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Abstract

The purpose of this dissertation is to employ three prominent natural language pro-

cessing methods to assess the feasibility of automatically evaluating cloze questions

generated by automatic item generation (AIG) methods. AIG methods have been

developed to address the need for a large number of items for computerized assess-

ments as well as online learning environments. Yet, traditional methods for evaluating

item quality are limited to evaluating each generated item and providing information

about the quality of the generated items. In this study, we first provided an exhaustive

overview of item quality criteria and evaluation methods used by AIG researchers.

This allowed us to portray the current evaluation practices, their advantages, and

limitations. We proposed a taxonomy of current evaluation methods used for AIG

studies, namely, metric-based evaluations, human evaluators, and post-hoc evalua-

tions. Given that current evaluation methods have several limitations and typically

cannot be used for evaluating all generated items, we examined three natural lan-

guage processing methods for evaluating item quality automatically. As such, this

is a proof-of-concept study investigating the feasibility of various natural language

processing methods for item evaluation. In this study, we used automatically gen-

erated cloze questions evaluated by crowdsource workers to investigate the utility of

three prominent natural language processing methods for item evaluation. Thus, we

examined the capacity of incorporating NLP and ML methods in item evaluation

process for automatically generated items to render item evaluation more feasible.

These methods included training three machine learning classifiers (i.e., random for-

est, support vector machine, and logistic regression) using linguistic features extracted
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from item stems and keyed responses (Study 1), fine-tuning a large-language model,

namely BERT (Study 2), and instruction-tuning a generative large-language model,

namely, Llama-2 (Study 3). In Study 1, the best-performing classifier was the logistic

regression, followed by the random forest and support vector machine. Nonetheless,

the results of ML classifiers highlighted that they are quite limited in predicting item

quality. In Study 2, we fine-tuned BERT-Large and BERT-Base and found an im-

provement in item quality prediction compared to Study 1 results. In Study 3, the

performance of the instruction-tuned Llama-2 model surpassed all other methods and

achieved an acceptable performance for identifying item quality. Overall, the find-

ings suggested the promise of tuning generative large-language models by providing

specific instructions regarding item quality for automatically evaluating the quality

of generated items.
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Chapter 1

Introduction

Assessment is an indispensable tool in education that allows making inferences about

various agents (e.g., teachers, students) and institutions (e.g., schools, educational

districts) of education (Nagy, 2000; Newton, 2007). A well-designed assessment

(Palomba & Banta, 1999) supplies essential information about the performance of

test-takers. Stakeholders, then, can use this information to make inferences and

conclusions about schools, teachers, students, or educational jurisdictions. For exam-

ple, assessment results can be used for grading, award decisions, monitoring students’

progress, or identifying at-risk students. Additionally, international (e.g., Programme

for International Student Assessment) (Bulle, 2011) and national large-scale assess-

ments (e.g., National Assessment of Educational Progress) (Rampey et al., 2009) can

be employed for evaluating the performance of educational systems across countries

or states, assessing accountability of schools and school districts, granting accredita-

tion to educational institutions, or understanding teacher effectiveness (Cole et al.,

2008; Ewell, 2008; Flowers et al., 2001; Goertz & Duffy, 2003; Heubert & Hauser,

1999; Linn, 2003; Zilberberg et al., 2013). Educational assessments, therefore, should

have high quality (e.g., validity and reliability) because they help measure learning

and teaching, which are not directly observable and visible in nature.

Typically, educational assessments are composed of presumably high-quality items

to measure learning and teaching precisely (Livingston, 2018). One can conceptualize
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items within a given assessment as building blocks of that assessment. Items are also

primary indicators, providing validity evidence about the usefulness of an assessment

(Haladyna & Rodriguez, 2013). That is, it is not possible to create a high-quality

assessment before ensuring that the items included in the assessment are of high

quality. For example, items included in an assessment should reflect what is being

measured, providing one strand of validity evidence (Smith, 2003). An assessment

needs multiple items to cover what is being measured and taught. Furthermore, we

also know that as the number of items in an assessment increases, the confidence in

an assessment augments, and the standard error of measurement decreases (Smith,

2003). However, we should underscore that merely increasing the number of items

in an assessment will not be sufficient to enhance the validity and reliability of an

assessment. Those items should be of high quality to contribute to the overall quality

of the assessment. Thus, we should assess, evaluate, and understand each item’s

quality when creating a high-quality assessment.

Over the last two decades, the demand for a large number of items has increased

substantially, thanks to technology incorporation into assessment and learning envi-

ronments. We classify the need for a large item bank into two reasons: (1) advances

in assessment practices and (2) innovations in learning environments. With the in-

creased access and use of computers due to their flexibility and efficiency in test

administration, scoring, and reporting, computerized assessments have been widely

used in school, statewide, and international assessments (Drasgow & Olson-Buchanan,

1999; Mills et al., 2019; Ras & Brinke, 2015). Computerized assessments require a

large item repository (i.e., item bank) (Wright & Bell, 1984) in order to increase

precision in estimation, adaptivity, and diversity while controlling for item exposure.

Additionally, with the advances in computer technology, computerized adaptive tests

(CATs) have become more widespread. CATs may shorten the test length drastically

while depicting an accurate picture of examinees’ ability levels (Bulut & Kan, 2012;

Weiss, 1982, 2004; Weiss & Kingsbury, 1984). Because adaptive tests, unlike fixed-
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length assessments, select items matching the interim ability of the examinee, those

tests necessitate a large item bank (Breithaupt et al., 2010) with diverse items in

terms of difficulty and discrimination.

In addition to the changing nature of test administration practices, formative as-

sessments gained extensive attention from the education community because of the

way policymakers, researchers, and practitioners have conceptualized current educa-

tional objectives (e.g., the importance of lifelong learning and critical thinking skills

rather than factual knowledge) and its relationship to learning and knowledge-based

societies (Dębska & Kubacka, 2012; OECD, 2009; Su, 2015). Unlike summative

assessments which solely focus on the outcomes of learning, formative assessments

(also known as assessments for learning) allow us to recognize the process during

learning. Formative assessments essentially involve feedback about instruction and

student learning allowing one to monitor students’ progress and evaluate the effec-

tiveness of the instruction (Black & Wiliam, 1998; Sadler, 1989). Just like any type

of assessment, formative assessments also require diverse, multiple, and high-quality

items to accurately measure learning and instruction.

With the changing nature of learning environments, one can observe that formative

assessments have been embedded in online, interactive, and digital learning systems

(Corbett et al., 1997; VanLehn, 2011). Digital learning environments can provide

real-time, personalized, and immediate feedback (Feng & Heffernan, 2005) with the

possibility of tutoring services such as through conversational agents (Graesser et al.,

2004, 2014; Sosnowski & Yordanova, 2020) or scaffolding exercises (Feng et al., 2006;

Razzaq & Heffernan, 2006) that break down the assessment item into smaller chunks

of knowledge components. Such learning environments need to include a vast number

of formative assessment items that are typically aligned with the program of studies

or the curriculum such as the common core state standards (Kober & Rentner, 2012).

Digital learning environments include thousands of items to better cater to student

and teacher needs. As such, diverse and more practice items could be provided to

3



learners in these environments to enhance learning and knowledge retention (Kochmar

et al., 2022).

However, supplying large quantities of high-quality items to computerized assess-

ments and online learning environments is not easy. Traditional item development is

an iterative process that involves several steps, such as item writing, item evaluation,

and field testing. Subject matter experts are profoundly involved in each step. The

item development process starts with subject matter experts writing and developing

individual assessment items. After items are developed, subject matter experts re-

view, revise, and edit newly developed items based on their expertise (Gierl et al.,

2021a; Lane et al., 2016). Typically, qualitative ratings have been used to attain stan-

dardization in human evaluations at this stage (Gierl et al., 2016). After consensus

has been reached in terms of item quality ratings and refinements have been made to

the newly developed items, items are administered to a representative sample (i.e.,

field-testing or pretesting) to obtain empirical item quality indices (e.g., statistical

analysis performed for conducting item analysis) (Gierl et al., 2021b, 2022). Field

testing and item analysis are again followed by an expert review to evaluate whether

items can be used for operational test settings, or revisions and refinements should

be made to improve the item quality for operational use.

Nonetheless, traditional item development has several pitfalls, rendering the tra-

ditional item development process infeasible for producing a large number of high-

quality items for computerized assessments and online learning environments (Gierl

& Haladyna, 2012; Gierl & Lai, 2012; Gierl et al., 2021a). First, in traditional ap-

proaches to item development, the unit of item production and analysis are individual

items. That is, each item is written and evaluated on an individual basis, leading to

extended periods of time devoted to item development and validation (Romberg et

al., 1982). One may assume that once a large quantity of items is developed by sub-

ject matter experts and test developers, they can be used an indefinite number of

times. Yet, we need to underscore that it is an unrealistic expectation about items
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and item banks. Item banks need to be maintained and amended to control for item

exposure or item drift (Guo et al., 2017) as well as to keep up with rapid changes

observed in some subject areas such as medicine (Gierl & Haladyna, 2012). As item

exposure increases, test security may decrease as more and more examinees take the

same set of items (Barrada et al., 2009). In addition to being time-consuming, the

traditional item development process is also expensive. Rudner (2010), for instance,

asserted that the development of a single item costs around US$1,500 to US$2,500

(p. 157). Consider that an intelligent tutoring system requires thousands of items to

adequately monitor students’ progress and provide tutoring services. Item develop-

ment and refinement alone will cost hundreds of dollars. Therefore, traditional item

development is quite limited in responding to today’s educational assessment needs

and challenges.

To address these concerns, a novel approach to item development—automatic item

generation (AIG)—has been proposed, which focuses on diminishing the resource-

intensive process of item creation by utilizing computing power and automation (Gierl

et al., 2023). Both selected- and constructed-response items can be generated by AIG

methods (Becker et al., 2012; Gierl et al., 2016; Seyler et al., 2017; Wang, Lan, &

Baraniuk, 2021; Yang et al., 2021). The two ends of the spectrum of AIG methods

approach item generation quite differently. We provided an overview of both ends of

automatic item generation in Figure 1.1. At the one end of the spectrum, template-

based AIG (Bejar et al., 2002; Gierl & Haladyna, 2012; Gierl et al., 2023; Irvine &

Kyllonen, 2002), utilizes item templates and cognitive models for item generation.

The workflow of template-based AIG starts by identifying the content to be used for

item generation (Gierl & Lai, 2013). This first step is labeled as the cognitive model

(Gierl & Haladyna, 2012) of AIG where skills, knowledge components, and abilities are

determined, which will be assessed by the test. The following step (Step 2) is referred

to as an item model (Laduca et al., 1986), where item templates are developed for

manipulating the content to be measured by the test. During the second step, the
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stem, the set of alternatives, including both distractors and keyed responses, and the

auxiliary information such as tables, figures, and graphs are created by subject matter

experts. Note that subject matter experts are profoundly engaged in both Step 1 and

Step 2. In Step 3, using the computer technology as well as the cognitive models and

item templates created in Steps 1 and 2, new items are generated.

Figure 1.1: An Overview of Template-Based and NLP-Based AIG Branches.

On the other end of the spectrum of item generation is natural language processing

(NLP)-based AIG which utilizes NLP techniques to generate items, reducing the

dependency on subject matter experts (Kurdi et al., 2020; Lu & Lu, 2021; Mulla &

Gharpure, 2023). Note that NLP-based approaches may combine NLP techniques

with computer vision (Sarrouti et al., 2020) or deep learning (Kumar et al., 2018)

to generate questions. There are multiple approaches proposed by NLP-based AIG.

Broadly put, NLP-based approaches can be grouped under two headings: 1) syntactic

models and 2) semantic models. While the former generates items by leveraging

syntactic elements of an input text, the latter focuses on contextual features such as

named entity recognition (Lu & Lu, 2021).

Unlike template-based approaches that heavily depend on subject matter experts
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for the creation of cognitive models and item templates (Bezirhan & von Davier,

2023), NLP-based approaches are considered fully automated approaches, signifi-

cantly reducing the degree of human involvement during the item generation process.

Furthermore, in templated-based AIG models computer aid and automation come at

the last stage (i.e., Step 3); hence, several researchers have referred to this branch of

item generation as semi-automatic AIG. Besides the differences in terms of the degree

of automation between template-based and NLP-based AIG, template-based AIG is

also not applicable to some content areas such as reading comprehension (Gierl et al.,

2023). Yet, dependency on subject matter experts in template-based AIG also has

substantial advantages compared to NLP-based AIG, such as conserving the gener-

ated items against certain item quality deficiencies (e.g., sounding unnatural or being

irrelevant to the target content) or having better control when creating alternatives

for a multiple-choice item.

1.1 Problem Statement

Despite the palpable advantages of AIG (e.g., increasing test security and generating

numerous items easily and in a cost-effective way) (Gierl et al., 2021a; Kosh et al.,

2019), there are several limitations of AIG approaches that restrict the use of gener-

ated items in operational test settings. An obvious advantage of AIG (i.e., generating

hundreds, if not thousands, of test items) may become a subtle drawback of the items

generated via automated approaches. The quality of generated items is typically un-

known. Using the traditional item evaluation methods, the generated items cannot

be evaluated effectively and efficiently by employing subject matter experts or by

administering all of the items to a representative sample (i.e., it is not realistic to

administer, say, 20,000 items in a reasonable time). Additionally, item parameters

(e.g., item difficulty and discrimination) cannot be obtained for all items generated

using traditional approaches used for item analysis. These inhibit the use of generated

items in operational testing, whether it be an assessment on its own or an assessment
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embedded in an online learning environment. For example, in a computerized adap-

tive test, we need to know item parameters to select items that maximize information

about examinees (Weiss & Kingsbury, 1984). Likewise, in online learning, we need to

have at least a rough estimation of item difficulties to select items tailored according

to the examinees’ needs (Wauters et al., 2012).

In the traditional item development process, field testing is a vital step for evaluat-

ing item quality. By field testing items, test developers obtain statistical estimates of

item analysis (e.g., difficulty or distractor functioning). For evaluating thousands of

generated items, field testing is not a feasible and efficient method. That is, it is not

realistic to recruit examinees or embed items in an operational test to conduct item

analysis in order to estimate item difficulty or discrimination. Current AIG models

field test only a subsample of generated items (Gierl et al., 2016; Van Campenhout et

al., 2022) underscoring the hardship of field-testing all generated items. Furthermore,

item statistics obtained through field testing are conditional upon the quality of data,

and the obtained statistical estimates can be context-dependent (i.e., examinee or as-

sessment characteristics may influence item analysis (Gorgun & Bulut, 2021, 2022).

For instance, the testing context (e.g., low-stakes test), examinee motivation, target

population (e.g., Grade 3 students), test length, item position, and test speededness

are a few examples that may influence the data quality, hence statistical item indices.

Additionally, Livingston (2013) argued that statistical analysis of items should pro-

vide information about items rather than examinees (p. 421). However, the response

data generated by examinees taking the assessment cannot be thought to be indepen-

dent of examinee and test characteristics. Hence, the precision of statistical analysis

of items (e.g., item calibration) will depend on how closely they resemble actual ex-

aminees and testing conditions (French, 2001). A final consideration about statistical

estimates of item quality is that our current conceptualization and operationalization

of item quality could be limited in regards to recognizing a reciprocal (i.e., bidirec-

tional) interaction between examinees and test items. That is, examinees are not
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passive entities from which we can extract objective information about items; rather,

there is an interaction among test settings (e.g., low stakes), items (e.g., difficult),

and examinee characteristics (e.g., effortful examinees) (Gorgun & Bulut, 2023).

In addition to field testing, human evaluations have been used in the traditional

item development process for rating developed items in terms of difficulty, presen-

tation, and content relevance (Gierl & Lai, 2016). While human ratings have been

considered as the ground truth in artificial intelligence (AI)-oriented research, previ-

ous research showed that human evaluators could be poor estimators of item quality

(Seyler et al., 2017), sometimes introducing bias and subjectivity in item quality

evaluations. To overcome these issues, rating scales and training procedures are in-

troduced in item quality evaluations. Nevertheless, human evaluators are expensive

and slow, rendering them inefficient evaluators of the quality of generated items. Hu-

man evaluators, therefore, are also a bottleneck in item quality evaluations (Lin &

Demner-Fushman, 2006).

With thousands of generated items, these traditional evaluation processes (i.e.,

expert judgment and field testing) are no longer feasible for evaluating each generated

item (Gierl & Lai, 2012). While template-based approaches may be more suitable in

terms of item quality evaluations due to subject matter experts’ involvement in item

model development, both ends of the spectrum of AIG approaches are susceptible

to the limitations of current item quality evaluation methods. Therefore, we may

need to find new evaluation methods that expand the boundaries of traditional item

evaluation methods to offer more feasible, scalable, and automatic approaches to item

quality evaluation. Developing new evaluation methods may not only facilitate the

item evaluation process of automatically generated items but may also contribute

to the item generation process by rendering it more feasible and efficient (Lin &

Demner-Fushman, 2006).
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1.2 Purpose of Dissertation

AIG is an interdisciplinary method combining measurement theory, learning sciences,

and computer science. Thus, it requires an interdisciplinary perspective for the de-

sign, development, deployment, and evaluation of such systems. For this reason, we

reviewed the literature focusing on human-computer interaction and measurement

theory. While human-computer interaction refers to the development, evaluation,

and deployment of computer systems for human use (Shneiderman et al., 2016; Sinha

et al., 2010), measurement theory means evaluating the quality of psycho-educational

measurement and assessment tools in terms of accuracy, consistency, usefulness, and

predictive value (Allen & Yen, 2001; Brennan, 2006). Although in recent years, the

capabilities of AIG systems to generate questions evolved tremendously due to gen-

erative AI (Nguyen et al., 2022), evaluation of these items for deployment is still

a major issue. Employing an interdisciplinary perspective allowed us to provide a

comprehensive overview of current evaluation methods used by researchers in mea-

surement and human-computer interaction disciplines working on AIG, portray the

limitations of current evaluation methods, and propose a novel approach leveraging

NLP to test the feasibility of evaluating generated items automatically. To facilitate

the evaluation process, we propose to test the feasibility of three prominent NLP

methods for assessing the quality of generated items and assess the boundaries of

automating the item evaluation process for generated cloze questions. As such, this

study is a proof-of-concept. Proof-of-concept refers to a pilot project that assesses

the feasibility of a design concept or proposal.

We first scan the AIG articles to create a taxonomy of evaluation methods used

in AIG research. This allows us to categorize evaluation methods based on their

similarities, limitations, and advantages as well as identify quality criteria used by

AIG researchers when evaluating the generated items. This process informs our first

study where we test our first NLP method for item evaluation.

10



The first method employs extracting linguistic features from the generated cloze

items, and training three machine learning (ML) classifiers. The goal of this study

(Study 1) is to assess the feasibility of a simpler yet interpretable method for item

evaluation. Study 1 also analyzes the feature importance for each trained classi-

fier to inform AIG researchers regarding which linguistic features might be useful

(Paramythis et al., 2010) for evaluating item quality automatically.

The second method assesses the utility of fine-tuning a pre-trained large-language

model (LLM) for evaluating the quality of generated cloze items. The goal of this

study (Study 2) is to use a more complex language model that is uninterpretable but

showed great promise for automating human rating assignments (e.g., essay scoring)

(Beseiso & Alzahrani, 2020) by adjusting the weights of the parameters of a pre-

trained language model.

The third method employs a generative LLM with 7-billion parameters to assess

the efficiency of using a prompt-based approach to item evaluation. The goal of this

study (Study 3) is to provide instructions to LLM along with cloze item and item

quality labels to assess whether generative models can be trained to follow instructions

for item quality evaluation.

1.3 Research Questions

1. What are the common evaluation methods and quality criteria used for evalu-

ating automatically generated items?

This question is answered in the literature review section where we provide an

exhaustive overview of evaluation methods as well as the quality criteria com-

monly used by AIG researchers.

2. Can we leverage NLP methods to automatically evaluate the quality of gener-

ated items?

2.1. To what extent a classifier trained with linguistic features can be used for
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evaluating automatically generated cloze items?

This question is answered in Study 1 where we extracted linguistic features

and trained three machine learning classifiers.

2.2. To what extent a fine-tuned pre-trained large-language model can be used

for evaluating automatically generated cloze items?

This question is answered in Study 2 where we fine-tuned an LLM, namely,

BERT for item quality prediction.

2.3. To what extent an instruction-tuned generative large-language model can

be used for evaluating automatically generated cloze items?

This question is answered in Study 3 where we instruction-tuned Llama-2

for item quality prediction.

3. Which linguistic features are more important for predicting item quality?

This question is answered in Study 1 where we analyzed the importance of the

linguistic features for each machine learning classifier trained.
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Chapter 2

Literature Review

In this chapter, we provide a comprehensive overview of item quality criteria used

in both traditional and automated item development processes as well as evaluation

methods used in the AIG research. By scanning the AIG literature, we first summa-

rize the quality criteria used in traditional item development and in AIG to highlight

similarities and differences between the criteria used in both approaches to item devel-

opment. By doing so, we intend to bridge the gap between traditional item developers

and automated item generators. We then propose a taxonomy of evaluation methods

used by AIG researchers to facilitate the discussion around similarities, advantages,

and limitations of current item evaluation methods used by AIG researchers. The

chapter concludes with a summary of the limitations of current evaluation methods

and argues for the need for novel methods for item evaluation in AIG.

2.1 Item Quality Criteria in Traditional Item Devel-
opment

Item is a technical term that psychometricians and test developers use to refer to an

individual question, exercise, prompt, statement, or task in a test or questionnaire

that the examinee or respondent reacts through selecting, constructing, or performing

a response (American Educational Research Association et al., 2014; Nelson, 2004).

Items are building blocks of an assessment or test, hence before talking about the
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overall quality of an assessment (e.g., validity), each item should attain a certain

level of quality to be included in a test. Attaining information about item quality is

typically referred to as item analysis. Item analysis provides information about the

empirical and structural quality of items (Bandalos, 2018; Lane et al., 2016; Osterlind,

1989). In the literature, one can observe various reasons and objectives attached to

performing item analysis. For example, item analysis supplies essential information

about several indices of item quality including item difficulty, item discrimination,

differential item functioning (Livingston, 2013), distractor functioning (Gierl et al.,

2017; Haladyna & Rodriguez, 2013; Thissen et al., 1989), and the dimensionality of

the construct being measured (Haladyna & Rodriguez, 2021). It also helps researchers

assemble parallel test forms, evaluate the content coverage (Gierl et al., 2021a), and

identify items that need to be removed or revised in a given item bank (Haladyna

& Rodriguez, 2021). While some researchers consider item analysis as a statistical

procedure to extract information about item characteristics (Ashraf, 2020; Clauser

& Hambleton, 2011; French, 2001; Rezigalla, 2022), others assert that judgment-

based methods can be used for conducting item analysis (Gierl et al., 2021b, 2022;

Osterlind, 1989). Below, we first summarize judgment-based approaches used for

item analysis. Then, we discuss various statistical procedures used for evaluating

psychometric criteria under different measurement theories.

Judgment-based approaches may employ subject-matter experts, examinees, or

editorial specialists (Osterlind, 1989) to systematically review and evaluate items ac-

cording to some criteria. Evaluation criteria may include the degree of alignment

between the content and item coverage, congruence between skills and knowledge

required from the examinee and item, and grammatical accuracy (Gierl et al., 2016,

2021b). In addition to these criteria, researchers also emphasized the importance

of systematically evaluating item quality using measures such as rating scales. For

instance, Osterlind (1989) suggested using a 3-point scale for evaluating content align-

ment with the levels of high congruence, medium congruence, and low congruence (pp.
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267-268).

Nonetheless, judgment-based evaluations are not as common as statistical ap-

proaches used for item analysis. This might be because item analysis relying on

statistical methods is expected to provide more objective measures of item quality.

The first index we discuss is item difficulty which is used to quantify the degree of

hardness of an item. Under classical test theory (CTT), item difficulty is formu-

lated as the proportion of examinees (i.e., proportion correct score or p-value) who

answered the item correctly (Anastasi & Urbina, 2004; Clauser & Hambleton, 2011;

Haladyna & Rodriguez, 2021). Thus, as the item difficulty increases, the number of

examinees answering the item correctly decreases. As a more advanced method, item

response theory (IRT) formulates item difficulty based on a probability function. IRT

places item difficulty and examinee ability on the same continuum and expresses item

difficulty in terms of the probability of correctly answering an item. If the examinee’s

ability is higher than an item’s difficulty, the examinee is more likely to answer the

item correctly and thus the item is easier given the ability level of the examinee. When

an item’s difficulty and the examinee’s ability coincide, the probability of answering

the given item is 50% (Osterlind & Wang, 2017).

Another commonly used item quality criterion is item discrimination. Item dis-

crimination is about how well an item can distinguish high-performing examinees

(i.e., examinees who know the content well) from low-performing ones (French, 2001).

Several indices have been proposed to quantify item discrimination. In CTT, item

discrimination is estimated through various approaches: 1) difference in proportion

correct scores when high-achievers are compared with low-achievers, 2) point-biserial

correlation, 3) biserial correlation, and 4) multi-serial index. The first approach builds

on identifying performance groups (i.e., lower group and upper group) based on the

total test score. Specifically, examinees’ total test scores are ranked in an ascending

manner and 25% or 27% of both upper and lower performance groups are determined.

After identifying the lower and upper performing groups, the proportion correct scores

15



for both groups are calculated and the lower group’s proportion correct score is sub-

tracted from the upper group’s to compute the discrimination index (Cohen et al.,

1996; Jenkins & Michael, 1986; Kehoe, 1995). The second and third discrimination in-

dices are based on Pearson’s product-moment correlations and while the point-biserial

correlation estimates item discrimination by finding the product-moment correlation

between the total score and item score, the biserial correlation employs the continuity

correction (Ebel & Frisbie, 1986; Kim et al., 2021). The final discrimination index,

the multi-serial index, is a multiple correlation considering the response options of

an item (Haladyna & Rodriguez, 2021). Unlike the previous three indices discussed,

this index also considers distractor discrimination. On the other hand, according to

the IRT-based approaches, item discrimination is related to the steepness of the item

characteristic curve where the steeper line indicates that the item more effectively dif-

ferentiates the lower ability examinees below the item location (i.e., difficulty) from

the higher ability examinees above the item location (Ashraf, 2020).

Several guidelines have been proposed regarding the interpretation of difficulty

and discrimination indices (Cohen et al., 1996; French, 2001). For example, Cohen

et al. (1996) suggested that the optimal proportion correct index is approximately

.50. While Ebel and Frisbie (1986) suggested that items with a discrimination in-

dex of .40 or higher are good items, Clauser and Hambleton (2011) indicated that

classroom assessments should have item discrimination at least above 0.0. Yet, these

guidelines for item difficulty and discrimination have been criticized because of their

sample dependency, especially in the context of CTT-based approaches, as well as

examinees’ random guessing behavior (Anastasi & Urbina, 2004). Unlike CTT-based

approaches, difficulty and discrimination indices are less sample-dependent in an IRT

context. However, we need to note that difficulty and discrimination parameters will

be impacted by the exam characteristics and the sample of examinees that is used for

calibrating the items in IRT-based approaches. For instance, in the presence of high

rates of rapid guessing, item parameters can be inflated (e.g., overestimated) and
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items may seem more difficult than their actual difficulty levels (Gorgun & Bulut,

2021). Additionally, test speededness, not-reached, omitted, or unanswered items,

content stratification, calibration practices (e.g., embedded field items), and item po-

sition effects are some of the issues that may drastically influence item difficulty and

discrimination parameters. Therefore, the quality and trustworthiness of difficulty

and discrimination parameters estimated via either CTT- or IRT-based approaches

depend on the sample, the purpose of the assessment, and assessment administration

contexts (Hambleton, 1993; Hambleton et al., 1991; Livingston, 2013).

The next criterion we discuss for evaluating item quality is item bias or differen-

tial item functioning (DIF). Unlike difficulty and discrimination indices, bias is less

frequently emphasized as a criterion of item quality in AIG research. However, the

presence of biased items may lead to unfair interpretations and consequences for ex-

aminees, hence, items should be inspected for possible item biases across different

groups (e.g., race or ethnic background, gender, or region) (Clauser & Hambleton,

2011). The presence of a biased item means that, given the ability levels of exami-

nees, one group is disadvantaged due to group membership. That is, differential item

functioning occurs when the probability of correctly answering an item is different

due to group membership, albeit we match the ability levels of subgroups. Even

though judgmental approaches can be used to evaluate whether items exhibit bias,

several statistical approaches have also been developed for empirically detecting bias

in items. In these empirical methods, a focal (i.e., disadvantaged group) and a refer-

ence group are identified for examining whether an item functions differently for one

of the groups (e.g., whether the item difficulty is greater for the focal group) (Clauser

& Hambleton, 2011; Livingston, 2013).

The item evaluation criteria discussed so far can be used for both selected-response

(e.g., multiple-choice item) and constructed-response (e.g., short-answer) items. In

addition to these criteria, additional item quality criteria were specifically developed

for selected response items. One such criterion is distractor analysis. There are
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three main reasons for examining distractor functioning. These reasons are as fol-

lows: 1) whether all distractors have been selected by examinees, 2) whether the

keyed response is correctly identified, and 3) whether distractors are more likely to

be selected by low-performing students (Gierl et al., 2016; Haladyna et al., 2002).

A non-functioning distractor means that none of the examinees have selected the

distractor suggesting that the distractor is not plausible or attractive to examinees.

Secondly, it is expected that the keyed response is the most frequently selected an-

swer when analyzing examinee responses. Finally, distractors should be more likely

to be selected by low-performing examinees because high-quality distractors typically

involve common misconceptions that low-performing examinees have. Thus, item dis-

crimination analysis focusing on distractors should indicate that distractors are more

attractive to low-performing students (Gierl et al., 2016).

2.2 Item Quality Criteria in AIG

In AIG research, computers are the medium for item generation. Note that in Chapter

1, we made a distinction among different AIG systems with varying levels of automa-

tion. While some systems approach item generation as a fully automated task (Ha &

Yaneva, 2018), some still heavily rely on humans (e.g., subject matter experts) (Gierl

& Haladyna, 2012), and automation comes at the very last stage. Although fully au-

tomatic systems minimize human dependency, time, and financial costs, such systems

are more susceptible to issues with item generation. This introduces new challenges to

item quality evaluation methods. It could be the case that an AIG system generates

non-fluent and ungrammatical items that do not necessarily sound like a human-

generated natural language (e.g., nonsensical). Therefore, psychometric approaches

may lack these considerations related to NLP for providing a comprehensive evalua-

tion framework for AIG. Thus, we need to consolidate psychometric approaches with

the challenges that AIG brings to develop a more appropriate framework for AIG eval-

uations. By reviewing the current quality criteria employed by AIG researchers, we
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examine the aspects absent in traditional psychometric evaluation criteria. Further-

more, outlining evaluation criteria in AIG research helps us identify quality criteria

informed by psychometrics that are neglected in AIG evaluations.

2.2.1 Linguistic Criteria

The most common linguistic criteria include grammaticality, fluency, relevancy, se-

mantic correctness, syntax clarity, meaning, spelling, naturalness, coherence, and

specificity (Amidei et al., 2018; Gatt & Krahmer, 2018; Kurdi et al., 2020; Mulla

& Gharpure, 2023). While several research studies include more than one linguistic

criterion with a clear description of each criterion (Heilman, 2011; Heilman & Smith,

2010); others lacked a clear description or definition of the criteria included (Becker

et al., 2012; Mostow et al., 2017). Here, we need to make a distinction between

linguistic criteria and the rating scale used for evaluating generated items. In some

studies, linguistic criteria are embedded into the rating scale used. In such cases, re-

searchers start by providing a rating scale (e.g., Good, Okay, or Bad) and they define

each category with linguistic criteria. For instance, Becker et al. (2012) and Niraula

and Rus (2015) used a 3-point rating scale with categories of Good, Okay, and Bad.

They defined a good item as “the questions that ask about the key concepts from the

sentence and are reasonable to answer”, an okay item as “the questions that target

the key concepts but are difficult to answer. . . ”, and a bad item as “questions which

ask about an unimportant aspect of the sentence, or their answers are easy to guess

from the context” (p. 197).

In a similar approach, Heilman and Smith (2010) and Heilman (2011) provided

a detailed description of the rating criteria they used for evaluating their rule-based

over-generate and rank item generation system. Specifically, they first asked the eval-

uators to assign one of the five rating scale categories based on the generated sentence

quality: good, acceptable, borderline, unacceptable, and bad. If evaluators scored a

generated sentence as unacceptable, then evaluators were further asked to enumer-
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ate the reasons for unacceptability using the following criteria: (un)grammaticality,

incorrect information, vagueness, and awkwardness/other. A strength of their ap-

proach is that they defined each quality criterion and reasons for unacceptability. For

example, an unacceptable question is defined as “The question definitely has a minor

problem” and ungrammaticality is defined as “The question is ungrammatical, does

not make sense, or uses the wrong question word (e.g., who, what, which, etc.)” (pp.

183-184). Finally, the researchers also provided examples to the evaluators which can

be regarded as an attempt to achieve some level of standardization among evaluators

during the evaluation of generated items.

Unlike these rating scale-focused approaches discussed above, several researchers

approached the linguistic evaluation of generated items from a criteria-focused per-

spective. Specifically, they focused on one or several linguistic criteria (e.g., fluency,

meaningfulness, plausibility) and evaluated the item’s quality dichotomously. In a

recent study, Wang, Liu, et al. (2021) used fluency (i.e., coherent and grammatically

correct) and relevancy (i.e., whether the item is relevant to the input context-answer

pair) as two linguistic criteria (p. 7). Likewise, using grammaticality (i.e., the pres-

ence or absence of grammar errors) and semantic correctness (i.e., whether the overall

meaning of the generated question is relevant to the context without vagueness), Liu

et al. (2017) evaluated generated factual questions. Even though the authors provided

the definitions of the criteria used to evaluate question quality, these definitions are

vulnerable to different interpretations introducing undesirable noise into the item

quality evaluation process. Furthermore, different definitions are used to describe the

same linguistic criterion underscoring the lack of uniformity and cohesion in evalua-

tion methods focusing on linguistic aspects of generated questions.

Perhaps a more fine-grained approach for evaluating item quality using linguistic

criteria is utilizing a rubric-like rating scale. That is, providing several linguistic crite-

ria and descriptions with a rating scale that allows evaluators to distinguish different

degrees of linguistic criteria. For example, Maurya and Desarkar (2020) employed
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grammatical correctness and distractability evaluation criteria with a 5-point rating

scale (i.e., very poor to very good). This type of approach allows evaluators to con-

sider each criterion separately while enabling them to indicate the degree of presence

of each linguistic criterion.

Nonetheless, the linguistic criteria used, and their definitions were not always spec-

ified. In some studies, the researchers briefly mentioned that generated items were

considered grammatically and syntactically acceptable without providing information

on how these criteria were defined and evaluated (Das et al., 2016). For instance,

Mostow et al. (2017) and Rodriguez-Torrealba et al. (2022) provided linguistic crite-

ria that evaluators need to consider without a clear definition of each criterion. In

their study, Mostow et al. (2017) asked evaluators to rate the quality of items gen-

erated in terms of spelling, syntax, clarity, and meaning with a 3-point rating scale

(i.e., very poor, moderate, and very well). In the study by Rodriguez-Torrealba et al.

(2022), evaluators rated the items based on correctness, plausibility, nonsensicality,

and ungrammaticality. Yet, without a clear definition, it is very likely that evaluators

may provide their own definitions for each linguistic criterion, introducing bias in the

item quality evaluation process.

2.2.2 Psychometric Criteria

The most common psychometric criteria considered in AIG research are item diffi-

culty, distractor analysis, domain relevance, and educational usefulness. In addition

to those common indicators of item quality, a few studies took student engagement

(Van Campenhout et al., 2022), cognitive models (Gierl et al., 2016, 2022), inter-

nal consistency (Hommel et al., 2022; von Davier, 2018), and differential child item

functioning (Fu et al., 2022) into account while evaluating the quality of generated

items. Similar to linguistic criteria, one can observe diversity in the way researchers

defined and used psychometrically informed criteria. Most of this discrepancy also

stems from using different approaches to item generation. Based on our review, we
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can assert that template-based AIG methods follow more psychometrically informed

criteria with little to no emphasis on linguistic criteria due to heavy dependency on

subject matter experts during item model development. Additionally, those studies

tend to follow a more detailed analysis of the psychometric properties of generated

items (e.g., distractor functioning, item discrimination) (Gierl & Haladyna, 2012;

Gierl & Lai, 2012; Gierl et al., 2016) which are more aligned with traditional item

analysis. On the other hand, a heavy emphasis is given to linguistic criteria for NLP-

based AIG approaches while a few loosely-defined psychometric criteria are used for

evaluating the quality of items generated with these approaches. This is probably due

to the generated items by NLP-based methods being more susceptible to sounding

non-natural and non-sensical.

The most frequently used psychometrically informed criterion is item difficulty.

Item difficulty, though, was not used invariably across the AIG studies. Several stud-

ies approached item difficulty from an empirical perspective by collecting examinee

data. For example, by field testing a sample of items generated from medical tem-

plates, Gierl et al. (2016) estimated item difficulty as the proportion of examinees

who answered the item correctly (i.e., CTT definition of item difficulty). A similar

approach to item difficulty estimation was adopted by Van Campenhout et al. (2022)

where they compared the difficulty of the human-authored and automatically gener-

ated items using students’ response data. Specifically, item difficulty was based on

the proportion correct-scores of students’ first attempt.

Several studies conceptualized difficulty based on cognitive complexity (e.g., Bloom’s

taxonomy of items) (McCarthy et al., 2021; Settles et al., 2020; Venktesh et al.,

2022). Unlike empirical approaches described above, these approaches typically as-

sign item difficulty labels (e.g., easy item, C1 level, moderate item) based on cognitive

frameworks or subject-matter expert judgment. In some of these studies, item diffi-

culty was conceptualized as the degree of similarity between item distractors and the

keyed response. This conceptualization allowed AIG researchers to generate difficulty-
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controllable items (Alsubait, 2015; Alsubait et al., 2014). For instance, using a binary

label of item difficulty (i.e., an easy or difficult item), Kurdi et al. (2017), and using

a three-level label of item difficulty (i.e., easy, medium, difficult) Lin et al. (2015)

conceptualized item difficulty as the similarity between distractors and the keyed

response. As the similarity between distractors and keyed response increases, the

confusability of distractors increases (Seyler et al., 2017), rendering the generated

item more difficult. Similarly, Gao et al. (2019) developed a difficulty-controllable

AIG system where the difficulty of an item was determined by employing two reading

comprehension systems (i.e., R-Net and BiDAF) (Seo et al., 2018; Wang et al., 2017).

Accordingly, if both systems answered a given question correctly under the exact

match metric, the question was labeled as easy whereas if none of the systems an-

swered the item correctly, the question was labeled as difficult. Additionally, linguistic

features can be extracted from the item stem or alternatives to develop prediction

models of item difficulty. Researchers may utilize word embeddings (e.g., BERT),

word length, sentence length, or word-level unigram language models to predict item

difficulty (McCarthy et al., 2021; Settles et al., 2020).

Analysis of alternatives (i.e., keyed response and distractors) of a multiple-choice

item is another psychometric criterion that AIG researchers considered when evaluat-

ing automatically generated items. Like item difficulty, one can observe variations in

terms of how the examination of alternatives was performed. In line with traditional

psychometric analysis, several researchers analyzed distractor functioning in terms of

whether each distractor had been mostly selected by lower-performing examinees and

whether each distractor had been used (i.e., distractors become non-functional if they

are not appealing to lower-performing students and thus have not been selected). For

example, Gierl et al. (2016) investigated the distractor functioning of two generated

items by examining the discrimination index and biserial correlations. The discrim-

ination index should be zero or negative and biserial correlations should be negative

to have properly functioning distractors because it indicates that lower-performing
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students are more likely to select distractors.

Another psychometric criterion that a few studies considered is domain relevance.

A typical approach for evaluating domain relevance is conducted by employing subject

matter experts. This quality concern is aligned with the psychometric criterion of

being instructionally relevant (Gierl & Haladyna, 2012; Gierl & Lai, 2012). For

instance, Gierl et al. (2021b) suggested using a 4-point rating scale for evaluating

the content relevance of generated items. The rating scale included the categories

of accept, accept – minor revision, reject – major revision, and reject allowing test

developers, subject matter experts, and psychometricians to decide which item models

can be used in operational test settings. Although template-based AIG approaches

are less susceptible to being domain irrelevant and are easier to evaluate domain

relevancy due to subject-matter experts’ involvement in the creation and evaluation

of item models, several NLP-based item generation systems also considered domain

relevance as an evaluation criterion (Afzal & Mitkov, 2014; Alsubait et al., 2016;

Chughtai et al., 2022), for example, generated items targeting specific lecture slides

of a software engineering course. Generating domain-relevant questions requires the

system to identify facts, terminologies, or relationships which are essential components

of instructional material. To this end, researchers used named entities (Afzal &

Mitkov, 2014); knowledge bases representing relationships among the instructional

entities (Rodríguez Rocha & Faron Zucker, 2018; Song & Zhao, 2017); or domain

ontologies (Kurdi et al., 2017).

Educational or pedagogical usefulness is another psychometrically informed crite-

rion. Because education usefulness partly depends on the validity argument (Kane,

2013), for example, the purpose of the item use (Mazidi & Nielsen, 2014), some

researchers operationalized educational usefulness to assess the AIG system’s perfor-

mance. While some considered usefulness as a support for human learning through

content coverage (Jouault et al., 2016; Tamura et al., 2015) and prompting deep

thought (Zhang & VanLehn, 2016), others formulated usefulness as a combination
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of linguistic criteria composed of, for instance, grammaticality, relevancy in terms of

information, and semantic quality (Flor & Riordan, 2018).

Using these linguistic and psychometrically informed criteria, researchers used var-

ious evaluation methods and evaluators to assess item quality. Below, we propose a

taxonomy of evaluation methods in AIG research for assessing the quality of generated

items.

2.3 A Comprehensive Overview of Evaluation Meth-
ods Used in AIG

In this section, we provide a taxonomy of evaluation methods used in AIG research.

We argue that providing a comprehensive overview of evaluation methods helps us

highlight the resources needed for each evaluation method, their advantages, and

limitations while emphasizing the need for new evaluation methods to successfully

deploy items generated automatically. The proposed taxonomy of evaluation methods

is based on resources (e.g., whether reference questions are available), input (e.g.,

whether response data are used), and quality criteria (e.g., whether psychometric

methods are used for evaluation) that researchers have used when evaluating items.

Note that many studies are cited across multiple evaluation methods because studies

typically combine several evaluation methods (Amidei et al., 2018).

2.3.1 Metric-Based Evaluations

According to the Dictionary of Oxford, the term metric is defined as a system or

standard of measurement. Metric-based evaluations in the AIG literature refer to

a family of standard measures that automatically evaluate the performance of the

system, typically against human performance or ground truth (Gao et al., 2019;

Kumar et al., 2018; Marrese-Taylor et al., 2018; Wang et al., 2018). In Table 2.1, we

provided examples of AIG studies that used metric-based evaluations.

The most frequently used metrics are BiLingual Evaluation Understudy (BLEU)
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Table 2.1: Examples of AIG Systems Evaluated Using Metric-Based Method

Authors Item Types Context AIG Method Evaluation Method

Becker et al.
(2012)

Cloze Generic Parse-trees Logistic regression

Gao et al.
(2019)

Constructed
response

Reading com-
prehension

seq2seq BLEU, METEOR,
ROIUGE-L

Ha and
Yaneva
(2018)

Distractor Medicine Concept embeddings,
Information retrieval

Embedding similarity

Liang et al.
(2018)

Distractor Biology,
Chemistry,
Earth science,
Physics

Feature-based, Neural
net

Logistic regression,
Random forest,
LambdaMart

Liu et al.
(2017)

Constructed
response

Factual ques-
tions

Sentence simplifica-
tion

Logistic regression,
RankSVM

Marrese-
Taylor et al.
(2018)

Cloze Language Bidirectional LSTM F1, Recall, Precision

Maurya and
Desarkar
(2020)

Distractor Reading com-
prehension

Hierarchical multi-
decoder network

BLEU, ROUGE-L,
METEOR, Embed-
ding average

Kumar et al.
(2018)

Q&A pairs Reading com-
prehension

seq2seq, Answer en-
coding

METEOR, BLEU,
ROUGE-L

Panda et al.
(2022)

Distractor
generation,
Cloze

Language Neural machine and
round-trip machine
translation

Specialized metric

Rodriguez-
Torrealba
et al. (2022)

Multiple-
choice,
Answer,
Distractor

Generic T-5 BLEU, ROUGE-L,
Cosine similarity

Wang et al.
(2018)

Constructed
response

Biology, Soci-
ology, History

Recurrent neural
network (bidirectional
LSTM)

BLEU, METEOR,
ROUGE-L

Wang, Lan,
and Baraniuk
(2021)

Constructed
response

Math Pre-trained large-
language models

BLEU, METEOR,
ROUGE-L, Special-
ized metric

Wang et al.
(2022)

Constructed
response

Biology GPT-3, Prompt engi-
neering

Perplexity, Distinct-3,
Toxicity

Note. Adapted from Gorgun and Bulut (2024b).
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(Papineni et al., 2002), Metric for Evaluation of Translation with Explicit ORdering

(METEOR) (Banerjee & Lavie, 2005), and Recall-Oriented Understudy for Gisting

Evaluation (ROUGE) (Lin, 2004). These metrics were originally developed for evalu-

ating machine translation tasks and comparing the performance of the system against

human performance. Given that human evaluators are expensive (Hovy, 1999) and

costly in terms of time (Papineni et al., 2002), researchers developed various auto-

matic evaluation metrics (e.g., BLEU) that allow system developers to assess the

quality of machine translation in terms of closeness to human translations. Addi-

tionally, these metrics help researchers and practitioners quantify the magnitude of

closeness to human performance to efficiently evaluate the system’s performance.

The BLEU metric (Papineni et al., 2002) counts the number of n-gram matches

between the candidate translation (i.e., machine translation) and reference translation

(i.e., human translation). The matches are not considered with respect to the position

of the n-grams and the higher number of matches is associated with a better candidate

translation. By counting the number of n-gram matches, BLEU computes a precision

score. The precision score can be given as

pn =

∑︁
Cϵ{Candidates}

∑︁
n−gramϵC Countclip(n− gram)∑︁

C′ϵ{Candidates}
∑︁

n−gram′ϵC′ Countclip(n− gram′)
, (2.1)

where Countclip is the total count of each candidate word by its maximum refer-

ence count. However, BLEU also introduces a penalty function for sentence brevity

when estimating the similarity between machine translation and human translation.

Specifically, brevity penalty (BP) is defined as

BP =

{︄
1 if c > r

e(1−r/c) if c ≤ r,
(2.2)

where r is the reference corpus length and c is the total length of the candidate

translation corpus. Finally, the BLEU score is obtained by

BLEU = BP ∗ exp(
N∑︂

n=1

wnlogpn), (2.3)
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where wn = 1/N and N is the number of total words. The BLEU metric generates a

value between 0 and 1, and higher scores indicate better translation.

Another machine translation metric that AIG researchers use is ROUGE (Lin,

2004) and it has four variations: ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-

S. Yet, AIG systems exclusively used ROUGE-L which focuses on finding the longest

common subsequence between a candidate translation and a reference translation.

The underlying objective is similar to the BLEU metric—ROUGE-L aims to identify

the overlap between two sequences (i.e., a summary sentence). It is conceptualized

as an LCS-based F-measure (Lin, 2004) and can be written as

FLCS =
(1 + β2)RLCSPLCS

RLCS + β2PLCS

, (2.4)

where β is PLCS/RLCS. Here RLCS LCS-based recall and is defined as

RLCS =
LCS(X, Y )

m
, (2.5)

and PLCS LCS-based precision and is defined as

PLCS =
LCS(X, Y )

n
, (2.6)

where X and Y are two summaries with a length of m and n, respectively. Similar to

BLEU, this equation generates a value between 0 and 1, and higher scores indicate a

better candidate summary.

The final member of the automatic machine translation metrics is METEOR

(Banerjee & Lavie, 2005). Similar to ROUGE-L, METEOR evaluates the match

between two sequences by combining precision and recall values, however, METEOR

also considers the order of the matched words. Developers of the METEOR metric

tried to overcome the limitations inherent in the BLEU metric by considering recall,

word matching between reference and candidate summaries, and the level of gram-

maticality of the candidate summary (Banerjee & Lavie, 2005). Formally, METEOR

is defined as

Score = Fmean ∗ (1− Penalty), (2.7)
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where Fmean is a combination of unigram recall (R) and unigram precision (P )

Fmean =
10PR

R + 9P
, (2.8)

and Penalty is defined as

Penalty = 0.5 ∗ ( the number of chunks
the number of unigrams mathced

)2. (2.9)

Recall that METEOR tries to improve the BLEU metric by considering the length

of the matches between candidate and reference translation. Hence, the Penalty

function achieves that goal by considering chunks (i.e., unigrams in adjacent positions

in candidate translation) and unigrams matched. The METEOR metric has a similar

interpretation to BLEU and ROUGE-L.

In the AIG literature, these metrics are used when there is a reference question

or distractor typically authored by humans. Using the SQuAD data set (Rajpurkar

et al., 2016), which includes question and answer pairs, Gao et al. (2019) and (Kumar

et al., 2018) evaluated the quality of generated questions by estimating the BLUE,

METEOR, and ROUGE-L metrics. Specifically, they considered questions available

in the dataset as reference questions while generated questions were considered candi-

date items. Similarly, Maurya and Desarkar (2020) evaluated the quality of generated

distractors with the human-authored ones using the same metrics.

In addition to metrics adapted from machine translation, researchers also used

other metrics such as perplexity, F1, grammatical error using Python language tool,

toxicity analysis, embedding similarity, and some specialized metrics specifically de-

veloped for a given item generation task (Amidei et al., 2018). To provide an exam-

ple of specialized metrics, we refer to a study by Wang, Lan, and Baraniuk (2021).

The researchers developed an AIG system for generating math word problems using

math equations representing the math word problem. The researchers developed the

ACC-eq metric to evaluate the similarity between the input equation and the math-

ematically represented generated math word problem. Similarity-based metrics such
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as GloVe cosine similarity (Rodriguez-Torrealba et al., 2022) or BERT cosine simi-

larity (Maurya & Desarkar, 2020) are employed for measuring the semantic distance

between the generated question and reference text. Finally, in a recent study, Wang

et al. (2022) evaluated the quality and diversity of generated questions focusing on

the coherence of the text, the number of averaged grammatical errors, the average

number of distinct tri-grams in questions generated, and the toxicity of generated

questions.

While metric-based methods can be easily and quickly applied to evaluate the

quality of generated questions, they have a few limitations. First, the data set should

include ground truth or human-authored questions or distractors to be able to employ

these metrics. Second, because these metrics consider the similarity between the

generated and human-authored questions, the other acceptable questions may receive

a low score (Kumar et al., 2018), entailing that the perfectly valid questions are

considered bad due to differences in the linguistic structure.

2.3.2 Human Evaluators

Perhaps the most popular evaluation method for assessing the quality of questions

generated by AIG systems is relying on manual or human evaluators (Kurdi et al.,

2020) as they are considered the golden standard for evaluating the fluency and gram-

maticality of generated questions. Note that human evaluators are used for various

purposes (Kurdi et al., 2020) including evaluating the question difficulty (Rodriguez-

Torrealba et al., 2022), language fluency (e.g., plausibility or grammaticality) (Mostow

et al., 2017), distractibility of items (Maurya & Desarkar, 2020), or domain relevance

(Chughtai et al., 2022). In Table 2.2, we provided examples of AIG systems with

human evaluators.

We categorize human evaluators into five groups: experts, students, crowdsourcing,

researchers, and teachers. Note that there are also gray areas in the literature regard-

ing the identity of human evaluators. For instance, in some studies, researchers only
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Table 2.2: Examples of AIG Systems Evaluated Using Human Evaluators

Authors Item Types Context AIG Method Evaluation Method

Attali et al.
(2022)

Multiple-
choice

Reading com-
prehension

GPT-3 Experts

Becker et al.
(2012)

Cloze Generic Parse-trees Crowdsource

Chughtai
et al. (2022)

Multiple-
choice

Engineering T-5, Sense2vec Experts

Chung and
Hsiao (2022)

Constructed
response

Programming Template-based Teachers

Dugan et al.
(2022)

Constructed
response

Generic T-5 Researchers

Gierl and Lai
(2016)

Multiple-
choice

Medicine Template-based Experts

Liang et al.
(2017)

Distractor Biology,
Math,
Physics

Generative adversarial
neural nets

Experts

Lin et al.
(2015)

Multiple-
choice

Wildlife Hybrid semantic simi-
larity

Crowdsource

Mostow et al.
(2017)

Multiple-
choice

Biology, Soci-
ology, History

Recurrent neural
network (bidirectional
LSTM)

Students

Wang, Lan,
and Baraniuk
(2021)

Constructed
response

Reading com-
prehension

Parse-trees, n-grams Students

Olney (2021) Cloze Science Deep learning summa-
rization

Experts, students

Panda et al.
(2022)

Distractor,
cloze

Language Neural machine trans-
lation, round-trip ma-
chine translation

Students

Rodriguez-
Torrealba
et al. (2022)

Multiple-
choice,
answer,
distractor

Generic T-5 Professionals

Song and
Zhao (2017)

Constructed
response

Generic Neural machine trans-
lation

Not reported

von Davier
(2018)

Survey Personality
scale

Recurrent neural net-
work, LSTM

Crowdsource

Note. Adapted from Gorgun and Bulut (2024b).
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mentioned that evaluators are native speakers of English without providing any in-

formation regarding their educational background or demographic information about

these evaluators (Maurya & Desarkar, 2020; Song & Zhao, 2017).

Experts are typically domain or subject matter experts of an assessment or content

area (i.e., the target domain of AIG). Experts typically use a rating scale to evaluate

the question quality. Quality indicators that experts use to rate generated items

include grammaticality (Chughtai et al., 2022; Heilman, 2011), fluency (Song & Zhao,

2017), domain or question relevance (Dugan et al., 2022), complexity (Chung & Hsiao,

2022), acceptability of questions (Gierl et al., 2016; Liang et al., 2017), and question

clarity (Rodriguez-Torrealba et al., 2022).

In addition to experts, several studies employed students (Panda et al., 2022),

teachers (Chung & Hsiao, 2022), and researchers (Dugan et al., 2022) to evaluate the

quality of generated items. Here, we make a distinction between student, teacher, and

researcher evaluators and expert evaluators because the former group (i.e., teachers

students, and researchers) may lack content or assessment expertise and the lack of

thereof can substantially bias the quality assessments of the generated items. Similar

to expert evaluators, student, researcher, and teacher evaluators may use a rating

scale to judge the generated items’ quality (Mostow et al., 2017; Rodriguez-Torrealba

et al., 2022).

Expert, teacher, student, and researcher evaluators are limited when it comes to

evaluating the large number of items generated with computer algorithms. Because

studies need to recruit a large number of experts, students, teachers, or researchers

(Maurya & Desarkar, 2020) to assess the quality of the vast number of items gen-

erated, crowdsourcing has emerged as a viable alternative to evaluate the quality of

generated items quickly and easily. Crowdsourcing allows researchers to recruit a

larger number of evaluators which is an economical substitute in terms of time and

money. One of the most popular crowdsourcing platforms is Amazon Mechanical Turk

(Sorokin & Forsyth, 2008; Strickland & Stoops, 2019). Evaluators recruited through
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crowdsourcing typically assess the item quality using a rating scale (Lin et al., 2015),

similar to experts, teachers, students, and researchers. However, there are many gray

areas in the literature regarding whether crowdsource workers have gone through any

training to attain standardization during the evaluation process. Alternatively, the

crowdsource workers may be asked to take the assessment in order to obtain empirical

data to evaluate the quality of the generated items (Becker et al., 2012; Hommel et al.,

2022; von Davier, 2018). However, a potential problem with using the crowdsource

worker data to conduct item analysis might be the lack of representativeness of the

crowdsource workers as they may not be a good representation of examinees taking

the real assessment.

Although human evaluations in question generation are considered the golden stan-

dard by providing the ground truth about the item quality, the quality of several

human evaluators can be doubtful due to the lack of detailed reporting practices

or standardization during the evaluation process. The lack of standardization can

lead to biased evaluations regarding the quality of generated questions. For instance,

studies include a different number of evaluators ranging from 1 to 364 (Amidei et

al., 2018). In AIG research involving more than one evaluator, the inter-rater agree-

ment between the evaluators is seldom reported. In conjunction with this point, in

most of the studies, it is unclear whether human evaluators received any training to

standardize the rating process of generated questions (Kurdi et al., 2020). Further-

more, the lack of consistency in rating-based evaluations (e.g., using different rating

scales or evaluation criteria) makes it extremely hard to compare the performance of

various AIG systems with respect to one another. In some studies, the recruitment

process of human evaluators and whether any incentives are offered to evaluators are

unclear. A detailed description of evaluators, recruitment process, training, rating

scale development, and tools used should be reported to be able to gauge the evalu-

ation process, especially considering that idiosyncrasies that human evaluators may

introduce during the evaluation process (Lin et al., 2015).
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Table 2.3: Examples of AIG Systems Evaluated Using Post-Hoc Methods

Authors Item Types Context AIG Method Evaluation Method

Attali et al.
(2022)

Multiple-
choice

Reading com-
prehension

GPT-3 Psychometric proper-
ties

Gierl et al.
(2012)

Multiple-
choice

Medicine Template-based Psychometric proper-
ties

Hommel et al.
(2022)

Survey Personality Recurrent neural net-
work, LSTM, GPT-2

Psychometric proper-
ties

Van Camp-
enhout et al.
(2022)

Matching,
cloze

Psychology Rule-based Experimental

Yang et al.
(2021)

Cloze Reading com-
prehension

BERT Experimental

Note. Adapted from Gorgun and Bulut (2024b).

2.3.3 Post-Hoc Evaluations

Post-hoc evaluations refer to collecting data to assess the quality of generated items

retrospectively (i.e., assessing the item quality after administrating the items) in

AIG research. Post-hoc evaluations include experimental studies and psychometric

analyses. Table 2.3 lists examples of studies that used post-hoc evaluations to analyze

the quality of generated items.

Researchers may evaluate the quality of the AIG system by examining whether

the generated questions are associated with higher learner performance. That type

of evaluation is referred to as an experimental study. For example, Van Campenhout

et al. (2022) compared human-authored items with generated items using student

data taking both item types. They found that generated items functioned similarly

to human-authored items in terms of item difficulty, student engagement, and persis-

tence. Similarly, in an experimental study comparing students’ reading engagement

and reading skills in practice quizzes composed of automatically generated items, re-

searchers found a statistically significant result in terms of higher course performance

for the experimental group who practiced the content with the generated items (Yang

et al., 2021).
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Another type of post-hoc evaluation is psychometric analyses of items generated.

Using this approach, AIG researchers administer a representative sample of generated

items to a group of individuals and then estimate item quality indices (e.g., distractor

functioning, item difficulty as discussed in Section 2.1) employing either CTT or IRT.

For example, using a representative subsample of generated items, Gierl and Haladyna

(2012) field-tested generated items using three medical templates and evaluated the

quality of items based on item difficulty, distractor analysis, and keyed response

analysis. In a similar study, Attali et al. (2022) also field-tested generated items and

evaluated item quality in terms of item difficulty, local independence, and response

time.

2.4 Limitations of Current AIG Evaluation Methods

In this section, we summarized the limitations of current evaluation methods to high-

light that current methods persist as a bottleneck to transition from item development

to item deployment in real-world learning and assessment settings. In Table 2.4, we

provided an overview of the limitations of each evaluation method.

Table 2.4: A Summary of Limitations of Current Evaluation Methods

Limitations Metric-Based Human Evaluators Post-Hoc

Resource intensive ✓ ✓ ✓

Availability of reference items ✓

Availability of ground truth ✓

Quality of ratings ✓

Time consuming ✓ ✓

All items cannot be evaluated ✓ ✓

Costs ✓ ✓

Sample representativeness ✓

Metric-based evaluations necessitate a reference item such as item stem or distrac-
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tors (Gao et al., 2019; Ha & Yaneva, 2018) to be able to run metrics such as BLEU or

ROUGE-L. In addition, this family of evaluation methods may utilize ground truth

to develop prediction models (Becker et al., 2012; Marrese-Taylor et al., 2018). The

need for the availability of ground truth or reference items emphasizes the resource

intensity of these methods for item evaluation. Finally, evaluating generated items

based on the resemblance to reference items can be a major limitation as metrics

such as BLEU, ROUGE-L, and METEOR may discard perfectly valid items due to

dissimilarity in the structure of the item (Kurdi et al., 2020).

Concerning human evaluators, a major limitation is that humans cannot evaluate

all generated questions within a reasonable timeframe. Typically, employing human

evaluators is costly and item evaluation is a time-intensive process for humans. While

a premise of AIG is that items can be generated instantly and efficiently, human

evaluators function contradictory to this promise of quick item generation, violating

the fundamental assumption of AIG (Maurya & Desarkar, 2020). Furthermore, the

quality of the rating scale as well as expert training are gatekeepers to high-quality

item evaluation, emphasizing the resource-intensity of employing human evaluators

(Amidei et al., 2018; Kurdi et al., 2020).

Post-hoc evaluations can also violate the fundamental assumption of AIG because

all generated items may not be field tested to obtain quality criteria about the item

(Gierl et al., 2016; Van Campenhout et al., 2022). Similar to human evaluators, post-

hoc evaluations are time-consuming, costly, and require resources to recruit a rep-

resentative sample of examinees to be able to assess the quality of generated items.

While many studies have failed to emphasize the importance of replicating assess-

ment and examinee characteristics while evaluating items using post-hoc evaluations,

deviations from actual assessment conditions may jeopardize the quality of indices

obtained as well as the inferences made based on post-hoc evaluations.

In the final part of this section, we mapped item quality criteria onto the eval-

uation methods to stress which quality criteria can be assessed with the current
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Table 2.5: Mapping Quality Criteria on Current Evaluation Methods

Quality Criteria Metric-Based Human Evaluators Post-Hoc

Spelling ✓ ✓

Semantic correctness ✓ ✓

Grammaticality ✓

Fluency ✓

Syntax clarity ✓

Naturalness ✓

Coherence ✓

Domain relevance ✓

Educational usefulness ✓ ✓

Item difficulty ✓

Item discrimination ✓

Distractor Analysis ✓

evaluation methods (Table 2.5). While the number of quality criteria that metric-

based evaluations (e.g., spelling, semantic correctness) and post-hoc evaluations (e.g.,

item difficulty, discrimination, distractor analysis) can be quite limited, the number

of quality criteria that human evaluators can handle is drastically higher. It is not

surprising that many AIG research employs human evaluators when it comes to as-

sessing the quality of generated (Amidei et al., 2018; Kurdi et al., 2020; Soni et al.,

2019). That being said, human evaluators also have several limitations with respect

to quality criteria, that is, prior research indicated that humans are poor evaluators

of item difficulty (Bejar, 1983; Chalifour & Powers, 1989; Olson, 2010; Seyler et al.,

2017).
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2.5 Chapter Summary

This chapter focuses on summarizing evaluation criteria used by traditional item

developers and AIG researchers, as well as common evaluators and evaluation methods

in AIG. While providing recent examples from AIG systems, we create a taxonomy

of evaluation methods used for automated item-generation tasks. As a concluding

remark, in most studies, researchers combine multiple evaluations and evaluators

to assess the system’s performance regarding item generation. By identifying the

strengths and limitations of current quality criteria and evaluation methods, this

chapter underscores the need for alternative approaches to facilitate the deployment

of automatically generated questions in real-world educational settings.
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Chapter 3

Methods

In this chapter, we describe three NLP methods that we used for evaluating the

quality of questions automatically generated. This is a proof-of-concept for assessing

the feasibility of utilizing NLP to automatically evaluate the quality of generated

questions and comparing the performance of three prominent NLP methods in terms

of model accuracy. To overcome the challenges highlighted in Chapter 2 concerning

the commonly employed evaluators and evaluation methods, we propose to develop

three prediction models leveraging different NLP and machine learning methods:

1. Classifier training with feature extraction

2. Fine-tuning a pre-trained non-generative large-language model

3. Instruction-tuning a generative large-language model

The methods section is, therefore, divided into three related studies where we

compared three different NLP methods for evaluating automatically generated cloze

questions. The first study, Classifier training with feature extraction, aimed at train-

ing three ML classifiers, namely random forest, support vector machine, and logistic

regression, by employing linguistic features extracted using cloze item stems and

keyed responses. Using these three white-box classifiers allowed us to understand

feature importance for quality prediction and to assess the congruence between clas-

sifiers in terms of feature importance. We argued that the first study allows us to
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understand the link between item quality and linguistic features (Bejar, 1983; Seyler

et al., 2017), shedding light on what linguistic criteria can be included in item eval-

uations. The second study, Fine-tuning a pre-trained large-language model, involves

tokenizing the item stems to extract embeddings and adding a linear output layer to

re-train the large-language model for adjusting the weights of parameters based on

our input data. An advantage of the second approach is that the model re-trained for

downstream tasks (e.g., predicting item quality) performs well with small datasets

because the parameters already encode a lot of information due to being trained with

a vast amount of text with a specific model architecture (Vaswani et al., 2017). The

third study, Instruction-tuning a generative large-language model, employs a rather

new approach to utilizing generative large-language models for downstream tasks.

Instruction-tuning involves providing an instruction, example, and output to adjust

the weights of a pre-trained large-language model for a specific task. Below, we dis-

cussed the dataset employed for training three methods for predicting the quality of

automatically generated items.

3.1 Data

A publicly available dataset composed of automatically generated cloze items is used

for assessing the feasibility of all three NLP-based methods for automatically evalu-

ating the quality of generated questions. Cloze questions are a type of constructed-

response item where a part of the sentence is removed, and examinees are asked to

fill in the blank in a given sentence. Typically, no response option is provided with

cloze questions, rendering these questions more difficult than selected-response items

(Abraham & Chapelle, 1992). Cloze questions also pose an interesting research con-

text because a part of the stem is masked deliberately and extracting features or

tuning large-language models is challenging due to less linguistic information being

available.

We used the Mind the Gap dataset (Becker et al., 2012) involving a total of 2252
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automatically generated items. Becker et al. (2012) used 105 popular Wikipedia

articles, including topics from history and science. They then selected 10 sentences

from each article using a document summarization approach. Specifically, sentences

from each article are selected based on whether they involve the most frequently

occurring words considering that the sentences with the most frequently occurring

words are most important for a given article. Using each selected sentence, Becker et

al. (2012) created a parse tree using the constituency parser method (see Figure 3.1)

and identified the most important parts of the sentence by employing a semantic role

labeler. The candidate gaps (i.e., masked parts) in a sentence involved child nouns

and adjectival phrases. Several examples of generated cloze questions and quality

labels assigned by crowdsource workers are given in Table 3.1.

Figure 3.1: An example of constituency parsing.

Each generated item was evaluated using crowdsource workers recruited through

Amazon’s Mechanical Turk (Lin et al., 2015; Maurya & Desarkar, 2020; von Davier,

2018). Becker et al. (2012) asked crowdsource workers to rate the quality of generated

items using the quality labels of Good, Okay, and Bad. Specifically, crowdsource

workers were presented with the original sentence along with the generated cloze
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Table 3.1: Automatically Generated Cloze Item Examples and Quality Labels As-
signed by Crowdsource Workers

Generated Cloze Item Keyed Answer Quality Label

They are differently named parts of the
whole ’church’; Protestants reject the Ro-
man Catholic doctrine that <blank>is the
one true church.

it Bad

Fighting began on 3 November 1839, when
<blank>, the Royal Saxon, attempted to
sail to Guangdong.

a second British ship Bad

<blank>, the slotting machine and the
shaping machine were developed in the
first decades of the 19th century.

the planning machine Good

On the same ship were several other
Dutch travellers, including Elias Hesse,
who would be called <blank>nowadays.

a travel writer Good

His role, like that of many of the Norse
gods, is <blank>.

complex Bad

On 20 March, NISA announced that
<blank>had been returned to a condition
of cold shutdown.

both reactors Good

In June 2010, UK aid group Oxfam re-
ported a dramatic increase in the number
of rapes occurring in the Democratic Re-
public of <blank>.

the Congo Good

<blank>is described separately below. The driving mech-
anism behind this
movement

Bad

It was <blank>. a monumental feat for
the ’Mongols’ (as they
became known collec-
tively)

Bad

Also of importance to <blank>was the
creation of the Masnavi, a collection of
mystical poetry by the 13th-century Per-
sian poet Rumi.

Sufism Good
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items and were asked to assign the label Good if the generated item asked a key

concept from the sentence and was reasonable to answer; Okay if the generated item

asked a key concept but was difficult to answer due to length and ambiguity; and Bad

if the generated item asked an unimportant concept. Becker et al. (2012) employed

85 crowdsource workers, and each generated item was rated by four crowdsource

workers. To enhance the quality of ratings assigned, Becker et al. (2012) identified

the poor-performing raters by comparing the mean distance of ratings assigned by

the workers, and those with two standard deviations above the mean distance were

removed. This allowed Becker et al. (2012) control for rater bias (Snow et al., 2008;

Wiebe et al., 1999).

A second quality control step was introduced to control for the disagreement among

the raters by having each generated question rated by four crowdsource workers.

Specifically, only items where at least three raters assigned the same rating were kept

for subsequent analysis. Thus, generated items where two raters disagreed with the

rest were removed to enhance the quality of ratings assigned to each item. This yielded

a total of 1825 generated questions. In addition to these data cleaning steps, we

followed a similar approach to Becker et al. (2012) and collapsed the rating categories

of Okay and Bad within a single label of Bad showing poorer quality items. This

allowed us to differentiate poor-quality items from high-quality items according to

crowdsource ratings. The final dataset included 1102 Bad items and 723 Good items.

In this study, we refer to items where a portion of the sentence is masked as the

item stem and the answer that belongs to the masked portion of the item as the keyed

response. Below, we describe the analytic plan followed for each study.
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3.2 Analytic Plan

3.2.1 Study 1: Classifier Training with Feature Extraction

In Study 1, we trained three machine learning (ML) classifiers to predict item quality

labels assigned by crowdsource workers. We first extracted linguistic features from

cloze item stems and keyed responses. Note that one major challenge was that cloze

items are short and do not contain some other auxiliary information such as the

availability of distractors or passages, rendering the feature extraction process highly

difficult. We should also highlight that the way items are generated has a huge

influence on the quality criteria that need to be considered during item evaluation.

In that regard, because items are generated by identifying part of the sentences that

can be masked for stem generation, issues of grammaticality, fluency, and sensibleness

are less of a concern for the dataset we used in this study. Below, we first explain the

feature extraction and ML classifier training processes in detail.

Feature Extraction. Extracting features for cloze items was challenging because

cloze items were shorter and items were composed of only a stem and keyed response.

We reviewed studies focusing on predicting item statistics and characteristics (Ha

et al., 2019; Yaneva & Von Davier, 2023; Yaneva et al., 2020) to identify features that

would help us predict quality labels assigned by crowdsource workers. Nonetheless,

only a limited number of features could be used with the current dataset as items were

structurally different than previous studies focusing on item statistics prediction. By

these features, we tried to reflect item quality from a linguistic point of view and ex-

tracted features reflection cohesion, connectivity, similarity, and sentence complexity.

We provided an overview of features we extracted for ML classifier training in Table

3.2.

We first extracted interpretable textual features such as connectivity, cohesion, and

text length using Coh-Metrix (Graesser et al., 2011; McNamara et al., 2014). Coh-
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Table 3.2: Features Extracted for Training Machine Learning Models

Features Resources

Descriptives Coh-Metrix

Text Easability Principal Component Scores Coh-Metrix

Lexical Diversity Coh-Metrix

Connectives Coh-Metrix

Situation Model Coh-Metrix

Syntactic Complexity Coh-Metrix

Syntactic Pattern Density Coh-Metrix

Word Information Coh-Metrix

Readability Coh-Metrix

Cosine similarity between the predicted response and keyed response BERT & RoBERTa

Cosine similarity between item stem and keyed response BERT

Constituency parse tree depth NLTK

Metrix calculates various cohesion and coherence metrics for a given text. To extract

Coh-Metrix features, we only used item stems (i.e., generated questions where a part

was masked during the item generation process) because using keyed responses with

item stems would have yielded human written forms of the items. We extracted 108

linguistic and discourse representations of the stems, yet we did not use all of the

Coh-Metrix features because of the lack of variability in the features. Specifically,

features related to paragraph count were not usable because of the brevity of the

item stems. The list of indices that Coh-Metrix calculates is given in Table 3.2. The

final set of the Coh-Metrix indices we used in classifier training was as follows:

• Descriptives: The number of words in a stem, the mean and standard devia-

tion of the number of words, the mean and standard deviation of the number

of syllables, and the mean and standard deviation of the number of letters.

• Text Easability Principal Component Scores: z-scores and percentiles of

text easability principal components of narrativity, syntactic simplicity, word
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concreteness, referential cohesion, deep cohesion, verb cohesion, connectivity,

and temporality.

• Lexical Diversity: Lexical diversity, type-token ratio, content word lemmas,

lexical diversity, type-token ratio, all words, lexical diversity, MTLD, all words,

and lexical diversity, VOCD, all words.

• Connectives: All connectives incidence, causal connectives incidence, logical

connectives incidence, adversative and contrastive connectives incidence, tem-

poral connectives incidence, expanded temporal connectives incidence, additive

connectives incidence, positive connectives incidence, and negative connectives

incidence.

• Situation model: Causal verb incidence, causal verbs and causal particles in-

cidence, the ratio of intentional particles to intentional verbs, intentional verbs

incidence, ratio of casual particles to causal verbs, LSA verb overlap, and Word-

Net verb overlap.

• Syntactic Complexity: The mean of the number of modifiers per noun

phrase.

• Syntactic Pattern Density: Noun phrase density, verb phrase density, adver-

bial phrase density, preposition phrase density, agentless passive voice density,

negation density, gerund density, and infinitive density.

• Word Information: Noun incidence, verb incidence, adjective incidence, ad-

verb incidence, pronoun incidence, the mean of CELEX word frequency for

content words, CELEX Log frequency for all words, CELEX Log minimum fre-

quency for content words, age of acquisition for content words, familiarity for

content words, concreteness for content words, imagability for content words,

meaningfulness, Colorado norms, content words, polysemy for content words,

hypernymy for nouns, hypernymy for verbs, and hypernymy for nouns and verbs.
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• Readability: Flesch reading ease, Flesch-Kincaid grade level, and Coh-Metrix

L2 readability.

Next, to quantify the difficulty of answering the masked part of the items, we em-

ployed a pre-trained large language model, RoBERTa, to predict the masked portion

of the item. RoBERTa intended to replicate Bidirectional Encoder Representations

from Transformers (BERT) (Devlin et al., 2019) pre-training while carefully examin-

ing each hyperparameter and training data size to create a robust language model that

may match or exceed the performance of BERT (Liu et al., 2019). Using RoBERTa,

we predicted the masked portion of each item stems. During masked portion pre-

diction, RoBERTa provides a top k tokens with probability scores for the masked

portion of a sentence. We picked the most likely token with the highest probability

score and then calculated the cosine similarity between the predicted token and the

actual keyed response. Cosine similarity is a frequently used metric to quantify the

extent of similarity between two sentences. The cosine similarity is the dot prod-

uct of the angle between the embedding vectors of each sentence. Typically, cosine

similarity ranges between 0 and 1, and values closer to 1 suggest more similarity

between two sentences. We used the BERT-base-uncased model to obtain sentence

embeddings for predicted tokens and keyed responses. The cosine similarity metric

we obtained between predicted tokens and keyed responses was another feature we

used for training our ML classifiers.

The next feature we extracted was again based on cosine similarity using item stems

and keyed responses. We obtained sentence embeddings for item stems and keyed

responses using BERT-base-uncased. Then, we calculated the cosine similarity metric

between the vector of embeddings obtained using item stems and keyed responses.

The final feature we extracted was the parse tree depth using the Natural Language

Toolkit (NLTK; Bird et al. (2009)) library. Using the constituency parsing method,

we parsed item stems and created parse trees for each item stem. An example of a

parse tree is as follows: "((ROOT (S (NP (NP (JJ Contemporary) (JJ transnational)
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(NNS interactions)) (PP (IN between) (NP (NP (NP (NNP Hmong)) (PP (IN in) (NP

(DT the) (NNP West)))) (CC and) (NP (NP (NNP Miao) (NNS groups)) (PP (IN in)

(NP (NNP China))))))) (, ,) (VP (VBG following) (NP (DT the) (CD 1975) (NNP

Hmong) (NN diaspora))) (, ,) (VP (VBP have) (PP (IN to) (NP (NP (DT the) (NN

development)) (PP (IN of) (NP (NP (DT a) (JJ global) (JJ Hmong) (NN identity))

(SBAR (WHNP (WDT that)) (S (VP (VBZ includes) (NP (NP (NP (ADJP (RB

linguistically) (CC and) (RB culturally) (JJ related)) (NNS minorities)) (PP (IN in)

(NP (NNP China)))) (SBAR (WHNP (WDT that)) (S (ADVP (RB previously)) (VP

(VBD had) (NP (DT no) (JJ ethnic) (NN affiliation)))))))))))))) (. .)))". We then

calculated the parse tree depth. This process generated a feature vector composed of

integer values indicating the complexity of the syntactic structure of each item stem.

The code is available for feature extraction in Appendix B.1.

Classifier Training. We used three frequently used ML classifiers for educational

datasets (Domladovac, 2021): Random Forest (Breiman, 2001), Support Vector Ma-

chine (Hearst et al., 1998), and Logistic Regression (Wright, 1995). These classifiers

were selected because they are relatively transparent approaches and performed well

with educational datasets with smaller sample sizes (Demmans Epp & Phirangee,

2019; Gorgun et al., 2022; Romero & Ventura, 2007). We used 5-fold nested cross-

validation to select the best set of hyperparameters through a randomized search

method. The list of hyperparameters for each classifier, as well as the search space

for hyperparameter tuning, is given in Table 3.3.

For random forest, the best model performance was achieved with the number of

estimators = 94, the maximum number of features = "auto", the maximum depth of

trees = 4, the minimum number of samples leaf = 2, and criterion = entropy. For

the support vector machine, the best set of hyperparameters was C = 1, and kernel

= "sigmoid". Finally, the best set of hyperparameters for the logistic regression

model was C = 1, penalty = "none", and solver = "liblinear". We examined model
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Table 3.3: Hyperparameters Search Space for Classifier Tuning

ML Classifier Hyperparameters Values

Random Forest Number of estimators [10:200]

Max features [’auto’, ’sqrt’]

Max depth [2, 4]

Min samples split [2, 3, 4]

Min samples leaf [2, 3]

Criterion [’gini’, ’entropy’]

Support Vector Machine Kernel [’linear’, ’poly’, ’rbf’, ’sigmoid’]

C [100, 10, 1, .01, .001]

Logistic Regression Solver [’newton-cg’, ’lbfgs’, ’liblinear’, ’sag’, ’saga’]

Penalty [’none’, ’l1’, ’l2’, ’elasticnet’]

C [100, 10, 1, .01, .001]

performance both on the training and test sets to diagnose overfitting issues. In all

models, the model accuracy was higher on the training set, suggesting the absence

of overfitting. On the training set, the model accuracy values for the random forest,

support vector machine, and logistic regression were 68%, 62%, and 66%, respectively.

The analyses were conducted in Python (Version 3.9.12) (Van Rossum & Drake, 2009).

The code is available for feature extraction in Appendix B.2.

3.2.2 Study 2: Fine-Tuning a Pre-Trained Large-Language
Model

For fine-tuning a pre-trained large-language model, we employed a frequently used

LLM in education tasks for text classification (Shen et al., 2021), automated scoring

(Beseiso & Alzahrani, 2020), and process mining (Scarlatos et al., 2022), namely Bidi-

rectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019).

BERT relies on a multi-layer bidirectional self-attention mechanism (Vaswani et al.,

2017) and has two variants: BERT-base with 110 million parameters, 12 attention

heads, 768 dimensions, and 12 transformer layers, and BERT-large with 340 million
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parameters, 16 attention heads, 1024 dimensions, and 24 transformer layers. Thanks

to adopting a bidirectional self-attention mechanism, unlike GPT, which only has a

one-directional self-attention, BERT can attend to context to both its left and right

(Devlin et al., 2019), allowing it to learn contextual information from either direction

and capturing the relationships among the tokens from both directions.

BERT has an encoder-only architecture, and fine-tuning a BERT model allows

researchers to re-train BERT (i.e., adjust the weights of the parameters of a pre-

trained BERT model) for downstream tasks such as text classification, question-

answering, sentiment analysis, and text summarization. The first layers of BERT

contain generic language representation and during the fine-tuning process, we intend

to adjust parameter weights by adding a linear output layer. The process starts by

tokenizing the input text to be fed to the BERT model. At this stage, the maximum

number of tokens, whether paddings will be used, and whether sentences with longer

sequences will be truncated are indicated. BERT accepts a maximum of 512 tokens

(Devlin et al., 2019). Padding is used to adjust the length of sentences with the

number of tokens smaller than the indicated limit. For instance, if the maximum

length of sentences is limited to 250 tokens, then the sentences with a fewer number

of tokens will be padded (i.e., [PAD]) to adjust the length of the sentences. On

the other hand, when truncation is activated, the sentences with longer sequences

will be trimmed to match the number of tokens. During training, a [CLS] token is

added at the beginning of every sentence, and a [SEP] token is added at the end of

every sentence. The input goes through 12 transformer layers for BERT-base or 24

transformer layers for BERT-large. Each layer includes a list of token embeddings

(768 for BERT-base and 1024 for BERT-large) and generates the same number of

embeddings on the output. As embeddings go through each layer, the parameter

weights are adjusted. The [CLS] token at the last layer includes pooled information

about the embeddings and is used by the classifier. Figure 3.2 depicts the process of

fine-tuning a BERT model for downstream tasks.
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Figure 3.2: Fine-tuning BERT Flowchart

We fine-tuned both BERT-base and BERT-large. During the preprocessing stage,

we lower-cased each generated question. We split the data into training and set sets,

and 20% of the data (n = 363) was used as the holdout test set. We tokenized the

generated items using bert-large-uncased and bert-base-uncased and obtained embed-

dings, including input IDs and token-type IDs. We set the maximum token length

to 250 and used both truncation and padding. An example item stem after tok-

enization was applied is as follows: "[CLS] the chapter house was originally used in

by benedictine monks for daily meeting. [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]

[PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]". Then using

AutoModelForSequenceClassification and bert-large-uncased or bert-base-uncased, we

fine-tuned the model using the hyperparameters learning rate = 2e−5, training batch

size = 8, evaluation batch size = 16, epochs = 10, and weight decay = 0.01. The pro-

cess and hyperparameters used for fine-tuning both BERT models were exactly the

same to facilitate the comparison between the two models. The analyses were con-

ducted in Google Colab with V100 GPU. Fine-tuning BERT-Base and BERT-Large
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took approximately 3 and 10 minutes, respectively, in Google Colab using GPU. The

code is available for feature extraction in Appendix B.3.

3.2.3 Study 3: Instruction-Tuning a Generative Large-Language
Model

For instruction-tuning a generative LLM, we used an open-source publicly available

LLM, Llama-2 (Touvron et al., 2023) with 7-billion parameters (i.e., Llama 2-7B).

Figure 3.3 shows an overview of the instruction-tuning process of the Llama 2-7B

model. Llama 2 is a generative LLM pre-trained using publicly available data and

includes versions with 7-billion, 13-billion, and 70-billion parameters (Touvron et al.,

2023). For instruction-tuning Llama 2 we selected the smallest model with 7-billion

parameters. Instruction-tuning is similar to fine-tuning an LLM where the weights

of parameters are adjusted for a specific task. However, in instruction-tuning, an

instruction is provided along with input and output pairs, and models are re-trained

for the specific task.

Figure 3.3: Instruction-Tuning Llama 2-7B Flowchart

We started by deploying the cleaned dataset to the Hugging Face platform. In the
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subsequent stage, we experimented with several prompts to identify the best prompt

that would yield higher model accuracy. To craft our prompts, we relied on the

quality criteria that Becker et al. (2012) employed with crowdsource workers. The

first prompt we tried was completely based on the definition that Becker et al. (2012)

provided to crowdsource workers and was as follows: Begin your response with yes or

no. Does the blank in the next sentence assess key concepts from the sentence and

would be reasonable to answer. However, this yielded suboptimal results. We then

provided the definition of a cloze question in the prompt as We removed a part of the

following sentence to construct a cloze question. We are trying to understand whether

the following question is a good or bad question. A Good question is one that tests

key concepts from the sentence and would be reasonable to answer. A Bad question

is one that asks about an unimportant aspect of the sentence or has an uninteresting

answer that can be figured out from the context of the sentence. Is this question a

good or bad question?. Similar to the first prompt we tried, this was also not feasible

for differentiating a good question from a bad one. A substantial improvement in

model accuracy was obtained when we used more descriptor words to specify what a

good or bad question is. The final prompt selected was as follows: You are a content

expert helping us understand the cloze question quality. A good question tests a key

concept from the sentence, is reasonable to answer, unambiguous, and specific. A

bad question is unreasonable to answer, too broad, ambiguous, or lacks specificity and

depth. Is this question good or bad?. During this stage, we ran Llama-2 with an API

to tweak the prompt and get an instant response from the model. We also randomly

selected a few cloze items from the dataset for prompt tweaking. For a complete list

of prompts, please see Appendix A.

We used 20% (n = 363) of questions as the holdout test data. Using Llama 2-7B, we

supervised fine-tuned (i.e., instruction-tuned) the model with the remaining 80% (n =

1462) of the data. Because supervised fine-tuning a model with 7 billion parameters

is computationally intensive, we employed parameter-efficient fine-tuning (PEFT)
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(Liu et al., 2022) and efficient fine-tuning of quantized LLMs (QLoRA) (Dettmers

et al., 2023) to reduce memory usage and computational costs. The former allowed

us to identify the most important parameters for tuning an LLM. PEFT updates

the weights of the most important parameters for the task that the model is being

re-trained on, minimizing the computational costs required for the supervised fine-

tuning of an LLM (Liu et al., 2022). On the other hand, QLoRA allowed us to reduce

memory use by storing the trained models in a compressed 4-bit format rather than

an original 32-bit format (Dettmers et al., 2023). Leveraging these two methods, we

supervised fine-tuned (i.e., instruction-tuned) Llama 2-7B for approximately 4 hours.

We loaded the Llama 2-7B model to a Python-based environment for the down-

stream task of item evaluation using the function AutoModelCausalLM. We set the

hyperparameters as follows: maximum sequence length = 512, learning rate = 2e−4,

max steps = 1000, training batch size = 4, and optimizer = adam. The supervised

fine-tuning was conducted in Google Colab with V100 GPU. The code is available for

Llama 2-7B instruction tuning in Appendix B.4.

3.3 Model Evaluation

We evaluated the performance of all models developed in Studies 1, 2, and 3 using

the same set of performance metrics. We compared the predicted label against the

ground truth assigned by the crowdsource workers. Specifically, we considered a

2X2 confusion matrix where predicted labels and ground truth are compared in a

pairwise fashion, and true positive (TP), true negative (TN), false positive (FP), and

false negative (FN) rates are derived. A better-performing model has higher rates

of true negatives and true positives than false positives and false negatives. Thus, a

better model has a higher number of diagonal elements than off-diagonal elements,

indicating that the model has done a good job in terms of identifying the true labels

of cloze questions rather than misclassifying them. In Figure 3.4, we demonstrated a

2X2 confusion matrix and indicated regions where one can find TP, TN, FP, and FN
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Table 3.4: Confusion Matrix for Evaluating the Developed NLP Models

Predicted

Ground Truth

Good Bad

Good TP FN

Bad FP TN

rates.

In addition to the confusion matrix, we calculated the number of true predictions

over the total number of predictions, i.e., accuracy as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (3.1)

Another metric we used for quantifying the number of true predictions made correctly

by the model, i.e., precision, is calculated as follows:

Precision =
TP

TP + FP
. (3.2)

Recall or Sensitivity allowed us to quantify the number of correctly predicted true

cases over the total number of true positives in the dataset and is calculated as

Recall =
TP

TP + FN
. (3.3)

We also used Specificity to estimate the number of correctly predicted negative cases

over the total number of negative cases in the dataset as follows:

Specificity =
TN

TN + FP
. (3.4)

A metric combining both recall and precision is the F1-score and is computed as

F1 = 2
Precision ∗Recall

Precision+Recall
, (3.5)

which generates a harmonic mean of precision and recall. It is especially useful when

the goal of the prediction model is to establish a balance between precision and

recall. The final metric we used to evaluate the performance of the developed models
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is the receiver operating characteristic (ROC) curve which plots the true positive rate

(TPR) defined as

TPR =
TP

TP + FN
, (3.6)

against the false positive rate (FPR), defined as

FPR =
FP

FP + TN
. (3.7)

Accuracy, precision, recall, specificity, F1- score, and ROC curve generate a value

between 0 and 1, and values closer to 1 indicate better model performance.

3.4 Chapter Summary

In this chapter, we discussed three natural language processing methods we developed

for evaluating item quality automatically. We first explained the data used for the

study as well as the data cleaning process. We described the item generation steps

and quality labeling process developed by Becker et al. (2012). Then, we defined data

preparation stages for developing natural language processing methods. Specifically,

we discussed the feature extraction process and classifier training steps for Study 1, the

fine-tuning process of BERT-Base and BERT-Large for Study 2, and the instruction-

tuning process of Llama 2-7B for Study 3. All models are evaluated using accuracy,

precision, recall, specificity, and F1-score. We also use confusion matrix and ROC

curves to compare and contrast model performance across the three natural language

processing methods.
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Chapter 4

Results

4.1 Descriptive Statistics of Generated Cloze Items

In this section, we provided an overview of cloze item characteristics to compare

surface-level characteristics of cloze items rated as good and bad by the crowdsource

workers. Of 1825 generated cloze items retained in the dataset after the data cleaning

process described in Section 3.1, 60% of items were rated as bad by crowdsource

workers. Although the majority category is composed of bad items and the dataset

is not perfectly balanced, we still can assert that class imbalance is less of a concern

in this dataset. However, considering this class distribution is important when we

evaluate the performance of each NLP method for predicting item quality. We show

the distribution of the number of words in good and bad item stems separately in

Figure 4.1.

While Figure 4.1 demonstrates more variability for items labeled as bad compared

to good items, we can also observe that the distribution of the number of words mostly

perfectly overlaps for good and bad items. Thus, we can expect that the number of

words or sentence length might be a less powerful feature differentiating good items

from bad ones. While the distributions of the number of words look similar for good

and bad items, we also see that bad items have some extreme values with sentence

lengths of more than 80 words. The average sentence length (i.e., calculated as the

number of words in a sentence) for bad items was 20.84 with a standard deviation
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Figure 4.1: The Distribution of the Number of Words in Item Stems

of 11.86. The minimum sentence length was 2, and the maximum sentence length

was 93. Whereas, for good items, the average sentence length was 20.54 with a

standard deviation of 9.84. The minimum and maximum sentence lengths were 4

and 55, respectively. These results also underscored that bad items included some

longer sentences than good items, and the variance was slightly larger for bad items

compared to good ones. While mean may not be a feasible feature for differentiating

item quality, standard deviation could be useful for distinguishing bad items from

good ones.

We also analyzed the distribution of the number of words in keyed responses (see

Figure 4.2). A similar trend to item stems has emerged for keyed responses. That

is, the distributions of the number of words for bad and good items were similar yet

bad items had more extreme values or keyed responses with more words. The average
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keyed response length for bad items was 4.36, with a standard deviation of 5.16. The

minimum and maximum keyed response lengths were 1 and 44 words, respectively.

Whereas, the average keyed response length for good items was 2.17 with a standard

deviation of 1.53. The minimum keyed response length was 1, and the maximum

keyed response length was 25 for good items. These results indicated that good items

had less variability in terms of response length and might suggest that high-quality

cloze items should have a shorter masked portion to be reasonable to be answered by

the examinees.

Figure 4.2: The Distribution of the Number of Words in Keyed Response

4.2 Study 1 Results

In Table 4.1, we provided evaluation metrics (i.e., accuracy, precision, recall, and

F1-score) for the random forest, support vector machine, and logistic regression on

59



the holdout test set using the best set of hyperparameters selected with 5-fold nested

cross-validation.

Table 4.1: Evaluation Metrics for Machine Learning Classifiers

Random Forest Support Vector Machine Logistic Regression

A P R F1 A P R F1 A P R F1

Overall 57% .70 .54 .44 53% .44 .50 .36 61% .62 .59 .56

Good - .84 .10 .17 - .33 .01 .02 - .65 .32 .43

Bad - .56 .98 .56 - .54 .98 .69 - .60 .86 .70

Note. A: Accuracy. P: Precision. R: Recall.

The accuracy of the zero-rule classifier for the test set would be 54%. The zero-rule

classifier can be considered as the baseline model for comparing classifier performance.

Table 4.1 suggests that the support vector machine performs similarly to the zero-rule

classifier, whereas random forest and logistic regression slightly outperform the base-

line model of the zero-rule classifier. To test whether there are statistically significant

differences between the training classifiers, we conducted Cochran’s Q test (Raschka,

2018). Cochran’s Q test can be used to compare whether there are any statistically

significant differences in accuracies of more than two classifiers. We found that there

were statistically significant differences among trained classifiers for predicting item

quality, Q = 12.767, p < .01. Cochran’s Q analysis is an omnibus test and does

not provide pairwise comparisons. To conduct pairwise comparisons between trained

classifiers, we used McNemar’s test (Raschka, 2018). We found statistically signifi-

cant differences between random forest and support vector machine, McNemar’s χ2

= 9.783, p <.01, and support vector machine and logistic regression, McNemar’s χ2

= 8.783, p <.01. However, there was no statistically significant difference between

logistic regression and random forest, McNemar’s χ2 = 2.182, p = .140.

The random forest classifier achieved 57% accuracy on the test set with precision,

recall, specificity, and F1-score of .70, .54, .95, and .44, respectively, on the overall
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model. The performance metrics of precision, recall, and F1-score of random forest

on good items were .84, .10, and .17. On the other hand, the performance of random

forest for bad items was as follows: precision = .56, recall = .98, and F1-score = .56.

The support vector machine classifier achieved 53% on the holdout test set. For

the overall model, precision, recall, specificity, and F1-score were .44, .50, .98, and

.36, respectively. The performance metrics of precision, recall, and F1-score of the

support vector machine on good items were .33, .01, and .02. On the other hand, the

performance of the support vector machine for bad items was as follows: precision =

.54, recall = .98, and F1-score = .69.

Finally, logistic regression achieved 61% accuracy on the test set. For the overall

model, precision, recall, specificity, and F1-score were .62, .59, .86, and .43, respec-

tively. The performance metrics of precision, recall, and F1-score of logistic regression

on good items were .33, .01, and .02. On the other hand, the performance of logis-

tic regression for bad items using the performance metrics of precision, recall, and

F1-score were .60, .86, and .70, respectively.

Table 4.2: Confusion Matrix for Machine Learning Classifiers

Predicted

RF SVM LR

Ground Truth

Good Bad Good Bad Good Bad

Good 16 152 2 166 53 115

Bad 3 194 4 193 28 169

Note. RF: Random Forest. SVM: Support Vector Machine. LR: Logistic Regression.

To better understand classifier performance on the test set, we analyzed the con-

fusion matrix (Table 4.2) and (mis)classification rates (Figure 4.3). On the confusion

matrix table, we want diagonal values to be larger than the values on the reverse

diagonal. Concerning Figure 4.3 showing (mis)classification rates, the diagonal val-

ues with lighter colors (i.e., light green and yellow) indicate higher accuracy whereas

reverse diagonal values with darker colors (i.e., dark blue and black) indicate lower
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misclassification rates. In other words, diagonal values with lighter colors, and reverse

diagonal values with darker colors illustrate better classifier performance.

(a) Random Forest (b) Support Vector Machine

(c) Logistic Regression

Figure 4.3: (Mis)Classification Rates for Trained ML Classifiers

Random forest performed quite well for predicting bad items, however, the majority

of good items were misclassified as bad items suggesting that the random forest model

actually learned that the majority category is bad (Table 4.2. Only 3 bad items were

misclassified as good. However, random forest performed quite poorly in accurately

predicting good items. Only 16 items were correctly classified as good. The poor
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(a) Random Forest (b) Support Vector Machine

(c) Logistic Regression

Figure 4.4: Receiver Operating Characteristic Curves for Trained ML Classifiers

performance of random forest for classifying good items is evident in Figure 4.3 where

we can see that the majority of both bad and good items were classified as bad. While

only 2% of bad items were misclassified, 90% of good items were misclassified as bad

(Figure 4.3). Thus, this is not good news for the overall performance of random forest

predicting item quality.

A similar trend was observed for the support vector machine. In fact, the support

vector machine classifier performed worse than the random forest, in which only 1% of

good items were correctly classified. While 98% of bad items were correctly classified

as bad, this does not show acceptable performance because of the classifier’s lack of

ability to distinguish bad items from good items. Overall, both confusion matrix

(Figure 4.2) and misclassification rates (Figure 4.3) demonstrate that the support

vector machine is a useless model for predicting item quality. That is, in practice,

all items generated could end up labeled as bad, suggesting the absence of classifier
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learning taking place using the set of features we created.

Both Table 4.2 and Figure 4.3 indicate that logistic regression is the best classifier

among the three trained classifiers for minimizing the misclassification rate for good

items. Of 168 good items, 53 of them were correctly classified as good (32%) by

the logistic regression classifier, which is a significant increase from 10% for random

forest and 1% for support vector machine. As a matter of fact, in Figure 4.3 for

logistic regression, we can see an improvement in model performance as the diagonal

values have lighter colors while reverse diagonal values have darker colors compared

to random forest and support vector machine where we can see lighter colors allocated

only at the left-hand side of the figure. We can also observe that the misclassification

rate increased slightly for bad items, suggesting that the logistic regression model

learned to map item quality on the item features extracted to a certain degree.

Finally, we also analyzed the receiver operator characteristic (ROC) curves of ran-

dom forest, support vector machine, and logistic regression (Figure 4.4. The curves

closer to the upper left corner indicate better classification accuracy because the false

positive rate would be zero, whereas sensitivity and specificity would be 1. Here, the

best model, also supported by Table 4.2 and Figure 4.3 is logistic regression which has

an ROC curve closer to the upper left corner, followed by the random forest. Support

vector machine, on the other hand, had the worst performance because the ROC

curve overlaps with the random guessing line, underscoring that the model did not

learn to differentiate good items from bad ones using the set of features we extracted

from the items.

4.2.1 Error Analysis

To better understand classification errors, we did an error analysis on the misclassified

subsample of the test set for all three ML classifiers. While error analysis might not

be informative for the support vector machine model as almost all good items were

misclassified as bad, thus the model did not predict item quality properly, we reported
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trends we observed for the misclassified items for all trained ML classifiers.

Concerning the random forest classifier, some of the misclassified good items in-

cluded blanks placed at the end of item stems (e.g., "Income inequality in the United

States started to rise in the late 1970s, however, the rate of increase rose sharply in the

21st century; it has now reached a level comparable with that found in <blank>.").

Additionally, shorter item stems and items that include keyed responses composed

of jargon or a specific terminology (e.g., item stem: "Most sedimentary rocks con-

tain either quartz (<blank> rocks) or calcite (especially carbonate rocks ).; keyed

response: "especially siliciclastic") tended to be misclassified by the random forest

classifier. Additionally, when the keyed response included a proper noun, location,

or year (e.g., item stem: "In 1461 <blank> established the Armenian Patriarchate

of Constantinople.", keyed response: "Sultan Mehmed II"), the items tended to be

misclassified. Finally, complex sentences that are hard to parse were misclassified by

the random forest classifier.

For the support vector machine, the items with shorter keyed answers, blanks cre-

ated at the end of item stems, and shorter sentences were misclassified by the support

vector machine. Nonetheless, note that the support vector machine essentially learned

that the majority category was bad items and classified almost exclusively all items

as bad. For that reason, the misclassified batch in the test set was mainly composed

of good items, thus it is more difficult to make inferences about the classifier behavior

when categorizing items as good and bad.

Finally, for logistic regression, we observed a similar trend to the random forest

classifier concerning the misclassified items. Item stems including blank placed at the

end of sentences were misclassified. Additionally, extremely long (e.g., "The Empire

had reached the end of its ability to effectively conduct an assertive, expansionist

policy against its European rivals and <blank> was to be forced from this point

to adopt an essentially defensive strategy within this theatre.") or extremely short

(e.g., "<blank> were developed in the first decades of the 19th century.") item stems
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tended to be misclassified by the logistic regression classifier. Similar to the random

forest, blanks that included proper nouns, locations, years, and obvious answers were

misclassified by the logistic regression model.

4.2.2 Feature Importance

Although the ML classifiers we trained performed far from being acceptable for iden-

tifying item quality, here we report the ten most important features for each classifier

which may inform feature studies on predicting item quality (Table 4.3). For ran-

dom forest, the most important five features were the cosine similarity between stem

and keyed response, the cosine similarity between the predicted response and keyed

response, causal verbs and causal particles incidence, causal verb incidence, and the

mean of hypernymy for words. For the support vector machine, the most important

five features were the cosine similarity between the stem and keyed response, the co-

sine similarity between the predicted response and keyed response, lexical diversity,

the type-token ratio of all words, the standard deviation of the number of words, and

z-score of text easability of principal scores referential cohesion. Finally, for logistic

regression, the most important five features were the cosine similarity between the

stem and keyed response, the cosine similarity between the predicted response and

keyed response, the standard deviation of the number of words, lexical diversity, the

type-token ratio of all words, and z-score of text easability principal component scores

referential cohesion.

Across all classifiers, most of the frequently used features belonged to Coh-Metrix

categories (see Table 3.2) of word information, text easability principal component

scores, situation model, and descriptives. Among the most important ten features,

neither Coh-Metrix features from syntactic complexity nor syntactic pattern diversity

have been used for training the random forest, support vector machine, or logistic re-

gression classifiers. For the random forest, the most features in the top ten list came

from word information and text easability principal component scores. For the sup-
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Table 4.3: The Ten Most Important Features for the Trained Classifiers

Random Forest Support Vector Ma-
chine

Logistic Regression

1 Cosine similarity be-
tween stem and keyed
response

Cosine similarity be-
tween stem and keyed
response

Cosine similarity be-
tween stem and keyed
response

2 Cosine similarity
between predicted
response and keyed
response

Cosine similarity
between predicted
response and keyed
response

Cosine similarity
between predicted
response and keyed
response

3 Causal verbs and causal
particles incidence

Lexical diversity, type-
token ratio, all words

The standard deviation
of the number of words

4 Causal verb incidence The standard deviation
of the number of words

Lexical diversity, type-
token ratio, all words

5 The mean of hypernymy
for verbs

z-score of text easabil-
ity principal component
scores referential cohe-
sion

z-score of text easabil-
ity principal component
scores referential cohe-
sion

6 z-score of text easabil-
ity principal component
scores narrativity

The mean of hypernymy
for nouns and verbs

Flesch-Kincaid grade
level

7 z-score of text easabil-
ity principal component
scores deep cohesion

Ratio of intentional
particles to intentional
verbs

The standard deviation
of the number of sylla-
bles

8 The mean of mean-
ingfulness, Colorado
norms, content words

The mean of hypernymy
for verbs

The mean of hypernymy
for nouns and verbs

9 The mean of familiarity
for content words

z-score of text easabil-
ity principal component
connectivity

Ratio of intentional
particles to intentional
verbs

10 z-score of text easabil-
ity principal component
scores syntactic simplic-
ity

Ratio of casual particles
to causal verbs

The mean of hypernymy
for verbs

Note. The features are ordered from the most important to the least important.
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port vector machine, the most features in the top ten list belonged to situation model,

word information, and text easability principal component scores. Finally, for the lo-

gistic regression, the most important features in the top ten list, the most important

features belonged to descriptives and word information. Interestingly, readability

emerged as one of the ten most important features for only the logistic regression

classifier. Given that studies conceptualized readability scores as a potential predic-

tor of item quality and difficulty (Ha & Yaneva, 2019; Štěpánek et al., 2023; Yaneva

et al., 2020), in this study, readability scores were among the top ten features only

for the logistic regression model.

As hypothesized in Section 4.1, the standard deviation of the number of words

was one of the most important predictors for support vector machine and logistic

regression. As we discussed, the distributions of the average number of words in good

and bad items were very similar (i.e., MGood = 20.54 and MBad = 20.84) however there

were visible differences in terms of variability of the number of words in good and bad

items (i.e., SDGood = 9.84 and SDBad = 11.86), which corroborated the findings that

features focusing on standard deviation were more meaningful for predicting item

quality.

An interesting finding was that for all classifiers, the two most important features

were the same, consistent with previous studies focusing on the similarity between

distractors and keyed responses or the similarity between the stem and alternatives

(Hsu et al., 2018). This suggests that future research may focus on the interplay

among the keyed response, distractors, and the stem to gauge the quality of items

generated. Furthermore, we analyzed the similarity between the RoBERTa predicted

response and keyed response and it emerged as one of the most important features

across the trained classifiers. To the best of our knowledge, to date, studies have not

investigated the similarity between the LLM-predicted response and keyed response.

Thus, this has emerged as a viable feature, implying that future studies may lever-

age the capacity of LLMs to investigate the relationship between alternatives, keyed
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responses, and item stems.

4.3 Study 2 Results

In Study 2, we fine-tuned BERT-Large and BERT-Base models for predicting item

quality. Of 365 items in the holdout test set, 143 items (39%) were rated as good by

crowdsource workers. While both BERT-Large and BERT-Base performed similarly

for predicting item quality, BERT-Base, which has 110 million parameters, seemed

to slightly outperform BERT-Large with 340 million parameters.

Table 4.4: Evaluation Metrics for Fine-Tuned BERT

BERT-Large BERT-Base

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Overall 64% .62 .63 .62 66% .66 .66 .66

Good - .54 .57 .55 - .58 .58 .58

Bad - .71 .69 .70 - .73 .73 .73

The overall model accuracy was for BERT-Large 64% and BERT-Base 66% (Table

4.4). Nonetheless, we conducted a statistical analysis to test whether the difference

between BERT-Large and BERT-Base is significant in terms of model accuracy. We

conducted McNemar’s test (Raschka, 2018), which compares model accuracies of two

trained models in a pairwise fashion. McNemar’s test revealed that there was no

statistically significant difference between BERT-Large and BERT-Base in terms of

model accuracies, McNemar’s χ2 = 2.380, p = .123. This finding highlights that the

smaller model (i.e., BERT-Base) performed as well as the larger model (i.e., BERT-

Large) and the smaller model was computationally more efficient (i.e., it took only 3

minutes to fine-tune as opposed to 10 minutes spent on BERT-Large for fine-tuning)

than the larger model. This is also consistent with studies indicating that smaller

models can perform as well as models with more parameters (Arase & Tsujii, 2019).

We also evaluated model performance on metrics precision, recall, specificity, and
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F1-score. The evaluation metrics for the overall model with BERT-Large were as

follows: precision was .62, recall was .63, specificity was .68, and F1-score was .62.

Whereas the evaluation metrics for the overall model with BERT-Base were as follows:

precision was .66, recall was .66, specificity was .73, and F1-Score was .66. Thus,

BERT-Base across the evaluation metrics slightly outperformed BERT-Large. We

also compared the model performance individually for good and bad items. Both

BERT-Base and BERT-Large performed better for bad items. Concerning BERT-

Large, precision, recall, and F1 scores were .71, .69, and .70, respectively for bad

items. On the other hand, BERT-Base had precision, recall, and F1-score of .73

for all three evaluation metrics. Concerning the good items, BERT-Large had the

precision, recall, and F1-score values of .54, .57, and .55, and BERT-Base had the

precision, recall, and F1-score values of .58, .58, and .58, respectively.

Table 4.5: Confusion Matrix for Fine-Tuned BERT

Predicted

BERT-Large BERT-Base

Ground Truth

Good Bad Good Bad

Good 81 62 83 60

Bad 70 152 59 163

To better understand the model performance of BERT-Large and BERT-Base for

predicting item quality, we analyzed the confusion matrix (Table 4.5) as well as mis-

classification rates (Figure 4.5). Of 143 good items, 81 of them were correctly classified

(68%) by BERT-Large, and 83 of them were correctly classified (73%) by BERT-Base.

Concerning the 225 bad items, 152 of them were correctly classified (57%) by BERT-

Large, and 163 of them were correctly classified (58%) by BERT-Base. While we did

not find a significant difference between BERT-Large and BERT-Base in terms of

model accuracy and both models performed similarly in terms of correctly classify-

ing good items, BERT-Base slightly outperformed BERT-Large in terms of correctly
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classifying the bad items (Table 4.5). As a matter of fact, the misclassification rate

for bad items was lower for BERT-Base compared to BERT-Large (Figure 4.5).

(a) BERT-Large (b) BERT-Base

Figure 4.5: (Mis)Classification Rates for Fine-Tuned BERT

For (mis)classification rates, diagonal values with lighter colors and reverse diag-

onal values with darker colors show better model performance. Based on the color

scheme in Figure 4.5 reveals a similar model performance for both BERT-Large and

BERT-Base, we can observe that BERT-Base slightly outperformed BERT-Large.

Additionally, when fine-tuned BERT models compared to the ML classifier trained

in Study 1, it is clear that the BERT models learned better than ML classifiers for

predicting item quality as the BERT models made better predictions for good items.

That is, unlike the support vector machine, logistic regression, or random forest, the

BERT models predicted almost 60% of good items correctly.

Finally, we analyzed the ROC curves (Figure 4.6) to evaluate the performances of

BERT-Large and BERT-Base. We observed a clear improvement in BERT models in

terms of ROC curves when compared to the ML classifiers developed in Study 1. The

ROC curves indicated better performance for BERT-Base compared to BERT-Large,

yet this could be a negligible difference between the two models.
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(a) BERT-Large (b) BERT-Base

Figure 4.6: Receiver Operating Characteristic Curves for Fine-Tuned BERT

Overall, the performance of both BERT models highlights a clear improvement

in item quality prediction compared to ML classifiers trained in Study 1. While

the best model in Study 1 (i.e., logistic regression) achieved a model accuracy of

61%, the best model in Study 2 (i.e., BERT-Base) achieved an accuracy of 66%.

Additionally, a meticulous comparison of models, including both ML classifiers and

BERT models, using confusion matrix, (mis)classification rates, and ROC curves,

suggests clear progress in item quality prediction.

4.3.1 Error Analysis

Similar to Study 1, we analyzed misclassified items in the test dataset when BERT-

Base and BERT-Large were used. For both models, trends among misclassified items

were similar as both models shared almost the same misclassified items. Items were

misclassified when a part of a specific phrase or quotation was used to create a blank

(e.g., "The total federal debt is divided into ’<blank>’ and ’debt held by the public.’).

Additionally, items were misclassified when blanks were placed at the end of an item

stem or when item stems included proper nouns. Finally, extremely long (e.g., "The

operative attitude may have been summed up best by the response Leiber and Stoller

received when <blank> brought a serious film project for Presley to Parker and the

hill and range owners for their consideration.") or extremely short (e.g., "<blank>

did not even want the rays to be named after him.") item stems and complex items
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that were hard to parse (e.g., "With the discovery that the disk of the Andromeda

galaxy (<blank>) extends much further than previously thought, the possibility of

the disk of the Milky Way galaxy extending further is apparent, and this is supported

by evidence from the discovery of the outer arm extension of the Cygnus arm.")

were misclassified by the BERT models. When crowdsource workers were asked to

rate the items, Becker et al. (2012) provided automatically generated items along

with original sentences to enhance the quality of labels. While most extremely short

items were rated as bad by the crowdsource workers, some of these items were rated

as good which might be due to crowdsource workers having access to the original

sentences. This may also partly explain why some of these extremely short sentences

were misclassified by the BERT models.

4.4 Study 3 Results

In the final study, we instruction-tuned Llama 2–7B. Of 363 cloze items in the holdout

test set, 37% of items were rated as good by the crowdsource workers. The overall

model accuracy of instruction-tuned Llama 2-7B was 75%. We also evaluated the

performance of instruction-tuned Llama 2-7B with precision, recall, specificity, and

F1-score. Specifically, we found that precision was .75, recall was .74, specificity was

.85, and F1-score was .74 for the overall model. When compared to Study 1 and Study

2 results, the model performance drastically improved from 61% obtained with the

ML classifier and 66% obtained with BERT-Base to 75% (Table 4.6). These results

suggested the promise of using generative LLM, namely Llama 2-7B for predicting

item quality. To better understand model performance, we assessed evaluation metrics

separately for good and bad items as well as confusion matrix and misclassification

rates.

Concerning the model performance on good items, we obtained the precision, recall,

and F1-score values as follows: precision = .69, recall = .57, and F1-score = .63. On

the other hand, for the bad items precision, recall, and F1-score were .77, .85, and
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Table 4.6: Evaluation Metrics for Instruction-Tuned Llama 2-7B

Accuracy Precision Recall F1-Score

Overall 75% .75 .74 .74

Good - .69 .57 .63

Bad - .77 .85 .81

.81, respectively (see Table 4.6). Our results highlighted that instruction-tuned Llama

2-7B has actually learned to identify bad items from good ones to some degree and

it was not randomly guessing the label of the cloze items. If we consider the F1-

scores for each level of item quality as our main evaluation method, because the

F1-score is calculated by taking a weighted average of recall and precision values, we

can conclude that Llama 2-7B outperformed all methods developed for evaluating

item quality. Specifically, the best F1-scores were obtained with logistic regression in

Study 1 as .43 for good items and .70 for bad items, and with BERT-Base in Study

2 as .58 for good items and .73 for bad items. On the contrary, Llama 2-7B has an

F1-score of .63 for good items and .81 for bad items, suggesting better classification

rates and fewer misclassification issues compared to Study 1 and Study 2 results.

Table 4.7: Confusion Matrix for Instruction-Tuned Llama 2-7B

Predicted

Ground Truth

Good Bad

Good 76 57

Bad 34 196

To scrutinize error rates across quality labels in Llama 2-7B, we analyzed the con-

fusion matrix given in Table 4.7. Of 230 cloze items rated as bad by crowdsource

workers, only 15% of items (n = 34) were misclassified as good. On the other hand,

of those cloze items rated as good by crowdsource workers, 43% (n = 57) were mis-

classified as bad. While these results are not perfect, they suggested that Llama 2-7B
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showed great improvement in terms of learning to differentiate good items from bad

ones compared to models developed in Study 1 and Study 2.

Figure 4.7: (Mis)Classification Rates for Instruction-Tuned Llama 2-7B

We analyzed (mis)classification rates in Figure 4.7. Similar to Study 1 and Study

2, diagonal values with lighter colors and reverse diagonal values with darker colors

demonstrate better model performance. It is evident that, for classifying bad items,

Llama 2-7B performed quite well yet the results for classifying good items were compa-

rable to the BERT models developed in Study 2. Nonetheless, when misclassification

rates and confusion matrix were analyzed holistically, we can conclude that Llama

2-7B outperformed the BERT models in terms of the overall model performance.

Finally, we also analyzed the ROC curve (Figure 4.8) obtained with the instruction-

tuned Llama 2-7B. The best-performing model in Study 1 was the logistic regression

with the ROC Area Under the Curve (AUC) value of .59. The best-performing model

in Study 2 was BERT-Base with the ROC AUC value of .66. For Llama 2-7B, we found

the ROC AUC value of .71, suggesting a significant improvement for differentiating

good items from the bad ones.

Overall, these results indicated that Llama 2-7B performed well in identifying bad

items as only a small portion of questions were misclassified (Figure 4.7). Nonetheless,
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Figure 4.8: Receiver Operating Characteristic Curve for Llama 2-7B

Llama 2-7B filtered out approximately 40% of good items as bad items. However,

this is a significant improvement compared to other models developed, especially

compared to ML classifiers. These results highlighted a few important conclusions:

1. The instruction-tuned Llama 2-7B can be used for identifying bad items as a

filtering process during the item evaluation stage before utilizing subject matter

expertise,

2. Almost 40% of acceptable items may be trimmed during this process, suggesting

the feasibility of this approach with situations where large item banks are or

can be generated, and

3. Instruction-tuning an LLM such as Llama 2-7B can be feasible for identifying

a workable size of items for field testing or evaluating items by subject matter

experts.

4.4.1 Error Analysis

We conducted an error analysis for the misclassified items when the Llama 2-7B model

was used. The trends were very similar to misclassified items by the BERT models
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in Study 2. In Study 3, most misclassified items were good items. Those items with

shorter stems (e.g., "<blank> supported that policy."), longer keyed responses (e.g.,

item stem: "However, Xenophon attempts to explain that Socrates purposely wel-

comed the hemlock <blank>, keyed response: due to his old age using the arguably

self-destructive testimony to the jury as evidence), and longer stems (e.g., "There

have been relatively few modern attempts to challenge this notion that <blank> is

primarily Geoffrey’s own work, with scholarly opinion often echoing William of New-

burgh’s late-12th-century comment that Geoffrey ’made up’ his narrative, perhaps

through an ’inordinate love of lying") were misclassified by the model. Similar to the

BERT models, difficult-to-parse items were also misclassified by Llama 2-7B.

4.5 Chapter Summary

In this chapter, we discussed the results of Studies 1, 2, and 3 in detail. Our goal was

to train and compare three NLP methods (i.e., ML classifiers, fine-tuning LLMs, and

instruction-tuning generative LLMs) to test the feasibility of automatically evaluating

item quality. In Study 1, we extracted linguistic features from item stems and keyed

responses and trained random forest, support vector machine, and logistic regression

classifiers. Our results highlighted the challenges associated with item quality evalu-

ation using machine learning models. While the support vector machine performed

at the chance level, we observed a slight improvement in prediction performance with

classifiers trained using random forest and logistic regression, where logistic regres-

sion outperformed the other two classifiers. An interesting and useful finding was

that in all classifiers, the most important features were the cosine similarity between

the stem and keyed response and the cosine similarity between the predicted response

and keyed response. In Study 2, we fine-tuned the two BERT models and observed

improvement in model performance for predicting item quality. An important con-

clusion in Study 2 was that the smaller model (i.e., BERT-Base) was computationally

more efficient and performed slightly better than the larger BERT model. In Study
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3, we instruction-tuned Llama 2 with 7 billion parameters (i.e., Llama 2-7B) and

achieved the best performance for evaluating items automatically leveraging genera-

tive LLMs. Given the misclassification rates and model performance for each level of

item quality, instruction-tuning LLMs appeared to be a feasible approach to facilitate

the evaluation process of items generated automatically.
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Chapter 5

Discussion

This study aimed at assessing the feasibility of three NLP methods for the often-

ignored issue of evaluating the quality of automatically generated items. Chapter 5

starts by recapitulating the purpose of the study. We then summarize the findings

for each research question, empirical and methodological implications for practice,

and ongoing challenges in the evaluation of items automatically generated. We con-

clude the chapter by discussing future directions for facilitating the evaluation of

automatically generated items and presenting closing remarks.

5.1 Purpose of the Study

With the digital innovation in assessment, the need for large-item banks has increased

drastically to supply new and high-quality items to online learning environments

(e.g., intelligent tutoring systems) (Corbett et al., 1997) and adaptive assessments

(e.g., computerized adaptive tests) (Weiss, 2004). Traditional item development is

an iterative process where each item is developed on an individual basis, requiring

extensive resources and time (Gierl & Haladyna, 2012; Romberg et al., 1982). AIG

has emerged as an innovative approach to item development with the promise that

many items can be generated instantly and efficiently (Bejar et al., 2002; Gierl et al.,

2023; Kurdi et al., 2020). While AIG researchers have focused on developing better

items leveraging newer computational methods (von Davier, 2019), the investigation
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of feasible evaluation methods for generated items that allow for efficient and scalable

assessment of item quality is often neglected (Gorgun & Bulut, 2024a, 2024b). Eval-

uation methods for AIG are not only necessary to assess the quality of each generated

item but they also help to examine the quality of the AIG system holistically. That

is, evaluation methods have a dual role: identifying high-quality items and assessing

the overall performance of the system. This study aimed to target this gap in the

literature by delineating a comprehensive overview of current evaluation methods and

their limitations for AIG research and investigating alternative approaches to item

evaluation.

The purpose of this study was to utilize NLP and ML methods to investigate the

extent to which items generated can be evaluated automatically. Specifically, we

used generated cloze items to examine the model performance of three prominent

NLP methods for automatic item evaluation. Cloze items, which are also known

as constructed-response or short-answer items, require examinees to formulate their

answers. They are typically more difficult than selected-response items (Kuechler &

Simkin, 2010), can measure more complex skills, and guessing is minimized due to the

absence of response options presented along with the item stem. As such, these items

have been fundamental in the classroom and large-scale assessments (Livingston,

2009). Even though cloze items have a wide array of uses, such items are shorter in

length and include a masked portion (i.e., a blank in the item stem that examinees are

asked to fill in with the best response), rendering them extra challenging to predict

item quality with natural language processing methods.

We conducted three studies employing three NLP techniques for predicting item

quality. In Study 1, we extracted linguistic features from generated items and trained

random forest, support vector machine, and logistic regression. In Study 2, we em-

ployed a slightly more complex modeling approach; we fine-tuned two BERT models

to predict item quality. In Study 3, we leveraged a generative LLM, Llama 2-7B, and

tuned the parameter weights of the model by providing instructions related to item
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quality. We compared the performance of these models using the same set of per-

formance metrics. As a proof-of-concept study, we found that especially instruction-

tuned LLMs have a promise for evaluating automatically generated cloze items, yet

more research is needed to test the reliability, replicability, and generalizability of

these findings across different item types, item formats, and item generation models.

Below, we describe the findings for each research question and their implications for

educational practice.

5.2 Discussion of Findings

5.2.1 A Taxonomy for Current AIG Evaluation Methods

We proposed a taxonomy for current AIG evaluation methods based on the resources,

methods, and inputs that AIG researchers use for evaluating automatically generated

items. We proposed three categories for AIG evaluation methods: (1) Metric-Based

Methods, (2) Human Evaluators, and (3) Post-Hoc Evaluations.

Metric-based methods rely on the existence of reference items or ground truth

and compare the generated items against, typically human-authored, reference items

(Ha & Yaneva, 2018; Maurya & Desarkar, 2020). Machine translation methods such

as BLEU, ROUGE-L, and METEOR (Kumar et al., 2018; Panda et al., 2022) as

well as the cosine similarity based on sentence embeddings (Maurya & Desarkar,

2020; Rodriguez-Torrealba et al., 2022) have been used to assess the degree of sim-

ilarity between generated items and reference items. While all generated questions

can be efficiently and instantly evaluated, several limitations render the applicability

of metric-based methods quite limited. The limitations of metric-based evaluations

include:

1. Reference questions should be available.

2. Item quality is assessed based only on the similarity between the reference items

and generated items.
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3. Perfectly valid items can be filtered out due to the lack of similarity to the

reference questions.

4. Some indices of item quality (i.e., educational usefulness, distractor analysis)

may not be obtained with current metrics available.

The second evaluation method of the taxonomy we proposed was human evaluators.

This is a rather big family of evaluation methods, utilizing humans with different levels

of expertise for item evaluation. Human evaluators included subject matter experts,

researchers, teachers, students, and crowdsource workers. An obvious advantage of

human evaluators against the other two methods is that human evaluators can assess

item quality across many different criteria (e.g., educational usefulness, fluency, or

naturalness). While the capacity and expertise of humans may surpass any other

method in terms of evaluating item quality across a wide range of criteria, there

are some limitations when human evaluators are employed for the evaluation of the

automatically generated items. These involve:

1. Evaluating items using human experts is time-consuming.

2. Typically employing humans is expensive.

3. Human experts should be trained to achieve a level of standardization in the

item evaluation process.

4. Previous studies have well-documented that humans can be biased.

5. Humans might be limited in evaluating all generated items.

6. Employing human evaluators may violate the fundamental assumption of AIG

which asserts that items can be generated efficiently and scalably to supply new

items to itembanks.

7. Utilizing human evaluators requires a high-quality rating scale.
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The final member of the proposed AIG evaluation taxonomy was post-hoc evalu-

ations. Post-hoc evaluations provide statistical estimates regarding item functioning

and item characteristics (Attali, 2018; Van Campenhout et al., 2022). Post-hoc eval-

uations are the only method that can be used to obtain item analysis including item

difficulty, discrimination, and distractor functioning (Gierl et al., 2022). As such, they

are regarded as providing objective information regarding item characteristics. We

categorized experimental studies and psychometric analysis under post-hoc methods.

Nevertheless, several pitfalls should be recognized:

1. Item quality is assessed retrospectively, after the test administration.

2. Sample characteristics and administration conditions may greatly influence the

statistics obtained.

3. It is a time-consuming process to recruit representative samples and analyze

the items administered.

4. All items generated may not be used during post-hoc evaluations, limiting the

evaluation of all generated items.

5. Administrating items to a representative sample can be an expensive process.

We used this taxonomy to argue for the necessity of developing new evaluation

methods along with enhancing item generation methods. To supply this demand, in

the next phase of the study, we investigated the utility of various natural language

processing methods for item evaluation and discussed their potential and limitations

for real-world implementations.

5.2.2 Study 1: Performance of Machine Learning Classifiers

Of the three classifiers trained in Study 1, logistic regression outperformed random

forest and support vector machine given the F1-score as we sought a balance between

precision and recall metrics (i.e., rather than accurately identifying only bad or good
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items). Logistic regression also had the highest accuracy, yet the statistical analysis

comparing the accuracies of all three classifiers indicated no statistical difference

between logistic regression and random forest. The support vector machine performed

the worst and evaluation metrics achieved with the support vector machine suggested

that the classifier predicted the majority category and no learning took place while

training the classifier. The performance of the zero-rule classifier was comparable

to that of the support vector machine, highlighting the poor performance of the

support vector machine. Of 168 good items, the support vector machine classified

only 2 good items correctly (Recall = .01). In fact, ROC curves underscored that the

support vector machine predicted item quality at the chance level. Compared to the

support vector machine, we observed a slightly better performance for the random

forest classifier in terms of correctly classifying good items; of 168 good items, 16 were

classified as good (Recall = .10). Still, the problem with classifying the majority of

items as bad persisted with the random forest classifier. We observed a spike in

the performance of the logistic regression classifier for accurately predicting good

items; of 168 good items, 53 of them correctly classified as god (Recall = .32). While

this performance is far from being acceptable to be used in real life practice, we can

assert that logistic regression learned to present good items better using the linguistic

features we extracted.

The underperformance of the support vector machine might be due to the fact

that the support vector machine performs well with high-dimensional and multiclass

data (Gorgun et al., 2022). A similar interpretation is possible for the random forest

classifier where it typically performs well with more complex data (Kirasich et al.,

2018). Because quality labels were dichotomized, hence we had a binary classification

task, it might not be surprising to find that logistic regression outperformed both the

support vector machine and random forest models. In fact, this finding is congruent

with that logistic regression is a robust classifier when a classification is a binary task

(Carroll & Pederson, 1993).
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These results highlighted the difficulty of predicting item quality using ML classi-

fiers, which was a consistent finding with previous studies that also extracted linguistic

features and trained ML classifiers for predicting various item characteristics, includ-

ing item difficulty (Baldwin et al., 2021) and mean response times (Yaneva et al.,

2020). Most of these studies have focused on multiple-choice medical test items with

longer stems and distractors and tried to predict item difficulty (Ha et al., 2019; Xue

et al., 2020; Yaneva & Von Davier, 2023; Yaneva et al., 2019). To the best of our

knowledge, this is the first study focusing on cloze items to predict item quality. As we

have emphasized, the linguistic features we could extract were limited given shorter

item stems and the absence of response options, possibly limiting the performance of

ML classifiers trained. In addition, the previous studies have used items created by

traditional test development processes (Yaneva & Von Davier, 2023; Yaneva et al.,

2021), as such this study differentiates from the previous studies focusing on predict-

ing item characteristics from the item features.

Overall, these results suggested that ML classifiers might be limited for item quality

evaluation, and more advanced methods are needed to assess item quality of automat-

ically generated items. Additionally, the selected ML classifiers failed to map item

quality on the features extracted, implying either the complexity of quality prediction

using solely linguistic features of items or inadequate representation of item quality

using the extracted features.

5.2.3 Feature Importance for Trained Classifiers

The second phase of training the ML classifiers has focused on identifying the most

important features for predicting item quality. For all classifiers trained, the top

10 features belonged to the Coh-Metrix categories of text easability principal com-

ponents, situation model, lexical diversity, and word information. Text easability

quantifies the difficulty that emerged from the linguistic characteristics of the text.

Situation model demonstrates the mental representation of a text based on cognitive
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science literature. Lexical diversity is based on the relationship between the unique

words and all words in a text. Finally, word information quantifies word frequency

scores and psychological ratings based on syntactic categories (Graesser et al., 2004).

Across all ML classifiers trained, the similarity between the item stem and keyed re-

sponse and the similarity between the predicted response and keyed response emerged

as the two most important features for item quality. These findings corroborated pre-

vious studies focusing on feature importance for predicting item quality (Hsu et al.,

2018). An interesting finding regarding the feature importance was that none of the

features related to the syntactic characteristics of items appeared among the top ten

most important features. These two categories of Coh-Metrix construct syntactic tree

structures to quantify the density of particular syntactic patterns, word types, and

phrase types (Graesser et al., 2011; McNamara et al., 2014). Having none of the fea-

tures from these categories gaming the top 10 list could be due to having shorter item

stems or the resemblance between good and bad items in terms of sentence length

distributions. This might inform studies focusing on linguistic features to predict

item quality (Yaneva et al., 2021).

It is noteworthy to indicate that the features we extracted were based solely on

the linguistic characteristics obtained using item stems and keyed responses, and

thus we did not include any features related to the response behavior or test-taking

experiences of examinees. While studies incorporating features extracted based on

examinee test-taking experiences performed much better in terms of predicting item

quality (McBroom & Paassen, 2020; Tong et al., 2020), the possibility of extracting

these features depends on items being administered to a representative population.

The limitations of this type of feature extraction are similar to post-hoc evaluations

discussed in Section 2.3.3.
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5.2.4 Study 2: Performance of Fine-Tuned BERT

In Study 2, we focused on utilizing more complex models for predicting item quality.

Specifically, we used an LLM, BERT, and fine-tuned BERT-Base and BERT-Large

to classify items based on quality. Fine-tuning BERT means that the weights of

parameters are adjusted based on the pooled embeddings allocated at the [CLS] token

of the last layer of the BERT model. Weight adjustment is established by adding a

linear layer on top of the model and by re-training the model using the [CLS] tokens

(Devlin et al., 2019).

Both fine-tuned BERT models (i.e., BERT-Base and BERT-Large) outperformed

ML classifiers trained in Study 1, and BERT-Base slightly had superior performance

than BERT-Large. All metrics, including accuracy, precision, recall, and F1-score,

were higher for fine-tuned models compared to ML classifiers. In addition, the confu-

sion matrix also supported that fine-tuned BERT has better differentiated good and

bad items from one another. For instance, of those 143 good items, 83 were correctly

classified (Recall .58). Furthermore, the fine-tuned BERT models made more mis-

classification errors for bad items compared to ML classifiers, suggesting that, in fact,

the fine-tuned BERT models learned better to differentiate the bad items from the

good ones, and the prediction was based less on the majority category. These findings

were also consistent with previous research focusing on predicting item characteris-

tics using linguistic features. While previous studies have used LLMs such as ELMo,

Word2Vec, and BERT to obtain sentence and token embeddings as features to be in-

cluded during ML classifier training (e.g., random forest, linear regression) (Baldwin

et al., 2021), the best model performance was achieved when LLM embeddings were

used in the model (Yaneva & Von Davier, 2023).

Nonetheless, to the best of our knowledge, none of the studies have focused on

directly fine-tuning an LLM for predicting item quality. This might be due to a few

reasons: previous studies have focused on predicting item difficulty rather than binary
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item quality necessitating regression models (Štěpánek et al., 2023; Xue et al., 2020),

and previous studies combined token and sentence embeddings with other linguistic

features (Yaneva et al., 2021). Future research may compare the model performance

of fine-tuning BERT with using averaged BERT embeddings as features while training

ML classifiers. While a few studies compared the influence of fine-tuning LLMs for

specific tasks (Lajkó et al., 2022; Mayfield & Black, 2020; Peters et al., 2019; Wang et

al., 2019), the effect of fine-tuning on item quality prediction is unknown and remains

a potential future research direction.

An interesting finding is that BERT-Base outperformed BERT-Large when several

evaluation metrics were considered (e.g., F1-score). It is important to remind the

reader that there was no significant difference in model accuracies of BERT-Base and

BERT-Large. Nonetheless, the difference in some evaluation metrics of the fine-tuned

BERT models was an interesting and unexpected finding as benchmark studies have

often shown that larger models outperform the smaller ones (Rydzewski et al., 2024).

This unexpected finding might be due to the small training data size (Ezen-Can,

2020). In addition, it could be the case that the smaller model has adapted to the

item evaluation task more effectively by leveraging pre-existing knowledge (Raffel et

al., 2020).

5.2.5 Study 3: Performance of Instruction-Tuned Llama-2

As our final natural language processing model, we instruction-tuned an open-source

LLM, Llama-2, with 7 billion parameters. As a reminder, this is the smallest Llama

model in terms of the number of parameters. We adjusted the parameter weight of

Llama 2-7B by providing instructions about the item quality and employing a few

innovative approaches for model tuning, This approach included QLoRA (Dettmers et

al., 2023) and PEFT (Liu et al., 2022) that systematically reduce computational costs

and memory demands by selecting the most important parameters during training

and compressing the trained model in a 4-bit format. As such, it was possible to
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re-train a generative LLM with 7 billion parameters for the specific task at hand, i.e.,

item quality evaluation.

During the instruction-tuning phase, we only provided 1462 examples composed

of instructions (i.e., prompt), input (i.e., item stem), and output (i.e., quality label).

While ML and NLP methods rely on big data to discover (hidden) patterns in the

data, this may not be an attainable goal for all scenarios. In some cases, obtaining

labeled data might be costly and time-consuming and in other cases, large data points

may create concerns about privacy and ethics (Parnami & Lee, 2022). Few-shot

learning for these scenarios has emerged as a low-cost solution with the possibility of

achieving high-model performance (Wang et al., 2020). This study is one example of

few-shot training conducted using Llama 2-7B. This modeling approach is exemplary

for future research intending to evaluate generated items with a low-cost solution.

Overall, instruction-tuning a generative LLM was the best-performing model in

terms of accuracy, precision, recall, and F1-score. Instruction-tuned Llama 2-7B

outperformed both BERT models and ML classifiers, and performance metrics sug-

gested that the model learned to differentiate good items from bad ones better. The

performance of instruction-tuned Llama 2-7B was better than that of ML classifiers

because it predicted good items remarkably well compared to logistic regression or

random forest. Additionally, the performance of instruction-tuned Llama 2-7B was

better than the BERT models because the misclassification rates of good and bad

items were lower for Llama 2-7B compared to the fine-tuned BERT models. Further-

more, instruction-tuned Llama 2-7B emerged as a viable model for filtering out bad

items because only 15% of bad items were misclassified. As AIG promises to generate

many items instantly and efficiently, such instruction-tuned LLM models could be in-

troduced as an intermediate new step to filter out bad items before taking generated

items to human evaluators or field-testing items. This novel intermediate process

may alleviate resource, cost, and time requirements, rendering AIG methods more

efficient and scalable for operational test settings. Nonetheless, one crucial caveat
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of the instruction-tuned LLM should be recognized. Almost 40% of the good items

might be filtered out as bad, and depending on the item bank size, a significant por-

tion of items could be trimmed during this process. In addition, the filtered-out good

items may have desirable item characteristics; hence, useful items might be lost dur-

ing this phase. However, if many items are generated, this evaluation process holds

the potential to facilitate item selection for operational use. This finding emphasized

the need for new considerations in promoting the pipeline from item generation to

item deployment in operational testing.

5.3 Contributions

Before we discuss the limitations and future directions, we summarize the study’s

main contributions and discuss how the results are informative for future research.

First, we provided a comprehensive overview of quality criteria and evaluation meth-

ods used by both traditional item developers and AIG researchers. Although AIG

is a heavily interdisciplinary field, the literature review highlighted the lack of com-

munication among educators, traditional test developers, computer scientists, and

AIG researchers (Cukurova et al., 2019; Luckin & Cukurova, 2019). This study is an

attempt to foster interdisciplinary communications around AIG. We hope that the

taxonomy proposed for evaluation methods, as well as the quality criteria discussed,

provide a thorough portrait of current practices in AIG research.

Second, this study was one of the first attempts to evaluate the quality of auto-

matically generated items using a set of natural language processing methods. While

previous studies have mainly focused on predicting item characteristics (e.g., diffi-

culty or average response time) (Baldwin et al., 2021; Xue et al., 2020; Yaneva &

Von Davier, 2023), our main focus was items that are generated by computer algo-

rithms and considering item quality as a holistic concept (refer to Sections 3.1 and

B.4 to see how item quality was defined). In this study, our primary goal was to

gauge the extent to which we could evaluate item quality automatically to assess all
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generated items efficiently and scalably. Although as in its current form, this study

is a proof-of-concept study, we hope to introduce new methods for item evaluation

and discuss how it can be incorporated into the item generation pipeline.

Third, we compared the performance of various natural language processing meth-

ods for item evaluation. While some of these methods (e.g., training ML classifiers or

extracting sentence and word embeddings) have been used in previous studies for pre-

dicting item characteristics (Yaneva et al., 2020), some methods we used in this study

(i.e., fine-tuning LLMs and instruction-tuning generative LLMs) are novel approaches

to item evaluation.

Finally, we used an open-source generative LLM, Llama 2-7B in this study instead

of a more popular LLM of GPT 4. This study sheds light on the performance of

an alternative LLM that is pre-trained with open-source data and highlights the

possibility of using other LLMs for such intricate tasks.

5.4 Limitations

The results of this study should be carefully interpreted as it is a proof-of-concept

study and findings have limited generalizability due to using only one dataset for

assessing the feasibility of NLP methods for item evaluation.

5.4.1 Limitations Related to the Dataset

This study utilized a secondary dataset that included items generated before the ad-

vent of generative LLMs. Using constituency parsing and semantic role labeler, the

parts of the sentences extracted from Wikipedia articles were masked to generate

cloze items (Becker et al., 2012). As such the generated items are immune to several

quality criteria, including fluency, sensibleness, naturalness, grammaticality, and flu-

ency. Therefore, the evaluation criteria are limited in terms of assessing the quality

of items generated. We specifically focused on quality criteria that involved ambigu-

ity issues in items and whether the masked portion was reasonable for examinees to

91



answer or not.

The second limitation is related to the use of generative LLMs for item generation.

The vast majority of current item generation methods make use of generative LLMs

(Hommel et al., 2022; Wang et al., 2024). These generative LLMs have the potential

to create items that sound more like human-authored ones. As we see a dramatic

increase in AIG methods leveraging generative LLMs, it is interesting to investigate

how item generation achieved with LLMs influences the performance of evaluation

methods relying on these LLMs.

A third limitation is related to the type of items used for assessing the feasibility

of NLP and ML models for evaluating item quality. Specifically, in this study, we

used only cloze items that were generated in a specific way before the LLM era to

assess the feasibility of evaluating items automatically using NLP and ML methods,

limiting the generalizability of findings across different item types. Future research

should replicate these findings across different item types (e.g., selected-response),

assessment contexts (e.g., medicine, math), and item formats (e.g., passage-based

items) to investigate the extent to which NLP and ML can be used for item evaluation.

Another limitation is that items in the dataset are relatively short, limiting the

quality and variety of features that could be extracted from item stems. While this

could demonstrate the rigor of methods we developed for quality prediction, it also

limits the generalizability of findings across different item types and formats.

The final limitation is about the nature of the dataset. The dataset involves generic

items, not targeting any specific educational content area. While items are a subtype

of constructed-response items, there was no purpose or use of assessment associated

with item generation, limiting discussion around the validity of items for specific use.

5.4.2 Limitations Related to Quality Labeling

In this study, crowdsource workers have been used for obtaining labels in terms of item

quality. We have already pointed out limitations pertaining to utilizing crowdsource
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workers for item evaluation in Section 2.3.2. Although there are concerns about the

quality of ratings, a few measures have been taken by Becker et al. (2012) such as

each generated item being evaluated by four raters and the agreement between raters

being considered during the data cleaning phase. Nonetheless, Becker et al. (2012)

have not provided demographic information, pedagogical expertise, and the rate of

compensation offered to crowdsource workers, limiting researchers or practitioners

to evaluate the quality of labels assigned by crowdsource workers (Alelyani & Yang,

2016).

Additionally, a binary classification approach has been utilized, reducing the rich-

ness of item quality indicators in a dichotomous decision problem. Following Becker

et al. (2012), we binarized the quality labels and collapsed the categories of Okay

items with Bad items, reducing the information available about the item quality.

While our goal was to develop a classification model differentiating good items from

bad ones, we may have missed important information regarding the degree of item

quality. In other words, quality could be formulated as a degree rather than a binary

categorization of good vs. bad items.

5.4.3 Limitations Related to Modeling Practices

The data we used for training ML classifiers, fine-tuning BERT, and instruction-

tuning Llama are small, composed of only 1825 items after the data cleaning steps.

Because of the smaller data size, the performance of natural language methods could

be attenuated. While this setting allowed us to utilize few-shot training, the methods

should be replicated with larger datasets to assess the impact of data size on model

performance fully.

A second limitation of modeling practices is related to using LLM. LLMs are a

black-box approach and the pre-training process (e.g., datasets used, hyperparameter

selection) is typically unknown to researchers using LLMs. This makes it extremely

hard to understand the tuning process as well as interpret biases involved in pre-
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trained LLMs. Because of these limitations and the lack of model interpretability,

the findings should be carefully examined to alleviate potential biases and prejudices

inherent in the models.

Finally, we also employed a single LLM, limiting the generalizability of findings

across different LLMs available. For instance, Llama-2 is an open-source LLM trained

with open-source data. There are larger and commercial LLMs available (e.g., GPT-

4, Falcon) that may outperform the LLama-2 model tuned in this study. While,

as a proof-of-concept study, this study provided preliminary results on the utility

of LLMs for item evaluation, the feasibility of other LLMs should be examined to

establish benchmarking on item evaluation.

5.5 Future Directions

Future research should address the limitations listed above as well as investigate the

extent of reproducibility and replicability of results across different assessment and

learning settings. Especially, the reliability of LLMs should be further investigated for

item quality evaluation. Future research may assess the utility of methods employed

in this study for generated items that allow for richer quality criteria. That is, rather

than solely focusing on the ambiguity and reasonableness criteria employed in this

study, future research may consider quality criteria such as distractor quality, item

difficulty, educational usefulness, or grammatically.

An important future direction is to examine the generalizability and applicability

of these findings when different item types are used. In this study, we used only

automatically generated cloze items to assess the feasibility of NLP techniques for

item evaluation. It is imperative to investigate the utility of these models with other

item types (e.g., multiple-choice or short-answer items) or formats (e.g., passage-based

or image-based items) to gauge the generalizability of these findings. Furthermore, a

study comparing different LLMs including open-source and commercial ones should

be conducted to compare the performance of various baseline and tuned LLMs for
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item quality prediction. Such a study could be conducted utilizing different AIG

datasets and LLMs to fully capture the role of LLMs in the future for automating

the item quality evaluation process.

In addition, future research may investigate the feasibility of using natural language

processing methods when items are generated with generative LLMs. Especially, it

is an interesting research direction to investigate how a generative LLM can be used

for assessing items generated using generative LLMs. Future research may also focus

on using larger datasets to investigate the influence of item bank size on automatic

item quality evaluations.

The findings of this study show the performance of three natural language process-

ing methods when the item bank is small. Another possible direction is investigating

the relationship between validity arguments and item quality evaluation with NLP

methods. Furthermore, future research should investigate using finer-grained quality

labels (rather than just dichotomizing the quality labels) and criteria to examine the

utility of NLP methods for item evaluation.

In this study, we have exclusively focused on item quality criteria. Although item

quality is indispensable for assessment validity, the intricate relationship between (as-

sessment) validity and using NLP methods for item evaluation should be examined.

Additionally, predicting item statistics using such automatic methods could facilitate

the transition from item generation to deployment in personalized assessment and

learning environments. The findings obtained in this study may shed light on fu-

ture research investigating the utility of linguistic features and NLP techniques for

predicting item statistics (e.g., difficulty or discrimination indices of items).

Finally, more systematic item generation and labeling processes should be followed

to fully capture the utility of natural language processing methods for item evaluation.

For example, items could be generated for a specific assessment purpose, and various

quality criteria along with different labeling approaches should be adopted to explore

congruence among different labeling methods as well as to scrutinize the feasibility of
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item evaluation through natural language processing methods.

5.6 Conclusion

This study assessed the feasibility of three natural language processing methods for

automatically evaluating generated cloze items. As model complexity increased, from

trained ML classifiers to fine-tuned BERT and instruction-tuned Llama, we observed

amelioration in the model performance in terms of accurately predicting item qual-

ity. Especially Llama emerged as a viable option for evaluating item quality, as

misclassification rates were minimized for the holdout test set compared to the other

two methods. While this might not be a surprising finding given that larger mod-

els typically perform better for classification tasks (Ramesh & Sanampudi, 2022), it

is interesting that the smaller BERT model outperformed the larger BERT model.

This underscores the need for a systematic investigation of LLMs for item evaluation.

Based on these findings, we suggest incorporating instruction-tuned LLMs as an in-

termediate step in the item generation pipeline to filter out bad items after generating

items automatically. This process may significantly reduce costs, resources, and time

requirements associated with evaluating all generated items using human evaluators

or field-testing. That is, by running generated items through an instruction-tuned

LLM, AIG researchers can get an initial estimate regarding the item quality. Then,

bad items can be filtered out and a workable portion of items can be evaluated by

experts or field-tested to obtain further item characteristics. It is worth noting that

there is a lot of room for improving the item evaluation process through LLMs, yet

these findings corroborate the promise of LLMs for automatic item evaluation.
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Appendix A: Llama 2-7B Prompts

1. Begin your response with yes or no. Does the blank in the next sentence assess

key concepts from the sentence and would be reasonable to answer

2. Is this a good or bad cloze question based on the following criterion? A good

question tests a key concept from the sentence, is reasonable to answer, un-

ambiguous, or specific. A bad question is unreasonable to answer, too broad,

ambiguous, or lacks specificity and depth

3. We removed a part of the following sentence to construct a cloze question.

We are trying to understand whether the following question is a good or bad

question. A Good question is one that tests key concepts from the sentence

and would be reasonable to answer. A Bad question is one that asks about an

unimportant aspect of the sentence or has an uninteresting answer that can be

figured out from the context of the sentence. Is this question a good or bad

question?

4. You are a content expert helping us understand the cloze question quality. A

good question tests a key concept from the sentence, is reasonable to answer,

unambiguous, and specific. A bad question is unreasonable to answer, too

broad, ambiguous, or lacks specificity and depth. Is this question good or bad?
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Appendix B: Python Code

B.1 Feature Extraction

1 # Libraries Needed
2

3 !pip install sentence_transformers
4 from sentence_transformers import SentenceTransformer , util
5 import stanza
6 import nltk
7

8 text = data[’text_masked ’]. tolist ()
9

10 from transformers import pipeline
11

12 mask_filler = pipeline("fill -mask", "distilroberta -base")
13 masked_pred = mask_filler(text , top_k =1)
14

15 model = SentenceTransformer(’bert -base -uncased ’)
16

17 # Similarity between predicted response and keyed response
18 embeddings_pred = model.encode(masked_pred_df[’token_str ’]. tolist ())
19 embeddings_answer = model.encode(data[’Answer ’]. tolist ())
20 cosine_pred_answer = util.cos_sim(embeddings_pred , embeddings_answer

)
21 pairs_pred_answer = []
22 for i in range(len(cosine_pred_answer)):
23 pairs_pred_answer.append(util.cos_sim(embeddings_pred[i],

embeddings_answer[i]))
24

25 # Similarity between item stem and keyed response
26 embeddings_stem = model.encode(data[’text_new ’]. tolist ())
27 cosine_stem_answer = util.cos_sim(embeddings_stem , embeddings_answer

)
28 pairs_stem_answer = []
29 for i in range(len(cosine_stem_answer)):
30 pairs_stem_answer.append(util.cos_sim(embeddings_stem[i],

embeddings_answer[i]))
31

32 # Parse tree depth
33 nlp = stanza.Pipeline(lang=’en’, processors=’tokenize ,pos ,

constituency ’)
34 data[’pos’] = data[’item_stem ’]. apply(lambda x: nlp(x))
35
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36 for index , row in data.iterrows ():
37 doc = data[’pos’][ index]
38 for sentence in doc.sentences:
39 data[’tree’][ index] = (sentence.constituency)
40

41 for index , row in data.iterrows ():
42 data[’tree_depth ’][ index] = Tree.fromstring(data[’tree’][ index ])

.height ()

Listing B.1: Feature Extraction for ML Classifier Training
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B.2 Machine Learning Classifier Training

1 # Libraries Needed
2

3 from sklearn.ensemble import RandomForestClassifier
4 from sklearn.linear_model import LogisticRegression
5 from sklearn.model_selection import RandomizedSearchCV ,

train_test_split
6

7 # Random Forest
8

9 n_estimators = [int(x) for x in np.linspace(start = 10, stop = 200,
num = 10)]

10 max_features = [’auto’, ’sqrt’]
11 max_depth = [int(x) for x in np.linspace(2, 4, num = 2)]
12 min_samples_split = [2, 3, 4]
13 min_samples_leaf = [2, 3]
14 criterion = [’gini’, ’entropy ’]
15 random_grid = {’n_estimators ’: n_estimators ,
16 ’max_features ’:max_features ,
17 ’max_depth ’: max_depth ,
18 ’min_samples_split ’: min_samples_split ,
19 ’min_samples_leaf ’: min_samples_leaf ,
20 ’criterion ’: criterion ,
21

22

23 }
24

25 rf = RandomForestClassifier(random_state = 42)
26 rf_random = RandomizedSearchCV(estimator = rf ,
27 param_distributions = random_grid ,
28 cv = 5, verbose=2, n_jobs = -1)
29 rf_random.fit(X_train , y_train)
30

31 # Support Vector Machine
32

33 kernel = [’linear ’,’poly’, ’rbf’, ’sigmoid ’]
34 C = [100, 10, 1, .01, .001]
35 random_grid = {’C’:C,
36 ’kernel ’:kernel }
37

38 svm = SVC()
39 svm_random = RandomizedSearchCV(estimator = svm ,
40 param_distributions = random_grid ,
41 cv = 5, verbose=2, n_jobs = -1)
42 svm_random.fit(X_train , y_train)
43

44 # Logistic Regression
45

46 solver = [’newton -cg’, ’lbfgs’, ’liblinear ’, ’sag’, ’saga’]
47 penalty = [’none’, ’l1’, ’l2’, ’elasticnet ’]
48 C = [100, 10, 1, .01, .001]
49 random_grid = {’solver ’: solver ,
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50 ’C’:C,
51 ’penalty ’:penalty }
52

53 lr = LogisticRegression(random_state = 42)
54 lr_random = RandomizedSearchCV(estimator = lr ,
55 param_distributions = random_grid ,
56 cv = 5, verbose=2, n_jobs = -1)
57 lr_random.fit(X_train , y_train)

Listing B.2: ML Classifier Training
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B.3 Fine-Tuning BERT Models

1 # Libraries needed
2

3 import datasets
4 from datasets import Dataset , DatasetDict
5 from transformers import AutoTokenizer
6 from transformers import AutoModelForSequenceClassification
7 from transformers import TrainingArguments , Trainer
8 import evaluate
9 import torch

10

11 # BERT -Large
12

13 dataset_train = datasets.Dataset.from_pandas(train)
14 dataset_test = datasets.Dataset.from_pandas(test)
15

16 dataset_train = dataset_train.remove_columns(’__index_level_0__ ’)
17 dataset_test = dataset_test.remove_columns(’__index_level_0__ ’)
18 data_dict = datasets.DatasetDict ({"train":dataset_train ,"test":

dataset_test })
19

20 device = torch.device("cuda") if torch.cuda.is_available () else
torch.device("cpu")

21

22 tokenizer = AutoTokenizer.from_pretrained("bert -large -uncased")
23

24 def tokenize_function(examples):
25 return tokenizer(examples[’sentence1 ’],
26 padding="max_length", truncation=True , max_length =250)
27

28 tokenized_datasets = data_dict.map(tokenize_function , batched=True)
29

30 model = AutoModelForSequenceClassification.from_pretrained
31 ("bert -large -uncased", num_labels =2).to(

device)
32

33 training_args = TrainingArguments(
34 output_dir="my_awesome_model",
35 learning_rate =2e-5,
36 per_device_train_batch_size =8,
37 per_device_eval_batch_size =16,
38 num_train_epochs =10,
39 weight_decay =0.01 ,
40 evaluation_strategy="epoch",
41 save_strategy="epoch")
42

43 metric = evaluate.load("accuracy")
44

45 def compute_metrics(eval_pred):
46 logits , labels = eval_pred
47 predictions = np.argmax(logits , axis=-1)
48 return metric.compute(predictions=predictions , references=labels
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)
49

50 trainer = Trainer(
51 model=model ,
52 args=training_args ,
53 train_dataset=tokenized_datasets["train"],
54 eval_dataset=tokenized_datasets["test"],
55 compute_metrics=compute_metrics
56 )
57

58 trainer.train ()
59

60 # BERT -Base
61

62 dataset_train = datasets.Dataset.from_pandas(train)
63 dataset_test = datasets.Dataset.from_pandas(test)
64

65 dataset_train = dataset_train.remove_columns(’__index_level_0__ ’)
66 dataset_test = dataset_test.remove_columns(’__index_level_0__ ’)
67 data_dict = datasets.DatasetDict ({"train":dataset_train ,"test":

dataset_test })
68

69 device = torch.device("cuda") if torch.cuda.is_available () else
torch.device("cpu")

70

71 tokenizer = AutoTokenizer.from_pretrained("bert -base -uncased")
72

73 def tokenize_function(examples):
74 return tokenizer(examples[’sentence1 ’],
75 padding="max_length", truncation=True , max_length =250)
76

77 tokenized_datasets = data_dict.map(tokenize_function , batched=True)
78

79 model = AutoModelForSequenceClassification.from_pretrained
80 ("bert -base -uncased", num_labels =2).to(

device)
81

82 training_args = TrainingArguments(
83 output_dir="my_awesome_model",
84 learning_rate =2e-5,
85 per_device_train_batch_size =8,
86 per_device_eval_batch_size =16,
87 num_train_epochs =10,
88 weight_decay =0.01 ,
89 evaluation_strategy="epoch",
90 save_strategy="epoch")
91

92 metric = evaluate.load("accuracy")
93

94 def compute_metrics(eval_pred):
95 logits , labels = eval_pred
96 predictions = np.argmax(logits , axis=-1)
97 return metric.compute(predictions=predictions , references=labels

)
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98

99 trainer = Trainer(
100 model=model ,
101 args=training_args ,
102 train_dataset=tokenized_datasets["train"],
103 eval_dataset=tokenized_datasets["test"],
104 compute_metrics=compute_metrics
105 )
106

107 trainer.train ()

Listing B.3: Fine-tuning BERT Models
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B.4 Instruction-Tuning Llama 2-7B

1 # Libraries needed
2

3 !pip install -q huggingface_hub
4 !pip install -q -U trl transformers accelerate peft
5 !pip install -q -U datasets bitsandbytes einops wandb
6 from datasets import load_dataset
7 import torch
8 from transformers import AutoModelForCausalLM ,
9 BitsAndBytesConfig , AutoTokenizer , TrainingArguments

10 from peft import LoraConfig
11 from trl import SFTTrainer
12 import torch
13 import transformers
14

15

16

17

18 from huggingface_hub import notebook_login
19 notebook_login ()
20

21 dataset_name = "GGorgun/mind_the_gap"
22 dataset = load_dataset(dataset_name , split = ’train’)
23

24 def label_to_name(score: float):
25 if score == 0:
26 return "Bad"
27 return "Good"
28

29 dataset_data = [
30 {
31 "instruction": "You are a content expert helping us

understand
32 the cloze question quality.
33 A good question tests a key concept from the sentence ,
34 is reasonable to answer , unambiguous , and specific.
35 A bad question is unreasonable to answer , too broad ,

ambiguous ,
36 or lacks specificity and depth. Is this question a good or

bad question?",
37 "input": row_dict["text"],
38 "output": label_to_name(row_dict["label"])
39 }
40 for row_dict in df.to_dict(orient="records")
41 ]
42

43 def formatting_func(example):
44 input_prompt = (f"Below is an instruction that describes a task ,
45 paired with an input that provides further context. "
46 "Write a response that appropriately completes the request .\n\n"
47 "### Instruction :\n"
48 f"{example[’instruction ’]}\n\n"
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49 f"### Input: \n"
50 f"{example[’input ’]}\n\n"
51 f"### Response: \n"
52 f"{example[’output ’]}")
53 return {"text" : input_prompt}
54

55 model_id = "meta -llama/Llama -2-7b-hf"
56

57 qlora_config = LoraConfig(
58 r=16,
59 lora_alpha =32,
60 lora_dropout =0.05 ,
61 bias="none",
62 task_type="CAUSAL_LM"
63 )
64

65 bnb_config = BitsAndBytesConfig(
66 load_in_4bit=True ,
67 bnb_4bit_use_double_quant=True ,
68 bnb_4bit_quant_type="nf4",
69 bnb_4bit_compute_dtype=torch.bfloat16
70 )
71

72 base_model = AutoModelForCausalLM.from_pretrained(
73 model_id ,
74 quantization_config=bnb_config ,
75 )
76

77 tokenizer = AutoTokenizer.from_pretrained(model_id ,
trust_remote_code=True)

78 tokenizer.pad_token = tokenizer.eos_token
79

80

81 output_dir = "./ results"
82

83 training_args = TrainingArguments(
84 output_dir=output_dir ,
85 per_device_train_batch_size =4,
86 gradient_accumulation_steps =4,
87 learning_rate =2e-4,
88 logging_steps =10,
89 max_steps =1000,
90 optim="paged_adamw_8bit",
91 fp16=True ,
92 )
93

94 max_seq_length = 250
95

96 supervised_finetuning_trainer = SFTTrainer(
97 model=base_model ,
98 train_dataset=formatted_dataset[’train ’],
99 peft_config=qlora_config ,

100 dataset_text_field="text",
101 #formatting_func=formatting_prompts_func ,
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102 max_seq_length=max_seq_length ,
103 tokenizer=tokenizer ,
104 args=training_args ,
105

106 )
107

108 supervised_finetuning_trainer.train ()

Listing B.4: Instuction-Tuning Llama 2-7B
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