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Abstract

Heterogeneity of surfaces is often included in mathematical treatments of col-

loid transport and deposition as an afterthought, if at all. Most previous

models of colloid transport and deposition have employed idealizations and

simplifications such as assuming smooth collector surfaces with uniform chem-

ical properties. This research proposes a new heterogeneous interaction model

(HIM) to account for colloidal forces between particles and heterogeneous sub-

strates. Extending the approach employed with the HIM, the inclusion of

convection and diffusion in the model leads to a Lagrangian particle tracking

model (PTM) for predicting colloid transport and deposition on a planar sub-

strate containing one or more protruding asperities in the presence of shear

flow. An important part of the PTM is an accurate rendering of the fluid flow

field around the model substrate, which is obtained from a numerical solution

of the Stokes equations. A simple approximation of the particle-substrate hy-

drodynamic interactions was developed for the PTM based on the universal hy-

drodynamic correction functions. This model was employed to quantitatively

predict how presence of asperities on a collector can influence the deposition

of particles on the substrate in shear flow. Flow field modifications due to the

substrate’s physical heterogeneity – coupled with hydrodynamic interactions

– and the lateral migration (colloidal) forces near chemically heterogeneous



substrates yield remarkably diverse deposition probabilities and deposit mor-

phologies. The general approach of this research, which involves the use of the

HIM in conjunction with the Brownian PTM, results in the first simulation

tool of its kind to attempt to quantify deposition on heterogeneous substrates.
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Chapter 1

Introduction

1.1 Background and Overview

The deposition of particles onto solid surfaces is relevant to many fields of

endeavour in industry and research. There are situations in which deposi-

tion is desirable, including the filtration of pollutants from water (i.e., with

particles depositing on collectors, such as filter grains or fibres) and various

manufacturing processes that require a coating of particles to be formed on

a surface. For some other situations, the goal is to prevent deposition, such

as with the fouling of heat exchangers, the formation of biofilms harbouring

bacteria, and mineral processing. With the growing number of applications

of microfluidics and the advent of nanotechnology, there is increasing interest

in a deeper practical understanding of the deposition of nanoscale particles

to improve the efficiency and throughput of many processes in biomedical,

environmental, forensic and materials sciences and engineering.

Deposition involves the transport of particles to a large surface, or collec-

tor, where they are adsorbed (i.e., become attached, as shown schematically in

Figure 1.1). This thesis is aimed toward elucidating the processes and mech-

anisms of a particle traversing the fluid and attaching itself to the surface.

During the transport stage, particles are brought closer to the collector by

Brownian motion, fluid motion, and/or field forces such as gravity over com-

paratively large (with respect to particle size) distances. Once the particles

are very close to the collector, then colloidal interactions contribute signifi-
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Figure 1.1: Schematic representation of the deposition process. The left side
depicts the transport stage of the process, with the two entities separated by
a distance h, and the right side shows the adsorption stage, when the two
entities collide and remain attached.

cantly to particle transport. In studies of colloid deposition (i.e., for particles

in the size range of 10−9 m < ap < 10−5 m, where ap is the particle radius),

colloidal interactions are often modeled using the classic DLVO (Derjaguin-

Landau-Verwey-Overbeek) theory [DL41, VO48], which states that the total

interaction energy or force between two colloidal bodies is a function of their

separation distance h. As the sample relationships of Figure 1.2 demonstrate,

the DLVO interaction energy or force can be attractive or repulsive depending

on h. The theory also suggests that the attraction or repulsion is determined

by, among other factors, the chemical and physical properties of the surfaces

of both the particles and the collector.

Given the complexity and lack of sufficient detail available with real sce-

narios involving deposition, models (mathematical and experimental) and sim-

ulations of the process are typically constructed with simplifying assump-

tions, such as uniformly spherical particles, smooth collector surfaces, constant

surface-chemical conditions and laminar flow [EGJW95]. The mechanisms of

particle transport in models of deposition are divided into three categories:

(i) convection, (ii) diffusion, and (iii) migration. These mechanisms are often

handled independently and then added together to depict the deposition pro-

cess. Convection, which is sometimes referred to as advection in this context,

is a deterministic mechanism by which hydrodynamic forces such as viscous

drag carry the particle along with the fluid flow. It can be the dominant
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Figure 1.2: Sample relationships of (a) interaction energy and (b) interac-
tion force between a flat plate and a sphere with separation distance, h, in
accordance with the DLVO theory.

transport mechanism when the particle is far from any surface if the magni-

tude of the bulk flow is substantial [RSS89, vdV89]. Diffusion is due to the

random, Brownian motion of the particle in the fluid, and the rate of this

stochastic transport mechanism increases with increased system temperature

and decreased particle size [Ada06]. Migration is also a deterministic mech-

anism with force components that can – depending on the properties of the

colloidal system – be involved in particle transport at all separation distances.

These migrational forces can include those of colloidal interactions (close to

the substrate), as well as gravitational force (far from the surface; leading to

sedimentation) and forces from externally-applied electric or magnetic fields.

Particles move in response to the motion of the viscous fluid they are

immersed in, but their motion also affects the fluid’s flow over long ranges. If

the fluid motion is in the Stokesian regime (i.e., slow, laminar flow, also referred

to as low Reynolds number hydrodynamics; Re ¿ 1), then viscous damping

is more significant than inertia. The steady state Navier-Stokes equations for

depicting the velocity field u can be simplified in this flow regime to the Stokes
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equation [CW75,D8̧9,KK05],

0 = −∇p + µ∇2u + fb, (1.1)

for which µ is the fluid’s absolute viscosity, p is the local pressure, and fb is the

external body force per unit volume. From the solution of Eq. (1.1) and the

continuity equation (i.e., conservation of mass) with a single, small sphere in

an unbounded fluid, there is a linear relationship between the hydrodynamic

force applied to the spherical particle by the fluid and the flow disturbance

it produces at some distance away from itself, and vice versa [RSS89,KK05].

This reciprocal relationship, in which particles both react and contribute to

the fluid’s local velocity, can profoundly affect the way they hydrodynamically

interact with each other and the walls of their container. Whether the fluid

is at rest or in motion, these dissipative hydrodynamic interactions must be

accounted for, reducing the velocities at which colloidal particles immersed in

the fluid can approach each other and any collector’s surface.

Hydrodynamic interactions (also known as hydrodynamic retardation) are

the result of the fluid’s molecules pushing against the approaching surfaces

to resist their approach as the fluid is squeezed out of the shrinking space

between them [KK05,Ada06]. Due to the linearity of the representative equa-

tions, hydrodynamic retardation for a given particle can be represented by a

resistance tensor (the inverse of which is the particle’s mobility tensor). From

this resistance tensor, the diffusion coefficients of the particle can be derived

and subsequently determine the mass transfer rate of particles in a given sys-

tem [Ada06]. Hydrodynamic retardation affects all three particle transport

mechanisms (convection, diffusion, migration), though each at different rates,

which are represented as functions of separation distance for simple systems.

With their widespread applicability in studies of deposition, the understanding

of hydrodynamic interactions in various scenarios continues to be a topic of

research. However, to this author’s knowledge, there is no prior study concern-

ing the hydrodynamic interactions between “real” surfaces containing physical

heterogeneity in the sub-micrometre scale.
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1.2 Problem Statement

Nearly all surfaces, including those that appear to be smooth to the naked eye,

have some roughness at submicron (< 10−6 m) or even molecular (≈ 10−9 m)

length scales. There is considerable interest in how such roughness, and vari-

ations in chemical composition at those scales, may influence the trajectories

of colloidal particles near fluid-solid interfaces and the subsequent deposition

of the particles onto the solid substrate. Efforts of many researchers have pro-

vided a comprehensive understanding of the mechanisms of particle deposition.

Some research has attempted to determine how the physical and/or chemical

properties of a surface can be altered to encourage the deposition of colloidal

entities at particular locations [DD08,SZSR09,CDS09]. Nevertheless, various

aspects of particle deposition phenomena are still persistently debated, and

the level of sophistication of the models of the systems is often the source of

debate.

In this thesis, the primary goal is to examine how the presence of chemical

and/or physical heterogeneity on a substrate affects the deposition of spherical,

Brownian particles on it when the system is immersed in a Stokesian (Newto-

nian with Re ¿ 1) fluid with all solid surfaces fully-wetted. This general type

of system has been used to model a variety of applications and phenomena,

both natural and artificial, such as the filtration of pollutants from water, the

adhesion of microorganisms to surfaces or the site-specific delivery of drugs to

mitigate side effects. Some questions that have been posed with such a system

include: Can the location where a particle contacts the surface be predicted

with a high probability? How can the physical and chemical properties of the

system be changed to encourage or discourage the deposition of a particle on

the surface? At what scale (relative to particle size) of surface roughness do

particle deposition phenomena begin to change from what is observed with

a flat, smooth surface? Finally, deposition models and simulations also typi-

cally consider ideal flows (e.g. one-dimensional shear flow or radial stagnation

flow). However, when particles are interacting with the collector surface, sur-
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face roughness of a substantial scale can produce modifications to the ideal

representation of the fluid flow near the substrate, thereby altering convective

particle transport in this region. In light of this, another question that has

rarely been asked before is whether or not hydrodynamic disturbances induced

by surface roughness can modify particle transport during deposition.

1.3 Objectives and Scope

1.3.1 Objectives of the Present Study

To confront the preceding questions and issues, this research has the following

major objectives:

1. Show how the colloidal interactions between a spherical particle and a

collector can be affected when the collector surface – often considered

smooth and chemically uniform – has features of physical and/or chem-

ical heterogeneity.

2. Demonstrate the value and significance of rendering undisturbed (i.e.,

without particles in the fluid) flow fields near substrates with nanoscale

roughness as accurately as possible.

3. Develop a particle transport simulation tool that approximates the effect

of hydrodynamic retardation on a Brownian particle as it approaches a

physically and/or chemically heterogeneous substrate.

4. Using this simulation tool, explore scenarios involving Brownian particles

that reveal how the presence of physical and/or chemical heterogeneity

on a substrate can affect the deposition probability and rate, and subse-

quent morphology, of the deposit on such a substrate.

1.3.2 Scope of the Present Study

For many previous studies of deposition, the assumption of smooth, chemically-

uniform surfaces for all interacting bodies greatly simplified the calculations
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for all three particle transport mechanisms (i.e., convection, diffusion and mi-

gration), but at the expense of representing the system realistically. When the

model collector (or substrate) is rendered with features of heterogeneity on a

scale similar to the particle size, this added realism also entails challenges in

depicting particle transport near the collector surface. Thus far, no rigorous

mathematical model of deposition has been developed that precisely depicts

particle transport at all separation distances from a collector surface of arbi-

trary heterogeneity. Even if such a rigorous model existed, its inclusion in a

simulation tool for particle transport and deposition would constitute a heavy

computational burden, increasing run times considerably and thereby limiting

the tool’s usage. In order to grapple with the complexities that accompany

any heterogeneity of the collector, the models in the present study employ a

few assumptions and approximate techniques to calculate hydrodynamic and

colloidal interactions. In doing so, these models furnish a means to bridge the

gap between real systems and their idealized, homogeneous representations.

Conceptually, the general approach presented in this study can be applied

to an arbitrarily rough substrate. However, to demonstrate the applicability

of the approach, and to compare the developed model against existing ap-

proaches, a simpler geometry has been devised to represent a rough substrate.

The model geometry consists of one or more spherical asperities attached to a

smooth flat plate. The objectives of this thesis are to systematically address

how the presence of these asperities modifies the hydrodynamics and colloidal

interactions of the system, which consequently influence particle convection,

diffusion and migration (due to colloidal interactions) near the substrate. In

place of a broad scan of the parameter space that the models from this ap-

proach can explore, this investigation includes a selection of particular cases of

interest. These cases explore different configurations of physical (through size

and spatial distribution of asperities) and/or chemical (through colloidal in-

teraction parameters) heterogeneity to reveal and discuss their general effects

on deposition phenomena.
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1.4 Organization of the Thesis

In this chapter, a brief overview of the process of deposition has been presented,

followed by a description of the objectives and scope of the present study.

Chapter 2 is a detailed review of previous research efforts into particle

deposition, starting with established models and then following their evolution

(i.e., incorporating heterogeneity in various ways).

In Chapter 3, the Heterogeneous Interaction Model is proposed and used

to examine the colloidal interactions between a particle and a planar substrate

with regions (i.e., patches) of chemical heterogeneity. The same model is then

employed to look at the effects of physical heterogeneity on colloidal interac-

tions using a chemically-uniform substrate with a single, spherical asperity on

it. The fluid is always at rest with this model.

A Lagrangian particle tracking model that accounts for convection, dif-

fusion and migration (colloidal interaction) forces, as well as hydrodynamic

interactions, near a “rough” substrate is described in Chapter 4. The hydro-

dynamic field used with this model is numerically determined by solving the

Stokes equations for the specified substrate topography. The substrate can

also be rendered chemically heterogeneous.

After establishing the limits of the parameter space explored in this study,

validations of various aspects of the particle tracking model presented in Chap-

ter 4 are made in Chapter 5. These validations include those for testing the

accuracy of the hydrodynamic field, Brownian motion, and comparisons with

the results from earlier studies using the classic Happel cell model for deposi-

tion on a single spherical collector.

Chapter 6 presents the results of simulations for scenarios, starting with

a single asperity on a planar substrate and then with multiple asperities in a

variety of configurations. Some simulations are with only deterministic forces

acting on the particle, and the others are full simulations that also include

Brownian displacements. The results from a variety of noteworthy scenarios

are discussed in this chapter.
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Lastly, conclusions from the present study and suggestions for potential

avenues of future work stemming from this investigation are given in Chapter

7.
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Chapter 2

Literature Review

2.1 Introduction

Research into colloid deposition phenomena is rich and diverse, spanning many

fields of endeavour for more than a century. More specifically, particle depo-

sition is an extensively studied subject, relevant to filtration, fouling of flow

channel walls and membranes, chromatographic separations, colloid transport

in groundwater, and numerous other natural and engineered processes. Some

of these investigations have concentrated on only colloidal interactions, while

others have tried to depict the kinetics of deposition from far-field transport

to adsorption on the surface. This review of previous literature in this field

is divided into two major parts, with the first part delving into research on

colloidal interactions and the second part on models of particle transport and

deposition. The common direction in both parts is from studies of homoge-

neous systems to those with some form of heterogeneity.

2.2 Colloidal Interactions

2.2.1 Validity of the Classical DLVO Theory

In the deposition process, colloidal interactions are manifested over the short-

est range of distances. The phenomena associated with the interactions of

colloidal particles with surfaces have been studied for decades in innumerable

ways, and the DLVO interaction model has often been the mainstay of these
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studies. The merits of using DLVO theory to assess colloidal phenomena in

real systems have also been debated a great deal over the past six decades.

However, as Ninham [Nin99] stated:

The genius of DLVO lies not in complicated models that add more

and more parameters, but in its extraction of the essential physics

of the problem of lyophobic colloid stability.

Basically, the DLVO theory is a tool with which to interpret the qualitative

characteristics of complex colloidal phenomena engendered by Lifshitz-van der

Waals forces and electrostatic interactions.

Albeit approximate, the theory tends to capture the underlying physics

of colloidal interactions quite well for some clearly defined systems [Nin99].

The experiments of Israelachvili [Isr92] sought to determine the interaction

forces between two molecularly-smooth mica surfaces and the results showed

remarkable agreement with the DLVO model. Nonetheless, the DLVO the-

ory remains controversial, as many individuals subscribe to it wholesale while

others reject it in part or in its totality. Criticisms have been raised through

comparisons with ample experimental evidence [Nin99, Isr92,KN01], whereby

the DLVO theory has been shown to falter when applied to many real systems,

including biological ones. It is unclear whether or not the characteristics of

the systems tested in these experiments violated any of the key assumptions

that the DLVO theory is based upon, which include the following:

• The solvent (i.e., dispersing medium) is treated as a continuum;

• The ions in the solvent are treated as points (i.e., no volume) and are

from indifferent electrolytes (i.e., no specific ion interactions, possibly

leading to chemical reactions, etc.); and

• The interacting colloidal bodies have smooth surfaces and simple geo-

metric forms, such as cylinders, spheres and planes.

Some researchers have sought to bridge the gap between theory and ex-

periment by adding new forces to compensate, leading to an extended DLVO
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interaction model. The most frequently added force is the solvation force,

which is attributed to the layered structure of solvent molecules very close

to solid-liquid interfaces. Current theory explains that as two such solid sur-

faces approach each other, layer after layer of solvent molecules are pushed

out of the closing gap [LHLS07]. The chemical nature of the surfaces deter-

mines if the force is repulsive, attractive or even oscillatory [CL06, LHLS07].

If the surfaces contain non-polar groups, then the polar molecules like water

would prefer to escape the gap, generating an attractive force referred to as

hydrophobic attraction. When the surfaces contain polar or charged groups,

a repulsive hydration force emerges [IW96, RK02, vOG04] because energy is

required to remove polar solvent molecules from polar surface groups [CL06].

An investigation of hydration forces between silica surfaces by Valle-Delgado

et al. [VDMBGG+05] used many prominent models – from the phenomeno-

logical model of Marčelja and Radić [MR76] to the Ruckenstein and Man-

ciu model [MR04] – for comparison with their experimental results. Each of

these models proposes a unique mechanism to explain the microscopic na-

ture of the hydration force, but it was acknowledged that the origin of the

force may differ depending on the system (mica, lipid bilayers, silica, proteins,

etc.) [VDMBGG+05]. They concluded from their data that formation and

breaking of hydrogen bonds was the main contributor to the force, perhaps

combined with one or more other mechanisms. Nonetheless, these solvation

forces are expected to act over very short separation distances (< 1-2 nm),

and therefore, they are only significant for modeling the adsorption stage of

the deposition process.

Some other types of interactions and forces that have been proposed include

depletion forces [AO54,WS94,VHRMC07], steric interactions [Isr92,LHLS07]

and specific ion effects [BWN01,MR04,CL06], all of which are complicated and

their respective theories continue to evolve. Naturally, most types of forces

added to describe colloidal phenomena are manifestations of factors that were

ignored in the original DLVO model. Specific ion effects, for instance, are

concerned with ion types and their affinities for water and other ions in the
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system [CL06], but the DLVO model assumes electrolyte ions to be indiffer-

ent, charged point masses. Looking back at the tremendous developments in

the general subject of colloidal interactions, one is faced with a fundamen-

tal question concerning the application of these compensatory forces: since

the interactions between atoms are primarily dictated by van der Waals and

Coulombic (i.e., electromagnetic) forces, how can other types of forces mani-

fest themselves in colloidal systems? The present study attempts to address

this question by modeling a planar surface in a manner that is as realistic as

possible while adhering to the assumptions of the DLVO theory stated above.

In this context, the fundamental assumptions in the DLVO interaction

model, such as, continuum solvent, point charge ions obeying the Boltzmann

distribution, pairwise summation of attractive dispersion interactions between

two macro-bodies, are consistently shown to be fairly robust for many col-

loidal systems. For instance, the granularity of the solvent and ions do not

manifest themselves substantially unless two charged surfaces are brought to

sub-nanometer separations [RSS89]. Similarly, the ion correlations are usu-

ally governed by the Boltzmann distribution in the Debye-Hückel limit (salt

concentrations < 0.5 M) [TV79,TV80,JWH80]. Another significant factor to

consider in these colloidal systems is whether or not all of the interacting sur-

faces are fully wetted. In a recent study using a colloidal polystyrene particle

mounted on an AFM (Atomic Force Microscope) cantilever tip, Thormann et

al. [TSHM08] discovered that the interaction forces between the particle and

a hydrophilic (i.e., fully wetted) surface exhibited DLVO-like characteristics.

When the same surface was hydrophobic, the measured interaction forces were

very different from DLVO theory, and this was attributed to the formation of

air bubbles between the particle and the surface [TSHM08]. The presence of

air bubbles would alter the dispersing medium’s characteristics (such as its

dielectric constant) in the gap between the surfaces, and hence a dramatic

change in interaction would be expected. On the basis of this evidence, it

seems plausible that the leading cause of failure of the DLVO model at reason-

able separations between two charged colloidal objects (separations > 1-2 nm)
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is an inadequate resolution of the interacting surfaces with respect to their

physical and chemical properties. Traditionally, one recasts a real colloidal

system in terms of geometrically regular and chemically homogeneous objects,

and applies the DLVO interaction model to this simplified system.

2.2.2 Introducing Heterogeneity to the DLVO Model

The accuracy of the DLVO theory has often been questioned in the con-

text of its ability to describe interactions between heterogeneous colloidal ob-

jects. Physical and/or chemical heterogeneity in real colloidal systems have

been considered as the key factors leading to the inadequacy of the DLVO

model [Don02,WRE04]. In spite of this, many theoretical and experimental

studies of colloidal interactions persist in considering all bodies to be physi-

cally and chemically homogeneous. On the other hand, there have been stud-

ies involving real cell membranes with their inherent heterogeneity that have

reported generally useful information concerning colloidal interactions. An

investigation of microbial adhesion by Dorobantu et al. [DBFG08] mapped

surface heterogeneities of two bacterial species immersed in an aqueous buffer

using AFM and discovered a direct correlation between their spatial hetero-

geneity and differences in adhesion forces determined from retraction force

curves. Interaction forces with both species were also found to vary when

the chemically-functionalized AFM tips were changed from hydrophilic and

hydrophobic. In light of the above discussion, it would be of interest to ex-

plore avenues of modeling real colloidal interfaces and particles as collections

of nanoscale subunits. Such DLVO interaction models can be applied to de-

scribe the interactions between the subunits while allowing greater flexibility of

incorporating nanoscale physical and chemical heterogeneities of the surface.

An important aspect of incorporating such a model in the framework of

the DLVO theory is to establish the three-dimensional nature of the resulting

interaction forces. Even when heterogeneity is present in the model, nearly

all studies thus far have disclosed data on interaction energies and forces act-

ing normally between the interacting surfaces. Although lateral forces have
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been mentioned in studies on surface roughness [Cza86,CW87,Wal98], there

has been little substantive effort to quantify these forces on physically and

chemically heterogeneous substrates in terms of DLVO interactions. When

considering the three-dimensional nature of the interaction forces, it is per-

tinent to explore the influence of lateral forces caused by heterogeneities on

colloidal phenomena, such as the attraction or repulsion of particles to/from

particular regions of a surface. An investigation by Busscher et al. [BPB98]

concluded that lateral DLVO interaction energies arising from minor chemical

or structural heterogeneities and leading to the adhesion of two surfaces are

one order of magnitude smaller than the perpendicular interaction energies

between them. However, there is no explicit determination of the DLVO in-

teraction forces, lateral or perpendicular, in their study. The work of Ma et

al. [MSH+07] is one exception, for which lateral forces were estimated to be as

strong as 3×10−7 dynes (3×10−12 N) for the electrostatically-guided placement

gold nanoparticles in a CMOS (Complementary Metal Oxide Semiconductor)

fabrication process.

2.2.3 Interaction Models with Physical and/or Chemi-
cal Heterogeneity

With the objective to produce a more sophisticated and realistic model, there

have been both theoretical and experimental studies in the past three decades

that have included some type of physical and/or chemical heterogeneity in

their systems. The following examples include studies of physical heterogene-

ity in the form of surface roughness [Wal98,HBE03], and studies of chemical

heterogeneity in the form of variations of electrical surface charge or potential

and/or variations in material composition leading to altered van der Waals

interactions [CHG03].

Physical Heterogeneity

Czarnecki and Da̧broś [CD80] were among the first to construct models that

included surface roughness, calculating the van der Waals (vdW) interaction

15



energy between a rough particle and the smooth surface of a semi-infinite

medium. Various particle sizes, thicknesses of roughness and separation values

were compared, and their efforts yielded a simple correction factor to estimate

the influence of surface roughness on the vdW interaction energy. Czarnecki

continued to explore this subject with rough unequal-sized colloidal spheres,

and concluded that surface irregularities have significant effects on the vdW en-

ergy only at very close separation distances between the bodies [Cza86]. These

irregularities were “smoothed out” at larger distances, where the volumes of

the bodies were more prominent in determining the interaction energy [Cza86].

In another paper with Warsynski [CW87], the estimated tangential (with re-

spect to the line of approach between the spheres) vdW forces were compared

with the corresponding hydrodynamic drag forces acting on the spheres and

found to be of similar magnitudes, therefore possibly playing a role in particle

immobilization in some deposition scenarios. Herman and Papadopoulos de-

termined how spherical and conical asperities [HP90] and depressions [HP91]

in two parallel plates affect the van der Waals and double layer interactions

between them. Although physical heterogeneity of both a convex and concave

nature were explored in these two studies, again only interaction energies were

calculated and interactions with colloidal particles were not considered.

While investigating the effect of particle size on collision efficiency, Elim-

elech and O’Melia [EO90b] created a model to simulate the interaction energy

between a smooth particle and a flat plate with a single, hemispherical as-

perity. Assuming low surface potentials and applying the Derjaguin approx-

imation [Der34, Whi83], the energy barrier to deposition for rough surfaces

was found to be lower than for smooth surfaces. This result was echoed when

Suresh and Walz [SW96] investigated how roughness on a colloidal particle’s

surface would affect its DLVO interaction energy with a smooth plate. They

found that at close separations, an increase in vdW attraction energy lowered

the height of the repulsive energy barrier. Again, physical heterogeneity was

used to explain why capture rates observed in experiments were higher than

what was predicted with DLVO theory for smooth surfaces.
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In an effort to incorporate the exact topographies of interacting surfaces

into models of colloidal interactions, the surface element integration (SEI)

technique was devised [BE97,BKE98]. This technique numerically integrates

the interaction energy per unit area between directly opposing differential pla-

nar elements over the entire surfaces of the two colloidal bodies to obtain the

total interaction energy [ZBC+08]. Whether the interaction originates from

the particle’s volume (as with Hamaker’s approach to vdW interactions) or

from its surface (as with EDL interactions), the equivalence of surface and

volume integrals through Gauss’ divergence theorem allows SEI to accommo-

date surface and body forces in its calculations [BE97]. The SEI technique has

been included in the models of various studies to account for surface roughness.

To name a few, Hoek and Agarwal [HA06] applied SEI to an extended DLVO

model for membrane applications, Martines et al. [MCM+08] pondered the

benefits of patterning surfaces with regular features at the nanoscale that are

much smaller than a particle interacting with them, and Zhao et al. [ZBC+08]

explored the influence of particle surface roughness on the stability of clay

suspensions.

The repulsive energy barrier is perhaps the most crucial element in ascer-

taining the stability of a colloidal system, which depends on the electrostatic

double layer force (EDL). Das and Bhattacharjee [DB05] determined the EDL

force on a spherical particle approaching the center of a flat substrate with

four previously deposited particles placed at the vertices of a square. The pre-

viously deposited particles imparted a physical heterogeneity to the otherwise

chemically homogeneous substrate (i.e., uniform, constant surface potential for

all components). The force, in the normal direction, was calculated for several

different interaction ranges (i.e., screening or inverse Debye lengths, which are

based on electrolyte concentration of the fluid) and separation distances. Two

different approaches were used to determine the force: first, by solving the non-

linear Poisson-Boltzmann equation with appropriate boundary conditions for

the three-dimensional geometry; and second, by a pairwise additive approach,

summing the interaction forces between the free particle and each previously
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deposited particle and the flat plate. Both approaches showed that the repul-

sive EDL force on the approaching particle was markedly lower for this phys-

ically heterogeneous, many-body scenario than for a smooth sphere-plate in-

teraction, and the reduction in force was more pronounced when the screening

length is close to the particle radius [DB05]. The pairwise additive approach

to determining the EDL force also overestimated its magnitude for such sce-

narios. These results are very similar to those found by Phillips [Phi95], who

used a singularity method with the linearized Poisson-Boltzmann equation for

three previously deposited, spherical particles positioned at the vertices of an

equilateral triangle.

As useful as these models have been, they have some limitations and dis-

advantages in common. None of them accounted for chemical heterogeneity

in the system, they are incapable of dynamically (with time) altering the to-

pography of the interacting entities, and typically only the net normal force

component between the entities was calculated with them. Comprehensive

models of physical heterogeneity like SEI and fractals also do not integrate

well with colloid transport models, mainly due to the intensive computations

required for only the colloidal interactions at each time step.

Chemical Heterogeneity

Research into chemically heterogeneous colloidal systems has been frequently

aimed at sphere-sphere and plate-plate interactions, (i.e., aggregation) but less

often at sphere-plate interactions (i.e., deposition), especially with the DLVO

theory included in the model. With two interacting flat surfaces modeled as

periodic lattices of arbitrary configuration, Miklavic et al. [MCWH94] looked

at two scenarios for EDL interactions between them. For the first scenario,

one surface had non-uniform, but net neutral, charge while the other had

uniform charge. In this case, the interaction energy was either attractive or

repulsive depending on whether the surfaces were constrained with constant

charges or constant potentials. When both surfaces had non-uniform surface

charges, the attraction or repulsion of the surfaces depended on whether or
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not regions of like and unlike charge were directly opposite from one another.

Holt and Chan [HC97] applied the periodic patchy model of Miklavic et al.

to two charge-heterogeneous spheres. They found substantial free attractive

energies when the lattices of the spheres were misaligned, and large restrain-

ing torques even at significant separation distances (like the secondary DLVO

energy minimum; refer to Figure 1.2). However, the size of the particles in

this study was large relative to the screening length of the EDL interactions

(i.e., thin electrostatic double layers), and for a uniformly charged system

with the parameters used, a highly attractive secondary minimum would be

present anyway according to DLVO theory. An analytical model by Velegol

and Thwar [VT01] estimated the mean EDL force between two plates, and

then two spheres, with random, non-uniform surface charge distributions. Al-

though the paper did not provide firm conclusions regarding the effects of

charge non-uniformity on hydrophobic phenomena and colloidal stability, the

model predicted the potential of the mean EDL force at any practical gap

distance that is experimentally measurable. The systems observed with this

model also had thin double layers [VT01].

Chemical heterogeneity through surface charge or potential non-uniformity

is often achieved experimentally by preparing surfaces with coatings of func-

tionalized molecules such as alkanethiols. Chun et al. [CHG03] created sur-

faces with nanoscale, patchwise distributions of two types of alkanethiols (with

hydrophilic methyl and hydrophobic carboxylic acid sites) that interact differ-

ently with a polyacrylic acid polymer in an aqueous solution. At a certain con-

centration of heterogeneous sites, significant quantities of polymers adsorbed

on the surface, and they concluded that the amount of polymer adsorbed was

dependent on the fraction of heterogeneous sites present [CHG03]. From a dif-

ferent experimental perspective, Taboada-Serrano et al. [TSVYT05] employed

force-volume-mode AFM to map interaction forces on a flat, silica surface and

relate them to surface charge heterogeneities. Copper ions were adsorbed onto

select regions of the silica surface to modify local surface charge and produce

charge reversal, and local differences in both the magnitude and direction of
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surface forces were measured in the vicinity of these regions. Thus far, chem-

ical heterogeneity remains a challenge to create experimentally, especially in

a spatially-ordered manner on the micro- or nano- scale. Using a soft litho-

graphic technique, Rizwan and Bhattacharjee [RB09] produced self-assembled

monolayers of the carboxyl- and amine-terminated alkanethiols in striped pat-

terns to study the deposit morphologies of polystyrene particles on the charge-

heterogeneous surfaces. Comparisons of the experimental results with the re-

sults from Monte Carlo RSA (Random Sequential Adsorption) [Fed80, ST89]

simulations showed good agreement, adequately predicting the periodicity of

the patterns on the substrate. More specifically, it was found that the par-

ticles preferred to deposit at the edges of the attractive stripes, and this was

controlled by the stripe width relative to the particle size [RB09].

Models that explicitly consider the effects of chemical heterogeneity on pla-

nar substrates on colloidal interaction forces in two or three dimensions have

only recently emerged. An investigation by Kemps and Bhattacharjee [KB05],

which is discussed in greater detail in Chapter 3, had the specific aim to

model chemically heterogeneous colloidal systems in three dimensions using a

homogeneous, spherical particle near a planar substrate that had regions with

different chemical compositions and electric surface potentials. Using a scheme

referred to as “electrostatic funneling”, the study by Ma et al. [MSH+07] men-

tioned earlier produced alternately charged lines of about 100 nm width to

achieve a precision of 6 nm in gold nanoparticle placement. The long range

interactions observed in their experiments were in good agreement with their

“semiquantitative” calculations based on DLVO theory, which looked only at

two dimensions.

Physical and Chemical Heterogeneity

Although it is prudent to explore the effects of physical and chemical het-

erogeneity separately, real colloidal systems usually possess both at the same

time and place. Duval et al. [DLvL04] presented a theoretical formalism for

electrostatic interactions between two heterogeneous surfaces. Their approach
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accounted for the effects of surface roughness and non-uniform surface charge

density, as well as specific interactions between ions in the intervening elec-

trolyte and the surfaces themselves. Unfortunately, their model and its het-

erogeneity were only two-dimensional, but it is a rare example that considers

physical and chemical heterogeneity concurrently.

One of the cornerstones of the SEI technique [BE97] is its use of the Der-

jaguin approximation [Der34,Whi83], which is only valid for short separation

distances between interacting bodies. An exploration of the validity of this

approximation for physically and chemically heterogeneous colloidal particles

was undertaken by Rentsch et al. [RPCPB06]. Bare silica spheres of different

sizes were used for observing the effects of physical heterogeneity, and then for

chemical heterogeneity, positively-charged poly (amido amine) (PAMAM) den-

drimers were adsorbed on the spheres in monolayers with low surface coverage,

producing local charge reversal for the negatively-charged silica surfaces. Of

course, the screening lengths of the EDL interactions in this study were small

compared to the particle sizes used (i.e., thin double layers). Using an AFM

to measure the forces between the spheres, the Derjaguin approximation was

found to be valid for heterogeneous substrates down to separation distances

that compared with the characteristic sizes of the surface heterogeneities (e.g.

attractive forces emerged at 10 nm distances, roughly equal to the expected

inter-dendrimer spacing) [RPCPB06]. This conclusion supports the findings

of the theoretical works by Miklavic et al. [MCWH94] and Stankovich and

Carnie [SC99]. The authors also stated that the approximation would likely

result in some deviations for systems with “highly pronounced lateral hetero-

geneities” [RPCPB06], but a threshold at which significant deviations would

emerge was not presented.
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2.3 Particle Transport and Deposition

2.3.1 Established Models of Particle Deposition

As stated earlier in Section 2.2.2, the majority of the previous studies of

deposition phenomena, both theoretical and experimental, have been based

on systems with no physical or chemical heterogeneity. These studies have

modeled particle transport and deposition using one or both of two gen-

eral approaches: Eulerian and Lagrangian. The Eulerian approach provides

a macroscopic perspective of the deposition process, describing particles in

terms of their concentration distribution, or probability density, in time and

space [EGJW95]. The Lagrangian approach is from a microscopic perspec-

tive, following the trajectories of individual particles as they move in time

in accordance with Newton’s Second law of motion [EGJW95]. Both of these

approaches have yielded particle transport equations for analytical and numer-

ical models with ideal collectors, including rotating discs [Lev62,DA79,PL80],

impinging jet flows [DvdV83, CR85a, CR85b, AZSC86, DvdV87], and paral-

lel plate channels [BLE76, BE79, AvdV81, SB89, SB90]. Assuming all of the

interacting surfaces are smooth, experimental data has been accumulated

and analyzed to derive semi-empirical collection efficiency equations for sur-

faces in a number of scenarios. One such scenario that has gained promi-

nence in several fields of research is the packed bed of spherical collectors,

which has been used to simulate particle transport and deposition in granular

porous media [YHO71, PRT74, RT76, TE04] like sub-surface soils and water

filtration systems. Among the established models for packed beds, such as

Brinkman [Bri47], Happel [Hap58], and Kuwabara [Kuw59], Happel’s sphere-

in-cell model is the most commonly used, and it has laid much of the ground-

work for Colloid Filtration Theory (CFT).

The Lagrangian approach of trajectory analysis has been used extensively

to describe the capture of non-Brownian particles with the Happel cell model,

since their trajectories are deterministic and can be expressed analytically

[EGJW95]. Trajectories of Brownian particles can also be determined with
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this approach [vdV89], although it has been argued that the incorporation of

Brownian motion requires time-consuming integration of the stochastic equa-

tion of motion over time [EGJW95]. Fortunately, a careful selection of time

step length on the basis of particle size removes this impediment from the

simulations [NG05,KB09].

When considering CFT for porous media, the physical heterogeneity of

the system is typically modeled on the scale of collector grain size [RPW01],

which is considerably larger than the scale that is explored in the present

study. As Figure 2.1(a) shows, Happel’s model depicts a porous medium as

an assemblage of identical spherical collectors, each enveloped in a fluid shell,

and therefore, having no contact with other collectors. Despite its physical

isolation, the flow field around each spherical collector is affected by the pres-

ence of neighbouring collectors. The thickness of the fluid shell, labeled as

b in Figure 2.1(b), is a function of overall porosity of the medium, which is

based on the volume fraction of the collectors in the packed bed. This overall

porosity factor is used to modify the fluid velocity distribution around a single,

isolated spherical collector [PRT74]. Happel’s cell model considers only the

interactions between a particle moving through the fluid and this single collec-

tor that is “nearest” to it. The phenomena observed with this single collector

is subsequently applied to the entire packed bed, thereby determining general

effective parameters like filtration efficiency for the whole system.

For any given deposition scenario, a numerical solution of the Eulerian

convection-diffusion-migration equation or the Lagrangian trajectory model

is not easily acquired or readily available for use [TE04]. To provide a con-

venient alternative, some researchers have devised semi-empirical approaches

to predict the filtration efficiency of a packed bed filter. The first water fil-

tration model based on Happel’s cell was presented by Yao et al. [YHO71],

which proposed a closed-form correlation equation for the initial collection

efficiency η (vs. particle radius ap) of a single collector grain in a deep-bed

filter. The resulting equation is a function of several dimensionless parameters

governing particle filtration, including the aspect ratio NR (particle size over
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Figure 2.1: Pictorial representation of Happel’s cell model of a porous
medium. (a) The complexity of the real system is simplified by modeling
the medium as a number of spherical collectors. (b) Each cell contains one
collector surrounded by a spherical fluid shell. The radius of the shell, b, is a
function of the volume fraction of the collector grains in the porous medium.

collector size), the Peclet number NPe (convective transport over diffusional

transport), and the gravitation number NG (Stokes particle settling velocity

over fluid approach velocity). However, this model (sometimes called Yao-

Habibian [LJA+95]) did not consider the effects of hydrodynamic interactions

and the attractive van der Waals interactions on filtration efficiency for any

particle size.

Several years later, Rajagopalan and Tien [RT76] considered these inter-

actions explicitly, although only for non-Brownian particles. They employed

trajectory analyses, comparisons with earlier experimental findings and dimen-

sional analysis to formulate their correlation equation for the initial collection
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efficiency η. With several dimensionless parameters added to account for more

factors, the Rajagopalan-Tien correlation became a standard for comparison

in many studies of deposition. One such study was that of Tufenkji and Elim-

elech [TE04], who sought to improve upon Rajagopalan and Tien’s equation by

including the influence of hydrodynamic retardation and van der Waals inter-

actions on the deposition of particles in the diffusion-dominated regime. Their

process of formulating a new correlation equation for η was based on the nu-

merical solution of a non-dimensionalized convection-diffusion-migration equa-

tion with boundary conditions commonly used in previous studies. Multiple

linear regression analyses of several dimensionless parameters, including those

mentioned above, determined the values of coefficients and exponents in their

correlation. The η vs. ap curves for the correlations of Rajagopalan-Tien and

Tufenkji-Elimelech are qualitatively very similar, with significant differences

only emerging around the lowest value of η (i.e., at ap ≈ 1 µm in [TE04]). The

reasons for this difference have been debated [RT05,TE05a]. Nevertheless, the

correlation equations of both Rajagopalan-Tien and Tufenkji-Elimelech con-

tinue to be utilized in discussions of results for numerous studies to the present

day, with a recent example from Long and Hilpert [LH09].

2.3.2 Evolution of Established Models

In real systems, the collector grains – perhaps of various sizes – of a granu-

lar porous medium would be in contact with some of their neighbours, held in

place by packing constraints and physicochemical interactions. The surfaces of

these collectors would not be perfectly smooth either, having asperities of dif-

ferent sizes protruding into the fluid. Solving the Navier-Stokes equations with

the no-slip boundary condition at the surfaces of these collectors, the resulting

fluid velocity distribution in the near-field around these collectors would differ

from that of the isolated spherical collector in Happel’s cell model. This high-

lights the significance of capturing the fluid velocity distribution, or flow field,

around these collectors as accurately as possible, and numerically solving the

Navier-Stokes equations for such a geometry is an effective approach to this.

25



Torkzaban et al. [TBW07] used finite element software to determine the flow

field around a single spherical collector with greater accuracy than the typical

Happel cell model, but again the collector’s surface was smooth.

Models of deposition based on ideal collectors do not accurately predict

deposition rates on real surfaces. The discrepancy between theoretical predic-

tions and experimentally-observed deposition rates or deposit morphologies

have generally been ascribed to physical and chemical heterogeneity of the

interacting surfaces. Consider, for instance, the deposition of particles onto a

planar substrate in the presence of a shear flow. The ideal model portrays the

substrate as smooth (Figure 2.2a), and a straightforward analytical expression

depicts the flow across its surface. A more realistic model will have some rough-

ness, with asperities generating local effects that forbid analytical expressions

for steady state fluid velocity profiles near the surface (Figure 2.2b). Presence

of roughness on the substrate gives rise to two major sources of discrepancy

between theoretical predictions and experimental observations of deposition

rates or deposit morphologies. First, roughness modifies the colloidal inter-

actions between the depositing particle and the substrate, thereby affecting

the migration-based particle transport. Second, collector surface roughness

alters both the local flow field and particle-collector hydrodynamic interac-

tions, which directly influences convection and indirectly influences diffusion

and migration. If the asperities are large enough relative to the particle size,

they can affect the trajectories of particles that come close to the surface, and

ultimately contribute to deposition phenomena in some way.

The effects of physical heterogeneity on particle deposition in porous me-

dia have been explored with techniques evolved from the original cell mod-

els, including the array of spheres (AOS) model [SS66]. When depicting the

hydrodynamic field within the medium, some newer techniques have explic-

itly considered the pore structure formed by contact points between collector

grains [CL98,LZLJ05,TJ06,JLY07] as well as zones of flow stagnation [JLY07].

A recent study by Ma et al. employed Lagrangian particle trajectory analy-

sis with numerically-determined flow fields in the vicinity of grain-to-grain
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Figure 2.2: Local hydrodynamic fields near model collector surfaces. (a) The
classic approximation of a smooth surface allows the fluid velocity profile to
be represented as an analytical expression. (b) With a more realistic depiction
of the surface, physical roughness (i.e., presence of asperities) can significantly
alter the velocity profile, requiring a numerical solution for the entire flow field
and affecting particle transport near the surface.
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contact points, providing a mechanistic model of particle deposition in such

systems [MPFJ09]. Other flow fields in complex geometries have been cal-

culated to assess colloid transport in porous media, such as the constricted

tube model [CCL03, CDCC04, CCC08]. In spite of this level of model re-

finement, these and many other similar studies (some other recent examples

include [BSB+05,BT07,BTW07]) were concerned with a scale of physical het-

erogeneity that was much larger than the particles in the fluid, and the col-

lector grains had perfectly smooth surfaces (i.e., Classic Approximation: Fig-

ure 2.2a).

From a strictly Eulerian perspective, physical and chemical heterogeneity in

porous media have also been modeled in terms of effective medium parameters

such as specific deposit, hydraulic conductivity and “heterogeneity parame-

ter” [BT00,SESR01,LBRE03]. For example, Abdel-Salam and Chrysikopoulos

modeled the effects of physical heterogeneity on colloid transport in a fractured

rock medium [ASC95,CAS97], using an Eulerian description of the matrix with

apertures of varying size, but these models were in two dimensions only rep-

resenting a fracture plane. Although the use of effective medium parameters

can give valuable information concerning the broad picture, particle-collector

interactions are lost in a “smeared-out” view of the deposition process. Ran-

dom walk particle tracking (RWPT) models, which use both the Eulerian and

Lagrangian trajectory approaches in a complementary fashion, have also been

applied to simulate colloid transport in porous media [DAD05, SFGGH06].

However, these random walk models have been applied to larger systems

(i.e., heterogeneity on the macroscale, not microscale [PBBK08]) that are

typically two-dimensional. Only convective- (advective-) and diffusion-based

transport have been explicitly included in these models, sometimes with hy-

drodynamic interactions represented with a retardation factor that is a func-

tion of concentration, not the proximity of individual particles to other bod-

ies [WK96,DAD05,ADK09].
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2.3.3 Physical Heterogeneity and Near-Field Hydrody-
namics

Models for particle transport and deposition, either Eulerian or Lagrangian,

commonly consider convection, diffusion (Brownian motion), and migration

due to colloidal interactions as the mechanisms of transport. The convective

component of particle transport is computed by first determining the undis-

turbed hydrodynamic field near a model collector, followed by the application

of corrections for the particle-collector hydrodynamic interactions. The hydro-

dynamic corrections are also employed to modify the diffusivity of the particles

near the collector surface. These corrections are generally obtained from an-

alytical expressions based on fluid flow over a smooth, flat surface. Such an

approach may be inadequate for the following situations:

(i) Deposition of a few particles can alter the topography of an initially

smooth substrate. Such immobilized particles can modify the local fluid flow,

and therefore, subsequent particle convection [LBRE03,KBE00,Ada03]. Pre-

diction of particle deposition rates beyond initial (clean substrate) deposition

might require continual update of the hydrodynamics to account for the effects

of the immobilized particles.

(ii) Many surfaces that are macroscopically planar can have substantial

roughness. Depending on the scale of roughness, the near-field hydrodynam-

ics on such rough surfaces can be significantly misrepresented by expressions

for shear flow past a smooth flat plate. In context of colloid transport and

deposition, such misrepresentations can have consequences when considering

deposition of nanoparticles onto surfaces containing large asperities (larger

than the nanoparticles) [RB07,RPW01].

(iii) Numerous applications with nanoengineered surfaces containing regu-

lar arrays of bumps, posts, and corrugations are being proposed. Such surfaces

have already been shown to produce remarkable effects on friction losses during

fluid flow [WUU99,CK06,CUK+06,CDC07]. To assess how colloid transport

and deposition will be influenced by such textured substrates, one needs to

consider the flow fields and particle convection near such surfaces accurately.
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In the above mentioned situations, physical (topographical) heterogeneity

of a macroscopically planar surface is expected to influence particle deposition

by modifying the hydrodynamics. Many studies have considered the effects

of surface roughness on colloidal interactions [Len94, SW96,BKE98,HBE03],

thereby affecting migration-based particle transport. Studies elucidating the

influence of surface roughness on the flow field [Hig85,Poz97], and consequently

on convective and migrational particle transport [MDvdV86,D8̧9,DvdV92], are

more scarce in deposition literature.

Suspended colloidal particles also modify the undisturbed fluid velocity

field. These hydrodynamic interactions are typically accounted for by the ap-

propriate hydrodynamic correction functions in colloid transport models. On

the other hand, there are more rigorous and very accurate approaches to nu-

merically determine the full flow field and comprehensively account for the

hydrodynamic interactions between bodies. One such approach is Stokesian

Dynamics (SD) [DBB87, BB88], which relates the forces and torques acting

on N spheres to their velocities through a grand mobility matrix set up to

a particular order of accuracy, depending on the version used. These ver-

sions can include only two-body force - translational velocity interactions

(i.e., F version), two body force/torque - translational/rotational velocity in-

teractions (i.e., F-T version), or two-body force/torque/stresslet - transla-

tional velocity/rotational velocity/rate of strain interactions (i.e., F-T-S ver-

sion). Another approach involves the use of arbitrary Lagrangian-Eulerian

(ALE) [HLZ81,Hu96,AQMB08] type models with finite element programs, al-

lowing the mesh to follow moving boundaries such as particles’ surfaces while

maintaining element shape [SZ01]. Unfortunately, both of these approaches

are computationally intensive and generally compute the flow fields assuming

smooth solid surfaces with no-slip condition. Detailed calculation of a flow

field that resolves the surface roughness of the collectors in conjunction with

either of these techniques is computationally prohibitive.

Hydrodynamic retardation has been thoroughly investigated for sphere-

plate interactions [Bre61,GCB67a,GCB67b,GO71,Dah74,KK05], which is the
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case when the particle is much larger than the roughness features (i.e., posts,

attached spheres, etc.) on the collector, or when those features are much

larger than the particle itself. The intermediate cases of hydrodynamic inter-

actions for unequally-sized spheres have also been investigated in a number

of scenarios [JO84,KK05], but the spheres were located in the bulk, far away

from any collector surfaces. However, research into the hydrodynamic interac-

tions between a spherical particle and a collector surface with topographical

features that simulate roughness of a scale close to the particle size is far

less common. The study by Bafaluy et al. [BSVS93] observed the diffusional

motion of a single Brownian particle near a Brownian particle of equal size

attached to a planar surface using Brownian Dynamics simulations. Anekal

and Bevan [AB06] employed Monte Carlo methods and Stokesian Dynamics

to compute the self-diffusion of a dilute, dynamic monolayer of equally-sized

colloidal particles coating a planar wall. Although both of these models com-

prehensively accounted for hydrodynamic interactions between bodies, nei-

ther of them considered a system with the fluid flowing past the wall. Thus

far, there have been no investigations of particle deposition that include all

three transport mechanisms – convection, diffusion and migration – and hy-

drodynamic retardation for particles approaching a physically heterogeneous

substrate with asperities or roughness features of similar size to the particles

themselves.

2.3.4 Chemical Heterogeneity and Near-Field Transport

It has only been in recent years that the effects of chemical heterogeneity

on near-field transport and deposition have been explored. One of the long

standing mysteries in deposition phenomena is how surfaces that are expected

to be unfavourable to deposition can have some particles still deposit on

them. In an attempt to resolve this issue among others, the experimental

study of Elimelech et al. [ECK03] and the numerical simulations of Nazemi-

fard et al. [NMB06a,NMB06b] chose a radial stagnation-point flow cell with

micropatterned, concentric circular stripes of alternating charge to observe
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the resulting phenomena of such chemical heterogeneity when particles are

released into the flow. These studies revealed a relationship between the hy-

drodynamics and the electrostatic double layer interactions of the system,

otherwise called the “Hydrodynamic Bump” effect by Elimelech et al.. When

a small fraction of the collector surface was covered with favourably charged

stripes amidst the predominantly unfavourably charged, the observed depo-

sition rate of micron-sized particles increased substantially. Similar findings

have been made for systems with one-dimensional shear flow across a flat sur-

face with 11 nm disks [DD07, DD08] and 30 nm patches [SK07, KS08]. It is

the presence of surface charge heterogeneity (of a particular character) that

leads to this, affecting the motion of the particles near the surface and ulti-

mately promoting the adsorption of some of them. With this in mind, Kline et

al. [KCW08] devised an experimental apparatus with transparent microelec-

trodes to vary electric surface potential in order to control particle deposition

in a parallel-plate chamber through chemical heterogeneity. Their experimen-

tal results agreed with those of the previously mentioned patch model (i.e.

favourable and unfavourable stripes) when a negative potential was applied.

However, discrepancies were observed for applied potentials of 0.0 and +0.2

V, which led the authors to conclude that future modeling should account for

the coupling of hydrodynamic and colloidal interaction forces.

2.4 Overview of Limitations of Previous Stud-

ies

The preceding literature review has uncovered several gaps in the knowledge

of particle deposition onto heterogeneous surfaces that remain largely unex-

plored in previous studies. Many previous studies of particle transport and

deposition have employed the Eulerian approach. Greater computational ef-

ficiency and the ease with which Brownian motion is incorporated relative

to the Lagrangian approach are two common reasons for this choice [Nel04].

In fact, Eulerian models have been used sometimes to assess the accuracy of
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Lagrangian trajectory analyses [NMB06a]. Trajectory models are limited in

that they simulate the motion of one particle at a time near a “clean” collec-

tor surface (i.e., no particle-particle interactions). This precludes any explicit

analysis of long term deposition behaviour with such models, since particle

concentrations in the fluid and the effects of previously deposited particles are

not considered.

However, there is a need to provide a “direct mechanistic description of

particle transport” [Nel04] near heterogeneous collector surfaces with features

of comparable size to the particles that Eulerian models cannot provide. Such

a description is required to discern the relevant mechanisms for deposition on

more realistic representations of collector surfaces than those of smooth, flat

plates. As this thesis proposes, a Lagrangian trajectory model that includes

convection, diffusion and migration – with hydrodynamic retardation influenc-

ing all of these transport mechanisms – can furnish this. Trajectory models

are more intuitive than their Eulerian counterparts, following a particle’s path

as different forces change magnitude and direction to guide its motion through

the fluid. They also provide a reliable means of testing the validity of different

assumptions for deposition scenarios [Nel04].

Within the limits of the Lagrangian approach, the objectives of this re-

search seek to address the most prominent gaps of knowledge of particle de-

position onto heterogeneous collectors. These gaps are as follows:

1. When convective, diffusional and migrational forces were included in

the models of previous studies, the surfaces of both the particle and

the collector were smooth and featureless (i.e., no physical or chemi-

cal heterogeneity). For these simple geometries, the methods employed

to account for hydrodynamic retardation were originally based on, or

readily compared with, the correction factors for sphere-plate interac-

tions [Bre61,GCB67a,GCB67b,GO71,Dah74]. Unfortunately, the lack

of heterogeneity in these idealized models makes them inappropriate for

meeting the objectives of this research.
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2. If heterogeneity was embodied in the model, it was typically of a char-

acteristic scale that was much larger or much smaller than the particles

themselves, and sometimes limited to only two-dimensional fields (like

for RWPT models). When the features were much smaller than the

particles (about 100 times smaller in [DD07,SZSR09]), it was safely as-

sumed that such physical heterogeneity did not appreciably modify the

undisturbed flow field around the collector, so convective particle trans-

port was left unaltered in these scenarios. On the other hand, studies

like those of Johnson et al. [TJ06,JLY07] regarded pore structures from

periodic arrays of spherical collector grains in contact with each other

to be a form of physical heterogeneity in porous media. The flow fields

in these models reflected the modifications from uniform flow due to the

grains, but the grains were 200 to 6000 times larger than the particles

and their surfaces were assumed to be smooth.

3. For the rare occasions when the characteristic scale of the collector’s het-

erogeneity was similar to the particle, the [trajectory] model was missing

one or two transport mechanisms. The numerical models of Da̧broś and

van de Ven involved physical heterogeneity in the form of a single, pre-

viously deposited particle [MDvdV86,D8̧9,DvdV92]. Brownian motion

of the moving particles in these studies was suppressed, and hence their

trajectories were entirely deterministic (i.e., included only convection

and sometimes migration due to gravity and/or colloidal interactions).

From another perspective, the works of Bafaluy et al. [BSVS93] and

Anekal and Bevan [AB06] focused on diffusion and migration with hy-

drodynamic interactions, but the fluid itself was at rest so no convective

particle transport was considered.

These gaps leave an intermediate realm in the scale of collector hetero-

geneity, and its subsequent effects on all three particle transport mechanisms,

to be investigated. As of yet, there have been no models of Brownian parti-

cle deposition onto physically and chemically heterogeneous (on a scale close
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to particle size) substrates that account for the effect of hydrodynamic re-

tardation on convection-, diffusion- and migration-based transport. Perhaps

the main reason for this is the formidable challenge in developing a technique

for explicitly determining the hydrodynamic interactions between a spherical

particle and a substrate with a given configuration of heterogeneity of similar

scale to the particle size.

2.5 Summary

Despite extensive research into colloid transport and deposition over many

decades, there remains an intermediate realm that has not been fully explored.

The extent to which a collector’s physical and/or chemical heterogeneity – on

length scales comparable to the sizes of approaching particles – can influence

particle transport and deposition is not apparent from existing studies in the

field. One of the specific objectives of this investigation is to determine how

presence of surface roughness on a collector can modify near-field hydrody-

namics and ultimately capture particles under situations where conventional

deposition models that assume geometrically smooth surfaces will predict no

particle attachment. The next chapter introduces a model in which the planar

substrate is divided into subunits, and hence the substrate can be rendered

physically and chemically heterogeneous simultaneously. A number of salient

scenarios are explored with this model, providing some unique insights into

the influence of both types of heterogeneity on deposition phenomena.
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Chapter 3

Colloidal Interactions between a
Particle and a Heterogeneous
Substrate

3.1 Introduction

This chapter concentrates on how chemical and physical heterogeneity on a

substrate can affect its colloidal interactions with a nearby Brownian particle.1

The general methodology used in this study to impart chemical heterogeneity

to a macroscopically planar surface is described in the first part of this chapter.

This approach considers a substrate as comprised of a large number of subunits

with individual physical (i.e., size and shape) and chemical properties assigned

to each of them. The technique for evaluating the interaction energy and force

between a neighbouring spherical particle and the heterogeneous substrate

is then presented. The entire mathematical formulation for evaluating the

interaction force is based on the DLVO (Derjaguin-Landau-Verwey-Overbeek)

theory [DL41,VO48]. This involves representing the total interaction force as

the sum of the van der Waals and electrostatic double layer interaction forces,

with the assumption that pairwise additivity of interaction energies and forces

holds. This particular model can also be used to render a substrate physically

heterogeneous.

1A version of this chapter has been published. Kemps and Bhattacharjee, 2005, Lang-
muir, 21(25):11710-11721.
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3.2 Formulation of the Heterogeneous Inter-

action Model

3.2.1 Imparting Heterogeneity to a Model Planar Sub-
strate

Thin, chemically heterogeneous structures – such as cell membranes – have

complex molecular architectures. Representing such a structure as a planar

film is an idealized approximation that smears out all of the chemical hetero-

geneity present in the structure. On the other hand, describing a large expanse

of such a heterogeneous surface in terms of its exact molecular structure, as is

done with most molecular modeling approaches, is cumbersome. A reasonable

compromise between these two approaches might be to represent the complex

heterogeneous films as an assemblage of nanoscale subunits. Each subunit in

such an assemblage can possess different properties, such as chemical compo-

sition and surface potential, and may even be assigned different translational

and orientational degrees of freedom. This procedure provides a fairly accu-

rate representation of the chemical heterogeneity and geometrical flexibility of

the system, albeit on a somewhat coarser length scale when compared with

molecular simulations (including coarse-grained ones [NLSK04,BS06,KFT08]).

The advantage to such coarsening of the molecular architecture of a chemical

structure is that it facilitates the modeling of considerably larger systems than

what is possible using a completely atomistic description of the system.

In this study, the approach described above is adopted to represent a macro-

scopically planar surface as an assemblage of nanoscale subunits, and compute

the interaction forces between a neighbouring spherical particle and the model

surface. A general geometrical representation of the interaction between a

neighbouring spherical particle and a model chemically heterogeneous surface

is shown in Figure 3.1. Here, the cross section of the surface is depicted as

an assemblage of spherical subunits. The properties of the individual subunits

can vary, as indicated by the different shades. Even the presence of gaps in the

substrate, as well as surface roughness, can be modeled in this manner. The
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objective of using such a model is to render the substrate chemically heteroge-

neous in the lateral directions by assigning different interaction parameters to

each subunit. This enables the computation of the lateral forces acting on the

neighbouring probe particle. It should, however, be noted at the outset, that

using spherical subunits also imparts a nanoscale “roughness” to the substrate.
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Figure 3.1: Pictorial and schematic representations of the mathematical
model, showing the planar surface as a planar array of spheres. The spheres
within the heterogeneous region are shaded to distinguish them from the other
base spheres in the array. The Cartesian coordinate system used in the simu-
lations is also shown.

3.2.2 DLVO Interaction Energy and Force

Within the framework of the DLVO theory [DL41, VO48], the total interac-

tion energy between the neighbouring probe particle and the macroscopically
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planar substrate, UDLV O
fp , can be represented as

UDLV O
fp = U vdW

fp + UEDL
fp . (3.1)

with U vdW
fp as the total van der Waals interaction energy and UEDL

fp as the total

electrostatic double layer interaction energy. The total DLVO interaction force

experienced by the probe particle due to the heterogeneous planar substrate

can be determined from the above DLVO interaction energy as

F = −∇UDLV O
fp = −∂UDLV O

fp

∂x
i− ∂UDLV O

fp

∂y
j− ∂UDLV O

fp

∂z
k. (3.2)

This expression divides the total DLVO interaction force vector F into its three

Cartesian components, with i in the x− direction, j in the y− direction, and

k in the z− direction. In the same manner, the van der Waals or electrostatic

double layer interaction force between the particle and the heterogeneous pla-

nar substrate can also be determined by substituting the notation “DLVO”

with “vdW” or “EDL”, respectively, in Eq. (3.2). In subsequent discussions,

the total DLVO interaction force, or a component of it, will sometimes be

referred to in scaled form. For example, the scaled normal force is expressed

as F ∗
z = Fzap/kBT .

It is important to note that Eq. (3.2) resolves the DLVO force into its

components acting laterally and perpendicular to the substrate. Usually for

homogeneous surfaces, one only considers the normal component of the force.

The resolution of the DLVO force into both its lateral and normal components

represents a key departure of the present approach from the existing method-

ologies. It is expected that the lateral forces will be manifested strongly near

the edges of the chemical heterogeneities on the substrate.

3.2.3 Unretarded van der Waals (vdW) Interactions

To evaluate the unretarded van der Waals component of the DLVO interac-

tion, Hamaker’s approach was used between a spherical probe particle and a

macroscopically planar surface rendered as an assemblage of spherical subunits

as described previously. The approach is illustrated with the simple geometry
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depicted in Figure 3.1. Here, a macroscopically planar film is represented as an

array of spherical subunits arranged in a tight planar lattice. Each spherical

subunit can be characterized with a specific Hamaker constant for its inter-

action with the probe particle. Each spherical subunit has a radius ai, while

the approaching particle has a radius ap. The Cartesian coordinate system

has its origin located on the planar surface with the z− axis passing through

the center of the probe particle. The distance of closest approach between the

particle’s surface and the planar substrate is h (along the z− axis).

The van der Waals interaction energy between an atom in one of the spher-

ical subunits constituting the planar surface and the spherical probe particle

can be represented in terms of a 9-3 potential [Hun01,Isr92]. This 9-3 potential

is obtained by integrating the 12-6 Lennard-Jones interaction potential over

the volume of the probe particle. The resulting expression for the attractive

component (the component with the exponent 3) is [Ham37]

EvdW
ip (Dip) = −4

3
πρpβip

a3
p

(D2
ip − a2

p)
3

(3.3)

where Dip is the distance between the atom in the subunit i and the center

of the particle, ρp is the number of atoms per unit volume in the particle, βip

is the Lifshitz-van der Waals energy constant for the interaction between an

atom in subunit i and an atom in the particle, and ap is the radius of the

probe particle. Referring to the geometry shown in Figure 3.1, the interaction

potential between a differential volume element, dVi, in a spherical subunit of

the planar substrate and the probe particle will be

dU vdW
ip = EvdW

ip (Dip)(ρidVi) (3.4)

where ρi is the number of atoms per unit volume in the spherical subunit

i and dVi = dxdydz is the volume of a differential element in the subunit.

Integrating Eq. (3.4) over the entire volume of the spherical subunit yields

U vdW
ip = −ρi

∫

Vi

EvdW
ip (Dip)dVi. (3.5)

Substituting Eq.(3.3) into Eq.(3.5) provides,

U vdW
ip = −4Aip

3π
a3

p

∫

Vi

dxdydz

(D2
ip − a2

p)
3
. (3.6)
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In Eq. (3.6), Aip = π2ρiρpβip is the effective Hamaker constant for the van

der Waals interaction between the probe particle and the spherical subunit i.

The length parameter Dip can be expressed in terms of the centroid-to-centroid

distance between the probe particle and a differential element of a subunit in

the planar surface. The integrand in Eq. (3.6) is resolved into an expression

of purely Cartesian components and constants,

Dip =
√

x2 + y2 + (ap + h + z)2 (3.7)

where (x, y, z) represents the coordinates of the centroid of the differential

volume element dVi in each subunit. The total van der Waals interaction

energy between the probe particle and the flat substrate, the latter being a

planar array of spherical subunits, can be written as a sum of the pairwise

interactions between individual subunits and the probe particle. This will

take the form

U vdW
fp =

Ns∑
i=1

U vdW
ip , (3.8)

where U vdW
fp represents the total van der Waals interaction energy between the

probe particle and the planar surface, and Ns is the number of subunits in the

planar surface.

The above formulation is quite general, and allows the use of any geomet-

rical shape for the subunits, provided that the volume integrations in Eq. (3.6)

are performed numerically. The flexibility of this provides the opportunity to

alter the packing density, roughness and general distribution of mass in the

planar surface, leading to a remarkable variety of surface morphologies that

can be investigated. However, when considering spherical subunits, the inte-

grations for obtaining the interaction energy between the probe particle and

each subunit can be performed analytically [MN76,EGJW95]. The resulting

van der Waals interaction between the probe particle and the model planar

surface can be expressed as a summation of the interaction energies over all
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the subunits, given by

U vdW
fp =

Ns∑
i=1

−Aip

6

[
2aiap

R2
ip − (ai + ap)2

+
2aiap

R2
ip − (ai + ap)2 + 4aiap

+ ln

(
R2

ip − (ai + ap)
2

R2
ip − (ai + ap)2 + 4aiap

)]
, (3.9)

with Rip as the centroid-to-centroid distance between the probe particle and

the spherical subunit i as shown in Figure 3.1.

The effective Hamaker constant, Aip, can be used to impart chemical het-

erogeneity to a planar surface by noting that each subunit can be assigned

a different Hamaker constant. In other words, this constant can be used to

depict chemically heterogeneous patches on a surface by assigning a particular

Hamaker constant value to a cluster of subunits, which is different from the

Hamaker constant of the remaining subunits. For this purpose, a quantity,

RH – which can be named the Hamaker constant ratio – is defined as

RH =
AH,patch

AH,0

, (3.10)

with AH,patch as the effective Hamaker constant between a heterogeneous patch

and the probe particle, and AH,0 as the effective Hamaker constant between

the region of the surface surrounding the patch and the probe particle. When

RH > 1.0, the patch has a greater interaction energy with the particle than

does the surrounding volume. Note that the value of RH itself does not influ-

ence whether the van der Waals interaction energy is attractive or repulsive.

However, for this study, the van der Waals interaction energy between the

probe particle and any region of the surface is always assumed to be attrac-

tive.

3.2.4 Electric Double Layer (EDL) Interactions

The electric double layer (EDL) interaction is the second component of the

total DLVO interaction. Typically, the electrostatic interaction energy between

a subunit of the substrate and the probe spherical particle can be described
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using a screened Coulomb interaction [VP92,BKE99]. The screened Coulomb

interaction is given by

UEDL
ip =

νpνie
2

4πε

exp[−κ(Rip − ai − ap)]

Rip[1 + κ(ai + ap)/2]2
(3.11)

where e is the magnitude of the fundamental electron charge, Rip is the center-

to-center distance between the probe particle and the subunit i, ε is the per-

mittivity of the dispersing medium and κ is the inverse Debye length. The

total charge number on the probe particle (νp) and that on the subunit (νi)

can provide a fairly accurate description of the electrostatic double layer in-

teraction energy. In the context of colloidal systems, one limitation of such a

screened Coulomb interaction is that it becomes inaccurate for particles with

different surface charges. It is well known that two colloidal particles, one

with a finite surface potential and another with a zero surface potential, will

have a finite EDL interaction in an electrolyte solution. However, according to

Eq. (3.11), the interaction energy predicted for such a situation will be zero.

Consequently, in this study, the EDL interaction energy is calculated using

the analytical expression derived by Hogg et al. [HHF66] for two spheres of

unequal radii and constant but dissimilar surface potentials given by

UEDL
ip =

πεaiap

(ai + ap)

[
2ψiψp ln

(
1 + exp(−κd)

1− exp(−κd)

)
+ (ψ2

i + ψ2
p) ln[1− exp(−2κd)]

]
.

(3.12)

In Eq. (3.12), ψi is the surface potential of the subunit i in the planar surface,

ψp is the surface potential of the probe particle, and d = Rip − ai − ap is the

surface-to-surface distance of closest proximity between the probe particle and

the spherical subunit. For a symmetric (ν : ν) electrolyte, the inverse Debye

length is given by

κ =

√
2000e2ν2NAI

εkBT
= (3.286× 109)ν

√
I, (3.13)

in which I is the molar concentration of the electrolyte (in mol/L). For this

study, the system temperature is assumed to be T = 298.15 K, and the per-

mittivity of water at this temperature is ε = 6.95 × 10−10 C2/N m2. The
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remaining constants in the expression for the inverse Debye length are the

Boltzmann constant, kB = 1.381×10−23J/K, the fundamental electron charge,

e = 1.602× 10−19 C, and Avogadro’s number, NA = 6.022× 1023/mol.

Eq. (3.12) is applicable for particles with low surface potentials suspended

in a symmetric electrolyte solution. Furthermore, since Eq. (3.12) is based

on Derjaguin approximation, it is restricted to κai ≥ 10 and d ¿ ai. Such

a limitation imposes a lower bound to the subunit size that can be employed

in the simulations of this study. For monovalent salt concentrations of about

10−1 M, the lowest subunit size that should be used is about 10 nm.

As with the van der Waals interaction energy, the total EDL interaction

energy between the probe particle and the flat substrate, the latter being

represented as a planar array of spherical subunits, can be written as a sum of

the pairwise interactions between individual subunits and the probe particle.

This will take the form

UEDL
fp =

Ns∑
i=1

UEDL
ip , (3.14)

where UEDL
fp represents the total EDL interaction energy between the probe

sphere and the planar surface, and Ns is the number of subunits in the planar

surface.

At this point, it is pertinent to note that the pairwise summation of the

EDL interaction between every subunit (even the subunits residing in the

“bulk” of the substrate) and the probe particle using the Hogg et al. expres-

sion, Eq. (3.12), might seem unrealistic. Such an approach will inherently

assume that the subunits in the bulk will have a surface potential, whereas in

context of colloidal systems, and certainly in context of Eq. (3.12), only the

true surface should bear an electric potential. One should note, however, that

in strictly adhering to the limits of the Derjaguin approximation, the main

contribution to the total EDL interaction energy determined with Eq. (3.14)

will be from the regions of closest approach between the probe particle and

the substrate. Although the bulk subunit contributions are added up in a

pairwise manner when Eq. (3.14) is used to calculate the total EDL interac-
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tion, the contribution of these subunits to the total interaction are negligible.

One should also note that the screened Coulomb interaction, Eq. (3.11), is

generally used in a pairwise additive manner to calculate the many-body elec-

trostatic interactions in concentrated colloidal systems [VP92,BKE99]. In the

next section, the implications of the pairwise summation approach applied to

Eq. (3.12) will be discussed, following a comparison of the Hogg et al. and the

screened Coulomb interactions.

3.3 Validation of the Heterogeneous Interac-

tion Model

The approach of determining the total interaction energy and force between a

colloidal particle and a large chemically heterogeneous substrate is comprised

of two steps. The first step involves a judicious representation of a large sub-

strate as a collection of nanoscale subunits. This is followed by determination

of the overall interaction between the substrate and a neighbouring probe par-

ticle by pairwise summation of the interactions between the particle and the

individual subunits. Considering a substrate of homogeneous chemical com-

position, it is demonstrated that the approach does not constitute a departure

from the existing norms of computing the interaction energy between colloidal

objects. To validate this approach, the van der Waals interaction between a

spherical particle and an infinite planar surface of finite thickness is considered,

for which an analytical expression is available [Tad01].

To accurately represent a macroscopically planar surface of a finite thick-

ness, one needs to consider cubic subunits. The validation model considers a

sphere of radius ap placed at different separation distances from the center of

a finite slab of homogeneous composition measuring 6ap × 6ap × 2ap. For the

computation of the interaction, the slab was divided into 3000× 3000× 1000

cubic subunits, and the normal van der Waals interaction force was deter-

mined using a numerical integration scheme based on Simpson’s rule, all of

which was done in FORTRAN computer code. The analytical expression for
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Table 3.1: Comparison of results from the present, Heterogeneous Interaction
Model and the analytical solution by Tadmor [Tad01] for the scaled van der
Waals normal force, F vdW∗

z , between a sphere of radius ap and a finite slab
measuring 6ap × 6ap × 2ap at several scaled separation distances, H = h/ap.

Separation van der Waals Normal Force, F vdW∗
z

Distance Present Tadmor Percent
H Model Solution Difference

0.01 −1651.036 −1650.114 0.056
0.02 −408.452 −408.447 0.001
0.03 −179.739 −179.742 0.002

the normal vdW interaction force was derived by taking the expression for the

corresponding interaction energy from Tadmor [Tad01] and differentiating it

with respect to the separation distance, h. Table 3.1 shows a comparison of the

numerical results of the Heterogeneous Interaction Model with the analytical

results of Tadmor for three separation distances. Only very close separation

distances are considered, since the magnitude of the van der Waals interaction

is the largest at close separations. Furthermore, since the analytical expres-

sion applies to an infinite plate while the length and width of the plate in the

numerical model are finite, good agreement between the two approaches can

be expected only at close separations. The comparison of the two results in

Table 3.1 reveals excellent agreement between the forces obtained numerically

and analytically. In all cases, the agreement between the two results was well

within a percent.

It is commonly recognized that the pairwise summation principle cannot

be rigorously applied to EDL interactions in many-body systems. To assess

the validity of pairwise summation for the EDL interactions in the Hetero-

geneous Interaction Model, a few characteristics of the Hogg et al. [HHF66]

expression, Eq. (3.12), need to be considered. The Hogg et al. expression was

derived by first solving the linearized Poisson-Boltzmann equation to deter-

mine the EDL interaction energy per unit area between two infinite planar
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surfaces. Following this, Derjaguin approximation was employed to arrive at

Eq. (3.12). The use of Derjaguin approximation means that the interaction

energy calculation is based on the local radii of curvature of the interacting

surfaces in the vicinity of the distance of closest approach. This approach can

be extended through the surface element integration (SEI) technique to incor-

porate the exact geometries of the interacting surfaces [BE97,BKE98]. Using

this technique to determine the total interaction energy between a sphere and

an infinite planar substrate, it was shown for large κa (> 10) that results of

pairwise summation of the EDL interaction energies per unit area for this ge-

ometry are in excellent agreement with the exact interaction energies obtained

by solving of the linearized Poisson-Boltzmann equation. If the subunit size is

chosen to be sufficiently large compared to the range of interaction, the main

contribution to the EDL interaction energy predicted by pairwise summation

with the Hogg et al. expression will be from a few subunits of the substrate

that are the closest to the probe particle’s surface. Ordinarily, one considers

the Hogg et al. expression to be fairly accurate for surface potentials < 60 −
75 mV, and κa > 10, where a is the radius of the smaller interacting entity.

There is, however, considerable evidence that the Hogg et al. expression pro-

vides remarkably good predictions of the EDL interaction energy for κa > 2,

particularly for low surface potentials [CC83,Phi95,DB05].

The screened Coulomb interaction, Eq. (3.11), has been used frequently to

compute many-body interactions in colloidal systems [VP92,BKE99]. Such an

approach essentially constitutes pairwise summation of the EDL interactions

over all of the interacting entities, and this is identical to the approach of this

study. In Figure 3.2, a comparison is made between the scaled EDL interaction

force calculated using both the screened Coulomb and the Hogg et al. expres-

sions (i.e., Eq. 3.11 and Eq. 3.12, respectively) for a spherical particle (of radius

ap = 100 nm) near a chemically homogeneous, planar substrate, represented

as a 10 × 10 × 2 planar array of spherical subunits. In this comparison, the

centroid of the probe particle was positioned directly above the center of the

substrate. The surface potential of each of the subunits and the probe particle
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was −25 mV, and the electrolyte concentration for the system was 10−1 M.

Each subunit had a radius of 0.25ap (i.e., κai ≈ 25) or 0.10ap (i.e., κai ≈ 10),

where ap represents the radius of the probe particle. The remaining parameters

are identical to those listed in Table 3.2. It is evident from Figure 3.2 that the

two expressions provide similar interaction forces over the range of separation

distances shown. Appreciable differences between the two curves arise only

with the smaller subunit size (i.e., κai ≈ 10, or ai = 10 nm), for which the

curves diverge as h decreases below 1.5 nm. For larger separations, and partic-

ularly for κai > 10, the pairwise summation of the screened Coulomb as well

as the Hogg et al. expressions provides virtually identical EDL forces. This

establishes the fact that using the Hogg et al. expression (henceforth denoted

as the HHF expression) in a pairwise additive manner does not constitute a

major departure from existing methodologies for computing many-body EDL

interactions using the screened Coulomb expression.

Table 3.2: Parameters for the Heterogeneous Interaction Model simulations.

Quantity Symbol Value Units

Particle radius ap 100 nm
Substrate subunit radius ai 10 or 25 nm
Thickness of substrate (= 2ap) − 200 nm
Base subunit Hamaker constant Aip,0 kBT J
Patch subunit Hamaker constant Aip,patch 5.0(kBT ) J
Particle surface potential ψp −25 mV
Base subunit surface potential ψi −25 mV
Patch subunit surface potential ψi,patch −75 mV
System temperature T 298.15 K
Permittivity of medium (water @ T ) ε 6.95×10−10 C2/N·m2

Valency of electrolyte in medium ν 1 −

From the above arguments, it is discernible that the pairwise summation

of the EDL interactions, although approximate, is reasonable if the subunit

sizes on the substrate are chosen judiciously. Furthermore, the Hogg et al.

expression is only one of the possible expressions that can be employed in
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Figure 3.2: Comparison of scaled normal EDL interaction force calculated
using the screened Coulomb expression and the Hogg et al. (HHF) expression.
For this comparison, the planar substrate was chemically homogeneous, span-
ning 10 × 10 × 2 spherical subunits of 0.25ap (i.e., κai ≈ 25) or 0.10ap (i.e.,
κai ≈ 10) size. The particle was positioned at various separation distances h
from the center of the substrate in the x− y plane. The electrolyte concentra-
tion is 10−1 M, and other parameters for this simulation are listed in Table 3.2.
Note that the center of the particle is situated directly above the origin of the
coordinate system, which is located between the four subunits nearest to the
center of the planar array (as depicted in the schematic in this figure).

the computation of the EDL interactions. The use of the screened Coulomb

interaction, Eq. (3.11), in a pairwise additive manner for computing many-

body interactions is more common [VP92, BKE99], and can substitute the

Hogg et al. expression for the present problem as well.

Based on the evidence discussed above, it is clear that the approach of

the Heterogeneous Interaction Model can be used with sufficient confidence to

determine the total DLVO interaction energies and forces between a spherical

particle and a planar array of subunits.
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3.4 Forces on a Particle Near a Heterogeneous

Substrate

In this section, the effects of chemical and of physical substrate heterogeneity

will be explored from the perspective of the colloidal (DLVO) forces acting on

a particle in the substrate’s vicinity. The chemical heterogeneity is applied

to a macroscopically planar substrate in the form of “patches” that have dif-

ferent chemical characteristics from their surrounding regions. The physical

heterogeneity of the substrate is in the form of a spherical asperity, which is

modeled as a sphere attached to the planar surface.

3.4.1 Chemically Heterogeneous “Patches”

First of all, the interaction forces experienced by a spherical probe particle near

a chemically heterogeneous substrate are investigated. Figure 3.3 schemati-

cally depicts the pertinent geometry, where the substrate is divided into two

regions shown by the unshaded and gray spherical subunits. The macroscop-

ically planar substrate is comprised of two types of spherical subunits with

different properties that dictate the intensity of the interactions; the unshaded

subunits are referred to as the base subunits, while the shaded ones represent

the heterogeneity. In this case, a probe particle (shown as a dashed circle) is

observed at various separation distances above the edge of the heterogeneity.

Table 3.2 shows the parameters used for all of the simulations in this study,

including the values that are assigned to the subunits inside and outside of the

heterogeneous patch.

As the schematic in Figure 3.3 depicts, the centroid of the probe particle

was positioned directly above the origin of the coordinate system. The subunit

size was chosen to be 0.25ap, where ap represents the radius of the probe

particle. This implies that the particle’s center was offset a distance of 0.25ap

in the x− direction from the edge of the heterogeneous patch. For the subunits

within the patch, the Hamaker constant ratio RH was set to be 5.0 (i.e., five

times more attractive than the subunits in the region outside of the patch)
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Figure 3.3: Schematic of a simple heterogeneous substrate model. The sub-
strate is composed of a planar array of 13×13×4 spherical subunits of 0.25ap

radius. The probe particle, shown with a thick, dashed line, is situated directly
above the origin of the coordinate system. The viewpoint is from above the
planar substrate, with the z− axis pointing into the page.

and the electric surface potential was set at −75 mV. The surface potential of

the base subunits outside of the patch was −25 mV.

For the model described above, the graphs in Figure 3.4 show the absolute

values of the lateral and normal forces (i.e., FL and Fz, respectively), as well

as the force ratio FL/Fz acting between the surface and the probe particle

for separation distances of up to 100 nm. The lateral interaction force is the

magnitude of the two interaction force components tangential to the planar

surface, Fx and Fy, and it is computed as

FL =

√
(Fx)

2 + (Fy)
2. (3.15)

The figure depicts the absolute values of the forces, or magnitudes, and ig-

nores the sign, or direction. The forces are computed for two different molar

concentrations, namely, 10−3 M and 10−1 M of a symmetric (1 : 1) electrolyte.

These calculations reveal the effects of electrolyte concentration on the total

DLVO interaction forces when the particle is near the edge of a heterogeneity
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on the substrate.

This investigation first focuses on the lateral forces (Figures 3.4a and b)

and the normal forces (Figures 3.4c and d) predicted for the model geometry.

Each graph depicts the vdW, the EDL and the total DLVO force. The most

prominent features of these graphs are the asymptotic behaviours (spikes) dis-

played at specific separation distances. These spikes occur in the DLVO force

profiles when the DLVO interaction force approaches zero (i.e., spikes pointing

down). The spikes coincide with the points where the vdW and EDL force

lines intersect, as seen in Figures 3.4(a), (c), and (d). For the 10−3 M ionic

concentration, the lateral force exhibits one such spike over the range of sepa-

ration distances shown, while for the 10−1 M concentration, the lateral force is

monotonic. Furthermore, at this higher salt concentration, the van der Waals

interaction is the dominant contributor to the lateral interactions. The normal

DLVO force (Figures 3.4c and d) exhibits two spikes for the 10−3 M concen-

tration and a single spike for the 10−1 M concentration. These spikes in the

normal force represent the separation distance from the substrate (along z−)

where the normal DLVO force becomes zero. The normal forces are generally

dominated by the EDL interactions for separations > 1 nm until the crossover

point at the secondary minimum. Figure 3.4(d) depicts that the EDL inter-

action is slightly greater than the vdW interaction for the normal component

of the total DLVO force for 1 nm < h < 4 nm, but when h > 5 nm, the vdW

interaction dominates again.

The force ratios FL/Fz depicted in Figures 3.4(e) and (f), obtained by

combining the results of Figures 3.4(a) to (d), indicate how the lateral force

behaves relative to the normal force when the particle is at various separation

distances from the substrate along the z− axis. The force ratio exhibits an

upward spike at small separations, while for 10−3 M salt concentration, there

is an additional spike showing a hyperbolic behaviour at a larger separation.

The upward spike in the force ratio occurs when the magnitude of the lateral

DLVO force becomes larger than the normal DLVO force. The location of the

spike coincides with the location of the zero normal force.
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Figure 3.4: Effects of electrolyte concentration on lateral and normal forces,
as well as force ratios, acting between the model heterogeneous substrate of
Figure 3.3 and a probe particle at various separation distances h. The graphs
on the left (a, c, and e) are for a 10−3 M concentration, the graphs on the
right (b, d, and f) are for a 10−1 M concentration. Other parameters for these
simulations are listed in Table 3.2.
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For the case of 10−1 M salt concentration (Figures 3.4b, d and f), it is

observed that the lateral force becomes the dominant force in the 4 to 5 nm

range. Since the normal vdW and EDL interactions cancel each other out in

the 4 to 5 nm separation distance range (evident with the downward spike

in Figure 3.4(d) while the lateral vdW force does not vanish, the force ratio

in Figure 3.4(f) approaches a large value. This implies that for separation

distances between 4 and 5 nm, there are significant net lateral forces acting

on the particle, pulling it laterally into the heterogeneous region or patch. In

other words, at some point during its approach to the surface, the particle will

move laterally over the surface toward the more attractive region of it.

Now, the range of distances over which the lateral force can be felt by a

probe particle are explored. Figure 3.5 depicts a new model of the surface that

was used to investigate how the DLVO force ratio changes not only with the

separation distance, h, normal to the substrate (along z−), but also with radial

distance away from the center of the heterogeneous patch. For this model of

the substrate, its overall size in the x− y plane was increased from 6ap × 6ap

in Figure 3.3 to 14ap × 14ap. The heterogeneous region was transformed into

a circular patch of radius 2ap centered at the origin of the coordinate system.

The ionic concentration was maintained at 10−1 M, but the spherical subunit

size was reduced to 0.10ap. The remaining parameters used here are the same

as those used to obtain the results shown in Figure 3.4.

Figure 3.6 depicts the variation of the lateral and normal DLVO forces,

as well as the DLVO force ratio, FL/Fz, with the normal separation distance

h between the particle and the substrate. Figure 3.6(a) shows the variations

of the lateral and normal forces with separation distance h when the probe

particle is positioned directly above the edge of the heterogeneous patch (i.e.,

radial distance, r = 200 nm). It is evident that over a small range of normal

separation distance between 3.5 < h < 4 nm, shown by the hatched band in

Figure 3.6(a), the scaled lateral force remains virtually unchanged at a value

of about −5, while the normal force changes sharply from a negative to a

positive value. Within this narrow band, the lateral force is comparable to or
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Figure 3.5: Schematic of a model heterogeneous substrate with a single
circular heterogeneous patch of 200 nm radius centered at the origin. The
substrate is composed of a planar array of 71 × 71 × 10 spherical subunits of
0.10ap radius. The probe particle is situated at various positions along the r
axis shown. The viewpoint is from above the planar substrate, with the z−
axis pointing into the page.

larger than the normal force. Within this range of dominating lateral force,

indicated by the hatched region in Figure 3.6(a), the lateral to normal force

ratio, FL/Fz, goes to infinity at a specific separation distance, corresponding

to the location where the normal force becomes zero. In Figure 3.6(b), this

phenomenon is depicted for different radial positions of the probe particle as

upward spikes in the force ratios. The different lines in Figure 3.6(b) were

obtained by changing the lateral (radial) distance of the probe particle from

the center of the heterogeneous patch (cf. Figure 3.5). It is interesting to note

that near an upward spike in the force ratio, the lateral force is generally one

to two orders of magnitude greater than the normal force. Furthermore, the

separation distance at which the spike appears depends on the radial position

of the probe particle relative to the center of the heterogeneous patch. From

55



3 4 5
10-3

10-2

10-1

100

101

102

1 2 3 4 5

-30

-20

-10

0

10

b)

 

 

F L/F
z

h (nm)

 r = 100 nm
 r = 150 nm
 r = 200 nm
 r = 250 nm
 r = 300 nm

r = 200 nm

a)

Range of dominating
lateral force

Repulsion

Attraction  

 

Sc
al

ed
 fo

rc
e,

 F
a p/k

BT

h (nm)

 F
L

 F
z

Figure 3.6: Force ratios with changes in separation distance h for interac-
tions between the model heterogeneous substrate of Figure 3.5 and a probe
particle positioned at various radial distances (r) away from the center of the
heterogeneous patch. (a) Lateral and normal force curves for r = 200 nm; (b)
Force ratio curves for several radial positions. The electrolyte concentration
here is 10−1 M. Other parameters for these simulations are listed in Table 3.2.
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these observations, it appears that the asymptotic spike in the force ratio

marks the separation distance h at which a substantial lateral force can be

found while the normal force vanishes. This prevents the particle from moving

closer to the substrate in the normal direction, although the lateral forces can

continue to displace the particle laterally.

The location of the lateral force spike changes for different radial positions

of the particle relative to the center of the heterogeneous patch. Figure 3.6(b)

shows that as the radial position r of the particle decreases, the separation

distance h at which the upward spike occurs decreases as well. A key obser-

vation from this figure is that for radial positions near the edge of the patch

(i.e., r = 200 nm, 250 nm), the force ratio remains above 0.1 (10%) for h ≤ 5

nm. However, for all of the other radial positions (i.e., r = 100 nm, 150 nm,

300 nm), the force ratio drops off quickly, falling to 0.02 (2%) or less for h =

5 nm. This implies that the most significant lateral forces act on the probe

particle when it is within the vicinity of the edge of the patch.

3.4.2 Chemical Heterogeneity - Force Mapping

The effects of the presence of a single heterogeneous patch were explored in

the preceding subsection. Now, phenomena arising from presence of several

heterogeneous patches are studied, with the patches simultaneously influenc-

ing the forces acting on the particle. For this purpose, the normal and lateral

DLVO interaction forces acting on the particle were mapped as it sampled

different lateral locations above the surface, keeping a fixed normal separa-

tion distance from a model heterogeneous substrate. The model of the surface

used in the preceding section was further enlarged to a square array of spher-

ical subunits measuring 20ap × 20ap in the x− y plane with the origin of the

coordinate system located at its center. The subunits in this array remained

at one-tenth particle size (i.e., ai = 0.10ap), therefore creating a planar array

of 200 × 200 × 10 spherical subunits. The schematic of this model in Fig-

ure 3.7 shows the surface with three circular heterogeneous patches of equal

radii (= 2ap) with their centers located at (−2ap,−4ap), (−2ap, +4ap) and
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(+4ap, 0). The probe particle was then positioned at different x− y locations

within a region measuring 8ap× 8ap of the substrate, indicated by the dashed

square in the schematic. The overall interaction force acting on the particle

was computed considering the entire area of the square array (20ap × 20ap).

The remaining parameters for this investigation are identical to those used in

producing the results of Figures 3.4 and 3.6.
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Figure 3.7: Schematic of a model heterogeneous substrate with three circular
heterogeneous patches of 2ap radius centered at the origin. The substrate is
composed of a planar array of 201 × 201 × 10 spherical subunits of 0.10ap

radius. The viewpoint is from above the planar substrate, with the z− axis
pointing into the page.

Figure 3.8 depicts several contour plots showing the normal DLVO force

(Figures 3.8a, c, e and g) and the lateral-to-normal force ratio FL/Fz (Fig-

ures 3.8b, d, f and h) mapped over the square region delimited by the dashed

line in Figure 3.7, wherein the patches lie. For these plots, the dimensions

in the x − y plane and the normal separation distance, h, are scaled with

respect to the particle radius, while the DLVO forces are scaled with respect

to ap/kBT . The normal force plots indicate the direction of the force as well

as its magnitude, with positive values (darker shades) representing attraction

between the particle and the surface, and negative values (lighter shades) rep-

resenting repulsion. The force ratio plots, however, are displayed in absolute
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values and do not distinguish between attractive and repulsive values. All of

these force maps are intended to show the regions where the normal and lat-

eral interaction forces become dominant, and in some cases whether they are

attractive or repulsive, when the particle is at a particular scaled separation

distance H (i.e., = h/ap) from the model heterogeneous surface.

Based on the insights gained from Figures 3.4 and 3.6, the focus is drawn

to a range of separation distances of 3 nm to 5 nm (0.03 < H < 0.05) for

an electrolyte concentration of 10−1 M. When H = 0.05, Figure 3.8(a) shows

that the normal force between the particle and the surface is entirely attrac-

tive throughout the field, with greater attractiveness toward the heterogeneous

patches. The corresponding force ratio map of Figure 3.8(b) shows that the

regions around the edges of the patches are beginning to develop significant

lateral forces relative to the normal forces. When H = 0.04, the normal force

still remains mostly attractive throughout the field in Figure 3.8(c), but Fig-

ure 3.8(d) reveals a thin dark band at about 0.5ap outside the edges of the

patches where the lateral forces are remarkably high compared to the normal

forces. Within this dark band, the force ratios approach infinity, signifying

that the lateral force between the particle and the center of a patch is much

greater than the normal force. From another perspective, it is within these

dark bands that the normal force vanishes, quickly changing direction from re-

pulsion to attraction as one crosses the band to reach the inside of the patch.

Figure 3.8(e) shows that for H = 0.035, the normal force throughout the field

has become more repulsive, with only the regions of the patches themselves

remaining attractive. However, the dark bands previously mentioned have be-

come more numerous in Figure 3.8(f), and they have moved slightly closer to

the centers of the patches. These dark bands enclose the regions of the sub-

strate where the normal force remains attractive. Once H = 0.03 is reached,

the entire field is exhibiting repulsive normal forces of varying intensity, with

particularly strong repulsive regions along the edges of the patches as shown

in Figure 3.8(g). Figure 3.8(h) bears a similar appearance to Figure 3.8(b),

with shaded regions around the patch edges indicating where the lateral forces
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Figure 3.8: Force maps showing the variations in total normal DLVO force
and force ratio between a spherical particle and the model heterogeneous sub-
strate of Figure 3.7. The limits of the view field shown in these maps is shown
with the dashed line box in Figure 3.7. Each pair of graphs represents the
force maps for the particle held at a particular separation distance from the
substrate: (a) and (b) H = 0.05; (c) and (d) H = 0.04; (e) and (f) H = 0.035;
(g) and (h) H = 0.03. The electrolyte concentration is 10−1 M for all values
of H. All other simulation parameters are provided in Table 3.2. Note: The
box with the patch on the right side of (f) is a smaller view field comprised of
four subunits, which is shown in Figure 3.9.
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remain more pronounced than the normal forces.

Although the lateral to normal force ratio maps in Figure 3.8 provide an

impression regarding the relative magnitudes of these forces, the directions of

the lateral forces are not resolved in these figures. In this context, referring

back to Figure 3.6, one notes that the magnitude of the lateral force becomes

considerably larger than the normal force near the asymptotic spikes in the

DLVO force ratio. But as Figure 3.6(a) indicated, the direction of lateral

force is always attractive toward the center of the patch for all separation

distances greater than the separation distance at which the force ratio goes to

infinity. Consequently, the dark bands seen in the force ratio maps of Figure 3.8

correspond to the locations of the asymptotic spikes observed in Figure 3.6.

Therefore, one can conclude that the lateral forces are most significant in the

regions of the dark bands, located at the periphery of the patches. Particles

located near the regions of the dark bands will tend to move laterally toward

the center of the patch under the influence of this lateral DLVO force.

A closer inspection of the force ratio maps reveals a very fine, checkered

pattern adjacent to the patch edges. These checkered patterns move from

outside to inside the patches as the separation distance becomes smaller. Such

patterns are an outcome of the representation of the substrate as a regular

array of spherical subunits. Figure 3.9 provides a close-up view of the lateral-

to-normal force ratios over a region of the substrate spanning four subunits

(shown as dashed line circles) when the separation distance H = 0.035, or

h = 3.5 nm. The size and position of this smaller region is indicated as

a box within the heterogeneous patch on the right side of the view field in

Figure 3.8(f). It is evident from Figure 3.9 that a coupled influence of the

geometry of the surface and its heterogeneity has given rise to a local variation

of the interaction forces. Key features of this convolution of roughness with

chemical heterogeneity are the locations in the force ratio map of Figure 3.9

where the lateral force vanishes (i.e., FL/Fz → 0). When a particle reaches one

of these locations, it ceases to move any further toward the center of the patch,

or in any lateral direction at all. If this location coincides with a position of
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insignificant normal force acting on the particle, then the location marks a

point of net DLVO force balance or equilibrium. Here, the particle will no

longer move due to DLVO interactions with the heterogeneous substrate.
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Figure 3.9: Closer view of force map showing the variations in total DLVO
force ratio between a spherical particle and the model heterogeneous substrate
of Figure 3.7 when their separation distance is H = 0.035. Limits of the
view field of this map are shown with the solid line box in Figure 3.8(f). The
electrolyte concentration is 10−1 M, and all other simulation parameters are
provided in Table 3.2.

One should note that the analysis presented here does not consider any

force other than the DLVO interaction force acting on the particle. Incor-

poration of hydrodynamic and Brownian forces on the particle can provide

further insight regarding the interplay of various physico-chemical interactions

on the trajectory of the particle when it is near a chemically heterogeneous

surface. Nevertheless, the present simulations bring forth the tremendous in-

fluence of lateral forces in dictating the optimal location of closest approach

of the particle over a chemically heterogeneous substrate. The modeling ap-

proach presented here also imparts roughness to the substrate (owing to the

use of spherical subunits). Therefore, these results can be considered as a
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manifestation of the combined effects of the surface roughness and chemical

heterogeneity.

It is also of interest to note that the influence of the lateral forces become

most pronounced at high salt concentrations (i.e., 10−1 M), which is highly rel-

evant for biological systems. For lower salt concentrations, as previously shown

in Figure 3.4(e), the spikes in the force ratio are pushed further away from the

surface where the interaction forces are quite insignificant. Consequently, the

influence of lateral DLVO forces are expected to be quite significant for bio-

logical systems where the DLVO interactions are highly screened.

3.4.3 Physical Heterogeneity - Force Mapping

Thus far, the focus has been on chemical heterogeneity on a macroscopically

planar substrate. The following graphs of force magnitude and direction maps

are concerned with the use of the Heterogeneous Interaction Model for sub-

strates with physical heterogeneity. Although the spherical subunits of the

model lend some physical heterogeneity to a planar substrate, the scale of

roughness is at least an order of magnitude smaller than the particle size. It

is of great interest to explore scenarios where the physical heterogeneity is of

the same size or larger than the particle near the surface. Such explorations

are a means to study many aspects of deposition phenomena, including ran-

dom sequential adsorption (RSA) [Fed80, ST89,KBE00,Ada06], formation of

monolayers [Ada06], and deposition on “textured” surfaces [KBB+00,KH02].

A particular case of physical heterogeneity is the presence of previously

deposited particles on an initially flat substrate, which undoubtedly affects

the rate at which subsequent particles will deposit on those surfaces over

time [Ada06]. One such previously deposited spherical particle can be seen

in Figure 3.10, which can also be regarded as a single spherical asperity of

radius aa extending from the flat substrate into the surrounding fluid. Col-

loidal interactions between previously deposited particles and a probe particle

have been explored [Phi95,DB05], but these investigations did not specifically

address the magnitudes of lateral DLVO forces.
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Figure 3.10: Schematic of a model heterogeneous substrate with a single
spherical asperity of radius aa protruding from the flat surface, centered at
the origin. In this example, the asperity has a radius equal to that of the
probe particle (aa = ap).

Similar to the approach used for a chemically heterogeneous substrate in

Figures 3.8 and 3.9, Figure 3.11(a) is a DLVO force magnitude map of the

region near the spherical asperity in Figure 3.10 in the x− z plane. This map

is for the case of a 10−2 M symmetric (1:1) electrolyte concentration with the

same system parameters as those listed in Table 3.2, showing the DLVO force

magnitude acting on the particle when its center is located at a given position.

The spherical asperity, with its outline represented as a dashed circle, is of

equal size to the particle (i.e., aa = ap), centered directly above the origin

of the Cartesian coordinate system. The white region of the map indicates

locations where the particle’s center cannot be positioned because the particle

would physically overlap some portion of the substrate. In this plane, there
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are only two DLVO force components, Fx and Fz, so the total DLVO force

magnitude at a given location is computed as

Fx−z =

√
(Fx)

2 + (Fz)
2. (3.16)

All forces are scaled with respect to the Brownian force parameter ap/kBT .

For this single spherical asperity scenario, the particle radius is 100 nm (=

ap), and all parameters for the associated graphs are the same as those in

Table 3.2. Since the composite substrate is chemically homogeneous in this

case, the surface potentials of the particle, the asperity and the flat substrate

subunits are all −25 mV and the Hamaker constant between the particle and

all parts of the substrate, Aip, is kBT .

Although the force magnitudes on the particle can be much higher or drop

down to zero at various positions within the field of view of Figure 3.11(a), a

logarithmic colour scale between 0.01 and 100 is sufficient to show the varia-

tions of the DLVO force with respect to Brownian force (kBT/ap). Since the

magnitude does not reveal the direction (attractive or repulsive) of the force,

one needs to carefully interpret how the DLVO force changes direction in Fig-

ure 3.11(a). In this respect, one can consider the behaviour of the DLVO force

profile for a probe particle approaching the composite substrate from an infi-

nite distance along the line of the unit vector ns that is normal (perpendicular)

to the surface of the spherical asperity in Figure 3.11(a). The DLVO force at

larger distances is slightly attractive owing to the long-range van der Waals

interactions. This attraction increases as the particle comes closer to the sub-

strate. At around (x/ap = 1.6; z/ap = 2.6) – where a thin, white line emerges

– the force becomes zero. This is the location of the secondary DLVO energy

minimum. At closer separations, the interaction force becomes repulsive due to

the dominance of the repulsive EDL interaction. Before reaching contact with

the substrate, the force on the particle crosses a second zero value, which is not

distinguishable from adjacent areas of Figure 3.11(a) because it is located at

a very short separation distance between the particle and the substrate. This

zero corresponds to the DLVO repulsive energy barrier maximum. Below this
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Figure 3.11: Net DLVO force magnitude (a) and direction (b) maps in the
x− z plane for a particle in the region immediately surrounding the spherical
asperity in Figure 3.10. The radius of both the particle (= ap) and the asperity
(= aa) is 100 nm and the (1:1) electrolyte concentration is 10−2 M. Positions
in the colour map of (b) depict the angular deviation of the net DLVO force
vector (nf ) from the substrate surface normal vector (ns) at the point of closest
approach between the particle and the substrate. The colour scale in (b) is
based on the dot product of the two vectors, yielding the cosine of the angle
between them, α.
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separation distance, the particle gets attracted to the primary DLVO energy

minimum.

Figure 3.11(b) is a DLVO force direction map, showing how much the

direction of the net DLVO force vector (nf ) deviates from the direction of

the unit vector normal to the portion of the substrate’s surface (ns) that a

given point (i.e., particle’s center), such as P in Figure 3.11(a), is closest

to. This angular deviation is determined by taking the dot product of these

two unit vectors, which yields the scalar cosine of the angle between them,

α (i.e., ns · nf = cos α). These vectors are pointing in the same direction

(i.e., repulsion) when their dot product is equal to 1.0, pointing in opposite

directions (i.e., attraction) when their dot product is −1.0, and perpendicular

to each other when the product is 0.0. A positive value for the dot product

means 0◦ ≤ α < 90◦, while a negative value indicates that 90◦ < α ≤ 180◦. In

both the green (repulsive) and yellow (attractive) regions of Figure 3.11(b),

the net DLVO force and nearest surface normal vectors are essentially parallel

to each other. The greatest angular deviation of nf from pointing normal

to the nearest surface occurs in the hatched region of Figure 3.11(b) where

the colour is changing to white and then to blue. In this region, which is

bounded by the two contour lines for cos α = −0.90, the particle encounters a

transition in the direction of nf . However, most of this region is located far

from the surface of the composite substrate, where colloidal forces are much

weaker than the Brownian force (kBT/ap = 4.117×10−14 N). At such positions

for this scenario, particle transport would be dominated by convection and/or

diffusion instead of the migrational DLVO force. This region also encompasses

only a very small fraction of the area near the substrate.

As Figure 3.12 demonstrates, an increase in the size of the spherical asperity

to five times the particle radius (aa = 5ap) yields similar results to those of

Figure 3.11. Aside from asperity size, the simulation parameters for the results

in Figure 3.12 are identical to those used for Figure 3.11. Again, the net DLVO

force acting on the particle is directed along the distance of closest approach to

the substrate for much of the area around the asperity. Figure 3.12(b) shows
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Figure 3.12: Net DLVO force magnitude (a) and direction (b) maps in the
x − z plane for a particle in the region immediately surrounding the large
spherical asperity. The particle radius (= ap) is 100 nm, the radius of the
asperity is five times larger than the particle’s radius (aa = 5ap) and the (1:1)
electrolyte concentration is 10−2 M. Positions in the colour map of (b) depict
the angular deviation of the net DLVO force vector (nf ) from the substrate
surface normal vector (ns) at the point of closest approach between the particle
and the substrate. The colour scale in (b) is based on the dot product of the
two vectors, yielding the cosine of the angle between them, α.
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the repulsive green region remains along the entire surface of the composite

substrate, and the area encompassed by the attractive, yellow region is also

increased. This increased yellow area can be attributed to the larger asperity

size, which makes the top half of the asperity even more disconnected from the

flat portion of the substrate than the asperity in Figure 3.11. Consequently,

the hatched region (bounded by the contour lines for cos α = −0.90) where

the DLVO force vector nf is substantially deviated from the normal to the

nearest surface ns is significantly reduced for a larger asperity. The results in

Figures 3.11 and 3.12 reveal that for aa ≥ ap, the size of the spherical asperity

makes little difference in the direction of the net DLVO force vector when the

magnitude of its force is significant.

When the substrate is physically heterogeneous but chemically homoge-

neous, the DLVO force on the particle is typically pointing normal to the

nearest point on the substrate’s surface. There is no appreciable lateral force

until chemical heterogeneity is introduced to the substrate. As previously

discussed in this chapter, substantial (relative to the Brownian force) lateral

forces do not arise until the particle reaches separation distances around the

secondary DLVO energy minimum, with the particle positioned over the edge

where the two regions of differing chemical characteristics meet (as depicted

in Figures 3.4, 3.6 and 3.8). Such separation distances are certainly in the

near-field (h ¿ ap) for the range of electrolyte concentrations considered in

this study (10−3 M to 10−1 M).

3.5 Summary

This chapter discusses characteristics of the colloidal (DLVO) interactions be-

tween a spherical particle and a substrate with chemical or physical hetero-

geneity. In nearly all locations where colloidal forces are substantial (relative

to Brownian force), the net DLVO force acting on the particle is directed along

the distance of closest approach to the substrate. Physical heterogeneity by

itself does not give rise to significant forces that are lateral (tangential) to the
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region of closest approach to the substrate. Nonetheless, consideration of the

lateral component of the DLVO force over a heterogeneous substrate – which

is generally neglected in most studies involving the DLVO theory – sheds some

light on the three-dimensional nature of the DLVO interactions for chemically

heterogeneous substrates. Even with a highly simplified model involving the

use of the Hamaker approach to evaluate the unretarded van der Waals in-

teractions and the Hogg et al. expression for the electrostatic double layer

interactions, the lateral forces seem to be a distinct phenomenon for chemi-

cally heterogeneous surfaces, and cannot be disregarded at close (near-field)

separations corresponding to the secondary minimum of the DLVO interaction

potential. These lateral forces act relative to the distance of closest approach

between the two bodies. Therefore, lateral forces are indicators of chemical

heterogeneity near the point of closest approach between entities, regardless

of their topography.

The colloidal force investigated here is only one of the forces acting on a

Brownian particle while it is transported near a surface immersed in a viscous

fluid. In Chapter 4, a particle tracking model is proposed that includes these

forces with those of convection and diffusion to simulate the motion of colloidal

particles near surfaces with physical as well as chemical heterogeneity.
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Chapter 4

Particle Tracking Model:
Problem Formulation

4.1 Overview

In this chapter, a comprehensive description is provided of the Particle Track-

ing Model (PTM) that simulates the motion of Brownian particles near sur-

faces with asperities projecting into the fluid.1 This PTM accounts for van

der Waals, electrostatic, hydrodynamic, and Brownian forces acting on the

moving particle. The mathematical formulation for evaluating the dispersion

and electrostatic interaction forces between any two bodies is based on the

DLVO theory [DL41,VO48]. The hydrodynamic field around the asperity is

determined numerically by solving the Stokes equations for the system ge-

ometry. A detailed description of the geometry, the mathematical formulation

including equations of motion, and the boundary conditions of the problem are

presented in this chapter, as well as the numerical solution methods employed

in the PTM.

1A version of this chapter has been published. Kemps and Bhattacharjee, 2009, Lang-
muir, 25(12):6887-6897.
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4.2 Mathematical Model

4.2.1 Computational Domain

A schematic representation of the system is shown in Figure 4.1. It con-

sists of a planar surface containing several immobilized spherical asperities

(which could be previously deposited particles, roughness features, or engi-

neered bumps). The colloidal suspension in contact with this model “rough”

surface experiences a simple one-dimensional shear flow along the x− direction

of the Cartesian coordinate system, applied at one end of the domain. This

inflow condition is applied at a substantial distance upstream from any asper-

ities. In subsequent discussions, the particle and asperity radii will be denoted

as ap and aa, respectively. Within this domain, the main intent is to compute

the trajectories of individual colloidal particles in the suspension and predict

the probability of deposition of these particles onto the model substrate. The

Particle Tracking Model (PTM) considers convection, Brownian motion and

migration (due to colloidal forces).

Shear Flow

Asperity

Computational 

Domain

Planar Substrate

Particle

Trajectory

x
y

z

Figure 4.1: Conceptual model of particle deposition onto a planar substrate
containing protruding spherical asperities in presence of a shear flow. The
transparent box represents the simplified system consisting of a single spherical
asperity on a planar substrate. A sample particle trajectory is also shown.

The transparent cubic volume circumscribing a spherical asperity (denoted

as the computational domain) in Figure 4.1 depicts the limiting case of particle

deposition onto a planar substrate containing a single spherical asperity. Such

a system may be considered as a unit cubic cell representing some ordered
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geometrical arrays of asperities. It should be noted that even this simple

geometry requires a three-dimensional analysis due to a lack of symmetry, and

hence, is computationally labourious.

4.2.2 Undisturbed Hydrodynamic Field

The undisturbed (particle-free) hydrodynamic field over the domain of interest

is obtained by numerically solving the continuity and Stokes equations for

shear flow past the model rough surface employing finite element analysis.

As previously indicated, a three-dimensional Cartesian coordinate system is

used. The no-slip boundary condition is applied to all of the solid surfaces.

The far-field boundary conditions included specified flow (such as shear in the

x− direction), pressure, and the appropriate hydrodynamic stress-neutrality

conditions.

As depicted in Figure 4.2, the computational domain for the flow field is

denoted by Ω, while Γs is the no-slip boundary of the flat surface, Γa is the

no-slip boundary of the asperity, Γin is the far-field boundary where the simple

shear flow regime is applied, Γout is the outlet/normal flow boundary of Ω, and

Γsym is the slip-symmetry boundary that bisects the flow field along its x− z

plane of symmetry. For the scenario shown in this figure, there is a single

asperity that is five times larger than the particles in the fluid (i.e., aa = 5ap)

and the computational domain measures 200ap×100ap×100ap, where ap is the

particle radius. With the outer boundaries at large distances (≈ 20aa) away

from the asperity, the presence of the asperity has a negligible effect on the

fluid velocity profile there (refer to validation in Section 5.3.1). Therefore, the

fluid velocity at the outer boundary Γin can be represented as parallel plate

channel flow. The undisturbed fluid velocity at Γin would be expressed as

u =
3

2
Uavg

z

b

(
2− z

b

)
i on Γin, (4.1)

where Uavg is the average fluid velocity in this parabolic Poiseuille flow, b is the

half-height of the channel, z is the vertical position, and i is the unit vector in

the x− direction. Since the scenarios investigated in this study are concerned
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Figure 4.2: Schematic of the fluid domain Ω and its boundaries for deter-
mination of hydrodynamic field around a single asperity using COMSOL. For
this system, the fluid domain measures 200ap×100ap×100ap, keeping its outer
limits at a large distance away from the asperity (aa = 5ap) itself, which is
centered on top of the origin of the Cartesian coordinate system. The x − z
plane view shows the one-dimensional shear flow starting upstream from the
asperity. The y − z plane view looking downstream toward the asperity. The
shaded sub-domain enclosed with the dashed line shows the extents of the fluid
velocity grid used by the PTM (not-to-scale).

with particle motion near the channel wall (i.e., z ¿ b),

u = 3Uavg

(z

b

)
i on Γin, (4.2)

with b = 1000ap for all of the PTM simulations.

The particle radius ap and the average fluid velocity in the channel Uavg

are used to scale length and velocity, respectively. Letting r = apr
∗, where

r is the position vector, u = Uavgu
∗ and p = (µUavg/ap)p

∗, where p is the

pressure and µ is the viscosity, the scaled (i.e., non-dimensionalized) forms of

the continuity and Stokes equations are, neglecting other body forces,

∇∗ · u∗ = 0 in Ω, (4.3)

and

∇∗2u∗ −∇∗p∗ = 0 in Ω. (4.4)
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respectively. The boundary conditions, also in scaled form, are

u∗ = 0 on Γs, Γa, (4.5)

u∗ = 3
(ap

b

)
z∗ on Γin, (4.6)

n · u∗ = 0, on Γsym, (4.7)

t · u∗ = 0, σ∗ =
µUavg

ap

(
− p∗I +

[
(∇∗u∗) + (∇∗u∗)T

] )
= Z, on Γout,

(4.8)

in which σ∗ is the scaled hydrodynamic stress tensor, I is the unit tensor and

Z is the zero tensor. The numerical approach to solving for the undisturbed

flow field is comprehensively described in Appendix A.3, and the manner in

which the PTM utilizes this flow field in its simulations is part of the PTM’s

algorithm in Section 4.3.

4.2.3 Particle Trajectory Equations

The generalized PTM employed in this study considers both deterministic and

Brownian movement. The derivation of this model begins with the application

of Newton’s Second law of motion to a Brownian particle suspended in a

viscous, Newtonian fluid, otherwise known as the Langevin equation [RSS89,

vdV89],

m
d2r

dt2
+ 6πµap

dr

dt
=

∑
i

Fi, (4.9)

for which m is the mass of the particle, ap is its radius, r = (x,y, z) is the

position vector of the particle’s center, t is the time, µ is the absolute fluid

viscosity, and
∑

i Fi represents components of the net external force acting on

the particle. The particle’s inertia and viscous drag on the left hand side of the

equation are balanced against all external forces acting on the particle. These

external forces include deterministic forces such as those of fluid drag (Fdrag
fluid),

net DLVO interaction (FDLV O), gravity (Fg) and electrokinetic effects (FEK),

as well as the randomly fluctuating Brownian force, FBr(t), that varies with

time.
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The relative magnitudes of each of the terms in Eq. (4.9) can be observed

by non-dimensionalizing them, letting r = apr
∗, t = (apt

∗/U) where U is the

characteristic fluid velocity, and Fi = (F∗i )(kBT/ap). The resulting scaled

Langevin equation is

(St)
d2r∗

dt∗2
+

dr∗

dt∗
=

1

Pe

[∑
i

F∗i

]
, (4.10)

which now includes the Stokes number St (= 2ρpUap/9µ) and the particle

Peclet number Pe (= Uap/D∞), with ρp as the particle’s density and D∞ as

its Stokes-Einstein (bulk) diffusivity. For the simulations in this study, the

particle is assumed to be neutrally buoyant (i.e., ρp ≈ ρf , ρf is the fluid

density), therefore the force due to gravity is considered to be insignificant

(Fg ≈ 0). Due to its extremely small mass, it is reasonable to assume that the

particle’s inertia is negligible as well, so there is no acceleration in the particle’s

motion during a given time step (as long as the time step is sufficiently short).

This is achieved by ensuring the Stokes number is below approximately 10−5

for all simulations (St ≤ 10−5), and the consequences of this are discussed

with regard to the PTM’s parameter space in Chapter 5.

For the parameter space explored in this study, thereby neglecting gravity

as well as any electrokinetic effects (i.e., FEK ≈ 0), the net deterministic force

on the particle is the sum of the fluid drag and DLVO forces,

Fdet
net = Fdrag

fluid + FDLV O, (4.11)

excluding any factors that represent the effect of hydrodynamic interactions

between bodies as of yet. Also neglecting rigid body rotation and ignoring the

acceleration term, Eq. (4.9) becomes a first order stochastic differential equa-

tion because the uncorrelated Brownian force FBr(t) is taken from a random

distribution:

6πµap
dr

dt
= Fdet

net + FBr(t)

dr =

[
Fdet

net

6πµap

]
dt +

(
1

6πµap

)
FBr(t) dt. (4.12)
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This new form of the equation demarcates the deterministic and random Brow-

nian parts of the particle’s motion. Eq. (4.12) can be solved for by forward

integration once with respect to time, subsequently leading to the particle tra-

jectory equation for the PTM. With the use of sufficiently short time steps,

the net deterministic force is purely a function of the particle’s position and

therefore assumed to remain constant over time, so time integration of the

deterministic part of Eq. (4.12) is straightforward.

In contrast, the random, probabilistic nature of the Brownian force term

calls for more effort to determine its time evolution. Ermak and McCammon

[EM78] devised an approach to Brownian Dynamics simulations based on the

Langevin equation, taking the time average of Eq. (4.9) over a time step that

is much longer than the particle’s momentum relaxation time (refer to Section

4.3.7). For a spatially homogeneous system, the Brownian force is described by

a normal (Gaussian) distribution [Ein05,RSS89] with the mean and covariance

〈FBr(t)〉 = 0 (4.13)

〈FBr
i (t1)F

Br
j (t2)〉 = 2kBTζδijδ(t2 − t1)δ (4.14)

where kB is Boltzmann’s constant, T is the absolute system temperature, ζ (=

6πµap) is the particle’s frictional coefficient, δij is the Kronecker delta, δ(t2−t1)

is the Dirac delta function, and δ is a unit second-order tensor. Eqs. (4.12) to

(4.14) are equivalent to the Fokker-Planck equation’s interpretation of diffusion

(Section 9.7 of [Yip05]), which describes the time evolution of the probability

density function of the position of a particle [Kad00].

Eqs. (4.12) to (4.14) also satisfy the fluctuation-dissipation theorem, which

states that fluctuations of a system at thermal equilibrium are directly related

to the system’s linear response to applied perturbations (assuming they are

weak enough so that relaxation rates remain constant). In the case of Brownian

motion, the amplitude of the fluctuation forces is balanced by the frictional

coefficient ζ on the basis of system temperature, and this relationship yields

the Stokes-Einstein diffusion coefficient D∞ (its significance discussed further

in Sections 4.2.3 and 5.4). Setting aside the deterministic force term (i.e., drift)
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in the Fokker-Planck equation leaves what is known as the Einstein Diffusion

equation (for a spatially homogeneous system of non-interacting particles with

no external forces present). By calculating the time-averaged mean square

displacement of a given particle with this equation, the result is a function of

the diffusion coefficient D∞ and the time elapsed t. Therefore, the approach

of Ermak and McCammon has transformed the Brownian force term into a

time-averaged Brownian displacement term, and a detailed description of this

result is shown from the Eulerian perspective in Section 5.4.

Many independent trajectories should be averaged together to obtain the

time evolution of an ensemble-averaged property such as position (Section 9.7

of [Yip05]). Fortunately, when the system is given a long enough period of

time to evolve, ergodic theory can be employed to calculate a steady-state

property through a time-average of a single trajectory (refer to Section 5.4).

The resulting particle trajectory equation in the overdamped Langevin limit

(i.e., neglecting particle inertia) [EM78,Dho96,Pro03] can be written as

R = r(t + ∆t)− r(t) =

[
Fdet

net

6πµap

]
(∆t) + RBr =

[
vdet

net

]
(∆t) + RBr (4.15)

where vdet
net is the net deterministic velocity of the particle. The position vector

of the particle’s center r at the beginning of any given time step is the basis

for calculating all forces causing the particle’s subsequent motion during the

time step. The equation above simply states that the overall displacement of

the particle, R = r(t+∆t)− r(t), over a time step ∆t is comprised of a deter-

ministic component dictated by the systematic forces and a random Brownian

displacement, RBr. The methodologies for obtaining the deterministic and

Brownian components of the overall displacement vector are presented in de-

tail later in Section 4.2.3, after a description of how hydrodynamic interactions

are represented in the PTM simulations.

Hydrodynamic Interactions

Depictions of hydrodynamic retardation in a robust manner are possible through

techniques such as arbitrary Lagrangian Eulerian (ALE) methods [HLZ81,
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AQMB08]. Unfortunately, combining such calculations with the PTM can be

computationally difficult. As an alternative, the PTM utilizes the conven-

tional approach of accounting for hydrodynamic retardation effects through

the universal correction functions (UCFs) of hydrodynamic interactions (i.e.,

f1 to f4) [Bre61,GCB67a,GCB67b,GO71,Dah74], albeit in a slightly modified

manner. For creeping flow near a flat surface, components of the particle’s ve-

locity due to fluid flow only (v) are related to the corresponding undisturbed

fluid velocity (u) components by:

v⊥ = f1(H)f2(H)u⊥, (4.16)

v‖ = f3(H)u‖, (4.17)

with ⊥ and ‖ denoting the normal (perpendicular) and tangential (parallel)

velocity components respectively (both relative to the flat substrate), and f1

to f3 being functions of the scaled separation distance between the particle

and the substrate, H (= h/ap).

For the PTM, the force and velocity vectors are represented in a normal-

tangential (n,t) reference frame relative to the particle’s distance of closest

approach to the composite substrate. This is the same reference frame that

was shown to be effective (using the Heterogeneous Interaction Model) for col-

loidal interactions with physically heterogeneous substrates in Section 3.4.3.

Figure 4.3 depicts the methodology employed for this representation. The

shortest distance, Hmin (= hmin/ap), between the suspended particle and the

closest approaching feature of the substrate is determined first. Depending on

the particle’s position, the planar region of the substrate (particle-surface prox-

imity, PSP) or a spherical asperity (particle-asperity proximity, PAP) could

be the closest feature. This closest separation distance is the basis for calcu-

lation of the unit vectors in the principal normal and tangential directions.

Such a representation renders all the vectors two-dimensional, as the original

Cartesian components are resolved into the two principal directions.

For example, the following procedure describes the conversion of the undis-

turbed fluid velocity u to a normal-tangential (n, t) reference frame with re-

79



H
s
 = H

min
n

t

v

Moving 

particle 

(radius, 

a
p
)

Flat surface (x-y plane)  

t

v

n

H
a
 = H

min

Moving 

particle 

(radius, 

a
p
)

O

z

x

Spherical 

asperity 

(radius, a
a

)

a) Particle-surface proximity (PSP)

b) Particle-asperity proximity (PAP)

Spherical 

asperity 

(radius, a
a

)

O

z

x

u = u(z)

u = u(z)

Flat surface (x-y plane)  

Figure 4.3: Schematic depiction of two different scenarios of collector surface
proximity that the moving particle experiences within the fluid domain: (a)
Particle-surface proximity (PSP), in which the particle is closest to the flat
portion of the substrate, and (b) Particle-asperity proximity (PAP), in which
the particle is closest to the spherical asperity. A one-dimensional shear flow,
varying only in the z− direction, is applied to the fluid at the inlet boundaries
of the system. The Cartesian coordinate system and the corresponding (n,t)
coordinate system for each scenario are also shown.

spect to the closest feature of the composite substrate (refer to Figure 4.3).

Using the particle’s position r, it is first determined whether the planar sub-

strate or the spherical asperity of the composite collector is closest to the

particle. Once the closest separation distance Hmin is found, the associated

unit normal vector n between the particle and the closest approaching surface

of the composite collector is calculated using directional cosines. This normal

vector then provides the means to transform the velocity vector u at r into its

normal and tangential (with respect to the nearest approaching surface of the
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Table 4.1: Curve fit expressions for the universal correction functions of
hydrodynamic interaction (UCFs), taken from Chapter 13 of Masliyah and
Bhattacharjee [MB06].

i ai bi ci di ei

1 +0.9267 −0.3990 +0.1487 −0.6010 +1.2020
2 +0.5695 +1.3550 +1.3600 +0.8750 +0.5250
3 +0.1500 −0.3750 +3.9060 −0.6250 +3.1050
4 +1.2600 −2.6760 +0.3581 +1.9990 +0.2320

fi = 1.0 + bi exp(−ci Hmin) + di exp(−ei H
ai
min)

composite substrate) components, giving

u⊥ = u · n, (4.18)

u‖ = (I − nn) · u, (4.19)

t =
u‖
u‖

, (4.20)

in which I is the unit tensor, nn is a dyadic tensor, t is the unit tangential

vector, and u⊥ and u‖ are the magnitudes of the normal and tangential fluid

velocity vectors, respectively.

The dashed parabola in Figure 4.3 represents the loci of positions that

are equidistant to the surfaces of both the asperity and the planar substrate.

This parabola represents a section of the surface of a paraboloid cradling the

asperity. For particle locations outside and inside this paraboloid, the UCFs

are computed assuming PSP and PAP, respectively. Switching from PSP to

PAP in Figure 4.3 depicts how the (n, t) reference frame reorients with respect

to the asperity as the particle enters the paraboloid. The effects of this abrupt

reorientation will be discussed in Section 5.5.

In the (n,t) reference frame described above, the UCFs (f1 to f4) are

computed on the basis of the distance of closest approach, Hmin, between

the particle and the composite collector employing the curve fit expressions

available in Masliyah and Bhattacharjee [MB06]. Table 4.1 presents the generic
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form of these expressions, together with their term coefficients. To improve

the curve fit for function f4, the Masliyah/Bhattacharjee expression is replaced

with a new expression that more closely fits the exact values calculated in the

original paper by Goldman, Cox and Brenner [GCB67b]:

f4 = 1.0 + b4 exp(−c4H
a4a
min) + d4 exp(−e4H

a4b
min), (4.21)

with a4a = +0.7300, a4b = +0.5850, b4 = −0.2750, c4 = +3.7500, d4 =

−0.4850, and e4 = +0.6200.

This approach considerably simplifies the calculation of hydrodynamic in-

teractions. It should be noted that this method provides the upper bound of

the hydrodynamic retardation effect when the particle is positioned around

the top half of the asperities of the rough substrate, since it assumes that

the asperities are analogous to infinite flat surfaces. This maximum hydrody-

namic retardation will result in the lowest probability of particle deposition

on the asperity. The lower bound of the hydrodynamic retardation effect can

be obtained by simply setting the UCFs to 1 (i.e., completely ignoring hydro-

dynamic retardation). Real deposition behaviour on any finite radius asperity

will lie somewhere between these two limiting situations. However, an excep-

tion to this occurs if the particle ventures near the wedge between the lower

hemisphere of an asperity and the planar surface, where the drag force on the

particle will be modified by both surfaces simultaneously, most likely exceeding

the upper bound. To the author’s knowledge, there is a lack of data concern-

ing retardation in this wedge region to directly compare against results from

the PTM’s approach, and so this study focuses mainly on deposition on the

top half of the asperities. Furthermore, the approximation employed here to

compute these functions will become more accurate as the asperity-to-particle

size ratio λ (= aa/ap) increases.

The technique used here to determine f1 to f4 is similar in principle to that

used in most colloid deposition studies, where these functions are computed

on the basis of the distance of closest approach to a collector [PRT74,RT76,

EGJW95, TE04, NG05]. The only modification here pertains to the manner
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in which the distance is computed for a composite geometry. In the following

sections, descriptions are given of how the UCFs – based on the nearest feature

of the composite substrate – are used in the (n, t) reference frame to modify

the deterministic (hydrodynamic and colloidal) and Brownian forces on the

particle as it approaches the composite collector. Accordingly, components of

the force and displacement vectors in the following discussion are expressed

in the (n, t) reference frame. After all of the calculations are completed for a

given time step, the vector components along the axes of the global Cartesian

coordinate system (x, y, z) are obtained.

Deterministic Motion

Including the effect of hydrodynamic retardation, the total deterministic force

on the particle during a given time step ∆t can be written as

Fdet
net = Fdrag

fluid + B · FDLV O

= 6πµapv + B · FDLV O

= (6πµap)A · u + B · FDLV O (4.22)

in which FDLV O = (FDLV O
⊥ , FDLV O

‖ ), v = (v⊥, v‖) and u = (u⊥, u‖) are the

vectors for net DLVO force, particle velocity due to fluid flow only and undis-

turbed fluid velocity, respectively, with their components projected onto the

(n,t) reference frame. The term 6πµapv equals the fluid drag on a spherical

particle in a Stokesian flow field. The tensors A and B, which incorporate the

hydrodynamic interactions between the particle and the composite substrate,

are entirely functions of the UCFs and given by:

A =

(
f1f2 0
0 f3

)
B =

(
f1 0
0 f3

)

Substituting Eq. (4.22) into Eq. (4.15) results in

R =

[
A · u +

B · FDLV O

6πµap

]
(∆t) + RBr = Rdet + RBr (4.23)

where Rdet is the deterministic displacement. For the deterministic simula-

tions, Eq. (4.23) is used with RBr = 0.
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Brownian Motion

To account for Brownian motion of the particle, the PTM employs a modified

version of the method used in a recent study by Nelson and Ginn [NG05], which

also conforms to the standard approach to Brownian Dynamics simulations

[EM78]. The particle displacement due to stochastic forces is given by

RBr = mσR, (4.24)

where m = (m⊥,m‖) is a vector of two normally distributed random numbers,

and σR is the square root of the mean-square displacement [RSS89] of the par-

ticle. For the normal and tangential components of the Brownian displacement

during the time step, one can write

RBr
⊥ = m⊥σR⊥ = m⊥

√
2D⊥∆t, (4.25)

RBr
‖ = m‖σR‖ = m‖

√
2D‖∆t, (4.26)

with D⊥ and D‖ representing the diffusivity of mass for the particle in the

normal and tangential directions respectively. Accounting for the hydrody-

namic retardation effect in the Brownian motion of the particle, D⊥ and D‖

are written as [Bre61,GCB67b]:

D⊥ = f1(H)D∞, (4.27)

D‖ = f4(H)D∞, (4.28)

where D∞(= kBT/6πµap) is the Stokes-Einstein diffusivity and H is the sepa-

ration distance between the particle and the nearest approaching region of the

collector (Hmin). This approach leads to the Brownian displacement vector

being expressed as:

RBr =
(√

2D∞∆t
)
C ·m, (4.29)

with the tensor C imparting the hydrodynamic retardation effect on the par-

ticle’s diffusivity, given by

C =

( √
f1 0
0

√
f4

)
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Total Displacement

The total displacement of the particle during a given time step is obtained by

substituting Eqs. (4.22) and (4.29) into Eq. (4.15), giving

R =

[
A · u +

B · FDLV O

6πµap

]
(∆t) +

(√
2D∞∆t

)
C ·m (4.30)

The PTM employs a scaled version of the total displacement vector, R∗ =

(R∗
⊥, R∗

‖). By letting r = apr
∗, u = Uavgu

∗, ∆t = (∆t∗)ap/Uavg, and FDLV O =

(FDLV O∗)(kBT/ap), the scaled form of the total displacement vector is

R∗ =

[
A · u∗ +

(
D∞

apUavg

)
B · FDLV O∗

]
(∆t∗) +

(√
2D∞∆t∗

apUavg

)
C ·m. (4.31)

4.2.4 DLVO Interactions

The colloidal interactions between the particle and the composite substrate

are calculated as a summation of the DLVO force between the particle and

the planar substrate (ps) and that between the particle and the asperity (pa).

The net DLVO force is given by,

FDLV O = FDLV O
ps +

∑
FDLV O

pa . (4.32)

The summation sign indicates that the force is added over all the asperi-

ties. The expressions used for the unretarded (in terms of dispersion only,

not hydrodynamic) van der Waals (vdW) [Ham37] and electric double layer

(EDL) [HHF66] forces of the DLVO interaction are, respectively,

FvdW
pi = −32AH,pi

3ap

[
λ3(Hi + 1 + λ)

(H2
i + 2Hi + 2λHi)2(H2

i + 2Hi + 2λHi + 4λ)2

]
n,

(4.33)

FEDL
pi =

4πεκapψpψiλ

(1 + λ)

[
exp(−κHiap)

1 + exp(−κHiap)
− (ψi − ψp)

2

2ψpψi

(
exp(−2κHiap)

1− exp(−2κHiap)

)]
n,

(4.34)

where AH,pi is the effective Hamaker constant for the van der Waals interaction

between the particle and the feature of the composite substrate (i.e., asperity

or planar substrate, represented by the index i = a, s respectively), Hi =

85



hi/ap is the scaled separation distance between the particle and the feature,

ε is the permittivity of the medium, κ is the inverse Debye length of the

system, ψi is the surface potential of the feature, ψp is the surface potential

of the particle, and λ = ai/ap is the ratio of the radii of the feature and the

particle. For the planar substrate, λ →∞. In this study, the vdW interaction

force between the particle and any feature is always attractive. As a sign

convention, attractive forces acting on the particle point from the particle’s

center toward the composite substrate along the vector n (see Figure 4.3). The

above expressions can emulate attractive (favourable deposition, denoted by F)

or repulsive (unfavourable deposition, denoted by U) interactions between the

particle and the composite substrate with appropriately selected parameters.

The above expressions are by no means rigorous representations of col-

loidal interactions in real systems. Retardation effects have been neglected in

computing the vdW interactions, whereas the EDL interactions are obtained

from a solution of the linearized Poisson-Boltzmann equation with the Der-

jaguin approximation, rendering such an expression valid only for low surface

potentials and large κap.

Calculation of the DLVO force between the particle and a spherical asperity

in the PTM is very similar to the technique used in the Heterogeneous Inter-

action Model for the DLVO force between a particle and a spherical subunit

in the substrate. Consequently, the PTM can also be applied to systems con-

taining substrates with various configurations of heterogeneity through specific

placement of, and assignment of chemical characteristics to, spherical subunits.

These subunits can also vary in size to form irregular, non-periodic substrate

topographies.

4.3 Numerical Solution Methodology

The numerical solution of the particle trajectory equations is implemented with

a FORTRAN program, using an explicit time marching scheme otherwise re-

ferred to as the forward Euler method. The PTM algorithm – displayed as a
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flowchart in Figure 4.4 – starts with the initial conditions and a starting posi-

tion of the first particle, for which the undisturbed fluid velocity components

at the particle center and the particle-substrate DLVO forces are computed.

Following this, the distance of closest approach (Hmin) and the correspond-

ing (n,t) reference frame are determined employing the technique outlined in

Section 4.2.3. The UCFs are calculated on the basis of these parameters, sub-

sequently filling the matrices A, B and C and leading to the evaluation of the

particle’s deterministic and Brownian displacements over the time step. For

the Brownian displacement, the normally distributed random numbers in the

vector m are generated using a random number generator [PTVF92]. The

particle position is then updated for the beginning of the next time step using

Eq. (4.30). Only very dilute particle suspensions are considered in the sim-

ulations of this study, with essentially one particle released at a time. The

following sections explain particular details of the steps in the PTM’s algo-

rithm.

4.3.1 Initial Conditions

Among the system parameters at the beginning of the PTM’s program MAIN

(i.e., “System Parameters” in Figure 4.4), ISCEN is an index number for choos-

ing if the simulation will include only deterministic forces (= 0) or determin-

istic and Brownian forces (= 1). The IFLOW parameter distinguishes between

simulations with no fluid flow (= 0) or some finite fluid velocity (= 1). IFLOW

changes the value of the average fluid velocity UAVG (Uavg), which is used to

scale quantities in the PTM such as fluid velocity u and time t. To avoid

division by zero for scaling in the case of no fluid flow, the diffusion time scale

a2
p/D∞ is employed and results in Uavg = D∞/ap; otherwise, Uavg is provided

by the user.

In order to set up the initial system configuration for the PTM, the sub-

strate’s geometry and the properties of all system components need to be

identified and readily accessible in the FORTRAN program. The properties

of the system’s fluid, including the average fluid velocity Uavg and electrolyte
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concentration, are stored in the array F() in the subroutine FLUID. Parameter

NSA specifies the number of spherical asperities present in the scenario, and

subroutine SUBSTRATE establishes the positions and properties of those spher-

ical asperities on the flat surface in the array S(). These properties include

asperity size, mass density, surface potential and scaled Hamaker constant.

Also, in cases of irregular physical and/or chemical heterogeneity, SUBSTRATE

can include the positions and properties of substrate subunits (ai < ap, iden-

tical to those of the Heterogeneous Interaction Model in Chapter 3). Only

subunits that lie within the cut-off distance RCUT (refer to Section 4.3.4) from

the particle’s center would be considered in calculating DLVO interactions,

reducing computational time and effort for such cases.

With the substrate clearly defined, the model substrate can be formed in

finite element software to numerically solve for the undisturbed hydrodynamic

field in its vicinity (i.e., “Undisturbed Flow Field” in Figure 4.4; refer to

Section 4.3.3 for more background). Before this undisturbed hydrodynamic

field can be properly entered into the FORTRAN program, the values of NX,

NY and NZ (i.e., number of grid node positions in the x−, y− and z− directions

for the sub-domain of interest, shown with a shaded box in Figure 4.2 and the

enlarged schematic in Figure 4.5a) must be set in the program MAIN. These

values must match the corresponding values used to create the sub-domain

grid for the given scenario in the first place. NX, NY and NZ are functions of

the scaled dimensions of the sub-domain and the chosen grid resolution, RES

(to be discussed further in Section 4.3.3).

The subroutine PARTICLES provides another major component of the ini-

tial system configuration, storing the initial particle positions (or release points

within the sub-domain) and their properties in the array P(). These release

points are distributed in a pseudo-random manner using a random number

generator (refer to Section 4.3.2). They are kept away from the edge of the sub-

domain for full Brownian simulations as the particle could be quickly ejected

from the sub-domain by Brownian motion, thereby ending the particle’s tra-

jectory prematurely. Typical starting positions are at least two to five particle
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radii away from any of the sub-domain’s outer boundaries. The number of

particles released for a single simulation run is specified with the parameter

NP.

4.3.2 Random Number Generation

Random numbers serve two functions in the PTM simulations: (i) random

initial placement of NP particles in the computational sub-domain for a sin-

gle simulation run (i.e., “Initial Particle Position” in Figure 4.4), and (ii)

determination of the magnitudes of Brownian displacement in the (n, t) di-

rections experienced by the particle at each time step (i.e., “BROWNIAN

Displacement” in Figure 4.4). For each simulation run, the starting positions

of the particles are distributed throughout a prescribed area or volume in the

sub-domain using RAN2. RAN2 is a random number generator subroutine by

L’Ecuyer (found in Chapter 7 of Numerical Recipes for FORTRAN [PTVF92])

that returns a pseudo-random value between 0 and 1 (not including 0 or 1)

(i.e., uniform deviate). Although it has a relatively longer execution time when

compared with several other random number generators [PTVF92], RAN2 has

an extremely long period (> 2 × 1018 executions) before repeating. This is

very effective when some of the PTM simulation runs in this study involve

as many as 109 calls for random numbers. For this study, the particles are

typically released from an area in the y − z plane at some distance upstream

from any asperity in the sub-domain. With the x− position fixed at some

value, the y− and z− positions are set between limits, and a uniform deviate

obtained from RAN2 modulates the position in each direction. Magnitudes of

the two components of the vector m (i.e., part of the Brownian displacement

vector RBr) are determined with the subroutine GAUSS (also from Chapter 7 of

Numerical Recipes for FORTRAN [PTVF92]). This subroutine transforms a

uniform deviate that it calls for with RAN2 into a normally distributed deviate

with zero mean and unit variance.

In order to initialize subroutine RAN2, an initial seed number that is a

negative integer is required. Near the beginning of the program MAIN, the
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subroutine HMS_CURRENT_HMS (modified from a FORTRAN90 version written

by John Burkhardt [Bur05]) outputs a three digit integer for thousandths of a

second from the current time. This integer is subtracted from another negative

integer INIT to produce a seed number IC that changes for each time a group

of PTM simulation runs are started. Subsequent calls of RAN2 then use a new

value of IC derived from the execution of RAN2 to continue generating random

numbers.

4.3.3 Undisturbed Hydrodynamic Field

For this study, the numerical solution of the Stokes equation to determine the

fluid velocity field around the model rough surface was achieved with a com-

mercially available finite element software package, COMSOL Multiphysics

3.3 (Comsol Inc.; Burlington, MA). To reduce computational effort in the nu-

merical solution of the flow field, symmetry in the x − z plane is utilized to

cut the field in half, as depicted in Figure 4.3. This half-field enables the full

flow field to be rendered perfectly symmetric. The velocity data is exported

from the finite element program and then input into the PTM in the form of

a three-dimensional Cartesian grid of predetermined resolution (i.e., “Undis-

turbed Flow Field” in Figure 4.4). As noted earlier, the limits of this grid are

smaller than the overall computational domain, which is shown (not-to-scale)

with a shaded sub-domain in Figure 4.2. A detailed procedure of how the

undisturbed hydrodynamic field is created for use by the PTM can be found

in Appendix A.

Despite the validity of using linear superposition with Stokes flow scenarios,

there are no closed form analytical solutions for velocity fields around spherical

asperities on a flat surface in a shear flow. The works of Higdon [Hig85], Da̧broś

[D8̧9], van de Ven [MDvdV86,DvdV92], and Pozrikidis [Poz94,Poz97,Poz99],

to name a few, have applied boundary integral and/or singularity methods

to the Stokes equations and generated very good results for Stokesian flow

fields around obstacles on flat surfaces. Results of the finite element technique

applied to the single spherical asperity were compared against a boundary
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integral solution given by Pozrikidis [Poz97], with < 2% deviation between the

two approaches (refer to Section 5.3.1 for details concerning this validation).

The PTM’s numerical approach to determining such Stokesian flow fields is

clearly more computationally demanding than the approaches of the earlier

works. However, this approach has the flexibility of rendering a hydrodynamic

field over a surface of irregular topography (i.e., physical heterogeneity or

roughness), incorporating the full Navier-Stokes formulation, and including

additional body forces (such as electrical forces).

4.3.4 DLVO Interactions and Undisturbed Fluid Veloc-
ity

After testing for trajectory termination criteria (explained later in Section

4.3), the particle’s current position (i.e., “Current System Configuration” in

Figure 4.4) is used to calculate the net DLVO force acting on it at that given

moment (i.e., “Net DLVO Force” in Figure 4.4). Its position is also used to

determine the undisturbed fluid velocity at the center of the particle, as if the

particle is not there to disturb the steady Stokes flow over the substrate (i.e.,

“Flow Field @ Current Position” in Figure 4.4).

At the beginning of each time step, the DLVO interaction between the

particle and each component of the composite substrate (i.e., asperity, sub-

unit, and flat portion) is computed in the subroutine TOTAL_DLVO. Within

TOTAL_DLVO, a section handling sphere-sphere interactions has the subroutine

SEPARATION, which sets up the array DIF() to temporarily store the informa-

tion regarding the separation between the particle and any spherical compo-

nent of the composite substrate. This includes the (center-to-center) position

difference vector (calculated using the SLATEC library subroutine DAXPY for

adding/subtracting vectors), and subsequently, the unit normal vector UN()

pointing along the separation distance between the two bodies. Unit vector

UN() is determined using the position difference vector and its magnitude in

DIF() with the SLATEC library subroutine DSCAL for scaling vectors. For each

pairwise interaction, the separation distance is compared with the previously-
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stored minimum value to see if a new minimum is found. If so, the new mini-

mum separation distance and its associated unit vector are stored as HOMIN and

UNO() respectively. When applicable, this procedure is also used in a separate

section of TOTAL_DLVO for previously deposited particles on the substrate, with

its minimum separation distance and associated unit vector stored as HPMIN

and UNP() respectively. These separation distances and unit vectors are used

later in another subroutine concerned with the particle’s closest proximity to

the composite substrate (refer to Section 4.3.5).

Using the information in DIF(), each call of subroutine FORCE_DLVO calcu-

lates the DLVO force between the particle and a spherical asperity or subunit

in the substrate, and subroutine EDL_HHF_SS within it is called to determine

the EDL portion of the force. There is also a section of subroutine TOTAL_DLVO

that calculates the DLVO force between the particle and the flat portion of the

substrate based on a simple sphere-plate separation distance HS, with subrou-

tine EDL_HHF_SP computing the EDL component. Only pairwise interactions

that are within a specified scaled cut-off distance RCUTD are computed for the

net DLVO force on the particle; DLVO interactions between bodies separated

by more than RCUTD are not calculated, and hence, neglected. For the PTM

simulations in this study, RCUTD has been set to 3.0 (i.e., three times the par-

ticle radius). The summation of all of the individual DLVO force vectors to

obtain the particle’s net DLVO force vector is accomplished with the SLATEC

library subroutine DAXPY in the PTM subroutine TOTAL_DLVO.

The subroutine HYDROVEL is a hunting-and-interpolation scheme that deter-

mines the Cartesian components of the undisturbed fluid velocity at the cur-

rent position of the particle’s center anywhere within the sub-domain that the

particle may occupy. This subroutine calls for the arrays for the sub-domain

grid node positions GRX, GRY and GRZ as the basis to hunt for the particle’s

position within the grid. For each Cartesian direction, the subroutine HUNT

(acquired from Chapter 3 of Numerical Recipes for FORTRAN [PTVF92])

searches for the two grid nodes that the particle’s position currently resides

between, then outputs the index number of the grid node that is lower (i.e.,
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ILO for x−, JLO for y−, KLO for z−). These index numbers correspond with

the indices of the three undisturbed fluid velocity arrays (i.e., UUX(), UUY()

and UUZ(), in the x−, y− and z− directions, respectively) exported from

COMSOL into data files that can be read by the FORTRAN program. From

ILO, JLO and KLO, the eight nodes of the sub-domain grid subunit (labeled

with numbers 1 to 8 in Figure 4.5b) that the particle presently resides in are

identified and used to extract the associated undisturbed fluid velocity data

for each of the eight nodes from the data files originating from the finite ele-

ment solution (by COMSOL in this study) of the flow field near the composite

substrate.

Now, the position of the particle with respect to the eight adjacent grid

nodes and the undisturbed fluid velocity at each of those nodes is known. This

information is required to perform trilinear interpolation [Tod03] using the

subroutine INTERPOLATE in all three Cartesian directions, which determines

the undisturbed fluid velocity vector u at the location of the particle’s center.

The use of trilinear interpolation assumes that there are linear changes in

u over the volume of any given grid subunit that the particle’s center may

lie within. This is a reasonable assumption when considering that the flow

fields in the PTM simulations are Stokesian (and therefore, solved as a linear

system). The validity of this assumption is tested in Section 5.3.2.

4.3.5 Proximity Criteria and Hydrodynamic Interactions

With the net DLVO force acting on the particle FDLV O and the undisturbed

fluid velocity vector u calculated, the next step in the PTM program is to

determine which region of the substrate that the particle is closest to. The

stored information concerning the closest approach to any spherical asperity

(or spherical subunit), the flat surface and any previously deposited particle

(when applicable) is accessed in the subroutine CLOSEST. Within this sub-

routine, a comparison of these separation distances is made, resulting in a

declaration of the minimum separation distance HMIN (Hmin) along with its

associated unit vector UNMIN() (i.e., “Proximity Criteria” in Figure 4.4). The
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95



unit vector UNMIN() will be the normal direction of the relative (n,t) coordi-

nate system described in Section 4.2.3.

Hydrodynamic interactions between the particle and the closest approach-

ing surface of the substrate can now be accounted for. The UCFs (f1 to f4)

are calculated on the basis of HMIN in the subroutine HYDRO_CORRECTION, and

temporarily stored in the array UCF() (i.e., “Hmin → UCFs” in Figure 4.4).

The UCF() array will be used in the subroutines DETERMINISTIC and BROWNIAN

to calculate the particle’s deterministic velocity and Brownian displacement

vectors (DVEL() and B(), respectively) over the next time step. The values in

UCF() are the constituents of the 2× 2 tensors A to C found in Eq. (4.31).

4.3.6 Deterministic Particle Velocity

The deterministic particle velocity in the PTM is a function of not only the

net DLVO force FDLV O and the undisturbed fluid velocity u at the particle’s

center, but also hydrodynamic retardation via the particle’s distance of closest

approach to the substrate (i.e., “DETERMINISTIC Velocity” in Figure 4.4).

Accounting for hydrodynamic interactions is all done in the (n,t) reference

frame, but as of yet the direction of the tangential component of this reference

frame with respect to the global Cartesian coordinate system has not been

determined. Both the normal and tangential components of hydrodynamically-

retarded velocities and displacements must be converted back into the global

Cartesian coordinate system before the particle is moved during the next time

step ∆t (refer to Eq. 4.31).

In subroutine DETERMINISTIC, the deterministic particle velocity is not

calculated (for scenarios with some finite flow) until the unit tangential vec-

tor has been determined by calling the subroutine TANGENT. In TANGENT, a

projection tensor PRJ() (i.e., its mathematical equivalent shown in Eq. 4.19)

is formed using the unit normal vector UNMIN(). Employing the SLATEC

library subroutine DGEMV for general matrix-vector operations in double pre-

cision, the product of this tensor and the current undisturbed fluid velocity

vector U() (u) yields the undisturbed fluid velocity vector projected on a plane
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tangential to the point of closest approach on the substrate surface, labeled

UTEMP(). The SLATEC library subroutine DSCAL is used here again, taking

the reciprocal of the magnitude of UTEMP() as the scaling factor for UTEMP()

itself to obtain the unit tangential vector for the closest approach distance,

UTMIN(). Both UNMIN() and UTMIN() are subsequently used in subroutines

DETERMINISTIC and BROWNIAN to: (i) project the Cartesian fluid velocity and

Brownian force vectors onto the relative (n,t) reference frame using SLATEC

subroutine DDOT for taking dot products, and (ii) transform the deterministic

velocity and Brownian displacement vectors from the (n,t) reference frame to

the global Cartesian one.

In no flow scenarios (IFLOW=0), the unit tangential vector is a zero vec-

tor since all deterministic motion will be due to the DLVO force acting on

the particle in the direction normal to the point of closest approach to the

substrate.

4.3.7 Time Step and Brownian Displacement

For purely deterministic motion, it is evident that the smaller the time step,

the more accurately the particle’s motion can be portrayed with the PTM sim-

ulations. However, smaller time steps with the explicit, forward Euler method

of solving the trajectory equations would result in longer simulation run times

for the PTM. The inclusion of Brownian motion also necessitates the optimiza-

tion of the time step. The time step used in the PTM is dictated by the par-

ticle size through the Brownian displacement vector RBr (which is calculated

as B() in the subroutine BROWNIAN) and the particle’s momentum relaxation

time scale τBr(= m/6πµap, where m is the mass of the particle) [KET83].

Brownian motion can be represented as an uncorrelated random process only

when the time step is larger than the Brownian particle’s momentum relax-

ation time, i.e., ∆t À τBr. With the relaxation time as the lower bound, the

time step must reside within the limits τBr ¿ ∆t < τ det, where τ det is the time

increment for which the particle’s velocity v is considered constant (i.e., non-

accelerating) [NG05]. For a neutrally buoyant, 100 nm radius particle in water,
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τBr = 2.22 ns. In the full PTM simulations (i.e., including deterministic and

Brownian forces), ∆t = 100 ns is used for 100 nm particles, as prior investiga-

tions revealed that it is sufficiently small to satisfy the limits while minimizing

simulation run times. For the deterministic PTM simulations with 100 nm

particles, ∆t = 1 µs is satisfactory and further reduces overall run times.

4.3.8 Trajectory Termination Criteria

After the deterministic and Brownian displacements have been imparted to

the particle (i.e., “TOTAL Displacement”, followed by “New Particle Posi-

tion” in Figure 4.4), the STATUS subroutine is then called to determine if the

particle has exited the computational sub-domain or if it has stopped for some

reason (i.e., “Trajectory Termination Criteria” in Figure 4.4). The trajec-

tory termination criteria for the particle stopping need some elaboration. For

favourable deposition, it is straightforward to postulate an equilibrium ap-

proach distance resembling a primary adhesion minimum, which provides a

deterministic end point for the trajectories. Accordingly, particles approach-

ing within a cut-off distance of 0.3 nm [Isr92] from the collector surface are

assumed to be irreversibly attached, and the trajectory is terminated. How-

ever, particles may also be immobilized in the system without specifically

attaching to the substrate. For instance, with unfavourable deposition, the

particles never approach the primary adhesion minimum. Consequently, in

deterministic simulations involving unfavourable deposition, the trajectories

simply terminate at the stagnation points in the flow field where the net sum

of colloidal and hydrodynamic forces on the particle becomes zero, leaving the

particle immobile. In these PTM simulations, the trajectory is terminated

when the scaled deterministic displacement becomes less than a preset toler-

ance (10−8), and the particles are deemed to be immobilized, implying that

they are not deposited in the conventional sense (at a primary minimum).

One might consider this to be analogous to deposition at a secondary DLVO

minimum [RWE04, HAO04, TE05b, KE07]. In Brownian simulations of un-

favourable deposition, however, the random excursion of these immobilized
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particles can either re-release them into the flow, or capture them in the pri-

mary adhesion minimum. For these simulations, the termination criterion is

modified as follows: if the particle experiences an average displacement of 0.3

nm or less in the x−, y− and z− directions over the previous 100 time steps,

then it is assumed that the particle is immobilized, thereby terminating the

simulation. The last 100 positions are stored in the arrays XPOS(), YPOS()

and ZPOS() which are updated on a rotating basis. The standard deviation

of each array is calculated in subroutine MOMENT (from Chapter 14 of Numeri-

cal Recipes for FORTRAN [PTVF92]). With the PTM simulations involving

unfavourable deposition, there are virtually no immobilized particles trapped

in the secondary minimum when Brownian motion is considered. For all cases

that the particle’s trajectory has been terminated, the PTM proceeds with

starting the next particle’s trajectory (i.e., “Next Particle” in Figure 4.4).

4.4 Summary

In this chapter, the general mathematical formulation of the PTM for a shear

flow field over a substrate with complex geometry has been developed. Us-

ing the PTM to calculate a particle’s trajectory, it is necessary to obtain the

undisturbed (i.e., particle-free) fluid velocity vector, u, near the composite

substrate, the hydrodynamic interaction tensors A to C, and the net DLVO

force between the particle and the composite substrate. Numerical solution

methods for the governing transport equations have also been presented. In

Chapter 5, the use of these equations is demonstrated for some conventional

colloid transport and deposition scenarios, providing a validation of the ap-

proach. In the following chapter, the limits of the parameter space to which

the PTM can be applied will be laid out.

99



Chapter 5

Particle Tracking Model:
Parameter Space and
Validations

5.1 Overview

Now that the components of the Particle Tracking Model (PTM) have been

described in detail, there remains the issue of validating the PTM for the types

of systems that it is applied to. In this chapter, the effectiveness of several

aspects of the PTM will be explored using some conventional scenarios in fluid

dynamics, colloid transport and deposition. These aspects of the PTM include:

its use of the (numerically-determined) undisturbed hydrodynamic flow field,

its simulation of Brownian motion, its depiction of hydrodynamic interactions

over a range of separation distances, and its application to classic deposition

scenarios such as the collection efficiency of a single spherical collector.1

5.2 Parameter Space

In Chapter 4, the scaled Langevin equation (4.10) was simplified to the PTM’s

particle trajectory equation of Eq. (4.15) by neglecting particle inertia. This

assumption can only be valid if the Stokes number St (= 2ρpUap/9µ) is very

small (St ¿ 1), thereby implying that the particle will follow fluid streamlines

1A version of this chapter has been published. Kemps and Bhattacharjee, 2009, Lang-
muir, 25(12):6887-6897.
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Table 5.1: Parameters (fluid and particle properties) for the PTM simula-
tions.

Quantity Symbol Value Units

System temperature T 298.15 K
Particle density ρp 1000 kg/m3

Density of medium (water @ T ) ρf 1000 kg/m3

Permittivity of medium (water @ T ) ε 6.95×10−10 C2/N·m2

Viscosity of medium (water @ T ) µ 10−3 Pa·s

closely and not experience any significant acceleration during each time step.

Another dimensionless group that appears in Eq. (4.10) is the particle Peclet

number, Pe (= 6πµa2
pU/kBT ), which relates convective forces to those of

diffusion (Brownian motion). To arrive at Eq. (4.15), the values of both St

and Pe must be as low as possible, with St ≤ 10−5. For a given set of

system parameters, these two dimensionless groups are proportional to the

characteristic fluid velocity U and the particle size ap, with St ∝ Uap while

Pe ∝ Ua2
p.

If Pe is sufficiently high, then the force term on the right side of Eq. (4.10)

could be of the same order of magnitude as St. In such cases for the parameters

of this study (refer to Table 5.1), particle inertia cannot be neglected as this

would mean the external forces (
∑

i F
∗
i , such as DLVO and the fluctuating

Brownian force) should be neglected as well. This would reduce Eq. (4.10) to

the trivial case of zero particle velocity, which is certainly not appropriate for

a system of high Pe, and hence, high convection. An example of this can be

seen in Table 5.2 when ap = 1000 nm and U = 10−3 m/s.

Consequently, for a given particle size, the selection of a valid range of

values for the average fluid velocity in the channel Uavg is necessary. However,

the computational sub-domain in which the particle’s motion is tracked by the

PTM is close to the substrate’s surface, where the characteristic fluid velocity

is much lower (U ¿ Uavg). For instance, with the channel half-height b held

constant at 1000ap for this study, a particle in the sub-domain is at an average
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Table 5.2: Stokes and particle Peclet numbers in relation to particle size ap

and characteristic fluid velocity U for the parameters of this study (listed in
Table 5.1).

ap U = 10−5 U = 10−4 U = 10−3

(nm) (m/s) (m/s) (m/s)

10 St 2.2× 10−8 2.2× 10−7 2.2× 10−6

Pe 4.6× 10−3 4.6× 10−2 4.6× 10−1

20 St 4.4× 10−8 4.4× 10−7 4.4× 10−6

Pe 1.8× 10−2 1.8× 10−1 1.8× 100

50 St 1.1× 10−7 1.1× 10−6 1.1× 10−5

Pe 1.1× 10−1 1.1× 100 1.1× 10+1

100 St 2.2× 10−7 2.2× 10−6 2.2× 10−5

Pe 4.6× 10−1 4.6× 100 4.6× 10+1

200 St 4.4× 10−7 4.4× 10−6 4.4× 10−5

Pe 1.8× 100 1.8× 10+1 1.8× 10+2

500 St 1.1× 10−6 1.1× 10−5 1.1× 10−4

Pe 1.1× 10+1 1.1× 10+2 1.1× 10+3

1000 St 2.2× 10−6 2.2× 10−5 2.2× 10−4

Pe 4.6× 10+1 4.6× 10+2 4.6× 10+3

height of about 10ap above the flat portion of the substrate. With a simple

shear flow profile near the channel’s surface at the inlet boundary of the full

computational domain, the particle will encounter fluid velocities that are ≈
0.01Uavg. In other words, an average fluid velocity range of 10−3 ≤ Uavg ≤ 10−1

m/s will mean a particle in the PTM simulation is experiencing fluid velocities

in the range of about 10−5 ≤ U ≤ 10−3 m/s near the substrate.

The values of U and Uavg are parts of two more hydrodynamic limiting cri-

teria for the PTM simulations: the particle Reynolds number, Rep = ρfUap/µ

and the channel Reynolds number, Rech = ρfUavgdh/µ, where dh = 4 ×
area/perimeter is the hydraulic diameter of the channel. As the channel’s

width w is assumed to be much larger than its full height in this study (i.e.,

w À 2b), then dh = 4 × 2bw/(4b + 2w) ≈ 4b, so Rech = ρfUavg(4b)/µ =
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4000ρfUavgap/µ. It is important to distinguish these two Reynolds numbers,

as Rep is for the flow near the surface of the channel while Rech is for the bulk

flow in the channel. For Stokes flow, the particle Reynolds number should

be considerably less than unity (Rep ¿ 1) [RSS89, vdV89], and the channel

Reynolds number marks the transition to turbulence at Rech ≈ 2000 [PMM08].

Both of these conditions are met for the parameters in Table 5.1 and all of the

Brownian particle sizes listed in Table 5.2 (i.e., ap ≤ 1000 nm) when Uavg ≤ 0.5

m/s, which corresponds to fluid velocities of U ≤ 3× 10−2 m/s at a height of

10ap above the substrate.

On the basis of the PTM’s limitations with dimensionless groups St, Pe,

Rep and Rech, the upper limit for the average fluid velocity in the channel

for Brownian particles considered in this study (i.e., ap ≤ 100 nm) is 1 m/s.

With regard to colloidal interactions, the PTM inherits the limitations of the

HHF approach to calculating the EDL force, which were discussed at length in

Section 3.3. To reiterate, these limitations for the particle and all components

of the composite substrate (i.e., asperities, subunits and planar surfaces) in-

clude surface potentials (ψ) < 75 mV and κa > 2 (especially for low surface

potentials), where κ is the inverse Debye length and a is the radius of the

smaller interacting entity.

5.3 Undisturbed Hydrodynamic Field

5.3.1 Flow Over a Sphere on a Flat Plate - Comparison
with Pozrikidis (1997)

A key element of the PTM’s simulation of hydrodynamics is the undisturbed

hydrodynamic field in the vicinity of the physically heterogeneous substrate.

In this study, this field is obtained using the finite element software COMSOL,

which numerically solves the Stokes equations for steady state, simple shear

flow across the field’s computational domain. Appendix A provides a compre-

hensive description of the procedure used to create the undisturbed hydrody-

namic field for a given substrate, including the particular system parameters
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used in the finite element software to generate the numerical solution. For this

part of the procedure, an evaluation of how well COMSOL renders such flow

fields is necessary. Unfortunately, there are no analytical solutions available for

the case of a sphere touching a plane wall, so a comparison with another numer-

ical solution method is required. A numerical approach by Pozrikidis [Poz97]

calculates the three-dimensional Stokes flow over an axisymmetric shape pro-

jecting from a plane wall using a boundary integral method. More specifically,

Pozrikidis’ approach can determine the effect that a single sphere resting on a

flat surface will have on a simple shear flow field moving across it.

With the boundary integral solution of Pozrikidis, the fluid velocity u is

the sum of the incident shear flow velocity across the substrate and a flow

velocity modification due to the asperity that vanishes at infinity. This flow

modification is depicted with hydrodynamic potentials using the free-space

Green’s function of the Stokes flow equations for the velocity and stress [RSS89,

EGJW95,KK05]. For the COMSOL solution of the flow field, the size of the

computational domain is important. If the domain is too small, the Dirichlet

condition of simple shear at the inlet boundaries (Γin in Figure 4.2) will result

in higher flow velocities throughout the field and understating the asperity’s

modification of the shear flow in the far-field. If the domain is too large, the

finite element matrix of the system will be exceedingly sparse, so the numerical

solution will take longer to determine and potentially lead to out-of-memory

errors or gross inaccuracies in some regions of the solution if the local mesh

resolution is too coarse. Consequently, the domain size must be optimized.

Figure 5.1 looks at the scaled fluid velocity around the asperity in the

prevailing direction of flow, u∗x (Figure 5.1a), and in the z− direction, u∗z

(Figure 5.1b), at five different scaled (with respect to asperity size aa) heights

in the domain’s x− z plane. The shaded circle in the middle of Figures 5.1(a)

and (b) represents the spherical asperity, appropriately sized with respect to

the x− axis scale. In the context of the PTM’s scaling parameters, the scaled

shear rate (γ̇∗) in this comparison is 1 and the asperity-to-particle size ratio

(λ) is also 1 (i.e., aa = ap).
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Figure 5.1: Validation of the undisturbed hydrodynamic field (around a
single spherical asperity on a flat surface) determined using COMSOL, based
on comparison with the numerical solution by Pozrikidis [Poz97]. Comparisons
are made for scaled fluid velocities in the (a) x− and (b) z− directions at five
scaled heights above the flat surface in the x − z plane. For this system, the
scaled shear γ̇∗ is 1. In (a), two sizes of the computational (half-field) domain
for the COMSOL solution approach are included for comparison. In (b), only
the COMSOL solution for the larger domain (40aa× 20aa× 20aa) is included.
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For comparison with the results of Pozrikidis’ approach in Figure 5.1(a),

two sizes of the half-field domain were solved for in COMSOL: a large one

measuring 40aa×20aa×20aa and a smaller one measuring 20aa×10aa×10aa.

The system and solver parameters for the solutions of these two field sizes

were identical, and the total number of mesh elements was within about 3%

of each other (35541 for the smaller one, 36674 for the large one). The finite

element meshes for both domains were created automatically by the COMSOL

software using the parameters provided in Appendix A. In close proximity

to the asperity, the solid and dashed lines coincide in Figure 5.1(a). This

indicates that the size of the computational domain makes no difference in

the accuracy of the fluid velocity in the near-field of the asperity. Far away

from the asperity (at x/aa = ±10), the larger domain is in closer agreement

with Pozrikidis’ solution than the smaller one. This is expected since the finite

inlet boundaries (Γin from Figure 4.2) of the COMSOL domain are assigned

the Dirichlet condition of one-dimensional shear flow, and COMSOL solves the

flow field to attain that boundary condition. With the larger field, the inlet

boundary is further away and the COMSOL solution extends the modification

of the flow due to the asperity over a larger volume. COMSOL cannot extend

the boundaries to infinity in order to mimic Pozrikidis’ solution, but the larger

domain with nearly 37000 elements effectively portrays the flow modification

caused by the asperity’s presence, which can also be seen in Figure 5.1(b) for

fluid velocity in the z− direction. Using Pozrikidis’ solution as the standard,

Table 5.3 lists the relative percentage errors in the x− and z− fluid velocities

at three positions near the asperity in COMSOL’s solution of the larger (40aa×
20aa × 20aa) computational domain, all of which are less than 2%. From this

validation, it is concluded that when the outer boundaries of the computational

domain are a distance of approximately 20aa from the asperity, fluid velocities

throughout the domain are in good agreement with numerical solutions such

as that of Pozrikidis for which the asperity’s influence on the flow extends to

infinity.
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Table 5.3: Relative percentage error between the COMSOL solution (with
40aa×20aa×20aa domain) and the numerical solution of Pozrikidis [Poz97] for
the undisturbed hydrodynamic field around a single asperity on a flat surface.
The errors are determined for the scaled fluid velocity in the x− and z−
directions at three positions in the x− z plane of the field.

(x/ap, z/ap) COMSOL Pozrikidis Relative %
Solution Solution Error

(−2.0, +1.0) u∗x +0.40982 +0.40787 +0.48
u∗z +0.06026 +0.05954 +1.21

(−2.5, +1.5) u∗x +0.98419 +0.97381 +1.07
u∗z +0.13117 +0.12971 +1.13

(+2.0, +2.0) u∗x +1.33385 +1.33233 +0.11
u∗z −0.24701 −0.24686 +0.06

5.3.2 Use of Trilinear Interpolation

A trilinear interpolation procedure [Tod03] is used to calculate the undisturbed

fluid velocity u at any given location of the particle center within the compu-

tational sub-domain. With the undisturbed hydrodynamic field numerically

determined using the finite element software, this field is then inserted into

the PTM in the form of a three-dimensional Cartesian grid of a particular res-

olution that is equal in all three Cartesian directions. The largest resolution

possible, 0.5ap (half of the particle radius), was selected for the flow fields in

this study in order to decrease the size of the flow field data files that are read

into the PTM’s FORTRAN code. This, in turn, reduces the time spent in the

HUNT subroutine to identify adjacent nodes to the current particle position,

and hence reduces the overall duration of simulation runs. This resolution

also ensures that when the particle is nearly in contact with any surface, the

undisturbed flow field at the center of the particle will always be based on grid

nodes that are not on or within the substrate’s surface, thereby avoiding zero

velocities at no-slip boundaries or NaN (i.e., Not a Number) values.

To validate this interpolation technique used by the PTM, the errors in
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fluid velocity in all three Cartesian directions are compared against the infinity

norm (i.e., vector component with the highest value) of the scaled undisturbed

fluid velocity vector u∗ along a number of paths in a flow field generated by

COMSOL. For scenarios in this study, the infinity norm is the x− compo-

nent of the fluid velocity vector, u∗x, and this is confirmed by comparing the

magnitudes of u∗x and u∗z throughout the flow field in Figures 5.1(a) and (b).

For this validation – as depicted schematically in Figure 5.2 – the asperity-to-

particle size ratio λ = 5 and Paths 1 to 7 originate in the center of the asperity,

which is located at (x/ap, y/ap, z/ap) = (0.0, 0.0, 5.0) (i.e., scaled radial po-

sition r∗ = 0). These paths extend outward from the surface of the asperity

(i.e., r∗ = 5) in the following directions: 1 = x− axis; 2 = xy− diagonal;

3 = y− axis; 4 = yz− diagonal; 5 = z− axis; 6 = xz− diagonal and 7 = xyz−
diagonal.

3

4 7

5 6

1

2

Planar Substrate

Spherical 

Asperity 

(a
a

=5a
p

)

Figure 5.2: Schematic representation of Paths 1 to 7 along which the use of
trilinear interpolation to determine undisturbed fluid velocity throughout the
computational sub-domain is tested. Paths 1 to 7 extend from the center of a
spherical asperity on a planar surface, and the asperity-to-particle size ratio λ
(= aa/ap) for this particular scenario is 5.

In parts (a) to (c) of Figure 5.3, the thick lines show how the fluid velocity
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Figure 5.3: Scaled undisturbed fluid velocity in the prevailing direction of
flow, u∗x, and error in the scaled undisturbed fluid velocity in the (a) x−, (b)
y− and (c) z− directions along Paths 1 to 7 in Figure 5.2. Paths 1, 5 and 6
are not included in (b) because they lie in the x − z plane where u∗y = 0 due
to flow field symmetry, and therefore the error |δu∗y| = 0 as well.
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in the direction of prevailing flow, u∗x, varies with the scaled radial position r∗

along Paths 1 to 7. The lighter lines are for the absolute error in the respective

component of u∗ (e.g. |δu∗y| in the y− direction), and this error is the difference

between the value interpolated in the PTM and the value acquired from post-

processing data in COMSOL. The parabolic curves that these absolute error

lines take are due to the error approaching zero when the position along the

given path coincides with a grid node in the computational sub-domain that

the PTM uses. The vertical dashed line at r∗ = 6 in Figures 5.3(a) to (c)

indicates where the center of a particle would be when in contact with the

asperity. Since the PTM calculates the deterministic particle velocity based

on the undisturbed fluid velocity at the particle’s center, the fluid velocities

and their associated errors for r∗ ≤ 6 are of no concern in this validation.

It is evident from Figures 5.3(a) to (c) that for Paths 1 to 7, the errors

in the fluid velocity in all three Cartesian directions, |δu∗x|,|δu∗y| and |δu∗z|, are

always 2 to 4 orders of magnitude smaller than the infinity norm of the fluid

velocity vector, u∗x. Assuming that the error or uncertainty in u∗ is attributed

to interpolation errors in its Cartesian components, and that these errors are

independent of each other, then the overall error in u∗ is mainly due to the error

in the x− direction. Subsequently, one can conclude from Figure 5.3(a) that

the error in undisturbed fluid velocity introduced by the trilinear interpolation

procedure to the PTM simulations is less than 1%, and therefore, insignificant.

5.4 Brownian Motion

The strictly Lagrangian perspective of the particle’s motion in the PTM must

be reconciled with the Eulerian view of diffusion by Brownian motion. First

consider the spread of a number of particles in the x− direction of the bulk of a

quiescent fluid (i.e., no flow), which can be represented by the one-dimensional

version of Fick’s Second Law [RSS89, vdV89] (i.e., the Convection-Diffusion

equation with the convection term dropped out [MB06]),

∂n

∂t
= D∞

∂2n

∂x2
, (5.1)
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where n(x, t) is the number of particles per unit volume at a distance x and

time t, and D∞ is the Stokes-Einstein diffusion coefficient. With the initial and

boundary conditions – t = 0 for |x| > 0 and x = ±∞ at time t, respectively –

all set at zero, the solution of Eq. (5.1) is the normal, or Gaussian distribution,

n(x, t) =
N√

4πD∞t
exp

( −x2

4D∞t

)
, (5.2)

with N (=
∫ +∞
−∞ n(x, t) dx) as the total number of particles released at x = 0

per unit cross-sectional area, and these particles exert no forces on each other.

Viewed as a space summation, this solution means that at time t, a distribution

of particles has been obtained, with the relative number of particles between

the planes x and x + dx given by f(x, t) dx. From the statistical mechanical

perspective of a time summation, n(x, t) represents the probability that a single

particle in the space summation has been displaced to the region between x and

x+dx. Observing the displacements that the particle undergoes over successive

time intervals, the relative frequency of these displacements will match what

is predicted by Eq. (5.2) for an indefinitely large number of observations (refer

to Note 10 on page 99 of [F5̈6]). Since the particles in the space summation do

not interact with each other, the number of observations can be increased not

only by the total time elapsed but also by the number of particles observed.

In his landmark paper on Brownian motion, Einstein [Ein05] identified the

mean-square displacement (MSD) of the particles as an observable quantity

for this phenomenon, and in the x− direction

MSDx =
1

N

∫ +∞

−∞
x2 n(x, t) dx =

∫ +∞
−∞ x2 n(x, t) dx∫ +∞
−∞ n(x, t) dx

. (5.3)

Substituting Eq. (5.2) into Eq. (5.3) results in,

MSDx = 2D∞t, (5.4)

which applies to the y− and z− directions as well. In the radial r− direction,

the mean-square displacement is the summation of the mean-square displace-

ments in all three Cartesian directions over the same time interval [Ein05],

MSDr = 6D∞t. (5.5)
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To demonstrate how the PTM effectively simulates diffusion in accordance

with Fick’s Second Law, a simple test has been performed, observing the Brow-

nian displacements of a number of particles from an infinitely dilute suspension

released in the bulk of a fluid undergoing no flow (i.e., u = 0). Each particle

is released individually at time t = 0 with zero initial velocity from the origin

of a Cartesian coordinate system that is situated far away from any surfaces

or other particles. Since there are no particle-particle or particle-surface in-

teractions under these conditions, there is no hydrodynamic retardation, so

f1 and f4 (i.e., the only UCFs involved in the PTM’s simulation of Brownian

displacement) are set to 1. The Brownian displacement of the particle in each

of the Cartesian directions is calculated independently, with its position in the

given direction recorded at the end of each time step. This position versus

time information is compiled for all of the particles released in order to deter-

mine the mean-square displacements of the entire set of particles over time.

Because there is no flow in this scenario, time must be scaled with respect to

the diffusion time scale, a2
p/D∞; hence, scaled time t∗ = t(D∞/a2

p). All dis-

placements are scaled with respect to the characteristic length of the particle

radius, ap, and therefore the mean-square displacements are scaled by a2
p.

Ideally, the relationship between their mean-square displacement in a given

direction and total time elapsed should yield a slope that is a multiple of the

Stokes-Einstein diffusion coefficient D∞. After scaling Eqs. (5.4) and (5.5),

the D∞ factor cancels out, so the slope should be 2 in the individual x−,

y− and z− directions (the scaled coefficient of Eq. 5.4) and 6 for the r−
direction (the scaled coefficient of Eq. 5.5). Both of these slopes are drawn

as dashed lines in the graphs of Figure 5.4. Starting with only 10 particles in

Figure 5.4(a), the scaled mean-square displacement (MSD∗) over the scaled

time t∗ only roughly follows the slope for each respective direction. However,

as the number of particles N increases to 20 in Figure 5.4(b) and then 30 in

Figure 5.4(c), one can see that the displacements are in greater agreement with

the slopes. By extension, it is evident that as the total number of particles

released in a PTM simulation is increased, the closer the PTM will emulate
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Figure 5.4: Scaled mean square displacement (MSD∗) over scaled time of
(a) 10, (b) 20 and (c) 30 particles released in the bulk of a quiescent fluid,
simulated using only the Brownian component of the PTM. The mean square
displacements are shown in the x−, y−, z− and r− directions.
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the diffusion mechanism of particle transport.

5.5 Hydrodynamic Interactions

In this section, the results of the PTM’s approximate method for computing

the hydrodynamic retardation on a particle’s motion (using the UCFs with

respect to the separation distance from the closest feature of the substrate)

are compared against those of a numerical method based on the superposition

of two linear velocity fields. The numerical solution methodology for obtaining

this superposed solution is outlined in Appendix B.

5.5.1 Proximity Criteria - Transition Region

Before proceeding with the comparison, there is one issue to address regarding

the proximity criterion of the PTM, as first described in Section 4.2.3. For

the scenarios that the PTM is applied to in this study, the relative (n,t)

coordinate system orients itself with respect to the portion of the substrate

that the particle is closest to: an asperity (i.e., PAP) or the flat surface (i.e.,

PSP). With every asperity-to-particle size ratio λ, there are loci in the flow field

where the particle is equidistant from both the asperity and the flat surface.

These loci form a line of transition in the shape of a paraboloid that cradles

the asperity, as depicted for λ = 5 in the x− z plane by the dashed parabolic

line in Figures 4.3(a) and (b). Figure 5.5 shows, also in the x− z plane, these

lines of transition between PAP and PSP for three different values of λ: 5,

1 and 0.2. The dashed circle represents the size of the asperity for λ = 5,

the dotted circle indicates the asperity’s size for λ = 1, and a solid dot is the

asperity for λ = 0.2. For each of these lines, one particle position is shown

with the directions of the unit normal vectors for PAP and PSP (i.e., nPAP

and nPSP ) included.

As with the case of particle position 1 for λ = 5 in Figure 5.5, a large

change in the direction of the normal with respect to the distance of closest

approach (90◦ between nPAP and nPSP for this position) may introduce some
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Figure 5.5: Schematic representation of the loci in the x − z plane where
the relative (n,t) coordinate system changes orientation between the surface
normal of the flat portion of the substrate and that of the asperity (i.e., be-
tween PSP and PAP; refer to Figure 4.3). Each parabola represents the loci
where the particle is equidistant from the flat portion of the substrate and the
asperity for a given asperity-to-particle size ratio λ (5, 1 and 0.2 in this figure)
is (a) 1 and (b) 5.

error to the PTM’s calculations for hydrodynamic retardation. However, when

λ is reduced – as observed with λ = 1 at position 2 and λ = 0.2 at position 3,

the angle between nPAP and nPSP is smaller over the corresponding transition

line. Therefore, as λ → 0, nPAP → nPSP for the entire flow field, approaching

a sphere-plate interaction for which the UCFs were originally intended. The

steric limit also eliminates the sections of the transition lines closest to the

asperity since the particle can never reside there. One can conclude that the

PTM’s use of the UCFs is not expected to be a significant source of error

in its calculation of a particle’s hydrodynamic interactions with a physically

heterogeneous surface when λ < 1. If λ > 5, the asperity would be large

enough that the particle’s hydrodynamic interactions with it would be like
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those of a sphere and a flat plate. Again the PTM’s use of the UCFs would be

quite accurate in such scenarios, with the exception of the region adjacent to

the asperity’s contact point with the flat surface. This means that scenarios

with a range of 1 ≤ λ ≤ 5 are where one would find the greatest error in the

PTM’s calculation of hydrodynamic interactions.

5.5.2 Comparison of PTM with Numerical Method of
Superposed Solutions

Figure 5.6 shows the relative percentage difference between the particle ve-

locity components evaluated using the PTM and the numerical method of

superposed solutions described in Appendix B. Only particle velocities in the

x− and z− directions (vx and vz, respectively) are considered for this com-

parison, looking at the two asperity-to-particle size ratios where the greatest

error may be found – λ = 1 (Figure 5.6a) and λ = 5 (Figure 5.6b) – with

the numerical method regarded as the standard. For both the PTM and the

numerical method, COMSOL has been used to solve for the corresponding

fluid flow over the computational domain (half-field) for the appropriate sys-

tem parameters and boundary conditions. In all of these scenarios, the size of

the computational domain for λ = 1 is 40ap × 20ap × 20ap, and enlarged to

80ap × 40ap × 40ap for λ = 5. The schematic insets in Figures 5.6(a) and (b)

show the three lines (numbered 1 to 3) on the x − z plane along which the

particle’s velocity components are studied in this comparison. Figure 5.6(a)

does not include Line 1 due to steric constraints, as a particle centered on the

midplane of an asperity of equal size and moving along the x− axis would be

in contact with the flat portion of the substrate, and therefore the particle’s

velocity would always be zero. The z− component of the particle velocity is

not analyzed for Line 2 in Figures 5.6(a) and (b) since the fluid velocities in

the z− direction along these lines are very close to zero. Values for vz along

Line 3 are also not shown in Figure 5.6(a) due to some anomalous results in

one component of the numerical method when H ≤ 2.24. Separation distances

of H < 0.5 are not included here, as it was discovered that the errors in the

116



results of the numerical method start to become significant in that range of H.

This is mainly because the numerical method in Appendix B, in its current

form, does not account for the effects of particle rotation on the hydrodynamic

interactions.

In Figures 5.6(a) and (b), a positive percentage difference indicates that the

UCFs in the PTM have underestimated the hydrodynamic retardation effect

for the scenario, while a negative percentage difference means that the UCFs

overestimated the effect. For λ = 1 in Figure 5.6(a), the absolute percentage

difference in vx between the numerical solution and the approximate results of

the PTM for Ha ≥ 1 is about 1% or less for both Lines 2 and 3. This signifies

that when the asperity and the particle are of equal size, the PTM accounts

for hydrodynamic interactions very effectively in the far-field and down to

Ha = 1. When Ha = 0.5, the difference becomes more substantial, reaching

almost −5% on Line 2 and dropping to nearly −11% on the diagonal Line 3.

However, these negative percentage differences show that the PTM imposes

more hydrodynamic retardation on the particle than is required for Ha ≥ 0.5.

In other words, the PTM’s depiction of hydrodynamic interactions for this

value of λ would lead to slightly reduced probabilities in particle deposition

on the surface. This is expected in the near-field, since the UCFs in the

PTM are based on sphere-plate interactions, with the surface of an entire

plate (instead of the smaller adjacent surface area of an equal-sized sphere)

imparting hydrodynamic stress on the particle.

Looking at a larger asperity (λ = 5) in Figure 5.6(b), Line 1 starts with

difference of about +3% at Ha = 10, then drops slightly until reaching Ha = 4

where the difference increases back to +3%. At this separation distance, the

relative (n, t) coordinate system changes orientation, with n pointing toward

the asperity instead of the flat surface as depicted with particle position 1

in Figure 5.5. Despite the 90◦ change in the direction of n, its effect on

the accuracy of the PTM’s calculation of vx is minor. The insignificance of

this effect is because hydrodynamic interactions are not prominent at this

separation distance, and the UCFs employed to calculate vx for PSP and
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Figure 5.6: Validation of the use of UCFs in the Particle Tracking Model
(PTM) to determine the hydrodynamic resistance (i.e., retardation effect)
on the particle when it is in close proximity to the spherical asperity when
asperity-to-particle size ratio λ is (a) 1 and (b) 5. The percentage difference
between the particle’s velocity v (due to hydrodynamics only, in the x− and z−
directions) as determined by the PTM and as determined by the numerical
method described in Appendix B (i.e., basis for comparison) is shown for
several separation distances between the particle and the asperity along (a)
two or (b) three lines in the x − z plane (refer to the corresponding inset
schematic for each subfigure).
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PAP (refer to Figure 4.3 changes very little (i.e., at H = 4: f3 = 0.9863 for

tangential to the flat surface; f1f2 = 0.9892 for normal to the asperity). This

transition becomes more seamless when the particle moves further away from

the composite substrate. Further decreases in Ha lead to negative percentage

differences in vx, but with a difference of only −6% at Ha = 0.5. For vx when

the particle is situated Lines 2 and 3, the difference between the PTM and

the numerical method in Appendix B remains around +3% for 0.5 ≤ Ha ≤ 5.

This signifies that the PTM underestimates the hydrodynamic retardation on

vx to a small extent for particle positions around the top-half of the asperity.

Although the top half of this asperity is substantially disconnected from the

flat portion of the substrate, the influence of the entire composite substrate on

hydrodynamic interactions is slightly understated by the PTM, though still an

acceptable approximation. For the vertical component of the particle velocity

on Line 3, the difference in vz remains within ±2% for Ha ≥ 1 and only about

+8% for Ha = 0.5.

It is anticipated that at very small separations between the particle and the

asperity, some velocity components evaluated using the PTM’s approximate

methodology may exhibit a large error. However, for the parameters of this

study, the colloidal and Brownian forces will have a dominant influence on the

particle’s displacement at such separations.

5.5.3 Angle between Fluid and Particle Velocity Vec-
tors

Due to the linearity of the hydrodynamic field in Stokes flow, the hydrody-

namic interactions between a spherical particle and another surface can be

determined from the undisturbed fluid velocity at the center of the particle.

Ideally, when the Stokes number for the particle is low enough (St ≤ 10−5) and

regardless of the direction of flow, the particle’s velocity would be in the same

direction as the fluid but with a lower magnitude (|v| < |u|). For the scenarios

in this study, however, the PTM sometimes underestimates or overestimates

the effect of hydrodynamic retardation on the particle in the near-field, as
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noted in the comparison of Figure 5.6. This may result in instances where the

fluid and particle velocity vectors are not collinear. Similar to the DLVO force

direction maps of Figures 3.11(b) and 3.12(b), Figure 5.7 is a map in the x−z

plane of the angular deviation between the undisturbed fluid velocity vector

u and its associated particle velocity vector, v, as determined by the PTM

for the region near an asperity with an asperity-to-particle size ratio of λ = 5.

In this figure, the asperity is shown with a dashed circle centered above the

origin of the global Cartesian coordinate system. The dot product of the unit

vectors for u and v (i.e., eu and ev, respectively; eu = u/|u|, for example)

yields the cosine of the angle β between them (i.e., eu · ev = cos β).

v
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Figure 5.7: Angular deviation between the fluid and particle velocity vec-
tors (u and v respectively) in the vicinity of a spherical asperity when the
asperity-to-particle size ratio λ = 5. The shading scale is based on the dot
product of the two vectors, yielding the cosine of the angle between them, β.
A schematic depiction of the angle β is shown for an arbitrary point P in the
flow field, including the normal and tangential components of the two vectors
with respect to the point of closest approach with the substrate.
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The shading scale for Figure 5.7 focuses on the range of 0.9 ≤ cos β ≤ 1.0,

with all values below 0.9 displayed with the darkest shade. A value of 1.0

signifies that u and v are parallel and pointing in the same direction (β = 0),

thereby indicating that the PTM is accurately accounting for hydrodynamic

interactions between the particle and the composite substrate. As cos β de-

creases from 1.0, the angular deviation increases (e.g. cos β = 0.9 represents

an angle β of 25.8◦) as depicted schematically in an exaggerated manner for the

arbitrary position P near the asperity in Figure 5.7. In this schematic, it can be

seen that the angular deviation arises when the magnitudes of the normal and

tangential components of the particle velocity vector (vn and vt, respectively)

are reduced more quickly than they should be when the PTM calculates the

hydrodynamic interactions. In Figure 5.7, the regions where the highest angu-

lar deviation occur are along the surface of the asperity and on the flat surface

neighbouring the asperity. An exception to this is the immediate vicinity of

the front stagnation point of the asperity, (x/ap, y/ap, z/ap)=(−5.0, 0.0, 5.0)

where u and v are essentially normal to the asperity’s surface. Regions of

angular deviation on the asperity’s surface are expected since the PTM’s use

of the UCFs overestimates the hydrodynamic retardation effect on the particle

by treating the asperity as a large flat plate. The angular deviation for the

region on the flat surface occurs because the presence of the asperity further

retards the tangential (with respect to the flat surface) component of the par-

ticle’s velocity. This increased retardation is not accounted for by the PTM in

this area, for which the UCFs are calculated solely on the basis of closest ap-

proach to the flat surface. Nonetheless, all of these regions of highest angular

deviation are in the near-field (i.e., at small separation distances, H < 0.5)

of the composite substrate, where colloidal interactions and Brownian motion

are typically the dominant transport mechanisms. It should also be noted

from Figure 5.7 that there is little sign of angular deviation along the line of

transition between PAP and PSP (refer to Figure 5.5, λ = 5).

The preceding comparisons show that the PTM’s approximation technique

provides a reasonable estimate of the hydrodynamic interactions for a particle
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near a substrate with a complicated geometry. One of the goals of this study

is to improve upon the velocity field used in conventional deposition models

assuming a smooth substrate, so the simple methodology of the PTM, albeit

approximate, constitutes a substantial improvement in how hydrodynamic re-

tardation of a particle near a rough substrate is computed.

5.6 Happel Cell Model

As noted earlier, the PTM’s approach to simulating particle trajectories is

somewhat similar to that of the Lagrangian model described in a recent pa-

per by Nelson and Ginn [NG05]. In their paper, the authors used their ap-

proach with the analytical Happel Sphere-in-Cell Model, which is commonly

employed to simulate packed bed filtration and particle deposition in porous

media [Hap58,SF73,EO90a,EO90b,TBW07]. For a range of particle sizes, they

compared their results for the initial collection efficiency of a single spherical

collector, η, with the established correlation equations of Rajagopalan and

Tien [RT76,RTPT82, LJA+95] and Tufenkji and Elimelech [TE04]. The ini-

tial, single collector collection efficiency is defined as the ratio of the overall

rate of deposition onto the collector to the convective flux of particles upstream

from the collector over the projected area of the collector [TE04]. With this

classic deposition model, the effectiveness of the PTM is demonstrated through

the same comparison in Figure 5.8, also including the results of Nelson and

Ginn [NG05] with the correlations previously mentioned.

The system parameters for this validation, as shown in Table 5.4, are iden-

tical to those of Table 3 in Nelson and Ginn [NG05] with the following ex-

ceptions: (i) gravity is not included, and (ii) the number of released particles

for each simulation is 10000. No electrostatic interactions are included in

any of these curves and results. For the PTM, each particle is released from

a randomly-determined position on the surface of the Happel fluid shell up-

stream from the collector.

Figure 5.8 reveals that the results from the PTM simulations, including
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Table 5.4: Parameters used in the Happel cell scenario, as listed in Table 3
of Nelson and Ginn [NG05].

Quantity Symbol Value Units

Collector radius ac 163.5 µm
Porosity χ 0.372 −
Approach velocity U∞ 3.4375×10−4 m/s
Fluid viscosity µ 8.9×10−4 Pa·s
Hamaker constant AH 10−20 J
Particle density ρp 1070 kg/m3

Fluid density ρf 997 kg/m3

System temperature T 298 K
Time step ∆t 1 µs
Number of released particles N 6000 −

error bars [BHH78], follow the correlation curve of Rajagopalan and Tien

throughout the entire range of particle sizes shown. In the interception-

dominated regime (i.e., large particles), PTM simulations are in good agree-

ment with the predictions of both the Rajagopalan-Tien and Tufenkji-Elimelech

correlations (with gravity excluded). In the strictly Brownian regime (i.e.,

diffusion-dominated; ap ≤ 1000 nm), the analytical solution of the convection-

diffusion equation yields the widely-recognized Levich approximation [Lev62,

EGJW95]. For this regime, the collection efficiency of Brownian particles is

proportional to N
−2/3
Pe , with NPe being the Peclet number. The curve of Ra-

jagopalan and Tien [RT76,RTPT82,LJA+95] has such a slope in the Brownian

regime, and the results from the PTM also follow this slope in this regime.

Earlier studies [NMB06b,NMB06a] have stated that the inclusion of gravity

could lead to a deviation of the η vs. Pe curve in the Brownian deposition

regime from the Levich solution. This deviation depends on the relative mag-

nitudes of convective, diffusive and migrational forces. For instance, even for

purely attractive colloidal interactions, one may observe no deposition if grav-

ity opposes the colloidal interactions [NMB06b,NMB06a].

Despite the shared Lagrangian approach that this present study has with
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Figure 5.8: Variation of initial collection efficiency η with particle radius ap

for a single spherical collector using the Happel Sphere-in-Cell Model. The
PTM simulations (present study) are performed under identical conditions
as in Table 3 of Nelson and Ginn [NG05], but with gravity excluded. The
results of the present study are shown with established correlation equations
of Rajagopalan and Tien [RT76, RTPT82, LJA+95] (solid line) and Tufenkji
and Elimelech [TE04] (dashed line), as well as the results of Nelson and Ginn
[NG05] (dotted line with hollow circles).

that of Nelson and Ginn, there is a substantial difference between their results

and those of the PTM in the Brownian regime. Considerable effort was applied

to uncover the source of discrepancy between the two sets of the results, but to

no avail thus far. Since the difference is mainly for Brownian particles and is

more pronounced for smaller values of ap, these factors point to the Brownian

displacement term as a possible source. There is also a significant difference

in how η is determined for the two approaches, but this possibility was not

pursued in the present study. Further exploration is required to determine

what causes this discrepancy. It is important to note that all of the lines in

Figure 5.8 are from correlation equations (Rajagopalan and Tien, Tufenkji

and Elimelech) or integrations over space of estimated probability functions

124



for particle collection (Nelson and Ginn). Consequently, these lines do not

show the scatter of raw data as the results of the PTM simulations do.

5.7 Summary

Using several dimensionless numbers, the limits of the PTM’s parameter space

have been defined, relating particle size to the maximum average channel ve-

locity Uavg that can be considered. For the undisturbed hydrodynamic field,

the accuracy with which it is determined using finite element software and the

effectiveness of trilinear interpolation in determining fluid velocity throughout

the sub-domain grid has been confirmed. The approximate manner in which

the PTM accounts for hydrodynamic interactions between a particle and a

model rough surface has been shown to produce valid results in a range of

interaction from the far-field to less than one particle radius, where colloidal

interactions start to be more significant. Application of the PTM to determin-

ing the collection efficiency of an isolated spherical collector using the classic

Happel cell model reveals good agreement with established, semi-empirical cor-

relation equations. With the PTM validations complete, the following chapter

begins the exploration of the parameter space to which the PTM can be ap-

plied for a substrate with a single spherical asperity on it.
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Chapter 6

Particle Transport Near
Surfaces with Spherical
Asperities

6.1 Introduction

The PTM’s parameter space is now defined and various aspects of the PTM’s

approach to simulating Brownian particle motion near heterogeneous sub-

strates have been validated. In this chapter, the PTM is applied to a number

of scenarios involving one or more spherical asperities protruding from a pla-

nar surface in the presence of a one-dimensional shear flow moving across it.1

Modeling physical heterogeneity of a substrate using simple shapes such as

spheres in ordered arrangements is certainly not an exact portrayal of a real,

natural surface. Such models, however, add some sophistication to simulations

of particle transport and deposition near collectors that would have features

of heterogeneity, whether they are natural or artificial. Currently, there are

efforts to manufacture substrates with ordered arrays of nanoscale asperities,

as first mentioned in Section 2.3.3. In the course of analyzing the results of

these scenarios, this chapter discusses (i) the importance of accurately de-

picting the undisturbed flow field near a rough surface, (ii) how the presence

of surface roughness on a collector can modify near-field hydrodynamics and

1Some of the contents of this chapter have been published. Kemps and Bhattacharjee,
2009, Langmuir, 25(12):6887-6897.
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ultimately affect the probability of particle deposition, and (iii) the effects

of physical and/or chemical heterogeneity on deposit morphologies and other

particle deposition phenomena.

6.2 Deposition in the Presence of a Single As-

perity

Before embarking on investigations of systems with numerous asperities, an

exploration of particle transport and deposition in the vicinity of a single

spherical asperity is apropos. The objectives of this section are to demonstrate

(i) how the presence of a single spherical asperity can modify the deposition

behaviour on an otherwise smooth surface, (ii) the extent to which inclusion

of hydrodynamic interactions can modify predictions of particle deposition,

and (iii) how deterministic and Brownian forces interact with the asperity

to yield variations in the deposition behaviour. From this point, all of the

simulations in subsequent discussions use full, numerically-determined three-

dimensional (and, for a few instances, two-dimensional) flow fields, as opposed

to the analytical equations for the flow field used in Section 5.6.

6.2.1 Trajectory Analysis - Hydrodynamics Only

As a starting point, the influence of the deterministic forces on particle deposi-

tion is explored using PTM simulations that are performed while suppressing

Brownian motion. Figures 6.1 and 6.2 depict the deterministic particle trajec-

tories around a single asperity on an otherwise smooth planar surface, but in

the absence of any colloidal (DLVO) forces. These simulations are performed

using an asperity-to-particle size ratio (λ) of 5. With such a size ratio, the

asperity protrudes a substantial distance into the fluid and the top half of the

asperity is “more disconnected” from the flat portion of the substrate than

with a lower value of λ. Consequently, fluid flow in the asperity’s vicinity is

significantly affected and the substrate’s accessible surface area for particle

deposition (when compared with a flat surface) is markedly increased. The
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Peclet number (Pe) for these figures is arbitrary since the flow field is scaled

with respect to the average fluid velocity in the channel Uavg, and only hydro-

dynamic interactions and drag in the Stokesian regime are accounted for.
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Figure 6.1: Comparison of particle trajectories in the x − z plane (i.e.,
y/ap = 0) along the center of a spherical asperity with (solid lines) and without
(dashed lines) hydrodynamic correction functions (UCFs). The endpoints of
the limiting trajectories (thick lines) mark where the particles are intercepted
by the asperity. The thinner pathlines extending downstream from the asperity
are escape trajectories. Colloidal (DLVO) interactions are not included in these
simulations, and the asperity-to-particle size ratio λ = 5.

In Figure 6.1, the trajectories are shown along the x−z plane (y = 0, plane

passing through the asperity center), and the particles are released from a po-

sition at a significant distance upstream from the asperity (i.e., x/ap = −15).

The thick lines of Figure 6.1 represent the limiting trajectories that a particle

would follow to be adsorbed onto the asperity. In particular, the discontin-

uous lines in this figure depict the upper and lower limiting trajectories for
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the interception of the particle by the asperity when the hydrodynamic cor-

rection functions (f1 to f4) are not considered. The solid lines represent the

corresponding limiting trajectories when the hydrodynamic interactions are

considered. Particles released from heights between the upper and lower lim-

iting trajectories will be intercepted by the asperity, and those released from

positions above the upper limiting trajectory are not deposited anywhere, as

shown by the thin lines in Figure 6.1. The limiting particle trajectories with

the application of UCFs show a shorter range (compared to not using UCFs)

of particle release heights from which they will be intercepted by the asperity.

When observed in three-dimensional space, Figure 6.2 reveals how the lim-

iting trajectories for each case (i.e., without UCFs and with UCFs) trace the

perimeter of a nearly semi-circular area AL in the y − z plane at the position

where the particles are released from, x/ap = −15. This is the interception

cross-section area for the top half of the asperity, and all particles released

from within this area are intercepted by the asperity. The full interception

cross-section area in the y − z plane is not circular (instead, somewhat ellip-

tical) due to the presence of the planar substrate. However, the lower half

of the cross-section area is not a concern for this study since many particles

released from there would be adsorbed on the flat portion of the substrate

before having significant interactions with the asperity (refer to Appendix C

for more details). It is evident from the limiting trajectories in Figure 6.2

that even in the purely convective limit, the particle deposition probability

on the composite substrate containing a single asperity will be altered due to

interception. It is also evident that the asperity primarily modifies the undis-

turbed flow field, which influences the deposition considerably. A comparison

of the interception cross-section areas in Figures 6.2(a) and (b) shows that the

inclusion of the UCFs will reduce the interception cross-section.

6.2.2 Trajectory Analysis - With Colloidal Interactions

Figures 6.3 and 6.4 depict the deterministic limiting trajectories in the presence

of attractive (favourable) and repulsive (unfavourable) DLVO interactions, re-
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Figure 6.2: Comparison of limiting particle trajectories in three dimensions
around a spherical asperity without (a) and with (b) hydrodynamic interac-
tions included. Colloidal (DLVO) interactions are not included in these sim-
ulations. At x/ap = −15 (where the particles are initially released), the area
enclosed by the limiting trajectories (AL) is found within the projected area
of the top half of the asperity (Aa) in the y − z plane.
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spectively. For this part of the study, the electrostatic double layer interactions

between the particle and the substrate are held constant, and favourable and

unfavourable interactions are simulated by simply varying the magnitude of

the Hamaker constant (pertinent interaction parameters given in Table 6.1).

The parameters listed in Table 6.1 can be regarded as part of the basic system

configuration for the PTM simulations, and all subsequent system configura-

tions are derived from it, with one or more of these parameters modified to

explore certain effects. The particle Peclet number is a function of shear rate

γ̇, which itself is a function of the average fluid velocity in the channel, Uavg,

and the channel’s half-height, b [EGJW95]:

Pe =
γ̇a2

p

D∞
=

18πµa2
pUavg

kBT

(
ap

b

)
(6.1)

Table 6.1: Basic system configuration parameters used with the PTM simula-
tions. Note that Case FF corresponds to when the entire composite substrate
is fully favourable and Case UU to when it is fully unfavourable.

Quantity Symbol Value Units

Particle radius ap 100 nm
Scaled asperity radius (aa/ap) λ 5.0 −
Scaled Hamaker constant (Case UU) AH,pi/(kBT ) 1.0 −
Scaled Hamaker constant (Case FF) AH,pi/(kBT ) 5.0 −
Surface potential ψp, ψi −25 mV
Particle density ρp 1000 kg/m3

Fluid density ρf 1000 kg/m3

Fluid viscosity µ 10−3 Pa·s
System temperature T 298.15 K
Permittivity of medium ε 6.95×10−10 C2/N·m2

Shear rate γ̇ 3 to 3000 /s
Electrolyte (1:1) concentration I 10−1 M

Favourable Conditions to Deposition

The limiting trajectories along the x−z plane for capture by the asperity (λ =

5) in the presence of attractive DLVO interactions between the particle and the
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composite substrate (i.e., favourable conditions to deposition, or Case FF) are

presented in Figure 6.3. Under these conditions, both the spherical asperity

and the flat portion of the substrate attract the particle. Figures 6.3(a) and (b)

show the trajectories for two Peclet numbers, Pe = 0.014 and 1.4, respectively.

For favourable deposition, there are two limiting trajectories (shown as

thick solid lines) that bound the release positions of particles leading to their

capture by the asperity. The upper limiting trajectory terminates at the trail-

ing edge of the asperity, while the lower limiting trajectory terminates some-

where on the asperity upstream from the upper limiting trajectory endpoint.

Initial release heights of both these limiting trajectories are sufficiently distant

from the planar substrate so that any particle-plate DLVO interactions are

negligible relative to the flow intensity. For these limiting trajectories, the

particle is convected with the flow, experiencing some hydrodynamic lift as

it approaches the asperity, and only when it comes in close proximity to the

asperity does the migrational DLVO force exert a measurable influence on its

trajectory. Note that the interception zone subtended by these limiting tra-

jectories is comparable to that obtained in Figure 6.1 when the UCFs were

not considered (discontinuous lines). This indicates that the long-range van

der Waals attraction and long-range hydrodynamic retardation effects approx-

imately cancel each other.

For the low Peclet number of 0.014 in Figure 6.3(a), the relatively low

convective forces allow the upper limiting trajectory to circle around the as-

perity and reach a position of 165◦ (close to the rear stagnation point) before

making contact. The initial release height of this trajectory is approximately

11ap, which is higher than the asperity. At the higher Peclet number of 1.4,

the upper limiting trajectory starts at a height of about 8ap in Figure 6.3(b),

and it terminates on the asperity at an angle of 145◦. Therefore, increasing

the flow intensity reduces the height of the upper limiting trajectory, and de-

creases the surface area of the asperity on which the particles can deposit.

Furthermore, deposition does not occur at the rear stagnation point of the

asperity for favourable conditions (based on the DLVO interaction parameters
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Figure 6.3: Limiting, escape and flat surface trajectories in the x− z plane
of particles under favourable conditions (Case FF) to deposition for the entire
composite substrate (i.e., single asperity with planar substrate). These trajec-
tories are determined at two different particle Peclet numbers: (a) 0.014 and
(b) 1.4. The parameters for these simulations can be found in Table 6.1.
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in Table 6.1), as particles tend to deposit closer to the peak of the asperity.

The lower limiting trajectories of Figure 6.3 also show interesting depen-

dence on the flow intensity. For Pe = 0.014, the initial height of the lower limit-

ing trajectory is 4ap. Particles following this trajectory are lifted slightly higher

as they approach the asperity, eventually depositing at a location slightly be-

low the forward stagnation point (angular location −2◦). In contrast, initial

height of the lower limiting trajectory for Pe = 1.4 is about 3ap, in which case

the trajectory leads to the particle being wedged between the asperity and

the flat surface, at the −42◦ position. Particles originating below this height

deposit on the planar substrate before reaching the asperity.

If it is not intercepted by the asperity or depositing on the planar substrate,

the particle will follow the escape trajectory, such as those shown by the dash-

dot lines in Figures 6.3(a) and (b). These escape pathlines are obtained by

releasing the particles at heights slightly above their associated limiting trajec-

tories. Figure 6.3 also includes flat surface trajectories (dashed lines) depicting

the paths that particles would travel when released from the same initial po-

sition as their associated limiting trajectories if the asperity was not present.

When comparing the height of the escape trajectories with the flat surface

trajectories at a point downstream from the asperity (i.e., x/ap = +15), it

is apparent that the asperity exerts a net attraction on the moving particle,

bringing it closer to the planar region of the collector at downstream locations.

Unfavourable Conditions to Deposition

The limiting trajectories in the presence of unfavourable DLVO interactions

(i.e., unfavourable conditions to deposition, or Case UU) are depicted in Fig-

ure 6.4 for the same Pe values and the same system as in Figure 6.3. Under

these conditions, the system’s Hamaker constant is relatively low, so there

is a substantial repulsive EDL force barrier that prevents particle adsorption

anywhere on the composite collector surface. Although the paths of the limit-

ing trajectories for unfavourable conditions are comparable to those obtained

with favourable conditions, they do not terminate in the same manner as in
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Figure 6.4: Limiting, escape and flat surface trajectories in the x− z plane
of particles under unfavourable conditions (Case UU) to deposition for the
entire composite substrate (i.e., single asperity with planar substrate). These
trajectories are determined at two different particle Peclet numbers: (a) 0.014
and (b) 1.4. The parameters for these simulations can be found in Table 6.1.
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the favourable case. For unfavourable interactions at both Peclet numbers

(Figures 6.4a and b), the terminal position of the particle is the rear stagna-

tion region of the spherical asperity (i.e., 180◦ position with respect to the

shear flow direction), at a finite separation from the asperity. In this region,

there are no significant tangential (with respect to the asperity) forces acting

on the particle. This separation distance is located just beyond the secondary

DLVO minimum where, in the normal direction to the asperity, a small at-

tractive colloidal force is balanced against a small outward fluid drag force.

The force balance in the x− direction can be seen in Figure 6.5, with the ra-

tio FDLV O∗
x /F drag∗

x approaching −1.0 (i.e., equal but opposite) as the particle

rolls toward the rear stagnation point at θ = 180◦. With these deterministic

forces canceling each other, a local “equilibrium” has been reached at which

the particle can be trapped indefinitely.

The idea of colloidal particles being immobilized or trapped in the sec-

ondary energy minimum has been proposed in several recent studies [RWE04,

HAO04, TE05b, KE07]. Experimental results from Kuznar and Elimelech

showed 4.1 µm particles depositing in the rear stagnation points of spher-

ical glass bead collectors despite conditions being unfavourable to deposi-

tion [KE07]. They concluded that once the particles reach the secondary

minimum, they translated along the glass bead surface until they reached a

region of stagnant flow. This explanation seems feasible based on the results

of the PTM simulations shown in Figure 6.4. However, it should be noted

that the particles used by Kuznar and Elimelech were much larger than those

used in this study (i.e., 100 nm), so the secondary minimum would be much

deeper and particle trajectories would be predominantly deterministic for their

experiments. The terminal points of these trajectories in Figure 6.4 do not

represent a definitive contact with the asperity, but rather a “soft” immobi-

lization based on virtually no observable displacement of the particle in a local

deterministic force equilibrium. Such a scenario would change when Brownian

motion is accounted for in the particle’s transport.

The initial positions of the upper limiting trajectories in Figures 6.4(a)
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Figure 6.5: Ratio of scaled DLVO force over scaled drag force acting on the
particle in the x− direction as it travels along its limiting trajectory around a
single spherical asperity (shown as angular position θ relative to the forward
stagnation point) under unfavourable conditions (Case UU). Three values of
Pe are shown here: 0.014, 0.14 and 1.4 (refer to Eq. 6.1).

and (b) are only slightly lower than the release points for the corresponding

trajectories with favourable DLVO interactions (Figures 6.3a and b). Un-

like for favourable conditions, lower limiting trajectories are not shown for

the unfavourable case; each particle released below the upper limiting tra-

jectory either finds its way to the equilibrium position where it is trapped,

or it meanders through – and eventually exits – the computational domain.

Figures 6.4(a) and (b) also show the escape trajectories of the particles as

dash-dot lines extending downstream from the asperity, and the trajectories

for a smooth flat plate (i.e., in the absence of the spherical asperity) are shown

as dashed lines. Again, a comparison of the flat surface trajectories with their

associated escape trajectories reveals that the particle is brought closer to the

flat substrate downstream from the asperity for unfavourable colloidal interac-
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tions as well. This can be mainly attributed to the long-range van der Waals

attraction between the particle and the asperity.

Figures 6.3 and 6.4 ultimately demonstrate the significance of depicting the

hydrodynamic field around a rough surface as accurately as possible in order

to model deposition phenomena with greater realism. Comparisons of all of

the respective flat surface and escape trajectories indicate that particles tend

to be attracted toward the composite substrate downstream from an asperity

(i.e., the dash-dot line falls below the dashed line), regardless of whether the

short-range particle-asperity colloidal interactions are attractive or repulsive.

6.2.3 Deposition Probability - Deterministic Forces

Different approaches to modeling the deterministic forces (particularly hydro-

dynamics) can lead to variations in deposition probability for the spherical

asperity. To demonstrate this, a number of simulations spanning the range

of shear rates listed in Table 6.1 (and hence, Pe values, through Eq. 6.1)

were performed for several scenarios. The first scenario represents the classi-

cal approach to studies of deposition, in which the collector is assumed to be

a smooth, flat surface. Each subsequent scenario highlights one component of

the PTM’s approach to modeling particle transport and deposition onto het-

erogeneous surfaces. Comparisons of the results from these scenarios reveal

how each component of the PTM plays a role in particle deposition on these

physically heterogeneous surfaces.

For each simulation run, 1000 particles are released one at a time from

random positions within a semi-circular window in the y − z plane located at

x/ap = −15, as shown schematically in Figure 6.6. The semi-circular cross-

section of the window is equal to the projected area of the upper half of the

asperity. Only the top half of the asperity is considered to clearly isolate

deposition onto the asperity. The time step used in these simulations, ∆t, is

1 µs. The deposition probability on the asperity can be defined as

φa =
Number of particles deposited on the asperity

Number of particles released
. (6.2)

138



Flat surface

Spherical

asperity,

a
a
/a

p
 = 5

x-y plane

Moving

particle

x

Particle

release

area

O

z

x/a
p
 = -15

Side ViewProjected View

Figure 6.6: Deposition onto a planar substrate containing a single spherical
asperity. Schematic showing the semi-circular area from which the particles
are released randomly into the domain containing a single spherical asperity
(i.e., aa = 5ap).

Figure 6.7 compares the variation of φa with Pe as computed using differ-

ent modeling approaches, considering only the deterministic forces. The first

approach (symbol: asterisk) shown in Figure 6.7 employs the undisturbed ve-

locity field near a flat surface (one-dimensional shear flow). The disturbance

to the flow field due to the presence of the asperity is ignored. Also, the

hydrodynamic universal correction functions (UCFs) are not used (i.e., f1 to

f4 = 1) and no DLVO interactions are considered in this scenario. In this

case, the trajectory calculations lead to two trivial results. If the asperity is

present (but not accounted for hydrodynamically), all of the particles released

are intercepted by it (i.e., φa = 1.0), regardless of Pe. The other trivial result

is that in the absence of the asperity, no particle released from this region will

deposit on the planar substrate.

The second approach (symbol: hollow triangle) uses the detailed, undis-

turbed velocity field near the asperity (computed numerically). As with the

first approach, neither the UCFs (i.e., f1 to f4 = 1) nor the DLVO interactions

are used in these simulations. In other words, although the hydrodynamic field

modification due to the asperity is considered, higher order hydrodynamic and
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colloidal interactions between the particle and the substrate are neglected. The

deposition probability is markedly reduced to approximately 0.16 in this case,

but it remains independent of Pe. This reduction occurs because inclusion of

the detailed velocity field around the spherical asperity dramatically reduces

the size of the interception cross-section area relative to the projected frontal

area of the asperity (i.e., AL relative to Aa respectively in Figure 6.2a).

When the UCFs are applied to the particle’s equations of motion (symbol:

hollow circle), there is a further reduction in deposition probability, down to

about 0.03. The increased hydrodynamic resistance between the particle and

the asperity as they approach each other prevents nearly all particles from

depositing on the asperity. The deposition probability in this case would be

zero if contact was defined in the PTM as when the separation distance h

is zero. For simulations in this study, contact occurs when h = 0.3 nm (see

Section 4.3.8: Trajectory Termination Criteria), which accounts for Born re-

pulsion (from overlapping electron clouds) and avoids divergence in the van der

Waals force calculation. Consequently, a few particles are able to make contact

with the asperity before the Stokes’ lubrication force (i.e., hydrodynamic in-

teractions) can prevent it. Therefore, the inclusion of UCFs with the detailed

velocity field further reduces the interception cross-section area AL, which was

demonstrated earlier in going from part (a) to (b) in Figure 6.2. In all the

above situations, the mechanism of particle capture is purely interception, and

the φa values simply reflect the reduction in the interception region compared

to the projected asperity area in the presence of the detailed hydrodynamic

field, and subsequently, the UCFs. None of the preceding cases included DLVO

interactions, and deposition probability was always independent of Pe.

The resulting deposition probabilities with the preceding scenarios are

somewhat analogous to the generally accepted definition of collection efficiency

due to interception ηI [MB06] if applied to only the top half of the asperity. A

rigorous expression for the collection efficiency due to interception under these

circumstances is derived in Appendix C. Using the starting positions from the

limiting trajectories in Figures 6.2(a) and (b), results from this expression for
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Figure 6.7: Variation of deposition probability φa with particle Peclet num-
ber, Pe, in the deterministic simulations. The results of four approaches
to these simulations are shown with the following symbols: asterisk = one-
dimensional shear flow on a planar surface (asperity not considered); hollow
triangle = explicit, numerically-evaluated flow field around the composite sub-
strate; hollow circle = UCFs included with explicit flow field; filled square =
UCFs and favourable deposition conditions (FF) included with explicit flow
field; filled star = UCFs and unfavourable deposition conditions (UU) included
with explicit flow field. The parameters for these simulations are shown in Ta-
ble 6.1.

ηI are compared with those of the average deposition probabilities φa for the

hollow triangles (without UCFs) and hollow circles (with UCFs) in Figure 6.7.

As Table C.1 reveals for both scenarios, there is good agreement between ηI

and φa for the top half of the asperity.

The filled squares and stars in Figure 6.7 represent the deterministic sim-

ulations including attractive (favourable) and repulsive (unfavourable) DLVO

interactions, respectively. With the introduction of the DLVO interactions,

a relationship between φa and Pe can be observed as a general trend of de-
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creased deposition probability as Pe → 1. The simulations were conducted by

considering the detailed flow field as well as higher order hydrodynamic inter-

actions (UCFs). In the presence of both favourable and unfavourable DLVO

interactions, a higher probability of deposition compared to φa ≈ 0.03 can be

observed, which was obtained on the basis of hydrodynamic interactions alone.

Under favourable conditions (Case FF, symbol: filled square), the deposition

probability is 1.0 (all particles released are deposited on the asperity) until

Pe ≈ 0.05, and then falls to about 0.45 for Pe = 1.0. For unfavourable depo-

sition (Case UU, symbol: filled star), φa decreases almost monotonically from

about 1.0 at the lowest Peclet number to less than 0.3 for Pe = 1.0. With

the unfavourable condition, the particles are not irreversibly captured as in

favourable deposition, but are typically immobilized on the downstream side

of the asperity near the rear stagnation point. Different modes of particle cap-

ture on these complex surfaces and their implications will be discussed later

in this chapter.

The deposition probability in the presence of unfavourable colloidal inter-

actions is higher than the corresponding values of φa in the absence of colloidal

interactions. As mentioned earlier, this behaviour is attributed to the long-

range van der Waals interactions, which effectively increase the interception

cross-section area. The vertical dashed line in Figure 6.7 depicts the variations

of the deposition probability as the van der Waals interactions are gradually

reduced at a fixed Pe ≈ 0.07. Along this line, a wide range of deposition prob-

abilities are sampled (0 < φa < 0.6) by varying the Hamaker constant between

0.01(kBT ) to (kBT ). Reducing the Hamaker constant in this manner yields an

effect somewhat similar to altering the DLVO force by decreasing the solution

ionic strength I. A decrease in either parameter leads to an increase in the re-

pulsive EDL energy barrier height, and subsequently, a decrease in deposition

probability. It is also true that, starting from AH = (kBT ) and I = 10−1 M for

this scenario, lowering the ionic strength to 10−3 M increases the thickness of

the EDL barrier, extending it 10 times further (UDLV O ≈ 10kBT at Hi = 0.22)

than with reducing the Hamaker constant to 0.01(kBT ) (UDLV O ≈ 10kBT at
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Hi = 0.023). Nonetheless, all of this indicates that the far-field transport of

particles to the asperity is largely dictated by a combination of hydrodynamic

and van der Waals interactions, whereas the deposition behaviour near the

collector surface is dictated by the repulsive or attractive EDL interactions.

This behaviour is expected for the range of ionic strengths (10−3 to 10−1 M

1:1 electrolytes) commonly encountered in aquatic systems, which – for the

particle size (ap = 100 nm) used in the PTM simulations – renders κap > 10

in all cases. Therefore, changing the Hamaker constant in these simulations

reveals a measurable influence of the range of DLVO interactions on deposi-

tion behaviour. Consequently, variation of EDL interactions by changing ionic

strengths is not explored in this part of the present study.

6.2.4 Deposition Probability - Deterministic and Brow-
nian Forces

In this section, the effects of Brownian forces on the deposition probability φa

are observed. Using the same approach as in Figure 6.6, 1000 particles are

released in each run, with the time step, ∆t, held at 100 ns. Figure 6.8 depicts

the variation of the deposition probabilities with Peclet number.

With the undisturbed velocity field near the substrate represented as one-

dimensional shear flow on a flat surface and ignoring any hydrodynamic or

colloidal interactions, (symbol: asterisk), φa gradually increases toward the

maximum of 1.0 as Pe increases. This is attributed to the convective forces

becoming stronger than the Brownian force as Pe increases, so the probabil-

ity of deposition converges to a state of pure interception like its counterpart

in Figure 6.7. However, as noted earlier, this approach does not depict the

hydrodynamic field around the asperity with any realism. When the correct

undisturbed flow field around the asperity is provided (symbol: hollow trian-

gle), the relationship between φa and Pe becomes parabolic as φa rises with

Pe to a maximum where Pe ≈ 1.0 and then falls gradually as Pe continues

to increase. The same relationship is found when the UCFs are also applied

(symbol: hollow circle), albeit at comparatively lower values of φa due to the
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increased hydrodynamic resistance when the particles come near the asperity.
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Figure 6.8: Variation of deposition probability φa with particle Peclet num-
ber, Pe, in the complete Brownian simulations. The simulations are performed
under identical conditions as in Figure 6.7, with a stochastic (Brownian) dis-
placement added to the deterministic motion. The results of five approaches
to these simulations are shown with the following symbols: asterisk = one-
dimensional shear flow on a planar surface (asperity not considered); hollow
triangle = explicit, numerically-determined flow field around the composite
substrate; hollow circle = UCFs included with explicit flow field; filled square
= UCFs and favourable deposition conditions (FF) included with explicit flow
field. The parameters for these simulations are shown in Table 6.1.

When the DLVO interactions are included for favourable (FF) conditions

to deposition (symbol: filled square), the parabolic relationship is still evident.

The comparatively higher values of φa are attributed to the strength of the

attractive vdW interactions between the particle and the asperity. In this

case, a maximum probability coincides with Pe ≈ 1.0, which is also true when

the DLVO interactions have not been included in the PTM. Under these con-

ditions, it appears that with the hydrodynamic and Brownian forces roughly

equal, the particles have the greatest chance of being adsorbed somewhere on
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the surface of the asperity. Simulations under unfavourable (UU) conditions

did not yield any deposited particles at any value of Pe for the parameters

of this study, so these trivial results are not displayed in Figure 6.8. This

absence of deposition is primarily due to the strength of the repulsive EDL

barrier (≈ 25kBT ). The barrier is sufficiently strong to prevent particles from

penetrating it via Brownian motion to reach the primary DLVO interaction

minimum.

6.2.5 Effects of Asperity-to-Particle Size Ratio

This part of the study investigates particle transport and deposition for a range

of asperity-to-particle size ratios (i.e., 0.5 ≤ λ ≤ 5), approximately accounting

for hydrodynamic interactions with the PTM in this scale of collector surface

roughness. Figures 6.9, 6.10, and 6.11 show the trajectories of 100 nm (= ap)

particles traveling in the x− z plane past a single asperity of varied size rela-

tive to the particles. Regardless of asperity size, the paths of all particles start

at x/ap = −15, and the remaining system parameters are in accordance with

Table 6.1. For Figures 6.9 (Case FF) and 6.10 (Case UU), the Peclet number is

1.4 and parts (a), (b), (c) and (d) correspond to asperity-to-particle size ratios

of λ = 5, 2, 1 and 0.5 respectively. In addition to the regular particle trajecto-

ries around each asperity, Figures 6.9 and 6.10 show limiting trajectories and

their corresponding escape and flat surface trajectories in the same manner

as Figures 6.3 and 6.4. To explore another aspect of particle transport near

the asperity, Figure 6.11 displays only regular and escape trajectories for the

size ratios of λ = 5 and λ = 1 respectively, but in the convection-dominated

regime of Pe = 14 when the entire substrate is unfavourable to deposition

(Case UU). For this scenario, the higher Peclet number is due to an increase

in the average fluid velocity in the channel Uavg, which in turn increases the

shear rate γ̇ (refer to Eq. 6.1).

Figure 6.9 looks at the different size ratios under favourable conditions to

deposition (Case FF). As expected, the release heights of the limiting trajec-

tories are lower and closer together as the size ratio decreases, which suggests
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Figure 6.9: Limiting, escape and flat surface trajectories in the x− z plane
of particles under favourable conditions (Case FF) to deposition for the entire
composite substrate (i.e., single asperity with planar substrate) at various
asperity-to-particle size ratios (λ = aa/ap). These trajectories are determined
when the particle Peclet number is 1.4 for four size ratios: (a) λ = 5, (b) λ = 2,
(c) λ = 1 and (d) λ = 0.5. The remaining parameters for these simulations
can be found in Table 6.1.
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there is a reduction in deposition probability for an individual asperity as it

shrinks in size relative to the particle. For asperities that are larger than

the particle (Figures 6.9a and b), the escape trajectories clearly indicate that

the particle is brought closer to the composite substrate due to the presence

of the asperity. With λ = 5, the escape trajectory has not dropped enough

(i.e., leaving the domain at a height of almost 6ap) for van der Waals inter-

actions to be substantial enough to eventually pull the particle down to the

substrate. However, the relentless attraction to the substrate starts to be seen

in the escape trajectory of λ = 2 in Figure 6.9(b), where the particle leaves

the domain at a height just over 2ap. Escape trajectories are not shown in

Figures 6.9(c) and (d) as they are nearly indistinguishable from their respec-

tive upper limiting trajectories. Nevertheless, the upper limiting trajectories

in these two figures also indicate the attractive influence of the asperities on

the particles. It is also readily apparent from Figure 6.9 that as the size ra-

tio decreases, the difference between a limiting trajectory (both upper and

lower) and its associated flat surface trajectory diminishes. For these system

parameters, a significant difference between the upper limiting and associated

flat surface trajectories remains up to when the particle and asperity sizes are

equal (λ = 1; Figure 6.9c). This alludes to the fact that even previously de-

posited Brownian particles can affect the deposition of subsequent Brownian

particles via convective and migrational transport.

Figure 6.10 looks at the different size ratios under unfavourable conditions

to deposition (Case UU). Even though irreversible adsorption is not possible

under these conditions, the influence of the asperity on a particle’s path is once

again observable as in Figure 6.9, though to a lesser extent due to the reduced

strength of the van der Waals interactions. An interesting aspect of Figure 6.10

is how the endpoint of the limiting trajectory – where the deterministic forces

are balanced and the particle is immobilized – changes with size ratio. In

Figure 6.10(a), the asperity appears to be large enough so that the endpoint of

the limiting trajectory is situated at the rear stagnation point. This endpoint

drops when λ = 2 in Figure 6.10(b) so that the particle rests in the wedge
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Figure 6.10: Limiting, escape and flat surface trajectories in the x−z plane of
particles under unfavourable conditions (Case UU) to deposition for the entire
composite substrate (i.e., single asperity with planar substrate) at various
asperity-to-particle size ratios (λ = aa/ap). These trajectories are determined
when the particle Peclet number is 1.4 for four size ratios: (a) λ = 5, (b) λ = 2,
(c) λ = 1 and (d) λ = 0.5. The remaining parameters for these simulations
can be found in Table 6.1.
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region between the asperity and the flat portion of the substrate. When the

size ratio is 1 and 0.5 (Figures 6.10c and d, respectively), the particle ends

up directly behind the asperity as convective forces under these conditions are

insufficient to dislodge it.

When Pe = 14 and conditions are still unfavourable to deposition, such

as in Figure 6.11, there are no positions at which a 100 nm particle will be

immobilized when its Brownian motion is suppressed. All particles escape

the computational domain, though many of their paths are influenced by the

asperity. In both parts of Figure 6.11, the hatched regions upstream from the

asperity denote the trajectories for which the particles have the same escape

trajectory downstream of the asperity. These particles experience varying

amounts of lift depending on their release heights. When comparing the escape

trajectories for λ = 5 at Peclet numbers of 1.4 and 14 (Figures 6.10a and 6.11a,

respectively), they depart the computational domain at about the same height

(≈ 6ap), but their initial release heights are different (≈ 7.5ap for Pe = 1.4,

between ≈ 4ap and 6ap for Pe = 14). A comparison of the same trajectories

for λ = 1 at the two values of Pe (Figures 6.10c and 6.11b, respectively)

reveal not only a difference in release heights but also in heights at which the

trajectories leave the domain. For Pe = 1.4, the particle slides along the flat

surface downstream from the asperity, while for Pe = 14, it maintains a height

of ≈ 2ap.

The preceding observations reiterate the fact that convection is dominating

particle transport near the asperity when Pe = 14, with the van der Waals

component of the migrational transport less significant than when Pe = 1.4.

The lift cannot be due to inertia for all scenarios in this study since the flow is

Stokesian (i.e., no fluid inertia) and the particles are small enough that their

inertia can be neglected, as detailed in Section 4.2.3. Although both size ratios

in Figure 6.11 exhibit some particle lift, the λ = 5 scenario imparts lift to par-

ticles traveling within a range of release heights more than 3 times greater than

the λ = 1 scenario. This is anticipated since the larger the asperity, the greater

the height above the flat surface to which the local undisturbed flow field is af-
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Figure 6.11: Presence of lift indicated with escape trajectories in the x − z
plane (highlighted with hatching) of particles under unfavourable conditions
(Case UU) to deposition for the entire composite substrate (i.e., single asperity
with planar substrate). These trajectories are determined when the particle
Peclet number is 14 for two size ratios: (a) λ = 5 and (b) λ = 1. The remaining
parameters for these simulations can be found in Table 6.1.
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fected by the presence of the asperity, which subsequently affects more particle

trajectories near the substrate. The transport behavior depicted in Figure 6.11

is like “focusing”, in which a number of trajectories at various starting heights

end up with a common path downstream from the asperity. This behavior

can be explained by the “shadow” effect [KE00,DKE08,vLKWP09], which oc-

curs due to both hydrodynamic and colloidal interactions; the repulsive EDL

(in these scenarios) and lubrication forces push the particles away while vdW

forces pull them in, leading to focusing.

6.2.6 Effects of Particle Size

Using the same approach as what is depicted in Figure 6.6, 10000 particles are

released from random positions within the semi-circular window at x/ap = −15

for each Pe value. Both deterministic and Brownian forces are included in

these simulations. Aside from particle size, the system parameters for the

results in Figure 6.12(a) are identical to those for Case UU in Table 6.1, in-

cluding λ = 5. Case UU is specifically defined as unfavourable conditions to

deposition for 100 nm particles interacting with the substrate, with the height

of the repulsive DLVO energy barrier at ≈ 25kBT . In colloid science and re-

lated fields, it is commonly recognized that when the DLVO energy barrier

is higher than 20kBT , the stability of a colloidal dispersion is assured (i.e.,

deposition cannot take place) [BBV+07]. However, the height of the barrier

is dependent on the particle size, decreasing to ≈ 12kBT for 50 nm particles,

≈ 5kBT for 20 nm and ≈ 2kBT for 10 nm.

The 10 and 20 nm particles in Figure 6.12(a) clearly show the same parabolic

relationships between deposition probability and particle Peclet number as

those in Figure 6.8. The scatter of data points for ap = 50 nm is due to the

very low fraction of released particles that deposited; a parabolic relationship

like that of the other two particle sizes would be seen if more particles had been

released. Regardless of particle size, the peak values of φa in Figure 6.12(a)

occur at Pe ≈ 0.5, which indicates that maximum deposition occurs in the

diffusion-dominated regime of particle transport. These maximum deposi-
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Figure 6.12: Effects of particle size on deposition when conditions for the
entire composite substrate (i.e., single asperity with planar substrate) are as
described in Table 6.1 with a scaled Hamaker constant of 1.0. (a) Variation of
deposition probability φa with particle Peclet number in the complete Brown-
ian simulations for three particle radii: 10 nm (hollow triangles), 20 nm (hollow
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the x − z plane for 100 nm and 1 µm radius particles traveling across the
composite substrate when the particle Peclet number is 14.
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tion probabilities are ≈ 0.16 for 10 nm, ≈ 0.06 for 20 nm and < 0.001 for

50 nm. The large decline in φa for 50 nm signifies how the increased height of

the repulsive barrier beyond just 10kBT can influence deposition probability.

When the system parameters are equal to those of Case FF in Table 6.1 (i.e.,

scaled Hamaker constants increased from 1.0 to 5.0), the parabolic curves shift

slightly upwards and to the right (toward higher Pe values) as a result of the

increased strength of the attractive van der Waals interactions.

Particle transport around a single asperity under unfavourable conditions

is also affected by particle size, and this can be seen with a simple trajectory

analysis (i.e., only deterministic forces considered). Particle Peclet number

changes with particle size ap, but the Pe value is held constant to compare

trajectories for different particle sizes. According to Eq. (6.1), an increase

in ap by 10 times requires a decrease in shear rate γ̇ (through Uavg) of 100

times. Continuing with the scenario represented in Figure 6.11(a) (i.e., Case

UU, Pe = 14), a 1 µm particle released at x/ap = −15 at any height between

the points labeled as A and B in Figure 6.12(b) is immobilized at the rear

stagnation point of the asperity, unlike a 100 nm particle that always escapes

the domain. These results indicate that a 1 µm particle can be immobilized at

the asperity’s rear stagnation point because it is large enough to have substan-

tial van der Waals interactions with the asperity relative to the hydrodynamic

drag forces acting on it (like what is depicted in Figure 6.5). Smaller particles

(ap < 100 nm) were not considered in this analysis since the van der Waals

force acting on them would be too insubstantial to lead to immobilization in

this convection-dominated regime. Therefore, both Figures 6.12(a) and (b)

demonstrate that the effects of particle size on deposition are primarily due to

the volume-based van der Waals interactions in migrational transport.
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6.3 Deposition onto Arrays of Spherical As-

perities

The single asperity model substrate investigated thus far can be regarded as

a single unit of nanoscale roughness for a collector surface. The next step is

to explore how a number of these units can influence particle transport and

deposition. This includes: (i) discussions of the extent to which roughness can

modify the undisturbed flow field, (ii) the effects of separation distance between

asperities, and (iii) the analysis of results from simulations involving several

configurations of substrate heterogeneity (physical and/or chemical) using ar-

rays of spherical asperities. The presence of multiple asperities provides many

possible system configurations for the simulation scenarios, especially when

considering how the physical and chemical characteristics of each component

of the substrate can be individually assigned with the PTM. A few simple

situations are studied in the following sections.

6.3.1 Surface Roughness and the Undisturbed Flow Field

Before considering particle transport and deposition near arrays of asperities,

the effects of roughness in the form of such arrays on the undisturbed flow

field requires some discussion. Two types of roughness in the x − z plane

are investigated: cylindrical asperities of radius aa (Figure 6.13a) and semi-

circular corrugation with a half-amplitude of aa (Figure 6.13b), both of which

extend from +∞ to −∞ in the y− direction. A one-dimensional (varying

in the z− direction), Stokesian shear flow field is applied at a substantial

distance upstream, like with all systems investigated in the present study. All

distances are scaled with respect to aa, and fluid velocities are scaled with

respect to the average fluid velocity in the channel Uavg. Figures 6.13(a) and

(b) are schematic representations of the computational domains used, and

therefore are not-to-scale. Nevertheless, the limits of these domains are far

away from the features of heterogeneity that are centered around the origin

of the Cartesian coordinate system, labeled as point O in parts (a) and (b).
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Figure 6.13: Schematics of two-dimensional computational domains in the
x − z plane for numerically determining the undisturbed fluid velocity fields
across arrays of roughness features aligned along the x− axis. Two types
of roughness features, extending to ±∞ in the y− direction (i.e., into/out
of the page) are depicted: (a) cylindrical asperities with radius aa and (b)
corrugation with half-amplitude of aa. A one-dimensional shear flow is applied
to the domain at a substantial distance upstream from the leftmost asperity.
Note that these schematics are not-to-scale.
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The inlet, outlet and surface boundary conditions for these simulations are

identical to those described in Section 4.2.2, with the no-slip condition applied

everywhere on the surface. These scenarios have only periodic arrangements

of roughness features of constant height.

As Figure 2.2 portrays, the presence of asperities can modify the local

undisturbed flow field from the analytical expression for one-dimensional shear

flow over a smooth, flat surface, which a collector is often assumed to be.

Figures 6.14(a) and (b) reveal how the (numerically-determined) scaled undis-

turbed fluid velocity in the x− direction (u∗x) is altered from what it would be

for a flat surface (u∗x,flat) by cylindrical asperities and corrugation, respectively.

Each of the lines represents what the ratio u∗x/u
∗
x,flat is along the x− direction

and at a particular height from the x − y plane in the region directly above

the roughness features. The ratio is always between 0 and 1, with 0 indicating

the greatest modification to the flow and 1 signifying no modification (i.e.,

the presence of the asperities does not affect the undisturbed flow). For both

types of roughness studied in Figure 6.14, their effect on the flow becomes

insignificant (i.e., u∗x/u
∗
x,flat > 0.95) at heights of 10 times or greater than the

characteristic length of the roughness (z/aa ≥ 10.0).

The thick solid lines in Figures 6.14(a) and (b) represent the height above

the x−y plane (z/aa) that intermittently makes contact with the tops (z/aa =

2.0 in part a) or crests (z/aa = 1.0 in part b) of the roughness features. Both

of these heights correspond to a scaled, vertical (i.e., z− direction) separa-

tion distance of hz = 2.0 above the substrate, which is indicated with a thin,

dashed line in Figure 6.15. In between the tops and crests of the features at this

height, the fluid velocity is reduced from what it would be for a flat plate at the

same height. This can be seen in how u∗x/u
∗
x,flat varies with hz along the thick

dashed (bottoms of cylindrical asperities) and dash-dotted (troughs of corru-

gation) lines in Figure 6.15. Clearly, both types of roughness show substantial

variations in fluid velocities near the surface when compared with those ob-

served for a flat plate, and this agrees with the findings of Higdon [Hig85] and

of Pozrikidis [Poz97,Poz99]. Particles that are small enough to move near, and
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Figure 6.14: Variation in ratio of (numerically-determined) rough surface to
(analytically-determined) flat surface values of the undisturbed fluid velocity
in the x− direction (u∗x/u

∗
x,flat) with x− position for roughness features in the

form of (a) cylindrical asperities and (b) corrugation. The ratios are taken at
several scaled heights above the x− y plane (z/aa). The asperities themselves
are shown as grey shapes or contours at the bottom of each respective figure.
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perhaps between, these roughness features will have their convective transport

significantly affected by the modifications to the undisturbed fluid flow caused

by those features. These results reinforce the need for an accurate depiction

of the undisturbed flow field near a physically heterogeneous substrate when

studying particle transport and deposition for it.
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Figure 6.15: Variation in ratio of (numerically-determined) rough surface to
(analytically-determined) flat surface values of the undisturbed fluid velocity
in the x− direction (u∗x/u

∗
x,flat) with scaled vertical separation distance from

the surface (hz/aa). Vertical separation distances are taken from the tops and
bottoms of cylindrical asperities and the crest and troughs of corrugation. The
thin dashed line represents the vertical separation distance at which the top
(or crest) is above the bottom (or trough) of the roughness features (= 2).

6.3.2 Trajectory Analysis - Separation between Two As-
perities

The presence of more than one asperity results in some changes to particle

transport and deposition on the substrate from what is observed with a single
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asperity. This is primarily attributed to the modification of the local undis-

turbed flow field with the addition of each asperity to the substrate. A trajec-

tory analysis is employed to demonstrate this, suppressing Brownian motion

and observing the deterministic motion of particles past a pair of asperities.

Like the trajectory analyses performed with the single asperity models earlier

in this chapter, 100 nm particles are released from various heights in the x− z

plane above the flat surface at a distance of one asperity diameter (= 2aa)

upstream from the first asperity. The remaining system parameters are the

same as those listed in Table 6.1, with the entire composite substrate being

favourable to deposition (Case FF). The two asperities (λ = 5) are positioned

along the x− axis and therefore parallel to the direction of prevailing fluid

flow. The surface-to-surface separation distance between the asperities (s) is

gradually increased in Figure 6.16, with s = 2aa in part (a), s = 4aa in part

(b) and s = 6aa in part (c). Once again, the particle Peclet number for all of

these scenarios is 1.4.

The gap between the limiting trajectories (solid lines) for the two asperities

indicates the range of heights from which a 100 nm particle can be released

and subsequently deposited on the second (downstream) asperity. This gap

is rather narrow for all three spacings, equal to less than one particle radius.

From within gap, there are intermediate trajectories (dashed lines) along which

a particle travels very close to the first asperity but escapes its pull and con-

tinues on to be deposited on the second asperity. Therefore, considering only

deterministic forces, Figure 6.16 reveals that a small increase in the parti-

cle’s release height can lead to markedly different locations for deposition on

such a physically heterogeneous substrate. As the asperities are placed further

apart, the minimum height reached by the intermediate trajectory drops lower

from z/ap ≈ 7.5 for s = 2aa (Figure 6.16a) to z/ap ≈ 5.5 for s = 6aa (Fig-

ure 6.16c). Simulations involving greater separation of the asperities (s > 6aa)

were performed but yielded no significant change in the local minimum for the

intermediate trajectory. This implies that particles cannot deposit on the flat

surface between the two asperities in this arrangement without Brownian mo-

159



-35 -30 -25 -20 -15 -10 -5 0
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

-35 -30 -25 -20 -15 -10 -5 0
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

-35 -30 -25 -20 -15 -10 -5 0
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

a)
z/

a p

 particle traj.
 limiting traj.
 intermediate traj.
 escape traj.

b)

z/
a p

 particle traj.
 limiting traj.
 intermediate traj.
 escape traj.

c)

z/
a p

x/a
p

 particle traj.
 limiting traj.
 intermediate traj.
 escape traj.

Figure 6.16: Limiting, intermediate and escape trajectories in the x−z plane
of particles under favourable conditions (Case FF) to deposition for the entire
composite substrate (i.e., two asperities with planar substrate) at various sep-
aration distances between asperities. These trajectories are determined when
the particle Peclet number is 1.4 and size ratio λ = 5 for three separation dis-
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for these simulations can be found in Table 6.1.
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tion. Lowering the particle Peclet number by reducing the shear rate (i.e., less

contribution of convection to particle motion) would enable particles to reach

this region.

Since the asperities have the same height and shape in these scenarios, the

upstream asperity blocks the downstream one. Without migrational transport

via DLVO interactions, the blocking would be complete (i.e., no interception

of particles by the downstream asperity). The van der Waals interactions

make it possible for a particle to deposit on the second asperity, with the first

asperity attracting it closer to the composite substrate. It is reasonable to

assume that with each asperity added downstream along the x− axis from

this pair, the height of the gap between the limiting trajectories for the first

and last asperities would increase as well, thereby pulling more particles down

to deposit on the substrate. The increase in height would depend on the

strength of the van der Waals interactions (i.e., Hamaker constant for this

model) and the particle Peclet number (i.e., shear rate).

6.3.3 Arrays of Asperities - Chemically-Uniform Sub-
strate

This section explores the deposition of spherical, Brownian particles suspended

in a Stokesian fluid undergoing simple shear flow onto a model substrate that

is chemically-uniform but physically heterogeneous. The model substrate is

designed as a planar base with a periodic array of spherical protrusions (as-

perities) extending into the fluid. Two arrangements of the asperities are

investigated: in-line and staggered arrays relative to the direction of the shear

flow in the x− direction. The entire composite substrate is favourable to

deposition (Case FF) and all other physical and chemical conditions are as de-

scribed in Table 6.1. In this section and for the remaining simulations in this

chapter, the asperities are spaced apart a distance of s = 2aa from each other.

This separation distance is sufficient so that particle-substrate hydrodynamic

interactions are clearly dictated by the nearest feature of the substrate to the

particle at a given position. Such spacing also permits a substantial number of

161



asperities (12 to 16) to be placed within the computational domain that was

chosen for this part of the study.
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Figure 6.17: Deposition onto a planar substrate containing an array of spher-
ical asperities. Schematic showing the rectangular window from which the par-
ticles are released randomly into the domain containing an array of spherical
asperities (i.e., aa = 5ap, or λ = 5).

Figure 6.17 describes some aspects of the model substrates, and Figures 6.18

and 6.19 show the results of some simulations of particles flowing through both

types of arrays of asperities. In each simulation, N particles are released one

at a time from random positions within a rectangular window in the y − z

plane located at x/ap = −45, shown schematically in Figure 6.17. The par-

ticles are released into a domain measuring 80ap × 80ap × 20ap containing an

array of spherical asperities (λ = 5). This domain has a one-dimensional shear

flow across it, moving from left to right in the positive x− direction. From

the top view of the substrate, the in-line and staggered array configurations

are shown in Figures 6.18(a) and (b), respectively. The staggered array is

essentially the in-line array rotated 45◦ in the x − y plane with respect to

the shear flow. For each array, the width of the sub-domain spanned by the

window described in Figure 6.17 is periodic in the y− direction, and is indi-

cated by the corresponding transparently-shaded region. To have the same

particle flux through this window for both types of arrays, the total number of

particles released is varied: for the in-line array, N = 1000; for the staggered
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array, N = 1414. The rectangular sub-domain is also one asperity radius in

height and its base is situated one asperity radius above the planar substrate.

In all of these simulations, colloidal, hydrodynamic and Brownian forces are

considered simultaneously.

Figures 6.18(a) and (b) depict the endpoints of particles that have been

adsorbed within the domain when the particle Peclet number is 1.4. For

both configurations of asperities in Figures 6.18(a) and (b), the majority of

the particles that come to rest within the domain deposit on the asperities.

Particle attachment is quite deterministic and mainly clustered within the

transparently-shaded, particle release sub-domain due to the dominance of

the attractive migration forces. At first glance, an interesting observation from

these figures is the tendency of particles to deposit on the “peaks” or upper

hemispherical regions of the asperities as opposed to the planar portion of the

composite substrate. For the staggered array (Figure 6.18b), a large proportion

of the particles deposit on the peaks of the two central asperities (i.e., on the

x− axis). This is primarily due to their location in the domain, essentially

blocking the shear flow so that many of the released particles travel within

their vicinity. These central asperities have approximately the same number

of particle endpoints (and hence, roughly equal deposition probabilities), even

though the downstream asperity is blocked by the upstream one. This can be

explained by the attractive migration forces in this scenario, which pull the

particles closer to the substrate as they flow through the domain, sometimes

depositing further downstream on the planar regions as well as the asperities.

Much like Figure 6.8, Figure 6.19(a) looks at the relationship between

the deposition probability of all of the asperities within the domain, φa, and

the particle Peclet number Pe. For both configurations, φa starts from a

plateau, with the in-line arrangement (symbol: filled square) at 0.45, which is

slightly higher than for the staggered arrangement (symbol: hollow square).

However, as Pe increases, the two curves converge, following a downward trend

as convective forces dominate. Therefore, there is nothing to distinguish the

deposition probability of one configuration from the other when hydrodynamic
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Figure 6.18: Deposition onto a planar substrate containing an array of spher-
ical asperities aligned parallel to the shear flow (in-line) and at an angle of 45◦

(staggered) relative to the shear flow. Trajectories are computed employing
the complete Brownian simulations in the presence of favourable (FF) con-
ditions. (a) and (b): Top views of the substrate, showing capture locations
(trajectory endpoints shown as small, dark spheres) for the in-line and stag-
gered arrays, respectively, of the asperities (large gray circles) when the particle
Peclet number is 1.4. The arrows in each graph indicate the flow direction,
and the rectangular, transparently-shaded region indicates the width of the
particle release window. All other parameters are as shown in Table 6.1.
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interactions become substantial.

Since the vast majority of studies of deposition phenomena have involved

smooth surfaces, it would be appropriate to compare the deposition proba-

bilities of rough surfaces with those of smooth, flat surfaces using the PTM.

For an equal comparison at all values of Pe, 1000 particles are released from

within the same window as with the rough substrate bearing the in-line array

of asperities. The total deposition probability for the rough and flat versions

of the substrate are defined respectively as

φT =
Number of particles deposited on rough substrate

Number of particles released
(6.3)

φflat =
Number of particles deposited on flat substrate

Number of particles released
(6.4)

The ratio φT /φflat provides a means of comparing the particle deposition

probability of a section of a surface when it is rough (i.e., with spherical

asperities, in this study) to when it is smooth and flat. This ratio is always

greater than 1.0 since the rough versions of the domain in this study have

larger available surface areas for deposition than the flat version.

For the range of Pe values shown in Figure 6.19(b), φT /φflat follows the

same trend for both the in-line and staggered configurations of asperities,

slowly increasing from about 1.2 at Pe = 0.14 to nearly 8.0 at Pe = 5.6.

First of all, this signifies that models using flat surfaces underestimate the

deposition probability of real surfaces. The presence of asperities enhances

deposition probability, and this enhancement increases as convective forces

come to dominate. It also reveals that the orientation of an ordered array

of asperities with respect to the direction of prevailing hydrodynamic flow is

not necessarily a factor to consider for encouraging or discouraging Brownian

particle deposition on a rough surface.

6.3.4 Arrays of Asperities - Chemical Heterogeneity Through
van der Waals Interactions

Thus far, the composite substrate has been physically heterogeneous but chemically-

uniform. One way to introduce chemical heterogeneity into the model sub-
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Figure 6.19: Deposition probabilities for a planar substrate containing an
array of spherical asperities aligned parallel to the shear flow (in-line) and at
an angle of 45◦ (staggered) relative to the shear flow. Complete Brownian
simulations in presence of favourable (FF) conditions are performed for the
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are as shown in Table 6.1.
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strate is to vary its chemical composition by assigning individual Hamaker

constants to each component of the substrate. In this study, only two val-

ues of Hamaker constant are used, with one for the asperities and the other

for the flat surface. Using the basic system configuration parameters in Ta-

ble 6.1 as the standard, Table 6.2 shows the scaled Hamaker constants for

three scenarios that are investigated: Cases #1, #2 and #3. With these cases,

the particle’s surface potential has been changed to −50 mV, and the higher

scaled Hamaker constant of 5.0 indicates favourable conditions to deposition

according to DLVO theory.

Table 6.2: System parameters altered from those of the basic system config-
uration listed in Table 6.1 and used with the PTM simulations for Cases #1
to #12. The electrolyte concentration for all cases listed is 10−1 M, except for
Cases #10 and #11 for which it is 10−3 M.

Case Scaled Hamaker constant Surface potential
Particle- Particle- Particle Asperities Flat surface
Asperity Flat surface

AH,pa/(kBT ) AH,ps/(kBT ) ψp ψa ψs

− − mV mV mV

#1 1.0 5.0 −50 −25 −25
#2 5.0 1.0 −50 −25 −25
#3 5.0 5.0 −50 −25 −25

#4 1.0 1.0 −25 −25 +50
#5 1.0 1.0 −25 +25 −50
#6 1.0 1.0 −25 −50 +25
#7 1.0 1.0 −25 +50 −25
#8 1.0 1.0 −75 −25 +25
#9 1.0 1.0 −75 +25 −25
#10 1.0 1.0 −75 −25 +25
#11 1.0 1.0 −75 +25 −25
#12 1.0 1.0 −25 +25 −75

Figures 6.20 and 6.21 display the results of simulations of particles flow-

ing through past a substrate with the in-line array of asperities for the three

cases described above. The dimensions of the domain and the application
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of a one-dimensional shear flow (moving left to right, in the positive x− di-

rection) upstream from the asperities are identical to that of the scenario in

Figure 6.18(a). In each simulation (i.e., for each Pe value for each case), 10000

particles are released one at a time from random positions within a rectangular

window in the y − z plane located at x/ap = −45, as previously described for

the in-line arrangement of asperities in Figure 6.17. Colloidal, hydrodynamic

and Brownian forces are included in all of these simulations.

Figure 6.20 shows the endpoints of particle trajectories from top views of

the substrate at three different Pe values for Cases #1 (parts a, b and c) and

#2 (parts d, e and f). The particle Peclet values included are 0.14 (parts a and

d), 1.4 (parts b and e) and 5.6 (parts c and f). Of course, Figure 6.20 simply

depicts that the regions where the particles tend to deposit depends on which

portion of the composite substrate is favourable to deposition. However, these

pictures provide information about particle transport near these asperities

under these chemically heterogeneous conditions. At Pe = 0.14 in both cases,

diffusion-dominated particle transport carries many particles to regions beyond

the dimensions of the release window in the y− direction (y/ap = ±10, shown

by the transparently-shaded sub-domain in Figure 6.18a). Specifically in Case

#2 (Figure 6.20d), peripheral asperities centered at y/ap = ±30 have several

particles deposited on them, mainly situated at mid-height of the asperities

(i.e., mid-plane of the roughness; z/ap = 5 in these scenarios). As the shear

rate increases for this case (Figures 6.20e and f), particles are less likely to

deposit on the peaks of the central asperities and the peripheral asperities

all-together. The particles experience greater increases in fluid drag as their

height above the flat surface increases, overwhelming migrational (primarily

van der Waals) forces around the peak of asperities. They also pass more

directly through the domain, with less excursions to peripheral regions via

Brownian motion, making it more difficult for particles to deposit.

It may appear from Figure 6.20 that more particles deposit on the flat

surface than on the asperities for all Pe values. It is important to point

out that these top views of the substrate are probability maps, indicating
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Figure 6.20: Deposition onto a planar substrate containing an in-line array
of spherical asperities (large gray circles) with chemical heterogeneity through
van der Waals interactions (i.e., scaled Hamaker constants). Trajectories are
computed employing the complete Brownian simulations for two scenarios de-
scribed in Table 6.2: Cases #1 (a, b and c) and #2 (d, e and f). Top views of
the substrate, showing capture locations (trajectory endpoints shown as small,
dark spheres) when the particle Peclet number is 0.14 (a and d), 1.4 (b and e)
and 5.6 (c and f). All other parameters are as shown in Table 6.1.

where particles will most likely deposit. With Case #1, the asperities promote

hydrodynamic dispersion, scattering the particles across most of the substrate

in the computational domain, as Figures 6.20(a), (b) and (c) depict. On the

other hand, Case #2 promotes accretion and order, as diffusion (Figure 6.20d)

and convection (Figures 6.20e and f) bring particles close to the asperities

where van der Waals interactions can draw them in to deposit there.

In Figure 6.21(a), the total deposition probability of the composite sub-

strate φT is lower when the flat surface is favourable than when the asperities

are. For Case #1, φT starts at ≈ 0.36 for Pe = 0.14 and falls to almost zero

when Pe reaches 14, but for Case #2, it starts at ≈ 0.62 and drops to ≈ 0.12.
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Figure 6.21: Deposition probabilities for a planar substrate containing an in-
line array of spherical asperities with chemical heterogeneity through van der
Waals interactions. Complete Brownian simulations are performed for three
scenarios described in Table 6.2: Cases #1 (filled circles), #2 (filled stars) and
#3 (hollow and filled squares). (a) Variation of total deposition probability
for the entire composite substrate φT (and asperities-to-total probability ratio
φa/φT ) with particle Peclet number. (b) Variation of the deposition probability
ratio φT /φflat (surface with asperities vs. flat surface) with particle Peclet
number. All other parameters are as shown in Table 6.1.
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Lower probabilities can be expected for Case #1 since the release window for

the particles is situated at the same range of heights as the top halves of the

asperities; the particle trajectories start at a substantial distance above the

flat surface. However, as Pe increases within the range tested, the exchange

between diffusion-dominated and convection-dominated transport makes vir-

tually no difference in φT for Cases #2 (filled stars) and #3 (hollow squares).

This is quite remarkable when considering how much the ratio φa/φT (i.e., de-

position probability for the asperities over that of the total substrate) changes

for Case #3, which shown with filled squares in Figure 6.21(a). Starting at

≈ 0.75 for Pe = 0.14, φa/φT rises to almost 1.0 at Pe = 14 for this chemically-

uniform substrate. This occurs because at low Pe values (< 1), the particles

deposit wherever it is favourable, led mostly by Brownian motion. As Pe

increases into the convection-dominated regime, the particles deposit on the

closest substrate features in their travels, which are the asperities.

Deposition probabilities for the rough substrate (φT ) are compared with

that of a flat substrate (φflat) of equal size and chemical characteristics in

Figure 6.21(b). Similar to results shown in Figure 6.19(b), the ratio φT /φflat

increases gradually with Pe (from ≈ 1 at Pe = 0.14 to ≈ 45 at Pe = 14)

for Cases #2 and #3. This reiterates the earlier assertion that roughness in

the form of favourable asperities increases the chances of particles depositing

on the substrate. To the contrary, Case 1 has a decline in φT /φflat from

0.6 down to ≈ 0.1. Under these circumstances, the particles have a higher

likelihood of depositing on the flat substrate than the rough one. In this case,

the unfavourable asperities are preventing some of the substrate’s surface area

from being available for deposition.

6.3.5 Arrays of Asperities - Chemical Heterogeneity Through
EDL Interactions

Two system parameters in this study that can be manipulated and measured

to some extent in experimental settings are surface potential and electrolyte

concentration (i.e., solution ionic strength). Surface modification by applying
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coatings of functionalized molecules (e.g. alkanethiols and silanes) can alter

surface potentials in a somewhat controlled manner (i.e., positive charge versus

negative charge), and adjusting solution ionic strength of a test fluid such as

water is a routine laboratory task. These two EDL interaction parameters help

to determine if a surface is favourable or unfavourable to deposition, so it is

appropriate to explore the effects of changing these parameters on deposition

probabilities for a composite substrate with several spherical asperities.

From the perspective of EDL interactions, chemical heterogeneity in the

model substrate is achieved through variations in surface potential (or charge,

though it is not explicitly considered in the present study) for the different

substrate components (i.e., the asperities and the flat surface). Table 6.2 lists

the surface potentials and other parameters altered from those of Table 6.1 for

all of the scenarios considered in this analysis: Cases #4 to #12. However,

unlike with Cases #1 to #3 in Table 6.2 and Section 6.3.4, a portion of the

substrate is regarded as favourable to deposition if its surface potential is of

opposite sign to that of the particle. The scaled Hamaker constant for the

entire substrate is kept constant at 1.0, and the solution ionic strength is

10−1 M for all but Cases #10 and #11, for which it is 10−3 M. The domain

size, substrate configuration (in-line array of asperities) and particle release

window are the same as with Section 6.3.4. For a range of 19 Pe values with

each scenario, each simulation involves the release of 10000, 100 nm particles,

one at a time, with both deterministic and Brownian motion included.

Figure 6.22 displays top views of the composite substrate with particle

trajectory endpoints for the same Pe values (0.14, 1.4 and 5.6) as in Figure 6.20

for Cases #8 (parts a, b and c) and #9 (parts d, e and f). In this example,

the surface potentials of the asperities and the flat surface are equal (25 mV)

but opposite in sign from each other. A comparison of Figures 6.20 and 6.22

shows that they are qualitatively very similar, with both clearly distinguishing

deposition on the flat surface from that on the asperities. Minor differences

in distributions of endpoints between these two figures can be attributed to

how the corresponding DLVO energy curves (for the favourable regions) reach
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Figure 6.22: Deposition onto a planar substrate containing an in-line array
of spherical asperities (large gray circles) with chemical heterogeneity through
EDL interactions (i.e., surface potentials). Trajectories are computed employ-
ing the complete Brownian simulations for two scenarios described in Table 6.2:
Cases #8 (a, b and c) and #9 (d, e and f). Top views of the substrate, showing
capture locations (trajectory endpoints shown as small, dark spheres) when
the particle Peclet number is 0.14 (a and d), 1.4 (b and e) and 5.6 (c and f).
All other parameters are as shown in Table 6.1.

their primary minimums as the scaled separation distance H decreases.

Holding the solution ionic strength of the system constant at 10−1 M,

Figure 6.23 depicts the variations in total deposition probability φT with Pe

for Cases #4 to #9 inclusive. Table 6.2 defines the surface potentials of the

substrate components for these cases, with ψa and ψs between −50 mV and

+50 mV. However, this range can be expanded to ±75 mV with the inclusion

of Cases #8 and #9; it can be seen from Eq. (4.34) that the EDL force

remains the same if surface potential magnitudes are switched between those

of the particle and, for instance, the flat surface (i.e., Case #9 = Case #12).
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Figure 6.23: Deposition probabilities for a planar substrate containing an
in-line array of spherical asperities with chemical heterogeneity through EDL
interactions (i.e., surface potentials). Complete Brownian simulations are per-
formed for six scenarios described in Table 6.2: Cases #4 (hollow triangles),
#5 (filled triangles), #6 (hollow squares), #7 (filled squares), #8 (hollow
stars) and #9 (filled stars). Variation of total deposition probability for the
entire composite substrate φT with particle Peclet number. All other param-
eters are as shown in Table 6.1.

These six scenarios are divided into two groups in Figure 6.23: those with the

flat surface favourable to deposition (i.e., hollow triangles, squares and stars)

and those with favourable asperities, (i.e., filled triangles, squares and stars).

For each group, the data points for three different configurations of surface

potentials on the composite substrate essentially lie on top of each other.

This signifies that when particular regions of the substrate are favourable

to deposition, the surface potential of those regions has no bearing on the

deposition probability. This remains true when the ionic strength is reduced

to 10−3 M, but these results are not included in Figure 6.23 for the sake of

clarity.

The effects of changing solution ionic strength on deposition probability are

174



shown with Cases #8 to #11 (refer to Table 6.2) in Figure 6.24. With system

parameters the same as those in Table 6.1, the solution ionic strength is tested

at two levels: 10−1 M (Cases #8 and #9) and 10−3 M (Cases #10 and #11).

On the basis of DLVO theory, a diminished ionic strength extends the length of

significant EDL interaction (i.e., inverse Debye length), therefore attracting or

repelling particles at a greater separation distance from the substrate. When

the asperities are favourable, φT is increased by 0.05 to 0.10 for the range of

Pe values tested as the ionic strength is reduced (from filled stars to filled

circles in Figure 6.24a). This agrees with what is expected from DLVO theory.

Contrary to this, there is a small decrease in φT (of 0.02 to 0.04) when the

flat surface is favourable over the same Pe range as ionic strength is reduced

(from hollow stars to hollow circles in Figure 6.24a). This small decrease in

φT occurs because the unfavourable asperities are, to some extent, impeding

the transport of particles to the flat surface. The lower ionic strength not only

increases the range of attraction to the flat surface, but the range of repulsion

from the asperities as well. Consequently, the increased range of repulsion

also reduces the area available for particle deposition on the flat surface, as

Figure 6.25 (part a = Case #8; part b = Case #10) demonstrates at Pe = 1.4.

In both parts of this figure, the large, thin circles represent the “shadows” of

the spherical asperities on the flat surface. With high ionic strength making the

inverse Debye length very thin, Figure 6.25(a) has particles depositing within

these circles, indicating that they are located in the wedge region where the

spherical asperity contacts the flat surface. In Figure 6.25(b), no particles

deposit in positions overlapping the shadow regions because of the increased

thickness of the repulsive EDL barrier around the asperities.

As Figure 6.24(b) shows, the ratio φT /φflat increases with Pe when the

asperities are favourable (filled symbols; Cases #9 and #11) in a similar man-

ner as with both array configurations in Figure 6.19(b) and Cases #2 and #3

in Figure 6.21(b). When the flat surface is favourable to deposition (hollow

symbols; Cases #8 and #10), the increase in φT /φflat is much smaller, rising

from ≈ 0.80 at Pe = 0.14 to ≈ 4 at Pe = 14. Under these conditions, the
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Figure 6.24: Deposition probabilities varying with solution ionic strength
for a planar substrate containing an in-line array of spherical asperities with
chemical heterogeneity through EDL interactions. Complete Brownian sim-
ulations are performed for four scenarios described in Table 6.2: Cases #8
(hollow stars), #9 (filled stars), #10 (hollow circles) and #11 (filled circles).
(a) Variation of total deposition probability for the entire composite substrate
φT with particle Peclet number. (b) Variation of the deposition probability
ratio φT /φflat (surface with asperities vs. flat surface) with particle Peclet
number. All other parameters are as shown in Table 6.1.
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Figure 6.25: Deposition onto a planar substrate containing an in-line ar-
ray of spherical asperities (large hollow circles) with chemical heterogeneity
through EDL interactions (i.e., surface potentials). Trajectories are computed
employing the complete Brownian simulations for two scenarios described in
Table 6.2: Cases #9 (a) and #11 (b), with solution ionic strengths of 10−1

M and 10−3 M, respectively. Top views of the substrate, showing capture lo-
cations (trajectory endpoints shown as small, dark spheres) when the particle
Peclet number is 1.4. All other parameters are as shown in Table 6.1.
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flat surface has higher probability for deposition in the diffusion-dominated

regime, but in the convection-dominated regime, the rough surface is higher.

This draws attention to how the presence of both physical and chemical het-

erogeneity can make substrates more or less likely to have particles deposit on

them, depending on the interplay between convective, diffusional and migra-

tional transport mechanisms.

For any charged solid surface, the measured value of its surface potential

represents the average electrokinetic charge of the entire surface [ENKR00].

This average value does not explicitly account for the presence of local charge

heterogeneity, so it can be somewhat misleading when interpreting the results

of deposition experiments in the context of DLVO theory. Table 6.3 includes

two cases of local surface charge (and hence, potential) heterogeneity on the

model substrate depicted in the top views of Figure 6.22. The average surface

potential ψavg for each case is determined using surface area weighting of the

asperities and the flat surface within the limits of the computational domain.

For λ = 5 in these scenarios, this results in

ψavg = (0.44)ψa + (0.56)ψs. (6.5)

Using a scaled Hamaker constant of 1.0 for the entire substrate and the re-

maining system parameters from Table 6.1, Cases #9 and #12 have identical

DLVO force curves for the particle approaching either part of the substrate.

Using the corresponding average surface potential in each scenario (−3 mV for

Case #9; ψavg = −31 mV for Case #12) and assuming the surface to be flat,

this “smeared out” perspective of the substrate’s surface properties leads to

different expectations on the basis of DLVO theory. For the averaged version

of Case #9, the lack of a repulsive barrier would lead one to expect unhindered

deposition across the entire substrate, which is not the case for the flat surface

in the same figures. Conversely for the averaged version of Case #12, there

is a repulsive DLVO energy barrier of ≈ 43kBT , to which an observer would

conclude there should be no deposited particles [BBV+07], even though Fig-

ures 6.22(d), (e) and (f) reveal this to be a false assertion. These findings agree
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Table 6.3: Average surface potential of composite substrate (based on surface
area weighting) for Cases #9 and #12. For the cases listed here, the scaled
Hamaker constant for the entire composite substrate is 1.0, and the remaining
system parameters are listed in Table 6.1. Note that a portion of the substrate
is deemed to be favourable to deposition if its surface potential is opposite in
sign to that of the particle.

Case Surface potential
Particle Asperities Flat surface Substrate average

ψp ψa ψs ψavg

mV mV mV mV

#9 −75 +25 −25 −3
#12 −25 +25 −75 −31

with the conclusions of previous studies [ENKR00,BJC06,NMB06a,DKDS09],

in that averaged or mean-field surface properties can lead to erroneous assump-

tions concerning colloidal interactions and probabilities of particle deposition

on real surfaces. Therefore, it would be preferable to account for surface charge

(potential) heterogeneity, as well as any physical heterogeneity, when analyzing

deposition kinetics for a given experimental system.

6.4 Summary

The above simulations demonstrate the ability of geometrically uniform asper-

ities on a planar surface to create variations in deposit morphologies. Although

the simulations in this study span a very small parametric phase space, they

provide confidence regarding the ability of the developed model (PTM) to sim-

ulate deposition phenomena onto surfaces with micro- or nanoscale roughness.

Further extensive simulations based on this model, though time consuming and

computationally demanding, may elucidate the influence of physical hetero-

geneity of surfaces on particle deposition dynamics and deposit morphologies.

The model also incorporates the effects of chemical heterogeneity within the

framework of the pairwise additivity assumption, enabling simultaneous explo-

ration of physico-chemical surface heterogeneity on particle deposition. Using
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the PTM, considerable attention has been devoted to the limiting case when

a single spherical asperity is present on a planar substrate. Following this,

simulations of particle deposition onto a planar substrate containing a regular

array of spherical asperities have been performed and analyzed. Through the

use of the PTM with several substrate configurations, it is apparent that the

presence of both physical and chemical heterogeneity can significantly influ-

ence particle transport (convection, diffusion and migration) and deposition

for such substrates.
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Chapter 7

Conclusion and Future Work

7.1 Overview

The primary aim of this research was to investigate how substrate heterogene-

ity can affect particle transport and deposition onto it. An extensive review of

earlier deposition studies has revealed an intermediate realm that has not been

fully explored in which the features of physical and/or chemical heterogeneity

are of similar sizes to the particles. Even for Brownian particles, physical het-

erogeneity at comparable scales modifies an idealized, analytical fluid velocity

profile for a flat plate into a more complex, numerically-determined one, which

changes how particles can be transported to the surface by just fluid motion.

There is also a question of how the surface roughness of a substrate affects its

hydrodynamic interactions with an approaching particle. To seek answers to

these and other related questions, the present study has proposed a general ap-

proach to particle transport and deposition on such physically and chemically

heterogeneous substrates. This approach depicts a heterogeneous substrate as

an assemblage of subunits. Since the physical and chemical properties of these

subunits can be individually assigned, this provided a means to simulate the

heterogeneity of a substrate using simple shapes. For this study, the model

substrate was comprised of one or more spherical asperities attached to a pla-

nar surface, or a planar surface divided into spherical subunits when looking

at only colloidal interactions. The simulation tool created from this approach

includes convective, diffusional and migrational (due to colloidal interactions
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only in this study) transport in a Stokesian fluid, all of which are retarded us-

ing an approximate technique to account for hydrodynamic interactions as the

spherical particle approaches the heterogeneous substrate. This tool was em-

ployed to simulate the trajectories of many particles released individually near

the model substrate in a variety of configurations of physical and/or chemi-

cal heterogeneity. The results of these simulations were evaluated in terms of

deposition probabilities and spatial distribution maps of trajectory endpoints.

7.2 Concluding Remarks

The first objective of this thesis is centered around the effects of substrate

heterogeneity on migrational particle transport (i.e., colloidal interactions).

The major conclusions arrived at in pursuing this objective are summarized

below:

1. In the near-field of rough surfaces where colloidal forces are typically

dominant (i.e., stronger than the Brownian force), the net DLVO force

on a particle is directed along the distance of closest approach to the

substrate (normal to the surface). Physical heterogeneity by itself does

not lead to significant forces acting laterally (tangentially) to the region

of closest approach.

2. When the substrate is chemically heterogeneous, the lateral component

of the colloidal (DLVO) force can become substantial, exceeding the

strength of the normal component at close, near-field separations corre-

sponding to the secondary minimum of the DLVO interaction potential.

Generally ignored in most deposition studies involving DLVO theory,

these lateral forces indicate the presence of chemical heterogeneity on the

substrate near the region of the particle’s closest approach, regardless of

substrate topography. For high electrolyte concentrations (e.g. 10−1 M,

as found in many biological systems), the most significant lateral forces

occur in regions near the edges of heterogeneous patches. Under these

conditions, the particle can also reach a local equilibrium position where
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the net DLVO force (both lateral and normal components) acting on it

approaches zero. This location does not necessarily coincide with where

the particle’s minimum interaction energy state is.

Shifting from migrational forces to those of convection, the second objec-

tive of this thesis is concerned with the undisturbed hydrodynamic field near a

surface with features of roughness on a similar scale to the particle size. Con-

clusions related to this objective are based on validations as well as subsequent

simulations:

1. When the asperity-to-particle size ratio is greater than 1 (i.e., λ > 1), the

modification of the local flow field near a spherical asperity can dramat-

ically alter deterministic particle trajectories from what they would be

with flat plates, and therefore, the locations of their deposition onto the

composite substrate. This indicates that physical substrate heterogene-

ity on a scale greater than the particle size has a far reaching influence

on particle deposition from a predominantly hydrodynamic standpoint.

2. It is important to accurately determine the flow field near roughness fea-

tures in colloid deposition models to predict deposition probabilities or

deposit morphologies with any degree of realism. A comparison of fluid

velocities over rough substrates with those over a smooth, flat one shows

that the roughness significantly modifies (> 5%) the flow field up to

heights (above the midplane) of about 10 times the characteristic length

of the roughness features. Assuming perfectly smooth collectors to com-

pute the flow field can lead to substantial errors in predicting deposition

phenomena for non-ideal and physically heterogeneous collectors.

In the course of meeting the third and fourth objectives, simulations using

one form of the simulation tool devised in this study – the Particle Tracking

Model (PTM) – have led to the following conclusions about particle transport

and deposition on physically and chemically heterogeneous substrates:
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1. When they are favourable to deposition, asperities protruding from the

planar surface can act as additional collectors, increasing the available

substrate surface area onto which particles can deposit. If convective

particle transport is not clearly dominant (Pe ≤ 1.4) under such condi-

tions, particles can deposit on the “peaks” of the favourable asperities.

2. At low to moderate particle Peclet numbers (e.g. Pe ≤ 1.4), asperi-

ties act as attractive “beacons” for particles, pulling them closer to the

composite substrate at downstream locations. For high particle Peclet

numbers, asperities can provide lift for particles traveling at heights be-

tween the centers and the tops of the asperities.

3. Solution ionic strength (i.e., electrolyte concentration) has some influ-

ence on deposition probability for a heterogeneous substrate. When the

asperities are favourable and the flat surface is unfavourable, a reduction

in ionic strength from 10−1 M to 10−3 M leads to increases in deposi-

tion probability of up to 10%. When conditions are reversed, the un-

favourable asperities block some particles from depositing on the lower

planar surface, resulting in a slight decrease in deposition probability

with decreased ionic strength.

4. Surface potential has little influence on deposition probability for a het-

erogeneous substrate. Furthermore, using mean-field (averaged) values

of the surface potential of a substrate can also be very misleading in

determining if the entire substrate is favourable or unfavourable to de-

position. Favourability of a given region of a substrate is based on col-

loidal interactions at the distance of particle’s closest approach. There-

fore, finding particles deposited on surfaces that are expected to be un-

favourable on the basis of average surface potential and the DLVO theory

is a clear indication of the presence of chemical heterogeneity.

5. The simulation tool described in this study (i.e., HIM and PTM) can

serve as a design tool to study particle deposition onto nanotextured

184



surfaces containing geometrically well-defined surface features.

7.3 Future Work

The research described in this thesis can be considered as an initial step to

simulating how substrate heterogeneity on a similar scale to the approaching

particles can affect particle deposition. Out of the numerous improvements and

potential applications of the PTM simulation tool that could be undertaken,

three prominent examples are listed below:

1. In its current form, the PTM uses an undisturbed hydrodynamic field

that is based on the initial or “clean” state of the substrate. However,

with each particle that is irreversibly adsorbed over time, the surface be-

comes more physically (and perhaps chemically) heterogeneous, thereby

altering the flow field and affecting subsequent particle transport and de-

position. To observe long term deposition behaviour for a given model

substrate using the PTM, the flow field would need to be updated with

each particle deposited within the field. The approach presented here

would demonstrate the effects of dynamic heterogeneity on the forma-

tion of particle monolayers and could shed light on possible methods for

producing artificial thin films and the mechanisms involved in the growth

of biofilms on surfaces. Results of the PTM simulations could also be

compared with those of previous studies that used some form of random

sequential adsorption (RSA) in their models.

2. The simulation tool can be used for detailed studies of slip length, re-

lating surface heterogeneity to the presence of slip at solid-fluid inter-

faces. In addition to the hydrophilic, fully-wetted surfaces of the present

study, portions of the model substrate could be rendered hydrophobic

by changing boundary conditions for the numerical flow field solution

and/or through appropriate specifications of surface chemistry. Instanta-

neous velocities of many particles could be monitored as they travel very

close to the heterogeneous model substrates. These simulations would
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be compared with the findings of experimental studies of slip length for

particular surfaces. As mentioned earlier in this thesis, insights into slip

length could lead to the design of surfaces with reduced friction for fluid

flows, thereby saving power.

3. Applications of the simulation tool described in this study can be ex-

tended by combining features of the Heterogeneous Interaction Model

(HIM) and the Particle Tracking Model (PTM). By varying the sizes of

the subunits (as well as their chemical properties), these building blocks

can create substrates of arbitrary topography and therefore, more accu-

rate renderings of real surfaces can be achieved. With such flexibility

in depicting the characteristics of the substrate, a potential avenue of

research for such a simulation tool is the transport of particles in con-

fined spaces of micro- and nanoscale dimensions. It is currently a topic

of interest, with applications including water filtration membranes (i.e.,

pore transport), lab-on-chip designs, and microcirculation in tumors.

The general approach with this simulation tool would account for hy-

drodynamic interactions, albeit approximately, in scenarios of hindered

convection and diffusion such as the entrance to a cylindrical pore. Simu-

lation results would be compared with other methods proposed to model

hindered transport in these particular environments.
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Appendix A

Procedure for Creating
Undisturbed Hydrodynamic
Fields near Model Substrates

A.1 Introduction

The entire numerical solution methodology for the undisturbed hydrodynamic

field near a rough substrate is centered around using commercially-available

finite element software. However, information from this solution needs to be

transformed into something that is readily usable for the PTM. This appendix

provides details of the procedure employed in this study to create the data files

containing the hydrodynamic field information, using the configuration of the

computational domain and its associated boundary conditions as described in

Section 4.2.2.

A.2 Solution of the Hydrodynamic Field Us-

ing Finite Element Software

An important part of the PTM’s (Particle Tracking Model’s) simulation of

hydrodynamics is the undisturbed hydrodynamic field in the vicinity of the

physically heterogeneous substrate. In this study, this field is obtained using

the finite element software COMSOL Multiphysics 3.3 (Comsol Inc.; Burling-

ton, MA), which numerically solves the Stokes equations for steady state, sim-
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ple shear flow across the field’s computational domain. In COMSOL, three-

dimensional, steady state, Stokesian flow fields are solved in the Incompressible

Navier-Stokes (chns) Module using a stationary solver. All governing equa-

tions, boundary conditions and relevant parameters are non-dimensionalized.

Despite the linearity, the finite element matrices for the flow fields in this re-

search are non-symmetric and somewhat sparse, so the iterative linear system

solver GMRES (Generalized Minimum RESidual method) is employed with

the incomplete LU matrix preconditioner (drop tolerance set at 0.01). Al-

though COMSOL 3.3 has several linear system solvers, only this solver and

preconditioner would generate solutions without run-time errors or premature

termination of the solver’s function.

The computational domain is partitioned into tetrahedral mesh elements

using an automatic mesh generator. Prismatic and hexahedral elements were

tested, but the tetrahedral elements were found to perform better in both

computational effort and level of accuracy. Unstructured (referred to as “free”

in COMSOL) mesh networks are used since they have no restrictions on the

distribution of elements. For the single asperity scenarios such as those in

Section 5.3.1, a computational (half-field) domain measuring 40ap×20ap×20ap

(ap is the particle radius) is rendered with a free mesh of 170603 degrees of

freedom and 36674 tetrahedral Lagrange elements. For the multiple, in-line

asperity scenarios, the half-field domain is enlarged to 300ap × 100ap × 100ap,

with 219761 degrees of freedom and 59099 tetrahedral Lagrange elements. In

all scenarios, the mesh starts at its finest resolution (i.e., Predefined mesh size:

Finer) on the surfaces of the asperities. Having the smallest mesh elements

on the asperities’ surfaces provides a better representation of these curved

boundaries while conforming to the tetrahedral meshes, and results in more

accurate integrations of stress tensors to determine net force values. The

characteristic lengths of the elements grow by 40% per layer as the mesh

extends into the fluid from those surfaces. All calculations for solving these

fields were performed on a 2 GHz AMD Athlon 64 X2 Dual Core Processor

3800+ personal computer with 2 GB of RAM.

210



A.3 Creation of Hydrodynamic Field Data Files

After COMSOL has numerically solved the hydrodynamic field over the entire

computational domain for the given system, the corresponding field data files

used by the PTM in the sub-domain can be generated. Since the sub-domain

grid’s Cartesian architecture is superimposed on a substrate with regions of

curvature, it is important to ensure that none of the eight grid nodes used

for flow velocity interpolation (see Section 4.3.4) reside within the composite

substrate. This is achieved by setting the grid resolution to one-half of the

particle’s radius (i.e., RES = 0.5ap). In doing so, interpolating for u at the

position of the particle’s center will always involve finite, non-zero values in

the adjacent nodes. This can be seen schematically in Figure 4.5(b), as all of

the nodes are a substantial distance (> 0.5ap) away from the outer surface of

the particle.

The process of generating these hydrodynamic field data files involves the

following steps:

1. Produce a grid data file for the current system configuration (called

GRID.dat, as an example), listing the Cartesian coordinates of each grid

node with the chosen computational sub-domain.

For this study, this grid data file was produced with a FORTRAN pro-

gram, which inputs a separate data file listing the coordinates of the

centers of all asperities within the computational sub-domain. A num-

ber of parameters for the computational sub-domain must be specified

in this program, all of which are listed in Table A.1. At this stage, only

the half-field of the sub-domain is considered for each system.

2. Import the grid data file GRID.dat into COMSOL.

In COMSOL 3.3, this can be found by the path File/Export/Post pro-

cessing Data, and then under the tab labeled “Subdomain”, the filename

is entered in the blank beside “Location: Coordinates from File:”.
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Table A.1: Parameters required for post-processing the hydrodynamic field
data within the computational sub-domain (half-field) for each configuration
of physical heterogeneity investigated with the PTM in this study. In all
configurations, the asperity-to-particle size ratio λ is 5, dimensions are scaled
with respect to particle size ap, and the grid resolution of 0.5ap applies to all
three directions.

Parameter Variable Substrate Configuration
Single Two Multiple

Asperity Asperities Asperities

Min. x− position XMIN −40 −50 −50
Max. y− position YMAX +20 +20 +40
Max. z− position ZMAX +20 +20 +20
No. of grid nodes, x− NX 161 201 201
No. of grid nodes, y− NY 41 41 81
No. of grid nodes, z− NZ 41 41 41
No. of asperities NSA 1 2 8 (in-line)

7 (staggered)

3. Export the x−, y− and z− fluid velocity data (i.e., u, v and w re-

spectively in COMSOL) into temporary data files (called temp_u.txt,

temp_v.txt and temp_w.txt in this example), one at a time.

This can be found by the same path in COMSOL under the tab labeled

“General”, with the filename entered in the blank beside “Export to

file:”. The data is exported from Subdomains and the format of exported

data should be set at Coordinates, data.

4. Immediately after creating these temporary files, remove the first line

(i.e., column titles) and replace all NaNs (i.e., Not a Number) with

zeroes for each of them.

Depending on the configuration of the asperities in the computational

sub-domain, the solution of the hydrodynamic field may produce NaNs at

some mesh nodes near the substrate’s surface. These NaNs will appear in

the data files exported from COMSOL, and as long as they are a short

212



distance from the substrate’s surface (¿ 0.5ap), they can be replaced

with zeroes.

5. Using another FORTRAN program, convert the temporary files exported

from COMSOL into the undisturbed hydrodynamic field data files in full

field form with the appropriate format (i.e., preferably binary to reduce

file length) to be read by the PTM simulation program. In this example,

temp_u.txt becomes outputbinary_u.dat, and similarly for the other

two velocity components.

It is very important to confirm that the parameters used in this step

agree with those used in step 1. In this step, the nodes located within

the asperities are assigned zeroes so that the final data files can be read

as complete arrays by the PTM’s main program. The full field form

of each hydrodynamic field data file is determined by a reflection of its

respective half-field data about the y− axis. Consequently, the values of

NY and NSA used in the PTM differ from those listed in Table A.1, and

they are shown in Table A.2.

Table A.2: Parameters to be used with the full field versions of hydrodynamic
field data files for each configuration of physical heterogeneity investigated with
the PTM in this study. In all configurations, the asperity-to-particle size ratio
λ is 5.

Parameter Variable Substrate Configuration
Single Two Multiple

Asperity Asperities Asperities

No. of grid nodes, y− NY 81 81 161
No. of asperities NSA 1 2 16 (in-line)

12 (staggered)
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Appendix B

Numerical Method for
Validation of the PTM

In this Appendix, the following is a description of the method that was de-

vised to validate a key element of the Particle Tracking Model (PTM): the

use of Universal Correction Functions (UCFs) to approximate the hydrody-

namic retardation effect when a moving particle approaches a spherical as-

perity attached to a planar substrate. The UCFs were originally formulated

for sphere-wall interactions, and they have been employed in countless studies

with such simple geometries since they were first proposed. These functions

were essentially derived from ratios of the actual hydrodynamic drag over the

Stokes drag on a particle moving in a fluid. It is commonly known that the

actual hydrodynamic drag on the particle depends on the local geometry of

the surface it is approaching, and the PTM seeks to approximate this.

The method, first referred to as the numerical method of superposed solu-

tions in Chapter 5, begins with a force balance at the particle’s surface. The

hydrodynamic force exerted by the surrounding fluid on the particle is

Fhyd =

∫∫

p

dS · σ, (B.1)

in which σ is the pressure – or hydrodynamic stress, shown in scaled form in

Eq. (4.8) – tensor for an incompressible fluid, and dS is a directed element

of the particle’s surface area pointing into the fluid. Linearity in Stokesian

flow fields allows the solutions for the continuity and Stokes equations, as
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well as the hydrodynamic stress and force on the particle, to be expressed as

the sum of their translational (t), rotational (r) and shear (sh) contributions

[GCB67a,GCB67b]. For a non-accelerating particle that is neutrally buoyant,

the total stress and force are equal to zero:

σ = σt + σr + σsh = 0 (B.2)

Fhyd = Ft + Fr + Fsh = 0 (B.3)

(The sum is zero because Ft and Fr together represent the total force acting

on the fluid due to the particle’s movement, which is balanced by Fsh, the

force acting on the particle due to the fluid’s motion.) Even though the parti-

cle undergoes rotation and experiences torques under these circumstances, the

rotational contribution is neglected here since its effects on the hydrodynamic

force are not significant until the particle reaches very close separation dis-

tances with some point on the surface of the composite substrate. The focus

in this study is on the forces and translational velocities of the particle, and

consequently, Eq. (B.3) is reduced to

Ft + Fsh = 0. (B.4)

The translational and shear forces can be determined independently from

solutions of two separate problems, which will be discussed shortly. These

forces are then scaled with respect to their corresponding Stokes drag, that

is, the drag force on the particle in an unbounded fluid. For instance, the

components of the translational and the shear forces in the x− direction will

be

F t∗
x = F t

x/(6πµapvx) and F sh∗
x = F sh

x /(6πµapux) (B.5)

with vx as the particle’s velocity and ux as the fluid velocity at a given position

in the undisturbed flow field. This yields, after substitution into Eq. (B.3),
(

vx

ux

)
=
−F sh∗

x

F t∗
x

. (B.6)

Since ux is previously solved for, the particle’s velocity can be easily calculated

after the translation and shear contributions to the hydrodynamic force have

been numerically determined.
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The translation and shear contributions are solved for as two distinct prob-

lems using the software COMSOL. The translation problem involves solving

for the total drag force on the particle for the case when the particle has a

uniform velocity u while it is near the composite substrate. The velocity u

applied to the particle is the local undisturbed fluid velocity at the location

of the particle center (which was computed as described in Section 2.1). The

Stokes equation is numerically solved for this case employing the boundary

conditions (as in Figure 4.2)

ua,us = 0 on Γa, Γs

up = u on Γp (B.7)

σt · n = 0 on Γin, Γout,

where the subscripts a, s, and p refer to the asperity, the planar surface, and

the particle, respectively. The boundary Γp refers to the particle surface. The

last boundary condition (i.e., Γin,Γout) pertains to a neutral (i.e., no normal

fluid stress) outer boundary. In scaled form, the solution of the governing

equations using the above boundary conditions, followed by calculation of the

surface integral of the total translational stress on the particle (σt∗), yields the

translational force, Ft∗.

The calculation of the shear component of the force can be ideally per-

formed by imposing a shear flow in the computational domain while keeping

the particle and the substrate stationary [AQMB08]. However, for numeri-

cal calculations with a finite computational domain, the inlet flow boundary

condition cannot be defined accurately, since the undisturbed shear flow is

applicable only at an infinite distance. To circumvent this problem, the shear

component is solved for by imposing the shear flow as a boundary condition

on the particle and the asperity. This provides a more accurate numerical

estimate – and additive inverse – of the shear force on the particle. Therefore,
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the boundary conditions for this problem become

us = 0 on Γs

ua,up = γ̇z on Γa, Γp (B.8)

σsh · n = 0 on Γin, Γout

Like with the translation component, the scaled shear force on the particle,

Fsh∗, is obtained by integrating the total scaled shear stress σsh∗ over the

particle’s surface.

This numerical method of superposed solutions has been found to be most

effective in determining the force components and particle velocity in the di-

rection of the prevailing flow, which is in the x− direction for the present

study. The translational and shear contributions to the scaled hydrodynamic

force in the x− direction are,

F t∗
x =

(∫∫

p

dS∗ · σt∗
)
· i, (B.9)

F sh∗
x =

(
−

∫∫

p

dS∗ · σsh∗
)
· i. (B.10)

These results can then be substituted into Eq. (B.6), together with the x−
component of u, to obtain the particle’s velocity in the x− direction, vx,

thereby accounting for the hydrodynamic retardation effect on the particle for

this substrate geometry. The same procedure can be applied for the velocity

components in the y− and z− directions, which includes simply replacing the

unit vector i with j or k, respectively, in Eqs. (B.9) and (B.10).

The results of this numerical approach were compared with those of Gold-

man, Cox and Brenner [GCB67b] (i.e., to evaluate the universal correction

function f3) for sphere-flat plate interactions, and they were found to have a

difference of less than 0.5% for scaled separation distances down to H =0.5431,

and a maximum difference of about 4% at H = 0.0453.

217



Appendix C

Calculation of Capture
Efficiency due to Interception

Although the Eulerian (flux-oriented) and Lagrangian (particle-oriented) ap-

proaches are markedly different in many respects, this study has uncovered a

common factor between them when observing particles being captured by a

single asperity on an otherwise planar substrate. Beginning with Figure 6.2,

a number of particles are released in a simple shear flow field from the semi-

circular window Aa at a substantial distance upstream from a single spherical

asperity (in this case, at x/ap = −15, with an asperity-to-particle size ratio

of λ = 5). Since the approach velocity of the fluid U∞ varies with height

(= γ̇z), the particle flux for a differential element dN at a given height in the

semi-circular window Aa (depicted in Figure C.1) is given by

dN = n∞U∞ dAa

= n∞γ̇z × 2
√

a2
a − (z − aa)2 dz

= 2γ̇n∞ × z
√

2aaz − z2 dz (C.1)

Therefore, the total flux of particles released from the window Aa is determined

by integrating Eq. (C.1) once with respect to height z, resulting in

N = 2γ̇n∞

∫ 2aa

aa

z
√

2aaz − z2 dz. (C.2)

The capture (or collection) efficiency due to interception for the asperity

(ηI) is defined as the ratio of two fluxes [vdV89,MB06]: the actual flux (number
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Figure C.1: Schematic showing how the non-uniform particle flux through
the upstream release area Aa is determined by dividing the area into differential
elements.

of captures per second) relative to a reference flux, usually the flux when

hydrodynamic and colloidal forces are neglected and particle trajectories are

rectilinear (i.e., ignoring the effect of the asperity on the undisturbed fluid

flow). From the Lagrangian perspective with the PTM, this reference flux

translates into a deposition probability of 1.0 (refer to asterix data points in

Figure 6.7), meaning that all particles released from area Aa will be captured

by the asperity.

In general for the single asperity scenario, this ratio is

ηI =
NL

2γ̇n∞
∫ 2aa

aa
z
√

2aaz − z2 dz
, (C.3)

where NL is the actual flux based on the area enclosed by the limiting tra-

jectories shown in Figure 6.2. The calculation of the release area for particles

captured by the asperity for a given scenario (AL, in both parts of Figure 6.2)

is not perfectly circular due to the influence of the flat surface on the undis-

turbed fluid flow. Nonetheless, the local flux at any differential area element

dAL is

dNL = n∞U∞ dAL

= n∞γ̇z dAL (C.4)
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Table C.1: Comparison of capture (collection) efficiency due to interception
ηI with deposition probability φa for a single asperity attached to a flat surface
with a shear fluid flow across it, with and without hydrodynamic interactions
(UCFs) accounted for in the motion of the particles.

Eulerian Lagrangian (PTM)
Approach Approach

ηI φa

Without UCFs 0.1342 ≈ 0.16
With UCFs 0.0202 ≈ 0.03

and so the total flux through AL is

NL = γ̇n∞

∫

AL

z dAL. (C.5)

Substituting Eq. (C.5) into Eq. (C.3) then yields

ηI =

∫
AL

z dAL

2
∫ 2aa

aa
z
√

2aaz − z2 dz
, (C.6)

providing a rigorous definition of ηI based on a non-uniform particle flux. The

numerator of Eq. (C.6) must be solved for numerically (with Simpson’s rule

integration) using the starting points of the limiting trajectories calculated

with the PTM (refer to Figure 6.2), while its denominator has an analytical

solution. An interesting observation from Eq. (C.6) is that ηI is independent of

γ̇, and hence Pe as well. This is also true for the two cases in Figure 6.7 shown

with hollow triangles and circles. The hollow triangles represent the results for

deposition probability on the asperity φa for the scenario with the numerically-

determined flow field around the asperity but hydrodynamic interactions are

neglected (i.e., without UCFs; limiting trajectories drawn in Figure 6.2a).

The hollow circles are for the same scenario with hydrodynamic interactions

included (i.e., with UCFs; limiting trajectories drawn in Figure 6.2b). Based

on the comparison of ηI to φa in Table C.1, the definition of deposition prob-

ability in Eq. (6.2) corresponds qualitatively to the capture efficiency of the

asperity due to interception in both cases. It should be emphasized that this
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similarity between ηI and φa for these deterministic transport cases only ap-

plies for particles released in the projected area of the top half of the asperity.

Particles released in the projected area of the lower half of the asperity are

expected to differ considerably, as the undisturbed flow field in this region is

significantly modified by the presence of the planar surface. Such a flow field

differs greatly from the flow field around an isolated spherical collector, which

the Eulerian approach discussed here is based upon.
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