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Abstract 

The steam alternating solvent (SAS) process involves multiple cycles of steam and solvent 

(e.g. propane) being injected into a horizontal well pair to produce the heavy oil. 

Companies are interested in these solvent-based methods, as they entail a smaller 

environmental footprint with reduced water usage and greenhouse gas emissions. 

However, the lack of understanding regarding the influences of reservoir heterogeneities, 

such as shale barriers, remains a significant risk for field-scale predictions. Additionally, 

proper design of the process in heterogeneous reservoirs is challenging because of the 

uncertain heterogeneity distribution and optimization of multiple conflicting objectives. In 

this work, a novel hybrid multi-objective optimization (MOO) workflow is developed to 

search a set of Pareto-optimal operational parameters for the SAS process in heterogeneous 

reservoirs. 

The construction of the heterogeneous models involves the following steps: first, a 

set of synthetic homogeneous 2D is constructed using data representative of the Cold Lake 

reservoir; next, sequential indicator simulation is performed to construct heterogeneous 

models with varying shale proportions and correlation lengths. The resultant set of SAS 

heterogeneous models is subjected to flow simulation. A detailed sensitivity analysis is 

performed to examine the impacts of shale barriers on SAS production and to formulate a 

set of operational/decision parameters (e.g. solvent concentration, number/duration of 

cycles, bottom-hole pressure) and the objective functions (e.g. recovery factor and 

cumulative solvent injection) to be optimized. The non-dominated sorting genetic 
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algorithm II (NSGA-II), which is a MOO scheme, is applied to search for the optimal sets 

of decision parameters. To account for multiple reservoir models representing the different 

realizations of the shale barrier configuration, a weighted objective function, which 

represents an average measure over all reservoir models, is employed. Finally, to reduce 

the computational cost, several proxy models are included in the hybrid workflow to 

evaluate the defined objective functions. 

The growth of a steam-solvent chamber is hampered due to the presence of shale 

barriers, particularly in the near-well region. These observations are consistent with those 

reported in several previous studies. However, the behavior of SAS may be different from 

the SAGD process alone, depending on the relevant solvent transport mechanisms such as 

dispersion. Results of the optimization workflow reveal that both the solvent concentration 

and duration of the solvent injection in the early cycles have significant impacts. 

Integrating the proposed proxy models in a hybrid optimization workflow has considerably 

reduced the computation requirement. 

This study describes an efficient Pareto-based optimization workflow for the 

designing of SAS operational parameters; its main advantage is that it can consider multiple 

conflicting objective functions and different uncertain reservoir heterogeneity scenarios. 

This work offers a promising potential to de-risk solvent-based technologies for heavy oil 

recovery by facilitating more robust field-scale decision-making. 
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Preface 

This thesis is composed by research previously published for two conferences:  Coimbra, 

L., Ma, Z., & Leung, J. Y. (2019). Practical Application of Pareto-Based Multi-Objective 

Optimization and Proxy Modeling for Steam Alternating Solvent Process Design. In SPE 

Western Regional Meeting. Society of Petroleum Engineers, and Coimbra, L., Ma, Z., & 

Leung, J. Y. (2020). Design Of Steam Alternating Solvent Process Operational Parameters 

Considering Shale Heterogeneity. In Latin America and Caribbean Petroleum Engineering 

Conference (LACPEC). Society of Petroleum Engineers. I was responsible for the coding 

development, result analysis, and manuscript preparation. 
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Chapter 1 Introduction 

1.1 Background  

The oil sand deposits in the province of Alberta, Canada, are considered among the world’s 

largest crude oil resources, with an estimated volume of 1.845 billion barrels of oil 

equivalent (Alberta Energy Regulator, 2014). Approximately 20% of the resources can be 

produced via strip mining, while the remaining 80% must be developed via in-situ 

enhanced oil recovery (EOR) techniques, such that either thermal energy or solvents must 

be injected (Souraki et al., 2013). 

Examples of thermal-based methods include hot water flooding, cyclic steam 

stimulation (CSS) (Ali and Blunschi, 1983), steam-assisted gravity drainage (SAGD) 

(Butler et al., 1981), in-situ combustion (Martin et al., 1958), and steam injection 

(Donaldson et al., 1989). For these types of processes, thermal energy is added to reduce 

the oil viscosity, such that the diluted oil can flow into the producer. SAGD has evolved to 

become one of the most popular techniques for commercial bitumen extraction, where 

high-temperature and high-pressure steam is continuously injected into a horizontal 

injector, the diluted bitumen, as well as the condensed water, would drain along the 

chamber edge via gravity towards another horizontal well that is located at a few meters 

below the injector. Common disadvantages associated with most steam-based thermal 

methods are the high energy and water consumption (i.e. the energy requirement for 

heating the water to get saturated steam), significant greenhouse gas (GHG) emissions (by-

products in the combustion of natural gas to generate steam, measured the GHG intensity 
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in kg CO2eq/bbl of bitumen produced), and potential heat loss to the over- and under-

burden. Therefore, alternative solvent-based techniques have been proposed, where low 

molecular-weight hydrocarbons (e.g., propane, butane) mixtures are added for viscosity 

reduction. The physical mechanisms involved are molecular diffusion and dispersion, 

instead of latent heat transfer in thermal methods. The vapor-extraction process (VAPEX) 

utilizes the same well configuration as in SAGD, but a solvent mixture, instead of steam, 

is injected (Butler and Mokrys, 1991). However, its field-scale implementation remains 

challenging because of the slow rate of mass transfer (Leung, 2014; Shi et al., 2014).  

Generally speaking, solvent-assisted processes could offer important potential for 

reducing the environmental footprint, but the corresponding oil production rates are 

generally much lower and the challenges of solvent recovery or recycling are serious 

obstacles. To capitalize on the synergy of SAGD and VAPEX techniques, many hybrid 

heavy oil recovery techniques have been proposed. 

The process of steam alternating solvent, or SAS, utilizes the same well 

configuration as in the conventional SAGD scheme; however, cycles of steam and solvent 

are injected in an alternating fashion (Zhao, 2007). The SAS process is deemed to be more 

energy-efficient and environment-friendly with less greenhouse gas emission and water 

usage. However, proper design of the SAS process is challenging as multiple conflicting 

objectives need to be optimized simultaneously. Conventional optimization methods that 

aggregate multiples objectives into a single weighted objective are not appropriate.  
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In this work, a novel workflow is developed to identify a set of Pareto-optimal 

operational parameters for the SAS process, in homogeneous and heterogeneous reservoirs. 

1.2 Problem Statement 

The SAS process was originally proposed as an alternative that combines the advantages 

of the steam-assisted gravity drainage (SAGD) and vapor extraction (VAPEX) (Zhao 

2007). The process asses its performance for a particular homogeneous reservoir with fixed 

operational parameters. The author suggested to find or determine de desired profiles by 

looking at the operational parameters of the process.  

It is also important to remark that realistic cases present reservoir heterogeneities, 

which are not considered in the proposed paper. It is important to consider heterogeneous 

reservoirs in order to adequately propose the operational parameters to carry out the 

project. 

The complexity of the process leads to require high computational efforts to 

optimize the process due to the conflicting objectives that this process inherit, an 

optimization framework has not yet been presented. It is for that reason that this study 

proposes a novel hybrid optimization workflow that can answer this statement: “Can the 

SAS process be designed with optimum parameters in order to improve its efficiency?” 

1.3 Research Objectives 

The general objective of this study is to propose a hybrid multi-objective optimization of a 

set of Pareto-optimum solutions with considerable savings in computational costs for 
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homogeneous and heterogeneous reservoirs. For this goal, the specific objectives are 

presented: 

(1) To build a base SAS model and perform a systematic sensitivity analysis 

(2) To construct proxy models that contributes in the computing efficiency of the 

optimization of the process 

(3) To implement a multi-objective optimizer to calculate the objective functions 

(4) To analyze and demonstrate the feasibility of the proposed operational parameters 

obtained in the Pareto fronts 

1.4 Thesis Outline 

This thesis consists of six chapters. The outline of these chapters is provided as follows: 

Chapter 1 presents the introduction to the study composed by background, the 

aspects related to the SAS process, the problem statement, and the objectives of the thesis.  

Chapter 2 presents the literature review related to the solvent assisted thermal 

recovery processes for heavy oil, the response surface methodology, and the multi-

objective optimization approaches.   

Chapter 3 presents the methodology implemented to develop the workflow of 

multi-objective optimization of the SAS process.   

Chapter 4 presents the application of the workflow to a homogeneous reservoir. 
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Chapter 5 presents the updated workflow to perform multi-objective optimization 

in heterogeneous reservoirs. 

Chapter 6 presents the conclusions and recommendations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 

 

Chapter 2 Literature Review 

2.1 Steam-solvent hybrid processes 

In recent years, corporate and academia research have advocated the development of 

processes derived from the SAGD process implementing the addition of solvents. Solvent 

Aided Process (SAP) (Gupta and Gittins, 2006) utilizes butane as a solvent, predicting a 

reduction of steam requirement of 30% compared to the conventional SAGD (Cenovus 

Energy, n.d.). Imperial Oil conducted a research of the Solvent Assisted SAGD (SA-

SAGD) claiming 25% of GHG intensity reduction with a corresponding reduction of steam 

requirement of 25% (Imperial Oil, n.d.). These hybrid methods co-inject solvent with the 

steam, but a variation of them have been proposed: The Steam Alternating Solvent (SAS) 

Process. 

2.2 Fundamentals of the Steam Alternating Solvent Process 

The SAS process was first proposed by Zhao (2007), where steam and solvent are 

alternatively injected using the same well configuration as in SAGD. According to Zhao 

(2007), the SAS process consists of three main steps: 

 Preheating the reservoir to establish a vertical communication between two wells; 

 Injecting steam (as in the SAGD process) until a steam chamber is fully developed 

and heat loss to overburden becomes significant; 

 Implementing an injection cycle in which solvent and steam are injected 

alternatively: solvent injection for a few months is followed by steam injection for 
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another few months. The entire production life is divided into numerous cycles. It 

should be noted that the production continues during the entire operation, and no 

soaking/shut-in periods are necessary.  

Zhao explained that the injected solvent should have a dew point temperature between 

the initial reservoir temperature and the steam temperature at the operating pressure. The 

particular advantage of the alternate injection pattern compared to co-injecting solvent and 

steam, according to Zhao, is that SAS could help to reduce solvent retention by disturbing 

the potential solvent accumulation around or below the producer well.  

The set-up of the computational domain of the SAS process is illustrated in Figure 2.1. 

A proper design of the SAS process is challenging, as multiple conflicting objectives, such 

as maximizing recovery factor and minimizing cumulative solvent injection, should be 

considered simultaneously. Accounting for these objectives is necessary to formulate a set 

of optimal operational parameters to maximize project economics and to reduce 

environmental impact in a field operation. Numerous parameters can affect the overall 

solvent efficiency: types of solvent, solvent concentration, duration of solvent injection in 

each cycle. Other relevant operational constraints may include flowing bottom-hole 

pressure or bottom-hole gas production. In this study, a sensitivity analysis was carried out, 

and it was identified that the fraction of propane in the injected solvent mixture and the 

duration of solvent injection in each cycle are the most influencing factors. Hence, these 

parameters are selected as decision variables for the optimization workflow. 
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Figure 2.1—Schematic of the base SAS simulation model. 

The major objective of this work is to gain additional insights regarding the optimal 

SAS operating conditions in homogeneous reservoirs and in the presence of shale 

heterogeneity. Previous studies have demonstrated that reservoir heterogeneities could 

adversely impact the SAGD performance (Amirian et al., 2014; Wang and Leung, 2015; 

Ma et al., 2018; Zheng et al., 2018; 2019), but the impacts of heterogeneities on the design 

of SAS operating parameters is not well understood. A hybrid workflow integrating the 

NSGA-II MOO scheme and response surface modeling is employed, and its application to 

optimize the SAS process considering heterogeneity uncertainties is novel. To the best of 

the authors’ knowledge, the effects of uncertain shale barrier configurations on the design 

of SAS process has not been published.  
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2.2 Multi-objective Optimization Approaches  

Conventional single-objective optimization methods that aggregate multiples objectives 

into a single weighted objective are not appropriate because, when it is used a global 

objective function, the solution tends to minimize the single objective regardless of the 

characteristics of individual objective functions. In addition, there is no universal 

formulation for determining the appropriate weights for each objective function (Min et 

al., 2017). Al-Gosayir et al. (2012) applied several hybrid techniques involving genetic 

algorithm (GA) to optimize the solvent-assisted SAGD processes in a heterogeneous 

reservoir. Their method was later adopted to study the steam-over-solvent (SOS-FR) 

injection in fractured reservoirs process (Al-Gosayir et al., 2013), and the results illustrated 

that optimizing both injection time and number of cycles using a single-objective genetic 

algorithm was quite challenging. 

Many recent studies have advocated for the use of multi-objective optimization 

(MOO) approaches to provide a set of diversified solutions in terms of optimal decision 

parameters, when multiple conflicting objective functions are involved. MOO aims to 

assess the trade-off among solutions corresponding to numerous conflicting objectives, and 

the set of solutions (i.e., representing different combinations of optimal decision 

parameters) is referred to as the multi-dimensional optimal solution domain or the Pareto-

optimal front (POF). In other words, the goal of a MOO scheme is to identify a set of 

acceptable trade-off solutions along the POF. Examples of widely-adopted MOO 

techniques may include vector evaluated genetic algorithm (VEGA), multiple objective 
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genetic algorithm (MOGA), non-dominated sorting genetic algorithm (NSGA), non-

dominated sorting genetic algorithm II (NSGA-II), Niched-Pareto genetic algorithm. 

MOO has also been applied to design EOR processes for heavy oil recovery in 

recent years. Min et al. (2017) employed a hybrid optimization approach, which integrated 

MOO and response surface modeling, to optimize the expanding solvent-steam assisted 

gravity drainage process. Ma and Leung (2019) optimize various injection parameters for 

the warm solvent injection process. Due to its widely-reported robust performance in a 

variety of applications, NSGA-II is employed as the main MOO technique in this research. 

Figure 2.2 shows the schematic of the NSGA-II procedure, in which the non-dominated 

sorting and the crowding distance sorting are the main features. This will be discussed in 

the following chapter. 

 

Figure 2.2—Schematic of the NSGA-II procedure (Deb 2001). 
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In order to reduce the computational costs associated with the objective function 

evaluation, proxy models approximating the non-linear relationships between the decision 

parameters and objective functions are constructed following the response surface method. 

The formulas and details regarding this technique will be discussed in the following 

chapters.  
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Chapter 3 Research Methodology 

3.1 SAS Model Description 

A homogeneous 2D base SAS model is constructed in accordance to realistic field data 

gathered from the Cold Lake reservoir, Alberta, Canada, as presented in Zhao, 2007. The 

well configuration in x-z plane is shown in Figure 3.1, in which two horizontal wells are 

placed at the bottom of the pay zone; the horizontal well trajectory is aligned with the y-

axis (i.e., y = 500 m). Assuming symmetrical growth and development of the 

steam/solvent chamber, only half of a typical well pair distance of 100 m is simulated. 

Table 3.1 summarizes the relevant simulation parameters.  

The rock-fluid properties were taken from Ma et al. (2018), such as the molar diffusion 

coefficient of propane in liquid of 4.32 × 10-4 m2/day and  the mechanical dispersion 

coefficient of 2.33 × 10-3 m The information of the oil and propane properties and propane 

solubility taken from Ma was not available in Zhao due to the fact that it was generated a 

phase property program, and no more details were given regarding to that data.    
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Figure 3.1—Schematic of the proposed SAS model. 

Table 3.1—Parameters used in field-scale numerical simulations. 

Parameter Value 

Number of grid blocks (I × J × K) 50 × 1 × 25 

Size of grid block (x × y × z) (m) 1 × 500 × 1 

Distance between heel and toe of horizontal wells (m) 500 

Initial pressure (kPa) 3100 

Initial temperature (C) 12 

Porosity (fraction) 0.33 

Pay-zone thickness (m) 25 

Permeability, horizontal (D) 2.5 

Permeability, vertical (D) 1.5 

Initial oil saturation 0.85 

Oil viscosity at 12C (cP) 47956 

Oil viscosity at 220C (cP) 4.6 

Initial GOR 3.4 
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As discussed in the introduction, the entire SAS process (spanning over a total of 2880 

days) can be divided into three phases. After the initial pre-heating phase of 90 days, steam 

with 95% quality is injected into the formation for two years during the SAGD phase at a 

constant injection pressure of 3400 kPa and temperature of 237 C. To prevent the 

production of live steam, a steam trap of 2 C is imposed. Once the steam chamber is fully 

established and reaches the overburden (top of the pay zone), the third phase of cyclic 

steam alternating solvent operation begins. The duration of each cycle is fixed as 6 months. 

For the base case, each cycle consists of a 4-month injection of solvent and a 2-month 

injection of steam. A total of 12 cycles is modeled. In order to facilitate the optimization 

workflow by limiting the number of decision variables, these 12 cycles are divided into 2 

stages: early SAS and late SAS. Following the recommendation of Zhao (2007), a solvent 

mixture of 20 mol% methane and 80 mol% propane is selected for the base case. In each 

cycle, both solvent and steam are injected at 3400 kPa, while a maximum bottom-hole gas 

rate of 5 m3/day is imposed at the producer during the solvent injection and a 2 C steam 

trap is imposed during the steam injection. 

The base case is subjected to flow simulation using a thermal simulator (CMG STARS, 

2019). The oil production rate (q), recovery factor (RF), and the duration of each cycle for 

the base model is shown in Figure 3.2. The highest oil production rate occurs during the 

SAGD phase, whereas the original paper by Zhao (2007) reported that the peak oil 

production was at the beginning of the first SAS cycle. This discrepancy was also observed 

in a laboratory setting (Zhao et al., 2005), and it was not fully understood. However, all the 

results seem to suggest that the highest oil production would take place near the end of the 
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SAGD phase or at the beginning of the SAS phase, during which the reservoir temperature 

near the well pair is high and the injected fluids do not have to travel far to reach the 

chamber edge (i.e., solvent/steam/oil interface). Nevertheless, comparing to the production 

profiles presented in Zhao (2007), it is clear that many salient production characteristics, 

such as the fluctuations in oil production, are sufficiently captured in the base model. In 

addition, the predicted chamber development is presented in Figure 3.3.  

 

  

Figure 3.2—Production profiles (q = monthly average oil production rate; RF = recovery factor) 
from the base SAS model.  
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Figure 3.3—Oil saturation (So, fraction) at different injection times:  green color denotes the 
steam-solvent chamber. The SAS phase starts after 2 years. 

 

When assessing the SAS process performance, temperature distribution alone is no 

longer an indication of the depleted zone, as it would have been for SAGD. The reason is 

that only a portion of the depleted zone is expected to be at the steam temperature, 

reflecting an uneven distribution of temperature in the developed vapor chamber; 

temperature gradients may enhance solvent transport within the chamber (Zhao 2007). 

Figure 3.4 shows that the highest concentration of propane is along the chamber boundary, 

where it dissolves into the oleic phase. It can also be observed that the methane tends to 

accumulate near the top of the reservoir. It is clear that the zones with the highest 

temperature correspond to the areas with higher steam concentration (i.e., water mole 

fraction in the gaseous phase). The solvent mixture travels ahead of the steam to the 

chamber edge, where it mixes with the oil; as a result, the total chamber size is larger than 

the volume being at the steam temperature.   

2 years 
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Figure 3.4—Oil saturation, So [fraction], reservoir temperature, T [C] and gas mole fractions of methane, propane and water at: (1) end of 
solvent injection in cycle 1 (839 days), (2) end of steam injection in cycle 4 (1439 days), (3) end of solvent injection in cycle 9 (2279 days), and 

(4) end of steam injection in cycle 12 (2879 days). 
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The production, BHP and temperature profiles during part of the first SAS cycle is 

examined in Figures. 3.5-3.6. At the transition from solvent injection to steam injection at 

840 days, there is a spike in each of the producing fluid profiles and the producer 

temperature. This spike coincides with a sudden drop in BHP during the first few hours 

immediately after the switch, and it rises again to approximately 3400 kPa. The sudden 

drop in BHP may be attributed to certain numerical instability associated with the abrupt 

change in well constraint: during the solvent injection period, the producer is operated with 

a constraint of maximum bottom-hole gas rate of 5 m3/day (Figure 3.5), and the chamber 

temperature has been reduced (Figure 3.4); when the steam is injected again, it takes some 

time for the near-well temperature to rise, the steam-trap constraint to be re-established, 

and the producer BHP to rise back to the 3400 kPa level; in fact, immediately after the 

spike, there is essentially no fluid production for almost three days.    
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Figure 3.5—Production rate and BHP profiles during part of the first SAS cycle (the injected fluid 
is switched from solvent to steam at 839 days). 

 

Figure 3.6— Production rate and temperature profiles during part of the first SAS cycle (injected 
fluid is switched from solvent to steam at 839 days). 
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3.2 Heterogeneity Modeling 

The effects of shale barriers on the SAS process are examined. Realizations of shale barrier 

distribution are generated stochastically based on the Sequential Indicator Simulation 

(SISIM) technique, as implemented in the Geostatistical Software Library (GSLIB) by 

Deutsch and Journel (1992). Each realization consists of 10% of shale by volume; ranges 

for the semivariogram are 20 m along the direction of maximum anisotropy (azimuth angle 

of 75) and 2 m along the direction of minimum anisotropy. The grid cells where the 

injector and producer are located consist of sand only. 

Figure 3.7 presents four randomly selected heterogeneous models and their 

corresponding oil saturation profiles at various times. It is clear that the shale barriers could 

hamper the chamber development, but the specific impacts of these heterogeneous features 

would depend on spatial arrangement of the shale barriers in each model; for example, a 

cluster of shale barriers located right above the injector (e.g., case #2) would have a more 

dramatic effect on the steam chamber growth than the other models.  
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Figure 3.7—Oil saturation corresponding to four randomly-selected heterogeneous cases (blue – 
shales; red – sand) at different times: a) end of SAGD (719 days), b) end of SAS cycle 6 (1799 

days), and c) end of SAS cycle 12 (2879 days). 

 

The recovery performance for four of the heterogeneous cases are compared with 

the homogeneous model in Figure 3.8. Cases #1, 2 and 4 yield relatively lower recoveries 

during the SAGD period, as the presence of shale barriers in the near-injector region would 

severely impact the chamber development, particularly along the vertical direction. 

However, during the solvent injection cycles, a RF of 50.76%, which is nearly identical to 

that corresponding to the homogeneous case (50.85%), is attained for case #2. It appears 

that the heterogeneities may introduce additional mixing near and ahead of the chamber 

edge, enabling the drained area to grow faster in the heterogeneous case, as shown in Figure 

3.9. This observation is corroborated by previous simulation studies involving other 

solvent-injection process (e.g., VAPEX) (Leung, 2014). 
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Figure 3.8—RF of the homogeneous case and the four randomly-selected heterogeneous cases  
(blue – shales; red – sand). 

 

 
 

 
Figure 3.9—Oil Saturation at 2880 days for the homogeneous case and heterogeneous case #2. 
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3.3 Proposed Hybrid MOO Workflow 

The proposed workflow applied in this work is illustrated in Figure 3.10. Several remarks 

should be made: (1) sensitivity analysis should be conducted to identify the appropriate 

decision parameters and the corresponding objective functions. (2) The accuracy and 

robustness of the trained proxy models should be assessed. At the end, a set of Pareto-

optimal decision parameters and the corresponding objective function values are 

computed.  

 
 
 

Figure 3.10—Flow diagram of the Hybrid SAS optimization process. 
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Chapter 4 Practical Application of Pareto-Based 

Multi-Objective Optimization and Proxy Modeling 

for Steam Alternating Solvent Process Design 

4.1 Selection of Decision Parameters and Objective Functions 

A detailed sensitivity analysis is conducted to determine the appropriate decision variables 

and objective functions. Appendix 1 presents the sensitivity analysis for several decision 

parameters, including the composition of injected solvent, the temperature of injected 

fluids, the bottom-hole pressures of injector and producer, the steam trap temperature, the 

bottom-hole gas produced, and different patterns of solvent injection in the cycling period. 

The results reveal that the SAS process performance is most sensitive to three particular 

decision parameters: solvent composition (Fpropane) and duration of solvent injection in each 

cycle during the early SAS (Tearly) and late SAS (Tlate) stages. The decision variable vector 

x for this study is shown in Eq. 4.1: 

   1 2 3, , , ,propane early latex x x F T T x  .......................................................................... (4.1) 

where x1, x2, and x3 refers to the three optimization parameters of Fpropane, Tearly, and Tlate, 

respectively. Other variables, such as the methane concentration and duration of steam 

injection in each cycle, are dependent on the three selected decision variables and, hence, 

are not included in x.  
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Two options for formulating the MOO problem are examined in this study: a two-

objectives optimization problem (Eq. 4.2) and a three-objectives optimization problem (Eq. 

4.3). The objective vector f(x) for both options are defined as follow: 

        1 2, ,  retentionf f cSOR Propane f x x x  ............................................................. (4.2) 

        1 2 3 ,

1
, , ,  propane waterf f f Q Q

RF

 
 
 

 f x x x x  ................................................... (4.3) 

where cSOR is the cumulative steam-oil ratio and propane retention ( retentionPropane ) is the 

normalized volume of propane accumulated in the reservoir (Eq. 4.4). Qpropane represents 

the cumulative injected propane volume, and it is normalized on a scale of 1 to 3 according 

to Eq. 4.5. Qwater denotes the cumulative injected steam volume, and it is normalized in a 

similar fashion as in Eq. 4.5. RF is recovery factor, which is the volume of cumulative oil 

production divided by the original oil in place, and 1/RF is used to transform this objective 

function for a minimization problem. It should be noted that all volumes mentioned here 

refer to their values at standard conditions. 

_

inj prod

propane propane

retention inj

propane max

V V
Propane

V


  .................................................................................. (4.4) 

original original

propane propane_min

propane original original

propane_max propane_min

Q Q
Q

Q Q





 ................................................................................... (4.5) 

where inj

propaneV  and prod

propaneV  are the volumes of injected and produced propane, respectively, 

and _

inj

propane maxV  is the maximum volume of propane injected among all 144 cases of the 
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training dataset. 
original

propaneQ  is the cumulative solvent injection, and 
original

propane_minQ  and 
original

propane_maxQ  

are the lower and upper limits for the cumulative solvent injection. An initial set of 144 

cases are generated for the proxy modeling step. Table 4.1 summarizes the ranges for each 

objective function corresponding to these 144 cases. 

Table 4.1—Summary of the objective functions corresponding to the initial set of 144 SAS cases 
used for proxy modeling. 

Parameter Minimum Maximum 

cSOR (m3/m3) 2.17 2.44 

Propaneretention 0.36 2.49 

Qpropane (m3) 829070 6605000 

Qwater (m3) 168450 229370 

RF (%) 44.14 55.34 

 

4.2 Fundamentals of MOO 

The idea of MOO is to minimize or maximize a number of objective functions, while 

ensuring that a number of different constraints are satisfied. The general form of a MOO 

problem is expressed as follow: 

 

 

   

,                 1, 2,..., ;

0,             1, 2,..., ;

( ) 0,             1, 2,..., ;

,      1, 2,..., ;

m

j

k

L U

i i i

f m M

g j J

h k K

x x x i n




  


  


   

x

x

x
 ............................................................................. (4.6) 

x is a solution vector of n decision variables:  1 2, ,...,
T

nx x xx . The last sets of constraints 

are the variable bounds, restricting that each decision variable xi to take a value between 
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the lower xi
(L) and upper xi

(U) bounds that constitute the decision space. For the sake of 

generality, there can be a total of J inequality statements and K equality constraints; the 

terms gj(x) and hk(x) are referred to as the constraint functions. 

The two primary goals in solving a MOO problem are: (1) to find a set of non-

dominated solutions, known as Pareto-optimal front, and (2) to search a set of solutions 

that are as diverse as possible. Pareto-optimality refers to an optimal allocation of resources 

(Min et al., 2014). It is mathematically defined as the condition of most non-domination. 

Non-domination is a state of equivalence, where no solution can be improved with respect 

to any objective function without worsening at least one other objective function (Srinivas 

et.al., 1994). Hence, it is essential when formulating a non-dominated sorting algorithm 

that all objective functions are equivalently important. A variable vector 
1

x  is said to 

dominate another variable vector 2
x , if and only if Eq. 4.7 is satisfied: 

 

     

     

1,..., :

and

1,..., :

i i

i i

i M f f

i M f f

  

  

1 2

1 2

x x

x x

 ................................................................................  (4.7) 

 

where the dominance of 
1

x over 
2

x is denoted as    1 2
f x f x  (Min et. al., 2017). The 

solutions would not only be converging along the Pareto-optimal front, but they should 

also be sparsely spaced in the Pareto-optimal region to ensure diversity and achieving a 

reasonable set of trade-off solutions based on the multiple objectives.  
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4.3 Non-dominated sorting genetic algorithm-II (NSGA-II) 

In this study, NSGA-II (Deb et. al., 2002) is applied as a multi-objective optimizer to search 

for the Pareto-optimal solutions. This evolutionary algorithm alleviates the computational 

complexity of the original NSGA scheme, while presenting a fast non-dominated sorting 

approach for obtaining the Pareto-optimal set. Diversity preservation is applied to maintain 

a decent spread among the solution set.   

The NSGA-II scheme can be summarized into the following steps: first, the parent 

population and the offspring population from the previous iteration are sorted into multiple 

fronts, such that the first front contains solutions that are completely non-dominant, and 

the second front contains solutions that are dominated only by the first front, and so on 

(Deb, 2001). Second, the new population is filled with the non-dominated solution from 

the first front. Third, if the size of new population is greater than the number of solutions 

from the first front, other non-dominated solution from the second front are added to the 

new population. Fourth, the filling process is repeated until the new population is filled and 

the current front is denoted as mfr . Finally, the crowding distance is calculated for the 

solutions at the front mfr , and those solutions with small average crowding distances are 

removed. The crowding distance (Eq. 4.8) (Deb, 2001) is a measure of how close an 

individual solution is to its neighbors; a large average crowding distance is preferred to 

ensure diversity in the new population.  
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max min
1

1:
jM

j i
k

i i i

d
j N

f f




  


  ................................................................................. (4.8) 

 

where 
j  is the average crowding distance (over all M objective functions) for the 

thj  

solution, j

id  is the distance (difference in objective function fi) between two neighboring 

solutions near the
thj  solution along the axis of if , max

if and min

if are the maximum and 

minimum values of if , and kN  is the number of solutions in the thk  non-dominated front. 

The new population is used to generate a set of offspring using various crossover and 

mutation operators. This process is repeated for many iterations until a certain stop criterion 

(e.g., maximum number of generations) is met. Table 3 presents the optimization settings 

for the NSGA-II implementation for this study.  

Table 4.2—NSGA-II settings. 

Parameter Value 

Number of generations 100 

Population size 200 

Distribution index for crossover 20 

Probability of mutation 0.33 

4.4 Construction of Proxy Models: Response Surface Method 

The response surface method (RSM) is used to approximate the relationships between the 

decision parameters and the objective functions via regression. A second-order (quadratic) 

non-linear model, as shown in Eq. 4.9, is employed:  
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       x  ............................ (4.9) 

 

where fi(x) is the objective function, and 𝑥𝑖  is one of the n decision variables. The 

regression coefficients (’s) and the error term (𝜀) are adjusted during the calibration 

process. During a sensitivity analysis, the appropriate ranges of each decision variable are 

tested, and they are summarized in Table 4.3. As a result, a total of 9 × 4 × 4 = 144 cases 

are generated and subjected to flow simulations; their results are used for the training of 

two RSM models corresponding to the two objective functions in Eq. 4.2 or three RSM 

models corresponding to the three objective functions in Eq. 4.3. 

Table 4.3—Experimental design: ranges and step sizes of the decision variables for proxy 
modeling. 

 
Lower Limit Upper Limit Step Size 

Number of 

Steps 

Fpropane (fraction) 0.5 0.9 0.05 9 

Tearly (months) 1 4 1 4 

Tlate (months) 1 4 1  4 

4.5 Results and Discussion 

4.5.1 Response Surface (Proxy) Modeling 

The performances of the response surface proxy models are assessed by comparing 

the RSM predictions with the actual objective function values calculated from flow 

simulation results for the 144 SAS scenarios. The comparisons are shown in Figure 4.1, 

and since the coefficients of determination (R2) are greater than 0.85 for all objective 
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functions, it is concluded that the trained RSM models can be used to approximate the 

objective functions in the optimization step.  
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Figure 4.1—Comparison between the flow simulation data and the predicted values from RSM proxy model: top row: two objective functions; 
bottom row: three objective functions.

Qpropane [fraction] Qwater [fraction] 
1/RF [fraction] 

Solvent retention [fraction] cSOR [m3/m3] 
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4.5.2 Optimization Results and Discussions 

4.5.2.1 Two-objectives optimization 

The Pareto-optimal front for the SAS process is presented in Figure 4.2. Two 

regions can be identified: (a) and (b). The initial and final ranges of the decision variables 

and the corresponding objective functions are summarized in Tables 4.4 and 4.5, 

respectively.  

                

 
Figure 4.2—Pareto-optimal front for the SAS process: a) first iteration; b) last iteration: blue – 

region (a); red – region (b). 

It is observed that 45% of the cases along the Pareto front would belong to region 

(a), while the remaining 55% resides in region (b). The decision parameter ranges for 

region (a) correspond to an operational strategy involving prolonged periods of solvent 

injection in both the early and late SAS cycles, with the propane fraction varying anywhere 

between 0.59 and 0.90 (the maximum value). Generally, the cases in region (a) exhibit 

a) Initial population b) Final population 

(a) 

(b) 
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lower cSOR values because the duration for steam injection in each cycle is shorter. On the 

other hand, the decision parameter ranges for region (b) reflect an operational strategy 

where solvent injection is minimized (i.e., lowest allowable level for the propane fraction); 

slightly longer solvent injection durations can be employed during the early cycles, but 

shorter solvent injection durations are clearly preferred during the late cycles (Figure 4.3).  

 

 
Figure 4.3—Histograms of decision parameters: blue – region (a); red – region (b).  

 
Table 4.4—Initial ranges of decision parameters and objective functions prior to optimization. 

 

cSOR 

(m3/m3) 

Propaneretention 

normalized 

Fpropane 
Tearly 

(months) 

Tlate 

(months) 

[2.17, 2.44] [0.36, 2.49 ] [0.5, 0.9] [1, 4] [1, 4] 

 

 

 

 

 

Fraction of propane (a) Tearly [months] (a) Tlate [months] (a) 

Tearly [months] (b) Tlate [months] (b) Fraction of propane (b) 
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Table 4.5—Final ranges of decision parameters and objective functions after optimization. 

Number of 

results 

cSOR 

(m3/m3) 

Propaneretention 

normalized 
Fpropane 

Tearly 

(months) 

Tlate 

(months) 

a - 89 [2.14, 2.30] [0.53, 2.17] [0.59, 0.90] [4] [4] 

b - 111 [2.37, 2.42] [0.46, 0.53] [0.50, 0.51] [1, 4] [1, 4] 

 

There is a noticeable gap in the front right between regions (a) and (b). The two 

points on either ends of the gap (one from each region). The solvent injection durations are 

at the maximum value for both points. However, the difference in propane concentration 

has contributed to the gap: lower fraction of propane has resulted in lower propane 

retention, which represents with 0.50 fraction of propane we have 0.73 normalized propane 

retention, and with 0.59 fraction of propane the normalized propane retention is 1.00, 

having the same cSOR in both cases (with 2 months of steam injection in each cycle).  

The results of these two regions highlight the trade-off between the two objective 

functions: solvent retention and cSOR. If we isolate a set of 93 “most optimal” results along 

the Pareto front, as marked in red in Figure 4.4, and analyze their decision parameters 

(Table 4.6), it can be concluded that the most optimal scheme is to inject a solvent with 

lower propane concentration for a longer duration during the early cycles, although the 

injection duration can be increased during the late cycles. 
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Figure 4.4— Selected cases (red) along the Pareto-optimal front for the SAS process. 

 

Table 4.6—Proposed ranges of decision parameters and objective functions after optimization. 

Number 

of results 

cSOR 

(m3/m3) 

Propaneretention 

normalized 
Fpropane 

Tearly 

(months) 

Tlate 

(months) 

93 [2.20, 2.31] [0.54, 1.49] [0.50, 0.71] [2.64, 4] [1, 4] 

 

Looking specifically at histograms of the optimization parameters of the red front 

in the two regions (Figure 4.5), (a) suggests that the solvent should be injected at 4 months 

per cycle in the early and late stage, having a concentration of propane between 0.6 and 

0.7. However, region (b) shows that it is also optimum if the operation consists in injecting 

low concentration of propane the longer time possible in the early cycles of SAS, but 

changing to shorter periods of solvent injection in the late cycles of SAS. 

(a) 

(b) 
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Figure 4.5— Histograms of decision parameters of the 93 “most optimal” results: blue – region 

(a); red – region (b). 

4.5.2.2 Three-objectives optimization 

 

For three objective functions, the optimization results in a three-dimensional space 

is shown in Figure 4.6. It is noted that as the iteration progresses, the Pareto front tends to 

advance towards the outer limits/boundaries of the initial population. Similar to the two-

objectives problem, three distinct clusters of solutions can be identified from the final 

Pareto-optimal set. These clusters reflect the trade-off among these conflicting objectives 

– in each cluster, one of the three objectives is penalized, while the other two are 

minimized. For each objective function (expressed in fractions), the mid-point between its 

maximum and minimum values is used to define the three clusters (or regions) as follow: 

Fraction of propane (a) Tearly [months] (a) Tlate [months] (a) 

Fraction of propane (b) Tearly [months] (b) Tlate [months] (b) 
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 Region (a) [71 cases] – Qwater < average; RF < average, Qpropane < average for 65 

out of the 71 cases. This cluster corresponds to an operational scenario where little 

steam and solvent are injected (minimizing 2/3 of the objective functions), despite 

of the low oil production. 

 Region (b) [51 cases] – Qpropane < average; RF > average; Qwater > average. This 

cluster corresponds to an operational scenario where low volumes of solvent are 

needed for the high oil production (minimizing 2/3 of the objective functions), 

despite of the high steam injected volumes.  

 Region (c) [72 cases] – Qpropane > average; RF > average; There is slightly more 

scattering in the ranges for Qwater:  for most of the solutions, Qwater is close to the 

average (Figure 4.7 ii). 
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Figure 4.6—Pareto-optimal front for the SAS process: black circles – initial population, colored 

circles – final population: blue – region (a); red – region (b); green – region (c). 

The results illustrate that when the three objective functions are highly correlated 

with one another, and the trade-off among them becomes very evident during the MOO 

optimization. For example, less solvent is needed if the steam injection is prolonged, and 

vice versa. Each set of solutions, i.e., regions (a), (b), or (c), is optimized in terms of two 

of the objective functions. It is essentially impossible to minimize all three objective 

functions simultaneously. Therefore, the MOO method attempts to identify a set of possible 

scenarios that would minimize these objective functions to various extent. Figure 4.7 shows 

the projections of the 3D Pareto optimal surface onto a set of 2D spaces. Region (a) 

(a) 

(c) 

(b) 
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corresponds to the situation with the low Qwater and Qpropane (subplot iii); region (b) 

corresponds to the cases with low Qpropane and 1/RF (subplot i). Finally, for region (c), both 

Qwater and1/RF are low (subplot ii), despite that the solutions are more scattered along the 

front, in comparison to the other two regions. Specifically, for this region, most of the 

values of Qwater are close to their average, some of them are just slightly higher than the 

average.   

 
Figure 4.7—Projections of the Pareto-optimal front for the SAS process onto three 2D planes for 
the final population: i) 1/RF vs Qpropane; ii) 1/RF vs Qwater iii) Qwater vs Qpropane [blue – region (a); red 

– region (b); green – region (c)]. 

iii 

ii i 
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The distributions of the optimal decision parameters for the various regions are 

presented in Figure 4.8. For region (a), the process should be operated by injecting solvent 

mixtures with low concentrations of propane for longer periods of time during both the 

early and late stages, such that the steam injection requirement is also reduced. For region 

(b), to maximize recovery while reducing the solvent requirement, it is recommended to 

inject solvent mixtures with high concentration of propane for shorter periods of time 

during both the early and late stages. For region (c), to maximize recovery while reducing 

the steam requirement, it is recommended to inject solvent mixtures with high 

concentration of propane for long periods of time. 

If the histograms in Figure 4.8 (three objective functions) are compared to those in 

Figure 4.5 (two objective functions), the following inferences can be made: 

 Region (a) in Figure 4.5 and region (c) in Figure 4.8 are similar – injecting higher 

concentration of propane for longer periods of time. 

 Region (b) in Figure 4.5 and region (a) in Figure 4.8 are similar – injecting lower 

concentration of propane for longer periods of time. 

It is reasonable to obtain different solutions, depending on the objective function 

formulation. For example, the solutions in region (b) in Figure 4.5 are not directly 

identifiable from the two-objectives optimization because Qwater and 1/RF are combined 

into a single objective function of cSOR.  It should be recalled that region (b) corresponds 

to a situation with prolonged periods of steam injection, and this choice is unlikely to be 

located along the Pareto front, if cSOR is considered as one of the two objective functions.  
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It has been concluded previously (based on the most optimal cases from the two-

objectives optimization) that the most optimal scheme is to inject a solvent with lower 

propane concentration for longer durations, especially for the early cycles. This conclusion 

still holds with respect to the three-objectives optimization analysis. However, the three-

objectives results seem to identify an additional option in accordance to region (b), where 

solvents with high propane concentration is injected for shorter durations (maximizing oil 

recovery while minimizing solvent requirement). Therefore, considering both sets of MOO 

results, the following is recommended: (1) if steam availability or consumption is to be 

limited, one should inject solvents with low concentration of propane for the maximum 

duration; (2) otherwise, one should inject solvents with high concentration of propane for 

a short period, followed by steam injection. 
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Figure 4.8— Histograms of decision parameters: blue – region (a); red – region (b); green – 

region (c). 

 

Table 4.7—Final ranges of decision parameters after optimization (3 objective functions). 

Number of 

results 
Fpropane 

Tearly 

(months) 

Tlate 

(months) 

a - 71 [0.50, 0.72] [1.39, 4.00] [1.07, 3.93] 

b - 51 [0.58, 0.90] [1.00, 2.47] [1.06, 2.57] 

c - 72 [0.76, 0.90] [1.70, 4.00] [1.69, 3.99] 

 

In terms of economics of the process, the energy input per unit oil produced should 

be consider for accurate calculations. For this study, the advantage of an optimized 

Fraction of propane (a) 

Fraction of propane (c) 

Fraction of propane (b) 

Tearly [months] (a) 

Tearly [months] (c) 

Tearly [months] (b) 

Tlate [months] (a) 

Tlate [months] (b) 

Tlate [months] (c) 
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operation is compared to the base case. The cost of the solvent varies, and it is not 

considered, and the comparison will be in terms of the volumes of injected solvent required 

and the oil recovered. The base case is operated at 4-months injection of solvent in the 

early and late stages of the SAS process with 0.8 of fraction of propane in the solvent 

mixture. An optimal case from the 2-objective functions approach is chosen, with a 

duration of solvent injection of 4-months in the early SAS stage and 1-month in the late 

SAS, with a fraction of propane of 0.5 in the solvent mixture. Both cases have a similar 

value of cSOR, 2.20 in the base case and 2.25 in the optimized case, but the optimal case 

has a 0.62 [fraction] of propane retention compared to the 1.82 of the base case (this value 

being normalized between 0.36 and 2.49). The cumulative oil produced in the base case 

was 88018 m3, higher compared to the optimal case, which produced 77038 m3 of oil, with 

a difference of approximately 11000 m3. In terms of the propane requirement, for the base 

case, 4.87×106 m3 solvent is injected and 3.35×106 m3 produced, with 1.52×106 m3 of 

propane retained in the reservoir, but for the chosen optimal case, 1.51×106 m3 of propane 

is required and 1.02×106 m3  is produced, representing a 0.49×106 m3 of propane retention. 

The difference in solvent retention between the two sets of operational parameters is 

1.02×106 m3 of propane. Since the cSOR is similar in both cases, it is important to compare 

their corresponding ratios of the oil produced and propane retention. For the base case, 

0.058 m3 of oil is produced per m3 of propane retained, while for the optimal case, 0.157 

m3 of oil is produced per m3 of propane retained. Therefore, it is concluded that the optimal 

case would yield better project economics than the base case, especially when the costs of 

GHG emissions (e.g, carbon tax, social license for oil and gas operations) are considered.      
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Another advantage of the proposed hybrid optimization workflow is the 

considerable savings in computational costs. For instance, a single simulation run takes 

approximately 7 minutes, while estimating the objective function value using the response 

surface models would take less than a second. It should be noted that a limited number of 

initial models are required to build the proxy models, and this front-end loading in 

computational costs can be justified given that it takes approximately one minute using a 

personal computer [Intel(R) Core (TM) i7-3770 CPU (3.40 GHz) and 16 GB of installed 

memory (RAM)] to obtain a set of Pareto-optimal solutions from an initial population of 

200. In contrast, if the full flow simulation is implemented, it would take 97 days [100 

iterations × 200 simulation runs per iteration × 7 minutes/simulation run] to complete all 

the calculations without any parallel computation. There is a significant improvement in 

terms of computational efficiency. 
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Chapter 5 Design of Steam Alternating Solvent 

Process Operational Parameters Considering 

Shale Heterogeneity 

5.1 Selection of Decision Parameters and Objective Functions 

A similar sensitivity analysis procedure, as applied in Coimbra et al., (2019), is used here 

to formulate the decision variables and objective functions for the design of SAS process 

in heterogeneous reservoirs. The SAS performance is primarily sensitive to three particular 

decision parameters: solvent composition (Fpropane) and duration of solvent injection in each 

cycle during the early SAS (Tearly) and late SAS (Tlate) stages. To account for the trade-off 

between oil production, solvent retention, and steam injection, two objective functions: (1) 

cumulative steam-oil ratio, cSOR [m3/m3] and (2) propane retention ( retentionPropane ) 

[fraction] are formulated as follows: 

        1 2, ,  retentionf f cSOR Propane f x x x  ..................................................... (5.1) 

 

where x denotes the decision variable vector consisting of Fpropane, Tearly, and Tlate, and f is 

the objective function vector. Propane retention is defined as the difference between the 

volume of propane injected and the volume of propane produced, normalized based on the 

lowest possible propane injection volume among the entire training data set for the 

response surface modeling, as shown in Eq. 5.2: 
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_

inj prod

propane propane

retention inj

propane max

V V
Propane

V


  .............................................................................. (5.2) 

 

where inj

propaneV  and prod

propaneV  refers to  the injected and produced propane volume at reservoir 

conditions [m3] respectively. For normalization purposes, the retained volume is divided 

by _

inj

propane maxV , which is the maximum injected volume among all the cases in the initial 

training set for the RSM modeling. 

For each objective function, an overall (aggregated) value encompassing all ten 

reservoir models will be computed using the mean, maximum and minimum values of the 

respective objective functions from all ten realizations. The ranges of the objective 

functions for one of the ten heterogeneous models are presented in Table 5.1.   

Table 5.1—Summary of the objective functions corresponding to the initial set of 144 SAS cases 
of one randomly-selected heterogeneous reservoir used for proxy modeling. 

Parameter Minimum Maximum 

cSOR (m3/m3) 2.10 2.49 

Propaneretention normalized 

(fraction) 
0.48 2.66 

Propaneretention in SI Units 

(m3) 
428240 2376200 

5.2 Introduction of MOO and Non-Dominated Sorting Genetic Algorithm-II (NSGA-

II) 

The purpose of MOO is to minimize or maximize a number of objective functions, while 

ensuring that the set of solutions are satisfying a number of different constraints. This 

problem can be expressed mathematically as follows: 
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where x represents a solution vector  1 2, ,...,
T

nx x xx and each element in x denotes a 

decision variable [i.e., Fpropane, Tearly, Tlate]. gj(x) and hk(x) are two different constraint 

functions. The lower and upper bounds for each decision variable i are defined by the last 

equation.  

The problem is solved by (1) finding a set of non-dominated solutions that are as 

close as possible to the set of true optimal solutions, also known as the Pareto front and (2) 

maintaining diversity among the set of non-dominated solutions. Pareto-optimality refers 

to an optimization state when no solution can be enhanced in any objective function 

without compromising at least one other objective function (Deb, 2001). Readers should 

refer to the references for further discussions on the concept of non-dominance and other 

MOO implementations. 

An elitist multi-objective evolutionary algorithm, NSGA-II, (Deb et al., 2002) is 

applied here. The principal characteristics of this scheme is that it uses an elite-preservation 

strategy (i.e., an operator that enables the elites of a given population to be directly carried 

over onto the next generation (Deb, 2001); in the meantime, an explicit diversity-

preserving mechanism is in place to maintain a decent spread among the solution set.  The 

key steps can be described as follow:  
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1. Sorting of solutions – The parent population and the offspring population from the 

previous iteration are sorted into multiple fronts in descending order of dominance: 

the completely non-dominant solutions are placed in the first front, and solutions that 

are dominated only by the first front are assigned in the second front (Deb, 2001).  

2. Construction of the new population – The new population is first filled with all the 

solution from the first front. If there are insufficient solutions from the first front to 

fill the entire new population, other non-dominated solution from the second front are 

added. In fact, this filling process continues with adding more solutions from other 

fronts, until the entire new population is filled, and the current front is denoted as frm. 

A crowding distance is computed for all the solutions at front frm, and those solutions 

with the lowest average crowding distances are removed. The crowding distance (Eq. 

5.4) (Deb, 2001) is a measure of how close an individual solution is to its neighbors; 

a large average crowding distance is preferred to ensure diversity in the new 

population. The idea is that when there are more solutions in frm than there are empty 

spots in the new population, it is better to select those that are more diverse, given that 

they are all equally optimal along the same front frm. 

max min
1

1:
jM

j i
k

i i i

d
j N

f f




  


  .............................................................................. (5.4) 

For the jth solution, 
j  is the average crowding distance over all M objective 

functions; the distance 
j

id  is computed as the difference in objective function fi 

between two neighboring solutions near the
thj  solution along the axis of if ; the 
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maximum and minimum values of the objective function fi are denoted by max

if and 

min

if , respectively; kN  is the total number of solutions along the thk  non-dominated 

front.  

3. Generation of new offspring – The new population is subjected to various crossover 

and mutation operators.  

4. Steps 1-3 are repeated iteratively until a certain stop criterion (e.g., maximum number 

of generations) is achieved. The optimization settings implementation in this study is 

summarized in Table 5.2.  

Table 5.2—NSGA-II configuration. 

Setting Value 

Number of generations 100 

Population size 200 

Distribution index for crossover 20 

Probability of mutation 0.33 

 

5.3 Construction of Response Surface Proxy Models 

The response surface method (RSM) is used to build a set of proxy models for full flow 

simulation to approximate the complex relationship between the three decision variables 

and two objective functions. Once calibrated, the response surface model, instead of the 

flow simulation, is used to estimate the objective functions directly, enhancing the 

computing efficiency of the MOO scheme. This work employs the interactive RSM toolbox 

in MatlabTM (MathWorks, 2019), which applies a second-order (quadratic) non-linear 

model as shown in Eq. 5.5:  
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where fi(x) is the objective function, 𝑥𝑖 is the decision variable. The regression coefficients 

(’s) and the error term (𝜀) are adjusted during the calibration process.   

The ranges of each decision variable proposed in this work are investigated during 

the sensitivity analysis. Ten sets of 144 SAS cases are generated (one set for each 

heterogeneous realization). Each decision variable is divided into different levels (steps), 

and a total of 9 × 4 × 4 = 144 cases are generated and subjected to flow simulations for 

each realization. The results of the flow simulation are used to compute the objective 

functions and to train two RSM models for each realization (i.e., 10 sets of RSM 

coefficients are obtained for each objective function per heterogeneous realization). The 

overall value is computed by aggregating the RSM model results for all ten realizations 

based on either the average, minimum, or maximum values. 

Table 5.3—Experimental design: ranges and step sizes of the decision variables for proxy (RSM) 
modeling. 

 Lower Limit Upper Limit Step Size Number of Steps 

Fpropane (fraction) 0.5 0.9 0.05 9 

Tearly (months) 1 4 1 4 

Tlate (months) 1 4 1  4 

  

5.4 Proposed Hybrid MOO Workflow 

The workflow for designing the SAS process considering reservoir heterogeneity is 

presented in Figure 5.1. The entire workflow consists of four main steps: (1) sensitivity 
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analysis is conducted to identify the appropriate decision parameters and the corresponding 

objective functions; (2) assembling a training dataset for the RSM modeling; (3) RSM 

proxy models are constructed; and (4) MOO is applied to compute the objective functions 

and the corresponding set of Pareto-optimal decision parameters.  

 

 

Figure 5.1—Flow diagram of the Hybrid SAS optimization process with the consideration of 
reservoir heterogeneity. 

 

Analyze the results and provide recommendations.

Apply NSGA-II to obtain a set of Pareto-optimal parameters: the overall OF is 
computed based on either the average, minimum, or maximum OF over all ten 

realizations.

Construct response surface (proxy) models (RSM) based on the initial population 
for each heterogeneous reservoir realization – 10 RSM models are generated in 

total.

Run flow simulation to calculate the objective function values.

Generate an initial population of decision (optimization) parameters including the 
heterogeneous properties of 10 realizations.

Initialize the process by developing the SAS base case and applying sensitivity 
analysis.
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5.5 Results and Discussion 

5.5.1 Response Surface (Proxy) Modeling 

Figure 5.2 compares the RSM proxy predictions to the target values (actual flow 

simulation results) for one set of the 144 SAS cases used in the training step (there are 144 

SAS cases for each heterogeneous realization). The results indicate that the trained RSM 

models can be used to reliably approximate the objective functions in the MOO scheme. 

The coefficients of determination (R2) for all 10 heterogeneous realizations are summarized 

in Table 5.4, and all the values are greater than 0.95 for both objective functions.  

 

 
 

Figure 5.2—Comparison between the flow simulation data and the predicted values from RSM 
proxy model for one of the heterogeneous cases (case 5). 
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Table 5.4—Experimental design: ranges and step sizes of the decision variables for proxy (RSM) 
modeling. 

Heterogeneous 

Realization 

Coefficients of Determination (R2) 

[fraction] 

cSOR  
Propane (Solvent) 

Retention 

1 0.9922 0.9872 

2 0.9561 0.9880 

3 0.9778 0.9915 

4 0.9491 0.9914 

5 0.9765 0.9868 

6 0.9792 0.9880 

7 0.9908 0.9918 

8 0.9868 0.9932 

9 0.9823 0.9893 

10 0.9931 0.9940 

 

5.5.2 Optimization Results and Discussions 

Three Pareto-optimal fronts for the SAS process in heterogeneous reservoirs are 

illustrated in Figure 5.3. The results indicate that the cSOR is more sensitive to the way the 

objective function is computed (i.e., average, minimum or maximum). The fronts can be 

divided into 2 regions (a) and (b). Each region represents a specific optimal combination 

of decision parameters (Table 5.5). 
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Figure 5.3—Pareto-optimal front for the SAS process for the last iteration corresponding to the 

three different overall objective function formulations. 

 
Table 5.5—Final ranges of objective functions after optimization and decision parameters. 

Case 

Number of 

cases 

(population 

size = 200) 

cSOR 

[m3/m3] 

Solvent 

retention 

normalized 

Fpropane 
Tearly 

[months] 

Tlate 

[months] 

Min 

a - 171 [2.14, 

2.30] 

[0.53, 2.17] [0.50, 

0.90] 

[3.60, 4] [3.90, 4] 

b - 29 [2.37, 

2.42] 

[0.46, 0.53] [0.50, 

0.51] 

[1, 1.69] [1, 1.17] 

Ave 
a - 142 [2.31, 

2.41] 

[0.61, 2.39] [0.50, 

0.90] 

[3.95, 4] [3.94, 4] 

(a) 

(b) 
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b - 58 [2.52, 

2.62] 

[0.49, 0.90] [0.50, 

0.53] 

[1, 2.22] [1, 1.07] 

Max 

a - 111 [2.51, 

2.58] 

[0.74, 1.80] [0.50, 

0.78] 

[3.92, 4] [1, 4] 

b - 85 [2.59, 

2.74] 

[0.54, 0.72] [0.50, 

0.54] 

[1, 3.44] [1, 1.09] 

Among the 200 results, region (a) encompasses the most of the optimal cases, 

irrespective to how the overall objective function is assessed. If it is based on the minimum 

value, 85.5% of the cases along the Pareto front would belong to region (a); for the average 

and maximum values, 71% and 56% of the optimal cases would belong to region (a), 

respectively.  

Figure 5.4 illustrates the specific sets of optimal parameters for each region when 

the overall objective function is computed as the average among all 10 heterogeneous 

realizations. The optimal parameters from region (a) point to a conclusion that the process 

should be operated with longer periods of solvent injection during each 6-month cycle [i.e., 

3.94 – 4 months, which is the pre-defined maximum allowable value], and the 

corresponding fraction of propane may vary from 0.5 to 0.9. The region of lower solvent 

retention and lower cSOR corresponds to long periods of solvent injection in the early and 

late times, along with low propane concentration (close to the predefined lower bound 

value of 0.5). On the other hand, region (b) represents the scenario where the least amount 

of solvent is injected: low fraction of propane in the solvent injected over a short duration 

during both early and late cycles.  

The results corresponding to these two regions clearly illustrate the trade-off 

between the two objective functions: solvent retention and cSOR. For region (a), more 
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solvent is injected (long periods of injection in both early and late cycles) leads to high 

recovery and low steam injection (i.e., low cSOR). Given that the duration of every cycle 

is fixed as 6 months, a longer solvent injection period must be accompanied by a shorter 

steam injection period. The obvious trade-off is that there is likely to be high solvent 

retention. In contrast, for region (b), very little solvent is injected, so solvent retention is 

low; however, steam is injected during much of each cycle, which leads to high cSOR.  

Same conclusions can be drawn if the overall objective function is computed based 

on the minimum among all 10 heterogeneous realizations (Figure 5.5). The difference, 

however, is the position of the front, as it is shifted to the left. This is because the minimum 

value for the objective of cSOR is usually less than the average value, while the optimal 

solvent retention values are not overly sensitive to how this objective function is being 

aggregated. 
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Figure 5.4—Pareto-front and histograms of decision parameters when the overall objective 

function is computed as the average among all 10 heterogeneous realizations: blue – region (a); 
red – region (b). 

 

Fraction of propane (a) 

Fraction of propane (b) 

Tearly [months] (a) Tlate [months] (a) 

Tearly [months] (b) Tlate [months] (b) 
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Figure 5.5—Pareto-front and histograms of decision parameters when the overall objective 

function is computed as the minimum among all 10 heterogeneous realizations: blue – region (a); 
red – region (b). 

When the overall value is computed based on the maximum among all ten 

realizations, a new cluster of cases seems to emerge (they are marked as green in Fig. 5.6) 

– they differ from the two aforementioned groups and are, in fact, located in between those 

Fraction of propane (a) Tearly [months] (a) Tlate [months] (a) 

Fraction of propane (b) Tearly [months] (b) Tlate [months] (b) 
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two groups in the objective function cross plot. In comparison to the other cases in region 

(b), this new cluster of cases seems to recommend a slightly longer solvent injection 

duration for the early times. A plausible explanation is that the maximum objective 

function values are typically associated with the most heterogeneous cases (e.g., one with 

many shale barriers, possibly in the near-well region); in such cases, it may be necessary 

to prolong the solvent injection period. Interestingly, extending the solvent injection 

duration for the late times does not seem to improve the objective functions significantly. 

It is observed for region (a), solutions along the Pareto front exhibit lower solvent retention. 

Inspecting the histograms in Fig. 14 reveals that less solvent is generally injected when the 

maximum objective function values are considered. Once again, as the maximum objective 

function values often correspond to the most heterogeneous cases, where the solvent 

chamber development is impeded and less oil is produced; given that the injector is 

pressure constrained, less solvent could be injected in such cases. 
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Figure 5.6—Pareto-front and histograms of decision parameters when the overall objective 

function is computed as the maximum among all 10 heterogeneous realizations: blue – region (a); 
red – region (b); green – new cluster. 

Fraction of propane (a) 

Fraction of propane (cluster) 

Fraction of propane (b) 

Tearly [months] (a) 

Tearly [months] (cluster) 

Tearly [months] (b) 

Tlate [months] (a) 

Tlate [months] (b) 

Tlate [months] (cluster) 
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After analyzing the results, we suggest to follow the operation conditions that the 

average-computed-objective-functions approach provides. This scenario is reliable due to 

the fact is more conservative, as we cannot predict exactly where the positions of the shale 

barriers in a real reservoir can be. We observed that the minimum approach represents or 

takes the values of the objective functions of the reservoir whit shale barriers far from the 

wells, and the maximum approach tends to utilize the values of the reservoirs with 

considerable presence near the wells region. Because this process has trade-off objective 

function values, the operational parameters cannot be a single value, that’s why two ways 

to operate this process have been proposed and it depends on the availability of the 

resources in the field to take the decision of which set of operational parameters to use, 

because both options are optimal.   

Compared to the homogeneous flow simulation, heterogeneous reservoirs are 

obviously more complex and requiring additional run time. The use of a proxy model has 

resulted in a significant reduction in computational costs. For instance, a single flow 

simulation run takes approximately 7 minutes, while it takes less than a second for the 

RSM to estimate each objective function. A limited number of initial models are required 

to calibrate these RSM proxy models; however, this front-end loading in computational 

costs can be easily justified, as it takes approximately two minutes using a personal 

computer [Intel(R) Core (TM) i7-3770 CPU (3.40 GHz) and 16 GB of installed memory 

(RAM)] to obtain a set of Pareto-optimal solutions from an initial population of 200. In 

contrast, if full flow simulations are required for each objective evaluation, the entire MOO 

workflow would take 972 days [100 iterations × 200 simulation runs per iteration × 7 
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minutes/simulation run × 10 reservoir realizations] to complete without any parallel 

computation. 
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Chapter 6 Conclusions and Recommendations 

Conclusions from this study and recommendations for future study are provided in this 

Chapter. 

6.1 Conclusions 

A base homogeneous SAS simulation model is constructed using field data gathered from 

the Cold Lake region and compared with previous SAS simulation studies. A set of relevant 

decision variables is identified via a detailed sensitivity analysis using the base model. Two 

objective functions, including the solvent retention and cumulative steam-oil ratio (cSOR), 

are formulated. To incorporate the uncertainties due to reservoir heterogeneity, ten 

realizations of shale barrier distribution are created stochastically.  

A novel hybrid optimization workflow is proposed to incorporate the uncertainties 

in objective functions introduced by the reservoir heterogeneities. The response surface 

methodology is employed to build a set of proxy models for the objective function 

evaluations. The NSGA-II multi-objective optimization (MOO) algorithm is employed to 

search for the optimal solutions. An overall function is defined for each of the two objective 

functions by aggregating individual values over all ten realizations based on the average, 

minimum, or maximum values. The NSGA-II identifies a reliable set of optimal decision 

parameters for the three approaches investigated in this work.  

The optimization results reveal two distinct options for selecting the optimal 

decision parameters. For the first option, solvent is injected for longer periods during both 
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the early and late SAS stages, leading to higher recovery and lower steam injection (i.e., 

lower cSOR). The obvious trade-off is that there is likely to be higher solvent retention. 

For the second option, very little solvent is injected, so the solvent retention is low; 

however, more steam is injected, leading to higher cSOR. It is also noted that cases with 

higher objective function values are likely corresponding to those with more 

heterogeneities.    

The proposed workflow for heterogeneous reservoirs can facilitate the 

identification of a set of Pareto-optimum solutions with considerable savings in 

computational costs. Future studies should include flexibility of duration of each cycle 

during the SAS process, because the workflow can be constrained too much with fixed and 

small ranges of solvent injection in the cycles. 

6.2 Recommendations 

For future studies, it would be important to consider applying different global optimization 

techniques and proxy methods. 

A life cycle assessment of the SAS is recommended to verify the total negative 

impact to the environment, because in this study it was just considered the CO2 emissions 

related to the of natural gas required to produce less steam compared to the traditional 

SAGD. 

Also it should be important to consider flexibility of the duration of the cycles of steam 

and solvent injection to analyze the impacts on the results. 
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Appendices 

Appendix 1: Sensitivity Analysis  

In this section, several figures of cumulative oil produced obtained during the sensitivity 

analysis for different ranges of operational parameters tested are presented. It has been 

observed the differences during the period of 3 years, at the end of the first year of SAS 

stage.  

 

a) Steam trap 
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b) Bottom-hole gas (m3) 

 

c) Temperature of injected fluids (C) 
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d) Fraction of propane in the solvent 

 

e) Duration of solvent injection in each cycle (months) 
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Appendix 2: Dataset used in proxy model construction for the two-objectives 

homogeneous case 

Case # Fpropane 
Tearly 

(months) 

Tlate 

(months) 

cSOR 

(m3/m3) 

Propaneretention 

normalized 

1 0.50 1 1 2.404 0.365 

2 0.50 1 2 2.368 0.454 

3 0.50 1 3 2.333 0.547 

4 0.50 1 4 2.290 0.625 

5 0.50 2 1 2.341 0.456 

6 0.50 2 2 2.312 0.526 

7 0.50 2 3 2.294 0.622 

8 0.50 2 4 2.252 0.688 

9 0.50 3 1 2.282 0.518 

10 0.50 3 2 2.274 0.586 

11 0.50 3 3 2.255 0.681 

12 0.50 3 4 2.211 0.740 

13 0.50 4 1 2.252 0.594 

14 0.50 4 2 2.247 0.650 

15 0.50 4 3 2.230 0.725 

16 0.50 4 4 2.191 0.785 

17 0.55 1 1 2.407 0.416 

18 0.55 1 2 2.375 0.519 

19 0.55 1 3 2.338 0.638 

20 0.55 1 4 2.285 0.712 

21 0.55 2 1 2.348 0.540 

22 0.55 2 2 2.323 0.644 

23 0.55 2 3 2.297 0.737 

24 0.55 2 4 2.257 0.819 
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25 0.55 3 1 2.303 0.606 

26 0.55 3 2 2.289 0.697 

27 0.55 3 3 2.267 0.788 

28 0.55 3 4 2.228 0.873 

29 0.55 4 1 2.255 0.681 

30 0.55 4 2 2.247 0.759 

31 0.55 4 3 2.237 0.838 

32 0.55 4 4 2.197 0.922 

33 0.60 1 1 2.420 0.462 

34 0.60 1 2 2.377 0.581 

35 0.60 1 3 2.342 0.740 

36 0.60 1 4 2.294 0.833 

37 0.60 2 1 2.342 0.574 

38 0.60 2 2 2.326 0.700 

39 0.60 2 3 2.299 0.826 

40 0.60 2 4 2.246 0.919 

41 0.60 3 1 2.322 0.706 

42 0.60 3 2 2.308 0.804 

43 0.60 3 3 2.285 0.933 

44 0.60 3 4 2.244 1.008 

45 0.60 4 1 2.271 0.790 

46 0.60 4 2 2.257 0.867 

47 0.60 4 3 2.253 0.983 

48 0.60 4 4 2.204 1.056 

49 0.65 1 1 2.421 0.514 

50 0.65 1 2 2.382 0.672 

51 0.65 1 3 2.336 0.797 

52 0.65 1 4 2.302 0.963 

53 0.65 2 1 2.351 0.663 
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54 0.65 2 2 2.326 0.787 

55 0.65 2 3 2.296 0.922 

56 0.65 2 4 2.246 1.048 

57 0.65 3 1 2.306 0.818 

58 0.65 3 2 2.299 0.938 

59 0.65 3 3 2.271 1.046 

60 0.65 3 4 2.237 1.182 

61 0.65 4 1 2.258 0.910 

62 0.65 4 2 2.247 0.989 

63 0.65 4 3 2.228 1.149 

64 0.65 4 4 2.202 1.239 

65 0.70 1 1 2.426 0.561 

66 0.70 1 2 2.386 0.743 

67 0.70 1 3 2.354 0.916 

68 0.70 1 4 2.303 1.105 

69 0.70 2 1 2.359 0.753 

70 0.70 2 2 2.331 0.893 

71 0.70 2 3 2.308 1.067 

72 0.70 2 4 2.260 1.244 

73 0.70 3 1 2.299 0.895 

74 0.70 3 2 2.281 1.036 

75 0.70 3 3 2.252 1.180 

76 0.70 3 4 2.223 1.328 

77 0.70 4 1 2.256 1.011 

78 0.70 4 2 2.239 1.112 

79 0.70 4 3 2.232 1.264 

80 0.70 4 4 2.189 1.391 

81 0.75 1 1 2.429 0.618 

82 0.75 1 2 2.393 0.814 
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83 0.75 1 3 2.354 1.033 

84 0.75 1 4 2.298 1.243 

85 0.75 2 1 2.365 0.867 

86 0.75 2 2 2.328 0.986 

87 0.75 2 3 2.293 1.208 

88 0.75 2 4 2.258 1.425 

89 0.75 3 1 2.296 1.013 

90 0.75 3 2 2.278 1.132 

91 0.75 3 3 2.264 1.328 

92 0.75 3 4 2.220 1.506 

93 0.75 4 1 2.264 1.194 

94 0.75 4 2 2.258 1.286 

95 0.75 4 3 2.233 1.451 

96 0.75 4 4 2.203 1.587 

97 0.80 1 1 2.434 0.691 

98 0.80 1 2 2.400 0.941 

99 0.80 1 3 2.345 1.135 

100 0.80 1 4 2.289 1.419 

101 0.80 2 1 2.365 0.953 

102 0.80 2 2 2.333 1.115 

103 0.80 2 3 2.306 1.336 

104 0.80 2 4 2.250 1.551 

105 0.80 3 1 2.299 1.156 

106 0.80 3 2 2.286 1.307 

107 0.80 3 3 2.262 1.503 

108 0.80 3 4 2.226 1.719 

109 0.80 4 1 2.247 1.383 

110 0.80 4 2 2.240 1.495 

111 0.80 4 3 2.224 1.653 
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112 0.80 4 4 2.196 1.829 

113 0.85 1 1 2.433 0.739 

114 0.85 1 2 2.397 1.035 

115 0.85 1 3 2.352 1.273 

116 0.85 1 4 2.287 1.570 

117 0.85 2 1 2.360 1.021 

118 0.85 2 2 2.335 1.228 

119 0.85 2 3 2.294 1.466 

120 0.85 2 4 2.252 1.782 

121 0.85 3 1 2.292 1.315 

122 0.85 3 2 2.280 1.471 

123 0.85 3 3 2.258 1.701 

124 0.85 3 4 2.205 2.002 

125 0.85 4 1 2.247 1.619 

126 0.85 4 2 2.244 1.740 

127 0.85 4 3 2.230 1.937 

128 0.85 4 4 2.175 2.191 

129 0.90 1 1 2.440 0.833 

130 0.90 1 2 2.405 1.131 

131 0.90 1 3 2.357 1.497 

132 0.90 1 4 2.289 1.837 

133 0.90 2 1 2.360 1.152 

134 0.90 2 2 2.331 1.380 

135 0.90 2 3 2.293 1.669 

136 0.90 2 4 2.239 2.036 

137 0.90 3 1 2.309 1.517 

138 0.90 3 2 2.282 1.697 

139 0.90 3 3 2.254 1.960 

140 0.90 3 4 2.211 2.271 
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141 0.90 4 1 2.229 1.877 

142 0.90 4 2 2.221 2.008 

143 0.90 4 3 2.201 2.209 

144 0.90 4 4 2.167 2.488 
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Appendix 3: Results of Proxy modeling for the two-objectives homogeneous case 

RSM coefficients cSOR 
 (m3/m3) 

Propaneretention  
(normalized) 

0 2.2938 1.5525 

1 0.5134 -4.2337 

2 -0.0571 -0.1378 

3 -0.0088 -0.1686 

12 -0.0379 0.5213 

12 -0.0187 0.4782 

23 0.0078 -0.0197 

11 -0.2652 3.1970 

22 0.0041 -0.0065 

33 -0.0057 0.0086 

 

 

 


