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Abstract

Computer aided diagnosis of mental disorders like Attention Deficit Hyperactivity Disorder

(ADHD) and Autism is a primary step towards automated detection and prognosis of these

psychiatric diseases. This dissertation applies analyses based on learning models that use

structural texture and functional connectivity to diagnose ADHD and also Autism, from

(structural) 3-dimensional magnetic resonance imaging (MRI) and 4-dimensional resting-

state functional magnetic resonance imaging (fMRI) scans of subjects. One model learns

texture-based filters that are used to extract features from MRI scans. Using these learned

features, the model achieves 0.6257 (baseline 0.5497) accuracy on the ADHD-200 hold-out

dataset for differentiating between healthy control vs ADHD patients and also achieves

0.6173 (baseline 0.5157) accuracy on the ABIDE (Autism) hold-out test for differentiating

between healthy control vs Autism patients. Our next model examines temporal sequence

of fMRI activation levels at various brain locations in order to make a diagnosis from fMRI

scans. This incorporates spatial nonstationary independent component analysis of the fMRI

scans in order to extract the uncorrelated components and decomposes fMRI scans into com-

mon spatial components and corresponding time courses. Using individual time courses of

45 independent components as features, our algorithm learns a classifier that yields an ac-

curacy of 0.6491 on the ADHD-200 hold-out dataset, and 0.6233 accuracy on the ABIDE

hold-out test. This result is higher (0.0231 for ADHD and 0.0233 for Autism) than previ-

ously published accuracies on these datasets using fMRI scans. Finally a combination of

multimodal features yields 0.6725 diagnosis accuracy on ADHD-200 and 0.6431 accuracy

on ABIDE. This result is significantly higher (0.0465 for ADHD with one sided p = 0.01

and 0.0431 for Autism with one sided p = 1.6172e-06) than previously published hold-out

accuracies on these datasets using only imaging data. Our results indicate that combining

multimodal features yields good classification accuracy for diagnosis of ADHD and Autism,

which is an important step towards computer aided diagnosis of these psychiatric diseases.
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What we observe is not nature itself but nature exposed to our method of questioning. Our

scientific work in physics consists in asking questions about nature in the language that we

possess and trying to get an answer from experiment by the means that are at our disposal.

– Werner Heisenberg, 1958.
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Chapter 1

Introduction

Statistical machine learning methods have recently permeated disciplines such as Psychi-

atry, which specializes in the diagnosis and treatment of neuropsychiatric disorders [9].

The availability of large scale neuroimaging datasets has encouraged researchers to develop

computer aided tools and procedures for understanding the human brain and its disorders.

Structural MRI scans provide a noninvasive technique for getting a volumetric image of the

brain anatomy. On the other hand, functional MRI (fMRI) scans measure brain activity by

detecting fluctuations in blood-oxygen levels over time.

Using MRI/fMRI for detecting brain functional disorders, like Autism and Attention

Deficit Hyperactivity Disorder, remains an unsolved challenge for neuroscientists. Signifi-

cant work has been done to show changes in brain connectivity for the patients suffering

from ADHD [21, 22, 23] and Autism [19, 20]. These association studies, which find specific

characteristics that are discriminating at the group level (patient vs control), are very useful

as a primary step towards robust understanding of the diseases and their underlying differ-

entiating factors. By contrast, we are interested in exploring ways to learn predictive models,

which seek combination of features that are effective for predicting whether an individual

subject has the disease.

Here we explore ways to use analyses based on structural texture features (from structural

MRI scans) and functional connectivity (from fMRI scans) to predict whether a specified

subject has specific psychiatric disease. In both cases, brain structure (MRI) and activities

(fMRI) are represented digitally as voxels, the smallest block in the MRI and fMRI scans.

Each voxel in MRI and fMRI corresponds a 3-dimensional rectangular block in brain. The

size of that block depends on the resolution of the scanner. A high resolution scanner will

be able to take images with very small sized voxels.

In brain images, the structural textures give us information about spatial arrangements

of voxel intensities in the 3D scans which in turn describes neurological aspects of the

subject’s brain. On the other hand, functional connectivity captures patterns of deviations

from statistical independence between the time signals at distributed and often spatially
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remote neuronal regions (Friston, 1993; 1994, Sporns 2010). Deviations from statistical

independence are generally taken to indicate dynamic coupling and can be measured, for

example, by estimating the correlation, independent components, etc. As a first step towards

creating a generalized prediction tool for ADHD/Autism, we experiment with the texture

based models that describe structural arrangements of the brain by learning texture features

from 3D MRI scans. We then use these texture features to learn classifiers designed to

predict whether a patient has the disease. To study the functional aspects of the diseases,

we experiment with four different source separation techniques to decompose the fMRI into

spatial components (each of the components consists of a set of voxels in brain that co-

activate together) that are common across the subjects, with individual time courses. This

in turn allows each subject to be described as a composition of the common spatial maps

with unique time course corresponding to that subject. Instead of doing statistical group

level analysis on the extracted time courses, we use them as features for our predictor. We

used two publicly available multisite datasets, ADHD-200 1 and ABIDE 2, for testing our

models.

Since the publication of ADHD-200 data, many researchers have explored ways to im-

prove the prediction accuracy of ADHD using this data. However, the competition results

show that the best prediction result is still far from being clinically relevant. Eloyan et

al. [3] won the ADHD-200 competition (using imaging data), achieving an accuracy of

0.6154 (baseline 0.5497). Later other works [13, 14, 10] improved the accuracy on this task,

with an accuracy 0.6257 [10] on the hold-out set. Similarly, using ABIDE data for autism

prediction, Nielson et al. [18] achieved 0.6000 (baseline 0.5157) prediction accuracy.

In this dissertation, we show that by using multimodal features from both structural

and functional MRI scans, we can improve the accuracy of ADHD/Autism prediction using

MRI/fMRI scans compared to the previous results. This is an important step towards

formulating a computer aided prediction model for predicting psychiatric diseases.

Specific contributions of this work are as follows:

1. Motivated by the work of Ghiassian et al. [10] of using texture-based features for

ADHD/Autism prediction, we show that texture based models that learn features from

the data, can match, or sometimes outperform, other standard MRI-based prediction

models (Section 2.4).

2. We extend existing ICA-based source separation in fMRI analysis to prediction studies

and devise a novel algorithm for this task (Section 2.5). This algorithm outperforms

other fMRI based algorithms for ADHD/Autism prediction.

1http://fcon_1000.projects.nitrc.org/indi/adhd200/
2http://fcon_1000.projects.nitrc.org/indi/abide/
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3. We apply and compare four different source separation models to get a good repre-

sentation of fMRI scans and validate each model based on the prediction accuracy on

a large ADHD (respectively Autism) dataset.

4. We introduce using multiple decorrelation [7] for fMRI source separation. Here, 3D

volumes of fMRI are modeled as nonstationary signals and source separation based

on second order criteria is used to separate out common spatial activation maps and

corresponding time courses. The validation set and test set accuracies show that there

are changes in the components’ time courses that distinguish ADHD (respectively

Autism) patients’ brains from healthy controls.

5. Finally, combining features learned from MRI and features extracted using fMRI

source separation, we improve the prediction model accuracy for ADHD to 0.6725

(compared to 0.626) and Autism to 0.6431 (compared to 0.60). Note that these re-

sults are just using imaging data.

In order to develop a classifier that can diagnose ADHD and Autism correctly, we took

a “biologically naive” approach for extracting features; that is, we do not use any prior

biological information, about the brain nor the fMRI signal, etc. The ADHD-200 and ABIDE

datasets consist of both structural and functional MRI scans. Figure 1.1 shows the pipeline

for developing the classification algorithm. We develop separate diagnostic classifiers for

diagnosis from MRI (Method 1 and Method 2) and fMRI scans (Method 3). Finally,

we used a combination of features from both MRI and fMRI scans to develop the “final”

classifier (Method 4). Fig. 1.2 further elaborates the feature extraction block in Fig. 1.1

for each of these methods. In all these cases, we assume that the features are separable in a

non-linear space. When we use linear features − i.e. features are extracted using a linear

transform − we use a non-linear classifier. In case of non-linear features − i.e. features are

extracted using a non-linear transform − we use linear classifier.

For any image recognition task, the choice of feature extraction can greatly facilitate or

impede the classification. If the features are meaningful and discriminating, the task for the

subsequent classifier becomes easier [37, 39, 41, 42]. For developing a diagnostic classifier

from structural MRI scans, we consider two approaches.

First, motivated by recent success of generic feature descriptors extracted from convo-

lutional neural networks in object recognition and classification tasks [37, 38], we apply the

large generic filters learned from a vast labeled dataset (ImageNet3). We used the Overfeat

system 4 [38], which has a vast array of filter banks learned from ImageNet, to our learning

task (predicting ADHD vs. Healthy and Autism vs. Healthy). Here, features were ex-

tracted using the filter banks in Overfeat system to apply in totally different domain and

3http://www.image-net.org/
4http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
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Figure 1.1: Overview of our diagnosis models. Each model’s training stage develops the classifier
responsible for diagnosing new subjects, which is then used in testing stage

datasets (ADHD-200 and ABIDE) [39]. We denote this model for learning and classification

as “Method 1”. Note that “Method 1”(and the other methods discussed below) include

both learning and classification.

Secondly, many current projects in machine learning and neuroimaging research have

attempted to learn features from the data [31], which boost the prediction power of the

model. There is a vast literature that employs domain independent representation learning

(that learns features from the data) for many recognition and prediction tasks in computer

vision. These feature learning techniques have recently been employed for learning features

for Alzheimer’s disease from the ADNI dataset [32]. In these datasets, the number of labeled

MRI/fMRI scans from patients and controls is on the order of hundreds or thousands for the

largest public datasets. This is relatively small in comparison to datasets such as ImageNet,

which has over half a million samples. MRI/fMRI datasets are comparatively small due

to the difficulties of recruiting subjects and the high costs associated with MRI scanning.

Therefore, it is imperative to devise tools that explore the local structures and redundancies

in the images. Motivated by the success of using representation learning in medical imaging

domains [32], we used a one layer convolutional neural network with 3-D learned kernels

(5 × 5 × 5) as feature extractors using structural magnetic resonance images from each

4



Figure 1.2: Feature extraction steps for each of our methods

dataset (ADHD-200/ ABIDE). The main idea of using self-taught learning is motivated by

the work of Raina et al. [45]. It uses sparse coding to construct higher-level features using

the unlabeled data. These features form a succinct input representation and significantly

improve classification performance for object recognition. In this experiment, our main

contribution is to show that a simple feature learning algorithm can sometimes perform as

well as a complex algorithm. We denote this method for learning convolutional network

features and classification from MRI scans as “Method 2”.

For developing a diagnostic classifier from fMRI scans, we consider four different source

separation techniques for learning a good representation of fMRI scans. Each of the models

uses the temporal evolution of fMRI voxel activations in the brain in order to make a

diagnosis. It decomposes fMRI scans into common spatial components and corresponding

time courses. Specifically we apply Principal Component Analysis (PCA), Kernel Principal

Component Analysis (k-PCA), Independent Component Analysis (ICA) and Nonstationary

Source Decomposition (NSD) to the problem of learning to diagnose ADHD (respectively

Autism) from resting-state fMRI scans of subjects. The individual time courses from the

separated sources were used as features for learning and classification. We denote this

method for learning and classification using four different feature extraction approaches

from fMRI scans as “Method 3”. Note that “Method 3” refers to each of four separate

5



methods, each of which is one of PCA, kPCA, ICA and NSD.

Finally, we combined different features from imaging modalities (MRI and fMRI) to

create the final predictor. Recent neuroimaging studies have indicated higher predicting ca-

pability from combined features from different neuroimaging modalities [47, 49]. To investi-

gate the effect of combining features from structural MRI and functional MRI on psychiatric

disease prediction, we concatenated the features from previous experiments (“Method 2”

and “Method 3”). The combined features were used for the learning and prediction. We

denote this method as “Method 4”.

The rest of the thesis is structured as follows: Chapter 2 outlines the pre-processing of

raw fMRI data and overviews the methods used in our study. Chapters 3 describes the

results on the ADHD-200 and ABIDE datasets, and Chapter 4 discusses potential future

works for MRI and fMRI-based diagnosis.
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Chapter 2

Foundation

This section presents the overall process of the diagnostic system based on Figure 1.1.

We first describe the dataset (Section 2.1) and evaluation criteria (Section 2.2). Then we

outline the preprocessing pipeline for ADHD-200 and ABIDE data in Section 2.3. The

remaining sections summarize diagnostic methodology from MRI scans (Section 2.4), fMRI

scans (Section 2.5) and combined imaging features (Section 2.6).

2.1 Dataset

For evaluating each model, we used two multi-site datasets: ADHD-200 and ABIDE. Each

of the datasets included a structural scan (high resolution, for a single time point), and also

one or more resting-state functional scans for each of the subjects. Spatial resolution of

the structural MRI scans was 1mm × 1mm × 1mm. In the resting state functional scan,

the subject did not perform any explicit task. That functional scan included between 76

to 261 time points for each ADHD-200 subject and between 82 and 320 time points for

each ABIDE subject. Different subjects were scanned with different temporal resolutions:

ranging from 1.5 seconds through 3 seconds in the ADHD-200 dataset, and from 1 seconds

through 3 seconds in the ABIDE data. The field strength of the MRI scanners varied from

1.5T to 3T. Each data collection site used its own scanner(s) and its own MR scanning

parameters. More details are available at the ADHD-200 site 1 and ABIDE site 2 .

ADHD-200

The ADHD-200 data is a multi-site combination of neuroimages taken from 8 sites. The

demographics of subjects in the dataset is shown in Table 2.1.

We used a training set from this data to learn a prediction model and to estimate its

accuracy (using cross-validation). The training set consists of 776 resting state scans: 491

were taken from healthy controls and 279 were patients. To balance our training set, we

1http://fcon_1000.projects.nitrc.org/indi/adhd200/
2http://fcon_1000.projects.nitrc.org/indi/abide/
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Table 2.1: ADHD-200 data demographics. Site abbreviations: Peking University (Peking),
Kennedy Krieger Institute (KKI), NeuroIMAGE (NI), New York University (NYU), Oregon Health
and Science University (Oregon), University of Pittsburgh (Pitt), Washington University in St.
Louis (WashU)

Peking Brown KKI NI NYU Oregon Pitt WashU

Subjects 245 26 94 73 263 113 98 61
ADHD 130 26 33 50 163 71 9 0
Male/Female 174/71 9/17 64/30 43/30 171/92 61/52 53/45 33/28
Age Mean 11.7 14.54 10.22 17.64 11.45 0.10 15.08 11.47
Age STD 1.96 2.54 1.34 3.05 2.91 1.20 2.78 3.88

used all 279 patients and selected 279 healthy controls evenly taken from all the sites as our

training set [14, 40, 13] which means that the baseline classification accuracy for the training

set is 0.50. This training set is used for model selection and cross validation. The ADHD-

200 competition hold-out data consists of 171 subjects (94 healthy subjects and 77 ADHD

cases, baseline 0.5497). The set is used for evaluating the quality of the final model which

was untouched during training. We also discuss the effect of unbalanced set on training (in

terms of number of patients vs healthy) in section 3.4.1. The ADHD-200 dataset included

other non-imaging features for each subject, including gender, age, handedness, site of the

imaging, IQ measure etc (see ADHD-200 consortium3 and Brown et al. [50] for more details

on these personal characteristics). However we only use imaging data for our experiments.

ABIDE

The ABIDE4 dataset consists of 1111 scans: 573 are healthy controls and 538 patients with

autism. The demographics of subjects in the dataset is shown in Table 2.2.

To evaluate each learning model, we used 800 subjects (70%) for model training and

311 subjects (30%) for hold-out testing. We used the same case/control ratio (0.5157) for

both training and test set. The ABIDE dataset provided an extensive array of nonimaging

information information which included age, gender, handedness, various IQ scores, site

of the imaging and eyestat (which indicated whether the person kept his eyes open or not

during the scan); for more information on these personal characteristics see ABIDE 4. Again

we only use imaging data for our experiments.

2.2 Evaluation Criteria

We use both 5-fold cross validation accuracy and hold-out accuracy to evaluate our im-

plemented diagnosis algorithms. Five-fold cross validation is mainly used for tuning each

model and getting a basic estimate of performance for the model. The training set S and

3http://fcon_1000.projects.nitrc.org/indi/adhd200/
4http://fcon 1000.projects.nitrc.org/indi/abide/
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Table 2.2: ABIDE data demographics. Site abbreviations: California Institute of Technology
(Caltech), Carnegie Mellon University (CMU), Kennedy Krieger Institute (KKI), Ludwig Maxim-
ilians University Munich (LMU), New York University (NYU), Olin Institute of Living at Hart-
ford Hospital (Olin), Oregon Health and Science University (Oregon), San Diego State University
(SDSU), NeuroIMAGE (NI), Stanford University (Stanford), Trinity Centre for Health Sciences
(Trinity), University of California, Los Angeles (UCLA), University of Leuven (Leuven), Univer-
sity of Michigan (UMich), University of Pittsburgh School of Medicine (Pitts), University of Utah
School of Medicine (Utah), Yale University (Yale)

Caltech CMU KKI LMU NYU Olin Oregon Sdsu

Subjects 38 27 55 57 184 36 28 36
Autism 19 23 22 24 79 20 13 14
Male/Female 32/6 23/4 48/7 48/9 154/30 31/5 24/4 30/6
Age Mean 22.3 25.4 10.4 20 13.9 17.2 10 14.4
Age STD 4.1 4.5 1.4 9.1 5.1 3.2 1.8 1.5

NI StanfordTrinity UCLA Leuven UMich Pitts Utah Yale

Subjects 30 40 49 108 64 145 57 101 56
Autism 15 20 24 62 29 68 30 58 28
Male/Female 24/6 17/3 19/5 52/10 24/5 59/9 25/5 51/7 26/2
Age Mean 29.5 9.5 16.6 12.7 21.4 13.8 17.9 24.5 12.4
Age STD 5.9 1.7 3.0 2.1 2.3 2.7 5.5 3.7 2.9

hold-out set H, contain subjects and their corresponding true labels. Here for each model,

the training set (S) is partitioned into five subsets (S1, S2, S3, S4, S5) where each subset

contains a distribution of class labels, i.e., healthy and ADHD or Autism, in proportion to

the whole training set. We also define S−i = S − Si. In each iteration, we use 4/5 of the

training set for training and the remaining 1/5 for testing. A different subset is used for

testing in each iteration. At each iteration, learner L(S−k) where k ∈ {1, 2, 3, 4, 5}, learns

a classifier Ck from S−k, which is 4/5 of training data. The remaining 1/5 of the training

data Sk, is used when computing the test accuracy. Our classifier Ck(·) will output a class

label Ck(x) ∈ {healthy, ADHD (respectively Autism)} for each subject x and corresponding

label y. In general, we define the accuracy of classifier C(·) on set S,

accS(C(·)) =

∑
(x,y)∈S

I(y = C(x))

|S|
where I{y = C(x)} = 1 if C(x) = y and 0 otherwise and |S| is total number of subjects

in S. The 5-fold cross-validation accuracy is the average of the classification accuracies

computed for each of the five cross-validation folds,

5CVacc( L, S ) =
1

5

5∑
k=1

accSk
(Ck)

Also, for hold-out set H, the accuracy (for classifier C learned from the training set S)

is given by

Test Accuracy = accH(C(·))

9



We computed various statistics on the hold-out set, including accuracy, sensitivity, speci-

ficity and J-statistics whenever we compared our results to previous results. If we consider

label 1 for ADHD-positives (respectively Autism) and label 0 for healthy controls, then

SensitivityH(C(·)) =

∑
(x,y)∈H

I{y = 1} I{C(x) = 1}

∑
y∈H

I{y = 1}

and

SpecificityH(C(·)) =

∑
(x,y)∈H

I{y = 0} I{C(x) = 0}

∑
y∈H

I{y = 0}

and

JstatH(C(·)) = (SensitivityH(C(·)) + SpecificityH(C(·))− 1)

2.3 Preprocessing Pipeline

For preprocessing, we used SPM8 5 and our own in-house MATLAB code. Our preprocessing

involved 6 steps:

1. 6-parameter rigid body motion correction of functional scans

2. Co-registration of functional scans to subject-specific structural scans to guide the

spatial normalization step

3. Non-linear spatial normalization (parameter estimation and spatial transformation) of

structural images to the MNI T1 template 6

4. Non-linear spatial normalization of previously co-registered functional image volumes

(in step 2) to MNI T1 template using warping parameters computed in the structural

image normalization

5. Spatial smoothing of functional image volumes with 8mm full width half maximum

(FWHM) Gaussian kernel

6. Z-normalization of each 3D volume intensities for structural and functional image to

standardize the intensities of images scanned from different sites.

The details of the pre-processing can be found in Ghiassian et al. [10].

5http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
6http://imaging.mrc-cbu.cam.ac.uk/imaging/Templates
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2.4 Diagnosis from Structural MRI Scans

This section describes in detail the diagnosis algorithm (for ADHD vs. Healthy and Autism

vs. Healthy) from MRI scans. We first define some common terms to be used later in this

section.

Filters

In image processing, filters are transformations that accentuate certain features within an

image. Filters are generally defined on a neighborhood. For example for a 2D image, a filter

hcontrast =

0 1 0
1 −4 1
0 1 0


is defined on 3× 3 neighborhood for each pixel.

Convolution

Convolution is a mathematical operation on two functions I(x, y) and h(u, v), producing a

third function that is typically viewed as a modified version of I(x, y), giving the overlap

between the two functions. In case of 2-dimensional convolution, I is the image and h is the

filter that is convolved with the image. The result of the convolution can be interpreted as

the similarity measures between each pixel of the image and the filter. For 2D images, this

operation at pixel (x, y) is defined by g(x, y) =
∑

(u,v)∈V

I(x − u, y − v) h(u, v) where V is

the neighborhood where filter h is defined as above.

The effect of convolving the image in Fig 2.1a with the filter after convolution is shown

in Fig 2.1b. We see the filter h enhances the contrast in the image.

(a) Actual image (b) After convolution

Figure 2.1: Simple example showing effect of convolution and filtering with hcontrast on an image
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Max-Pooling

To aggregate statistics of features extracted after convolution (which is an integral part

of convolutional neural network described below), we compute the maximum value of a

particular feature over a region of the convolved image. We divide our convolved features

(in our example before, they are pixels of the convolved image) into disjoint regions, and

take the maximum feature value over each region to obtain the pooled convolved features.

These summary statistics are much lower in dimension (compared to using all of the pixels

from the convolved image) which means they might also improve results (less over-fitting).

The aggregation operation is called max pooling. The max-pooling operation is illustrated

in Fig. 2.2. The same concept applies to 3D, where instead of 2D filters, 3D filters are used

and max-pooling is done in 3D regions.

Figure 2.2: Max pooling operation. Left: Image after convolution step. Right: After maxpooling
step. Stride is distance between two max-pooling regions.

Convolution and maxpooling steps are used in our experiment (“Method 2”) whenever

we extract features from 3D MRI scans.

2.4.1 Method 1 (Using off-the-shelf Features from Convolutional
Neural Network)

There are 2D filters available from other research groups [37, 38], and it is desirable to use

those existing 2D filters because they have shown good performance on other classification

tasks [39]. However, using those 2D filters with 3D MRI data presents challenges. For

example, the 3D geometric relations are not incorporated whenever we use the 2D filters

as feature extractor. Also, psychiatric diseases like ADHD/Autism have been associated

with functional dysfunction of brain regions. In this case, fMRI is useful to study functional

impairment of brain regions. Using only 3D structural MRI scans we are not using the time

domain information from fMRI. To address the first challenge, we extract the features in

the following way: Use 2D filter extractor from each 2D axial slice and combine the features

12



(described below). To address the second challenge, we devise an algorithm in Section 2.5.

This algorithm decomposes fMRI scans into common spatial components and corresponding

time courses and uses the time courses as features for disease prediction.

We used filters learned from a publicly available trained convolutional neural network

(Overfeat 7 [38]) that was trained on the ImageNet8 dataset. Overfeat has two different

learned filter banks described as a) fast, vs. b) accurate. Among these two, the accurate

model has more layers and more learned filters. We followed Razavian et al. [39] and used

the accurate model.

Figure 2.3: Input, algorithm pipeline and output of the learning and performance task for
Method 1. In this case, each block at the left of an arrow is input to the block at the right
of an arrow.

The feature extraction block consists of 8 layers of learned filters. At each layer,

the output from the previous layer is either convolved with a set of filters (in the case

of convolution layers) or else submitted to the max-pooling operator (in the case of max-

pooling layers). Filter size for the layers varied from 7 × 7 to 3 × 3. The input of the

feature extractor is a 2D image of size 221× 221. For our experiments, each of the 2D axial

slices (of size 79× 95) from an MRI scan was upsampled with linear interpolation using the

upsample function in the python multirate toolbox to the size 221 × 221 and fed to the

7http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
8http://www.image-net.org/
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feature extractor.

Figure 2.4: Convolutional neural network feature extraction [35]

The feature extraction step is shown in Fig. 2.4. The last layer feature values of the

convolutional neural network (before the learning block, 4096 values for an image) were

stacked to form one feature vector for one MRI image. This produces 4096 × 68 (where

68 is the number of axial slices) feature values for one MRI scan. These stacked feature

values were used to train a linear support vector machine, that is optimizing the following

optimization function, for the training data (xi, yi),

min
w

1

2
‖w‖2 + C

∑
i

max(1− yiwTxi, 0) (2.1)

where w is a normal vector to the hyperplane that divides xis into different classes. Here w

is a vector of weights learned by the standard SVM learner. This optimization was solved

using the kernel trick within the libsvm package 9. The hyperparameters are learned using

5-fold internal cross validation in each fold.

9http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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2.4.2 Method 2 (Using a Single Layer Unsupervised Convolutional
Neural Net)

In this experiment we use a very simple learning algorithm: just a one-layer unsupervised

convolutional network followed by a simple linear support vector machine learner to learn the

local statistics from the ADHD-200/ABIDE structural data. After establishing the learning

framework, our system used cross-validation to choose the hyperparameters Fig. 2.5.

Figure 2.5: Input, algorithm pipeline and output of the learning and performance task for
Method 2

Unsupervised Feature Learning using Sparse Autoencoder

An autoencoder [33] is a network where the output is the same as input. In our model, the

network parameters minimize reconstruction error using the back-propagation algorithm.

The network parameters give rise to learned filters. A simple autoencoder is shown in

Fig. 2.6,

To avoid the nodes (points to which the inputs are connected) in the hidden layer learning

same or redundant filters, sparsity is enforced. An autoencoder is sparse when most of

the nodes in the hidden layer are zero given any input. The sparsity of an autoencoder

encourages the network to learn different transformations in each of the nodes in hidden

layer [34]. This improves robustness in the learned filters − i.e. each filter learned will be
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Figure 2.6: A simple autoencoder reference [56]

different and will specify a particular characteristic of the input. Formally the network tries

to optimize the following optimization function,

J(W,b) =
1

2|D|
∑
x∈D

L(x, x̂) + β
k∑
j=1

KL(ρ‖ρ̂j) + λ‖W‖2

x̂ = σ(W2h + b2)

h = σ(W1x + b1)

where D ∈ Rm×n is the data matrix, each data point x ∈ Rn, also h ∈ Rk is the hidden

representation of the data, x̂ ∈ Rn is reconstructed data, L(a,b) =
∑
i(ai − bi)2 is squared

loss error, σ(s) = 1/(1 + e−s) is sigmoid function, ρ is sparsity parameter, ρ̂ is average

activation, and KL(ρ‖ρ̂j) = ρ log( ρρ̂j ) + (1 − ρ) log( 1−ρ
1−ρ̂j ) is Kullback-Leibler divergence,

(W = [W1,W2] and b = [b1,b2]) are the parameters to learn and k is the number of nodes

in the hidden layer. The weights of the connections learned at each node corresponds to

one filter. The hyperparameters are learned using 5-fold cross validation. The optimization

was solved using L-BFGS package 10.

Convolutional Network

Once the filters (total number k) are learned from sparse autoencoder, the each filter is

convolved with the actual image to produce feature maps. An example of the features

learned from natural images is shown in Fig 2.7.

The convolved features produced are highly non-linear. This comes from the sigmoid

function in the cost [35]. In order to reduce the dimension of the features, a subsequent

10http://users.iems.northwestern.edu/~nocedal/lbfgsb.html
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Figure 2.7: 25 filters learned from sparse auto encoder using natural image patches

layer after the convolution performs local pooling thus reducing the resolution of the feature

maps. This introduces translation invariance of the features in the max-pooling region. Max

pooling was used in the experiment using a 5× 5× 5 non-overlapping bounding box. This

reduces the feature dimensions by a factor of 125. This step also reduces sensitivity of the

feature map to various distortions. These extracted features were later used for learning

and prediction.

Learner

The features were used to train a linear support vector machine where for the training data

{(xi, yi)}, we perform the optimization as described in Eqn 2.1.

2.5 Diagnosis from fMRI Scans

This section describes the diagnosis algorithm for ADHD vs. Healthy and Autism vs. Healthy

prediction from fMRI scans using blind source separation. Source separation techniques can

identify functionally connected networks by estimating spatially independent patterns from

their linearly mixed fMRI signal [46]. However source separation for different individuals

can produce different spatial patterns (also known as spatial maps) for different subjects

17



and hence temporal or spatial concatenation becomes necessary before applying any source

separation method. Each source separation method decomposes fMRI scan into spatial

components or maps with associated time courses. This means that each voxel in the spatial

map will have common time course. We use temporal concatenation approach that allows

for unique time courses (TCs) for each subject, but assumes common spatial maps (SMs)

across all subjects whereas the spatial concatenation approach (not discussed here) allows

for unique SMs but assumes common TCs. Although they are really just two different

approaches for organizing the data (spatial vs temporal) as shown in Fig. 2.8, temporal

concatenation appears to work better for fMRI data [44] most likely because the subject-

to-subject temporal variations are much larger than the variation in the spatial maps at

conventional field strengths of 3T and below [43, 46].

Figure 2.8: Temporal vs. spatial concatenation

fMRI scans have a large number of voxels over a number of time points. Combining

all the fMRI scans from all subjects for source separation becomes computationally inten-

sive and intractable. Hence before the concatenation, dimensionality reduction of the data

becomes necessary [1],[2] to capture the subject level variations in the data. This is done

using principal component analysis (PCA) on individual subjects. After that our algorithm

concatenates the fMRI scans and source separation is done [46]. Previous studies( [1, 52])

have explored brain regions that are strongly temporally coherent (which means they are
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co-activated during rest) using source separation techniques like PCA and independent com-

ponent analysis (ICA). PCA separates the fMRI brain scan into uncorrelated spatial maps or

sources based on variations in the time whereas ICA decomposes the brain fMRI scans into

spatially independent components (sources or spatial maps) and their corresponding time

courses. It assumes that the spatial maps have constant higher order statistics [1, 2, 4]. For

example, one source may be a random process with probability density function λ
2 exp(−λ|x|)

(the probability of seeing a voxel with intensity x) with constant parameter λ. On the other

hand, a variable parameter will be dependent on the location of the brain region. An exam-

ple of probability density function with a variable parameter λ(r) (r is location of the voxel

in the scan) may be denoted as be λ(r)
2 exp(−λ(r)|x|). Here λ is parameterized by r. Here

we introduce k-PCA and NSD for fMRI source separation. In all the cases, we denote the

fMRI scan of the ith subject as Xi
[T×V ] and view Xi

[T×V ] ≈ Ai[T×K] × S[K×V ] where the

rows of S are estimated spatial maps and the columns of Ai are corresponding estimated

time courses. Note that the S matrix is the same for all users, but the A matrix varies from

patient to patient.

The common use of ICA based source separation in fMRI applies the infomax [51] prin-

ciple for separating components that decompose the brain into spatially independent maps.

However, the theoretical derivation of ICA requires the following assumptions to hold: i)

the spatial maps should have non-gaussian distribution, and ii) each voxel time course in

the fMRI scan should be independent and identically distributed (IID). We relax these as-

sumptions and experiment with four different source separation techniques to find a good

representation of fMRI scans using common bases. The input to this algorithm is prepro-

cessed fMRI scans.

2.5.1 Method 3 (Using fMRI Source Separation Models for Pre-
diction of Psychiatric Diseases)

Our algorithm pipeline is given in Fig. 2.9. For source separation we compare each of the

four separation methods and compare the results in the next chapter.

Dimensionality Reduction

In order to reduce the computational load on group level analysis, different approaches

have been proposed for dimensionality reduction before group level source separation anal-

ysis. We follow the standard 2-Step principal component analysis reduction of the data

[1],[2]. Our main motivation for using this model is its assumption that there are common

spatial sources for each data set where subjects differ based on temporal weights of each

source. The 2-Step data reduction captures the subject level variations and group level

commonalities.
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(a) fMRI source separation stage to find common spatial maps. The input is individual fMRI scans.
Subject i of dimesion T ×V has scan id Xi

[T×V ]. At the second step after reduction, the ith subject

Y i
[Tred×V ] has Tred × V dimensions. At third step after concatenation of n subjects, the matrix has

dimension nTred × V

(b) Input, algorithm pipeline and output of the learning and performance task for Method 3

Figure 2.9: Our learning system in two stages. First stage finds common spatial maps. The second
stage develops the classifier responsible for diagnosing new subjects, which is then used in testing.
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Theory of Principal Component Analysis (PCA): For any data matrix X[p×q],

where p is number of features and q number of examples, we can define a covariance matrix

of the features (assuming X is zero centered),

Σ = XXT (2.2)

Then Σe = λe holds for each eigenvalue/eigenvector pair (λ, e), where eigenvector e ∈ <p

has the corresponding eigenvalue λ ∈ <. Since Σ is symmetric, it will always have non-

negative eigenvalues λ ∈ <. We can sort eigenvalues of Σ in descending order, i.e. λi ≥ λi+1.

There can be at most p such eigenvalue/eigenvector pairs (assuming p ≤ q). The eigenvectors

of a matrix are orthogonal to every other eigenvector of this matrix. The ith principal

component is the data matrix projected onto eigenvector ei.

In order to apply source separation for the whole dataset, we apply a data reduction

step following Calhoun et al. [1]. This data reduction procedure uses 2-Step principal com-

ponent analysis and is implemented in the GIFT package 11. We briefly describe the ideas

involving the data reduction stage. Suppose we have fMRI scan Xi matrices for i = 1, .., n

subjects. We then reduce the T × V data matrix Xi from each subject, to a Tred × V ma-

trix by selecting Tred largest eigenvalues capturing 99% of the variance using PCA. Next,

the reduced data-matrices from each subject are concatenated to form the group level data

matrix of size nTred × V . The concatenated dataset is then passed through a second group

level PCA to select K dimensions. After this 2-Step data reduction, we get an aggregate

data matrix of size K × V over all subjects. Source separation is performed on this data

matrix. This data matrix, denoted as X[K×V ], is designated to represent the corresponding

dataset.

Here we consider the model, Xi
[T×V ] = Ai[T×K]S[K×V ] following [4]. The model assumes

that the response of each fMRI voxel at time t is a weighted linear combination of specific

sources common across subjects. But the weighting of these sources (time courses for each

source) for different subjects will be different.

In the first level PCA, the reduced matrix for subject i is Y i = UiX
i where Ui is the

Tred × T reduction matrix. Then we concatenate Y i’s to get Y of size nTred × V . In the

second step, the reduced matrix X = FY where F is a K × nTred reduction matrix. If we

divide the F into n sub-blocks Fi, each of size K × Tred, then Fi corresponds to reduction

matrix for subject i. This is shown pictorially in Figures 2.9a and 2.10. Hence for subject

i,

Xi = U−i F
−
i X = U−i F

−
i AS = AiS (2.3)

where Ai = U−i F
−
i A, which is different for each patient. Here U−i and F−i are pseudo-

inverses of Ui and Fi respectively. Xi is represented by Ai and S pictorially in Fig. 2.10

11http://mialab.mrn.org/software/gift/
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Figure 2.10: Pictorial Representation of Xi by Ai and S. Here each arrow implies dot product of
the matrix before arrow with the matrix on the arrow

Specifically for ADHD or Autism prediction, our hypothesis is: the time courses for the

patients will be different from controls for the ADHD/Autism patients. This hypothesis is

validated by the 5-fold cross validation and test accuracy on ADHD-200/ABIDE data.

Separation of Spatial Sources

Principal Component Analysis (PCA) for fMRI In this case, after dimensionality

reduction from Equation 2.3, the rows of representative scan X[K×V ] are directly used as

spatial maps. The projection of ith patient’s fMRI scan on these vectors yields the time

components (columns of Ai).

Theory of Kernel Principal Component Analysis (k-PCA) For representative

fMRI scan X[K×V ], a nonlinear similarity can exist in inner-product space H (such that

φ : X → H).

Σφ = φ(X) φ(X)T (2.4)

For Radial Basis Function kernel (RBF),

Σrbf (i, j) = exp(− (xi − xj).(xi − xj)
2σ2

) (2.5)
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where xi and xj are ith and jth column of X respectively. Once the kernel similarity matrix

is computed, we get the eigenvalue/eigenvector pair of the kernel matrix. The projection on

eigenvectors would be the spatial maps (rows of S) and the dot product of each patient’s

fMRI scan on these maps are the time components (columns of Ai).

Theory of Independent Component Analysis (ICA) Current source separation

methods in the fMRI literature mostly focus on separating statistically independent sta-

tionary signals over all voxels using ICA. Here we give log-likelihood interpretation for ICA.

The process for independent component analysis is shown in Fig 2.11.

For representative fMRI scan X[K×V ] ≈ A[K×K] × S[K×V ], we denote each row i of X

as xi (size 1× V ) and each column j as xj (size K × 1). Assume each row xi consists of V

observation of the random variable xi. We denote each row i in S by si and assume row si

consists of V observations of random variable si. We also denote each column j of S as sj .

Now our goal is to find A such si for i ∈ {1, 2, 3...K} are independent of each other.

xj = Asj , sj = Wxj (2.6)

Figure 2.11: Independent component analysis illustration reference [57]

where W is inverse of A. Repeated observations of xj at different voxels (j = 1, 2..V

i.e. time series for V different voxels) give us each column of X. To capture log-likelihood
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formulation of ICA, for the data X, we assume that the distribution of ith source si is given

by a density ps(s
i), and that the joint distribution of the sources are independent and so is

given by

p(s1, s2, ..sK) =
K∏
i=1

ps(s
i) (2.7)

The probability of the received signals for jth observation (xj) is given by (see indepen-

dent component analysis12)

P ([x1,x2, ...,xK]T = xj) ∝
K∏
i=1

ps(W
T
i,:xj)× det(W ) (2.8)

Where WT is transpose of W . The log-likelihood formulation is

max
W

( K∑
i=1

log ps(W
T
i,:xj) + log det(W )

)
(2.9)

Any nongaussian distribution can be assumed for ps
12. For the dataset (X[K×V ]), the

optimization function to maximize is

W ∗ = argmax
W

( K∑
i=1

V∑
j=1

log ps(W
T
i,:xj) + log det(W )

)
(2.10)

After estimating W ∗ on the reduced matrix, we estimate the common spatial sources S.

Then, for each patient, the time courses Ai are calculated from Equation 2.3.

Theory of Non-Stationary Spatial Sources Decomposition (NSD) The principle

of source separation using independent component analysis is based on the assumption that

each source has constant higher statistics − i.e. as mentioned earlier, the probability density

of each source is parameterized by a constant value which does not change with location of

voxels. Here two neighboring voxels are assumed to be independent. In contrast, our model

allows two neighboring voxels to be correlated. During source separation, we model each scan

to be a combination of spatial maps (or sources) where each spatial map is non-stationary

− i.e. it is taken from a probability density function parameterized by location of voxels.

In this case, it can be shown that the separation can be based on multiple decorrelation at

different locations [54, 55]. We think these spatial sources should be non-stationary as:

1. One source (which corresponds to one row in S) may not have the same magnitude and

variation throughout the whole brain due to in-homogeneous magnetic susceptibility

that depends on the location of voxels in the scan. Commonly used source separation

models require that the sources have same variation for the whole brain scan.

12http://cs229.stanford.edu/notes/cs229-notes11.pdf
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2. The strength and variability within a particular source (which corresponds to one row

in S) depends on the brain tissue type in a particular brain region. For example,

activation values in grey matter and white matter (which depends on the amount of

oxygenated blood flow in that tissue) would be different.

In order to develop the theory for nonstationary source decomposition, we note, the

representative fMRI scan X[K×V ] ≈ A[K×K]S[K×V ], where S is an K × V matrix of source

components, where each row k (size 1 × V ) provides contribution of voxel co-ordinates to

kth source. Each spatial activation refers to one row in S. Column k in matrix A will have

corresponding time courses for kth spatial component.

In mathematical terms, suppose we have K independent spatial maps (corresponding to

each row in S) and V observations, each corresponding to a 3D brain scan at a time point.

Then, we can formulate the covariance matrix at location r as Rx(r) = 〈x(r)x(r)T 〉 =

A Ds(r) A
T where Rx, Ds(r) are of size K×K. Further we let x(r) = X(:, N(r)) where N(r)

represents any suitably chosen region around position r for which the signals are assumed

to have same higher order statistics. For our experiments, we have chosen N(r) to be a

4 × 4 × 4 bounding box (e.g., if the point r = [ 200, 100, 50 ], then this box is defined by

corners [199, 99, 49] and [202, 102, 52]). Increasing the bounding box severely degraded the

performance of the model (5-fold cross validation accuracy described in Section 2.2).

Assuming the sources are spatially non-stationary, and following [7], [8],

x(r) ≈ As(r)

Rx(r) = 〈x(r)x(r)T 〉 = A 〈s(r) s(r)T 〉 AT = A Ds(r) A
T

However, as we do not have a perfect estimate for Rx(r), we estimate the covariance

matrix Rx(r) for some spatial interval. We denote the sample estimates as Restx (r). The

measurement error

E(r) = Restx (r)−ADs(r)A
T

Suppose we have N samples of Restx (r) for {r ∈ r1, r2, .., rN}, then we can estimate the

parameters by

Aest, Dest
s (r1), Dest

s (r2), ..Dest
s (rN ) = argmin

A,Ds(r1),...,Ds(rN )

N∑
k=1

‖E(rk)‖2

This is with high confidence, accurate for large N. Now, the source components can be

estimated as

sest = argmin
s
‖x−Aests‖2

Then, for each patient the time courses Ai is calculated from Eqn. 2.3. This method

decorrelates the spatial sources at different regions of the brain which is desirable for the

reasons described before.
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Support Vector Machine Classifier The extracted time courses for each component

yields a total number of K × T features. They are used as input to an support vector

machine (svm) learner with radial basis function kernel (with γ ∈ V where V is [0.1 : 102.4]

with V (i) = 2 × V (i − 1); which is a standard practice) to produce a predictor, which can

then be used to predict the class of a novel instance.

2.6 Diagnosis from Multimodal Features

2.6.1 Method 4 (Multi-modal Features for Prediction of Psychi-
atric Diseases)

For n subjects, suppose Xmri
n×f1 is feature matrix from the one-layer convolutional network

and Xfmri
n×f2 is feature matrix from nonstationary ICA.

The combined feature matrix is Xcombined
n×f ; where f = f1 + f2. This matrix was then

divided into training set and holdout set by instances as in Section 2.1.

Both these sets of feature values were used to train a linear support vector machine

where for the training data {(xi, yi)}, we perform the optimization as described in Eqn 2.1.
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Chapter 3

Results

3.1 Method 1 (Using off-the-shelf Features from Con-
volutional Neural Network)

The 5-fold cross validation accuracy on the ADHD-200 data training set was 0.5986 vs. a

baseline of 0.50. The hold-out set accuracy was 0.6023. The sensitivity, specificity and

Jstat were 0.3156, 0.7655 and 0.0811 respectively. For the ABIDE dataset, the 5-fold cross

validation accuracy on the training set was 0.5237. The test set accuaracy was 0.4951 (less

than chance accuracy). The specificity and sensitivity were 0.5625 and 0.4236. Jstat is not

reported here as specificity+sensitivity<1.

3.1.1 Discussion

In this experiment, transfer learning from 2D image recognition is not very helpful. The rea-

son for the lackluster performance may be due to inherent 3D geometric structures of brain

and different inherent image statistics of MRI images, which is different from identifying

objects within 2D images.

3.2 Method 2 (Using a Single Layer Unsupervised Con-
volutional Neural Net)

3.2.1 Model Accuracy

The results for 5-fold cross validation and hold-out accuracies are shown in Tables 3.1 and

3.2. The best 5-fold cross-validation accuracy achievable for ADHD-200 data is 0.6346. For

the hold-out data it is 0.6257. The sensitivity, specificity and Jstat of the classifier on the

hold-out set is given by 0.4195, 0.8421 and 0.2616 respectively.

The best 5-fold cross-validation accuracy achievable for ABIDE data is 0.6137. For the

hold-out data, it is 0.6173. The sensitivity, specificity and Jstat of the classifier on the

hold-out set is given by 0.4896, 0.7296 and 0.2092 respectively.
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Table 3.1: 5-fold cross-validation and hold-out results for ADHD classification using features
from structural images

Number of Feature Maps 5-Fold CV Accuracy Hold-out Accuracy
75 0.6201
100 0.6346 0.6257
125 0.6254
150 0.6129
175 0.6111
200 0.6290

Table 3.2: 5-fold cross-validation and hold-out results for Autism classification using features
from structural images

Number of Feature Maps 5-Fold CV Accuracy Hold-out Accuracy
75 0.5974
100 0.5962
125 0.5916
150 0.5987
175 0.6137 0.6173
200 0.6113

3.2.2 Discussion

In this experiment, we showed that a simple texture based feature learning method can be

useful for the classification and prediction of psychiatric diseases (ADHD/Autism). Espe-

cially using the textures that were learned from the data itself, we were able to predict the

disease comparably to state-of-the-art accuracies for ADHD [10, 14, 13, 4] and autism [11].

The main reasons for the performance of this simple model are two fold.

• The model incorporated nonlinear transformation in the convolution and max-pooling

layer shown in Fig. 2.5 in the form of a sigmoid function. Compared to linear texture

model, this can enhance subtle details [32] in a tissue. The median axial slice (34th

axial slice as we have 68 axial slices in total for each subject) for one subject from 3D

MRI scan is shown in Fig. 3.1. We have also shown the voxel values in the colorbar.

Noticeably, most of the voxels have very high values. Figures 3.3a and 3.3b show

the effect of the learned filters on median axial slices for one ADHD and one Autism

patient respectively. These images were computed by convolving each filter with one

ADHD (respectively autism) patient’s structural MRI scan. Here, some parts of the

brain tissues are prominent (having larger weights) while the other parts insubstantial

(having lesser weights) after they are convolved with the learned filters (Fig. 3.2 shows

one substantial portion in the tissue after convolution). The arrangement of voxels

after the covolution, is very helpful and informative. These features are important
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Figure 3.1: Median axial slice from MRI scan

Figure 3.2: Median axial slice from MRI scan after convolution with one filter

as they may be able to signify loss of brain tissue and inflammation in those regions.

Also, the features have good predictive power as can be seen in test accuracies of the

model.

• The model captured 3-D texture information in the learned filters shown in Fig. 3.4

and Fig. 3.5. Here we have shown five 5 × 5 2-D axial slices of 5 × 5 × 5 filters for

visualization. The filters mainly capture different orientations of edges, blobs and

spacial arrangements of voxels. These filters learned are different from the filters

learned from natural images shown in Fig. 2.7. These filters learned from MRI data

are informative as can be seen from the test set accuracy of the model. Hence learning

these domain specific filters helped to improve the prediction accuracy of the model.
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(a) Median axial slice from convolved images for one ADHD patient from ADHD-200 dataset

(b) Median axial slice from convolved images for one Autism patient from ABIDE dataset

Figure 3.3: Effect of learned filters on median MRI scan
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Figure 3.4: 100 bases for ADHD diagnosis. Every column shows the five slices from one filter
where each slice is of size 5 × 5. These filters learned are different from the filters learned from
natural images shown in Fig. 2.7

31



Figure 3.5: 175 bases For Autism diagnosis. Every Column shows the five slices from one filter
where each slice is of size 5 × 5. These filters learned are different from the filters learned from
natural images shown in Fig. 2.7
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3.3 Method 3 (Using fMRI Source Separation Models
for Prediction of Psychiatric Diseases)

3.3.1 Experiments Using ADHD-200 Data

Model 5-Fold Cross Validation Accuracy

The results showing our model accuracies on training data (baseline 0.50) are given in

Table 3.3 which shows that using 45 independent components provide the best classification

accuracy with significant statistical significance (p=1.827e-12) vs. baseline.

Summary of ADHD-200 5-fold cross validation accuracy is given in Fig. 3.6.

Figure 3.6: 5-fold cross validation results of ADHD classification

Model Hold-out Test Accuracy

The test accuracy was 0.6491 on the hold-out data (baseline 0.5497). To our knowledge, this

is the best test-set accuracy achieved on ADHD-200 test data using only fMRI scans. The

test-set result is also statistically significant (p=0.0033) vs. the baseline. The specificity,

sensitivity and Jstat are given by 0.8191, 0.4416 and 0.2607 respectively. A comparison of

our results to previously published best performing algorithms for ADHD-200 competition
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Table 3.3: 5-fold cross-validation results for ADHD classification using different number of
independent components

Number of ICs
(SVM Gamma)

5-Fold CV Accuracy 5-Fold CV STD

30(6.4) 0.6216 0.0399
35(3.2) 0.6378 0.0374
40(1.6) 0.6432 0.0390
45(3.2) 0.6450 0.0291
50(3.2) 0.6360 0.0261
55(3.2) 0.6378 0.0075

Table 3.4: Hold-out test results for ADHD classification using only imaging data

Algorithm Accuracy Specificity Sensitivity J-Statistics
Our Result 0.6491 0.8191 0.4416 0.2607

Eloyan et al [3] 0.610 0.94 0.21 0.15
Dai et al [13] 0.6150 0.7766 0.4133 0.1833

Sidhu et al [14] 0.614
Ghiassian et al [10] 0.6260

is shown in Table 3.4.

Spatial Maps from ADHD-200 data

The spatial maps from non-stationary source decomposition are shown in Fig. 3.7 and

Fig. 3.8. For each spatial map, 9 axial slices are shown. IC1 is an artifact as all the voxels

have very high values in this spatial map. Because all the voxels in the brain are equally

important in this component, it is shared by all the voxels. It has been shown that noise like

motion, breathing and attention signals can modulate voxels throughout the brain [24]. IC3

is also an artifact as it consists of regions from cerebrospinal fluids and is a result of cardiac

pulsatility artifacts [28]. Removing these two artifacts does not change the performance of

the model. The other components consist of some common default mode networks (regions

that are shown to be active during rest [53]) as well as some new resting state networks

chosen by the algorithm from the ADHD-200 dataset. Some of the resting state networks

found are consistent with [15]. For example, IC5 is the resting state network for peristriate

area, and lateral and superior occipital gyrus, which are areas related to visual cortex

and might represent spontaneous brain activities like day-dreaming [25, 27]. It is easy to

connect this component to ADHD as ADHD patients are more likely to experience mind-

wandering [48]. IC6 captured connectivity in the frontal and occipital lobe (responsible for

planning and many areas of vision respectively). This area is very important for ADHD

as well, as ADHD patients may suffer from lack of effective planning [30]. An interesting
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observation is that IC24 consists of pons (responsible for eye movement, sleep, and many

other vegetal and automatic functions) regions and temporal lobe (for sensory processing,

memory formation and higher order association processing). Their usefulness in prediction

suggests that some of the physical signals captured by fMRI are also indicative of a disease

state.
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Figure 3.7: Spatial maps or components 1-25 for ADHD-200 using NSD. Each component is shown
in a box and 9 axial slices are shown. The colorbar is same as Fig. 3.1
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Figure 3.8: Spatial maps or components 26-45 for ADHD-200 using NSD. Each component is
shown in a box and 9 axial slices are shown. The colorbar is same as Fig. 3.1
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3.3.2 Experiments Using ABIDE Data

Model 5-Fold Cross Validation Training Accuracy

The 5-fold cross-validation accuracy of the model along with the range have been shown

in Table 3.5 . The best performing model has a cross-validation accuracy of 0.6225 over

baseline 0.5157 (p = 4.9460e-10)

The results for cross validation accuracy for all the source decomposition methods is

shown in Fig. 3.9.

Figure 3.9: 5-fold cross validation results of Autism classification

Model Hold-out Test Accuracy

The accuracy on the hold-out data was 0.6233. This result is statistically significant (p =

0.01) and 2.33% higher with respect to previous best result [10]. The specificity, sensitivity

and Jstat are given by 0.6768, 0.5533 and 0.2301 respectively.
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Table 3.5: 5-fold cross-validation results for Autism classification using different number of
independent components

Number of ICs
(SVM Gamma)

5-Fold CV Accuracy 5-Fold CV STD Dev

30(51.2) 0.5925 0.0158
35(51.2) 0.5825 0.0049
40(51.2) 0.6159 0.0078
45(51.2) 0.6225 0.0210
50(51.2) 0.6000 0.013
55(51.2) 0.5987 0.0059

Table 3.6: Leave-one-out results for Autism classification using only imaging data

Algorithm Accuracy Specificity Sensitivity J-Statistics

Our Result 0.6139 0.6475 0.5781 0.2256
Nielsen et al [18] 0.60 0.58 0.62 0.20

Leave-one-out Accuracy Comparison

Leave-one-out accuracy of the model was also calculated to compare the results with previous

best result. The comparison is shown in Table 3.6.

Spatial Maps from ABIDE data

The spatial maps found using multiple de-correlation are shown in Fig. 3.10 and Fig. 3.11.

IC1 is an artifact as it is shared by almost all the voxels [24]. IC3 is also an artifact as it

consists of regions from cerebrospinal fluids and is a result cardiac pulsatility artifacts [28].

A deeper investigation into the components shows multiple overlapping components. The

components include visual areas (visual cortex, V1 and V2), partial overlapping with some

default mode networks (PCC/precuneus, anterior cingulate cortex and frontal lobe) and

motor networks. These components are informative: see the cross-validation, test accuracy

on the ABIDE data for autism classification.

3.3.3 Discussion on Results

In our analysis we have used the individual time courses for each component as features

for the learner. The separation model is Xi
[T×V ] ≈ Ai[T×I] × S[I×V ] where rows of S

are estimated spatial map and columns of A are corresponding estimated time courses.

The time course component A:,i correspond to weighting of the component Si,:. A smaller

component weight A:,i will correspond to lower contribution of the component to the whole

scan and indicate hypo-connectivity. Likewise higher weights for a component will represent
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Figure 3.10: Spatial maps or components 1-25 for ABIDE using NSD. Each component is shown
in a box and 9 axial slices are shown. The colorbar is same as Fig. 3.1
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Figure 3.11: Spatial maps or components 26-45 for ABIDE using NSD. Each component is shown
in a box and 9 axial slices are shown. The colorbar is same as Fig. 3.1
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hyper-connectivity.

For ADHD, different studies have reported different pathological changes in brain [21].

Tian et al. [22] showed a higher level activity in sensory cortex. Whereas using a similar

method, Castellanos et al. [23] conceptualized a lower connectivity between anterior cingu-

lar cortex, precuneus and posterior cingulate cortex. In our studies, we found differences in

group level mean connectivities for ADHD cases for visual and default mode components

corresponding to regions denoted in [21, 23] (S = IC4, IC7, IC9, IC28, IC36, IC38, IC42,

IC43). We compared corresponding group level mean weights for Healthy and ADHD pa-

tients. For ICi ∈ S, corresponding weights A:,i are reduced for ADHD patients in a total

of 42, 42, 42, 42, 40, 41, 43, 36 time points out of total number of time points 91. The

reduced differences for were statistically significant (p ≤ 0.05) for 21, 20, 20, 21, 19, 19, 22,

18 number of time points. This means, the patients suffering from ADHD might have a

combination of hyper-connective or hypo-connective brain depending on time points.

For Autism, the main connectivity loss is noted in frontal lobe and other cortical ar-

eas [19] [20]. In our analysis this corresponds to IC4, IC6, IC7, IC8, IC15, IC16, IC29, IC42,

IC41. In all these cases, similar to ADHD, we compared corresponding group level mean

weights for Healthy and Autism patients. The weights are reduced for autism patients in a

total of 51, 57, 50, 57, 53, 53, 52, 53, 52 time points whereas total number of time points is

91. Also these differences were significant with (p ≤ 0.05) for 21, 20, 20, 23, 19, 23, 20, 18,

19 number of time points. IC3 predominantly represents CSF ventricle in brain. Our study

shows that this component does not have much effect between healthy and autistic brains

as there is group level differences (p ≤ 0.05) in only 18 time points − i.e. only 0.2 of the

whole time points of IC3 are significantly different.

3.4 Method 4 (Multi-modal Features for Prediction of
Psychiatric Diseases)

5-fold cross validation and test set accuracy results are shown in Tables 3.7 and 3.8.

Table 3.7: 5-fold cross validation results for ADHD classification using features from struc-
tural and functional scans

5-Fold CV Accuracy Hold-out Accuracy
0.6892 0.6725

Table 3.8: 5-fold cross validation results for Autism classification using features from struc-
tural and functional scans

5-Fold CV Accuracy Hold-out Accuracy
0.6312 0.6431
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For both of these datasets (ADHD-200 and ABIDE), these accuracy values are the best

known using only imaging data. For the ADHD-200 hold-out test, the specificity, sensitivity

and Jstat are 0.8510, 0.4545, 0.3055 respectively. For the ABIDE hold-out test, specificity,

sensitivity and Jstat are 0.6832, 0.6, 0.2832 respectively.

3.4.1 Discussion

As shown in [10], texture based features from fMRI and MRI scans can be predictive of

psychiatric diseases. Our model derives the texture based features from MRI and combines

them with resting state information from fMRI to produce a strong predictor.

Comparison with Previous results

Though there is a significant improvement of the prediction results compared to previous

works, the model is able to increase the prediction accuracy only by 4.65% for ADHD and

4.31% for Autism compared to the previous works on ADHD/Autism prediction. There

are several reasons for the lackluster performance. We can hypothesize that the resting

state network structures are not significantly different between ADHD/Autism patients and

healthy controls. As can be seen from the previous section, almost half of the total number

of time points for each spatial component had no statistical differences between healthy and

ADHD/Autism positives. Also it is later shown (Fig. 3.12) that the pre-processing step does

not remove all the site dependent artifacts for the fMRI data.

Effect of Unbalanced Data for ADHD-200

Here we discuss effect of unbalanced data for ADHD classification. In the case of autism

classification from ABIDE data, the class labels (healthy vs. autism) are almost equally

distributed (baseline 0.5157), hence we did not use balanced data for training and testing.

Instead of using the balanced training set for ADHD classification, had we used the unbal-

anced training set (with baseline 0.6372), the training accuracy for the model rises to 0.715

(std 0.043 and p=1.9388e-06). However the hold-out test accuracy drops to 0.6257. This

result shows that balancing the training set may be a good way to improve the classifier

prediction accuracy. One drawback of this method is it may not be representative of the

population as only 11% of children 4-17 years of age have been diagnosed with ADHD in

United States as of 2011 6.

Reliability of Multisite Dataset

Although pre-processing was applied to the data before applying any machine learning step,

the datasets suffer significantly from site dependent variations. Both ADHD-200 and ABIDE

data were passed through careful experimental control and quality assurance checks. Even

6http://www.cdc.gov/nchs/fastats/adhd.htm
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after that the site dependent variations have a heavy impact on the data. For ADHD-200,

Fig. 3.12 shows the first two principal components where data from each site is shown using

one color (independent of ADHD vs control label). Ideally we should see data from different

sites intermixed together but instead we see clusters corresponding to different sites.

Figure 3.12: PCA Component 1-2 for different sites. Each number represents one site. Here, x-y
axes are PCA component 1 and PCA component 2 respectively.

Most of the papers working on ADHD-200/ABIDE data suffer from this fatal caveat. The

first few principal components among the fMRI scans account for most site dependent

variations. However if we attempt to learn a model based on removing first few components

to make the data more homogeneous, the model loses its predictability, indicating that the

first few important principal components are important features for disease classification too.

We can use the fMRI ICA features to learn a classifier that is able to predict site from which

the subjects come from, with 92% accuracy. Hence we hypothesize that ADHD/Autism

predictability is also interlinked with site dependent fMRI scan features − i.e. there are

some common features that can predict both the site and the disease. These two factors

should be decoupled before we can do a true analysis of ADHD/Autism predictability using

fMRI features. However, our analysis is an important step towards an automated generalized

prediction model for psychiatric disease detection.
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Chapter 4

Conclusion

The development of automatic ADHD/Autism diagnostic algorithms from MRI/fMRI data

is a challenging task. The application of statistical pattern recognition algorithms to this

problem currently yields only moderately good results, rendering these classification systems

unfit for deploying in the health-care industry. However, much research is being done to

improve these results and search for discriminative features for classifying ADHD/Autism

amongst the plethora of voxel values present in structural (MRI) and functional neuroimages

(fMRI).

In this dissertation, we derived a novel algorithm for combining structural and functional

features using 3D texture based and independent component analysis of the whole 4-D fMRI

scan, which can then be used for classification. We also explored different representation of

brain functional connectivity useful for differentiating Healthy vs Psychiatric patients. Our

results indicate that combining multimodal features (both MRI and fMRI) yields moder-

ately good classification accuracy for ADHD/Autism, which is an important step towards

computer aided diagnosis of these psychiatric diseases.

Still, there is much work to be done in this area. For example, source separation based on

deep belief networks [29] can be investigated in this vein. Using other multimodal (Diffusion

Tomographic Imaging, Electroencephalogram) features also be used for prediction. More-

over we identify site independent characteristics for any feature extraction an important

challenge of the problem and future efforts should be directed in this vein.

45



Bibliography

[1] Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001b). A method for making group

inferences from functional MRI data using inde- pendent component analysis. Human

Brain Mapping 14:140151

[2] Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2002). Erratum: A method for making

group inferences from functional MRI data using independent component analysis.

Human Brain Mapping 16:131.

[3] Eloyan, Ani, John Muschelli, Mary Beth Nebel, Han Liu, Fang Han, Tuo Zhao, Anita

D. Barber et al. Automated diagnoses of attention deficit hyperactive disorder using

magnetic resonance imaging. Frontiers in systems neuroscience 6 (2012).

[4] Li S, Eloyan A, Joel S, Mostofsky S, Pekar J, Bassett S S, Caffo B. (2012). Analysis

of Group ICA-Based Connectivity Measures from fMRI: Application to Alzheimer’s

Disease. Plos One. 7:11. e49340.

[5] Smith, Stephen M., et al. Temporally-independent functional modes of spontaneous

brain activity. Proceedings of the National Academy of Sciences 109.8 (2012): 3131-

3136.

[6] Liu, Xiao, and Jeff H. Duyn. Time-varying functional network information extracted

from brief instances of spontaneous brain activity. Proceedings of the National Academy

of Sciences 110.11 (2013): 4392-4397.

[7] Parra L., Spence C. 2000. Convolutive Bilnd Separation of Non-Stationary Sources

IEEE transaction on Speech and Audio Processing Vol.8 NO. 3: 320–327.

[8] Souloumiac, Antoine. Blind source detection and separation using second order non-

stationarity. Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 Inter-

national Conference on. Vol. 3. IEEE, 1995.

[9] Cecchi, G., I. Rish, B. Thyreau, B. Thirion, M. Plaze, and M. Paillere-Martinot. 2009.

Discriminative network models of schizophrenia. Advances in Neural Information Pro-

cessing Systems 22 (2009): 252–60.

46



[10] Ghiassian S., Greiner R., Jin P., Brown M. 2014. Learning to Classify Psychiatric Dis-

orders based on fMR Images: Autism vs Healthy and ADHD vs Healthy. In Proceedings

of 3rd NIPS 2013 Workshop on Machine Learning and Interpretation in NeuroImaging

(2014).

[11] Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N., Bigler,

E. D., Anderson, J. S. (2013). Multisite functional connectivity MRI classification of

autism: ABIDE results. Frontiers in human neuroscience, 7.

[12] Li Y., Adal T.,Calhoun V., 2007. Estimating the Number of Independent Compo-

nents for Functional Magnetic Resonance Imaging Data. In Human Brain Mapping,

28:12511266.

[13] Dai, D., Wang, J., Hua, J., He, H. (2012). Classification of ADHD children through

multimodal magnetic resonance imaging. Frontiers in systems neuroscience, 6.

[14] Sidhu, G. S., Asgarian, N., Greiner, R., Brown, M. R. (2012). Kernel Principal Compo-

nent Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Frontiers

in systems neuroscience, 6.

[15] Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J.,

Smith, S. M., Beckmann, C. F. (2006). Consistent resting-state networks across healthy

subjects. Proceedings of the national academy of sciences, 103(37), 13848-13853.

[16] Brown, G. G., Mathalon, D. H., Stern, H., Ford, J., Mueller, B., Greve, D. N., Network,

F. B. I. R. (2011). Multisite reliability of cognitive BOLD data. Neuroimage, 54(3),

2163-2175.

[17] Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., Dale, A.

(2006). Reliability in multi-site structural MRI studies: effects of gradient non-linearity

correction on phantom and human data. Neuroimage, 30(2), 436-443.

[18] Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N., Bigler,

E. D., Anderson, J. S. (2013). Multisite functional connectivity MRI classification of

autism: ABIDE results. Frontiers in human neuroscience, 7.

[19] Cherkassky, V. L., Kana, R. K., Keller, T. A., Just, M. A. (2006). Functional connec-

tivity in a baseline resting-state network in autism. Neuroreport, 17(16), 1687-1690.

[20] Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., Minshew, N. J. (2007). Func-

tional and anatomical cortical underconnectivity in autism: evidence from an FMRI

study of an executive function task and corpus callosum morphometry. Cerebral cortex,

17(4), 951-961.

47



[21] Konrad, K., Eickhoff, S. B. (2010). Is the ADHD brain wired differently? A review

on structural and functional connectivity in attention deficit hyperactivity disorder.

Human brain mapping, 31(6), 904-916.

[22] Tian L, Jiang T, Wang Y, Zang Y, He Y, Liang M, Sui M, Cao Q, Hu S, Peng M,

Zhuo Y (2006). Altered resting-state functional connectivity patterns of anterior cin-

gulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Let-

ter,400:3943.

[23] Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, Shaw D,

Shehzad Z, Di Martino A, Biswal B, Sonuga-Barke EJ, Rotrosen J, Adler LA, Milham

MP (2008). Cingulate-precuneus interactions: A new locus of dysfunction in adult

attention-deficit/hyperactivity disorder. Biol Psychiatry 63:332337.

[24] Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., Petersen, S.

E. (2014). Methods to detect, characterize, and remove motion artifact in resting state

fMRI. Neuroimage, 84, 320-341.

[25] Wang, K., Jiang, T., Yu, C., Tian, L., Li, J., Liu, Y., Li, K. (2008). Spontaneous

activity associated with primary visual cortex: a resting-state FMRI study. Cerebral

cortex, 18(3), 697-704.

[26] Deshpande, G., Wang, P., Rangaprakash, D., Wilamowski, B. (2015). Fully Connected

Cascade Artificial Neural Network Architecture for Attention Deficit Hyperactivity

Disorder Classification From Functional Magnetic Resonance Imaging Data.

[27] Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., Schooler, J. W. (2009). Experi-

ence sampling during fMRI reveals default network and executive system contributions

to mind wandering. Proceedings of the National Academy of Sciences, 106(21), 8719-

8724.

[28] Dagli, M. S., Ingeholm, J. E., Haxby, J. V. (1999). Localization of cardiac-induced

signal change in fMRI. Neuroimage, 9(4), 407-415.

[29] Hjelm, R. D., Calhoun, V. D., Salakhutdinov, R., Allen, E. A., Adali, T., Plis, S. M.

(2014). Restricted Boltzmann machines for neuroimaging: an application in identifying

intrinsic networks. NeuroImage, 96, 245-260.

[30] Barkley, Russell A. Behavioral inhibition, sustained attention, and executive functions:

constructing a unifying theory of ADHD. Psychological bulletin 121.1 (1997): 65.

[31] Coates, A., Ng, A. Y., Lee, H. (2011). An analysis of single-layer networks in unsuper-

vised feature learning. In International conference on artificial intelligence and statistics

(pp. 215-223).

48



[32] Gupta, A., Ayhan, M., Maida, A. (2013). Natural image bases to represent neuroimag-

ing data. In Proceedings of the 30th International Conference on Machine Learning

(ICML-13) (pp. 987-994).

[33] Bourlard, H. and Kamp, Y. Auto-association by multilayer perceptrons and singular

value decomposition. Biological Cybernetics, 59(4):291294, 1988

[34] Olshausen, B. A. Sparse codes and spikes. In Probabilistic Models Of The Brain: Per-

ceptron Aand Neural Function, pp. 257272. MIT Press, 2001

[35] Lecun, Y. and Bengio, Y. Convolutional Networks for Images, Speech and Time Series,

pp. 255258. The MIT Press, 1995

[36] Peng, H., Long, F., Ding, C. (2005). Feature selection based on mutual information

criteria of max-dependency, max-relevance, and min-redundancy. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 27(8), 1226-1238.

[37] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E.,Darrell, T. (2013).

Decaf: A deep convolutional activation feature for generic visual recognition.

[38] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y. (2013). Over-

feat: Integrated recognition, localization and detection using convolutional networks.

arXiv preprint arXiv:1312.6229.arXiv preprint arXiv:1310.1531.

[39] Razavian, A. S., Azizpour, H., Sullivan, J., Carlsson, S. (2014, June). CNN features

off-the-shelf: an astounding baseline for recognition. In Computer Vision and Pattern

Recognition Workshops (CVPRW), 2014 IEEE Conference on (pp. 512-519). IEEE.

[40] Deshpande, G., Wang, P., Rangaprakash, D., Wilamowski, B. (2015). Fully Connected

Cascade Artificial Neural Network Architecture for Attention Deficit Hyperactivity

Disorder Classification From Functional Magnetic Resonance Imaging Data.

[41] . D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR,

abs/1311.2901, 2013

[42] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image

representations using convolutional neural networks. Technical Report HAL-00911179,

INRIA, 2013.

[43] Calhoun VD, Kiehl KA, Pearlson GD. Modulation of temporally coherent brain net-

works estimated using ICA at rest and during cognitive tasks. Human Brain Mapping.

2008a; 29(7):828. [PubMed: 18438867]

49



[44] Schmithorst VJ, Holland SK. Comparison of three methods for generating group statis-

tical inferences from independent component analysis of functional magnetic resonance

imaging data. J.Magn Reson.Imaging. 2004; 19(3):365368. [PubMed: 14994306]

[45] Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A. Y. Self-taught learning: Transfer

learning from unlabeled data. In ICML, pp. 759766, 2007.

[46] Erhardt, E. B., Rachakonda, S., Bedrick, E. J., Allen, E. A., Adali, T., Calhoun, V. D.

(2011). Comparison of multisubject ICA methods for analysis of fMRI data. Human

brain mapping, 32(12), 2075-2095.

[47] Anderson, A., Douglas, P. K., Kerr, W. T., Haynes, V. S., Yuille, A. L., Xie, J.,

Cohen, M. S. (2014). Non-negative matrix factorization of multimodal MRI, fMRI and

phenotypic data reveals differential changes in default mode subnetworks in ADHD.

NeuroImage, 102, 207-219.

[48] Shallice T, Marzocchi GM, Coser S, Del Savio M, Meuter RF, Rumiati RI. Executive

function profile of children with attention deficit hyperactivity disorder. Developmental

Neuropsychology. 2002;21:4371.

[49] Calhoun, V., Adali, T., Liu, J. (2006, August). A feature-based approach to com-

bine functional MRI, structural MRI and EEG brain imaging data. In Engineering in

Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference

of the IEEE (pp. 3672-3675). IEEE.

[50] Brown MRG, Sidhu GS, Greiner R, Asgarian N, Bastani M, Silverstone PH, Greenshaw

AJ and Dursun SM (2012) ADHD-200 Global Competition: diagnosing ADHD using

personal characteristic data can outperform resting state fMRI measurements. Front.

Syst. Neurosci. 6:69. doi: 10.3389/fnsys.2012.00069

[51] A. Hyvrinen. Fast and Robust Fixed-Point Algorithms for Independent Component

Analysis. IEEE Transactions on Neural Networks 10(3):626-634, 1999.

[52] Lai, S. H., Fang, M. (1999). A novel local PCA-based method for detecting activation

signals in fMRI. Magnetic resonance imaging, 17(6), 827-836.

[53] Biswal B, Yetkin FZ, Haughton VM, Hyde JS. (1995). Functional connectivity in the

motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in

medicine, Oct;34(4):537-41.

[54] Souloumiac (1995). Blind source detection and separation using second order non-

stationarity. In International Conference on Acoustics, Speech and Signal Processing,

volume IEEE 0-7803-2431-5/95, pages 1912-915.

50



[55] Kawamoto, M., Matsuoka, K., and Ohnishi, N. (1998). A method of blind separation

for convolved non-stationary signals. Neurocomputing, 22:157-171.

[56] http://stats.stackexchange.com/questions/114385/what-is-the-difference-between-

convolutional-neural-networks-restricted-boltzma

[57] http://202.118.75.4/ma/bss.html

51


	Introduction
	Foundation
	Dataset
	Evaluation Criteria
	Preprocessing Pipeline
	Diagnosis from Structural MRI Scans
	Method 1 (Using off-the-shelf Features from Convolutional Neural Network)
	Method 2 (Using a Single Layer Unsupervised Convolutional Neural Net)

	Diagnosis from fMRI Scans
	Method 3 (Using fMRI Source Separation Models for Prediction of Psychiatric Diseases)

	Diagnosis from Multimodal Features
	Method 4 (Multi-modal Features for Prediction of Psychiatric Diseases)


	Results
	Method 1 (Using off-the-shelf Features from Convolutional Neural Network)
	Discussion

	Method 2 (Using a Single Layer Unsupervised Convolutional Neural Net)
	Model Accuracy
	Discussion

	Method 3 (Using fMRI Source Separation Models for Prediction of Psychiatric Diseases)
	Experiments Using ADHD-200 Data
	Experiments Using ABIDE Data
	Discussion on Results

	Method 4 (Multi-modal Features for Prediction of Psychiatric Diseases)
	Discussion


	Conclusion

