
University of Alberta

Playing and Solving Havannah

by

Timo Ewalds

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c© Timo Ewalds

Spring 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential

users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis

and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed

or otherwise reproduced in any material form whatsoever without the author’s prior written permission.

Abstract

Havannah is a recent game that is interesting from an AI research perspective.

Some of its properties, including virtual connections, frames, dead cells, draws

and races to win, are explained. Monte Carlo Tree Search (MCTS) is well

suited to play Havannah, but many improvements are possible. Several forms

of heuristic knowledge in the tree show playing strength gains, and a change

to the rules in the rollout policy significantly improves play on larger board

sizes. Together, a greater than 80% winning rate, or 300 elo gain, is achieved

on all board sizes over an already fairly strong player. This MCTS player is

augmented with a few engineering improvements, such as threading, memory

management and early draw detection, and then used to solve all 6 openings

of size 4 Havannah, a game with a state space on the order of 6× 1015 states.

Castro, the implementation and test bed, is released open source.

Preface

I’ve never been very good or interested in playing board games, but I’ve always

had a fascination with how to play them well. I started programming when I

was 13 years old, and one of my first projects was to write an AI for tic-tac-toe.

This is rather easy, as the game is tiny, but it was a good project for teaching

me to program. A few years later I was introduced to mancala, and as a way

to understand the game better, I decided to write a program to play it, and

in the process, independently reinvented minimax and rediscovered that many

games are zero-sum. My mancala program was never any good as I didn’t

know anything about alpha-beta and wikipedia hadn’t been invented yet, but

I have always had a greater interest in understanding how the mechanics of

the game work than actually playing the game. Writing a strong program is a

great challenge, and a very satisfying one if your program becomes a stronger

player than you are yourself.

In late 2008 I was introduced to Pentago, an interesting game invented in 2005.

It is a 2-player game played on a 6x6 board where each turn is composed of

placing a stone and rotating a 3x3 quadrant with the goal of forming 5 in a

row. After playing a few rounds and losing badly, I decided to figure out how

to write a program to play it so that I could better understand the strategy

and tactics. During a few rounds of play I devised a simple heuristic, which

on its own is very weak, but when used with alpha-beta is quite strong. With

some optimization, my program, Pentagod, became strong enough to easily

crush me and my friends.

In early 2010, while taking a computer science course in computer game AI

with Martin Mueller, I was tasked with writing a program to play Havannah.

Basing my program, Castro, on my earlier work on Pentagod, my program be-

came reasonably strong by program standards, but still quite weak by human

standards. In fact, Christian Freeling, the creator of Havannah was so cer-

tain that programs would remain weak that he issued a challenge for AC1000

to anyone who can beat him in only one in ten games on size 10 by 2012.

I continued working on my program after the course finished, implementing

techniques mentioned in class or used in other games, trying to use the theo-

retical properties used in the related game Hex, optimizing my code for pure

efficiency and parallelism, and coming up with Havannah specific techniques.

In September 2010 I went to Kanazawa Japan to compete in the Computer

Games world championship and won 15 out of 16 games, winning the tourna-

ment. Soon after I attempted to solve size 4, a small version of the game, and

succeeded in January 2011.

This thesis is the story of what it takes to write a strong Havannah player,

and how this player was used as the basis of solving size 4 Havannah. Chapter

1 introduces some of the concepts and motivations for this thesis. Chapter

2 explains the required background knowledge for the algorithms used in the

rest of thesis. Chapter 3 describes the rules of the game and introduces several

properties of the game itself that make writing a program challenging, and a

few that can be exploited to increase the playing strength. Chapter 4 explains

how the general techniques were adapted to Havannah and introduces a few

Havannah specific heuristics that together lead to a tournament level program.

Chapter 5 explains how the player was used to solve size 4 Havannah and the

extra techniques needed to accomplish this goal along with the solution to size

4 Havannah. Chapter 6 provides a summary, and describes possible future

work.

Acknowledgements

I’d especially like to thank Colin Ophus, for playing so many games of Pentago and

Havannah with me, and trying to deconstruct the games. His insights and enthusi-

asm helped me stay motivated and continually improve Castro. Also, I appreciate

the thesis template and thesis advice.

Thank you Ryan Hayward, Martin Mueller and Jonathan Schaeffer, for your in-

sights into game playing algorithms, how they apply to other games and possibly to

Havannah, and for advising me on my thesis.

Thank you Marcin Ciura for your havannah.sty which made the Havannah diagrams

easy, and the constant discussion of Havannah ideas.

Thanks to my family and friends, for their constant support as I worked on my

masters.

Thank you Christian Freeling, for inventing such an interesting game.

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Contributions . 2

2 Background 5

2.1 Minimax . 5

2.1.1 Negamax . 6

2.2 Alpha-Beta . 7

2.2.1 Transposition Table . 8

2.2.2 Iterative Deepening . 9

2.2.3 History Heuristic . 10

2.3 Proof Number Search . 10

2.3.1 The Negamax Formulation 13

2.3.2 Transposition Table . 16

Contents

2.4 Monte Carlo Tree Search . 16

2.4.1 UCT: Upper Confidence bounds as applied to Trees . . 18

2.4.2 RAVE: Rapid Action Value Estimate 20

2.4.3 Heuristic Knowledge 21

2.4.4 Rollout Policy . 23

2.5 Summary . 23

3 Havannah 25

3.1 Rules of Havannah . 25

3.2 Coordinate System . 27

3.3 State Space . 28

3.4 Properties of Havannah . 29

3.4.1 Virtual Connections 30

3.4.2 Frame . 31

3.4.3 Simultaneous Forced Wins: Race to Win 31

3.4.4 Dead Cells . 32

3.4.5 Draws . 33

3.5 Summary . 34

4 Playing Havannah 36

4.1 Castro . 37

Contents

4.2 Havannah Rules Implementation 38

4.2.1 Fork and Bridge Connections 38

4.2.2 Rings . 38

4.3 Testing Methodology . 41

4.4 RAVE . 42

4.5 Keep Tree Between Moves . 42

4.6 Proof Backups . 43

4.7 Multiple Rollouts . 45

4.8 Heuristic Knowledge . 46

4.8.1 Maintain Virtual Connections 48

4.8.2 Locality . 48

4.8.3 Local Reply . 50

4.8.4 Edge Connectivity . 50

4.8.5 Group Size . 52

4.8.6 Distance to Win . 53

4.9 Rollout Policy . 55

4.9.1 Mate-in-one . 56

4.9.2 Maintain Virtual Connection 59

4.9.3 Last Good Reply . 59

4.9.4 Ring Rule Variations 60

Contents

4.10 Combinations . 67

5 Solving Havannah with MCTS 70

5.1 Monte Carlo Tree Search Solving 70

5.1.1 Symmetry . 71

5.1.2 Multi-threading . 71

5.1.3 Garbage Collection . 73

5.1.4 Memory Management 74

5.1.5 Early Draw Detection 75

5.2 Solution to Havannah Sizes 2, 3 and 4 76

5.2.1 Size 2 Proof . 77

5.2.2 Size 3 Proof . 77

5.2.3 Size 4 Proof . 77

6 Conclusions 87

6.1 Conclusions . 87

6.2 Future Work . 89

A Glossary 91

B Playable Havannah Board 96

References 97

List of Tables

3.1 State Space Complexity of Havannah 29

4.1 Time Used by MCTS Phase with 1 Rollout per Simulation . . 47

4.2 Time Used by MCTS Phase Using 2 Rollouts per Simulation . 47

4.3 Time Used by MCTS Phase Using 10 Rollouts per Simulation 47

4.4 Number of Wins of Each Type by Board Size Given 10000 Sim-

ulations . 62

4.5 Average Number of Moves in a Rollout Before Each Victory Type 63

4.6 Number of Wins of Each Type by Board Size Given 10000 Sim-

ulations When Only Counting Rings With Three or More Per-

manent Stones . 66

List of Figures

2.1 Minimax Tree . 6

2.2 Minimax Pseudocode . 7

2.3 Negamax Pseudocode . 8

2.4 Alpha-beta Pseudocode . 9

2.5 Proof Number Search Tree . 12

2.6 Proof Number Search Tree Using the Negamax Formulation . 14

2.7 Proof Number Search Pseudocode 15

2.8 Four Phases of Monte Carlo Tree Search 17

2.9 Monte Carlo Tree Search Pseudocode 19

3.1 The Three Havannah Winning Conditions 26

3.2 The Coordinate System . 28

3.3 Virtual Connections . 30

3.4 Simultaneous Forced Wins: Race to Win 31

List of Figures

3.5 Hex-dead Cell Patterns . 32

3.6 Hex-dead Cells Are Not Havannah-dead Cells 33

3.7 Havannah Dead Cell Patterns 33

3.8 Havannah Draws . 34

4.1 Ring Detection Search . 39

4.2 Ring Detection O(1) . 40

4.3 Rave vs UCT Baseline . 42

4.4 Early Position Solvable by MCTS in 1 Minute 43

4.5 Proof Backups . 44

4.6 Multiple Rollouts . 46

4.7 Maintain Virtual Connection Bonus 49

4.8 Points Given by Distance From an Existing Stone 49

4.9 Locality Bonus, Any Stones 50

4.10 Locality Bonus, Own Stones 51

4.11 Local Reply Bonus . 51

4.12 Edge Connectivity Bonus . 52

4.13 Group Size Bonus . 53

4.14 Distance to Win . 54

4.15 Minimum Distance to Win Bonus 55

4.16 Own Minimum Distance to Win 56

List of Figures

4.17 Mate-in-one Checking Against Baseline RAVE Player With 5

Seconds per Move . 58

4.18 Mate-in-one Checking Against Baseline RAVE Player With 30

Seconds per Move . 58

4.19 Maintain Virtual Connections in the Rollout Against Baseline

RAVE Player . 60

4.20 Last Good Reply Against Baseline RAVE Player 61

4.21 Ring Rule Ignore Rings Against Baseline RAVE Player 62

4.22 Ring Rule Fixed Depth Against Baseline RAVE Player 64

4.23 Ring Rule Ring Size Against Baseline RAVE Player 65

4.24 Ring Rule Permanent Stones Against Baseline RAVE Player . 66

4.25 Rollout Modifications . 68

4.26 Knowledge Modifications . 69

5.1 Solution to Board Sizes 2, 3 and 4 76

5.2 Proof Tree for Size 3 . 78

5.3 Proof Tree for the a1 Opening on Size 4 81

5.4 Proof Tree for the a2 Opening on Size 4 82

5.5 Proof Tree for the b2 Opening on Size 4 83

5.6 Proof Tree for the b3 Opening on Size 4 84

5.7 Proof Tree for the c3 Opening on Size 4 85

5.8 Proof Tree for the d4 Opening on Size 4 86

List of Abbreviations

Abbreviation Meaning

αβ Alpha-Beta algorithm

AI Artificial Intelligence

CAS Compare And Swap

DAG Directed Acyclic Graph

GC Garbage Collection

LGR Last Good Reply

LGRF Last Good Reply with Forgetting

MCTS Monte Carlo Tree Search

MPN Most Proving Node

PNS Proof Number Search

RAVE Rapid Action Value Estimate

TT Transposition Table

UCB Upper Confidence Bounds

UCT Upper Confidence bounds as applied to Trees

VC Virtual Connection

1
Introduction and Contributions

1.1 Introduction

Artificial intelligence (AI) is an important and exciting field of research with

the potential to fundamentally improve the way society functions. One of the

earliest and more well-known sub-fields of AI research is games and puzzles. It

was once commonly thought that once a computer could play Chess at a world

championship level, it would be on par with human intelligence. Deep Blue,

the Chess program created by IBM, accomplished world championship level

play in 1997, using brute force search. While Chess-playing ability turned out

to not be representative of general intelligence, the search techniques pioneered

1

Chapter 1: Introduction

in Chess and similar games are undoubtedly effective at problem solving and

are widely applicable to other domains. For AI researchers, the next goal after

playing better than humans is to solve the game, in essence to play optimally.

Several games, such as Connect 4 and Checkers have been solved, ensuring that

a computer player cannot be defeated. Those who aren’t working on optimal

play are working on harder games than Chess. They are discovering new

algorithms and heuristics that continually push the bounds of what computers

can do.

Havannah is a board game invented in 1979 by Christian Freeling. The rules

and properties of Havannah are described in detail in Chapter 3. While it is

not a popular game, it is interesting from a game research perspective. It is

a two player, zero-sum, perfect information game, like Chess, Go and Hex,

and like Hex, it is a connection game. Unlike Chess, and like Go, however, it

has no known strong heuristic for evaluating a position, making the classical

techniques ineffective. Christian Freeling is so confident that computers cannot

play Havannah well that in 2002 he placed a AC1000 wager that no program

could beat him in even one out of ten games on a size 10 board by 2012. This

challenge makes it an interesting game for developing newer game playing

techniques.

The goal of this thesis is to develop a program that plays strong Havannah on

board sizes 4 through 10, and to use this player to solve all 6 openings of the

size 4 board.

1.2 Contributions

Havannah is closely related to Hex, a similar game that has received signifi-

cantly more attention over the years. Hex has several mathematical properties

that allow a program to ignore certain moves, or to prove the outcome of a

2

Chapter 1: Introduction

game many moves before the end of the game. Several of these properties are

shown in Section 3.4 to not apply in Havannah, or to apply only in a limited

sense. Unlike Hex, draws are possible in Havannah, and detecting these early

are key to solving certain positions. A technique for detecting draws once no

wins are possible is presented in Section 5.1.5.

All of the algorithms and ideas presented here were implemented in a program

named Castro. Castro is written in C++ and has been released as open source

at https://github.com/tewalds/castro. It includes an MCTS player and

several solvers, along with several heuristics. Most of the testing was done

using ParamLog, a distributed testing framework written for testing Castro.

It has also been released as open source at https://github.com/tewalds/

ParamLog.

With ParamLog, testing a large number of features becomes easy, so all the

algorithms and heuristics were tested with multiple values on board sizes 4-10.

This is a departure from previous work on Havannah which generally focused

only on a single or a few board sizes.

Several knowledge heuristics were tested in Section 4.8, including maintaining

virtual connections, local reply, locality, edge connectivity, group size and

distance to win. Several of these haven’t been tested in Havannah before.

Havannah’s three winning conditions interact with MCTS in unusual ways, so

four novel ring rule variations are introduced and tested in Section 4.9.4.

Testing the many knowledge heuristics and rollout policy features shows that

a greater than 80% winning rate against an already fairly strong baseline can

be achieved on all board sizes greater than size 4.

While proof backups have been used in MCTS before, they are shown to be

particularly effective in a Havannah player in Section 4.6 when combined with

a two-ply look-ahead. Chapter 5 builds on this work and adds threading, draw

3

https://github.com/tewalds/castro
https://github.com/tewalds/ParamLog
https://github.com/tewalds/ParamLog

Chapter 1: Introduction

detection and memory management to solve size 4. The perfect-play solution

to size 4 Havannah is presented in Section 5.2.3.

4

2
Game Playing Techniques

Most game playing programs build a game tree, and then chose the most

promising move at the root of the tree. Many game playing algorithms exist,

and they vary based on the order in which they explore the tree, the in-memory

representation of the game tree, the evaluation method of leaf nodes, and how

they back up the values to interior nodes.

2.1 Minimax

The minimax algorithm is the foundation of all game playing algorithms. The

goal is the find the minimax value of a state or set of states, or equivalently of

5

Chapter 2: Background

2

2

∞

4

?

∞

win

2

−1

?

−∞

loss

2

?

−∞

−∞
loss

3

?

Figure 2.1: Minimax Tree, squares are MAX nodes, circles are MIN nodes

a set of moves, and then choose the move with the highest value. All values are

from the perspective of the root player. The value of a node for the root player

is the maximum of its children nodes, and the minimum for the opponent’s

children. The values represent the outcome of the game, or a heuristic estimate

of the value of the position if the game outcome isn’t known. This is shown

in Figure 2.1 with the outcomes of terminal nodes represented with positive

(win) or negative (loss) infinity, and non-terminal leaf nodes having heuristic

values. The minimax value of this tree is 2. The pseudocode for a simple

depth first search version is shown in Figure 2.2.

2.1.1 Negamax

Minimax uses values as taken from a fixed perspective of the root player. This

complicates the code with having to minimize for one player and maximize

for the other. Noting that max(a, b) = −min(−a,−b), the duplication can be

removed by negating the value each time we switch perspective. In this setup

all values returned from an evaluation function are from the perspective of the

player who is making the move. The pseudocode for this transformation is

6

Chapter 2: Background

i n t minimax (State s t a t e) {
i f (s t a t e . t e rmina l ())

re turn s t a t e . va lue () ;

i n t va lue ;

i f (s t a t e . p laye r () == WHITE) {
value = −INF ;

f o r each (s t a t e . s u c c e s s o r s as succ)

va lue = max(value , minimax (succ)) ;

} e l s e {
value = INF ;

fo r each (s t a t e . s u c c e s s o r s as succ)

va lue = min (value , minimax (succ)) ;

}
re turn value ;

}

Figure 2.2: Minimax Pseudocode

shown in Figure 2.3.

Several algorithms shown later reference the negamax formulation.

2.2 Alpha-Beta

Alpha-beta (αβ) is a refinement of minimax, pruning parts of the game tree

that cannot affect the minimax value of the root[1]. It maintains two val-

ues that bound the minimum value each player is guaranteed given the tree

searched so far. When these bounds meet or cross, this is called a cut-off, and

the remaining moves need not to be considered.

The pseudocode for alpha-beta, written in the negamax formulation, is shown

in Figure 2.4. The initial values for alpha and beta are negative infinity and

infinity respectively. It is a depth-first implementation that returns after a

7

Chapter 2: Background

i n t negamax (State s t a t e) {
i f (s t a t e . t e rmina l ())

re turn s t a t e . va lue () ;

i n t va lue = −INF ;

f o r each (s t a t e . s u c c e s s o r s as succ)

va lue = max(value , −negamax (succ)) ;

r e turn value ;

}

Figure 2.3: Negamax Pseudocode

maximum depth is reached. If a terminal node is found, the true value is

returned, otherwise a heuristic value is returned.

The runtime of alpha-beta depends on the branching factor b, search depth d,

and the number of cut-offs. Minimax has a runtime of O(bd), as does alpha-

beta if it has no cut-offs. If the true minimax value is found early, as would

happen if moves are examined in decreasing order of their minimax value,

many early cut-offs will occur, leading to a runtime of O(bd/2), an exponential

speedup. In general, the move ordering will not be optimal, so the runtime will

be between these two extremes. In practice, high performance game-playing

programs often perform within a constant of O(bd/2).

2.2.1 Transposition Table

Transpositions can lead to an exponential blowup in the search space by al-

lowing the search to investigate multiple paths to a single node (because most

game trees are really game graphs). To minimize the number of transpositions

reevaluated, alpha-beta search is usually enhanced with a Transposition Table

(TT) [2]. After searching a subtree, the root of the subtree and the results of

the search are stored in the TT. When a state is reached in the search, the

TT is checked to see if the result has already been obtained. Transpositions

8

Chapter 2: Background

i n t a lphabeta (State s ta te , i n t depth , i n t alpha , i n t beta) {
i f (s t a t e . t e rmina l () | | depth == 0)

return s t a t e . va lue () ;

i n t va l = − i n f i n i t y ;

f o r each (s t a t e . s u c c e s s o r s as succ) {
va l = max(val , −alphabeta (succ , depth−1, −beta , −alpha)) ;

alpha = max(alpha , va l) ;

i f (alpha >= beta)

break ;

}
re turn va l ;

}

Figure 2.4: Alpha-beta Pseudocode, shown in the negamax formulation

are usually found by comparing hash values and indexing into a large table.

Sometimes a hash table is used, but usually the number of nodes searched is

too big to store in memory, so a simple replacement policy is used. The sim-

plest is to use the hash value as an index into a large array of values, replacing

the previous node that indexed to the same location.

In many games this leads to a large speedup as the number of nodes searched

is decreased dramatically.

2.2.2 Iterative Deepening

The runtime of alpha-beta is exponential in the search depth, and the strength

of a computer player is dependent on the search depth (usually the deeper the

better). If the algorithm is stopped before completion, the best move may not

have been explored at all, so a shallower search that finishes is likely better

than a deeper search that doesn’t. Thus we start with a shallow search, and

run incrementally deeper searches as long as we still have time [2]. This is

9

Chapter 2: Background

not a big waste of work since the majority of the runtime is spent at the

deepest level anyway. Iterative deepening allows alpha-beta to act similar to

a breadth-first search with the memory overhead of a depth-first search.

Iterative deepening, when combined with a transposition table, also gives bet-

ter move ordering. A node’s value from the previous iteration gives a more

accurate estimate of the value of a node than a heuristic estimate without a

search. As we saw in Section 2.2, better move ordering can lead to an ex-

ponential speedup, easily offsetting the overhead from searching the shallow

depths multiple times.

2.2.3 History Heuristic

A good move ordering can lead to many cutoffs and an associated speed in-

crease. The history heuristic [3] is a game-independent move ordering method

that gives higher priority to moves that have a track record of leading to cut-

offs elsewhere in the tree. If a particular move gives a cutoff, it’s quite likely

that it will also give a cutoff for all of its siblings and so should have a higher

priority there. This assumes that similar moves in different parts of the tree

are related.

2.3 Proof Number Search

Proof Number Search (PNS)[4] is a best-first search used to answer binary

questions such as the outcome of a 2-player game starting from a given state.

Being a binary outcome with the minimax property, it is well represented as

an AND/OR tree when all values are from the perspective of the root player.

AND nodes and OR nodes are analogous to MIN nodes and MAX nodes

respectively in minimax. Each node in the tree can have one of three values:

10

Chapter 2: Background

Proven/Win, Disproven/Loss, or Unknown. All nodes store two numbers that

show how close it is to being proven or disproven. The proof number (pn) is the

minimum number of leaf nodes in the subtree that must be proven for the node

to be proven. The disproof number (dn) is the minimum number of leaf nodes

in the subtree that must be disproven for the node to be disproven. Some leaf

nodes, if solved, will change the proof number of the root. Other leaf nodes,

if solved, will change the disproof number of the root. Others, if solved, won’t

affect the proof or disproof numbers of the root. The Most Proving Nodes

(MPN) are the intersection of the set that affect the proof number and the set

that affect the disproof number at the root. Solving an MPN will definitely

affect either the proof or disproof number of the root. Every tree is guaranteed

to have at least one MPN. Proof Number search grows its tree by continually

expanding an MPN.

Proof Number search can be split into 3 phases: descent, expansion, and

update. The most proving node is found during the descent phase. It can be

found by selecting the child with the minimum proof number when at an OR

node and by selecting the child with the minimum disproof number when at

an AND node. This is applied iteratively until a leaf node is reached. This

leaf node is an MPN.

Once the most proving node n is found, it is expanded, initializing all non-

terminal children with ni.pn = 1, ni.dn = 1, winning children with ni.pn =

0, ni.dn = ∞ and losing children with ni.pn = ∞, ni.dn = 0, where ni refers

to the ith child of n.

After expansion, the proof and disproof numbers of all the ancestors of the

most proving node must be updated using these formulas. For OR nodes:

n.pn =
k

min
i=0

ni.pn, n.dn =
k∑

i=0

ni.dn

11

Chapter 2: Background

a1
2

b1
2

d 0
∞

h1
1

?

i 0
∞

win

e1
2

j 1
1

?

k∞
0

loss

l 1
1

?

c∞
0

f∞
0

loss

g 1
1

?

Figure 2.5: Proof Number Search Tree, squares are OR nodes, circles are AND

nodes, proof numbers are on top, disproof numbers on the bottom, based on

[5]

For AND nodes:

n.pn =
k∑

i=0

ni.pn, n.dn =
k

min
i=0

ni.dn

Note how this backs up a single win at an OR node as a win, or a single loss

at an AND node as a loss. It also backs up all losses at an OR node as a loss,

and all wins at an AND node as a win.

These three phases are repeated until the root is solved or the tree grows too

big to be stored in memory. At the root r, if r.pn = 0 it is solved as a win, or

if r.dn = 0 it is solved as a loss, otherwise it is still unknown.

Consider the tree in Figure 2.5. The most proving node is found by following

the edges a → b → e → j. If j has a child that is a win, it would be backed

up as a win at j, leading to a win at e, and a win at b, giving the root player

a winning move from the root. With a.pn = 1 at the root, only 1 node was

needed to be proven as a win for the root to also be proven as a win. If both

j and l were proven to be losses, then e would be a loss, leading b to also be a

loss, and consequently the root to also be a loss. This is reflected in a.dn = 2 at

12

Chapter 2: Background

the root. If, however, j has 1 non-terminal child m and no terminal children,

m would have m.pn = 1,m.dn = 1 and would be the new MPN. If j has

2 non-terminal children and no terminal children, j.pn = 2, j.dn = 1, and l

would be the new MPN.

This algorithm selects nodes based on the shape and value of the tree, using no

domain or game specific heuristic. It is guided to parts of the tree where fewer

options need to be proven. This results in it favouring slim parts of the tree,

areas where there are few moves available, or where many moves are forced.

In many games it is advantageous to have more moves available, or higher

mobility, than your opponent. This often happens by forcing the opponent’s

moves. Proof Number search is very fast at solving these positions. In games

or positions where the branching factor is constant or consistent, with few

forced moves, Proof Number search approximates a slow breadth-first search,

and thus isn’t very fast.

Being a best-first search algorithm, the whole tree must be kept in memory,

since any node could become an MPN and therefore be searched at any time.

This makes it a memory-intensive search algorithm, with many of the variants

attempting to reduce memory usage, allowing bigger problems to be solved.

One simple optimization is to stop the update phase once the proof and dis-

proof numbers don’t change. This often happens when siblings have the same

value, causing a sibling to be the new MPN. A new search can be started

from this node instead of from the root. A simple memory optimization is to

remove and reuse the memory of subtrees under a proven or disproven node.

2.3.1 The Negamax Formulation

Just like minimax can be written in the negamax formulation, so too can proof

number search. The Proof number at an OR node is the same as the Disproof

13

Chapter 2: Background

a1
2

b2
1

d 0
∞

h1
1

?

i∞
0

loss

e1
2

j 1
1

?

k 0
∞

win

l 1
1

?

c 0
∞

f∞
0

loss

g 1
1

?

Figure 2.6: Proof Number Search Tree Using the Negamax Formulation, all

nodes are OR nodes, φ is on top, δ is below, based on [5]

number at an AND node, and is named φ (phi). Similarly, the Proof number

at an AND node is the same as the Disproof number at an OR node, and

is named δ (delta). Instead of considering all nodes to be from one player’s

perspective, all nodes are considered to be from the player who is making the

move at that node. This shift in perspective greatly simplifies the code.

Figure 2.6 shows the same tree as in Figure 2.5, except using the negamax

formulation. Note how all nodes are now OR nodes, and the proof and disproof

numbers are exchanged in the nodes that were previously AND nodes.

Given this shift in perspective, the descent and update formulas need to be

corrected. The new descent move selection is always to choose the child with

the minimum delta. The new update formulas are:

n.φ =
k

min
i=0

ni.δ, n.δ =
k∑

i=0

ni.φ

The pseudocode for Proof Number Search in the negamax formulation is shown

in Figure 2.7. A State is the board state, and a Node is a node in the tree in

memory.

14

Chapter 2: Background

i n t pns (State s t a t e) {
Node root = in i tnod e (s t a t e) ;

whi l e (root . phi != 0 && root . d e l t a != 0) search (root , s t a t e) ;

r e turn (root . phi == 0 ? PROVEN : DISPROVEN) ;

}
void search (Node node , State s t a t e) {

i f (node . numchildren == 0) { // found MPN

foreach (s t a t e . s u c c e s s o r s as succ)

node . addchi ld (i n i tnod e (succ)) ;

} e l s e {
do{

Node c h i l d = node . c h i l d m i n d e l t a () ;

s earch (ch i ld , s t a t e . move(c h i l d . move)) ;

bool changed = updatePD (node) ;

}whi le (! changed && node . phi != 0 && node . d e l t a != 0) ;

}
}
Node i n i tn ode (State s t a t e) {

Node node ; node . move = s t a t e . lastmove () ;

i f (s t a t e . win ()) { node . phi = 0 ; node . d e l t a = INF ; }
e l s e i f (s t a t e . l o s s ()) { node . phi = INF ; node . d e l t a = 0 ; }
e l s e { node . phi = 1 ; node . d e l t a = 1 ; }
re turn node ;

}
bool updatePD (Node node) {

i n t phi = INF , d e l t a = 0 ;

f o r each (node . c h i l d r e n as c h i l d) {
phi = min (phi , c h i l d . d e l t a) ;

d e l t a = de l t a + c h i l d . phi ;

}
bool changed = (node . phi != phi | | node . d e l t a != d e l t a) ;

node . phi = phi ; node . d e l t a = d e l t a ;

r e turn changed ;

}

Figure 2.7: Proof Number Search Pseudocode, shown in the negamax formu-

lation, with the optimization to not propagate up if no changes occur

15

Chapter 2: Background

2.3.2 Transposition Table

Proof number search uses an explicit tree which must be kept in memory, but

the tree required is often bigger than available memory. One common approach

to bounding the memory needed is to store the nodes in a transposition table

instead of an explicit tree. This has the benefit of bounded memory as well

as saving computation and memory on transpositions, at the cost of having

to recompute nodes that are replaced in the transposition table. Even when a

node needs to be recomputed, its children are often still in the transposition

table, allowing for a quick recomputation. In many cases the transposition

table can be several orders of magnitude smaller than would be needed to

store the explicit tree.

2.4 Monte Carlo Tree Search

For games where a fast and effective evaluation function exists, alpha-beta

search is likely to result in deep search and strong game play. Unfortunately

a good heuristic is not known for many games including Go and Havannah.

Monte Carlo Tree Search (MCTS) [6] is an algorithm for building and exploring

a game tree that is based on statistics instead of a heuristic evaluation function.

MCTS avoids using a heuristic by building its tree as guided by playing games

of random move sequences. While a sequence of random moves by itself has

a very low playing strength, in aggregate random games tend to favour the

player that is in a better position.

MCTS consists of four phases [7] which together are called a simulation. The

four phases, as shown in Figure 2.8, are:

Descent A path through the game tree from the root node down to a leaf

node N is chosen. The path is chosen by recursively selecting a child by

16

Chapter 2: Background 1

Descent

13/25

10/14

0/2 3/9

2/3 3/3

2/8

2/3 2/2

Expansion

13/25

10/14

0/2 3/9

2/3 3/3

0/0 0/0

2/8

2/3 2/2

Rollout

13/25

10/14

0/2 3/9

2/3 3/3

0/0 0/0

2/8

2/3 2/2

0/1

Back-propagation

13/26

11/15

0/2 3/10

2/3 4/4

0/1 0/0

2/8

2/3 2/2

Repeat until stop condition

Figure 2.8: Four Phases of Monte Carlo Tree Search, together called a Sim-

ulation, shown in the negamax formulation with a minimum of 3 experience

before expansion

applying some criteria (based on the current winning rate and possibly

some heuristic knowledge) until a leaf node is found.

Expansion If the node N has enough experience from previous simulations,

its children are expanded, increasing the size of the tree, otherwise this

phase is skipped.

Rollout A random game, a sequence of random moves, is played from N

through the newly expanded children to the end of the game.

Back-propagation The outcome of the rollout is propagated back to each

node along the path to the root. The winning rate of the moves made

by the player that won the rollout is increased while winning rate of the

moves by the player that lost the rollout is decreased.

These four phases are repeated continually until a stopping condition is reached,

17

Chapter 2: Background

such as running out of time or memory. Each simulation adds some experience

to the tree, updating the expected chance of winning for the nodes it traverses.

These winning rates are stored as the number of wins and the number of sim-

ulations through a node. For a given node n, n.v is the winning rate and n.n

is the number of simulations.

Once a stopping condition has been reached, a move is chosen by some criteria.

The four most common criteria are: most simulations, most wins, highest

winning rate, and highest lower confidence bound on winning rate. Using the

most simulations is the most conservative, but if a counter-move was found

late in the game, it may still be the most simulated even if it doesn’t have

the highest winning rate. Using the most wins is a little less conservative and

will favour a late new-comer if it has almost caught up. Use of the highest

winning rate is quite risky since it may favour a move that has a very small

subtree where a good counter move exists but hasn’t been found yet. To deal

with that a lower bound can be used, but a large confidence interval should

be used to avoid choosing risky moves.

The pseudocode for MCTS is shown in Figure 2.9. A State is the board state,

and a Node is a node in the tree in memory. This code glosses over a few

important points, such as how the value of a node is computed, how nodes

are initialized, and how random moves are chosen. Some common ways of

implementing these details are explained in the next sections. UCT, RAVE

and heuristic knowledge (described below) address the value of a node and

node initialization. Rollout policy addresses how random moves are chosen.

2.4.1 UCT: Upper Confidence bounds as applied to Trees

The most common and most famous formula for the descent phase of MCTS

is Upper Confidence bounds as applied to Trees (UCT) [8]. It derives from the

Upper Confidence Bounds (UCB) formula, which is used on the multi-armed

18

Chapter 2: Background

Move mcts (State s t a t e) {
Node root = Node (s t a t e) ;

whi l e (! t imeout)

search (root , s t a t e) ;

r e turn root . b e s t c h i l d () ;

}
i n t search (Node node , State s t a t e) {

// r o l l o u t

i f (node . numchildren == 0 && node . sims == 0) {
whi le (! s t a t e . t e rmina l ())

s t a t e . randmove () ;

r e turn s t a t e . outcome () ; //win = 1 , draw = 0 .5 or l o s s = 0

}

//expand

i f (node . numchildren == 0)

fo r each (s t a t e . s u c c e s s o r s as succ)

node . addchi ld (Node (succ)) ;

// descent

Node best = node . c h i l d r e n . f i r s t () ;

f o r each (node . c h i l d r e n as c h i l d)

i f (bes t . va lue () < c h i l d . va lue ())

bes t = c h i l d ;

i n t outcome = 1 − search (best , s t a t e . move(best . move)) ;

//back−propagate

best . s ims += 1 ;

best . wins += outcome ;

re turn outcome ;

}

Figure 2.9: Monte Carlo Tree Search Pseudocode, shown in the negamax

formulation

19

Chapter 2: Background

bandit problem. UCB is used to balance exploitation and exploration when

multiple options are available and each option returns a random distribution of

reward. The amount of regret, i.e., the number of plays to non-optimal arms,

should be minimized to maximize reward in the long term. UCT applies this

idea to a tree of choices.

In the descent phase at node n, a child node must be chosen according to some

criteria. UCT chooses the child node ni that maximizes the value of:

ni.v + c ∗

√
ln(n.n)

ni.n
(2.4.1)

where c is a tunable constant to balance the exploration rate. Intuitively,

moves with high winning rate should be exploited more, but moves with a

small number of simulations as compared to the parent should be explored

to improve the confidence. This formula is guaranteed to converge to a best

move given infinite time and memory.

2.4.2 RAVE: Rapid Action Value Estimate

In basic MCTS many thousands of simulations are usually run per second, but

the information about which moves were made during the rollouts is unused.

A win or a loss is composed of many moves which contribute to that outcome,

and often good moves during a rollout are also good moves if made earlier

during the rollout or descent phases. This is a similar to the reasoning behind

the history heuristic. Thus, we can keep a winning rate for each move during

the rollouts and use this to encourage exploration of moves that do well during

rollouts. This winning rate is called the Rapid Action Value Estimate (RAVE)

[9, 10]. RAVE experience is gathered more quickly than by pure experience

alone, though it is less correlated to success, and so should be phased out as

real experience is gained. For a given node n, n.r is the RAVE winning rate

and n.m is the number of RAVE updates.

20

Chapter 2: Background

Usually RAVE experience and real experience are combined as a linear com-

bination, starting as only RAVE experience and asymptotically approaching

only real experience. This combination replaces ni.v in Equation 2.4.1:

β ∗ ni.v + (1− β) ∗ ni.r (2.4.2)

Several formulas for β have been proposed. The simplest two formulas for β

are:

β =
k

k + ni.n
(2.4.3)

β =

√
k

k + 3 ∗ ni.n
(2.4.4)

both of which have a tunable constant k which represents the midpoint, the

number of simulations needed for the RAVE experience and real experience to

have equal weight.

David Silver computed an optimal formula for β under the assumption of

independence of estimates [11]:

β =
ni.m

ni.n+ ni.m+ 4 ∗ ni.n ∗ ni.m ∗ b2
(2.4.5)

where b is a tunable RAVE bias value.

In practice, RAVE leads to a large increase in playing strength for games such

as Go and Havannah where the assumption that a good move is also good

if played earlier holds. The RAVE updates often lead to sufficiently large

exploration that the constant in the UCT exploration term is set very low or

even to 0, removing UCT exploration altogether.

2.4.3 Heuristic Knowledge

While UCT is guaranteed to converge given infinite time, game specific knowl-

edge can encourage it to find good moves faster. When a node is expanded, its

21

Chapter 2: Background

children all start with no experience, so the default policy is to choose between

them randomly. The simulation is more representative of a good game, and

leads to a better understanding of the minimax value, if it chooses a good move

first. Eventually the best move will receive the majority of the simulations,

and we’ll do better if this is true right from the beginning. Each game has

its own heuristics, and Havannah-specific ones are described in later chapters,

but the way these heuristics are used is game independent.

The first way heuristic knowledge is used is to simply add fake experience to

a node. Instead of initializing a node as ni.v = 0, ni.n = 0, good moves can

be initialized with ni.v = a, ni.v = b, where a and b are tunable constants,

which effectively means that this node has some amount of wins attributed to

it before any simulations have gone through it. This has the effect of allowing

the node to look good for the first while even if it is unlucky. The extra

simulations will fade over time as the few extra wins becomes insignificant in

the long run. Bad moves can similarly be initialized with fewer wins than

simulations, effectively depressing its early winning rate. Depending on the

implementation, this may encourage the first few simulations to avoid the good

moves, due to their smaller confidence bounds compared to similar moves with

the same high winning rate. This has the effect of making the grandparent

move look bad. This knowledge could also be added as fake RAVE experience

as well as, or instead of, actual experience.

Another way heuristic knowledge is used is to add a knowledge term to the

value formula. This leaves the experience and confidence bounds alone, but

gives a boost for the first few simulations to nodes with higher knowledge.

This has the added benefit of being able to order the nodes by boost size. The

knowledge term should fall off with increasing experience. Three suggested

knowledge terms are:

ni.k

log(ni.n)
,

ni.k√
ni.n

,
ni.k

ni.n

where ni.k is the knowledge value for the node ni.

22

Chapter 2: Background

2.4.4 Rollout Policy

The strength of MCTS is highly dependent on the average outcome of the

rollouts being representative of the strength of the position. When a player

who is in a good position has an easy defence to a devastating attack, but fails

to defend, the outcome is not representative of the strength of the original

position. Decreasing randomness by enforcing defences against devastating

attacks can bias the outcome, but usually leads to higher quality and more

representative games, leading to a stronger player. Most rollout policies used

in real programs are game specific, but a few game independent ones are

mentioned here.

Instead of pure random, a weighted random scheme can be used. Moves that

have good experience in the tree can be selected with a higher probability

to poor moves. This could be based on real experience, RAVE experience,

pattern knowledge or heuristic knowledge as described in the Section 2.4.3.

The Last Good Reply [12, 13] scheme can be used, where the moves made by

the player that won a rollout are saved for use in later rollouts when similar

situations occur. When these moves fail to lead to a win in a later rollout,

they may be removed from the list of replies.

All possible moves can be checked to see if they lead to an instant win if made,

or an instant loss if made by the opponent. If a winning moves exists, it should

be made, and if the opponent has a winning move, it should be blocked.

2.5 Summary

Several game playing and solving algorithms exist, but they’re all based on

minimax. Minimax chooses the move that minimizes the maximum outcome

the opponent can achieve.

23

Chapter 2: Background

Alpha-beta is a refinement to minimax that prunes parts of the tree that can’t

affect the minimax value of the root. Transposition tables reduce the search

space from a tree to a graph, reducing the search space. Iterative deepening,

allows an early result to be returned, and combined with transposition tables,

gives better move ordering allowing deeper searches. The history heuristic also

improves move ordering.

Proof number search is an algorithm for solving the outcome of games. It

maintains estimates of the difficulty of solving a subtree, preferring to solve

easier parts of the tree. This leads to it preferring to explore forced moves and

slim parts of the tree. A transposition table can be used to reduce the search

space and solve problems that are bigger than physical memory.

Monte-Carlo Tree Search is a game playing algorithm that works well on prob-

lems where no good heuristic is known. It consists of four phases: descent,

expansion, rollout and back-propagation. It chooses a leaf node, grows the

tree, plays a random sequence of moves, and uses the outcome of this random

game to bias the next descent. MCTS can be improved by choosing a good

balance between exploration and exploitation. Gaining experience from the

moves made within rollouts can be a big help, as can biasing the descent to-

wards better moves based on heuristic knowledge. A rollout policy that leads

to outcomes that are more representative of the true outcome is also useful.

24

3
Rules and Properties of Havannah

3.1 Rules of Havannah

Havannah is a connection game invented in 1979 by Christian Freeling. It is a

two player, zero-sum, perfect information game played on a hexagonal board.

Each turn a player places a stone on the board in alternating play. Stones

are never moved nor removed after their initial placement. A group or chain

is a set of connected stones of the same colour. The game ends when one of

the players completes one of the three winning conditions which are shown in

Figure 3.1:

I A Bridge is a group of stones that connects any 2 corners, for example

25

Chapter 3: Havannah

a
b

c
d

e
f

g
h

i

j

k

1
2

3
4

5
6

7

8

9

10

11
F

F
F

F
F

F
F

F

F
F

F
F

F

F

B
B
B

B
B

B
B

B
B

B

R
R
R
R
R

R
R

R
R

Figure 3.1: The Three Havannah Winning Conditions, as shown on a size 6

Havannah board

the stones labelled B in Figure 3.1.

I A Fork is a group of stones that connects any 3 edges (corners are not

part of edges), for example the stones labelled F in Figure 3.1.

I A Ring is a group of stones that surround at least one cell (which can

be empty or filled by either player), for example the stones labelled R
in Figure 3.1.

The size of the board is defined as the number of cells along one edge, so the

board in Figure 3.1 is size 6. A board of size n has 3n(n−1)+1 = 3n2−3n+1

cells, as listed in Table 3.1. Havannah can be played on any size board, but is

usually played on boards ranging from size 4 to size 10. Stronger players prefer

bigger boards, due to the larger component of strategy compared to the small

boards where tactics dominate. In 2002, Christian Freeling offered AC1000 for

any program that beats him in just one in ten games on size 10 by 2012.

26

Chapter 3: Havannah

Havannah is played by a few thousand players around the world, primarily

on Little Golem1 and similar sites. It is also played by computer programs

at the International Computer Games Association (ICGA) annual Computer

Olympiads.2

3.2 Coordinate System

Several coordinate systems for specifying board locations exist. The one that

will be used here was chosen because it has some nice mathematical properties3

and because it is used in HavannahGui4 and in the Little Golem5 SGF files.

An example board is shown in Figure 3.2a with each cell marked with its

coordinate location. Figure 3.2b shows the same board as represented on a

square grid. The empty points in the square grid are unused for the purposes

of this representation. In the square representation connections are valid in the

vertical, horizontal and x = y directions, but not in the x = −y direction. This

square representation is often used to represent the board in memory. The size

of the board is the number of cells along one short edge, or the radius of the

board, not the diameter. Given this representation, the distance d between

any two points (x1, y1) and (x2, y2) can be calculated as:

d = (|x1 − x2|+ |y1 − y2|+ |(x1 − y1)− (x2 − y2)|)/2

1http://littlegolem.net
2http://www.grappa.univ-lille3.fr/icga/
3http://www.iwriteiam.nl/Havannah.html
4http://mgame99.mg.funpic.de/havannah.php
5http://www.littlegolem.net

27

http://littlegolem.net
http://www.grappa.univ-lille3.fr/icga/
http://www.iwriteiam.nl/Havannah.html
http://mgame99.mg.funpic.de/havannah.php
http://www.littlegolem.net

Chapter 3: Havannah

a
b

c

d

e

1
2

3

4

5

a1
a2

a3
b1

b2
b3

b4

c1
c2

c3
c4

c5

d2
d3

d4
d5

e3
e4

e5

(a)

1 2 3 4 5

a a1 a2 a3

b b1 b2 b3 b4

c c1 c2 c3 c4 c5

d d2 d3 d4 d5

e e3 e4 e5

(b)

Figure 3.2: The Coordinate System (a) as drawn on a size 3 board. (b) as

represented on a square grid.

3.3 State Space

A crude overestimation of the number of Havannah states is T0(n) = 3n where

n is the number of cells on the board. This includes many states that are

unreachable purely based on the players having an uneven number of moves,

such as all cells being played by player 1. A more accurate estimate is the sum

of states where both players have made equal number of moves plus the sum

of all states where player 1 has made one more move. This can be expressed

as the formula:

T1(n) =

(n−1)/2∑
i=0

(
n

i

)
∗
(
n− i
i

)
+

(
n

i+ 1

)
∗
(
n− i− 1

i

)
These do not take symmetry or rotations into account, which gives approxi-

mately a 12 fold reduction in states: T2(n) = T1(n)/12. None of these approx-

imations take the rules of the game into account, so includes positions where

both players have winning formations or one player has multiple winning for-

mations, but this is a much harder condition to approximate.

The state space complexity of Havannah is shown in Table 3.1, with various

other board games listed for comparison. The Hex state space size is calcu-

28

Chapter 3: Havannah

Havannah Cells States (T2) Game States Ref

*Size 3 19 2× 107 *Connect 4 1014 [14]

*Size 4 37 6× 1015 *Checkers 1020 [15]

Size 5 61 1× 1027 *Hex 8x8 1029 [16] T1(82)/2

Size 6 91 2× 1041 Go 9x9 1038 [17]

Size 7 127 3× 1058 Chess 1046 [18]

Size 8 169 3× 1078 Hex 11x11 1056 T1(112)/2

Size 9 217 2× 10101 Go 13x13 1080 [17]

Size 10 271 1× 10127 Go 19x19 10171 [17]

Table 3.1: State Space Complexity of Havannah. Other board games are

shown for comparison, * means solved.

lated with the same formula except only two-fold symmetry. By comparison

with the games that have previously been solved, size 3 Havannah should be

trivial to solve, size 4 should be hard but possible with brute force, and size

5 may be possible but only if strong mathematical properties can be found to

dramatically reduce the search space as is done in Hex.

3.4 Properties of Havannah

Havannah is considered hard for computers to play for several reasons, includ-

ing the lack of a good heuristic evaluation function, few expert games, and a

large state space complexity. Havannah is often compared to Hex, which is

also a connection game, but few of the mathematical properties of Hex ap-

ply in Havannah. In this section some properties of Havannah are presented,

especially in contrast to the better known properties of Hex.

29

Chapter 3: Havannah

(a) (b)

1

2

3

(c) (d)

1
2 3

(e)

Figure 3.3: (a) A simple virtual connection. (b) Virtual connections are not

guaranteed. (c) A threat can force a response other than maintaining the

connection. (d) A false virtual connection between 3 groups can be broken, as

shown in (e)

3.4.1 Virtual Connections

A virtual connection (VC) is a connection between two stones, or a stone

and an edge, that can be completed even if the opponent makes the first

move. A simple virtual connection is shown in Figure 3.3a. The two black

stones are virtually connected, because if white plays in one of the two marked

cells, black can complete the connection by playing in the other. In Hex,

virtual connections are guaranteed, since there is no reason to not complete

the connection, but this is not true in Havannah. In Figure 3.3b, black has

a virtual connection between his two groups, but white can force a defence

against a ring threat as shown in Figure 3.3c, which allows white to sever

the black virtual connection. Such threats are rare in practice, but cannot be

ignored.

Figure 3.3d shows a state where black’s three groups intuitively look to be

virtually connected, but aren’t. If white plays in the center, black can choose

which of his two top groups to connect to the bottom group, but he can’t

connect all three, as shown in Figure 3.3e. If white didn’t have the first cell,

then black could place there in move four, connecting all three groups.

30

Chapter 3: Havannah

(a) (b)

1

2
3

4

5

6

(c)

Figure 3.4: (a) Both players have a forced win in 2 moves. (b) Both players

have a forced win in 3 moves. (c) Continuing from (b) with Black to move,

White wins by threatening a faster ring connection.

3.4.2 Frame

A frame is a series of virtually connected stones or chains of stones that if

connected would complete a winning condition. The length of the frame is the

number of moves needed to complete the winning chain. Several frames are

shown in Figure 3.4.

3.4.3 Simultaneous Forced Wins: Race to Win

In Hex, winning formations are mutually exclusive, so if one player has a forced

win through virtual connections, he is guaranteed to win. This is because the

winning conditions are side-to-side VCs which cross, so if one player has a

side-to-side VC, the other player cannot also have one.

In Havannah winning formations are not mutually exclusive. Figure 3.1,

though not a valid board configuration, shows three completed winning for-

mations at the same time. While virtual connections can be broken, the

formations needed to do so are often not present, in which case the virtual

31

Chapter 3: Havannah

Figure 3.5: Hex-dead Cell Patterns. The cell marked with a dot cannot help

either player form a winning connection in Hex.

connections are guaranteed. Figure 3.4a shows a situation where both players

have a frame of length 2. This means they can force a win in two moves, so

the first player to make a move wins. Figure 3.4b shows a situation where

both players have a forced win in three moves, with black to move. One of

white’s moves threatens a faster ring victory, and although it is easily blocked,

it gives white the move advantage and the win, as shown in Figure 3.4c.

3.4.4 Dead Cells

Strong Hex programs reduce the moves under consideration by avoiding play-

ing in dead cells. Dead cells are cells that provably cannot affect the outcome

of the game. They are dead because any chain of stones that passes through

them already has a path through the existing stones. The five smallest Hex

dead cell patterns are shown in Figure 3.5. Hex playing programs use these

patterns to detect dead cells, then never consider playing in those cells, thereby

reducing the branching factor.

Unfortunately the Hex-dead cell patterns don’t apply in Havannah, because

the Hex-dead cells can have an effect on the outcome of the game in Havannah.

While they cannot affect a fork or a bridge win, they can still be part of a

winning ring which surrounds one of the existing stones as illustrated in Figure

3.6. This idea can be used against all five of the smallest Hex-dead cell patterns

in numerous ways.

32

Chapter 3: Havannah

1
2

3 4

Figure 3.6: Hex-dead Cells Are Not Havannah-dead Cells. Starting with the

Hex-dead cell pattern on the left, and adding stones 1-4 leads to the ring on

the right which intersects the Hex-dead cell

Figure 3.7: Some Havannah Dead Cell Patterns. The cells marked with the

dot are dead in Havannah.

Note that if the ring is made bigger than a simple 6-ring, any ring that uses

the dead cell would also work going around it. To create Havannah dead

cell patterns, we add a stone of the opposing colour next to each existing

stone to block the encircling 6-ring. A few examples are shown in Figure 3.7.

Unfortunately these patterns are so rare that they aren’t worth looking for

explicitly.

3.4.5 Draws

Unlike Hex, where a filled board must have a winner, draws are possible in

Havannah. Figure 3.8a shows a filled board of a game that ended in a draw.

Backing up a few moves we see in Figure 3.8b that after move 31 no wins are

possible even if one of the players were to pass all their remaining moves. The

33

Chapter 3: Havannah

1

2

34

5

6
7

8 9

10
11

12

13

14
15

16

17

18

19

20

21
22

23

24

25
26

27
28

29

30

31
32

33

34

35

36

37

(a)

1

2

34

5

6
7

8 9

10
11

12

13

14
15

16

17

18

19

20

21
22

23

24

25
26

27
28

29

30

31

(b)

1

2

34

5

6
7

8 9

10
11

12

13

14
15

16

17

18

19

20

(c)

Figure 3.8: (a) Filled board ending as a draw. (b) After move 31 no wins are

possible. (c) Proven draw after move 20.

game can be proven as a draw at least as early as move 20, shown in Figure

3.8c. Draws are possible on all board sizes above 3. They occur occasionally on

size 4, but are rare on size 5 and above. Section 5.1.5 will describe a technique

for detecting draws once no wins are possible.

3.5 Summary

Havannah is a recent game with fairly simple rules. It is played on a hex

board, with the goal of connecting 2 corners or 3 edges, or forming a ring.

It is generally played on board sizes 4 through 10. It is related to Hex, and

shares many of the mathematical properties, but they are not as solid as in

Hex. Virtual connections are formed the same way as in Hex, and are very

important to Havannah strategy, but unlike Hex, they can be broken due to

threats. Chains of virtual connections that, if completed, would form a win,

are called frames. Multiple frames can co-exist on the board, and the player

with the shortest frame will win unless an even shorter frame is constructed.

Dead cells are cells can not affect the outcome of the game due to the pattern

of stones that surround it, but the patterns are rare and more complex than

34

Chapter 3: Havannah

the hex-dead cell patterns. Draws are rare but possible in Havannah, occurring

when the board fills up without either player forming a winning formation.

35

4
Playing Havannah

These are early days for developing strong Havannah programs. The first

published attempt at writing a program to play Havannah is a BSc thesis by

Terry Rogers in 2004 [19]. In his thesis, he describes implementing several

weak strategies, easily beaten by even the most amateur human player. Johan

de Koning wrote an alpha-beta based Havannah program, named PZN, which

competed in the 2010 ICGA Olympiad. It finished in last place because its

heuristic function, which is quite similar to the distance to win heuristic shown

in Section 4.8.6, is blind to rings, virtual connections and most threats, and

is too slow for alpha-beta to reach sufficient depths to overcome these short-

comings. The majority of attempts, and particularly published attempts, have

been Monte-Carlo Tree Search (MCTS) based, primarily because MCTS does

36

Chapter 4: Playing Havannah

not need a heuristic evaluation function. This has also been influenced by

MCTS’s recent successes in the similar games of Go and Hex where MCTS

has overtaken traditional techniques. Given this, MCTS is a good starting

point for writing a Havannah player. This chapter will explore the perfor-

mance of various search algorithms and enhancements as applied to Havannah

using the Havannah program named Castro.

4.1 Castro

Castro is a strong Havannah program written by the author of this thesis, and

released open source at https://github.com/tewalds/castro. It is written

in C++, and includes an MCTS player and several solvers. It has a fast

implementation of the rules, which are described in the Section 4.2. Castro

speaks the GTP protocol,1 and can be played against with HavannahGui.2

The MCTS player is the main topic of discussion of the rest of this thesis, and

is used both as a player and as a solver.

Castro includes an alpha-beta solver with iterative deepening and an optional

transposition table. This alpha-beta solver is not useful as a player, as it lacks

a heuristic evaluation of non-terminal nodes. It is the fastest of the solvers

in terms of positions evaluated per second, but is rarely the fastest to solve

non-trivial positions.

Castro includes three proof number search (PNS) solvers. The basic PNS

solver is single-threaded and uses a tree data structure similar to the one

described in Section 5.1.4. The second PNS solver is multi-threaded but uses

the same tree data structure and includes garbage collection similar to Section

5.1.3. The third PNS solver is single-threaded but uses a transposition table

1Go Text Protocol: http://www.lysator.liu.se/~gunnar/gtp/
2http://mgame99.mg.funpic.de/havannah.php

37

https://github.com/tewalds/castro
http://www.lysator.liu.se/~gunnar/gtp/
http://mgame99.mg.funpic.de/havannah.php

Chapter 4: Playing Havannah

instead of a tree. All three PNS solvers optionally use depth-first thresholds[20]

as well as the 1 + ε trick[21]. They also use a 2-ply lookahead, similar to

Section 4.6. The tree based solvers can optionally use the distance to win

heuristic described in Section 4.8.6, while the transposition table based solver

can attempt to copy a proof to its siblings. The multi-threaded version could

easily be turned into a player, but this has not been done yet.

4.2 Havannah Rules Implementation

The rules of Havannah are simple, and the three win conditions are easy to

describe, but a fast implementation of the rules is not as obvious. This section

will describe their implementation in Castro.

4.2.1 Fork and Bridge Connections

Both forks and bridges can be found in near O(1) time using the union find

algorithm. Each group includes a set of 12 bits, where each bit is associated

with an edge or corner. Stones that are placed on a corner or edge set the

associated bit on their group. As groups join, the bits for the groups are

ORed together for the newly formed group. Once a group reaches two corners

or three edges, that group forms a win condition.

4.2.2 Rings

Unlike forks and bridges, it is impractical to enumerate all the possible rings

and wait for one of them to occur. Instead they can be detected with a limited

search or with local patterns. Each of these approaches has advantages, so both

are described here.

38

Chapter 4: Playing Havannah

(a) (b) (c) (d)

Figure 4.1: Search Ring Detection. Gray stone is the most recently placed and

the start of the search. (a) Search after 1 step. (b) Search after 2 steps. (c)

Search after 3 steps. (d) Search after 6 steps, ring found.

Search

The first approach, shown in Figure 4.1, is to start a search from the most

recently placed stone. This search could be a recursive depth-first search or

a breadth-first search. The recursive depth-first search was faster in testing,

but the breadth-first variant is shown in Figure 4.1 for clarity. The search is

only started if the group has at least six stones, and if the last stone joins one

group of stones twice. From the starting stone, it searches in four adjacent

directions (four is enough because any ring must start from one of the four

directions even if it cycles back through the other two), continuing only in

the forward direction to the next three stones. By avoiding sharp turns, the

minimum cycle is 6 and any path back to the starting stone is a ring. This

method could be quite slow when searching big groups but is fast in practice

because the ring check can be skipped after most moves. It has the advantage

that properties of the ring can be computed based on the stones that form it,

as will be described in more detail in Section 4.9.4.

39

Chapter 4: Playing Havannah

(a) (b) (c) (d)

Figure 4.2: O(1) Ring Detection. Gray stone is the most recently placed. (a)

Stone joins the white group twice with an empty stone between the two white

stones, obviously a ring enclosing the empty stone. (b) Stone joins the white

group three times, no empty stone, leads to (c) an extra check. (d) Worst case

has 5 neighbours, and does 3 extra checks.

Patterns

Ring detection can be also be done in O(1) time, as shown in Figure 4.2,

by using basic pattern detection. Rings occur when the most recently placed

stone touches the same group twice with them being separated on both sides

by empty space or the opponent’s pieces. The only circumstance where that

isn’t true is a filled 6-ring, which can only happen in a small number of ways

and is easy to detect. Figure 4.2a shows the common case where a stone joins a

group twice and has empty space in the middle of the ring and on the opposite

side. The surrounding 6 neighbours can be used as a pattern to lookup in a

pattern database, which returns that it is a ring, isn’t a ring, or that further

checks are needed. If the center of the ring is filled, as is the case in Figure

4.2b, a check of the neighbours is enough to deduce that it might be a ring, but

the remaining three cells must be checked to conclude it is a ring. The reason

no bigger search is needed is because any bigger ring that passes through the

newly placed stone would already be a ring passing through the existing stones

and therefore would have been found earlier. The worst case, shown in Figure

4.2d is when the stone has 5 adjacent neighbours, in which case 3 extra checks

40

Chapter 4: Playing Havannah

for 6-rings are needed. This method is very fast in general, but needs to be

done before joining the groups for the edge/corner checking. Doing the check

before placing the stone likely means the conditions that allow the depth-first

method to be skipped aren’t known to be satisfied, meaning the check must

be done for every move.

4.3 Testing Methodology

All testing was done using ParamLog,3 an open source distributed testing

framework written for this project. Tests were run on board sizes 4 through

10 with 1, 2, 5 and 10 seconds per move. The times are standardized to a

machine that can complete 500,000 simulations on size 4 with basic UCT in

11 seconds, which is approximately equal to a Core 2 Duo 2.4ghz. This has

the added effect of keeping results comparable across machines and in the face

of optimizations. Only the results from the tests with 5 seconds are shown,

because this has been common among other published papers about Havannah,

but also because most test cases are fairly consistent between different amounts

of time. All data points are based on several hundred games, which gives a

maximum 95% confidence interval of ±5%, with many as low as as ±2%.

All tests are played relative to a baseline. UCT has strong guarantees about

eventual optimality, so is the first baseline. After a few games, an exploration

constant of 0.9 was chosen as a reasonable value to test against. RAVE has

been shown by Teytaud to be strong in Havannah[22], and this finding will be

confirmed in Section 4.4. For all tests thereafter, a RAVE player will be used

as the baseline player. The RAVE baseline has no UCT exploration, keeps the

tree between moves, and does 2-ply node expansion backups.

3https://github.com/tewalds/ParamLog

41

https://github.com/tewalds/ParamLog

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
50
100
200
500
1000

Figure 4.3: Rave vs UCT Baseline

4.4 RAVE

RAVE was introduced in Section 2.4.2 as a way to use the information from

rollouts during future descents. Teytaud tested RAVE in Havannah in 2010[22],

yielding a 100% winrate against UCT with a small number of simulations. Here

we used the RAVE formula (2.4.3):

β =
k

k + ni.n

and test many values for k. Figure 4.3 shows the results. k = 500 yields a

greater than 80% win rate on all board sizes, and so is chosen as the baseline

for all future tests. This is equivalent to a 250 or more elo gain.

4.5 Keep Tree Between Moves

MCTS builds a large tree with real experience, and then makes a move. Most of

the final move selection strategies will choose a large subtree usually consisting

of more than 25% of the effort that went into this move choice, but often

42

Chapter 4: Playing Havannah

Figure 4.4: Early Position Solvable by MCTS in 1 Minute, white to play

consisting of as much as 95% of the work. This is real experience that would

be duplicated after the next move if it was thrown away. The opponent’s

move is unknown at this point, but is frequently the expected reply, again

often maintaining 25% or more of the tree. Keeping the remaining tree is a

pure advantage with no downsides. Keeping the the tree has about a 53%

winning rate against throwing away the tree after each move. This is not a

huge improvement, but is easy, free and works on all board sizes.

4.6 Proof Backups

A game of Havannah ends when one of the winning conditions is met. This can

happen with only a few stones on the board or with the board full of stones.

In practice, the game rarely finishes with only a few stones, but frequently the

tree includes positions where one player fails to respond correctly to a threat,

leading the other player to win easily. MCTS is guided away from allowing

these threats as the winning rate drops. By default it will continue trying

this losing move as long as it looks better than the others, which could take

quite a while. Late in the game, the game tree may be sufficiently small that

the entire tree could be enumerated, but normal MCTS will take a long time

to converge on the best move. If terminal nodes are marked, and winning

43

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
Vs 1-ply lookahead

Vs No lookahead

Figure 4.5: RAVE Baseline with 2-ply lookahead during expansion vs 1-ply

lookahead and no lookahead

moves are backed up as losing moves for their parents and sets of losing moves

are backed up as winning moves for their parents, full proof trees can be

constructed, allowing faster detection of threats, and proving the outcome of

moves late in the game. This has been suggested before, and was explored by

Lorentz in 2010 with moderate success [23].

Terminal nodes are found in the expansion phase. If a winning move is found,

the expansion stops and the parent node is marked as a win. If no winning

moves are found, then threats that must be blocked are looked for. If the

opponent has exactly one immediate threat, it must be blocked, so all other

moves are discarded, and the simulation is continued, expanding that move’s

children. If the opponent has two or more immediate threats, only one could

be blocked, and so the expansion is stopped and the parent is marked as a

loss. These outcomes are then propagated as far up the tree as possible.

Lorentz showed a board position, shown here in Figure 4.4, which his program,

Wanderer, solves in 45 minutes. Using RAVE and proof backups but a purely

random rollout policy and no heuristic knowledge, Castro solves it in under a

44

Chapter 4: Playing Havannah

minute.

Figure 4.5 shows the results from using proof backups. It compares using 2-ply

versus 1-ply and 0-ply lookahead. One ply means only checking for winning

moves but not checking for the opponent’s threats. Two ply means checking

for winning moves and for the opponent’s threats. Backing up 2-ply proofs

gives a 75-90% winning rate on all board sizes, which is worth about 200-300

elo. At the olympiad, Castro solved the outcome of all 16 games about 15

moves before the end. Because it keeps the tree between moves, the remaining

moves were played out of its precomputed proof tree.

4.7 Multiple Rollouts

Profiling was used to determine where Castro spends its time. Table 4.1 shows

how time is used given 10 seconds to play on an empty board, on board sizes 5

and 10. When using UCT without RAVE, the most of time is spent in rollouts,

followed by descent. Expansion and back-propagation, by contrast, take a

relatively small amount of time. When using RAVE without exploration,

descent takes the most time, with back propagation and rollouts taking most

of the rest. Compared to using UCT, RAVE spends less time in rollouts, and

more time in descent and back-propagation. While the optimal ratio of time

is unknown, spending time evaluating nodes intuitively seems to be a better

use of time than the bookkeeping associated with figuring out which nodes

to evaluate. To alleviate this, multiple rollouts were run per simulation. This

would lower the number of full simulations, but increase the number of rollouts.

Given that rollouts are used to approximate the value of a given node, this

should increase the accuracy of the experience in the tree, and hopefully the

playing strength.

The experience from the rollouts are aggregated before the back-propagation

45

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
2
5
10
15

Figure 4.6: Multiple Rollouts per Simulation Against Baseline RAVE Player

phase so only a single update is needed for the RAVE and experience values of

each node in the tree. Figure 4.6 shows the results when doing multiple rollouts

per simulation, given the same amount of time. Multiple rollouts only has a

small benefit on size 4, but is worth 50-100 elo on sizes 5 and up. Two rollouts

has a mean winning rate of 55%, while 15 rollouts has a mean winning rate

of 63%. For comparison, Tables 4.2 and 4.3 show the time used for 2 rollouts

per simulation and 10 rollouts per simulation respectively. Doing 2 rollouts

per simulation drops the number of simulations to two thirds, and doing 10

rollouts per simulation drops it to a fifth to a third as many simulations. This

is a big drop in simulations, but the total number of rollouts increased more

than enough to compensate. This has the added benefit of building a smaller,

more accurate tree, reducing memory usage.

4.8 Heuristic Knowledge

Heuristic knowledge was described in section 2.4.3 as a way to bias the descent

policy towards moves that are likely to be good before any experience has

46

Chapter 4: Playing Havannah

Iterations Descent Expansion Rollout Back-propagation

UCT size 5 296136 33.6% 12.0% 48.4% 5.9%

UCT size 10 102192 24.8% 11.3% 62.0% 2.0%

RAVE size 5 148713 45.1% 7.3% 22.2% 25.4%

RAVE size 10 41713 42.9% 4.8% 24.3% 28.0%

Table 4.1: Time Used by MCTS Phase with 1 Rollout per Simulation

Iterations Descent Expansion Rollout Back-propagation

UCT size 5 201408 22.9% 7.0% 66.1% 4.0%

UCT size 10 66945 16.3% 3.5% 78.9% 1.3%

RAVE size 5 115704 34.7% 6.0% 32.6% 26.6%

RAVE size 10 31962 29.4% 4.0% 37.1% 29.6%

Table 4.2: Time Used by MCTS Phase Using 2 Rollouts per Simulation

Iterations Descent Expansion Rollout Back-propagation

UCT size 5 58786 6.5% 1.4% 91.0% 1.1%

UCT size 10 16616 3.9% 0.4% 95.4% 0.3%

RAVE size 5 49131 14.8% 3.4% 65.6% 16.2%

RAVE size 10 12232 10.7% 1.9% 71.1% 16.3%

Table 4.3: Time Used by MCTS Phase Using 10 Rollouts per Simulation

47

Chapter 4: Playing Havannah

been gained. Castro implements an extra additive knowledge term using the

formula:
ni.k√
ni.n

This gives a boost to the node that is independent of the exploration bonus

from UCT and independent of the β value for RAVE. Each heuristic has some

small value, which is multiplied by a tuning constant. The different heuristic

values are summed for the final knowledge value ni.k for that node.

4.8.1 Maintain Virtual Connections

Virtual connections (VC), as shown in Figure 3.3a, are a fast way of ensuring

two groups can connect or that a group can connect to a remote part of the

board. However, this is only true if they are maintained. If the opponent

places a piece in one of the two empty cells, a response of playing in the other

cell is usually a good move. Thus, a bonus should be given to maintaining

these virtual connections.

Figure 4.7 shows the results of adding a knowledge bonus of 5, 10, 25, 50 or

100 for maintaining the VC. It seems to work very well on a few sizes with a

winning rate as high as 70%, but in general it does not have a big effect on the

larger board sizes. This may be because RAVE inherently finds these moves

fairly quickly anyway, or because it focuses more on rings on the larger board

sizes, in which case VCs aren’t very important.

4.8.2 Locality

Large parts of the board are often empty and far from any existing stone, and

playing there is rarely a good move. Giving a bonus to positions near existing

stones is an intuitively good heuristic. We tested giving a bonus to being near

48

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
5
10
25
50
100

Figure 4.7: Maintain Virtual Connection Bonus Against Baseline RAVE Player

3
33

3
3

3
2 2

2 2
1

1

1

Figure 4.8: Points Given by Distance From an Existing Stone

any stone, and also to being near stones of your own colour. The bonus drops

off with distance, with a bonus of 3 for a direct neighbour, 2 for forming a VC

with an existing stone, and 1 for being distance 2 but not forming a VC. An

example of the bonuses around a newly placed stone are shown in Figure 4.8.

First, giving a bonus to being near any stone regardless of colour was tested.

The results are shown in Figure 4.9. While it seemed to help a little bit on

bigger boards, in general it was not helpful.

Next, giving a bonus for playing near stones of your own colour was tested, as

this has been shown to work before [23, 24]. The results are shown in Figure

4.10, which is much more encouraging. A value of 10 gives a winning ratio of

49

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
2
5
10
20

Figure 4.9: Locality Bonus for Playing Near Existing Stones of any Colour

Against Baseline RAVE Player

65%, or about 100 elo on most board sizes.

4.8.3 Local Reply

Playing well in Havannah often means making defensive moves, replying to the

opponent’s last move. A bonus is given based on the distance to the opponent’s

last move. Direct neighbours get a bonus of 3, moves two away get a bonus of

2, and moves three away get a bonus of 1.

The results are shown in Figure 4.11, showing this heuristic to be not very

helpful except on board size 4.

4.8.4 Edge Connectivity

Connecting to edges and corners is important for eventually winning the game,

as most games end in a bridge or fork victory. Connecting to an edge is

50

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)

2
5
10
15
20

Figure 4.10: Locality Bonus for Playing Near Stones of the Same Colour

Against Baseline RAVE Player

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)

1
2
5
10

Figure 4.11: Local Reply Bonus for Playing Near the Opponent’s Last Move

Against Baseline RAVE Player

51

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
1
2
5
10
20
50

Figure 4.12: Edge Connectivity Bonus for Playing Near Groups that are Con-

nected to an Edge or Corner Against Baseline RAVE Player

important, and extending groups that are already connected to an edge or

corner is a good strategy for winning. The edges and corners that each group

is connected to is already stored and updated for easy win detection. A bonus

is given based on the number of edges or corners it is connected to. The

maximum number of edges or corners a group could be connected to is 3,

being 2 edges and 1 corner, so this gives a bonus between 0 and 3.

Figure 4.12 shows the results. While no single value is strong on all board

sizes, some value is strong on each board size, giving a winning rate between

55% and 65%, or 50 to 100 elo.

4.8.5 Group Size

Winning formations must span large sections of the board, and tend to be big.

Letting a large group get cut off and made useless is rarely a winning strategy.

Connecting smaller groups into larger groups is often a good idea. All of these

suggest playing near and forming big groups, so here a bonus is given based on

52

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
1
2
3
4
5

Figure 4.13: Group Size Bonus for Playing Near or Forming Big Groups

Against Baseline RAVE Player

the size of the group. Placing a lone stone has no bonus. Joining two groups

has a bonus equal to the sum of the sizes of the two groups. Joining a group

has a bonus equal to the existing size of the group.

The results are shown in Figure 4.13. A winning rate over 60% can be achieved

on all board sizes.

4.8.6 Distance to Win

Most Havannah games end in either a bridge or a fork victory. It is possible

to approximate the minimum number of moves needed to achieve these win

conditions by doing a flood fill from each corner and edge, and counting the

distance to each cell from the starting point. The distance between two cells

that are part of the same group is counted as zero, since no additional stones

are needed to connect them. The distance between any other neighbouring

cells is one. Once the distances to each corner and edge are computed, the

number of moves needed to achieve a victory from that cell is the sum of the

53

Chapter 4: Playing Havannah

2
2

2

2

2
2

3
3

3

3

3
3

3
3

4
4

4
4

5
5

5

5
5

6
6

6
6

(a)

1

2
2

2

2

2

3

4
4

4

4

4

4

5
5

5

5

5

66
6

66
6

6
6

6

(b)

1

2
2

2

2
2

2

2

2

2

2
2

3
3

3

3

3
3

3
3

3

4
4

4
4

4
4

(c)

Figure 4.14: Distance to a Win for (a) White (b) Black (c) Minimum of White

and Black

shortest two distances to corners or the sum of the shortest three distances to

edges. This method does not consider ring victories at all. It can over-estimate

the number of moves since it doesn’t consider that the paths to the corners or

edges may share part of the path. It does not consider any moves by the oppo-

nent, which could easily increase the distance by blocking an essential move,

or even make the connection impossible. It does not take virtual connections

into account. All that said, it is a reasonable estimate in many cases. It is

slow to compute, as it requires 12 flood fills for each player, but in doing so

computes the minimum distance for every cell on the board. An example is

shown in Figure 4.14, showing the minimum distances for white, black, and

the minimum of the two. Note how the immediate threat has a distance of 1.

White has low distances on the right where it dominates, while black has low

distances on the left where it dominates.

To turn this heuristic into usable knowledge, a small distance must give a

larger bonus, while a large distance must give a small bonus. To accomplish

this, the distance is subtracted from double of the board size, with a minimum

value of zero.

First, using the minimum of the distances for the two players was tested, as in

54

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
1
2
5
10

Figure 4.15: Minimum Distance to Win Bonus Against Baseline RAVE Player

Figure 4.14c. This takes both offensive and defensive positions into account.

The results are shown in Figure 4.15. On smaller boards this method achieved

a winning rate as high as 60%, though failed to achieve any success on the

bigger boards.

Next, using only the distance for the current player was tested, as in Figures

4.14a and 4.14b. This is a much more offensive metric, ignoring the opponent’s

distance to win. The results are shown in Figure 4.16. This method achieves

especially good results on small boards with a winning rate as high as 70%,

but achieved positive results up to size 9.

4.9 Rollout Policy

The other main way to improve MCTS is by changing the move choice in

rollouts so that the outcome of the rollouts is more representative of the real

strength of the position. Usually this means using simple patterns or heuristics

to make moves that are more sensible than choosing moves randomly.

55

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
1
2
5
10

Figure 4.16: Own Minimum Distance to Win Bonus Against Baseline RAVE

Player

4.9.1 Mate-in-one

If the opportunity to win with a single move (mate-in-one) exists, a smart

player would make that move. Similarly, if the opponent has a threat to win

in a single move, a smart player would block that move. Lorentz tested mate-

in-one checks, and the defensive variant, to great success. Fossel also tested

mate-in-one checks achieving a 59% win rate on size 5 with equal time[25].

Because checking for win conditions is a slow operation, both Lorentz and

Fossel achieved the greatest success when limiting the checks to only the first

few moves of the rollout, where they are most representative of the true board

state.

Mate-in-one checks are very slow. The obvious way of implementing it is

to check every empty cell for each player for whether a move there would

complete a win condition. This is O(n) of the number of cells, which makes

rollouts O(n2). A simple optimization is to only do the win check if that cell

is next to an existing stone, but this is still O(n). A much better algorithm

56

Chapter 4: Playing Havannah

is to only do win checks on the empty cells next to the group that was last

played, which is roughly O(g) where g is the group size and g � n. This works

because we are making the assertion that no mate-in-one moves exists before

the last move, and so a new mate-in-one must be related to the last played

stone. If the last played stone creates one new winning cell, we must block it.

If it creates two new winning cells, it has a guaranteed win, and so we just end

the rollout early. Castro does not have a facility to enumerate the empty cells

surrounding a group, so instead it does a walk around the group. There must

be a position around the cell that is not part of the same group, even if it is

off the board. If this was not true, then it would be in the center of a ring,

and the game would already be finished. It then follows the edge of the group,

checking only whether placing an additional stone in the neighbouring empty

cells would turn that group into a winning structure. The walk ends when it

gets back to the first position searched. An additional untested optimization

would be to only do this check if the last placed stone has a connection to an

edge or corner, though this ignores ring threats.

We tested checking for mate-in-one moves after every move, and limiting the

checks to only to the first N moves with N equal to the board size and double

the board size. The results are shown in Figure 4.17. The best result is

achieved exactly where Lorentz and Fossel reported their success, on size 5,

but all other cases were inconclusive or quite negative. Discussions with other

Havannah programmers suggested mate-in-one checks become more important

as the time per move is increased, so size and size*2 were tested with 30 seconds

per move, with the results shown in Figure 4.18. The results are better, with

gains as high as 100 elo.

57

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)

size

size*2

all

Figure 4.17: Mate-in-one Checking Against Baseline RAVE Player With 5

Seconds per Move

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)

size

size*2

Figure 4.18: Mate-in-one Checking Against Baseline RAVE Player With 30

Seconds per Move

58

Chapter 4: Playing Havannah

4.9.2 Maintain Virtual Connection

Maintaining virtual connections is important, as chains of virtual connections

can form frames that, when completed, form a winning condition. If an op-

ponent places a stone in one of the two parts of a VC, the response should be

to play in the remaining empty position that used to form the VC. This can

be implemented with a small state machine looking at the neighbours of the

last placed stone, looking for the pattern of your stone, empty, your stone. If

this pattern is found, the empty cell between your two stones is the correct

response to maintain the virtual connection. Maintaining a connection to an

edge is also important, so the pattern still works if either of your stones is off

the edge of the board, as in your stone, empty, off the board. This pattern

is checked after every move. If no pattern is found, then the default policy is

used, resulting in a random move being chosen.

Looking for this pattern is extremely fast, causing no slowdown in terms of

simulations per second. The time taken for the pattern lookup is offset by

the approximately 10% shorter rollouts. The results are shown in Figure 4.19,

showing a negligible or even negative result.

4.9.3 Last Good Reply

Last Good Reply (LGR) is a game-independent method of improving the

moves in a rollout by taking advantage of local situations. It attempts to

reuse good moves in later rollouts by saving all the replies by the winning

player and forcing the reply in later simulations if the reply is valid.

LGR only saves the replies to individual moves. If a good reply is known to

the opponent’s last move, it is made instead of a random move. If that move

is invalid, a random move is made instead.

59

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
Maintain VC

Figure 4.19: Maintain Virtual Connections in the Rollout Against Baseline

RAVE Player

If a reply was played, but the outcome of the rollout is a loss, that may not

be such a good move, and so it should be forgotten. This variant, called Last

Good Reply with Forgetting (LGRF), removes the replies for all the moves

made by the losing player. This increases the amount of randomness in the

rollouts as compared to LGR.

Figure 4.20 shows the results. LGR only works on size 4, while LGRF is

helpful on sizes 6 and up, leading to a 50-100 elo performance gain.

4.9.4 Ring Rule Variations

The three win conditions happen at different frequencies on different board

sizes, as shown in Table 4.4. On size 4, a bridge is the most frequent win

type followed by fork and the relatively infrequent ring victory. As the board

size increases, it becomes harder for bridges and forks to form as they scale

with the size of the board, but rings become relatively easier, because their

size is independent of the board size and they are local formations. Given

60

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
LGR

LGRF

Figure 4.20: Last Good Reply Against Baseline RAVE Player

empty space on the board, a ring is likely to occur purely by making random

moves. Rings are quite easy to block however, so while they happen frequently

in random games, they are rare in real games. MCTS is very sensitive to the

outcome of rollouts not being representative of the strength of the starting

position, so this mismatch is a problem.

Four different solutions to this problem were explored. Instead of modifying

where stones are placed, the rules of the game are modified. If a ring is formed,

but the modified rules deem it to be a product of randomness instead of the

product of good strategy, it is simply ignored and the rollout continues until

a different winning condition occurs. Note that this only affects rings formed

during rollouts. If the tree reaches a position with a ring, it is still considered

a win regardless of the rule modifications considered here.

Ignore all rings

The simplest rule modification is to simply ignore all occurrences of rings

during some fraction of the rollouts. At the beginning of the rollout a random

61

Chapter 4: Playing Havannah

Size Fork Bridge Ring

4 4267 5177 543

5 5111 2962 1926

6 4471 1691 3838

7 3536 1007 5457

8 2266 460 7274

9 1365 229 8406

10 796 126 9078

Table 4.4: Number of Wins of Each Type by Board Size Given 10000 Simula-

tions

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)

0.10
0.30
0.50
0.80

Figure 4.21: Ring Rule Ignore Rings Against Baseline RAVE Player

62

Chapter 4: Playing Havannah

Size Fork Bridge Ring

4 29.56 26.34 28.00

5 48.13 44.77 44.36

6 71.66 68.01 65.07

7 98.91 93.74 89.14

8 131.29 126.29 116.38

9 167.01 160.12 146.13

10 206.35 196.88 177.64

Table 4.5: Average Number of Moves in a Rollout Before Each Victory Type

number is generated and if it is below the configurable fraction, rings are

checked, otherwise all rings are ignored.

The results are shown in Figure 4.21. There are minor successes on smaller

boards, but bad results on bigger boards where rings are a problem. The bad

results happen because it completely misses the opponent’s real and faster ring

threats, instead focusing on its own slower bridge and fork victories. By the

time it notices the opponent’s rings, it is too late to block them. This effect

may be less pronounced against human opponents that are less likely to make

ring threats, but it would introduce a new weakness that could be exploited.

Fixed depth

Table 4.5 shows the number of moves before each win condition is achieved,

showing that rings occur the earliest, especially on big boards. This is expected

due to their smaller size and being local properties. If instead of ignoring all

rings, we allow rings for the first part of the rollout and ignore all rings after

that cutoff, we may allow legitimate ring threats while ignoring rings that occur

purely due to randomness. As the board size increases, this depth should also

be increased, so instead of an absolute value, we use a fraction of the number

63

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
0.5
0.6
0.7
0.8
0.9

Figure 4.22: Ring Rule Fixed Depth Against Baseline RAVE Player

of empty cells on the board at the beginning of the rollout.

The results are shown in Figure 4.22, showing results as high as a 71% winning

rate for only considering rings until 70% of the empty cells are played. The

benefits on board sizes 8, 9 and 10 are still quite small though, where the

problem is the worst.

Ring size

The most commonly occurring ring is the simple size 6 ring, which is easy to

block. We may want to allow larger rings while still ignoring the easy to block

6 ring. Using the search-based ring check described in Section 4.2.2, we can

ignore rings smaller than a minimum value. In this test we start by allowing

all rings, and after every N moves, we increase the minimum size by 1 for

variable N. After the first N this would imply only rings of size 7 or bigger,

then 8 or bigger, etc. Here we set N as a fraction of the remaining empty cells.

The results are shown in Figure 4.23, again showing reasonable results on board

64

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
0.1
0.5
0.7
0.9

Figure 4.23: Ring Rule Ring Size Against Baseline RAVE Player

sizes 5 and 6 with a winning rate of 60%, but failing to show any improvement

on larger board sizes. A fraction of 0.7 or 0.9 is so high that it never reaches

a minimum size bigger than 7, though this is enough to ignore size 6 rings.

Permanent stones

If the problem is that random moves form rings in empty parts of the board,

a solution may be to only consider rings that include stones that exist on

the board before the rollout begins. Thus ring threats may be formed from

existing stones, but not purely out of randomness with little relation to the

stones already existing on the board. In this test, stones that exist before the

rollout begins are marked as permanent stones, and any ring found during the

rollout must have a minimum number of permanent stones to be considered a

winning formation. Requiring between 1 and 5 permanent stones was tested,

with the results shown in Figure 4.24. This shows a 50-100 elo gain on all

board sizes. In human play it makes reasonable ring threats, but is no longer

fixated on rings.

65

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)

1
2
3
4
5

Figure 4.24: Ring Rule Permanent Stones Against Baseline RAVE Player

Size Fork Bridge Ring

4 4212 5644 136

5 5986 3773 236

6 7051 2321 626

7 7444 2132 422

8 8283 1397 319

9 8635 929 436

10 8768 971 261

Table 4.6: Number of Wins of Each Type by Board Size Given 10000 Simula-

tions When Only Counting Rings With Three or More Permanent Stones

66

Chapter 4: Playing Havannah

The results of using this feature when requiring a minimum of 3 permanent

stones are shown in Table 4.6, and show a stark contrast to Table 4.4 when

not using this feature. The number of forks increases quite dramatically as

the board size increases, especially relative to without this feature. This is

expected due to the increasing amount of edges available, and the proportion-

ately smaller increase in the number of stones needed to form a fork. The

number of bridges decreases as the board size increases, as is expected since

the number of corners is fixed but the distance between them is larger. Note

how the decrease is not as dramatic as without this feature. The ring rate,

however, drops dramatically compared to without this feature, and stays a

fairly stable 2-6% of all wins across board sizes. This is a much more reason-

able number when starting from an empty board, given that rings have almost

no strategic value.

4.10 Combinations

To show that these features combine, all of the features that showed positive

results were combined into a single test case, and then single features were

removed. All of these test cases were then tested against the same RAVE

baseline as all the other tests were tested against. The heuristic knowledge

features and rollout policy features are shown in separate graphs for clarity,

but the test case marked ‘All’ is identical on these two graphs.

The heuristic knowledge features that were included are:

I Maintain Virtual Connections (value 100)

I Connectivity (value 20)

I Locality (value 3)

I Local Reply (value 5)

I Distance (value 2)

I Group Size (value 2)

67

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
All

Multi Rollout

Mate-in-One

Ring Depth

Ring Perm

Figure 4.25: Rollout Modifications

The rollout policy features that were included are:

I Multiple rollouts (5 rollouts per simulation)

I Mate-in-one (Only for the first N moves where N is the board size)

I Ring Rule Depth (Only allow rings until 70% of empty cells are filled)

I Ring Rule Permanent Stones (Rings require 3 permanent stones)

The rollout policy related features are shown in Figure 4.25. Removing the

multiple rollout feature causes a big drop in performance on board sizes 5-7,

but little impact elsewhere. Removing mate-in-one checking or the ring depth

causes a drop in performance on size 5, but no where else. The most dramatic

difference is the removal of the permanent stones ring rule modification. Re-

moving that feature causes a drop on board sizes 5-10, with particularly big

drops on board sizes 5, 7 and 10. The permanent stone ring rule modifica-

tion likely makes the heuristic knowledge features much more effective on the

bigger board sizes. None of these features appear to have much affect on size

4.

The knowledge heuristic features are shown in Figure 4.26. Removing the

68

Chapter 4: Playing Havannah

4 5 6 7 8 9 10
0

20

40

60

80

100

50

Board Size

W
in

R
at

e
(%

)
All

Maintain VC

Connectivity

Distance

Group Size

Locality

Local Reply

Figure 4.26: Knowledge Modifications

maintaining virtual connection knowledge causes a drop on sizes 5 and 6, but

otherwise has little effect. Removing connectivity causes a drop on size 5, but

improves size 10. Removing distance to win also causes a drop on size 5, but is

an improvement on sizes 7-10. It is likely too slow of a computation, especially

when locality is included. Group size appears to have no effect on any board

size, likely due to the inclusion of locality. Locality is helpful on size 5, but is

causes a bit of harm on sizes 8-10. Removing local reply is harmful on sizes

4-6, but has little effect on sizes 7-10.

Finding the smallest subset of features that would give optimal results is a

very challenging task, as the parameter space is huge. Each of these features

can be tuned to a large range of values. The most important thing to note

here though, is simply how strong the combination of these features is relative

to the RAVE baseline. The combination of all these features gives a greater

than 80% winning rate, or about 300 elo, against the RAVE baseline on all

board sizes except size 4.

69

5
Solving Havannah with MCTS

Section 4.6 showed that MCTS is capable of solving non-trivial positions in

reasonable time. This chapter will show several improvements to MCTS in

Castro that make it better suited to solving harder positions, as well as pre-

senting the solutions to board sizes 2, 3 and 4.

5.1 Monte Carlo Tree Search Solving

Using MCTS to solve positions, as described in Section 4.6, would be enough to

solve any position, given enough time and memory, but in a player the goal of

the solver is mainly to avoid blunders, not necessarily to prove that the chosen

70

Chapter 5: Solving Havannah with MCTS

move is optimal. When solving harder positions, more advanced techniques

are needed to prove the outcome in reasonable time and memory. This section

describes several techniques for reducing the search space, increasing the search

speed and reducing memory requirements.

5.1.1 Symmetry

There are 37 cells on a size 4 board, but from the starting position only 6 of

them are distinct. The rest are equivalent by symmetry, since the board has

6-fold rotational symmetry and 2-fold mirror symmetry. By storing a Zobrist

hash [26] for each of the 12 possible board orientations and taking the minimum

value as the representative hash, symmetries can be found and ignored. As

stones are placed, the number of possible symmetries decreases dramatically.

Symmetric moves are ignored for the first five ply at node expansion. After

five ply, the cost of calculating the extra hash values and finding the unique

moves becomes too expensive and so symmetry detection is turned off for all

later moves.

Note that this does not find transpositions, only one-ply symmetries. Using a

hash table of positions based on their Zobrist hash would turn the game tree

into a directed acyclic graph (DAG), thereby dramatically reducing the search

space, but could also lead to inaccuracies due to hash collisions.

5.1.2 Multi-threading

Solving a position usually takes significantly more effort than merely making

a strong move. Therefore it is important to use as much computation power

as possible. On today’s multi-core machines, this means multi-threading.

Writing fast and thread-safe code is a challenge. In Castro, the control thread

71

Chapter 5: Solving Havannah with MCTS

spawns a pool of player threads, but does not participate in the search. The

player threads each follow a simple state machine that includes the states:

Wait Start, Wait End, Running, Garbage Collection and Cancelled. State up-

dates are done using atomic compare-and-swap (CAS) machine instructions

to ensure all state transitions are race-free, and to avoid the contention associ-

ated with locks. Barriers are used to pass control between the control thread

and the player threads, as well as to decide which of the player threads will

be used for garbage collection, as it is a single threaded procedure.

All updates to values in the MCTS tree are also updated with atomic instruc-

tions. Updating experience or RAVE values are done using atomic increment

instructions. Adding children is done with CAS to update the value of the chil-

dren pointer. If multiple threads attempt to create the same set of children

only one will succeed and the others will instead do a rollout from the parent

node. If multiple threads backup the outcome of a single node in the tree, a

race condition related to early draw detection (described in Section 5.1.5) is

possible, so if the value has changed unexpectedly, the backup is retried to

ensure correctness.

All the player-threads use the same algorithm and the same parameters, so

without any special handling would make the same choices as they descend the

tree. To encourage the threads to explore different parts of the tree, virtual

losses[27] are added as each thread descends the tree. A virtual loss is a loss

that is added to the experience of a node during the descent phase, before

the actual experience occurs. If the rollout results in a loss, this virtual loss

is kept as real experience, but if the rollout results in a win, it is replaced

with the true experience of a win. This makes the nodes that are currently

being explored appear worse than they actually are, possibly worse than their

siblings, thereby encouraging the other threads to explore the siblings instead.

The virtual losses are added atomically as well.

Contention between threads must be minimized to maximize speed. One early

72

Chapter 5: Solving Havannah with MCTS

source of contention was generating random numbers for the rollouts. The

rand() function in C++ is very fast in a single threaded environment, but has

a lock that limits thread scalability. To avoid this lock, the MTRand library1

was modified to use only local state variables. One instance is used per thread.

By having the structure local to each thread, no lock is needed and memory

contention is minimized.

Pondering — thinking during the opponent’s time — is a simple way of im-

proving the strength of a player, and is easy to implement given the thread

pool described above, but it also makes debugging long running solving at-

tempts easier. Simply move to the starting position, then enable pondering.

The player threads will continue solving in the background, while the control

thread continues to respond to commands, making it possible to query the

state of the player to see the status of the solving attempt. While this is not

necessary for a solver, it was instrumental in determining why some of the

openings were taking so long to solve.

5.1.3 Garbage Collection

When solving a non-trivial position, the size of the tree is likely to be exceed

physical memory. For very hard problems it may be several orders of magni-

tude bigger. However, large portions of the tree are likely to be irrelevant at

any given time so can be thrown away when the available memory is filled. If

the deleted nodes are needed later, they can be recomputed. Various criteria

for which part of the tree can be thrown away are possible, but the one used

here is to discard the children of solved nodes, as well as the children of nodes

that have fewer than N simulations, with a minimum N of 5. N is increased for

the next round of garbage collection if less than half of the memory is freed,

and decreased if more than half the memory is freed. This method worked

1http://bedaux.net/mtrand/

73

http://bedaux.net/mtrand/

Chapter 5: Solving Havannah with MCTS

well as long as N remains reasonably small, say below 100, but as N grows

large, the amount of recomputation increases, increasing the solving time.

5.1.4 Memory Management

Garbage collection, as described in Section 5.1.3, should be run any time the

memory use exceeds the user specified memory limit, thereby freeing up enough

memory to continue, but calculating memory use accurately is not trivial.

Memory use is usually naively calculated as the number of nodes in the tree

multiplied by the node size. Unfortunately this approach ignores the fact that

malloc/free (or new/delete in C++) have some memory management overhead

and tend to fragment memory over time. This fragmentation leaves pockets of

permanently unusable memory, decreasing the usable available memory. With

what amounts to a fixed node limit, extra memory is needed to compensate

for the unusable memory, thereby exceeding the user specified memory limit.

During a game, fragmentation is unlikely to make a difference as the run time

is short enough that the fragmentation is a small fraction of total memory.

In a long running solver, however, fragmentation could use up to half of the

available memory, likely leading to a severe performance hit as the system

swaps memory to disk. An overhead as high as 30% was observed in practice.

To avoid this, a compacting tree was implemented. It periodically rearranges

the nodes in the tree to avoid fragmentation, while allowing the full memory

to be used. Conceptually this is similar to the compacting garbage collectors

in higher level languages like Java. Compacting the tree into a contiguous

segment of the heap leaves a contiguous empty section of the heap, allowing

a very fast allocation strategy to be used. It simply returns the pointer to

the beginning of the empty segment, and moves the empty pointer forward by

the amount that was allocated. This is more memory efficient than a normal

malloc call, which uses fixed and inaccurate bucket sizes. It is also faster, as

74

Chapter 5: Solving Havannah with MCTS

it is simply an atomic increment. Using this allocation strategy means every

byte is accounted for, allowing strong upper bounds on memory limits. Several

of the harder positions would not be solvable without this compacting tree,

at least not without breaking the positions into smaller subtrees and solving

them independently.

5.1.5 Early Draw Detection

Checking the game outcome at node expansion, and backing up wins, losses

and draws as described in Section 4.6 is enough to solve any position, given

sufficient time. Certain positions in Havannah lead to many draws, and can

take prohibitively long to solve without more advanced draw detection. Figure

3.8b shows a board where no wins are possible after move 31 even if both

players cooperate. Without draw detection this position will take 6! = 720

simulations to enumerate and prove. In a game this is not important, since

its win ratio approaches the correct value of a draw quickly, but this is not

rigorous enough for a solver.

To show that a position is a draw, the three win conditions need to be checked

to see if any wins of that type are possible. Fork and bridge wins can be

detected with the heuristic described in Section 4.8.6: start a flood fill from

each corner and edge for each player. If none of the empty cells can reach

three edges or two corners for a player, then that player cannot form a fork or

a bridge. One player being unable to form a fork or a bridge does not preclude

the other player from doing so.

Potential rings can be detected by checking for encirclability. A group of stones

that connects to an edge or corner cannot be encircled by the opponent. Any

cell that is next to a group that connects to an edge or corner also cannot be

encircled by the other player. If no cells can be encircled, then no rings are

possible.

75

Chapter 5: Solving Havannah with MCTS

(a) (b) (c)

Figure 5.1: (a) Solution to size 2 (b) Solution to size 3 (c) Solution to size 4.

The colour of a piece represents the winner if white makes the first move in

that position. No openings lead to a draw.

If no forks, bridges or rings are possible for a player, then that player cannot

win, and so should force a draw if possible. If both players’ best outcome is a

draw, then that position is a proven draw.

More advanced techniques of draw detection based on virtual connections could

detect draws much earlier, possibly as early as move 20 in Figure 3.8c, but

these techniques have not been explored. The speedup from the techniques

described here may not be as large as 6! for all positions, but it is still at least

an order of magnitude for most early draws.

5.2 Solution to Havannah Sizes 2, 3 and 4

The perfect play solutions to board sizes 2, 3 and 4 are shown in this sec-

tion and in Figure 5.1 in particular. The colour of the piece represents the

player that will win the game if white makes the first move on that cell. The

subsections describe the proofs in more detail.

76

Chapter 5: Solving Havannah with MCTS

5.2.1 Size 2 Proof

Size 2 Havannah is a trivial game, with the solution shown in Figure 5.1a. It

has 6 corners, no edges and a center. The corner opening is a win, since no

reply blocks both neighbouring corners. The center opening is a loss, since it

loses to any corner reply.

5.2.2 Size 3 Proof

Size 3 Havannah is more interesting than size 2, but is still simple enough that

the solution, as shown in Figure 5.1b, could be derived by hand. It has been

verified by 3 different solvers and was used as a benchmark when developing

the solvers in Castro. Alpha-beta, proof number search and Monte-Carlo tree

search all solve size 3 in under 100ms on commodity hardware. A proof tree

as found by the MCTS player is shown in Figure 5.2. This is not a minimal

proof tree. A minimal proof tree has a maximum depth of 10 moves.

5.2.3 Size 4 Proof

As shown in Table 3.1, size 4 has a state space that is 8 orders of magnitude

bigger than size 3. The size 4 solution was computed by MCTS twice, first to

show it was possible and to refine the method, then to confirm the proof and

to save the proof tree. The two solutions produced different proof trees, but

came to the same result, shown in Figure 5.1c. The proofs were calculated on

a 10 machine cluster where each machine is an 8-core Xeon E5463 2.8 GHz

with 32Gb of ram.

During the first solving attempt, each opening move was made, then the player

was left to ponder until the solution was found. The a1, b2 and b3 openings

completed in a single run but took up to a week each. The a2, c3 and d4

77

Chapter 5: Solving Havannah with MCTS

root

a1

a2 c1 b1 e5
a3 c1 b1
b3
c4 a3 a2
c5
d4
d5
e5

a2 c1

a1 a3

b2
b3
b4 b3
c3
c4
c5 e3 d2
d2
d3
d4 e5
d5
e4
e5

b1 e3 d2
b2
b3
b4
c2 b1 a1 a3

b3
c3

c3
c4 a1 b1 b2 c2
c5
d2
d3
d4 a1 b1
d5
e3 a1 b1
e4

b2 e5

a1
a2
b3
b4 e4 e3 c5 d5
c3
c5
d4 c5 d5
d5 e3 e4

c3 a1

a2
a3 c1 b1
b2
b3 a3 a2
c4
c5

Figure 5.2: Proof Tree for Size 3 showing nodes that took more than 100

simulations to solve

78

Chapter 5: Solving Havannah with MCTS

openings had such big proof trees that their replies needed to be solved inde-

pendently. The c3 and d4 openings often had upwards of 90% of the simula-

tions ending in draws, which prompted the work on early draw detection. The

proof trees for d4 were huge and led to so much memory fragmentation that

the more advanced memory management was required. This solving attempt

took several months to come to a reliable outcome, due to new features, bug

fixing, parameter tuning and general trial and error. Basic logs of solved moves

were kept, but were of little use to rebuild the proof tree.

A second solving attempt was done to produce a proof tree. The correct re-

sponses to the opening replies, as calculated in the first attempt, were used to

speed up the computation, and the opening replies were computed indepen-

dently for a2, b2, c3 and d4. This sped up computing the proofs for several

reasons: several of the moves that looked strong had already been proven to

be losses and could be ignored; the subtrees were smaller and so caused less re-

computation of garbage-collected nodes; and the openings could be distributed

over more machines. The proof trees for each opening were saved to sgf2 files,

which were later combined for the final proof. The complete proof required

approximately 4× 1011 simulations and took about a week across the 10 ma-

chines using all 80 cores. A queueing system was used to keep all machines

consistently busy.

The proof trees for the 6 opening moves are shown in Figures 5.3, 5.4, 5.5,

5.6, 5.7 and 5.8. The moves shown all took more than a minimum amount of

simulations to solve, with the minimum value chosen to approximately fill the

page, ranging from 108 simulations for a1 to 109 simulations for a2. Only the

proof trees are shown, so a move that took more than the minimum amount

to solve but was proven as a loss when a sibling was proven as a win is not

shown. More detailed proof trees were recorded and are posted on the thesis

website http://havannah.ewalds.ca/. All nodes that took at least 10,000

2Smart Game Format: http://www.red-bean.com/sgf/

79

http://havannah.ewalds.ca/
http://www.red-bean.com/sgf/

Chapter 5: Solving Havannah with MCTS

simulations to solve are recorded in the posted proof trees.

A complete, independent confirmation of the proof has not been attempted,

but the code is open source and more detailed proof trees are available for

inspection. Several non-trivial problems have been independently solved by

all the solvers included in Castro, all with the same result. The a1 opening

has been confirmed by PNS with a 30gb transposition table, but this took

upwards of 80 hours, about 10 times longer than MCTS on the same state.

As the a1 opening is the easiest opening to prove, confirming the proofs on

the other openings, without using the existing proof trees as a guide, would be

prohibitively slow. The multi-threaded version of PNS, including the memory

management, garbage collection and virtual loss improvements but without

the transposition table also attempted the a1 opening on the same hardware,

but failed to finish within several days.

PNS is faster than MCTS on many small problems, but is much slower at

solving problems as large as the complete size 4. This is conjectured to be

because PNS has little guidance other than the local threats and branching

factor, while MCTS can deduce good moves from the result of its rollouts.

When the tree has as little differentiating factors, as is true of the first several

ply of size 4, the behaviour of PNS is quite similar to that of a breadth-first

search. In essence, it gets lost. MCTS on the other hand starts differentiating

good moves from bad moves quite early on, even when the structure of the

tree is uniform. This makes MCTS a good candidate for solving hard states,

while PNS is good for solving easier or less uniform states very quickly.

It is worth noting that size 4 took approximately 3× 107 cpu seconds to solve,

which is about 6×108 times more time than it takes to solve size 3. Referencing

Table 3.1, the size 4 state space is about 3 × 108 times bigger, which is very

similar to the difference in time to solve the two. This suggests that solving

size 5 may well take about 1012 times more effort to solve than size 4, unless

some clever mathematical properties can be exploited to shrink the state space.

80

Chapter 5: Solving Havannah with MCTS

a1

a2 b2

a4 d2

b1 b2
b4 g4 d7 c5
c5 d7

d1 e2

d7 b1 a2 c5
e6 g7
e7 c5
g7 c5 d7 e6

d6 b5 d1 b4
e7 c5 d1 e2
g7 d7

b3 d2

b4 d2
a4 g4 d7 c5
d1 e2

b5 d2 d1 e2
c3 g7
c4 d2
c5 d2

a4 d7
d1 e2

d5 d2
d6 c2 d1 b4
d7 c2 d1 e3 a4 c5

c4 b4
c6 b5
e6 f6
e7 f6
g4 f6
g7 e6 g4 f5

e7 c2 d2 b4

g7 c5

a4 d2
d1 e2 f7 g6

f4 f5 b1 e4
b3 d2
b4 c4 d7 e6
d6 b3 d7 e6

d7 e6
a2 b2
a4 g4
g4 f5 e3 d2

Figure 5.3: Proof Tree for the a1 opening on size 4 showing nodes that took

more than 108 simulations to solve

81

Chapter 5: Solving Havannah with MCTS

a2

a1 b2
b5 d3
e2 g4

a4 c5

a1 b3
d1 g4

d7 e6
g4 d1 g7 f5
g7 d1 g4 f5

b1 d7 a1 g4

b4 d1 d7 a4 a3 e7
b5 d1 a4 d6
c3 d7
c5 c2 a4 d7
d1 b4 a1 b2

d2 g4 a4 c3
b5 c3

d6 b4 b1 g7 a4 b5

d7 b4

a1 g4 f3 b2
g7 e6

b1 g4 a1 f6
d1 f6g4 g7

g5 d1

e2 c2

a1 b4
c1 f4
g4

a4 c5 d1 f4
c1 f4
d1 f4
g7 d7

e6 g7
e7 b4
f3 d2
f5 g7

f7 c2 a4 d7 g4 g7
g4 a1 a4

g7 d1
a1 b2
a4 d7
g4 f5

a4 d6
b5 e6
c1 e6
d7 a4

Figure 5.4: Proof Tree for the a2 opening on size 4 showing nodes that took

more than 109 simulations to solve

82

Chapter 5: Solving Havannah with MCTS

b2

a1 a2

b1 c2 c1 d1
b5 e3 a4 d6
c1 g4
e2 g4

a2 a1
a3 d3

a4 c5

b1 a1
b3 c3
d1 g4

c6 d6
d7 e6
e3 f5

d7 e6
b1 a1
d1 b4
g4 d1
g7 d1

e2 b3 d1 f4
e6 c4
e7 d1
f4
f6 c4
g4 d1 c1 c3 g7 f5
g7 d1 c1 c3

b3 c3

b4 d1
a1 a2
a4 d3

b5 d1
c4 d1
d6 a4 a1 b1

d7 a4
a1 b1
f5 g4 e7 c6
f6 e7 a1 c1 d1e6 d7

e7 a4
f6 a4 a1 b1
f7 d1 a1 a2 g7 g6

g7 a4

a1 b1
a3 b4 g4 f5
g4 f5

a3 c4
d7 e6

a1 a2
g4 b4d1 e3

f5 g4

Figure 5.5: Proof Tree for the b2 opening on size 4 showing nodes that took

more than 2.5× 108 simulations to solve

83

Chapter 5: Solving Havannah with MCTS

b3

a1 c2

a4 c5

d1 c4
d7 e6 g4 c4
e4 c4 g4 e3

g4 c3
e4 e3
g5
g7 f5

g5 c3 g4
g6 c4 g7 d6
g7 c6

b5 d1 a4 d6

d7 d1
g4 g7 a4 c5
g7 g4 f3 e6

e7 a3 d7 f6 g4 f5

g7 a4

d7 e6

a3 b4
d1 f5

a3 a2
f3 c1
g4 e3
g5 f4

f4 f5
f5 f4
f7 e7
g4 f5

a3 b4
d1 e3g6 f4

g4 d7 c6 f5

a2 b2 a4 d1
a1 a3
c5 d7

b2 c3 a2 c2 a3 b1

d1 a1 a4 g7

a2 b2
d6 c5
d7 c5 g4 e3
e2 f4
e4 d6 g4 e3
e7 c5
f4 c6
f5 c5 e2 c1
f7 c5

g4 e3

a2 b2 d7 d6
d7 c6 e6 f5
e6 f5
f3 e2
f7 c5

d3 d7
a1 c5 d1 c2 g4 g7 f7 e2
d1 a1 g4 f3

e2 a1 a4 c5 d1 f4
e3 d1
g4 d1 a1 c2

d7 g7
g5 f6
g7 f5

a4 c5 d7 e6
d6 d7
d7 e6
e6 d6
f7 d6
g6 g5

Figure 5.6: Proof Tree for the b3 opening on size 4 showing nodes that took

more than 108 simulations to solve
84

Chapter 5: Solving Havannah with MCTS

c3

a1 g7

a2 d6
a3 d6
a4 a2

d6 b5
d7 c5
e7 c5
f7 c5
g4

b2 b3
b3 a4

b4 a2
d7 a4
e2 b2
g4b5 g4

c4 b3
c5 a4
c6 b4

d1 c2
d7

d6 f4 d1 c2

d7 a4

b4 a2
d1 c2
d2 b1 g4
e2 c2

e6 f5 g4 e3
e7 f4
f7 f6 a4 b3

a2 c5

a4 d1 b1 b4
b1 d2
d7 a4

g4 e6
d1 e3
g7 f5

g7 e6 g4 f5
e6 c4
g4 a4 d7 e6 d1 e3

a3 b2
a4 a1

b5 d6
d1 d7 g4 e3
d7 c5 b1 e6

d1 g4
b2 b3
b4 a1
b5 a1 a4 d6
c6 a1
d4 c4
d6 a4 a1 c2

d7 a4
a1 d1 g7 e6
d1 c2
e7 f6 a1 d5

e6 g7 a4 c5
d1 f4g7 a1

Figure 5.7: Proof Tree for the c3 opening on size 4 showing nodes that took

more than 6× 108 simulations to solve

85

Chapter 5: Solving Havannah with MCTS

d4

a1 g7

a2 b4

d1 c2
d2 c2
d7 c2
f3 c2
g4 d2

a4 b3

a2 a3
b1 d2
b2 d3
c1 d1
c2 d2
d1 c2
d2 c2
d6 c5
d7 c5
e3 c2
e4 d3
e6 c5
e7 f5 g4 c2
f4 d1
f7 f4
g4 c2
g6 f6

b2 a4
b3 b4

c2 d2
d1 c2

b4 d6
d1 b1

b2 d2
d7 c6 g6

d7 c6
g4b5 d6

c3 a4 d1 c1
c4
d5 c4

d1 c2
g4 d2

d7 a4

b3 c5
d1 c2

b4
f4
g5 d6

f6 f4 g6 e5
g4e6 f4

a2 d1

a1 b4 g4

b1 e3
c2 e3 g4 c5
g4 c5 d7 f6

g7 g6 f6 f4
g6 c2 a1 b4
g7 c2 a1 b4

b2 a1

b3 b2 c5 d7
d2 c3

c3 a4 a1 d3

Figure 5.8: Proof Tree for the d4 opening on size 4 showing nodes that took

more than 4× 108 simulations to solve

86

6
Conclusions

6.1 Conclusions

Several properties of Havannah were introduced in Section 3.4. Virtual con-

nections and frames, while important, are yet to be exploited to their full

potential. Dead cells may show up in generalized pattern recognition, but

are not worth searching for on their own. Draws, while rare, can be detected

early, and this is shown to be important in solving size 4. These properties

together show some of the challenges and future potential of Havannah playing

programs.

Monte Carlo Tree Search is shown to play Havannah very well. Many im-

87

Chapter 6: Conclusions

provements are possible to increase the playing strength, including heuristic

knowledge to modify the move selection in the descent phase, as well as mod-

ifications to the rollout policy.

The three winning conditions are shown to interact poorly with MCTS on big

board sizes, and four fixes are proposed. The permanent stone ring rule proved

to work very well at fixing these interactions, and significantly improves play

on big boards against both other programs and against humans.

Several heuristics showed significant improvements in playing strength on their

own, some as high as a 75% winning rate or 200 elo. When combining all of

the positive results, a winning rate of over 80%, or about 300 elo is achieved

on all board sizes greater than size 4.

This player, which includes proof backups, was then multi-threaded, given

draw detection and better memory management. This improved player was

then used to solve all 6 openings of the size 4 board. Proof trees for all 6

openings are presented in Section 5.2.3.

Castro, the implementation and test bed for all these tests is released open

source and is available at https://github.com/tewalds/castro. ParamLog,

the distributed testing framework that was used to run most of these tests is

also open source and available at https://github.com/tewalds/ParamLog.

Castro competed in the 2010 and 2011 ICGA Olympiads, taking first place

both years. When playing on Little Golem, it routinely beats strong human

players on board sizes 4-6. On larger board sizes, it still plays a strong game,

often beating weak players, but usually losing to strong players. While signif-

icant progress towards human level play has been made, there is still a long

ways to go.

88

https://github.com/tewalds/castro
https://github.com/tewalds/ParamLog

Chapter 6: Conclusions

6.2 Future Work

The state space estimates shown in Section 3.3 are quite simplistic, but a

more accurate estimate could be found by generating random board states

and checking how many of them are valid. This could show how many states

include winning formations for one or both players and show how common

draws are.

There is a long way to go before Havannah programs are comparable strength

to strong human players on big boards, even after all the improvements pre-

sented here. Thankfully there are also many potential improvements left to

try and to discover. Many ideas that have been tried in other games, such as

Go, could be tried here. One of the large successes in Go is the use of patterns,

both small and large, both as heuristic knowledge and to improve the rollout

policy. The strength of these patterns can be learned based on strong human

games, self-play or even on the fly from the results of rollouts. They could be

applied deterministically or with a weighted random strategy like softmax.

The large-scale parameter tuning that was used to generate all the results in

Chapter 4 works, and is an effective way of understanding why a particular

feature works. It is very inefficient, however, in terms of examining the state

space of all the different features to find optimal parameters. Using a machine

learning technique like minorization-maximization[28], which computes an elo

rating for each feature, could be much more efficient. This would help show

which features are strong and which can be inferred from the other features.

Section 3.4.1 showed that virtual connections, and therefore frames, are break-

able. Despite this, frames are the foundation human play. The first program

to successfully make solid deductions based on frames, without paying a huge

speed penalty, is likely to have a large advantage over all others. Even just

using frames as a guide for a solver could be a large performance boost.

89

Chapter 6: Conclusions

Using a hash table instead of a tree to reduce transpositions could significantly

improve performance with longer times to play and on the smaller board sizes

where transpositions are frequently reached. It does, however, present signifi-

cant engineering challenges in terms of garbage collection and threading, and

does introduce a tiny probability of inaccuracy in the form of hash collisions.

While proof number search wasn’t tested extensively here, it could be inter-

esting to try mixing MCTS and PNS. MCTS could be used to guide a PNS

solver towards good moves, allowing for faster solving times. It could also be

interesting to try a pure PNS player, which would have a very different playing

style from MCTS.

Solving size 5 Havannah is likely a long ways off, but intermediate sizes with

uneven edge lengths, such as 4 × 4 × 5 and 4 × 5 × 5, could be solved much

sooner. It could be interesting to explore the properties of these odd sizes

to figure out if they are interesting to play, or if they have similar problems

as Hex’s uneven board sizes where the second player has a trivial winning

strategy.

90

A
Glossary

Here are general game playing concepts and definitions:

Anytime Algorithm An anytime algorithm can return an answer at any

point of execution, but continues to run to provide a more accurate and

potentially better answer.

Best-First Search In a best-first search nodes are explored in order of their

heuristic value. Promising nodes are explored before less promising

nodes. This is very memory intensive as all nodes explored to date

must be kept in memory.

Branching Factor is the average number of moves available to each player.

This depends on the rules of the game, board size, pieces in play and the

91

Appendix A: Glossary

stage of the game. This can be as low as one for forced moves, or very

high, such as in the hundreds or thousands for Amazons or Arimaa.

Breadth-First Search In a breadth-first search, all nodes at a specific depth

will be considered before any nodes at a deeper depth, in increasing

depth. This can be very memory intensive as all nodes up to the specified

depth are usually kept in memory.

Depth-First Search In a depth-first search (DFS), nodes are considered in

a depth-first way. The full subtree of a node will be explored before

any of its siblings will be explored. This is very memory efficient since it

only needs to store the nodes along the path from the root to the current

node, but leaves many nodes near the root unexplored for long periods

of time.

Elo Rating The elo rating system is a measure of relative strength of players.

Two players with equal elo ratings would expect to each win half of their

games. A difference of 400 elo means the player with the higher rating

is expected to win 90% of games between these two players. 100 elo

translates to about a 65% winning rate.

Game Complexity The game complexity is the size of the state space, some-

times taking transpositions into account. This can either be the number

of unique positions or the number of possible games.

Game Tree A game can be represented as a game tree. Each position in the

game is a node, and each move is an edge in the graph connecting the

position before the move to the position after the move. When there are

multiple paths to a position, the position can be represented as separate

nodes, leading to a tree, or combined as a single node, leading to a

directed acyclic graph (DAG). Some games have loops, where a position

can be reached multiple times in a single game, leading to a directed

graph.

92

Appendix A: Glossary

Hash Value A hash value is a representative number of a state used to detect

transpositions. Transpositions all have the same hash value, but different

states have different hash values. Often collisions are possible so two

states that aren’t a transposition have the same hash value, but this is

very rare as large hash values (usually 64 bit unsigned integers) are used.

Heuristic A heuristic function takes a position and returns a value associated

with the position. This value often represents the likelihood of winning

from that position, but can also be just an abstract number that can be

compared against other values to order nodes or moves.

History All moves leading from some starting position, usually the beginning

of the game, to the current state.

Leaf Node A leaf node is any node that has no expanded children.

Minimax In 2-player games, each player attempts to win at the expense of the

other player. To do so, each player attempts to minimize the opponent’s

gain while maximizing their own gain. To win, a player must have at

least one winning move, but to lose all moves must be losing moves.

Minimax Backup Given a node N whose children all have known values, N’s

value is equal to the value of the most favourable child for the current

player.

Minimax Value The value of a node given that both players play perfectly

according to Minimax.

Move A move is a distinct action by one of the players leading from one state

to another state. In games with multi-part moves, such as Amazons

where each move consists of a movement plus shooting an arrow, the

pair of actions would be considered a single move. There are usually

multiple moves available from each state, but usually only one can be

chosen per turn.

93

Appendix A: Glossary

Node Value Each node has an outcome or expected outcome associated with

it. Terminal positions have an exact value, whereas non-terminal posi-

tions have an expected or heuristic value.

Perfect Information A game has the property of perfect information when

both players know the full state of the game.

Ply A move or turn by a single player. A search depth of 4-ply means looking

at all possible paths that are 4 moves deep.

Ponder Thinking during your opponent’s time.

Root Node The root node is the highest node in the tree. It has no parents,

and there is exactly one of them in any tree.

State A state is a full description of a board position. It includes the locations

of all the pieces, and any other relevant information. In Chess, the state

would include whether each king can castle, and whether a pawn can

capture en passant. In games where repeated moves are not allowed, the

full game history may be included in the state. Occasionally a simplified

version of the state is used when speed is more important than accuracy.

State Space The state space is the number of unique reachable states in the

game.

Stochastic A game is stochastic if it has elements of randomness, such as

dice rolls. Backgammon is stochastic while Chess, Hex and Havannah

are not.

Terminal Position A terminal positions is a position where one of the play-

ers has won or it is a draw. They have an exact value such as win, loss

or draw, or a score to show how much a player won by.

Transposition One state with multiple histories. If moves A-X-B leads to

the same position as B-X-A, they are transpositions. They are the same

94

Appendix A: Glossary

state, so they will have the same minimax value (subject to history), and

should not be searched twice.

Zero Sum Games A zero sum game has the property that one player’s gain

is the other player’s loss. A draw is still possible, but no move can help

both players, so there is no incentive to cooperate.

Zobrist Hash A hash value that is built up incrementally by XORing a ran-

dom string associated with each move against a previous hash value.

95

B
Playable Havannah Board

Below is a size 8 board with a size 5 board embedded in it. Size 5 is great

for learning to play, while size 8 is played by more experienced players. It can

be printed and played with small Go stones, or by marking the squares with

different colour pens or pencils. Have fun playing!

96

References

[1] D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial

Intelligence, 6(4):293–326, 1975.

[2] D.J. Slate and L.R. Atkin. Chess 4.5 The Northwestern University chess pro-

gram. Chess skill in Man and Machine, pages 82–118, 1977.

[3] J. Schaeffer. The history heuristic and alpha-beta search enhancements in

practice. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11

(11):1203–1212, 1989.

[4] L.V. Allis, M. van der Meulen, and H.J. Van Den Herik. Proof-number search.

Artificial Intelligence, 66(1):91–124, 1994.

[5] M.H.M. Winands, J.W.H.M. Uiterwijk, and J. van den Herik. PDS-PN: A new

proof-number search algorithm. Computers and Games, pages 61–74, 2003.

[6] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo tree

search. Computers and Games, pages 72–83, 2007.

[7] GMJ Chaslot, M.H.M. Winands, H. Herik, J. Uiterwijk, and B. Bouzy. Pro-

gressive strategies for Monte-Carlo tree search. New Mathematics and Natural

Computation, 4(3):343, 2008.

[8] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. European

Conference on Machine Learning (ECML), pages 282–293, 2006.

[9] S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In 24th

International Conference on Machine learning, pages 273–280. ACM, 2007.

[10] S. Gelly and D. Silver. Monte-Carlo tree search and rapid action value estima-

98

References

tion in computer Go. Artificial Intelligence, 2011.

[11] D. Silver. Reinforcement learning and simulation-based search in computer Go.

PhD thesis, 2009.

[12] P. Drake. The last-good-reply policy for Monte-Carlo go. ICGA Journal, 32

(4):221–227, 2009.

[13] H. Baier and P. Drake. The power of forgetting: Improving the last-good-reply

policy in monte-carlo go. IEEE Transactions on Computational Intelligence

and AI in Games, (99):1–1, 2010.

[14] John Tromp. Number of connect-4 positions. URL http://homepages.cwi.

nl/~tromp/c4/c4.html.

[15] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu,

and S. Sutphen. Checkers is solved. Science, 317(5844):1518, 2007.

[16] P. Henderson, B. Arneson, and R.B. Hayward. Solving 8 × 8 hex. In 21st

International Joint Conference on Artificial Intelligence (IJCAI 09)(ed. C.

Boutilier), pages 505–510, 2009.

[17] J. Tromp and G. Farneback. Combinatorics of Go. Computers and Games,

pages 84–99, 2007.

[18] John Tromp. Number of chess diagrams and positions, 2010. URL http:

//homepages.cwi.nl/~tromp/chess/chess.html.

[19] T. Rogers. A Program to Play Havannah. B.Sc. thesis, University of Leeds,

School of Computing, 2004.

[20] A. Nagai. Proof for the equivalence between some best-first algorithms and

depth-first algorithms for and/or trees. IEICE Transactions on Information

and Systems, 85(10):1645–1653, 2002.

[21] J. Pawlewicz and L. Lew. Improving depth-first pn-search: 1+ε trick. Com-

puters and Games, pages 160–171, 2007.

99

http://homepages.cwi.nl/~tromp/c4/c4.html
http://homepages.cwi.nl/~tromp/c4/c4.html
http://homepages.cwi.nl/~tromp/chess/chess.html
http://homepages.cwi.nl/~tromp/chess/chess.html

References

[22] F. Teytaud and O. Teytaud. Creating an upper-confidence-tree program for

Havannah. Advances in Computer Games, pages 65–74, 2010.

[23] R. Lorentz. Improving Monte–Carlo tree search in Havannah. Computers and

Games, pages 105–115, 2011.

[24] J.A. Stankiewicz. Knowledge-based Monte-Carlo Tree Search in Havannah.

PhD thesis, Maastricht University, 2011.

[25] J.D. Fossel. Monte-Carlo Tree Search Applied to the Game of Havannah. B.Sc.

thesis, Maastricht University, Maastricht, The Netherlands, 2010.

[26] A.L. Zobrist. A new hashing method with application for game playing. ICCA

Journal, 13(2):69–73, 1990.

[27] G. Chaslot, M. Winands, and H. van Den Herik. Parallel Monte-Carlo tree

search. Computers and Games, pages 60–71, 2008.

[28] R. Coulom. Computing Elo ratings of move patterns in the game of Go. ICGA

Journal, 30(4):198–208, 2007.

100

	Prefatory Pages
	Title
	Abstract
	Preface
	Acknowledgements

	Contents
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations

	1 Introduction
	1.1 Introduction
	1.2 Contributions

	2 Background
	2.1 Minimax
	2.1.1 Negamax

	2.2 Alpha-Beta
	2.2.1 Transposition Table
	2.2.2 Iterative Deepening
	2.2.3 History Heuristic

	2.3 Proof Number Search
	2.3.1 The Negamax Formulation
	2.3.2 Transposition Table

	2.4 Monte Carlo Tree Search
	2.4.1 UCT: Upper Confidence bounds as applied to Trees
	2.4.2 RAVE: Rapid Action Value Estimate
	2.4.3 Heuristic Knowledge
	2.4.4 Rollout Policy

	2.5 Summary

	3 Havannah
	3.1 Rules of Havannah
	3.2 Coordinate System
	3.3 State Space
	3.4 Properties of Havannah
	3.4.1 Virtual Connections
	3.4.2 Frame
	3.4.3 Simultaneous Forced Wins: Race to Win
	3.4.4 Dead Cells
	3.4.5 Draws

	3.5 Summary

	4 Playing Havannah
	4.1 Castro
	4.2 Havannah Rules Implementation
	4.2.1 Fork and Bridge Connections
	4.2.2 Rings

	4.3 Testing Methodology
	4.4 RAVE
	4.5 Keep Tree Between Moves
	4.6 Proof Backups
	4.7 Multiple Rollouts
	4.8 Heuristic Knowledge
	4.8.1 Maintain Virtual Connections
	4.8.2 Locality
	4.8.3 Local Reply
	4.8.4 Edge Connectivity
	4.8.5 Group Size
	4.8.6 Distance to Win

	4.9 Rollout Policy
	4.9.1 Mate-in-one
	4.9.2 Maintain Virtual Connection
	4.9.3 Last Good Reply
	4.9.4 Ring Rule Variations

	4.10 Combinations

	5 Solving Havannah with MCTS
	5.1 Monte Carlo Tree Search Solving
	5.1.1 Symmetry
	5.1.2 Multi-threading
	5.1.3 Garbage Collection
	5.1.4 Memory Management
	5.1.5 Early Draw Detection

	5.2 Solution to Havannah Sizes 2, 3 and 4
	5.2.1 Size 2 Proof
	5.2.2 Size 3 Proof
	5.2.3 Size 4 Proof

	6 Conclusions
	6.1 Conclusions
	6.2 Future Work

	A Glossary
	B Playable Havannah Board
	References

