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Abstract

This thesis investigates the hedging of equity-linked life insurance contracts

with default time. In such a case the market is no longer complete and as such

we consider imperfect hedging technique called Quantile Hedging. This hedg-

ing technique maximizes the probability of a successful hedge while allowing

for a possibility of shortfall. This allows for a smaller amount of initial capital

to be required for hedging.

First, we present a multi-dimensional market with default and then ex-

tending on previous results derive a general formula in the framework of a

defaultable Black-Scholes model. We then formulate the hedging problem as a

Neyman-Pearson problem with composite hypothesis against a simple alterna-

tive. We apply a convex duality approach to derive a solution to the quantile

hedging problem of general derivative contract within a Black Scholes market

with default.

We then introduce mortality of the client to the model, and using previously

derived results provide closed form solutions to this problem in the case of one

and two risky assets for an option to exchange one asset for another. We

use these formulas to provide illustrative examples for both one and two risky

asset cases and examine the relationships between shortfall probability, initial

capital available for hedging, survival probability and default probability.
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Chapter 1

Introduction

A financial derivative is a contract whose value depends on the value of other

financial assets. These financial assets can range from simple securities such as

stocks or bonds to very complicated and esoteric ones such as weather futures

and contracts on the perceived volatility of the market. The prototypical ex-

ample of a derivative is the call option which gives the holder the right but not

the obligation to purchase an asset at a pre-agreed upon price called the strike

price. There are several variations of stock options with the most common

type being the European option in which the holder can only exercise at a

single point in time. This is contrasted with the American type in which the

holder exercise the option at any point before the maturity date. These op-

tions and other derivatives are used for risk management as well as speculation

purposes. Since the 1980’s derivative such as these have become a cornerstone

of the financial industry and such having ways of calculating the value of such

options and ways of managing their risk is of paramount importance.

The major breakthrough in the field of option pricing came in 1973 with

the Black-Scholes-Merton model with the first paper by Black and Schole’s

paper [3] as well as Merton’s [14]. Their work showed that under several

assumptions about the dynamics of the underlying assets it was possible to

find a closed form solution to price of a call option. In addition, they and

others showed that it was possible to replicate the price of the payoff of the

call option. With this, it has became possible for an option seller to completely

nullify the risk associated with this liability using a portfolio consisting of the
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asset and a some sort of risk free interest bearing instrument. This is first type

of hedging technique.

Financial hedging and speculation are not the only applications of such

instruments as they been becoming more and more popular in insurance. The

combination of financial derivative instruments and actuarial contracts is called

Equity-Linked life insurance and is quickly becoming a big area of research in

Mathematical Finance. Unlike regular life insurance contracts, which provide

a fixed payout that is contingent on the survival or death of the client, equity-

linked life insurance contracts can have a payoff dependent on the performance

of the financial markets. A large variety of such contracts have been developed,

see [9] for an overview.

In this thesis we will examine the contract known as pure endowment with

a guarantee. These contracts have a payoff that is contingent on the survival

of the client to some maturity T . If the client survives he or she will receive a

payoff that is based on an option to exchange on asset for another. We consider

two cases: one the second asset is a fixed number K and two, the second is

asset is another security. Thus, in addition to the financial component we

introduce the uncertainty of mortality of the client.

To complicate matters further and to make the model more realistic we

consider the default probability of the insurance company itself. Once this

element has been introduced to the model we see the the market is no longer

complete and a unique price for the option is no longer possible to find. If we

employ a technique called Superhedging which attempts to hedge the worst

case scenario, the initial cost of hedging become too great, see the paper

by Karoui and Quenez [11]. Therefore we have to consider other types of

hedging methodologies. We consider Quantile Hedging developed by Fôllmer

and Leurkert [8]. Under this scheme, we accept some shortfall risk ϵ that the

hedging portfolio will fall short of the terminal payoff of the option H.

We now come to the main goal of this thesis and that is: to develop a

quantile hedging methodology for a financial market with three sources of

uncertainty.

1. The dynamics of the risky assets.
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2. The mortality of the client.

3. The default time of the insurer.

1.1 Summary of Thesis

This project contains 7 chapters including this introduction. The second chap-

ter contains the foundational Mathematical Tools which will be used through-

out the rest of the project.

Chapter 3 will extend the results of Nakano [15] and [16], together with

results from [2] and [6], to extend his work on Quantile Hedging in the de-

faultable market to the multi-dimensional case. We will present a step-by-step

derivation of the core result.

Chapter 4 will apply the original Nakano’s results to the equity linked insur-

ance setting which in addition to default time will account for the mortality

of the client. We will use the standard ”Brennnan and Scwartz” approach

see [5], which uses the law of large numbers and some assumptions to manage

this uncertainty. Formulas for initial capital cost of hedging will be presented.

In addition, we will present methodologies which will allow practitioners to

calculate the initial cost of capital as well as an acceptable shortfall risk along

the minimum ages for which such a policy is suitable. Chapter 5 will present

the very same results but in the case of two-risky assets.

Chapter 6 will present two numerical examples. Both assets will use real

financial and actuarial data to estimate the parameters. One example will

be using the results of Chapter 4 and one risky asset. The second example

will present the case of two risky asset case. For both examples we present

the relationships of the initial capital, shortfall probability, default probability

and the mortality of the client.
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Chapter 2

Mathematical Preliminaries

This chapter will go over some tools that will be used in the rest of the thesis.

We will cover the basics of Stochastic Analysis such as the stochastic basis,

martingales and stochastic integration. We will also present the Black-Scholes

and Margrabe formulas. We will also present some results in the area of

statistical testing such as Neyman Pearson Lemma and Composite Random

tests.

2.1 Stochastic Basis

Stochastic analysis starts with a stochastic basis. This is a complete probabil-

ity space

(Ω,F , P )

endowed with a filtration F := (Ft)t≥0, which is a non-decreasing contin-

uous family of σ - algebras. We assume that all stochastic processes X =

(Xt(ω))t≥0 that will be examined in this thesis are defined on the stochastic

basis (Ω,F ,F, P ) are F - adapted. That is, for each t, the random variable

Xt is measurable with respect to Ft.

Definition 2.1.1 For a given stochastic basis (Ω,F ,F, P ), a stopping time is

any non-negative random variable τ satisfying

4



{τ ≤ t} ∈ Ft

for any t ≥ 0.

2.2 Martingales and Wiener Process

Definition 2.2.1 A continuous process W is called Wiener process or Brow-

nian motion, if the following conditions are satisfied

1. W0 = 0

2. Wt −Ws does not depend on Fs, s ≤ t

3. Wt −Ws is normally distributed with zero mean and variance t− s

An n-dimensional Wiener Process is an Rn valued process

W = (W 1,W 2, ...,W d)′

with the the components W i being independent one dimensional Wiener

Processes as defined above.

Definition 2.2.2 Consider stochastic process X = (Xt)t≥0 and F adapted

process satisfying E[Xt] <∞ for all t ≥ 0.

1. X is a supermartingale if

E[Xt|Fs] ≤ Xs, 0 ≤ s ≤ t

2. X is a submartingale if

E[Xt|Fs] ≥ Xs, 0 ≤ s ≤ t

3. X is a martingale if

E[Xt|Fs] = Xs, 0 ≤ s ≤ t

5



Theorem 2.2.1 A one-dimenional Wiener Process W = {Wt}t≥0 is a mar-

tingale.

Definition 2.2.3 A Wiener Process with drift µ and volatility σ is the process

X = (Xt)t≥0 and is given by

Xt := µt+ σWt, t ≥ 0

Corollary 2.2.1 The Brownian motion with drift µ is a martingale if and

only if µ = 0, a submartingale if µ ≤ 0, and supermartingale if µ ≥ 0.

2.3 Stochastic Integrals

Definition 2.3.1 A martingale (Mt)t≥0 defined on stochastic basis (Ω,F ,F, P )
is said to be square integrable if

E(M2
t ) < +∞, for all t ≥ 0

Any stochastic process X is a function of two variables: the elementary

event ω ∈ Ω and time t ≤ T .

Definition 2.3.2 For a fixed elementary event ω, the function X(ω, ·) is called
a trajectory.

Definition 2.3.3 We then divide the interval [0, T ] into n parts: 0 = t0 <

t1 < ... < tn = T , then define the following

φ(t, ω) =
n∑

k=1

φk−1(ω)1(tk−1,tk](t)

where φk−1 are square-integrable random variables that are measurable with

respect to Ftk−1
. Then the stochastic integral of the random function with

respect to the Wiener process W is defined as follows∫ t

0

φ(s, ω)dWs :=
n∑

k=1

φk−1(ω)(Wtk∧t −Wtk−1∧t)
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Then we can consider stochastic processes like the following

Xt = X0 =

∫ t

0

b(s, ω)ds+

∫ t

0

a(s, ω)dWs, (2.1)

where
∫ t

0
b(s, ω)ds is the standard Lebesque-type integral for each fixed ω

and
∫ t

0
a(s, ω)dWs is a stochastic integral. The equation 2.1 is often written in

the form

dXt = btdt+ atdWt

Let F (t,Xt) be a real-valued function that is continuously differentiable in

t and twice continuously differentiable in x. The then process Yt := F (t,Xt)

can also be written of 2.1, which follows from the one dimensional Itô’s formula

F (t,Xt) =F (0, X0)

+

∫ t

0

[
∂F

∂s
(s,Xs) + bs

∂F

∂x
(s,Xs) +

1

2
a2s
∂2F

∂s2
(s,Xs)

]
ds

+

∫ t

0

as
∂F

∂x
(s,Xs)dWs

We can also consider the multi-dimensional case. Consider the n-dimensional

process

Xi(t) = Xi(0) +

∫ t

0

Ki(s, ω)ds+
m∑
j=1

∫ t

0

Hij(s, ω)dW
j(s), i = 1, 2, ...n

where Ki(t), Hij(t) are progressively measurable and square integrable ran-

dom variables.

Then if F is a continuous function that differential with respect to the first

variable and twice differentiable with respect to the last n variables. Then for

t ≥ 0, the following is true
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F (t,Xi,t) = F (0, X1(t), ..., Xn(t))

+

∫ t

0

∂F

∂s
(s,X1(s), ..., Xn(s))ds+

n∑
i=1

∫ t

0

∂F

∂Xi

(s,X1(s), ..., Xn(s))dXi(s)

+
1

2

n∑
i=1

n∑
j=1

∫ t

0

∂F

∂Xi

∂F

∂Xj

(s,X1(s), ..., Xn(s))d⟨Xi, Xj⟩s

2.4 Black-Scholes Model and Formula

The Black-Scholes market consists of one risky asset modeled by process St

and one risk-free asset denoted by Bt. Say Bt and St are processes defined on

the stochastic basis (Ω,F ,F, P ) and have the following form

Bt =e
rt (2.2)

St =S0e
(µ−σ2/2)t+σWt , S0 > 0

Then using the Itô formula from above we can write rewrite them as

dBt =rBtdt (2.3)

dSt =St(µdt+ σdWt), S0 > 0

We are looking to price a European Call Option with payoff H = (ST−K)+

where K is the strike price. The initial price, C0 of such an is given by the

Black-Scholes formula

C0 = S0Φ

(
log S0

K
+ T (r + σ2)

σ
√
T

)
−Ke−rtΦ

(
log S0

K
+ T (r − σ2)

σ
√
T

)
(2.4)

where y± = ln(S0/K)+T (r±σ2)

σ
√
T

and Φ(·) is the standard normal cumulative

distribution function.
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2.5 Two Risky Asset Model and Formula

The Two Risky Asset Market Model is the same as the Black Scholes market

with the exception that there are two risky assets, S1
t and S2

t as well as the

risk free account Bt. As in the one risky asset case each S1
t and S2

t have an

expected return and a volatility parameter associated with them. In addition

to this, we say that the underlying Brownian motions, W 1
t and W 2

t are related

by saying that cov(W 1
t ,W

2
t ) = ρt. Then if we assume these processes have the

following dynamics

dBt =rBtdt (2.5)

dSi
t =S

i
t(µidt+ σidW

i
t ), S0 > 0, i = 1, 2

the the option with the payoff H = (S1
T − S2

T )
+ will have the initial price, C0

given by the Margrabe formula

C0 = S1
0Φ

⎛⎝ log S1
0

S2
0
+ σ2

2
T

σ
√
T

⎞⎠− S2
0Φ

⎛⎝ log S1
0

S2
0
− σ2

2
T

σ
√
T

⎞⎠ (2.6)

where σ =
√
σ2
1 − 2ρσ1σ2 + σ2

2 .

Note that we use different notation in the one and two dimensional markets

compared to the d-dimensional market.

2.6 Neyman Pearson and Convex Duality

2.6.1 Simple Hypothesis

Say we are trying to distinguish between two probability measures Q, which

corresponds to our null hypothesis and some alternative P . One way to do

this is using a simple test, by considering the random variable X : Ω → {0, 1}
which rejects the null hypothesis Q when {X = 1}. Then, then the probability

Q(X = 1) is the probability of rejecting the null hypothesis when it is true,

termed the Type I error. While the probability P (X = 0) is the probability
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of accepting Q when it is false i.e. the Type II error. It is impossible to

minimize both probabilities at once, so the standard procedure is to fix the

Type I error to some low value, called the significance level and minimize the

Type II error. This is the approach of the classical Neyman-Pearson approach,

see the original paper by Neyman and Pearson [17].

Theorem 2.6.1 Define third probability measure µ with

P ≪ µ, Q≪ µ,

and set

G :=
dP

dµ
, H :=

dQ

dµ
.

Then the optimal test has a solution

X̂ = 1{ẑH<G}

where

Q(ẑH < G) = α for some 0 < ẑ <∞

2.6.2 Composite Hypothesis

Say that on measurable space (Ω,F), we have an entire family Q of probability

measures, i.e. a composite hypothesis. We are trying to discrimination against

an alternative hypothesis family of measures P.

We assume,

P ∩Q = Ø

P ≪ µ, Q≪ µ, ∀P ∈ P, ∀Q ∈ Q

for some probability measure µ, we set

GP :=
dP

dµ
(P ∈ P), HQ :=

dQ

dµ
(Q ∈ Q).

10



Then looking at the set of randomized tests X : Ω → [0, 1],

Xα := {X : Ω → [0, 1];EQ(X) ≤ α, ∀Q ∈ Q}

Since the alternative is an entire family P the optimization now becomes

V (α) := sup
X∈Xα

( inf
P∈P

EP (X)).

Using the paper of Cvitanic and Karatzas [6] we have the following result.

Under appropriate conditions on the family P of alternatives the optimal test

X̂ has the following form

X̂ = 1{ẐĤ<Ĝ} +B · 1{ẐĤ=Ĝ}

where B is a random variable in the interval [0, 1]. The random variable Ĝ

is of the form GP = dP/dµ for some P ∈ P. The random variable Ĥ is chosen

from a suitable family that contains the convex hull

C0(H;Q) := {λHQ1 + (1− λHQ2) : Q1 ∈ Q, Q2 ∈ Q, 0 ≤ λ ≤ 1}

of {HQ}Q∈Q; and where Ẑ is a positive number.
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Chapter 3

Multi-Dimensional Quantile

Hedging with Default

This chapter will implement the results of Nakano see [15] and [16], in the

multi-dimensional case. There are a lot of similarities as well as some key

differences.

3.1 The Default Free Black-Scholes Model

We consider the framework of a complete multi-dimensional financial market.

This market consists of one risk-less asset, usually called a bank account or a

money market account and several risky assets usually referred to as stocks, but

can also be bonds, equity indices or even commodities. The price processes

of the bank account B(·) and risky assets S1(·), ..., Sd(·) have the following

dynamics

dB(t) = B(t)r(t)dt, t ∈ [0, T ], B(0) = 1 (3.1)

dSi(t) = Si(t)
[
bi(t)dt+

d∑
j=1

σijdW
j(t)
]
, t ∈ [0, T ], Si(0) > 0, i = 1, ..., d.

The Brownian motion W (·) = (W 1(·), ....,W d(·))′ in Rd is defined on com-
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plete probability space (Ω,F = (FT )0≤t≤T , P ). The market coefficients: inter-

est rate r(·), vector of the risky asset returns b(·) = (b1(·), ..., bd(·))′ and the

volatility matrix σ(·) = {σij}1≤i,j≤d are progressively measurable with respect

to F. We also assume that the volatility matrix σ(·) is invertible and all pro-

cesses r(·), b(·), σ(·) and σ−1(·) are all uniformly bounded in (t, ω) ∈ [0, T ]×Ω.

We define the risk premium process

θ(t) := σ−1(t)
[
b(t)− r(t)1̃

]
, t ∈ [0, T ] (3.2)

where 1̃ = (1, ..., 1)′ ∈ Rd. We then define the P-martingale,

Z∗(t) := exp

[
−
∫ t

0

θ′(s)dW (s)− 1

2

∫ t

0

∥θ(s)∥2ds
]
, t ∈ [0, T ] (3.3)

and

P ∗(A) := E[Z∗(T )1A], A ∈ F (3.4)

is a probability measure equivalent to P. We then introduce the discount

process

γ(t) :=
1

B(t)
= exp

(
−
∫ t

0

r(s)ds

)
, t ∈ [0, T ] (3.5)

The discounted risky assets γ(·)S1(·), ..., γ(·)Sd(·) are martingales under

the equivalent martingale measure P ∗ and the process

W ∗(t) := W (t) +

∫ t

0

θ(s)ds, t ∈ [0, T ] (3.6)

is a P ∗ Brownian motion by the Girsanov theorem.

3.2 Default Time

The default time is denoted by τ ≥ 0 is a random time with P (τ = 0) ≥ 0 for

all t. We can consider the filtrations for τ as follows.
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Gt = Ft ∨ Ĥt

Where Ĥt := σ(τ ∧ s, 0 ≤ s ≤ t for t ∈ [0, T ]. This (B, S, τ) market is

defined on (Ω,G = (Gt)0≤t≤T ⊆ G, P ).
From [15], with more a more detailed construction provided by [2], define

the survival process

Gt = P (τ > t|Ft), 0 ≤ t ≤ T

of τ with respect to F̂. We assume the Gt > 0 for t ≥ 0.

Now consider the hazard process {Γt}t≥1 of τ with respect to F̂ defined

by Gt = e−Γt or ΓT = −logGt for every t ≥ 0. In addition, we assume

that Γt =
∫ t

0
µsds, t ≥ 0 for some non-negative process (µt)0≤t≤T that is F̂

predictable. Then (µt)0≤t≤T is called F̂ intensity of of the random time τ .

From [?] the process

Mt := Nt −
∫ t

0

µs(1−Ns−)ds = Nt −
∫ t∧τ

0

µsds, t ≥ 0

follows a G martingale.

We make the assumption thatW1(·), ...,Wd(·) are (G, P̂ ) martingales. This

assumption is satisfied if τ is independent of W1(·), ...,Wd(·).
As we are dealing with option pricing it is natural to consider risk neutral

probabilities and therefore risk neutral densities that we considered before in

the form of the stochastic exponent Z∗
t we have to extend this to work with

the model with default. In particular we consider the process

Zk
t = (1 + kτ1τ≤t)exp

(
−
∫ τ∧t

0

ksµsds

)
where {kt}0≤t≤T is taken from the class

D = {{kt}0≤t≤T : bounded, Gpredictable, kt > −1dt× dP − a.e.}

Then {Zk
t }, k ∈ D, satisfies
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Zk
t = 1 +

∫ t

0

ksZ
k
s−dMs, 0 ≤ t ≤ T

and follows a (G, P̂ ) martingale. Since the quadratic variation of
[
Z∗, Zk

]
is identically zero. We can use Itô’s formula on both Z∗

t and Zk
t and use

product rule to find

Theorem 3.2.1 {Z∗(t)Zk(t)} is a positive martingale.

Proof. Z∗(t) and Zk(t) are positive therefore their product is as well. In order

to prove that {Z∗(t)Zk(t)} is a martingale we use the standard Itô Product

Rule of the following form to calculate the derivative dZ∗(t)Zk(t)

dZ∗(t)Zk(t) = Z∗(t−)dZk(t) + Zk(t−)dZ∗(t) + d[Z∗(t), Zk(t)]

Now since we assume that the default time τ is independent ofW1(·), ...,Wd(·)
the quadratic covariation d[Z∗(t), Zk(t)] is equal to zero. With this all, that

is left is to calculate the derivatives dZ∗(t) and dZk(t). The case of dZk(t) is

rather obvious it is simply

dZk(t) = k(t)Zk(t−)dM(t), t ∈ [0, T ]

In the case of dZ∗(t) it is a slightly more involved application of Itô’s

Formula.

We rewrite the Z∗(t) without vector notation

Z∗(t) = exp

[
−

d∑
i=1

∫ t

0

θi(s)dWi(s)−
1

2

(∫ t

0

d∑
i=1

θ2i (s)ds

)]

First we find the partial derivatives,
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∂Z∗(t)

∂t
= −1

2
Z∗(t)

d∑
i=1

θ2i (t)

∂Z∗(t)

∂Wi(t)
= −Z∗

t θi(t)

∂2Z∗(t)

∂Wi(t)Wj(t)
= Z∗(t)θ2i dWi(t)dWi(t) = Z∗(t)

d∑
i=1

θ2i .

Then we can find its Ito representation using the Ito formula as

dZ∗(t) =
∂Z∗(t)

∂t
+

d∑
i=1

∂Z∗(t)

∂Wi(t)
+

1

2

d∑
i,j=1

∂2Z∗(t)

∂Wi(t)Wj(t)

= −1

2
Z∗(t)

d∑
i=1

θ2i (t)dt−
d∑

i=1

Z∗
t θi(t)dWi(t) +

1

2
Z∗(t)

d∑
i=1

θ2i (t)dt

= −
d∑

i=1

Z∗
t θi(t)dWi(t)

Then noting that Z∗(t) is continuous therefore Z∗(t−) = Z∗(t), and using

the Ito product formula above we have

dZ∗(t)Zk(t) = Z∗(t−)dZk(t) + Zk(t−)dZ∗(t) + d[Z∗(t), Zk(t)]

= Z∗(t)k(t)Zk(t−)dM(t) + Zk(t− 1)(−
d∑

i=1

Z∗
t θi(t)dWi(t))

= Z∗(t)Zk(t−)

(
k(t)dM(t)−

d∑
i=1

θi(t)dWi(t)

)
,

As the above derivative has no drift term {Z∗(t)Zk(t)} is a positive mar-

tingale for k ∈ D.

From the [2] and [18] we can show that {Zk
t } is orthogonal to (F̂, P̂ ) martin-

gales, therefore we can show that {W1(·), ...,Wd(·)} are also standard Brownian
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Motions under Qk defined by density dQk/dP = Z∗
TZ

k
T . Thus, {Qk : k ∈ D}

defines the class of equivalent martingale measures.

3.3 Hedging Portfolio

The σ-algebra G is considered to be the available information to the mar-

ket participants. The portfolio process {πt}0≤t≤T is a G predictable process

satisfying ∫ T

0

|πt|2dt <∞, a.s.

The self-financing wealth process {Xx,π
t }0≤t≤T for an initial wealth x ≥ 0

and a portfolio process {πt}0≤t≤T is described by

dX(t) =

[
X(t)−

d∑
i=1

πi(t)

]
r(t)dt+

d∑
i=1

πi(t)

[
bi(t)dt+

d∑
j=1

σij(t)dW
j(t)

]
, X(0) = x.

The solution to the above equation is given by

Xx,π(t) = B(u)

[
x+

∫ t

0

B(u)−1

d∑
i=1

πi(u)(bi(u)− r(u))du

+

∫ t

0

B(u)−1

d∑
i=1

πi(u)
d∑

j=1

σij(u)dW
j(u)

]
,

t ∈ [0, T ].

We denote A(x) as the set of all portfolio processes {πt}0≤t≤T such that

Xx,π(t) ≥ 0, 0 ≤ t ≤ T almost surely.

Next, we define

Lk(t) := B−1(t)Z∗(t)Zk(t), k ∈ D (3.7)

and Itô’s product rule we get for π ∈ A(x),
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dLk(t)Xx,π(t) = Lk
t−

[[
d∑
i

πi(t)
d∑
j

σij(t)dW
j(t)−Xx,π

t

d∑
j

θj(t)dW
j(t)

]

+Xx,π(t)k(t)dM(t)

]

By assumption we assume the wealth process is non negative which com-

bined with the above implies that Lk(t)Xx,π(t) is a supermartingale for each

π ∈ A(x). Denote L the set of all random variables Lk
t , k ∈ D.

We consider the hedging problem for the defaultable claim G defined by

G = H1{τ>T} + δH1{τ<T} (3.8)

Where δ ∈ [0, 1] is the recovery rate. This is the percentage of the payoff

that the client receives when the insurer defaults. If δ = 1 the client receives

the entire payoff he or she was due, this case makes the default irrelevant as

far as the client is concerned. If δ = 0 upon default the client receives nothing.

While the next few intermediate results have a non-zero δ the main results in

this paper are shown for δ = 0.

The costs of superhedging this contract, denoted by Π(G) is defined by

Π(G) = inf{x ≥ 0 : Xx,π
t ≥ H a.s. for some π ∈ A(x)}.

Proposition 3.3.1 Let G be such that E∗[H] <∞. Then we have

Π(G) = E∗[B−1
T H]

Also, the replicating portfolio for H becomes a superhedging portfolio for G.

Proof. Set x̃ = E∗[B−1
T H] and let π̃ be the replicating portfolio for H. Thus,

π̃ ∈ A(x) and X x̃,π̃
t = H ≥ G, then x̃ ≥ Π(G).

Now assume that Xx,π
t ≥ H for some π ∈ A. Then as {Lk

tX
x,π
t } is a

supermartingale,
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E[Lk
TG] ≤ E[Lk

TX
x,π
T ] ≤ x, k ∈ D.

Then from G = δH + (1− δ)H1{τ>T} the above can be rewritten as

E[Lk
TG] = E[B−1

T Z∗
TZ

k
T δH] + E[Lk

T (1− δ)H1{τ>T}].

As the quadratic co-variation of {Zk
t } and an F martingale is equal to zero,

the process

Zk
t E[B

−1
T Z∗

T δY ]

is a local martingale. Then if H is bounded then this process is a martingale.

We can then approximate G with H ∧ n, with the monotone convergence

theorem the first term on the right hand side becomes E[B−1
T Z∗

T δH]. With

this we have

E[B−1
T Z∗

T δH] + sup
k∈D

E[Lk
T (1− δ)H{τ>T}] ≤ Π(G)

Then considering constant k > −1 and the definition of the survival prob-

ability

E[Lk
TH1{τ>T}] = E[B−1

T Z∗
T (1 + k1{τ≤T})e

−k
∫ t∧T
0 µtdt1{τ>T}]

= E[Lk
TZ

∗
TH1{τ>T}e

−k
∫ t∧T
0 µtdt]

= E[Lk
TZ

∗
THe

−(k+1)
∫ T
0 µtdt]

Then

E[Lk
TH1τ>T ] → E[B−1

T Z∗
TH] as k ↘ −1.

This concludes the proof.
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3.4 Maximizing the Probability of the Super-

Hedge

The above proposition implies that the insurer of the claim wants to hedge

the contract then he or she needs to perfectly hedge contract as if it were non-

defaultable. However, the price of such a contract should take into account

the possibility of default and the resulting reduced payoff. This is because

the buyer of such a contract should not be willing to purchase this contract

when he or she could go into the default-free market and purchase this con-

tract for the same price. Therefore, we need to construct a hedging portfolio

whose initial price is less than the initial cost of the perfect hedging portfolio.

Thus, we consider imperfect hedging. In this paper we consider a particular

class of imperfect hedging called quantile hedging. In this type of hedging we

accept that there will some probability that we will not successfully hedge the

underlying contract. Our objective is to solve the following problem.

max
π∈A(x)

P (Xx,π
T ≥ G) (3.9)

Given that,

x ≤ E∗[B−1
T G]

where x is the initial cost of the superhedging portfolio.

To solve this problem we consider the Neyman-Pearson type problem de-

fined by

max
ϕ∈R

E[ϕ]

where

R = {ϕ : 0 ≤ ϕ ≤ 1 a.s., sup
L∈L

E[LGϕ] ≤ x}.

With the following proposition the problem above can be reduced to the

Neyman-Pearson type problem with the following proposition.
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Proposition 3.4.1 Suppose there exists A ∈ Gt (recall that G = {Gt}t≥0) and

{π̂t ∈ A} such that 1A solves the Neyman-Pearson type problem above and

XX,π̂
T ≥ G1A a.s. Then such a π̂ is optimal for the quantile hedging problem

above.

Proof. For π ∈ A(x),

E
[
Lk
T1{Xu,π

T ≥G}

]
≤E

[
Lk
T1{Xu,π

T ≥G}X
u,π
T

]
≤
[
Lk
TX

u,π
T

]
≤ x, k ∈ D

Let L ∈ L. Then there exists a sequence, Ln ∈ L such that L = limn→∞ Ln.

Thereby Fatou’s lemma 1Xx,π
T

∈ R Therefore,

max
π∈A(x)

P (Xx,π
T ≥ G) ≤ max

ϕ∈R
E[ϕ]. (3.10)

On the other hand X̂ = Xx,π̂
T , we have

P [X̂ ≥ G] ≥ P [X̂ ≥ G,A] = P [X̂ ≥ G1A, A] = P [A] = max
ϕ∈R

E[ϕ]

The above and 3.10 we have the result.

We now consider the reduced problem in the default free case or where the

recovery rate δ = 1. In which case

G = H

In this case for every L ∈ L and ϕ ∈ R we have

E[LHϕ] = E∗[B−1
T HE[ϕ|FT ]].

Therefore the partial hedging problem is equivalent to the following

max
ϕ∈R0

E[ϕ]
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where

R0 = {ϕ : 0 ≤ t ≤ T a.s., FT −measurable, E∗[B−1
T Hϕ] ≤ x}

Define probability measure Q∗ on (Ω,G) by

dQ∗

dP ∗ =
H

BTE∗[B−1
T H]

By the Neyman-Pearson Lemma the [0, 1] valued FT - measurable random

variable

ϕ = 1⎧⎨⎩ dP

dP ∗>z0
dQ∗

dP ∗

⎫⎬⎭
+ k1⎧⎨⎩ dP

dP ∗=z0
dQ∗

dP ∗

⎫⎬⎭
and

k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if Q∗
(
dP

dP ∗ = z0
dQ∗

dP ∗

)
= 0,

α−
dP

dP ∗>z0
dQ∗

dP ∗

Q∗

⎛⎝ dP

dP ∗=z0
dQ∗

dP ∗

⎞⎠ , if Q∗
(
dP

dP ∗ = z0
dQ∗

dP ∗

)
> 0.

Define

y0 =
z0

E∗[B−1
T Y ],

ξ0 = y0B
−1
T Z∗

TY.

With proposition 3.4.1 we obtain the following the following theorem.

Theorem 3.4.1 Let G be a random variable satisfying the condition

G = H

and 0 < E∗[B−1
T H] < ∞. Assume that P (ξ0 = 1) = 0. Then the perfect

hedging portfolio for H1{ξ0<1} solves the quantile hedging problem.

We have derived the solution for the quantile hedging problem in the default

free case. Next consider the defaultable case with zero recovery rate. That is,
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in the case of default the client will receive a payout of 0. In this case G is of

the form

G = H1{τ>T}.

We need to adapt the convex duality approach first introduced by Cvitanic

and Karatzas in [6]. Note that ϕ ∈ R, y ≥ 0, L ∈ L,

E[ϕ] = E[ϕ(1− LG)] + E[LGϕ] ≤ E[(1− yLH)+] + yx (3.11)

The following dual problem arises:

inf
y≥0,l∈L

{E[(1− yLG)+] + yx}

In order for this to work we have to consider L̄ instead of L defined by

L̄ ={L ∈ L1 : E[BTL] ≤ 1, E[LG]

≤ sup
L1∈L

E[L
′
G], E[LHϕ] ≤ x (ϕ ∈ R)}

Where L1 = L1(Ω,G, P ). Then the set L̄ includes L and is convex and

closed under almost sure convergence. Therefore the existence of a solution

(L̂, ŷ) to the dual problem

inf
y≥0,L∈L

{E[(1− yLG)+] + yx}

in the class L̄ × R+ is guaranteed. There is also no duality gap for some

C : Ω → [0, 1] the random variable

ϕ̂ := 1{ŷL̂G<1} + C1{ŷL̂G=1}

is a solution to the randomized version of the Neyman-Pearson problem.

Also, if P (ŷL̂G = 1) = 0 then by a previous proposition is a super-hedging

portfolio of for G1ŷL̂G<1 becomes a solution to the quantile hedging prob-

lem.Since the abstract class L̄ is difficult to work with. We need to choose a
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more convenient class to work with. Then we need to find L̄1 ⊃ L such that

there is an explicit solution to the dual problem (L̂, ŷ) ∈ L̄1 × R+ To do this,

introduce the class L̄ defined by the closed hull of L with respect to the L1

norm. Since L is convex, then so is L̄1. Therefore, L̄1 is a closed set in L1.

Then the Neyman-Pearson problem before is turns into

max
ϕ∈R1

E[ϕ]

where

R1 = {ϕ : 0 ≤ ϕ ≤ 1 a.s, supL∈L̄1
E[LGϕ] ≤ x}

Similar to the previous proposition we have the following result.

Proposition 3.4.2 Suppose that there exists A ∈ GT and π̂ ∈ A(x) such

that 1A solves the Neyman-Pearson problem and Xx,π̂
T ≥ G1A a.s. Then π̂ is

optimal for the quantile hedging problem.

Then the dual problem is modified to be

inf
y≥0,L∈L̄1

{E[(1− yLG)+] + yx}.

Define

L̂ = B−1
T Z∗

T1{τ>T}e
∫ T
0 µtdt

Then we can state the following.

Theorem 3.4.2 Suppose that G = H1{τ>T} with E∗[B−
T 1H] < ∞. Then L̂

defined above solves

inf
L∈L̄1

E[(1− yLG)+].

In addition, there exists ŷ > 0 that minimizes

h(y) := E[(1− yL̂G)+] + yx
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over y ≥ 0. The pair (ŷ, L̂) is optimal for the minimization problem above.

Proof. Then since kt > −1 and L̂ = limk↘−1 L
k
T a.s and in L1. For k ∈ D

E[1 ∧ (yLk
TH)] =E[1 ∧ (yZ∗

TZ
k
THB

−1
T )1τ>T ]

=E[1 ∧ (yZ∗
T e

−
∫ T
0 ksµsdsHB−1

T )1τ>T ]

≤E[1 ∧ (yZ∗
THB

−1
T )1τ>T ]

=E[1 ∧ (yL̂G)].

Therefore by Fatou’s Lemma and the fact that (1− z)+ = 1− 1∧ z we find

that

E[1− yLG]+ = 1− E[1 ∧ yLG]

Next, we need to prove the existence of y. We claim that there exists

y0 > 0 such that h(y0) < 1. We assume that it does not exist and we find

that E[1 ∧ (yL̂G) ≤ yx for every y > 0. We then divide by y and then let

y ↘ 0 we obtain that E[L̂G] ≤ x. This however, contradicts the assumption

x < E∗[B−1
T H] as

E[L̂G] = E[ŷ1B
−1
t Z∗

T e
∫ T
0 µtdtHP (τ > T |Ft)] = E∗[B−1

T H].

The existence of the minimizer ŷ > 0 now follows from the convexity of h

and the facts that h(0) = 1 and h(+∞) = +∞.

The optimality of the pair (ŷ, L̂) is clear and so the proof omitted.

Let ŷ > 0 be the as in the previous theorem and consider the FT measurable

random variable ξ1 defined by

ξ1 = ŷ1B
−1
t Z∗

T e
∫ T
0 µtdtH

Then we introduce the following theorem that summarizes the results for

the quantile hedging problem.
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Theorem 3.4.3 Suppose that G = H1{τ>T} with E∗[B−
T 1H] < ∞. and that

P (ξ1 = 1) = 0. Then the perfect hedging portfolio for H1ξ1<1 is optimal for

the quantile hedging problem

Proof. Here we follow the derivations from [6] and [15].

The set

M := {(L, y) ∈ L1 ×R : L ∈ L̄, y ≥ 0}

is closed and convex in the Banach space L1 × R with the norm ∥(L, y)∥ :=

E[L] + y. In addition the functional

L1 × R ∋ (L, y) ↦→ U(L, y) := yx+ E(1− L)+

is proper, convex and lower semi-continuous on L1 × R and

inf
(L,y)∈M

U(yLH, y) = U(ŷL̂H, ŷ).

Denote L∞(Ω,G, P ) by L∞. Let us consider the set M∗ = {(yLH, y) :

(L, y) ∈ M}, the normal cone

N (ŷL̂G, ŷ) :=
{
(ϕ, u) ∈ L∞ ×R : E[ŷL̂Gϕ] + ŷu ≥ E[yLHϕ] + yu, (L, y) ∈ M

}
to the set M as (ŷL̂G) and the sub-differential

∂U(ŷL̂G, ŷ) :=
{
(ϕ, u) ∈ L∞ ×R : U(ŷL̂G, ŷ)− U(L, y)

≤ ŷE[ϕ(ŷL̂− L)] + u(ŷ − y), (L, y) ∈ L1 ×R
}

at this point. Then, from Corollary 4.6.3. of Aubing and Eckeland [1], we

have

(0, 0) ∈ ∂U(ŷL̂G, ŷ) +N (ŷL̂G, ŷ).

This implies that there exists (ϕ̂, û) ∈ L∞ × R such that (ϕ̂, û) ∈ N (ŷL̂G, ŷ)
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and ( ϕ̂,−û) ∈ ∂U(ŷL̂G, ŷ). Hence

E[Gϕ̂(ŷL̂− yL)] + (ŷ − y)û ≥ 0, (L, y) ∈ M (3.12)

(x+ û)(ŷ−y) ≤ E[ϕ̂(L− ŷL̂G)]+E(1−L)+−E(1− ŷL̂G)+, (L, y) ∈ L1×R.
(3.13)

By letting y → ±∞, we see that 3.13 hold only if û = −x. From 3.12

û = −x, y = ŷ ± δ(δ > 0), and L = L̂, we have

E[Gϕ̂L̂] = x (3.14)

Therefore, 3.12 with y = ŷ, we get

E[Hϕ̂L] ≤ x, L ∈ L̄. (3.15)

Then 3.13 becomes

E[ϕ̂(L− ŷL̂G)] + E(1− L)+ − E(1− ŷL̂G)+ ≥ 0, L ∈ L1 (3.16)

Then 3.16 for L = ŷL̂G + 1A for some A ∈ G, we see that 0 ≤ E[ϕ̂1A].

Therefore, ϕ̂ ≥ 0 a.s. In the same note, looking at 3.16 for L = ŷL̂G − 1A

for some A ∈ G and using (x + y)+ ≤ (x)+(y)+ for x, y ∈ R, we see that

0 ≤ E(1 − ϕ̂)1A . Thus ϕ̂ ≤ 1 a.s. This combined with 3.15 we have that

ϕ̂ ∈ R
Then 3.16 implies that E[ϕ̂(1− ŷL̂G)] ≥ E(1− ŷL̂G)+. Then ,

ϕ̂(1− ŷL̂H) = (1− ŷL̂G) a.s.

From this and ϕ̂ ∈ R we find that ϕ̂ = 1 on {ŷL̂G < 1} and ϕ̂ = 0 on

{ŷL̂G > 1}. Therefore there must some [0, 1] - valued random variable C such

that the representation

ϕ̂ = 1{ŷL̂G<1} + C1{ŷL̂G<1}

holds. In addition, we have that E[ϕ̂] = E[(1 − ŷL̂G)+] + ŷx. This and
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3.11 imply that ϕ̂ is optimal for the Neyman-Pearson type problem and that

there is no duality gap due to the assumption of the theorem. Moreover,

since Gϕ̂ = Y 1{ξ<1}1{τ>T}, we can apply Proposition 3.4.1 we see that that

a superhedging portfolio for Gϕ̂ is given by a perfect hedging portfolio for

H1{ξ<1}. With this and 3.3.1 we see that the theorem has been proven.
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Chapter 4

Case of One Risky Asset

In this chapter we use the results previously derived results in the case of a

single risky asset. We study a defaultable insurance market model with three

sources of uncertainty.

1. Standard market dynamics of the Black-Scholes market.

2. Default time of the insurer.

3. Mortality of the client.

4.1 Model

4.1.1 Default Free Black Scholes Model

Consider a financial market consisting of two assets B and S, defined by their

prices (Bt)0≤t≤T and (St)0≤t≤T . Asset B is typically referred to a Bank account

or some other risk free investment such as a money market portfolio which is

assumed to have a constant interest rate r and S is a risky asset. Here we call

it the (B, S)-market and assume its price evolution is as follows:

dSt = St(mdt+ σdWt), t ∈ [0, T ], S0 ∈ (0,∞) (4.1)

dBt = rBtdt, t ∈ [0, T ], B0 = 1 (4.2)
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Where (Wt)0≤t≤T is a standard Brownian motion on the complete proba-

bility space (Ω,F = (F)0≤t≤T ⊆ G, P ) and m and σ are constant. We also

assume that σ > 0. In the interest of simplicity we assume that the interest

rate r = 0.

4.1.2 Default Time

The default tome construction is the same as in the previous chapter. The

default time is denoted by τ , is a positive G random time with P (τ = 0) = 0

and P (τ > 0) > 0 for all t ∈ [0, T ]. We again use progressive enlargements of

the filtrations and define

Gt = Ft ∨Ht

where Ht := σ(τ ∧ s, 0 ≤ s ≤ t) for t ∈ [0, T ]. We call this market the

(B, S, τ)-market. Therefore the defaultable (Ω,G = (G)0≤t≤T ⊆ G, P )
As before we make the assumption that the default time τ is indepen-

dent of (Wt)0≤t≤T . Levy’s theorem together with this assumption imply that

(Wt)0≤t≤T is a (G, P ) standard Brownian motion. This along with the martin-

gale representation theorem imply that every F- martingale is a G martingale.

Therefore, the no arbitrage condition is satisfied for the defaultable (B, S, τ)

market as on the (B, S) market.

As (Wt)0≤t≤T is a (G,P ) standard Brownian motion, by Girsanov’s theorem

Wt := Wt +
m

σ
t, t ∈ [0, T ]

is a (G, P )- standard Brownian motion, where

dP ∗

dP
:= Z∗

T

and

Z∗
t = exp(−m

σ
Wt −

1

2
(
m

σ
)2t), t ∈ [0, T ] (4.3)

By [15] this defaultable market is incomplete on (Ω,G, P ) with the follow-
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ing class of of equivalent martingale measures:

Q := {Qk : k ∈ D}

where

dQk

dP
:= Z∗

TZ
k
T , k ∈ D

with

Zk
t = 1 +

∫ t

0

ksZ
k
s−dMs, t ∈ [0, T ]

and

D = {(kt)0≤t≤T : bounded,G− predictable , kt > −1dt× dP a.e.}

As in the previous chapter we can also express Zk
t in the following form

Zk
t = (1 + kτ1{τ≤t})exp(−

∫ τ∧t

0

ksµsds)

4.1.3 Mortality

The final source of uncertainty in our model is death risk of the client. We

assume that is the client passes away before option maturity T none of his or

her relatives will be able to exercise the option on their behalf. Therefore, the

more likely the client to survive to time T the higher should be the premium

charged. As in actuarial science, we denote the death time of the client as T (x).

This is a positive random variable defined on probability space (Ω̃, F̃, P̃ ). Then
the following

tpx = P (T (X) > T ) (4.4)

is called the survival probability of the client. This is the probability of

a client whose age is x to survive to time T. These types of quantities are
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estimated by actuarial scientists and are listed in ”Life Tables”. Therefore

when trying to account for type of uncertainty we refer to actuarial science

literature. However, we do make the following assumptions.

Assumption 1: We assume that the death time of client T (x) is indepen-

dent of the market. That is the stochastic process S1 is independent of the

random variable T (x). This is quite a natural assumption as the underlying

developments in the market typically have little to do with the physical well

being of market participants.

Assumption 2: Similar to the first assumption, we assume that T (x)

is independent of default time τ . This is a reasonable assumption as a sin-

gle insurance company going bankrupt and defaulting on their liabilities will

typically not affect the health of the clients.

4.2 The Problem

There are many types of equity-linked life insurance contract but in this thesis

we are dealing with a class of contracts called pure endowment contracts. Such

a contract has the following payoff

H1{T (x)>T}

where H is an F̂T measurable random variable which corresponds to a

payment that the client receives if he or she survives till time T .

Next, we extend this model the case when the insurer has a possibility of

default. This contract has the following payoff function

H1{T (x)>T}1{τ>T}

Therefore, for the client to receive a payment at time T . He/she will have

to survive to time T and the insurer and the insurer should default up to this

time.

1. What is the price that the insurance company should charge the client
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to sell this contract to him/her. In other words, what is the price of such

a contract?

2. How would the insurance company go about hedging such a contract?

4.3 Hedging Mortality Risk

By far the easiest of the three types of uncertainties to deal with is that

of mortality risk of a given client. While the actuarial science literature is

rich with different methods of modelling and mitigating this type of risk here

we focus on the Brennan-Schwartz approach. With this approach we simply

assume that the number of contracts the insurer holds is large enough to use

the strong law of large numbers. More concretely, we suppose

n∑
i=1

1{Ti(x)>T} ≈ nTpx

We also would like to know how should the insurance company hedge such

exposure if it has many of such contracts. The first will be quantile hedging

which looks like the following

maxP (Xu,π
T ≥ H1{τ>T}1{T (x)>T}).

Then the problem to hedge these contracts simplifies to nTpxH1{τ>T}. To

hedge the credit risk ofH.1{T (x)>T}1{τ>T} we apply superhedging techniques to

H1{τ>T} in the incomplete market (B, S1, S2, τ) on probability space (Ω,G, P ).
Then the initial value of the portfolio and the hedging portfolio are

U
′

0 := nTpxU0

and

π
′
:= nTpxπ

where U0 and π are corresponding to the initial value and super hedging

portfolio for H.1τ>T . Then the insurance company should superhedge nTpx

33



short positions of H.1τ>T in the defaultable market.

4.4 Hedging Portfolio

The hedging portfolio follows the standard definition as in [10].

1. An G-portfolio process is an G - predictable process πt := (πt)0≤t≤T

satisfying ∫ T

0

|πt|2dt <∞, P − a.s

2. (πt)0≤t≤T is called self-financing if its corresponding wealth process (Xx0,π
t )0≤t≤T ,

with initial wealth x0, with initial wealth x0, is defined by

Xx0,π
t = x0 +m

∫ t

0

πsds+ σ

∫ t

0

πsdWs, 0 ≤ t ≤ T

3. A self-financingG - portfolio (π)0≤t≤T is called F-admissible for the initial

wealth x0 > 0, if the corresponding wealth process (Xx0,π
t )0≤t≤T satisfies

Xxo,π
t ≥ 0, P − a.s.

The set of all such portfolios with initial wealth x0 is denoted by A(x0)

4.5 Final Formula

The premium the insurance company receives is TpxU0 for a single contract

H1{τ>T}1{T (x)>T}. Thus we need to calculate U0 the initial cost of hedging

H1{τ>T}. As mentioned earlier the superhedging cost of this contract is equiv-

alent to the cost of hedging H without the risk of default. We need to do

better than this as the market participants will take the probability of default

into account when entering into new contracts. Thus we apply the results of

Chapter 2 and use quantile hedging. Therefore our goal is

maxP (Xu,π
T ≥ H1{τ>T}1{T (x)>T}) (4.5)
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under the constraint

u ≤ Ũ0 and π ∈ A(u) (4.6)

where Ũ0 <T pxE
∗[H], and U0 is limit of how much capital the insurer has

available to hedge a single contract.

To solve the problem 4.5 under the constraint 4.6 notice that for any π ∈
A(u) and u ≤ U0:

{
Xt ≥ H1{τ>T}1{T (x)>T}

}
=
({
Xu,π

T ≥ H1{τ>T}
}
× {T (x) > T}

)
∪ (Ω× {T (x) ≤ T})

with this and the independence of {S, τ, T (x)} imply that 4.5 and 4.6 are

equivalent to the following for π ∈ A(u)

nTpx max
u<U0

P (Xu,π
t ≥ H1{τ>T})) + (1− nTpx) (4.7)

Therefore we treat the survival probability independently and thus we can

only consider the following

max
u<U0

P (Xu,π
t ≥ H1{τ>T})) (4.8)

for π ∈ A(u). Which is the same problem considered in Chapter 2. In this

case we present a solution to the problem in the case of H = (ST −K)+, for

constant K > 0.

Lemma 4.5.1 Let B, S and τ be defined as before. If we consider the quantile

hedging of (St −K)+1{τ>T}:

max
u<U0

P (Xu,π
t ≥ H1{τ>T})) (4.9)

for π ∈ A(u). Where,
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U0 <T pxE
∗[(St −K)+] < E∗[(ST −K)+] = sup

Q∈Q
EQ[(ST −K)+1{τ>T}]

This problem has the following solution

1. If m
σ2 ≤ 1 :

max
u≤U0

P (Xu,π
t ≥ H1{τ>T}) = Φ(

b1 − m
σ
T

√
T

) +

(
1− ϕ(

b1 − m
σ
T

√
T

)

)
P (τ ≤ T )

where b1 is defined by

b1 :=
1

σ
ln(

c1
S0

) +
1

2
σT

and c1 > K is the solution to the following equation:

(x−K)+ = cP (τ > T )x
m
σ2 (4.10)

where c is a constant described later in the proof.

2. If m
σ2 > 1 :

max
u<U0

P (Xu,π
t ≥ H1{τ>T}))

= (1− P (c1 ≤ ST ≤ c3)) + P (c2 < ST ≤ c3)P (τ ≤ T )

where c3 > c2 > K are solutions to 4.10, and b2 and b3 defined similarly

to b1

Proof. Using Nakano’s original results without the need for the generalized

version of Chapter 2. We see that the problem 5.9 has the following solution:

P ((ST −K)+(1{ξ<1} − 1{τ>T}) ≥ 1) (4.11)

with

U0 = E∗[(ST −K)+1{ξ<1}] (4.12)
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Since we assumed that interest rate, r = 0, ξ looks like the following

{ξ < 1} = {yZ∗
T e

∫ T
0 µtdt(ST −K)+ < 1} (4.13)

Then using our definition of the default of probability and the fact that we

can rewrite the risk neutral density Z∗
T as a function of ST .

ST =S0exp
(
σWT + (m− 1

2
σ2)T

)
Z∗

T =c ∗ S
− m

σ2

T

where c1 is some constant of parameters of our model that are known at

T = 0

Then 4.13 can be rewritten as the following

{
(ST −K)+ < cS

m
σ2

T P (τ > T )
}

(4.14)

1. m
σ2 ≤ 1 : In this case 4.10 has only one solution, c1. From 4.14,

{ξ < 1} = {ST < c1} = {W ∗
T < b1} = {W ∗

T < b1} = {WT < b1 −
m

σ
T}

(4.15)

In order to use Nakano’s results as we are we have to show that E∗[H] <
+∞ and P (ξ = 1) = 0. The first condition is satisfied as

E∗[(ST −K)+
]
< +∞.

The second condition is also satisfied as

P (ξ = 1) = P (WT = b1 −
m

σ
T ) = 0

thus the assumptions are satisfied. We can then perform the following

decomposition
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(ST −K)+1{ξ<1} = (ST −K)+1{ST<c1}

=(ST −K)+ − (ST − c1)
+ − (c1 −K)1{ST>c1} (4.16)

Using 4.12 and 4.16 we can apply the Black Scholes formula and deter-

mine c1:

U0 =E ∗ [(ST −K)+1{ξ<1}]

=S0Φ

(
lnS0

K
+ 1

2
σ2T

σ
√
T

)
−KΦ

(
lnS0

K
− 1

2
σ2T

σ
√
T

)
(4.17)

−S0Φ

(
lnS0

c1
+ 1

2
σ2T

σ
√
T

)
+KΦ

(
lnS0

c1
− 1

2
σ2T

σ
√
T

)

Where ϕ is the standard normal distribution function defined by

ϕ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy, x ∈ [−∞,∞]

We have the result that the perfect hedging portfolio for (ST−K)1{ξ<1} =

(ST −K)+1{ξ<1} solves the hedging problem defined by 4.5. Now to find

the probability of the successful hedge we can do the following

max
u<U0

P (Xu,π
T ≥ H1{τ>T})

= P
(
ST −K)+(1{ST<c1} − 1{τ>T}) ≥ 0

)
= 1− P ((ST ≥ 0) ∩ (τ > T ))

= P (ST < c1) + (1− P (ST < c1))P (τ < T )

Thus proof of part (i) is complete.

2. m
σ2 > 1 : these case there are two distinct solutions c2 and c3. Then,
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{ξ < 1} = {ST < c2} ∪ {ST > c3} = {W ∗
T < b2} ∪ {W ∗

T > b3} (4.18)

In this case we again see that the two assumptions are satisfied. Namely,

E∗[H] = E∗[(ST −K)+] < +∞

and also,

P (ξ = 1) = P (WT = b2 −
m

σ
T ) + P (WT = b3 −

m

σ
T ) = 0

and thus Nakano’s results can be applied.

Similar to the first case 5.33 implies:

(ST −K)+1{ξ<1} =(ST −K)+1{ST<c2} + (ST −K)+1{ST>c3}

=(ST −K)+ − (ST − c2)
+ + (ST − c3)

+ (4.19)

−(c2 −K)1{ST>c2} + (c2−K)1{ST>c3}

Then c2 and c3 can be determined by

U0 =E ∗ [(ST −K)+1{ξ<1}]

=S0Φ

(
lnS0

K
+ 1

2
σ2T

σ
√
T

)
−KΦ

(
lnS0

K
− 1

2
σ2T

σ
√
T

)
(4.20)

−S0Φ

(
lnS0

c2
+ 1

2
σ2T

σ
√
T

)
+KΦ

(
lnS0

c2
− 1

2
σ2T

σ
√
T

)

+S0Φ

(
lnS0

c3
+ 1

2
σ2T

σ
√
T

)
−KΦ

(
lnS0

c3
− 1

2
σ2T

σ
√
T

)
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Once we have the solutions to c2 and c3 we can determine b2 and b3

then, as before, we can find the probability of a successful hedge with

the following

max
u<U0

P (Xu,π
T ≥ H1{τ>T})

= P
(
(ST −K)+(1{ST<c2}∪{ST>c3} − 1{τ>T}) ≥ 0

)
= 1− P ((c2 ≤ ST ≤ c3) ∩ (τ > T ))

= 1− P ((c2 ≤ ST ≤ c3))P (τ > T )

=
(
1− P (c2 ≤ ST ≤ c3)

)
+ P (c2 ≤ ST ≤ c3)P (τ ≤ T )

With this, the proof is concluded.

WE now having everything we need to price the original contract of interest.

Namely, H = max(ST , K). This contract is called a pure endowment contract

with guarantee K.

We can rewrite the contract H in the following way

H(τ, T (x)) :=max(ST , K)1{τ>T}1{T (x)>T}

=(K + (ST −K)+)1{τ>T}1{T (x)>T} (4.21)

The value of the contract 4.21 at time zero is

(τ,U)Ux :=TpxE
∗[K + (ST −K)+]

=Tpx(K + S0ϕ(d+)−Kϕ(d−)) (4.22)

where

d± =
1

σ
√
T
ln(

S0

K
)± 1

2
σ
√
T
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TpxE
∗[(ST −K)+] =(τ,U) Ux −T pxK (4.23)

This implies we can superhedge K1{τ>T}1{T (x)>T} by the initial cost of

TpxK and we can focus on the embedded call option (ST−K)+1{τ>T}1{T (x)>T}.

Then the quantile hedging problem is

maxP (Xu,π
T ≥ (ST −K)+1{τ>T}1{T (x)>T}) (4.24)

given that

u ≤ U0, and π ∈ A(u) (4.25)

where U0 <T pxE
∗[(ST − K)+] =τ,T Ux −T pxK is fixed upper bound on

the initial capital available to hedge the option. Thus the final premium that

will be charged by the insurance company is U0 +T pxK. With the risk of the

contract being given by 4.14.

By substituting H = (ST −K)+ and using Lemma 4.5.1 we arrive to the

following theorem.

Theorem 4.5.1 The quantile hedging problem 4.24 under the constraints 4.25

has the following solution:

1. If m
σ2 ≤ 1 :

max
u≤U0

P
(
Xu,π

T ≥ (ST −K)+1{τ>T}1{T (x)>T}
)

=T px

[
ϕ
(b1 − m

σ
T

√
T

)
+
(
1− ϕ

(b1 − m
σ
T

√
T

))
P (τ ≤ T

]
+ (1−T px)

where b1 is a constant determined by 4.10.

2. if m
σ2 > 1 :

max
u≤U0

P
(
Xu,π

T ≥ (ST −K)+1{τ>T}1{T (x)>T}
)

=T px [(1− P (c2 ≤ ST ≤ c3)) + P (c2 ≤ ST ≤ c3)P (τ ≤ T )] + (1−T px)

where c2 and c3 are constants determined by 4.10.

41



We extend the practicality of this theory by allowing the insurance com-

pany to set a lower bound age of client given a shortfall risk ϵ and initial capital

U0.

Given shortfall risk ϵ ∈ [0, 1] and initial capital U0 ∈ (0, E∗[(ST − K)+])

then we can find an acceptable survival probability Tpx:

1. If m
σ2 ≤ 1 : We can find c1 and using part (i) of theorem 5.3.1 and given

shortfall risk. We can find the following

1− ϵ =T px

[
ϕ
(b1 − m

σ
T

√
T

)
+
(
1− ϕ

(b1 − m
σ
T

√
T

))
P (τ ≤ T

]
+ (1−T px)

which we can then solve for Tpx and find the acceptable TPx of clients.

2. If m
σ2 ≤ 1 : We can do the same with

1−ϵ =T px [(1− P (c2 ≤ ST ≤ c3)) + P (c2 ≤ ST ≤ c3)P (τ ≤ T )]+(1−Tpx)

Thus, results presented thus far can be used in a multitude of ways de-

pending on which of TPx, U0 or ϵ are known. Once we know 2 of the three we

can use the results provided thus far and find a lower bound for the others.
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Chapter 5

Case of Two Risky Assets

This Chapter deals with a similar problem to the previous with the exception

that we have 2 risky assets instead of one. As before we are considering

three distinct sources of risk: the market risk of the Black-Scholes Market, the

default risk of the insurer and the mortality associated with the client.

5.1 Market Model

The framework of the market model is that of a financial Market that consists

of one risk less asset, a bank account and several risky assets

dS1(t) =S1(t)(µ1dt+ σ1dW
1
t ),

dS2(t) =S2(t)(µ2dt+ σ2dW
2
t )

We assume that our market is driven by two different but correlated Wiener

ProcessesW 1 andW 2. The correlation of the two Wiener Processes is W 1
t and

W 2
t is ρt where ρ2 < 1.

All processes are given on a standard Stochastic Basis (Ω,F ,F = (Ft)t≥0, P )

and are adapted to the filtration F generated by W i
t . We also assume that the

market coefficients µ1, µ2, σ1 and σ2 are constant.

In general, there are two ways to set up a multidimensional Black-Scholes

market. One, in which we consider independent Wiener processes as we did
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in Chapter 2 before and one where we consider correlated Wiener processes.

The reason we switch from one to the other depends on which form of the risk

neutral density is more convenient to use. We note that from Theorem 7 in [7]

we can go from one market type to another by transforming the covariance

matrix.

As with the usual case with option pricing we need to consider risk neutral

probability measures denoted by P ∗. Under these risk neutral measures the

expected returns of assets S1 and S2 are equal to the risk free interest rate r.

The prices calculated with respect to P ∗ are also arbitrage free if such a P ∗

exists and are unique if such P ∗ is unique. By Girsanov theorem we can find a

risk neutral density or deflator Z∗
t =

dP ∗
t

dPt

of the martingale measure P ∗ using

methodology given in [10]. We can then express Z∗ as a stochastic exponent

of martingale process N :

Z∗
t = ε(Nt)

We are dealing with two Brownian motion so the martingale takes the form

Nt = ϕ1W
1
t + ϕ2W

2
t . In order be able solve for ϕ1 and ϕ2 we can write

the processes Bt, S
1
t and S2

t as stochastic exponents of processes h, H1
t , H

2
t

respectively

h = rt, H i
t = µit+ σiW

i
t .

Using the method of finding martingale measures which states that the

process

ψ(h,H,N) = H i
t − ht +Nt +

⟨
(h−H i)c, (h−N)c

⟩
t

is a martingale with respect to P. Using this we can find constants ϕ1 and

ϕ2.

For ψ1 and ψ2 we have the following expressions:
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ψ1 =µ1t+ σ1W1(t)− rt+ ϕ1W1(t) + ϕ2W2(t) + σ1ϕ1t+ σ1ϕ2ρt

ψ2 =µ2t+ σ2W2(t)− rt+ ϕ1W1(t) + ϕ2W2(t) + σ1ϕ1t+ σ1ϕ2ρt

For these to be martingales, the terms with ”t” must be equal to zero. In

other words

µ1t− rt+ σ1ϕ1t+ σ1ϕ2ρt = 0

µ2t− rt+ σ2ϕ2t+ σ2ϕ1ρt = 0

After solving this system of equations we have

ϕ1 =
r(σ2 − σ1ρ) + ρµ2σ1 − µ1σ2

σ1σ2(1− ρ2)

ϕ2 =
r(σ1 − σ2ρ) + ρµ1σ2 − µ2σ1

σ1σ2(1− ρ2)

As the interest rate, r is assumed to be zero.

ϕ1 =
ρµ2σ1 − µ1σ2
σ1σ2(1− ρ2)

ϕ2 =
ρµ1σ2 − µ2σ1
σ1σ2(1− ρ2)

Therefore in the Stochastic Exponent for Z∗
t becomes

Z∗
t =

dP ∗
t

dPt

= ε(Nt) = ε(ϕ1W
1
t + ϕ2W

2
t )

=exp

{
ϕ1W

1
t + ϕ2W

2
t − 1

2
(ϕ2

1 + ϕ2
1 + 2ρϕ1ϕ2)t

}
(5.1)
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5.2 Default Time and Mortality

As before we have default time of the insurer as well as the mortality of the

client as a source of uncertainty in our model. Please refer to Chapter 2 and

3 for more details on how these are defined.

5.3 Main Formula and Results

The contract we will be attempting to hedge is called the Pure Endowment

with a stochastic guarantee. It allows the client to gain exposure to two types

of assets simultaneously. The first asset is meant to be seen as the riskier

of the two but with a higher return and higher standard deviation than the

second. Such a contract has the following payoff

H := max{S1
T , S

2
T}1{τ>T}1T (x)>T (5.2)

where we assume that

µ1 > µ2 and σ1 > σ2.

Note that

max{S1
T , S

2
T} = S2

T + (S1
T − S2

T )
+ (5.3)

Which implies that we can write 5.2 as the following

H = max{S1
T , S

2
T}1{τ>T}1T (x)>T = S1

T1{τ>T}1T (x)>T+(S1
T−S2

T )
+1{τ>T}1T (x)>T

Hence, once we take the expectation with respect to the risk neutral density

the first term becomes

E(S1
T1{τ>T}1T (x)>T ) = S1

0P (τ > T )P (T (x) > T )

which can be be estimate at time t = 0 and as such we can focus on the
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problem of hedging of

H ′ = (S1
T − S2

T )
+1{τ>T}1T (x)>T (5.4)

We introduce the ratio

YT =
S1
T

S2
T

which follows the following dynamics

YT =
S1
T

S2
T

=
S1
0

S2
0

exp

{
−σ

2
1 − σ2

2

2
T + σ1W

1∗
T + σ2W

2∗
T

}
(5.5)

where

W ∗
T =

σ1W
1∗
T − σ2W

2∗
T

σ
(5.6)

where σ = σ2
1 + σ2

2 − 2σ1σ2ρ. Then W ∗
T is a new Brownian motion with

respect to P ∗ with the following covariances

cov(W ∗
t ,W

1∗
t ) =E∗[W ∗

t ,W
1∗
t ] =

(σ1 − σ2ρ)t

σ

cov(W ∗
t ,W

2∗
t ) =E∗[W ∗

t ,W
2∗
t ] =

(σ1ρ− σ2)t

σ

the we can rewrite 5.5 as the following

YT =
S1
0

S2
0

exp

{
−(σ2

1 − σ2
2)

2
T + σW ∗

T

}
(5.7)

max
u<U0

P (Xu,π
t ≥ H1{τ>T})) (5.8)

for π ∈ A(u). Which is the same problem considered in Chapter 2. In this

case we present a solution to the problem in the case of H = (ST −K)+, for

constant K > 0.

Lemma 5.3.1 Let B, S1, S2 and τ be defined as before. If we consider the

quantile hedging of (S1
T − S2

T )
+1{τ>T}:
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max
u<U0

P (Xu,π
t ≥ H1{τ>T})) (5.9)

for π ∈ A(u). Where,

U0 <T pxE
∗[(S1

T − S2
T )

+] < E∗[(S1
T − S2

T )
+] = sup

Q∈Q
EQ[(S1

T − S2
T )

+1{τ>T}]

This problem has the following solution

1. If ϕ1

σ1
≥ −1 :

The hedging price is

U0 =E ∗ [(S1
T − S2

T )
+1{τ>T}]

=S1
0Φ

⎛⎝ lnS1
0

S2
0
+ 1

2
σ2T

σ
√
T

⎞⎠− S2
0Φ

⎛⎝ lnS1
0

S2
0
− 1

2
σ2T

σ
√
T

⎞⎠ (5.10)

−S1
0Φ

⎛⎝ ln S1
0

c1S2
0
+ 1

2
σ2T

σ
√
T

⎞⎠+ S2
0Φ

⎛⎝ ln S1
0

c1S2
0
− 1

2
σ2T

σ
√
T

⎞⎠
with the probability of a successful hedge being

max
u≤U0

P (Xu,π
t ≥ H1{τ>T}) =

(
1− P

(
S1
T

S2
T

≤ c1

))
+ P

(
S1
T

S2
T

≤ c1

)
P (τ ≤ T )

and c1 > K is the solution to the following equation:

x−α = g · (x− 1)+. (5.11)

where g is a constant described later in the proof

2. If ϕ1

σ1
< −1 : The hedging price is
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U0 =E ∗ [(S1
T − S2

T )
+1{τ>T}]

=S1
0Φ

⎛⎝ lnS1
0

S2
0
+ 1

2
σ2T

σ
√
T

⎞⎠− S2
0Φ

⎛⎝ lnS1
0

S2
0
− 1

2
σ2T

σ
√
T

⎞⎠ (5.12)

−S1
0Φ

⎛⎝ ln S1
0

c2S2
0
+ 1

2
σ2T

σ
√
T

⎞⎠+ S2
0Φ

⎛⎝ ln S1
0

c2S2
0
− 1

2
σ2T

σ
√
T

⎞⎠
+S1

0Φ

⎛⎝ ln S1
0

c3S2
0
+ 1

2
σ2T

σ
√
T

⎞⎠− S2
0Φ

⎛⎝ ln S1
0

c3S2
0
− 1

2
σ2T

σ
√
T

⎞⎠
with the probability being

max
u<U0

P (Xu,π
t ≥ H1{τ>T}))

=

(
1− P (c1 ≤

S1
T

S2
T

≤ c3)

)
+ P

(
c2 ≤

S1
T

S2
T

≤ c3

)
P (τ ≤ T )

where c3 > c2 > 1 are solutions to 5.11

Proof. Here we the results of Chapter 2. Like in the 1 dimensional case they

state that the maximal probability is

P ((ST −K)+(1{ξ<1} − 1{τ>T}) ≥ 1) (5.13)

where

U0 = E∗[(S1
T − S2

T )
+1{ξ<1}] (5.14)

Since we assumed that interest rate, r = 0, ξ looks like the following

{ξ < 1} = {ŷ(S1
T − S2

T )
+Z∗

T e
∫ T
0 µtdt < 1} (5.15)

Note that
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(S1
T − S2

T )
+ = S2

T

(
S1
T

S2
T

− 1

)+

= S2
T (YT − 1)+

Then we can rewrite 5.15 as

{ξ < 1} ={ŷS2
T (YT − 1)+Z∗

T e
∫ T
0 µtdt < 1} (5.16)

=
{
(Z∗

TS
2
T )

−1 ≥ ŷ−1P (τ > T )(YT − 1)+
}

(5.17)

The goal now is to simplify this set in terms of YT . Our approach, as in [13]

is to find ZTS
2
T in terms of YT multiplied by some constant.

To find the ZTS
2
T as a function of YT , we rewrite 5.1 as follows

ZT =exp

{
ϕ1W

1
t + ϕ2W

2
t − 1

2
(ϕ2

1 + ϕ2
1 + 2ρϕ1ϕ2)t

}
=exp

{
ϕ1

(
W 1∗

T − T
µ1

σ1

)
+ ϕ2

(
W 2∗

T − T
µ2

σ2

)}
×exp

{
−1

2
(ϕ2

1 + ϕ2
2 + 2ρϕ1ϕ2)T

}
=exp{ϕ1W

1∗
T + ϕ2W

2∗
T }

×exp
{(

−ϕ1µ1

σ1
+
ϕ2µ2

σ2
+

1

2
(ϕ2

1 + ϕ2
2 + 2ρϕ1ϕ2)

)
T

}
(5.18)

We then use 5.6 and 5.7 to rewrite the term ZTS
2
T in the form gY α

T where

g and α are functions of the model parameters.
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ZTS
2
T = exp

{
ϕ1W

1∗
T − T

ϕ1µ1

σ1
+ ϕ2W

2∗
T − T

ϕ2µ2

σ2

}
×exp

{
−1

2
(ϕ2

1 + ϕ2
2 + 2ρϕ1ϕ2)T

}
×S2

0exp

{
rT − σ2

2

2
T + σW 2∗

T

}
= S2

0exp{ϕ1W
1∗
T + (ϕ2 + σ2W

2∗
t )}

×exp
{
rT − σ2

2
T − ϕ1µ1

σ1
T − ϕ2µ2

σ2
T

}
×exp

{
−1

2
(ϕ2

1 + ϕ2
2 + 2ρϕ1ϕ2)T

}
=

(
S1
0

S2
0

)α

exp

{
σ1αW

1∗
T − σ2αW

2
T − Tα

σ2
1 − σ2

2

σ2

}
(5.19)

×
(
S1
0

S2
0

)α

exp

{
Tα

σ2
1 − σ2

2

2

}
×S2

0exp

{
rT − σ2

2
T − ϕ1µ1

σ1
T − ϕ2µ2

σ2
T

}
×exp

{
−1

2
(ϕ2

1 + ϕ2
2 + 2ρϕ1ϕ2)T

}
= gY α

T

Where g is the constant of the following form

g =
(S2

0)
α+1

(S1
0)

α
exp

{
Tα

(
σ2
1 − σ2

2

2

)
+ rT − σ2

2

2
T

}
(5.20)

×exp
{
−
(
ϕ1µ1

σ1
T +

ϕ2µ2

σ2
T +

1

2
(ϕ2

1 + ϕ2
2 + 2ρϕ1ϕ2)

)}
(5.21)

In 5.19 we have that

σ1 · α = ϕ1 − σ2 · α = ϕ2 + σ2 (5.22)

which leads to the the condition

51



α =
ϕ1

σ1
= −1− ϕ2

σ2
. (5.23)

We can define a new constant g′ as

g′ = ŷ−1 · P (τ > T ) · g. (5.24)

With this we can now represent the set 5.15 as

{ξ < 1} =

{
1

Y α
T

≥ g′ · (YT − 1)+
}

(5.25)

which has the following characteristic equation

x−α = g′ · (x− 1)+. (5.26)

1. ϕ1

σ
≥ −1 : In this case 5.26 has only one solution, c1. From 5.25,

{ξ < 1} = {ST < c1} = {W ∗
T < b1} (5.27)

In order to use Nakano’s results as we are we have to show that E∗[H] <
+∞ and P (ξ = 1) = 0. The first condition is satisfied as

E∗[(S1
T − S2

T )
+
]
< +∞.

The second condition is also satisfied as

P (ξ = 1) = P (W ∗
T = b1) = 0,

thus the assumptions are satisfied. We can then perform the following

decomposition

(S1
T − S2

T )
+1{ξ<1} = (S1

T − S2
T )

+1{YT<c1}

=(S1
T − S2

T )
+ − S1

T + S2
T + (S1

T − S2
T )1{YT<c1}. (5.28)
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We then take the expectations under risk neutral probabilities and obtain

U0 =E
∗(S1

T − S2
T )

+ − E∗S1
T + E∗S2

T + E∗(S1
T − S2

T )1{YT<c1}. (5.29)

The first term of 5.29, E∗(S1
T −S2

T )
+ can be calculated using Margrabe’s

Formula. The second and third terms, E∗S1
T and E∗S2

T are martingales

with respect to the risk neutral density and therefore they are known at

t = 0 as E∗S1
T = S1

0 and E∗S2
T = S2

0 . The last term is more complicated

and requires the use of Lemma 2.3 in [13] . Using which, we obtain

E∗(S1
T − S2

T )1{YT<c1} = E∗(S1
T )1{YT<c1} − E∗(S2

T )1{YT<c1}

= −S1
0

⎛⎝−
[
ln

S1
0

c1S2
0
− σ2

2
T
]

σ
√
T

⎞⎠+ S2
0

⎛⎝−
[
ln

S1
0

c1S2
0
+ σ2

2
T
]

σ
√
T

⎞⎠ (5.30)

With this, the initial price U0 equals

U0 =S
1
0Φ(b+(1))− S2

0(b−(1))− S1
0 + S2

0 + S1
0Φ(−b+(c1))− S2

0(−b−(c1))

=S1
0Φ(b+(1))− S2

0(b−(1))− S1
0 + S2

0 + S1
0(1− Φ(b+(c1)))− S2

0(1− Φ(b−(c1))

(5.31)

U0 =E ∗ [(ST −K)+1{ξ<1}]

=S1
0Φ

⎛⎝ lnS1
0

S2
0
+ 1

2
σ2T

σ
√
T

⎞⎠− S2
0Φ

⎛⎝ lnS1
0

S2
0
− 1

2
σ2T

σ
√
T

⎞⎠ (5.32)

−S1
0Φ

⎛⎝ ln S1
0

c1S2
0
+ 1

2
σ2T

σ
√
T

⎞⎠+ S2
0Φ

⎛⎝ ln S1
0

c1S2
0
− 1

2
σ2T

σ
√
T

⎞⎠
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Where ϕ is the standard normal distribution function defined by

ϕ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy, x ∈ [−∞,∞]

Now to find the probability of the successful hedge we can do the follow-

ing

max
u<U0

P (Xu,π
T ≥ H1{τ>T}

= P

((
S1
T

S2
T

−K

)+
(
1
{
S1
T

S2
T

<c1}
− 1{τ>T}

)
≥ 0

)

= 1− P

((
S1
T

S2
T

≥ 0

)
∩ (τ > T )

)
=

(
1− P

(
S1
T

S2
T

≤ c1

))
+ P

(
S1
T

S2
T

≤ c1

)
P (τ ≤ T )

Thus proof of part (i) is complete.

2. ϕ1

σ
< −1 : these case there are two distinct solutions c2 and c3. Then,

{ξ < 1} =

{
S1
T

S2
T

< c2

}
∪
{
S1
T

S2
T

> c3

}
= {W ∗

T < b2} ∪ {W ∗
T > b3} (5.33)

In this case we again see that the two assumptions are satisfied. Namely,

E∗[H] = E∗

[(
S1
T

S2
T

−K

)+
]
< +∞

and also,

P (ξ = 1) = P (W ∗
T = b2) + P (W ∗

T = b3) = 0

and thus Nakano’s results can be applied.
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Similar to the first case 5.33 implies:

(S1
T − S2

T )
+1{ξ<1} = (S1

T − S2
T )

+1{YT≤c2} + (S1
T − S2

T )
+1{ST≥c3}

= (S1
T − S2

T )
+ − S1

T + S2
T + (S1

T − S2
T )1{YT≤c2} + (S1

T − S2
T )1{YT≥c3}

= (S1
T − S2

T )
+ + (S1

T − S2
T )1{YT≤c2} − (S1

T − S2
T )1{YT≤c3}

(5.34)

as

1{YT≥c2} = 1− 1{YT≤c2}.

Then c2 and c3 can be determined by

U0 =E ∗ [(S1
T − S2

T )
+1{ξ<1}]

=S1
0Φ

⎛⎝ lnS1
0

S2
0
+ 1

2
σ2T

σ
√
T

⎞⎠− S2
0Φ

⎛⎝ lnS1
0

S2
0
− 1

2
σ2T

σ
√
T

⎞⎠ (5.35)

−S1
0Φ

⎛⎝ ln S1
0

c2S2
0
+ 1

2
σ2T

σ
√
T

⎞⎠+ S2
0Φ

⎛⎝ ln S1
0

c2S2
0
− 1

2
σ2T

σ
√
T

⎞⎠
+S1

0Φ

⎛⎝ ln S1
0

c3S2
0
+ 1

2
σ2T

σ
√
T

⎞⎠− S2
0Φ

⎛⎝ ln S1
0

c3S2
0
− 1

2
σ2T

σ
√
T

⎞⎠

Once we have the solutions to c2 and c3 we can determine b2 and b3

then, as before, we can find the probability of a successful hedge with

the following
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max
u<U0

P (Xu,π
T ≥ H1{τ>T})

= P
(
(S1

T − S2
T )

+(1{YT<c2}∪{YT>c3} − 1{τ>T}) ≥ 0
)

= 1− P ((c2 ≤ YT ≤ c3) ∩ (τ > T ))

= 1− P ((c2 ≤ YT ≤ c3))P (τ > T )

=

(
1− P (c1 ≤

S1
T

S2
T

≤ c3)

)
+ P

(
c2 ≤

S1
T

S2
T

≤ c3

)
P (τ ≤ T )

With this, the proof is concluded.

Theorem 5.3.1 The quantile hedging problem 4.24 under the constraints 4.25

has the following solution:

1. If ϕ1

σ2 ≥ −1 :

max
u≤U0

P
(
Xu,π

T ≥ (ST −K)+1{τ>T}1{T (x)>T}
)

=T px

[(
1− P

(
S1
T

S2
T

≤ c1

))
+ P

(
S1
T

S2
T

≤ c1

)
P (τ ≤ T )

]
+ (1−T px)

where b1 is a constant determined by 4.10.

2. if ϕ1

σ2 < −1 :

max
u≤U0

P
(
Xu,π

T ≥ (ST −K)+1{τ>T}1{T (x)>T}
)

=T px

[(
1− P

(
c1 ≤

S1
T

S2
T

≤ c3

))
+ P

(
c2 ≤

S1
T

S2
T

≤ c3

)
P (τ ≤ T )

]
+ (1−T px)

where c2 and c3 are constants determined by 4.10.

We extend the practicality of this theory by allowing the insurance com-

pany to set a lower bound age of client given a shortfall risk ϵ and initial capital

U0.
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Corollary 5.3.1 Given shortfall risk ϵ ∈ [0, 1] and initial capital U0 ∈ (0, E∗[(ST−
K)+]) then we can find an acceptable survival probability Tpx:

1. If ϕ1

σ2 ≥ −1 : We can find c1 and using part (i) of theorem 5.3.1 and

given shortfall risk. We can find the following

1−ϵ =T px

[(
1− P

(
S1
T

S2
T

≤ c1

))
+ P

(
S1
T

S2
T

≤ c1

)
P (τ ≤ T )

]
+(1−T px)

which we can then solve for Tpx and find the acceptable Tpx of clients.

2. If ϕ1

σ2 < −1 : We can do the same with

1−ϵ =T px

[(
1− P

(
c1 ≤

S1
T

S2
T

≤ c3

))
+ P

(
c2 ≤

S1
T

S2
T

≤ c3

)
P (τ ≤ T )

]
+(1−Tpx)
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Chapter 6

Numerical Results

The chapter will demonstrate the use cases of the formulas presented in the

preceding two chapters with real financial and actuarial data. We will present

two examples corresponding to the one and two risky asset cases and con-

firm that the resulting prices and success ratios are as one would expect from

examining the formulas.

Example 1 will present a simple case when an equity index is used to

calculate the Black-Scholes model parameters. If these results were to be used

in the financial industry we expect this scenario to be the most common. The

second example will present the use case for the two risky asset model with

an equity index being the first asset and and a bond index being the flexible

guarantee. This is a more nuanced and more financially involved contract and

therefore will not see widespread use in the industry but it has some advantages

over the one risky asset case due to the ability of picking assets which perform

better in different economic scenarios.

6.1 One Risky Asset Example

The parameters of the Black-Scholes model are estimated from daily returns

of the MSCI Emerging Market Index for the period of Nov 10, 2017 to October

19, 2018. The calculated parameters are as below

We assume the interest rate, r = 0. The real level of the MSCI Emerging
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MSCI Emerging Market Index
appreciation rate, mi 0.0097
volatility, σi 0.1075
Initial Price, Si

0 100

Table 6.1: Model parameters estimated using daily price returns of the MSCI
Emerging Market Index for the period of Nov 10, 2017 to October 19,2018.

Market index was not $100 on Nov 10, 2017 but to make the to make compar-

isons to the following example we normalized the price. Also, note that the

reason why the mean appreciation rate is so small is due to the generally poor

performance of the emerging market securities over the last year.

The call option has a strike price of K=80 and the maturity time T=15

and the contract is written for a client at age x = 30. To calculate the

needed probability of survival we refer to the life tables provided by [4] to

get the survival probability Tpx = 0.970 and x = 30 and T = 15. As for

the default probability we assume µ = 0.01 which given our assumption will

produce a survival probability, (i.e. the probability that the insurer will not

default) of P (τ > T ) = 0.8607. Which implies the probability of default at

P (τ ≤ T ) = 0.1393

As seen from figure 6.1 the results are as expected. The initial capital

required for each type of hedge is relatively close. However, each time we add

a source of randomness the probability of a successful hedge increases for a

given amount of initial capital. Which is inline with the intuition that if either

the insurer goes bankrupt or the client passes away before maturity the payoff

of the liability will not need to be paid and therefore is considered successful.

More concretely,

(ST −K)+1{τ>T} ≤ (ST −K)+

which implies a smaller required hedge is needed in the case of default.

Similarly, once we add the mortality to the model

(ST −K)+1{τ>T}1{T (x)>T} ≤ (ST −K)+1{τ>T}.
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Figure 6.1: Probability of Success vs. Initial Capital for (ST − K)+, (ST −
K)+1{τ>T} and (ST −K)+1{τ>T}1{T (x)>T}
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Figure 6.2: Probability of Success vs. Initial Capital for (ST−K)+1{τ>T}1{T (x)>T}
with µ = 0.01, 0.02, 0.03, or P (τ < T ) = 0.1393, 0.2592, 0.3624
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Figure 6.2 demonstrates the relationship between the parameter µ and

probability of successful hedge. For default intensities µ = 0.01, µ = 0.02 and

µ = 0.02 yield the following default probabilities P (τ ≤ T ) = 0.1393, 0.2592, 3624

respectively. Using the same logic a above we can argue that as µ increases

the probability of default P (τ < T ) also increases which implies a higher

probability of a successful hedge.

Figure 6.3: Probability of Success vs. Initial Capital for (ST−K)+1{τ>T}1{T (x)>T}
with ϵ = 0.01, 0.02, 0.05, 0.10, or P (τ < T ) = 0.1393, 0.2592, 0.3624

Figure 6.3 examines the relationship of the Survival Probability of a client

and the required capital to hedge the option for a given amount of risk. We

perform this analysis using the the result of Corollary 5.3.1. We examine

this relationship by fixing the overall shortfall probabilities ϵ = 0.01, 0.02, 0.05

and 0.01. We then calculate what the survival probability of the client would

have to be for the given amount of risk for a given amount of Initial Capital.

As the higher the probability of survival the higher the probability that the
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insurer will be liable for the the payoff (ST − K)+ leading to a more capital

being required to successfully hedge a contract for a given amount of risk.

Using these probabilities we can then use actuarial tables and estimate the

minimum age of the client that fits the shortfall probability and initial capital

that the insurer has available. These results are summarized for several points

in the following table using the actuarial tables from [4]. We can note from the

table above is that accepting a higher shortfall risk ϵ or having a larger pool

of capital with which to hedge with widens the acceptable range of clients for

which this contract can be offered.

Shortfall Risk Initial Capital Survival Probability Age of Client (x)
1% $19.00 46.67% ≥ 70
2% $18.50 59.38% ≥ 66
5% $17.00 69.53% ≥ 63
10% $16.00 100% Any Age

Table 6.2: Given an acceptable shortfall probability ϵ and available Initial Capital
we find the maximal survival probability of the client and the minimum acceptable
age.

6.2 Two Risky Asset Example

We repeat the analysis from before using the results of the two stock scenario.

In this case we present a novel case where the client does not only want ex-

posure equity markets but also to bond markets. As equity markets tend to

be seen as a more conservative investment to equity, a bond market index can

be seen as a suitable flexible guarantee.Therefore, the more risky asset in our

model, S1, is the equity index and the stochastic guarantee, S2, is the bond

index. In this example we focus on the Canadian markets for the equity index

we use the S&P TSX 60 index and for the bond index we use the Universe

Bond Index constructed by FTSE.

The parameters for the S&P Index are summarized in Table 6.3. In ad-

dition to the appreciation rate and volatility we need the correlation between

the two indices. For period in question the correlation was, ρ = −0.145. With
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S&P TSX FTSE Universe Bond Index
appreciation rate, mi 0.035 0.018
volatility, σi 0.066 0.027
initial price, Si

0 100 100

Table 6.3: Model Parameters Estimated for the two indices using period of Novem-
ber 06, 2017 to September 21, 2018.

rest of the model parameters are the same as in the previous example. Namely,

µ = 0.01 which gives a probability of default, P (τ < T ) = 0.1393, the survival

probability, Tpx = 0.970 and interest rate, r = 0.

Figure 6.4: Probability of Success vs. Initial Capital for (S1
T − S2

T )
+, (S1

T −
S2
T )

+1{τ>T} and (S1
T − S2

T )
+1{τ>T}1{T (x)>T}

In Figure 6.4 presents the results of the derived model for the two risky

assets. The default and mortality free option with payoff (S1
T − S2

T )
+ has

the lowest probability of a successful hedge using quantile hedging. While
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as before, the model with both default and mortality has the highest success

chance.

Figure 6.5: Probability of Success versus Initial Capital for (S1
T −

S2
T )

+1{τ>T}1{T (x)>T} with µ = 0.01, 0.02, and 0.03 or P (τ < T ) =
0.1393, 0.2592, 0.3624

Likewise Figure 6.5 contains result that is similar to Figure 6.2. This is as

one would expect as all that has changed in the construction of the model is

the payoff function of the financial contract when we replaced the strike price

K with the value of the second risky asset S2
T . Namely, we go from

(ST −K)+1{τ>T}1{T (x)>T}

to

(S1
T − S2

T )
+1{τ>T}1{T (x)>T}
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which results in few changes as far as the numerical results are concerned.

Using 4.4 we estimate the lower bound of survival probabilities for a given

amount of shortfall risk ϵ and Initial Capital, see figure 6.6. We find that for a

given amount of risk we see that the more risk we accept and the more Initial

Capital that is available for hedging the more greater the lower bound survival

probability.

Figure 6.6: Probability of Survival vs. Initial Capital for (ST −
K)+1{τ>T}1{T (x)>T} with ϵ = 0.01, 0.02, 0.05, 0.10, or P (τ < T ) =
0.1393, 0.2592, 0.3624

We can also estimate the minimum age of a satisfactory customer as we

did in the one risky asset example see Table 6.4. The results are very much

similar with small differences due to the different dynamics of the assets. As

expected the higher the amount of initial capital available the more freedom

the insurance company has in accepting new clients of different ages.
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Shortfall Risk Initial Capital Survival Probability Age of Client (x)
1% $11.25 50.0% ≥ 70
2% $11.00 52.4% ≥ 68
5% $10.50 71.67% ≥ 61
10% $9.50 79.58% ≥ 57

Table 6.4: Given an acceptable shortfall probability ϵ and available Initial Capital
we find the maximal survival probability of the client and the minimum acceptable
age in the two risky asset scenario.
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Chapter 7

Conclusion

7.1 Summary

Equity linked life insurance contracts have become a large part of mathematical

finance research as well a growing part of the insurance industry. Thus, having

an realistic model for these contracts and an accurate method of pricing and

hedging is important.

In this thesis, we chose to augment a general class of contracts to take into

account the default of the insurer within a multi-dimensional Black-Scholes

market. The inclusion of a default time made our model incomplete. However,

after applying the superhedging technique to our market we saw that the cost

of hedging such an option is not realistic. Thus, we applied the Quantile

Hedging technique to our problem to see if we could reduce the cost of hedging

if we allowed a specified amount of shortfall risk. Re-framing the problem into

terms of a Neyman Pearson type problem and using Convex Duality approach

of finding optimal random tests we came up with a solution.

We then augmented this model to take into account the mortality of clients

using the Brennan and Scwartz approach. We used the preceding results to

find closed form solutions for the initial capital requirements as well as shortfall

probability. Using these formulas we were able to isolate what the required

survival probability should be for perspective client given some hedging capital

constraint and a lower bound on the probability of a successful hedge.
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In the last chapter we explored some numerical examples of the two sets of

results. These results confirmed our intuitions as how the survival probability,

default probability and acceptable shortfall probability effect the initial capital

requirements. We saw that the higher the shortfall risk the company was

willing to accept the lower the capital requirements. Similarly the higher the

default probability, and the lower the survival probability led to lower initial

capital requirement.

7.2 Future Work

We solved the problem with using a standard Black-Scholes market where the

default of the insurer meant that the client receives no payout. Thus, we see

two possible extensions to this thesis. One, consider a more general market

framework such as the jump diffusion market considered in [12]. We believe

this should be possible in the case one or two risky assets as this already been

done without default. Second, we can consider the case of non-zero recovery

rate. In this case the client will receive some reduced portion of the payoff

instead of zero. This presents some complications as solving the dual problem

becomes more tricky. In Nakano’s paper, whose results heavily drew upon,

presented a solution to this problem with a restricted class of portfolios and

one risky asset. At this point we are not sure whether a solution is possible

and how restrictive such a solution would be, but this problem warrants some

exploration. Of the two, this is less important practically as depending on

the size contract a client would receive pennies on the dollar in the case of a

default event as most insurance companies have millions of such clients.

Another extension would be to a different type of efficient hedging method-

ology such minimizing the expected loss rather than the probability of a loss.

In the former case we would consider the magnitude of a loss rather than just

the existence of a loss. One could also consider a type of hedging which at-

tempts to minimize some loss function associated with such a contract. An

example would be mean-variance hedging which minimizes the squared differ-

ence between the terminal value of the hedging portfolio and the payoff of the

contract.
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[8] Hans Föllmer and Peter Leukert. Quantile hedging. Finance and Stochas-
tics, 3(3):251–273, 5 1999.

[9] Mary Hardy. Investment Guarantees: Modelling and Risk Management
for Equity-Linked Life Insurance. (ASTIN) Bulletin, 33(02), 11 2003.

[10] Ioannis Karatzas and Steven E. Shreve. Methods of Mathematical Fi-
nance, volume 95. 2000.

[11] Nicole El Karoui and Marie-Claire Quenez. Dynamic Programming and
Pricing of Contingent Claims in an Incomplete Market. SIAM Journal
on Control and Optimization, 33(1):29–66, 1 1995.

70



[12] Anne Mackay and Alexander Melnikov. Market Completions and Dual
Theory of Derivative Securities Pricing. pages 1–22, 2017.

[13] Alexander Melnikov and Amir Nosrati. Quantile hedging of equity-linked
life insurance contracts in the Black Scholes Model. In Equity-Linked Life
Insurance, pages 23–51. Chapman and Hall/CRC, 9 2017.

[14] Robert C Merton. Theory of Rational Option Pricing. The Bell Journal
of Economics and Management Science, 4(1):141–183, 1973.

[15] Yumiharu Nakano. Quantile Hedging for Defaultable Claims. In Recent
Advances in Financial Engineering 2009. Worls Scientific, 6 2010.

[16] Yumiharu Nakano. Partial hedging for defaultable claims. In Advances
in Mathematical Economics, pages 127–145. Springer Japan, 2011.

[17] J Neyman and E S Pearson. On the Problem of the Most Efficient Tests
of Statistical Hypotheses. In Springer Series in Statistics, pages 73–108.
Springer New York, 1992.

[18] Marek Rutkowski Tomasz R. Bielecki. Credit Risk: Modelling, Valuation
and Hedging, 2005.

71


	Introduction
	Summary of Thesis

	Mathematical Preliminaries
	Stochastic Basis
	Martingales and Wiener Process
	Stochastic Integrals
	Black-Scholes Model and Formula
	Two Risky Asset Model and Formula
	Neyman Pearson and Convex Duality
	Simple Hypothesis
	Composite Hypothesis


	Multi-Dimensional Quantile Hedging with Default
	The Default Free Black-Scholes Model
	Default Time
	Hedging Portfolio
	Maximizing the Probability of the Super-Hedge

	Case of One Risky Asset
	Model
	Default Free Black Scholes Model
	Default Time
	Mortality

	The Problem
	Hedging Mortality Risk
	Hedging Portfolio
	Final Formula

	Case of Two Risky Assets
	Market Model
	Default Time and Mortality
	Main Formula and Results

	Numerical Results
	One Risky Asset Example
	Two Risky Asset Example

	Conclusion
	Summary
	Future Work

	Bibliography



