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ABSTRACT

Qifferontiab]e manifo%ds which admit a linear connection such that
the connection coefficients are constant in a neighborhood of each point
are considered. These manifolds are called spaces of locally éonstant
connection. It is shown that they can be Characterized(in terms of an
n-dimensional transitive, ‘abelian group of Iocal~aféine trapsformétions.

The .spaces of locally constant connectibn are investigated in the

case when the connection is the Levi;Civita connection of a metric on
; ‘ « .

hY

these spaces. The relation between the Levi-Civita cSﬁhé&tion of a

‘\' BN

\metric and the metric is given by a system of first order partial
differential equations. The integrability ‘conditions of this system are
discusséd and sﬁffi;ient conditions in terms of th;/connéction
coeff{cients are displayed in order to‘ensuré intégrabiliﬁy. I£>is
‘shown that the system of differen;ial equations has a uniqué‘solution —‘(
given an initial valﬁe. An example of a metric of this type is dis-
cussed.

Tﬁé spaces bf'lqcally constant Levi-Civita connectioﬁ turn put.to
be flét in two Aimensiong. Furtheré;re, it is proved that the non-flat
spac;s of thié ﬁype = in arbitrary dimensians —‘are not compact, ndt of
conétgnﬁ'cugvature and reducible.

Fihally, the conjecture is disproved that the linear connection

of spaces of locally constant connectiqn~isilocally symmetric.

\



PREFACE

- The etarting point of thls thesis goes back to mathematical
biology. The growth of a population is described'by a differential

equation, the Volterra equation., The ddea is to interpret the coefficients

)f thls equation as the coeffic1ents of a linear metric connection on a.

diirorentiable manifold. 1In the simplest case, the Volterra equation

'

has constant-coefficients. Thls leads to the foliowing problem Which

~

differentiable manifolds admit a linear metric connection such that the'
connection coefficients are constant *in a neighborhood of each'point?

Theée manifolds will be called spaces/of:locally constant connection.

It seems, that this problem has not yet been'treated in differertial
. i

L/
Ve

geometry.
| The progran of the ‘thesis is the following: The/first chapter
_provides the background for a treatment of the problem just deecrihed.
Thé‘linear connection is defined herg in terms of bundles. The main
sources for this chapter are [9) and [15]. |
Section 1 of Chapter.1l introduces Lie traneformation groups and
the frameAbundle of ahdifferentiahle manifold. The basic material
neeoed for these concepts ie collected in short form in Appendix I.
Section'2 contains the definition of a linear connection and its

I

descriptidn on the frame bundle. .
. gy

b 13 .
The motivation for the introduction of a linear connéction is to

define parallel transport on a differentiable manifold. This'geometric )

point of view is outlined in section 3.

Section 4 investigates the two basic geometrical»invariantsrof

~N



a linear connection, the curvature tensor and the torsion tensor.

- The second geometrical structure whiéh can be defined on a
differentiable manifold, a metrié, is discussed in sectién 5. The
relation between the connection and the métric is pointed out.

Chapter I1 is an investigétion of spaces of locally constant
yinear connection.

In secgion 1 an exact definition is gi;en.l The ideas behind the
introdpction «{ these spaces as ri§er§§d to above'léad to a coordinate
vdependent description. Thusrqhe aim of this section is to find a

’

coordinate independent, and therefore geometric characterization. For
A

this purpose, transfo}maﬁions on a differentiable manifold which leave

the connection invariant are considered. It turns out that a space of

locally constant linear connection admits an n-dimensional transitive,

abelian group of affine craﬁsformatiéns.

The formal relation between a connection and a met;ic is ‘given by
aléystem of first order partial différential equatjqns considered in
»sectionLZ. “The integrabilityvconditiéﬁs‘of this system ére investigated.
“Théy are conditions o; the connection to be a metric qopnection.-
Iherefo;e they have to have a'geqmgtfical meéning which is’néﬁ'éeénAin

S

this way. *

The geometric treatment"of'the,integrability'conditions ié‘imple—

mented in section 3 by means of the holonomy group of a linear connection.

?
- -

A sufficient condition for a connection to be a Levi-Civita connection

. is;fqundvfor spacés of locally cénsfant conne?tioq. Arconjectu;e is
'thétjgﬁgge restricgioné on the §aﬁnection are /also necessary.

In seé;ionvéiit is shown' that the sygtém of differeptiai equations
whiéﬁ relate.the conneg;ion and ;he metqéc has - given én iﬁitiai value -
a.unique solution.‘,TheA the geheral,for;\EY\Eﬁgfﬁetric ié diéplayed

. . k .‘

Y

) ‘ :
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AL

and an example of a metric for a space of locally constant connection
is given. Thi.: metric is cénformally flat aﬁd the §calar.curvaturc of
the cdnnection 1s negative. If the conjecture of_sectiop 3 would turn
out to be true, this would be the only possible metric for a -space of
locally constant connection. I

Section 5 contains the proof that all spaces of locally Conétgnt
connection are flat in two dimensions. '

The characterization of the spaces of locally constant-connection

in terms of an n-dimensional transitive, abelian gfoup of affine trans-

formations is used in secfion 6. It is shown there that, the spaces of

locally constant connection cannot be compact, of constant curvature or

irreducible, except for the flat case. Furthermore a counterexample to

’

the conjecture that these spaces have a locally symmetric connection 1is

provided in this section.

Although a lot of information is gained about the spaces of

B

locally constant éonnegtioh, it was not possible to classify them in

‘this work. It should be possible to find out the additional restrictions

¢

on the connection to be locally symmetr Further properties may be

derived from the reducibility. But the most \important open question is
the necessity of the given sufficient integrabiiity conditions. A
solution of this problem would give a classification of the spaces of

locally constant connection in a satisfactory

vii
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CHAPTER 1

In order to perform analvsis in spaces more general than Euclidean
n-space R" one introduces the notion of a differentiable manifold.
This is a set which is locally in a 1~-1 corresptndence with open subsets of
R". Once one has this basic spate,one is able to define differentia-

-

bility of functions, tensor fiélds and Lie derivatives. These structures

are intrinsic to the co;cept of a differentiable manifold.

But, 1if one Qishes to do geometry on these spaces the analogue of

a straight line in R" 1is needed. A strajight line in R" has the

property that the tangent vector remains parallel along the line. It

turns out that there is no intrinsic way to define parallel transport -

on a differentiable manifold; hence an additional structure has to be

imposed{ This,leads to the introduction of a linear connection.
Classicaliy, a connectftn was defined by Christoffel, 1869 [ 2]

to be a set of n3 functions on the manifold. The motiQation was the

following observatioﬁ: The partial derivatives of a function f on .a

-

differentiable manifol .re¢ 1e components of a tensor, the 1-form df.

But the partial derivat -~ 51 K of the components 51 of a vector
field do not form the components of a tensor. Adding a linear combina-
tion of Ei to gi K — .the coefficients ar- jnst the “unctions intro-

duced by Christoffel — one tan construct the components of a tensor.
"The' relation to parallel propagation was established by Levi-Civita in
1917.

It was not until 1950 that Koszul [11] arrived at a more
rigorous approach. He defined a linear coﬁnection as an assignment of

a vector field VxY with'certain properties to each pair X, Y of



vector flelds.

Also, fn 1950 Ehresmann [4] gave the most peometric descript. n of o
connection in terms of principal fiber bundles.

In this these only linear connect ion, defined on
the frame bundle of a differentiable manifold zre introduced.

The basic ideas are as follows: Take a curve o: .a,b) + Rn in

Rn and let t be the parameter along o. Then the tangent vector to
. dO(t) N E—
o(t) 1is denoted by T In order to define a straight line the

change of the tangent vector along the curve has to be zero,

s

2
d () -0
2 ’

dt
i.e. the tangent §ector has to be parallel along the curve.
fn analogy, on a differentiable manifold M, one has to describe the
change of the tangent vector aloﬁg a cufve. N

One knows already how to differentiate a function
f: M >R

along a curve o: (a,b) - M

b 4+ 5 ” X'
— s/ M
ﬁ/
"R‘
| 1 £ '

-

((6‘

R [}

Let Xp be the tangent vector to o(t) at p = g(0).
The derivative of f 1in the direction of X 1s given by
P

d
X = lqe (Eo0)] o

, .
where f oo 18 a map of (a,b) into 'Rl. In general one would like to



different tate a tensor’field with respect ﬁ vootor eld dofincdr

by a curve. Thus {t is a natural question Fh asn: (.u &29 describe
tensor fields on M as functions on a differentiablc manifold N7 If
this were possible, the next step would ba to traﬁsform (vctor |
fields on M to vector filelds on N and then differentfate the -ngor
fields of M (n N. The last step would be to map tge results béck,-
to M and compare with the usual'dofinitions of a linear conﬂéctiqn«

This program {s made preclise {n this chapter.

1. The frame bundle of a differentiablé manifold.

Definition 1.1. A Lie group G 1s a group which is 31so»a hifferentiable

manifold such that the maps

GxG~G A | . A
defined by (a,b) »a-b, and . .
G~+G
defined by~ a~al are differentiable. A
el 5 -
Example 1.1. Take the general linear gfoup
1, 1 2 1
GL(n, R): = {(a Y: a ¢ R" , det a = 0}.
] 3 3 ‘
2 .
The map det: R' >R is a polynomial map, hence det 1is continuous.

. . 2
GL(n, R) = det_l(R\{O}) therefore GL(n, R) 1is open in R" . This:

implies that GL(n, R) 1s a differentiable manifold. Consider

g: GL(n, R) x GL(n, R) - GL(n, R)

1k 1,.-1
(2)s Bp) > a;(b )jkv'.

Note that g 18 a polynomial map.

Thus g 18 differentiable, i.e.  the group operations are differentiable

J ‘

.- .



R

functions with respect to' the manifold structure. Therefore, GL(n, R)

is a Lie group.

)

}
Definition 1.2. A frame u = (p, Xi) at a point p ¢ M 1is an ordered

basis (X,)

14=1,+++ n of the tangeét space Tp(M). .

Example 1.2. Take a coordinate -yétem xi around p ¢ M. The

form a frame u

il
—
gl
[o%/
[
—
W
rn
<

coordinate vectors L_?J
ox “1=1,--+-,n

Denote by ‘L(M) the set of all frames of M:
L(M) = {(p, Xi): p € M, Xi ordered basis of Tp(M)}.

Because there are many different frames at a point p ¢ M, the question
\
v v \

X |
arises: How can one transform one frame at a point to another,f{ame

A

at the same point? This leads to the following concept:
1

Definition 1.3. Let M be a differentiable manifold,y A Lie group
G acts as a Lie transformation group on ‘the right on” M if there

exists a differentiable map
d: M x G > M
such that
(1) the map
- R : > M : B
p (p z) = pa.
is a diffeomorphism and
(11) R °R =R ¥ a,b e G.
Note: The & QQZ? of a Lie group G on a manifold M as aLie transformation
) N

¢
group -definegxx e?uivalence-relat ionon M: p~q <= q =*p$§, ‘for some a €G.
- r ~ .

This equivalence relation identifies poihts which lie on the same orbit, S

- b
L

B I

LS 15 N L2 < < i e s,



where the orbit through

Definition 1

P €M 1is given by the set {pa ¢ M: ¥ a ¢ C}.

-4. A vector field X on M ~such that

Definition 1.5.

(R ), X =X VpeM VacecG
a’*’p pa )

is called right invariant.

The action of G on M 1s called free 1f

Rap"= p for some p e M implies a = e,

whére e denotes the identity of G.

A Lie transformation group defines a finite-dimensional Lie algebra -

of'vector fields on M.

p. 42).

Lemma 1.1.

manifold - M.

(1)

(11)

(111)

Proof: (i)‘

of o .
P

Let G act as a Lie transformation group on the right on a
The map
op: G~+M defined by
a > %(p, a)

is differentiahle.

‘ *
For any ,A € g, A defined by

*
(00,4, = A A, €T ()

is a vector field on M, called the fundamental vector

field corresponding to A.

then, for each nonzero A ¢ g,

If G acts freely on M,
*

H LS . S
A never vanishes on M. - (\»/’"

1 ind

The differentiability of ¢ implies the differentiability

Denote by g the Lie algebra of G - (see [9 ]:‘

T AR, e R 2 it

RN A 51



(11) Op induces the linear map

(02 & T,(6) + 1 ()

*
A + A VaceaG.
a - ‘

) *
To show ‘that (Op)*Aa = Apa defines a vector field one nas to show that

* , ’ :
A is well-defined. Using the left invariance of A one gets
A = = o] =
(Op)*a (OP)*(La)*Ae (op L )A, (om)*Ae

Hence
pa f gb implies (op)*Aa = (Oq)*Ab ,
qeM, beG "
(1ii1) Let a ‘be the integral curve of A 1in G. Because

(o0 )., A = (o )*Aa , Rat is the local l—paraﬁéter group generated

*
Suppose Ap =0 at some p ¢ M, then
Ra (p) = p ¥ t.

t
If G acts freely on M this implies

a = e Vt

and hence A = 0. [J

Note: Furthermore, one can show that

* * &
[A,B] = [A ,B] A,Beg,
" 3

hence. o, - defines a Lie algebra homomorphism.

s
b

The general linear group GL(n, R) acts freely on.the right on

L(M), transforming a frame at.a point P € M to another frame at the

@

' same point. One can define a map

-+ L(M) x GL(n, R) > L(M) by

ky k
(., ag) > o, XD



where
Ra: L(M) > L(M)

is given by
(p,X,) > (p ak).
*71 ’Xk i

The action ;s free Bécause

Actually GL(n, R) acts as a Lie transformation grouB on L(M) because
one can make L(M) 1into a differentiable manifold:

Let (U ,¢ ) be an atlas of M. Every frame can be written
‘ a’ o aecA

Y

uniquely as

k 3
(o, % = % =)
3x

where X? € GL(n, R) and xk ‘is a coordinate system around p € M.

Define a projection m by

m: L(M) > M
(p, X)) * P-

..l '
Then [n (Ua)"y‘éx)ae[\ , where-

2
n

-1 n
‘i’a N (Ua) - Ua x GL(n, R) ¢ R ‘X_R

i

is given by (p, Xi)->(xi(p), Xt); defines charts of L(M) and

L (n_l(Ua)) = L(M).

achA



Lemma 1.2. If (U ,p )

It remains to show that these charts are compatible:

On the intersection of two, charts (n_l(Ua),WG) with coordinates \

(xi,X:) and (n_l(US),WB) with coordi ates (zJ,ZZ) one has
X = xk 8 _ Xk Bzg 3 ZE-~§—
i . Bxk i 3xk azQ i 9z
: 82E
But X the Jacobian of the coordinate transformation in M, 1is a

Ix : .
differentiable function because M is a differentiable manifold; hence

the two charts are compatible.

Therefore one has established the following Lemma:

is an atlas of M theh (n—l(Ua),Wa)

a’a’ aeA aeA

defines an atlas of L(M) of the same class of differentiability.

If one endows L(M) %ith the so defined differentiable structure
oﬂe gets:
Lemma 1.3. ‘The projection map
m™: LM >-M
(p,Xi) > p

is differentiable.

" Proof: The map

-1 _.n 2
$ ooy~ ;R xR" SR

!

n

defined by
o X

is differentiable.

Hence by definition of differentiability of a map between manifolds, =

N

is differentiable. [J




Lemma 1.4. GL(n, R) acts as a Lie transformation group on the differ-

entiable manifold L(M).

Proof: The action of GL(n, R) on L(M) 1is given by

? : L(M) X GL(n, R) - L(M)

Ky j
((p’xi)’al) (p,Xjai).

The Cartesian product of two manifolds is again a manifold, so let

(va’Ya)aGB be an-atlas of L(M) x GL(D,?R).
The map
| -1 n(n+1) n? n(n+l1)
w8°¢°YG : R X R + R

defined by ‘
‘ ik s i .k 2

((x ,Xl),ar) > (x ,Xlar)

is differentiable because GL(n, R) 1is a Lie group. Hence ¢ is’
differentiable.

Furthermore, one has to show that

R : LM > L™

a
given by
i 2 ik 3
(b, %, A P (e Xy —)
X . 9x

1s a diffeomorphism.
Because GLZn,ﬁR) 15 a Lie group and the action on L(M) 1is free, Ra

is injeétivé, surjective and differentiable, i.e. it is in pa:ticplar a

homeomorphism. P .

The samé‘is true for
-1 e
R 7 :LM) > LM

a ' : .
i 3 i, -1,k 3

(os X - D> (x4

o x _ ox

which implies Ra is a diffeomorphism,

[



At last _
R, °Rb = Rba holds V¥ a,b € GL(n, R)
because

xli( € GL(n, R). [

Definition 1.6. The set L(M) together with the defined differentiable

structure is called the frame bundle of the differentiable manifold M.

Note: - The frame bundle is a principal fiber bundle with structure

group GL(n, R). The orbit through a point u e L(M) is the fiber

ﬂ—l(p)’ ‘p = m(u). The fiber n_l(p) is diffeomorphic to GL(n, R).
- Theoriginal idea was to describe tensor fieldson M as functions on

another manifold. With the frame bundle L(M) one has found this

manifold.

Lemma 1.5. Any tensor field S on M corresponds .to a collection of
real valued functions on L(M). ‘These functions transform according to

2 representation of GL determined by the type of 'S.

Prc.f: <onsider a vector field X on M, i.e. a temsor field of

type (Oj' : | | . .
Let (U,¢) 1 chart around p € M and xi the coordinate functions.
Then the com;: . = of X in the coordinate basis are given by
d

2 9:{1

.and in an arb: rary " &7 definzd by
X -
p

where u = (p, Xi)f



f .

- ~ k .2
Using the chart (n 1(U),‘P) one calculates Ei(x ,XS):

i 3 1, k% 3
X =& (xk)'——z = Ei(x )Y i _—
P ax TR S
~{ ~i k3
- (WX, = £ (WX —g
1 1 :
: 9x
where
) L. -1
Yy = (Xi)
~ ok R ke i,.2
= EN(xXD) = EN(xOY(XD).
. S T s

Because of the group action the functions 'Ei fulfil the following trans-
formation property:

t (ua) - (a’l)i.2k<u)

If the values of the Ei’s are known at one point u e LM

Fhey are determined on the fiber ﬂ—l(p), p = n(u). ;

The generalization for arbitrary tensbr‘fields is now straightforward:
CIf S e'T;(M) is given in the coordinate bases by

...‘ D
kl k i

S =S8 T dx l@-*-@dx Se 9 ®@re ® 9 s tﬁenz
il...is . kl k
9x Ix r
one has
&
~ 9979, h k1 kr 1, is 4 9
Sg‘ ceep xsi...‘i - X ...Xl' Y ceeyY
1 s 1 s 1 8 1 T
The action of the group 1mplies
) : q ooaq q ] q k o-ok i i
~ S | T -1, -1, *r 1 T 1 s
Sg eeep S(ua) = (a ) (@ ), Sy ...y (wa,"+++a,". [
1 8 : s 1 8

1 » T 1
HavingcharacterizedéenSorfieldson M as functions on L(M) one is

able to differentiate these functions with respect to a vector field on

L. o A

11

sy s

PN
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-~
‘ 12
Theorem 1.1. Let X be a vector field on L(M) 1invariant under the
B action of GL(n, R). If S 1ig any tensor field on M, there exists a

unique tensor field T of the same type such tha}

s

T = X
kpmooky

where §: = g,
l-a.i
1 S

~

Proof: Given X and S, the functions i S are uniqﬁely detgrmined.
To show that T 1is of the same type as S, one has to check the. trans-
forghtion property. inen £ L(M) +“ﬁ, (Ra)*i = i Vace GL(n,ﬁR)
implies

xf) = (Xf(ua) ),
/ . In particular

T(ua) = (x§) = (§§(ua)]u.

With the transformation property of S one gets:’

q ceeq ’ . n q q k ceele i i
~ 1 T = SRR TP B ) 1 B o 1,.,..7s
T, .. (ua) = (x((a @ s (Wa "+ -a %))

1 s : 1 r 1 s 1 s
q q_ - k <+-k i i
s S T N et 1 T veun S
(@ eer@ ) xS, (W), a,"++-a
T 1 s N ’ s
P N1 -1, % ~ k1.”kr il is
=(a ") Teree(a )T T (u) a.“+++a
k k i eoeq )'A 2
1 r 1 s 1 s

~

hence T has the correct transformation behavior.  [J

Note: 1If one takes a vector field X oﬁ L(M), then n*(x) does -
in general - not define a vector.field on M. But if X {is invariant

under '(Ra)*, then n*(i) defines a vector field on M.
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2. Linear connection.

The next step is to take a vector field X on M and transfer it
to the frame bundle L(M) Because one wants the derivative of a
tensor field with respect to X depending only on Xp’ P € M and
not on X 1in a neighborhood of P, the véctor field should be lifced

~

in such a way that x 1s uniquely determined by XP. So one
Loy

needs an instruction to 14ft X 1in this way.

This instruction is gained by introducing a linear connection’on M:

Definition 2.1. A Iinear connection T on M 1is an assignment of 3
=&:inition 2.1 \

subspace Hu S TU[L(M))F to each u € L(M) such that

(D Wl = Ty 00
) (R)H =

(iii) Hu depends differentiably on u.

The space Hu is called the horizontal subspace of TU(L(M)).

v

Note: A linear connection is a distribution

u + Hu on L(M).

Condition (1i1) means that the distribution ig invariant by GL(n, R),
condition (1ii) means that the distribution ig differentiable.
When does a linear connection on a differentiable manifold M

exist7 This question 1 swered by a

Theorem 2.1. 1If a differentiable manifold M is paracompact, then )

the frame bundle L(M) admits a linear connection.
Proof: See | ;s p. 67]. _ . ) : _ |

Note: Because . the manifolds which are considered here are assumed to be
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paracompact they all admit a linear connection. Actually it is also
Y N

necessary to assume that the manifold 1s paracompact. There exists a
' 3
theorem due to Geroch [7] that if a Hausdorff C -manifold M admits a

Cl—connection, then M s paracompact.~

."“'wv v

R

Now one can 1ift a vector field on M in the desired way: . T

Lemma 2.1. Let X, Y be vector fields on M and ' a linear

~ connection on M. There exists a unique horizontal 1lift X of X

such that
(Ra)*x = X
and
< ~ ~ TN
X+Y=X+Y.

~

Proof: Given the connection T, define Xu’ u € L(M) by Xu € Hu and

LI Xﬂ(u). The-prOJection m : L(M) > M induces the linear map

L Tu(L(M)) ST ®™ ¥ueron

and

,is an isomorphism.

This implies that xu’ is uniquely defined and that
X+Y=X+1Y.
Since thevhorizontal subspaces are invariant under GL(n, R), it

follows that (R )X = X. [

One is now able to define the directional derivative of a tensor

field with respect to a vector field on a differentiable manifold M:

S,

Definition 2.2. Let S be a tensor field defined around p ¢ M and



X ¢ TP(M). The covariant derivative of S “in the direction of X at

p 1s a tensor Vx S defined by
. Xa
—~ . .
vV, S = (X S)
p -

X 1

p m " (p)

Note: Because of Theorem 1.1, Vx S 1s uniquely defined and is a

p
tensor of the same type as S.

The covariant derivative satisfies the following properties:

Theorem 2.2. Let X, Y be vector fields and S, T tensor fields de-

fined on. M. Then

(1) V.S + Vs = VyayS
(2) vfxs = £V.S ‘
(3) V(S+T) = V.S + VT

(4) v (£9) = £7.5 + (X£)S '

(5) vX(s GT)" (sz) ®T+s§ (VXT)

~.

where f : M+ R.

Proof:. (1) is an immediate consequehcg of Lemma 1.5.
(2) 1is obvious.

For proofs of (3)~(5) see {S, p. 116]. [

Note: vPrpperties (1)-(4) (for S,T € Té(M)) were the conditions used

by Koszul to défine a linear connection.

Definition 2.3. Let S be a tensor field, S € T;(M). The tensor field

VS ¢ T;¥1(M) is called the covariant derivative and 1s defined by

i 1 : T . 1 r
(VS) (X)XI,. ’XB’ w , s W ) = (VX_S)(XI’..A ’XS, w ., »yw )

where X, e T(l)(M) and ol e T(l)(M) V1.



16

Once the linear connection is defined one has to ask how to describe
this assignment of a horizontal vector space to each point of the frame

bundle in more detail.

There can be defined n !'-forms on the frame bundle:

Definition 2.4. Let Oi: T (L(M)) R (i =1,+-.n) be defined by
- u

1 ' '
(X)) = 87(X )X for u = (p, X,)? The n 1-forms 8i are called the
* Ty u’ i i _

.,

canonical 1-forms on the frame bundle.

Given a linear connection T© on M, any X € TU(L(M)) can be uniquely
written as .

X = hX + vX
where

hX € Hu and is called the horizontal component of X

and

vX 1is tangent to the fibers and . led the vertical

component of X.

One hac an additional set of n2 l-forms on L(M):

. : N v
Definition 2.5. Let 'Ei be a basis of g&(n, R), Eki the corres-

ponding vector fields on L(M) and X a vector field on M.. The

vertical component of X can be written

1,045k
vX = mk(X)E {
The l-forms wi are called the comnection forms of T on the frame

bundle.

The canonical forms and the connection forms together form a basis
x . ,
of TU(L(M)) at any u € L(M). Now the question arises: What are the

vector fields dual to these 1-forms?
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Definitfon 2.6. Take X . T (LM)). It s called horfzontal if
- u ,
X « H .
u
. i .
Lemma 2.2. Take 7~ ¢ Rn. Epgn there exists a unique horizontal vector

field B(&l) on  L(M) such that

1 {
B (r) = - )
U U(. ) X, 1f u = (p, Xi)

i

Proof: Because

T Hu: Hu'* Tn(u)(M)

is a vector space isomorphism, the unique existence follows immedtately. U

Denote by B1 (1 =1,-+-,n) thehorizontal vector fields corresponding

1

to the natural basis of Rp, i.e. for example \\V/_\

1
£ =(1,0,-++,0) and W*Bl = Xl.
The vec: r~ fields Bi are called the standard horizontal vector fields

, : : ) 5 . .
and form a basis of the horizontal subspaces of TU(L(H)) for each

u e L(M).
*q i 2 :

Lemma 2.3. The vector fields E x’ By and thegl-forms we 07 are
dual and satisfy )

i, *e i.2 i .

wk(E S) "Gsék wk(Bl) = 0

1 i N
_? (B ) = &, 87(E ) = 0. o

’

Proof: These properties are a direct consequence of the dq%initions.

The vector fields B are horizontal, go wi(Bz) = 0,

ik .
The vector fields E g Aare tangent to the fibers K go- ei(E*k) -0
£
1 *q * *2 1 *g {3
E E = - ) - - .
wk( s) { E g Which implies mk(E s) - Gsék . If n (p, Xi)’ then

g ' i ; i i :
B = = - -
m, ( k)u ) (Bk)xi X, which implies 6 (Bk) dk . O



The next theorem shows that the connection is unique 1if one knows

wi or Bi at one point of each fiber:
Theorem 2.3. For any ai € GL(n, R) the vector fields Bi’ E*E and
the 1-forms 81, m: transform in the foliowing way: |

D ®), B = @HEs, :

(2 (R), E'L=al E*i(a;l)i |

3 &) el = @ hHl ok

@ @)l =al wl@hHe

Proof: The transformation properties are éasy to calculate using the
fact that ‘the horizontal subspaces. Hu are invariant under GL(n, R)
and that GL(n,IR) acts freely on L(M);

For details see [15; p. 312]. 0O

The description of the fields in a coordinate system is given by

Theorem 2.4. Let (U,¢) be a chart on M and (xi,XE) the coordinates

in, n_l(U). If a connection T is given on M, there exist functions
Fi :U-+R uch that
L R suc
O b L -
ax ax aX
s
(2) B, = x: [—QE - ris x5 —35}
ax Toax )
5
i_ o1, % i1 _s. %
(3w =Yy AR+ Yrrls}z‘k dx

18
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A
‘ J 2 9
(5) v, ——=1I,, —
Bk kg x
ox
Proof: " \\> , ' !
: 3y k 3 3
(1) Assume —5 ¢ H where u = (xl,d ). Because T — = —
L i u 2 * i i
3§ . . X oxX
there exist fynctions Fil such that
3.3 ko3
B}Ci Bxi i/Q. BXk G
) -
Now
2 3
R), —¥ =7 and - .
a axi axi .
3 L 9
(R, T =a_ — imply (1).
a ,ax: S ax:

(2) The standard horizontal vector fields Bi can be written as

~

a linear combination of —QI-:

3x
k 3 2 8 9
(B,) =¢C,| ——-T, X —
i’u i axk ks 'r axl
- | . ) )
CIf u= (p,X) = (p, XX =) then
i i 5 k
- . _ X
k o~ k 9
L
’ = O9X ox
k k :
= = => .
ot = X ()
PN N 1 1 *
(3),(4) E K" Xk axg and wy and 6 are dual to E " B Bi'
. . ,

This, together with (2), gives (3) and (4).

(5) Incorrespondence with the vector fields —EI éfetherealvalﬁed

- : . 3x ‘
functions N ,
i{ = Y‘il on L(M). (See Lemma 1.5.)
Ix '

One gets



Bxk Bxi ox 29X
r
I s 4 T
= T XY
ks L Yi
2 e
q L
= F = F _—
ki YR ' ki 2
ax
. av] ; | |
because ——% = —YZ Y . This implies (5). 0
i .
aX ‘ -
r
3 i '
Note: As seen from the last theorem,the pn~ functions T KL determine
the connection T uniquely.
: i
These functions T are the same as the ones used to introduce

kL

évélassical connection since.they fulfil the transformation property

required:

Lemma 2.4. Let (U,¢) and (U',¢') be two charts around p ¢ M with

- coordinate functions x1 and/ yi.
/ o

3 ' i .
"Given a connection TI' on M, the connection coefficients T ke trans-

form in thelfollowing way:

Pro b ax" ax® ay" . 32%*  ayF
o' %t ke ay° ay" axt  axaxt axt - -
iy 3 8xi' d -
Proof: - % = and the properties of the covariant derivative
' dy dy  9x ‘ :

(Theorem 2.2) together with Theorem 2.4(5) imply this traﬁsformation

rule. [J

Note: As seen fromsthe transformation hehaviour the I‘ik2 do not define a

tensor. But on the frame bundle a linear connection corresponds to

i .
tensors (the connection forms wk)'"

A consequence of Theorem 2.4 and Lemma 2.4 is the following:

20
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Theorem 2.5. A linear connection on M can be defined by a map which
assigns to any pair of vector fields X, Y a vector field VXY on

M such that
Q

. V.Z + V
(1 Vyiy? xZ 2

(2) fo Y = fVXY _ .

(3) "V, (¥42) = V¥ + V.2

(1) Tg(FD) = 0 + (XDY,

where f: M > R.

This gives the equivalence of a linear connection defined on the frame .

bundle and a Koszul connection.

21
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3. Parallelism.

Given a connection on a'differentiable manifold M, one can define

¢
the concept of parallel displacement of a frame along a curve in M.

@

This leads to the problem of lifting curves in M horizontally to the

frame bundle of M.

Definition 3.1. Let ST (é,b) ~ L(M)

s > 1(s)
be a differentiable curve in L(M). The curve 1(s) 1is called horizontal if
1(s) € Hr(s) .¥ s € (a,b) . :

where %(s) is tangent to T at s
It is possible to get a unique horizontal 1ift of a curve in M:

Thegrem 3.1. Let o : [0,1] » M

t > o(t)

be a differentiab_ - curve in M. Take .p=0(0) e M and uy € n_l(p).

Then there exists a unique curve o : [0,1] = L(M) such that

;(O) = u,
w[é(t))'=_o(t)_

a(t) e HG(C)

Proof: Because there exists the unique 1ift of a vector field, the
pfoblem of the unique 1ift of a curve is already solved piécewise. One
has to show that one can join these lifted pieces to get a 1ift of the

,.whole-curve. For defails see‘[15; p. 311]. O

The relation between horizontal curves and the covariant derivative

is given by:



Lemma 3.1. 'Let o(t) be a curve on M and &(t) its horizontal
lift. For any tensor field S on M one has

N d- rmpn

50500y = lar Blo@)) g -

Proof: Since a(t) is a horizontal curve = G(0) ¢ HG(O)' Thus

509500y = @8] 0

d (3(n -
e Blo))1,, - O

" This leads to the following definition:

Defindition 3.2. Let X _be a vector field and o(t) a cufve in M.

Then X 1is. said to(be paﬁgZZeZ along o(t) 1f

| (5&“)}( Z"Of_, ¥t
N

N
Note: If 1(t) in L(M) 1is descfiﬁed by t(t) = (o(t),Xi(t)} then

the frame Xi' is parallel along  o(t) when (t) is éhorizontalcurve.

every horizontal curve iEfmappéd into a horizontal curve by the action
of . GL(n,ER).' Hence the parallel propagation along any differentiable
‘curve commutes with the actign of GL(n, R) on L(M) and defines a

© - vector space isomorphism between the tangent spaces along this curve.

Remember that the tangent vector of'a'straight line in R" remains

23

Because the horizontal subspaces Hu are univariant under GL(n, R),

parallel along the line. Thus one is -led quite naturally to the following

definiciod'which gives the analogy of stfaight lines in a differentiable

manifold M:

Definition 3.4. Let o : (a,b) +M be a differentiable’gurve in M.



Then o(t) 1is called a geodesic if 1its tangent vector é(t) is parallel

along o(t), i.e.

v&(t)c}(c) - 0. ¥te-(ab).

The reiation between a geodesic and the description of a linear

connection developed in section 2 is established by the following

theorem:

Theorem 3.2. Let B be a horizontal vector field on L(M) and t(t)
the integralycurvé of B. Then n(r(t)) i3 a geodesic and every

geodesic is obtained in this way.

Proof: - See [9; p. 1397.

24
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4. Curvature and torsion of a linear connection.

All info!&aticﬁ 8bout a linear connection T on M 1s contained
: [ :
in the standa‘é hdrjfontal vector flelds. These vector fields are
. : . \ .
used to cdnétﬂ&gﬁ two geometrical objects, the curvature and the torsion

N

tensor fields. They are the basic invariants of a given linear connection.

. - LN
. Theorem 4.1. Let Bi be the standard horizontal vector fields of the
. ‘ g N
connection I' on M. The functions R sik ‘and Tlik on L(M) defined
by
' : ~2 s ~R '
* = - . had
(*) [B;,B,] R E T B

sik ik 2

are the components of two tensor fields R ¢ T;(ﬂ), the curvature: tensor

) 1 .
and T € TZ(M)’ the torsion tensor.

Proof: One has to show that 'ﬁziks and Tlik‘ have the right trans-

formation properties, i.e.

N -1.2 q Vv t
R iks(ua) = (a )r (u)ai a a

~2 -1
ik(ua) (a )r ( )ai ak .
Apply (Ra)*' to both' sides of equation (*). Then the transformation
properties are an immediate consequence of the transformation properties

of the standard horizontal Vector fields. [ ;

Note: If one introduces a linear cdnnection as a Koszul connection, it
-can be’shown that the curvature and torsion tensors are given.by R(X,Y)2Z =
4 VXVYZ - VYVXZ - V[X,Y]Z T(X,Y) = VXY - VYX - [X,Y], where X,Y,Z are

vector fields on M. The first equation expfesses the fact that the

second covariant derivatives do not génerally commute.

Theorem 4.2. Let T be a lineér cdnnection on M and the connection
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_forms m; be definedlwith respect to the natural basis in GL(n, R).

Then
' i i 1 ~1 g s~ )
dog = mup Aep TR Ge 008
i i 1 ~i k L
= - = 6
do wy A B+ > KL A0
These equations are called the structure equations on L(M). o

Proof: Let

ﬁ e L(M) and

If ’[ea,eb] =

dea.—_-_%c e./\e .

a e iuﬂ a,- .,’ a a .
'because_ de (eb,ec) =3 {ebe (ec) - ee (eb) --e ([eb,ec})).
Using the local expressions for Bi given in Theorem 2.4, one calculat ~c

.

Nt : i
[E > Bl =8 B, and
*i kg 1 _*g L _*i -
. . =8 - .
[E K’ E_$] s E -8 E .
' . a *k i L
Replacing e, and e by Bi” E ) and wk, 6 respectively, . these

equations together with Theorem 4.1 imply the structure equations. [J-

What meaning do the structure équafions on L(M) have for M? = _

They can be expressed on vH in the following.way:

Definition 4.1. Let (U,$) be a chartroh M. A differentiable map

4

o :U~+LM  such that

T oqa = idU

is called a local erose section of L(M).

Note: A local cross section is just a differéntiably varying frame at

each point of U;



, i
. Any coordinate system x induces a local cross section

a : U->LM)
4 i @
x) » [+, ﬁ‘:i“)
ax

Using the induced linear map

* r r
a TS(L(M))U > TS(M)n(u>

one gets the pulled back equations on M.

Theorem 4.3. Let a be a local cross section. The structure equations

on M are’

* 4 *x i g~ 1 4 * Q * g
d(a wk) = -q wy A Q W + 2‘R kgs © 8" A a8
* { x. x4k 1.1 *k kg
» d(a 87%) = -a mk Aa b + 2 T ") a 0 a 0
where
i * ~i
R kes - @ R kis
i * ~q
T Kt T a T KL °

Proof: The structure equétions on M are just a consequence of the
structure equations on L(M) using the properties of the induced
. . )

linear map a .

For details see [15; p. 317j. D

The structure equations on M will be used la;er on to calculate
the Riemann teﬁsor.
: % ok 4 )
In a coordinate system, the forms a wk : a f are described

in the following way: : T

Lemma 4.1. Let ki ‘'be acoordinate systemon M and a the local cross

27
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section
a U > L(M)
i i ]
(x) + (x7, =)
. ax
Then
* i i '3
o wk =T ok dx
*
a ei = dxi.

Proof: This is an immediate consequence.of Theorem 2.4, []

28



5. Riemannian Connection.

One can add to a differentiable paracompact manifold M ga Structure.

which makes M into a Riemannian metric'sbace.

Definition 5.1. A metric on a differentiable manifold M is an assign-

ment of a tensor g e-Tg(M). to each. p ¢ M such that
g8(X,Y) = g(Y,X) for all X, Y,

where X, Y ‘are vector fields on M.

In other words, g assigns an inner product in each tangent

space T (M).
pace T,

Exampie 5.1. The Euclidean metric on R" is defined by

1 .
where x denotes the natural coordinate system.

The metric 1s called positive definite 1if

| v

g(X,X) 0 - - ¥ X

and

]

- 8(X,X)' =0 <= Xx=0,

and non-degenerate if

E(X,Y) =0 VX=vy-=o.

If the metric is non-degenerate and positive definite it is called a

Riemannian metric.

i

A
]

Theorem 5.1. Every paracompact differentiable manifold admits a

Riemannian metric.

Proof: See | 9]. The proof is based on the fact that the frame bundle

29
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L(M) " can be reduced to a bundle of orthonormal frames in the para-

3]

compact case. []

Detrinition 5.2. A connection I on M 1is called a metric connection if

Vg = 0.
It is called the Levi-Civita connection of g .if, in addition, the

torsion of T ‘vanishes.

Lemma 5.1. Vg = 0 <= parallel propagation preserves the inner
product.

Proof: Vg =0 <= (V_ g)(Y,Z) = 0

N~

<=>Xg=0

VX,Y.Z e Té(M)- 0

Is there a relation between two gésmetric Structures, the-metrics
and the connections on a différentiable manifold? The choice of
a metric connection for a given metric is by no means unique. But the
resffiction to torsion free'connections gives the following important

result:

Theorem 5.2. Every non-degenerate metric g on M admits a unique

connection with vanishing tofsion.

" Proof: -

(ng)(Y,Z) = X g(Y,2) - g(VxY,Z) - g(Y,VXZ).

' s . '
Suppose: g = 0 = Xg(Y,Z) - g( £,2) - g(Y,Vv . 2) = Q. Cyclically
a2t .

pefﬁ;;atiﬁg X, Y, Z gives
Z 8(X,Y) - 8(V,X,Y) - g(X,v,¥) =0

Y 8(2,X) - E(VYZ,X).- S(Z.VYX) = 0.
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Adding the first and third equation and subtracting the second leads to

Xg(Y,Z2) + YgAZ,X) - Zg(X,Y) - g(VXY,Z) - g(Y,VXZ) - g(VYZ,X) -

- + + 7.Y) = 0.
g(Z,VYX) g(VZX,Y) g(X, 7 ) =0

i

SEE A

Assume further that [ 1is torsion free

= UY - = [X,Y].

= % VYX [X,Y]
Inserting this in the last equation on gets:

(%) 2g(9,¥,2) = Xg(Y,2) + ¥g(X,2) - 2g(X,Y) + g([X,¥],2) +
+ g((2,x],Y) - g([Y,2],X).

Hence from the assumption  that I 1is metric and torsion free one can
derive an expression which determines T wuniquely in terms of g.

Defining r by the last equation one can show that VXY satisfies the

condition of Theorem 2.5 and therefore defines a linear connection. []

Note: A proof of this theorem in the frame bundle can be found in

[9; p. 159].

Proposi.ion 5.1. Let xi be a coordinate sysgem on M. Let g be

a non-degenerate metric on M and T the unique Levi-Civita connection

determined by g. Then

ri - -1
ke Bis ~ Bs(e,k) T 2 Bke,s

holds.

Proof: For the coordinate basis -—EI one has

ax
3. ] '
['f‘i“,—k]=0 and
-z 9x
) L ]
V) PaTY
— 93X 9x
i
ax

Thus the assertion follows from (*); 0



CHAPTER II

1. Spaces of locally constant linear connection.

It turned out in Chap: L that a linear connection defined a
geoﬁetrical Structure on a differentiable ménifold M  because it
provided . with the concept of parallel propagation. Moreover, every
éaracompact differentiable manifold admits a iinear connection as‘well
as a Riémannian metric. If one Qants to consider épaces with a speci-
fied geometry, for example spaces in which the parallel propagation
of tensors between two - points does not depend on the curve jolning

‘these two points, one has to impose restrictions on the linear

connection.

-

The question is then: What are the underlying spaces allo- .g’

‘such a specified connection?
In case that parallel transport does not;depend on the curve, the

curvature tensor of the connection has to vanish. These spaces. are
; v

called flat. The most elementary example of a flat differentiable

manifold is‘Eﬁclidean n-space Rr". It has a global chart such that the

2

connection coefficients with respect to this chart are zero.

Another interesting case to consider could be a linear
connection which does not vary in a neighborhood of each point of the

manifold.

L]

Differentiable manifolds admitting a linear connection of this

type are treated in this chapter.
' 2

Definition 1.1. Let M be a differentiable manifold. If. M admits

32
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P
a linear connection T such that for every p € M there exists . chart
containing p in which the connection coefficients with respect to this chart

are constant, M {s called 3 space of locally constant linear connection.

systems. The aim of thisg section is to give a more geometrical and
coordinate independent characterization of these spaces by means of

transformations and groups of transformations.

Definition 1.2. 1et ¢ : M+ M be a map. If ¢ {5 g diffeomorphism,

¢ dis called a transformation of M.

Looking at the frame bundle L(M) one gets:

Any transformation ¢ of M induces an automorphism

) : L(M) > L(M) of the frame bundle

®> %;) (¢, %X

Note: Since & ‘is an automorphism of the bundle L(M) it leaves

the fibers invariant.

Ceftéin tensor fielas such as thé canoﬁical fofms or the
connecfion forms are already defined on the frame bundle. Whgt are the
effects of a transformation on Ml on these tensor fields?

Using the canonical R-valued 1-forms Gi one can introduce an
Rp—;alued 1-form on L(M);_

1,..-,en) defined by

Definition 1.3. The Rp—valued l-form 6 = (g

. .. /
ST (LD} >R

- i -
'Xu , -+ 8 (Xu)ei .
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where e, -1is the natural basis in Rﬁ, 1s called the canonical form

on L(M).

This gives another description of a frame:
A frame u = (p, Xi) can be considered as a map

u : R" T (M)
, P :

Then 6 can be defined by

6 : T (L) >R
u
. I
Xy > u '(n* Xu)

for all u ¢ L(M). )

Lemma 1.1. Let ¢ : M > M be a transformation on a differentiable mani-

fold M., The induced automorphism

~

LM > LM

leaves the canonical form invariant, {.e.

~k

6, . =6 f . ' o .
(W) i or all u e L(M) | |

Conversely, every fiber preserving transformation of L(M) leaving

6 invariant is induced by'artransformation on M,

~

Proof: Let: Xu € TU(L(M)), n*(Xu)‘= Xp € Tp(M) wbere p = w{u).

Then (X ) = u'l(x ) )
\\ u p .

N ~ ~an=1 '
and  ~ B(8,X) = (e(w)) (¢4 X).

. \
The diagram

]Rn

N

g(u)
\

T (M) ——— T

p V) T Toqpy ™

commutes by definition of &
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This implies u—l(Xp) = (g(u))_l(¢* Xp), hence 6 is invariant by‘\g.

N,

For the proof of the converse see [9; p. 227]. [J \\\\\\
. \

i
‘Lemma 1.2. Let M be a differentiable manifpld with linear connection
I'. Let 4¢' be a transformation on M and 5 the induced automorphism
‘on L(M). There exists a unique linear connection $(I) on M such
that the horizontal subspaces of I' are mapped inpb horizontal
subspaces of $(F) by the induced linear ﬁap
o, T(LD) > T{LOD).
V?rqof: Take u,v ¢ L(M), a ¢ GL(n, R) such that . v = ¢ (u)a.
ngine the horizontal‘su£3pace Hv of TV(L(M)) by
o= (R), © d,(H) ,
where Hu ~is the horizontal sﬁbspaqe of Tu(L(ﬁ)) with respect'to
the linear connection r. |
One has to show thét Hv is independent of the choice of u. and a;
the uniqueness is already clear from the defiﬁitioﬁ. Take, |
u' € LM, a' e GL(n, R) |
sugh that
| v = E(U')a'.
Since ¢‘ ﬁaps fibers in;o fibefs,
| u' = ub for some b ¢ GL(n, R).

Let ¢' : GL(n, R) > GL(n, R) be the map induced by the automorphism

'g; Take
b' = ¢'(b). Then
v = g(u')a' = ;(ub)a' = S(u)b'a' and thus
a=">5b"'a"'.

Now _ (Ra')* o ¢*(Hu,) = (Ra')* ° ¢*(Hub)

= Ry, ° F, o (R, ()
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, = (Ra)* o ¢*(Hu),

hence Hv is well defined.

- It remains to show that the assignment v - Hv defines a linear

connection on M. Since

<
!

= g(u)a , vb = 5(u)ab b ¢ GL(n, R).

Hence

(R o (R, o 5*(HU)
(R, ().

Hvb - (Rab)* ° ¢*(Hu)

Now one may assume that v = ¢ (u), because HV is invariant under

(Ra)*' The diagram

commutes. 'The maps

T R Ty O

b .
‘and x F Ty D > T 0
are liﬁear isomorphisms which imply that

T Hv - Tn(v)(M)

1s a linear isomorphism. [] , .

~

Note: .Furthermorg, it can be shown that ¢ mi are the connection

forms of &(T). ' \ .

It was shown earlier that every trahsformation ¢ on M induces
E . ’ - o . . ,
a transformation ¢ ‘on L(M). Taking a vector field X on M ‘and

P € M, then the local l-parameter group of locgl transformations ¢t

K]
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generated by X in a neighborhood U of p 1induces for each t a
transformation ‘Gt. Therefore starting with a vector field on M a

.

corresponding vector field on L(M) can be introduced in a natural

.way:

Lemma 1.3. Let X be a' vector field on M. Then there exists a
unique vector. field X on L(M) called the natural Iift of X

such that

(1) (R),X =X for all a e G(n, R)

(2) L 6 =0, where L denotes the Lie derivati&e with respect-
X ’ ' X '

to X,

(3) n*(ig) = Xn(u) for all u e L(M).

Proof: (1) Let wt be a local 1-parameter groﬁp of local trans-
formations generated by X in a néighborhood U of p e M. 'Then,

wt induces a transformation

~ -1 C -1 .
b =T (U) > [wt(U)),
for all t, i.e. a local l-parameter group of local transformations

on L(M). Denote by X the vector field on L) “induced by Gt'

For all a ¢ GL(n, R), at commd{es with Ra. This implies (1).
(2) wt . preserves (Lemma 1.1) hence L 6 = 0.

. X
"(3) Since w ° Et = wt ° ﬁ, one has (3). (;

Now assume that Y 1is another vector field on L(M) satisfying (1)-(3).

Let $t be the local l-parameter group of local transformations

generated by Y. v ” . : 1

S

(1) implies that commutes with .Ré and

(2)  imp1ies that 3 preserves the canonical form 6.



- Hence one knows from Lemma 1.1 that $t is induced by a local l—pafa—
meter group of local transformations ¢t on M.
Now = (§.)‘= X y» SO that ¢ induces.the vector field X on M.
*ut m(u) t ,

Thefefore ¢t = wt and &t =-$t. This proves the uniqueness of X. [J

Note: One can use the natural 1ift of a vector field X to introduce
the Lie derivative in a similaf way as the covariant derivative is
introduced (see Chapter I). When S denotes a tensor field on M

the Lie derivative ofﬁ S with respect to X is defined by

S = XS. '
LX .
Now one can define transformations on M which leave the linear

: {
connection invariant: : _ \

"Definition 1.4. Let ¢ : M > M be a transformation. It is called an
affine transformation if

Ve X=0 ‘implies

50y X=o0,

Ve, (a(0) ®

where 6(t) is a curve in M, X a vector field.

Note: This means'that the induced map'¢; ﬁaps each'paréllel vector -
field.-X along each curve o(t) of M into a parallel vector field
élong the cufve ¢/° o(t). In other words the induced map ¢ méps
every horizontal curve ‘into a horizontal curve, i e. affinetransformations
presefve geodesics. | -

Now one can look at fhe effect ok’én affine transformation on the
connection forﬁs on L(M). As in the caée of canonical forms one can
use the connection férm; wi to intréduce a 1-form on :L(M) with
values in the Lie algebfa gl (n, R).

Remember that a Lie algebra homomorphism

i

‘i !

3
4
3
g
-



39

o, ¢ 8L(n, R) > T(L(M))

*
A -+ A

. . v , :
where A, the fundamental vector field corresponding to A, nhjg

already been defined (Lemma 1.1). One gets

‘Definition 1.5, T™e l-form w o= (wi,---,wz) defined by

w : T(L(M)) » gi(n, R)
X + A
* . ' :
such that A = vX where VX denotes the vertical component of X is

called the connection form on -L(M).
: i ¥k _od,.k
Since vX = wk(X)E i .w(X) = ok(X)Ei.

Lemma 1.4. Let . M be a oifferentiable manifold with eonnection r
Aand let § be an affine ttansformation; The indquo automotphism 3"
"leaves both the canonical form 6 and the connection form W,
invariant.’qunversely, every fiber pPreserving transformation on L(M)
rd

1eaving both 6 ‘and w invariant is ipduced by an affine transformation

on M.

Proof: The first statement is a direct consequence of Lemmas 1.1 and
1.2, and the definition of an affine transformation For the converse
see [9; p. 226].

Furthermore, one has

Lemma 1.5. Let T be a linear connection on M. For a ttansformation
¢ of M the following conditions are equivalent;:
(1) o is an affine transformation ‘ ) ’ .

(2) 4>w=w,
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(3) $*B(g) = B(£), where B(f) 1s a standard horizontal vector

field

(&) ¢*(VXY) = V¢*X ¢.Y, where X and Y are vector fields on Mf

Proof: The equivaleﬁce of (1) and (2) is already given by Lemma 1.4.

For further proofs see [ 9; p. 228]. [0

Again the affine transformation can be induced by a vector field

- on M.

Definition 1.6. A vector field X on M 1s called an infinitesimal
affine.transfbrmation of M if fbr allv p € M the local l-parameter
groups of local transformations wt ; U - M; p e U 1is an affine trans-
formation for all t.

Here U is'provided with thé connectign I'/U which 1is the restric

of f to U.

- s
To relate the concept of affine transformations and the problem of
characterizing spaces of locally constant connéccion in a coordinate

independent way, the description of the affine transformations in local

. coordimates is necessary.

Lemma 1.6. Let X be a vector field on~ M and X the natural 1ift

. _
of X to IL{M). If x° 1s a coordinate system, then X. is described

&
o

in the chart (xi, XE)' on L(M) by

- i, k, 3 o 2 T t, 3 e
X=¢(x) g +x &, )7, =
' ax ’ oX : ' , 7
. s -
where X = gi(xk) —é—-, , ////f
. i T
: X - —

Proof: Take u ¢ L(M). In the coordinate basis one has



- i 3 i 3
X =a (u) — + (u) — .
u 3 At axi

\

Now n*(fu) =IXN(u) Implies ai(p) = gi(xk) and

6 =06e,, LB6=20 implies
i —
X
Tr.k( 0 kp.=— 9
(6" () - 8 ({X, ==1) = o.
1 i .
Ix 0x
Inserting the quantities Sk and X one gets
1 7.8 1
S LN

and this implies the statement. [J

Lemma 1.7. Let I be a linear connection on M. For a vector field X

on M the foilowing conditions are equivalent:

@) X is an infinitesimal affine transformation on M,

(2) Lw=0,
»

. 41

(3) [X, B(£)] = 0 for every £« IRn, where B(f) is the horizontal

vector field corresponding to ¢,

(#) Ly o ¥y =¥y oLy = Yigy]

Proof: ‘Denote by 'wt the local l-parameter group of local transforma-

tions of M generated by X and by $t the induced transformation of

L(M).

(1) » (2): If X dis an infinitesimal affine transformation,

preserves w by Lemma 1.5.

@ » 3): 6 (B(&)) = &', hence 6(B(£)) = £ ¢ K. Thus

X(8(B(5))) = 0 = (1_6) (B(£)) + 8 ([X, B(E)]).
X .

Now L 8 =0, so0 this implies that
X
[X, B(g)] 1is vertical.

for every vector field Y on M.
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But m(B(&)) = 0, which leads to

X(w(B())) = 0 = @_wy(8(6) + (X, B(E)]).
X

Thus L w
_ X
(X, B(&)]

0 implies [i} B(£)] 1is horizontal. Therefore

Hl

0.

, (3) +‘(l):  [i} B(£)] = 0 1implies that Jt leaves B(£) invariant.

Now the Bi span the horizontal subspaces, so, wt preserves the connection.

For the equivalence of (4) see [9; p. 231]. O

Note: 1In general an infinitesimal affine transformation generétes only
a local I-parameter group of local affine transformations. If the
.infinitesimal'affine transformation X' generates a global }—parémeter
group of affine transformations, the vector fiéid 'X is called compZetg.
One can show (see [10]) that thé affinevtraﬁsformations form a
Lie group which has as its Lie algebra the éet of compiete infinitesimal
affine transformations. ‘ ’
Example 1.1. Denote by A" the Euclidean n;space R” regarded as an
affine space.
The group of affine transformations of . A" s répresented by the group
of all matrices of the fprm |
. a £
0 1
where a ¢ GL(n, R) and £ 1is a colﬁmp vector, £ ¢ R .

The affine transformation is described by
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The geometric invarlants of a2 linear connection, the cudrvature and

torsion tensors are given in local coordinates by

Lemma 1.8. Let M be a differentiable manifold with connection TI' and
i ' .
X a coordinate system. The curvature and the torsion tensor components

with respect to the coordinate basis are

R =T o - T + T r - T

‘Proof: These equations are a direct consequence of the structure
equations on M wusing the fact that the definitions of R and T

p . i i ,
(Theorem 4.1, Chapter I) imply R K(es) = 0 and T x2) = 0.0
) 7
Lemma 1.9. A vector field X on M with components Ei with respect
to a local coordinate system is an infinitesimal affiine transformation

if and only if it is a solution of the differential equation:

i i sy i _s _
sk (T sk® >;£ + R ksgt =0

Proof: The differential equation is calculated from L w=20, i.e.
. - _ X

Note: A vector field X is an infinitesimal Affine transformation iff

i

Lkal = 0.

\

Theorem 1.1. Let - M be a differentiable n-dimensional manifold with

linear connection
Then M 1is a space of locally-constant linear connection if and only if
M admits an n-dimensional transitive, abelian group of local affine

transformations.
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Proof:
"->": Let (U,4) be a chart around p € M such that
51 s
r kl(x ) = constant.
: )
A vector field X = Ei 7 defined on U 1s an infinitesimal affine
e BX

transformation if and only if it is a solution of

i

£ 1ogs T gs .

sac T T ) g F R

Using the local expressions for R and T one obtains

i

r - T + T r =
& k2 + slg yk - kzg »S ksg/,z + kl,sg 0
Hence a coordinate vector field
2o
Ix r ox
i

1s an infinitesimal affine transformation if and only if T Ke.r 0.

Thefefore'the n coordinate Qectdr fields _EI are infinitesimal

: Ix :
affine transforma-: :. They generate translations and satisfy
[ - ' , ' ' .
) ]
r—~; » 7% =0 for all i,k € {1,-*+,n}. Thus they form an n-dimen-
3% X o '

sional transitive, abelian gr?up of local affine transformations.

ety Let. G be an n~dimensional trankitive abélian group of

affine transformations definédd on a neighbdrhood U of P e-V |
Take a basis 'ea in'éhe Lie algeb?a of vectd; fields_on U which is
isgm§rphic to the Lie algebra of G.
The fact that ‘G is abelian implies <[ea,eb] % 0 for-all® a,b € {l,°f~,n}}
Thus the vector fields e, can be chosen as coordinate.veétér fields.
They are infinitgsimal,affine transformations, hence one obtains

i

T Ki.r = 0 for r =1,-*,n. Thus the connection coefficients are
3 .

congtant with respect to this coordinate system, and therefore M is a
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space of locally constant linear connection. []

A

Corollary 1.1. Let M be a differentiable manifold with linear

connection TI. 1In order that M admit an infinitesimal affine trans-
formation it is necessary and sufficient that there exists a coordinate
system such that the connection coefficients are independent of one of

the coordinates.

Proof: This is just a consequence of the proof of Theorem 1.1. (J

¢



2. Levi-Civirta connection.

~

It was pointed out in Chapter I that on a differentiable manifold
another important structure can exist, a metric g. A first relation
between the connection and the metric was shown by Theorem 5.2,
kChapter I): Every non—deggnerate metric g determines avunique
torsion free linear connection, the so-called Levi-Civita qdnnection
Now the opposite question arises: When is the linear connection ' on
M the Tevi-Civita connection of ‘a metric g? This section and the
next is a discussion of the problem in the case of spaces of locally

constant connection

It is clear from Theorem 5.2 that a first restriction on the
llnear connection T has to be that the connection is torsion free.

This implies that the connection coefficients are symmetric, i.e.

i -
[ke] = 0.

From now on, a linear connection means always a torsion free connection.

With respect to a coordinate system the COefficients of a Levi-Civita .

connection were ¥elated to the components of the metric in the following

"way (Proposition 5.1, Chapter I): . o .

8
8is ke = (311 kT gki 3 gkl,i)'

Changing the indices i and k gives
s 1 N
Bks'ie T 2Bie 1 t By o m 8y, )

Adding both equations leads to -

8 S
Bii,e T BigTin T 8ieTyg

46




Therefore the metric (if

a'LeVi—Civita connection

47

it exists) forwhich the given connection is

has to satisfy this set of differential

J equations. This implies that the question when a given connection is

E ey

QVi—Civita connection is equivalent to the problem of finding the

integrability conditions of this' set of first order partial differential

equations.
" In order to handle the system of differential equations mofe easily

it 1is rewriﬁten:

There exists a 1-1 correspondence between each pair of indices of the

‘componeﬁts Bk

{1,+++,%n(n+1)},

of the metric tensor and an element of the set
where n 1is the dimension of the manifold.

This correspondence can be described by a map

¢+ {1,+++,n} x {1,+++,n} > {1, bn(n+t])}

(a,b) + ¢(a,b)

Note: .- This correspondence can be given by

¢$(a,b) = n(a-1) + b - %a(a-1).

Define a 3-index xymbol

sz a,b ¢ {1,+++,n}, a {1,+<,%n(n+1)}
by .
‘ a élr ) 1 4if a = ¢$(a,b)
ab #(a,b) 0 otherwise
and
a
O[ab] = 0.
q’ at
JJ ab
ab 7 R
ab &Z s )
a :d N ,d)



Then one can define

L oab
g(l- - a gab ’

which implies

gab’ ab Ba -

The set of differential equations of interest is

S S
=g, IS 4+ T
84k, 0 T Big ke T Brs 1t
or

Bik,t ~ Brs "1 ke T kit

It can be rewritten as

¢
gq,i - l}(} gB y
i
B ke B s ke B s
= + r
where A, =0, % Moy ¥ % YTk
i .
Hence if the connection coefficients Fig are constant, AS is a’
- i

r*xr matrix (r = %n(n+l)) with constant coefficients.
From now on all considerations are restricted to the case of constant
connection coefficien ..

: 3

Now the integrability of the above system of differential equations

is invéstigated.

@ «

Definition 2.1. Let xi be a coordinate system on M. The system
‘ ’ . . €

8

g =8, 8g

i
of partial differential equations of first order defined in a domain

a,i

G 1iscompletely integrable if to each (xi,ga)e(3 there exists at least

one sdlution gd(xl) such that the initial condition ‘ga(§i) = 8a is
. : . . o

satisfied.

48
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Proposition 2.1. Let M be a space of locally constant 1inear‘connection.

The system of differential equations

s . S
=g T 4o T
Bik,2 T Bis ke T Bks 12

is completely integrable if and only 1f M 1is flat.

Proof: Write the system as

_ .B
B, ?a Eg-
It is completely iﬁtegrable if and only if the conditions for complete

integrability which are

8 B §
AT g + ) A g A g. =
iq B,k y ia B,Y kY S
8 s
Alg, . +]1 A g A g
K 8,1 oy K& B,y 1Y S

v :
are satisfies (see [12; p. 176].

Putting gc = AB g back into these equations gives
, a,i i® B>
*) g (AE AY - AS A =0
Y% Ky
Using
B _ k2 B s k¢ B _s
ia 9% ¢ ksrli + a clsr ki

and the fact that the components of the curvature tensor are expressed

by '
N . i r i rt
kis Lr sk st Lk

one can see (after a Iengthy.calculation) that the condition (*) is

equivalent to

r . J. r _
BirR ks T Bry Rgge =0
0’r

Rawyes T 0
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Now complete integrability means that the initial value can be

ik

chosen arbitrarily. Hence the system is cdmpletely integrable iff

In general, the'cqndition ofcomg}eteintegrability is much too strong.
A necessary and sufficient condition that the éysrem admit
is gaiped in the following way:
Denote the set of equations
Riikyes = 0 by F
and '

R(ik)zs)ql.'.q('l:() by Fa’ o GN.

Proposition'Z.Z. Let M be an n-dimensional space of locally constant
connection I with curvature tensor R. 1In order that the system of

differential equations

: . .S s . o
: =3 + .
ey Bik,2 ~ BisTke t Brelig

admit a solution it is necessary and sufficient that there exists a
positive integer N < n such that the equations of the sets Fo,---,FN
are compatible and thét the equations of the set Fﬁll are satisfied

on account of the former sets.
1]

~ Proof: The result is avdirect-cgnsequence of a theorem abéut integrability
of such a system of firét order partial differential eqﬁations as stated
in [ 5, p. 3] . According to _ne‘genéral theory the éer FO lis the
set'of’equatioﬁs for complete integrability. Biifroposition 2.1, F

turned out. to be

Rigkygs = 0- O



The‘above formulation has a crucial disadvantage. The restrictions
ovn a linear connection to be a Levi-Civita connection bshould have a
geometrical meaniné since the concepts 1nvolved (netfic, connection)
are geometrical. That this is so cannot be seen in this formal way.
More insight is gained ‘into the geometrical meaning of the integrability
conditions if they are described in terms of the holonomy group of a

linear connection.

51
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3. Holonomy group and integrabiligy conditions.

oy

A linear connection on M provides the manifold with the concept
of parallel propagation. Let o(t) be a differentiable curve on M.

A frame u = (p, Xi) at p € M 1s parallel propagated along o(t) if

AV =
5(t) Xi 0 for all Xi

There exists a special class of curves on - M:

A
b : o
1

r+

Definition 3.1. The loop space C(p) at p ¢ M 1is the set of all

closed differentiable curves starting and ending at p..

. Parallel propagation of a frame along a loop © € C(p) defines a

linear transformation
L :T M ~>T (M.
o p P

If o 1is given by

o : (a,b) » M‘

.definé the inverse by O_l(t) := o(atb«t). Now it can be sghown:

Lemma 3.1. Let o,t € C(p), p e M

(1) The parallel propagation along G-l is’ the inverse of the
parallel propagation along .
(i1) The parallel propagation along the composite curve t°0 1is

the composite of the parallel propagation along o and ..

Proof: See [ 9, p. 71]1. OO

-~

This Lemma implies tha- the linear transformations just considered

form a group.

Definition 3.2. Let M be é differentiable manifold with connection T.

1

52
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The holonomy g;;:;\\ ¥(p) of T with reference point p 1is the group
of linear transformations in the tangent space TP(M) of p e M defined

by parallel propagation of frames at p along loops starting at p.

Note: Another way to realize the holonomy group as a subgroup of GL(n, R)
is the foilowing: | . |

Lét u = (p, Xi) € L(M) be an arbitrary but fixed point of the fiber'
N*l(p). Under parallel propagation along o(t) e C(p) thé frame |

u = (p, Xi) is mapped into the frame v = (p, Lo(xi))°

[ 1]

JRE= I

SO M

Hence parallel propagation along 1dops defines a map (an isomorphism) :

>
-

-1, . -1
L o:m (p) » v "(p)
- (p, Xi)-+(p?»LG(X1>)
of the fiber n-l(p) onto itself.
Thus each o ¢ C(p) determines an element a € GL(n, R). The set of
elements "a ¢ GL(n, R) determined by'a.. o ¢ C(p) form a subgroup

of GL(n,iR).‘ This subgroup is called the holonomy group of T with

reference point u and is denoted by Y¥(u).

It can be shown that the holonomy groups are Lie groups:

Theorem 3.1. Let M be a paracompact, connected differentiable mani-
"fold with linear connection T. The holonomy group W(u)‘ of T with
reference point u € L(M) is a Lie subgroup of GL(n,?R).> The holonomy

group ¥(u) 1is isomorphic to W(vj for all v ¢ L(M).
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Proof: See [ 9 , p. 73]. O

The Lie algebra of the holonomy group is totally determined by

the curvature tensor and its covariant derivatives if T is analytic.

Theofem 3.2. Let M be a paracompact, conhecfed differentiable mani-
fold with,analytié linear connection T. The Lie algebra Q(p) of

the holonomy .group " ¥(p), peM is sp;nﬁed by all linear endomorphisms
of Tp(M) of ;hé form

k : ‘ |
V" R(,Y; Vl,---,Vk) o‘i_k < m‘.
where ‘

X,Y,V

i€ Tp(M).

Proof: 'See [ 9 ; p. 152]. [

The starting point of these considerationé was to determine when a
linear connecfion is also a Levi~Civita connection. Suppose T is the
Levi-Civita connection'of a'megric "8, which implies g has to be
invariant under parallel propagation along each curve |

Vg = 0.
Therefore if the connection I 1is a Lévi-Civita coﬁnection with resﬁect
"to ‘g the hdionomy group—of ' has to be a subgroup of the generélized
orthégonal,group'corresponding to the signature of g.

It turns out that this necesgsary condition is also sufficient.

Theorem 3.3. Let M be a connected differentiable manifold with torsion
free connection T. Then I 1is the Levi-Civita connection of a m%tfic
g 1f the holonomy group of T keeps a non-degenerate quadratic form

‘g 1nvariant. The signature of g 1s the same as that of g.
- o

]




Proof: See [16]. []

Thus the. procedure is: Look for non-degenerate quadratic forms
g : T (M) xT (M) R
p P

which are invariant under the holonomy gronp ¥(p), 1.e.
(*) g(aX,aY) = g(X,Y) ¥ae v(p).

Now the holonomy group ¥(p) is ‘uniquely determined by 1ts Lie
algebra " g(p). Take A « 8(p) such that exp A = a (exp denotes

the exponential map). Then (*) 1is equivalent .to
g(AXaY) = _g(prY)-

Thus A hasto be self-adjoint. If the non-degenerate quadratic form
is
8ab = Sap

then this implies

for the Lie algebra of the holonomy'groub.

The integrability conditions for spaces of locally constant

linear connection are now given by

Proposition 3.1. Let M be a space of locally constant connection T,

Then is a Levi-Civita connection with respect to a Riemannian metric

if and only if the equations

S -
8, V +esv R + 68 V eeay R =0 0 <k < »
is pk pl Lxy is pk p1 .ixyr

- : ) '

are éatisfied.

s _ . _ .
- Here R ixy are the components of the curvature tensor with respect to a
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coordinate chart (U,9) 1in which the connection coeff

constant.,

\
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icients are

",

Proof: 1f M is a space of locally constant connection, there exists

a coordina;e chart (v,y) such that the components of
)

tensor R hart are constan

" Because of Theorem ,.? this Statement {ig ‘ivalent to

i

the curvature -

t:

The components R Kes of the curvature tensor have to satisfy the™
¥ » :

following set of equations s

: P p
«eiy RS Exnyv 1"'V k +

(*)
Py Axy

g, v
is Py

. p
- s Xy, 1., = “
+ ) v V. R 1xy€ n v1 Vk- .0, 0 <

S Py P1

where ¢.n,v. ¢ T M) .
A P

Nowanynon;degeneratepositivedefinitequédraticform gik canbe trans-

formed at one point to the form dik by a lineartransformation.'Asseenfromthe

transformation equation for the connection coefficients (Lemma 2.4,

vChapter I), the constancy of the connection coefficien

by a linear transformation. .Choose

ts 1is not changed




is satisfied,where Ri

i
wR kis’
—
~

w1g 1S sained by the linear transformation i.om

0 | ‘ \

These equations establish the integrability conditions for the
constant connection coefficients. Whichvconnections solve these equations?
‘A sufficient condition that a space of locally constant connection

¢

admits a constant Levi-Civita connection is given now:

Proposition 3.2. Let M be a space of locally constant connection T.

If there exists a chart such that the connection coefficients with

respect to this chart are constant and satisfy the equation

S s ; -
8i6Tke ¥ Suslis ™ Yilin

(Yk denotes a constant vector), then the linear connection is a Levi-

Civita connection with respect to a Riemannian metric.

Proof: One wants to show

51 v veey Rsll + 52 v «eey Rsix = 0 .0 j_k < o ‘
S Py 31 Xy S Py Py Yy . .

is satisfied by

Mo = 78

with
‘A =6 T% +5 18
2ik = dis Rk ks 21 °

The proof 1s carried out by induction:

k= 1:

R°® +35 s

. v =
§isvp1 Lxy - 4s le ixy 0

Writing out the covariant derivative and adding terms which cancel

each other one obtains:



§ S +6 5 yRE o+ (5. 5 45 5 )RT
(Yis P, T rs p i)R LxXy ( s p,T rs p R)R ixy
< 1 1 1 1
: S s s r s s r
- + 4 ~ (¢ + 4
(éisR rxy rsR ixy)rpll ( ZsR Xy rsR lxy)rpli
s s r s s r
- (8 + & r - + 6
( isR fry ESR iry),p.' (éisR LXT lsR ixr)rply
=& . R +n- R, - e =0
p,ir &xy p,ir  ixy .
1 1
t = § :
Inserting Alik Y2 1k leads to
T T s 5 r
. 6 + - + -
Ypl( irR Lxy 6£rR ixy) (GisR rxy 6rsR ixy)rpll
. s a ] T S . s T
! R + & r - : + & o~
(Gls rxy rsR ny) pli (GisR Lry ‘EsR iry)rplx
-, RS _+8 R _rt =0

is &xr lsR ixr I‘ply
Thus every parenthesis is of the form

s + 8 s

6isR Lxy RsR ixy’

It can be shodn_that this term actually vanishes with the above choice

of Alik' First of all,{

S S

* - gS- + s -
*) 81k GRSR xy Axlsriy Ayls ix

is = xy

1

8 s
Axisrly B Ayisrlx :

This canbeseenbypluggingthedefiﬁitionof A into the right hand side.

= ‘ | X
Now insert Alik YzéikA into the right hand side of (*)
s LA iohe g s s
6 Rt =
6is Lxy '§R ixy Yx(éls iy is zy)

8 s
- +
Yy(élsrix 6isrlx)

= -~ A =
YxAyil Yy x1i
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Heneo the above chafce of A satisfies the equations for k = 1.

3 ie A - & 5 ‘ = q.
Suppose 0 ik YR 1k fulfils the equation for k n

Writing out the equations for the (n+f)-set one has

6,7 ceey R”2 + 8,V eeny Rsi C o=
5 Pn+1 P1 *y s Pn+1 Pq xy

~

5, IS v oeevv RE 45 S vV ...y RY -

s »p r p Py Lxy s Pra1t Py P ixy

-

' s s
-T (6, V9 ...y g +8 VYV ey gS Oy L.
: £
n-1 PL Y swopl 0 Tp iy

8 O
-T (6, V +say ¢ R +6 VvV ...v 9y QR W=
pn+lp1 is pn pz r 2xy Ls prl Py r ixy

-8, T Voeeww RS 45 T o +e.y RS -

is pn+l£ pn pl rxy s pn+li pn , p1 rxy

B S S
- T (6, V. .~isy R +38, 7 .eey Sy _
Prar 18Py ety T et T Ry , .

N 8 s
- T (S v ses¥ R + & v *++«V R ).
Prtr? is P, Py Lxr Ls P Py ixr a

By assumption, all parentheses which have a I'-factor in front vanish.

Adding terms which cancel each other, one is left with
‘s o s r
(8, T s )V ...y R +
is pn+lr rs pn+l} pn pl Lxy

[}

V‘ uoov Rr —

5 8
+ &
n pl ixy ” , '

+ (8§ T r )
. is pn+1r rs pn+l£' P

= (8, V oV R® 45 v ..y g8 yrt -

is pn Py TXy rs P, P, ixy pn+1£

’ . S 8 r
- (8, vV ...y R +6 V ey R )r
ts pn pl- Xy rs pn p] xy pnfl1

But the last two parentheses vanish again by~§ssumption. Therefore

N

3

r r
= A V .eev R + A V_+esy RF
pn+lit Pn Py Ixy pn+12'r pn p1 ixy

[
y
~

(
S B

r . b
Y, B,V eev BT 46 ¢ ...y g j =0
Pat1 1T Py Py 2xy T Tar Pp P ixy :




by the assumption.

Thus the conclusion from n to n+l 1s possible. []

It may happen that these conditions in Proposition 3.2 are also

necessary. : .-

60



>

R L IIT W e R e sy e AN g

4. General form of the metric and an example.

In this section it is assumed that the linear connection T of
\}//\\ a space of locally constant connection is a nevi-Civita connection
with respect to a metric g- . If one knew these metrics g, 1t wouldl
be possible to‘get further information about the spaces of locally
constant connection The general functional form of . i 'Iscussed

here and an explicit example of such a metric is given.

"Let A be an rxr constant matrix (r = %n(n+l)), n the
- s ,

PN :
" : ) ‘ . .
5¥“ ‘ dimension of the. manifold.
“.J Define the matrig exponential function by means of the infinite serieg
S . ¥ b -
Al ' N
. ' n n
At -ir At Foees +-A;t—+

) P ’
This series_exists for all A and for ‘any fixed value of t and for

all t “for any fixed A. It conrerges uniforﬁly (see [1; p.'l66]).
r &1
; Denote by b a constant vector, p ¢ R and g =|¢

B

Proposition 4.1. Lert M be a space of locally constant Levi-Civita

Connection with respect to a metric g which is at least 7.

Then the metric has to * the form

Axl  Axn
1 n

4 g:e sesp p,

where ? are the constant matrices

B KB s . kg g T
?a " % Oksleg * % oLsrki ) e o

Proof: Thefmetric g8 1s a solution of the system

into systems of ordinary differential equations, each system depending

'

on (n-1) parameters

b
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_ B
ga,l N ?a gB
S B
ga,n ﬁa gB
Assume the metric is C3. Then, given 1 initial value, each of the
systems has a unique solution. r=ide,
8 . ) . \“#
g(l 1 = A gB . o .7.‘?%7‘
‘.Axl ‘ ' ' 535 SN

2 ’ »:’ .
el Y (x ,"',xn), where ‘y has to satisfy the

The solution is 8,
initial value equation.

Hence, given an initial value, one gets n unique solutions for the
n  systems of ordinary differential equations

It is possible to combine together to give the solution of the whole

system: 1

Ax Ax"
g = el. : cee @ p ,
£
h ;
where p has to fulfil the initial value ‘equation. o .

If g isassumed to be analytic, then the uniqueness of the solution
(for a fixed initial value) is given by a theorem of Holmgren about

systems of partial differential equations ([ 3 ; Py 237]).
B "\'u;

The ass »rtion of analyticity is in this case not very strong because

7
s

k3

the connection coefficients are analytic (constant). [’

Sl

Knowing this general form of the metric it is.— in principle -
‘possibleito éonstruct the solution‘eiplicitély for some given'sets'of
connection coefficients which satisfy the integrability conditions. 1In
practice, it is nearly impossible to generate an explicite solution in .
tﬁié way. (In three dimensions; the matrices ? are already 6x6

matrices.)

- Nevertheless, an explicite solution can be constructed in the following




I alishachinidhid L RSOV

way:

Definition 4.1. Let g and g be metrics on a differentiabie

manifold M. They are called conformal if g = ezoé for some suitable

differehtiable function o.
If the components of - é are éik = dik in some coordinate system,

i.e. é is the flat Riemannian metric, then g {s said to be con-

formally flat.

L)) .
Note: Angles and ratios of magnitudes are preserved under a conformal

change of the, metric.

One can ask now:

‘Given‘a‘spaCe of locally constant Levi-Civita connection with metfic 8.

Can g be of the form p , : . .

. . ~ ' R .
in a coordinate system in which the connection coefficients are constant.
6 .

g, .
a B e
1 . &

Taking this ansatz for g one obtains

" Note that g has to satisfy 8y 1 =

- ) S 8
L= = + .
i,k T 2908y T BygTiy * B Ty

Contracting with gik leads to

1.1
%0 " n T o

where n 1is the aimension of the manifold. The integrability conditions

. for this system are satisfied identically. Hence

S § 2 '
g = —-Pi& X for §ik Gik.
S

=]

< 3

; . ' ' ' i
This means if o 1is this linear function of the coordinates,»x‘, then
/ : ) i ' ’
- 20 B

gik = e dik is a solution of ga;i = ia 8g- _

N\
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Now all connection coefficients can be calculated through

11 is
r>- == + - .
ke~ 28 By Bsa,k T Bre,g
This leads to
i i ' is
r = 26 -
ke = 200, 8 %129,
Thus the connection coefficients with respect to )
20
Bik T ¢ Sy
e g A
A
are
Fiz =0 iz k=2 : )
i
Tii - 0,1
1 1 no summation
= = i =
Fik Fki o’k i k
i is
= - z
Fkk S q’s 1 k

In'the laxt section (Proposition 3.2) sufficient integrability '

conditions were derived:

s s : n
+ = .
%16Tke ¥ SusTir = by T €R

It is easily seen that the just discovered set of constant connection

coefficients satisfy exactly these integrability conditions for

.

Proposition 4;%r Let M be a space of locally constant Levi- Civita
connection . If the connection coefficients Til with respect to

a chart in which they are cons@aﬂt satisfy

-

64
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§ TS 46 T° =y 36
is kb T ks ki VK12
then the unique solution of the system of partial differential equations

S S
- rs 4 r
Bik,2 ~ Bis kt © Brg 18

for the initial value g P 61k is giveﬁ by
_ eZOG '
Bik ik ’
1 1 L
where o = n Fil X .

P}oof: This is a direct consequence of Proposition 4.1. The solution

.

of the system is unique for a given set of constant Fil's and a

Bik*

because évery'non—degenerate positive definite quadratic

fixed initial value -It‘is always possible to choose the initial

value =8
Bik = °1k

form can be changed to the form 61k by a linear transformation. The

connection coefficients remain constant under this transformation. [J

@\,
&,

Note: 1If the sufficient conditions for integribility introduced in
Section 3 turn out to be necessary, then the only Riemannian metric on

a space of locally constant(connection is the just described con-

.

~

' formally flat metric.

" Now the curvature tensor of the spaces which admit this metric is

calculated. Its components for constant connection are

i i.r i_r
R kis rlr sk rsrrlk :

Inserting
i i is

rl 28t -
KL &2y 7.8 6e0,s

leads to




* l = (S ' (S
) R Z(O,ko,[s 2] % r ks, 2]
+ 6rtc g 8 61 ] "’
Co,r ,t k' s}

i

Rpag 79x%,, 1 *k=2
Ri = - z (o )2 i=2k . no summation
kik -\ ,
r=1,k .
Ri = —dirc o] 1= k= 2,

Kk T, 2

while the other components are zero and o© i = % r 1
’ .

Definition 4.2. Let M be a Riemannian manifold. The Ricel tensor

is a covariant tensor of degree two whose components are defined by

The transvection of the Ricci-tensor is called the secalar curvature R
and is given by
s

ik
R = gl Rik .

Proposition 4.3. Let M be an n-dimensional space of locally

constant Levi-Civita connection with metric

The scalar curvature 1is negative or zero for n > 2 and zero for n < 2.

.

Proof: Construct the Ricci tensor from equation (*):
-~

- Rik = (n 2)(0,io,k oikd o’ro’s)

' -2
Tk e o5 ik leads. to

Contraction with g =

R = —e 2% (n=2) (n-1) 67Ky O - O -
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Looking at the formula for the curvature tensor it can be seen
that a space of locally constant Levi-Civita connection admitting

@ conformally flat metric is flat 1in two dimensions. The general two

dimensional case will be congider °d in the next section.

"y

o
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5._ The two-dimensional case.

The spaces of locally constant Levi-Civita connection in two dimen-

sions can be classified now. For this purpose the following definition is

needed:

Definition 5.1. Let M be a differentiable manifold with metric g.

If g and the Ricci temsor are connected by

=

Rik ™ Bik
where - R denotes the scalar curvature, then M 1s called an Einstetin

space.

Lemma 5.1. ALl two dimensional differentiable manifolds with metric are

Einstein spaces.

Proof: The proof is just a simple calculation which will not Be carr. .d

out here.

For details see [6; p. 47]. [

@

Theorem 5.1. Let M be a two dimensional differentiable manifold.
Then M 1s a space of locally constant Levi-Civita connection if and

only if M is flat.

Proof: The proof is done in two different ways. The fifst proof uses
the fact thét all two dimensional manifolds ‘are Einstein spaces to
;onstfuct the general two dimensional metric for the considered spaces.
The second proof is based on the'integrability'conditions on the
‘connection for it to be a Lévi—Civita connection.

First proof:

"=>," : M 4is an Einstein space, therefore

1
Ry =2 R 8

ik

R iiaim A

e Y

s
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‘Because M 'is a space of lotally constant connection the?e exists a
coordinate chart’around each point such that the components of the Riceci
tensor are constant 

Differentiate the last equatién:

2 Rik,g TO=R g +R ik,

Now ’ .

S S
= + r
Bik,e T 81s Tin * Bg Ty o

hence
s s
R a8y = RGBTy, + Bis 100"

o : 1
Contraction with g k gives

The unique solution of thig system of differentialvéquations is

2

1 1.2 2
ri)x - (11,475 )x% }

‘ 1

= . - -+
R=c¢ exp{ (Tll 22
where ¢ . is constant, depending on the initialvalue,while the connection

coefficients have to fulfill iﬁ{égfability conditions.

-Using the first equation, this imp1<ag

_ 1,2 1 - n2 20,
8y = exP{ (I )+ )% + (1],+T7 )x 29
,Where
A, =2R = tant
kT e Nk constant. -

Now the curvature tensor is calculated for this.metric (see appendix).
All components vanish,‘thus M 1is flat. .
. Mﬂ Erbo’é;‘@*‘
J= 18 be a Levi;Civiqa connection ;héfholgpomj group of

C e S .
the connection has to satisfy the equations (see Proposgﬁion 3.1) _ -



v R® 4+ V. R® =0, 0 <k <o,

§. v v .

2 J—
,ist P, xy As p, p, ixy
Consider the first two sets of equations:

§, RS § =
is R Lxy * Ls R ixy 0

.'From these two sets one obtains the following conditions on the

connection coefficients:

S | 2 _ 1

2 1 2 |
f22. = T1p = -Tyy - " Q

W
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The curvature tensor has only 3 independent components in two dimensions.

Writing out these components in terms of the connection coefficients and
using the juét obtained conditions, the curvature tensor turns out to be

- zero, hence ‘M is flat.

"= Let M be flat. Then it is a well known result that

there exists around each point: p ¢ M a chart such that the connection

coefficients are zero. Hence M is a space of locally constant <
) . . 2.

connection. []

. ‘;‘ ‘ -



6. Further properties.

In section 1 of this chapter a coordinate independent characteriza-
tion of spaces of locally constant connection was giQen. It was found
that thes;?spaces admit an n-dimensional abelian, transitive group of
affine transformations. The effects of this broperty,aré investigated
in this section.

In a manner analogous to that for a connection, one can introduce

transformations which leave the metric invariant.

Definition 6.1. Let M be a Riemannian manifold. A sforme - «w

is called an is: :try if

f "y

i.e. gp(X,Y) = g¢(p)(¢*x, ¢*Y)

for all p e M and X,Y ¢ Tp(M).

Defipition 6.2. A vector field X on M 1s called an infinitesimal
isometry on M 1if for all “p € M the local l—parametervgroup of local

transformations

is an-isometfy for all .
"~ Note: It can be shown that the igometries on M form a Lievgroup.

The next two propositions are mentioned without proof. They
 demonstrate the properties of isometries in a”similar way as they are -
~ shown for‘affiﬁe'transformatiohs{

Denote by 0(M) a bundle of orthonormal frames, This is a sub-bundle
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of the frame bundle L(M).

.

Proposition 6.1. Let & be a transformation on/ M. -

—————

——

(1) It is an isometry if and only if th induceﬂ translormation
o

~ e

$ on L(M) maps O(M) into 1tself./
(i1) A fiber preserving tfansformation which leaves the canonical

form 6 on O(Mf invariant is induced by an isometry of M.

Proposition 6.2. For a vector.field X on M, the following.cbnditions

are equivalent:

»

(1) X is an infinitesimal affine transformation.

ﬁé?} (2) E"E = 0, where X is the natural 1ift of X and g the

metric on M.

Proposition 6.3. Let X be an infinitesimal isometry:ca M. -Then X

L
satisfies ’
g(VYX, Z) + g(y, V,X) =0

for Y,z ¢ T(M); With respect to a chart (xi) one has

b1 = O

where X = Ei_—éz-; This equation is called the Killing equation.
9x

Proof: Since X is an infinitesimal isometry,

-
00
0

e

~

Vg=0 o -V =0. B
Tﬁén 8 implies (Lx x)g ‘ ut

(@ - 78) 4,2) = @ - v )s(r,2)

g((in v Y, Z)

g(Y» (Lx - ‘vx)zl’

therefore . ‘ o . ' ko
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- 7)Y + -V = 0.
g((Lx ) ,Z) g(Y,(Lx x)z) 0
The torsion vanishes, thus
LY-VY=-VX ‘
x x y <

and this implies

+ = 0.
g(YYX,Z) g(Y,VXZ) 0] 0
Every isometry 1s also an affine transformation:

Lemma 6.1. Let ¢ be an isometry)jg,ﬁﬁ. Then the induced l}near map ¢

commutes with parallel propagation.

Proof: This is a consequence of the uniqueness of the Levi-Civiéa ;onhection
‘(see ThgdremESFZ;-Chapter 1). .

The Leﬁi—CiVifa connect;on' r on M. is mapped by the induced automor-

phism 3 on L(M) to a uniq;e linear connection AS(F) " (see Lemm; 1;2,

Chapter II). If ¢ is an isometry, this connection t out to be

torsion free and metric. Thus

¢ X %" °

¢*(V Y) = ¢ .Y
x *

X,Y € T(M).

For more details see [9; p. 161]. [
" Now in the case of spaces of locally constant connection one has

an n-dimensional abelian, transitive group of affine transformations.

The following Lemma is easily seen:

Lemma 6.2. Let M be a Riemannian manifold admitting an n-dimensional
tiansitive,,abelian group G of affine transformations. If G is

9
also a group of isometries, then M 1is flat. ‘ ﬁﬁ

Proofﬁ "Let G be defined on a neighborhood U of p e M. : , g

a.
3 . &
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%

"¢

rha

"When is an affine transformation an isometry? . - 9o

i

N{,:“ 4\
TN

chosen as coordinate vector fields, because G 1s abelian.
i 323 109
e =€ — —
a 8xi a aXi

. satisfies the Killing equation

S 70

Using

- s s
Bik,2'” BigTko T Brslin

0

fleads to gik,a f . ' <

Take a basis e in the Lie .algebra of vector fields on U

isomorphic to the Lie algebra of G. The vector fields eé

TP s s,

which 1is

can be

Each

But there exist ‘n vector fields: e > " hence Bk is constant.

o
‘Thus the curvature tensor vanishes, M 1is flat. 0

Because of the last lemma, the iateresting questic

gation of'séaces of locélly constant Levi-Civita comnnection 1s:

.
k<4

e invqsti—

-y "
¢
X

. \J n N - . . M ’ ¢ T < ’
First compact manifolds are considered. The following proposftion
‘ . o . > . .

S

1s found:
SN L .
- L TN .o
- ) g

Proposifion 6.4. Let M be a compact Riemannian manifold.

infinitesimal affine transformatf%; 1s an_infinitesimal i- metry.

Proof: This resﬁlt'is,due to Yano [18]. The proof involvesfseveral

Lemmas. It can be found also in {105 p. 45]. 0
: &

‘Now an immediate consequence is

1

Proposition 6.5. Let M be a compact Riemannian manifold. Then M is

- Voo

a space of locally constant Levi—Civitabconpection if and"oniy if M is

flat.

74
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2 ~$ \ @!
hof: " = "' : M admits an n-dimensional transitive, abelian group
affine transformations which i8 also a group of isometries. Hence
Proposition 6.2 implies that M is flat.
';f¢= " : This 1s alfé;dy known, see proof of Theorem 5.1,
Chapter IT. [ P ‘
. ‘%“\ N A& ;
, - A . 2 o2
Note(:rAll spheéres % ((x7) e R :x + - Fx = l} are compact
SRR e b
and not flat (n >-2). Therefore no sphere (n > 2) 1is a space of
locally conéféﬂ§;t§v1~Ciyita connection.
\4
¥
Next, spaces of constant'curvaturégare considered. )
. S i G,
Defindtion 6.3. Let M be a Riemannian manifold., 'E%{ each plane S * %
— o . g YT, .
= : N ) : ’ ER— ;’A%\:;.u [ LS - :
in the tangent space Tp(M), p %e M the sectional curvaturg K(s) of
: . : . ; T
. : ) 73 PR
S‘,%s @efined by K(S) = g(Rgxlsz)Xz,Xl), ﬁgﬁre Xl, X2 %s an ortho-
Cn 2 . ’ . . o Lo
. noxmal basis for S. _ , A0 R
Y . , : ) C | . N
Noi.: The sectional curvaturg, K(S) is“&ndépenaent of the chélée of an
Pa— - e
opgh?nor@al'basis gi,,xz.‘ e 1 .
Definitdoiri6.4. Let M- sbe?a Riemannian mapifg¥d. If the®sectional .

curvakﬁge K(S) 1is a constant for all:planes S 1in TP(M) apd for - -
o & - N ‘

all p‘e;M; then M 1is called a space of constant curvature.

In a space of constant curvature the curvature tensor and the metric |
are related by '
) ;"

Lemma 6.3. Let M be a space of constant curvature k. Then

R(X,Y)Z = k(g(Z,Y)k'- g(Z,X)Y), “‘iyf

" where X, Y, Z -are veétbr-fields on M. o T S

T
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ol | :
<Proof: See [9 ; p. 203]. {1

N
Note: If the secrional curvature depends only on p € M, and not on the

plane S, then K(p) and the scalar curvature ‘are related by

4

R
¢ -
Kip) n(n-1)

If dim M>3, them M is alreeoyva space of constant curvature. *3’

n
For example, the n-sphere S » 1s a space of constant curvature.
w

But S" s also compact and hencév(Proposﬁrlon 6. S? not a’ space of
|

~locally constant Levi- Civita connection. Therefore the question arises
m

Are there spaces of locally ‘constant coa&@ctizgﬁrhdcb have. constant
Li‘f- ',' __. ) » . . ' ‘
) o _ :"_2' ‘

Proposition 6.6 Let ﬁM be a space of constant curvature Then M

" curvaturé? The answer i@,given by

:&:&_ ;ev,,b ‘w,'ﬁ O, s
is a space of locally constant Levi Civita connection if, and only if- M
* ‘:3' @« , o ' f:",‘.\ & ,
_Lb flat : N - e . ¥ - . .
N - “J .
" . g v
*il ta 5
S . ¢
Proof: Sggcg Mo is, aﬂgpaoﬁ’of\constant,curvature, Lo 2
, : . - SN . , ' o
, N

RLVZ = k(g(2, V)%~ g(z,X)Y).

In local coordinates one gets

kY

N § _ R f [ -
W T T
V%o R k&s é% ng'frés gkﬁ){“ : ®

&

‘each p « M a chart such-that the” components of the curvature tensor

are constant. Now ,

i I
Rk@sy =0~

thus choose s = % = i, . -

This implies T | .
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i .‘gks (no summation).

g

Therefore the metric components ‘are cemstant, hence M  is flat.
The reverse dir cion was ‘already outlined in the proof of Theorem 5.1,

Chapter Il.

This - it can be used to draw a conciﬁsion about the Lie group of
. . o

a4

isometries ror spaces of constant curvature
It 1¢ possible to determine the maximal dimension of the affine group

as well as the isometry ngup

Theorem 6.1. Let M be an n-dimensional connected manifold with

connection TI. The Lie algera A(M) of infinitesimal«affine trans-

formations of - M 1is of dimension at most n +£&~ If dim A(M) = n2 + ny
N < . . sy
then M is flat , C o

~ : i } 2
. R

Theorem'é.z, Let M¢ be a eenhected,;simply connected'n—dimensional

Riemannian manifold The Lie algebra T(M) of infinitesimal isometries

is oflgimension at mostd bn(ngl). If dim T(M) %n(n+l) then M is-

a space of constant curvature of the follow1ng type

‘(a) n—dimensional Euclidean space ~R., . : ‘e
. . " 1 .

-
-

(b) *. nrdimensiamal sphere S+, N
(¢) n-dimensional projective space IPnOR),

~ . ~ v i
s . 14

‘\(d)w,n—dime%Fional simply connected hyperbolic space.
. N ‘ .

For Mgg of both Theorems see [9 ; p." 234,238]. 8 ' s

12
r N p—

it&was éhown (Proposition 6. 6)nthat a space_of cdnStant curvature
is a space of locally constant Levi—Civita connection 1ff -M is flat

This implies
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Corollary 6.1. Let M be an n-dimensional manifold of type (b)-(d).

Then the isometry group of M does not contain an n-dimensional
transitive, abelian subgroup.

v

Proof: Assume the isometry group of M contains an n-dimensional transitive,
abelian subgroup. All isometries are in particular affine transforma-

tions, thus M is a space of locally constant Levi-Civita connection.
But M is 4lso a sbace of constant curvature, which implies by Propo-

»

sition 6.6 ¥at M is flat.

A

..Hence one has a contradiction to the fact that the spaces (b)~(d) are

inot flat. [J

Exaggle 6.1. The isometry groups of the n—spheres s® are the speeial
R s "
'a ks ‘
{ahogOnal groups SO(nt+l). Consider the two sphere 52 with isometry
K|

~

group S0(3). This group dqﬁeunot qﬁqﬁt @ two dimensional subgroup of

-

A,
translatdons. - S g . L L

Y o
Another class of 3paces whose affine transformations are also isometries

is the cléss of irreducible Riemannian manifolds.
. ot ’ ’ (
Definition 6.5. Let M be a connected Riemannian manifold and v(p),

B z"“"

p € M; the holonomy group. The holonomy group is reduczble if Tp(M)

contains a subspace P which is invariaat under ali, transformations

R -
. a e ¥(p). Hereby P is neither the whole space Tp(M)~ nor the’ zero

space.

.

Defihitfbn 6 6 Let M be a connected Riemannian manifold Then M

is reduczble (irreducible) according as the holonomy group ¥(p), p e M,

is reducible (irreducible) as a linear group acting on TP(M).
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For an, irreducible Riemannian manifold the following holds:

" Proposition 6.7.. Let M be an irreducible Riemannian manifold. Any

al

;Sabelian, transitive groug%oﬁ-

which contradicts the assumption. [J B

infinitesimal affine transformation on M is also an’' isometry.
Proof: See [12; p. 128]. [

This result leads to o y

Proposition 6.8. Let M be a space of 1ocally'constant Levi-Civita e

'connection whose curvature tensor does not vanish Then M 1is

b
reducible. . Sy . . ' .
S B v g ' ! 4

Proof: Assume M is irreducible aﬁd not flatv"Then all infinitesimal

. 4
affine transformations are isometries, hence there exists an n—dimensional
e

fadnetries. This implies that M is flat,
) .

.g&

PPN

s

- The importance of reducibility lie- n the fact that the manifoids

can be‘split into the direct prdduct of irreducible parts. This state-

4

ment is shown by mefns of the decomposition theorem of de Rham.

; ‘ ~5

o

Theorem 6.;. A connected, simply connected and complete Riemannian

=
\ v

manifold M is isometric to the direct product d L

=l

\‘\.‘ ¢ MO x Ml X on-.- .x Mk’ '

where MO .ds a Euclidean space (possibly of dimension 0) and

Mk ‘are all simply connected, complete irreducible Riemannian

“. o
.

' manifolds. %uch.a decomposition is unique up to an=order.

See [9; p. 192] for further details. & | - o
. /‘ ) "l . - . :
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The'iast class of spaces which will be treated in context with the
spaces of locally constant con:c¢. ion .re the spaces with locally

symmetric connection.

Definitioﬁ 6.7. Let M be a differentiable manifold and let U be

]

a neighborhood of p € M If -the map

e
RYCEE T

‘ S :U-U o
s p h

exp X > exp(-X) - X e“Té(M) :
S o S . e g

P

S

is a diffeoﬁdfphism, Sp 1s called the SQMMétﬁy !atf P e M

.,‘

. Let M be a ﬂifferentiable manifold with connection r.

Y

Uy )
symmetry Sé“ at p x M ,is an affine traanormation for all p,

4

en T is called ZocaZZy symmetrzc f*" o L ' T

[
3

The .spaces of ITgcally cbnStanbrconhection possess.a whoie group of

affine transformations, so a conjecture might be that their linear

'connection is locally symmetric It will be shown thatwghis is mot -

true in general. For this purpose one needs the¥following characcerization

of locally symmetric coﬁpections.

Propositiof 6.9. Let M be a differentiable manifold with connection

F. Then T is locally symmetric if and only if

, T =0

] (W]
S

o
]

: VR = " )

where I and R are the torsion and the curvature tensor respectively.

Proof: See [ 9; p. 303]. 0O
It can be.seep by a cdunterexample'that'the commection of spaces

-

L

C2.)

N
,

¥
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of locally constant conneqﬁion is not locally symmetric in genefgl.

Consider tie uniformally e metrics discuésed in section 4 of this

chapter:
_ e206
C B4k ik ’ ‘&
where
1.1 i
g = o Fiz X

Choose a chart such that the components of the curvature '‘tensor, with

eﬂréSpect to this chart, are constant.
- L4

Then the components of VR are given by

i it ot 4 t b I
= - T : - - T
R kis;r Ftr R kis I‘kr R tis Pzr R kts ST R ket

‘which does not vanish.
y. Rk
fé%!ains

1 2
Rp12;1 =40 (0 7,

It suffices to find one com

'Carrying out the calculation o

Obviously, a connection can be given such tgat this component does ¢

not vanish.

'Therefore if a manifold MY is a space of locally constant connection,

k4

this is not sufficient to ensure that the.connection is locally symmetric.

N

o i e




For example,
. |

B ot R R L A e |
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NOTATION

LY

Throughout the thesis the Einstein swmmation convention is adopted:

i 3 : N
X=8& —7 :
X

means summation over all values of {.

-,

@

Ly

~

The Euclidean n-space is denoted by R".
" /
The natural basis of R" 1is given by

e = (1’0,-0-’0)

ee b

" The differentiable manifolds ﬁ considered are assumed to be of
class . C. (1f not otherwise stated) and'to be paracompact.

I4

L4

RSN 9D A e e
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APPENDIX I

Basic Concepts of Differential Geométry

Definiéion A.l. Let M be a set. An n-chart at a point peM is a
pair (U,$), where

n  integer > 0

U open set in M, peU

n i
$: U > open set in R is a one-to-one map. o
' e

Definition A.2. Let pr® :R" + R :

(@', o-,a" »al

be the projection maps. The maps '

xi ='pr'i °¢ : U~R

i
q*a

-

ey

‘arercalled the coordinates of q e U.

Definition A.3. Two charts (Uu’¢a) and (UB;‘;B) are Cr-coﬂrpqtiblg '

if the maps - : € ' L

-1

b 0 0, ¢a(U9”UB) - ch(UdnUB‘) | |

B _1 . .A.’ “ . . .

¢a o ¢B ' ¢B(U&_0UB) > ¢u(UanUB) 2 '
<

-8Te r-times continuously d#Eferentiable. v " "

h-1

Definition A.4. An ;itlas on M is§ a collection of compatible charts

(Ua;d)a)aeA (A index ‘se.t), ".such that ' » (}/
: _ ‘ )
{ Sup=mn
acA

Definition A.5.. A°C'-atlas is called mawinal i it contains any chart

N

\

which is Cr—COmpat;ible to its chgrté. ‘ ‘ S e |

8 B :



A maximal C'-atlas on M 'is also called a différenfiable structure of

class Cr‘ on M.

Definition A.6. The set M together with a maximal Cr—atlas is a

¢ -n-dimensional martfold. '
«

- Definition A.7\N;Let f be a realZvalued function defined on an open
' ey O v_ﬂ*" :

" Tsubgete: Ve M

\' i

g .
IRES e S :
f%ais'called differentiable at p ¢ V if

-1 : ' ‘ e

f o¢ :,‘¢(V)ci1n->R ' » o

is differidable at ¢(p)‘lfbf all c¢harts (U,9) . at p.
4 A i - ’ B
* £ is called differentiable on. V ifgit is differentiable at every
" ) B 7@3', N . L I
PVl Lo oy : o

©

3

- Definition A.8. A differentiable curve in M 1is‘a map
1"‘.-. : i“ b ' . - )

o : (a,b) > M

: J'ire (a,b) 1is.an open iAterval in R such that the map
‘¢ s o : (a,b) »R"

»

is differentiable - wherever it 1s’defin§d - for all charts * (U,¢).

Definition A.9. Let FS(M) denote the set of”allldifferentiable
. 14 N . _‘ N i b .- . .
real valued functions defined around p ¢ M, and"let o(t)

~e<t<eg

be a differentiable curve with ¢(0) ='p.

The tangent vector Xb to o(t) at p is amap <

7

X :FM +R:
P P

£ “',_ _[dt (f_ ° c).]tsq pr.'

Irlibbas.. <o ot e = e
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ST (M)
p

Lemma A.1. Let
T (M) ;= {X :
P P.

‘real vector spa

1s calle

Definition A.10.

. 87

M be a differentiable manifold, p € M. The set

Xp tangent vector of a curve through p} forms a
ce whose dimension 1s that of the manifold. The space

d the tangent space to M at p.

cotangent space

Definitlon A.1l.

Definition A413

are functions

e

The dual of the tangent space to M at p or ;heA
is defined by , :
" Lo
T(M)'{w:T(M)+R
Q > P Y, = w linear} o
Wi - X + w(X ), ' v
P . p /’
E , oo
A tensor S on M at p 1is a map ‘

v N B e

Let

e
a

& -

: _The components of a tensof field -8 € Tp

be a basis of T (M)w eéf

r(M)

in the basis éa' e

‘tﬁewdual basis.
a

<@

Sy

:mxm x“-XI'm)xT(m x"‘xlﬁm)+R ‘
'——-\/"‘—"‘-——/ T N .
v r-times s—-times ° ,
‘which is. linear in each argument. L, . - g .
B . . g 4 . ' X “ v
r ﬁ% : ; ' ., .
Denote by Tp g(M) the vector space of all tensors of covariant
- $ , )
degree s and contravariant degree r. ' . S
Definition A.12. The tensor pHoduct 1s a map’ % .
y ’ g% '..i' ~o ! - ” D
T o om ko ohk o, e N
M) -x 2 : - : ' R S
| p,sf ) Tp_l ‘(g? - Tp s+1 # . .
defined by | - 5
® - .)’y v ;y ' .o *
Yo o T 1 l"r‘ Tk B
(SGR)(XI’“..’XS’ 'Yld.“ Y!,’ W, ,w, N ,'--,r‘]") = ‘
a e e i) . . g . - N;
S(Xpscech0) ¢ RO, eetn) :
g ¢ et 1
" where X, Y denote vectors, w, n- I-forms. - ' i




‘ kl...kr
Si caey : M >R
1 S
such that
k,***k i i
S =8 1 r e 1 ® e s ® e ® *+¢ @ e ’
i,°°°1i Lk k
1 S 1 r
i.e
k ek 4 k
Si i T = S(ei »eit,e @ l,--- e L .
1 s 1 °s . \\

Definition A.l4. A tensor S ¢ T S(M)

: p
ion o = |. 1 .wr= s '
rat (1) -+ =0 (s)

S(xla.'.yxs) = S(XO(l)’..'.,XO’(S))-

holds. | i

A tensor field on M 1is a map

- U oo

pe M p

Definition A.15.

S : M~ T (M)

t k
S dis differentiable-if its components S{[ il),...,dx r
N 9% .

respect to a chart are differentiable.

Definition A.16. Let w € TZ(M) and @

part of w 1is defined by

1
s!

(Aw)(X eee X ) = _—-g (sgn o)w(xé(l)""’xc(s))f

Definition A.17. Let w, n be two forms.

is defined by w A n = A(w ® n).

Theorem A.l. There exis:s Jniquebmap

a: T:(M) + % (M)

o
s+l

be a permutation.

-~ 88

~with

The gkew

The exterior product A

v



called exterior differentiation such that

(1) (df)X = Xf ' f :M+R,
(2) d(dw) = 0 for any s-form w,
= dwAn + (—l)su)Adn, where w 1is s-form,

(3) dwan)

(4) dw+n) = wo + dn.

Definition AL18. Let X be a vector field on M. Let o : (a,b) » M

be a curve with tangent vector 8(t) = 9%5}2 .C 1. on integbal

curve of ‘X if o(t) = Xo(t) ¥V te (a,b).

-~

Lemma A.2. Let X be a vector field on M, p. re exists a

unique maximal integral curve o(t) with ag(0) =

]
~

Lemma A.3. Let Op(t) be the maximal integral curve of the vector
field X with op(O) = P € M; Then there exists a neighborhood U
of p and an € > 0 such that the maps

¢ :_U ~ M defined by

q - 7 (t) t € (~e,€)
q
are diffeomorphisms U =+ ¢t(U)“ and satisfy

¢t ° ¢>S = ¢t+s s € (-e,e).

. The collection ¢t is called the local one-parameter group of local

transformations generated by X.

Definition A.19. Let M, Nk be differentiable manifoids, (U,$) be

a chart at p ¢ Mn, (U',¢') be a chart at alp) € Nk where a is

a map

a : Mn -+ Nk.

89
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a is called differentiable if the map
¢' o a o ¢—1 : R" +'Rk

is differentiable where it is defined.

Definition A.20. «a : M > N 1is called a diffeomorphism if o 1is a

homeomorphism and a and «a 1 are differentiable.

Theorem A.2. Let f be a function
f : N +TR.

Any ditferentiable map
av: M »N

induces a linear map

(a*)p : TP(M) > Ta(p)(N) VpeM

defined by

((a*)p X)f = X (f o a)

-and a linear map

*'-T
(e )p T Ta(p)

(N) + T;(M) ¥peM
defined by
.
(@, o) =w, (@) %),

where

‘m € T:(p)(N) and X € TP(M).

Definition A.21. Let X, Y be vector fields on M. The Lie bracket

“(or commutator) of X —and Y 1is defined by the map

(33

¢ : F(M) > F(M)
f - [X,Y)f

= X(Yf) - Y(Xf). A



Definition A.2>. Let ¢ e 1 Lie group and
—tonition A.J0
L ¢ »q
a 2
D > ap.
A vector field X on ¢ . called left {nvariant {if
(La)*Xp = Xap p e G.

Theorem A.3. Ler ¢ be a Lie grerup The set of all left invariant

vector fields on G form a Lie alge +4a g and dim g = dim G.

Definition A.23. Let " (t) be the geodesic with
——=1=rlon A.23

1]

a(0) b

. 3(0) = X X e TP(M)

The exponential map is defined by
exp : T (M) » M
P
tX -+ o(t)

for all p ¢ M.

91
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APPENDIX TII

Curvature Computed Using Exterior Differential Forms

Given a metric, it 1s possible to compute the curvature tensor
components by calculating the connection coefficients and then using
the relation between curvature components and conngction componern:s
given in Lemma 1.8, Chapter ITI.
" A more effective wav is described here in a shor£ form. This
approéch is taken to compute the curvature tensor for the two'dimensional
ease (see Section 5, Chapter II).’

The line element 1is given by

ds2 = 8y dxi ® dxk.

k "\.—.//

Introduce a frame

i 3
e, T e, "1
Ix
and the dual 1-forms v)
a a i
e = ei dx

such that the components of the metric, with respect. to this frame are

4]
=6 -
gaB af
Hence,
d52=5 ea®e8.
aB
Now
] [3 3
v —— =T, ——
“2"-8xk 1k ax - ~
i | -
ax

Define TQY by



e, 8 aB "y
which implies
Y o _ Y ei k
aB %1k %a g
Define l1-forms wg by
a a y
= T
wB By € .
w(aB) =0,
then
deOl = —wg A eB

The strudture equations lead to

a _ _a Y 6 a
Qws = R 8Y6 e Ae wy Aw

™ <

o .
where R gys are the components of the curvature tensor in the frame

a : .
ea(e ). They are related to the components of the curvature tensor in

~the coordinate frame by
R® "Ri

& 8
By T kis 41

€s

ek e2
B Ty
Thé general two dimeénsional line element for spaces of locally constant

LevirCivita~coﬁnection was

1 2 v -
d82 = ¥ +bx (A dxl + B dx%dx2 + C de)

v

where a, b, A, B, C are constants.

Choose - ) ,
7 e1 - Jf (a dx1 + B dxz) h
) ' e2 = /£ § dx2
with ‘ |
' axl+bx2 T

an

B e T P
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Hence

and

Therefore

Also wa A
Y

Thus-

gives all

One gets

Therefore

=9
2
1
[t
®
o
+
o
-]
1

1 1 [aB-ba 1 a 2J
= - Tas & toe|.

w £
2 .2'/f—[(16

w, = 0 1in two dimensions because of w(aa) = 0.

€ -

s -

curvature components.

dw; = —l~'(adx1‘+'bdx2) A {EQ_Z_ES e1 + s'ezJ

3 ’ ab
o1 (88 - ba dell+.£ dez}
2/—f— ad a

= 0, inserting de® and dxl.

the curvature tensor vanishes.-

fo



