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ABSTRACT

Energy price fluctuations affect government and business policies, effective planning and 

implementation of strategic decisions and industrial growth and competitiveness of business 

enterprises. Energy is a major input in national and global economies and business growth 

and expansion, and thus, the ability to forecast energy prices is a critical component of major 

budgetary policies. Governments and industry continue to struggle in dealing with energy 

prices. Toward, the solution of this problem, many efforts are currently being made to 

provide some tools for guiding governments and industry in this domain. Energy prices are 

affected by a number of unforeseeable future events that are hardly predictable. However, 

modern science and economics have provided tools that can be used to provide forecasts 

with a reasonable degree of confidence. This research contributes toward this important 

issue of energy price forecasts. A number of statistical and econometric methods, including 

GARCH, ARIMA, PCR and neural networks modeling techniques, have been used to 

develop energy forecasts models. These energy models include electricity, coal, crude oil 

and natural gas prices and total energy consumption for Alberta and Canada. The 

determinants of energy prices in these models are the energy production, OPEC prices, the 

price of other energy products, personal income, GDP, number of oil and gas wells drilled 

(westca), personal income, unemployment and number of degree days. The models are 

verified and validated with data from CANSIM, Alberta Energy Library, EUB, Energy Prices 

and Taxes periodical, Annual Oil Market Report and OPEC bulletin. The results show that 

the PCR and neural networks techniques provide the best forecasts and could be used for 

developing reasonable energy price forecast for guiding regional, national and business 

policies.
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CHAPTER 1.0 

INTRODUCTION
1.1 Background History

Energy is pervasive and a very strategic element in our universe today. Crude oil is used in 

the manufacture of heating oil, aviation fuel, and gasoline for transportation. The industrial 

sector uses crude oil as a raw material for the production of various items like ointments, 

sweets, petrochemicals and a host of other products. The residential sector employs natural 

gas as a heating fuel as well as for the manufacture of electricity. Coal is also significant for 

commercial and residential purposes. Metallurgical coal is used in the manufacture of steel 

fabrications. Thermal coal is also used for the production of electricity. Electricity is an 

important factor in the industrial and residential sectors and so it is a raw material for many 

manufacturing companies. Current production of crude oil outside the Organization of 

Petroleum Exporting Countries (OPEC) come from Canada, United Kingdom, Mexico, 

Nonway, China, the USA, and Russia. Each country produced between 1.9 million and 6.1 

million barrels per day (mb/d) of crude oil in 1999. With the total world production standing at

67.7 million barrels per day, the individual shares of these countries of world production 

ranges from 2.8% to 9% in 1999 (Klein, 2001).

For the energy sector, a number of expert systems have been developed for carrying out 

various tasks such as system design, diagnosis and trouble shooting, demand forecast and 

planning. Oil and natural gas prices are volatile. This volatility is typical of the world oil and 

gas market. Coal and electricity prices are usually stable. Crude oil, as a strategically 

important commodity, depends on developments in its production, and pricing and is crucial 

to the global economy as a whole. These commodities form the foundation and growth of 

industrialization. Modeling, evaluation and analysis that lead to clear understanding are 

important to global, domestic and industrial policies for growth and sustainability. Expert 

systems are needed in the development of strategic planning and energy planning. 

Applications dealing with long-term energy planning, energy demand analysis and 

forecasting are numerous but most of them deal with power.

1.2 Statement of Problem
Supply and demand fluctuations affect the price of energy products because it is the state of 

the market that determines the price of any traded goods or services. If there are 

fluctuations in demand and supply then the prices of these energy products will be volatile. 

These fluctuations are due to the cyclic nature of the energy business, within various

1
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seasons of the year. For instance, within the summer months, energy is used heavily for 

transportation and exploration and heating is required during the winter months. Volatile oil 

prices are due to the difficulties of predicting demand and supply worldwide, coupled with the 

secrecy surrounding market developments, the compliance of members of OPEC to their 

production quota system and political developments. Most 'spikes’ in oil prices are 

associated with political crises. Crude oil availability and its price therefore impact the 

general economy in many ways. The most important channel of influence is that rising crude 

oil prices feed price inflation in consumer and other intermediate goods, which in turn 

impacts on other final commodity prices. This inflation then fuels demands for wage hikes to 

maintain consumer purchasing power.

Firms make business and investment decisions based on their expectations of energy prices. 

Investments that are surprised by unexpected low energy prices, result in marginal growth, 

losses and bankruptcies. However, unexpected high energy prices result in high profit 

margins, growth, buoyancy and competitiveness. Industrial growth and competitiveness are 

affected by crude oil that is a strategic commodity. The prices of crude oil is crucial to the 

economy due to its importance to the transportation sector, as well as being both an energy 

output and input in the production of other commodities. The stability of political and social 

structures is important in the oil sector. If the social and business structures are unstable the 

exploitation of the natural resource will slow down or stop altogether. With an unstable 

environment, investments will not be encouraged, and as such growth will be minimal if not 

negative. Unstable national governments and national economies, systematic erosion of 

fundamental social policies and lack of competitiveness among companies can cause 

unstable environments. In Alberta, the oil sands industry thrives on high market prices for 

sustainable profit margins. These and other problems necessitate the search for adequate 

and comprehensive methodologies to model, evaluate, analyze and use energy pricing 

models for making strategic, economic, business, social and political decisions.

1.3 Objective of Study
The objectives of this study are to: (i) examine the essential elements of oil, natural gas, coal 

and electricity pricing that play a major role in its determination and establish how to reduce 

the effects in adverse situations of high or low prices; (ii) develop energy price forecast 

models for energy planning, business planning and investment; (iii) develop computational 

and algorithmic efficiencies and statistical control paradigms for solving the forecast models, 

and (iv) generate appropriate forecast techniques for guiding Alberta and Canadian energy 

policy makers.

2
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1.4 Scope and Limitations of Study
This study deals with the forecast of energy prices for oil, natural gas, coal, electricity and 

energy consumption using linear and nonlinear methods. Mathematical and computer 

models are developed using Shazam, Matlab, Fortran and @Risk. In the case where the 

appropriate software was not available, codes were developed in Shazam, Matlab and 

Fortran. The energy data was obtained from Canadian Socio-economic Information 

Management System (CANSIM), Alberta Energy Library, Energy Utilities Board (EUB), 

Energy Prices and Taxes periodical, Annual Oil Market Report and OPEC bulletin with the 

period between 1982 and 1997. This study determines the factors affecting the time series, 

prices of oil, natural gas, coal and electricity for Alberta and Canada. Estimations and 

forecasts are made using GARCH (1,1), ARIMA and principal component regression (PCR). 

Independent component analysis (ICA) was carried out to give ore regular and structured 

models. This study also investigates the nonlinear characteristics of the forecast models. 

PCR and ICA are used to investigate the chaotic behavior of the time series models. PCR 

was also used to obtain the series forecasts.

1.5 Contributions and Industrial Significance of Study
The contribution of this study include: (i) detailed forecast models for investment decisions 

and planning of business strategies and budgeting; (ii) advances in knowledge and frontiers 

in energy economics; and (iii) a strong basis for formulating domestic and foreign policies on 

energy production, consumption, exports and inventory management. Most models 

comprise few parameters but do not show the complete picture of those parameters that 

affect energy product prices. The relationship among energy product prices and their 

derivative forecasts are treated in order to hedge and so reduce losses or increase gains. 

Expert systems can be developed for demand forecast and strategic planning. This mostly 

concentrates on energy planning in particular involving energy demand analysis and 

forecasting. Most national governments pursue a policy of sustainable development. This 

means that they harness and use natural resources in a responsible manner, which results in 

a wealth of natural resources for exploitation for future generations. These decisions require 

comprehensive forecasting methods, for which this study make significant contributions.

1.6 Research Methodology
The initial part of this thesis reviews the literature in pricing models. This is then followed by 

the economic structure of fossil fuels and electricity. Most of the input data are economic 

indicators, productivity and exploration, energy cycle determinants, prices of other alternative 

sources of energy. The mathematical and computer modeling involve the use of GARCH

3
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modeling techniques. The ARIMA model was used to forecast prices of the different energy 

products, oil, natural gas, coal and electricity. PCR and neural networks were also used to 

obtain energy prices forecast in the short term. This forecast can then be used in business 

planning and investment decisions. Where the prices are high, adequate measures are 

taken to lock in prices at the energy market so that there is not too much loss if prices 

continue to rise. When prices are low then prices are locked in so as to ensure that losses 

are not incurred if the prices rise.

1.7 Report Structure

Chapter 1 deals with the background and problems the study will address, as well as the 

scope and limitations, contributions and industrial significance of the study. Chapter 2 

contains a literature survey on fossil fuel energy and electricity pricing statistical and 

probability modeling. Factors affecting oil and gas prices and some energy price models 

were investigated and the economic structure of fossil fuels -  the oil, gas, coal and electricity 

industry was researched in Chapter 3. It dealt with the economic structure of the oil industry, 

the spot and contract market and property evaluation. The essential elements of energy 

policy were also dealt with later in this chapter. Chapter 4 contains the mathematical 

modeling theory and computer software for GARCH, ARIMA, PCA and ICA models. The 

GARCH and ARIMA models are subjected to linear analysis while PCA and ICA models 

were subjected to nonlinear analysis. Chapter 5 deals with computer modeling and 

experimentation involving the strategies and methods used to tackle the issues that arise in 

this study. The results, analysis and discussion of the results are presented in chapter 6. 

Chapter 7 consists of the conclusion and recommendations.

4
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CHAPTER 2.0 

ANALYTICAL SURVEY OF THE LITERATURE

This chapter deals with analytical survey of the literature of previous studies in this research 

domain. It focuses on statistical and probabilistic, econometric, option pricing, energy 

forecast, and electricity pricing models. It also focuses on correlation dimension and 

forecasting, principal and independent component analyses and wavelet time series 

analysis.

2.1 Statistical and Probability Forecast Modeling

Sharma (2000a) carried out a study to develop a framework for rainfall probabilistic 

forecasting using available hydro-climatic information. The study presents an approach for 

identifying optimal predictors that can be used to formulate a robust and efficient probabilistic 

forecast model. He presents a statistical framework for identifying model predictors of a 

general linear or nonlinear system. The approach presented is based on the use of 

nonparametric kernel methods for multivariate probability density estimation. The approach 

quantifies dependence using a probability density formulation, in contrast to the usual use of 

deviations about a curve of best fit. The use of the probability density framework makes the 

proposed approach ideal for identifying predictors, which are used to formulate a probabilistic 

or stochastic forecast model. The proposed approach is a stepwise predictor selection 

scheme and is termed the partial mutual information (PMI) predictor identification approach.

He presents some background information required to describe the theoretical foundation of 

the partial mutual information (PMI) predictor identification approach. The PMI approach is 

applied to samples from selected stochastic models where the predictors are known before 

hand. The PMI criterion is used to quantify the dependence between an independent and a 

dependent variable conditioned on the presence of existing system predictors. A stepwise 

approach for identifying system predictors based on the partial information criterion was 

proposed and tested on several artificial data sets with known dependence characteristics. 

Results indicated that the criterion was effective and accurate in identifying predictors of all 

the models considered (Sharma, 2000a).

Sharma (2000b) also presented a nonparametric probabilistic forecast model based on 

accurate estimation of the conditional probability distribution of rainfall through the use of 

nonparametric kernel density estimation techniques. The kernel approach is data driven and 

avoids prior assumptions as to the form of dependence (e.g. linear or nonlinear) or of the

5
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probability density function. He presents a method for probabilistic forecasting of rainfall for 

lead times ranging from 3 to 24 months. The method involves estimation of the probability 

densities of the rainfall conditioned on the current values of the selected predictors. 

Nonparametric kernel methods for probability density estimation are used in formulating the 

conditional probability density. These methods allow a data based representation of the 

shape of the probability density function, thus leading to forecasts that represent the true 

variability in rainfall. Some background information on the kernel density estimation 

procedure and how it is used to estimate the conditional probability of a variable is presented 

in Sharma (2000b). The kernel procedure was used to estimate the conditional probability of 

the Warragamba rainfall time series for selected seasons.

Krzysztofowicz (1999) also presented the fundamentals of two Bayesian methods for 

producing a probabilistic forecast via any deterministic model. The Bayesian Processor 

Forecast (BPF) quantifies the total uncertainty in terms of a posterior distribution, conditioned 

on model output. It couples a deterministic model with a post-processor. The Bayesian 

Forecasting System (BFS) decomposes the total uncertainty into input uncertainty and model 

uncertainty, which are characterized independently and then integrated into a predictive 

distribution. The BFS is compared with Monte Carlo simulation and 'ensemble forecasting' 

technique, none of which can alone produce a probabilistic forecast that quantifies the total 

uncertainty, but each can serve as a component of the BFS. The BFS approach formulates 

a probabilistic forecasting system that includes an input forecaster, a deterministic model, a 

co-processor, a post-processor, and an integrator. This formulation reveals certain desired 

normative properties of any probabilistic forecaster and also identifies a proper and limited 

role of Monte Carlo simulation and the so-called “ensemble forecasting" technique.

Raible et al. (1999) introduced the short-term weather forecast and statistical single-station 

models and applied them to real-time weather prediction. Numerical weather prediction 

(NWP) models are very good in very short-term forecasting (up to 24 hours). However, they 

do require a substantial amount of computation time and the forecasts are not always stable 

at this time scale. In contrast, statistical schemes require little computation time to make a 

forecast and are adapted to the station’s climate, but in general, they do not include 

nonlinear behavior. Another advantage of statistical methods over NWP models is that the 

latter often produces biased forecasts, in contrast to the former. They developed a multiple 

regression (R) model for predicting the temperature anomaly and a multiple regression 

Markov (M) model for forecasting the probability of precipitation. The following forecast 

experiments were conducted for central European weather stations are analyzed: (a) the
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single-station performance of the statistical models, (b) a linear error minimizing combination 

of independent forecasts of numerical weather prediction and statistical models, and (c) the 

forecast representation for a region deduced by applying a suitable interpolation technique. 

These forecasts were combined with the numerical weather prediction (NWP) model 

forecasts of the Europe model (EM) to improve the forecast accuracy. These two statistical 

methods has been applied to several weather stations of central Europe to obtain the 

regional forecast for this area, including the Hamburg Fuhlsbuttel weather centre.

The combination temperature forecast yields a 14% gain for the 24-h prediction with respect 

to the R model alone, and 17% gain with respect to NWP model. The combined probability 

of prediction forecast achieves 18% with respect to the R model and 33% with respect to 

NWP model. While statistical models, based only on observations, are independent of NWP 

models, the model output statistics technique for providing the best results requires a re­

computation whenever the NWP model is changing. Therefore, the linear combination 

scheme offers an alternative way to improve the direct model output instead of the widely 

used model output statistics or Kalman filtering methods. The forecasts lead to an 

operational weather forecasting system for the temperature anomaly and the probability of 

precipitation. The statistical techniques demonstrated provide a potential for future 

applications in operational weather forecasts (Raible et al., 1999)

Kumar et al. (1999) developed an operational system for forecasting probability of 

precipitation (PoP) and a “yes/no” forecast over 10 stations during the monsoon season in 

India. The development of the PoP forecast equations involves two major steps. The first 

step is the interpolation of predictor fields to the station location and the second step is the 

development of multiple regression equations through a screening procedure. A perfect 

programming method (PPM) approach is developed for statistical interpretation of numerical 

weather prediction products. Precipitation is intermittent and highly variable in space and 

time. Local topographic and environmental conditions play an important role in precipitation 

distribution. For these reasons, the direct prediction of precipitation amounts with a 

numerical model becomes difficult, particularly for tropical regions. To overcome this 

difficulty, empirical relationships can be developed between the concurrent circulation, 

certain thermodynamic quantities, and the resulting precipitation.

The PPM-based operational system for forecasting occurrence of precipitation in probabilistic 

and categorical terms is the first time an objective interpretation system for precipitation 

prediction has been introduced in India. The regression equations have selected physically
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relevant predictors such as relative humidity, vorticity, vertical velocity, and temperature. 

The forecasts have the desired reliability for most of the stations but the reliability actually 

decreases with increasing projection except in a few cases. They also discriminate 

satisfactorily between the occurrence and nonoccurrence of precipitation. It indicates that 

this PoP forecasting system has a satisfactory and desirable performance. Moreover the 

PoP forecasts have played an important role in the operational weather forecasting system 

at National Centre for Medium Range Weather Forecasting (NCMRWF).

Kumar et al. (1999) also developed a statistical interpretation (SI) of numerical weather 

prediction (NWP) model products. This model has a built-in accounting capability for the 

local topographic and environmental conditions controlling the precipitation and other surface 

weather. The uncertainties in the circulation and weather can also be formally expressed 

through such SI. The SI schemes are classified into two broad classes: (i) PPM and (ii) the 

model output statistics (MOS), depending on whether the observed or numerically predicted 

circulation is used in developing the empirical relationships. PPM develops a relation 

between the parameter to be predicted and the observed circulation around the location of 

interest using several years of data. The relationship is applied to the NWP output to obtain 

the forecast. The statistical interpretation scheme and the bias correction method were 

developed using at least 5-year data of the monsoon season (Kumar et al, 1999).

2.2 Energy Econometric models

Hsiao and Hsiao (1985) examined some commonly used econometric models of energy and 

found possible sources of use and abuse of elasticity. They derived a formula that clearly 

relates the income elasticity to the energy-income ratio. The difference of elasticities among 

the developing and developed countries can be explained directly from the formula. For data 

on energy consumption and GDP for a certain period, they calculated elasticities and ratios 

for each year, using all the past available information to minimize the sample errors. The 

results of econometric method depend on the specification of the model and the techniques 

of estimation. With all its limitations, the econometric method is only one of the energy 

modeling techniques and should be used and evaluated as such along with the results 

obtained from other techniques like input-output models, linear programming models and 

system models.

Elkhafif (1992) and Sioshansi (1985) used econometric energy models to evaluate past 

policy experiences, assess the impact of future policies and forecast energy demand. He 

estimated an industrial energy demand model for the province of Ontario using a linear-logit
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specification for fuel type equations, which are embedded in an aggregate energy demand 

equation. Short- and long-term, and own- and cross-price elasticities are estimated for 

electricity, natural gas, oil and coal. Own- and cross-price elasticities are disaggregated to 

show the overall price elasticities and the "energy-constant" price elasticities when aggregate 

energy use is unchanged. These disaggregations suggest that a substantial part of energy 

conservation comes from the higher aggregate price of energy and not from interfuel 

substitution. Sharp fluctuations in energy prices in the past two decades have given rise to a 

variety of government policies regarding energy pricing and supply. Such policies could be 

counterproductive if they turned out to be too protective, especially in the industrial sector. A 

policy that significantly alters the price signals to producers could result in inefficient energy 

uses.

The model in the previous section was estimated using annual data for the 1963-1990 

period. Two dummies were incorporated in the model. The first dummy (D69) was included 

to model the impact of the strike of steel workers in 1969, which substantially reduced the 

demand for coal and oil in this year. D69 is equal to 1 in 1969 and zero otherwise. The 

second dummy (D86) was added to represent the influence of the natural gas market 

deregulation after 1986. This study relies on the two-stage optimization approach to model 

industrial energy demand in Ontario, Canada. Annual data for the 1963-1990 period was 

used for the model estimation. The model was simulated to estimate two sets of price 

elasticities of demand: overall price elasticities and energy constant price elasticities. The 

results of the study showed that misspecification of the natural gas market deregulation in 

1986 results in serious autocorrelation. In addition, the long-term own-price elasticities all 

fuels (electricity, natural gas, oil and coal) are less than one in absolute value. The capital 

stock adjustment in Ontario's industrial sector occurs mainly in response to changes in total 

energy price. This implies that the industrial sector becomes more energy efficient in the 

long-term in response to higher average energy prices. Very little capital adjustment occurs 

in the interfuel substitution sub-model. The results also showed that electricity, coal, natural 

gas and oil are symmetric complements, most likely reflecting the fuel and material mix in the 

production process of the steel and chemicals industries.

Elkhafif (1993) explained the distortions of the outcomes of price sensitivity analysis and 

forecasting when the model is used for forecasting simulations without adjusting the Divisia 

Price Index (DPI). The conclusions showed that the results could be misleading when a two- 

stage optimization model with an aggregate DPI is used for simulation without adjusting for 

the DPI. The study also provided an alternative technique that could produce more
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reasonable results from the price sensitivity analysis and better simulation output. 

According to the study, the most widely used econometric energy forecasting model is based 

on the two-stage optimization approach. An aggregate energy DPI is used to link the two 

stages. Although the use of the DPI is necessary and has its advantages in estimation of the 

model, it results in misleading forecasts when the model is simulated without adjusting the 

DPI. The new formulation uses the same estimated coefficients as the conventional 

formulation. The study shows that demand sensitivity to price shocks obtained from 

simulating the conventional formulation indicates a bias towards less elastic own-price 

elasticity, and more negative (complementary) and less positive (substitute) cross 

elasticities. As a consequence, simulations based on the conventional formulation tend to 

over-forecast fuels with relatively high real prices and under-forecast fuels with relatively low 

real prices. To overcome these shortcomings, the study suggests an alternative formulation 

in which a disaggregated total energy equation is utilized to generate forecasts.

Vaage (2000) formulated the structure of the household's energy demand as a 

discrete/continuous choice, and on this basis, established an econometric model suitable for 

the data available in the Norwegian Energy Surveys. He specified the discrete appliance 

choice as a multinomial logit model, with a mixture of appliance attributes and individual 

characteristics as explanatory variables. In the next step the continuous choice of energy 

use is modeled conditioned on the appliance choice. The energy prices turned out to be 

significant both when estimating the appliance choice and the conditional energy demand. 

The estimated price elasticity for energy exceeds minus unity. The paper discusses how this 

relatively strong price response should be interpreted in the context of other econometric 

analysis with no explicit appliance dependence. Finally, the significance of the many 

household characteristics at both stages of the model signals a high degree of heterogeneity 

within the households, which justifies the use of detailed micro-data in the modeling of the 

energy demand. Time series studies lack data concerning stock appliance, building 

characteristics, and are usually aggregates over the entire country's consumption. 

Aggregation and missing variables lead, potentially, to mis-specification bias. In addition, on 

the basis of the information from time series data the planning authorities are unable to 

evaluate the effect of their intervention across the households.

2.3 Energy Forecast Modeling
Dieck et al. (1985) presented a study for selecting the most appropriate time series model to 

forecast total energy usage at the University of Missouri-Columbia Power Plant. The Energy 

Management Department provided the monthly data on total energy usage (megawatts) at
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the University of Missouri-Columbia from January 1973 to December 1983. This data set 

was used to initialize the final models selected using a rollover forecast (updating every year 

the model if necessary and/or the parameters). These models included the Box-Jenkins 

ARIMA, Winters, Harrison and the Naive models. Each of these models was described and 

an approach was developed for selecting the most appropriate model. Once the time series 

has been analyzed and identified using the autocorrelation analysis, the model fitting process 

is performed for the five planning horizons chosen. The models are used to forecast 12 

periods ahead after each horizon (Dieck et al., 1985).

McElroy et al. (1986) developed a regional economic and demographic modeling system 

used to generate model inputs for forecasting internal energy sales and peak demands for 

the American Electric Power (AEP) System. Using standard econometric and component 

modeling techniques, the models forecast employment and output by detailed industry 

classification in manufacturing, employment by other major industry division, population, 

components of population change, labor force by age and personal income. A distinguishing 

feature of these models is that they explicitly incorporate quantitative estimates of both 

national and intra-regional linkages in the simulation process. Many electric utilities consider 

the methods for selecting economic and demographic forecast inputs to drive their service- 

area energy and demand projections. Since this regional economic and demographic 

modeling system is relatively new at AEP, its range of applications for developing improved 

energy and demand forecasts has yet to be fully explored.

Rastogi et al. (1990) suggested a total energy requirement model for the electric utility 

planning process. This model requires very little data input and time, and can be developed 

on a personal computer with the help of electronic spreadsheet and/or statistical program. 

Inputs used in determining the energy forecast for the suggested model includes population, 

weather, income, and a major economic activity. This study used the regression analysis to 

develop kWh sales models for twenty cooperatives. The following variables were included in 

the model development: (i) number of residential consumers; (ii) heating and cooling-degree 

days; (iii) electricity price; (iv) per capita income; (v) crude oil price; and (vi) previous 

electricity use. Their method has been tested on 20 rural electric cooperatives with 

satisfactory forecast results and explanations. A slight improvement to this method could be 

made by first excluding the large commercials in the total sales model and then adding back 

projected large commercial load to the projected sales (Rastogi et al., 1990)
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Skiadas et al. (1997) examined the impact of energy prices in energy consumption in 

selected Greek industries in the 1978-1991 period. An index, called energy intensity, is 

developed to quantify energy-saving efforts, and it is examined for the whole industry and for 

two general divisions: the energy-intensive and the non-energy-intensive sectors. The 

energy-intensive sector contains those industries examined by OECD in the following sub­

sectors: a) paper and paper products; printing and publishing; b) chemicals and petroleum, 

coal, rubber, and plastic products; c) non-metallic mineral products; and d) basic metal 

industries. The non energy-intensive sector contains all the other sub-sectors. Growth 

functions are used to examine the evolution of energy intensity. These growth functions 

provide an S-shaped time-pattern where a saturated level is finally reached. The saturation 

level is the most critical factor for understanding the behavior of the system under 

consideration, and knowledge of its variation would lead to improve forecasting. The study 

used two models to predict energy intensity. The results of the models are useful for 

formulating energy policy. Price-adjusted diffusion models seem to have predictive validity to 

be used to forecast changes in energy intensity. Pricing and taxation policies can be used 

as instrumental tools to promote specific energy-conservation measures. Applying the 

proposed models, one can predict the effectiveness of such measures. Supply-demand 

models can also be used to analyze the effects of a lower demand in the whole energy 

system for designing effective energy strategies (Skiadas et al., 1997).

Suganthi et al. (1999) developed a modified model to correct the deficiency in the 

econometric demand models used in developed countries, which consider only price and 

national income. Their modified model linked energy consumption with the economy, 

technology and the environment gave the best results, which were then compared with the 

results from a Mathematical Programming-Energy-Economy-Environment (MPEEE) model to 

find the optimum energy required based on certain environmental standards. The actual 

requirements of coal, oil and electricity from the modified model were used as input in the 

MPEEE model. The model maximizes the GNP-Energy ratio that is conceptually related to 

energy efficiency. The constraints limit the emissions of C 02, S 0 2, N 0 2, total suspended 

particles (TSP), CO and volatile organic compounds (VOC). The difference between the 

actual requirement from the modified model and optimum from the MPEEE model will have 

to be supplied by the non-conventional energy sources. The historic commercial energy 

consumption in India from 1953 to 1989 is used in projecting the requirement to 2010-11.

An electricity constraint based on the existing generation capacity is introduced in the 

MPEEE model. Different scenarios evolved for different levels of electricity generation
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capacity. A critical electricity generation capacity to be maintained for optimum GNP-Energy 

ratio was also established. The modified model (MM) gave the best result compared to the 

econometric and time series models. The predicted values from MM, compared to the 

actual, showed very little deviation. The GNP-Energy ratio is a maximum in the case of coal, 

while emissions were a maximum in the case of electricity generation. Hence in the MPEEE 

model the maximum allocation goes to coal. The critical values of electricity generation for 

different percentage reductions of pollutants give the policy maker a tool for taking 

appropriate decisions (Suganthi et al., 1999).

China is the world's second largest pollution source of CO sub 2 (Doug, 2000). It is 

estimated that 85-90% of the SO sub 2 and CO sub 2 emissions of China results from coal. 

With high economic growth and increasing environmental concerns, China's energy 

consumption in the next few decades has become an issue of active concern. Energy 

demand forecast over long periods, however, is getting more complex and uncertain. It is 

believed that the economic and energy systems are chaotic and nonlinear. Traditional linear 

modeling for energy demand forecasts, therefore, is not a useful approach. Stochastic 

dynamic models must be used to account for uncertainty and imperfect information about 

future economic growth and energy development. Doug (2000) developed a dynamic 

system model to predict China's energy demand in the next 25 years. The model predicts 

that China's energy demand in 2020 will be about 2,700-3,000 Mtce, coal demand 3,500 Mt, 

increasing by 128% and 154%, respectively, compared to that of 1995. The model can be 

used effectively for limited-data and ill-defined target system conditions. His results also 

showed that the GDP growth and energy economic efficiency improvements are two key 

factors in reducing energy consumption (Doug, 2000).

2.4 Electricity Pricing Modeling

Rudkevich et al. (1998) presented estimates for the price of electricity dispatched and sold 

through a poolco on the basis of bids made by rational, profit-maximizing generating firms. 

Advancing theoretical concepts developed by Klemperer and Meyer (1989) and Green and 

Newbery (1992), they developed a new formula for the instantaneous market clearing price 

that generating firms adopt bidding strategies given by Nash Equilibrium. They quantified 

the average price mark-up, relative to the "perfectly competitive" price, that would result from 

Nash equilibrium-based bidding strategies over the course of one year as a function of the 

number of identical firms in the poolco market. Their model is validated using data for 

Pennsylvania. The results showed that the Nash Equilibrium-based prices are sensitive to 

such factors as the average reliability of generating units, the amount of reserve capacity in
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the system, and the precision with which generating firms are able to predict demand for 

electricity on a daily basis.

The results also showed that, in markets with relatively high number of firms, the price of 

electricity was significantly higher than the short-run marginal cost of generation. However, 

even with a relatively low market concentration (high number of competing firms), the market 

clearing prices are still significantly higher than "perfectly competitive" prices. Their findings 

have important implications for the design and operation of future electricity markets. 

Moreover, the findings suggested that the guidelines used by the Department of Justice and 

the Federal Energy Regulatory Commission to characterize market power in electricity 

markets may require revision if they are to prevent the exercise of market power in poolco- 

type markets (Rudkevich et al., 1998).

Breipohl (2002) proposed that the price of electricity should comprise two components: 

energy price and “reliability price”. From the supply point of view, in addition to the energy 

price, there is a cost associated with reliability, or continuity of supply. This cost, which 

differs from other commodities, arises because electricity cannot be stored. From the 

demand point of view, electricity is an essential commodity, while others may want a choice 

of how much reliability they are willing to pay for. This study is based on the premise that, as 

long as the price of electricity is based solely on a price for electrical energy; the electricity 

market will not function properly. Consumers want electrical energy, but most consumers 

also want electrical energy instantaneously upon demand. Suppliers have to supply 

electrical energy, but they also must supply reliability. That is, they have to supply other 

services, spinning, ready, and planning reserve in addition to regulation and reactive power 

in order for the electrical energy system to be reliable. From regulatory rate hearings, the 

study reviews the capital costs and the cost of unserved demand and the traders “spark 

spread” as the reliability price.

Finally from the supply side, the study dealt with the price of ancillary services and 

suggested a price-reliability quantification as well as electrical energy price. Customers must 

also reimburse suppliers for subscribing to the reliability product for the ancillary services. 

On the demand side, electricity should be sold separately as electrical energy and reliability 

with customers being offered a choice of whether to subscribe to the reliability product or 

products. While this proposal has some notable difficulties, it offered a promise of having 

markets that logically address the two distinct products one of which certain customers may 

or may not want. In addition suppliers furnish electrical energy and reliability through ancillary
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services. Thus each of these two markets can converge. Energy and reliability should be 

the two products that are bought and sold in the electricity market (Breipohl, 2002).

According to Davison et al. (2002), in recent years a great deal of interest has been paid to 

the market-based pricing of electrical power. Electrical power contracts often contain 

embedded options, the valuations of which require a stochastic model for electricity prices. 

Efficient stochastic models exist for modeling price variations in traditional commodities. 

Electricity is critically different from these commodities as it is difficult to store and, on short 

time scales, its price is highly inelastic. This has important implications for stochastic spot 

price models of electricity. In these random models, price returns play a dominant role. The 

authors developed a new stochastic electricity price model for forecasting electricity prices. 

The model incorporates four main assumptions: (i) price spikes exist; (ii) off-peak electricity 

prices are often zero; (iii) electricity prices are sometimes even negative; and (iv) electricity 

prices don’t drift indefinitely.

The model combined the top-down aspect through examination of price series for key 

characteristics and through the use of price series to estimate model parameters. It also 

includes power demand and generating capacity, which are characteristics of the bottom-up 

approach, resulting in a hybrid model. Their preliminary results indicate that it has the 

potential to be a very powerful tool for pricing contracts and options on electrical power. The 

fact that the model is based on real physical aspects of the power markets, such as demand 

for power and generating capacity, means that it can be readily adapted to particular markets 

of interest, or to changing conditions within the same market. A number of aspects of the 

model require improvement if the model is to realize its full potential. The model does an 

adequate job of pricing calls but a poor job of pricing puts. A put-pricing model would need to 

incorporate a better model of “low” prices (Davison et. al., 2002).

Ko et al. (2002) presented a fuzzy regression model to estimate uncertain electricity market 

prices in deregulated industry environment. In the modeling of spot price of electricity, one 

common approach is to observe the price for a long period of time and fit a statistical model 

based on the observed time series. The estimated price depends on many factors such as 

demand periodicity, temperature and other meteorological influences and the loading order 

of generators. Production cost is used to represent the main variables that affect the spot 

price of electricity. Artificial neural network is applied to predict electricity prices based on 

past price, demand, and estimated reserves. In this paper, the authors used a time series 

model with fuzzy parameters to represent the uncertain market. A fuzzy number applies the
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autoregressive model to estimate a market price with the most likely price as its mean value 

and interval. To find the crisp mean value of fuzzy number, neural network is adapted with 

linear activation function and Levenberg-Marquart algorithm is applied to train the neural 

network.

The proposed model is applied to the California Power Exchange (CalPX) market data to 

predict the next days’ maximum forward price ranges of wholesale electricity using the past 

seven-day data. A data set from May to June 1999 is used for training neural network and 

the autoregressive model is validated with data set from July to December 1999. Finally, the 

range of market prices is estimated for the year 2000. Despite the increased parameters 

and complexity of their computations for a linear regression model, the autoregression 

parameters obtained by the neural network seem to work better than those of simple linear 

autoregression based on a straightforward least square minimization. The current fuzzy 

autoregression model naively provides the information of “possible” ranges of highest and 

lowest forecasted prices (Ko, et. al., 2002).

2.5 Correlation Dimension and Forecasting

Sivakumar et al. (1999) investigated the existence of the number of essential and sufficient 

variables to model the dynamics of the daily rainfall process. Their paper investigated the 

existence of chaotic behavior in the daily rainfall data of Singapore. They determined 

whether the behavior of rainfall process variation is observed for different record lengths, and 

the effects of the data size and the delay time on the correlation dimension estimate. They 

used the correlation dimension method, the nonlinear prediction method, and the method of 

surrogate data to detect non-linearity in the analysis. The first objective was analyzed using 

all three methods, whereas the remaining three objectives were analyzed only through the 

correlation dimension method. Daily rainfall data from six rainfall stations in Singapore were 

analyzed in this study, and the data set covers 30,20,10, 5, 4, 3, 2, and 1-year periods from 

each of the six stations.

The correlation dimension method provided a low fractal-dimensional attractor for the 

different data sets from the six stations, thus suggesting a possibility of chaotic existence. 

Based on the resulting attractor dimensions, the minimum number of variables essential to 

model the daily rainfall dynamics of Singapore was identified as 3 and the number of 

variables sufficient ranges from 11 to 18. Significant improvement can be achieved when 

additional variables, up to the number of variables sufficient (11 to 18), are included in the 

model. The results also indicated that data for longer record lengths exhibit a higher
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attractor dimension than those of shorter record lengths. The effects of the delay time value, 

used for the phase-space reconstruction, on the attractor dimension estimate were 

investigated, and the results provided additional support to some claims from previous 

studies. A total of about 1,500 data points is suggested as the minimum number for the 

computation of correlation dimension.

The inverse approach of the nonlinear prediction method used three different approaches to 

identify the existence of chaos. These approaches check the prediction accuracy with 

respect to the number of neighbors, the embedding dimension and the lead time. The 

results indicate the existence of chaotic behavior with some amount of noise in the rainfall 

data. The low prediction accuracy could be due to the presence of noise in the data and the 

use of the first-order approximation for prediction. The surrogate data method for detecting 

non-linearity provided significant differences in the correlation exponents between the 

original data series and the surrogate data sets. This finding indicated that the null 

hypothesis (linear stochastic process) can be rejected. Their results also indicated that the 

daily rainfall data of Singapore exhibited a nonlinear behavior and possibly low-dimensional 

chaos. Thus, a precise short-term prediction based on nonlinear dynamics is possible. Noise 

reduction methods, for instance, can be employed to achieve more accurate results than 

those obtained in Sivakumar et al. (1999).

Lisi et al. (2001) considered the problem of forecasting the daily discharge of a river 

according to methods based on the theory of nonlinear dynamic system. Lyapunov 

exponents are used to quantify the exponential divergence of initially close trajectories and 

estimate the amount of chaos in the data. For time series generated by deterministic 

dynamical systems, positive characteristic exponents indicated the presence of chaos. The 

prediction method used the nearest neighbors and represented an attempt to locally 

approximate the dynamic system by autoregressive linear polynomials, where parameters 

are time-variable. The peculiarity of this methodology is that the coefficient parameters are 

locally estimated so that the global nonlinear model is composed of local linear models. 

Since, the medium-long term unpredictability is typical feature of the chaotic time series, 

these results can be considered as a further indication of the presence of positive Lyapunov 

exponents, and thus, of a linear deterministic component in the data (Lisi et al., 2001).

Recent empirical studies have shown that the chaotic behavior and excess volatility of 

financial series are the result of interactions between heterogeneous investors. Kyrtsou et 

al. (2002) proposed a verification hypothesis based on the model by Chen et al. (2000) to
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show that the modification of the agents' homogeneity hypothesis can result in stochastic 

chaotic evolution of price series. Then, through an econometric procedure, they identified 

the underlying process of the Paris Stock Exchange returns series (CAC40). To this end, 

they applied several different tests dealing with: (i) long-memory components derives from 

the fractional integration test of Geweke and Porter-Hudak (1983); (ii) the chaotic structures 

from the work on correlation dimension by Grassberger and Procaccia (1983); and (iii) the 

Lyapunov exponents method by Gengay and Dechert (1992). Finally, they forecast the 

CAC40 return series using the recent methods of Principal Components Regression (PCR) 

and Radial Basis Functions (RBF).

According to the Takens’ (1981) theorem when m2n+/[, there exists an m-dimensional 

deterministic map g: Rm->Rm, which governs the evolution of the states Xf=(xt, x m , . . . ,  Xf.m+1), 

whose trajectory is diffeomorphic. Thus, given the properties of a diffeomorphism, there

exists a map g such that XM =g(Xt) or equivalently xM =G(xf, xM x,.m+1), where the function

G: Rm̂ R m is one of the components of g. Because G is deterministic, the problem of 

forecasting the component x*+1 reduces to the estimation of G. Following the technique of 

nearest neighbors, the system dynamics can be approximated by a polynomial function. 

Therefore, in predicting any forecasts with noisy data, the least-squares method may have a 

high variance. For this reason, Kugiumtzis, Lingjaerde, and Christopheresen (1998) applied 

the regularization methods of PCR, Partial Least-Squares Regression (PLS), and Ridge 

Regression (RR), which seem to be more robust against noise. For comparison reasons, the 

forecasts are reported by using the method of RBFs as proposed by Casdagli (1989).

Kyrtsou et al. (2002) investigated whether the behavior of the CAC40 returns series is 

governed by chaotic dynamics. Their method also explored the difficulties for distinguishing 

between chaotic and ARCH processes when traditional econometrical tests are applied. 

During recent years, "the family" of ARCH models has offered the best solution to detect 

heteroscedasticity and leptokurtosis in financial series. Therefore, it has been recently 

shown that structural nonlinear models can lead to market instability and chaos and mimic 

empirical time series properties. Kyrtsou et al. (2002) primary findings are as follows: (i) the 

CAC40 returns series exhibits short memory, as the deterministic Feigenbaum, noisy 

Feigenbaum, and ARCH processes; (ii) correlation dimension and Lyapunov exponents 

provide evidence that the CAC40 returns series could be generated from either a noisy 

chaotic or a pure stochastic process; and (iii) according to the normalised MSE criterion, 

chaotic models outperform the GARCH and naive prediction models.
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The Paris stock market has become increasingly complex and is therefore less amenable to 

forecasting over long time periods. This is confirmed by examining the variation intervals. 

Kyrtsou’s out-of-sample predictions are very sensitive to dynamic noise amplified in stock 

series. Even if the methods are used based on chaotic models, forecast values will never be 

identical to real prices. Noise and uncertainty play an important role in financial markets. 

Complex systems, such as stock markets, cannot be described by a purely deterministic 

system. It would be more realistic to consider that prices are stochastic realizations and 

agents' beliefs follow adaptive learning mechanisms. Then, high-dimensional underlying 

structures could be the root cause of the resulting price dynamics. Consequently, the Paris 

Stock Exchange can be modeled as a nonlinear system buffeted with noise (noisy chaos), 

providing explanations of the observed fluctuations (Kyrtsou et al., 2002).

Kuan et al. (1995) investigated the out-of-sample forecasting ability of feed-forward and 

recurrent neural networks based on empirical foreign exchange rate data. A two-step 

procedure is proposed to construct suitable networks, in which networks are selected based 

on the predictive stochastic complexity (PSC) criterion. The selected networks estimated 

use both recursive Newton algorithms and the method of nonlinear least squares. They 

investigated possible nonlinear patterns in foreign exchange data using feed forward and 

recurrent networks. The first step of the proposed procedure uses the recursive Newton 

algorithms of Kuan and White (1994a). The model by Kuan (1994) was then applied to 

estimate a family of networks and compute the PSC to select suitable network structures can 

easily be selected. In the second step, statistically more efficient estimates for networks 

selected from the first step are obtained by the method of nonlinear least squares using 

recursive estimates as initial values.

Second, they investigated the forecast performance of networks selected from the proposed 

procedure. Financial economists are usually interested in sign predictions (i.e. forecasts of 

the direction of future price changes), which yield important information for financial 

decisions such as market timing. Their results show that network models perform differently 

for different exchange rate series and that PSC is a sensible criterion for selecting networks. 

A two-step procedure was developed to estimate and select feed-forward and recurrent 

networks and carefully evaluate the forecasting performance of selected networks in different 

out-of-sample periods. The networks with significant market timing ability and/or significantly 

lower out-of-sample relative to the random walk model in only two out of the five series are 

evaluated. For other series, neural models do not exhibit superior forecasting performance.
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Nevertheless, their results suggest that PSC is quite sensible in selecting networks and that 

the proposed two-step procedure may be used as a standard network construction 

procedure in other applications (Kuan et al., 1995).

Embrechts (1995) illustrates techniques for establishing predictability and predictability 

windows for time series of daily Yen/Dollar (¥/$) currency fluctuations by determining the 

correlation dimension (“chaos analysis") and the Hurst coefficient (“fractal analysis”). 

Preprocessing techniques and several non-conventional enhancements to the application 

and implementation of the back-propagation algorithm are explained. Time series foreign 

exchange rates are indeed predictable on a weekly or biweekly basis with artificial neural 

networks. From the study, time series prediction relies only on past data for just one type of 

financial commodity. While forecasting financial time series such as exchange rates and 

interest rates is an obvious and tempting application for artificial neural networks (ANN), not 

all financial time series are predictable. Time series related to stock market indicators are 

often not predictable at all. Given a sufficiently large database, financial time series related 

to interest rates and currencies are often reasonably predictable by using a proper 

predictability window.

The first step is to apply signal processing tools such as chaos and fractal analyses to 

determine whether the time series might be predictable at all, and on which time scale 

successful predictions might be forecasted. Forecasting financial times series -  and foreign 

exchange rates in particular -  with or without neural nets is challenging. Several 

unconventional enhancements to feed-forward ANN’S trained with back-propagation are 

furthermore necessary to improve the profitability of time series forecasting. These include: 

(i) weight decay and threshold pruning; (ii) many hidden ANN layers; and (iii) multiple 

indicators. These modifications allow neural nets to consistently make profitable forecasts 

for ¥/$ biweekly exchange rate fluctuations. The most common pitfall to be avoided for 

forecasting financial time series is over-training. Monitoring actual trading performance, 

rather than the least squares error might prove to be a profitable compromise to overcome 

this hurdle (Embrechts, 1995).

According to Essawy et al. (1996), chaotic systems are known for their unpredictability due to 

their sensitive dependence on initial conditions. When only time series measurements from 

such systems are available, neural network-based models are preferred due to their 

simplicity, availability, and robustness. However, the type of neural network used should be 

capable of modeling the highly non-linear behavior and the multi-attractor nature of such
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systems. They used a special type of recurrent neural network called the “dynamic system 

imitator (DSI)”, that is capable of modeling very complex dynamic systems. The DSI is fully 

recurrent neural network that is specially designed to model a wide variety of dynamic 

systems. Their prediction method predicts one step ahead in the time series, and the 

predicted value is used to iteratively predict the subsequent steps. This method was applied 

to chaotic time series generated from the logistic, Henon, and the cubic equations in addition 

to experimental pressure drop time series measured from a Fluidized Bed Reactor (FBR).

The DSI is biologically motivated with both short-term and long-term memory mechanisms 

that enable the modeling of a system’s transient and steady state behavior. In addition, the 

DSI behavior depends on its initial conditions like any differential equation model, even 

though no explicit differential solving is incorporated in this case. The dynamics of a chaotic 

time series were modeled by training the DSI to perform a one step prediction. However, at 

any point of time, the DSI response depends on the initial conditions at time zero, the history 

of inputs, the network state variables, and the current network input. The trained network 

with any set of initial conditions can be implemented assuming the network was able to 

capture the dynamics in the time series. The model can use a number of initial data points to 

put the network on track, and iteratively feed the output of the network back to compute next 

predicted values. Even though this methodology is applied to several theoretical systems, 

the main idea was to use it in a strategy to identify certain chaotic behavior modes 

encountered in a fluidized bed reactor (FBR) system (Essawy et al., 1996).

2.6 Principal Component Analysis and Independent Component Analysis

Biswajit (2002) developed a technique that combines principal component analysis (PCA) 

and time-series for constructing control charts in multivariate situations to alleviate grade 

control problems in the mineral industry. The method involved two stages, in which the data 

were fitted with a time series model and the one step ahead forecast residuals were then 

monitored over time by the use of traditional control charts. This technique produced the 

best grade control chart because it handled any type of adverse situation, such as cross­

correlation, autocorrelation and non-normality of the data. The basic purpose of PCA is to 

project variable information, which is highly correlated, into a low-dimensional subspace by 

creating a new set of variables called ‘principal components’ or ‘latent variables’. Though the 

principal components are uncorrelated, the problem remains that the autocorrelation is not 

removed completely from the data set. One advantage of this new method is that it can 

alleviate problems of cross-correlation, auto-correlation and normality of data (Biswajit 2002).
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Lesch et al. (1999) produced two methods for feature extraction: PCA and independent 

component analysis (ICA), and applied them to univariate financial time series data. These 

feature extraction techniques decompose a financial time series into interesting components, 

which could be connected to political, economic or psychological factors influencing financial 

markets. Taken’s theorem develops an embedding matrix which reconstructs the system 

dynamics under appropriate embedding conditions and assumptions. These include the 

presence of infinite, noise-free and stationary data and the usage of arbitrary values for the 

embedding dimension and delay. Unfortunately, the correct embedding parameters are 

hardly known for real-world data like financial time series, nor can the mentioned 

requirements easily be assumed for them.

In this methodology, the eigen vectors (also called principal components), were computed 

and form the columns of the eigen matrix whose inverse maps the data set into the feature 

space. In this feature space, the signal is represented by the most important components, 

while the noise is accounted for in least ones. In PCA analysis, importance is defined as the 

size of the eigen value, since it represents the proportion of variance captured by the 

corresponding principal component. The plot of the sorted eigen values against their number 

is called the eigen spectrum, which can be used to perform a signal-noise-decomposition. 

For a stochastic system, a smooth exponential decline of the eigen values is expected. Any 

deviation from that, in the form of a sharp discontinuous decline, is an indication of linear or 

nonlinear deterministic structure in the data. In independent component analysis the 

equivalence to the eigen matrix in PCA is a matrix with its columns as the independent 

components. Its inverse demixes linearly the embedding matrix into statistically 

“independent” sources. In contrast to PCA the demixing matrix diagonalizes the covariance 

matrix and the higher-order cumulant tensors.

The FastICA and JADE algorithms were used in this study for estimating the demixing 

matrix. The underlying assumptions include: (i) the sources are statistically independent; (ii) 

there is at most one source with a Gaussian distribution and the signals are stationary; and 

(iii) there are many signals as sources and that the mixing occurs instantaneously. The 

JADE algorithm performs a joint diagonalisation of the eigen matrices as slices of the 4th- 

order cumulant. This requires complex tensorial operations and substantial computation 

power such that there are practical restrictions in the usage of this algorithm. In contrast, the 

FastICA algorithm estimates the non-Gaussian sources in the data set once at a time in an 

iterative way. This achieves a reduction in computation time by two orders of magnitude. 

Both methods were able to detect deterministic structure in the data using the eigen
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spectrum for the PCA. The plot of the Euclidean norm of the independent components was 

much closer in their morphology to signals.

2.7 Artificial Neural Network and Forecasting

Kaastra et al. (1996) provided a practical introductory guide in the design of a neural network 

for forecasting economic time series data. They explained an eight-step procedure to design 

a neural network forecasting model. The back propagation (BP) neural network is used to 

illustrate the design steps since it is capable of solving a wide variety of problems. The first 

four steps are variable selection, data collection data preprocessing, and training, testing, 

and validation sets. The last four are neural network paradigms: number of hidden layers, 

number of output neurons, transfer functions, evaluation criteria, neural network training: 

number of training iteration, learning rate and momentum, and implementation. The success 

of neural network applications for an individual research depends on three factors. First, the 

researcher must have the time, patience and resources to experiment. Second, the neural 

network software must allow automated routines such as walk-forward testing, optimization 

of hidden neurons, and testing of input variable combinations; either through direct 

programming or the use of batch/script files. Third, the researcher must maintain a good set 

of records that list all parameters for each network tested. In this way a library of what is 

successful and what is not is built up (Kaastra et al. 1996).

2.8 Wavelet Transform and Forecasting Time Series

Milidiu et al. (1999) described a system formed by a mixture of expert models (MEM) for time 

series forecasting. The idea is to construct a specific predictive model for each input space. 

A complex problem is divided into simpler sub-problems that are treated individually. The 

implementation of the MEM method is made in five phases. The first phase centers on 

changing the base of the input vector space. The Haar wavelets transform is applied to 

change the base of the input vector space to provide sample description using an overall 

shape plus details. Thus, it allows the cluster algorithm to group patterns that have closer 

shapes. This approach enables a better modeling for the following phases. The second 

phase deals with input space partitioning. The transformed data plus any pertinent data 

available for the training of the expert models are partitioned by Isodata algorithm into a 

predefined number of classes. The samples and the centers of mass for each cluster (input 

space classes) are obtained as outputs. If Isodata is provided with an arbitrarily high number 

of initial random seed classes, it may be observed that many classes turn out to be empty 

(no samples associated).
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The third phase centers on the training of expert models. Several categories of predictive 

models, such as neural networks, statistical models were used in this phase. For each 

model type, one specific model was constructed and trained for each input space class 

identified in phase 2, using its corresponding training samples. A set of models are

generated {m,} with i = 1,... ,c, and j = 1 m, where c is the number of effective input space

classes identified in phase 2 and m is the number of model categories used in MEM. The 

fourth phase is used for testing and benchmarking. Given an independent set of test 

patterns, they are classified among the input space classes identified in phase 2. The 

corresponding centroid that has the minimum Euclidean distance is selected for each test 

pattern. Next, each expert model is tested using the test patterns belonging to class i, 

obtaining the performance measure value RMSEjj, (root mean squared error). Finally, for 

each selected class I, the winner expert model denoted as B(i) is that one presenting the 

minimum RMSEy, for j = 1,...,m. The vector B(i), for i = 1,...,c, works as the gating 

mechanism of MEM and indicates the winner expert model for each space class. The next 

phase is forecasting. Given a wavelet-transformed pattern, taken from a time series, its input 

space class i is identified by selecting its corresponding nearest centroid. Then the model 

B(i) is selected to treat this sample and produce the required forecast.

Two different time series were experimented with, including a laser data and a financial data. 

The first series was approximated using deterministic equations, while the financial time 

series used stochastic approximation. Three types of predictive models: partial least 

squares, K-nearest neighbors and carbon copy are utilized in this process. The main 

advantages of the MEM method include: (i) the use of Haar wavelet transform to perform a 

base change of the input vector space, giving an overall shape description of each pattern to 

the clustering algorithm; (ii) the independent of models and data that makes it possible to 

train and adjust the predictive models in a individualized form and in parallel; and (iii) the 

possibility of using different classes and variations of adaptive models, selecting those ones 

that best fit to particular regions of the input space (Milidiu et al., 1999).

Aussem et al. (1997) developed a simple strategy for improving neural network prediction 

accuracy, based on the combination of predictions at varying resolution levels of the domain 

under investigation. First, a wavelet transform is used to decompose the time series into 

varying scales of temporal resolution. The latter provides a sensible data decomposition so 

that the underlying temporal structures of the original time series become more tractable. 

Then, a dynamic recurrent neural network (DRNN) is trained on each resolution scale with 

the temporal-recurrent back-propagation algorithm. The forecasting strategy is based on the
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subdivision of the prediction task into elementary tasks. A wavelet transform, for this 

purpose, is used aimed at laying bare useful information, which is then treated by neural 

networks. Like the Fourier transform, the wavelet transform has proven to be a versatile tool, 

which gives a better handle on data. It has been effectively used for image compression, 

noise removal, object detection and large-scale structure analysis, among other applications.

The wavelet transform is a redundant transform (i.e. decimation is not carried out). It 

decomposes the input signal into detailed signals and residuals. The original signal can be 

expressed as an additive combination of the wavelet coefficients at the different resolution 

levels. The latter provides a sensible decomposition of the signal, or time series, so that faint 

temporal structures may be revealed. Statistical models may also be used to process these 

structures. Therefore, it suffices to run a DRNN model on each resolution level and then 

recombine the individual predictions to form the final forecast. Wavelet transform provides 

decomposition in terms of time and frequency, or of scale and position. A wavelet transform 

for discrete data is provided by the particular version known as the algorithm with holes. The 

combination of several DRNN, aimed at capturing the dynamics of several multi-resolution 

versions of a data signal, can aid in improving the prediction accuracy. This innovative 

approach combines data analysis and prediction in an integrated fashion. It leads to a 

combination of connected engines, with outputs combined in a natural way (Aussem et al. 

1997)

2.9 Stochastic Processes
Any variable whose value changes over time in an uncertain way is said to follow a 

stochastic process. Stochastic processes can be classified as “discrete time” or “continuous 

time”. A discrete time stochastic process is one where the value of the variable can only 

change at certain fixed points in time, whereas a continuous time stochastic process is one 

where changes can take place at any time. A Markov process is a type of stochastic process 

where only the present state of the process is relevant for predicting the future. The past 

history of the process and the way in which the present has emerged from the past are 

irrelevant. Stock prices are usually assumed to follow a Markov process (Hull, 2000). The 

Markov property of stock prices corresponds to the weak form of market efficiency. This 

states that the present price of a stock impounds all the information contained in a record of 

past prices. Models of stock price behavior are usually expressed in terms of what are 

known as Wiener processes. A Wiener process is a type of Markov stochastic process used 

to describe the motion of a particle that is subjected to a large number of small molecular 

shocks and is sometimes referred to as Brownian motion.
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2.9.1 The Black-Scholes Option Pricing Model

Black and Scholes (1976) developed their options pricing model using the assumptions that 

asset prices adjust to prevent arbitrage, that stock prices change continuously, and that 

securities follow log normal distribution. From the original Black-Scholes formula, scholars 

and industry practitioners have developed a number of options pricing models suited for the 

different needs of the financial commodity industry. Fusaro (1998) simplified the option 

pricing model to capture essential elements of the Black and Scholes’ formulation. The 

problems with options pricing models are the underlying assumptions about futures 

distribution of the forward price, security prices patterns, correlation between forward rates 

and interest rates, or about the normal distribution of option prices. These assumptions 

could lead to wrong option valuation. For example, the use of the Black-Scholes options 

pricing model over time has repeatedly confirmed that this model undervalues call options 

and overvalues put options.

This particular handicap of the Black Scholes model arises from the fact that expected 

volatility remains unknown, even with the underlying assumptions. As a result, a number of 

extensions of the Black-Scholes pricing model have followed since 1973 for dealing with 

volatility, including: (1) variations of the Black-Scholes pricing model and (2) the binomial 

model (Cox, 1976,). There are two basic approaches to estimating the volatility. The first 

approach is to use historic volatility to estimate the expected volatility. The second approach 

is to use fresh data from the options market itself. The second method uses options prices 

to find the option market’s estimate of the underlying commodity price standard deviation that 

is drawn from the option market, which is called an “implied volatility” (Fusaro, 1998). The 

most important application of options pricing models is to estimate fair value prices in illiquid 

markets. The option pricing models can be applied to futures and forwards, options and 

other derivative securities.

Engle et al. (1993) forecast future option prices by using autoregressive models of implied 

volatility derived from observed option prices (Day and Lewis, 1990; Harvey and Whaley, 

1992). In contrast, Engle (1982) proposed the ARCH model to develop the dynamic 

behavior in volatility and forecast the future volatility using only the return series of an asset. 

The performance of these two volatility prediction models from S&P 500 index options 

market data are assessed over the period from September 1986 to December 1991. The 

straddling trading strategy is used to achieve this assessment. Straddle trading is employed 

since a straddle does not need to be hedged. Each agent prices options according to its
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chosen forecast method, buying and selling straddles when the forecast price for tomorrow is 

higher (lower) than today's market closing price. The results showed that the agent using 

the GARCH forecast method earns higher profit (in excess of a cost of $0.25 per straddle) 

than the agent using the implied volatility regression (IVR) forecast model (Engle et al. 1993).

2.9.2 Special Stochastic Process Problems

Several problems are encountered in the formulation and solution of stochastic problems of 

derivative securities. These include correlation dimension and correlation integral and 

dimension problems. Two methods for analyzing chaotic times series are the correlation 

dimension and nonlinear forecasting (Yunfan et al., 1998). Correlation dimension is a 

measure of the extent to which the presence of data point affects the position lying on the 

attractor. It uses the correlation integral for differentiating chaotic from stochastic behavior 

(Grassberger and Procaccia 1983). Grassberger and Procaccia (1983) and Theiler (1987) 

also developed special algorithms for the computation of the correlation dimension to 

compute the correlation dimension of energy prices and energy consumption time series. 

There are two sources of error in the estimation of the dimension from real data: statistical 

error and systematic error. Sources of systematic error include noise and autocorrelation 

(Theiler, 1986). Majski (1997) developed a probability measure for estimating the correlation 

dimension using N independent and identically distributed points, x1t x2,...,xN e RM.

Theiler et al. (1992a,b) also developed the method of surrogate data that makes use of the 

substitute data generated in accordance to the probabilistic structure underlying the original 

data. This means that the surrogate data possess some of the properties, such as the 

mean, the standard deviation, the cumulative distribution function and the power spectrum, 

but are otherwise postulated as random, generated according to a specific null hypothesis. 

Here, the null hypothesis consists of a candidate linear process, and the goal is to reject the 

hypothesis that the original data have come from a linear stochastic process. Since the 

primary interest is to identify chaos in the time series, it would be desirable to use any of the 

statistics used for the identification of chaos, such as the correlation dimension, the 

Lyapunov exponent, the Kolmogorov entropy, and the prediction accuracy. If the 

discriminating statistics obtained for the surrogate data are significantly different from those 

of the original time series, then the null hypothesis can be rejected, and original time series 

may be considered to have come from a nonlinear process. On the other hand, if the 

discriminating statistics obtained for the original and surrogate data are not significantly 

different, then the null hypothesis cannot be rejected, and the original time series is
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considered to have come from a linear stochastic process as suggested by Theiler et al. 

(1992a,b) and Kyrtsou (2002).

2.10 Risk Quantification and Characterization

Virtually all investment decisions in the petroleum industry are made under conditions of risk 

and uncertainty. The decision maker must choose a course of action from among those 

available even though the final outcome of the decision is not known with certainty. A 

specific example is the decision to drill an exploratory well to test a geologic prospect. The 

process begins with an estimate of the reserves the well or field would likely produce if the 

prospect contained oil or gas. These reserves are apportioned into annual production-rate 

schedules. After accounting for crude and gas-sales prices, royalties, taxes, and operating 

expenses these annual production rates are converted to a series of annual cash flows and 

the associated measures of profitability (Newendrop, 1981). This is followed with application 

of risk and uncertainty methods. These methods include (i) use of a risk-adjusted input 

parameters; (ii) use of a higher discounting rate as a hedge against risk; (iii) use of “profit/risk 

ratios” which express likely return from a successful discovery as a multiple of the amount of 

exposed capital they I; and (iv) detailed stochastic process modeling (Newendorp, 1981).

2.11 Conclusion

The literature survey focused on energy forecasting using statistical and probability models, 

energy econometric models, option pricing models, correlation dimension and modeling 

using principal component analysis and independent component analysis and their effect on 

forecasting. Neural network forecast models and wavelet analysis of time series were also 

surveyed to provide comprehensive basis for this study. The prediction or forecast of a time 

series data involves the use of linear and non-linear analysis and methods. Algorithms are 

used in independent component analysis, correlation dimension and Radial Basis Function 

(RBF). PCA, ARIMA and GARCH are all linear methods except for PCA. All these methods 

have contributed in their various domains to advance knowledge and frontiers and to assist 

analyst with appropriate tools for solving various problems. However, there is no 

comprehensive tool available for helping mineral and energy economists for dealing with 

energy pricing and policies for managing mineral and energy projects in competitive markets. 

This fundamental problem forms the basis of this research study.
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CHAPTER 3.0

ECONOMICS OF FOSSIL FUELS ENERGY AND ELECTRICITY INDUSTRY

This chapter reviews the determinants of energy prices. The factors that affect the energy 

demand and prices are presented, as well as the expanded use of energy products, which 

include crude oil, natural gas, coal and electricity. The chapter also covers the evolution of 

the energy map of Canada and Alberta.

3.1. Determinants of Oil Pricing Models
The factors that affect crude oil pricing include: (i) Organization of Petroleum Exporting 

Countries (OPEC) and non-OPEC production capacity; (ii) weather and production failures; 

(iii) market conditions, political and economic stability; and (iv) technological innovations. 

Throughout its history, the price of oil has practically never kept up with inflation. That is to 

the advantage of the customers, but of great concern to exporting countries. Forecasting 

crude oil prices over the productive life of an oil field of twenty or more years is a complicated 

task. Economic theory states that, in the long run, prices will settle at a level whereby the 

efficient firms will continue to replace their non-renewable natural resource reserves and 

earn a reasonable return on their shareholder’s equity commensurate with the associated 

geological and financial risks. This may hold true ten or twenty years into the future. 

Unfortunately, in the critical near term, world crude oil prices forecasting has become a little 

more than a guessing game with inordinately high stakes (Breton, 1985).

Forecasting of gas prices with deregulation and the growing trend of producers to sell directly 

to major natural gas purchasers rather than the gas pipeline companies makes the historical 

prices inadequate for future price projections. Opinions differ widely on natural gas future 

pricing. One important factor that is considered in price projections is the basic realization 

that, as the industry finds more gas relative to oil with time, this may affect the supply and 

demand price relationship with the growing market for the product. A further stabilizing factor 

has to be the tremendous reserves of natural gas locked up in overseas locations such as 

the Persian Gulf, Russia, Australia, Algeria and Indonesia due to lack of market.

3.2 Demand for Oil and Gas

The demand for domestic crude oil in any country depends on several major factors 

including domestic and international demand and the total amount of crude in a country 

relative to discoveries in other countries. The degree of market freedom in the movement of 

crude oil and its products in international trade is an important factor. Demand is also
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affected by the development of other energy sources such as shale, tar sands, atomic fission 

or fusion, and solar energy, hydro dams and wind power (Campbell, 1959). Much of the 

changes in the 21st century may be credited to the remarkable expansion in the use of 

energy. The volume of energy used is a measure of the real wealth of a country or a 

civilization.

The first half of the 20th century can be classified as the period when people turned 

increasingly larger proportions of total industrial production into energy-consuming machines. 

These machines led to still greater increases in industrial production to supply both 

consumer goods and still more energy-consuming machines (Campbell, 1959). Population 

is one of the basic factors in the growth of consumer demand and also the growth in the use 

of energy. Figure 3.1 illustrates the growth comparisons of population, total energy, oil and 

gas (Campbell, 1959). Population changes have brought about important economic shifts 

such as higher ratios of consumers to producers. However, population increases have not 

had any great influence on demand for petroleum products (Campbell, 1959).
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Figure 3.1 Growth Comparisons: Population, Total Energy, Oil and Gas 
(Source: Campbell, 1959)
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3.3 Expanded Use of Petroleum Products
Figure 3.1 also shows that oil and gas made big gains after the 1940s. Also, petroleum 

consumption did not lose its momentum during the depression of the thirties. Total energy 

consumption in 1938 was almost identical with that of 1920. Oil and gas demand showed 

200% gains by 1950. The recession of 1938, civilian rationing in 1942, and the economic dip 

of 1949 were only minor rest periods in the steady upward demand trend. There is the 

relationship between oil and gas demand and the value of all goods and services in the 

United States. Figure 3.2 shows this comparison in terms of the number of gallons of oil and 

gas used per thousand dollars of gross national product1 (Campbell, 1959).
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Figure 3.2 Oil Gas consumption versus Gross National Production 
(Source: Campbell, 1959)

There is a direct comparison between oil and gas consumption and population. The per 

capita consumption of oil and gas is estimated by dividing the yearly demand by the 

estimated population. In the early twenties, consumption averaged less than 250 gallons per 

person per year. Those were the days of the T-Model Ford when total motor vehicle 

registration averaged only about 10,000,000 cars and trucks. Data on distillate production 

were lumped in with residual fuels until 1930. When refiners first reported distillate 

production that year, the total represented only 8.8% of a barrel of crude. Refiners turned

'Since the value of goods and services is expressed in dollars and oil and gas is measured in terms of physical volume 
the dollar values were corrected for inflation or deflation with all values stated in 1947 dollars.
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about 23.1% of the average barrel of crude into distillate fuels in 1957, and even this yield 

did not include the light material that went into jet fuel. The once-prosperous oil and gas 

industry of Iran has suffered great setbacks since 1979. Prior to the revolution, Iran was the 

second largest oil exporter and the fourth largest oil producer in the world. Today, however, 

24 years after the revolution, the Iranian oil and gas industry has suffered massive losses 

from lack of professional and experienced management and definitely an acute lack of 

domestic and foreign investments. Technically, it is an internationally accepted fact that 

current Iranian output has reached a plateau and production is declining. In addition, fast- 

growing domestic oil and gas consumption due to the increasing population in Iran has also 

caused the reduction of oil exports and the shrinkage of oil revenue. Within the next few 

years, Iran is set to reach a rare moment in the history of its oil industry, as domestic oil 

consumption overtakes exports (Kashfi, 2003).

Domestic demand for petroleum products was only 1,250,000 bbl daily in 1920, but the rate 

of gain was rapid for the next decade. The total demand in 1929 was almost exactly double 

that of 1920. There is little wonder that some drillers and car manufacturers in the twenties 

began to worry about a probable shortage of oil (Campbell, 1959). Gasoline was the only 

major petroleum product to sustain growth in 2002 API Overall demand for petroleum 

increased by 0.1% in 2002 API, For the 10 years prior to 2000, US petroleum-demand 

growth had averaged about 1.5 percent per year.

Gasoline demand had its strongest showing in four years API Domestic deliveries again 

lagged behind historic growth trends. API also reported that US petroleum inventories during 

2002 fell by more than 100 million barrels, or about 10% (Anon., 2003). The growth trend of 

demand is shown in Figure 3.3. While demand for petroleum is not influenced by changes in 

the general economy as much as other production items, the chart shows an important dip in 

the economy between 1920 and 1955. The biggest drop came during the depression years 

of the early thirties. The slight dips in the demand curve were due to the 1938 recession, 

1942 civilian rationing, loss of 1946 military demand, 1949 recession, the rolling recession of 

1954, and the period of adjustments, which started in 1956. If domestic demand were to 

continue gaining at the 1921-55 rate, the 1965 average would have been almost 15,000,000 

bbl per day (Campbell, 1959).

3.4 Breakdown of Demand

The change in composition of domestic demand for petroleum is shown in Figure 3.4, which 

portrays the portions of domestic demand represented by gasoline and distillate fuels.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Gasoline had its greatest relative growth in the twenties. In 1920, gasoline represented only 

23.9% of domestic demand for all oils. By 1931, the gasoline portion had climbed to 45.3%  

of the total (Campbell, 1959). The oil embargo and subsequent inflation in 1973-1974 had a 

severe impact on the US automobile industry. US auto sales fell from a high of 9.67 million 

units in 1973 to a low of 5.8 million units in 1982. During the period 1970-1982, sales of 

small cars increased, as did sales of foreign cars. Three factors contributed to the change in 

the composition of US car sales. These factors include: (i) the recession; (ii) the increase in 

government regulations; and (iii) the rise in oil prices. The economic recovery and the 

decline in the real price of petroleum have changed the outlook for the US auto industry. 

Continued expansion in the US economy will accelerate this trend. However, several factors 

threaten to disrupt an otherwise optimistic outlook for the American auto industry, including: 

(i) quotas on foreign steel; (ii) federal corporate fuel economy requirements; and (iii) 

domestic content laws (Laffer, 1985).
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Fig. 3.3 Percentage Gains in Domestic Demand From 1920-1965 
(Source: Campbell, 1959)

Rapid growth in demand for distillate fuels was the main reason for the leveling of the 

gasoline percentage after 1930. In 1933, the first year the Bureau of Mines separated 

distillate fuel from residual, distillate demand was only 7.5% of the total for all oils. Distillate 

accounted for 19.1% in 1957. It is this shift in the percentage composition of domestic 

demand that made possible the rapid gains in the overall total. Diesel fuel sales to railroads
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climbed from less than half a million barrels in 1936 to almost 85,000,000 bbl in 1956. 

However, residual fuel sales dropped to 57,000,000 bbl in the same period. The greatest 

gain in consumption of distillate has been for use as heating oils. Distillate sales for heating 

gained 420% in the 20-year period while residual sales increased by 208%. Domestic 

demand for all products increased to 194 %. Safes of anthracite coal, used mostly for 

domestic heating, dropped from 54,200,000 tons in 1936 to almost 29,000,000 tons in 1956 

and to 25,500,000 tons in 1957. Either distillate fuel or natural gas replaced most of this coal 

for heating purposes (Campbell, 1959).

Table 8.3 shows the domestic product Supply by year (Anon, 1996). Figure 3.5 shows the 

trend in annual changes in domestic demand for petroleum products in the U.S. from 1933 

through 1957. Actual decreases in domestic demand came during the recession of 1938 

and at the start of civilian rationing in 1942. For the 12-year period 1945-57, there were six 

years with annual gains of about 3.5 % or less. There was only one year with an increase 

better than 10 %. In the period 1948-57, there were only two years with large increases: 

1951 with 8.2 % and 1955 with 9.0 % (Campbell, 1959). Even the pressure from new car 

drivers did not keep percentage gains in line with those of the big growth period that lasted 

from the low point of the depression in 1932 to 1955.
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Fig. 3.4 Percentage Domestic Demand for Gasoline and Distillate. 
(Source: Campbell, 1959)
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Oil and gas accounted for 17.7% of the total energy in 1920 and climbed to 45.4% by 1938. 

For the period from 1938 through 1943, World War II forced gains in fuel consumption that 

was met only through rapid increases in coal production. Production of bituminous coal and 

lignite increased to 336,281,000 net tons in 1938 and to 593,797,000 tons in 1943. The big 

gains for coal resulted in the drop in percentage of the total energy supplied by oil and gas, 

down to 39.7% for 1943. After 1943, oil and gas returned to its upward trend. By 1956, 

these fuels were supplying 67.5% of total energy from fuels and waterpower.
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Fig. 3.5 Percentage Gains in US Petroleum Domestic Demand 
Source: (Campbell, 1959)

3.5 Energy Demand Outlook

Figure 3.6 shows the marketed production of natural gas. Consumption of natural gas 

reached 2 trillion cubic feet a year for the first time in 1936. Demand for petroleum products 

and marketed production of natural gas are combined in Figure. 3.7 to show the overall gain 

in demand for oil and gas. Projected lines at the right of the chart show three totals of oil and 

gas demand for 1965 based on three conditions: (i) if the 1942-57 rate of gains were to 

continue the 1965 total would be about 23,300,000 bbl daily; (ii) actual gains were expected 

to give a total of 19,300,000 bbl daily; and (iii) if low gains of 1957 and early 1958 were to 

govern the trend, the total for 1965 may be as low as 17,000,000 bbl daily. In 1958, the
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combination of stagnating product demand, crude supply fluctuations, feed stock and product 

price volatility created tremendous swings in profit margins. The API reported that US 

gasoline demand in 2002 was strong but that demand for all other petroleum products was 

much lower than previous years. In terms of supply, the US has become more dependent on 

imports. Different regions have also built up different degrees of conversion capacity 

depending on the regional product slates and type of crude processed. The US has the most 

mature refining industry compared to other regions. Events in Iraq and Venezuela will have 

the biggest impact on future refinery profitability. In the absence of a war in Iraq or with a 

short war, refining margins should recover fairly quickly but remain in the lower end of the 

historical range (Nakamura, 2003).

MARKETED PRODUCTION Of7 NATURAL GAS

15

1950

Fig. 3.6 Marketed Production of Natural Gas between 1935 and 1965 
(Source: Campbell, 1959)

3.6 Competition from Gas
There are at least three factors, which indicate a greater growth for natural gas and gas 

liquids than for petroleum products. Figure 3.8 compares marketed production of natural gas 

with domestic demand for petroleum products. The comparison is made by expressing 

production of natural gas as a percentage of domestic demand for products. The US 

exploration and production industry increased capital spending in 2000 versus 1999. This 

was due largely to the availability of attractive drilling prospects, expectations for a steady
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increase in US oil and natural gas demand, and continued strength in oil and gas prices 

(Anon, 1999). This ratio remained below 35 from 1918 until World War II. The sharp 

upward trend started in 1941 when natural gas production was 31.5 % of the energy from all 

petroleum products used in the United States. Except for minor adjustments in the late years 

of World War II and in 1955, gas gained steadily on oil through 1957. Crude make up 41.4 

% and natural gas liquids the remaining 7.6 %.

30
1942-1957 rate 

of increase: TOTAL DEMAND FOR Oil- AND GAS 
■ /  (Natural gas inducted at <*000 cm ft per barrel)

20

19651950 195519401930 19351925

Figure 3.7 Total Demand for Oil and Gas. 

(Source: Campbell, 1959)

3.7 Ultimate Production

The second biggest factor in US future demand for crude from the oil fields is the availability 

of crude and natural gas. This availability depends on the total volume of petroleum 

contained in the sedimentary deposits of the US and the cost of finding and producing the 

hydrocarbons from these deposits. As long as these raw materials can be found and 

produced below the price refiners and processors will pay for them, production is limited only 

by demand. Operators have discovered 153 gas fields in the Sacramento basin of northern 

California. Of these, 114 fields have a combined probable ultimate recovery of 9,545.3 

billion cubit feet (BCF) of gas. Some 95% of the cumulative production is from the 46 fields 

that have a field size greater than 25 BCF. From recent Sacramento basin highlights, it is 

reasonable to expect another 500 BCF of new ultimate production (MacKevett, 1998).

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.8 Factors Affecting Drilling
The total amount of oil found depends on the results of drilling and the number of wells 

drilled. The number of wells drilled depends on income from production and this income is 

determined by crude volume and unit price. The volume of crude depends on demand and 

producibility and is related to oil/gas reserves. Estimates of ultimate production from a given 

reservoir will tend to rise in the future as production engineers develop more and better 

secondary-recovery methods (McKechnie, 1983). Wells drilled in new areas will encounter 

geothermal gradients that are unknown. The required temperature and pressure prediction 

methods must, for economic reasons, obtain the required input data from temperature logs 

while drilling (Kutasov, 2002).
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Fig. 3.8 Natural Gas Demand versus Crude Oil Demand 
(Source: Campbell, 1959)

Drilling depends on capital availability, which also depends primarily on the general level of

the economy. Neither this factor nor others based on income from oil and gas are of great

value in predicting drilling for a given year since they do not take into account short term

factors such as unusual flow of oil capital to foreign drilling; shortage of materials; short term

business cycles and rush to drilling in “hot areas”. Starting from 1997, Alberta's oil capital

tumbled as the price of benchmark West Texas Intermediate crude tumbled from more than

US $22 last fall, to a nine-year-low of US$13.21 in mid-March, before recovering last week to

bob around US $16. The bounce came on news that two OPEC giants, Saudi Arabia and
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Venezuela, along with Mexico, had secretly brokered a multinational deal to cut oil 

production by at least 1.1 million barrels a day beginning on April 1 1998 (Nemeth, 1998).

US Oil operators are finding less oil per well drilled than in the past. As a result, total 

reserves will not keep up with production unless the percentage gain in well completions 

climbs faster than production increases. Producers are also using up a larger percentage of 

proven reserves each year than they were in the late thirties and the years just after World 

War II. If oil operators are failing to maintain a constant ratio of oil reserves to production, 

the change can be due to either of two factors. To date most of the oil produced has been 

conventional crude. There is an increasing need to distinguish it from non-conventional oil 

made up of heavy oil, tar sand oil and enhanced recovery oil. It may be concluded that the 

world's political and economic stability, which relies on an abundant supply of cheap oil, is in 

serious jeopardy (Campbell, 1997).

Nominal and real crude oil prices (US$) are shown in Figure A.1 see the Appendix. From 

1971 to 1999, world oil production increased by 1.1 % a year from 2.48 billion tonnes to 3.45 

billion tonnes, with dips following the oil shocks of 1974 and 1979 (Figures A.2 and A.3 See 

Appendix). OPEC’s share of the world oil production shrank from 50% to 40% but it is 

expected to increase in the next two decades. OECD countries continue to use more than 

half the world’s oil, but the share of developing countries rose significantly as shown in 

Figure A.4 (See Appendix). The International Energy Agency (IEA) estimates OPEC’s 

overall production capacity at 31.4 million barrels of crude a day, a third of the total by Saudi 

Arabia, and another third by Iran, Iraq, Venezuela and the United Arab Emirates. Figure A.5, 

(See Appendix) shows that OPEC’s spare capacity is 2.2 million barrels a day. Figure A.6 

(See Appendix) shows OPEC’s crude production capacity beyond its target for October 1, 

2000.

3.9 Drilling and Crude Prices

To raise the ratio of drilling to production would call for higher crude prices or lower drilling 

costs or both. Drilling contractors and oil-company crews have been and are continuing to 

cut drilling costs, but this is not enough. Despite the large percentage gain in well 

completion, reserves are not keeping pace with production. This is shown in Figure 3.9. 

Improvements in drilling quality will lead to reductions in the cost of drilling wells. It will mean 

better selection of drilling locations, greater knowledge of prospective producing formations 

that will be tapped by the drill and better testing of these formations (Campbell, 1959). 

Another aspect that influences the reserve portion of the ratio as well as production capacity
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is the rapid growth in secondary recovery. These programs add to total recoverable 

reserves. The rate and gain in production by secondary recovery projects will be determined 

by the cost of finding new crude oil. As long as the operator can find new crude oil cheaper 

than he can add to reserves by secondary recovery method, he will only have conservation 

as an incentive for initiating secondary projects (McKechnie, 1983). Production in the future 

will be influenced by the relative quantities of oil and gas in the total reserve. Figure 3.10 

shows the remarkable gains in consumption of natural gas since 1935. The annual 

percentage gains have been consistently high.

3.10 Foreign Production
Anon (1976) has observed that the American petroleum industry in its early phases was not 

involved in any significant way in the foreign relations or policy of the United States. In his 

view, there was no specific public interest in the acquisition of foreign petroleum reserves 

because during the period from 1860 to 1920 domestic supplies were abundant and 

continually increasing, and the strategic character of petroleum had not yet been realized. It 

was only after the experience of World War I that general awareness of the vital role-played 

by the current technology of warfare developed. The reason for developing pressure from 

foreign crude is shown in Figure 3.10. In 1918, when US crude production was just under a 

million barrels daily, total foreign production was less than half the US production. Some of 

the larger gains have been in the Middle East since the end of World War II.

Oil and gas producing enterprises outside the US had their output increased and yet the 

profits in 2001 were generally lower (Radler, 2002). Important producing areas other than 

the Middle East are Canada, Mexico, Venezuela, Indonesia and Russia. Worldwide drilling 

activities will increase in 2003 with more than 20% higher rig forecasts in North America, 

solid gains in international markets, and slightly higher offshore rig utilization. Exploration 

and production spending will grow by more than 10% in 2003, following the 2.5% 2002 world 

decline. The drilling industry is well positioned for profitable growth as economic recovery 

gains momentum in 2003. Commodity prices and industry activity will likely remain volatile. 

Analysts point to a myriad of interrelated factors and variables influencing supply and 

demand forces. The petroleum industry should view the volatility as normal and build it into 

future plans (Sumrow, 2002).

3.11 Determinants of Global Energy Pricing
There are six factors that determine the price of crude oil. They are market 

(supply/demand); quality (refining cost and yield); location (transportation); reliability
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(production rate); availability (reserves) and exploration and development (costs and quality 

of wells). Supply/demand relationship of the world’s crude oil production is cyclic and 

complex. When oil prices are low (less than $15/bbl), the demand varies directly with the 

basic economic cycle country by country (Seba, 1998). There are marked seasonal cycles 

of consumption -  heavy gasoline demand for summer driving and heavy home heating loads 

in winter -  which must be anticipated in planning refinery runs months ahead of time. Crude 

oil quality reflects the products that can be refined from a particular crude oil and the cost to 

the refiner. Location determines the transportation cost to move crude oil and/or petroleum 

products from the point of production/refining to the customer. Reliability is controlled by 

production rate and production capacity, while availability refers to reserves. Exploration and 

well development help in determining the productive capacity. Productive capacity 

influences prices in the short term while reserves influence prices in the long term.
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The unprecedented price volatility, which has occurred since the “price shocks” of the 

1970’s, and more particularly since crude oil began to trade as a commodity in the 1980’s, 

has had a dramatic impact on the industry (Seba, 1998). As a result, company profits, the 

revenues of oil-exporting countries and the availability of investment funds have been 

severely affected (Pearce, 1983; Seba, 1998). Due to the length of time for crude oil supply 

through high seas, suppliers and refiners tend to lock in prices of the crude oil. This has led 

to extensive use of options and futures for price hedging for the longer haul crude. When 

prices plummet exploration is the first activity to be curtailed to preserve the oil company’s 

profits under the western world’s system of accounting. The long lead times of five to ten 

years between exploration and discovery and actual production imposes another almost 

irreversible cyclic factor into the equation.

Figure 3.10 U.S. Crude Oil Production Rate Drop Below the World Total in 1953
Source: Campbell, 1959

3.12 Marketing of Natural Gas

Natural gas has been largely used as a fuel, although an increasing amount is being 

processed for by-products. When used for fuel, it is transported through a producer-owned 

or independent gathering system to the pipeline. The pipeline then sells it to local or regional
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distributors who, in turn, sell it to the consumer. When it is used for processing, no 

distributor is usually involved. In some places the producer sells directly to the plant, and in 

others the plant operates its own pipeline system. The demand for gas as fuel varies with 

the time of day and season. Thus, gas transmission lines have generally developed 

underground storage to handle seasonal peak loads. Gas reserves are depleted over a long 

period of time and it is uneconomic to have to wait 15 to 30 years to recover his initial 

investment, in view of the associated risks. The price of gas varies with the quantity, 

transportation facilities, and geographical location.

3.13 The Risk Structure of the Oil Industry
The petroleum exploration and production industry is characterized by many risks. There are 

many geological risks in drilling non-productive wells. With the growing volatility in oil and 

gas prices, financial risk is increasingly becoming another risk source. The traditional way of 

coping with risk has been through diversification, sheer size and vertical integration of oil and 

gas production and downstream refining and marketing. The decision to undertake a project 

is not only affected by the anticipated gain but also the degree of uncertainty of both the 

timing of events and the ultimate outcome. There are many types of risks under technical, 

economic and political are summarized in Table A.4 (See Appendix) (Seba, 1998). There 

are three significant types of uncertainties in the evaluating of exploration and production 

ventures. These uncertainties include: (i) occurrence uncertainty, (ii) uncertainty of 

magnitude and (iii) production rate uncertainty (Seba, 1998). During the exploratory phase, 

uncertainty of occurrence is a major concern and will probably dominate exploratory 

evaluations. Once a discovery is made, uncertainty of magnitude, which includes both 

volume and value, and the rate of production become the dominant uncertainties. These 

uncertainties will remain throughout the entire producing life of a project, but will diminish 

with time as producing performance tends towards zero at abandonment (Campbell, 1982).

Political risks involve the uncertainty arising from possible changes in the policies of 

regulatory authorities and the degree to which such changes may affect the project 

revenues. Regulatory considerations can be subdivided into fiscal and non-fiscal 

considerations. The fiscal aspects primarily include continuity in the levels of local and 

national taxation, exchange controls and limitations on import and export of foreign and local 

currencies. They also include changes in levels of custom duties on imported equipment 

and supplies, and possible imposition of locally denominated prices for the production. Non­

fiscal political risks may relate to possible interruptions by regulatory authorities over 

environmental matters, disagreements over hiring or firing of local personnel and outright
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nationalization. Matters such as the provisions for transfer of operatorship to the National Oil 

Company (NOC) and the potential for political unrest in the host country also fall under this 

category (Seba, 1998).

Economic risk also covers the present and future levels of oil and gas prices and the physical 

nature of the project. For instance, the principal economic risk associated with an 

infrastructure project may be confined to the possibility of capital cost overrun and timing of 

completion. In the case of a depleting asset, such as mining or petroleum production, the 

prime economic concerns will probably involve drilling and operating costs. It also includes 

inflationary effects and interest rates, as well as the product prices and demand over the life 

of the project. Technical risks involve the operational nature of the project and may include 

the capability and experience of the engineering talent assigned to the project. In the case of 

reserve estimation, the degree of technical risk may involve the hydrocarbon volumes in 

place and whether the producing rates and ultimate recoveries projected by the engineers 

will actually be realized (Seba 1998).

One of the greatest risks faced by the petroleum industry is the price that will be obtained for 

oil and gas products. The other side of the issue is the price risk that the consumer is 

exposed to in the markets. The individual consumer might not be overly concerned with this 

issue, but it is a major concern of electric companies and airlines. Oil and gas derivatives 

have been developed to provide “insurance” against price fluctuations, with an associated 

premium. The premium covers the price of the option of the underlying asset bought or sold 

to manage price risk. Oil and gas options are a form of forward contract which convey to the 

holder the right, but not the obligation to buy or sell a certain quantity of oil or gas at a 

specified price (strike price) on a scheduled date (settlement date). The value of an option 

depends on four elements: time, prices, interest rates and volatility (Seba, 1998). As the 

expiration date approaches, its time value diminishes and only the intrinsic value remains. 

As each day passes, the option’s time value reduces. This may either work in favor of the 

sellers or the buyers.

3.14 The Spot and Contract Markets
Most of oil and gas trading occurs in the spot and contract markets. Spot markets facilitate 

cash trading for immediate delivery while contract markets facilitate financial instrument 

trading for delivery at some future date. In the spot market, the buying, selling and trading of 

crude oil have undergone many changes in the past 140 years of its history. At the start of 

the US oil history, the refiners who are the purchasers, published crude oil postings, which
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were the price a buyer was willing to pay for each barrel, provided that it met the required 

specifications. Buyers outside the US, who were also producing companies, made similar 

postings for the purchase of their production. In more recent times host governments have 

insisted that the crude oil prices for their countries’ production have to be the subject of 

formal agreements between the government and the producer. In OPEC countries, the price 

is established solely between governments (Fesharaki and Razavi, 1986).

3.14.1 Forward and Futures Markets
Petroleum transactions in the forward market are arranged as freely negotiated contracts 

between parties from a group to which members are co-opted. Members include crude oil 

producing companies, petroleum refiners, commodity trading companies, and investment 

banks. The clearinghouse defines the rules governing the transactions and assures their 

observance. The three principal commodity exchanges for petroleum are NYMEX (New 

York Mercantile Exchange), IPE (International Petroleum Exchange) and SIMEX (Singapore 

Mercantile Exchange).

Heating oil, natural gas, crude oil gasoline, propane, and gas oil are traded on energy futures 

and options. Energy futures and options contracts are traded on futures and options 

markets, which are composed of exchanges and brokers that facilitate buying and selling of 

contracts. They are primarily exchanged in Chicago, New York, London, Tokyo, Beijing, 

Frankfurt, Paris, and Sao Paolo. Futures markets are primarily financial markets that trade 

commodity futures and options contracts. The economic purpose of futures markets is to 

provide an arena for transferring risk among market participants (Errera and Brown, 1999). 

Airlines and other large users of fuel, as well as the independent petroleum refiners, are 

increasingly relying on financial arrangements designed to minimize the price risk. With the 

advent of the futures market in crude oil doors opened to hedging operations in a manner 

similar to the trading in other commodities. There are two prime reasons for hedging, one to 

protect inventory and the other to fix ahead of time the cost of purchases (Seba, (1998).

Successful futures contract require three important factors: (i) the commodity must be 

homogeneous and fungible; (ii) there must be significant hedger interest in the market; and 

(iii) there must be price volatility. Homogeneity is required because the futures market must 

have a standardized grade of the commodity to trade. The price of a particular futures 

contract will reflect the grade specified in the contract as satisfying the requirements for 

delivery. If delivery should occur, appropriate discounts and premiums from the price of the 

specified grade insure that delivery is convenient for wide spectrum of market participants
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(Errera and Brown, 1999). Firms with substantial cash market positions view price volatility 

as undesirable and use futures markets to reduce the risk of price changes in the cash 

market. The rationale for the existence of future markets is that they provide a vehicle for the 

transfer of price risk from hedgers to speculators. Price risk in futures markets attracts 

speculators who hope to profit from it. In general, the greater the price volatility the greater 

the potential profits to speculators.

3.14.2 Options and Swap Options
Two classes of options are increasingly used in the energy trade: (i) exchange-traded 

options; and (ii) over the counter (OTC) options. The buyer of a put has the right to sell the 

underlying commodity. The buyer of a call has a right to buy the underlying commodity. The 

seller of a put must stand ready to buy the underlying commodity. The buyer of a call must 

stand ready to sell the underlying commodity. OTC options offer a distinct advantage over 

forwards, futures, and swaps in that the need to arrange back-to-back transactions is 

eliminated. This offers a particular advantage to producers and consumers because there is 

little chance of doing back-to-back transactions due to mismatched cash flow of the market 

makers. This greater flexibility makes OTC options easier to market than other instruments. 

As energy trading instruments continue to become more sophisticated, swap options are 

being used to structure swaps deals in ways that increasingly protect borrowers. Swap 

options are options on swaps that allow the writer of the swap the option of either increasing 

or decreasing the swap volume or increasing the period of the swap. They are written as 

part of an option portfolio which must be managed actively to limit credit exposure and keep 

the books balanced. Options on swaps are used because they limit risk factors and add 

more certainty to the market.

3.14.3 Spread Trading

Spreads are another means to limit price risk in rapidly changing markets. A spread is the 

simultaneous purchase and sale of futures or options contracts in the same or related 

markets using intra-market, inter-market, and inter-exchange arbitrages. Purchasing futures 

contract with one expiration while selling a contract in a different expiration would be an 

intramarket spread. This strategy would be useful where there are seasonal variations in 

demand for a commodity. Crack spreads are inter-market spreads, where opposite positions 

are taken in crude and oil products to take into account refining margins. The NYMEX trades 

options on #2 heating oil/crude and New York Harbour unleaded gasoline/crude crack 

spreads. Inter-exchange arbitrage consists of opposite positions in similar contracts on the 

NYMEX and I PE. The objective of a spread trade is to profit from a change in price
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differential between contracts, or between futures and options. In natural gas, the wide basis 

risk of the North American markets has created an active market in spreads trading for 

differential to NYMEX. In electricity, it is anticipated that there is an active market in 

seasonal spreads and in spreads between contracts covering different delivery points, as 

well as inter-commodity spread trading (Fusaro, 1998).

3.15 World Oil Pricing

Crude oil prices in international trade are universally quoted in US dollars per API barrel of 

42 US gallons at 60°F. Actual monetary settlements are generally made in currencies other 

than U.S. dollars. Currently in the global economy, and most particularly in the developing 

world, settlements for crude oil imports involve barter arrangements for exportable goods 

from the purchasing country (Seba, 1998). The world’s petroleum industry has endured a 

cyclic and complex supply/price/demand situation since its inception in the last century. 

When oil prices are low ($15/bbl) demand varies directly with the basic economic cycle 

country by country. When prices are high it has been demonstrated that conservation 

measures by the consumer will cut back on demand (Hampton, 1991; Seba, 1998).

3.15.1 Netback and Formula Pricing Contracts

In a netback transaction, crude is sold on the basis of the price the buyer expects to receive 

for his final products, rather than at a price set by the producer at the time of crude sale 

(Seba, 1998). Some netbacks are negotiated on the basis of actual “after the fact” refinery 

yields and product sales. Netbacks deals have five basic constituents, which are refinery 

yield, product prices, timing, transportation, profit margin, and other fees (Fesharaki, 1986; 

Seba, 1998). The timing component of the netback incorporates an agreed time lapse after 

loading, which is typically 10 to 60 days from the time of lifting the cargo. The timing factor 

includes the number of days for which the product price quotes will be averaged in 

determining the product values. The crude transport factor is the cost of a spot market 

charter of an appropriate sized tanker for a single voyage. This cost is a negotiated fraction 

of the current world scale rate (Seba, 1998). The marketing costs associated with sales to 

the ultimate consumer of the products are not a factor in netback since it is assumed that the 

finished products will be moved at wholesale, from the refinery gate (Seba, 1998).

3.15.2 Residual, Marginal and Major Spot Markets
Almost all oil companies face the problem of matching their refinery output with the market’s 

current demand for various products. They have deficits of some products and surpluses of 

others. Companies may balance these deficits and surpluses through the use of storage
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and/shipment facilities. But quite often it is more economical to balance them by swapping 

or selling and buying some products on the spot market. This was primarily the function that 

the spot market served in its early stages of development in the 1950’s and 1960’s (Razavi 

and Fesharaki, 1991). After the 1973-1974 oil crisis, the spot market began to play a 

marginal role in petroleum trading. The shift of spot market from residual to marginal 

markets occurred in 1975-1978, when low spot prices were used as indicators of soft market 

conditions by both the petroleum industry and the governments of consuming countries. The 

shift accelerated after 1979 when it was demonstrated that the spot market could play this 

role under both tight and soft market conditions (Razavi and Fesharaki, 1991).

Despite the significance of spot transactions to the industry’s planning and pricing policies, 

their volume remained small during the second stage of market development. Between 1983 

and 1985, spot and spot-related transactions grew to account for 80 to 90% of internationally 

traded oil. Excess capacity in the refining industry forced refiners to fight for their survival. 

Refiners were forced to use the most economical way of procuring crude oil. They increased 

their refinery throughput to the point where the price of a marginal barrel of product covered 

the marginal operating cost. This brought about a shift from term-contract arrangements to 

spot purchasing of crude to take advantage of flexible spot prices over rigid contract prices. 

In addition, as OPEC member countries of began to lose their market share, they began to 

engage in spot-related sales in order to recapture lost sales (Razavi and Fesharaki, 1991).

3.16 Oil Property Evaluation

Investors use the discounted cash flow technique based on either rate of return, present, 

annual and future values, or other breakeven analyses to make economic decisions (Seba, 

1998; Thompson, and Wright, 1985). The market emphasis has however evolved with time. 

In addition, analysts differ on the relative importance of one evaluation method from another. 

Some analysts focus on a method that deals with reserves; others focus on one that deals 

with the company’s growth capacity while others look at underlying value with growth 

potential. Financial analysis of the oil and gas sector tends to focus on the payoff side of the 

cycle, namely, reserves, production and cash flow. The ratios used by analysts in relative 

valuations of one stock to another or when examining assets and corporate acquisitions are 

Price/Cash flow Multiple, Price discretionary Cash flow Multiple and Enterprise Value/ Debt- 

Adjusted cash flow multiple where price is price per share and cash flow is cash flow per 

share (Karkkaainen, 1997).
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In the US the Crude Oil Windfall Profit Tax of 1980 (WPTA) was passed by Congress as part 

of the oil decontrol package and is applied to all domestic production of crude oil. The 

windfall profit tax is calculated by multiplying the windfall profit per barrel by the appropriate 

tax rate. The windfall profit is the removal price less an adjusted base price and an amount 

called the severance tax adjustment. Base prices for a barrel of oil are established for three 

categories of production, tier 1, tier 2 and tier 3. Once a base price is established, this base 

price is then adjusted by an inflation adjustment factor to determine the adjusted base price, 

which is used to calculate the windfall profit. Severance tax adjustment prevents the 

producer from paying windfall profit tax on the amount he pays to the state government as 

severance tax on the difference between the removal price and the adjusted base price. 

Severance taxes in excess of 15% also do not qualify for the severance tax adjustment.

In Canada’s oil sector, royalties on Crown oil and gas are added to those collected through 

bidding received on the sale of Crown leases of oil and gas production rights. The second 

category of rents estimated by the economic council, those accruing to consumers, reflects 

particular domestic pricing policies used in the oil and gas sector and the hydroelectricity 

sector. Artificially low prices for hydroelectric power transfer rents from the producing 

provinces to consumers, some of them in the U.S. In this case the artificially low prices 

stems from average cost pricing applied by provincial power utilities. If electricity price is set 

on the basis of the average cost of power generation from different sources, including a 

normal rate of return on capital invested in generating stations and distribution networks, 

economic rent on hydro sites is automatically passed forward to consumers in reduced 

power prices. The size of economic rents in Canada is quite large -  approximately 10 

percent of Canadian GNP in 1980 or more than $1,200 per capita ($4,800 for a family of 

four). Of the total rents, the amount that was collected as provincial resources revenues 

made up 2.5 percent of GNP or $300 per capita.

Three-quarters of economic rents were passed forward in reduced product prices and a large 

proportion of benefits of Canadian resources production were received outside the provinces 

in which the rents were actually generated. For example, Alberta, whose main resource is 

oil and gas generated $20,645 billion in economic rent (about 75 percent of the Canadian 

total). But most of the benefits of reduced oil and gas prices flowed to other provinces, so 

that Alberta retained only $7,928 billion. On a smaller scale, Newfoundland’s hydroelectric 

power industry generated $.737 billion in economic rent, of which $.603 billion (82 percent) 

was transferred to other provinces or to U.S. consumers. The dispute between the Canadian 

and Alberta governments has produced much more “natural resources consciousness” in
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other provinces and has been an important factor in discussions leading to patriation of the 

British North America Act as the Constitution Act (amended in 1982). Under that Act, the 

Canadian provinces assume exclusive responsibility for nonrenewable resources 

exploration, management of nonrenewable resources, forests, and electrical energy, taxes, 

as well as making non-discriminating laws concerning export of primary products derived 

from these resources.

3.17 Coal Pricing Models

Coal will continue to make a significant contribution to Canadians energy supply. 

Technological advances in the way coal is used in electricity generation are anticipated 

(Patching et al. 1980). Low rank coals, such as lignite and sub-bituminous, are 

characterized by higher moisture levels and lower energy content. They are used in power 

generation and cement manufacturing. Higher rank coals, which include bituminous and 

anthracite, are lower in moisture, higher in carbon and energy content. These coals are 

used in power generation and the production of coke, which is a reducing agent and heat 

source for the steel industry. Canadian deposits of anthracite are currently not exploited. 

Increasing concern over sulfur dioxide emissions and acid rain places a premium value on 

reserves from western Canada that generally have a low-sulfur content (Patching et al. 

1980). Almost 95% of coal resources of immediate interest are located in Western Canada 

as illustrated in Table A.5 (appendix). About 60% of these consist of low-quality lignite. 

Remaining reserves would be about 90 times the 1997 Canadian production of 79 

megatonnes. Lignite reserves are mainly found in Saskatchewan, whereas all sub- 

bituminous reserves are located in Alberta. Most of Canada’s bituminous reserves are in 

British Columbia with smaller volumes located in Alberta and Nova Scotia.

3.17.1 Coal Prices
Canada is both an importer and exporter of coal; thus, domestic prices tend to reflect 

developments in international markets. Many countries, including the US, have unused 

productive capacity that can be activated when prices rise sufficiently. This potential 

production tends to limit sustained price increases. The principal Canadian purchasers of 

coal are electric utilities. Productivity improvements in coal mining operations, industry 

rationalization and improved productivity in rail transportation are a boon to the coal mining 

industry. Coal prices vary among provinces due to transportation costs, quality differences 

and specific contractual terms. In recent years, average Canadian prices have fluctuated 

between $1.15 and $1.20 per gigajoule. The prices of domestic and imported bituminous 

coal in Ontario varied between $1.80 and $2.20 per gigajoule in 1997. Utilities in Alberta and
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Saskatchewan have been paying $0.50 to $1.00 per gigajoule for sub-bituminous coal and 

lignite (Anon., 1999b).

Coal demand is caused by electricity generation and industry requirements. In 1997, 

electricity generation consumed 49 Mt of coal, about 84% of domestic coal demand. 

Ontario, Alberta and Saskatchewan accounted for 91% of this consumption, with the 

remainder in Nova Scotia and New Brunswick. Coal-fired generation is expected to remain 

competitive with other fuels, particularly in existing facilities, although little growth is 

expected. Metallurgical coal demand is currently about 11% of the domestic requirements 

mainly used by the iron and steel industry in Ontario. Improving technology in the steel 

making process will cause a moderate increase in demand. In 1997, less than 2 Mt of coal 

was used to generate process heat in the cement, smelting and other industry, mostly in 

Quebec, Ontario and British Columbia (Anon., 1999b). In 1997, Canada’s coal exports were 

36 Mt while imports were 14 Mt. Metallurgical coal accounted for 82% of exports in 1997, 

mostly from Alberta and British Columbia to Japan and the Republic of Korea. Most thermal 

coal exports were also shipped to Japan and Korea. Alberta is the largest coal-producing 

province in Canada producing 34 million tones of coal in 1999, which is 47% of Canada’s 

total coal production with revenues of $430 million (Frimpong et al., 2001).

3.18 North American Gas Supply and Markets
Natural gas markets in North America are well developed in that there are transmission 

networks in nearly all the provinces in Canada, as well as the northern part of the US 

connecting the supply sources with the market and customers. Natural gas in Canada is 

primarily located in the Western Canada Sedimentary Basin (WCSB). This is a geological 

region that includes most of Alberta, significant portions of British Columbia and 

Saskatchewan, as well as of Manitoba and the Northwest Territories. Other areas containing 

natural gas reserves are Ontario and offshore Nova Scotia (Anon., 2000f). Remaining gas 

reserves in Canada are estimated to be 1 606 x 109 m3 as of year-end 1999. WCSB 

accounts for 1 517 x 109 m3 of natural gas reserves. Offshore Nova Scotia is estimated to 

hold 85 x 109 m3 of gas reserves while Ontario is estimated to have 13 x 109 m3 as of year- 

end 1999. Since 1985, natural gas production has more than doubled. Canadian natural 

gas production in 1999 totaled 170.3 x 109 m3 essentially all of which was produced from the 

WCSB. This corresponds to an average production of about 465 x 106 m3, causing the 

WCSB to rank as one of North America’s most productive basins. Moreover, the WCSB 

accounts for a quarter of North American gas production. Of this, Alberta accounted for 83%
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of total Canadian production while British Columbia and Saskatchewan contributed 12% and 

4%, respectively.

3.18.1 Canadian Gas Transportation Systems

Canada is part of an integrated North American natural gas market due to the many 

thousands of kilometres of pipelines that connect supply basins with regional markets. The 

Canadian pipeline grid consists of gas gathering, transmission and distribution systems that 

transport processed natural gas. These transmission pipelines transport large volumes of 

gas at high pressure over long distances from supply sources to market centres (See Fig 

8.9 in the Appendix) (Anon., 2000f). Several major transmission pipelines serve the 

Canadian gas market, which also interconnect with the US pipeline grid at many export 

points. TransCanada Pipelines Limited (TCPL) is one of the largest carriers of natural gas in 

North America. Production is concentrated in the west and principal markets are in the east, 

requiring long transmission lines. The major natural gas pipeline transmission systems are 

Westcoast Energy Inc. in British Columbia, NOVA Gas Transmission in Alberta and 

TransCanada Pipelines Ltd. in Alberta (Anon., 2000f). Distribution systems are the retail 

component of the pipeline industry. Local distribution companies (LDCs) receive gas off the 

transmission pipelines and deliver it to end-users, such as homes, within a franchise area. 

The LDCs are regulated by provincial regulatory boards or commission or directly by a 

provincial government. Gas Storage facilities are also used for pipeline load balancing, 

supply security and price risk management (Anon., 2000f).

3.18.2 Natural Gas Trading Dynamics in Canada
Canada’s natural gas pricing is dependent on three trading systems in Alberta. The natural 

gas market is the second largest in Alberta and serves 82% of the retail market. Since 1985, 

contracts have become increasingly short-term. Furthermore, pricing is market responsive as 

prices are determined through index-based mechanisms, which fluctuate either monthly or 

daily. The homogenous nature of natural gas has permitted the development of a larger and 

more competitive gas market (Anon., 2000f). There are three main trading systems in 

Alberta: Natural Gas Exchange (NGX), Enron-on-line and Altrade (Anon., 2000f). Since 

1985, the Canadian and US market have become more integrated. In a fully integrated 

competitive gas market, the price of gas in one should differ from the price in another region 

by the cost of transportation (Anon., 2000f).

The demand for natural gas is very seasonal, mainly because of weather patterns. The 

consumption profile of each market sector is important because it defines the type of
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contracting practices and risk management, which each sector will pursue. This seasonality 

may result in higher prices during the winter season. Peak requirements are usually met by 

gas in storage. Traditionally, storage is used to balance seasonal demands through 

injection, storage and withdrawal. This reduces the need for additional pipeline capacity to 

meet peak requirements, improves the reliability of supply and dampens price spikes that 

occur in tight supply conditions. These services add flexibility and provide arbitrage 

opportunities (Anon., 2000f).

Alberta is the second largest gas market in the country, representing about one-third of 

Canada’s natural gas demand. Natural gas met 43% of its total energy requirements in 

1998. Coal and oil each accounted for 27% and 26%, respectively, while other forms of 

energy accounted for 4% of total energy needs. Electricity generation is mostly coal-fired 

(Anon., 2000f). In 1999, Alberta consumed 20 114 x 106 m3 (710 BCF) of natural gas. The 

industrial sector is the largest user of natural gas in Alberta accounting for 70% of total 

consumption. Industrial consumers include petrochemical and fertilizer manufacturers, oil 

producers, electrical power generators and pipelines. The balance, about 30%, is used for 

heating in residential and commercial enterprises. ATCO Gas is the largest local distribution 

company in Alberta and serves 82% of the retail gas market.

3.18.3 Natural Gas Prices
Alberta consumers have generally paid lower prices for natural gas than other consumers 

have in North America. The most commonly quoted intra-Alberta price for natural gas is the 

Alberta Energy company/Nova Inventory Transfer (AECO-C/NIT) market price. AECO-C/NIT 

prices have been lower than NYMEX prices until late 1998. The recent rise in the AECO- 

C/NIT price has resulted in an increase in the price of gas paid by Alberta consumers. The 

price of gas paid by Alberta utility customers is based on a portfolio of AECO-C/NIT daily and 

monthly price indices (Anon., 2000f). The Alberta Energy and Utilities Board (AEUB) 

regulates natural gas rates charged to consumers by investor-owned gas utilities such as 

ATCO Gas and AltaGas Utilities Inc. Rate paid by consumers of natural gas marketers, rural 

gas co-ops and municipal gas utilities are not regulated by the AEUB. Also excluded from 

regulation is the wholesale market (Anon., 2000f). Natural gas marketers only sell gas; the 

utility company continues to provide gas delivery. The AEUB sets utility company gas prices 

at least twice a year at rates similar to market rates, to reflect winter and summer market 

conditions. Individual customers must decide whether the price options offered by natural 

gas marketers or utility companies meet their needs (Anon., 2002).
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3.18.4 Impact on Consumers

Using long term gas delivery contracts and futures commodity contracts, many of Alberta’s 

major industrial users have locked in gas prices at rates lower than the current market prices 

at AECO-C/NIT. However, if a high gas prices environment endures after the expiry of these 

arrangements, industrial users will assess their alternatives. Coal is a competitive energy 

source for large industrial fuel consumers and utilities in the medium to long term. However, 

in the short term, many companies are not equipped to burn coal. Natural gas demand is 

expected to increase in Alberta. There are currently many proposed gas-fired electricity 

generation plants. Furthermore, strong oil prices provide support to current expansions to 

Alberta’s oil sands extraction industry and to the development of heavy oil projects. These oil 

extraction processes use large amounts of natural gas for fuel (Anon., 2002)

3.18.5 Natural Gas and Electricity Deregulation
Natural gas market has increasingly been deregulated since 1985 to meet the ever- 

increasing demand for natural gas. Electricity deregulation has been on going since the mid- 

1990s to keep pace with the worldwide changes and consumer benefits. The flourishing 

Alberta economy is straining the province’s existing energy infrastructure. New industries 

and residents demand increasing amounts of power and heat. Large and small industrial 

consumers have negotiated short and long-term contracts with suppliers since 1998 (Anon., 

2002). From 1975 to 1985, the Governments of Alberta and Canada regulated the price of 

Alberta natural gas sold to other provinces. The governments of Canada, British Columbia, 

Alberta and Saskatchewan signed the Agreement on Natural Gas Markets and Prices in 

October 1985. For the first time, end-users in non-producing provinces were able to 

purchase gas directly from producers at negotiated prices (Anon., 2000f). Table 8.6 and 

Table 8.7 (See Appendix) shows the import and export volume and value of electricity in 

Canada (Anon., 2002).

During the 1990s, natural gas has been increasingly used to generate electricity, particularly 

in the United States. In recent years, there has been the greater reliance on natural gas to 

provide the energy for new electricity generation projects. Natural gas combined-cycle and 

cogeneration power plants can be built more quickly and with lower capital costs than 

alternatives. Also, clean air legislation in the United States favors the use of natural gas 

(Anon., 2000f). For decades, natural gas has competed with fuel oil in industrial markets. 

For this reason, a number of large industrial users have developed the capability to quickly 

switch between these fuels, depending on price and availability. Changes in oil prices will
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tend to affect natural gas prices to the extent that oil products and gas compete in end-use 

markets. Trends show that when both markets are tight, a close relationship exists between 

higher oil and higher gas prices (Anon., 2000f). Increased use of gas for power generation 

has caused natural gas prices to be influenced by electricity prices due to the convergence 

of gas and electricity markets.

3.19 Risk Management

Commodity producers and consumers are constantly exposed to risk in their buying and 

selling transactions. This risk can be broken down into three parts: price risk, basis risk, and 

credit risk (Fusaro, 1998). Price risk refers to exposure to adverse price moves in the cash 

market. Basis risk refers to the difference between the prices used as a benchmark in a 

transaction and the price for actual goods changing hands. The difference is a function of 

location, quality, and supply/demand for each. Credit risk refers to the ability of a transaction 

to keep their contractual obligations. While a hedge on the NYMEX will allow the trader 

easy, anonymous entrance and exit from trades, as well as the virtual elimination of 

counterparty credit risk, it cannot eliminate geographic basis risk. A natural gas producer in 

Alberta, Canada, for example, may wish to hedge part of its production on NYMEX, but the 

hedge will only be effective to the extent that there is reliable, high level of price correlation 

between Alberta and Henry Hub, the active NYMEX contract delivery point.

The natural gas production, pipeline, and storage infrastructure in North America, however, 

creates distinctive patterns of trade by geographic area. There are limitations and 

constructions on natural gas transportation that tend to regionalize trade, in some areas 

more than others. Market conditions in Alberta, for instance, are affected by such local 

factors as the level of snowfall in the Canadian Rockies that will be utilized to produce 

hydropower, potentially displacing gas-fired electric power generation in the Northwest. 

Transportation limitations localize this trade, isolating it to some extent from the Henry Hub 

delivery area. These issues serve to create different price relationships between geographic 

areas, with varying degrees of correlation depending on local demand patterns, the 

integration of the local pipelines with other trading hubs, available storage facilities, and local 

production (Fusaro, 1998).

The risk management process reduces financial exposure associated with price volatility by 

substituting a transaction made now for one that would have been made at a later date. 

Control over price changes is managed by using financial instruments. The application of risk 

management tools allows companies to purchase downside protection, though opportunity
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for gain. Some factors to consider in applying risk management tools include profit margins, 

credit exposure, cash flow requirements, debt service obligations, project economics, and 

planning requirements (Fusaro, 1998). The energy industry is developing new financial 

instruments for both producers and consumers to manage short and long-term risk. These 

financial tools and techniques have been applied to the currency markets since the 1970s. 

Now they are becoming part of the once heavily regulated electric utility industry.

3.20 Fundamental Continental Energy Policy

Energy plays an important role in economic and social development. The identification and 

analysis of energy issues, and the development of energy policy options, are therefore 

important areas of study by governments, researchers, and the development community. 

Neither developed nor developing countries conducted sector-wide energy planning until 

after the 1973 oil embargo. Such planning was left to the sub-sectoral institutions with little 

attempt at coordination or central planning. All that changed in the aftermath of the first oil 

crisis, and countries everywhere struggled with the establishment of effective policies and 

institutions to deal with energy sector problems (Munasinghe et al., 1993, Toman, 1993). 

Governments’ role in the pricing of commercial energy resources, and the relative neglect of 

issues relating to traditional forms of energy is vital. Governments exercise direct influence 

over energy pricing, usually through the ownership of energy sources or price controls. 

Indirect influences occur through such means as taxes, import duties, subsidies, market 

quotas, taxes on energy-using equipment, and government-guided investments in energy 

resources (Munasinghe et al., 1993). Most often certain fuels such as kerosene, rural 

electricity and agriculture pumping, and diesel tend to be subsidized. Cross-subsidies exist 

between different fuels, user groups, and geographic regions. High-priced gasoline may 

finance the subsidy on kerosene, industrial electricity users may subsidize household 

consumers. A uniform national pricing policy usually implies subsidization of energy users in 

remote areas by those living in urban centers.

Import and export duties, excise taxes, and sale taxes are levied, at various stages in the 

production, processing, distribution, and retailing chain by several government agencies. 

Several less obvious methods, such as property taxes, water rights and user charges, and 

franchise fees are also used to influence energy use. Energy prices are also affected by the 

wide range of royalty charges, profit sharing schemes, and exploration agreements that are 

made for the development of oil and gas resources between governments and multi-national 

companies (Munasinghe et al, 1993). Other policy instruments are often used to reinforce 

pricing policies, such as quotas on imported or scarce forms of energy, coupled with high

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



prices. Conservation regulations may affect depletion rates for oil and gas, while availability 

of hydropower from some multipurpose dams may be subordinate to the use of water for 

irrigation or river navigation. Many special policies involving tax holidays and concessions, 

import subsidies, export bonuses, government loans or grants, high taxes on automobiles, 

are also used to affect energy use.

The evolution of energy planning in developing countries had as one of its main roots the 

need to deal with the macroeconomic impact of the sharp oil price increases that occurred in 

the mid-1970s. For the typical small oil-importing developing country, the most immediate 

point of impact whenever a change occurs in the world oil price is the balance of payments. 

One of the major problems faced by energy and macroeconomic planners is how developing 

countries should adjust to such changes is: modeling such impacts, and quantifying the 

impacts of the policies that might be appropriate to mitigate the macroeconomic 

consequences, proves to be exceptionally difficult (Munasinghe et al, 1993). From Figure 

A. 10 (See Appendix), there was a drop in oil prices to $20 in 1986 which gave great relief to 

oil-importing countries. Since then, prices have gradually risen, and by end of the 1980s 

stabilized in the $18-22/bbl range. Yet the Iraqi invasion of Kuwait in August 1990 and major 

damages to production facilities in Kuwait and Saudi Arabia, illustrated the volatility of world 

oil markets, with spot prices staying well above $30/bbl for extended periods in late 1990.

Information is actually the most essential element of all policy making and their accuracy, 

timeliness and appropriateness are daunting. Policy makers and researchers have an 

urgent need for exact, swift, detailed and scientifically correct data. In addition, decision 

makers in companies and their technicians have their specific information needs. Finally, it 

is also vital that the public has access to sufficiently detailed and understandable information 

to provide the electoral support without which no policies would be possible. These are 

needed in order to investigate local problems, set priorities and provide information to foster 

a democratic debate on environmental issues (Sterner, 1994). Governments’ most powerful 

tool is through the direct use of economic resources, through public spending and 

investments in infrastructure such as roads, railways, telecommunications and research.

3.21 Macroeconomic Impact of Varying Oil Prices
Large increase in oil price raises the general price level and simultaneously transfers income 

from consumers to energy producers. Oil exporting countries begin to increase purchases 

from oil-importing countries. Energy producers in the consuming countries begin to expand 

their production facilities and/or begin an active search for fossil fuels, in response to the
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higher prices of their products. The magnitude of the second oil price increase in the 1979- 

1980 period was significantly affected by the energy policy responses on the part of the 

consuming countries. Thus, the frenzied panic on the spot market, the lack of a strategic 

petroleum reserve, and the inability of the IEA to function effectively contributed to OPEC’s 

ability to increase official prices in from October 1978 to February 1979, as prices soared to 

the $38-40/bbl range (Munasinghe et al, 1993).

Non-producing developing countries suffer severe impact on foreign exchange earnings and 

reserves, rather than on aggregate demand in periods of higher energy prices. Economic 

growth in these countries is heavily dependent on the availability of foreign exchange, which 

in turn is a major factor determining their capacity to import capital goods, to support 

investment, and to generate economic growth. First, the oil induced recession in the 

industrial countries shrinks their export markets and thereby reduces their ability to import. 

Second, out of their reduced foreign earnings, a larger fraction has to be devoted to paying 

for oil, leaving a smaller amount available for the other imports needed to meet development 

plans. Third, adverse changes in their trade balances can impair the ability of developing 

countries to borrow in private capital markets. Fourth, the transfer of income from 

Organization of OECD countries to OPEC can affect the flow of concessional aid to the 

developing countries (Munasinghe et al, 1993).

Since 1980, the real price of oil has fallen. In the period 1980-5 the nominal price was 

roughly constant, the real dollar price therefore fell. Then in 1986 both nominal and real 

prices fell sharply, and more recently showing a gradual rise in nominal terms but staying 

roughly constant in real dollar terms. However, in a period of falling oil prices and increasing 

value of the dollar, the principal beneficiary of the falling oil price was the US. Elsewhere, 

the decline in the crude oil price was offset by the dollar appreciation. According to IEA, the 

weighted average of crude oil prices in the 1981-5 period incurred by the European members 

of the IEA increased by 30%, and it remained constant when expressed in dollars.

3.22 Evolution of the Energy Maps of Canadian and Alberta
The overriding feature of Canada’s energy map is that the industrial core of southern Ontario 

and Quebec is almost devoid of fossil-fuel resources and has had to secure them from 

elsewhere or find substitutes. When coal became the principal energy source of this 

industrializing region in the late nineteenth century, the lowest-cost supplies were (and 

remain today) the US Appalachian mines south of Lake Erie, readily accessible by rail and/or 

water. To compete, even in the Montreal market in the 1920s, Cape Breton coal required a
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federal transportation subsidy. More recently, Alberta coal purchased by Ontario Power 

(formerly Ontario Hydro) has carried a higher delivered price than coal imported from the 

United States, but one justified commercially by its lower sulphur content. The development 

of hydroelectric power in Quebec compensated for the lack of coal. Total energy 

consumption consists of oil, gas, electricity and coal. Coal and the use of coal for electricity 

have the upper hand and thus the price of coal will increase.

The development of Alberta’s oil and gas fields in the 1950s posed new political challenges 

concerning the relation the relation between Canada’s industrialized core and its resource- 

rich western periphery. At the time, to provide a large and secure market for Alberta’s fuels 

and stimulate the economic development of the province, it was necessary to construct 

pipelines to link producers to distant Ontario consumers. In 1959, when the ‘Ottawa Valley 

Line’ was instituted as a regulatory device to preserve the Ontario market west of Ottawa for 

Alberta producers, leaving Canada east of that line to be supplied by imported, and then 

slightly cheaper, oil. In this respect, federal policy discriminated against Ontario consumers 

for the sake of stimulating Alberta’s oil industry.

The impact of the oil price increases in the 1970s induced by OPEC massively reversed this 

price discrimination and created a highly charged geopolitical challenge to Ottawa. Although 

Canada is a net exporter of energy, this is achieved only because exports of oil, gas and coal 

from Western Canada and of electricity, principally from Quebec, exceed imports of oil into 

the eastern and central provinces and coal into Ontario. The rapid escalation of world oil 

prices in 1973 and 1979 generated vast resource royalties for the Alberta, but it increased 

energy costs for Canadians, especially Central and Eastern Canada. The competitiveness of 

Ontario’s manufacturing sector was threatened, and industries and domestic consumers in 

Atlantic Canada became more vulnerable. Because of the lack of alternative cost-competitive 

energy sources in that region, oil became the preferred fuel for electricity generation.

The federal government responded to the new global oil price regime by regulating domestic 

prices. A ‘made in Canada’ oil price, set below world levels with the intention of benefiting 

Canadian manufacturers (primarily in Ontario and Quebec), was financed by increasing 

federal taxation of western oil production (at the expense of producers and the Alberta 

government) and using these funds to subsidize the cost of imported oil consumed in eastern 

Canada. Yet the huge oil revenues of Alberta government Ottawa with a further threat: 

under the formula for regional equalization payments, the federal government was facing 

massive obligations to transfer funds to the have-not provinces, and by 1977 this group could
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technically have included Ontario. Ottawa’s response was unilaterally to impose new fiscal 

arrangements that had the effect of ensuring that Ontario would not become eligible for 

equalization payments. Whatever the merits of the federal government’s arguments for 

moderating the domestic impact of higher world oil prices and protecting the weaker 

economies of Atlantic Canada (and to a lesser extent Quebec) from their consequences, its 

policy aroused deeply felt resentment in Alberta. It appeared that, yet again, the interests 

and prosperity of westerners were being sacrificed for the sake of Central Canadians.

The National Energy Program (NEP), instituted in 1980, capped Ottawa’s response to the 

energy crises of the 1970s and reinforced western alienation. Its encouragement of greater 

Canadian ownership of the oil industry, including an element of state ownership through the 

creation of Petro-Canada (which was privatized in the 1990s) was philosophically at odds 

with the outlook of Calgary business community and was anathema to the multinational oil 

industry. The NEP’s lavish subsidies for the high-cost energy exploration in the Arctic and 

Atlantic offshore frontiers was seen as undermining continued investment in the oil and gas 

sector in Alberta and adjacent provinces. Moreover, westerners noted that whereas the 

federal government was greatly increasing its intervention in, and revenues from, the oil and 

gas sectors, it was doing little to interfere with the expansion and revenues of provincial 

hydroelectric utilities, notably Hydro-Quebec. Completion of the first stage of the James Bay 

hydro-electric project in 1981 allowed the Quebec utility to sell large quantities of power into 

the high-priced market of the Northeastern United States at a time when oil and gas exports 

from western provinces were being curbed.

The return to a lower and more stable world oil price regime after the mid-1980s and the 

changed political climate in Ottawa reduced the intergovernmental and interregional frictions 

associated with national energy policy. Concerns about the adequacy and security of 

Canadian energy supplies have subsided since the 1970s. This is partly due to the gains in 

efficiency of energy use and the structural change in the national economy, which lowered 

the growth rate of demand from 2.6 per cent per year in the 1970s to 0.8 per cent per year in 

the 1980s and the technological progress. By the late 1990s Alberta’s conventional oil 

output was gradually declining, but since the opening of the Suncor plant near Fort 

McMurray in 1967 and the larger Syncrude plant in 1978, major efficiency gains have been 

made in the technology of processing the province’s vast oil-sands deposits.

Western Canadian gas reserves have continued to expand in British Columbia and southern 

Yukon. With the demand for gas in North America continuing to grow rapidly, proposals

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



were reviewed in 2000 to build two pipelines from the Arctic. The Alaska Highway and 

Mackenzie Valley routes would bring supplies from the Alaskan North Slope and the 

Mackenzie Delta region into Alberta, for onward distribution through the existing continental 

pipeline network. In Eastern Canada, much developments gave that region the security of 

more energy options should there be another crisis in world markets in the future. The inter­

provincial natural gas grid was extended further east in Quebec in the 1980s, and in 1997 

the first barrel of east coast offshore oil was pumped from the Hibernia field. Gas production 

fields off Sable Island reached the mainland of Nova Scotia in 2000, a project made 

financially attracted by the exports that the pipeline will carry to the New England market.

3.23 Conclusion

This chapter provides a broad overview of the nature, composition and the determinants of 

the energy industry and their effects on energy pricing mainly in the Canadian and North 

American context. The determinants of energy pricing models, demand and supply, and the 

expanded use of energy have been the focus of this chapter. Factors affecting drilling, as 

well as the risk in the oil industry under technical, economic and political were dealt with. 

Energy consumption in Alberta is ever increasing. Virtually all investment decisions in the 

petroleum industry are made under conditions of risk and uncertainty. The energy industry is 

developing financial instruments to meet the needs of customers and producers to manage 

short and long-term risks. The government has a role to play in energy pricing, through 

ownership of energy sources and price controls.
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CHAPTER 4.0

MATHEMATICAL FORMULATION OF ENERGY PRICE MODELS

4.1 Introduction
This chapter focuses on mathematical models of oil, natural gas, coal price, and electricity 

prices and total energy consumption for Alberta and Canada in a North American context. 

The primary reason for time series modeling and analysis is to understand the patterns of 

events over a period of time. Time series modeling involve the consolidation of historical 

experiences into mathematical system that describes the behavior of events over time. 

These mathematical models are utilized to forecast what is likely to occur within a specific 

future time period. The determinants are the prices of crude oil, natural gas, coal and 

electricity and the total energy consumption. Energy prices are influenced by conservation 

incentives, the state of the world economy, successful exploration and production in non- 

OPEC countries, OPEC’s production quota, substitution of alternate fuels for industrial, 

residential, and commercial use. The mathematical models are converted into computer 

models and solved using multivariate regression and forecast using Shazam (White, 1997).

4.1.1 The Determinants of Oil Prices
The relationship between energy system and spatial organization of society is complex, 

dynamic and not yet fully analyzed or understood, but its main features are clear. The nature 

and availability of energy resources have always influenced the environment and distribution 

of human activities. During the 20th century, cheap energy permitted the outward spread of 

urban areas at decreasing densities. In the last decade, studies have focused on global 

energy analysis to lay the groundwork for building a city’s sustainable energy future. It is 

generally regarded that changes on energy consumption are mainly influenced by the scale 

of economic activities (activity effect), sectorial technology level (intensity effect) and the 

economic structure (the structural effect) (Bending et al., 1987).

Since the early 1970s, the Western world became aware of the necessity to conserve fossil 

fuels. Energy conservation in those days was mainly dictated by the idea that energy 

resources were being exhausted. Nowadays, environmental problems associated with fuel 

use such as acid rain, enhanced greenhouse effect, impose even more stringent limitations 

upon the use of fossil-fuel derived energy. Retrospective studies, in which the developments 

of the energy intensity of a country are unraveled, have been conducted by several authors 

from many countries [Jenne and Cattell, 1983; Bending et al., 1987; Howarth et al., 1991;
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Raggi and Barbiroli, 1991; Schipper et al., 1992; Sinton and Levin, 1994], In most of these 

studies, the focus is on monetary indicators to describe the activity level of most sectors.

4.1.2 Formulation of a General Forecast Model

Models have been used to provide inputs for industrial decisions. The main scrutiny of 

forecast models centers on their accuracy and validation process. The usefulness of energy 

models for policy analysis or technology assessment lies in the comparative results 

generated for alternative scenarios, initiatives and actions. There are several energy models 

available for forecasting and policy analysis. However, a small number of these are used by 

decision makers. Decision makers believe that these models lack the rigor to provide 

appropriate information for better energy decisions. Comprehensive models, which capture 

the stochastic processes governing the evolution of determinant variables, are required to 

solve the problems volatile energy pricing.

4.1.3 Description of the Effects on Energy Price

The price of a unit energy and the total energy consumption are functions of total energy 

consumption, energy price lags, energy production, population, alternative fuel prices, GDP, 

personal income, unemployment, weather conditions, the level of OPEC production, and 

number of wells drilled (exploration), Westca. During winter heating oil is in higher demand 

than gasoline. In summer, gasoline is in high demand. The price of crude oil varies with the 

season, winter, spring, summer, and fall. If the production capacity is high then the price of 

crude oil will be lower when compared with a lower production capacity. The price of the 

energy product rises with a small population and falls when the population is high. If the 

price of the other energy product rises it will cause the energy product being considered to 

rise if it can be substituted with the other energy products.

4.2 Generalized Multivariate Regression Model

The multiple regression theory is used to formulate energy price models based on relevant 

dependant variables. These variables periodic lags, production and consumption capacities, 

population and growth, price of other energy products, GDP, personal income, 

unemployment rate, degree days, OPEC quota and number of oil and gas wells drilled. The 

generalized energy regression model is formulated in equation (4.1). Energy can be 

represented as oil, natural gas, coal and electricity, and thus, equation (4.1) can be written 

for each type of energy. The total energy consumption can also be written as equation (4.2). 

From equation (4.1), the model for oil pricing is given by equation (4.3).
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Energy Price =
Po +  P \X \ +  P2X 2 +  f i3X 3 +  /?4Z 4 +  P SX 5 +  P6X 6 +  P 7X 7 +  

P t^ i  + PgdXg +  P10X W + P nX u +  e
(4.1)

Energy consumption =
0Cq +ccxX x +cc2X 2 +  cc2X 2 +cr^X4 +cc5X s +

+ cc6X 6 + a 7X 7 +  cc%X% + (XgdXg +  oc^X^ +  s
(4.2)

s0 =  Po +  P ik > +  p 29o+ P 3p 0+  P 4Po+  P 5P o+ Pe<f>o+  P 7<Po+ P8M0+  P9V0 + 

+ P10Q 0+ P ii(O o +  Si (4.3)

Lags of the different price variables and energy consumption were used in the mathematical 

model. Conservative incentives are the improvements on drilling and exploration technology 

and the use of other energy fuels or products. The state of the economy is described by 

GDP, personal Income, population and unemployment. Successful exploration has the 

number of wells drilled, Westca, as a proxy. Production of the different energy products was 

used and no variable was used as a proxy for wars between OPEC members. The 

generalized multiple linear regression model can be expressed as equation (4.4).

4.2.1 Quantitative Least Squares Error Modeling

When a predictor is used to predict the dependent function an error, Sj, is made in the 

process. The objective is to choose p0, P i- . . ,  such that si is minimized in the process. In 

order to achieve this objective, the least square estimation is obtained from equation (4.4). 

Let the vector of estimated regression coefficients be p0, P i , . . . ,  Pk-1  be p. Whenever the
A

commodity price estimates, S( , is used to forecast the price in any particular period, an error 

si is made because the true price S( is unknown as illustrated in equation (4.5). The least 

square function, L, is given by equation (4.6).

Yi = p 0 +  PxX tx +  P 2X i2 + ... +  PkX ik +  st (4.4)

(4.5)
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n n

1=1 Z=1

/v v—« /V

S i - A - t . f i / * *
7=1

(4.6)

To minimize the error, L must be differentiated with respected to /?0and /?y and set to zero

as illustrated in equation (4.7) and (4.8). For the regression model, these least squares 

estimators are also maximum likelihood estimators and are unbiased, minimum variance 

unbiased consistent and sufficient.

d L

ap, =  - 2 2
i=l

^ - A - Z A * #
7=1

=  0 (4.7)

d L

dfij

t t

= - 2 2
i=i

y i - k - ' Z P j xv
7=1

(4.8)

Equations (4.7) and (4.8) yield the system of linear equations in equation (4.9). Equations 

(4.7) and (4.8) can be represented in matrix form as in equation (4.9). In a matrix from, 

equation (4.9) becomes (4.10).

«A> + A Z*n  + + ••• + A J X  =
i = 1 1=1 (= 1 1=1

n n ' n n n

a Z * < + a Z x« + a Z x-i -x<2+••■+a Z v * = Z w
c=i <=i i=i i=i i=i

(4.9)

n  n  n  « «

AoZ X ‘k + P l U W n  A Z  X ik 'X i1  +  "• +  A Z  X ik =  Z A l T l
!=1 1=1 i=l i=l i=l
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n Z X Z X -- zx
i = 1 i = 1 1=1

n n n nzx zx ZXlXi'2"" ZXx,
1=1 1=1 i = \ ^=1
n n n nzx Z X X(2 E X<-2 X ik

i = 1 /=1 1=1 i = 1
• • • •
• • • •
• • • •
• • • •

n n n nzx ZX*n
1=1 /=1 /=1 1=1

-\Po

A

A••••

=

-U .

zX
1=1

nZX̂i=1
n

ZX-2*
/=i

n

1=1

(4.10)

When the matrix multiplication is done, the scalar form of the normal equations will result. 

X ’X is a k x k matrix, and the diagonal elements are the sums of squares of the elements in 

column X and the off-diagonal elements are the sums of the elements of the cross products. 

X ’y is a k x 1 column vector and is the sums of the cross products of X and the observations 

{yj. In scalar notation, the fitted model is given by equation (4.11).

k

1 =  1 . 2  n  ( 4 . 1 1 )

The difference between the observation and the fitted value yt is a residual, ei = y -  y, .  

These models are validated with real-world data on the regressor variables within a period 

from 1982 to 1997.

4.3 Stationary Time-Series Modeling

The difference equation is used to ensure stationarity in the multiple regression equation. 

The theory of linear difference equations can be extended to allow the forcing process {Xt} to 

be stochastic. This class of linear stochastic difference equations underlies much of the time- 

series econometrics. Especially important is the Box-Jenkins (1976) methodology for 

estimating time-series models in equation (4.12).

yt = a0+a, yu1+ ... +ap yt.p +et + /W ,+ .  • -+M -? (4-12)
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Such models are called autoregressive integrated moving average (ARIMA) time-series 

models. A stationary ARIMA model is called an ARMA model.

4.3.1 ARMA Models
It is possible to combine a moving average process with a linear difference equation to 

obtain an autoregressive moving average. Consider the pth-order difference equation 

(Enders, 1995), the particular solution can be written as equations (4.13) and (4.16). Now let 

{xt} be the moving average (MA)(q) process given by equation (4.14) so that equation (4.12) 

becomes equation (4.15).

(4.13)l-l

i=0

(4.14)

F

yt = a0+ £  ajyt-i +
i=i 1=0

(4.15)

y, = — (4 -16)

l - i a ,  i=0 
1=1

If the characteristic roots of equation (4.15) are all in the unit circle, (yt) is called an 

autoregressive moving average (ARMA) model for yt (Enders, 1995). The autoregressive 

part of the model is the “difference equation” given by the homogeneous portion of equation

(4.13) and the moving average part is the {xj} sequence. If the homogeneous part of the 

difference equation contains p lags and the model for xt is q lags, the model is called an 

ARMA(p,q) model. If q = 0, the process is called a pure autoregressive process denoted by 

AR(p), and if p = 0, the process is a pure moving average process denoted by MA(q).
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4.3.2 Parsimony
A fundamental idea in the Box-Jenkins (1976) approach is the principle of parsimony. 

Parsimony (sparseness or stinginess) comes as second nature to economists. Incorporating 

additional coefficients will increase fit (e.g. the value of R2 will increase) at a cost of reducing 

the degrees of freedom. Box and Jenkins argue that parsimonious models produce better 

forecasts than over-parameterized models. A parsimonious model fits the data well without 

incorporating many coefficients. The aim is to approximate the true data-generating process 

but not to pin down the exact process. The goal of parsimony is to eliminate the MA(12) 

coefficient in the simulated AR(1) model. In order to ensure that the model is parsimonious, 

the various aj and ft should all have t-statistics of 2.0 or greater (so that each coefficient is 

significantly different from zero at the 5% level). Moreover, the coefficients should not be 

strongly correlated with each other. Highly collinear coefficients are unstable; usually a few 

can be eliminated from the model without reducing forecast performance (Enders, 1995).

4.4 Modeling Economic Time Series: Volatility and Trends

Many economic time series do not have a constant mean and most exhibit periods of relative 

tranquility followed by high volatility periods. Much of the current econometric research is 

concerned with extending Box-Jenkins methodology to analyze this type of time-series 

behavior. The key features are as follows (Enders, 1995):

1. Most of the series contain a clear trend. Real GNP and its components and the supplies 

of short-term financial instruments exhibit a decidedly upward trend. For some series 

(interest and inflation rates), the positive trend is interrupted by a marked decline, 

followed by a resumption of the positive growth. Nevertheless, it is hard to maintain that 

these series have a time-invariant mean.

2. The UK £/US $ exchange rate shows no particular tendency to increase or decrease. 

The pound seems to go through sustained periods of appreciation and then depreciation 

with no tendency to revert to a long-run mean. This type of “random walk” behavior is 

typical of non-stationary series.

3. Any shock to a series displays a high degree of persistence. The federal fund rate 

experienced a violently upward surge in 1973 and remained at the higher level for nearly 

2 years. In the same way, the UK industrial production plummeted in the late 1970s, and 

it did not return to its previous level until the mid-1980s.

4. The volatility of many series is not constant over time. During the 1970s, US producer 

prices fluctuated wildly as compared with the 1960s and 1980s. Real investment grew
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series are called conditional heteroskedastic if the unconditional variance is constant but 

there are periods in which the variance is relatively high.

5. Some series share common movements with other series. Large shocks to US industrial 

production appear to be timed similarly to those in the UK and Canada. Short- and long­

term interest rates track each other quite closely. The presence of such movements 

should not be too surprising.

4.5 ARCH Processes

Instead of using adhoc variable choices for xt and/or data transformations, Engle (1982) 

showed that it is possible to simultaneously model the mean and variance of a series. As a 

preliminary step to understanding Engle’s methodology, note that conditional forecasts are 

vastly superior to unconditional forecasts. To elaborate, suppose you estimate the stationary 

ARMA model yt = a0 + a t yn+et and want to forecast yt+i- The conditional forecast of yt+i is 

given by (4.17).

Etyt+1 = a0 + a1yt (4.17)

If this conditional mean is used to forecast yt+i, the forecast error variance is Et (yt+i - ao- ai 

yt)2] = Et s2t+i = ct2. Instead, if unconditional forecasts are used, the unconditional forecast is 

always the long-run mean of the { yt > sequence that is equal to (a0)/(1-at). The unconditional 

forecast error variance is given by equation (4.18).

Et {[yt+rfaoMI-adf} = E[(sm  + a l£t + (Sl) % 2 + . . /  = c//(1 - (a,)2) (4.18)

Since 1/(1-(at)2)>1, the unconditional forecast has a greater variance than the conditional 

forecast. Thus, conditional forecasts are preferable because they take into account the 

known current and past realizations of the series. Similarly, if the variance of {et} is not 

constant, one can estimate any tendency for sustained movements in the variance using an 

ARMA model. For example, let {st } denote the estimated residuals from yt = a0 + a1 yt-i+et, 

so that the conditional variance of yt+1 is given by equation (4.19).

Var(yt+1/yt) = Et [ (yt+1-a0 - at yt)2]  = Et (st+1 f  (4.19)
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Suppose the conditional variance is not constant, one simple strategy is to model the 

conditional variance as an AR(q) process using the square of the estimated residuals as 

illustrated in equation (4.20)

s] = a 0 +  a x£ 2 +  a 2£ 2_x +  ../xq£f_q +  v, (4.20)

vt is a white-noise process. If the values of <xi, a2..., an are equal zero, the estimated 

variance is simply the constant ao. Otherwise, the conditional variance of yt evolves 

according to the autoregressive process given by equation (4.20). As such, you can use 

equation (4.20) to forecast the conditional variance at t + 1 as in equation (4.21).

= a 0 + a xs]  +  a 2s 2tA +  ...aqsf+l_q (4.21)

Equation (4.21) is called an autoregressive conditional heteroskedastic (ARCH) model. The 

unconditional variance is E s] =  a 0 / ( I - a x) .

4.6 The GARCH Model
Bollerslev (1986) extended Engle’s work to develop a technique that allows the conditional 

variance to be an ARMA process. Let the error process be given by equation (4.22).

st= vt\bt (4.22)

. 2 _= 1 and ht = a 0 +  £ a (.£,2_,. + £ (4.23)
i=i i=i

Since {v^ is a white-noise process that is independent of past realizations of et-i. the 

conditional and unconditional means of st are equal to zero. Taking the expected value of et, 

results in equation (4.24).

E£,= E v t\bt= 0  (4.24)

The conditional variance of et is given by En(et)2 = ht. This generalized ARCH(p,q) model 

called GARCH(p,q) allows for both autoregressive and moving average components in the
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heteroskedastic variance. Setting p = 0 and q = 1, it is clear that the first-order ARCH model 

given by equation (4.25).

st =  v, (« 0 +  ) m  (4-25)

If all the Pi equal zero, the GARCH(p,q) model is equivalent to an ARCH(q) model. A high-

order ARCH model may have a more parsimonious GARCH representation that is much 

easier to identify and estimate. The key feature of GARCH models is that the conditional 

variance of the disturbances of the {yt} sequence constitutes an ARMA process. Hence, it is 

expected that the residuals from a fitted ARMA model should display this characteristic 

pattern. The ordinary least squares (OLS) command will run an ordinary least squares 

regression. The linear regression model can be restated as equation (4.26).

Yt = j31X 1t + /32X2t + /33X 3t+ ...+ /}KXKt+£t for t= (4.26)

There are N observations and Yt is observation t on the dependent variable, XKt is

observation t on the Xth explanatory variable; k =1,... ,K, pKare parameters to estimate and et

is a random error that is assumed to have zero mean and variance ct2.

4.7 Independent Component Analysis (ICA)
Imagine two people speaking simultaneously into two microphones. The microphones give 

two recorded time signals denoted by Xi(t) and x2(t), with Xi and x2 as the amplitudes and t 

the time index. Each of these recorded signals is a weighted sum of the speech signals 

emitted by the two speakers, denoted by Si(t) and s2(t). Xi(t) and x2(t) are given by equation 

(4.27) and (4.28).

xx(t) =  +  al2s2 (4.27)

x2{t) =  a2lsl + a 22s2 (4.28)

an, a12, a2i, and a22 are some parameters that depend on the distances of the microphones 

from the speakers. If there are n linear mixtures x1t ..., xn of n independent components, 

such that equation (4.29) is true.
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X j  =  a j l S l  +  a j 2 S 2 +  -  +  a j n S n f0 1 " a// J  ( 4 . 2 9 )

Then each mixture xj, as well as each independent component sk is a random variables, 

instead of a proper time signal. It is assumed that both the mixture variables and the 

independent components have zero mean (i.e. the observeable variables X| can always be 

centred by subtracting the sample mean). Using vector-matrix notation, the random vector x 

whose elements are the mixtures of x1 ,...xn, and the random vector s with elements s1,... ,sn 

are related and given by equation (4.30). A is the matrix with elements ay. All vectors are 

column vectors.

X  = A » s  (4.30)

Sometimes the columns of matrix A is denoted by aj and the model can be written as 

equation (4.31).

x =
i=lZ v ,  (4-31)

The statistical model in equation (4.30) is called the independent component analysis model. 

The starting point of ICA is that the components Sj are statistically independent and must 

have non-Gaussian distribution. After estimating the matrix A, the inverse, W  is computed 

and the independent component is obtained by equation (4.32).

S = I V - x  (4.32)

In many applications, there are some noise measurements. For simplicity, the noise term is 

omitted, since the estimation of the noise-free model is difficult enough in itself, and seems 

sufficient for many applications.

4.7.1 Principles of ICA Estimation
Assume that the data vector x is distributed according to equation (4.30). That is, it is a 

mixture of independent components and that all the independent components have 

independent distributions. To estimate one of the independent components, a linear 

combination of X| is considered as given by equation (4.33).
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(4.33)

w is a vector to be determined. If w were one of the rows of the inverse of A, this linear 

combination would actually equal one of the independent components. How can the central 

limit theorem be used to determine w so that it would equal one of the rows of the inverse of 

A? In practice, w cannot be determined exactly, because there is no knowledge of matrix A, 

but an estimator that gives a good approximation can be found. To see how this leads to 

the basic principal of ICA estimation, some changes to the variables as given in equation

(4.34) and (4.35)

z = A r »w (4.34)

y=w T » x = w T •A s = z t  * s  (4.35)

y is thus a linear combination of sf, with weights given by Zj. Since a sum of two independent 

random variables is more Gaussian than the original variables, zTs is more Gaussian than 

any of the s, and becomes least Gaussian when in fact equals one of the Sj. In this case, 

obviously only one of the elements Z| of z is non-zero (S| is assumed to have identical 

distributions). Therefore, w is a vector that maximizes the non-Gaussianity of wT* x. Such a 

vector would necessary correspond (in the transformed coordinated system) to a z which has 

only one non-zero component. This means that wT • x = zT •  s equals one of the 

independent components. Maximizing the non-Gaussianity of wT • x thus gives one of the 

independent components. The optimization landscape for non-Gaussianity in the n- 

dimensional space of vectors w has 2n local maxima, two for each independent component, 

corresponding to S| and - S|. To find several independent components, all the local maxima 

are found. This corresponds to orthogonalization in a suitably transformed (i.e. whitened) 

space.

4.7.2 Preprocessing for Independent Component Analysis
Before applying an ICA algorithm on the data, it is usually very useful to do some 

preprocessing. These preprocessing techniques that make the problem of ICA estimation 

simpler and better conditioned include centering and whitening. The most basic and 

necessary preprocessing is to center x (i.e. subtract its mean vector m = E{x}) to make x a 

zero-mean variable. This implies that s is zero-mean, as well as can be seen by taking 

expectations on both sides of equation (4.30). This preprocessing is made solely to simplify
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the ICA algorithms: It does not mean that the mean could not be estimated. After estimating 

the mixing A with centered data, the estimation can be completed by adding the mean vector 

of s back to the centered estimates of s. The mean vector is given by A'1 •  m, where m is the 

mean that was subtracted in the preprocessing.

Another useful preprocessing strategy in ICA is to first whiten the observed variables. This 

means that before the application of the ICA algorithm and after centering, the vector x is 

transformed linearly and the new vector x which is white. In other words, the covariance 

matrix of x equals the identity matrix, and is given by equation (4.36).

4.8 The FastICA algorithm

The FastICA algorithm is a variant of the ICA algorithm for fast process implementation. The 

data is preprocessed by centering and whitening before using FastICA.

4.8.1 FastICA for One Unit

A “unit” means a computation unit, eventually an artificial neuron, having a weight vector w 

that the neuron is able to update by a learning rule. The FastICA learning rule finds a 

direction, i.e. a unit vector w such that the projection wTx maximizes non-Gaussianity. Non- 

Gaussianity measured by the approximation of negentropy (based on the information- 

theoretic quantity of (differential) entropy) J(wTx) is given by equation (4.37).

The variance of wTx must be constrained to unity. For whitened data this is equivalent to 

constraining the norm of w to be unity. The FastICA is based on a fixed-point iteration 

scheme for finding a maximum non-Gaussianity of wTx, as measured in equation (4.37). It 

can also be derived as an approximate Newton iteration denoted by g, which is the derivative 

of the non-quadratic function G used in equation (4.37) and expanded in equation (4.38).

G,(w) =  —  log cosh a{u, G] (u) = -e x p (-  u2 /  2 ) (4.38)

(4.37)

(4.37)

a ,
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1 < ai < 2 is some suitable constant; often ai = 1. For example the derivatives of the

functions in equation (4.38) are given by equation (4.39).

g, (u) =  tanh(a,«), and g2 (w) =  u exp(- u212) (4.39)

The basic form of the FastICA algorithm is as follows: (i) choose an initial (e.g. random) 

weight vector w; (ii) let w + =  i?{xg(wr x)}-.E '{g,(wr x)}w and w  =  w +/||w+||; and (iv) if not 

converged, go back to (ii).

4.8.1 FastICA for Several Units
The one-unit algorithm estimates just one of the independent components. To estimate 

several independent components, the one-unit FastICA algorithm must be run using several 

units with weight vectors W i , . . . , w n. To prevent different vectors from converging to the same

maxima, the outputs w[x , . . . ,  w^x must be decorrelated after every iteration. A Matlab

implementation of the FastICA algorithm was used which is available at

http://www.cis.hut.fi/proiects/ica/fastica/.

4.8.2 Principal Component Analysis
Principal component analysis (PCA) involves a mathematical procedure that transforms a 

number of (possibly) correlated variables into a (smaller) number of uncorrelated variables 

called principal components. The first principal component accounts for as much variability 

in the data as possible, and each succeeding component accounts for as much of the 

remaining variability as possible. The mathematical technique used in PCA is called eigen 

analysis, which solves for the eigen values and eigen vectors of a square symmetric matrix 

with sums of squares and cross products. The eigen vector associated with the largest 

eigen value has the same direction as the first principal component. The eigen vector 

associated with the second largest eigen value determines the direction of the second 

principal component. The sum of the eigen values equals the trace of the square matrix and 

the maximum number of eigenvectors equals the number of rows (or columns) of this matrix.

4.8.3 Neural Networks for Time Series Forecasting
An artificial neural network (ANN) is an information processing paradigm that is inspired by 

the way the brain processes information. The key element of this paradigm is the novel 

structure of the information processing system. It is composed of highly interconnected
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processing elements (neurons) working in unison to solve specific problems. An ANN is 

configured for a specific application, such as pattern recognition or data classification, 

through a learning process. In statistical parlance, the ANN network corresponds to a 

nonlinear model and the learning process to parameter estimation. Recently, ANNs have 

been investigated as a tool for time series forecasting. The most popular class, used 

exclusively in this study, is the multilayer perceptron, a feedforward network trained by 

backpropagation. This class of network consists of an input layer, a number of hidden layers 

and an output layer as illustrated in Figure 4.1.

Hidden Layer

I *na

Figure 4.1 Multilayer Feedforward Neural Networks

Since ANNs learn by example, it is vital that the inputs characterize the important 

relationships in the time series being forecast. Forecasts are generated iteratively by 

performing successive one-step ahead forecasts using previous forecasts as estimates of 

observables. This paradigm attempts to provide an intelligent choice of inputs using 

recognized statistical procedures. An ANN typically has more parameters than most time 

series models. Therefore, it is expected that they will perform better on longer series with 

s ta b le  p a tte rn s . B y  co n stru ctio n , th e  A N N  is e x p e c te d  to  p ro v id e  s u p e rio r fo re c a s ts  w h e n  th e  

process is nonlinear. The reason for using a complex method must be that a process 

contains elements not captured by simple forecasting methods, notably nonlinearity in the 

case of ANNs. For an ANN to outperform simple methods, there must be sufficiently long 

series to detect the nonlinearity and to provide reliable estimates of the parameters.
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4.9 Summary and Conclusion
The mathematical formulation for energy price models used in this study were ARCH and 

GARCH models, Principle Component Regression model, Independent Component Analysis 

model and Neural Network models. Stationary time series modeling was discussed and 

trends and volatility of modeling economic time series were dealt with. The theory of ARCH 

and GARCH models, ICA and PCA were also discussed.
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CHAPTER 5.0

COMPUTER MODELING AND ALGORITHMIC EFFICIENCY

In this chapter the mathematical models are translated into computer models in order to 

obtain solutions to the energy time series models outlined in Chapter 4.0 using SHAZAM, 

MATLAB, Fortran and ©Risk software. The models are verified and validated using data 

from CANSIM for both Alberta and Canada.

5.1 Modeling and Computational Efficiency
Robustness, rigor, computational time and systematic procedures for arriving at solutions 

with a higher degree of confidence ensure modeling and computational efficiency, which is 

important in any scientific research. In order to attain efficiency, a number of procedures are 

followed in this research phase. These procedures include systematic mathematical and 

computer modeling, verification and modification of algorithms, validation with real-world 

data, experimental design and experimentation for generating relevant information for 

understanding the system. The verification and modification of algorithms and validation 

ensure confidence and integrity in the models with regards to functional accuracy and 

relevance to real-world systems. The experimental design stage defines the control 

environment, stable and unstable regimes and full scale parameterization of algorithms for 

efficient process control. The selection of appropriate software is critical to achieve 

computational efficiency. In this research, the selected software packages were carefully 

selected based on their computational platforms, reliability and the author’s thorough 

understanding. An equally important consideration is the real-world data for validation. 

Appropriate data is collected, processed and formatted for validating the models. See Fig. 

5.1, Fig. 5.2 and Fig. 5.3 for the flow charts.

5.2 Random Field Sampling and Stochastic Simulation

The Monte Carlo sampling technique was chosen for simulating the random phenomena 

underlying the functional variables. This simulation technique is well known for its reliability, 

rigor and efficiency. However, for few random samples, Monte Carlo can generate cluster 

population, which is non-representative of the underlying stochastic process. In order to 

overcome this problem, stratified sampling using the Latin Hypercube technique can be used
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Figure. 5.1 Flow Chart for the Development of Energy Price Model using SHAZAM

to control random sampling over the whole distribution [Palisade, 2003], In this study, large 

number of iterations was generated to avoid the cluster problem. The Monte Carlo technique 

for this study uses the multiplicative congruential methodology as a random number 

generator and the inverse transform method for generating unbiased samples from a 

cumulative uniform conversion of all probability density functions in the model. At the end of 

each sampling iteration, a functional value is estimated as a probable outcome, out of many 

outcomes, that define the output random process. The expected value and variance of a 

generalized continuous random multivariate function are given by equations (5.1) and (5.2)
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[Frimpong and Akihiro, 1998]. These equations consist of the functional component, fty), 

the probability density function, f(y), and the continuous operator, dy,.

£[<?>(/<)]= £ • "  £ > •  • • , ) *  f{Yx]dyx*f(y2)dy2*• • -*f{yn)dy„ (5.1)

V A R W  , ) ] =  £ • • •  £ M r , M W f  * W r aM M r  * • • • *  W r . M M F  *

f i r  i ¥ r  i */(r 2 Vr 2 • -*/(r« (5.2)

Equations (5.1) and (5.2) do not have analytical solutions, and thus, numerical 

approximations and simulation experiments are used to obtain approximate solutions. The 

use of stochastic simulation requires that a large number of sampling iterations are carried 

out to replicate the input probability density functions. Thus, increasing sampling iterations 

increase the confidence in the results. For this experiment, 500 iterations were judged to be 

the minimum that ensures variance stability in the process.

5.3 Hybrid Stochastic-Optimization Process

A hybrid stochastic-optimization process was used to optimize the random field [Frimpong, 

Szymanski and Whiting, 1998]. This process combines the power of stochastic simulation 

with optimization to ensure that a series of optima are generated to represent the random 

field. At the end of each stochastic event, the process is optimized and the latter is stored as 

the functional output. This process results in a series of optimized stochastic results, which 

must be analyzed for its expected value and associated variability. The process of 

econometric analysis benefits from this hybrid process because of its inherent randomness, 

complexities and functional representations. The main problems that are encountered in 

econometric time series data include: (i) flawed measurements; (ii) immeasurable variables; 

(iii) improper functional representations; (iv) violation of the underlying stochastic processes; 

and (v) missing relevant variables.

To maximize or minimize a function, f(x), its corresponding slope, f  (x), is set to zero(i.e. f(x) 

= 0). Otherwise, the function will be increasing or decreasing in x. This situation implies the 

first-order or necessary condition for an optimum. For a maximum, the function must be 

concave and convex for a minimum. This situation leads to a sufficient condition for an 

optimum as illustrated in equations (5.3) and (5.4).
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Fora minimum,

Fora maximum,

(5.4)

(5.3)

Some functions, such as the sine and cosine functions have many local optima. A function 

such as (sinx)/x, which is a damped sine wave, differs in that although it has many local 

maxima. However, the maximum at x = 0 is greater than it is at any other point. Thus, x = 0 

is the global maximum, whereas the other maxima are only local maxima. Certain functions, 

such as quadratic, have only a single optimum. These functions are globally concave if the 

optimum is a maximum and globally convex if it is a minimum. For maximizing or minimizing 

a function of several variables, the first-order condition is defined by equation (5.5).

This result is interpreted in the same manner as the necessary condition in the univariate 

case. At the optimum, it must be true that no small change in any variable leads to an

a minimum and negative for a maximum. In the multivariate case, a similar condition is 

attached to the second derivatives matrix of the objective function. The second-order 

conditions for an optimum are that, at the optimizing value, equation (5.6) must be positive 

definite for a minimum and negative definite for a maximum.

d x d x '

5.4 Experimental Design

Experimental design is the design of a logical structure, dimension and the control 

environment for experimentation. It involves the selection of parameter values to use in the 

computer runs, the sampling technique to apply to the experiment and the determination of 

the amount of replication. It also defines the domain and boundaries of stable and unstable 

regimes for conducting extensive experiments using various tests. In this study, these tests 

include stationarity, structural break, autocorrelation, heteroskedasticity, cointegration and 

the principal component regression test.

(5.5)
d x

improvement in the function value. In the single-variable case, d 2y / d x 2 must be positive for
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The next critical step is to generate the experimental phases, which include planning, design, 

construction, debugging, execution, data analysis and reporting of results. The planning 

phase involves the evaluation of the various approaches that might solve the problem. In the 

design phase the information found in the planning phase is used to specify the 

instrumentation needed and the details of the configuration of the experimental approach. 

The test plan is identified and decisions made on the ranges of conditions to be run, the 

required data, and the experimental sequence. During the construction stage, the individual 

components are assembled into the overall experimental approach for performing the 

associated instrumentation. In the debugging stage, initial runs using the computer models 

are made for the appropriate software programs, with modifications. The stage will then be 

set for detailed experimentation of the models. During the execution stage, the experimental 

runs are made to generate appropriate results. Often, the runs are monitored using checks 

that are designed into the system to guard against inaccurate models.

5.4.1 Test for Stationarity

The test for stationarity is done using the COINT command. The COINT command 

implements tests for unit roots and cointegration including Dickey-Fuller root tests. Finding 

unit root in a time series indicate non-stationarity.

5.4.2 Test for Structural Change (Chow Test)
The F test is used for achieving structural change. In specifying a regression model, the 

assumption is that it applies to all the observations. Structural change test ensues that when 

the data is split into two sub-samples, the coefficients are the same in the two sub-samples. 

The full sample estimate of the model is obtained through restricted regression. The 

unrestricted regression is when the coefficients are allowed to differ in the two sub-samples 

by estimating the two sub-samples separately. The test statistics must be based on a 

comparison of sum of squared errors (SSE) for the restricted and unrestricted models rather 

than a comparison of R2 values. The F test statistics is obtained as equation (5.7).

(SSER-(SSEl+ SSE2))/k 
(SSE{ + SSE2 )/(dfl +df2)

SSEr is the SSE in the restricted model estimated using all observations, while the sum 

(SSE!+ SSE2) is the SSE in the unrestricted model estimated for each sub-sample. K is the
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number of parameters in the restricted model; dfi and df2 refer to the degrees of freedom in 

the two sub-samples (White, 1997).

5.4.1 Testing for Autocorrelation
The test for autocorrelation is based on the principle that if true disturbances are 

autocorrelated, this fact will be revealed through the autocorrelations of the least square 

residuals (White, 1997). When the classical assumption, Cov (e,e) = 0, is violated, where ei 

and ej arre the error terms for the ith and jth observations, (i, j = 1,..., n), the error terms are 

said to be autocorrelated or serially correlated. In this case, OLS is no longer efficient and 

estimated standard errors are incorrect. The most common specification of autocorrelation is 

where the error term for observation at any time, et, depends only on the error term in the 

previous period, eM. With a firsr-order autoregressive process, AR(1), which is given by et = 

et.i + et, p, the first-order autoregressive parameter lies in the range (-1 < p < 1), and st is a 

random error term that satisfies the classical assumptions. H0: p = 0 (no autocorrelation) and 

Hi : p > 0 (positive autocorrelation). The Durbin-Watson test statistic, d, is obtained in 

SHAZAM by using the option RSTAT on the OLS command. With a Durbin-Watson statistic 

of d=2.6852, it is compared with the upper and lower bound, du and dL. Between these 

bounds, du < d < dL, the test is inconclusive. If d > du, the null hypothesis is not rejected and 

there is no evidence of positive autocorrelation. The null hypothesis is rejected if d < dL. 

The Cochrane-Orcutt estimation method is the remedial method used for AR(1) errors 

(White, 1997).

5.4.2 Heteroskedasticity -  Testing and Remedial Action.

When the classical assumption Var(ei) = c2 for all i = 1 n, is violated, the variance of the

error terms differs for different observations (Var(ej) = c2), ej is the error term for the ith 

observation, and the error terms are said to be heteroskedastic (White, 1997). In this case, 

OLS is unbiased but no longer efficient and the estimated standard errors are incorrect. The 

basis of the Goldfeld-Quandt (GQ) test is that if there is no heteroskedasticity, the variance 

should be the same for two separate sub-samples taken from the original sample. The test 

involves splitting the sample into two sub-samples, obtaining an estimate of the variance

(<r2) for each sub-sample, and using these two values to test whether the true variances

( c 2) differ for each sub-sample. The observations were sorted against Westca, which is 

number of wells drilled in the regression for oil price and production for the rest of energy 

product prices. Energy consumption was sorted against the energy product that is most 

consumed, oil production.
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Two sub-samples are selected from the sorted data by taking the first (n-c)/2 and last (n-c)/2 

observations, c is typically about 20% of the sample, so that with 60 observations c = 12 

such that (n-c)/2 is an integer. Both sub-samples have the same degrees of freedom. The

OLS is used to estimate the model for each sub-sample to obtain a 2 in each case. The ratio

of the two a 2 values are calculated in equations (5.8) and (5.9) and compared to critical 

values from F tables.

c b - 4 = ® 5 l  m
SSE2

m- a ; SSE,

The degrees of freedom are 24 -  10 = 14 in each sub-sample regression. GCf = Fi4,i4,o.o5= 

2.48. To test H 0 : a 2 =  a \  ag a in s t//,: cr2 >  o \ , the variance is decreasing with increasing

values of Westca use GQi. Alternatively, to test H 0 : a 2 =  o \  a g a in s t//,: a 2 < a \ ,  the

variance is increasing with increasing values of Westca use GQ2. For / / , :  a \  >  cr2, GQi

test statistic is 1.6584, while for / / , :  cr2 <  a \ , the GQ2 test statistic is 0.6030. The critical 

value is GQ* is 2.48 and the null hypothesis is not rejected. There is no evidence of 

heteroskedasticity (After Ryan, 1999).

5.4.3 Tests for Cointegration
If the Dickey-Fuller unit root tests statistic is smaller than the critical value then there is 

evidence for cointegration (evidence of a long run relationship between non-stationary 

variables). This is the test for stationarity. If this is the case the data is transformed using 

differencing. First differences can be obtained by using the NDIFF = 1 option on the COINT 

command (White, 1997)

5.4.6 Principal Component Regression Test

A consequence of multicollinearity is that the OLS estimators may have large standard 

errors. A solution is to consider a restricted least squares estimator. One approach is to use 

PCA to reduce the data set dimensionality. Principal components are generated and a sub-
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set is selected to include as regressors in an OLS regression. The estimators are then 

transformed to obtain estimators for the coefficients of the original model. The resulting 

estimator has an interpretation as a restricted least squares estimator and therefore has 

smaller sampling variance compared to the unrestricted OLS estimator (White, 1997).

5.5 Experimentation
This experiment is designed for 64 observations a span of 16 years. Most observations were 

obtained from CANSIM. The observations were limited to this number by the personal 

income which stops at 1997. The regression was run using the mathematical models in 

Chapter 4. The purpose is to obtain unbiased estimates of the different variables under 

investigation and to generate reproducible results. The software packages used include 

SHAZAM, MATLAB, Fortran and @Risk software for solving various sections of the problem. 

Figure 5.1 illustrates how SHAZAM was used. Fig. 5.2 and Fig. 5.3 show the use of @Risk 

and MATLAB were used in this experiment.

Input Data Simulation
Results

Simulation

Figure. 5.2 Simulation Data Flow Chart using @Risk.

Results
SoftwareOption input 

data
Encoding

Figure. 5.3 Forecasting options using Matlab

The most convenient way to run SHAZAM is in BATCH mode using three files: data file, 

SHAZAM command file and SHAZAM output file. This means that SHAZAM commands are 

typed into a file called a SHAZAM command file and SHAZAM is instructed to process the 

command file and to place all the output results of the command file in another file, the 

SHAZAM output file. In this way, errors in the SHAZAM command file, or if SHAZAM does 

not produce the required output, or if additional SHAZAM commands are needed, the 

command file can easily be edited, and have SHAZAM process the command file again. 

Although data can be included in a command file, it is usually more convenient to have the 

data in separate file called a data file (White, 1997).
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The @Risk software was used to analyze the stochastic models in this research. This 

software used the Monte Carlo simulation technique for sampling. It consists of building 

systems by computer calculations and evaluating the performance of such systems. If, for 

instance, a system has 500 components and there are 500 of each component available. 

500 different systems can be built and 500 measurements of system performance. Actually, 

system performance can be measured without building the systems if the relationship 

between the component variables is known. If, instead of having 500 samples of each 

component, we know the distribution for each variable, synthetic measurements can be 

obtained, 500 random values from each distribution. These random values are used to 

calculate performance.

The neural network forecasting model was built using FORTRAN programming language. 

Time series forecasting formulation is intended to capture the underlying mechanism that 

drives the process. And then the ability to forecast becomes possible. The input comprise of 

several time series. The number of input layer nodes largely dictates the design of 

subsequent layers. If the total number of weights in the network are too few then the network 

will not have the capability to solve the forecasting problem. A model with a large number of 

weights can map the input vectors’ corresponding target outputs, without necessarily 

extracting any meaningful relationships. The key factor is the ratio of input training vectors to 

weights. The higher this ratio is the better. Once the neural network has been trained to 

forecast a time series, a time series of forecasts over the same time period can be created.

5.5.1 Using Data Retrieved from CANSIM

The CANSIM database from Statistics Canada was used to validate these models. Access to 

CANSIM is obtained through an internet connection from the electronic database of the 

library at the University of Alberta.

Although price series are usually available monthly, GDP is only available on a quarterly or 

annual basis. All the data series obtained were processed to have the same frequency. 

Monthly or quarterly data can be converted to annual series, but the reverse is not possible.

5.6 Conclusion
The process required for modeling and computational efficiency has been provided for this 

study. The random field sampling technique and stochastic simulation bases have been 

developed, as well as the hybrid stochastic-optimization process. The experimental design
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and the experimentation process have also been outlined to provide the underpinning 

foundation for the study. The theoretical basis of the various tests, including stationarity, 

structural break, autocorrelation, heteroskedasticity, cointegration and the principal 

component regression have also been covered for reliable experimental design.
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CHAPTER 6.0 

ANALYSIS AND DISCUSSION OF RESULTS

The models in Chapter 4.0 are validated with CANSIM data based on the algorithmic 

efficiency and control environments outlined in Chapter 5.0. Energy price models for 

electricity, coal, crude oil, natural gas and the total energy consumption have been 

formulated within the economic environments of Alberta (in Section 6.1) and Canada (in 

Section 6.2). The models are constructed using GARCH, ARIMA, PCR and neural networks 

(NN) for each economic environment. The most important features of that indicate the 

suitability of these models are the mean, volatility, trend cycle and trend direction. This 

section also deals with the associated risks and uncertainties, the forecasting of energy 

prices with the Black-Scholes formulation and their impact on energy in Alberta and Canada. 

The structural break, heteroskedasticity, autocorrelation for both Alberta and Canada are in 

Tables B.1 and B.2 in Appendix B.

6.1 Energy Pricing Model Results for Alberta

The energy price models for Alberta focus on the variations in energy prices within the 

economy of Alberta. Alberta is the dominant source of Canada’s fossil fuel industry, with 

about a tenth of Canada’s population. The booming economy of Alberta has spurred 

industrial growth, population increase, and thus, increase in energy demand at the 

commercial and residential levels. The deregulation of electricity in Alberta also introduced 

some shock into the energy markets causing volatility in energy pricing. These models are 

therefore unique from that of Canada wide models.

6.1.1 Electricity Pricing Model Results for Alberta

Electricity Price is in $/GigaWatt-Hour for Alberta and Canada. Figures 6.1, 6.2, 6.3 and 6.4 

show the electricity price forecasts using GARCH, ARIMA, PCR and NN. The forecast 

models incorporate the effect of Production, OPEC prices, the price of other energy 

products, personal income, GDP on electricity prices. Price volatility is precipitated by 

resource scarcity, and artificial scarcity created by transmission constraints, fuel supply, 

generation availability, and electricity transmission. The GARCH model in Figure 6.1 shows 

complete departure below the 30th quarter and overall shows an unacceptable prediction 

model for electricity prices. The ARIMA model in Figure 6.2 under-predicts the observed 

electricity prices and may provide severely optimistic prices for future models, which could 

prove to be economically inappropriate for marginal profit companies. The PCR model in 

Figure 6.3 captures the mean, the volatility the trend direction and provides an appropriate
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model for future predictions. The NN model in Figure 6.4 shows much volatility than the 

observed pattern even though the trend cycle and direction are captured in this model.

Electricity Price Alberta Garch
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Figure 6.1 GARCH Electricity Price Forecasts for Alberta

Alberta Electricity: Electricity Price ARIMA
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Fig 6.2 ARIMA Electricity Price Forecasts for Alberta

There is a general increase electricity price over time. The coefficients of the independent 

variables in the electricity model that are significant are price of natural gas (used to produce 

electricity), oil price, coal price and westca (number of oil and gas wells drilled). Coal and 

natural gas are used in the production of electricity, and thus, an increase in their prices
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increases the price of electricity. The price of electricity in the third quarter, natural gas, oil, 

and coal price, electricity production, total consumption, population, GDP, personal income, 

unemployment OPEC quota and number of wells drilled are all elastic. The elasticities at the 

means shown in Tables B.6 and B.7 represent the changes in the dependent variable 

following a 1 % change in the independent variables. For example, a 1% change in 

production of electricity brings about a 1.3 % change negatively in the price of electricity. 

Population brings about more than 40% decrease and unemployment brings about 

approximately 33% increase in the price of electricity. A 1 % change in natural gas price 

brings about a 3.6% increase in electricity price. The coal price, population, and 

unemployment variables have the biggest change or effect on the price of electricity followed 

by price of natural gas, total energy consumption, OPEC quota, GDP and personal income.

E l e c t r i c i t y  P r i c e s  P C R  A l b e r t a
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Figure 6.3 PCR Electricity Price Forecasts for Alberta

6.1.2 Coal Pricing Model Results for Alberta
Coal price is in $/kilotonnes for Alberta and Canada. Figures 6.5, 6.6, 6.7 and 6.8 show the 

coal price forecasts using GARCH, ARIMA, PCR and NN. The GARCH model in Figure 6.5 

captures the mean, volatility, trend cycle and direction in the observed coal prices and may 

be a suitable model for predicting future coal prices in Alberta. The ARIMA model in Figure

6.6 captures a stationary mean without the volatility and the trend characteristics of the 

observed coal prices. This model presents only a simplistic explanation to the behavior of 

coal prices and may not be helpful for predicting future prices. The PCR model in Figure 6.7 

also captures a stationary mean without the volatility and the trend characteristics of the 

observed coal prices and has the same weakness associated with the ARIMA model. The 

NN model in Figure 6.8 captures the mean, volatility, trend cycle and direction in the
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observed coal prices and may be a suitable model for predicting future coal prices in Alberta. 

However, it under-predicts the coal price for the period below the 15th quarter. The NN coal 

price model has 10 hidden layers that give the best results.
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Figure 6.4 NN Electricity Price Forecasts for Alberta
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Figure 6.5 GARCH Coal Price Forecasts for Alberta

The independent variables that significantly increase the price of coal are the first lag in coal 

prices and total energy consumption. The independent variables that decrease the price of 

coal are GDP and OPEC quota. The price of electricity generation does not affect coal prices 

because the price of electricity is determined by EPCOR, a monopoly. The only parameter 

that is elastic is the first lag of the price of coal. An increase in consumption of energy and
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the coal price of first lag brought about an increase in the coal price. OPEC quota and GDP 

brought about a decrease in the price of coal. Population is correlated with technological 

change. Therefore, increases in population (advancement in technology and the passage of 

time) have resulted in shifts away from the use of coal. This decreased demand in coal 

decreases the price of the commodity. While increases in total energy consumption brought 

about an increase in the price of coal.
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Figure 6.6 ARIMA Coal Price Forecasts for Alberta
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Figure 6.7 PCR Coal Price Forecasts for Alberta
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The length of a single cycle is generally longer than one year. The cyclic pattern is often 

difficult to predict because it does not lend itself to repetition at constant intervals of time and 

its duration is not uniform. The cyclical factors represent the ups and downs caused by 

economic or industry specific conditions like GDP, product production, demand and interest 

rates. Historically, coal price fluctuations in have tracked the changes in corresponding 

Middle Atlantic sector coal prices in both direction and magnitude. Canada is a small portion 

of the total Middle Atlantic coal use.
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Figure 6.8 NN Coal Price Forecasts for Alberta (1990-1997)

6.1.3 Crude Oil Pricing Model Results for Alberta
Crude oil is in $/barrel for Alberta and Canada. Figures 6.9, 6.10, and 6.11 show the crude 

oil price forecasts using ARIMA, PCR and NN. The GARCH model for crude oil did not give 

good results. The ARIMA model in Figure 6.9 captures a stationary mean without the 

volatility and the trend characteristics of the observed crude oil prices. This model presents 

only a simplistic explanation of the behavior of crude oil prices and may not be helpful for 

predicting future prices. The PCR model in Figure 6.10 captures the mean, a damped 

volatility, trend cycle and direction in the observed crude oil prices and may be a suitable 

model for predicting future coal prices in Alberta. The damped volatility underestimates high 

crude prices and overestimates low crude prices but overall the effects may be negligible. 

The NN model in Figure 6.11 captures the mean, volatility, trend cycle and direction in the 

observed crude prices and may be a suitable model for predicting future crude oil prices in 

Alberta. The NN oil price model also has 10 hidden layers that give the best results.
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The variables that affect the price of crude oil negatively include the 4th quarter oil price, oil 

production, population, and GDP. However, the 2nd quarter crude oil price, the price of 

natural gas, personal income, unemployment, and the number of degree days affect the 

price of oil positively. The parameters that are elastic are oil production, population and 

unemployment, number of wells drilled, number of degree days, electricity price, coal price 

changes, natural gas price and changes in of OPEC quota. A 1 % increase in oil production 

brings about a 3% decrease in the price of oil and a decrease in oil price of about 17.5% is 

brought about by a 1% increase in population. Unemployment increase by 1% increases oil 

price by 19%. There is a closely matched New York and Middle Atlantic prices have been 

over the period the 1970-1999 period (Anon, 2002c).
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Figure 6.9 ARIMA Crude Oil Price Forecasts for Alberta

6.1.4 Natural Gas Pricing Model Results for Alberta

Natural Gas price is in 0/m3for Alberta and Canada. Figures 6.12, 6.13, 6.14 and 6.15 show 

the natural gas price forecasts using GARCH, ARIMA, PCR and NN. The GARCH model in 

Figure 6.12 displays complete departure below the 20th quarter and between the 30th and 

40th quarters, but otherwise it captures the mean, volatility, trend cycle and direction in the 

observed natural gas prices for Alberta in the remaining quarters. The ARIMA model in 

Figure 6.13 captures a stationary mean without the volatility and the trend characteristics of 

the observed natural gas prices. This model presents only a simplistic explanation to the 

behavior of coal prices and may not be helpful for predicting future prices. The PCR model in 

Figure 6.14 also captures a stationary mean, a damped volatility and the trend
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characteristics of the observed natural gas prices. This model may be used to predict future 

natural gas prices in Alberta with a high degree of confidence. The NN model in Figure 6.8 

captures the mean, volatility, trend cycle and direction in the observed coal prices and may 

be a suitable model for predicting future natural gas prices in Alberta. The NN natural gas 

price model also has 10 hidden layers that give the best results.
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Figure 6.10 PCR Crude Oil Price Forecasts for Alberta
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Figure 6.11 NN Crude Oil Price Forecasts for Alberta (1990-1997)
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The GDP, total energy consumption, natural gas price in the 3rd quarter, and coal price are 

the only independent variables that affect the price of natural gas significantly and positively. 

The fourth quarter lags in the price of natural gas, oil price, natural gas production, personal 

income and OPEC quota affect the natural gas price significantly and negatively. Both oil 

and gas are usually found simultaneously and can be termed as complementary substitutes. 

An increase in natural gas production, personal income and the OPEC quota produces a 

decrease in the price of natural gas. The only elastic parameters are the 3rd and 4th quarter 

lags, oil price, coal price, electricity price, natural gas production, total energy consumption, 

population, GDP, personal income, unemployment and OPEC quota. These variables are 

positive except for the 4th quarter lag, crude oil price, natural gas production, personal 

income, unemployment and OPEC quota. As the population increases, the housing needs 

will increase and there will be a need for electricity and heating devices.
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Figure 6.12 GARCH Natural Gas Price Forecasts for Alberta

6.1.5 Total Energy Consumption Model Results

Total Energy Consumption is in petajoules for Alberta and Canada. Figures 6.16, 6.17, 6.18 

and 6.19 show the total energy consumption forecasts using GARCH, ARIMA, PCR and NN. 

The GARCH model in Figure 6.16 displays complete departure below the 20th quarter, but it 

captures fairly well the mean, volatility, trend cycle and direction in the observed total energy 

consumption for Alberta in the remaining quarters. The ARIMA model in Figure 6.17 

captures a stationary mean without the volatility and the trend characteristics of the observed 

total energy consumption. This model presents only a simplistic explanation and
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undervalues the total energy consumption of the total energy consumption. The PCR model 

in Figure 6.18 captures the mean, volatility and the trend characteristics of the observed total 

energy consumption. This model is appropriate for predicting the future total energy 

consumption in Alberta with a high degree of confidence. The NN model in Figure 6.19 also 

captures the mean, volatility, trend cycle and direction in the observed energy consumption 

and may be a suitable model for predicting future energy consumption in Alberta. The NN 

total energy consumption forecast model uses two hidden layers.
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Figure 6.13 ARIMA Natural Gas Price Forecasts for Alberta
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Figure 6.14 PCR Natural Gas Price Forecasts for Alberta
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The parameters that are significant in this model include the 1st lags of the dependent 

variables, oil and coal price variations, electricity production, GDP, and personal income. 

The 1st quarter lag, coal price and personal income negatively affect energy consumption, 

while oil price, electricity production, and GDP positively affect energy consumption. An 

increase in total energy consumption in the 1st quarter and coal price, and personal income 

decreases total energy consumption. An increase in price of oil, electricity production, and 

GDP increases total energy consumption. The elastic variables are population and personal 

income. An increase of 1 % in population, and personal income results in a 1.9 % increase, 

and 1.07 % decrease in energy consumption respectively.
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Figure 6.16 GARCH Total Energy Consumption Model for Alberta
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Figure 6.17 ARIMA Total Energy Consumption Forecasts for Alberta

T o t a l  E n e r g y  C o n s u m p t i o n  P C R  A l b e r t a

3 0 0

2 5 0

2 0 0

—  Pre d ic te d  
-— o b s e r v e d

1 5 0

1 0 0

SO

0
10 20 30  40

Y e a r s  in Q u a r t e r s
so 6 0 7 00

Figure 6 .1 8  P C R  Tota l E nergy Consum ption Forecasts  fo r A lb erta

6.2 Energy Pricing Model for Canada
Canadian energy price models focus on the variations in energy prices within the Canadian 

economy. Canada’s energy sources, unlike Alberta, comes from other sources including 

hydro and nuclear power sources, even though attention is given to the fossil fuel
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components of the energy spectrum. Canada has enjoyed expanded economy within the 

last decade, and thus, the demand for energy for both residential and commercial purposes 

has increased significantly.
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Figure 6.19 NN Total Energy Consumption Forecasts for Alberta (1990-1997)

6.2.1 Electricity Pricing Model Results for Canada

Figures 6.20, 6.21, 6.22 and 6.23 show the electricity price forecasts using GARCH, ARIMA, 

PCR and NN. The GARCH model in Figure 6.20 shows complete departure below the 30th 

quarter and an unacceptable prediction model for electricity prices. The ARIMA model in 

Figure 6.21 under-predicts the observed electricity prices and may provide severely 

pessimistic prices for future models, which are economically inappropriate for marginal profit 

companies. The PCR model in Figure 6.22 captures the mean, the volatility and the trend 

direction and provides an appropriate model for future predictions.

The NN model in Figure 6.23 shows severe departure from the observed pattern and may be 

unsuitable for Canadian electricity price forecasting. The lags in electricity prices are not 

significant. Electricity prices are affected positively by the price of oil, GDP, unemployment, 

a n d  OPEC q u o ta  a n d  n e g a tiv e ly  by co a l p rices  an d  p op u la tio n . T h e  1 st q u a rte r  la g s  in th e  

price of electricity, natural gas prices, oil prices, coal prices, electricity production, total 

energy consumption, population, GDP, personal income, unemployment, number of degree 

days and OPEC quota are elastic in this model. An increase of 1 % in population and 

unemployment brings about 400% decrease and 360% increase in the price of electricity 

respectively.
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6.2.2 Coal Pricing Model Results for Canada
Figures 6.24, 6.25 and 6.26 show the coal price forecasts using ARIMA, PCR and NN. The 

GARCH model for coal did not give good results and so is not included in these results. The 

ARIMA model in Figure 6.24 captures a stationary mean without the volatility and the trend 

characteristics of the observed coal prices. This model presents only a simplistic explanation 

to the behavior of coal prices and may not be helpful for predicting future prices. The PCR 

model in Figure 6.25 also captures a stationary mean without the volatility and the trend 

characteristics of the observed coal prices and has the same weakness associated with the 

ARIMA model. The NN model in Figure 6.26 captures the mean, volatility, trend cycle and 

direction in the observed coal prices and may be a suitable model for predicting future coal 

prices in Alberta. However, it under-predicts the coal price for the period below the 5th 

quarter.
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Fig 6.20 GARCH Electricity Price Forecasts for Canada

The independent variables that are significant are the 1st quarter lag, crude oil price, total 

energy consumption and the number of oil and gas wells drilled. The 2nd quarter lag in coal 

and crude oil prices affects the model positively. As the total energy consumption, and 

westca (number of oil and gas wells increases), the price of coal decreases. An increase in 

crude oil price and the 1st quarter lag results in an increase in the coal price. Unemployment 

is the only variable that is elastic. An increase in unemployment by 1% results in a decrease
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of 1.52 % in coal price. Unemployment increases will bring about an increase in the use of 

coal since it is the cheapest source of all the energy products.

6.2.3 Crude Oil Pricing Model Results for Canada
Figures 6.27, 6.28, and 6.29 show the crude oil price forecasts using ARIMA, PCR and NN. 

The GARCH model for Crude Oil is not included because it did not give good results. The 

ARIMA model in Figure 6.27 captures a stationary mean without the volatility and the trend 

characteristics of the observed crude oil prices. This model presents only a simplistic 

explanation of the behavior of crude oil prices and may not be helpful for predicting future 

prices. The PCR model in Figure 6.28 captures the mean, a damped volatility, trend cycle 

and direction in the observed crude oil prices and may be a suitable model for predicting 

future coal prices in Alberta. The damped volatility underestimates high crude prices and 

overestimates low crude prices but overall the effects may be negligible. The NN model in 

Figure 6.29 captures the mean, volatility, trend cycle and direction in the observed coal 

prices and may be a suitable model for predicting future crude oil prices in Canada. The NN 

oil price model also has 10 hidden layers that give the best results.

C a n a d a  E l e c t r i c i t y :  E l e c t r i c i t y  P r i c e s  A R I M A

-  P re d i c t e d  
•— O b s e r v e d

Y ear s  in Q u arters

Figure 6.21 ARIMA Electricity Price Forecasts for Canada

The significant variables in this model are the changes in the 1st, 2nd and 3rd quarter lags, 

natural gas price, total energy consumption, number of degree days, and OPEC quota. An 

increase in the 1st and 3rd quarter lags and number of degree days results in an increase in 

crude oil price. An increase in the 2nd quarter lag, natural gas price, total energy consumption 

and OPEC quota results in a decrease in crude oil price. The elastic variables in this model 

are total energy consumption, population, personal income, and unemployment. An increase
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in population results in an increase of 7.6% in crude oil price, while an increase in total 

energy consumption, personal income and unemployment results in a decrease of 1.62%, 

1.88% and 3.43%, respectively in crude oil price.
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Figure 6.22 PCR Electricity Price Forecasts for Canada
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Figure 6.23 NN Electricity Price Forecasts for Canada (1990-1997)

6.2.4 Natural Gas Pricing Model Results for Canada

Natural Gas Price is in cents/m3. Figures 6.30, 6.31 and 6.32 show the natural gas price 

forecasts using ARIMA, PCR and NN. The GARCH model for Natural gas Canada was not
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included because it did not give good results. The ARIMA model in Figure 6.30 captures a 

stationary mean without the volatility and the trend characteristics of the observed natural 

gas prices. This model presents only a simplistic explanation to the behavior of natural gas 

prices and may not be helpful for predicting future prices. The PCR model in Figure 6.31 

also captures a stationary mean, a damped volatility and the trend characteristics of the 

observed natural gas prices. This model may be used to predict future natural gas prices in 

Canada with a high degree of confidence. The NN model in Figure 6.32 captures the mean, 

volatility, trend cycle and direction in the observed natural gas prices and may be a suitable 

model for predicting future gas prices in Canada. The NN natural gas price model also has 5 

hidden layers that give the best results.
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Figure 6.24 Coal Price ARIMA Forecasts for Canada

Population, GDP, personal income, unemployment, number of degree days and total energy 

production are the significant variables in this model. None of the lags are significant in this 

model. The crude oil price, coal price, total energy consumption, population, GDP, personal 

income, unemployment, number of degree days, OPEC quota and the number of oil and gas 

wells drilled are elastic variables. As population increases, the requirement for housing 

increases and so does energy consumption. As unemployment increases the use of energy 

by the unemployed will decrease. A 1 % increase in population and unemployment result a 

207 % increase and a 166% decrease in the price of natural gas respectively.
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Figure 6.25 PCR Coal Price Forecasts for Canada
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Figure 6.26 NN Coal Price Forecasts for Canada (1990-1997)

6.2.5 Total Energy Consumption Model for Canada

Total Energy Consumption is in Petajoules. Figures 6.33, 6.34, 6.35 and 6.36 show the total 

energy consumption forecasts using GARCH, ARIMA, PCR and NN. The GARCH model in 

Figure 6.33 captures fairly well the mean, volatility, trend cycle and direction in the observed 

total energy consumption for Canada with a complete departure within a small segment 

between the 20th and 30th quarters. The ARIMA model in Figure 6.34 captures a stationary 

mean without the volatility and the trend characteristics of the observed total energy
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consumption. This model presents only a simplistic explanation and undervalues the total 

energy consumption of the total energy consumption. The PCR model in Figure 6.35 

captures the mean, volatility and the trend characteristics of the observed total energy 

consumption. This model is appropriate for predicting the future total energy consumption in 

Canada with a high degree of confidence. The NN model in Figure 6.35 also captures the 

mean, volatility, trend cycle and direction in the observed energy consumption and may be a 

suitable model for predicting future energy consumption in Canada. The NN total energy 

consumption forecast model uses five hidden layers.
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Figure 6.27 ARIMA Oil Price Forecasts for Canada

The 1st, 2nd, 3rd and 4th quarter lags, oil price, coal price, electricity production, population, 

GDP, unemployment, the number of degree days and the number of oil and gas wells drilled 

are all significant independent variables of this model. An increase in the 4th quarter 

consumption lag, price of oil, production of electricity, GDP, and personal income brings 

about an increase in energy consumption. An increase in the 1st, 2nd and 3rd quarter lags, 

coal price, population, number of degree days and the number of oil and gas wells drilled 

results in a decrease in total energy consumption. Population and personal income are the 

only independent variables that are elastic. A change of 1 % in their values results in a 

change of 2.1% (negatively) and 1.9% (positively) the total energy consumption, 

respectively.
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Figure 6.29 NN Crude Oil Price Forecasts for Canada (1990-1997)

6.3 Optimal Energy Price Predictors for Alberta and Canada
Detailed analysis of the energy price model results show that the PCR and NN predictors are 

suitable for predicting crude oil and natural gas prices and the total energy consumption for 

both Alberta and Canada, as well as the electricity prices in Alberta. The GARCH and NN 

predictors are suitable for predicting the coal prices in Alberta. The PCR predictor is suitable 

for predicting Canada’s electricity prices. Finally, the NN is predictor is appropriate for 

predicting Canada’s coal prices. With these predictors, analysts can model, simulate and 

analyze the energy prices and energy consumption levels for guiding government and
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company policies and for ensuring optimal investment decisions and performance of energy 

companies.
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Fig 6.30 ARIMA Natural Gas Price Forecasts for Canada
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Figure 6.31 PCR Natural Gas Price Forecasts for Canada

6.4 Stochastic Characterization of Energy Price Volatility

Energy prices are volatile, and this volatility affects provincial and federal government and 

the energy businesses budgetary policies. In order to capture these energy price and total 

consumption volatilities, the random projections around the expected values of the models
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were modeled and analyzed using the Monte Carlo simulation technique [Palisade, 2000], 

The data sources included Canadian Socio-economic Information Management System 

(CANSIM), Alberta Energy Library, Energy Utilities Board (EUB), Energy Prices and Taxes 

periodical, Annual Oil Market Report and OPEC bulletin with the period between 1982 and 

1997. Figures 6.37 and 6.38 illustrate the cumulative probabilities associated with the 

respective Alberta and Canadian energy prices and total energy consumption.
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Figure 6.32 NN Natural Gas Price Forecasts for Canada (1990-1997)
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The abbreviations used are: Alberta Gas Prices (AB-Gas); Alberta Petroleum Prices (AB- 

Pet); Alberta Coal Prices (AB-Coal); Alberta Electricity Prices (AB-Elt) and Alberta Total 

Energy Consumption (AB-Total); Canada Gas Prices (CAN-Gas); Canada Petroleum Prices 

(CAN-Pet); Canada Coal Prices (CAN-Coal); Canada Electricity Prices (CAN-Elt) and 

Canada Total Energy Consumption (CAN-Total). The figures show much variability in all the 

energy centers including total energy consumption for Canada and Alberta within this period 

except natural gas prices in Alberta. This might not be the case after the deregulation 

because the markets tend to price commodities based on supply and demand. At 5% and 

95% cumulative probability the price of natural gas is 6.5 0/m3 and 10 0/m3 or less 

respectively. The results are the same for AB-Pet, AB-Coal, AB-Elt and AB-Total, $14 and
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$34 for 5% and 95% respectively. At 5% and 95% probability Can-gas and Can-Total have 

the same results of $15 and $34 0/m3. For Can-Pet Can-Coal and Can-Elt have $18 and 

$35 respectively for 5% and 95% cumulative probability.
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Figure 6.36 NN Total Energy Consumption Model for Canada
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Figure 6.37 A Plot of Cumulative Probability versus the Mean for Alberta

Table B.3 (in Appendix B) shows the cumulative probabilities and the means of energy 

prices. The coal and oil prices for both Alberta and Canada are the same hence their similar 

results. The cumulative probability of 95% has an electricity price of $ 4.4/gigawatt hours for 

Alberta and $3.0/gigawatt hours for Canada. At a cumulative probability of 95% the natural 

gas prices are C$15.1 for Alberta and C$27.5 for Canada. Total energy consumption, even

i l l
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at 5% cumulative probability, is high at 166 petajoules for Alberta and 656 petajoules for 

Canada. The other independent variables gave 5% and 95% cumulative probabilities as 

shown in Table B.4. Table B.5 (see Appendix B) shows the means of the different 

independent variables. The means of GDP, Income, OPEC quota and degree days are the 

same for Alberta and Canada. The number of wells drilled, westca, are nearly the same 

implying that a significant number of wells drilled are in Alberta. These results show 

similarity between the volatility profiles for Alberta and Canada.
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Figure 6.38 A Plot of Cumulative Probability versus the Mean for Canada

6.5 Conclusions

Detailed analysis of the results shows that, the PCR and NN predictors are suitable for 

forecasting future energy prices and consumption. These predictors are non-linear and they 

capture the means, volatility, trend cycles and directions to a reasonable degree of 

confidence. Energy pricing and budgetary policies must reflect the associated volatility to 

cushion government’s and company budgets against shortfalls and undue erosion of their 

competitive edge and economic stability. Rigorous energy price and consumption modeling 

and diversification are strong economic strategies to deal with such volatility.
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CHAPTER 7.0 

CONCLUSIONS AND RECOMMENDATIONS

Energy price fluctuations affect government and business policies, effective planning and 

implementation of strategic decisions and industrial growth and competitiveness of business 

enterprises. Many efforts have been made and are currently being made to provide some 

tools for guiding governments and industry in this domain. This research study used a 

number of statistical and econometric methods, including GARCH, ARIMA, PCR and neural 

networks modeling techniques, to develop energy forecasts models. The main objectives of 

this study were to: (i) examine the essential elements of oil, natural gas, coal and electricity 

pricing that play a major role in its determination and establish how to reduce the effects in 

adverse situations of high or low prices; (ii) develop energy price forecast models for energy 

planning, business planning and investment; (iii) develop computational and algorithmic 

efficiencies and statistical control paradigms for solving the forecast models, and (iv) 

generate appropriate forecast techniques for guiding Alberta and Canadian energy policy 

makers. A number of methodologies, procedures and analyses were carried out to achieve 

these objectives. Detailed literature survey, analysis of the energy sector, detailed 

mathematical and computer modeling of the problems, experimentation and analysis of 

results were carried out for generating the base for drawing conclusions.

7.1 Conclusions

The first and the most important conclusion of the study is that it has achieved all the 

objectives laid out in Section 1.3 of this thesis report.

1. A detailed examination of all the essential elements that determine the price, volatility 

and trend directions of energy have been carried out within the Alberta and Canada 

environments.

2. Energy price forecasts models have been developed using GARCH, ARIMA, PCR and 

NN techniques for guiding government and business organizations in planning, 

investment and policy making.

3. Computational and algorithmic efficiencies and statistical control paradigms have been 

developed for solving the forecast models.
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4. The forecasts modeling techniques have been compared and analyzed for generating 

the appropriate techniques for guiding forecasters within Alberta and Canada.

From detailed mathematical and computer modeling, experimentation, and analysis of the 

energy price model results, the following conclusions are also drawn:

5. The principal components analysis (PCR) and multi-layer feed-forward neural networks 

(NN) predictors are suitable for predicting crude oil and natural gas prices and the total 

energy consumption for both Alberta and Canada, as well as the electricity prices in 

Alberta.

6. The GARCH and NN predictors are suitable for predicting the coal prices in Alberta.

7. The PCR predictor is suitable for predicting Canada’s electricity prices.

8. The NN predictor is appropriate for predicting Canada’s coal prices.

With these predictors, analysts can model, simulate and analyze the energy prices and

energy consumption levels for guiding government and company policies and for ensuring 

optimal investment decisions and performance of energy companies.

7.2 Contributions and Industrial Significance of Study

A number of contributions have been achieved to advance knowledge in this research 

domain and to assist business organizations and governments in energy price forecast 

modeling. These contributions include:

1. Development of detailed forecast models for investment decisions and planning of 

business strategies and budgeting

2. Advances in knowledge and frontiers in energy economics

3. Forecasts models provide strong basis for formulating energy price models for

domestic and foreign policies on energy production, consumption, exports and 

inventory management. Most models comprise few parameters but do not show the 

complete picture of those parameters that affect energy product prices. The
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relationship among energy product prices and the fundamental economic indicators 

are provided in a comprehensive manner to ensure robust models.

7.3 Recommendations

The following recommendations are made to ensure research continuity, advances in

knowledge and research frontiers in energy economics:

1. The appropriate predictors for energy pricing in Alberta and Canada, PCR and NN 

predictors, must be subjected to rigorous modeling and testing with a large data base 

over a long period of time to ensure their stability and operating domain constraints.

2. Detailed reconciliation analysis must be carried out on the PCR and NN predictors over 

short future time periods. A 3-month future prediction can be carried out using these 

predictors and their results can be matched against the actual energy prices for 

calibration and use.

3. The radial basis function (RBF) should also be studied and used to forecast energy 

prices and total energy consumption and compare with other forecasting methods.

4. Correlation dimension should also be used to determine the extent of chaos in these 

forecasts.

5. Wavelet Analysis should also be used to determine the energy time series data.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

1. Anon. (1976). U.S. Senate Special Committee Investigating Petroleum Resources,

American Petroleum Interests in Foreign Countries, Arno Press Inc., New York: 297 

Pages.

2. Anon. (1986), Coal Mining Research Company, Coal Mining in Alberta 1986-2035

Vol. 1, The Current Status of Coal Reserves Production Forecasts and Mining 

Technology in Alberta, CMRC Report# 8519-D3, Mining Division, Devon, AB: 19-45.

3. Anon. (1988) IEA Annual Oil Market Report, OECD Paris, FR

4. Anon. (1991) IEA Energy Prices and Taxes, IEA OECD, Paris, FR

5. Anon. (1995) OECD Environmental Performance Reviews: Canada, OECD, Paris,

FR: 133.

6. Anon. (1996a) Harvard Business School Report, Phillips Petroleum Co. and

Norwegian Oil Policy, Publishing Division, Harvard Business School, Boston, MA 

02163. pp 2-3.

7. Anon. (1996b) IEA, Canada 1996 Review; Energy Policies of IEA Countries, Head of

Publications Service, OECD 2, rue Andre-Pascal, 75775 PARIS CEDEX 16, FR: 47-

84.

8. Anon. (1997a) OPEC Bulletin, Vienna, Austria.

9. Anon. (1997b) Shazam Econometrics Computer Program, User’s Reference Manual

Version 8.0, McGraw-Hill, (1997 by Kenneth White, Vancouver, BC.

10. Anon. (1997c) IEA International Coal Trade: The Evolution of a Global Market, IEA, 

Paris, FR: 51-57.

11. Anon. (1999a) National Energy Board, (1999) Canadian Energy: Supply and

Demand to 2025, ( National Energy Board, The Publications Office, Calgary, AB: 3 

Pages.

12. Anon. (1999b) Financial Engineering Ltd., Managing Energy Price Risk, 2nd Edition, 

Risk Publications, London, UK: 17-19.

13. Anon. (1999c) IEA: The Future Role of Coal: Markets, Supply and the Environment, 

IEA. Paris, FR: 21 Pages.

14. Anon. (1999d); Industry E&P spending plan for 2000 reflect renewed optimism in Oil

& Gas Journal, Tulsa; Dec 20,1999; Vol. 97, Iss. 51; pg. 30,1 pgs

15. Anon. (2000a) International Energy Agency Report, Oil Prices and Taxes in the Year

2000: An IEA Statistical Fact Sheet.

16. Anon. (2000b) International Energy Agency Report, (2000), Experience Curves for 

Energy Technology Policy, IEA, Paris, FR: 23 Pages.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17. Anon. (2000c) International Energy Agency Report, (1996), International energy 

Technology Collaboration: Benefits and Achievements, IEA, Paris, FR: 17 Pages.

18. Anon. (2000d) International Energy Agency Report, (1999), International 

Collaboration in Energy Technology: A Sampling of Success Stories, IEA, Paris, FR: 

13-22.

19. Anon. (2000e) Energy Policies of IEA Countries: Canada 2000 Review, IEA, Paris, 

FR: 71-122

20. Anon. (2000f), National Energy Board Canadian Natural Gas Market, Dynamics and 

Pricing: An Energy Market Assessment (National Energy Board 2000, Publications 

Office, National Energy Board, Calgary, AB: 1 Page.

21. Anon. (2000g) Market Surveillance Administrator Report on Power Pool of Alberta 

Prices, University of Alberta, Edmonton, AB: 1 Page.

22. Anon. (2002a), Alberta Energy Board Website www.aeb.ca

23. Anon. (2002b), Website of The Canadian Association of Oilwell Drilling Contractors, 

Daily Oil Bulletin, www.caodc.ca

24. Anon. (2002c) All fuels Demand and Price Forecast Methodology, Forecast 

Appendix, New York State Energy Plan -  June 2002, EIA/DOE, NY (Unpublished).

25. Anon. (2003); Deman for petroleum increased slightly in 2002, NPN, National 

Petroleum News, Chicago; Mar 2003; Vol. 95, Iss. 3; pg. 7, 2 pgs

26. Armstrong, M. (1988) The Canadian Economy and its problems, 4th Edition, 

Prentice-Hall Canada Inc., Ontario: 151-176.

27. Ball, M., (1965), This Fascinating Oil Business, Bobbs-Merrill Co., New York: 202- 

236.

28. Bell, H. S. (1945) American Petroleum Refining, D. Van Nostrand Company, Inc., 

New York: 8-9.

29. Bending, R.C., Cattell, R.K., and Eden, R.J. (1987). Energy and structural change in 

the United Kingdom and Western Europe. Ann. Rev. Energy 12:185-222.

30. Bhatia, R (1987), Energy Demand Analysis in Developing Countries: A Review, 

Energy Journal, 8 (Special LDC Issue),: 1-33.

31. Bollerslev, T., (1986) Generalized Autoregressive Conditional Heteroskedasticity, 

Journal of Econometrics 31 ( Elsevier Science, North-Holland: 307-327.

32. Bollerslev, T., Engle, R.F. and Nelson, D.B. (1993) ARCH Models, Working Paper 

No. 154, Prepared for The Handbook of Econometrics, Volume 4, Elsevier Science, 

Pub. Co., New York, US. 110 pages

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.aeb.ca
http://www.caodc.ca


33. Breipohl, A.M. (2002) Electricity Price Forecasting Models, Proceedings of the IEEE 

Power Engineering Society Transmission and Distribution Conference, Vol. 2: 963- 

966.

34. Breton, T.R. (1985) World Oil Market; Low Prices Forecast in Short-Term, Petroleum 

Economist, Vol. 52 No. 12:450-451.

35. Campbell, J. M. (1959) Oil Property Evaluation, Prentice-Hall, Inc., NJ: 42 Pages.

36. Campbell, J. M. (1982) Petroleum Evaluation for Financial Disclosures, Campbell 

Petroleum Series Inc., Norman, Oklahoma. P. 63-150.

37. Campbell, C. J. and Laherrere, J.H. (1998) The End of Cheap Oil, Scientific 

American, March 1998: 81-84.

38. Campbell, C. J, (1997); Better understanding urged for rapidly depleted reserves, Oil 

& Gas Journal, Tulsa; Apr 7, Vol. 95, Iss. 14; pg. 51, 3 pgs

39. Cullingworth, J.B. (1990) Energy, Land, and Public Policy Energy Policy Studies 

Volume 5, Transaction Publishers, London: 53-57.

40. Davison, M.; Anderson, C.L.; Marcus, B. and Anderson, K., (2002) Development of a 

Hybrid Model for Electrical Power Spot Prices, IEEE Transactions on Power 

Systems, Vol. 17 No. 2 May: 257-264.

41. Dilnot, A. and Helm, D. (1987), Energy Policy, Merit Goods and Social Security, 

Fiscal Studies, 8 (3), (August): 29-48.

42. Dieck, A.J.; Strickler, W.K., (1985) Evaluation of Time Series Models for Energy 

Usage Forecasting, Priceedings, American Institute of Industrial Engineers, Annual 

Conference and Convention, Norcross, GA, USA. No. 258: p 619-625.

43. Elkhafif, M. (1992) Estimating Disaggregate Price Elasticities in Industrial Energy 

Demand, Energy Journal, 13(4): 209-17.

44. Elkhafif, M. (1993) Energy Forecasting Models, Simulations and Price Sensitivity: . 

New Formulation, International Journal of Forecasting, 9(2): 203-10.

45. Errera, S. and Brown S. L., (1999) Fundamentals of Trading Energy Futures & 

Options, Pennwell Publishing Co., OK: 95-169.

46. Enders, W. (1995) Applied Econometric Time Series, John Wiley & Sons, Inc. p. 63.

47. Embrechts, M.J. (1995) Forecasting foreign Exchange Rates with Artificial Neural 

Networks, Proceedings of the 1995 Artificial Neural Networks in Engineering, 

ANNIE’95. St. Louis, USA: 771-778.

48. Engle, R.F.; Kane, A. and Noh, J., (1993) A Test of Efficiency for the S&P 500 Index 

Option Market Using Variance Forecasts, National Bureau of Economic Research 

Working Paper: 4520 November: page 24.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49. Essawy, M.A.; Bodruzzaman, M., Shamsi, A. and Noel, S., (1996) Iterative 

Prediction of Chaotic Time Series using recurrent neural network, Proceedings of the 

1996 Artificial Neural Networks in Engineering, ANNIE’96. St.Louis, USA Vol. 6: 753- 

762.

50. Faria, J. Cuelenaere, R., and Blok K. (1998) Energy efficiency and structural change 

in the Netherlands, 1980-1990. Energy Economics 20 (1998) (Elsevier Science; 

Netherlands: 1-28.

51. Faruqui, A. and Eakin, K. (2000) Pricing in Competitive Electricity Markets, Kluwer 

Academic Publishers, Boston: 5-11.

52. Frimpong, S., J.M. Whiting and J. Szymanski (1998) Stochastic-Optimization 

Annealing of an Intelligent Open Pit Mine Design; Journal of Mineral Resources 

Engineering, Vol. 7, No. 1; ©  ICP, Imperial College, UK: 15-27.

53. Frimpong, S. and A. Hachiya, (1999) “Quantitative Risk Simulation of CO2 Disposal 

Economic Models for Alberta”; International Journal of the Society of Materials 

Engineering for Resources: Special Issue Vol. 7, No. 1; ©  Society of Material 

Resources Engineering of Japan: 55~72.

54. Frimpong, S., A.Pop and R.Suglo, (2003) “Linear Optimization Modeling of Luscar- 

Sheritt Coal Production”; CAM I2003, Calgary, Canada (September).

55. Fusaro, P.C. (1998) Energy Risk Management: Hedging Strategies and Instruments 

for the International Energy Markets, McGraw-Hill, NewYork: 133-143.

56. Gardner, D.T. and Elkhafif, M.A.T. (1998) Understanding Industrial Energy Use: 

Structural and energy intensity changes in Ontario industry, Energy Economics 20 

(Elsevier Science; Netherlands: 29-41.

57. Gentry, D.W. and O’Neil, T. J. (1984) Mine Investment Analysis, SME-AIME, Inc., 

New York. pp. 31.

58. Greene, W. H. (2000) Econometric Analysis, 4th Edition, Prentice Hall, London: 760- 

810.

59. Haines, L. (1998) Is the World Running Out of Oil? Oil & Gas Investor 18, No. 1 

(Jan. 1998): p.3

60. Hamilton, J.D. (1993) Time Series Analysis, Time Series Models of 

Heteroskedasticity, chapter 21, Princeton University Press, Princeton, New Jersey: 

657-676.

61. Hampton, M. (1991) Oil Prices, Cycling Towards Low Prices, Petroleum Economist, 

London Vol. 58 No. 4: 9-11.

62. Helliwell, J.F., MacGregor, M.E., McRae, R.N. and Plourde, A., (1988) ‘Oil and Gas 

Taxation’, Osgoode Hall Law Journal, 26(3) No. 3:453-494.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63. Hotelling, H. (1993), The Economics of Exhaustible Resources, Journal of Political 

Economy, 39 (2), April: 137-75.

64. Howarth, R.B., Schipper, L., Duerr.P.A., Strom, S., (1991) Manufacturing energy use 

in eight OECD countries; decomposing the impacts of changes in output, industry 

structure and energy intensity, Energy Economics 13:135-142.

65. Hough, G.V. (1988) World Survey, Liquified Natural gas: Optimism kept in bounds, 

Petroleum Economist, Vol. 55 No. 12: 391-393.

66. Hsiao, F.S.T. and Hsiao, M.W., (1985) Elasticities, Ratios and Energy Modelling, 

Energy Economics, July; 7(3): 153-58.

67. Hull, J. C. (2000) Options, Futures, and other Derivatives, Fourth Edition, Prentice 

Hall, New Jersey, pp. 218-295.

68. Huntington, H.G. (1994), Oil Price Forcasting in the 1980s: What Went Wrong?, 

Energy Journal, 15 (2), 1-22.

69. Jenne, C.A., Catell, R.K., (1983) Structural change and energy efficiency in industry. 

Energy Economic 5,114-123.

70. Karkkainen, P. (1997) “Oil and Gas” in Handbook of Canadian Security Analysis, 

Volume 1, Kan, Joe, (Editor), John Wiley & Sons, Ontario: 142-180.

68. Kashfi M.S.(2003);Long decline in oil sector means shrinking role for Iranian supply 

in new world order Oil & Gas Journal, Tulsa; Feb 10, 2003; Vol. 101, Iss. 6; pg. 20, 2 

pgs

69. Klein, S. (2001) Costly Energy: Why Oil and Gas are Rising and What we can do 

About It, Canadian Centre for Policy Alternatives, Ontario, Canada: 5-24.

71. Ko, H.S., Niimura, T. and Ozawa, K., (2002) A Day Ahead Electricity Price Prediction 

based on a Fuzzy-Neuro Autoregressive Model in a Deregulated Electricity Market, 

Proceedings of the International Joint Conference on Neural Networks, Vol. 2: 1362- 

1366.

72. Krzysztofowicz, R. (1999) Bayesian Forecasting via Deterministic Model, Risk 

Analysis, 19(4); 739-749.

73. Kumar, A.; Maini, P.; and Singh, S.V. (1999) Operational Model for Forecasting 

Probability of Precipitation and Yes/No Forecast, Weather and Forecasting, 14(1); 

38-48

74. Kutasov, I.M. (2002) Downhole temperature, pressure methods are accurate for 

drilling, completion, cement design; Oil & Gas Journal, Tulsa; Sep 16, 2002; Vol. 

100, Iss. 38; pg. 42, 3 pgs

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75. Kyrtsou, C. and Terraza, M. (2002) Stochastic Chaos or ARCH Effects in Stock 

Series? A Comparative Study, International Review of Financial Analysis, 11(4): 407-

31.

76. Labys, W. C. (1999) Modeling Mineral and Energy Markets, Kluwer Academic 

Publishers, Boston:1-3.

77. LaCasse, C. and Plourde, A. (1995) ‘On the Renewal of Concern for the Security of 

Oil Supply’, The Energy Journal, 16(2): 1-23

78. Laffer, A. B. (1985) High road for the American Automobile Industry; The World 

Economy, Oxford; Sep 1985; Vol. 8, Iss. 3; pg. 267, 20 pgs

79. Lariviere I. And Lafrance G. (1999) Modelling the electricity consumption of cities: 

Effect of urban density, Energy Economics 21 (1999) (Elsevier Science; Netherlands: 

53-66.

80. Lich, M. and Gobert, W., (1997) “Oil Services” in Handbook of Canadian Security 

Analysis, Volume 2, Kan, Joe, (Editor) John Wiley & Sons, Ontario: 1-45.

81. Lisi, F. and Villi, V., (2001) Chaotic Forecasting of Discharge Time Series: A Case 

Study, Journal of the American Water Resources Association, 37(2): 271-279.

82. Lerche, I and Mackay, J.A. (1999) Economic Risk in Hydrocarbon Exploration, 

Academic Press, Sandiego: 1-20.

83. Mabro, R (1998) OPEC Behaviour 1960-1998: A Review of the Literature, The 

Journal of Energy 4(1): 3-27.

84. McElroy, R.K.; Villacis, E.; Yontz, R.E. and Musa, D.l. (1986) Integrated Regional 

Economic and Demographic Modeling System for Developing Long-Range Forecast 

Inputs to Sectoral Energy and Peak Demand Forecasting Models, Proceedings of the 

American Power Conference, Vol. 48: 382-398.

85. MacKevett, N.H. (1998) Gas reserves growth boosts Sacramento basin; Oil & Gas 

Journal, Tulsa; Jan 26,1998; Vol. 96, Iss. 4; pg. 102,4 pgs

86. Merklein, H. A. and Hardy, W. C. (1977) Energy Economics, Gulf Publishing 

Company, Texas: 8-10.

87. Meyer, R. A. (1981) Coal Handbook, (Marcel Dekker, Inc. New York: 76-79.

88. Micheal C. L., (1999) Oil Scarcity, Energy Security and Long-term Oil Prices -  

Lessons Learned (Unlearned), International Association for Energy Economics 

(IAEE) Newsletter, Third Quarter 1999.

89. Mork, K.A. (1994), Business Cycles and the Oil Market, Energy Journal, 15 (Special 

Issue): 15-38.

90. Munasinghe, M. and Meier, P. (1993) Energy Policy Analysis and Modeling, 

Cambridge University Press, U.K.: 3-19.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91. Nakamura D.(2003) Refiners face continued uncertainty in 2003; Oil & Gas Journal,

Tulsa; Mar 24, 2003; Vol. 101, Iss. 12; pg. 58, 5 pgs

92. Nemeth, M. (1998) Has Oil Hit Bottom, Maclean’s v111 n14 p. 48

93. Newendorp, P. D. (1981) Risk Evaluation Helps Make Better Decisions, in Petroleum

Exploration, by Takken, S. and Sengal, E.W., The Institute for Energy Development, 

Inc. Oklahoma City: 81-83.

94. Nordhaus, W.D. (1980), Oil and Economic Performance in Industrial Countries, 

Brookings Papers on Economic Activity, 2: 341-99

95. Nunn, S., Schlesinger, J. R.and Ebel, R. E. (2000) The Geopolitics of Energy in the 

21st Century, Volume 2: The Supply-Demand Outlook, 2000-2020 ( The Centre for 

Strategic and International Studies, Washington D.C.: 25-35.

96. Nunn, S., Schlesinger, J.R., Ebel, R.E. (2000) The Geopolitics of Energy in the 21st 

Century, Volume 3: The Geopolitical Outlook, 2000-2020 ( The Centre for Strategic 

and International Studies, Washington D.C.: 64-67.

97. Paga, E. and Gurer, N., (1996), Reassessing Energy Intensities: A Quest for New 

Realism, OPEC Review, XX (1), March: 47-86.

98. Pagan, A.R. and Schwert, G.W. (1990) Alternative Models for Conditional Stock 

Volatility, Journal of Econometrics 45 ( Elsevier Science, North-Holland: 267-290.

99. Pagan, A. (1996) The Econometrics of Financial Markets’, Journal of Empirical 

Finance 3:15-102.

100. Palm, F.C. (1996) ‘GARCH Models of Volatility’, Handbook of Statistics, Vol.14 ( 

Elsevier Science, Netherlands: 209-240.

101. Patching, T. H., Harrison, J. M., Mackay,!., and Beck, R.A.D.(1980) Western 

Canada’s Coal: “The Sleeping Giant” Canada West Foundation, Calgary, Alberta: 

135-141.

102. Plourde, A. (1988) ‘On the Role and Status of Canadian Natural Gas Carriers Under 

Deregulation’, The Journal of Energy and Development, University of Colorado: 1-25.

103. Plourde, A. and Ryan, D.L. (1995) ‘Government Policy and Access to Natural Gas 

Service in Canada’, Canadian Public Policy: 304 -  315.

104. Plourde, A. (1993) ‘Natural Gas Trade in North America: Building up to the NAFTA’, 

The Energy Journal, 14(3): 51-73.

105. Plourde, A. (1994) The Petroleum Industry Under NAFTA’, The Impact of NAFTA: 

Economies in Transition, Proceedings of a Symposium held at the London School of 

Economics, September, 1994: 121-145.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106. Plourde, A., Ryan, D.L. and Wang, Y. (1996) ‘Asymmetric Price Responses of 

Residential Energy Demand in Ontario’, Canadian Journal of Economics, XXIX, 

Special Issue, April: S317-323.

107. Radler, M. (2002) Production, reserves climb as profits ebb for OGJ100; Oil & Gas 

Journal, Tulsa; Sep 9, 2002 Vol. 100, Iss. 37; pg. 84, 6 pgs

108. Raggi, A. and Barbiroli, G., (1992). Factors influencing changes in energy 

consumption; the case of Italy, 1975-1985. Energy Economics 14,49-56.

109. Raible, C.C.; Bischof, G.; Fraedrich, K. and Kirk, E. (1999) Weather and Forecasting, 

14(2): 203-214.

110. Rastogi, S.; Roulet, G. and Ortbals, Marvin, (1990) Total Energy Forecast Model for 

Rural Distribution Cooperatives, 34th Annual IEEE Rural Electric Power Conference, 

New York.

111. Razavi, H. and Fesharaki, F., (1991) Fundamentals of Petroleum Trading, Prager 

Publishers, New York: 3-15.

112. Rosenberg, N. (1980) Historical Relations Between Energy and Economic Growth, in 

Dunkerley, J. (ed.), International Energy Strategies, Pcoceedings of the 1979 

IAEE/RFF Conference, Cambridge, MA: Oelgesschlager, Gunn & Hain, Publishers, 

Inc.: 55-70.

113. Rudkevich, A.; Duckworth, M. and Rosen, R., (1998) Modeling Electricity Pricing in a 

deregulated generation Industry: The Potential for Oligopoly Pricing in a Poolco, 

Energy Journal, 19(3): 19-48.

114. Schipper, L., Howarth and R., Carlassare, E., (1992) Energy intensity, sectoral 

activity, and structural change in the Norwegian economy. Energy Economics 17: 

215-233.

115. Sharma, A. (2000a) Seasonal To Interannual Rainfall Probabilistic Forecasts for 

Improved Water Supply Management: Part 1 -  a Strategy for System Predictor 

Identification, Journal of Hydrology, 239(1-4): 232-239.

116. Sharma, A. (2000b) Seasonal to Interannual Rainfall Probabilistic Forecasts for 

Improved Water Supply Management: Part 3 -  a Nonparametric Probabilistic 

Forecast Model, Journal of Hydrology, 239(1-4): 232-239.

117. Seba, D. R. (1998), Economics of Worldwide Petroleum Production, Oil and Gas 

Consultants International, OK.: 53-128,203-269.

118. Sinton, J.E., Levine, M.D., (1994) Changing energy intensity in Chinese industry, 

Energy Policy 22: 239-255.

119. Sivakumar, B.; Liong, S.Y.; Liaw, C.Y. and Phoon, K.K. (1999) Singapore Rainfall, 

Behaviour: Chaotic? Journal of Hydrologic Engineering, 4(1): 38-48.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120. Skeet, I. (1988) OPEC: Twenty-Five Years of Prices and Politics, Cambridge 

University Press, Cambridge, Great Britain: 7-16.

121. Stermole, F. J. and Stermole, J. M. (1990) Economic Evaluation and Investment 

Decision Methods, 7th Edition, Investment Evaluation Corporation, Golden, CO 

80401:6-21.

122. Sterner, T. (1994) Economic Policies for Sustainable Development, Kluwer 

Academic Publishers, Netherlands: 1-25.

123. Skiadas, C.H.; Papagiannakis, L and Mourelatos, A., (1997) Application of Diffusion 

Models to Forecast Industrial Energy Demand, Applied Stochastic Models and Data 

Analysis, v 13 n 3-4 Sep-Dee: 357-367.

124. Slade, M.E., Kolstad, C.D. and Weiner, R.J. (1993) Buying Energy and Nonfuel 

Minerals: Final, Derived, and Speculative Demand, in Handbook of Natural Resource 

and Energy Economics, Volume III, Editors: Kneese, A.V. and Sweeney, J.L., 

Elsevier, New York: 935-938.

125. Stevens, P. (2000) The Economics of Energy Vols. 1 and 2, Edward Elgar 

Publishing Ltd., U.K.: 1 -135.

126. Suganthi, L. and Samuel, A.A., (1999) Optimal energy Forecasting Model for the 

Economy Environment Match, International Journal of Ambient Energy, Vol. 20 No. 

3; 137-148.

127. Sumrow, M. (2002) Higher gas prices, drilling activity forecast -  oil prices to trend 

lower; Oil & Gas Journal, Tulsa; Nov 11, 2002; Vol. 100, Iss. 46; pg. 58 ,4  pgs

128. Sun, J.W. (1998) Changes in energy and energy intensity: A complete 

decomposition model. Energy Economics 20 (1998) (Elsevier Science, Netherlands: 

85-100.

129. Toman, M.A. (1993) The Economics of Energy Security: Theory, Evidence, Policy, in 

Handbook of Natural Resource and Energy Economics, Volume III, Editors: Kneese, 

A.V. and Sweeney, J.L., Elsevier, New York.: 1167-1171.

130. Vaage, K. (2000) Heating technology and energy use: A discrete/continuous choice 

approach to Norwegian houshold energy demand in Energy Economics v 22 n 6 

Dec.: 649-666.

131. Wallace, I., (2002) A Geography of the Canadian Economy, Oxford University Press, 

Canada: 152-164.

132. Walter Y. G. (1997) The Inevitable Control of Earth’s Resources over Nations and 

Individuals (Portland, Oreg.: National Book Co.,)

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133. Watkins, G.C. and Plourde, A. (1998) ‘Crude Oil Prices Between 1985 and 1994: 

How Volatile in Relation to other Commodities? Resource and Energy Economics, 20 

p.245-262 (Elsevier Science Pub. Co, New York, US.: 245-262.

134. Ziemba, W.T. and Schwartz S.L. (1980) Energy Policy Models Volume 11, Martinus 

Nijhoff Publishing, London: 17-19.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A

Table A.1: World Oil Production, Consumption and Reserves (percentages and totals for 

1965)

Region Production Consumption Reserves

North America 32.5% 40.6% 11.0%

South America 13.6 5.3 7.5

Western Europe 1.4 25.4 0.6

Middle East 26.4 2.3 62.7

Centrally Planned 17.0 14.6 9.1

Africa 7.1 1.9 5.7

Other 2.1 9.9 3.5

Total production: 31.7 million barrels/day

Total consumption: 31.3 million barrels/day

Total proven reserves: 338.7 billion barrels

(Source: Anon 2000d)

Table A.2: Average Nominal Prices of Crude Oil: 1951-1965 (US$/barrel)

Arabian Light 

Official Price

Arabian Light 

Market Price

U.S. Average 

Wellhead Price

1951 1.75 1.71 2.53

1953 1.93 1.93 2.68

1955 1.93 1.93 2.77

1957 2.08 1.90 3.09

1959 1.90 1.70 2.90

1961 1.80 1.45 2.89

1963 1.80 1.40 2.89

1965 1.80 1.33 2.86

S o u rc e : A n o n , 1996a)
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Figure A.1 Evolution of Oil prices from 1972 to 2000.

(Source Anon, 2000a)
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Table A.3 Domestic Product Supply by Year

Year All

Products

Gasoline Kerosene

(a)

Distillat

e

Residual LPG Lubricant

s

Other

1995 6,459 2842 20 1168 311 693 57 1369

1994 6418 2769 574 1156 366 685 57 811

1993 6198 2664 553 1106 390 626 55 804

1992 6178 2654 545 1088 399 639 54 799

1991 6097 2625 552 1065 420 603 53 779

1990 6170 2633 569 1102 447 565 59 795

1989 6324 2675 543 1152 500 609 58 751

1988 6261 2670 481 1132 487 631 58 802

1987 6083 2630 465 1086 461 588 59 794

(Source: National Petroleum News, 1996. (a) -  Aviation fuel included)

Table A.4 Types of Risk

Technical Economic Political

Dry holes Inflation Governmental policy

Geological Oil and gas prices Government regulations

Engineering Gambler’s ruin Laws

Storm damage Interest rates Nationalization

Earthquake Environmental Environmental

Timing Timing Timing

Exchange rate Exchange rate

Financing/capital Financing/capital

Supply/demand Taxation

Operating costs Export/import

Personnel

Source Seba (1998)
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Table A.5 In-Place Coal Resources of Immediate Interest (megatonnes)

Province Low

volatile

Bituminous

-Anthracite

Medium- 

Low Volatile 

Bituminous

High

Medium

Volatile

Bituminous

High

Volatile

Bituminous

Lignite-Sub-

Bituminous

Total

British

Columbia

1 610 9 270 7 190 645 1090 19 805

Alberta 815 3 515 1 710 7 420 33 475 46 935

Saskatchewa

n

7 595 7 595

Ontario - - - - 180 180

New

Brunswick

75 75

Nova Scotia - - 1 405 - - 1 405

Yukon and 

District of 

Mackenzie

90 150 350 2 290 2  880

Canada 2 515 12 785 10 530 8 415 44 630 78 875

Source: Coal Resources of Canada (Anon., 1989).
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Table A.6 Alberta Existing Generation Capacity

Year End 2000 Capacity 

(MegaWatts)
Coal Gas Hydro

Total
installed

Available 

to AIES
Generation

ATCO Electric 1,563 104 - 1,667 1,667

EPCOR 768 841 - 1,609 1,609

TransAlta 3,290 - 795 4,085 4,085

Emergency Capability 126

City of Medicine Hat - 211 - 211 40

Sub Total 5,621 1,156 795 7,572 7,572
Generation

Industrial 958 100

Small power/independent power 

producers

111 111

New independent power 

producers

1,395 889

Sub Total 2,464 1,100
Interconnections

British Columbia 800 800

Saskatchewan 150 150

Sub Total 950 950

Grand Total 10,986 9,577

Source: Anon., 2002

Table 8.7 Imports/Exports

1999 2000

Export volume (MWh) 273,779 823,008

Exports value ($) $4,261,938 $65,167,447

Imports volume (MWh) 2,211,217 1,386,112

Imports value ($) $135,505,922 $331,158,297

Source: Anon., 2002
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Figure. A. 10 The Average Oil Price between 1982 and 1997 in Alberta and Canada.
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Table A.8 Description of Data
Variable CANSIM Series 

Canada Alberta
Period Frequency Unit

Price: Oil

Natural gas 

Coal

Electricity

E13041

E13450

Periodical*

P1900

E13041

E13456

Periodical*

P1911

1 9 8 2 -1 9 9 7

1 9 8 2 -1 9 9 7

1 9 8 2 -1 9 9 7

1982-1997

Monthly 

converted to 

quarterly by 

averaging

$

Cents/m3

$/Kilotonnes

$/GigaWattHour

Production

1. Oil

2. Natural gas

3. Coal

4. Electricity

D384710 

E9001 

E 12001 

D372136

D388339

E9601

D2486

D372016

1 9 8 2 -1 9 9 7

1 9 8 2 -1 9 9 7

1 9 8 2 -1 9 9 7

1982-1997

Monthly 

converted to 

quarterly by 

summing

terajoules 

Million m3 

Kilotonnes 

MegaWatt.Hour

Total

Consumption

All energy 

products

All energy 

products

1982-1997 Quarterly Petajoules

Population D1 D10 1982-1997 Quarterly Persons

GDP E205000 E205000 1982 -1997 Quarterly Millions of $

Income E205160 E205160 1982-1997 Quarterly Millions of $

Unemployment D980562 D983831 1982-1997 Monthly 

converted to 

quarterly by 

averaging

Thousand persons

Degree days Historical

energy

tables

Historical

energy

tables

1982-1997 Quarterly Number of days

OPEC quota OPEC

Bulletin

OPEC

Bulletin

1982-1997 Quarterly MBPD

Westca CAODC CAODC 1982-1997 Monthly Number of wells

CAODC: Canadian Association Oilwell Drilling Contractors 
*Energy Price and Tax Periodical

The Total Energy Consumption was obtained using the following chart. (Table A.8 )

Energy Source Conversion Factor 

(terajoules)

From

Natural Gas 38.13 Gigalitres

Electricity 3.60 Gigawatthour

Crude oil 39.08 megalitres

Coal consumption was added and the whole energy consumption was recorded 

petajoules.
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APPENDIX B: STATISTICAL TEST RESULTS 

Alberta
Table B. 1 Data Properties, Alberta 

Structural Break

Energy Product F Statistics Structural Break? 5% 1%

Oil 1.41 No 2.07 2.80

Gas 3.186 Yes 2.07 2.80

Electricity 3.750 Yes 2.07 2.80

Coal 0.62 No 2.07 2.80

Total Energy Co 1.486 No 2.07 2.80

Heteroskedasticity

Energy Product a 1>cx2 a 1<a2 Heteroskedasticity? GQ 5% GQ' 1%

Oil 1.758 0.569 No 2.48 3.70

Gas 0.768 1.302 No 2.48 3.70

Electricity 0.804 1.243 No 2.48 3.70

Coal 1.82 0.549 No 2.48 3.70

Total Energy Co 1.288 0.776 No 2.48 3.70

Autocorrelation

Energy Product Durbin Watson Autocorrelation dL du 5% dL du 1%

Oil 0.8874 positive 1.260 1.939 1.108 1.771

Gas 3.186 No positive 1.260 1.939 1.108 1.771

Electricity 3.750 No positive 1.260 1.939 1.108 1.771

Coal 0.62 positive 1.260 1.939 1.108 1.771

Total Energy Co 1.486 inconclusive 1.260 1.939 1.108 1.771
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Canada
Table B.2 Data Properties, Canada 
Structural Break

Energy Product F Statistics Structural Break? 5% 1%

Oil 4.18 Yes 2.07 2.80

Gas 1.01 No 2.07 2.80

Electricity 16.83 Yes 2.07 2.80

Coal 0.66 No 2.07 2.80

Total Energy Co 1.18 No 2.07 2.80

Heteroskedasticity

Energy Product a 1>a2 ct1<cj2 Heteroskedasticity? GQ‘ 5% GQ' 1%

Oil 1.64 0.61 No 2.48 3.70

Gas 1.30 0.77 No 2.48 3.70

Electricity 2.21 0.45 No 2.48 3.70

Coal 4.05 0.25 Yes 2.48 3.70

Total Energy Co 1.0455 0.9564 No 2.48 3.70

Autocorrelation

Energy Product Durbin Watson Autocorrelation dL du 5% dL du 1%

Oil 0.6863 positive 1.260 1.939 1.108 1.771

Gas 1.39 Inconclusive 1.260 1.939 1.108 1.771

Electricity 0.52 positive 1.260 1.939 1.108 1.771

Coal 2.13 No positive 1.260 1.939 1.108 .1.771

Total Energy Co 1.37 inconclusive 1.260 1.939 1.108 1.771

Table B.3 Energy Price Cumulative Probabilities
Coal Prices Electricity Prices Oil Prices Natural Gas Prices Total Energy 

Consumption

5 95 Mean 5 95 Mean 5 95 Mean 5 95 Mean 5 95 Mean

Alberta 52.1 82.3 68.78 2.5 4.4 3.5 20.2 31.91 26.59 9.5 15.1 12.47 166 377 273

Canada 52.1 82.4 68.78 1.7 3.0 2.35 20.2 31.92 0.23 19 27.5 23.58 656 994 832
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Table B.4 Independent Variables Cumulative Probabilities Continued
GDP Income Population Electricity Production Natural Gas Production
5% 95% 5% 95% 5% 95% 5% 95% 5% 95%

Alberta 79409.66 159084.8 315806.1 398511.6 2285072 2793932 6662638 14102690 17325.16 44581.92
Canada 79409.66 159084.8 315806.1 398511.6 24.7xl07 3.0xl07 -7.13xl07 3.33x10* 6616.83 67129.53

Table B.4 Independent Variables Cumulative Probabilities Continued
Crude Oil Production Coal Production Degree days OPEC Quota Unemployment

5% 95% 5% 95% 5% 95% 5% 95% 5% 95%

Alberta 3699860 639623 4956.24 9701.47 -41.53 2583.83 16.68 27.04 1224.18 1520
Canada -2.42xl07 7.58xl07 8393.63 24423.02 -12.94 2562.18 16.79 27.05 12441.97 15272.44

Table B.4 Independent Variables Cumulative Probabilities Continued
Westca

5% 95%

Alberta 601.76 3674.96
Canada 610.80 3691.95

Table 1.5 Independent Variab es’ Mean
GDP
Mean

Income
Mean

Populati
on
Mean

Electricity
Productio
nMean

Natural Gas
Production
mean

Crude Oil
Productio
nMean

Coal
Productio
nMean

Degree
days
Mean

OPEC
Quota
Mean

Unemploy
ment
Mean

Westca
Mean

Alberta 121117 357765 2.6x10s 1.0x107 31214.8 5.1x10s 7401.5 1290.1 22 .07 89.8 2176.4
Canada 121117 357765 2 .7x107 1.3x10“ 37696.0 2.8x107 16736.9 1290.1 22 .07 13877.0 2166.0
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Table B.
ALBERTA
Coal

VARIABLE

6 GARCH Estimation for Alberta

ASYMPTOTIC 
ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED

ELASTICITY
NAME COEFFICIENT ERROR ---------------------- p .-VALUE CORR. COEFFICIENT AT MEANS

PRIC1L
MEAN EQUATION:

1.3133 0.1750 7.506 0.000 0.769 1.3255 1.3116
PRIC1L2 -0.16352 0.2188 -0.7473 0.455-0.119 -0.1631 -0.1630
PRIC1L3 -0.83342E-01 0.2039 -0.4088 0.683-0.065 -0.0819 -0.0828
PRIC1L4 0.61676E-01 0.2165 0.2848 0.776 0.046 0.0615 0.0611
PRIC3 0.27352E-01 0.6990 0.3913E-01 0.969 0.006 0.0090 0.0032
PRIC5 -0.78320E-01 0.8538E-01 -0.9173 0.359-0.145 -0.1401 -0.0297
PRIC2 2.5139 4.804 0.5233 0.601 0.084 0.5679 0.1755
PROD1 0.55629E-03 0.6286E-03 0.8850 0.376 0.140 0.2179 0.0609
TOTAL 0.51130E-01 0.3078E-01 1.661 0.097 0.257 0.5777 0.1372
POP -0.32370E-05 0.4431E-04 -0.7306E-01 0.942-0.012 -0.1419 -0.1200
GDP -0.12475E-03 0.6589E-04 -1.893 0.058-0.290 -0.8351 -0.2234
INC 0.86425E-04 0.9203E-04 0.9391 0.348 0.149 0.5864 0.4509
UNEMP -0.99502E-02 0.4863E-01 -0.2046 0.838-0.033 -0.2567 -0.1995
DEGRDAY -0.11517E-02 0.1276E-02 -0.9029 0.367-0.143 -0.2641 -0.0212
QUOTA -1.0764 0.3924 -2.743 0.006-0.402 -1.0224 -0.3461
WESTCA -0.82889E-03 0.1087E-02 -0.7625 0.446-0.121 -0.1759 -0.0193
CONSTANT 0.14918 43.99 0.3391E-02 0.997 0.001 0 . 0 0 0 0 0.0022

VARIANCE EQUATION:
ALPHA 5.4987 2.021 2.720 
ALPHA 1.9113 0.6659 2.870 
PHI 0.23400E-02 0.6930E-03 3.377 
DELTA_ 0.14523E+07 0.1059E+07 1.372

Electricity

ASYMPTOTIC 
VARIABLE ESTIMATED STANDARD T-RATIO

0.007 0.39 
0.004 0.41 
0.001 0.47 
0.170 0.21

PARTIAL STANDARDIZED
ELASTICITY

NAME COEFFICIENT ERROR ---------------------  p .-VALUE CORR. COEFFICIENT AT MEANS

PRIC2L
MEAN EQUATION: 
0.20127 7.593 0.2651E-01 0.979 0.004 0.2047 0.1994

PRIC2L2 0.55086 9.062 0.6079E-01 0.952 0.010 0.5711 0.5402
PRIC2L3 1.4156 8.049 0.1759 0.860 0.028 1.4941 1.3739
PRIC2L4 0.81800 6.081 0.1345 0.893 0.022 0.8777 0.7854
PRIC3 2.1095 1.025 2.058 0.040 0.313 3.0669 3.5579
PRIC5 -0.33478 0.1564 -2.140 0.032-0.324 -2.6518 -1.8169
PRIC1 -1.0072 0.2191 -4.596 0.000-0.593 -4.4586 -14.4259
PROD2 -0.59526E-06 0.1825E-05 -0.3262 0.744-0.052 -1.6411 -1.3194
TOTAL 0.61278E-01 0.5925E-01 1.034 0.301 0.163 3.0647 2.3557
POP -0.76155E-04 0.7763E-04 -0.9810 0.327-0.155 -14.7839 -40.4426
GDP 0.16415E-03 0.1044E-03 1.573 0.116 0.244 4.8645 4.2098
INC 0.13264E-03 0.1274E-03 1.041 0.298 0.164 3.9841 9.9129
UNEMP 0.11445 0.8832E-01 1.296 0.195 0.203 13.0711 32.8608
DEGRDAY -0.74715E-03 0.2381E-02 -0.3139 0.754-0.050 -0.7586 -0.1973
QUOTA 0.83065 0.6379 1.302 0.193 0.204 3.4929 3.8254
WESTCA -0.33208E-02 0.1707E-02 -1.945 0.052-0.297 -3.1202 -1.1078
CONSTANT -0.12005 76.40 -0.1571E-02 0.999 0.000 0 . 0 0 0 0 -0.0249

ALPHA_
ALPHA_
PHI
DELTA

VARIANCE EQUATION: 
8.1796 3.336 
1.2923 0.3952 

0.24238E-01 0.4760E-02 
0.14525E+07 0.1069E+07

2.452
3.270
5.092
1.358

0.014 0.36 
0.001 0.46 
0.000 0.63 
0.174 0.21
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Oil

ASYMPTOTIC
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL !STANDARDIZED

ELASTICITY
NAME COEFFICIENT ERROR ---------------------- p .-VALUE CORR. COEFFICIENT AT MEANS

MEAN EQUATION:
PRIC5L 0.24460 0.1489 1.643 0.100 0.254 0.2476 0.2456
PRIC5L2 0.35730 0.1852 1.929 0.054 0.295 0.3660 0.3604
PRIC5L3 0.16744E-03 0.1508 0.1111E-02 0.999 0.000 0.0002 0.0002
PRIC5L4 -0.49330 0.1127 -4.376 0.000-0.574 -0.5091 -0.4994
PRIC3 2.5815 0.7012 3. 682 0.000 0.508 0.4738 0.8022
PRIC1 -0.10341 0.1063 -0.9728 0.331-0.154 -0.0578 -0.2729
PRIC2 2.4683 3.573 0.6908 0.490 0.110 0.3116 0.4548
PROD5 -0.92790E-04 0.167 4E-04 -5.542 0.000-0.664 -1.0628 -2.8065
TOTAL 0.26973E-01 0.2823E-01 0.9555 0.339 0.151 0.1703 0.1911
POP -0.17892E-03 0.3978E-04 -4.497 0.000-0.584 -4.3849 -17.5071
GDP -0.17206E-03 0.5516E-04 -3.119 0.002-0.447 -0.6437 -0.8131
INC 0.12541E-03 0.6919E-04 1.813 0.070 0.279 0.4755 1.7268
UNEMP 0.36118 0.5503E-01 6.564 0.000 0.724 5.2078 19.1084
DEGRDAY 0.54159E-02 0.1163E-02 4.656 0.000 0.598 0.6942 0.2635
QUOTA -0.18775 0.3257 -0.5765 0.564-0.092 -0.0997 -0.1593
WESTCA -0.88304E-03 0.1347E-02 -0.6554 0.512-0.104 -0.1047 -0.0543
CONSTANT -0.16774 38.33 -0.4376E-02 0.997-0.001 0 . 0 0 0 0 -0.0064

VARIANCE EQUATION:
ALPHA_ 2.7535 1.456 1.891 0.059 0.29
ALPHA 2.5763 0.6549 3.934 0.000 0.53
PHI_ 0.86592E-02 0.2192E-02 3.950 0.000 0.53
DELTA_ 0.14524E+07 0.1047E+07 1.387 0.165 0.21

Total Energy Consumption

ASYMPTOTIC
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL :STANDARDIZED
3LASTICITY

NAME COEFFICIENT ERROR P--VALUE CORR. COEFFICIENT AT MEANS

TOTALL
MEAN EQUATION:
-0.47207 0.9699E-01 -4.867 0.000-0.615 -0.4747 -0.4670

TOTALL2 0.96581E-01 0.8972E-01 1.076 0.282 0.170 0.0988 0.0944
TOTALL3 -0.13471 0.8551E-01 -1.575 0.115-0.245 -0.1411 -0.1302
TOTALL4 -0.11785 0.9824E-01 -1.200 0.230-0.189 -0.1227 -0.1127
PRIC2 3.5102 9.868 0.3557 0.722 0.057 0.0702 0.0913
PRIC3 2.7817 1.801 1.544 0.123 0.240 0.0809 0.1220
PRIC5 1.0187 0.2935 3.471 0.001 0.486 0.1613 0.1438
PRIC1 -1.4760 0.3369 -4.381 0.000-0.574 -0.1306 -0.5499
PROD2 0.55309E-05 0.3028E-05 1.827 0.068 0.281 0.3049 0.3189
POP 0.13972E-03 0.1365E-03 1.024 0.306 0.162 0.5423 1.9301
GDP 0.73700E-03 0.2005E-03 3.675 0.000 0.507 0.4367 0.4917
INC -0.55044E-03 0.2342E-03 -2.350 0.019-0.352 -0.3306 -1.0701
UNEMP 0.79398E-02 0.1829 0.4341E'-01 0.965 0.007 0.0181 0.0593
DEGRDAY 0.41307E-02 0.4223E-02 0.9782 0.328 0.155 0.0839 0.0284
QUOTA 0.44028 0.9797 0.4494 0.653 0.072 0.0370 0.0527
WESTCA 0.32480E-02 0.3366E-02 0.9649 0.335 0.153 0.0610 0.0282
CONSTANT -0.62054E-01 123.1 -0.5040E--03 1.000 0.000 0.0000 -0.0003

ALPHA_
ALPHA_
PHI_
DELTA

VARIANCE EQUATION: 
10.405 6.163 

0.92071 0.2210 
0.12516E-01 0.3493E-02 
0.14522E+07 0.1055E+07

1.688
4.166
3.583
1.376

0.091 0.26 
0.000 0.55 
0.000 0.49 
0.169 0.21
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Natural Gas

ASYMPTOTIC
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL :STANDARDIZED

ELASTICITY
NAME COEFFICIENT ERROR ---------------------- p .-VALUE CORR. COEFFICIENT AT MEANS

MEAN EQUATION:
PRIC3L -0.42794 0.5522 -0.7749 0.438-0.123 -0.4256 -0.4276
PRIC3L2 0.18613E-01 0.6998 0.2660E-01 0.979 0.004 0.0185 0.0186
PRIC3L3 1.6660 0.8152 2.044 0.041 0.311 1.6583 1.6642
PRIC3L4 -1.9531 0.9762 -2.001 0.045-0.305 -1.8878 -1.9405
PRIC5 -0.63661 0.1143 -5.572 0.000-0.666 -3.4685 -2.0485
PRIC1 0.56379 0.1273 4.429 0.000 0.579 1.7167 4.7880
PRIC2 2.7039 4.555 0.5937 0.553 0.095 1.8599 1.6032
PROD 3 -0.10054E-02 0.2535E-03 -3.965 0.000-0.536 -7.3853 -3.9270
TOTAL 0.90156E-01 0.3772E-01 2.390 0.017 0.357 3.1015 2.0550
POP 0.84266E-04 0.5106E-04 1.650 0.099 0.255 11.2518 26.5326
GDP 0.28069E-03 0.6685E-04 4.199 0.000 0.558 5.7215 4.2682
INC -0.34359E-03 0.7430E-04 -4.624 0.000-0.595 -7.0985 -15.2244
UNEMP -0.84968E-01 0.6007E-01 -1.415 0.157-0.221 -6.6750 -14.4651
DEGRDAY 0.22580E-02 0.1397E-02 1.616 0.106 0.251 1.5769 0.3535
QUOTA -0.92846 0.3891 -2.386 0.017-0.357 -2.6854 -2.5352
WESTCA -0.10184E-02 0.1265E-02 -0.8049 0.421-0.128 -0.6582 -0.2014
CONSTANT 0.83111E-01 48. 62 0.1709E-02 0.999 0.000 0 . 0 0 0 0 0.0102

VARIANCE EQUATION:
ALPHA_ 2.5116 1.676 1.499 0.134 0.23
ALPHA 1.7994 0.4933 3.648 0.000 0.50
PHI_ 0.43786E-01 0.6115E-02 7.160 0.000 0.75
DELTA 0.14525E+07 0.1071E+07 1.357 0.175 0.21

Table B.7 GARCH Estimation for Canada
Canada
Coal

ASYMPTOTIC
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL ISTANDARDIZED
ELASTICITY

NAME COEFFICIENT ERROR ---------------------- p .-VALUE CORR. COEFFICIENT AT MEANS

PRIC1L
MEAN EQUATION: 
0.89610 0.2190 4.092 0.000 0.548 0.9044 0.8950

PRIC1L2 0.44411 0.2724 1.630 0.103 0.253 0.4430 0.4427
PRIC1L3 0.72388E-01 0.2316 0.3125 0.755 0.050 0.0711 0.0719
PRIC1L4 -0.94767E-01 0.2084 -0.4547 0.649-0.073 -0.0944 -0.0939
PRIC3 0.79007 0.5846 1.351 0.177 0.211 0.2886 0.1550
PRIC5 0.43574 0.1136 3.837 0.000 0.524 0.7797 0.1651
PRIC2 3.9498 4.908 0.8047 0.421 0.128 0.8087 0.2374
PROD1 -0.33987E-03 0.5300E-03 -0.6413 0.521-0.102 -0.2369 -0.0818
TOTAL -0.35784E-01 0.2027E-01 -1.766 0.077-0.272 -0.6264 -0.2500
POP 0.16830E-05 0. 4288E-05 0.3925 0.695 0.063 0.7507 0.6715
GDP 0.18863E-03 0.1254E-03 1.505 0.132 0.234 1.2586 0.3376
INC 0.32308E-04 0.1007E-03 0.3209 0.748 0.051 0.2194 0.1686
UNEMP —0.75064E-02 0.9689E-02 -0.7748 0.438-0.123 -1.7659 -1.5183
DEGRDAY 0.10447E-02 0.1277E-02 0.8183 0.413 0.130 0.2396 0.0193
QUOTA -0.46809 0.4133 -1.133 0.257-0.178 -0.4446 -0.1505
WESTCA -0.16690E-02 0.8557E-03 -1.951 0.051-0.298 -0.4683 -0.0533
CONSTANT -0.10217 67.75 -0.1508E-02 0.999 0.000 0 . 0 0 0 0 -0.0015

ALPHA_
ALPHA
PHI_
DELTA

VARIANCE EQUATION: 
6.9707 2.534 
2.0914 0.7979 

0.21196E-01 0.367 6E-02 
0.14901E+07 0.1101E+07

2.751
2.621
5.767
1.353

0.006 0.40 
0.009 0.38 
0.000 0.67 
0.176 0.21
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Electricity

VARIABLE ESTIMATED
ASYMPTOTIC 

STANDARD T-RATIO PARTIAL iSTANDARDIZED
ELASTICITY

NAME COEFFICIENT ERROR --------  p.-VALUE CORR. COEFFICIENT AT MEANS

PRIC2L
MEAN EQUATION:

1.1995 29.18 0.4111E-01 0.967 0.007 1.2199 1.1892
PRIC2L2 0.90783 33.46 0.2713E-01 0.978 0.004 0.9357 0.8923
PRIC2L3 0.14667 30.00 0.4889E-02 0.996 0.001 0.1528 0.1429
PRIC2L4 -0.17880E-01 31.72 -0.5637E-03 1.000 0.000 -0.0188 -0.0173
PRIC3 -0.56306 1.976 -0.2850 0.776-0.046 -1.0046 -1.8379
PRIC5 1.5779 0.4699 3.358 0.001 0.474 13.7902 9.9484
PRIC1 -3.3070 0.5870 -5.634 0.000-0.670 -16.1530 -55.0288
PROD2 0.39915E-06 0.4480E-06 0.8910 0.373 0.141 9.2177 11.7247
TOTAL 0.91803E-01 0. 6321E-01 1.452 0.146 0.227 7.8498 10.6729
POP -0.61528E-04 0.1859E-04 -3.310 0.001-0.468 -134.0583 -408.4920
GDP 0.88699E-03 0.3840E-03 2.310 0.021 0.347 28.9075 26.4166
INC 0.33959E-03 0.2865E-03 1.185 0.236 0.186 11.2620 29.4835
UNEMP 0.10752 0.3595E-01 2.991 0.003 0.432 123.5450 361.8639
DEGRDAY -0.79853E-02 0.4865E-02 -1.641 0.101-0.254 -8.9454 -2.4497
QUOTA 2.5084 1.176 2.132 0.033 0.323 11.6377 13.4198
WESTCA -0.12391E-02 0.2012E-02 -0.6158 0.538-0.098 -1.6981 -0.6589
CONSTANT -0.11841E-02 250.3 -0.4730E-05 1.000 0.000 0.0000 -0.0003

ALPHA_
ALPHA
PHI_
DELTA

VARIANCE EQUATION: 
1.6896 4.461 

0.70087 0.1498 
0.10051E-01 0.3022E-02 
0.14904E+07 0.1081E+07

0.3788
4.678
3.326
1.379

0.705 0.06 
0.000 0.60 
0.001 0.47 
0.168 0.21

Oil
ASYMPTOTIC

VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED
ELASTICITY

NAME COEFFICIENT ERROR P--VALUE CORR. COEFFICIENT AT MEANS
MEAN EQUATION:

PRIC5L 0.95473 0.1697 5.625 0.000 0.669 0.9665 0.9587
PRIC5L2 -0.94829 0.2052 -4.622 0.000-0.595 -0.9714 -0.9566
PRIC5L3 0.95560 0.2068 4.621 0.000 0.595 0.9840 0.9667
PRIC5L4 -0.15118 0.1505 -1.004 0.315-0.159 -0.1560 -0.1531
PRIC3 -1.9053 0.7269 -2.621 0.009-0.387 -0.3890 -0.9864
PRIC1 0.26391 0.1762 1.498 0.134 0.233 0.1475 0.6965
PRIC2 -1.2433 5.606 -0.2218 0.824-0.035 -0.1423 -0.1972
PROD5 -0.56092E-06 0.2028E-04 -0.2766E--01 0.978-0.004 -0.0108 -0.0210
TOTAL -0.87807E-01 0.1894E-01 -4.637 0.000-0.596 -0.8591 -1.6191
POP 0.71848E-05 0.4429E-05 1.622 0.105 0.251 1.7912 7.5656
GDP 0.11892E-03 0.1392E-03 0.8543 0.393 0.136 0.4435 0.5617
INC -0.13683E-03 0.1117E-03 -1.225 0.221-0.192 -0.5192 -1.8842
UNEMP -0.64200E-02 0.9398E-02 -0.6831 0.495-0.109 -0.8441 -3.4270
DEGRDAY 0.61299E-02 0.1500E-02 4.086 0.000 0.548 0.7857 0.2983
QUOTA -0.95484 0.4395 -2.173 0.030-0.329 -0.5069 -0.8102
WESTCA -0.18495E-03 0.1188E-02 -0.1557 0.876-0.025 -0.0290 -0.0156
CONSTANT 0.25361 79.93 0.3173E--02 0.997 0.001 0.0000 0.0097

VARIANCE EQUATION:
ALPHA 7.3484 2.933 2.505 0.012 0.37
ALPHA_ 1.6655 0.5930 2.808 0.005 0.41
PHI_ 0.73713E-02 0.1907E-02 3.866 0.000 0.52
DELTA 0.14903E+07 0.1091E+07 1.366 0.172 0.21
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Total Energy Consumption

ASYMPTOTIC
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED

ELASTICITY
NAME COEFFICIENT ERROR P--VALUE CORR. COEFFICIENT AT MEANS

TOTALL
MEAN EQUATION:
-0.25586 0.6748E-01 -3.792 0.000-0.519 -0.2537 -0.2544

TOTALL2 -0.53432 0.6793E-01 -7.865 0.000-0.783 -0.5403 -0.5277
TOTALL3 -0.36480 0.6464E-01 -5.643 0.000-0.670 -0.3867 -0.3583
TOTALL4 0.36555 0.7271E-01 5.027 0.000 0.627 0.3806 0.3582
PRIC2 1.2115 17.79 0.6810E--01 0.946 0.011 0.0142 0.0104
PRIC3 -2.2532 3.352 -0.6722 0.501-0.107 -0.0470 -0.0633
PRIC5 2.3149 0.6407 3.613 0.000 0.501 0.2366 0.1255
PRIC1 -1.4313 0.6501 -2.202 0.028-0.332 -0.0818 -0.2049
PROD2 0.33394E-05 0.5324E-06 6.272 0.000 0.709 0.9019 0.8437
POP -0.37386E-04 0.2192E-04 -1.706 0.088-0.263 -0.9526 -2.1350
GDP 0.10113E-02 0.5474E-03 1.847 0.065 0.284 0.3854 0.2591
INC 0.2 6049E-02 0.5271E-03 4.942 0.000 0.621 1.0103 1.9453
UNEMP 0.33797E-01 0.5426E-01 0.6229 0.533 0.099 0.4542 0.9784
DEGRDAY -0.35837E-01 0.8253E-02 -4.342 0.000-0.571 -0.4695 -0.0946
QUOTA 2.7783 2. 600 1.069 0.285 0.169 0.1507 0.1279
WESTCA -0.92022E-02 0.3342E-02 -2.754 0.006-0.403 -0.1475 -0.0421
CONSTANT 0.97868E-01 302.6 0.3234E--03 1.000 0.000 0.0000 0.0002

ALPHA
ALPHA
PHI
DELTA

VARIANCE EQUATION: 
3.8912 24.28 

0.68997 0.1526 
0.96891E-02 0.3136E-02 
0.14897E+07 0.1081E+07

0.1603
4.522
3.089
1.379

0.873 0.02 
0.000 0.58 
0.002 0.44 
0.168 0.21

Natural Gas
ASYMPTOTIC

VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL iSTANDARDIZED
3LASTICITY

NAME COEFFICIENT ERROR -------- P--VALUE CORR. COEFFICIENT AT MEANS

PRIC3L
MEAN EQUATION: 
0.23698 4.988 0.4751E-01 0.962 0.008 0.2354 0.2368

PRIC3L2 -0.25272 6.003 -0.4210E-01 0.966-0.007 -0.2502 -0.2526
PRIC3L3 0.19003 5.559 0.3419E-01 0.973 0.005 0.1886 0.1897
PRIC3L4 0.35136 7.555 0.4651E-01 0.963 0.007 0.3412 0.3493
PRIC5 -0.60980 0.8916 -0.6840 0.494-0.109 -2.9870 -1.1779
PRIC1 0.69684 1.410 0.4942 0.621 0.079 1.9076 3.5523
PRIC2 3.2224 45.86 0.7027E-01 0.944 0.011 1.8060 0.9872
PROD 3 0.16263E-03 0.4847E-03 0.3355 0.737 0.054 2.4167 0.4622
TOTAL 0.69835 0.1173 5.955 0.000 0.690 33.4677 24.8731
POP 0.10202E-03 0.2835E-04 3.598 0.000 0.499 124.5818 207.5041
GDP 0.36832E-02 0.8604E-03 4.281 0.000 0.565 67.2780 33.6064
INC -0.37230E-02 0.5929E-03 -6.279 0.000-0.709 -69.1997 -99.0267
UNEMP -0.16145 0.5079E-01 -3.179 0.001-0.454 -103.9744 -166.4672
DEGRDAY -0.25518E-01 0.97 60E-02 -2.615 0.009-0.386 -16.0218. -2.3983
QUOTA 1.4149 4.080 0.3468 0.729 0.055 3.6793 2.3191
WESTCA -0.48898E-01 0.8119E-02 -6.023 0.000-0.694 -37.5583 -7.9663
CONSTANT -0.92790E-02 557.7 -0.1664E-04 1.000 0.000 0.0000 -0.0007

ALPHA
ALPHA_
PHI
DELTA

VARIANCE EQUATION:
0.77346E-01 8.576 
1.7646 0.3431 

0.37838E-02 0.1516E-02 
0.14903E+07 0.1066E+07

0. 9019E-02 
5.143 
2.496 
1.398

0.993 0.00 
0.000 0.63 
0.013 0.37 
0.162 0.21
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APPENDIX C: NUMERICAL EXAMPLE OF MULTIPLE REGRESSION 
A Numerical Example of Multiple Regression Model

Suppose the price of crude oil depends on number of wells drilled and the crude oil 
production number of wells drilled. The multiple linear regression model

y  =  Po +  + £  C -1

The following tab e lists the data: Table C.1 Data Set Numerical Example
Data number Crude Oil Price

y

No. of wells drilled 

Xi

Crude Oil Production
x2

1 31,37 2003 23.309806
2 31,37 1105 20.639047
3 33,62 1879 23.838222
4 33,62 1755 22.509869
5 35,16 2003 21.020729
6 35,16 1105 18.436885
7 35,16 1879 23.958647
8 35,16 1755 22.921693
9 35,24 2429 22.792125
10 35,24 1705 20.560944
11 35,24 2504 22.298096
12 37,09 2469 21.966392
13 38,02 3010 20.406928
14 37,7 2012 20.369222

15 35,97 3328 22.921220

16 37,45 3396 23.021160

17 25,05 3351 21.222122

18 18,29 1067 19.264941

19 18,39 790 23.076516

20 20,24 1067 21.415461
21 23,42 1432 22.244207

22 24,3 826 20.773807

23 25,8 1872 23.996720

24 23,75 2678 23.750569

25 20,1 2535 23.756000
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The X matrix and y vector for this model are

X =

1 2003 23.309806' '31.37'
1 1105 20.639047 31.37
• • • •

• • • y = •

• • • •

1 2678 23.750569 23.75

1 2535 23.756000 20.10

The X ’X matrix is

X'X=

1

2003
23.309806

1 *« «

1105 • • • 
20.639047 • • •

1

2532
23.756000

X ’X =

25 49955
49955 1.1 xlO8 
555.47 l . lx lO 6

555.47
l . lx lO 6
12177.45

1 2003 23.309806
1 1105 20.639047
• • •
• • •
• • •
1 2532 23.756000

The X ’y vector is

31.37
31.37

1 ! • • • 1 • ' 761.91 "

X’y = 2003 •••o

2532 • = 1575446
23.309806 20.639047 • • • 23.756000 • 16759.48

20.10

P = (X'x)~xX'y

25 49955 555.47 ' " 761.91 '
= 49955 1.1x10s l . l x l O 6 1575446

555.47 l . l x l O 6 12177.45 16759.48
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3.7677 
0.0059 

0.6746

The regression model is
y = 3.7677 + 0 .0059^  + 0.6746X, C.2

4.2.1 Calculation of the Mean and Variance of Y.

E\y] = £[3-7677]+ 0.0059 x £ f c ] +  0.6746 x e [X2]

= 3.7677+ (0.0059x1998.2) +0.6746 x 22.0188531 

= 30.41

Var\y] = Var\h.l61l]+ 0.0059 x Var[Xx]+ 0.6746 x Var[X2]

= 0.0059x613436.6 + 0.6746 x 2.3625 x 1012

=3620.87

/ .  . .  \  2

SS^ =24320.63-
(761,9l)2 

25

=1100.36

= 1111.293/25=44.4517
n

R 2 = 1 .44.4517/1100.36 =0.9596
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Crude Oil No. of Wells Crude Oil Prod­ Estimation Price-Estimated
Data No. Price y Drilled X1 uction (10A6) X2 of yi yA2 Price E EA2
1 31.37 2003 23.309806 31.310195 984.0769 0.059804872 0.003577
2 31.37 1105 20.639047 24.210301 984.0769 7.159698894 51.26129
3 33.62 1879 23.838222 30.935065 1130.304 2.684935439 7.208878
4 33.62 1755 22.509869 29.307358 1130.304 4.312642373 18.59888
5 35.16 2003 21.020729 29.765984 1236.226 5.394016217 29.09541
6 35.16 1105 18.436885 22.724723 1236.226 12.43527738 154.6361
7 35.16 1879 23.958647 31.016303 1236.226 4.143696734 17.17022
8 35.16 1755 22.921693 29.585174 1236.226 5.574825902 31.07868
9 35.24 2429 22.792125 33.474368 1241.858 1.765632475 3.117458
10 35.24 1705 20.560944 27.697613 1241.858 7.542387178 56.8876
11 35.24 2504 22.298096 33.583596 1241.858 1.656404438 2.743676
12 37.09 2469 21.966392 33.153328 1375.668 3.936671957 15.49739
13 38.02 3010 20.406928 35.293214 1445.52 2.726786371 7.435364
14 37.7 2012 20.369222 29.379577 1421.29 8.320422839 69.22944
15 35.97 3328 22.92122 38.865555 1293.841 -2.895555012 8.384239
16 37.45 3396 23.02116 39.334175 1402.503 -1.884174536 3.550114
17 25.05 3351 21.222122 37.855044 627.5025 -12.8050435 163.9691
18 18.29 1067 19.264941 23.059129 334.5241 -4.769129199 22.74459
19 18.39 790 23.076516 23.996118 338.1921 -5.606117694 31.42856
20 20.24 1067 21.415461 24.50987 409.6576 -4.269869991 18.23179
21 23.42 1432 22.244207 27.222442 548.4964 -3.802442042 14.45857
22 24.3 826 20.773807 22.65511 590.49 1.644889798 2.705662
23 25.8 1872 23.99672 31.000687 665.64 -5.200687312 27.04715
24 23.75 2678 23.750569 35.590034 564.0625 -11.84003385 140.1864
25 20.1 2535 23.756 34.749998 404.01 -14.6499976 214.6224

761.91 24320.63 1111.293

Principal Component Regression

n _ n 'Z.x ^ - Y . x ^ x ,

f o x  - £ ^ , ) ! ) x ( ^ S ^ - £ . x > T ) f

Where R is the correlation coefficient.

25x1109385-49955x550.47R=  ---------------------------------------------------------------------------------

((25 x 114542559 - 499552 )x (25 x 12177.45 - 550.472 ))a 

= 0.326495372

The 2 by 2 matrix of correlation coefficient is

"1.0000 0.3265' 
0.3265 1.0000
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the eigenvalues are obtained as follows

'11 '12
11 ■^Xr 22 r i 2 r 2 1 ~ ^  ( r i 1 + ^22 + ( r i 1 r 22 r \ 2 r 2 \ ) ~  ®

'21 '22

Putting in the r values: 

A2 - 2 1  +  0.8934

a = 1, b = -2, c = 0.8934

x ^ - b ± { b 2 -  4 a c f  

2 a

1  =  1.4 and 0.6 

A,! = 1.4

A2 = 0.6 

2 A| = 2

Thus the first principal component X\ accounts for (1.4/2 x100) of the total variance, 70%; 

likewise X2 accounts for (0.6/2 x100) of the total variance, 30%.

e l l

1

* ' r n

i

0 "
* ’ e n

1
cs

_ e i 2 e22_ 1 r22_ 0

i

-
T

. e i 2 e22_

After multiplying out it becomes

0 ) (rn ~ + r 2ien = 0 

(2 ) rl2en +  (r22 — l y )e21 =  0

From standard scores of data, the correlation matrix remains
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R =
1.0 0.83

0.83 1.0

(1) -0 .4 e n +0.3265e21 = 0

(2) 0.3265eu -0 .4 e 21 = 0

Making e2i the subject of equation (1) and setting it to 1 we have and

e?i= 0.4 =1.225  

0.3265

e l l " " 1. 225"

- e 21_ 1.000

Square en divide by sum of square roots take square root of en.

"1.50" "0.6" "0.7746"

LOO 0.4 0.6326

The eigenvalues of the correlation matrix is

b =
0.1700 0

0 1.8300

The eigenvectors of the correlation matrix is

a =
-0 .7071  0.7071"

0.7071 0.7071

The matrix of the principal component loadings, is designated as {!_}.

t o - W - W
1/2

W 1/2 =
0.4123 0

0 1.3528
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-0.2915 0.9565 
0.2915 0.9565

ARMA(1,1) Process

The combined AR(1) and MA(1) processes gives the ARMA(1,1 ) scheme,

(y, - / * ) = - / * ) + £ , -  pst_x (C.3)

The mean squared error (MSE) of a forecast is simply the average, or expected squared 

forecast error. This treats positive and negative forecast errors symmetrically and is widely 

used criterion for the choice of a forecasting rule. The minimum MSE forecast for period n+1 

is then

9n+1 ~M = a(yll - f i ) - f is n

This result differs from the AR(1) forecast only by the term in Pen. The forecast error 
variance is var(en+i) = cr2. Repeated use of C3 gives

(y„+2 - f*y= a2iy„ - m) + sn+2 + ( a - p)e„+l - apsn 

The forecast period n+2 is then

(yn+2 -M) = a2{yn-M)-ap^n = a(P „+i - m) (C.4)

Thus, as in the AR(1) case, successive forecasts deviate from the mean in a declining 
exponential fashion. The forecast error variance is var(e„+2) = a2[1+(a-p)2]. Therefore

Artificial Neural Network

Artificial neural networks are models (usually simulated on digital computers) composed of 

many nonlinear processing elements (called nodes or neurons) operating in parallel and 

arranged in patterns reminiscent of biological neuron interconnections. Neural networks 

typically have their nodes arranged in layers.

Each hidden layer node has one variable “weight” for each of its outputs, and exactly one 

variable “threshold”. The neural network is “trained” by presenting to it data in the form of 

vectors. If there are N inputs to the network, then it is trained using vectors of N + 1 

elements: one element for each input, plus the known output corresponding to the given 

input. Training consists of iteratively updating weights and thresholds in the hidden layer 

nodes as training vectors are applied, toward the goal of minimizing the difference between 

the network’s actual and desired outputs.

(?,« ~ {yn - M ) ~ a s~1psn (C.5)
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The operation of a network can be explained in geometric terms, beginning with the 

operation of a single neuron. The weights w and threshold 0 are imagined residing within the 

summing node. The output Y of the node is a sigmoid function given by

Y = / ( Z )  = 1/[1 + exp(-Z)] (C.6)

When training is complete, all network weights are fixed and the network output is a 

complicated but deterministic function of the network inputs. The value SM+i is then predicted 

as the network output corresponding to the input vector (SM-3, SM-2> SM-i, SM). The value SM+1 

then serves as the last component of the next input vector, which is used to predict SM+2- The 

prediction process continues as long as is desired. Prediction accuracy generally decreases 

with time due to incomplete training and numerical rounding.
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