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Abstract

Computational simulations of a perturbed vortex ring are performed to recreate 

and understand the instability seen in impacting water droplet experiments. Three 

initial conditions are tried to respectively trigger a Widnall instability, a Rayleigh 

centrifugal  instability,  and  a  vortex  breakdown instability.  Simulations  with  a 

perturbed solitary ring result in an instability similar to that seen experimentally. 

Waviness of the core which would be expected from a Widnall instability is not 

visible. Adding an opposite-signed secondary vortex ring or an image vortex ring 

to  the initial  conditions  does  not  appear  to  significantly change the instability 

from what is seen with a solitary ring. This suggests that a Rayleigh centrifugal 

instability or a vortex breakdown instability are not likely at work, though tests 

are not conclusive. Elliptical streamlines are visible in the core of the solitary ring 

at  early times,  suggesting that  an elliptic  instability may be the source of  the 

experimental instability.
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Nomenclature
α.................................................................................core radius

αp................................................................................primary core radius when 

multiple rings are present

αs.................................................................................secondary core radius when 

multiple rings are present

d..................................................................................ring diameter

D0...............................................................................Bubble initial diameter

dp................................................................................primary ring diameter when 

multiple rings are present

ds.................................................................................secondary ring diameter 

when multiple rings are 

present

f .................................................................................body force per unit volume

Γ.................................................................................circulation

Γp................................................................................primary ring circulation when 

multiple rings are present

Γs................................................................................secondary ring circulation 

when multiple rings are 

present

  



h..................................................................................distance between the primary 

ring and the image ring

ν..................................................................................kinematic viscosity

ω.................................................................................vorticity

Φ.................................................................................vorticity source term

ρ..................................................................................density

r..................................................................................ring radius

rp.................................................................................primary ring radius when 

multiple rings are present

rs.................................................................................secondary ring radius when 

multiple rings are present

Re...............................................................................Reynolds number, based on 

circulation and kinematic 

viscosity

Reo..............................................................................bubble Reynolds number, 

based on initial velocity and 

ring diameter

s..................................................................................spacing between the primary 

ring and the Rayleigh-

unstable opposite signed ring

  



t..................................................................................time

u..................................................................................convection velocity

U0...............................................................................bubble initial translation

velocity

  



1. Introduction
Vortex rings are a common structure which occur in many different fluid flows. A 

water drop impacting a pool  of water causes a  vortex ring to  form below the 

surface and convect down through the pool. A bursting bubble causes a vortex 

ring which convects up. Pushing fluid with a piston into a large chamber causes a 

vortex ring to form. Even the mushroom cloud of an atomic bomb contains a 

vortex ring. Despite the differences in generation method and large differences in 

Reynolds number, these vortex rings can have very similar large-scale structures.

Vortex rings have been studied in papers dating back to the 19th century. They are 

a  basic  three-dimensional  structure that  can be isolated and studied,  hopefully 

giving greater understanding of the dynamics involved in some turbulent flows. 

Since there is a noticeable similarity in the structure of vortex rings created by 

different methods, developing a greater understanding of one experiment could 

provide insight into vortex rings found in other places.

The impacting drop experiment is easy to casually observe, though more difficult 

to get consistent results and data from. It can be performed on a basic level by 

releasing water from a dropper into a pool and observing the results below the 

surface. In experiments performed by Peck & Sigurdson (1994), an instability was 

observed,  and  one  of  the  goals  of  this  thesis  is  to  recreate  this  structure 

computationally in order to study it and understand it better.

1.1 Literature Survey
The  work  presented  here  was  inspired  by  research  performed  by  Peck  & 

Sigurdson  (1994).  Peck  &  Sigurdson  created  an  experiment  involving  an 

impacting  water  drop,  in  order  to  understand  the  birth  and  evolution  of  the 

resulting  vortex  structure.  A dyed  water  drop  was  released  above  a  pool  of 

quiescent water, and images of the vortex structure that formed were taken below 

the free surface. The sequence of images is shown in Figure 1. From these images, 

they  observed  that  some  vortex  filaments  underwent  an  instability  and  were 
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eventually shed off behind the main vortex ring. These filaments were referred to 

as  “petals”.  They  also  proposed  a  vortex  skeleton  of  the  resulting  structure, 

consisting of five closed line vortices. The work presented here was an attempt to 

recreate the vortex structure from the experiment in order to understand the source 

in nature of the instability.

Sigurdson  (1997)  discusses  how  visualization  techniques  have  been  used  to 

examine turbulent flows and discover large-scale structures. He discusses several 

different flow types, which include flow over a blunt-faced cylinder, flow over a 

blunt  flat  plate,  the  impacting  drop  experiment,  the  vorticity  formed  from  a 

nuclear explosion,  and the vorticity formed from a bursting bubble.  He shows 

how  flow  visualization  has  allowed  the  identification  of  similar  large-scale 

structures  in  these  different  flow types.  Specifically,  direct  comparison  of  the 

water  droplet  images  with  the  atomic  bomb  test  images  shows  an  uncanny 

similarity, which was first reported in Sigurdson (1991). An updated comparison 

was reported in Sigurdson (1997), and is shown in Figure 2.

Peck & Sigurdson (1995) deals  with the same type of  experiment  as Peck & 

Sigurdson  (1994),  and  examines  the  appropriate  time  scale  to  use  when 

comparing experiments. Water drops are released from two different heights and 

the position and diameter of the vortex ring are observed after impact with the 

pool. They propose that the appropriate time scale is the time taken for the impact 

crater to reach its maximum depth.

Sigurdson  & Peck  (1995)  also  discusses  the  impacting  drop  experiment,  and 

focuses on the type of instability that may be at work in the experiment. Several 

different  instabilities  are  examined,  which  will  be  discussed  in  the  next  sub-

section. The geometry of the instability is discussed and a representative vortex 

line is shown to explain how a perturbation could grow.
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Figure 1. A dyed water droplet is released above a pool of water. Photographs of the resulting 

vortex structure are taken below the free surface of the pool. Images are from Peck & Sigurdson 

(1994), and are reused with permission from the American Institute of Physics.
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Figure 2. An image from the water drop experiment is inverted and shown next to an image from 

an above-ground nuclear test to show the similarity of the structure despite the large Reynolds 

number difference. Left image is from Peck & Sigurdson (1994) and is reused with permission 

from the American Institute of Physics. Right image is from the U.S. Dept. of Energy (1957). 

Sigurdson (1997) reported them together as shown here.
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1.1.1 Types of Known Instabilities
1.1.1.1 Widnall Instability

Widnall & Tsai (1977) investigated the instability of a vortex ring to azimuthal 

bending waves, which followed up on work presented by Widnall, Bliss, & Tsai 

(1974) and Widnall & Sullivan (1973) among others. They examined thin-cored 

vortex rings in  an ideal fluid and developed equations to determine the most-

amplified  wave-number  for  different  vorticity  distributions  in  the  core.  The 

instability presented in their paper is often referred to as the “Widnall instability” 

or “Krutsch instability” and involves the core of the vortex ring becoming “wavy” 

due to the straining field created by the circular geometry of the ring.

1.1.1.2 Rayleigh Centrifugal Instability

Maxworthy (1972) investigated vortex rings produced by pushing fluid through a 

hole in a plate into a fish tank. He discovered that for large Reynolds numbers, the 

initial ring became unstable and then formed a new, larger vortex ring a short time 

later.  This  was  determined  to  be  caused  by the  entrainment  of  opposite-sign 

vorticity  into  the  ring  which  causes  an  unstable  layer  of  vorticity  around  the 

outside of the ring.  This type of instability is often referred to as a “Rayleigh 

centrifugal instability” and is caused by the rapidly decreasing circulation towards 

the outside of the vortex ring.

1.1.1.3 Elliptic Instability

Leweke  and  Williamson  (1998)  analysed  the  three-dimensional  instability  of 

counter-rotating vortex pairs to short waves. They found that due to the mutually 

induced strain on each vortex, the core of the vortices would develop elliptical 

streamlines which encouraged a three-dimensional instability. In addition to the 

core  becoming  elliptical  in  shape,  the  vortex  pair  would  also  lose  its  axial 

symmetry, with the centers of the vortices moving away from each other in the 

streamwise direction.  In  the long-term flow,  secondary vortex pairs  developed 

perpendicular to the primary vortex pair, caused by fluid crossing over between 

the pair  of primary vortices.  They suggest that this  “elliptic instability” is  the 
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source of the disturbance seen in Widnall & Tsai (1977) and found very good 

agreement when comparing growth rates of the most unstable modes.

1.1.2 Others’ Calculations
Saffman (1978) presented a method for estimating the number of waves on an 

unstable vortex ring. His results applied to vortex rings formed by pushing fluid 

out of a tube, and the number of waves was dependant on the Reynolds number 

and the vorticity distribution in the core of the ring. While it would be valuable to 

predict the number of waves and their growth rate in our simulation, it would be 

difficult to compare Saffman’s results to our work given the difference in vorticity 

distribution and Reynolds number.

Shariff, Verzicco & Orlandi (1994) performed a numerical study of the instability 

of vortex rings. They introduced both a random perturbation and a single-mode 

perturbation  to  the  vortex  ring,  and  examined  the  linear  and  early  nonlinear 

phases. The purpose of their research was to expand on previous research done by 

Widnall,  Bliss  &  Tsai  (1974),  and  Widnall  &  Tsai  (1977).  The  simulation 

produced instabilities that agree with the results presented in Widnall,  Bliss & 

Tsai (1974), and they observed an elongation of the most unstable mode, which 

could be similar to the vortex filaments which get shed off behind the vortex ring 

in  Peck  &  Sigurdson  (1994).  However,  the  simulations  were  performed  at  a 

higher  Reynolds  number  than  was  studied  in  the  experiments  by  Peck  & 

Sigurdson (1994), and they only discuss 2-Dimensional structures.

Dazin,  Dupont,  & Stanislas  (2005,  2006) performed an experimental  study of 

vortex rings to examine the linear and non-linear phases. They used planar laser 

induced fluorescence and particle image velocimetry to evaluate the vortex rings, 

which were formed by forcing water through a submerged pipe with a piston. The 

earlier paper deals with the initial linear phase, and the later paper deals with the 

non-linear phase that follows. Despite the difference in the method of vorticity 

generation, they were able to see the same vortex filaments wrapped around the 
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main ring as seen in Peck & Sigurdson (1994). They theorize that the filaments 

generate near the streamwise median plane of the vortex ring and could be due to 

a curvature or pressure gradient effect; however there is not any discussion of 

what they mean by this or how they came to this conclusion. Their experiments 

are performed at a much higher Reynolds number than the experiment from Peck 

&  Sigurdson  (1994),  which  may  explain  why  they  did  not  observe  the 

relaminarization that occurs in the later stages of the Peck & Sigurdson (1994) 

experiments.

Watanabe, Saruwatari, and Ingram (2008) performed a computational analysis of 

the free surface flows under impacting droplets,  similar to the work presented 

here.  However,  their  method  was  to  simulate  the  actual  impact  between  the 

droplet and the free surface and observe the vorticity generated from the impact. 

Since  simulating  the  droplet-surface  interactions  complicates  the  system 

considerably,  the  numerical  method  used  needed  to  be  more  approximate 

compared to the direct numerical simulation presented in this work.

Wantanabe et al (2008) observed four counter-rotating vortex pairs trailing behind 

the main vortex ring, oriented vertically. They conclude that these vortex pairs 

stretch out behind the main vortex ring, forming the “stalk” observed in Peck & 

Sigurdson (1994).  They also conclude that  these stalks get  pulled through the 

main vortex ring and wrap around it to form the “petals” from Peck & Sigurdson 

(1994).

While Wantanabe et al (2008) is a valuable study of the impacting droplet, they 

appear  more  interested  in  the  computational  and  numerical  aspects  of  the 

simulation  than  the  vortex  dynamics  involved  in  the  impacting  droplet 

experiment. They don’t comment on the type of instability present on the main 

vortex ring or suggest if it is likely a Widnall instability or some other instability 

at work. They also don’t comment on the possible existence of a counter-rotating 

vortex ring above the main vortex ring, which was speculated to exist from the 
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experiments by Peck & Sigurdson (1994). 

Feng,  Kaganosvskiy,  &  Krasny  (2009)  performed  a  computational  simulation 

leading to a similar geometry analyzed in this thesis, but beginning from different 

initial conditions. They started with a vortex sheet in the shape of a circular disc 

which  was  perturbed  by  adding  waves  which  had  increasing  amplitude  with 

increasing radial distance from the center of the disc. With this perturbation they 

were able to visualize the vortex filaments seen in Peck & Sigurdson (1994). No 

physical argument for using that particular perturbation is given, however they 

appear  to  recreate  the  phenomenon  from  Peck  &  Sigurdson  (1994)  and  the 

similarity is impressive. It should be noted that the paper was not published until 

this thesis was in its final stages.

Dziedzic  &  Leutheusser  (1996)  examined  vortex  rings  at  various  Reynolds 

numbers to attempt to classify the rings based on their appearance. They proposed 

four classifications for the vortex rings: laminar, wavy, turbulence-producing, and 

turbulent. Laminar rings appear as smooth toroids and are expected at a Reynolds 

number below about 1000. Wavy rings have a visible waviness in the toroid and 

are expected at Reynolds numbers between about 1000 and 2000. Turbulence-

producing vortex rings have a turbulent wake, while turbulent vortex rings have a 

turbulent wake and core, and both are expected at Reynolds numbers above about 

2000.

1.2 Objectives
The simulations detailed here were a follow-up to the work done by Peck and 

Sigurdson (1994) Experiments were run where a water droplet fell into a pool of 

quiescent  water,  and the resulting vorticity below the surface of  the pool  was 

observed. After the droplet impacted with the pool of water, a vortex ring formed 

below  the  surface  and  convected  downwards.  The  vortex  ring  developed  an 

instability  and  a  bracelet  structure  developed,  consisting  of  rings  of  vorticity 

wrapped around the core of the vortex ring. The goal of the simulations was to 
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recreate the experiment computationally in hopes of explaining the source of the 

instability causing the bracelet structure. 

The exact physics of the experiment were not recreated, which would be difficult 

to simulate with the complex interactions between the falling droplet and the pool 

of water. Instead, a vortex ring was formed, and the ring was perturbed by adding 

different vorticity fields. The initial vorticity fields were chosen by observing the 

experimental results and speculating what other vorticity might be present. If a 

certain  initial  vorticity  field  caused  the  bracelet  structure  to  appear  in  the 

simulation, then it could be inferred that the same vorticity field might be causing 

the  instability  in  the  experiment.  This  provides  valuable  insight  towards 

determining the exact source of the instability, where detailed experiments might 

be too difficult, time consuming, or expensive.

Three  base  vorticity  fields  were  used  in  these  simulations.  In  some  of  the 

simulations  a  second  ring  of  opposite  sign,  smaller  diameter,  and  smaller 

circulation was added at various positions above the main ring. It was thought that 

opposite sign vorticity may form just below the surface of the pool as the vortex 

ring is  moving away,  and that  perhaps  a  Rayleigh  instability was causing  the 

bracelet structure.

In other simulations, an image vortex was placed above the main ring to cause it 

to contract as it convects downwards. In the experiment the vortex ring undergoes 

a contraction, and it was thought that this may be contributing to the instability 

causing the bracelet structure.

Finally, simulations were run with no opposite sign vorticity present. This was 

done to see if  either of the previous vorticity fields were actually causing the 

instabilities  that  were  observed,  or  if  they  were  being  caused  by  other 

perturbations to the vorticity.
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1.3 Outline of Thesis
In  the  following  thesis,  Section  2  deals  with  the  details  of  the  computation 

performed in this thesis. Section 2.1 gives an overview of the details of the code. 

Section 2.2 explains the code verification process that was performed. Section 2.3 

explains the computational domain. The initial conditions of the simulations are 

detailed in Section 3. Section 3.1 details the different initial vorticity distributions 

that were used to test the instability hypothesis. Section 3.2 explains the types of 

perturbations  that  were  introduced  into  the  system  to  trigger  the  instability. 

Section 3.3 discusses the turbulence regimes resulting from the different Reynolds 

numbers used in the simulations. Results and Discussion are contained in Section 

4. Section 4.1 details simulations performed with a solitary vortex ring. Section 

4.2 details  simulations  performed with an opposite-signed vortex ring present. 

Section 4.3 details simulations performed with an image vortex ring. Section 4.4 

discusses  the  skeleton  vortex  structure  seen  in  the  simulations.  Section  4.5 

discusses the growth of the instability. Section 4.6 discusses the possible source of 

the instability. Conclusions are contained in Section 5, and Section 5.1 presents 

ideas for future work.
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2. Computational Details
2.1 Details of the Code
The  code  used  for  the  simulations  was  developed  by  J.H.  Walther  and  P. 

Koumoutsakos, and simulations were run with the collaboration of J. H. Walther. 

Simulations  were  performed  remotely  on  a  supercomputer  located  in  Manno, 

Switzerland. For more detailed information about the code than presented here, 

see Walther and Koumoutsakos (2001).

The code uses a 3D viscous vortex method to simulate the flow. Unlike traditional 

Eulerian methods that look at discrete volumes of the flow and balance the fluxes 

into and out of the volume, vortex methods use a Lagrangian approach, focusing 

on discrete particles within the flow. When the vorticity is  located in specific 

areas and is not extending to infinity, this approach has computational advantages 

over others. Vortex methods in general discretize the vorticity field into individual 

vortices,  each having their  own circulation.  In three-dimensional  methods,  the 

vortices also have their  own volume, and are also known as vortex blobs.  By 

solving the Navier-Stokes equations, the motion of the vortices can be found, and 

therefore the movement of the flow can be simulated.

The governing Navier-Stokes equation in u-ω form for constant density and vis-

cosity is as follows,

Φ+∇+∇⋅= ωuωω 2ν)(
Dt
D (1)

where D/Dt is the material derivative defined in Equation (2), ω is the vorticity, u 

is the velocity,  ν is the kinematic viscosity, and  Φ is the vorticity source term 

defined in Equation (3),

ωuωω ∇⋅+
∂

∂=
tDt

D
(2)
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f^
ρ
1 ∇=Φ (3)

where ρ is the fluid density, ∇ ^ denotes the curl, and f is the body force per unit 

volume.

The vorticity field is discretized using a number of vortex particles, each having 

their own volume and strength. The ith particle strength is defined as,

)( iii xωα vol= (4)

where  voli is the volume of each particle. Since it is a product of the particle 

volume and the vorticity, the particle strength should not be confused with the cir-

culation or the vorticity magnitude of the particle.

Each particle is moved in two steps. The first step is inviscid, and corresponds to 

the tilting and stretching term from Equation (1). The locations of the particles are 

changed to account for advection, while the strength of the particles is changed to 

account for vortex tilting and stretching.  The inviscid first step is solved using the 

following equations,

( )i
i

dt
d xux = (5)

( )( ) ( )iii
i

dt
d xuxωα ∇⋅= vol (6)

The second step is  viscous,  and corresponds to  the second and third terms of 

Equation (1)  which account  for  diffusion of the vortex particles  and for  body 

forces. In this step the vortices are held in place, and the strength of the vortices is  
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modified to account for diffusion. This second step is solved using the following 

equations,

0=
dt
d ix

(7)

( ) ( )( )iii
i

dt
d xxωα Φ+∇= 2vol ν (8)

In the simulations presented here, the vorticity source term is zero as there are no 

body forces.

To decrease the computational cost of computing the velocity field, the code uses 

a  vortex-in-cell  method.  In  the  vortex-in-cell  method,  the  vorticity  field  is 

interpolated onto a uniform grid, and finite differences are used to compute the 

velocity field and vorticity stretching on the grid. This eases the computational 

burden because for these calculations the vorticity only exists at set grid points, 

instead  of  existing  at  any point  within  the  domain.  After  the velocity field  is 

computed, the grid is used to update the position and strength of the vortices. 

A re-meshing procedure, similar to the vortex-in-cell method working in reverse, 

is used to re-form the vortex particles. The vortex particle strength is assigned to a 

mesh,  and a  new set  of  particles  is  formed based on the mesh vorticity.  This 

allows vortex particles to be formed or removed where necessary, while ensuring 

enough vortex  overlap  is  present.  This  is  important  because  having sufficient 

vortex overlap ensures the convergence of the vortex method.

2.2 Code Verification
To verify that the code was accurate, a thin-cored vortex ring was simulated and 

the convection velocity was compared to theoretical values. This test was chosen 

because a convecting thin-cored vortex ring is essentially a simplification of the 

13  



simulations  presented in  this  paper,  and because theory is  readily available  to 

predict  the  convection  velocity.  The  theoretical  convection  velocity  Uc of  the 

centroid  of  a  thin-cored  vortex  ring  with  an  Oseen  core  can  be  expressed  as 

follows,

)558.0
4
8(ln

4
−Γ=

t
R

R
Uc

νπ (9)

where R is the radius of the vortex ring.

Several simulations were run with varying core radius α to ensure that the vortex 

ring was suitably “thin-cored” for the theory to apply. Simulations were run with 

core radius ratios α/R of 0.2, 0.1, and 0.05. Making the core radius much smaller 

made the computational costs prohibitive. At a core radius ratio of 0.05 there was 

a maximum error between the simulation and theory of -9.4%, however for most 

of the simulation the error was closer to -3%. For graphs comparing convection 

velocities and percent error, see Figures 3 and 4.

There  are  multiple  ways  to  explain  the  difference  between  the  simulated 

convection velocity and the theory. For one, the theory is for a thin-cored vortex 

ring (α/R << 1), while the smallest core used in the simulations had a core ratio 

α/R = 0.05,  which may not  have been suitably small.  Making the core in the 

simulation even thinner may have improved the agreement with theory, however 

it  would  have  made  the  computational  costs  prohibitive.  Also,  the  simulated 

vortex ring does not retain its core thickness throughout the simulation. As time 

progresses, the core diffuses and becomes thicker, therefore the simulation would 

be expected to agree less with theory at later times. This is evident in Figure 4, as 

the percent error begins to increase at later times for the α/R = 0.05 case.

Despite the differences between the simulation and the theory, most of the error is  

in the 3-4% range, and the trend in Figure 4 suggests that the error would be 

14  



smaller if a thinner core could have been used. The code error is likely much 

lower because the error presented here is a combination of two error sources: the 

error caused by the theory and simulation not  matching exactly,  and the error 

introduced by the code calculations. However, this provides an upper bound for 

the error introduced by the code, which for our uses is acceptable.

The  convection  velocity  simulations  were  also  performed  at  a  coarser  grid 

resolution.  The  resulting  convection  velocity  did  not  change  between  the 

simulations, suggesting that the grid was suitably refined.
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Comparison of Theoretical and Simulated Convection Speeds For a Thin-Cored Vortex Ring
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Figure 3. Convection speed vs. time for a theoretical thin-cored vortex ring and simulated vortex rings with α/R = 0.05, α/R = 0.1, and α/R = 0.2. Convection 

speed and time have both been nondimensionalized.
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Percent Error Between Theoretical and Simulated Convection Speed
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Figure 4. Percent error between the theoretical convection speed of a thin-cored vortex ring and the simulated convection velocity of vortex rings with α/R = 

0.05, α/R = 0.1, and α/R = 0.2. Time has been nondimensionalized.

  



2.3 Computational Domain
The width and depth of the computational  domain were 1 cm, and the height 

ranged  from 1  cm to  2  cm.  The  grid  spacing  was  3.891  *  10 -3 cm  in  each 

direction. The time steps ranged from 5 * 10-5 s to 2 * 10-4 s for the majority of the 

simulations, with a data file being output every 10 to 40 time steps. Simulations at 

higher Reynolds numbers had smaller time steps, while the grid spacing was the 

same for all simulations.

The domain used periodic boundary conditions in all directions, such that any 

particle passing through a wall of the boundary will emerge from the opposite 

wall.  Since the vortex ring is  convecting down through the domain,  care was 

taken to ensure that the ring did not move through an area contaminated with 

vorticity.  The  domain  was  made  large  enough  that  simulations  could  be 

terminated before the ring looped around to the point it started at. 

To ensure accuracy of the simulations, they were run at the highest grid resolution 

possible within the memory restrictions of the supercomputer. Comparing the core 

size in the simulations to the grid size shows that there were about 30 grid points 

within  the  core  diameter,  which  should  be  sufficient  to  resolve  the  core 

adequately. The instabilities we were interested in were fairly large compared to 

the grid resolution, so they should not be eliminated by discretization error. The 

number  of  vortex  blobs  in  the  domain  was  approximately  30  *  106,  again 

suggesting that the domain was suitably resolved.

The code calculates the kinetic energy at each time step. This was observed for 

each simulation to ensure that the energy did not suddenly grow, ensuring that the 

solution was stable.
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3. Simulation Initial Conditions
Several approaches were tried to attempt to recreate the bracelet structure seen in 

Peck  & Sigurdson  (1994).  Section  3.1  explains  the  initial  conditions  used  to 

trigger  three  different  instabilities.  Section  3.1.1  details  the  simulation  of  a 

solitary  vortex  ring,  Section  3.1.2  details  the  addition  of  a  Rayleigh-unstable 

opposite-signed vortex ring, and Section 3.1.3 details the addition of an image 

vortex ring. Section 3.2 explains the different perturbations added to the vorticity 

in the system. Section 3.2.1 details the “random” perturbation, and section 3.2.2 

details the “wave” perturbation. For an overview of the parameters tested in the 

simulations, see Table 1, and for the specific details of each simulation performed, 

see Appendix 1.

3.1 Instability Hypothesis
In order to attempt to recreate the bracelet structure seen experimentally, multiple 

hypotheses were developed to explain what was causing the bracelet structure to 

form. The experimental results  were observed, and initial  vorticity fields were 

developed for the simulations based on where other vorticity was thought to be 

found in the experiments. If a certain initial  vorticity field caused the bracelet 

structure to  appear  in  the simulations,  then it  could be inferred that  the same 

vorticity field could be causing the bracelet structure in the experiment.

Three  different  initial  vorticity  fields  were  simulated.  In  one  case,  a  solitary 

axisymmetric vortex ring was used. In another case, an opposite-sign vortex ring 

was added near the main ring. In the last case, an image vortex ring was placed 

above the  main  ring.  The intent  was  to  trigger  various  instabilities  which  are 

discussed in the following sections.

The vorticity fields were also perturbed in multiple ways, which are described in 

Section 3.2.
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Sample Image Schematic Type of Secondary Vorticity Secondary Vorticity Location Re Primary Ring Perturbation
Fig. 5a Fig. 6 None N/A 1000 None
Fig. 5b Fig. 7 Opposite-signed ring (15%) s = 1.17 α 1000 None
Fig. 5b Fig. 7 Opposite-signed ring (15%) s = 1.17 α 1400 None
Fig. 5b Fig. 7 Opposite-signed ring (15%) s = 1.17 α 1400 Random, 1% of max vorticity
Fig. 5b Fig. 7 Opposite-signed ring (15%) s = 1.17 α 1400 Random, 2% of max vorticity
Fig. 5c Fig. 7 Opposite-signed ring (30%) s = 0.94 α 1400 Random, 10% of max vorticity
Fig. 5c Fig. 7 Opposite-signed ring (30%) s = 0.67 α 1400 Random, 10% of max vorticity
Fig. 5d Fig. 7 Opposite-signed ring (30%) s = 0.67 α 1400 30 waves, 0.33% rp amplitude
Fig. 5d Fig. 7 Opposite-signed ring (30%) s = 0.67 α 1400 30 waves, 10% rp amplitude
Fig. 5d Fig. 7 Opposite-signed ring (30%) s = 0.67 α 1400 30 waves, 1% rp amplitude
Fig. 5e Fig. 7 Opposite-signed ring (30%) s = 0.67 α 2500 30 waves, 1% rp amplitude
Fig. 5f Fig. 6 None N/A 1400 30 waves, 0.33% r amplitude
Fig. 5f Fig. 6 None N/A 1400 30 waves, 1% r amplitude
Fig. 5g Fig. 6 None N/A 2500 30 waves, 1% r amplitude
Fig. 5h Fig. 8 Image vortex h = 4 α 1400 30 waves, 1% rp amplitude
Fig. 5h Fig. 8 Image vortex h = 2 α 1400 30 waves, 1% rp amplitude
Fig. 5h Fig. 8 Image vortex h = 1 α 1400 30 waves, 1% rp amplitude

Table 1. Overview of the parameters used in the simulations. Multiple simulations were often run for a single set of parameters. Sample images 

are given in Figure 3. For a complete list of simulations performed, see Appendix 1.

 



Figure 5, Part 1. Sample images for the simulations detailed in Table 1. a) Thin ring convection 

velocity  tests.  b) Rayleigh  unstable  opposite-signed  ring with  either  no  perturbation  or  small 

random perturbation to the primary ring. Secondary ring is 15% of the primary rings circulation, 

Re =  1400.  c) Rayleigh  unstable  opposite-signed  ring  with  large  random perturbation  to  the 

primary ring. Secondary ring is 30% of the primary rings circulation, Re = 1400.  d) Rayleigh 

unstable opposite-signed ring with 30 wave-number perturbation. Secondary ring is 30% of the 

primary rings circulation, Re = 1400.
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Figure 5, Part 2. Sample images for the simulations detailed in Table 1.  e) Rayleigh unstable 

opposite-signed ring with 30 wave-number perturbation. Secondary ring is 30% of the primary 

rings circulation, Re = 2500.  f) Solitary ring with 30 wave-number perturbation, Re = 1400.  g) 

Solitary ring with 30 wave-number perturbation, Re = 2500.  h) Image vortex ring added, Re = 

1400.
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3.1.1 Solitary Ring
It was hypothesised that perhaps an instability developed on the main ring that 

was not a result of any vorticity outside of the main ring, and this was causing the 

bracelet structure to occur. To simulate this, a solitary axisymmetric vortex ring 

was used. No other vorticity was present in the domain. For a diagram showing 

the cross-section of this initial vorticity, see Figure 6.

The simulation of the solitary ring also provides a helpful baseline to compare 

with the other simulations. If the bracelet structure was observed with the solitary 

ring, and also observed with either of the other initial vorticity fields, it would 

suggest that the other vorticity field was not solely responsible for causing the 

bracelet structure. 

3.1.2 Opposite-Signed Ring
A Rayleigh centrifugal instability was hypothesised to be a possible cause of the 

bracelet structure. In the experiment, as the vortex ring breaks away from the free 

surface of the pool, it is possible that some opposite-signed vorticity is formed 

along the free surface and gets pulled into the main ring. This opposite-signed 

vorticity  could  cause  the  vortex  ring  to  be  Rayleigh  unstable  which  could 

contribute to the formation of the bracelet structure.

To simulate this, an opposite-signed vortex ring was added near the core of the 

main ring. The position of the opposite-signed ring with respect to the main ring 

was altered, to see if moving the opposite-signed ring closer or further from the 

main ring would cause the bracelet instability to appear. For a diagram showing 

the cross-section of this initial vorticity, see Figure 7.
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Figure 6. A schematic of a cross-section through the core of the vortex ring for the solitary ring 

simulation. α denotes the radius of the core, and r is the radius of the vortex ring.

Figure 7. A schematic of a cross-section of the cores of the two vortex rings, showing the place -

ment of the opposite-signed secondary ring compared to the primary ring. αp is the radius of the 

primary ring core, s is the spacing between the primary ring and secondary ring, and rp is the radi-

us of the primary ring. In some simulations s < αp as in the figure, while in other simulations s > αp 

which places the secondary ring outside of the core of the primary ring.
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3.1.3 Vortex Breakdown
Another  hypothesis  for  the  cause  of  the  bracelet  structure  involves  the 

compression of the vortex ring as it moves away from the free surface of the pool.  

In the experiment there is a visible reduction in the radius of the vortex ring in 

early times as it moves away from the free surface, which could be the source of 

an  instability  and  causes  the  bracelet  structure  to  form.  Vortex  breakdown is 

discussed in Panton (1996) and occurs when a vortex aligned with the flow moves 

into an area of increasing pressure gradient or a slower moving region of the flow.

To simulate the compression of the vortex ring, an image vortex ring was placed 

above the main ring. The distance between the two vortex rings was altered to see 

the effect on the main ring. Moving the two rings closer together increases the 

amount that the main ring contracts, but it also causes the core of the ring to lose 

its  circular symmetry due to the effect of the vorticity in the image ring.  The 

intent of these simulations was not to investigate the effect of an asymmetric core, 

so  the  rings  were  not  placed  close  enough  together  to  cause  a  significant 

asymmetry. For a diagram showing the cross section of this initial vorticity, see 

Figure 8.
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Figure 8. A schematic  of  a  cross  section through the  cores  of  the  vortex  rings,  showing the  

placement of the image vortex ring with respect to the primary ring. αp denotes the radius of the 

primary core, rp is the radius of the primary ring, and h is the spacing between the primary ring and 

the image vortex ring. Since the secondary ring is an image vortex, both vortex rings have the 

same core radius, ring radius, and vorticity amplitude, and the sign of the vorticity is opposite.
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3.2 Details of Perturbations Used
To attempt to recreate the bracelet structure, several methods of perturbing the 

vorticity were attempted. These involved modifying the amplitude or location of 

the vorticity in the simulation.

3.2.1 “Random” Perturbation
The first type of perturbation that was used involved changing the magnitude of 

the  vorticity  and  not  the  location.  A small  amount  of  vorticity  was  added  or 

subtracted from each point of vorticity in the domain. The maximum perturbation 

was set based on either the local vorticity or the global maximum vorticity. It was 

then scaled using a random number generated for each point  of vorticity,  and 

added or subtracted from the vorticity at that point. The random number ranged 

from 0 to 1. See Equation 10. 

ωperturbed = ωinitial + 2 * (Max perturbation) * (Random number - 0.5) (10)

Initially the maximum perturbation was based on the global vorticity, such that 

every point of vorticity had an equal chance of being perturbed the same amount. 

This was later changed to be based on the local vorticity, such that areas of higher 

vorticity would likely receive larger perturbations than areas of lower vorticity. 

For an example of what the random perturbation could look like, see Figure 9.

The code used a “clean function” to ensure the vorticity field is divergence-free. 

Since the random perturbation is non-physical, the added perturbation might be 

eliminated by the code to ensure the vorticity is divergence-free. Tests were done 

to  investigate  the  effect  of  the  clean  function,  and  it  was  found  that  the 

perturbation was reduced by a maximum of 24%. Therefore, the clean function 

reduces the magnitude of the perturbation, but does not eliminate it. See Appendix 

8 for details of the calculations used to determine the effect of the clean function.
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Figure 9. Example of how the random perturbation could change the shape of the vortex ring core. 

The dashed line represents the center  of  the core in a  non-perturbed case,  and the solid  ring  

represents the center of the core with the random perturbation applied.
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Figure 10.  Example of  how the 30 wave-number perturbation could change the shape of  the 

vortex ring core. The dashed line represents the center of the core in a non-perturbed case, and the 

solid ring represents the center of the core with the wave-number perturbation applied.
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3.2.2 “Wave-number” Perturbation
The second type of perturbation that was used involved changing the location of 

the  vorticity  instead  of  the  magnitude.  Unlike  the  random perturbation  which 

perturbed the vorticity all throughout the domain, the wave-number perturbation 

focused on perturbing the core of the vortex ring. Waves of vorticity were added 

to the vortex ring core, similar to Shariff, Verzicco, & Orlandi (1994). 30 wave-

numbers were added to the ring, each having the same amplitude and each having 

a random phase. The highest wave-number found in the experiment from Peck & 

Sigurdson  (1994)  was  28,  so  adding  30  wave-numbers  was  decided  to  be 

sufficient. The waves were added by shifting the location of the vorticity in the 

ring, based on the phase of the wave being added. This was repeated for each of 

the waves. The amplitude of each wave-number was based on the radius of the 

vortex  ring,  and  was  1%  of  the  radius  of  the  ring  for  the  majority  of  the 

simulations  attempted.  Since  the  phase  was  random,  each  simulation  had  a 

different perturbation. For an example of what this perturbation might look like, 

see Figure 10.

3.3 Turbulence Regimes
Most of the simulations were run at two different Reynolds numbers. Calculated 

from the circulation as in Equation (11), the two Reynolds numbers were 1400 

and 2500.

Re = 
ν
Γ

(11)

where  Γ is  the circulation and ν is  the kinematic viscosity. The two Reynolds 

numbers were chosen from data in Peck & Sigurdson (1994) in order to best re-

create the vortex rings from the experiment. 

Maxworthy (1972) described different regimes for vortex rings based on “bubble 

Reynolds number”, where rings with Re < 600 were stable, rings between Re = 
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600 and Re = 1000 begin to become unstable, and rings with Re > 1000 are ini-

tially unstable but emerge from the disorganized flow as a new stable vortex ring. 

Using Maxworthy’s bubble Reynolds number calculated from the diameter of the 

ring and the initial velocity as in Equation (12), the two Reynolds numbers for our 

simulations were 714 and 1275. 

Re0 = 
ν

00 DU
(12)

where U0 is the initial velocity of translation and D0 is the initial diameter of the 

bubble.

Since the calculation of the initial velocity of translation was taken from the first 

two time steps of our simulations and the ring is decelerating, having smaller time 

steps or earlier time steps would cause the bubble Reynolds number to be higher. 

From Maxworthy’s definitions we would therefore expect our simulations of both 

Reynolds numbers to produce unstable rings with the higher Reynolds number 

producing a more disorganized ring.

Dziedzic & Leutheusser (1996) also came up with a classification for vortex rings 

based on Reynolds number. Using the bubble Reynolds number from Maxworthy, 

they suggested that below Re = 1000, vortex rings were laminar, between Re = 

1000 and Re = 2000 vortex rings exhibited a waviness in the core, and above Re = 

2000 the vortex rings would have a turbulent wake and possibly a turbulent core. 

According to their definition, the lower Reynolds number used in our simulations 

would  cause  laminar  rings,  and  the  higher  Reynolds  number  used  in  our 

simulations would produce rings with wavy cores.
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4. Results & Discussion
4.1 Solitary Ring
To see if  the vortex ring would go unstable by itself,  with no other opposite-

signed vorticity present, simulations were done with a solitary vortex ring. The 

perturbation  used  on  the  solitary  ring  was  the  wave  perturbation  outlined  in 

Section 3.2.2 where 30 wave-numbers of equal amplitude and random phase were 

added.

In this section the simulations are visualized using isosurfaces of total vorticity 

magnitude. The isosurface is a surface where every point has the same vorticity 

level;  it  is  essentially  a  contour  line  expanded  into  three  dimensions.  As  the 

surface is for a set vorticity level, you can often infer that thicker areas on the 

isosurface have higher levels of vorticity contained within.

In these simulations there appear to be four loops of vorticity wrapped around the 

primary ring; two on the front and two on the back, though the loops on the back 

are not visible in Figure 11. These loops of vorticity appear similar to the bracelet 

structure, though due to their small amplitude they are difficult to visualize with 

isosurfaces  for  the  Re  =  1400 case.  Four  regions  of  streamwise  vorticity  are 

visible in the wake, two of which are much stronger than the other two. 

The Reynolds number was increased from 1400 to 2500 to see the effect on the 

instability.  The  larger  Reynolds  number  amplifies  the  instability.  The  bracelet 

structure is much more pronounced than in the Re = 1400 case and much easier to 

visualize with isosurfaces. Two loops of vorticity are visible on the front of the 

ring in Figure 12, and another two are on the back of the ring, though not easily 

visible in the Figure. Four regions of streamwise vorticity are visible in the wake, 

like in the Re = 1400 case. 
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Figure 11. Solitary vortex ring with wave-number perturbation, Re = 1400. The ring convects downwards, leaving a wake of streamwise vorti-

city behind. In image c) a small bracelet structure is visible on the front-right of the ring. Image a) corresponds to t = 0.004s, b) corresponds to 

t = 0.02s, and c) corresponds to t = 0.04s. Isosurface is of total vorticity magnitude, level is ω = 100 s-1.
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Figure 12. Solitary vortex ring with wave-number perturbation, Re = 2500. Results are similar to Figure 11, however the instability is more 

pronounced. In the third image, a bracelet  structure is  visible.  Image  a)  corresponds to t  = 0.004s,  b)  corresponds to t = 0.012s, and  c) 

corresponds to t = 0.024s. Isosurface is of total vorticity magnitude, level is ω = 150 s-1.

 



Figure 13. Contour plot of ωx in the y-z plane showing the elliptical shape of the core and the slant 

of the core. Re = 1400, t = 0.06s, Δz/d = 2.3.

Figure 14. Contour plot of ωx in the y-z plane showing the elliptical shape of the core and the slant 

of the core. Re = 2500, t = 0.04s, Δz/d = 2.5.
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Contour plots of the x vorticity on the y-z plane were performed to visualize the 

shape of the core of the vortex ring. At early times for both Reynolds numbers,  

the core is visibly elliptical instead of being circular as the initial condition of the 

ring was. Also, the two parts of the core cut by the plane are separated in the z-

direction, which represents a slant of the plane of the core. The implications of 

this observation are discussed in Section 4.6.4. For the contour plot at Re = 1400 

see Figure 13, and for the similar contour plot at Re = 2500, see Figure 14.

4.2 Opposite-Signed Ring
A smaller ring of opposite-signed vorticity, henceforth referred to as the “oppos-

ite-signed ring”, was added above the primary ring to attempt to make it Rayleigh 

unstable. The circulation of the opposite-signed ring was varied, along with the 

perturbation imposed on the system. 

4.2.1 15% Circulation
The first simulations used an opposite-signed ring with a circulation that was 15% 

of the primary ring's circulation. Some of the simulations in this section were run 

with  no  perturbation  to  the  vorticity;  others  used  the  random  perturbation 

described in Section 3.2. The random perturbation was based on both the local 

vorticity and the global  vorticity,  and was at  most  10% of the local  vorticity. 

These simulations were run at a Reynolds number of 1400.

In these simulations with the random perturbation, the bracelet structure does not 

appear. The opposite-signed ring initially passes down through the inside of the 

primary ring.  As it  emerges  from the bottom of the primary ring its  diameter 

increases, its velocity decreases, and it passes around the outside of the primary 

ring and gets  left  behind.  This  is  similar  to the “leapfrogging” behaviour  that 

happens with two vortex rings traveling along the same centerline, however in 

this case only one leapfrog is observed. A wake of streamwise vorticity is visible 

trailing behind the primary ring. Both the primary ring and secondary ring remain 

axisymmetric. See Figure 15.
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Figure 15. Opposite-signed secondary vortex ring with 15% of the primary ring’s circulation, random perturbation, Re = 1400. In image b) the 

opposite-signed ring is looping around the primary ring, and in image c) it has been left behind the primary ring. Image a) corresponds to t = 

0.04s, b) corresponds to t = 0.16s, and c) corresponds to t = 0.32s. Isosurface is of total vorticity magnitude, level is ω = 5 s-1.

 



4.2.2 30% Circulation
The  circulation  of  the  opposite-signed  ring  was  increased  to  30%  of  the 

circulation of the primary ring. This was done to see if the forcing provided by the 

opposite-signed vorticity was insufficient to produce the bracelet structure simply 

because  the  amplitude  was  too  small.  The  random  perturbation  described  in 

Section 3.2.1 was used, limited to a maximum 10% of the local vorticity. In this 

case the structure appears similar to simulations run in the previous section with 

the secondary ring circulation being 15% of the primary ring circulation. Unlike 

the previous simulation however, the secondary ring appears to lose its symmetry 

and becomes wavy after leapfrogging around the primary ring. The primary ring 

remains axisymmetric and does not develop the bracelet structure. See Figure 16.

4.2.3 30% Circulation with 30 Wave-Number Perturbation
Since  increasing  the  circulation  of  the  opposite-signed  ring  did  not  cause  the 

bracelet structure to appear, the next simulations changed the way the vorticity 

was perturbed. In these simulations, 30 wave-numbers were added to the primary 

ring,  each  having a  random phase  and each having the  same amplitude.  This 

perturbation is described in Section 3.2.2. 

This time the primary ring is no longer axisymmetric, and an instability is clearly 

visible which looks similar to the bracelet structure. Loops of vorticity appear to 

form  from  the  primary  ring,  and  as  the  primary  ring  continues  to  travel 

downwards,  the  loops  trail  behind  the  primary  ring  and  wrap  around  the 

secondary ring. Two regions of streamwise vorticity are visible in the wake of the 

primary ring. See Figure 17.
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Figure 16. Opposite-signed secondary vortex ring with 30% of the primary ring’s circulation, random perturbation, Re = 1400. In image b) the 

opposite-signed ring is looping around the primary ring, and in image  c) it  has been left behind the primary ring. Unlike Figure 15, the 

secondary ring becomes wavy in image c). Image a) corresponds to t = 0.004s, b) corresponds to t = 0.024s, and c) corresponds to t = 0.052s. 

Isosurface is of total vorticity magnitude, level is ω = 30 s-1.
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Figure 17. Opposite-signed secondary vortex ring with 30% of the primary ring’s circulation, wave-number perturbation, Re = 1400. In image  

b) the opposite-signed ring is looping around the primary ring, and in image c) it has been left behind the primary ring. Bracelet structures are 

visible on the primary ring, and loops of vorticity appear to trail behind the primary ring and wrap around the secondary ring. Image  a) 

corresponds to t = 0.004s, b) corresponds to t = 0.028s, and c) corresponds to t = 0.06s. Isosurface is of total vorticity magnitude, level is ω = 

100 s-1.
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Figure 18. Opposite-signed secondary vortex ring with 30% of the primary ring’s circulation, wave-number perturbation, Re = 2500.  In image  

b) the opposite-signed ring is looping around the primary ring, and in image c) it has been left behind the primary ring. Bracelet structures are 

visible on the primary ring, and loops of vorticity appear to trail behind the primary ring and wrap around the secondary ring. Image  a) 

corresponds to t = 0.005s, b) corresponds to t = 0.015s, and c) corresponds to t = 0.03s. Isosurface is of total vorticity magnitude, level is ω = 

150 s-1.

 



The Reynolds number was increased from 1400 to 2500 to see the effect on the 

instability. The primary ring is again not axisymmetric, and the instabilities appear 

more pronounced than in  the previous  simulations  done at  Re = 1400,  which 

would be expected due to the higher Reynolds number. An instability is visible on 

the primary ring,  which appears similar to the bracelet structure.  The loops of 

vorticity trailing behind the primary ring again wrap around the secondary ring. 

Like the simulations done at Re = 1400, two regions of streamwise vorticity are 

visible in the wake. See Figure 18. 

4.3 Vortex Breakdown
An image vortex ring was added above the primary ring to see if  perhaps the 

contraction  of  the  primary ring  diameter,  which  was observed experimentally, 

contributes to the formation of the bracelet structure. The image vortex is placed 

at varying distances from the primary ring, to cause the ring to contract. Placing 

the  image  vortex  closer  to  the  primary  ring  will  increase  the  amount  of 

contraction; however it will also cause the shape of the vortex ring core to change. 

Care was taken to avoid excessive deformation of the core, which could also be 

the  source  of  a  different  instability.  The  result  is  similar  to  the  simulations 

discussed in Section 3.1.1 at Re = 1400. A small bracelet structure is apparent on 

the vortex ring, and four regions of streamwise vorticity are visible in the wake. 

See Figure 19.
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Figure 19. Image vortex ring is placed above the primary ring, Re = 1400. In image b) the two rings are convecting away from each other. In 

image  c) a small bracelet structure is visible on each ring. Due to the periodic boundary conditions, vorticity passing out of the top of the 

domain enters back into the bottom of the domain, and vorticity passing out of the bottom enters back into the top. Image a) corresponds to t = 

0.002s, b) corresponds to t = 0.02s, and c) corresponds to t = 0.04s. Isosurface is of total vorticity magnitude, level is ω = 100 s-1.

 



4.4 Skeleton Vortex Structure
To attempt to follow the evolution of the instabilities, vortex lines were calculated 

using Tecplot for several time steps and locations. Vortex lines are lines that are 

everywhere tangent to the vorticity. The time evolution of the vortex lines was 

observed  to  see  how they changed,  and  the  vortex  lines  were  matched up to 

features visible in the isosurfaces of vorticity. It is possible to compare the vortex 

lines created here to the proposed model from Peck & Sigurdson (1994), which is 

shown in Figure 20.

To choose the location of the vortex lines, a slice was taken in the y-z plane, and 

the locations of the maximum and minimum x-vorticity were found, which would 

correspond to the center of the vortex ring core. The z values of the maximum and 

minimum were averaged, and this location was used to create a slice in the x-y 

plane. A contour plot of the z-vorticity was created on this plane, and the local 

minima and maxima were found. These local minima and maxima were used as 

the starting points for the vortex lines.

This analysis was performed for the solitary ring simulations at both Re = 1400 

and Re = 2500, using the wave-number perturbation. Only the higher Reynolds 

number results  are presented here as they both resulted in very similar vortex 

lines. The analysis was not performed for the other simulations as the presence of 

the other vorticity complicated the process; there were too many local minimums 

and maximums on the contour plot, and tracking the vortex lines between time 

steps became too difficult. 

Three vortex lines were found that were of particular interest. Two of the vortex 

lines corresponded to a wave number of one, and will therefore be referred to as 

vortex lines 1a and 1b. The third vortex line corresponded to a wave number of 

two, and will be referred to as vortex line 2. See Figure 21 for a sample contour 

plot used to find the starting positions of the vortex lines. 
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Figure 20. The three-dimensional vortex skeleton proposed by Peck & Sigurdson (1994).  For 

clarity, only two “petals” and two portions of the “stalk” are shown. Reused with permission from 

the American Institute of Physics.
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Figure 21. Sample contour plot used to choose starting points for the vortex lines. Locations 1a, 1b, and 2 were chosen as the starting points as 

they correspond to local minima and maxima of z-vorticity.

 



The evolution of the vortex lines was observed by creating similar contour plots at 

later time steps and again using the local minimums and maximums as starting 

points for vortex lines. As time progressed, however, more local minimums and 

maximums were visible in the contour plots. This was inferred to be due to the 

rotation of the vortex ring core, which could pull the z-vorticity around to the 

opposite  side  of  the  core,  creating  another  pair  containing  a  minimum  and 

maximum. The rotation speed of the approximately solid body rotation portion of 

the core was calculated,  and it  was found to go through about half  a rotation 

between each observed time step. This would suggest that the rotation of the core 

is the primary cause of the increased number of local minimums and maximums.

The evolution of vortex line 1a is shown in Figure 22. At the earliest time step 

available it appears as a round loop which is bent in half, with the rear half of the 

loop pointing down and the front half of the loop lying approximately along the x-

y plane. As time progresses, the loop seems to be pulled around by the rotation of 

the vortex ring, giving the loop more of an “S” shape. Vortex line 1a seems to 

evolve into the smaller part of the stalk visible in isosurfaces of the vorticity in 

Section 3.3.1.

The evolution of vortex line 1b is shown in Figure 23. Vortex line 1b begins as a 

round loop which has been rotated slightly, in the opposite direction of vortex line 

1a. As time progresses, the loop stretches out, and similar to vortex line 1a it 

develops an “S” shape. Eventually the back-end of the loop doesn’t close on itself 

any more, and the vortex lines run off to the edges of the simulated volume. This 

is likely due to the integration in Tecplot not being able to perfectly track the 

vortex line with the available grid resolution. The front end of the loop appears to 

begin to wrap around the vortex ring, and seems to create the bracelet structure on 

the front of the vortex ring which is visible in the isosurface images.

The evolution of vortex line 2 is shown in Figure 24. As vortex line 2 has a wave 

number of two, the shape is more complicated than vortex lines 1a and 1b, even 
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from the earliest available time step. The loop extends down at the back, has its 

high point in the middle, and extends down again in the front. At later time steps, 

the loop gets stretched out, and the part towards the back begins to get pulled 

around the vortex ring. The high points of the loop appear to form the large part of 

the stalk seen in the isosurface images in Section 4.1, while the rear part of the 

loop appears to form the bracelet structure visible at the back of the vortex ring.
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          a) Time = 0.001s                          b) Time = 0.005s                             c) Time = 0.009s

Figure 22. The evolution of vortex line 1a. The first column corresponds to t = 0.001s, the second 

column corresponds to t = 0.005s, and the third column corresponds to t = 0.009s. The first row 

shows the isometric view, the second row shows the x-y view (looking toward negative z), the 

third row shows the x-z view (looking toward positive y), and the fourth row shows the y-z view 

(looking toward negative x).
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          a) Time = 0.001s                          b) Time = 0.005s                             c) Time = 0.009s

Figure 23. The evolution of vortex line 1b. The first column corresponds to t = 0.001s, the second 

column corresponds to t = 0.005s, and the third column corresponds to t = 0.009s. The first row 

shows the isometric view, the second row shows the x-y view (looking toward negative z), the 

third row shows the x-z view (looking toward positive y), and the fourth row shows the y-z view 

(looking toward negative x).
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         a) Time = 0.001s                          b) Time = 0.005s                             c) Time = 0.009s

Figure 24. The evolution of vortex line 2. The first column corresponds to t = 0.001s, the second 

column corresponds to t = 0.005s, and the third column corresponds to t = 0.009s. The first row 

shows the isometric view, the second row shows the x-y view (looking toward negative z), the 

third row shows the x-z view (looking toward positive y), and the fourth row shows the y-z view 

(looking toward negative x).
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4.5 Instability Growth
In order to examine the growth of each instability wave-number, slices of vorticity 

in the x-y plane were taken through the center of the vortex ring at each time step. 

The center  was  determined from the  centroid,  which  was calculated  from the 

magnitude of ωx and ωy. To limit the effect of the z-vorticity which composed the 

wake, ωz was excluded, since the presence of the wake vorticity would influence 

the centroid to be above the expected center of the vortex ring. The x-y plane was 

then made to pass through the calculated centroid.

 

For  each  slice,  vorticity  data  was  taken  azimuthally  around  the  center  of  the 

vortex ring. A Fourier transform was performed on ωr using the FFT function in 

MATLAB. This provided the amplitude and phase of each wave-number involved 

in the instability. For a non-perturbed ideal vortex ring, the radial vorticity would 

be zero around the azimuth, while for a perturbed ring the radial vorticity would 

be  non-zero,  which  the  Fourier  transform would  then  break down into  wave-

numbers of varying amplitudes and phases. A sample of the FFT result for t = 

0.001s is given in Figure 25. By performing this process on each time step, it was 

then  possible  to  determine  the  growth  rate  in  time  of  each  individual  wave-

number. Since the centroid location for each time step was previously calculated, 

it was then possible to calculate the growth in space. This analysis was performed 

for the solitary ring simulations at both Re = 1400 and Re = 2500.
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Figure 25. Sample Fourier transform result for t = 0.001s showing the amplitude of each wave-

number. This process was then performed for every time step so that each individual wave-number 

could be analyzed.
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For the Re = 1400 case, the growth of wave-numbers 1-3 are shown in Figure 26. 

The  amplitudes  of  wave-numbers  higher  than  3  were  less  than  5%  of  the 

maximum vorticity on the plane and are not shown. The vertical axis was non-

dimensionalized using the maximum vorticity magnitude around the azimuth of 

the vortex ring. This was chosen instead of the maximum radial vorticity because 

for an ideal vortex ring with no instability the radial  vorticity would be zero, 

therefore the only radial vorticity present is due to the observed instabilities. Non-

dimensionalizing with radial  vorticity would give a comparison of each wave-

number  to  the  most  amplified  wave-number,  with  the  most  amplified  wave-

number having a value of 1. Non-dimensionalizing with the maximum vorticity 

magnitude gives a comparison of each wave-number to the maximum vorticity 

present, where a value of 1 would mean that the only vorticity present was that 

particular wave-number. 

For the Re = 2500 case, the growth of wave-numbers 1-3 are shown in Figure 27, 

and wave-numbers 4-6 are shown in Figure 28. Unlike the Re = 1400 case, higher 

wave-numbers still have significant amplitudes. The wave-number amplitude does 

not drop below 5% of the max vorticity on the plane until wave-numbers past 18. 

To avoid clutter, wave-numbers up to 18 are available in Appendix 6. The axes are 

non-dimensionalized in the same way as the Re = 1400 case.

In both cases, wave-number 1 is dominant, and grows as the ring evolves. For the 

Re  =  1400  case,  wave-numbers  1  and  3  grow  the  most,  while  2  stays 

comparatively low in magnitude. For the Re = 2500 case, all the shown wave-

numbers have substantial peaks at various points but wave-number 1 is usually 

largest.  Unlike  with Re = 1400,  the  wave-numbers  beyond 3 have significant 

amplitudes for the Re = 2500 case. This is likely due to the smaller-scale vorticity 

present with the higher Reynolds number. 

A similar analysis was also performed on the Re = 1400 and Re = 2500 cases, but 

using ωz instead of ωr. Similar to the radial vorticity, for an ideal vortex ring with 
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no instability there would be no z-vorticity present, however in the simulations 

presented here and in the experiment from Peck and Sigurdson (1994), z-vorticity 

is seen in the wake and from the shedding of the “petals”. 

For the Re = 1400 case, the growth of wave-numbers 1-3 are shown in Figure 29, 

and wave-numbers 4-6 are shown in Figure 30. Wave-numbers past 6 have peak 

amplitudes of less than 5% of the max vorticity on the plane and are therefore 

excluded. The axes are non-dimensionalized in the same manner as the previous 

plots of ωr.

For the Re = 2500 case, the growth of wave-numbers 1-3 are shown in Figure 31, 

and wave-numbers 4-6 are shown in Figure 32. As opposed to ωz for Re = 1400, 

but  similar  to  ωr  for  Re  =  2500,  higher  wave-numbers  still  have  significant 

amplitudes.  To aid  in  keeping  the  data  readable,  wave-numbers  up  to  18  are 

displayed in Appendix 7. The axes are non-dimensionalized in the same manner 

as the previous plots of ωr.

Similar  to  the  results  of  the  wave-number  analysis  of  ω r,  the  wave-number  1 

instability tends to dominate for both Re = 1400 and Re = 2500. In both cases it 

tends to peak early, then decline as the ring convects, though in the Re = 2500 

case  there  are  a  few peaks.  The  wave-number  4  instability  overcomes  wave-

number 1 at the end of the data for Re = 1400, and has a significant secondary 

peak in the Re = 2500 case. The Re = 2500 data has an interesting secondary peak 

at approximately ∆z/d = 3, and most of the wave-numbers grow at approximately 

∆z/d = 2.5. The growth of the wave-number amplitudes at a later time could be 

due  to  the  higher  Reynolds  number  ring  remaining  turbulent  instead  of 

relaminarizing. The Re = 2500 data is also different from the Re = 1400 data in 

that  higher  wave-numbers  seem to  have  non-trivial  amplitudes.  Similar  to  the 

analysis  of  ωr,  this  could  be  due  to  the  smaller  vorticity  scale  at  the  higher 

Reynolds number which could show up as smaller waves and therefore higher 

wave-numbers.
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Figure 26.  Instability growth of wave-numbers 1-3 for ωr. The horizontal axis is the number of ring diameters the vortex ring has travelled. 

The vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.

Re = 1400, Solitary ring simulation with wave-number perturbation.
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Figure 27.  Instability growth of wave-numbers 1-3 for ωr. The horizontal axis is the number of ring diameters the vortex ring has travelled. 

The vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.

Re = 2500, Solitary ring simulation with wave-number perturbation.
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Figure 28.  Instability growth of wave-numbers 4-6 for ωr. The horizontal axis is the number of ring diameters the vortex ring has travelled. 

The vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.

Re = 2500, Solitary ring simulation with wave-number perturbation.
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Figure 29.  Instability growth of wave-numbers 1-3 for ωz. The horizontal axis is the number of ring diameters the vortex ring has travelled. 

The vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.

Re = 1400, Solitary ring simulation with wave-number perturbation.
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Figure 30.  Instability growth of wave-numbers 4-6 for ωz. The horizontal axis is the number of ring diameters the vortex ring has travelled. 

The vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.

Re = 1400, Solitary ring simulation with wave-number perturbation.
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Figure 31.  Instability growth of wave-numbers 1-3 for ωz. The horizontal axis is the number of ring diameters the vortex ring has travelled. 

The vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.

Re = 2500, Solitary ring simulation with wave-number perturbation.
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Figure 32.  Instability growth of wave-numbers 4-6 for ωz. The horizontal axis is the number of ring diameters the vortex ring has travelled. 

The vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.

Re = 2500, Solitary ring simulation with wave-number perturbation.

 



For most of the graphs, the wave-number growth is noticeably spiky. This could 

be due to the way the points around the core were chosen. Instead of finding the 

exact center of the core, which could be non-circular and therefore difficult to 

calculate, a circle was chosen of the initial core radius. If the actual core center 

was slightly away from this point, the result would be a smaller wave-number 

amplitude  recorded  at  that  point.  This  could  contribute  to  the  wave-number 

growth not appearing smooth.

4.6 What is the Source of the Instability?
Several types of instabilities were identified as possible causes for the instability 

seen in the impacting water drop experiment. Some of these were suggested in 

Sigurdson  &  Peck  (1995).  The  Widnall  instability  and  Rayleigh  centrifugal 

instability were both tested as possible sources, and the Elliptic instability was 

later observed as a possible source.

4.6.1 Widnall Instability
The Widnall instability is one possible source of the instability observed in the 

impacting water drop experiment, and is discussed in Section 1.1.1.1. The Widnall 

instability involves the entire core of the vortex ring becoming wavy due to the 

straining field imposed by the circular geometry of the ring. Sigurdson & Peck 

(1995) wrote that they suspected the Widnall instability may not be the source of 

the instability, but that it may play a role at times.

To see if the Widnall instability was at work, it was tested by adding waves along 

the azimuth of the vortex ring to encourage the instability to grow. An instability 

developed from this perturbation, causing loops around the primary vortex ring. 

However, looking at the isosurfaces of vorticity in both the Re = 1400 and Re = 

2500 cases, the vortex ring never becomes visibly wavy. The instabilities appear 

to develop at a few points around the ring, instead of causing the entire ring itself 

to  become  wavy which  would  be  expected  from the  Widnall  instability.  This 
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suggests that the Widnall instability is likely not the source of the instability seen 

in the impacting water drop experiment.

4.6.2 Rayleigh Centrifugal Instability
Another possible source of the instability is the Rayleigh centrifugal instability, 

which  is  discussed  in  Section  1.1.1.2.  The  Rayleigh  instability  can  develop 

whenever the circulation decreases with radial distance somewhere in the flow, 

which is caused by the presence of opposite-signed vorticity. It was suggested in 

Peck & Sigurdson (1994) that some observed opposite-signed vorticity may get 

trapped in the primary vortex ring, causing a situation that would be Rayleigh 

unstable.

The possibility of a Rayleigh instability was tested by adding a smaller secondary 

vortex ring of opposite sign near the primary ring, similar to what was theorized 

to exist in the impacting water drop experiment. The details of the geometry are 

shown in Figure 7 in Section 3.1.2. Tests which included only the opposite-signed 

ring and no other perturbation did not appear to set off an instability similar to the 

impacting droplet experiment. Instead, the secondary vortex ring appeared to loop 

around the primary ring once before being left behind in the wake. An instability 

was seen, however, when using the opposite-signed ring and adding waves to the 

azimuth  of  the  primary  vortex  ring  as  was  done  in  the  tests  for  the  Widnall 

instability.

Simulations  performed  with  the  opposite-signed  ring  and  the  wave-number 

perturbation  produced  a  similar  instability  to  that  seen  with  a  solitary  ring. 

Bracelet structures were visible on the primary ring, and were also visible on the 

opposite-signed ring after it leapfrogged with the primary ring. The primary core 

appeared less smooth overall  than simulations run without  the opposite-signed 

ring.  It  is  possible  that  the presence of the opposite-signed ring amplified the 

instability, but the basic appearance remained quite similar. From the isosurface 

images it is difficult to get a quantitative comparison of the instability size.

64
 



Since the addition of the opposite-signed vortex ring near the primary ring did not 

significantly change the instability seen in the simulations with a solitary ring, it 

suggests that a Rayleigh instability may not be the source of the instability seen in 

the impacting water drop experiment. The perturbation was only observed after 

adding  waves  to  the  azimuth  of  the  primary  ring,  and  appeared  similar  to 

simulations with the solitary ring. The Rayleigh instability can not be completely 

ruled out, however, as the opposite-signed vorticity could be added in different 

geometries,  such  as  adding  a  sheath  of  opposite-signed  vorticity  around  the 

primary core. 

4.6.3 Vortex Breakdown
Vortex breakdown can occur when a vortex aligned with the flow moves into a 

slower moving region or experiences an increasing pressure gradient, for example 

in a diffuser, and is discussed in Panton (1996). It was observed from the images 

in Peck & Sigurdson (1994) that, while near the surface, the vortex ring appears to 

become compressed  as  it  convects  through the  fluid,  suggesting  that  a  vortex 

breakdown instability may be present.

To cause the reduction of the vortex ring diameter in the simulations, an image 

vortex was placed above the main ring.  Tests  were run with  varying distance 

between  the  main  ring  and  the  image  ring  to  provide  different  amounts  of 

contraction on the vortex ring diameter. The details of the geometry are shown in 

Figure 8 in Section 3.1.3. In each case, an instability was observed, however it 

appeared similar to the instability observed when no image vortex was present in 

the simulations. Similar to the tests for the Rayleigh centrifugal instability, this 

suggests that the instability seen in the simulations was caused by the addition of 

waves  to  perturb  the  vortex  ring  core,  and not  by the  presence  of  the  image 

vortex. It is possible, however, that the ring diameter contraction was not strong 

enough to cause a vortex breakdown instability.
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4.6.4 Elliptic Instability
There is another instability which was not discussed when designing the initial 

conditions for the computational simulations presented in this thesis. It was called 

the elliptic instability by Leweke and Williamson (1998), where they observed 

two dimensional counter-rotating vortex pairs developing elliptical streamlines in 

the cores. In the work for this thesis, it was observed from contour plots of slices 

through  the  vortex  ring  core  that  the  core  sometimes  developed  an  elliptical 

shape, and the two sides of the core would be displaced from each other in the z-

direction. This is similar to what was seen in Leweke and Williamson (1998). The 

contour plots are visible in Figures 13 and 14 in Section 4.1.

Since the elliptic cores were only noticed after the simulations for this thesis were 

run, no simulations were run where the core was purposefully made elliptical in 

shape to observe the result. However, the cores appear to go elliptical on their 

own when the core is perturbed by adding waves along the azimuth of the vortex 

ring. This suggests that an elliptic instability might be at play in the impacting 

water drop experiment and we conclude that, of the instabilities considered, it is 

the most likely candidate to be the cause of the bracelet structure.
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5. Conclusions
To recreate the instability seen in the impacting water droplet experiment, three 

different  vorticity  initial  conditions  were  simulated,  along  with  two  different 

methods of perturbing the system. The simulated initial conditions attempted to 

trigger  a  Widnall  instability,  a  Rayleigh  centrifugal  instability,  and  a  vortex 

breakdown instability. The vorticity in the system was perturbed by both a random 

perturbation  and a  controlled  wave perturbation  of  various  wave-numbers  but 

with a random phase.

Of  the  two  methods  of  perturbing  the  vorticity,  only  the  wave-number 

perturbation produced favourable results. The wave-number perturbation involved 

adding 30 wave-numbers of equal amplitude and random phase to the primary 

vortex ring. In simulations of all three initial conditions using the wave-number 

perturbation,  an  instability  was  seen  on  the  vortex  ring  which  resembled  the 

bracelet structure of a streamwise vortex pair of rings about the core that is seen 

in the impacting water droplet experiment. Slight instabilities were observed in 

some simulations using the random perturbation, however none of the instabilities 

resembled the bracelet structure. Simulations that did not include a perturbation to 

the vorticity did not result in any visible instability. Therefore we conclude that,  

for  the  initial  conditions  simulated  here,  the  wave-number  perturbation  is 

necessary to observe the bracelet structure.

An instability similar to the bracelet structure was observed in simulations of a 

solitary vortex ring which were performed to trigger the Widnall instability. The 

instability was observed in  simulations  run at  Reynolds numbers  of  1400 and 

2500, based on circulation, with the instability being more pronounced at Re = 

2500. A general characteristic of the Widnall instability which was not observed, 

however, is the waviness of the vortex ring core. While an instability resembling 

the bracelet structure was observed, the vortex ring core never became visibly 

wavy,  which  is  characteristic  of  the  Widnall  instability.  Therefore,  while  the 

solitary vortex  ring  simulations  resulted  in  an  instability  which  resembles  the 
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bracelet  structure  from  experiments,  the  Widnall  instability  is  likely  not  the 

source.

Simulations run with a secondary opposite-signed vortex ring present to trigger a 

Rayleigh  centrifugal  instability  resulted  in  an  instability  similar  to  that  seen 

experimentally. However, the appearance of the instability did not seem to differ 

noticeably from the instability seen in simulations  with a  solitary vortex ring. 

Therefore,  since  adding  the  opposite-signed  vortex  ring  did  not  change  the 

appearance of the instability, the Rayleigh centrifugal instability is not the source. 

Like the simulations performed with a solitary ring, both Re = 1400 and Re = 

2500 produced the instability, and the instability was more pronounced at Re = 

2500.

Simulations run with an image vortex ring present to cause compression of the 

vortex  ring  and  trigger  a  vortex  breakdown  instability  also  resulted  in  an 

instability that resembled the bracelet  structure.  However,  while  the instability 

was seen in simulations with the image vortex present, the instability was not 

noticeably different from that seen with the solitary vortex ring. This suggests 

that, like the Rayleigh centrifugal instability, the vortex breakdown instability is 

not the source of the instability since adding the image vortex ring did not change 

the appearance.

For the solitary ring simulations, slices through the core were taken in the radial 

direction and contour plots of vorticity were created. It was observed from these 

contour  plots  that  the  vortex  ring  core  becomes  elliptical  and  shifts  in  the 

streamwise direction. The elliptic shape and steamwise displacement of the core is 

similar to that seen by Leweke and Williamson (1998) in their examination of a 

two-dimensional  vortex  pair.  Because  of  the  similarity  seen  between  the 

instability  presented  here  and  the  instability  seen  by Leweke  and  Williamson 

(1998) we conclude that, of the instabilities examined here, the elliptic instability 

is the most likely source of the bracelet structure seen experimentally.
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A wave-number analysis was performed on the solitary ring simulation data to 

determine  the  growth  of  each  wave-number.  For  both  Reynolds  numbers  and 

when examining either ωr or ωz, wave-number 1 is dominant. For the Re = 1400 

simulations, wave-numbers beyond 3 have insignificant amplitudes. However for 

the Re = 2500 simulations, wave-numbers up to 18 have significant amplitudes. 

This is likely due to the smaller scale vorticity present in simulations with the 

higher Reynolds number.

To observe the evolution of the instabilities, vortex lines were observed at various 

time steps and locations on the vortex ring. Three vortex lines were chosen from 

an early time step, and they were matched up with vortex lines at later time steps 

to see how the instability might be evolving. Two vortex lines corresponded to a 

wave-number 1 instability and one of the vortex lines corresponded to a wave-

number 2 instability, and they were matched up to features of the instability that 

are visible at later times. Observing the vortex lines shows how the instability 

develops at very early time steps, then gets stretched by the rotation of the vortex 

ring and either forms the streamwise vorticity in the wake, or wraps around the 

ring to form the bracelet instability from Peck & Sigurdson (1994).

5.1 Future Work
As the elliptic instability was only identified as a possible candidate for the cause 

of  the  bracelet  structure  after  the  simulations  were  completed,  it  would  be 

valuable to perform simulations where the core was made purposely elliptical to 

observe the effect on the instability. Other possible initial conditions would be to 

use a different configuration of vorticity when simulating the Rayleigh centrifugal 

instability. For example, surrounding the core with a sheath of opposite-signed 

vorticity,  such that a cross section would appear as concentric circles with the 

innermost circle being the primary core and the outermost circle containing the 

opposite-signed vorticity. 
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The  perturbation  on  the  vorticity  in  the  system  could  also  be  altered.  In 

simulations presented here the vorticity perturbation was only on the x-y plane; in 

future simulations the result of adding a perturbation in the z-direction could also 

be investigated. 

It would also be useful to gather data for later time steps for some of the low 

Reynolds number simulations. Simulations were run to time periods chosen from 

the experiment of Peck & Sigurdson (1994) that were long enough to see the 

bracelet structure form. However, due to computer time constraints, they were not 

run long enough to see if the ring relaminarizes like in the experiments. Having 

data for later time steps might allow us to better understand what happens to the 

bracelet structure longer after it has formed.
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Appendix 1. Table with Details of the Simulation Parameters

Sample Image Schematic Kinematic Viscocity Circulation Re Type of Secondary Secondary Vorticity Primary Ring
(Fig. 5) ν (cm2/s) Γ (cm2/s) Vorticity Location Perturbation

a Fig. 6 0.001 1 1000 None N/A None
a Fig. 6 0.001 1 1000 None N/A None
a Fig. 6 0.001 1 1000 None N/A None
a Fig. 6 0.001 1 1000 None N/A None
b Fig. 7 0.001 1 1000 Opposite-signed ring (15%) s = 1.17 α None
b Fig. 7 0.001 1 1000 Opposite-signed ring (15%) s = 1.17 α None
b Fig. 7 0.001 1 1000 Opposite-signed ring (15%) s = 0.60 α None
b Fig. 7 0.001 1 1000 Opposite-signed ring (15%) s = 0 None
b Fig. 7 0.00001005 0.000352 35 Opposite-signed ring (15%) s = 1.17 α None
b Fig. 7 0.00001005 0.000352 35 Opposite-signed ring (15%) s = 1.17 α None
b Fig. 7 0.01005 3.5175 350 Opposite-signed ring (15%) s = 1.17 α None
b Fig. 7 0.001 1.4 1400 Opposite-signed ring (15%) s = 1.17 α None
b Fig. 7 0.001 1.4 1400 Opposite-signed ring (15%) s = 1.17 α None
b Fig. 7 0.001 1.4 1400 Opposite-signed ring (15%) s = 1.17 α None
b Fig. 7 0.001 1.4 1400 Opposite-signed ring (15%) s = 1.17 α Random, 1% of max vorticity
b Fig. 7 0.001 1.4 1400 Opposite-signed ring (15%) s = 1.17 α Random, 2% of max vorticity
c Fig. 7 0.001 1.4 1400 Opposite-signed ring (30%) s = 0.94 α Random, 10% of local vorticity
c Fig. 7 0.01 14 1400 Opposite-signed ring (30%) s = 0.94 α Random, 10% of local vorticity
c Fig. 7 0.01 14 1400 Opposite-signed ring (30%) s = 0.94 α Random, 10% of local vorticity

Table A1. Details of the parameters used in the simulations. Sample images are given in Figure 3 in the body of the thesis.
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Sample Image Schematic Kinematic Viscocity Circulation Re Type of Secondary Secondary Vorticity Primary Ring
(Fig. 5) ν (cm2/s) Γ (cm2/s) Vorticity Location Perturbation

c Fig. 7 0.01 14 1400 Opposite-signed ring (30%) s = 0.67 α Random, 10% of local vorticity
N/A Fig. 7 0.01 14 1400 Opposite-signed ring (30%) s = 0.67 α 1 wave, 38% rp amplitude

d Fig. 7 0.01 14 1400 Opposite-signed ring (30%) s = 0.67 α 30 waves, 0.33% rp amplitude
d Fig. 7 0.01 14 1400 Opposite-signed ring (30%) s = 0.67 α 30 waves, 10% rp  amplitude
d Fig. 7 0.01 14 1400 Opposite-signed ring (30%) s = 0.67 α 30 waves, 1% rp amplitude
e Fig. 7 0.01 25 2500 Opposite-signed ring (30%) s = 0.67 α 30 waves, 1% rp amplitude
e Fig. 7 0.01 25 2500 Opposite-signed ring (30%) s = 0.67 α 30 waves, 1% rp amplitude
f Fig. 6 0.01 14 1400 None N/A 30 waves, 0.33% r amplitude
f Fig. 6 0.01 14 1400 None N/A 30 waves, 1% r amplitude
f Fig. 6 0.01 14 1400 None N/A 30 waves, 1% r amplitude
f Fig. 6 0.01 14 1400 None N/A 30 waves, 1% r amplitude

N/A Fig. 6 0.01 14 1400 None N/A Random, 5% of max vorticity
N/A Fig. 6 0.01 14 1400 None N/A Random, 5% of max vorticity

g Fig. 6 0.01 25 2500 None N/A 30 waves, 1% r amplitude
g Fig. 6 0.01 25 2500 None N/A 30 waves, 1% r amplitude
g Fig. 6 0.01 25 2500 None N/A 30 waves, 1% r amplitude
h Fig. 8 0.01 14 1400 Image vortex h = 2 α 30 waves, 1% rp amplitude
h Fig. 8 0.01 14 1400 Image vortex h = 4 α 30 waves, 1% rp amplitude
h Fig. 8 0.01 14 1400 Image vortex h = 2 α 30 waves, 1% rp amplitude
h Fig. 8 0.01 14 1400 Image vortex h = 1 α 30 waves, 1% rp amplitude

Table A1,  Continued. Details of the parameters used in the simulations. Sample images are given in Figure 3 in the body of the thesis.

 



Appendix 2. Isosurfaces for Solitary Ring Simulation, 
Re = 1400

Figure A1. Isosurfaces of total vorticity magnitude for the solitary ring simulations at Re = 1400.  

Isosurface is  taken at  a  vorticity level  of  ω = 250 s-1.  Images correspond to times of 0.002s, 

0.004s,  0.006s,  0.008s.  Images should be viewed in the order:  top left,  top right,  bottom left, 

bottom right.
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Figure A1, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 1400. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.010s, 0.012s, 0.014s, 0.016s.  Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A1, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 1400. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.018s, 0.020s, 0.022s, 0.024s. Images should be viewed in the order: top left, top right, bottom 

left, bottom right.

77
 



Figure A1, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 1400. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.026s, 0.028s, 0.030s, 0.032s.  Images should be viewed in the order: top left, top right, bottom 

left, bottom right.

78
 



Figure A1, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 1400. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.034s, 0.036s, 0.038s, 0.040s.  Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A1, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 1400. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.042s, 0.044s, 0.046s. Images should be viewed in the order: top left, top right, bottom.
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Appendix 3. Isosurfaces for Solitary Ring Simulation, 
Re = 2500

Figure A2. Isosurfaces of total vorticity magnitude for the solitary ring simulations at Re = 2500.  

Isosurface is  taken at  a  vorticity level  of  ω = 250 s-1.  Images correspond to times of 0.001s, 

0.002s, 0.003s, 0.004s.  Images should be viewed in the order: top left, top right, bottom left,  

bottom right.
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Figure A2, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 2500. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.005s, 0.006s, 0.007s, 0.008s.  Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A2, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 2500. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.009s, 0.010s, 0.011s, 0.012s. Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A2, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 2500. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.013s, 0.014s, 0.015s, 0.016s. Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A2, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 2500. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.017s, 0.018s, 0.019s, 0.020s. Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A2, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 2500. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.021s, 0.022s, 0.023s, 0.024s. Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A2, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 2500. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.025s, 0.026s, 0.027s, 0.028s. Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A2, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 2500. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.029s, 0.030s, 0.031s, 0.032s. Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A2, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 2500. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.033s, 0.034s, 0.035s, 0.036s. Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A2, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 2500. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.037s, 0.038s, 0.039s, 0.040s. Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A2, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 2500. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.041s, 0.042s, 0.043s, 0.044s. Images should be viewed in the order: top left, top right, bottom 

left, bottom right.
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Figure A2, Continued. Isosurfaces of total vorticity magnitude for the solitary ring simulations at  

Re = 2500. Isosurface is taken at a vorticity level of ω = 250 s-1. Images correspond to times of 

0.045s, 0.046s. Images should be viewed left to right.
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Appendix 4. Contour Plots for Solitary Ring Simulations. 
Re = 1400

Figure A3. Contour plots in an x-y plane for the solitary ring simulations at Re = 1400. The x-y 

plane is taken through the centroid of the x and y vorticity, which approximates the center of the 

vortex ring core. Images correspond to times of 0.002s, 0.004s, 0.006s, 0.008s, and should be 

viewed in the order: top left, top right, bottom left, bottom right.

93
 



Figure A3, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

1400. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the  

center of the vortex ring core. Images correspond to times of 0.010s, 0.012s, 0.014s, 0.016s, and  

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A3, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

1400. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the  

center of the vortex ring core. Images correspond to times of 0.018s, 0.020s, 0.022s, 0.024s, and  

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A3, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

1400. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the  

center of the vortex ring core. Images correspond to times of 0.026s, 0.028s, 0.030s, 0.032s, and  

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A3, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

1400. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the  

center of the vortex ring core. Images correspond to times of 0.034s, 0.036s, 0.038s, 0.040s, and  

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A3, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

1400. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the  

center of the vortex ring core. Images correspond to times of 0.042s, 0.044s, 0.046s, and should be 

viewed in the order: top left, top right, bottom left.
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Appendix 5. Contour Plots for Solitary Ring Simulations. 

Re = 2500.

Figure A4. Contour plots in an x-y plane for the solitary ring simulations at Re = 2500. The x-y 

plane is taken through the centroid of the x and y vorticity, which approximates the center of the 

vortex ring core. Images correspond to times of 0.001s, 0.002s, 0.003s, 0.004s, and should be 

viewed in the order: top left, top right, bottom left, bottom right.
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Figure A4, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

2500. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the 

center of the vortex ring core. Images correspond to times of 0.005s, 0.006s, 0.007s, 0.008s, and 

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A4, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

2500. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the 

center of the vortex ring core. Images correspond to times of 0.009s, 0.010s, 0.011s, 0.012s, and 

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A4, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

2500. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the 

center of the vortex ring core. Images correspond to times of 0.013s, 0.014s, 0.015s, 0.016s, and 

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A4, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

2500. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the 

center of the vortex ring core. Images correspond to times of 0.017s, 0.018s, 0.019s, 0.020s, and 

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A4, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

2500. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the 

center of the vortex ring core. Images correspond to times of 0.021s, 0.022s, 0.023s, 0.024s, and 

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A4, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

2500. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the 

center of the vortex ring core. Images correspond to times of 0.025s, 0.026s, 0.027s, 0.028s, and 

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A4, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

2500. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the 

center of the vortex ring core. Images correspond to times of 0.029s, 0.030s, 0.031s, 0.032s, and 

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A4, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

2500. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the 

center of the vortex ring core. Images correspond to times of 0.033s, 0.034s, 0.035s, 0.036s, and 

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A4, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

2500. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the 

center of the vortex ring core. Images correspond to times of 0.037s, 0.038s, 0.039s, 0.040s, and 

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A4, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

2500. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the 

center of the vortex ring core. Images correspond to times of 0.041s, 0.042s, 0.043s, 0.044s, and 

should be viewed in the order: top left, top right, bottom left, bottom right.
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Figure A4, Continued. Contour plots in an x-y plane for the solitary ring simulations at Re = 

2500. The x-y plane is taken through the centroid of the x and y vorticity, which approximates the 

center of the vortex ring core. Images correspond to times of 0.045s, 0.046s, 0.047s, and should be 

viewed in the order: top left, top right, bottom left.

110
 



111

Appendix 6. Wave-Number Growth for ωr, Re = 2500

Figure A5.  Instability growth of wave-numbers 1-3 for ωr at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled. The 

vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.
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Figure A6.  Instability growth of wave-numbers 4-6 for ωr at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled. The 

vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.
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Figure A7.  Instability growth of wave-numbers 7-9 for ωr at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled. The 

vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.
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Figure A8.  Instability growth of wave-numbers 10-12 for ωr at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled. The 

vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.
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Figure A9.  Instability growth of wave-numbers 13-15 for ωr at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled. The 

vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.
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Figure A10.  Instability growth of wave-numbers 16-18 for ωr at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled.  

The vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.
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Appendix 7. Wave-Number Growth for ωz, Re = 2500

Figure A11.  Instability growth of wave-numbers 1-3 for ωz at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled. The  

vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.
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Figure A12.  Instability growth of wave-numbers 4-6 for ωz at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled. The 

vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.
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Figure A13.  Instability growth of wave-numbers 7-9 for ωz at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled. The 

vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.
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Figure A14.  Instability growth of wave-numbers 10-12 for ωz at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled. 

The vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.

 



121

Figure A15.  Instability growth of wave-numbers 13-15 for ωz at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled. 

The vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.
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Figure A16.  Instability growth of wave-numbers 16-18 for ωz at Re = 2500. The horizontal axis is the number of ring diameters the vortex ring has travelled. 

The vertical axis is the amplitude of the instability compared to the maximum vorticity magnitude around the azimuth of the vortex ring.

 



Appendix 8. Clean Function Test

The code used a clean function to ensure the vorticity field was divergence free, 

which  it  must  be  for  incompressibility.  The  random perturbation  used  in  the 

simulations and discussed in Section 3.2.1 is non-physical, in the sense that it is 

based  on  a  random  number  generator  and  not  any  physical  phenomenon. 

Therefore, it was important to investigate the effect that the clean function had on 

the  random  perturbation  to  ensure  that  the  perturbation  wasn’t  significantly 

diminished  or  eliminated.  Two  simulations  were  run  using  the  random 

perturbation, the magnitude of which was based on global maximum vorticity. An 

x-y slice was taken at a position away from the vortex ring, at a point that would 

have no vorticity were it not for the random perturbation. In this plane the visible 

vorticity  is  due  exclusively  to  the  random  perturbation,  and  by  running 

simulations with the clean function turned on and turned off we can see how the 

clean function effects the perturbation. Figure A1 shows the vorticity magnitude 

in the plane with the clean function turned off, and Figure A2 shows the vorticity 

in the plane with the clean function turned on.

The vorticity in the plane is visibly lower once the clean function is turned on. 

The  maximum vorticity  on  the  plane  with  the  clean  function  turned  off  was 

30.5 s-1, and the maximum vorticity on the plane with the clean function turned on 

was 23.3 s-1. This is an indication that the clean function may have reduced the 

random  perturbation  by  approximately  24%.  Because  the  amplitude  of  the 

perturbation was arbitrary, having it reduced is not a problem; the important thing 

is that the perturbation was not eliminated completely. The clean function did not 

eliminate the effect of the random perturbation.
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Figure A17. Vorticity magnitude in an x-y plane at a position away from the vortex ring, clean 

function  off.  Visible  vorticity  is  due  to  the  random  perturbation  added  to  the  system. 

ωmax = 30.5 s-1
.
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Figure A18. Vorticity magnitude in an x-y plane at a position away from the vortex ring, clean 

function  on.  Visible  vorticity  is  due  to  the  random  perturbation  added  to  the  system.  

ωmax = 23.3 s-1.
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Appendix 9. Sample Code for Setting Initial Conditions

Below is a sample of the code used to set the initial vorticity in the simulation. 
The  program  takes  x,y,z  coordinates  as  inputs,  and  outputs  the  vorticity 
components at the given coordinates. The sample includes a Rayleigh unstable 
opposite-signed vortex ring and the 30 wave-number perturbation on the primary 
ring. The code was written in FORTRAN, originally by Jens Walther and then 
modified for the simulations used in this  thesis.  The code is shown here with 
permission from Jens Walther.

      !-------------------------------------------------------------------------
      !  Subroutine   :                     UsrRou
      !-------------------------------------------------------------------------
      !
      !  Purpose      : User routine specifying the vorticity as function of 
      !                 the spatial co-ordinates (x,y,z).
      !
      !  Input        : (x,y,z)    : Cartesian co-ordinates
      !
      !  Input/output : 
      !
      !  Output       : (v1,v2,v3) : vorticity components at (x,y,z)
      !                 info       : should return zero on success.
      !
      !  Routines     :
      !
      !  Remarks      : 
      !
      !  References   :
      !
      !  Revisions    :
      !-------------------------------------------------------------------------
      !  $Log: UsrRou.stn,v $
      !  Revision 1.1  1999/03/08 12:01:04  walther
      !  Initial revision
      !
      !-------------------------------------------------------------------------
      !  Jens Honore Walther
      !  Institute of Fluid Dynamics
      !  ETH Zentrum
      !  Sonneggstrasse 3
      !  CH-8092 Zurich, Switzerland
      !-------------------------------------------------------------------------

      SUBROUTINE UsrRou(x,y,z,v1,v2,v3,info)
      !-------------------------------------------------------------------------
      !  Modules 
      !-------------------------------------------------------------------------
      USE m_cic
      IMPLICIT NONE
      !-------------------------------------------------------------------------
      !  Arguments
      !-------------------------------------------------------------------------
      INTEGER               :: info
      REAL(MK), INTENT(IN)  :: x,y,z
      REAL(MK), INTENT(OUT) :: v1,v2,v3
      !-------------------------------------------------------------------------
      !  Local variables 
      !-------------------------------------------------------------------------
      INTEGER               :: i,j,k,iteration,arraysize
      REAL(MK)              :: gamma,r0,x0,y0,z0,alpha,alpha_inv2
      REAL(MK)              :: factor,theta,xt,yt,zt,s2,arg,om_theta
      REAL(MK)              :: pi
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      REAL(MK)     :: magnitude,phase(30)
      INTEGER, DIMENSION(:), ALLOCATABLE :: seed
      LOGICAL               :: UsrRou_first=.TRUE.
      !-------------------------------------------------------------------------
      !  Save
      !-------------------------------------------------------------------------
      SAVE UsrRou_first
      
      !-------------------------------------------------------------------------
      !  Initialise 
      !-------------------------------------------------------------------------
      info = 0

      !-------------------------------------------------------------------------
      !  Here: code the vorticity as function of the (x,y,z) co-ordinates
      !-------------------------------------------------------------------------
!     IF (UsrRou_first) THEN
!        UsrRou_first = .FALSE.
!        WRITE(*,'(A)')'User routine for ring (Orlandi parameters)'
!     ENDIF
      pi         = ACOS(-1.0)
      gamma      = 14
      r0         = 0.13
      z0         = 0.8
      x0         = 0.5
      y0         = 0.5
      alpha      = 0.42 * r0
      alpha_inv2 = 1./(alpha**2)
      factor     = Gamma*(alpha_inv2/pi)

      IF (x.EQ.x0.AND.y.EQ.y0) THEN
         theta = 0.0_MK
      ELSE
         theta = ATAN2(y - Y0,x - X0)
      ENDIF

      xt         = x0 + r0*COS(theta)
      zt         = z0 
      yt         = y0 + r0*SIN(theta)

      !-------------------------------------------------------------------------
      !  adds waves in the x,y plane to the core
      !-------------------------------------------------------------------------

      magnitude  = 0.01*r0
      call random_seed(size=arraysize)
      allocate(seed(arraysize))
      seed = 3
      call random_seed(put=seed)
      call random_number(phase)
      do iteration = 1,30
           xt         = xt + magnitude*SIN(theta + 
2*pi*phase(iteration))*COS(theta)
           yt         = yt + magnitude*SIN(theta + 
2*pi*phase(iteration))*SIN(theta)
      end do

      s2         = (x - xt)**2 + (y - yt)**2 + (z - zt)**2

      arg = s2 * alpha_inv2
!     IF (arg.LT.10.0_MK) THEN
         om_theta = factor * EXP(-arg)
         v1       =  om_theta * SIN(theta)
         v2       = -om_theta * COS(theta)
         v3       =  0.0
!     ELSE
!        v1       = 0.
!        v2       = 0.
!        v3       = 0.
!     ENDIF
      !-------------------------------------------------------------------------
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      !  add a second ring (coaxially), smaller, weaker and with the opposite sign
      !-------------------------------------------------------------------------
      gamma      = -4.2
      r0         = 0.1043
      z0         = 0.8257
      x0         = 0.5 
      y0         = 0.5
      alpha      = 0.00546
      alpha_inv2 = 1./(alpha**2)
      factor     = Gamma*(alpha_inv2/pi)

      IF (x.EQ.x0.AND.y.EQ.y0) THEN
         theta = 0.0_MK
      ELSE
         theta = ATAN2(y - Y0,x - X0)
      ENDIF

      xt         = x0 + r0*COS(theta)
      zt         = z0 
      yt         = y0 + r0*SIN(theta)
      s2         = (x - xt)**2 + (y - yt)**2 + (z - zt)**2

      arg = s2 * alpha_inv2
!     IF (arg.LT.10.0_MK) THEN
         om_theta = factor * EXP(-arg)
         v1       =  v1 + om_theta * SIN(theta)
         v2       =  v2 - om_theta * COS(theta)
         v3       =  0.0
!     ELSE
!        v1       = 0.
!        v2       = 0.
!        v3       = 0.
!     ENDIF
      !-------------------------------------------------------------------------
      !  Return
      !-------------------------------------------------------------------------
 9999 CONTINUE
      RETURN
      END SUBROUTINE UsrRou
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