Bibliothéque nationale

National, Lrbrary
du Canada

of Canada

L

.

Canadian Theses Service.

L]

"

Otfawa, Canada
K1A ON4-

NOTICE

The quality of this microfiche is heavily dependent upon the
quality of the original thesis submitted for microfilming. Every
effort has been made to ensure thé highest quality of reproduc-

tlon Bmsnble ¢

If pages are missing, contact th& university whlch granted the
degree

.
Some pages may have indistinct printespecially if the original
pages were typed.with.a poor typewriter ribbon or if the univer-
sity sent us an inferior photocopy.

-

Previously cepyrighted material$ (journai articles, publwished
tests, etc.) are not filmed.

Reproduction in full or-in part of this film is governed by the
Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read
the authorization forms which accompany this thesis.

N

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL 339 (r- 86/01) . ’

-

Serwces des théses canadiennes -

“n

TFHESES CANADIENNES .

-

-y

o AVIS :

La quabié\ae cette mlcroflche dépend grandement de Ia qualité
‘de la thése soumise au microfilmage. Nous avons tout fait pour -
assurer une qualité supérleure de reproducnon

0

S'il manque des pages, veuillez communiquer avec I'univer-
sité qui a conféré le grade.. '

La qualité d mpressuon de certaines ‘pages peut laisser a\ .
désirer, 3urtout si les pages originales ont été dactylographiées
a I'aide d’un ruban usé ou si 'université nous a falt parvenir
une photocopne de.qualité mféneure

Les 'd_ocumente qui font déja I'gbjet d'un droit d'auteur (articles
de revue, _examens publiés .elc.) ne sont pas microfilmés.

La reproductlon méme partielle, de ce mlcrofllm est soumise
a la Loi canadienne sur le droit d’auteur, SRC 1970, c. C-30. ,
Veuillez prendre connaissance des formules d'autorisation qui
accompagnent cette these.

f

)

7

LA THESE A ETE ,
MICROFILMEE TELLE QUE
~ 'NOUS L'AVONS REGUE

Canad"' ’

1 LALIW Thar meTRer A

»of Canada

........ -—_y——

du Canada

\—

nw
4

Ottawa, Canada
'K1A ON4

TC -

N

| 0-315-23238-2 .

v

CANADIAN THESES ON MICROFICHE SERVICE ~ SERVICE DES THESES CANADIENNES SUR MICROFICHE g
PERMISION TO MICROFILM AUTORISATION DE MICROFILMER

* Please pnnt or type — Ecrire en lettres moulées ou dactylographler

/ ' AUTHOR-

AUTEUR

Full Name of Author — Nom compade I'guteur

VO UAA L

XAt

Date of Birth — Date de-naissance
4

Canadian Citizen — Citoyen canadien

’}T'L{l}(-. = = A DYes Oui
4 . YRE / o
. Country of Birth — Lieu de naissance Permanent Address — Résidence fixe . } B
. ~ . ,," , . ", i ',/\-'/
) - PR / . / Jron /<(N / 2 X by
G A R ST A A A r s ce
/ ! I3 ' . - f /\/'\ NP A ’ 14 it il
L L. : A w Tl ’
Sy . ' Yo L Ao YRS TR
~ - i
/ v/ THESIS ~ THESE -
Title of Thesis — Titre de la‘thése
.
‘ ’ .
\\’4', i Y‘— (l ’15 tco ./ A S e N T t/-l oo S8 e R
‘ . 1
K
St &
. N
¥ o /‘,

B

Degree for which thesis was presented

Grade pour lequne_@e fut présentée
;
F/

Year this degree conferred :
Année d'gbtention de ce grade
v e .

University — Upiversité

L/L NS

/. i / .
/‘/ ,"/J/, ¢ L ‘f A

i T (,

Name of Superviso} — Nom du directeur de thése

P g -
¢ - S

O R L SN CE I ES

7

s

o '_ ' AUTHORIZATION—AUTORISATIOW

—

Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to
-microfilm this thesis and to lend or sé{fopies of the film.

The author reserves other publicatibn rights, and neither the thesis nor extén-

L'autorisation est, par la présente, accordée a la BIBLIOTHEQUE NATIONALE
DU CANADA de microfilmer cette thése et de préter ou de vendre des ex-
emplaires du film.

L'auteur se réserve les autres droits de publication; ni la thése ni de longs ex-

give extralts from it may be printed or otherwise reproduced "without the
author's writ}en permission. traits de celle-ci ne doivent é&tre imprimés ou autrement reproduits sans
I'autorisation écrite de l'auteur. :
r ATTACH FORM TO THESIS ~ VEUILLEZ JOINDRE CE FORMULAIRE A LA THESE 4
Signature J Date
! VAR
- " , I // el Lo A
N /X("?(s 20 L L"(/ ’ ///// - /
7

NL-91 (1. 84/03) / & /

Canad"'

i
]

-

g " THE UNIVERSITY OF KEBERTA‘

- i)

L

SOME NEW APPROACHES FOR LINEAR QUADTREES
- ‘ ‘ \ by

' (:::) XIAONING WANG

/

_ A THESIS .
SUBMITTED TO THE FACULTY OF GRAbuATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF TPE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTING SCIENCE

- ' EDMONTON, ALBERTA

August, 1935

-
ot

THE UNIVERSITY OF ALBERTA

-

)
RELEASE FORM |
NAME OF AUTHOR XIAONING WANG
TITLE OF THESIS SOME NEW APPROACHES FOR LINEAR QUADTREES
N

DEGREE F?R WHICH THESIS WAS PRESENTED MASTER OF SCIENCE

J v

YEAR THIS DEGREE GRANTED August, 1985
= | g

Permission is hereby granted to THE UNIVERSITY OF
ALBERTA LIBRARY to reproduce single copies of this
thésis and to lend or sell such copies for private,
scholarlf or scientific research purposes only.

The author reserves other pubiication rights; ana
neither the thesis ngf extensive extracts from gt may

be printed or otherwise repfoducedeithout the author's

(SIGNED) .;;{2444{25Zﬂ.étgfziiq

PERMANENT ADDRESS:

written permission.

Site 16, Box #1.
RR #5, Edmonton

Alberta TSP'4B7

DATEDf?f.f? ... 1985

‘\gv /'

THE UNIVERSITY OF ALBERTA

/ ,, ‘
FACULTY OF GRADUATE STUDIES AND RESEARCH

The under51gned certlfy that they have read and -
recommend to the Faculty<$?(keduate Studles and Research
for acceptance, a the51é entltled SOME NEW APPROACHES FOR
LINEAR QUADTREES submittéd by XIAONING WANG in parltial

fulfilment of the reguirements.for the degree of MASTER OF

LA)CLHé\Q‘ClTEBCLLha

‘ Superv1sor‘
7
»»; . u.(é Z/.Z:'«?.‘{/ "L.f .

-—_

SCIENCE.

IN MEMORY OF MY DEAR FATHER
| XIA-BEI WANG

1

o

N

iv

ABSTRACT

{

This thesis introduces a maﬁified version of the linear
quadtree for representing regions, and presents algorithms
for the manipulation of regions us}ng thesé modified linear
gquadtrees. For a 2" 5} 2" binary iﬁage ahd a region composed
of N BLACK nodes representgd as a modified“linear quadt;eé,
theﬁéollowing results will be presented: algorithms for

0 :
labeling all connected components, computing the perimeter,
finding the centroid,lfotating by multiplés of 90 aegreeé,
a;d generating the background‘of the région‘gaﬁ be executed
in O(n}N) time. Computing the region's area can be done in
O(N) pime. The intersection and union of two regions
cohﬂ‘ééd of N1 and N2 BLACK nodes takes time O(N1+N2) and
O(n-(N1+N2)), respectively, in the worst case. Two other

: ki
algorithms are

describ;d for converting a quadtfee to a
modified yinear quadtree and vice versa in time proportionél
to the number of nodes in the quadtree. More importantly,
th;se two algorithms can be uséd jointly in achieving an
efficient condensation algorithm. It will also be shown -that

the proposed modified linear quadtree approaéh is more

efficient than the linear qguadtree in terms of both time and

space complexities.

ACKNOWLEDGEMENTS

f wish to express my sincere gratitude to my
supervisor, Dr. W.A. Davis, for introducing me to the fieli.
1 also thank him for his guidance, encoubagehen; and -
assistance during the development of this research. Further
thanks are due to the members of my examifing committee,
Drs. W.W. Armstrong, M.T. Ozsu and J.C. Muller:, for £heir
helpful comments.

1 gratgfully acknowledq; the Department of Computing
Science for the financial support in the form of ;eaching

and research assistantships.

Foi & greatly indebted to my husband, De-Lei,
ﬂt;,f\"‘\\lx'; L .

E3 .
without who¥ ing, this thesis would.

vi

Table of Contents

Chapter ‘ Page
1. INTRODUCTION e s es s e e e e e e aa]
2, BACKGROUNDcivevoeecosans;...(................4
" 2.1 Definitions and NOtationeeeeeeeeeonns ..\ 4
2.2 The quadtree approach |

2.3 The linear quadtree approachc.cc00. ceees 13

3. A MODIFIED LINEAR QUAbTREE O
3.1 pefinitfons and notation R TP ...15

3.2 An encoding scheme'......{......\ Ceeeae 19

"’ 3.3 Constructing an MLQ ceie..20
3.4 Neighboé EANAING 4o eieenneraeennenneeraneans e...22

3.4.1 Neighbor determinationceeeeeesees.23

3.4.2 Color determinationveescesocsccesnsssa24
3.5 Conclusion ..evveeenen e e ee s ,;.. 25
ALGORITHMS FOR MANIPULATING AN MLQ R 27‘
4,1 Labeling connected components 2 <
'4,.1.1 Definitions and notation ‘v....v.ooeae. ;....28
4.1.2 An observation‘.....,...;....... ceees29

~4.1.3 An informal description of the algorithm ..30

4.1.4 A formal statement of the algorithm34

Computing the perimeter of a region40
Computing the area of a regionc.vvevennnn .. 44
Computing the centroid of a region45
Transformationcvvevenenne PN cee. 46
4.5.1 Translation'.;...}............. R Y
4,5.2 ROtation ...ivivrenrenrnennanes S P 10
Set-théoretic operations ...eieceececnens B - Y

vii

4.6.1 Cqmplement Che e e N X
4.6.2 Intersection AP REREe e 57
4.6.3 Union ..ovevens e e .59
4.7 Conversion between guadtwees and MLQS 60
4.7.1 Converting from a quadtree to an MLQ 60

4.7.2 Converting from an MLQ to a quadtree P -y

4.8 CONCluSion ...iverieenoossoans,.......64
N -
CONCLUSIONS AND ‘REMARKS e e e es s e e s e s e s P 65
REFERENCES ...t tevecenan c e s et e e s s assetsaean e 68
4
-f“_?l

viii

List of Figures : .

Figure ' ' Page
1 A region ,....... e es et e Ceenes 5
2 The reéion in binary array representation 5
3 'Decomposition of the region in Fig. 2.1 Pernneneeeee 7

4 The guadtree for the region in_Fig;MJWJM........;......9

’

5 An 8 by 8 Morton mMatriXeeeeseedocenennensenaensel?

6 An adjacency configuration .2................; «..33
7 A region with two componenfs e ceeees 37
8 Decomposition of the region in Fig. 4.2 \. cee..37
9 Applyigg phasé one to Fig. 4.3 ..t ennrorsnncnonnn .38

10 Appliing phase three to Fig., 4.4 ..vceeerieennonoaseasdd
* ‘v
11 A connected region Qoo e e et 42

12 Decomposition of the region in Fig., 4.6 I ¥/

ix

ACHAPTER !
INTRODUCT TON

Region representation is éQ important issue in image
processing, cartography, computer graphics, gepgraphic 1
information systems, and robotics {31]. Currently there are
a variety of methods used for representing :égions. The
success of an approach to the reprgsentation of regions
depends on how easy it is to implement in terms of .
computational complexity, memory space requirements, and
exténsibility [19-22].

A method known as the chain code region representation
specifies the boundary of a region by storing'a sequence of
elementary vectors [18]. This method 1s very compact in
terms of the storage reqguirement, and makes it easy to
detect the boundary of the region [29]. The disadvantage is
the difficulty of performing set operations such as
intersection and gnion for regions. A method called tﬁ"
medial axis transformation/is less compact than a chain
code, but it can perform both intersection and union
operations more efficiently [30].

Recently, gquadtrees have recieved increasing attention
[5,10;14,26,34]. The quadtree representation is based on the
principle of recursive decomposition of an image p;oposed by
Klinger [12,13]. Its hierarchical nature makes it relatively

compact, and well-suited to operations such as complement,

1 K

union and intersectiop [9), as well as for determining
various other‘region properties [32]. Properties of
guadtrees have been extensively studied, and many“ﬁfficient
algorithms have been developed, further~supporting the
quadtree concept [10{;3,24,26,27]. L ’

Efforts at reducing the space requirements of quadtrees '
even more have led to the concept’of linear quadtrees (6].
For a linear quadtree, the Ui? of a iocationalycode or key
proviQes an uniquesidentificatﬂgh of the'BLACK ane -
aséociated with that key, and the quadtree topology can be
obtained by performing simple operations on the keys. As a
resultx a linear quadtree regresents a quadtree as a
sequence of terminal nodes in a specific ordett while
nonterminal nodes, or even WHITE nodes of the quadtree are
omitted, achieving a significant space efficiency. ‘\

In this direction, the linear gquadtree proposed by ﬁark
and Lauzon [15] stores both BLACK and WWITE nodes in a x
compress;d form where only the key of the last terminal/;ode
in a sequence of consecutive termiﬁal‘nodei‘of the same
color 1is stored. |

The linear quadtree proposed by Gargantini stores only
the BLACK nodes comprising the region, and inferring the
WHITE nodes” as fequired. This linear quadtfeé will be
referred to as a quaternary-code linear quadtrée (QLQ),
since each BLACK node is associated with an n digit

quaternary code whose digits reflect the successive o

decomposition of a 2" by 2" image. As reported in [6]1, a QLQ

®

1ntrodgces a sav1ng of at least 66 percent of the memory
space requ1red by its standard quadtree cdpnterpart

Algorlthms for-manlpulatlng the QLQ have g

-~ in [2,6-8]. éompared with the quadtree approaci;;h terms’ of

computational“complexity, the QLQ approach is less efficient
N

~in supporting fast algorithms for the manipulatlon of
regions. It 1s, therefore, de51rable to use the 11near
' quadtree approach to saye memory space on one hand, and to

have a more eff1c1ent rephesentation to fac111tate
. N

‘operations on the other hand. “

9

‘To achieve SUCh a goal this thesis begins with an

1ntroduction to the probie of the representation of regions

hapter 2. The recursife decomposition of ihages is -
brgeffy revmewed along w th its quadtree and QLQ
'representations in prepa ation for the development and
discussxon of an alternative representation. A modified
linear quadtree 1s then 1ntroduced in Chapter 3, and-is

o > N

shown to be more eff1c1ent spacew1se than the QLQ. Chapter 4
"1nvestigates operations on 1mages u51ng the proposed
structure. A number of algorithms are presented in detail to
effectiveiy support these operations.;The proposed’
aléoritth‘are shown to be more efficient than their
'icorresponding QLQ counterpart in terms of time complex1t1es
' t

The last chapter "of "the the51S“presents the conclu51ons and

,psuggestlons for further research.

CHAPTER 2 |
'BACKGROUND .

- This chapter contains some basic definitions/%nd
v , /

terminology for region representations that are ‘fundamental

for the remginder of this thesis.

2.1 Definitions and notation - S

Definition 2.1: An image is a 2" by 2"jﬂ}ray of unit 'square

pixels each of which can assume one“of"‘zk values, where .n ‘is
called the resolution parameter of the image.

/ \
Definition 2. 2 An image 1is called a binary 1Qﬂ93 when its

plxels assume either 1 or 0 valhes. A p1xe1 is BLACK if it

has the value 40f 1, otherw1se 1t is WHITE.

4

Without loss of generality, only binary images will be
~ ; \
considered in this thes;s, since all of the algorithms can
_ ‘ / ' ‘ .
be extended to nonbinary images.
/

/ , L :
Definition 2.3: The /region of a binary image is composed of -~
all BLACK pixelsc/énd the background of the region is

composed of all WHITE pixels.

/ .

. o
L / ' v : ’ B
Example: The fregion shown in Fig. 2.1 is represented by the

2° by 2° binary array in Fig. 2.2, where 1 and 0 correspond
to BLACK and WHITE‘pixels, respectively.

“

Fig. 2.1. A region.

11111 lo]olo]o

o 1t 2 3 4 5 6 1

Fig. 2.2. ng“region in binary
array representation.

L3

Definition 2.4; Let (i,j) represent the location of a p;xel
p in a given image, where i and j are the column and r&w.‘
~§ositioﬁs respectively. Then p has four Borizontal and

§erticalnneighbors located at: (i—i,j), (i,j-1), (i,j+1) and
(i+1,3). These pixels are’ called the, 4-neighbors of p, and |

!

are said to be 4-adjacent to p.

Definition 2.5: A path fram pixel p to pixel g is a séquence
of distﬁnct~pixels, P = PosP1,s+-+,Pn = 4, such that pn, is

4—adjacent’to Pi-1, Where 1<msn.

Definition 2.6: For two BLACK pixels, p and g, of a region,
p is said to be connected to q if there is a path from p to
g consisting entirely of pixels of the region.

Definition 2.7: For any BLACK pixel p, the set of pixels
connected to p.is called a connected component of the
_region., If a region has only one component, then it is

Called "cqﬁhected"y

There has béeh considerable interest in region
representations based on the principleldf recursive
decomposition, which is siﬂi}iiéto‘the divide and conquef
method [1]. An image is decomposed in the following manner
to separate a region from its background, and to repreéent a
se£ of pixéls belonging to the same guadrant as a single
block, If the region does not cerr the entire binary array,
the array will be subdivided into four equal-sized'squafe

blocks. This process will be applied recursively, until

}

blocks are obtained that are either totally contained in the

-

,region or totally disjoint from it. As an example, Fig. 2.
is the decomp051tlon of the region shown in Fig. 2.1. It c#gn
be seen that the region is decomposed into the maximal
blocks A, B, C, D and E, thereby separated from the

background.

Fig;‘2;3. Decomposition of the
? . region in Fig. 2.1.
oy - |
The recursive decomposition of an image produces blocks
"~ that must have standard sizes (powers of .2) and positions.
Similar definitions can now be formulated in terms of

blocks.

‘Definition 2.8: A block is said to be BLACK if it contains
only BLACK pixels, WHITE if it contains only‘WHITE pixels,

and GREY if it contains both BLACK and WHITE pixels.

The four sides of a block are referred as to its North,
East, (South and West sides, or N, E, S and W for short. And

let OPSIDE(T) be the side opposite to T, e.g., OPSIDE(E)=W.
v))

-

'Definition 2.9: Two blocks P and Q are said to be 4-adjacgnt

along the side T of P if theuéfﬁgmg Qng‘touches the side

@ .

OPSIDE(T) of O.

. o . \ .
Definition 2.10: BLACK blocks P and Q are said to be

connected if there exists a path consisting entirely of

- BLACK pixels from a pixel of P to a pixel of Q.

Clearly, representing a region as a union of maximal
blocks is much more compact than as a union of individual

pixels.

2.2 The quidtree.approach

Hierarchical data structures are a natural.way to
represent the above recursive decomposition process. One
such data stfucture, now known és quadtree, was proposed
originally by Klinger [11,12], see also [33,35,36]. &
qguadtree is an ordered‘treé‘of out-d greé‘four. The root
represents the entire image, and eaJZNpthér node represents'
one of the four subBlocks,in order NW, NE, SW, SE of itév
father's block. No father node can havé)j}}*igé&d@gce@dant

: . : : L U Ca
terminal nodes with the same color. As an @xamﬁléJZthi”2.4
. D : EAR

ot

£

demonstrates the quadtree for the region in Fig. 2.1, where

the symbols O, [] and | represent GREY, WHITE and BLACK

nodes, respectively. Note that the‘terms block and node will

be used interchangeably throughout.

SE

+

Fig. 2.4. The quadtree for the region in Fig. 2.1.
\ : : _ ;

Each node in the quadtree holdsléix pieces of
ihformation.the first five are pointers to its father and
~ its four sons. The sixth piece of information describes the
colo;\bf ‘the node. Terminal nodes have color BLACK or WHITE
while nonterminal nodes have color GREY. |

One problem with the quadtrée representation of the
recﬁrsive decompositiocn procéss is that it has a ?
considerable amount pf’overhead associated with it, for
example, in memory space. This argument is supported by the

observation that only GREY nodes effectively use their four

pointers to their four sons, while BLACK and WHITE nodes

*® S ' 1

have their pointers to empty records. In, addition, the
number of BLACK and WHITE nodes is nearly three times the
number.of GREY nodes :s stated by the following lemma.
Lemma 2.1:.The total number of GREY nodes in a quadtree
having N‘BLACK nodes and W WHITE nodes is bounded by
(N+W-1)/3. | | |
Proof: Let G denote theAnumber-of GREY‘nodes. Given G‘GREY
nodes and (N+W) terminal nodes, there are’(G+N+W-1) edges.
By the number of sons, there are 4G eages. Thus 4G=G+N+W-1,
or G=(N+W;1)/3.

‘Q.E.D,

A simple solution may inrroducevtwo different kinds of
records for terminal nodes amd nonterminal:-nodes. This will
greatly reduce the number of pointers per node from fiyelto‘
two on the average. The drawback of this solution is,
lhowever, that the resulting quadtree is no longer‘composea

of the same record types and therefore operations must be

A

performed differently when nodes dlffer. Q; %“’n

Totally e11m1nat1ng quadtree pointers together W1&h~u
removing all GREY and WHITE nodes may solve the)problem. The
.latter is more important in two respects. Firstly;‘the
resulting quadtree, which Gargentini calls a linear
quadtree, consists only of BLACK nodes, and therefore
operatlons performed at each node will be exactly the same. .
Secondly, the number of BLACK nodes comprising the region

can be expected to be small relative to the total number of

11

nodes in the guadtree. This is verified by the following two

lemmas. _ ’ v

Lemma 2.2: The upper‘bound on the nﬁmber of nodes in a
quadtree having N BLACK nodes is 4n-N+1.
.Proof: By induction on the resolution parameter n,

The basis, n=1, is trivial by observing that a quadtree
with one BLACK node has 5 nodes, and any quadtree with N>1
BLACK nodes has less than 4N+1 nodes.

’Now, assume the lemma is true for n=kz1. Consider
quadtree Q of k+1' levels having one BLACK node as shown

»

below;

It is easy.to verify‘that the numbh€r of nodes, T, in Q is

4(k+1)+1. It remains to show that any quadtree R of k+1

leveis with N>1 BLACK nodes has le than 4(k+1) -N+1 nodes.
"Without loss of gene;ality, cdnsider the following two

primitive ways to construct R from QA\

12

Case 1. R is obtained by changing a WHITE node of Q into a
BLACK one. Then the total nuTber of nodes and the number of
BLACK nodes in R are T and 2, respectively. Clearly,
T < 4(k+1)-2+1,

Case 2. R is obtained’by réplacing a WHITE node of Q by a
quadtree S of k levels having m BLACK nodes. Invoking the
inductive hypothesis and letting T, be the number of nodes
in.S, then } |
;‘ T, £ 4k-m+1.
3 &,

Therefore,l
' 4

T T+T, < 4(k+1)+4k -m+2,

AT, -1 < 4(k+1)- (m+1)+1-4m.

and the number of BLACK nodes in R, respectively.
The lemma is, therefore, proven.

Q.E.D.

Lemma 2.3: The lower bound on the number of nodes in a
quadtree having N BLACK nodes i's Nen+1.

Proof: Similar to the proof of %emma 2.2,
1}

| Q.E.D.

It should be clear by now that the concept of linear
quadtree provides the potential of a very efficient storage

utilization.

oy
T

2.3 The linear quadtree approach N

The distinct feature of linear guadtrees is that they
are pointerless and store only BLACK nodes. To capture the
recursive decompositidn process, a linear quadtree encodes
its BLACK nodes in the following way: the Nw'quadraﬁt is
ncoded with 0, the NE with 1, the SW with 2, and the SE
with 3. Each BLACK pixel then encoded as a sequence of n'
integers (i.e., a gquaternary code):

Qa-1, Qn-2+ "'+ Jo, Where q,e{0,1,2,3} for 0<i<n.
Each successive integer therefore represents the block
decomposition from which it originates. Thus, g,-i, for
1<i<n, identifies the subblock to which the pixel belongs at
the itH decomposition. A BLACK node corresponding to a 2% by.
2 biock is encoded as Qn-1, Qn-2, ° "+ Qo with q;=X,
X¢0;1,2,3, for 0§i<k; where X is called a don't care sign. A
linear quadtree is the sorted seqguence of guaternary codes
corresponding to the BLACK nodes comprising the region.

A% -an example, the linear quadtree representation for
the region in Fig. 2.1 is the following sequencé:

032, 033, 10%, 12X, 2XX

which correspond to the BpACK(nodes B, C, E, D, and A;
respectively, of Fig. 2.3. A;number of algorithms for
manipulating linear qﬁadt;ee; have been reported in.[2,6-8].
These algofithms suffer, in speed, from the quaternary
encoding of the BLACK nodes.

In the next‘chapﬂerh a modified linear quadtréé (MLQ)

is presented as an alternative to the linear quadtree.

»

\.

Various algorithms will be developed and analyzed for the
manipulation of regions usimj an MLQ. ' ‘)

o'
4

CHAPTER 3
A MODIFIED LINEAR QUADTREE [3]

The purpose of this chapter is two-fold. The first 1is
to introduce the MLQ, and the second is to estabilish a
foundation upon which algorithms will be developed and
analyzed in subsequent chapters. The computational model
which will be used in the analysis of time requirements of
the algorithms involves a RAM, or a random accéss machine
[1], for which storage or retrieval of data from memory
requires constant time. Time is measured in steps, oOr
operations such as comparison and multiplication requiring

constant time.

3.1 Definitions and notation
The following conventions will be adopted throughout

this thesis.
Definition 3.1: For two integers I and J given by

-1 n-1
I=% (1,-2'), and J= £ (J,-2'), where I, J,e{0,1},

15

16

Definition 3.2: For lan integer S = s;, , - So, where
5.6{0,]},
n-1 ’ n= 1
EVEN(S) = £ s,,-2' and ODD(S) = L s8,,.:-2'. -
1=0 i=0

wThe above two definitions have effectively specified
how these three functions can be implemented in O(n) steps.
Hereafter, SH, EV and OD will be uted as abbreviated
versions of SHUFFLE, EVEN and ODD, respectively. The use of

SH, EV and OD functions will become apparenY later.

Given a 2" by 2" image, there are a number of ways to
assign consecutive integers to the pixels. A method wh;Eh is
now known as a Morton matrix [15] is the best to capture the
nature of the recursive decomposition Jescribed in the

previous chapter. !

Definition 3.3: A Morton matrix is an grray of 2" by 2°
pixels each of which is assigned an ihteg;; as follows. ‘For

a pixel p with coordinates kI,J), Qhere I and J are the ,
column and row position, respectively, the ‘integer assigned (
to p is SH(I,J).

¥ L]

Example: Fig. 3.1 shows a 2° by 2° Morton matrix.

| . L
7 |21 |23 |29 |31 |53 |55 |61 |63

6 |20 122 128 |30 |52 |54 |60 |62

s [16 |18 |24 |26 |48 |50 |56 |58

2 1 a | & w2 |14 |36 |38-|aa |46

C a9 | |33 |35 jar |a3

oo | 2] 8 |10 |32 (34 |40 |42

0- 1 2 3 4 5 6 7,

. Figq. 3.1. A 2° by 27 Morton matrix.
To represent a block obtained by tﬂé recursive

i

vdecomp051t1Qn method requ1res the follow1ng deflnltlon'

t¢
&)

De£1n1t1on 3. 4 The key of a block or node with 2° by 2’
' plxels 15 the ‘key of 1ts left bottom pixel, there s is

called the resqlutlon parameter of the block.

It is now easy to show. that the two tuple <K, s>'
- uniquely represents a block, where. K and s are- the key and

resolution parameter of the block, respectively.

Definitiqh 3.5: Given a block Q, its Subblockvwith label i
.is called the ith Subblock‘of Q and denoted by'Qi if Q, is

obtained by“one“subdivision of Q, where 1€{0,1,2,3}.

‘

18

[N

The quadrant labefing shown below will be assumed. .

Example: For the image in Fig. 3.1, the entire image E is

rebresented as <0,3>, and E, as <16,2>,

bR ‘
#The following two lemmas are useful in developing

future algorithms.

Lemma 3.1: For any two nodes-<K,,s,;land <K,,S,> where
<K,,s:> € Q; and <K;,s.> ¢ Q; for some node Q, if i<j then
_K1<K‘z.

 Proof: Let Q be <K,s>. Then i-4*' < K,-K < (i+1)-4*"" for
<K,,s:>€Q;; and j-4* ' < K;-K < (j¥1)-4‘f‘ for <K;,s5:>€¢Q;.

Therefore the lemma follows, since i<j, T

4

Q.E.D.

4

Lemma 3.2: For any two nodes‘<K,,s,;> and <K,,s;> where.
s1>s,, then either <K1,s1>,c6ﬁtains <K,,s;>, or the
intersection of <K,,s.> and <K,,52> is empty.
féroof: The condition S1>s, imposes two caseé in which
<K,,S.> can be obtained. |

Cgse 1: <K,,8.> is obtainéd byfsuqcessive subdivision

' of <K,;,s:> implying that <K;,s2> is contained in <K,,s;>.

-

19

Case 2: <Kg,s,> is not obtained by successive
subdivision of <K,,s,> implying that <K.,s.> and <K,,s;> are
disjoint.

Q.E.D.

3.2 An ehcoding scheme ‘ 3

Clearly, aiBLACK node can now bé encoéed by a two-tuple
<K,s>, QheretK uniguely identifies the position of the néde
in the image, and s specifies-the resolution parameter of
the node. A modified linear quadtree (MLQ) is defined to. be
a sequénce<of BLACK nodes in two—tuple:form sorted in
ascending key order. This differs from the linear quadtree
in that, firstly, the key of the node is stored as a single.
integer rather than a n digit guaternary code, and, |
secondly, the resolution parameter of the node is giveﬁ
explicitiy rather thgntimplied‘by the number‘of don't care
characters in the qﬁéternary code.

This modification resﬁlts in two advantages: space
_efficiency and improved execution time., The second advantag;
wili become ‘clear "in Chapter 4; To see the first advantage
\neceséiates a compafison between the storage requirements of
the twd encoding methods. As reported in [6], éaeh BLACK
node needs 3n bits. By contrast, the proposed encoding
scheme reguires (2n+log n) bits for each BLACK node, where
2n bits are used for storing the key and (log n) bits for

the resolution parameter of the node. As an exampie, when

A

'n£12, the MLQ can save approximatélvaZ percent of the

20

memory spéce required by the linear qﬁadtree.

3.3 Cbnstructing an MLQ

In this thesis,'twé algarithms will Bg(bropbsed for
constructing an MLQ, given two different descrippions of a
2" by 2" image. An obtimal élgo;ithm will be presented in
Chapter 4 -for constructing‘an MﬁQ, given‘the guadtree
description of the image. Another algorithm to be iﬂtroduced
in this section constructs aﬁ MLQ, given the array
description of the image. - "

The first algorithm is useful because, as will be seen
in Chapter 4, obtaining an MLQ from the'qmadtree description
of the image is much more efficient b;th in time apd space
than generating an MLQ from the array description ofAthe

same image. When the guadtree description .is not available,

‘however, it becomes necessary to use the second algorithm.

The algorithm for generating an MLQ from the array
description of a 2" by 2" binary image is presented below as
a procedure termed ARRAY-TO-MLQ. It takes ‘as input three

parameters E, key and s, where E is a 2° by 2' binary array,

N
key and s initially correspond to zero and n, respectively.
The output of the algorithm is a global variable called LIST

containing the desired MLQ representation.

21

Procedure ARRAY-TO-MLQ(E, key,s)
begin . '
if s=0 then -
if E is a BLACK plxel then
begin
add pair <key,s> to LIST~
return (BLACK) ;
end | '
else return(NONBLACK)
else
begin
$or i:=0 to 3 do ' .
color[i]:=ARRAY-TO-MLQ(E, , key+i*4**(s~1),s-1);
if color[i] is BLACK, 0<i<3, then
~ begin
replace the last 4 pairs in LIST by <key,s>;
return{BLACK) ;
end
else return(NONBLACK);
end;
end;

The algorithm examine$4¢ach pixel value of the binary
image in Morton sequence‘ordér. 1f a pixel i§ BLACK, then
its two-tuple representation 1is forméd and added to LIST
which is initially empty. One of its. important features is
that the algorithm recursively merges the;foﬁr small BLACK
nodes corresponding to the last four two-tuples in LIST.
Thié yields a‘bigger BLACK node whenever possible by first
removing the four two-tuples apd then adding the two-tuple
rep;esenting the newly‘yielded bigger BLACK node to LIST.
Upon Eerminatibn.of the algorithm, LIST contains all maximal
BLACK nodes. This method is spacewise superlor to one which
first builds a list contalnlng all BLACK pixels, and then
attempts to merge the pixels in the list into maximal BLACK
nodes .[6]. | B

As an application of the algorithm 'to the binary image

in Fig. 2.2, the MLQ representing the region in Fig. 2.1 is

22

determined to be: ‘
' <0,2>, <24,0>, <26,0>, <48,1>, <52,1>,
which corresponds to the BLACK nodes A, B, C, D, E in

Fig. 2.3, respectively.

Theéorem 3l1: Procédure ARRAY-TO-MLQ constructs anTMLQ, given
‘the array des%riptiOn/df the image, in time proportional to
the number of pixels in the image. ’ | |
Proof: Let T(4") be the number of steps reqpired by
-procedure ARRAY-TO-MLQ to generate an MLQ.FClearly, when .
n=0, T(1)=1, If n>0, T(4") is the total number of steps used
in the four calls of ARRAY-TO-MLQ on an array of size 4" ",

plus approximately four steps in checking color[0] to

color[3]. That is,

4T(4"" ') +4 n>0
T(4") =
1 ' n=0.
The theorem follows by soiving the recurrence. -
Q.E.D.

LS

3.4 Neighbor fiﬁding

Neighbor finding for regions represented by an MLQ is a
fundamental operation. It is a cornerstone for many
operations such as labeling connected components, computing
perimeters, and others, which will be discussed in the
following chapter. Neighbor finding using an MLQ involves
‘essentially two steps. The first step generates the

£

23

two-tuple form of the desired neighborihg block from the
given block. The second step then determines the color of
the neighboring block by consulting the MLQ under
consideration.‘These‘two steps are now describea more
precisely.

)
'3.4.1 Neighbor determination

' Let each node in an MLQ be stored as a record
contaiﬁing two‘fields. The first field, named KEY, contains
the key of the node. The second field, named RES, contains
the resolution parameter of the node. The use of OD and EV
functions.on the key of the node will provide the
coordinates of\hhe node. This coordinate information with
the resolution\parameter will be sufficient to obtain the
coordln@tes of the. nelghborlng block in a specified
direction. Then the two- tuple form of the neighboring block
can be constructed by using the SH function on its
coordinates. '

Let P be a given node, its neighbor of equai size in a
direction specified by side equal to {ﬁ, E, S, W} can be
determined by‘the following procedure.termed EQ—-NEIGHBOR
using the 4-adjacent criterion. Nofé thatvdetermining a

neighbor of different size or using other adjacent criterion

can be done similarly.

24

Procedure EQ-NEIGHBOR(P,side) o
begin :
1:=OD(P.KEY);
J:=EV(P.KEY);
case of side
N: J:=J + 2*xxP,RES;

E: I:=1 + 2*x%xP RES;

S: J:=J ~ 2%*%P.RES;

W: I:=I.- 2xxP.RES;
end; ' ‘

neighbor .KEY:=SH(1,J);
neighbor .RES:=P.RES;
return(neighbor);

end; : , .

k)
Theorem 3.2: The.time complexity of computing a neighboring
nodéﬂin any of the-principal directions is O(n). |
Proofﬁ The time complexities of the functiénsfSH,lEv'and (0)0]
are all of O(n). |

Q.E.D.

3.4.2 Color deﬁermigation

Since only BLACK; nodes aré explicitly stored in the
MLQ, to determine the color of a héighboring node
necessitates examining the MLQ against’the neiéhboring node.
Let P be the neighboring node which is to be compared with a
BLACK node Q in the MLQ in the course of the examination.

According to Lemma 3.2, the color of P can be found as one

of the following cases:

1. If P.KEY and P.RES are identical to. Q.KEY and Q.RES,
respectively, then P=Q, and therefore P is BLACK.
2. If the following conditions are both satisfied, then

P is contained in Q, and therefore P is BLACK:

o d 25

a) P.RES < Q.RES,
b) Q.KEY < P.KEY < Q.KEY + 4%xQ.RES.
3. If the following conditions are both satisfied, then
Q is contdined 1in P,-énd therefore P is GREY:
a) P.RES > Q.RES,
b) P.KEY < Q.KEY < P.KEY + 4%%P,RES.
4. If none of the previous cases hold after searching

the MLO then it follows that P is WHITE.

Theorem 3.3: Determining the color of a given node can be
done in O(log N) steps, where N is the number’bf BLACK nodes
in the MLQ. |
Proof: Binary search can be: adopted to examine the MLQ with
N BLACK nodes, since the MLQ is sdrted in key order. Binar§
search takes O(log N) steps [1], and at each step the

‘operation outlined above takes constant time.

Q.E.D.

It should be pointed out that with very simple
hardwace, operékions such as SH, E¥, and OD can'all be
performed in constant time, and hence EQ—NEIGHBOR takes time
0(1). This could improve the time complexity of neighbor

finding from O(n) to O(log N).

3.5 Conclusion
A modified linear guadtree has been introduced. The
encoding scheme is based on the Morton matrix in conjunction

with the concept of resolution parameters of the maximal

26

blocks being represented. This modification has resulted in
a spacewise more efficient representation over the linear
quadtree by Gargantini. The time efficiency will be

considered in the next chapter.

CHAPTER 4
ALGORITHMS FOR MANIPULATING AN MLQ
'

This chapter contains a set of algorithms for the
manipulation of an MLQ. In particular, an algorithm for
labeling connected components is deQeloped in Section 4.1,
As a direct application of the algorithm, a technique for
computing the perimeter of a region is described in the
subsequent section. Algorithms for computing the area and
centroid. of a region are given in Sections 4.3 and 4.4 to
show their simplicity. Section 4.5 contains two algorithms
for the translation and rotation of a region, and shows that
translation is an extremely costly operation. Three
set—theofetical operations are presented in Section 4.6,
where the importance of an efficient condensation method for
the MLQ representation is demonstrated. Two algorithms are
introduced to convert an MLQ to a guadtree and vice versa.
More interestingly; these two algorithms can be used jointly
in achieving an 2fficient condensation algorithm. An
analysis‘of the perfqrmance of these algorithms will support
the statemenf that the MLQ encoding scheme increases the

speed of region operations.

27

28

4.1 Labeling connected components

The reeognition of all connected components of a region
[17,18] is,a fundamental operation in image processing and
geographic systems. Samet [23] presents an algorithm for
labeling all connected components of a region represented by
a quadtree, and shows that its average execution time 1is
O(T + N-log N), where T and N are the total number of nodes
and the number of BLACK nodes in the quadtree, repectively.
This aigorithm outperforms the traditional method with an.
execution time proportional to the number of pixels of the
image [18). Gargantini [8] also describes an entirely
different algorithm using a linear quadtree; however, the
algorithm has limited power as it is only applicable to
regions with special confiqurations, e.g., the reqion must
consist of equal-sized BLACK nodes.,

In this section, an algorithm adopting a novel approach
for labeling all connected components of a region using an
MLQ is presented. It is capable of Fandling regions with
arbitrary configurations. Furthermore, the algorithm 1s of
time complexity O(n-N), and hence compares favorably to

Samet's algorithm [23].

4.1.1.Definitions and notation

Let each BLACK node in the MLQ be stored as a record
consisting of three fields. The first two fields, termed KEY
and RES, contain the key and thé resolution pafameter of the

node, respectively. The third field, termed 1D, identifies

29

the connected component containing the node. It is set as a
result éf the algorithm to be presented.‘én array M is used
to represent the MLQ, As defined U&the previous chapter, M
has the property that for any i,j = (1,2, ---,N), if i< 3
then M[i].KEY < M[j].KEY. The predicate UNEXPLORED(P,T) is
true if and only if the side T of node P has not been marked
"e;plored" in the progress of the algorithm. The predicate
LABEL(P) is true if and only if P.ID has bgén assigned a

value.

"4.1.2 An observation

Given a node P in M, its four adjacent or neighboring
nodes can be determined in O(n) steps, by Theorem 3.2.
Suppose Q is the adjacent node to P in the west direction.

The color of Q can be determined as WHITE, BLACK or GREY in

O(log N) time, by Theorem 3.3. The BLACK or WHITE color of Q

provides the information regarding whether Q 1is conﬁected to
P or not. Very little knowledge, however, of what 1is
happening between P and Q is known when the color of Q is
GREY. Simply this is because there can either be no BLACK
‘node or as many as up to 2*' BLACK nodes in Q adjacent to P,
'where s=P.RES, i.e., P is'a block of 2* by 2* pixels. This
implies that up to 2° further searches on M must occur in
order Eo exhaust all possible adjacencies. In fact, this 1is
precisely what Samet's algorithm does. Assuming a random
image in the sense that a node is equallymlikely te appear

in any position and at any level in the quadtree, the

30"

neighbor finding operation using a quadtree 1s so efficient
that the average number of nodes visited is a constant [26].
Correspondingly, the ne1ghbor finding operatxon us1n§.e
linear quadtree is less eff1c1ent in that the average number«
of nodes visited is O(log N). Therefore, a connected '
component labeling algorithm using a linear quadtree cannot
do the same thing as Samet's algorithm does. Gargantini's
algorithm [8] imposes a special configuration on the region
to avoid perférming exhaustive Seaf;h. As a result, the
algorithm is not able to deal with regiéns with an arbitrary
configuration. Clearly, it is a crucial step in achieving an
efficient method that when Q, the adjacent node of P, turns !
to be GREY, how to preclude further searching on M without
losing any information regarding the adjacencies.

It is this observation that leads to a new method, to‘
be described in the next section, for labeling all connected

o

components of a region using an MLQ.

#

\

4.1.3 An informal description of the algorithm_
The connected component labeling algorithm has three
phases. An array called MAP will be used mainly by the first

phase. MAP is constructed from M such that for any two

1

]

integers, 1,]j (1,2,---,N), if i < j then

A

M[{MAP[i]].RES < M[MAP[j]].RES. In essence, the use of MAP
provides the visit of the nodes in M in ascending size

order, while traversing M.

31

\

The first phase explores all possible adjacencies ‘
(2 ' IR

between any pair of BLACK nodes in M and generates

equivalence pairs.. The‘second phase merges all the . R

equivalence pairs generated durlng phase one into . e

equivalence classes. Finallv, the third phase a551gns the =
same identifier.(lie.; the label) to those BLACK nodes that
belong,to,the same‘equiyalence,class to reflect a connectedV‘
component. T

In particular, phase qne. traverseewg in ascending size\
_ order. For each BLACK node ‘P in M belng visited, and T in
{N,E,S,w} 1f the 51de T of P has not been prev1ously
marked then the adjacency between node P and the BLACK node
of greater or equal size along the side T of P needs be |
explored If such a BLACK node 1ndeed exists 1n M, say Q,
then the side. OPSIDE(T) of Q 18 marked "explored" and 1is
a551gned the same label as thatvof P to indicate that both P
and Q belong to the same componentt Dependlng on the
.conflguratlon of the reglon under con51deratlon, Q may
already have been a551gned a label dlfferent from that of P,
in. Wthh case, an equ1valence pa1r con51st1ng of the two
labels is generated. This equivalence palr will be used in
the later stage of the algorithm to update the labels of P
and Q so that eventually they will be a551gned the same
label. If the side T of P hags already beern marked
i”explored" then the explorat1on of the ad]acency to the

o

side T of P is no longer needed.

|
-

32

'

The consequence of this téchnique is not only to save
one search on M, bdt rather to save thefnecesSity of
exhausting éll possible adjancencies along the side T of P.
The reason for this_is as folldws. The side T of P c;n‘be'
‘marked "expléred" only at the time when that side of P Qés
found to be connected to aaBLACK node that was being visited
by the algorithm. The sizé of this BLACK node cannot be
bigger than P for otherwise it would noé be visited beforé
P. As a matter of fact, there could be as many such BLACK’
nodes as the size of P in M, Regardless hbw many BLACK nodes

of this nature exist, the "explored" status of the side T of

P, while P is being visited; simply indicates that the

exploration of the adjacendy

®s across the side T has been
e :)

previously done.

The .distinct feature of this algorithm is that phase
one guaran%eés that, ét most, oné'exploration of an
~adjacency along each side of every BLACK node in M is
sufficient to discover all possible adjacepcies between any

pair of BLACK nodes. To see this, remember that phase ones, ' < __.

o ae

i
visits the nodes in M in ascending size order. Consider, for

 example;'the image in Fig. 4.1, where the resolution

parameter n is 3. By the time BLACK node A is visited,

Fig. 4.1. An adjacency configuration.
‘'«

its eastern adjacency needs not be reexplored, since BLACK
nodes E, D, € and B have alt¥eady been visited before A, and'n
adjacencies between A and them were discovered then. Now,
however, its norﬁhern adjacency must_be explored, since that
side df A eannot be marked "explored" although F was visited
before A. As A's northern neighbor of equal size is found to
be the‘celor of GREY, the algorithm'immediately concludes.
that there does not exist any BLACK node adjacent to the

< .
northern side of & for otherwise the northern side of A

would have been marked "explored". Therefore, no further

search is necessary.

®

' Phase two .will merge the equivalence pairs generated)
. i

. ‘ . . . \
during phase one into equivalence classes in such a way that: =

each equivaleﬁce class contains all labels assigned to those

,BLACK nodes that form a connected component.

G

\ \

]

_»produced

34

Finally, phase three updates the labels assigned to the
BLACK nodes during phase one using the equ&valence classes

generated by phase two. Upon completion of phase three, all

'BLACK nodes of each connected compdnent'will have unique

labels.,

4.1.4 A formal statement of the algorithm

The connected component labellng algorlthm will now be
specified by the following procedures. Actually, only those.
procedures that correspond to phases one and three will be
presented. Phase two can be achieved by using the well knowﬁﬂ
UNION-FIND ‘algorithm [1]. i

The main procedure is named LABEL-CC and 1nvoked with

an array M and an integer N corresponding to the number of

BLACK nodes in M. Steps 1 and 2 construct the MAP and %

initialize a list called E-list which will contain the
equivalence pairs as they are generated. Procedure PROPAGATE
implements phaSe one. It visits the nodes in M in ascending
size order through MAP, explores the adjacencies between

pairs o'ACK nodes by iﬂnv,oking EXPLORE, assigns labels

vy ID-GENERATOR, and accumulates equivalence pairs

S in the E-list. Procedure EQ-NEIGHBOR used by EXPLORE is

described in Section 3.4.1. The unspecified pfocedure
SEARCH(M,P) works as follows: if P is a BLACK node then
SEARCH returns an integer value k such that P is either
equal to or contained in M{k]. However, if P is WHITE or

GREY then SEARCH simply returns~a-zero. Unique labels are

-

-

35

”

generated by procedure ID-GENERATOR, and assigned to BLACK
nodes by procedure ASSIGN-LABEL. Procedure UPDATE implements
phase three by uniqdely labeling each component while

scanning M,

Procedure LABEL-CC(M,N).
begin
1 construct MAP:
2 E-list:={¢};
3 PROPAGATE(M N);
4 generate equ1valence classes from E-list;
5 UPDATE(M,N); ¥
end; >

Procedure PROPAGATE(M,N)
begin :
for i:=1 to N do
begin
j:=MAP[i];
for side in {N,E,S,W} do
if UNEXPLORED(M[J] side)
~ then EXPLORE(M,j,side);
if not LABEL(M[j]) theén
M[j].ID:=ID—QENERATOR;
end; -
end;

Procedure EXPLORE(M,J 51de)
begin
neighbor:=EQ-NEIGHBOR(M[]], 51de)
k : =SEARCH(M,neighbor);
if k>0 then
begin : :
mark OPSIDE(side) of M[k] "explored";
ASSIGN-LABEL (M[j],M[k])
end;
end;
&

N\
!

]

(Procedure ASSIGN-LABEL(node,adj)
begin ~
- if LABEL(node) and LABEL(adj)
then if node.ID # adj.ID ,
then add (node.ID,adj.ID) to E-list;
else if LABEL(node) v
then adj.ID:=node.ID
else if LABEL(adj)
then node.ID:=adj.ID)
else node.ID:=adj.ID:=ID-GENERATOR;
end;

Procedure UPDATE(M,N)
begin g :
for i:=1 to N do . : .
M[i].ID:=FIND(M[i]);
end;
Example: As an example of the application of the algorithm,
consider‘the region given in Fig. 4.2 whose block |
decomposition is given in Fig. 4.3. The BLACK nodes have
been numbered 1in éhe order in which they were'viéited by .
phase one. Thus node 1 has been visited before nodes 2, 3,
etc. Tﬁe labels assigned to the two components by the first
phase of the algorithm are shown in Fig. 4.4. |
A.short explanation about Fig} 4.4 is necéssary at this
point.éyhen node 7 is visited, neithér node 7 nor,node‘11,
its eastgrn neighbor, haélbeen labeled yet, thus label d is
~éenerafed aﬁd assigned to both.kWhen node 8 is,visited, it
‘has no label, but its ndrthern neighbor; node 11, has
‘already been assigned the label d, and thus nodeb8 is
assigned the laﬁel d as well. Fig. 4.4 illustrates the

status of the image at the conclusion of the first phase of

the algorithm. It has four differentklabels, i.e., a, b, c

e

Fig. 4.2. A region with two components.

7 /
11 "
8
2 3 6
10
5
1 4 o
g

‘Fig. 4.3. Decomposition of the
: region in Fig. 4.2.

38

and d, with aAéquivalent‘to b, and b equivalent to c’. The

equivalence pair (é,b) was generated when node 9 was visited
and its-northern,adjacency was explored. In essence, node 9
was labeled with a when node 1's western adjacency was

~ explored, whereas node }0 wa; labeled witg b when node 2's
,wgstern adjacency vas explored. %imi}grly, the equivalence

S

pair (b,c) was generated when node 5 was visited.

d v
d
d
b b b
b .
C
a C
a

Fig. 4.4. Applying phase one to Fig. 4.3.

Applying the second phase of the algorithm to the
generated'équivalence pairs results in.the following two
equivalence classes:

{a,b,c}/and {ar.

-

39

Fig. 4.5 shows the labels update% by the third phase of the

algorithm.

Fig. 4.5. Applying phase three to Fig. 4.4.

Theorem 4.1:{The time complexity of the connected component

labelihg algorithm is O(n-N).

[o
Proof: Constructing the MAP requires time O(N-log N). 'Phase

one calls procedure EXPLORE N times, and procedure EXPLORE
requires time O(n+log N), where n and.log N originates from
the invoking of procedu;e'EQ=NEIGHBOR and SEAﬁCH,
respectively. Therefore phase one takes time

O(n-N + N-log N). Phase two requires time O(N-log N) [1].
Phase three requires time O(N). Since log N < 2n, the time

complexity of the algorithm is therefore O(n-N).

Q.E.D. ’

40

4.2 Computing the perimeter of a region

Perimeter computation is another basic operation in
image processing. Algori€hms computing the perimeter of a
fegion in a binéry image represented either by an array or
by a chain code are contained in [18]. An algorithm for
computing the perimeter of a region enéoded as ; quadtree
has also been developed by Samet [24].

In what follows is a perimeter computation algorithm

using an MLQ. It traverses the MLQ in ascending size order.

For each node P in the MLQ being visited, the length of each

i
A

of its four sides is first ifcluded in the value of Ehe
perimeter. Then the neighbor nodes of P which have not been
previously visited need to be considered. For each adjacent
node Q that is BLACK, twice the length of the common side is
deducted from the value of the perimeter. This reflects the
fact that the segment between P and Q doeé not belong ‘to the
boundary of the region. The factor 2 occurs because the
adjacency between two BLACK nodes is explored once and only
once due to the traversal strategy used. For example, given
the BLAGK node D in Fig. 4.7, the common segment between D
and its séuthern neighbor A is explored by the time D is
visited, but the same common segment is not considered when
A is visited. Therefore the length of this segment DA has to
be deducted in advance when D is visited.

The following procedure PERIMETER specifies the

algorithm,

41

Procedure PERIMETER(M,6N)
begin
construct MAP;
perimeter:=0;
for i:=1 to N
begin
j:1=MAP[i]; .
segment:=2**M[j].RES;
perimeter:= perimeter + 4 x segment;
for side in {N, E, S, W} do
if UNEXPLORED(M[7j],side) then
begin
neighbor:=EQ—NEIGHBOR(M[j],side);
k:=SEARCH (M, neighbor);

if k>0 then
begin
perimeter:=perimeter - 2 * segment;
mark OPSIDE(side) of M[k] "explored";
» end;
end;
end;
return(perimeter);
end:

The key to this algorithm is that eéch node in the MLQ
is visited once and, at most, its four neighbors need be
expiored. Such an advantage is achieved by traversing the
MLQO in ascending size order. Oﬁherwise; in the worst case,
when the node being visited is of size 2" ' by 2"°', 2"

nodes need be searched as in Samet's algorithm [24].

Example: As an example of the application of the algorithm,
consider the region given in Fig. 4.6. The corresponding
block decomposition is shown in Fig. 4.7. The MLQ contains
six BLACK nodes representing blocks A, B, C, D, F and G.
AQSUming n=3, the perimeter is Zf. Procedure PERIMETER

visits the BLACK nodes in the order: B, C, D, F, G and A.

Fig. 4.6. A connected region.

Fig. 4.7. Decomposition of the
region in Fig. 4.6.

42

43

The following table contains a step-by-step trace
through the perimeter computation algorithm for this
example. The symbols ¢ and - stand for don't care and
nonexistance, respectively.

»

y

node side neighbor segment contribut. perim.
B 4 4
N = 4
E C BC -2 2
S A BA -2 0
W - 0
C 4 4
N 4
E - 4
S A CA -2 2
1Y ¢ 2
D 4 6
N F DF -2 4
E -]
S - 4
12 DA -2 2
F 8 10
N G FG -4 6
E - 6
S ¢ 6
W - 6
G 8 14
N - 14
E - 14
$; 14
W - 14

| -

A 16 30 /
N [0} ’ 30
E ¢ 30
S - 30
W - 30

: 4

. , '!

Theorem 4.2: The time complexity of the algorithm PERIMETER
is O(nN).

[

Q.E.D.

i
Proof: Similar to the proof of Theorem 4.1.

Note that if the region is not connected, i.e:? it
contains more than one connected component, then the =~ - §
algorithm will return the sum of the perimeters of each }
connected component. It 1s, however, not%ﬂifficult to k%
compute the perimeter of every connected component of therrk
region s1multaneously in the same time comPlex1ty with §e {fk &
minor modification of phe algorithm, prov1ded that all |
connected components have been labeled. wﬁj*’wj
4.3 Computing the area of a region ‘ '
The following procedure AREA computes the area of a

region represented by an MLQ, where :Eé?area is defined to .
be the total number of BLACK pixels comprlslng the region. '

Input to the algorithm is M, an MLQ, and N, the number

of BLACK nodes in the MLQ. ‘ ‘

Procedure AREA(M,N)
begin “ ' " e
© area:=0; : o
for i:=1 to N do
area:=area+4*xM[1i].RES;
return(area);
end;

Theorem 4.3: The procedure AREA takes time O(N).
Proof: AREA visits each node exactly once, and the operation

performed at each node takes constant time.

s

45

P

4.4 Computing the centrpid of a region

The centroid of a region [32] is defined to be a pixel
(x‘;y') sugh that B !

(x' ,f’)‘ (Z x; /m, Z y:/m),

where m is the number of all BLACK pixels in the region, and
1x1,y4) (X2,¥2)s eoer (Xms¥m) are the coordinates of the
BLACK plxels. |
The number of all BLACK pixels in a‘bgnary tmage can

W

easily be computed when it is represented as an MLQ. In what

follows, a formula is derlved to compute the sum of the

XJCOordlnates and the sum of the Y-coordinates of all BLACK
pixels of a BLACK node. With the aid of thlsgformula,
computlng the controid of a region is a simple process.
Let P be a BLACK node, and L be equal to 2**P.RES. The
coordinates of the'left bottom pixel of P is, therefore,
| | (x,7) = (OD(P.KEY),EV(P.KEY)). |

Consider the bottom row of P, there are L pixels. The

'choordinates of all the L pixels are the same while their

X-coordinates are:

‘%, x+1, -+, x+L-T1.

.The suh is therefore,

v L o
x(T D= x-L-<t+1)/z.‘)
1=1 »

" Since there are L rows in P the sum of the X-coordinates .of

“all the BLACK pixels of P is
A i ’ .

~x-L%-(L+1)/2.
¥ :

46

Similarly, the sum of the Y-coordinates of all the

BLACK pixelﬁhof P is

I

y-L2-(L+1)/2.
The following procedure CEﬁTEQID calculates the
centroid of a region. Input to the algorithm is M, an MLQ,

and N, the number of the BLACK nodes in the MLQ.

Procedure CENTROID(M,N)
begin :
sumx:=sumy:=0;
m:=0;
for i:=1 to N do
begin
L:=2x*M[1].RES;
S:=L*L*(L+1)/2; '
sumx : =sumx+0OD(M[1].KEY)*S;
_ sumy:=sumy+EV(M[1i].KEY)*S;
m:=m+4x*M[1].RES; :
end; .
centx:=sumx/m;
centy:=sumy/m; ,
return(centx,centy);
end; .

Theorem 4.4: The procedure CENTROID takes time O(n-N).
Proof: The algorithm visits each BLACK node once and only
once. And the operation performed at each BLACK nodes takes

O(n) steps due to the use of the OD and E® functions.

Q.E.D.

4.5 Transfofmation

TwO algorithﬁs, hamely transiation and rotation, for
the transfofmatibn on rggions:fepreSented'as MLQs are
deVeloped in this secfion. The process of translating a
region is complicated by the nature of to what extent each

BLACK node should be decomposed in order to be translated

, | . .v 47‘@;‘
cé;re%tly and efficiently. A necessary and sufficient
condition of tne decompbs{tion is given to guide the design
of a translatlon algorithm in Section 4. 5 1. Rotation by a
multiple of 90 degree is a sSimple process, and an algor1thm

is described in Section 4.5.2. !

- 4,5:1 Translation

| The translation of a region involves translating eech
‘BLACK-node of the region. It is assnmed that the required
translati.n leaves the region within the original 2“vby 2"
array [7]. Let P be‘a‘BLACK pixel to be translated S rows in
the vertical direction and T columns in the horizontal

direction. Let Q be the new BLACK pixel generated by the

translation. Then Q can be easily computed as follows.

Q.KEY = SH(OD(P.KEY)+S, EV(P.KEY)+T), and

'Q.RES = P.RES. o -

When P.RES>0, i.e., P is not a single pixel, however,

" the translation of P is not easy, since the'cdrreSoocyj
BLACK node Q may not exist. For examéle,fit'is‘ 6Sible
kto obtaln a 51ngle BLACK node of the same S o, v
translatlng the BLACK node A in Fig. 4.7 byfé ‘ u?gép'the
vertlcal dlrectlon and one column in the horinontal
dlrectlon. Therefore, the BLACK node A must be decomppsed
v'into 16 BLACK nodes of pixel size first, tnen‘each of the 16
BﬁACK nodes is translated as above individually. The
rdeeompoeition of a BLACK'node into pixels is,‘however, not

always necessary depending on the size of the node and the

48

translation distance. For examéle, translating the BLACK
node A by 4 columns in a horizontal direction can generaté a
single BLACK node.v' ;

~ In general, the following lemma gives a nécessary and
sufficient conditién of decomposiﬁion.

£

Lemma 4.1: Let P be a BLACK node to be translated S rows and

T columns, then P needs not be decomposed if and only if the
Greatest Common Divisor (GCD) of S and T is a multiple of
the size of P.

Proof: An elemeﬁtary induction on the multiple.

’

This lemma is useful in two aspects. It can be used t

test whether or not a BLACK node P can be translated as a
Qhole. More importantly, if not, it can be used to'minimizg
the decomposition of P. ‘
Suppose the BLACK node P cannot bg translated as a
whole, and let GCD of S a?d;T be c-2%, where c is“odd. Then
P can be decomposed intd§ "k'BLACK nodes of size 2% each,
where s=P.RES. By Lemma 4.1, each of the smaller. BLACK nodes
caﬁ then be translated as a whole without being’decomposed
further. ;
_Translating each of the 4fk£,BLACK nodgs in exactly the

*-k gsteps, for functions

same way requires approximately 3n-4
SH, EV and OD are used. In fact, it can be done better. The

following algorithm takes n-(4° %+2) steps to translate P,

49

Procedure DECOMP(P,S,T, k)
beg1n
=OD(P. KEY)+S' '
J'-EV(P KEY)+T;
if P.RES < k
then RES:=P.RES
else RES:=k;
for i:=1 step 2*xk to (I+2%x*P, RES 2*xxk) do
for j:=J step 2*xk to (J+2x¥P.RES-2xxk) do
add pair <SH(i,j),RES> to T-list;
end;

Instead of applying functions SH, EV and OD to each of
the 4°-% decomposed BLACK nodes to be translated, the
algorithm uses EV and OD dnly once to compute the
coordinates (I,J) of the left bottom BLACK node after
translation. The coordinates of the remalnlng 4% %-1 BLACK
nodes are calculated from 1 and J dlrectly wlthout using the
functions EV and OD.

‘The following promedure TRANSLATE translates a region
of N BLACK nodes by S rows in the vertical direction and T
colufns in the horizontal direction. The function

COMEXP(S,T) used in the procedure TRANSLATE computes an

integer k such that GCD of S and T is c-2%, where c is odd.

procedure TRANSLATE (M,N,S,T)

beg1n
.k :=COMEXP(S,T);
Er-list:={¢};

for i:=1 to N 4
DECOMP(M[i],SlT,k);
sort the pairs in T-list;
condense T-list;
return(T- llSt)
end;

50

Theorem 4.5:\3he proceduré TRANSLATE takes time O(n-@),

N ' .
where @ =i§1z,, and z; is 1 if M[i].RES < k, and
4xx(M[1].,RES-k) otherwise.
Proof: The for loop is‘executed N times. During the i-th
iteration, DECOMP is called tobtranslate the BLACK node
M[{i]. When the resolution parameter of the BLACK node is not
.greater than Kk, DECOM? takes 0O(n) steps. Otherwise,
decomposition must be done. DECOMP, therefore, takes
O(n-4%x(M[i].RES-k)) steps. The numbér of péirs in T-1ist.
generated by the for loop is @. Sorting T-list takes
O(Q;log Q) steps. To condense T-list takes at most O(n-Q)
.éteps using the algorithms to be given in Sections 4.7.1 and
4.7.2. The time complexity of procedure TRANSLATE is

therefore 0(n-Q), since log € < 2n.

. Q.E.D.

4.5.2 Rotation

The size of a BLACK node.in an MLQ is invariant under
rotation by a multiples of 90 degrees around the center of
the image. Thus, decomposing BLACK nodes into émaller ones
s not;ﬁecéSsary. Let P be a BLACK node to be rotated by 90
| degrees in a clockwise direction about the center of the
image. Let Q be the new BLACK node generated by rotating P.'
Also Q;RES can bé obtained easily since it is the same as

P.RES. Now Q.KEY can be generated from P.KEY from the

)

following.

51

By Definition 3.4, the coordinates of the left bottom
'pixél of P is (i,j)=(OD(P.KEY) ,EV(P.KEY)). After translating
the origin to the center of the image, coordinates (i,j)
become (x,y) given by
| X = 1 —»2“",

y =‘j - 2ntt.
Rotating a pifel (x,y) by 90 degrees in a clockwise
direction will generate a new pixel (x',y'), where

x' =y,

t

y' = -x.
Translate the origin back, and let (I,J) be the new
coordinétes of the pixel (x',y'), then
I .
T= v gt |

It is not difficult to see that the pixel (I,J) is, in fact,

' -1
x' + 2770,

the left top pixel of QY Since this pixel is 2*-1 pixels
g8

apart from the_iéft bottom pixel (I',J') of Q vertically,

the key of Q can be easily calculated as follows:

I' =1
= x' + 2!
=y + 2"
= i, . and

Jr.=J- 20 + 1

= -x + 2" ' - 2% + 1

52

Thus, Q.KEY=SH(I'}J').

The following procedure rotates a region of N BLACK
nodes by 90 degrees in a clockwise direction around the
center of the image. The input of the procedure is an array
M and an iﬁteger N corresponding to the number of BLACK

nodes in M.

Procedure ROTATE (M,N)

begin -
R-list:={¢}; .
for i:=1 to N do
begin

I1:=EV(M[i].KEY); .

J:=2%x%*n - 2*%xM[i].RES - OD(M[i].KEY) + 1;
~ add pair <SH(I,J),M[i].RES> to R-list;
end; '

‘ sort R-list;
\ return(R-1list);
end;

(3 :

Theorem 4.6: The procedure ROTATE takes (O(n-'N) steps.
Proof: The for loop is of time complexity O(n:N) due to the
in&oking of functions SH, EV and oD, Sorting is of

O(N-log N). The total time is therefore O(n-N), since

. log N\< 2n.

4.6 Set- heoretic operations
-Seve al algorithms for set-theoretic operations on
regions represented by MLQs will be presented. In
particular,zalgorithms for the operations of union,
, | : _

intersectioé and complement of regions are developed and

!
analyzed in| this section.
i

?

53

4.6.1 Complement

The complemént of a region in a binary image is the
background of the region. In an MLO region representation,
such an operation is useful because the WHITE nodes
comprising the background are not explicitly stored.

This section is devoted ;o)describing an 0(n-N) method
to complement a region in a 2" by 2" binary image
represented by an MLQ. In what follows, the algorithm is
' capable of inferring all maximal WHITE nodes in ascending
key order from two consecutive BLACK nodes. Therefore, no
further sorting nor condensing is necessary.

The algorthm‘consists of four parts corresponding to
four procedures called GREYNODE, WHITE!, WHITE2 and WHITE3.
Let E represent the entire image, i.e., E.KEY=0 and E.RES=n.
Procedure GREYNODE takes, as input, two BLACK nodes A, B and
the entire image E to recursively locate a GREY node Q such~\\/
that AeQ;, BeQ,, for i#j, and returns the value of Q;, and Q;
to C and D, respectively, as output.

Procedure GREYNODE(A,B,E,C,D)
begin ,
determine i and j such that Ae¢E; and BeE;;
if i=j then GREYNODE(A,B,E,;,C,D)
else begin
C=E;;
D=Ej H
end;

end;

. : , '
Procedure WHITE1 takes, as input, a BLACK node B and a

node Q, which is either GREY . or BLACK, with BeQ, and

recursively generates all maximal"WHITE nodes within Q in

54

ascending key order except those whose keys are less than

that of B.

Ay

Procedure WHITE1(B,Q)

begin
if B and Q are different
then begin :
\ determine i such that BeQ;;
WHITE1(B,Q;);
for k=i+1 to 3 do
add O, to C-list;
end;
end;

Procedure WHITE2 takes, as input, two nodes Q: and Q;
for some Q, and generates, as output, WHITE nodes Q« fOr all

i<k<j in ascending key order.

Procedure WHITE2(Q,,Q;)
begin

for k=i+1 to j-1 do

add Q. to C-list;

end;

Procedure WHITE3 takes, as input, a BLACK node B and a
node Q, which is either GREY or BLACK, with BeQ, and
generates recursively all maximal WHITE nodes within Q in

ascending key order except those whose keys are greater than

(4]

that of B.

Procedure WHITE3(B,Q)
begin ' : :
if B and Q are different
then begin
: determine j such that BeQ;;
for k=0 to j-1 do
add Q. to C-list;
WHITE3(B,Q;);
end;
end;

55 .

The algorithm is given as procedure WHI'I'ENODES.g The
input of the algorithm is two BLACK nodes bl and b2 with
b1.KEY < B2.KEY. The output of the algorithm is in a list
called C-list containing all maximal WHITE nodes generated
by WHITE1, followed by those generated by WHITE2, followed
by those generated by WHITE3. By Lemma 3.1, the obtained
sequence of WHITE nodes between bl and b2 is in ascending

key order.

J

Procedure WHITENODES(b1,b2)

begin
GREYNODE(b1,b2,E,Q1,02);
WHITE1(b1,Q1);
WHITE2(Q1,Q2);
WHITE3(b2,Q2);

end. .)mum\

- 3

Theorem 4.7: The time complex&ty of Algbrithm WHITENODES 1s
O(n). | - .
Proof: The purpose of précedure GREYNODE is to determine a
GREY node Q such that b1 and b2 belong to two distinct
quadrants of Q. Such a Q in conjunction with b1 and b2 will
be sufficient to infer all maximal WHITE nodes betweeh b1_’
a®d b2. The order in which WHITE1, WHITE2 and WHITE3 appear
in the algorithm is the consequence of Lemma 3.1.

Let s, = b1.RES, s, = b2.RES, and m = max{s,,s;}. Let
no be the depth of recursion of GREYNODE, then

1 €no £n - m. ‘ ' ' (T)'

: -
The proof of (1) proceeds as follows: no is bounded from

below by one is easy to see, since the Q obtained could be

the entire image E itself. It remains to show that no is

56

bounded from above by n - m. Suppose nNp > n - Mm wefe true. @
Then n - ng *+ 1 < Ax+ 1. Let n - no be k, therefore,
2k+1 < 2m* ' Note that 2*'' is nothing but the size of the
GREY node Q ohktained at the no-th recursion of GREYNODE. The
inequlity 2*'' < 2™ ' indicates that the size of 'Q cannot be
larger than 2™, the size of the bigger one of the BLACK
nodes b1 and b2. Thus, b1 and b2 cannot both be contained in
Q, the‘assumptiohn, that no > n'.'f»‘m,“is ‘false. Hence
Ng < n — m,
Let n, be the depth of recursion of WHITE1, then

n, = Sh— No - Si. ’ (2)
The node Q1 obtained from GREYNODE is of size 2**(n-ho), and
when this Q1 is recursively subdivided by WHITE1 into a node
of size 2%*s,, the recursion will terminate. This explains
(2). Sihilarly, let n; be the depth of recursion of WHITE3,
then

Ny =N - No — Sz. : (3)
The tot- . ost T, in térms of the depth of recursion ,

required, is therefore No AR + 1 + n;, where the 1

.y
il

T = 2n - no - (s1+525 + 1. _ (4)
Combining (1) and (4) yields: \
n+m- (s,%s;) + 1 < T < 2n - (5,+s2). (5)
The total number of recursions required is less than 2n
according to (5), and each recursion takes constant time.

- Theorem 4.7 follows.

Q.E.D.

57

With algorithm WHITENODES, it is now possible to
.generate all maximal WHITE nodes compri%ing ﬁhe background
of the region in ascending key order when traversing the
MLQ.

The following procedure termed COMPLEMENT takes, as
input, M and N corresponding to‘the MLQ and number of BLACK
nodes in the MLQ, respectively. The output of the_glgorithm
is a list%pontaining the m?ximai WHITE nodes in ascending

key order,

T

o In proceaure COMPLEMENT, WHITE3(M[1],E) enumerates all
WHITE nodes in E whose‘%eys are less than M[1].KEY, while
WHITE1(MtN],E) enumerates all WHITE nodes in E whose kéys
are greater than M[N].KEY. The for loop generates WHITE

nodes between every two consecutive BLACK nodes in M.

Procedure COMPLEMENT(M,N)
begin '
a- 1lst-—{¢}
WHITE3(M[1],E);
for 1i:=1 to N-1 do ™
WHITENODES (M[i],M[i+1]);
WHITE1(M[N],E);
return(C- llSt)
B end L - e
\'%zfm‘x

The follow1ng r sult follows dxrqatgy from Theorem 4.7.
i,y.

&

'bmplew%ty gf qpﬁﬁLEMEgg@ls O(n-N).

_4 6 2 Intersectnin i,
The MEQ . ré‘m:esﬂen

performéng tHﬁ ‘ntersecbion of several MLQs. Each MLQ is

a LI 2]
essent %

S an ordered sequenCe of two tuples. Hence, the
. .

\v_. L
R s b

58

intersecion of two MLQs merely resembles a merge operation
on two sorted lists of numbers.

Let M1 be an array of N1 BLACK nodes representing a
region, and M2 an array of N2 BLACK nodes representing
another region. The intersection of these two regions is
obtained by the following procedure termed INTERSECT. For
any given two BLACK nodes P and Q, the function SWITCH(P,Q)
returns an integer value of 1 if P and Q are the same; 2 if
Q containms P; 3 if P contains Q; 4 if P and Q are disjoint.
The output of the procedure is a list called I-list
containing the intersection of the two regions.

Procedure INTERSECT(M1,M2,N1,N2)
begin : N
v I-list:={¢};
ii=3:=1;
while (i<N1 and j<N2) do
case of SWITCH(M1{i],M2[3])
1: begin 7

add M1[1] to I-list;
ie=1+1; Je=3+1;

end
2: begin
2 add M1[1] to I-list;
ie=1+1; &
en
3: bggin . Kw
dd M2[7] 1 s .
"]:=j+17 S
end

K 4: if M1[i].KEY < M2[j].KEY
then i:=2i+1
else j:=j+1;
return(I-list);
end;

£ E
e %
R <

Theorem 4.9: Procedure INTERSECT takes time O(N1+N2) in the
" worst. case.

Proof: The while loop can be repeated for at most NI1+N2-1

59

times, and each iteretion of the loop takes constant time.

4.6.3 Union R . .
bos , . . -

Unlon of two reglons can be accompllshed by a sllght

’

modification of the previously stated intersection
‘algorithm. After a list contadining the union of the two
regions is obtained, however, it is necessary to make sure

this list ccontains only maximal BLACK nodes. In other words,

\furtherfcondeiigtion remains to be done.

To do this efficiently, the algorithms in the next

: ’ ’ A |
section are used to convert the union of the two regions

into a quadtreef“and then convert it back to an MLQ.
The follow1ng procedure is termed UNION and 1nvoked
with M1, M2, N1 and N2. The output of the procedure is a

list containing the union of the two regions.

Procedure UNION(M1;M2, N1,N2)
begin ’
- U= llst'-{¢}
=j:=1;
wh1le (1<N1 and j<N2) do
begin .
case of SWITCH(M1[i],M2[]]
1+ begin :
' add node M1[i] to U- llSt
ie=i+1; Ji=j+1;-°

end
2: i'-i+1
31 Jr=j+i; " e .
4: 1f M1[i].KEY < M2[]] KEY : g
. .then begin .
add M1[1i] to U:}ist; Y !
ie=1+1;
end

else begin
add M2[j] to, U- llSt
Ji=3+1;
‘end;
end;

60

if 1<N1 .
then add the remampnder of M1 to U-list
else add the remalnder of M2 to U-list;
condense U-list; ‘
return(U-1list);
end;

Theorem 4.10: Procedure UNION takes time O(n-'(N1+N2)) in the

LN

worst case,

Similar'to the‘pro%5 of Theorem 4.9.

¥

.P Conversion between quadtrees and MLQs
Since methods of convertﬁng a quadtree region
rébresentation to other repfeseﬁtations and vice versa have
already existed [4,25,28], it is of intergst to develop
methods for coﬁVérting from a gquadtree repreSentation ﬁo an
MLQ representation and'vice versa. Two algorithms that serve
'such purposes are preSented. TheAalgof&thms will be shown'to

both have time complexities proportional to the number of

‘nodes in the quadtreé.

4.7.1 Converting from avquadtree to‘an,MLQ“

An algorithm is/ééscribed f&r‘coﬁstructing an MLQ for a
bipary image given its guadtree description. Tﬁe algorithm
traverses the givgn quadtreé in pretoraer, i.e.,'visits thé
GREY node, aq@ then traverses the SW‘subtree} thé'Nw |
subtree, the’SE subtree, the NE subtree. The order in whﬁch
the quadtrée is traversed corresponds to the ascend%ng kéy?"

order of the BLACK nodes in the MLQ to be constructed.

Whenever a BLACK'node is visited during the traversal, its

LQ'node representation is generated.

'The‘following recursive procedure termed QUAD—TO—MLQ

" specifies the algorithm in detail. The procedqre QUAb—Td—MLQ
is invoked with three parameterst root - a pointer to the

oot of the guadtree, key - an integer'variable initially
4 »jset to zero, and s - an integer -equal to a. : | . - -
,f; The algorithm is recur51ve in, nature. It uses the two
parameters, key and s to keep track of the posltion and the
resolution parameter of the node being visited. Initially,

- the algorithm visits the root of the quadtree corresponding
to the whole image, whereby <key,s> = <0,n> in terms of the
MLQ réoresentation. During the traversing of the gUadtree,
when a node P of the guadtree is ‘visited by the algorithm,
its color is examined first. If P is BLACK, ‘then the pair
<keypgs>, which describes P in.terms of.the MLQTQ@%fadded to
a list called M-list that is initially empty, and‘key is
increased by 4* so that it nillﬂcorresbond the key Of'thei
node to be visited next by the algorithm.;Similarly,#if P is
WHITE, only key needs be: increased’ getting ready to visit
the next node. When P is GREY however, the algorlthm calls
1tself four times to traverse the four sons of P in the
order of SW NW, SE and NE recur51vely Since only a
@%@adrant of P is, to be v151ted each time,. s is accordingly

decreased by one. Upon termination of the algorithm ‘M-list

contains a resulting MLQ.
e K

~ /~. e o
) ~‘gﬁf? .
Procedure QUAD TO-MLQ(root, key, s) W 0 aq Y
begin T =w,’5w
if root.COLOR is GREY H? U
then for son in {SW,NW,SE,NE} do TRy
QUAD-TO- MLQ(son key s-1) e)
else begin L "
if root.COLOR is BLACK . S BT

then add <key,s> to M- list;
key:=key + 4x*s;
‘ end;
end;
Theorem 4.11: The time required to convert from a quadtree

to an MLQ is proportional to the number of nodes in thﬁ

. '\
i,

‘quadtree. : ‘ : ' ' b
Proof: Each node of the quadtree is visited once and onl&
once, and operatlons performed at each node take, constant\
time. g : , | Wf&

0.E.D.

4.7.2 Converting from én MLQ to a quadtree

. To construct a quadtree “from an 'MLQ is an ipverse
process of QUAD TO- MLQ The algorlthm is shown as procedure
MLQ-TQ—QUAD: It is invoked:with 6 parameﬁ?rs, where root_lsA
.a pointér to the qdadt;ee to be constfucted, M is the given
MLQ: N is the number of BLACK nodes, i is the .index of M and.
edual to 1 ini;ially,,key and.s are two integer variables
equal to 0 and n initiélly. Procedure MLQTTOfQUAD creates
and colors the nodes»ofvzhe'quédffee tQ/bé\QQDStrpctéd in-
preorder while scénniﬁgwnhin éscending key order.

Q2
13

63

Procedure MLQ TO-QUAD(root, key,s,M,N, i)

begin
if (M[1] KEYZ(key+4**s)) or (i>N) then
begin
root. COLOR"WHITE
- key:=key+4dx*xs;
end
else if (M[i].KEY= key) and (M[l] RES=s) then
begin -
root. COLOR'—BLACK
key:=key+d*xs;
1:=1+1;
end
else
begin
root .COLOR:=GREY;
create 4 sons SW,NW,SE,NE for root;
for son in {SW, NW SE NE} do
MLQ-TO- QUAD(son key s-1,M,N,1);
end; .

end;

Theorem 4.12: The timé complexity of MDQ-TO—QUAD is O(n+N)
in the best“case, and O(n N} in the worst case.

Proof: Let the guadtree to be constructed have T nodes 1n:
.total. The MLQ- TO- QUAD creates T nodes, and colors each of
 them exactly once. Therefore, O(T) steps are requ1ted of
the T nodes, the:e’are N BLACK ones, and N+n < T < 4n-N by’

Lemmas 2.2 and 2.3. Therefore, the theorem follows.

It~has been mentioned before that the combination of

s MLQ-TO- QUAD and QUAD- TO MLQ can be used effectlvely as a
conoensatlon algorlthm’ﬁor an MLQ. In fact procedure
MLQ-TO- QUAD has to be sllghtly modlfled for its 1nput M may
now conta1n such a sequence of BLACK1zodes that the tree
constructed from it satisfies the requ1rements of a

- quadtree, except there are cases of four identical BLACK.

sibling leaves. A quadtree may be formed by removing these

64

siblings and giving their color to their parent. Therefore,
the following if-statement needs to be put into tpé place'

next to the for-statement of MLQ-TO-QUAD:

a

if the 4 sons of root are BLACK then
begin
remove the 4 sons of root'
root .COLOR:=BLACK;
end;
: R
It should be pointed out that the time _complexity of
Y : ’
the modified MLQ-TO-QUAD remains the same}asuﬁéfore.
: ¥,
4.8 Conclusion . . ﬁ)
Various techniques for the manipulation of regions
 using MLOs have been described in detail. The following
algorithms have been presented: labeling connected
components- computatlon of perimeter, area and controid-
translation and rotatlon, set-theoretical operat1ons of

COmplement, union and intersection; conversion between an

‘MLQ and a quadtree.

CONCLUSIONS AND REMARKS

A new data structure called an MLQ for region
representaéion has been presented in this thésisf’Vafious
operations on images using MLQs;have beedideveloped to
supporﬁ the proposed data structure.lThé analysis of the
algorithms demonstrates that the manipulation of an MLQ .is
quite efficient. fn pafticular, the algorithm-for labeling
connected components is superior to the one using a linear
gquadtree [8] in the sense that it is cépab;enéf handling
regions with arB{tréry configurations. By tﬁe same token,
the perimete},algorithm shares the sémé advantadé. The major
credit of the O(N) ‘area algorithm is its simpliéity and
éfficienqx. Such merit cannot be achieved by either a

]
e

guadtree 6r a linear quadtree [32]. As demonstrated by the

~

algorithmg MLQ-TO-QUAD and QUAD-TO-MLQ, the MLQ provides an
intuitive and convenient way of performing conversion

N
v

'between é quadtree and an MLQ. The by-product.of these two
4"algor1thms however, results 1n ‘an - eff1c1ent condensatlon

which 1is extraordlnarlly 1mportant for linear

~qgg trees and MLQs. No condensatlon al?orlthm u51ng linear.

-éhad@rees reported in the 11terature can achieve the same

efficiency [6 7]. Translation of a region u51ng a llnear
74

quadtree is an extremely costly operation, since it involves

decomp051ng ‘'each BLACK node 1nto plxels and th@n translatlng

™

66

each of‘t e pixels [7]. The MLQ again introduces an
intuitive| approach leading to a necessary and sufficient
condition| for decomposition. The resulting translation
algorithn using an MLQ could be more efficient. Since
rotatiqnirequires neither decbmpdsition nor condensation,
algorith#s using an MLQ lor a linear quadtree achieve the
same effgciency. Similarly, intersection of two regions can
be done %qually well no matter whether an MLQ or a linear

: quadtre% is used. In some cases, the union algorithm using
an MLQ &utperfofms the one using a linear quadtree [7] due
to the éoncept of the MLQ supporting the fast condensation
method.iAs reported'in [6], an aléorithm using a linear
quadtrég takes O(n-(N+W)) steps to generate the region's
backgrouns By contrast, the algorlthm using an MLQ requ1res
O(n-N) stégs.

In sumﬁary, the follow1ng table contains a comparison
between manlﬁylatlons for a linear qudﬁtfee (QLQ) and an
MLQ. Np stand;\for the number of BLACK pixels in a blnary
image. For the definition of @, see page 50. The proposed
algorithms uéing MLQs have time complexities ranging from
O(NZ to O(n-N).-This.indicates that the MLQ representétioh
supports the algorithms‘more efficiently or equally weii as
the quadtree does. The redSoﬁ is that the quadtree
~algorithms could require O(n-N) steps to traverse the
quadtree, regardless the operations performed at each node.

A problem of both practical and theoretically

interésting is that when a quadtree or even an MLQ is too

67

bi g to.be kept in main memory, the time complexity analysis *
adopted in the literature makes little éense, for.the {/O
¢Perat 10ns to be performed can become dominant. In this
ragard,‘new Complexity ﬁeasures and suitable data structures

mAy be Obtained. All of these remains to be done.

g
MLQ . , ' v
, Best case |Worst case
s \/w .
Labeling | O(n-N) O(n-N)
| perimeter O(n-N) ' -
o -
Area O(N) , -
e
centroid ' O(n-N) -
e IS
Translatiop O(n-9) O(n-Np)
b
grotation O(n-N) O(n-N)
b ‘ =
complement O(n-N) ‘ O(n(N+W))
b -~ -
ntersect | O(N1+N2) O(N14N2)
ynion O(N1+N2+n) |O(n(N14N2)) O(n(N1+N2))
o
MLQ-TO-QUAD| O(n+4N) O(n-N) - -
\.M n ;
QUAD-TO-MLQ o(T) A
L —~—— 4 A

<

10.

REFERENCES

Aho, A., Hopcroft, J. and Ullman, J.D. "The Design and
Analysis of Computer Algorithms", Reading, MA:
Addison—Wesley, 1974. .

Bauer, M.A. "Note on Set Operations on Linear Quadtree",
Compt. Vision Graphics Image Process., Vol. 29,
pp. 248-258, 1985, ‘

) ' ¥

Davis, W.A. and Wang, X. "A New Approach to Linear
oQuadtrees", Proceedings of Graghic Interface ’85, '
pp. 195-202, Montreal, May 1985.

Dyer, C.R., Rosenfeld, A. and Samet, H. "Region
Representation: Boundary Codes from Quadtrees", Comm.
ACM, Vol. 23, pp. 171-179, March 1980.

u

Dyer, C.R. "The Space Efficiency of Quadtrees”, Comput .
Graphics and Image Process., Vol. 19, pp. 335~348, 1982,

Gargantini, I. "An efficient way to represent properties
of quadtrees", Comm. ACM, Vol. 25, pp. 905-910, Dec.
1982.

Gargantini, I. "Translation, rotation and superposition
of linear quadtrees", Int. J. Man-Mach. Stud., Vol. 18,
pp. 253-263,'March 1983. ' : ‘

.
Gargantini, I. "Detection of Connectivity for Regions

Using Linear-Quadtrees", Comp. & Math. with Appl.,
Vol. 8, pp. 319-327, 1982,

Hunter, G.M. and Steiglitz, K. "Operations on Images
Using Quad Trees", IEEE Trans, Pattern Analy. & Mach.
Intell., Vol. PAMI-1, pp. 145-153, 1973.

Hunter, G.M. and Steiglitz, K. "Linear Transformation of
Pictures Represented by Quadtree", Comput. Graphics and
Image Process., Vol. 10, pp. 289-296, 1979.

68

11,

12,

13.

14‘

15.

16.

17.
18.

19.

20.

21.

22.

> 4y

] 69

Klinger, A. and Dyer, C.R. "Experiments in Pilcture
Representation Using Regular Decomposition”, Comput.
Graphics and Image Process., Vol. 5, pp. 68-105, 1976.

Klinger, A., Rhodes, M.L. and Omolayole, J. "Image Data
Organization", Proc. of San Diego Biomedical Symp.,
vol. 5, New York: Academic press, pp. 175-180, 1976.

Klinger, A. and Rhodes, M.L. "Organization and Access of
Image Data by Areas", IEEE Trans. pPattern Analy. & Mach.
Intell., Vol. PAMI-1, pp. 50-60, 1979. o

Li, M., Grosky, W.I. and ain, R. '"Normalized Quadtrees
with respect to Translatidns", Comput. Graphics and
Image Process., Vol. 20, pp. 72-81, 1982.

#

Mark, D.M. and Lauzon, J.P. "Linear Quadtrees for
Geographic Information Systems", Proc. of the
International Symposium on Spatial Data Handl ing,
Vol. 2, pp. 412-430, Zurich, Switzerland, Aug. 1984.

Morton, G.M. "A Computer Oriented Geodetic Data BaSe}
and a New Technique in File Seguencing", IBM Canada
Limited, unpubl ished report, March 1, 1%66.

Rosenfeld, A. "Connectivity in Digital Pictures", J.ACM,
vol. 17, pp. 146-160, 1970.

Rosenfeld, A. and Kak, A.C. "Digital Pictures
Processing”, Academic Press, New York, 1976.

Rosenfeld, A. "free structures for Region
Representation", Comput. Graphics and Image Process. ,
Vol. 11, pp. 137-150, 1980.

Rosenfeld, A. "Survey Picture Processiné: 1981", Comput.
Graphics and Image Process., Vol. 19, pp. 35-75, 1982.

Rosenfeld, A. "Survey Picture Processing: 1982", Comput.
Graphics and Image Process., Vol. 22, pp. 339-387, 1983.

Rosenfeld, A. "Image Analysis: Progress, Problems and
Prospects”™, Proceedings of the 6th International

23.

24 .

25.

26.

27.

28.

29.

30.

31,

32,

Conference on pattern Recognition, Vol. 1, pp. 7-15%"»
Munich, Germany, Oct. 1982.

Samet, H., "Connected Component Labeling Using
Quadtrees", J.ACM, Vol. 28, pp. 487-501, 1981.

Samet, H. "Computing Perimeters of Regions in Images
Represented by Quadtrees", I[EEE Trans. Pattern Analy. &
Mach. Intell., Vol. PAMI-3, pp. 683-687, 1981.

%

Samét, H. "An Algorithm for Converting Rasters to
Quadtrees", IEEE Trans. Pattern Analy. & Mach. Intell.,
Vol. PAMI-=3, pp. 93-95, 1981,

Samet, H. "Neighbor Finding Techniques for Images
Represented by Quadtrees", Comput. Graphics and Image
Process., Vol. 18, pp. 37-57, 1982,

Samet, H. "A:Distance Transform for Images Represented
by Quadtrees", IEEE Trans. on Pattern Analy. & Mach.
Intell., Vol. PAMI-4, pp. 298-303, 1982.

Samet, H. "Region Representation: Quadtrees from Binary
Arrays", Comput. Graphics and Image Process., vVol. 13,
pp. 88-93, 1980.

Samet, H. "Region Representation: Quadtrees from
Boundary Codes", Comm. ACM, Vol. 23, pp. 163-170, 1980.

Samet,. H. "Quadtrees and Medial Axis Transforms,"
Proceedings of the 6th International Conference on
pattern Recognition, Vol. 1, pp. 184-187, Munich,
Germany, Oct. 1982.

Samet, H. "The Quadtree and Related Hierarchical Data
Structures", Computing Survey, Vol. 16, pp. 187-260,
1985, ° ' .

Shneier, M. "Note: Calculations of Geometric Properties
Using Quadtrees", Comput. Graphics and Image Process. ,

Vol. 16, pp. 296-302, 1981.

. 33‘

Shneier, M. "Two Hierarchical Linear Feature

Repﬂeséniat1oﬁs. Edge Pyramlds and Edge Quadtr-“

N C@mput Graphlcs and Image ﬁnocess .Vol.
Yddi 0P 2 11-?24 @%1

Y ! v “* ;
g " " _ﬂ

. -
"v_vs "'

34, Shn‘e‘ er,/M“ '@gtﬂwﬁ,ﬁh@th 1'st,apces for Quadtrees" @?“

Inform Sci.,,vOl 294 Py ab-6t, 1981, "
' "}’: R } :, f.‘pl"’-:{w’ﬁ

35, Tanimoto, § L “"Hleﬁarchlcal Plvcture Indexing and
Description", Proc. gf ﬁhe Workshop on Picture Data
Description and Managementf pp. 103- 105 Ayg. 1980

- ‘%, .n",ﬁ%“:n?a; e R W
n R e

36. Tanimoto, 'S.L. "A COmpatrigon of Some Image Searching
Methods", 'Proc. 1978 IEERComputer Soc. Conf. on Pattern
Recogn/tlon and Image Processlng, pp. 280-286, June
1978.

