from the known points to the approximated curve 

(Tsai and Chen, 1994). The discrete data points are (xi,yi), (i = 1, • • • ,m), which 

can be represented by the following equation: 

(4.9) 
Vi = fy(Ui) + 6yi 

where {ui} is a nondecreasing sequence (i.e. Ui < «i+i), fx(ui) and fy(ui) are the x 
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4.3. Numerical approximation method 

and y components of B-spline function fitting the curve, eXt and eyi are the x and y 

components of error at the ith point. 

The form of two-dimensional B-spline function is given by: 

3=0 

(4.10) 

fy(ui)^^2PyjNj,k(ui) 
i=o 

where {pXj} and {pVj} are sets of control points which can be considered to be the 

coefficients of the B-spline function, and Njtk{ui) is the j t h B-spline basis function 

of order k which can be calculated from the De Boor (1978) recursion relation 

(Equation 4.4). 

The coefficients or control points of the B-spline function {pXj} and {pVj} can be 

estimated by minimizing the value of Equation (4.11): 

min Y](xi - fx{ui)f 
1=0 

(4.11) 

min y2(yi - fy(ui)y 
i=0 

The linear least squares estimators for p-̂  and py are: 

p , = (N T N)" 1 N T x 
(4.12) 

py = (N T N)" 1 N T y 

where p^ = {px>0, • • • ,pXtj, • • • ,px,n}, and py = {pyfi, • • • ,Py,j, • • • ,Py,n}-

Thus the two-dimensional B-spline curve approximation values (fx(ui), fv(ui)) can 

be calculated by Equation (4.13). 

fx(ui) = y^;Px,jNj,k(ui) 
3=0 

n 

fy(Ui) = ^Py,jN3\kiUi) 
3=0 

(4.13) 
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4.3. Numerical approximation method 

The curvature of the two-dimensional B-spline curve can be calculated by the 

following equation: 
\Jx Jy Jy Jx 

K{Ui) 
I f H\ 

IX 

(/f + fy'T/2 
(4.14) 

Figure 4.8 represents the approximation curve with 30 control points (the optimal 

number, calculated using BIC). This fitting curve contains undesired fluctuation 

shape at the middle part of the profile. The calculated curvature (before and after 

smoothing) of cage 9 using 2-D B-spline approximation is shown in Figure 4.9. It was 

found that the 2-D B-spline approximation is not accurate and is not suitable for the 

subsequent curvature calculation. 

-80 -60 
X coordinates (mm) 

Figure 4.8: Approximated 2-D B-spline curve v.s. the spatial data 

4.3.3 Trigonometric B-spline approximation 

In the B-spline approximation methods described in Section 4.3.1 and 4.3.2, planar 

curves were described as the graph of a single-valued function y — f(x) in Cartesian 
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Figure 4.9: Calculated curvature of cage 9, 2-D B-spline 

coordinates (x,y). Similarly, single-valued curves r — r(9) can be defined in a system 

of polar coordinates (r, 9). In some applications, like the the near circular pipe profile 

in cage 9, it is very convenient to define the profile in terms of r = r(9), to analyze 

the geometry of the skelp of the pipe. 

The data points in Cartesian coordinates (x^ y^) can be converted to polar coor­

dinates (ri,6i) by the following equations: 

n= \/xi2 + yi 

6; = tan x 
(4.15) 

Then these discrete data can be represented as: 

n = 8(9i) + €i (i = 1, ••• ,m) (4.16) 

where {^} is a nondecreasing sequence (i.e. 9t < 9i+i), 8(9i) is a trigonometric 

B-spline function fitting the curve, and e; is the error of the ith point. 

56 



4.3. Numerical approximation method 

A trigonometric B-spline function is defined as (Sanchez-Reyes, 1992): 
n 

*(*,) = £ > M i i f c ( 0 , ) (4.17) 
3=0 

where 5j is the set of control points which can be considered to be the coefficients 

of the trigonometric B-spline function, and Mjtk(6i) is the normalized trigonometric 

B-spline satisfying the following recursion relation (Sanchez-Reyes, 1992): 

Mjl(0i) = l l ^Jo<Oi<tj+1 1' v ' \ 0 otherwise 
(4.18) 

s i n ^ + n - i j ) sin(tj+fc - tj+1) 

where {ij} are called knots. Let T be the knot sequence (Koch et al, 1995): 

T = {to < ti < • • • < tn+k} 

where 

va = to = • • • = tfc-l) tn+l = • • • = tn+k = #6, 

and where 

{tfc < • • • < 4 } 

where 9a and #*, are the minimum and maximum value of {^}, and (0& — #a) < 27r 

(Casciola and Morigi, 1996). 

The coefficients of the B-spline function {8j} can be estimated by minimizing the 

value of Equation (4.19): 

n n / n \ 2 

i=0 i=0 ^ j=0 ' 

The linear least-squares estimator for 8 is: 

8 = (M T M)- 1 M T r (4.20) 

where 8 = {80, ••• , <$,-, • • • , <5„} 

Thus the approximated trigonometric B-spline curve 5(9i) is: 
n 

<W = £W- f c(0O (4-21) 
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4.3. Numerical approximation method 

A 5th order trigonometric B-spline curve with 12 control points (the optimal 

number, calculated using BIC) was used to approximate the image data for cage 9. 

A comparison between the fitted B-spline curve and the image data is shown in 

Figure (4.10). 

-80 -60 -40 -20 0 20 40 60 80 
X coordinates (mm) 

Figure 4.10: Approximated trigonometric B-spline curve v.s. the spatial data 

If a curve is defined in polar coordinates as 6(0), then its curvature is: 

/ m 62 + 26'2 - 66" 
K{6) = (4.22) 

(62 + <5'2)3/2 

where K(0) is the curvature, 6' and 6" are the first and second derivatives of 6(0) 

which are given by Equation 4.21: 

3=0 

n 

6"(0i) = '£6jM>[k(ei) 
3=0 

(4.23) 

where {<$,} is a set of control points which are calculated by the Equation 4.20, and 

M'jk(0i) and M"k(0i) are the first and second derivative of trigonometric B-spline 
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4.4. Strain calculation 

basis function: 

+ — 

M> (d\ - c o s ( ^ ~ tj) ,f s i n ^ - t , ) , 

cos(tj+fc-flQ fan(tj+k-9i) , , 

sin t̂j+fc — tj+ij sin̂ tj+jfc — tj+i) 

M» (Q\ - s m ( ^ - t j ) 2cos(gi- t j ) , , . (4.24) 

s i n ( ^ - t j ) „ sin(tj+fc - (9Q 
77-77 -r)^i,k-l\Pi) ~ 77-77 7 rMi+i,fc-i(0i) 
sm^tj+fc-i — tj J sm t̂j+fe — tj+ij 

2cos(t i+ fc-fl i) , sin^+fc-gQ „ , . 
s i n ( t i + f c - * i + 1 ) ^ + 1 ' * - l W + s i n ( t , + f e - t , + 1 ) M ^ - f e - l ( ^ } 

Calculated predicted curvature values (using Equation 4.22-4.24) can exhibit fluc­

tuations caused by numerical differentiation. In order to eliminate these processing 

artifacts, a local averaging approach proposed by Deng et al. (2008) was used. As 

the size of the strain gauge is about 10mm, the chosen span value used to specify the 

radius of smoothing was 7r/20. Figure 4.11 shows the estimated curvature value for 

cage 9 before and after smoothing. 

4.4 Strain calculation 

The surface transverse strain along the pipe was computed using the estimated pipe 

curvature. An equation for the calculation of the bending strains in the circumferen­

tial direction is presented by Noronha et al. (2005): 

where RQ is the radius of curvature of the undeformed pipe surface which is close to 

infinite, t is the wall thickness in the longitudinal direction, and Ri is the external 

surface radii of curvature which is the inverse of curvature. 
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4.4. Strain calculation 
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Figure 4.11: Calculated curvature of cage 9, trigonometric B-spline 

The predicted strains for cage 9 (using 1-D, 2-D and trigonometric B-spline 

approximation methods respectively) are shown in Figure 4.12-4.14. The strains 

obtained from the strain gauges at cage 9 are included in Figures 4.12-4.14. It was 

found that the trigonometric B-spline provided the most accurate strain prediction 

among these three methods. 

The procedure of strain prediction using trigonometric B-spline approximation 

method were repeated for cage 8 and cage 2. The comparisons between the predicted 

strain values and measured strain gauge data are shown in Figure 4.15 and Figure 4.16 

respectively. 
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4.4. Strain calculation 
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Figure 4.12: Comparison between predicted and measured strain (1-D) 
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Figure 4.13: Comparison between predicted and measured strain (2-D) 
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4.4. Strain calculation 
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Figure 4.14: Comparison between predicted and measured strain (trigonometric) 
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Figure 4.15: Comparison between predicted and measured strain (trigonometric) 
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4.5. Conclusions 
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Figure 4.16: Comparison between predicted and measured strain (trigonometric) 

4.5 Conclusions 

Digital imaging based techniques have been developed to analyze process informa­

tion in roll forming quickly and efficiently. In the present work, an investigation 

among three B-spline curve approximation methods (1-D, 2-D and trigonometric) 

was conducted to assess their suitability for generating an accurate description of 

skelp profiles from digital spatial data. These methods were applied to an electric 

resistance welded (ERW) pipe forming process to obtain the mathematical model of 

the profile spatial data. Bayesian information criterion (BIC) was used to optimize 

the value of the number of control points in each model. 

One-dimensional B-spline is the most commonly used approximation method 

among those evaluated, but only curves that project one-to-one onto the x-axis can 

be described. For curves that do not project one-to-one onto the x-axis, the one-

dimensional B-spline needs to be applied to three or more separate segments of the 

curve, each one less than 180°. Two-dimensional and trigonometric B-splines can 

overcome this limitation. It was found that the two-dimensional B-spline cannot 

provide an accurate approximation, even with a large number of control points (Fig-
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4.5. Conclusions 

ure 4.8). Trigonometric B-splines provide a more accurate curve fitting and strain 

prediction. 

The local curvature of pipe profile was calculated from the continuous trigonomet­

ric B-spline curve. A local averaging approach with the smoothing span equal to the 

strain gauge size was applied to smooth the fluctuations of the calculated curvature of 

B-spline curve. The transverse surface strain along the pipe was calculated by using 

the mathematical relation between the strain and radius of curvature. The predicted 

strain values were validated against the strain gauge data. 
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Summary and Conclusions 

5.1 Summary 

The general procedure of the digital imaging based strain measurement technique 

developed in the present work is summarized in Figure 5.1. The analytical information 

generated from the technique developed in the present work can be used for the 

optimum design of roll profiles, pass schedule and forming mills. 

Profiles of deformed-skelp obtained at various longitudinal positions along the 

forming process can be arranged in order to represent the geometric information of 

the deformed-skelp, as shown in Figure 5.2. This geometric information can be used 

to adjust the mill setup to optimize the roll profile for uniform deformation. 

An alternate view of Figure 5.2 along the forming axis is shown below in Figure 5.3. 

The roll profiles with a descending pass line provide a flower diagram of the forming 

process to assess qualitatively the forming operation (non-symmetric behavior, abrupt 

changes in profile shape, etc.). This information has the potential to be used for the 

optimal design of roll profiles. 
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5.1. Summary 

Image Acquisition 

• 2D digital image of pipe profile captured 
at the each forming roll 

Image Processing 

• Cartesian coordinates of the data points 
on the pipe profile 

Profile Fitting Calculation 

• A fifth-order B-spline curve with the I 
number of control points "n", which 
approximate the data points 

Parameter optimization 
• Bayesian information criterion value BIC(n) 

Whether 

BIC(n) > BlC(n-l) 
no n = n+ 1 

yes 

The optimal number of 
control points = n-1 

Curvature calculation 
• Local curvature of the B-spline curve 
• Smoothed local curvature 

Strain calculation 
• Transverse strain along pipe inner surface 

Figure 5.1: Digital imaging strain measurement procedure 
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Figure 5.3: Pipe profiles viewed along the forming axis 
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5.2. Conclusions 

The strains predicted for the forming process at each stage can be combined in 

a 3D strain contour plot as shown in Figure 5.4. This type of contour plot can be 

used to quantitatively assess the overall pipe forming operation or the presence of 

strain reversals during pipe forming (Wiskel et al, 2008). In addition, the strain 

distributions throughout the product can be used to analyze the thermo-mechanical 

mechanisms that lead to defects like cracking, flake etc. 

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 __ 0 

Strain values (%) 

Width (mm) 

Figure 5.4: 3-D strain contour plot 

5.2 Conclusions 

Digital imaging techniques can be used to analyze process information from physical 

objects. The present work has established an effective and accurate digital imaging 

based technique for the non-invasive evaluation of strain values in forming processes. 

This technique was successfully applied to an ERW pipe forming operation. 
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5.2. Conclusions 

Digital image data obtained from optical equipment are inherently discrete and 

noisy. In order to obtain an accurate mathematical model of the deformed-skelp geom­

etry from the digital image, three B-spline approximation methods were investigated: 

one-dimensional, two-dimensional, and trigonometric. 

One-dimensional B-spline is the most commonly used approximation method 

among those evaluated, and it was successfully used to generate the continuous image 

profile in the first three cage sections of an ERW pipe forming process. However, only 

curves that project one-to-one onto the x-axis can be described using one-dimensional 

B-splines. 

For curves that do not project one-to-one onto the x-axis, the one-dimensional 

B-spline needs to be applied to three or more separate segments of the curve, each 

one less than 180°. Two-dimensional and trigonometric B-splines can overcome this 

limitation. It was found that the two-dimensional B-spline cannot provide an accurate 

approximation even with a large number of control points (Figure 4.8). Trigonometric 

B-splines provide a more accurate curve fitting and curvature prediction. 

A fifth degree B-spline was selected in order to guarantee the third degree con­

tinuity of the curvature, and to prevent shape perturbations. A nonperiodic knot 

vector was chosen, as it provides basis functions defined in the complete parameter 

range. The accuracy of the B-spline approximation depends on the number and 

location of the control points. The location of the control points was successfully 

calculated using linear least square regression, avoiding the use of time-consuming 

iterative optimization methods. The Bayesian information criterion (BIC) was used 

to optimize the number of control points for the B-spline curve, as BIC provides a 

trade-off between under and over-fitting. The optimal number of control points for 

different data set was calculated respectively. 

The local curvature of the pipe profile was calculated from the approximated B-

spline curve. Due to the numerical errors in the calculation procedure, the calculated 

curvature has undesirable fluctuations. It was found that a local averaging approach 

is able to eliminate these fluctuations. The smoothing span was chosen equal to the 

strain gauge size (10 mm). 

The transverse plastic strains along the deformed-skelp were calculated, using the 

mathematical relation between the strain and the radius of the curvature. The verac-
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5.3. Recommendations for future work 

ity of the proposed technique was confirmed by comparing the calculated deformation 

strains at each cage section with the measured strain gauge data. 

5.3 Recommendations for future work 

The digital imaging based technique has been successfully developed and implemented 

in the present work. In order to achieve more confidence in the understanding of the 

strain behaviors and their effects on the forming process, more research works are 

recommended. 

1: In the image processing procedure described by Rieder (2003), a line scan 

was performed moving stepwise by pixel (row, column) in horizontal direc­

tion. In a given line, the first instance of a pixel with a gray scale value 

greater than the critical value would be stored and the scan would restart 

on the next line. This caused the missing points of the spatial data at the 

bottom of the curve (Figure 3.3 and 4.3). In the future, this procedure 

should be done by scanning in both the horizontal and vertical directions. 

2: The definition of the transverse strain presented by Noronha et al. (2005), 

was developed with the assumption that the length of the center line of the 

metal strip will not change during the forming process. However, in the real 

forming process, the length of the center line will change, especially in the 

fin regions. This limited the implementation of the proposed method in the 

fin regions. To overcome this limitation, it is necessary to choose a more 

accurate strain definition for the roll forming process. 

3: For a long time, the design and operation of roll forming processes have been 

based only on past experience obtained by time-consuming and expensive 

trial-and-error approaches (Halmos, 2006). Modern trends in the rolling 

industry have been towards using computer software to simulate and conduct 

the forming process. It is essential to extend the present work to develop a 

computer-aided quality-control system. Figure 5.5 shows the conceptual 

illustration of a computer-aided engineering (CAE) and computer-aided 

design (CAD) system for roll forming by using the digital imaging method 

proposed in the present work. 
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Initial Data 

• Mechanical properties of materials 

• Geometry of product 

Optimum design 
of forming mill 
(CAD system) 

Optimum design 
of pass schedule 

Optimum design 
of roll-profiles 

Parameters of Forming Mill 

• Number of roll-stands 

• Inter-stand distance 
• Others (forming speed etc.) 

I3Z 
Pass-line 

Roll-Profiles Initial Roll-profiles 

Mathematical 
Simulation 

Critical values 

Comparison 

2D analysis 
• Bending at roll gap 
• Spring-back analysis 
• Curvature 
• Residual stress and local strain 

3D analysis 
• Stress and strain distribution 
• Deformed curved surface 
• Edge elongation 
• Thickness and width change of 

sheet strip 

I Optimization is accomplished 

Optimized forming process 

Figure 5.5: Framework of CAE system for roll forming (Halmos, 2006) 
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MATLAB® scripts for the strain estimation 
procedure 

This appendix presents the MATLAB® implementations of the numerical methods for 

the digital imaging based strain measurement technique proposed in Chapter 3 and 

Chapter 4. 

A.l One-dimensional B-spline approximation 

i function [ X, Y_app, K, K.smooth, Arclength, strain ] = 
2 OneD.approximation ( data, n, k, Span, dL ) 
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A.l. One-dimensional B-spline approximation 
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% Outputs: X = the x coordinates of the approximation curve 
% Y_app = the y coordinates of the approximation curve 
% K := the calculated curvature 
% K-smooth ==: the smoothed curvature 
% Arclenqth - the arc length of each point on the curve 
% strain = the transverse surface strain values 

m = n + k ; 
a = length(data) ; 

for i = 1 : a 
X( i, 1 ) = data( i, 1 ) ; 
Y( i, 1 ) = data( i, 2 ) ; 

end 
& o ' 

% Get the basis functions and the control points 

o — — 

p = max( X ) ; 
q = min( X ) ; 

for i = 1 : a 
[ Blend( i, : ), Blendl( i, : ), Blend2( i, : ) ] = 

OneD-BSpline( X( i, 1 ), p, q, n, k ) ; 
end 

Delta =( ( Blend1 * Blend ) \ Blend1 ) * Y ; 

save('data_lD', *n', 'k', !p !, !q', 'Delta' ) 
& 
% Curvature calculation and smoothing 
ft-

Y_app = Blend * Delta ; 
Yl_app = Blendl * Delta ; % first derivative 
Y2_app = Blend2 * Delta ; % second derivative 

for i = 1 : a 
k(i,l) = Y2_app(i,l)/(1+Yl_app(i,ir2r (3/2) ; 

end 

for i = 1 : a 
K_smooth(i,l) = OneD.integral(X(i,l)-Span,X(i, 1)+Span)/(2*Span); 
Arclength(i,l) = OneD_Arc_Length(X(a,1),X(i,1)) ; 

end 
'i. 
o 

% Strain calculation 
<>. o - " -

strain = —200 * K_smooth ; 
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function [ Blend, Blendl, Blend2 ] = OneD_BSpline( u, p, q, n, k ) | 
%: 
;t. 

& 
% 
Si 

it 

i> 

% 
0, 

C; 

% - • 

"6 

•%•-

File: OneD_BSpline„in 
Description: the B—spline basis function 
Input: u = the value of a given point 

p = the maximum value of control points 
q = the minimum value of control points 
n + 1 •-• the number of control points 
k - order of the B—Spline curve 

Output: Blend = the general B spline basis function 
Blendl = the first derivative of the basis function 
Blend2 = the second derivative of the basis function 

The nonperiodic knot vector 

for i = 1 : n+k+1 
if ( i < k ) 

t(i) = p ; 
elseif ( k+1 < i && i < n+1 ) 

t(i) = q + (i-k) * (p-q) / (n-k+2) ; 
elseif ( i > n+1 ) 

t(i) = p ; 
end 

end 
% • 

% 
?<-

%• 

The blending function N.i,k(u) 

N_i,l 
for i = 1 : k-1 

if ( u == t(i) ) 
N( i, 1 ) = 1 ; 

else 
N( i, 1 ) = 0 ; 

end 
end. 

f •jr i = k : n+1 

if ( t(i) < u && u < t(i+1) ) 
N( i, 1 ) = 1 ; 

else 
N( i, 1 ) = 0 ; 

end 
end 

f x i = n+2 : n+k 
if ( u == t(i) ) 
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N( 1, 1 ) = 0 ; 

for 

end 

f02 

end 

'- r •>•• y ^ <•"' •••-!- i •*• 

i = 1 : n+k 
Nl( i, 1 ) = 0 
N2 ( i, 1 ) = 0 

.1 , 1 

J = 
for 

eno. 

for 

1 : k-1 

i = 1 : 

if( ( t 

N(i 
Nl ( 
N2 ( 

elself( 
N(i 
Nl ( 

n+k-

(i + j) 

, j + 1) 

i, j + 1 

i, j + 1 

( t( 

, j+1) 
i, j + 1 

J 

-t( 

) = 
) = 

i + j 

elself( 

N(i 

Nl( 

) = 

N2(i,j+1) = 

i+j 

) = 

N2(i,j+1) 

( t(: 

, j + D 
i, j + D 

i) 

0 ; 

0 
0 

)-t 
((t 
-( 
+ ( 
-( 
+ ( 

+1) 
((u 

(1 

+ ( 

(2 

+ ( 

) == 0 && ( t(i+j+l)-t(i+1) ) == 0 ) 

(i) ) == 0 ) 

(i+j+l)-u)/(t(i+j+l)-t(i+1)))*N(i+1,j) ; 
l/(t(i + j+l)-t(i + l)))*N(i+l, j) 
(t(i + j+l)-u)/(t(i + j+l)-t (i+1)))*N1 (i + 1,j) 
2/(t(i+j+l)-t(i+1)))*N1(i+1,j) 
(t(i+j+l)-u)/(t(i+j+l)-t(i+1)))*N2(i+1,j) 
-t(i+l) ) == 0 ) 
-t(i))/(t(i + j)-t(i)))*N(i, j) ; 
/(t(i+j)-t(i)))*N(i, j) 
(u-t(i))/(t(i+j)-t(i)))*Nl(i, j) ; 
/(t(i+j)-t(i)))*Nl(i, j) 
(u-t(i))/(t(i+j)-t(i)))*N2(i, j) ; 

else 
N(i 

Nl( 

, j + D : 

i, j + D 

N2(i,j+1) 

((t(i+j+l)-u)/(t(i + j+l)-t(i+1)))*N(i+1, j) 

+ ((u-t(i))/(t(i+j)-t(i)))*N(i, j) ; 

•• (l/(t(i+j)-t(i)))*N(i, j) 
+ ((u-t(i) )/(t(i+j)-t(i)))*Nl(i, j) 

- (1/(t(i + j+l)-t(i+1)))*N(i + l, j) 

+((t(i+j+l)-u)/(t(i+j+l)-t(i+1)))*N1(i+1,j) 

- (2/(t(i+j)-t(i)))*Nl(i, j) 
+ (<u-t(i))/(t(i+j)-t(i)))*N2(i, j) 

-(2/(t(i + j+l)-t(i+l)))*Nl(i + l, j) 

+((t(i+j+l)-u)/(t(i+j+l)-t(i+l)))*N2(i+l,j); 
ena 

i = 1 : n+1 

Blend( i ) = N( i, k ) ; 
Blendl( i ) = Nl( i, k ) 
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A.l. One-dimensional B-spline approximation 

98 Blend2 ( i ) = N2 ( i, 
99 end 
100 

101 Blend = Blend' ; 

102 Blendl = Blendl' ; 
103 Blend2 = Blend2 ' ; 

k ) ; 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

fl 

% 

% 
% 
% 
% 
% 

K 

h 

inc 

F: 

:tion K = OneD_integral( lower, upper ) 

.le: OneD.integral.m 

Description: Calculate the integration of the local curvature 

Ir 
over a interval [lower, upper] 

iput: lower = lower limit of integration 
upper - upper limit of integration 

Output: K = the result of the integration 

= 
= 

for 

ei id 

0 ; 
(upper—lower)/50 ; % the distance of interval 

i = 1 : n 
t(i) = lower + h * i ; 

t(i+l) = lower + h * ( i+ 1 ) ; 
K = K+(h/6)*(OneD_Fun(t(i))+4*OneD_Fun((t(i)+t(i+1))/2) 

+OneD_Fun( (t (i + 1) ) ) ; 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

function Kappa = OneD.Fun( u ) 

% 

% 

% 
%-
% 
% 
''•> 

%: 
% 

File: OneD.Fun.m 

Description: the function of local curvature calculation 
one—dimensional E spline curve 

Inputs: u = the x coordinates value of a given poirn 

data-ID.mat includes: 
p = the maximum value of the x coordinates 
a = the minmum value of the x coordinates 

n41 = the number of control points 

k = the order of the B—spline curve 
Delta = the control points 

Outputs: Kappa = the local curvature at. a given point 

load data.lD.mat 

[ 

Y 

N, Nl, N2 ] = OneD_BSpline( u, p, q, n, k ) ; 

= N' * Delta ; 

for 
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A.l. One-dimensional B-spline approximation 

20 Yl = Nl1 * Delta ; % first derivative 
21 Y2 = N2' * Delta ; % second derivative 
22 

23 Kappa = Y2/(1+Y1A2) " (3/2) ; 

I function f = OneD.Arc.Fun( u ) 

3 % File: OneD_Arc_Fun.m 
4 % Description: the function of arc length calculation for 
5 % One dimensional B spline carve 
6 % Inputs: u - the parameter value of a given point 
7 % data-ID.mat includes: 
8 % n+1 =:: the number of control points 
9 % k == the order of the B—spline curve 
io % p = the maximum value of control points 
n % q = the minimum value of control points 
12 % Delta - the control points along the x—axis 
13 % Outputs: f - the value of the function at a given point 

15 load data.ID.mat 
16 

17 [ N, Nl, N2 ] = OneD.BSpline( u, p, q, n, k ) ; 
18 

19 f = ( 1 + ( ( Nl' * Delta ) " 2 ) ) * (1/2) ; 
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A.2. Two-dimensional B-spline approximation 

A.2 Two-dimensional B-spline approximation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

function [ X, Y, X_app, Y_app, K, K_smooth, Arclength, strain 
TwoD.approximation ( data, n, k, Span, dL ) 

% File: TwoD_approximat.ion.m 
% Description: Two—dimensional B spline curve approximation. 
% Inputs: data = the digital spatial data (x and y coordinat 
% rrt-1 = the number of control points 
% k — the order of the B—spline curve 
% Span = the smoothing span for curvature smoothing 
% dL - the distance between the smoothing points 
% Outputs: X = the x coordinates of the digital data 
% Y = the y coordinates of the digital data 
% X.app - the x coordinates of the approximation 
% Y_app = the y coordinates of the approximation 
% K = the calculated curvature 
1 Arclength - the arc length of each point on the c 
% K_smooth - the smoothed curvature 
% strain - the transverse surface strain values 

m = n + k ; 
a = length( data ) ; 

for i = 1 : a 
X( i, 1 ) = data( i, 1 ) ; 
Y( i, 1 ) = data( i, 2 ) ; 

end 
S-. 
o 

% Get the basis functions and. the control points 
». o 

for i = 1 : a 
u(i, l ) = ( i - l ) / ( a - l ) ; 

end 

for i = 1 : a 
[ B( i, : ), Bl( i, : ), B2( i, : ) ] 

= TwoD_BSpline( u( i, 1 ), n, k ) ; 
end 

Delta_X = ( ( B' * B ) \ B' ) * X ; 
Delta_Y = ( (B' * B ) \ B' ) * Y ; 

save('data_2D', 'n', 'k!, !Delta_X\ VDelta-Y* ) 
C-. 
Q 

% Curvature calculation 
o„ 

-6 

] = 

2S) 

curve 
curve 

urve 
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A.2. Two-dimensional B-spline approximation 

46 

47 

48 

49 

50 

51 

52 
53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

X.app = B * 
Y.app = B * 

Xl-app = Bl 

Yl_app = Bl 

X2_app = B2 
Y2.app = B2 

for i = 1 : 

K(i,l) = 

end 

for i = 1 : 

Delta_X ; 

Delta.Y ; 

* Delta-X ; 

* Delta_Y ; 

* Delta_X ; 

* Delta.Y ; 

a 

= abs(xl_app(i,l) *Y2_app(i,l)-Yl_app(i,l) *X2 (i,l) ) / 

((Xl_app(i,l)*2+Yl_app(i,l)*2)-(3/2)) ; 

a 
K_smooth(i,1) = TwoD.integral(u(i,1)-Span,u(i, 1)+Span)/(2*Span) ; 

Arclength(i,1) = TwoD_Arc_Length(u(1,1),u(i,1)) ; 
end 

% Strain ca 
0.. 

.culation 

strain = —200 * K.smooth ; 

l 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

t 

% 

% 

% 
% 
% 
% 
% 
% 

% 

% 

f 

anction [ Blend, Blendl, Blend2 ] = TwoD.BSpline( u, n, 

Pile: TwoD_BSpline.m 

Description: the B—spline basis function 

Input: ii = the value of a given point 

n+1 — the number of control points 
k = order of the B Spline curve 

Output: Blend = the general B spline basis function 
Blendl = the first derivative of the basis func 
Blend2 = the second derivative of the basis fun 

The nonperiodic knot vector 

jr i = 1 : n+k+1 
if ( i < k ) 

T(i) = 0 ; 
elseif ( k+1 < i && i < n+1 ) 

T(i) = i-k ; 

elseif ( i > n+1 ) 
T(i) = n-k+2 ; 

end 
end 

k ) 

:. ion 
.-jtion 
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A.2. Two-dimensional B-spline approximation 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

t = T / ( max(T) - min(T) ) ; 

% The blending function N.i,k(u) 

for i = 1 : k-1 

if { u == t(i) ) 
N( i, 1 ) = 1 ; 

else 

N( i, 1 ) = 0 ; 
end 

end 

for i = k : n+1 

if ( t (i) < u && u < t (i + 1) ) 

N( i, 1 ) = 1 ; 
else 

N( i, 1 ) = 0 ; 
end 

end 

for i = n+2 : n+k 

if ( u == t(i) ) 

N( i, 1 ) = 1 ; 
else 

N( i, 1 ) = 0 ; 
end 

end 

% Nl_i,l, N2_i,l 
for i = 1 : n+k 

Nl( i, 1 ) = 0 ; 
N2( i, 1 ) = 0 ; 

end 

% N _.i , j 

for j = 1 : k-1 
for i = 1 : n+k—j 

if( ( t(i+j)-t(i) ) == 0 && ( t(i+j+l)-t(i+1) ) == 0 ) 
N(i,j+1) = 0 ; 
Nl(i,j+1) = 0 ; 
N2(i,j+1) = 0 ; 

elseif( ( t(i+j)-t(i) ) == 0 ) 
N(i,j + 1) = ( (t(i+j+l)-u)/(t(i + j+l)-t (i+1) ) )*N(i+l, j) ; 
Nl(i,j + 1) = -(l/(t (i+j+l)-t(i+l) ))*N(i+l, j) 

+ ( (t (i+j+l)-u)/(t(i+j+l)-t(i+l) ) )*Nl(i+l, j) ; 
N2(i,j + 1) = -(2/(t(i + j+l)-t(i+l) ) )*Nl(i + l, j) 

83 
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74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

elseif( ( t(i+ 

N(i,j+1) = 

Nl(i,j+1) 

N2(i,j+1) 

else 
N(i,j+l) = 

Nl(i,j+1) 

N2(i,j+1) 

+((t(i+j+l)-u)/(t(i+j+l)-t(i+1)))*N2(i+1,j) , 

j+l)-t(i+l) ) == 0 ) 

((u-t(i))/(t(i+j)-t(i)))*N(i, j) ; 

= (l/(t(i+j)-t(i)))*N(i, j) 

+((u-t(i))/(t(i+j)-t(i)))*N1(i,j) ; 

= (2/(t(i+j)-t(i)))*Nl(i, j) 

+ ((u-t(i))/(t(i+j)-t(i)))*N2(i, j) ; 

((t(i+j+l)-u)/(t(i+j+l)-t(i+l)))*N(i+l, j) 
+ ((u-t(i))/(t(i+j)-t(i)))*N(i, j) ; 

= (l/(t(i+j)-t(i)))*N(i,j) 

+ ((u-t(i))/(t(i+j)-t(i)))*Nl(i, j) 

- (1/(t(i+j+l)-t(i+1)))*N(i+l,j) 
+((t(i+j+l)-u)/(t(i+j+l)-t(i+1)))*N1(i+1,j) 

= (2/(t(i+j)-t(i)))*Nl(i,j) 
+ ((u-t(i))/(t(i+j)-t(i)))*N2(i, j) 

- (2/(t(i+j+1)-t(i+1)))*N1(i+1,j) 
+ ( (t (i+j+l)-u)/(t(i+j+l)-t(i + 1)))*N2(i+1,j); 

end 

end 

for i = 1 : n+1 
Blend( i ) = N( i, 
Blendl( i ) = Nl( 
Blend2( i ) = N2( 

end 

Blend = Blend' ; 
Blendl = Blendl' ; 
Blend2 = Blend2' ; 

k ) ; 
i, k ) 
i, k ) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

fl 

% 
% 
% 
% 
% 
% 

K 
h 

anction K = TwoD.integral( lower, upper ) 

F: 
Df. 

Ir 

.le: TwoD.integral,in 

iscription: Calculate 
over an i. 

the integration of the local curvature 

iterval [lower, upper] 

iput: lower := lower limit of integration 
upper = upper limit of integration 

Output: K = the result 

= 
= 

for 

0 ; 
(upper—lower)/50 ; 

i = 1 : n 

t(i) = lower + h * i 
t(i+l) = lower + h * 

o f t h e i nt e g r at i o n 

% the distance of interval 

, 
( i+ 1 ) ; 
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A.2. Two-dimensional B-spline approximation 

16 K = K + ( h / 6 ) * (TwoD_Fun(t ( i ) )+4*TwoD_Fun ( ( t ( i ) + t ( i+1) ) 12) 
17 +TwoD_Fun ( ( t ( i+1) ) ) ; 
is end 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

function Kappa = TwoD_Fun( u ) 

% File: TwoD-.Fun.rn 
% Description: the function of local curvature calculation for 
% two dimensional B spline curve 
% Inputs: u = the parameter value of a given point 
% data_2D,rnat includes: 
% n+1 = the number of control points 
% k := the order of the B—spline curve 
% Delta_X = the control points along the x—axis 
% Del.t.a_Y = the control points along the y—axis 
% Outputs: Kappa = the local curvature at a given point 
% ^ = = _ = . = = . - = : - , = ^ „ , = = = = ^ ^ 

load data_2D.mat 

[ N, Nl, N2 ] = TwoD.BSpline( u, n, k ) ; 

X.app = N' * Delta_X ; 
Y.app = N' * Delta.Y ; 

Xl_app = Nl* * DeltaiX ; 
Yl_app = Nl' * Delta.Y ; 

X2.app = N2' * Delta_X ; 
Y2_app = N2' * Delta.Y ; 

Kappa = abs(Xl_app*Y2_app—Yl_app*X2_app) / 
( (Xl_app-2+Yl_app~2r (3/2)) ; 

l 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

function L = TwoD.Arc.Length ( lower, upper ) 

% File: TwoD_Arc_Length.nl 
% Description: Calculate the arc length between the two poiir 
% the curve over an interval [lower, upper] 
% Input: lower = lower limit of integration 
% upper == upper limit of integration 
% Output: L - the arc length 

L = 0 ; 
h = (upper—lower)/50 ; % the distance of interval 

; s on 
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A.3. Trigonometric B-spline approximation 

13 f o r i = 1 : n 
14 t ( i ) = lower + h * i ; 
is t ( i + l ) = lower + h * ( i+ 1 ) ; 
16 L = L + ( h / 6 ) * ( T w o D _ A r c _ F u n ( t ( i ) ) + 4 * T w o D - A r c _ F u n ( ( t ( i ) + t ( i + 1 ) ) / 2 ) 
17 +TwoD_Arc_Fun ( ( t ( i+1) ) ) ; 
is end 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

function f = TwoD_Arc_Fun( u ) 

% File: TwoD_Arc-Fun ,m 
% Description: the function of arc length calculation for 
% two—dimensional B—spline curve 
% Inputs: u = the parameter value of a. given point 
% data..,2D,mat includes: 
% n+1 = the number of control points 
% k - the order of the B spline curve 
% Delta.X = the control points along the x axis 
% Delta.Y - the control points along the y axis 
% Outputs: f - the value of the function at a given point 

load data_2D.mat 

t N, Nl, N2 ] = TwoD_BSpline( u, n, k ) ; 

f = (((Nl'*Delta_X)~2) + ((Nl'*Delta_Y) "2) ) " (1/2) ; 

A.3 Trigonometric B-spline approximation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

fl 

s-

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

motion [X 

File: Tri 
Descripti 
Inputs: 

Outputs: 

.app, Y.app, K, K.smooth, Arclength, strain] = 
Tri_approximation( data, n, k, Span, dL ) 

.approximation.m 
on: Trigonometric B—spline curve approximation. 
data - the digital spatial data (x and y coordinates 
n+1 - the number of control points 
k - the order of the B—spline curve 
Span = the smoothing span for curvature smoothing 
dL - the distance between the smoothing points 
X...app = the x coordinates of the approximation 
Y.app = the y coordinates of the approximation. 
K = the calculated curvature 
K.smooth = the smoothed curvature 

) 

curve 
curve 
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15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

2B 

26 

27 

28 
29 

30 
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33 

34 

35 

36 

37 

38 

39 

40 

41 

42 
43 

44 
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48 
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53 

54 

55 

56 
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61 

62 

63 

% Arclength = the arc length of each point on the cur1' 
% strain = the transverse surface strain values 

m = n + k ; 
a = length(data) ; 

for i=l : a 
X(i,l)=data(i,l) ; 
Y(i,l)=data(i,2) - max(data(:,2)) / 2 ; 

end 

% Get the radius and angular for each, point 
& 0 
for i=l : a 

R(i,l)=sqrt(X(i,l)'2 + Y(i,l)"2) ; 
if(X(i,l)>0 && Y(i,l) > 0) 

Theta(i,l)=atan(Y(i,l)/X(i,l)) ; 
elseif (X(i,l)>0 && Y(i,l)<0) 

Theta(i,l)=atan(Y(i,l)/ X(i,l)) ; 
elseif (X(i,1)<0) 

Theta(i,l)=atan(Y(i,l)/ X(i,l)) - pi ; 
elseif (X(i,l) == 0 && Y(i,l)>0) 

Theta(i,l)=-3*pi/2 ; 
elseif(X(i,l) == 0 && Y(i,l)<0) 

Theta(i,l)=-pi/2 ; 
end 

end 
s, o 

% Get the basis functions and the control points 

p = min(Theta) ; 
q = max(Theta) ; 

for i = 1 : a 
f B(i, : ) , Bl(i, : ) , B2 (i, :) ] = 

Tri_BSpline( Theta(i,l), p, q, n, k ) ; 
end 

Delta =((B* * B) \ B1) * R ; 
R_app = B * Delta ; 

for i=l : a 
X.app (i, l)=R_app (i, 1) *cos (Theta (i, 1) ) '; 
Y_app(i,l)=R_app(i,l)*sin(Theta(i,1)) + max(data(:, 2)) / 2 ; 

end 

save( 'data.tri', *p', 'q', !n', 'k', 'Delta*) 
o, „ 
It -

% Curvature calculation and smoothing 

IQ 
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64 % 

65 for i=l : a 
66 K(i,l)=abs((R.app(i,1)'2+2*(Rl_app(i,1)"2) 
67 —R.app (i, 1) *R2_app (i, 1) ) ) / 
68 ( ( R . a p p ( i , l ) ~ 2 + R l _ a p p ( i , l ) "2) " ( 3 / 2 ) ) ; 

69 end 
70 

71 for i = 1 : a 
72 K.smooth (i, 1) = Tri.integral (Theta (i, 1)-Span, Theta (i, 1)+Span) 
73 / (2*Span) ; 
74 Arclength(i,1) = Tri_Arc_Length(Theta(a,1),Theta(i,1)) ; 
75 end 
76 % 

77 % Strain calculation 
78 % 

79 strain = —200 * K.smooth ; 

1 

2 
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26 
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f.\ 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

£-.... 

% 

nation [ B, Bl, B2 ] = Tri.BSpline( u, p, q, n, k ) 

File: Tri_BSpl.irie.in 
Description: the B spline basis function 
Input; u = the angular coordinates of a given point 

p - the minimum value of the anglar coordina 
q - the maximum value of the angular coordin 
nil = the number of control points 
k = the order of the B—spline 

Output: B = trigonometric B—spline basis function 
Bl = the first derivative of the basis funct 
B2 = the Second, derivative of the basis func 

Knot vectors 

for i = 1 : n+k+1 
if (i < k) 

t(i) = p; 
elseif (k+1 < i && i < n+1) 

t(i) = p+(i-k)*(q-p)/(n-k+2); 
elseif (i > n+1) 

t(i) = q; 
end. 

end. 
0. 

% 
%••• 
The basis function 

for i = 1 : k-1 

;es 
ates 

ion 
- i on 
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A.3. Trigonometric B-spline approximation 

31 i f (u == t (i) ) 

32 N ( i , l ) = 1 ; 

33 else 

34 N ( i , l ) = 0 ; 

35 end 

36 e n d 

37 

38 for i = k : n+1 

39 i f ( t ( i ) < u && u < t ( i + l ) ) 

40 N ( i , l ) = 1 ; 

41 e l s e 

42 N ( i , l ) = 0 ; 

43 e n d 

44 e n d 

45 

46 f o r i = n + 2 : n + k 

47 i f (U = = t ( i ) ) 

48 N ( i , l ) = 1 ; 

49 e l s e 

so N ( i , l ) = 0; 
51 end 

52 end 

53 

54 % N1...1., 1 , N 2 . . . 1 , 1 

55 for i = 1 : n+k 

56 N l ( i , l ) = 0 ; 

57 N2 ( i , l ) = 0 ; 

58 e n d 

59 

60 % N _ i , 2 

61 

62 

63 % N . i , j 

64 f o r j = 1 : k—1 

65 f o r i = 1 : n + k — j 

ee i f ( ( t ( i + j ) - t ( i ) ) = = 0 && ( t ( i + j + l ) - t ( i + 1 ) ) = = 0 ) 

67 N ( i , j + 1) = 0 ; 

68 N l ( i , j + 1) = 0 ; 

69 N2 ( i , j + 1) = 0 ; 

70 e l s e i f ( (t (i + j ) - t ( i) ) == 0) 

71 N( i , j + l) = ( s i n ( t ( i+j + l ) - u ) / s i n ( t (i+ j+1) - t ( i + 1) ) ) *N ( i+1 , j ) ; 

72 Nl ( i , j + l ) = ( - c o s ( t ( i + j + l ) - u ) / s i n ( t ( i + j + l ) - t ( i + l ) ) ) * N ( i + l , j ) 

73 + ( s i n ( t ( i + j + l ) - u ) / s i n ( t ( i + j + l ) - t ( i + 1 ) ) )*N1( i+1 , j ) ; 

74 N2 ( i , j+1) = ( - s i n (t ( i + j + l ) - u ) / s i n ( t ( i + j + l ) - t (i + 1) ) )*N(i+l , j) 

75 +(-2*cos (t ( i + j + l ) - u ) / s i n ( t (i + j + l ) - t (i+1) ) ) *N1 ( i+1, j) 

76 + ( s i n ( t ( i+ j+ l ) -u ) / s i n ( t ( i + j + l ) - t (i+1) ) ) *N2 ( i+1 , j) ; 

77 e l s e i f ( ( t ( i + j + l ) - t ( i + 1 ) ) = = 0 ) 

78 N( i , j + l) = ( s i n ( u - t ( i ) ) / s i n (t (i + j ) - t (i) ) )*N( i , j) ; 

79 N l ( i , j + l) = ( cos (u - t (i) ) / s i n ( t ( i + j ) - t (i) ) )*N(i , j) 
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A.3. Trigonometric B-spline approximation 

so +(sin(u-t (i) ) /sin(t (i + j)-t (i) ) ) *N1 (i, j); 
si N2(i,j+l)=(-sin(u-t(i))/sin(t(i+j)-t(i)))*N(i,j) 
82 +(2*cos(u-t(i))/sin(t(i+j) -t (i) ) ) *N1 (i, j) 
83 + (sin (u-t (i) ) /sin(t (i+j)-t (i) ) ) *N2 (i, j) ; 

else 
N(i, j + l) = (sin(t(i+j + l)-u)/sin(t (i+j+l)-t (i+1)))*N(i+l,j) 

+(sin(u-t(i))/sin(t(i+j)-t(i) ) )*N(i, j) ; 
Nl(i,j+l) = (-cos(t(i+j+l)-u)/sin(t(i+j+l)-t(i+l)))*N(i+l, j) 

+ (sin(t(i+j + l)-u)/sin(t(i+j+l)-t(i+l))) *N1(i + 1, j) 
+(cos(u-t(i))/sin(t(i+j)-t(i)))*N(i,j) 
+(sin(u-t(i))/sin(t(i+j)-t(i)))*N1(i,j); 

N2(i,j+l) = (-sin(t(i + j+l)-u)/sin(t(i + j + l)-t(i+1)))*N(i+l, j) 
+(-2*cos(t(i+j+l)-u)/sin(t(i+j+l)-t(i+1)))*N1(i+1,j) 
+ (sin(t (i + j+l)-u)/sin(t(i + j+l)-t(i+l) ))*N2(i+l,j) 
+(-sin(u-t(i))/sin(t(i+j)-t(i)))*N(i,j) 
+(2*cos(u-t(i))/sin(t(i+j) -t(i)))*N1(i,j) 
+(sin(u-t(i))/sin(t(i+j)-t(i)))*N2(i,j); 

87 

90 

91 

92 

93 
94 
95 

97 eilQ 
98 end 
99 end 
100 
101 for i = 1 : n+1 
102 Blend(i) = N(i,k) ; 
103 Blendl(i) = Nl(i,k); 
104 Blend2(i) = N2(i,k); 
105 end 
106 

107 B = Blend1 ; 
108 Bl = Blendl'; 
109 B2 = Blend2 *; 

I function K = Tri_integral( lower, upper ) 

3 % File: Tri.integral.m 
4 % Description: Calculate the integration of the local curvatu 
8 % over a interval [lower, upper] 
6 % Input: lower = lower limit of integration 
7 % upper =:= upper limit of integration 
8 % Output: K = the result of the integration 

10 K = 0 ; 

n h = (upper—lower)/50 ; % the distance of interval 
12 

13 for i = 1 : n 
14 t (i) = lower + h * i ; 
15 t(i+l) = lower + h * ( i+ 1 ) ; 
16 K = K+(h/6)*(Tri_Fun(t(i))+4*Tri_Fun( (t (i)+t (i+1) )/2) 
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A.3. Trigonometric B-spline approximation 

17 + T r i . F u n ( ( t ( i + 1 ) ) ) ; 
is end 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

15 

16 

17 

18 

19 

20 

21 

22 

23 

function Kappa = Tri_Fun( u ) 

% File: TriJ'un.m 
% Description: the function of local curvatui 
% trigonometric B spline curve 
% Inputs: u ^ the angular coordinate vai 
% clata_tri .mat includes: 
% p = the minimum value of the i 
% q = the maximum value of the i 
% n+1 :::= the number of control poii 
% k ••• the order of the B—spline 
% Delta = the control points 
% Outputs: Kappa = the local curvature at a. c 

load datartri.mat 

[ N, Nl, N2 ] = Tri_BSpline( u, p, q, n, k ) 

r = N' * Delta ; 
rl = Nl' * Delta ; 
r2 = N2' * Delta ; 

Kappa = abs((r"2+2*(rl"2)-r*r2))/((r~2+rl~2)' 

~e calculation for 

ue of a given point 

.ngular coordinates 
„ngular coordinates 
its 
curve 

fiven point 

; 

(3/2)) ; 

1 

3 

4 

B 

6 

7 

8 

10 

11 

12 

13 

14 

15 

16 

17 

18 

function L = Tri_Arc_Length ( lower, upper ) 

% File: Tri-A.rc-Length.in 
% Description: Calculate the arc length between the two points on 
% the curve over an interval [lower, upper] 
% Input: lower - lower limit of integration 
% upper :::: upper limit of integration 
% Output: L :::: the arc length 

L = 0 ; 
h = (upper—lower)/50 ; % the distance of interval 

for i = 1 : n 
t(i) = lower + h * i ; 
t(i+l) = lower + h * ( i+ 1 ) ; 
L = L+(h/6)* (Tri_Arc_Fun(t (i) )+4*Tri.Arc_Fun ( (t (i)+t (i+1) )/2) 

+ Tri_Arc.Fun ( (t (i+1) ) ) ; 
end 
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A.3. Trigonometric B-spline approximation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

fl 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

met ion f = Tri_Arc_Fun ( u ) 

File: Tri,.Arc,.Fun,m 
Description: the function of arc length calculation for 

trigonomentric E spline curve 
Inputs: u = the parameter value of a giver; point 
data.tri ,rnat includes: 

n+l = the number of control points 
k = the order of the B—spline curve 
p -•= the minimum value of the angular coordinates 
q = the maximum value of the angular coordinates 
Delta — the control points 

Outputs: f ~ the value of the function at a given point 

load data.tri.mat 

[ 

f 

N, Nl, N2 ] = Tri_BSpline( u, p, q, n, k ) ; 

= ( ( ( N1 * Delta ) " 2 + ( ( Nl' * Delta ) " 2 ) ) " (1/2) ; 
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Strain gauge test data 

Table BJ 

location 

12:45 

1:30 

3:00 

4:30 

6:00 

9:00 

10:30 

11:45 

: Strain 

cagel 

-0.32 

-0.64 

-1.14 

-1.71 

-1.35 

-0.94 

-0.63 

-0.35 

gauge 

cage2 

-0.30 

-0.67 

-1.14 

-1.74 

-1.51 

-1.04 

-0.69 

-0.45 

data for CSA Grade 359 

cage3 

0.04 

-0.68 

-1.69 

-1.99 

-1.64 

-1.07 

-0.72 

-0.48 

cage4 

0.08 

-0.63 

-1.74 

-2.07 

-1.92 

-1.29 

-0.77 

-0.57 

cage5 

0.13 

-0.52 

-1.54 

-2.00 

-2.09 

-1.22 

-0.68 

-0.42 

, O.D.= 

cage6 

0.06 

-0.63 

-1.93 

-2.31 

-2.28 

-1.51 

-0.58 

-0.42 

=114.3 mm, t=< 

cage7 

0.09 

-0.53 

-1.88 

-2.36 

-2.77 

-1.51 

-0.63 

-0.33 

cage8 

0.10 

-0.56 

-1.82 

-2.33 

-3.04 

-1.47 

-0.47 

-0.37 

4.0 mm 

cage9 

0.00 

-0.38 

-1.98 

-3.34 

-3.28 

-1.40 

-0.48 

-0.33 
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