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Abstract

A Gelfand theory for an arbitrary Banach algebra A is a pair (G,A), such that:

A is a C∗-algebra and G : A → A is an algebra homomorphism; G induces a

bijection between the set of maximal modular left ideals of A and the set of

maximal modular left ideals of A; and for every maximal modular left ideal

L of A, the map GL : A/G−1(L) → A/L induced by G has dense range. We

prove that if A is a postliminal C∗-algebra with Gelfand theory (G,A), then

no proper C∗-subalgebra of A contains GA. We also show that if J is an ideal

of a Banach algebra A such that A/J and J both have Gelfand theories, then

A also has a Gelfand theory if we impose some conditions on J and on its

Gelfand theory.



Acknowledgements

Many people have been involved in one way or another in the completion of

this project. The first person I would like to thank is my supervisor, Professor

Volker Runde; there is no need to say that without his support this would not

be possible. His incredibly patient and kind guidance has helped me to grow

not only at the academic level, but also as a human being.

I would also like to thank the academic and administrative staff of the

Department of Mathematical and Statistical Sciences of the University of

Alberta. In particular, I want to express my gratitude to Professors Michael

Li and Vladimir Troitski for their valuable help and orientation. I am highly

indebted to Professor Ami Viselter; his lecture notes of “Introduction to

Operator Algebras” were a very useful resource, and some of the proofs in

the first two chapters of this thesis follow the arguments in those notes.

This whole experience would not have been as enjoyable as it was without the

help and support of my friends, to whom I am very grateful. Among them,

special mention deserves Zsolt Tanko, who read a preliminary version of this

thesis and made many valuable suggestions and corrections.

I am very thankful to Professors Felix Lara and Amado Reyes, from the

Instituto Tecnologico de Santo Domingo, who inspired me to continue studying

mathematics.

Finally, I want to thank to my family—my father, my mother, my brother, my

sister, and my uncle—for their constant support and motivation; the extension

of my gratitude for them goes beyond the scope of this work.



Contents

Introduction 1

1 Introduction to Banach Algebras 3

1.1 Gelfand Theory for Commutative Banach Algebras . . . . . . 11

1.2 Representation of Banach Algebras . . . . . . . . . . . . . . . 15

2 C∗-Algebras 18

2.1 Positive Elements and Positive Linear Functionals . . . . . . . 23

2.2 The GNS Construction . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Liminal and Postliminal C∗-Algebras . . . . . . . . . . . . . . 34

3 Gelfand Theory for Non-Commutative Banach Algebras 36

3.1 Basic Properties of Gelfand Theories . . . . . . . . . . . . . . 39

3.2 Existence of Gelfand Theories . . . . . . . . . . . . . . . . . . 42

3.3 Hereditary Properties . . . . . . . . . . . . . . . . . . . . . . . 44

4 Gelfand Theory for C∗-Algebras 53

Bibliography 63



1

Introduction

The study of Banach algebras and their representation theory is one the main

topics of functional analysis. The application of techniques from analysis,

algebra and topology has allowed researchers in this field to obtain deep and

sometimes surprising results.

A Banach algebra A is a Banach space that is also an algebra (i.e., it is a ring

in which the multiplication is compatible with the vector space operations)

such that ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. If the multiplication is commutative,

then we say that A is commutative.

The idea of the representation theory for Banach algebras is to characterize

an algebra as a subset of another algebra with more structure and whose

properties we know fairly well and for which we have more tools available

(e.g., the algebra of continuous functions on a compact Hausdorff space or the

algebra of bounded operators on a Hilbert space).

One of the reasons commutative Banach algebras are important in analysis is

because they have a very nice representation theory. The Gelfand transform

establishes an algebra homomorphism between any commutative Banach

algebra and C0(K), the set of continuous complex-valued functions on a locally

compact Hausdorff space that vanish at infinity. This set K is just the set of

multiplicative linear functionals on A, i.e., the set of algebra homomorphisms

from A to C, which is a subset of the dual space of A.

For several reasons, the concept of Gelfand transform makes sense when the

Banach algebra is commutative. The possibility of defining a notion of Gelfand
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transform in a non-commutative setting is studied in a paper by R. Choukri,

E. H. Illoussamen and V. Runde [CIR02].

In that paper, the authors give an axiomatic definition of Gelfand theory that,

in the commutative case, is not only consistent with the classical one, but also

characterizes it. Furthermore, several properties of the Gelfand theory are

established, as well as some existence and uniqueness results.

In this work, we review some of the main results of [CIR02]. In addition

we examine several of the open problems in the paper. We answer one of

the questions posted in [CIR02] and also find a solution for two other related

problems under particular conditions.



3

Chapter 1

Introduction to Banach

Algebras

In this first chapter we cover some basic definitions and classical results about

Banach algebras and their representation theory.

Recall that a Banach space is a normed linear space that is complete, i.e.,

in which every Cauchy sequence converges.

Definition 1.1 An algebra A is a ring that is also a vector space under the

addition of the ring and such that

α(ab) = a(αb) = (αa)b for all a, b ∈ A and any scalar α.

If the multiplication of the algebra is associative, we say that A is associative.

Throughout this work all algebras are assumed to be associative and to be

complex vector spaces.

An algebra A is commutative if the multiplication is commutative.

Definition 1.2 An algebra A is unital if there exists a (necessarily unique)

element I ∈ A such that Ia = aI = a, for all a ∈ A. In that case we say that I

is the identity of A. An algebra without a unit is non-unital. If A is a unital

algebra, an element a ∈ A is called invertible if there exists an element b ∈ A

such that ab = ba = I; in this case we say that b is the inverse of a.
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When it is not clear by the context, we will indicate by a subindex the algebra

or subalgebra on which I acts as the identity, e.g., IA.

Given two unital algebras A and B, an algebra homomorphism ϕ : A→ B is

said to be unital if ϕ(IA) = IB.

Definition 1.3 We say that a subset B of an algebra A is a subalgebra if it

is closed under all the operations (addition, multiplication, and multiplication

by a scalar). If an algebra A has a unit, a given subalgebra is unital if it

contains the unit of A.

Definition 1.4 Let A be an algebra. A subalgebra J of A is a left ideal if

aJ ∈ J , for all a ∈ A. Similarly we say that J is a right ideal if Ja ∈ J, for

all a ∈ A. If J is both a left and right ideal, then we say that J is an ideal of

A. An ideal is maximal if it is not contained in any other proper ideal.

If an algebra A is also a normed space such that the norm is sub-multiplicative,

i.e., ‖ab‖ ≤ ‖a‖‖b‖, for all a, b ∈ A, then we say that A is a normed algebra.

Definition 1.5 A Banach algebra is a normed algebra that considered as

linear space is a Banach space over C.

Example 1.6 The first obvious example of a Banach algebra is the set of

complex numbers, C, with the usual addition and multiplication, and with

norm given by the modulus.

Example 1.7 Let K be a compact Hausdorff topological space. Let C(K)

denote the set of complex-valued continuous functions on K. Endow this

space with the `∞-norm:

‖f‖ = sup
x∈K
|f(x)|, for all f ∈ C(K) (1.1)

then C(K) becomes a commutative Banach algebra. This algebra is unital.

Example 1.8 Let K be a locally compact (but not necessarily compact)
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Hausdorff toplogical space. Let C0(K) denote the set of complex-valued

functions that vanish at infinity, that is, f ∈ C0(K) if given any ε > 0 there

exists a compact set A ⊂ K such that |f(x)| < ε, x ∈ K \A. This space with

the norm and operations defined in the previous example is also a Banach

algebra.

The following example is very relevant for this work:

Example 1.9 Let E be a Banach space and let B(E) denote the set of bounded

linear operators from E to E. Then B(E) is an algebra with pointwise addition,

and multiplication given by composition of operators: TQ = T ◦ Q, for

T,Q ∈ B(E).

Furthermore, if we endow B(E) with the operator norm:

‖T‖ = sup
x∈E
‖x‖≤1

‖Tx‖, for all T ∈ B(E) (1.2)

then B(E) becomes a (unital) Banach algebra. This Banach algebra is

commutative if and only if E has dimension 1.

An immediate consequence of the sub-multiplicativity of the norm of Banach

algebras is that multiplication is jointly continuous:

Theorem 1.10 For a Banach algebra A, multiplication is jointly continuous.

Proof. Let a, b ∈ A, let (an)∞n=1 and (bm)∞m=1 be sequences in A such that

an → a and bm → b. Then

‖anbm − ab‖ = ‖an(bm − b) + (an − a)b‖ ≤ ‖an‖‖bm − b‖+ ‖an − a‖‖b‖

Since (an)∞n=1 and (bm)∞m=1 converge, they are bounded, so we have that

lim
n,m→∞

‖anbm − ab‖ = 0

holds. �



1. Introduction to Banach Algebras 6

The proof of the next theorem, as well as most of the classical results regarding

Banach algebras in this chapter, follows the treatment given in [Pal94].

Theorem 1.11 If J is a closed ideal of a normed algebra A, then the quotient

A/J (endowed with the usual quotient norm) is a normed algebra too. If A is

a Banach algebra, then the quotient is a Banach algebra, too.

Proof. The first part of the theorem is straightforward. Since J is a two sided

ideal, clearly addition and multiplication are well-defined in the quotient space

and the latter is closed under these operations.

For the second part, if A is a Banach space and J is closed, A/J with the

quotient norm is a Banach space. So all we need to verify is that this norm is

sub-multiplicative. Let a, b ∈ A:

‖(a+ J)(b+ J)‖ = ‖ab+ J‖ = inf
c∈J
‖ab+ c‖

≤ inf
x,y∈J

‖ab+ ax+ yb+ yx‖ = inf
x,y∈J

‖(a+ y)(b+ x)‖

≤ inf
x,y∈J

‖(a+ y)‖‖(b+ x)‖ = ‖a+ J‖‖b+ J‖. �

A non-unital Banach algebra can be embedded as an ideal into a unital Banach

algebra:

Theorem 1.12 Let A be a Banach algebra without unit. Define

A# = A⊕C, with addition given by a1⊕λ1+a2⊕λ2 := (a1+a2)⊕(λ1+λ2) and

multiplication defined by (a1⊕λ1)(a2⊕λ2) = (a1a2+λ1a2+λ2a1)⊕λ1λ2, for all

a1, a2 ∈ A, λ1, λ2 ∈ C. Then A# with norm ‖a ⊕ λ‖ := ‖a‖ + |λ| is a unital

Banach algebra with unit 0⊕ 1.

Proof. The fact that A# with the operations defined is an algebra with unit

0 ⊕ 1 is straightforward. Also it is clearly a Banach space (being the direct

sum of two Banach spaces), so all that remains to be proven is that the norm
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is sub-multiplicative. Thus let a, b ∈ A, α, β ∈ C. Then

‖(a⊕ α)(b⊕ β)‖ = ‖(ab+ βa+ αb)⊕ αβ‖ ≤ ‖ab‖+ |β|‖a‖+ |α|‖b‖+ |αβ|

= (‖a‖+ |α|)(‖b‖+ |β|) = ‖a⊕ α‖‖b⊕ β‖.

Whence, A# is a Banach algebra. Moreover, it is easy to see that A⊕ 0 is an

ideal of A# of codimension 1. �

Definition 1.13 Let A be an algebra. The quasi-product is the map

(a, b) 7→ a ◦ b from A× A onto A given by a ◦ b = a+ b− ab.

Definition 1.14 Let A be an algebra and let a be an element of A. We say

that b ∈ A is a right (left) quasi-inverse for a if a ◦ b = 0 (resp. b ◦ a = 0). If

a ◦ b = b ◦ a = 0 we say that a is quasi-invertible with quasi-inverse b. We will

denote by Q(A) the set of quasi-invertible elements of A.

Definition 1.15 Let A be a non-unital algebra and let a be an element of A.

The spectrum of a is defined as:

σ(a) = {λ ∈ C \ {0} : λ−1a /∈ Q(A)} ∪ {0}. (1.3)

When the given algebra A is unital the spectrum of an element a ∈ A is given

by

σ(a) = {λ ∈ C : a− λI is not invertible}. (1.4)

Remark 1.16 If A is a non-unital algebra, the definition of spectrum based on

quasi-invertibility (1.3) is consistent with the definition based on invertibility

(1.4) when the calculations are made in A#. To see it, just observe that if

λ ∈ C is not zero and λ−1a has a quasi-inverse b, then

(a− λI)(λ−1b− λ−1I) = (λ−1b− λ−1I)(a− λI)

= λ−1ba− b− λ−1a+ I = I − b ◦ λ−1a = I.
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On the other hand, if c is an inverse for (a− λI) we have

ac ◦ λ−1a = λ−1a ◦ ac = λ−1a+ ac− λ−1a2c = λ−1a+ a(I − λ−1a)c

= λ−1a− λ−1a(a− λI)c = 0

and λ−1a is quasi-invertible. Therefore, for simplicity, when dealing with the

spectrum sometimes we will assume that the algebra is unital.

Theorem 1.17 Let A be an algebra. Then:

(a) For any a, b ∈ A, we have

σ(ab) ∪ 0 = σ(ba) ∪ 0.

(b) Let B be an algebra. If A is non-unital, then for any homomorphism

ϕ : A→ B we have:

σB(ϕ(a)) ⊆ σA(a), for all a ∈ A.

Proof. (a) Assume first that A is non-unital. Let λ ∈ C \ {0}. Suppose that

c is a quasi-inverse for λ−1ab, then

λ−1ab ◦ c = 0 = c ◦ λ−1ab,

therefore λ−1b(ca− a) is a quasi-inverse for λ−1ba. Indeed:

λ−1ba ◦ (λ−1b(ca− a)) = λ−1ba+ λ−1b(ca− a)− λ−2b(abc)a+ λ−2b(ab)a

= λ−1ba+ λ−1bca− λ−1ba+ λ−2b(ab− abc)a

= λ−1b(c+ λ−1ab− λ−1abc)a

= λ−1b(λ−1ab ◦ c)a = 0.

Similarly, λ−1b(ca−a)◦λ−1ba = 0. If A is unital, λ ∈ C\{0}, and (ab−λI)
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has an inverse c, then

(ba− λI)(λ−1bca− λ−1I) = λ−1babca− λ−1ba− bca+ I

= b(ab− λI)λ−1ca+ I − λ−1ba

= λ−1ba+ I − λ−1ba = I.

Therefore, (ba − λI) is invertible too. Thus in any case we have

σ(ab) ∪ 0 = σ(ba) ∪ 0.

(b) It is clear that if ϕ(λ−1a) is not quasi-invertible in B for λ 6= 0, then it is

not quasi-invertible in A, and the claim holds. �

It is not difficult to show that the inclusion in part b) of the previous theorem

is true if we assume that A and B are unital and ϕ is a unital homomorphism.

Definition 1.18 Let A be a Banach algebra and let a ∈ A. The spectral

radius of a is defined as

ρ(a) = sup
λ∈σ(a)

|λ|. (1.5)

Since the spectrum of any element of a Banach algebra is a non-empty and

compact set in C [Kan03, Theorem 7.6], the spectral radius is always

well-defined.

In Banach algebras, the analytic and the algebraic structures are connected

by the spectral radius, as can be seen in the following result:

Theorem 1.19 Let A be a Banach algebra and let a ∈ A. Then ρ(a) ≤ ‖a‖.

Proof. For simplicity, assume that A is unital. Let λ ∈ C be such that

|λ| > ‖a‖. Observe that I − λ−1a is invertible with inverse b :=
∞∑
n=0

(λ−1a)n.

First, b is well-defined since the series is absolutely convergent, hence

convergent. Furthermore,

−λ−1b(a− λI) = b(I − λ−1a) = (I − λ−1a)b = I.
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Therefore, −λ−1b is the inverse of a−λI and λ is not in the spectrum of a. �

In fact, there is an explicit formula for the spectral radius of an element of a

Banach algebra, the so called Beurling-Gelfand spectral radius formula

[Kan03, Theorem 7.9]:

Theorem 1.20 Let A be a Banach algebra and let a ∈ A. Then

lim
n
‖an‖

1
n = ρ(a). (1.6)

One of the most useful features of algebras is functional calculus in its many

forms. Next we will see one of the most modest results on functional calculus:

Theorem 1.21 Let A be a unital algebra and let a ∈ A be such that σ(a)

is not empty. If f is any rational continuous function on σ(a), then f(a) is

well-defined in A, and the map

ϕ : C(σ(a))→ A, f 7→ f(a)

is a unital homomorphism that sends the identity function on σ(a) to a.

Moreover this homomorphism is unique and the following holds:

σ(f(a)) = f(σ(a)).

Proof. Assume σ(a) 6= ∅; if f is constant, say f(z) = λ0, then observe that

ϕ(f) = λ0I, thus σ(f(a)) = {λ0} = f(σ(a)). Therefore we can assume

that f is a non-constant rational function such that f =
p

q
, where p, q are

two polynomials with no common factors.

Observe that p(a) and q(a) are well-defined polynomials in the commutative

algebra generated by a. Now for any given λ0 ∈ C, let

q(λ) = α(λ1 − λ)(λ2 − λ) · · · (λn − λ).

Also let

λ0q(λ)− p(λ) = β(µ1 − λ)(µ2 − λ) · · · (µm − λ).
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Note that α 6= 0 (q 6= 0) and β 6= 0 (f =
p

q
is not constant). Moreover, since

q 6= 0 on σ(a), then q(a) = α(λ1−a) · · · (λn−a) is invertible, and we can write

f(a) := p(a)q(a)−1, which is well-defined.

As p and q have no common factor, we have:

λ0I − f(a) = β(µ1 − λ)...(µm − λ)(α(λ1 − λ)...(λn − λ))−1,

which is invertible on σ(a), unless some µi ∈ σ(a). But since the µi are the

roots of the polynomial λ0q(λ)−p(λ), λ0 is in σ(f(a)) if and only if an element

of σ(a) satisfies the equation λ0q(λ)− p(λ) = 0, i.e., λ0 ∈ f(σ(a)). �

1.1 Gelfand Theory for Commutative Banach

Algebras

It is well-known that any normed space can be identified with a subspace

of the space of continuous functions on a compact Hausdorff space (this is a

consequence of the Banach-Alaoglu theorem). The Gelfand transform is a very

elegant construction that provides an identification somehow parallel to the

one just mentioned. It allows us to represent a commutative Banach algebra

as a subalgebra of the algebra of continuous functions on a compact Hausdorff

space if the algebra is unital, or as a subalgebra of the algebra of continuous

functions that vanish at infinity on a locally compact Hausdorff space if the

algebra is not unital.

Definition 1.22 An ideal J of an algebra A is called modular if there exists

an element e ∈ A such that ae− a, ea− a ∈ J , for all a ∈ A. In this case, e is

a unit for A/J , and is called a modular unit for J .

A left ideal J is called modular left ideal if there exists an element e ∈ A

such that ae−a ∈ J , for all a ∈ A; in this case we say that e is a right modular
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unit for J . Similarly, we define the notions of a modular right ideal and of

a left modular unit.

Definition 1.23 Let A be a Banach algebra, a character is a non-zero algebra

homomorphism from A to C, i.e., is a multiplicative linear functional. It follows

from multiplicativity that if A is unital, then ϕ(I) = 1 for every character ϕ

of A.

Remark 1.24 Given a commutative Banach algebra A, its characters are

automatically continuous. In fact, we will see that characters have norm at

most one and lie in the closed unit ball of the dual space of A (denoted by

B1(A∗)).

Also in the case of commutative Banach algebras, there is a relation between

the set of characters and the set of maximal modular ideals: a subset J of a

commutative Banach algebra A is a maximal modular ideal if and only if it is

the kernel of a character.

Definition 1.25 Let A be a commutative Banach algebra. If we endow the set

of characters with the topology inherited from the weak-∗ topology, we obtain

a Hausdorff topological space. In the sequel, we will refer to this topological

space as the character space of A and will denote it by Φ(A).

Theorem 1.26 Let A be a commutative Banach algebra, and let a ∈ A. The

map

τ : A→ C(Φ(A)), a 7→ â,

where â is the evaluation function ϕ 7→ ϕ(a), ϕ ∈ Φ(A), is a homomorphism

from A into C(Φ(A)). This homomorphism is called the Gelfand transform

of A.

Proof. Since Φ(A) has the topology induced by the weak-∗ topology on A∗,

it is clear that the functions â are continuous on Φ(A). Furthermore, since
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characters preserve addition and multiplication, we have:

â+ b(ϕ) = ϕ(a+ b) = ϕ(a) + ϕ(b), a, b ∈ A, ϕ ∈ Φ(A)

âb(ϕ) = ϕ(ab) = ϕ(a)ϕ(b), a, b ∈ A, ϕ ∈ Φ(A).

Thus τ is a homomorphism from A into C(Φ(A)). �

Moreover, for any given element a ∈ A, the spectrum σ(a) is just the range of

the evaluation map â over Φ(A).

In fact, if A is a unital Banach algebra, ϕ is character of A, and a ∈ A,

then ϕ(a) ∈ σ(a), otherwise 0 = ϕ(a − ϕ(a)I)ϕ((a − ϕ(a)I)−1) = 1, a

contradiction. Conversely, if λ ∈ σ(a), consider the ideal M := A(a − λI),

which is contained in a maximal modular ideal M ′, by Zorn’s lemma. The

correspondence between maximal modular ideals and characters asserts that

there exists a character φ of A such that ker(φ) = M ′, thus (a− λI) ∈ ker(φ),

implying that φ(a) = λ. We have established that σ(a) = â(Φ(A)).

From the previous argument, and using the fact that the spectral radius of an

element of a Banach algebra is bounded by its norm, we can see that characters

are continuous with norm at most 1.

Theorem 1.27 Let A be a unital commutative Banach algebra, then Φ(A) is a

compact Hausdorff topological space. If A is non-unital, then Φ(A) is a locally

compact Hausdorff space such that the one-point compactification is given by

Φ(A) ∪ {0}.

Proof. First note that since ϕ(a) ∈ σ(a), ∀a ∈ A, then |ϕ(a)| ≤ ‖a‖, so

‖ϕ‖ = 1, for all ϕ ∈ Φ(A). Hence Φ(A) ⊆ B1(A∗).

Let (φα)α∈∆ be a net in Φ(A) such that φα → φ. For a, b ∈ A, we have:

φ(ab) = lim
α
φα(ab) = lim

α
φα(a) lim

α
φα(b) = φ(a)φ(b).

Thus φ ∈ Φ(A) or φ = 0, implying that Φ(A) ∪ {0} is a closed subset of the
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closed unit ball of A∗, and is compact and Hausdorff. If A is unital, then

necessarily φ(I) = lim
α
φα(I) = 1, hence φ ∈ Φ(A) and Φ(A) is compact. If A

is non-unital then Φ(A)∪{0} is compact, and so Φ(A) is locally compact. �

Now we are ready to state the main properties of the Gelfand transform:

Theorem 1.28 Let A be a commutative Banach algebra and let τ be the

Gelfand transform for A. Then:

(a) If A is unital, then τ(A) ⊆ C(Φ(A)). If A is non-unital, then

τ(A) ⊆ C0(Φ(A));

(b) τ is contractive;

(c) τ(A) strongly separates points of Φ(A), i.e., for every φ, ψ ∈ Φ(A) there is

some a ∈ A such that â(φ) 6= â(ψ) and τ(A) does not vanish at any point

of Φ(A).

Proof. (a) If A is unital, Φ(A) is a closed subset of the closed unit ball of

A∗, and so is compact, whence τ(A) ⊆ C(Φ(A)). If A is non-unital, then

Φ(A)∪{0} provides the one-point compactification of Φ(A). Thus if (ϕα)

is a net in Φ(A) such that ϕα → 0, then for any a ∈ A, ϕα(a) → 0 and

τ(a) ∈ C0(Φ(A)).

(b) Since ‖ϕ‖ ≤ 1 for all ϕ ∈ Φ(A), ‖τ(a)‖ = sup
ϕ∈Φ(A)

|ϕ(a)| ≤ ‖a‖, and τ is

contractive.

(c) Assume that φ, ψ ∈ Φ(A) with φ 6= ψ, so there exists some a ∈ A such that

φ(a) 6= ψ(a), thus â(φ) 6= â(ψ). Finally, if there is a character ϕ ∈ Φ(A)

such that τ(A) vanishes at ϕ, then ϕ(a) = 0 for all a ∈ A, which is not

possible by the definition of character. �
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1.2 Representation of Banach Algebras

In this section we present some basic concepts and results that we will need

about the representation theory of Banach algebras.

Definition 1.29 Let A be a Banach algebra, and let E be a linear space. A

representation of A on E is a homomorphism π : A → L(E), where L(E)

denotes the set of linear operators on E.

Definition 1.30 Let A be an algebra, let E,F be linear spaces, and let

π1, π2 be representations of A on E and F , respectively. We say that π1

and π2 are equivalent if there exists an isomorphism ϕ : E → F such that

ϕ−1 ◦ π2(a) ◦ ϕ = π1(a), for all a ∈ A.

Definition 1.31 Let A be an algebra, let E be a linear space, and let π be a

representation of A on E. A subspace F of E is called invariant under π(A)

if π(A)F ⊆ F .

A representation π of an algebra A on a linear space E is said to be irreducible

if the only subspaces of E invariant under π(A) are {0} and E.

Definition 1.32 Let A be an algebra. A representation π of A on a normed

space E is said to be non-degenerate if π(A)E is dense in E.

Definition 1.33 Let A be an algebra. A representation π of A on a normed

space E is said to be normed if for every a ∈ A, π(a) ∈ B(E).

Definition 1.34 Let A be an algebra, let E be a linear space, and let π be a

representation of A on E. A vector x ∈ E is called cyclic if π(A)x = E. A

representation π of an algebra A on a linear space E is cyclic if there exists

a cyclic vector for π on E.

Clearly, every cyclic representation is non-degenerate. Not so obvious is the

fact that every irreducible representation is cyclic. Furthermore, in an
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irreducible representation every non-zero vector is cyclic.

Indeed, let A be an algebra and let π be an irreducible representation of A on

a linear space E. Then the subspace F := {x ∈ A : π(A)x = 0} is invariant

under the action of π(A). Since π is irreducible (and not trivial), F has to be

0. Therefore, for any x ∈ E \ {0} the set π(A)x is not 0 and is invariant, so

must be all of E.

The converse is also true: if A is an algebra and π is a representation of A on

a linear space E such that every non-zero vector is cyclic, then π is irreducible

[Pal94, Theorem 4.1.3].

Definition 1.35 A representation π of an algebra A on a linear space E is

faithful if the kernel of π is trivial.

Irreducible representations of algebras can be completely characterized by

the set of maximal modular left ideals: given an algebra A and a maximal

modular left ideal L, the representation π of A on L(A/L), a 7→ π(a), where

π(a) (x+ L) = ax + L, is an irreducible representation, and any irreducible

representation of A is equivalent to a representation of this type

[Pal94, Theorem 4.1.3].

The relation between irreducible representations and maximal modular left

ideals has another expression. Let A be a Banach algebra, let L be a maximal

modular left ideal of A, and let πL be the irreducible representation of A on

A/L; the kernel of πL is an ideal. We call such an ideal a primitive ideal.

We denote by ΠA the set of primitive ideals of A.

The set of primitive ideals of a Banach algebra A is related to the set of

its maximal modular left ideals in the sense that any primitive ideal M is the

kernel of an irreducible representation of A on A/L for some maximal modular

left ideal L. Moreover, M is the largest ideal of A contained in L. Also, it can
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be shown that every primitive ideal is of the form [Pal94, Theorem 4.1.8]

M := {a ∈ A : aA ⊆ L} (1.7)

and we will refer to M as the primitive ideal of A corresponding to the maximal

modular left ideal L.
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Chapter 2

C∗-Algebras

In this chapter we review some of the most fundamental results regarding the

most important class of Banach algebras: C∗-algebras. First, we will introduce

some preliminary definitions.

The material presented in this chapter can be found in any textbook on

C∗-algebras; we follow in most of the proofs the arguments in [Mur90].

Definition 2.1 Let A be an algebra. An involution is a function from A to

A denoted by ∗ that is conjugate linear and anti-multiplicative, i.e.

(αa+ βb)∗ = αa∗ + βb∗, (ab)∗ = b∗a∗ (2.1)

for all a, b ∈ A, α, β ∈ C, and such that a∗∗ = a.

Definition 2.2 A Banach ∗-algebra is a Banach algebra endowed with an

involution.

When we put an extra condition on a Banach *-algebra we obtain a C∗-algebra:

Definition 2.3 A C∗-algebra is a Banach ∗-algebra such that the norm

satisfies the so-called C∗-condition:

‖a∗a‖ = ‖a‖2, for all a ∈ A. (2.2)

This condition, which at first sight may not seem strong, endows C∗-algebras
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with a lot of structure. For example, as we well see, for commutative

C∗-algebras the Gelfand transform is not only a contractive homomorphism,

but also an isometric isomorphism from A onto C0(ΦA). On the other hand,

if A is a non-commutative C∗-algebra we can represent it isometrically on

a subalgebra of bounded operators on some Hilbert space [Bla06]. This is

very useful, as the algebra of bounded operators on a Hilbert space has great

relevance in pure and applied mathematics.

Actually, the C∗-condition is equivalent to an apparently less restrictive

condition:

Lemma 2.4 Let A be a Banach ∗-algebra such that for all a ∈ A we have

‖a‖2 ≤ ‖a∗a‖. Then A is a C∗-algebra.

Proof. From ‖a‖2 ≤ ‖a∗a‖ it follows that ‖a‖2 ≤ ‖a∗‖‖a‖ and ‖a‖ ≤ ‖a∗‖,

similarly ‖a∗‖ ≤ ‖a‖, so ‖a‖ = ‖a∗‖. Whence

‖a‖2 ≤ ‖a∗a‖ ≤ ‖a‖‖a∗‖ = ‖a‖2

and A is a C∗-algebra. �

Example 2.5 Again, a first trivial example of a C∗-algebra is C, with involution

given by complex conjugation.

Now we present the two most important examples of commutative

C∗-algebra; in fact, as was already mentioned, every commutative C∗-algebra

can be identified with one of these:

Example 2.6 Let K be a compact Hausdorff topological space. Then C(K)

endowed with the `∞-norm becomes a commutative C∗-algebra, with pointwise

addition and multiplication and involution given by f ∗(x) := f(x).

Example 2.7 Let K be a locally compact Hausdorff toplogical space. Then

C0(K) with the norm and operations defined in the previous example is also a
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C∗-algebra.

Next, we see an example of a non-commutative C∗-algebra:

Example 2.8 Let H be a Hilbert space. We already know that B(H) is a

Banach algebra. Now, for any operator T ∈ B(H), let T ∗ be the adjoint

operator, i.e., T ∗ is the unique operator such that

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H. (2.3)

Using the properties of the inner product it is not difficult to verify that B(H) is

a C∗-algebra. In fact, later we will see that every non-commutative C∗-algebra

can be identified with a subalgebra of an algebra of this class.

The following consequence of the C∗-condition is already included in the

argument of the proof of Lemma 2.4.

Theorem 2.9 In a C∗-algebra the involution is isometric.

Proof. Let A be a C∗-algebra and let a ∈ A, then by the C∗-condition:

‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖, which implies ‖a‖ ≤ ‖a∗‖.

Similarly,

‖a∗‖2 = ‖aa∗‖ ≤ ‖a‖‖a∗‖, thus ‖a∗‖ ≤ ‖a‖.

Hence, ‖a‖ = ‖a∗‖ holds. �

Definition 2.10 Let A be a C∗-algebra and let a ∈ A. We say that a is

normal if aa∗ = a∗a; we say that a is self-adjoint if a∗ = a. The set of

self-adjoint elements of A will be denoted by Asa.

Normal and self-adjoint elements are very important in the theory of

C∗-algebras; for now let us point out the following:

Remark 2.11 In a C∗-algebra any element can be written as a linear
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combination of two self-adjoint elements. Indeed, let A be a C∗-algebra and

let a ∈ A, then x :=
1

2
(a+ a∗) and y :=

1

2
i(a− a∗) are self-adjoint elements of

A and a =
1

2
x− 1

2
iy.

It is also a very useful fact that self-adjoint elements in a C∗-algebra have real

spectrum [Mur90, Theorem 2.1.8].

Theorem 2.12 Let A be a C∗-algebra and let a ∈ A be normal.

Then ‖a‖ = ρ(a) (the spectral radius of a).

Proof. Let a ∈ A be normal. We have:

‖a2‖2 = ‖(a2)∗(a2)‖ = ‖a∗a∗aa‖ = ‖(a∗a)(a∗a)‖ = ‖a∗a‖2 = ‖a‖4

and by induction

‖a2n‖ = ‖a‖2n .

Thus ‖a‖ = ‖a2n‖ 1
2n for all n ∈ N, whence

ρ(a) = lim
n→∞

‖an‖
1
n = lim

n→∞
‖a2n‖

1
2n = ‖a‖. �

Definition 2.13 Let A and B be C∗-algebras. An algebra homomorphism

ϕ : A → B is a ∗-homomorphism if it preserves the involution, i.e.,

ϕ(a∗) = ϕ(a)∗.

Theorem 2.14 Any ∗-homomorphism from a C∗-algebra A to a C∗-algebra B

is contractive.

Proof. Let A and B be C∗-algebras and let ϕ : A→ B be a ∗-homomorphism.

If A is not unital, we can extend ϕ to a homomorphism from A# to B# by

letting ϕ̂(0 ⊕ 1) = 0 ⊕ 1. Since ϕ̂(0 ⊕ 1) is a unit for ϕ̂(A#), we can assume

without loss of generality that A and B are unital and that ϕ is a unital

∗-homomorphism.
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In this setting, we have that σB(ϕ(a)) ⊆ σA(a) and

‖ϕ(a)‖2 = ‖ϕ(a)∗ϕ(a)‖ = ‖ϕ(a∗a)‖ = ρ(ϕ(a∗a)) ≤ ρ(a∗a) = ‖a∗a‖ = ‖a‖2

so that ‖ϕ(a)‖ ≤ ‖a‖. Thus any ∗−homomorphism is contractive. �

Definition 2.15 Let A be a Banach ∗-algebra. A representation π of A on a

Hilbert space E is called a ∗-representation if π(a∗) = π(a)∗, where π(a)∗

denotes the adjoint of the operator π(a).

As a straightforward consequence of the previous theorem, every

∗-representation of a C∗-algebra on a Hilbert space is automatically continuous

(and contractive).

Another immediate consequence is the following:

Corollary 2.16 Let A,B be C∗-algebras. If ϕ : A → B is a

∗-isomorphism, then ϕ is also an isometry.

Proof. Since ϕ−1 is also a ∗-isomorphism, we have:

‖ϕ(a)‖ ≤ ‖a‖ = ‖ϕ−1(ϕ(a))‖ ≤ ‖ϕ(a)‖. �

From the previous corollary, a C∗-algebra has a unique norm that satisfies the

C∗-condition.

Now recall that for an arbitrary Banach algebra A, the unitization A# is also

a Banach algebra. It turns out that this unitization can be endowed with a

(necessarily unique) norm that makes it a C∗-algebra:

Theorem 2.17 Let A be a non-unital C∗-algebra and let A# be the unitization

of A. Endow A# with the following norm:

‖a⊕ λ‖ := sup{‖ab+ λb‖ : ‖b‖ ≤ 1, b ∈ A} (2.4)

for all a ∈ A, λ ∈ C. Then A# with this norm is a C∗-algebra.
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The proof of the previous theorem can be found in [DF88, Proposition VI.3.10].

In the setting of C∗-algebras we can say a lot more about the Gelfand transform:

Theorem 2.18 Let A be a commutative C∗-algebra. The Gelfand

homomorphism is an isometric ∗-isomorphism from A onto C0(Φ(A)).

Proof. First observe that the Gelfand homomorphism preserves the involution.

Indeed, let a ∈ A, ϕ ∈ Φ(A) and write a = x+ iy, with x, y self-adjoint. Then

a∗ = x− iy so that

â∗(ϕ) = ϕ(a∗) = ϕ(x)− iϕ(y) = ϕ(a) = â(ϕ).

To verify that the homomorphism is isometric, note that sinceA is commutative,

every element is normal, hence

‖a‖ = ρ(a) = sup
ϕ∈Φ(A)

= ϕ(a) = ‖â‖.

Finally, recall that τ(A) is a subalgebra of C0(Φ(A)) that does not vanish at

any point and is closed under complex conjugation. Moreover, if A is unital,

τ(A) is a unital subalgebra of C(Φ(A)) that is closed under conjugation. In

either case, we have by the Stone-Weierstrass theorem that τ(A) is dense in

C0(Φ(A)) (or C(Φ(A)) if A is unital). But since τ is isometric, its image is

closed, therefore the map is onto. �

2.1 Positive Elements and Positive

Linear Functionals

Positive elements and positive linear functionals play an important part in the

representation theory of C∗-algebras. Next, we review some definitions and

basic facts on this topic that will be of use later.
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Definition 2.19 Let A be a C∗-algebra. An element a ∈ A is positive if it

is self-adjoint and has non-negative spectrum. We will denote by A+ the set

of positive elements of A.

Remark 2.20 In a C∗-algebra every self-adjoint element can be written as a

linear combination of two positive elements; therefore, every element can be

written as a linear combination of four positive elements

[Bla06, Proposition II.3.1.2].

Definition 2.21 A bounded approximate identity for a Banach algebra

A is a net of elements (eα)α of A such that, for some M > 0,

1. sup
α
‖eα‖ ≤M and

2. lim
α
eαa = lim

α
aeα = a,

for all a ∈ A.

Lemma 2.22 Let A be a non-unital C∗-algebra, let a ∈ A be normal, and let

f ∈ C(σ(a)) be such that f(0) = 0. Then f(a) ∈ A# lies in A.

Proof. Let f ∈ C(σ(a)), by the Stone-Weierstrass theorem there exists a

sequence (pn) of polynomials in (λ, λ) such that f = lim
n→∞

pn, and by taking

pn − pn(0) if necessary, we can assume that pn(0) = 0, for all n ∈ N. Each

pn(a) is in the non-unital commutative algebra generated by a, a∗ and so is

f(a) = lim
n→∞

pn(a). �

Lemma 2.23 Let A be a unital C∗-algebra and let a ∈ A be self-adjoint. Given

any constant m ≥ ‖a‖, a is positive if and only if ‖a−mI‖ ≤ m.

Proof. Since a is self-adjoint, consider C∗(a), the commutative C∗-algebra

generated by a and the identity of A. Since this algebra is isometrically

isomorphic to C(σ(a)) and the statement is clearly true in the latter algebra,

then it is true in general. �
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Theorem 2.24 Let A be a C∗-algebra and let A+ be the set of positive elements

in A:

(a) If a,−a ∈ A+ then a = 0.

(b) If a, b ∈ A+ commute, then ab ∈ A+.

Proof. Since positivity is not affected by passing to the unitization, assume

that A is unital. For the first claim observe that σ(a) = −σ(−a) and that

σ(a), σ(−a) ⊂ R+, hence σ(a) = 0 = ‖0‖.

Now assume that a, b commute, so that (ab)∗ = b∗a∗ = ba = ab and ab

is self-adjoint. Also, since σ(ab) ⊆ {αβ : α ∈ σ(a), β ∈ σ(b)}, ab has a

non-negative spectrum. �

We can endow the set of self-adjoint elements of a C∗-algebra with the following

order relation: a ≥ b ⇔ a − b ∈ A+. It is not difficult to show that Asa thus

becomes a partially ordered set and A+ becomes a closed cone. Furthermore

we have the following [Mur90, Theorem 2.2.5]:

Theorem 2.25 Let A be a C∗-algebra and let a, b ∈ A be self-adjoint. Then:

(a) If −b ≤ a ≤ b, then ‖a‖ ≤ ‖b‖.

(b) Let c ∈ A. If a ≤ b then c∗ac ≤ c∗bc.

(c) If 0 ≤ a ≤ b and a is invertible, then so is b with 0 ≤ b−1 ≤ a−1.

(d) An element a ∈ A is positive if and only if a = x∗x for some x ∈ A.

Now let A be a C∗-algebra, we will denote by ∆A the intersection of A+ and

the open unit ball of A. We will show that every C∗-algebra has a bounded

approximate identity, but first we need the following lemma [Mur90]:

Lemma 2.26 Let A be a C∗-algebra and let a, b ∈ A be positive such that
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a ≤ b, then a(I + a)−1, b(I + b)−1 ∈ ∆A with a(I + a)−1 ≤ b(I + b)−1.

Theorem 2.27 Let A be a C∗-algebra, then ∆A with the order induced by Asa

is a bounded approximate identity for A.

Proof. First we show that ∆A is upward directed. For that, let a, b ∈ ∆A, and

set set a′ = a(I − a)−1, b′ = b(I − b)−1, c = (a′ + b′)(I + a′ + b′)−1. From the

previous lemma we have a = a′(I + a′)−1, b = b′(I + b′)−1, and c ∈ ∆A. Also

a, b ≤ c, showing that ∆A is upward directed.

With the foregoing, we have that (eα)α∈∆A
is an increasing net. Now let a ∈ ∆A

and let τ : C∗(a)→ C0(Φ(C∗(a))) be the Gelfand transform, and set f := τ(a).

Fix ε > 0 and set K := {x ∈ Φ(C∗(a)) : |f(x)| ≥ ε}. By Uryshon’s lemma,

there exists a continuous g ∈ C(Φ(C∗(a))) with support on some compact set

that contains K such that g |K = 1 = ‖g‖ . Now choose δ > 0 such that δ < 1

and 1− δ < ε.

Since ‖f‖ = 1, we have ‖f − δgf‖ ≤ ε. Next, let eα0 = τ−1(δg), so that

eα0 ∈ ∆A and ‖a − eα0a‖ ≤ ε. Now for any eα ∈ ∆A such that eα0 ≤ eα, we

have I − eα ≤ I − eα0, consequently a(I − eα)a ≤ a(I − eα0)a and

‖a− eαa‖2 = ‖(I − eα)
1
2 (I − eα)

1
2a‖2 ≤ ‖(I − eα)

1
2a‖2

= ‖a(I − eα)a‖ ≤ ‖a(I − eα0)‖ ≤ ε.

Therefore, lim
α
a− aeα = 0. Similarly, we can show that

lim
α
a− eαa = 0. Since this is true for any a ∈ ∆A and ∆A spans A, (eα)

is a bounded approximate identity for A. �

Theorem 2.28 Let A be a C∗-algebra and let L ⊆ A be a closed left ideal.

Then L has a right bounded approximate identity (eα). Moreover (eα) can be

chosen to be increasing with all the the elements positive and with norm less

than or equal to one.

Proof. Let B := L ∩ L∗, so that B is self-adjoint, hence a C∗-algebra. Let
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(eα) be a bounded approximate identity for B. For any a ∈ L we have

lim
α

(a∗a− a∗aeα) = 0. By taking the unitization of B, we get:

‖a− aeα‖2 = ‖a(I − eα)‖2 = ‖(I − eα)a∗a(I − eα)‖ ≤ ‖a∗a(I − eα)‖ → 0.

This completes the proof. �

The existence of bounded approximate identities for any C∗-algebra has the

following important consequence:

Corollary 2.29 Let A be a C∗-algebra and let J ⊆ A be a closed ideal. Then

J is self-adjoint.

Proof. Let (eα)α be a right bounded approximate identity for J ; then

a = lim
α
aeα, where a ∈ J . Thus a∗ = lim

α
eαa

∗ ∈ J and hence J is closed

under the involution. �

Theorem 2.30 Let A be a C∗-algebra and let J ⊆ A be a closed ideal. Then

A/J is a C∗-algebra.

Proof. We already know that A/J is a Banach algebra. It is in fact a Banach

∗-algebra, just let (a+ J)∗ := a∗ + J , for all a ∈ A. Now let us show that the

quotient norm is, in fact, a C∗-norm. For that, let a ∈ A and let (eα)α be a

bounded approximate identity for J . Clearly ‖a− aeα‖ ≥ ‖a+ J‖. Moreover,

since for any ε > 0 there exists an element b ∈ J such that ‖a+b‖ ≤ ‖a+J‖+ε,

we have (again making the calculations in A#):

‖a− aeα‖ = ‖(a− b)(I − eα) + (b− beα)‖ ≤ ‖a− b‖‖I − eα‖+ ‖b− beα‖.

Since ‖b − beα‖ → 0, we conclude that lim sup
α
‖a− aeα‖ ≤ ‖a + J‖.

Thus lim
α
‖a− aeα‖ = ‖a+ J‖. Now

‖a+ J‖2 = lim
α
‖a− aeα‖2 = lim

α
‖(I − eα)a∗a(I − eα)‖

≤ lim
α
‖a∗a(I − eα)‖ = ‖a∗a+ J‖
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and so ‖a+ J‖2 = ‖a∗a+ J‖ holds. �

As we mentioned before, C∗-algebras have a very nice representation theory

and positive linear functionals are of central importance in the development

of that theory.

Definition 2.31 Let A be a C∗-algebra and let ϕ be a linear functional on A.

We say that ϕ is positive if ϕ(a) ≥ 0, for all a ∈ A+. A state is a positive

linear functional of norm 1. We denote by S(A) the set of states of A.

We begin by stating a very basic fact that has strong consequences. First, recall

that a semi-inner product on a linear space is a positive-

semidefinite sesquilinear functional.

Proposition 2.32 Let A be a C∗-algebra, let ϕ be a positive linear functional

on A and let a, b ∈ A. Then |ϕ(b∗a)|2 ≤ ϕ(a∗a)ϕ(b∗b).

Proof. Observe that the map (a, b) 7→ ϕ(b∗a) is a semi-inner product, hence

the statement follows from the Cauchy-Schwarz inequality. �

Positive linear functionals are automatically continuous:

Theorem 2.33 Let A be a C∗-algebra. If ϕ is a positive linear functional on

A, then ϕ is bounded.

Proof. Let M := sup{ϕ(a) : a ∈ A+ and ‖a‖ ≤ 1}. We claim that M is finite.

Otherwise we can find a sequence (an) of positive elements in the unit ball of

A such that ϕ(an) ≥ 2n, n ∈ N; implying that the element a :=
∑∞

n=0
1

2n
an is

well-defined and positive with norm at most 1. Now, for any fixed N ∈ N we

have that ϕ(a) ≥
∑N

n=0
1

2n
ϕ(an) ≥ N , which is not possible.

Since any element in a C∗-algebra can be written as a linear combination of 4

positive elements, it follows that ϕ is bounded. �



2. C∗-Algebras 29

Remark 2.34 One can say even more. If (eα)α is a bounded approximate

identity for A and ϕ is a positive linear functional on A, then ‖ϕ‖ = lim
α
ϕ(eα).

In particular, if A is unital, a bounded linear functional ϕ on A is positive if

and only if ‖ϕ‖ = ϕ(I) [Mur90, Theorem 3.3.3].

A very useful consequence of the previous fact is the following:

Corollary 2.35 Let A be a C∗-algebra, let B be a C∗-subalgebra of A, and let

ϕ be a positive linear functional on B. Then ϕ can be extended to a positive

linear functional ϕ̃ on A that preserves the norm.

Proof. If B is not unital, extend ϕ to a linear functional ϕ̃ on B# by letting

ϕ̃(a⊕ λ) = ϕ(a) + λ‖ϕ‖, for a ∈ B, λ ∈ C. Note that ϕ̃ preserves the norm of

ϕ. To see this, let (eα)α be a bounded approximate identity for B, then

|ϕ̃(a⊕ λ)| = |ϕ(a) + λ‖ϕ‖| = |ϕ(a) + λ lim
α
ϕ(eα)|

= lim
α
|ϕ(aeα) + λϕ(eα)| = lim

α
|ϕ((a+ λ)eα)| ≤ ‖ϕ‖‖a⊕ λ‖

Therefore the norm of ϕ̃ is just ϕ̃(0⊕1) = ‖ϕ‖ = 1 and by the previous remark

ϕ̃ is a state of B#. Now by the Hahn-Banach theorem we can extend ϕ̃ to a

linear functional on A# preserving its norm, and applying again the remark

this extension is a state on A# and its restriction to A is a state too. �

Of course, the aforementioned extension does not have to be unique. As we

shall see later, the existence of unique extensions for positive linear functionals

is very significant in the context of this work. There exists a particular kind

of C∗-subalgebra for which we can guarantee that this extension is unique.

Definition 2.36 Let A be a C∗-algebra, let B be a C∗-subalgebra of A. We

say that B is a hereditary subalgebra if for any a ∈ A+ and b ∈ B+ we have

that a ≤ b implies a ∈ B.
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For hereditary C∗-subalgebras every positive linear functional has a unique

norm-preserving extension [Mur90, Section 3.3]:

Theorem 2.37 Let A be a C∗-algebra, let B be a hereditary C∗-subalgebra of

A, and let ϕ be a positive linear functional on B. Then there exists a unique

norm-preserving positive linear functional ϕ̃ on A that extends ϕ.

We finish this section by noting that there exists a large quantity of positive

linear functionals. As we will see, this makes it possible to faithfully represent

any C∗-algebra on a subalgebra of B(H), for some Hilbert space H.

Theorem 2.38 Let A be a C∗-algebra and let a ∈ A be normal. Then there

exists a state ϕ̃ on A such that |ϕ̃(a)| = ‖a‖.

Proof. First, assume that A is unital and that a 6= 0. Let C∗(a) be the

C∗-algebra generated by a and the identity. Note that this is a commutative

C∗-algebra; so there exists a character ϕ on it such that |ϕ(a)| = ‖a‖.

By Corollary 2.35, characters from this commutative subalgebra can be

extended to states, so if we let ϕ̃ be such an extension, the claim follows in

the case A is unital. If A is not unital, take its unitization A# and apply the

same reasoning to get the desired character and its corresponding extension ϕ̃.

Of course, the restriction of ϕ̃ to A will be a state, too. Since the statement

holds trivially if a = 0, this finishes the proof. �

2.2 The GNS Construction

As we saw before, every positive linear functional on a C∗-algebra defines a

semi-inner product. The Gelfand-Naimark-Segal (GNS) construction shows

how to get a ∗-representation of the given C∗-algebra on the completion of the

pre-Hilbert space obtained from the semi-inner product induced by a positive
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linear functional.

Specifically, let ϕ be a positive linear functional on a C∗-algebra A. Let

Lϕ := {a ∈ A : ϕ(a∗a) = 0}. It is not difficult to see that Lϕ is a left

ideal of A, and that it is closed. Indeed, for any a ∈ A the left multiplication

map La, b 7→ ab is continuous in the semi-norm defined by ϕ:

ϕ((ab)∗(ab)) = ϕ(b∗a∗ab) ≤ ‖a∗a‖ϕ(b∗b).

Now we can define a representation πϕ on A/Lϕ by letting a ∈ A act on

A/Lϕ via left multiplication, i.e., πϕ(a)(b + Lϕ) = ab + Lϕ, a, b ∈ A. By

the previous argument, this map is well-defined. Moreover, ‖πϕ‖ ≤ ‖a‖. From

Theorem 2.38, for any a ∈ A there exists a state τ such that

‖πτ (a)‖ = ‖a‖. Let Hϕ denote the completion of A/Lϕ. Then we can extend

πϕ to a representation on Hϕ. Putting all this together we get:

Theorem 2.39 Every C∗-algebra has a faithful ∗-representation on some

Hilbert space. If A is unital, this representation can be chosen to be unital,

too.

Proof. For any given state ϕ of A, let πϕ be the GNS representation of A

on Hϕ. Now set H :=
⊕

ϕ∈S(A)

Hϕ (the Hilbert space direct sum). By the

previous argument π := `∞-
⊕

ϕ∈S(A)

πϕ is a faithful representation. Indeed, for

any non-zero a ∈ A, there exists a state ϕ of A such that ϕ(a∗a) = ‖a‖2, so

πϕ(a) 6= 0. Thus π is faithful (and even isometric). �

Thus every C∗-algebra has a faithful representation on some Hilbert space;

but from the way in which this space was constructed we can see it is very

large. Therefore a natural question that arises is if given a C∗-algebra A there

exists a smaller Hilbert space such that we can still faithfully represent A on

it.

The answer to the previous question is positive and is related to set of pure
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states of the given C∗-algebra. Indeed, the GNS construction uses more states

than is strictly needed to obtain a faithful representation.

As we know, S(A) is a closed subset of the closed unit ball of A∗; from Remark

2.34 this set is also convex. The extreme points of S(A) are called pure states

and we will denote this set by PS(A). By the Krein-Milman theorem S(A)

has extreme points, but we can say even more:

Theorem 2.40 Let A be a C∗-algebra and let a ∈ A be self-adjoint. Then

there is a pure state ϕ of A such that |ϕ(a)| = ‖a‖.

The detailed proof of this theorem can be found in many textbooks, such as

[Bla06], but the basic idea is that C∗(a) is a commutative C∗-algebra and so by

its Gelfand representation there is a character φ such that ‖a‖ = ρ(a) = |φ(a)|.

Observe that characters are pure states of C∗(a) and thus can be extended to

states of A; since the set of all such extensions is closed (in the weak-∗ topology)

and convex, by the Krein-Milman theorem it has extreme points and any of

them will be a pure state of A.

We saw in Theorem 2.37 that states of a C∗-subalgebra B of a given C∗-algebra

A can be extended to elements of S(A). The same is true for pure states:

Theorem 2.41 Let A be a C∗-algebra, let B be a C∗-subalgebra of A, and let

ϕ be a pure state of B. Then there exists a pure state ϕ̃ of A that extends ϕ.

Again, the idea of the proof is to note that the set of all the extensions of ϕ

from B to A as states, is weak-∗ closed and convex, so has extreme points,

which are pure states of A.

Just as we mentioned before when we talked about the extension of states, the

extension of a pure state does not have to be unique. Again, when the given

subalgebra is hereditary, we can guarantee uniqueness of extensions:
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Theorem 2.42 Let A be a C∗-algebra, let B be a hereditary C∗-subalgebra of

A, and let ϕ be a pure state of B, then there exists a unique a pure state ϕ̃ of

A that extends ϕ.

Proof. Just note that the set of extensions of ϕ to A is weak-∗ closed and

convex, so it has extreme points. Since B is hereditary, by Theorem 2.37

the set of all such extensions only has one element, say ϕ̃, which of course

is an extreme point of S(A), whence has to be the unique pure state that

extends ϕ. �

Remark 2.43 For a C∗-algebra A with a hereditary C∗-subalgebra B, there

is also a relation between the restriction to B of pure states of A, and pure

states of B. Specifically, given a pure state φ of A, there exists a t ∈ [0, 1]

and a pure state ϕ′ of B such that the restriction of ϕ to B is just tϕ′ [Mur90,

Corollary 5.5.3].

One of the main reasons for the importance of pure states is the following

[Mur90, Theorem 5.1.6]:

Theorem 2.44 Let A be a C∗-algebra and let ϕ be a state of A. Then the

representation πϕ of A on A/Lϕ is irreducible if and only if ϕ is a pure state.

As a corollary, we have that for a given state ϕ of a C∗-algebra A, Lϕ is a

maximal modular left ideal if and only if ϕ is pure. Furthermore, there exists

a one-to-one correspondence between pure states of a C∗-algebra and the set

of all its maximal modular left ideals, given by ϕ 7→ Lϕ, for ϕ ∈ PS(A) [DF88,

Theorem VI.25.12].

Moreover, if ϕ is a pure state, then A/Lϕ is complete in the norm induced by

ϕ, therefore is a Hilbert space [DF88, Proposition VI.25.9].

Another corollary is that we can obtain a faithful representation of A if, in the
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proof of Theorem 2.39, we only take the `∞-direct sum over all the irreducible

representations of A, i.e., over all the pure states of A.

2.3 Liminal and Postliminal C∗-Algebras

We finish this chapter by introducing two classes of C∗-algebras that will be

very significant in the sequel, because their properties are very well-known and

there are very strong results about their representation theory.

Recall that if we have two normed spaces E,F and we let B1(E) denote the

closed unit ball of E, then a linear operator T : E → F is called compact

if the closure of T (B1(E)) is compact. We will denote by K(E) the set of

compact operators on E.

Definition 2.45 A C∗-algebra A is called liminal if π(A) = K(H) for each

irreducible ∗-representation π of A on a Hilbert space H.

Remark 2.46 The previous condition is equivalent to saying that for each

irreducible ∗-representation π of A on a Hilbert space H, π(A) ⊆ K(H). This

formulation is sometimes more useful [Mur90, Theorem 2.4.9].

In the literature, liminal C∗-algebras are sometimes referred to as CCR

C∗-algebras, where CCR stands for Completely Continuous Representation. A

standard reference for liminal C∗-algebras is [Dix77, Chapter 4].

Example 2.47 Any finite dimensional C∗-algebra is liminal. To see this, recall

that given a C∗-algebra A with an irreducible representation π on a Hilbert

space H, any non-zero vector x ∈ H is cyclic for π. Thus H = π(A)x and H

is finite dimensional. Since in finite dimensional normed spaces every linear

operator is compact, π(A) ⊆ K(H).

Example 2.48 Every commutative C∗-algebra is liminal. In fact, let A be a
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C∗-algebra and let π be an irreducible ∗-representation of A on a Hilbert space

H. Then the commutant of π(A)—denoted by π(A)′—is just CI, [Mur90,

Theorem 4.1.12]; and since A is commutative, π(A) ∈ π(A)′. From the

irreducibility of π, there is a vector x ∈ H such that H = π(A)x = Cx

and H has dimension one. Thus π(A) = K(H).

Definition 2.49 A C∗-algebra A is called postliminal if π(A) ⊇ K(H), for

each irreducible ∗-representation π of A on a Hilbert space H.

Of course, every liminal C∗-algebra is postliminal.

Postliminal C∗-algebras are also called GCR C∗-algebras, which stands for

Generalized Continuous Representation. Again, for the main results and

examples about postliminal C∗-algebras we refer the reader to [Dix77].

As we will see in Chapter 4, for postliminal C∗-algebras there is a version of

the Stone-Weierstrass theorem, which will be very useful in the context of this

thesis.
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Chapter 3

Gelfand Theory for

Non-Commutative Banach

Algebras

If we try to generalize the notion of Gelfand transform to the setting of

non-commutative Banach algebras we find several inconveniences. For example,

it is not difficult to find a Banach algebra such that its character space is empty.

For instance, let A := M2×2(C), the algebra of 2 × 2 matrices with entries

from C. Assume that there exists a character ϕ of A, then ker(ϕ) is an

ideal of A. Let eij ∈ A be the matrix with 1 in the ij − th entry and 0

everywhere else. Observe that e1,2 ∈ ker(ϕ), because e1,2e1,2 = 0 implies that

ϕ(e1,2e1,2) = ϕ(e1,2)2 = 0. The same is true for e2,1, but since e11 = e1,2e2,1

and e22 = e2,1e1,2, it follows that eij ∈ ker(ϕ), i, j ∈ (1, 2). As the set

{eij, i, j ∈ (1, 2)} spans A, it follows that ker(ϕ) = A. Hence the character

space of A has to be empty.

Another problem in extending the classical approach to the non-commutative

setting is that, even if the character space is not empty, the kernel of the

Gelfand transform could be very large. In particular, for any element in the

commutant of A, that is, any element of the form ab− ba, a, b ∈ A, if τ is the

classical Gelfand transform, then τ(ab−ba) = 0, thus there is a significant loss
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of information and the usefulness of the construction could be very limited.

In order to overcome these shortcomings, [CIR02] makes a generalization of

the Gelfand theory to non-commutative Banach algebras. To do that, the

authors define a non-commutative Gelfand theory that captures some of the

most important properties of the classical Gelfand transform; for example, the

Gelfand transform provides an algebra homomorphism between a commutative

Banach algebra A and the C∗-algebra C0(ΦA) that induces a bijection between

the sets of maximal modular ideals of A and C0(ΦA).

Thus, the following definition is introduced by the authors in [CIR02]:

Definition 3.1 For a given Banach algebra A, let ΛA be the set of maximal

modular left ideals. A Gelfand theory for A is any pair (G,A) that satisfies

the following conditions:

(G1) G : A → A is an algebra homomorphism from A into the C∗-algebra A.

We refer to G as the Gelfand transform of A corresponding to (G,A).

(G2) The map L 7→ G−1(L) is a bijection between ΛA and ΛA.

(G3) For each L ∈ ΛA, the map GL : A/G−1(L) → A/L induced by G has

dense range.

From the previous remarks, we can see that if A is commutative, then

(τ, C0(ΦA)) satisfies the aforementioned conditions. But these properties also

characterize, up to isomorphism, the Gelfand transform for commutative

Banach algebras1.

First, recall that a Banach algebra is semisimple if the intersection of the

kernels of all its irreducible representations is zero. C∗-algebras are semisimple;

which implies that the intersection of all the maximal modular left ideals of a

1Unless otherwise explicitly stated, all the results regarding the Gelfand theory in this

chapter and the next one are taken from [CIR02].
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C∗-algebra is 0 [Bla06, Corollary II.1.6.4].

Proposition 3.2 Let A be a commutative Banach algebra and let (G,A) be a

pair satisfying (G1),(G2), and (G3). Then there is an isomorphism

θ : A→ C0(ΦA) such that τ = θ ◦ G.

Proof. First note that from (G2) and (G3) A has to be commutative: for a

given L ∈ ΛA, and some x, y ∈ A such that xy − yx 6= 0, consider

(xy − yx + L). Then for simplicity we can assume that there are a, b ∈ A

such that

GL(a+ G−1(L)) = (x+ L), GL(b+ G−1(L)) = (y + L),

and hence (xy − yx) + L = G(a)G(b)− G(b)G(a) + L = L.

Thus xy − yx ∈ L for every L ∈ ΛA, and since A is semisimple, it follows

that xy − yx = 0. Also, since G is a homomorphism from a Banach algebra

to a commutative C∗-algebra, it is continuous: any homomorphism from a

Banach algebra to a commutative semisimple Banach algebra is automatically

continuous [Pal94, Theorem 3.1.11].

Thus, we have that G∗ induces a homeomorphism between ΦA and ΦA: just

observe that if A is unital, ΦA is compact and G∗ establishes a continuous

bijection from a compact Hausdorff space onto a locally compact Hausdorff

space, therefore a homeomorphism, and if A is not unital, just take the

one-point compactification of ΦA, i.e., ΦA ∪ {0}, on which G∗ induces a

continuous bijection onto ΦA ∪ {0}, with the restriction to ΦA establishing

a homeomorphism between ΦA and ΦA.

Since A is isometrically isomorphic to C0(ΦA), we can define

θ : A→ C0(ΦA), f → f ◦ (G∗)−1 .

It is not difficult to check that τ = θ ◦ G: note that

θ ◦ G : A→ C0(ΦA), a 7→ G(a) ◦ G∗−1
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so for any ϕ ∈ ΦA we have

(θ ◦ G ◦ a)(ϕ) = G(a) ◦ G∗−1 ◦ ϕ = (G∗−1 ◦ ϕ) ◦ (G(a))

= G∗ ◦ (G∗−1 ◦ ϕ)(a) = ϕ(a).

Therefore τ = θ ◦ G holds. �

Thus, we adopt the following:

Definition 3.3 Let A be a Banach algebra, we say that two Gelfand theories

(G1,A1) and (G2,A2) for A are equivalent if there exists an isomorphism

θ : A1 → A2 such that G2 = θ ◦ G1.

3.1 Basic Properties of Gelfand Theories

The notion of Gelfand theory adopted in [CIR02] shares many of the properties

of the classical Gelfand transform. For example, we know that the Gelfand

transform of a commutative Banach algebra is a continuous algebra

homomorphism. This is also true for the generalized Gelfand transform just

defined.

Lemma 3.4 Let A be a Banach algebra, let (G,A) be a Gelfand theory for

A, let L ∈ ΛA, and let π : A→B(A/L) be the corresponding irreducible

representation of A. Then πL ◦ G is continuous.

Proof. Denote by EL the image of GL in A/L, then it is a pre-Hilbert space

(recall that GL has dense range and A/L is a Hilbert space). By (G2), G−1(L)

is a maximal modular ideal of A, thus A → B(EL), a 7→ (πL ◦ G)(a)|EL
is an

irreducible representation of A.

Since irreducible normed representations of a Banach algebra on a normed

space are continuous [Pal94, Theorem 4.2.15], there is a C ≥ 0 such that
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‖(πL ◦ G)(a)‖B(EL) ≤ C ‖a‖, for a ∈ A. But EL is dense in A/L, so this is just

the operator norm of (πL ◦ G)(a) on A/L. �

Theorem 3.5 Let A be a Banach algebra and let (G,A) be a Gelfand theory

for A. Then G is continuous.

Proof. Let (an)∞n=1 be a sequence in A such that an → 0 and G(an) → b, for

some b ∈ A. By the closed graph theorem, if b = 0 then G is continuous.

By the previous lemma we know that for L ∈ ΛA we have that πL ◦ G is

continuous, thus lim
n→∞

(πL ◦ G)(an) = 0. That is, b ∈ ker(πL) for every L ∈ ΛA.

By semisimplicity of A, b = 0 and G is continuous. �

We saw that for a commutative Banach algebra the Gelfand transform τ

preserves the spectra, specifically

σA(a) ∪ {0} = σC0(ΦA)(τ(a)) ∪ {0} .

The generalized Gelfand theory preserves this relation. First, we need a couple

of lemmas:

Lemma 3.6 Let A be a unital Banach algebra, and let (G,A) be a Gelfand

theory for A. Then A is unital and G is a unital homomorphism.

Proof. Let L ∈ ΛA, let πL : A→B(A/L) be the corresponding irreducible

representation of A on A/L, and let EL be the image of GL in A/L. Denote by

IA the unit of A. Then (πL ◦ G)(IA) is an identity for EL and by the density

of EL we have that (πL ◦ G)(IA) = IA/L.

Therefore, for any L ∈ ΛA and a ∈ A we have G(IA)a−a ∈ L. By semisimplicity

of A, G(IA)a − a = 0, which implies that A is unital and that G is a unital

homomorphism. �

Lemma 3.7 Let A be a Banach algebra and let (G,A) be a Gelfand theory for

A. Then for a ∈ A the element Ga is quasi-invertible in GA if and only if it
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is quasi-invertible in A.

Proof. Assume Ga is quasi-invertible in A but not in GA, then a is not quasi-

invertible in A, therefore it is not left quasi-invertible in A (otherwise Ga would

have a left quasi-inverse in GA which of course would be a quasi-inverse, given

that Ga is quasi-invertible). Since an element of A is a right modular identity

for some maximal modular left ideal if and only if it is not left quasi-invertible

[Pal94, Theorem 2.4.6], we can find L̃ ∈ ΛA such that a is a modular right

identity for L̃. Let L̃ = G−1(L), for L ∈ ΛA. If we again let πL : A→B(A/L)

be the corresponding irreducible representation of A in B(A/L) and EL be the

image of GL in A/L, and denote

x := GL(a+ L̃) ∈ EL \ {0},

then

πL(Ga)GL(a+ L̃) = GL(a2 + L̃) = GL(a+ L̃) = x.

Thus, if we let b ∈ A be the quasi-inverse of Ga in A, then

x = πL(Ga)x = πL(bGa−b)x = πL(b)πL(Ga)x−πL(b)x = πL(b)x−πL(b)x = 0,

a contradiction. �

Theorem 3.8 Let A be a Banach algebra and let (G,A) be a Gelfand theory

for A. If A is unital,

σA(a) = σA(Ga), a ∈ A, (3.1)

and if A is non-unital

σA(a) = σA(Ga) ∪ {0} , a ∈ A. (3.2)

Proof. From the previous lemma, we have that

σA(a) ∪ {0} = σA(Ga) ∪ {0} , a ∈ A,

whether A has an identity or not. If A is non-unital then 0 is in the spectrum
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of a and so

σA(a) = σA(Ga) ∪ {0} , a ∈ A

holds. In the case when A is unital, assume first that a is invertible, so that

0 /∈ σ(a). Since A is also unital and G is a unital homomorphism, Ga is

invertible in A, hence 0 /∈ σ(Ga).

Now assume that 0 /∈ σ(Ga) but 0 ∈ σ(a), that is, a is not invertible in A.

Suppose first that a does not have a left inverse. Then there exists a maximal

modular left ideal L̃ ∈ ΛA such that a ∈ L̃ and we can find a unique L ∈ ΛA

such that L̃ = G−(L), a contradiction because Ga ∈ L is invertible.

Suppose now that a has a left inverse b. Then (Ga)−1 = Gb, hence 0 /∈ σ(Gb).

Also note that, since a is a right inverse of b, it cannot have a left inverse in

A (otherwise b would be invertible, with inverse a). Since we just showed this

leads to a contradiction, the theorem is proven. �

3.2 Existence of Gelfand Theories

The first result that we establish is about non-existence, which uses the following

fact that can be found in [BP69, Corollary 6.15]:

Lemma 3.9 Let X and Y be chosen among the spaces `p, 1 < p < ∞, and

c0. If X 6= Y , the only Banach algebra homomorphism of B(X) into B(Y ) is

the zero homomorphism.

Proposition 3.10 Let E be the Banach space c0 or `p, 1 < p < ∞. Then

there is no Gelfand theory for B(E).

Proof. Let A := B(E) and assume that there exists a C∗-algebra A and a

homomorphism G : A → A such that (G,A) is a Gelfand theory for A. Take

x ∈ A \ {0} and let L̃ := {T ∈ B(E) : Tx = 0}, so that L̃ is maximal modular
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left ideal of A. We have that A/L̃ ∼= E and we know that there exists a

maximal modular left ideal, say L, in A such that L̃ = G−1(L). Since G is

continuous, so is GL : A/L̃→ A/L. We have that

GL : E ∼= A/L̃→ A/L.

But since E is separable, so is A/L̃, and since GL has dense range, A/L is

separable too. Thus the Hilbert space A/L is isomorphic to `2 and GL induces

a non-zero homomorphism from B(E) into B(`2). This contradicts the previous

lemma.

(The isomorphism above is given by T 7→ T̃ , where T̃ (GLa) := GL(Ta) is

defined on a dense subset of A/L and extended by continuity). �

Now let us see what we can say about the Gelfand theory of a Banach ∗-algebra.

For that, first we need to review a couple of facts:

Definition 3.11 Given a Banach ∗-algebra A, there exists a largest

C∗-semi-norm γA. The completion of A/ker(γA) in this semi-norm is a

C∗-algebra, which is called the enveloping C∗-algebra of A and is denoted

C∗(A) [Pal01, Chapter 11]. Let us denote by ιA the ∗-homomorphism from A

into C∗(A) given by a 7→ a+ ker(γA).

A ∗-algebra is called hermitian is every self-adjoint element has real spectrum.

Note that C∗-algebras are always hermitian [Mur90, Theorem 2.1.8].

Remark 3.12 We showed that Gelfand theories preserves spectrum, implying

that (ιA, C
∗(A)) is a Gelfand theory for A only if A is hermitian.

Remark 3.13 Every irreducible ∗-representation of a hermitian Banach

∗-algebra A has a unique extension to an irreducible

∗-representation on C∗(A) [Pal72].

Proposition 3.14 Let A be a Banach ∗-algebra. Then (ιA, C
∗(A)) is a Gelfand
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theory for A if and only if A is hermitian.

Proof. Assume that A is hermitian. Let L ∈ ΛC∗(A), so that there exists a

pure state φ on C∗(A) such that

L = {a ∈ C∗(A) : φ(a∗a) = 0}. (3.3)

By the previous remark, L is the unique extension of a maximal modular left

ideal L̃ ∈ ΛA, i.e., L̃ = ι−1
A (L). Moreover, since A is dense in C∗(A), any

pure state of C∗(A) is determined by its restriction to A, so for each maximal

modular left ideal in C∗(A) there exists a corresponding one in A. Thus there is

a bijection between ΛC∗(A) and ΛA. From the density of A in C∗(A), it follows

that GL : A/ι−1
A (L)→ C∗(A)/L has a dense range, for every L ∈ ΛC∗(A). �

3.3 Hereditary Properties

Lemma 3.15 Let A be an algebra, let J be an ideal of A, and let π be an

irreducible representation of J on a linear space E. Then π extends uniquely

to an irreducible representation of A on E. Moreover, if π is an irreducible

representation of A on a linear space E such that π|J 6= {0}, then π|J is an

irreducible representation of J on E.

Proof. Let a ∈ A and let x ∈ E. Since π is irreducible, there exists y ∈ J ,

b ∈ E, such that π(y)b = x. Now define π(a)x := π(ay)b. Note that this

does not depend on the selection of y and b, because, if π(y)b = π(z)c with

z ∈ J, c ∈ E, then π(y)b − π(z)c = 0. Since b is cyclic vector, we can find

k ∈ J such that π(k)b = c, hence

π(y)b− π(z)c = 0 and so π(y)b− π(z)π(k)b = 0.

Therefore, for any d ∈ J,

π(y)b− π(zk)b = 0, hence π(d)π(ay)b− π(d)π(azk)b = 0, and
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π(day)b− π(dazk)b = π(da)π(y)b− π(da)π(zk)b = 0,

so for any d ∈ J we have

π(d)π(ay − azk)b = 0.

Thus π(ay − azk)b = 0 for every a ∈ A and the operator π(a) is well-defined.

Moreover, this extension is unique because if we assume that there are two

such extensions, say π1, π2, then

π1(a)x = π1(a)π(b)y = π(ab)y = π2(ab)y = π2(a)π(b)y = π2(a)x,

hence π1 = π2.

Conversely, if π is an irreducible representation of A on some linear space E,

set Z := {x ∈ E : π(J)x = 0}, then Z is an invariant subspace for π(A), and

Z is either E or {0}. In the first case, the restriction is trivial. In the second

case, we have that π(J)x 6= 0 for any x ∈ E \ {0}, and since this will be also

an invariant subspace for π(A), it will be all of E. As every non-zero vector is

cyclic for π(J), the representation is irreducible. �

Since there exists a correspondence between maximal modular left ideals of

an algebra and equivalence classes of irreducible representations, from the

previous lemma we have the following:

Corollary 3.16 Let A be a Banach algebra and let J be a closed ideal of A.

Then

{L ∈ ΛA : J * L} → ΛJ , L 7→ L ∩ J (3.4)

is a bijection.

Proposition 3.17 Let (G,A) be a Gelfand theory for A. Then A# has a

Gelfand theory too.

Proof. Let A# denote the unconditional unitization of A, that is, if A has an
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identity, we adjoin another one. Define a homomorphism

G# : A# → A#, a+ λIA# 7→ Ga+ λIA#. (3.5)

By the previous corollary, (G#,A#) satisfies (G2). If A is non-unital, one

can define a C∗-norm on A# (Theorem 2.17). If A is unital, we have a

∗-isomorphism

A# → A⊕ C, a+ λIA# 7→ a+ λIA ⊕ λ. (3.6)

In this case we also get a C∗-norm on A#.

Clearly (G3) also holds, i.e., the map GL has dense range, so (G#,A#) is a

Gelfand theory for A#. �

Proposition 3.18 Let A be a Banach algebra with a Gelfand theory (G,A)

and let J be a closed ideal of A. Then J has a Gelfand theory.

Proof. Let

J :=
⋂
{L ∈ ΛA : GJ ⊆ L} (3.7)

It is clear that J is a left ideal, being the intersection of maximal modular left

ideals. We claim it is in fact an ideal. Let L ∈ ΛA be such that GJ ⊆ L and

let

P := {a ∈ A : aA ⊆ L} (3.8)

(i.e., P is the primitive ideal of A associated to L.)

Of course,

G−1(P ) ⊆ {a ∈ A : aA ∈ G−1(L)} =: Q. (3.9)

Now let a ∈ Q and let πL be the irreducible representation of A on A/L. As

usual, denote by EL the image of GL in A/L. Observe that πL(Ga)EL = 0 and,

since EL is dense in A/L, we have that πL(Ga) = 0. Thus Ga ∈ P , whence

a ∈ G−1(P ) and the previous inclusion is actually an equality. Furthermore,

from J ⊆ G−1(L) we have that J ⊆ G−1(P ) (note that G−1(P ) is the primitive
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ideal of A associated with G−1(L), hence the largest ideal contained in the

latter) and GJ ⊆ P . Consequently

J :=
⋂
{P ∈ ΠA : GJ ⊆ P} (3.10)

is a two-sided ideal.

Now, by the previous corollary we can see that (G|J , J) verifies condition

(G2). In addition, for each L ∈ ΛA such that GJ * L we have the following

isomorphisms

J/J ∩ L ∼= A/L and J/J ∩ G−1(L) ∼= A/G−1(L), (3.11)

implying that (G|J , J) also satisfies condition (G3) and so is a Gelfand theory

for J . �

Corollary 3.19 Let A be a Banach algebra. Then A# has a Gelfand theory

if and only if A has one.

Proof. One direction was already established. For the other, just note that

A is an ideal of A#, thus if the latter has a Gelfand theory, by the previous

proposition the former has one too. �

Proposition 3.20 Let A be a Banach algebra with a Gelfand theory and let

J be a closed ideal of A. Then A/J has a Gelfand theory.

Proof. Let (G,A) be a Gelfand theory for A. Just as in Proposition 3.17, let

J :=
⋂
{L ∈ ΛA : GJ ⊆ L}.

Then A/J is a C∗-algebra. Let π : A 7→ A/J be the quotient map. From the

way in which J was defined, it is clear that G̃ := π ◦ G vanishes on J , thus is

a well-defined algebra homomorphism from A/J to A/J.

Observe that there is a bijection between maximal modular left ideals of A

that contain J and maximal modular left ideals of A/J . Also, by definition

there is a bijection between maximal modular left ideals of A that contain J
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and maximal modular left ideals of A that contain J . Thus (G̃,A/J) satisfies

condition (G2). It is straightforward to check that it also satisfies condition

(G3). Thus A/J has a Gelfand theory. �

In the study of Banach algebras (or Banach spaces, making the obvious

substitutions), a property that is satisfied by an algebra if and only if it is

satisfied by a closed ideal and the quotient algebra induced by it is called a

three-space property.

So far we have seen that given a Banach algebra A with a Gelfand theory

(G,A), if J is an ideal of A, then A/J and J have Gelfand theories. Thus, a

natural question was raised at the end of [CIR02]: if the opposite implication

holds, specifically, we would like to know if, given a Banach algebra A with an

ideal J (closed, of course) such that both J and A/J have Gelfand theories,

can we conclude that A has a Gelfand theory too?

This is one of the problems we focused on in this thesis. As we will see, we

obtained a positive answer if we impose some rather strong restrictions on J

and its Gelfand theory.

As a remark, let us note that if we have a Banach algebra A with an ideal J

that possesses a unit IJ and a Gelfand theory (G2,A2), then we can extend G2

from J to A by setting

G̃2 : A→ A2, a 7→ G2(aIJ). (3.12)

In this situation, if A/J has a Gelfand theory (G1,A1), define

ι : A→ A/J a 7→ a+ J, (3.13)

then we have the homomorphism

Γ : A→ A1 ⊕ A2, a 7→ G1 ◦ ι(a)⊕ G̃2(a). (3.14)

Since there is a bijection between maximal modular left ideals of A and
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maximal modular left ideals of J⊕A/J , (Γ,A1⊕A2) satisfies (G2) for A. It is

also not too difficult to see that for each L ∈ ΛA1⊕A2 the map

ΓL : A/Γ−1(L)→ (A1⊕A2)/L has dense range, therefore (G3) is also satisfied.

In conclusion, if J and A/J have Gelfand theories and J has a unit, A has a

Gelfand theory.

Now we show that if instead of letting J have a unit, we just assume it has a

bounded approximate identity, we still obtain a Gelfand theory for A, but we

have to impose further restrictions on the Gelfand theory of J .

As preparation, we need the following lemma. But first recall that given two

normed spaces E and F , the strong operator topology on B(E,F )—the

set of bounded operators from E to F—is just the topology of pointwise

convergence, i.e., (Tα)α ∈ B(E,F ) → T if and only if ‖(Tα − T )x‖ → 0

for all x ∈ E.

Lemma 3.21 Let A be a Banach algebra and let J be a closed ideal of A

with a bounded approximate identity (eα)α∈∆. Then any continuous normed

irreducible representation of J on a normed space E can be extended to A, and

moreover this extension is also normed.

Proof. Denote by ρ : J → B(E) the irreducible representation of J in E. By

[Pal94, Theorem 4.1.3], we know that ρ(J)E = E. Also, for any ξ 6= 0 in E,

every η ∈ E can be represented as η = ρ(x)ξ, for some x in J . Hence, for any

a in A, just as in [DF88, V.2.2], we can define ρ̃(a) (an extension of ρ to A)

by:

ρ̃(a)η : = ρ(ax)ξ = lim
α∈∆

ρ(aeαx)ξ = lim
α∈∆

ρ(aeα)ρ(x)ξ (3.15)

= lim
α∈∆

ρ(aeα)η, for all η ∈ E. (3.16)

Note that ρ̃(a) is in the strong operator closure of ρ(J). We will show that

this is a well-defined extension of ρ from J to A and that it gives a normed



3. Gelfand Theory for Non-Commutative Banach Algebras 50

representation. Indeed, given a, b ∈ A, η ∈ E, we have:

ρ̃(ab)η = ρ(abx)ξ = lim
α∈∆

ρ(aeαbx)ξ = lim
α∈∆

ρ(aeα)ρ(bx)ξ

= lim
α∈∆

ρ(aeα) lim
α∈∆

ρ(beα)ρ(x)ξ = ρ̃(a)ρ̃(b)η.

Also, if we let K := sup{‖eα‖, α ∈ ∆}, then for any a ∈ A, η ∈ E:

‖ρ̃(a)η‖ = ‖ lim
α∈∆

ρ(aeα)ρ(x)ξ‖ ≤ lim sup
α∈∆

‖ρ‖‖aeα‖‖η‖ ≤ K‖ρ‖‖a‖‖η‖

and ρ̃ is a normed representation of A in E. �

Now assume again that we have a C∗-algebra A with an ideal J that has a

bounded approximate identity and such that A/J and J have Gelfand theories

(G1,A1) and (G2,A2), respectively. If we identify the C∗-algebra A2 with a

subalgebra of B(H), for some Hilbert space H, using the GNS construction,

then G2J will be a subalgebra of B(H), too. Therefore, G2 induces a normed

representation of J on H. The construction of Lemma 3.21 allows us to extend

that representation from J to A. Consequently, we can define a homomorphism

from A to the C∗-algebra A1 ⊕B(H). The problem in this case is that we are

representing A on a subalgebra of B(H) that may be larger than A2, hence we

cannot guarantee that condition (G2) is satisfied.

We could say more if, for example, A2 is a unital hereditary subalgebra of

B(H). In that case, from Theorem 2.42 and the subsequent remark, there

would be a bijection between pure states of A2 and pure states of B(H). By

the correspondence between pure states and maximal modular left ideals, there

would be a one-to-one assignment between ΛJ and ΛB(H). In this setting there

would be a bijection between ΛA and ΛA1⊕B(H). But we still would not be able

to say much about the fulfilment of condition (G3).

Nevertheless, we can use the construction of Lemma 3.21 to get a Gelfand

theory for A if we impose another condition on the Gelfand theory of J , as we

show in the next theorem.
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Theorem 3.22 Let A be a Banach algebra and let J be an ideal of A with a

bounded approximate identity. If A/J and J have Gelfand theories (G1,A1),

(G2,A2), respectively, such that A2 is closed in the strong operator topology

(given by the faithful representation of A2 on the Hilbert space `∞-
⊕

L∈ΛA2

A2/L

obtained via the GNS construction), then A has a Gelfand theory too.

Proof. Let L ∈ ΛA2 , let HL denote the Hilbert space A2/L, and let

πL : A2 → B(HL) be the corresponding irreducible representation. Let

EL ∼= J/G−1
2 (L) be the image of G2L in HL, so that EL becomes a pre-Hilbert

space. Let ρL : J → B(J/G−1
2 (L)) be the irreducible representation of J given

by

ρL(a)(x+ G−1
2 (L)) := ax+ G−1

2 (L) (a, x ∈ J). (3.17)

Of course, as EL ∼= J/G−1
2 (L) holds algebraically, we can also view ρL as an

irreducible representation of J on EL. Since

ρL(a) = (πL ◦ G2)(a) |EL
(a ∈ J) (3.18)

it follows that ρL(J) ⊂ B (EL), i.e., ρL is a normed representation of J on

EL. Since J has a bounded approximate identity, by the previous lemma we

can extend ρL to a representation ρ̃L of A on EL such that the image of this

extension lies in the strong operator closure of the image of ρ.

Furthermore, by (G3), ρL(J) ⊆ B(A2/L). Thus ρ̃L goes from A into B(A2/L).

We can identify A2 with a subalgebra of `∞-
⊕

L∈ΛA2

B(A2/L); and by assumption

this subalgebra is closed in the strong operator topology. Thus the map

Γ2 := A→ `∞-
⊕
L∈ΛA2

B(A2/L) a 7→ ρ̃L(a), L ∈ ΛA2 (3.19)

is a homomorphism from A into A2.

If we denote by ι the canonical map from A onto A/J and define

Γ : A→ A1 ⊕ A2, a 7→ G1 ◦ ι(a)⊕ Γ2(a) (3.20)
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then by the argument following Proposition 3.20 we have that (Γ,A1 ⊕A2) is

a Gelfand theory for A. �
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Chapter 4

Gelfand Theory for C∗-Algebras

As we show in Chapter 2, for commutative C∗-algebras the classical Gelfand

transform provides far more information than in the case of Banach algebras.

We would expect something similar to happen with the generalized Gelfand

theory. In this chapter we see that this is in fact the case and we can obtain

stronger results in this setting.

It is obvious that if A is a C∗-algebra, then (Id, A) is a Gelfand theory for

A. Now some questions arise, for example, when does a C∗-algebra A have a

unique Gelfand theory, that is, when is any Gelfand theory of A equivalent to

(Id, A).

In this chapter we will explore these issues. In particular, we will see that

the Gelfand theory behaves very nicely in the case of liminal and postliminal

C∗-algebras.

Let A be a C∗-algebra, and let (G,A) be a Gelfand theory for A. We know

that for L ∈ ΛA, A/L and A/G−1(L) are Hilbert spaces. For any Hilbert space

H and ξ, η in H define the rank-one operator ξ � η by:

x 7→ ξ � η(x) = 〈x, η〉ξ for all x ∈ H. (4.1)

By the Riesz Representation theorem, we have that, since GL is a linear map

from the Hilbert space A/G−1(L) to the Hilbert space A/L, the adjoint map G∗L
induces a map from A/L to A/G−1(L). With this preparation we are ready for
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the following lemma, which will be used frequently in the rest of this chapter.

Lemma 4.1 Let A be a C∗-algebra, let (G,A) be a Gelfand theory for A, and

let a ∈ A be such that πG−1(L)(a) = ξ�G∗Lη, with ξ ∈ A/G−1(L) and η ∈ A/L.

Then πL(Ga) = GLξ � η holds.

Proof. First note that

GL ◦ πG−1(L)(a) = πL(Ga) ◦ GL (4.2)

as operators from A/G−1(L) to A/L. Thus by (G3), πL(Ga) is a rank-one

operator such that its image is spanned by GLξ. So there is a unique vector

η̃ ∈ A such that πL(Ga) = GLξ � η̃. By 4.2 we have

〈x,G∗Lη〉 = 〈GLx, η̃〉 (x ∈ A/G−1(L)) (4.3)

therefore η = η̃ and πL(Ga) = GLξ � η. �

For the next result, we need the following theorem, whose proof can be found

in [Dix77, Corollary 4.1.10].

Theorem 4.2 Let A be a C∗-algebra and let π be an irreducible representation

of A on a Hilbert space H, then if π(A)∩K(H) 6= Ø we have that π(A) ⊇ K(H).

Corollary 4.3 Let A be a C∗-algebra and let (G,A) be a Gelfand theory for

A. If A is liminal, so is A and if A is postliminal, so is A.

Proof. First, let us assume that A is postliminal. Let L ∈ ΛA. From Lemma

4.1 we know that πL(A) ∩ K(A/L) 6= Ø. Since πL is irreducible for every

L ∈ ΛA, A is postliminal, by Theorem 4.2.

Now assume that A is liminal. By the previous sentence A is postliminal.

Let J be the largest closed liminal ideal of A. Assume that J ( A, so there

exists L ∈ ΛA such that J ⊆ L. Since GL is injective, so is G∗L. Thus all the

rank-one operators on A/G−1(L) can be written as ξ � G∗Lη, ξ ∈ A, η ∈ A/L,

so the closed linear span of vectors of this form is K(A/G−1(L)). Then, using
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Lemma 4.1 one more time, we have that G(A) ⊆ J and thus G−1(L) = A /∈ ΛA,

a contradiction. �

Recall that given two unital C∗-algebras A and B and a unital, contractive

algebra homomorphism G : A→ B, then G is a ∗-homomorphism and GA is a

closed C∗-subalgebra of B [Pau02, Proposition 2.11].

In the following theorems we rely heavily on the next Stone-Weierstrass type

theorem for postliminal C∗-algebras, whose proof can be found in [Dix77,

Theorem 11.1.8].

Theorem 4.4 Let A be a postliminal C∗-algebra and B a C∗-subalgebra of A.

If B separates 0 and the set of pure states of A, then B = A.

Proposition 4.5 Let A be a unital, postliminal C∗-algebra, and let (G,A)

be a Gelfand theory for A such that ‖G‖ ≤ 1. Then (G,A) and (Id, A) are

equivalent.

Proof. Since A is unital, we already know that A is also unital and that G

is a unital homomorphism. Thus GA is a C∗-subalgebra of A. Note that,

by Corollary 4.3, we have that A is also postliminal. Since (G,GA) is also a

Gelfand theory for A, by the correspondence between pure states and maximal

modular left ideals, we have that GA separates 0 and the pure states of A, and

so A = GA, by Theorem 4.4. �

For the next result we need a very strong theorem, whose proof is beyond the

scope of this work and can be found in [Pis01, Theorem 7.5]. Observe that the

notion of cyclic vector used in the next theorem is less strong than the one we

defined in Chapter 1.

Theorem 4.6 Let A be a unital C∗-algebra, let H be a Hilbert space, and let

π : A → B(H) be a bounded unital homomorphism. Assume that π has a
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cyclic vector ξ, i.e. ξ is such that

π(A)ξ = H.

Then there is an isomorphism

S : H → H with ‖S‖‖S−1‖ ≤ ‖π‖4, (4.4)

such that

a 7→ S−1π(a)S (4.5)

is a ∗−representation.

Lemma 4.7 Let A be a C∗-algebra and let π be a bounded representation of A

on a Hilbert space H such that there is a cyclic vector ξ ∈ H for π. Then there

is an invertible operator S ∈ B(H) with ‖S‖‖S−1‖ ≤ (1 + 2‖π‖)4 such that

A→ B(H), a 7→ Sπ(a)S−1 (4.6)

is a ∗ − representation.

Proof. Since there is a cyclic vector for π, if A is unital, π is a unital

representation (observe that π(IA) will be the identity operator on a dense

subset of H). In this case the claim is a consequence of Theorem 4.6, including

the norm estimate.

In the case when A is not unital, let A# be the unitization of A, and let

π# : A# → B(H), a⊕ λ 7→ π(a) + λI, a ∈ A, λ ∈ C. (4.7)

Since A is a maximal ideal of A# such that A#/A ∼= C, it has a corresponding

character (with norm less than 1, of course). Let us denote this character by φ,

so then

‖π#(a)‖ = ‖〈a, φ〉I + π(a− 〈a, φ〉)‖ ≤ (1 + 2‖π‖)‖a‖ a ∈ A#. (4.8)

In this situation we can again apply Theorem 4.6. �

Lemma 4.8 Let A be a liminal C∗-algebra with Gelfand theory (G,A). Then
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for each L ∈ ΛA, the Gelfand transform induces an isomorphism between

K(A/G−1(L)) and K(A/L). The inverse of this isomorphism has norm at

most (1 + 2‖G‖)4.

Proof. We saw earlier that the linear span of the set

{ξ � G∗Lη, ξ ∈ A, η ∈ A/L} is dense in K(A/G−1(L)). Thus G induces a

homomorphism G̃ : K(A/G−1(L))→ K(A/L) that has dense range (recall that

the map GL : A/G−1(L)→ A/L induced by G has dense range and that finite

rank operators are dense in the set of compact operators).

Also, since the representation of A in A/G−1(L) is irreducible, every non-zero

vector is cyclic and so any non-zero vector in the image of GL is cyclic for the

representation of A in A/L. Since A and A are liminal, the representation of

A on A/G−1(L) is K(A/G−1(L)). Thus, by the foregoing, any vector in the

image of GL is cyclic for the representation G̃.

By the previous lemma, there is an invertible operator S ∈ B(A/L) such that

‖S‖‖S−1‖ ≤ (1 + 2‖G̃‖)4 ≤ (1 + 2‖G‖)4 and

K(A/G−1(L))→ K(A/L), a 7→ S(G̃a)S−1 (4.9)

is a ∗-homomorphism, hence it has closed dense range [Bla06, Corollary II.5.1.2].

Therefore, G̃ is an isomorphism. Since (4.9) is a ∗-isomorphism, it has norm 1,

which combined with the estimate for ‖S‖‖S−1‖ gives the desired bound for

the norm of G̃−1. �

Theorem 4.9 Let A be a C∗-algebra and let (G,A) be a Gelfand theory for A.

Then G has closed range in A.

Proof. Again, for each L ∈ ΛA, denote by πL the irreducible representation of

A on A/L and by EL the image of GL in A/L. Set ρL := πL ◦ G. Note that ρL

is a bounded representation with ‖ρL‖ ≤ ‖G‖ and moreover, by (G3), every

non-zero vector in EL is cyclic for ρL. Applying the same argument used in
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the proof of Lemma 4.8, we can find a invertible operator S ∈ B(A/L) with

‖S‖‖S−1‖ ≤ (1 + 2‖G‖)4 and such that

A→ B(A/L), a 7→ SLρL(a)S−1
L (4.10)

is a ∗-homomorphism. Next, define

θ : A→ `∞-
⊕
L∈ΛA

B(A/L), a 7→ (SLπL(a)S−1
L )L∈ΛA

. (4.11)

The image of θ ◦ G is a C∗-subalgebra of `∞-
⊕
L∈ΛA

B(A/L) (note that the

image of θ is not necessarily self-adjoint). Therefore, A is ∗-isomorphic to

the image of θ ◦ G and we can identify A with the aforementioned subalgebra

of `∞-
⊕
L∈ΛA

B(A/L).

Now, let (an)∞n=1 be a sequence in A such that G(an) → b ∈ A. Since

an = θ ◦ G(an) for n ∈ N, (an) is a Cauchy sequence. Denote by a the

limit of (an) in A. It is straightforward to verify that b = Ga. �

From the previous result we have that, given a C∗-algebra A with a Gelfand

theory (G,A), GA is a closed subalgebra of A.

Next, we will investigate under what conditions this subalgebra generates A as

C∗-algebra, that is, when is A the smallest C∗-subalgebra of A that contains

GA. This is one of the open problems stated on [CIR02]. We are able to

answer this question when A is postliminal. As we will see, the result is a

consequence of Theorem 4.4.

In the following arguments we will denote by C∗(GA) the smallest

C∗-subalgebra of A that contains GA.

Theorem 4.10 Let A be a postliminal C∗-algebra and let (G,A) be a Gelfand

theory for A. Then A is the smallest C∗-subalgebra of A that contains GA.

Proof. By Corollary 4.3, we already know that A is postliminal. Let φ1 and φ2

be pure states of A and denote by Lφ1 and Lφ2 the corresponding maximal
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modular left ideals of A. Assume that

φ1|C∗(GA) = φ2|C∗(GA), (4.12)

so that Lφ1 ∩ GA = Lφ2 ∩ GA. Otherwise, assume there exists a ∈ Lφ1 ∩ GA

such that a /∈ Lφ2 ∩ GA, so φ2(a∗a) 6= 0, while φ1(a∗a) = 0, a contradiction,

since a∗a ∈ C∗(GA).

By the properties of the Gelfand theory we know that there exists two unique

maximal modular left ideals L̃1, L̃2 of A such that

L̃1 = G−1(Lφ1), L̃2 = G−1(Lφ2). (4.13)

But we also have

L̃1 = G−1(Lφ1 ∩ GA) = G−1(Lφ2 ∩ GA) = L̃2, (4.14)

a contradiction. Hence C∗(GA) separates the pure states of A.

Now assume that there exists a pure state ψ on A such that ψ|
C∗(GA)

= 0. Let

Lψ be the corresponding maximal modular left ideal of A.

Observe that (G|C∗(GA), C
∗(GA)) is also a Gelfand theory for A. Thus there

exists a maximal modular left ideal in C∗(GA) corresponding to G−1(Lψ), and

of course there is a pure state of C∗(GA) associated with this maximal modular

ideal. This pure state can be extended to a pure state of A. The restriction to

C∗(GA) of this extension is not zero, a contradiction. Thus C∗(GA) separates

the pure states of A and 0, and, since A is postliminal, A = C∗(GA) holds, by

Theorem 4.4. �

Closely related to the previous result is the following:

Corollary 4.11 Let A be a Banach algebra and let (G,A) be a Gelfand theory

for A. If A is postliminal, then C∗(GA) = A.

Proof. Note that in the proof of the previous theorem we only used the
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assumption that A is a C∗-algebra (and postliminal) to establish that A was

postliminal. Hence the previous result clearly holds in the case when A is any

Banach algebra, as long as A is postliminal. �

The foregoing suggests that when A is a postliminal C∗-algebra the range of

a Gelfand theory is very large. This raises the question of the existence of a

minimal Gelfand theory or if any two Gelfand theories for A are equivalent. We

already saw that in case A is a unital postliminal C∗-algebra with a Gelfand

theory (G,A) such that ‖G‖ ≤ 1, (G,A) is equivalent to (IdA, A). Next, we

will examine what we can say in a more general case.

Let A be a postliminal C∗-algebra and let (G1,A1) and (G2,A2) be two Gelfand

theories for A. Define

B := C∗({(G1(a),G2(a)) : a ∈ A}), (4.15)

let

π1 : B→ A1, (x1, x2) 7→ x1, (4.16)

and define π2 similarly.

Since A is postliminal, we know that C∗(GiA) = Ai for i = 1, 2, so each of the

maps πi has dense range, and being ∗-homomorphisms also have closed range

and thus are onto.

Set Γ : A → B, a 7→ (G1a,G2a). We want to investigate when (Γ,B) is a

Gelfand theory for A.

Let I1, I2 be the kernels of π1, π2, respectively. Then B/I1 is ∗-isomorphic to

A1 and B/I2 is ∗-isomorphic to A2, so we have that the following diagrams

commute:
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B A1

B/ker(π1)

π1

ι1 ∼
π̂1

B A2

B/ker(π2)

π2

ι2 ∼
π̂2

Observe that for every L ∈ ΛB we have either π1(L) ∈ ΛA1 or π2(L) ∈ ΛA2 ,

otherwise πi(L) = Ai, i = 1, 2. If either I1 ∈ L or I2 ∈ L, then by the

previous diagrams one of the projections of L would be a maximal modular

ideal. On the other hand, if there exists (x, 0) /∈ L, then if we let φ be the pure

state of B that corresponds to L, since π1(L) = A1, there exists an element

(x, y) ∈ L, and so (x∗, 0)(x, y) = (x∗x, 0), hence φ(x∗x, 0) = 0 and (x, 0) ∈ L,

a contradiction. Thus if both maps are onto, then L contains the kernel of

each of them, therefore L/Ii ' Ai, i = 1, 2, which is not possible.

So assume that π1(L) ∈ ΛA1 , then since π̂1
−1 ◦ π1(L) ∈ ΛB/I1 , we have I1 ∈ L.

Now consider π2(L). If I2 /∈ L, then π2(L) = A2. On the other hand,

G−1
1 (π1(L)) = G−1

2 (M), M ∈ ΛA2 , (4.17)

where M denotes the unique maximal modular left ideal of A2 that contains

G2 ◦ G−1
1 ◦ π1(L).

If we denote by M the lifting of M to B via B/I2, then I2 ∈M and

Γ−1(L) = Γ−1(M) ∈ ΛA, (4.18)

so in this case we have that the assignment L 7→ Γ−1(L) is not bijective.

Thus, as long as we have an L ∈ ΛB such that either I1 * L or I2 * L, then

the assignment L 7→ Γ−1(L) will not be bijective. And of course, if for each

L ∈ ΛB we have that I1, I2 ∈ L, then the correspondence between ΛB and ΛA

will be bijective.

Hence, the bijection will exist if and only if each L ∈ ΛB contains both I1

and I2, but that would imply that I1 = I2 = 0, hence (Γ,B) will be a Gelfand
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theory for A if and only if B is isomorphic to both A1 and A2.

Conversely, if we have that (G1,A1) and (G2,A2) are equivalent Gelfand theories,

then A1 and A2 will be isomorphic and we will have the situation described in

the following diagram:

B B/I1

B/I2 A2

ι1

ι2

∼
π̂2

∼

∼

Then, by the previous reasoning, we have that for any L ∈ ΛB either I1 ⊆ L

or I2 ⊆ L, but since B/I1 is isomorphic to B/I2, if I1 ⊆ L then I2 ⊆ L. Of

course, if Ii ⊆ L, i = 1, 2, then we can assign L to a unique maximal modular

left ideal of A. This will be true for every maximal modular left ideal of B,

thus (Γ,B) satisfies (G2). It is straightforward to check that (G3) is also

verified, so (Γ,B) is a Gelfand theory for A too.

Thus, in this case we will again have that I1 = I2 = 0 and that (Γ,B) will be

a Gelfand theory equivalent to (G1,A1) and to (G2,A2).

In conclusion, (G1,A1) and (G2,A2) will be equivalent Gelfand theories for A

if and only if they are equivalent to (Γ,B).
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