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Abstract 

The increasing adoption of light detection and ranging (LiDAR) technology offers a promising 

avenue for automating the identification of road features. However, due to the complexity and 

density of the point cloud, most research focuses on extracting single or binary road elements from 

the LiDAR data. Previous work that attempts to classify more than two categories often suffers 

from poor accuracy, whether using public datasets like SemanticKITTI and nuScenes or private 

datasets.  

Concurrently, artificial intelligence and natural language processing have emerged as 

prominent research areas. This thesis demonstrates the effectiveness of leveraging machine 

learning and large language models to address challenges in the transportation field and propose 

novel frameworks for asset management, scene understanding, maintenance planning, traffic 

safety analysis, and intelligent transportation systems. 

Recent advancements in Transformer architectures, known for their success in natural 

language processing, have shown impressive results in handling point cloud data. This thesis aims 

to identify and enhance the best Transformer-based model capable of simultaneously extracting 

multiple highway infrastructure elements, thus addressing the current gap in multi-object 

segmentation. The proposed methods would replace tedious and time-consuming manual 

processes with advanced deep-learning models that extract valuable features from high-density 

LiDAR point clouds. 

The thesis presents two advanced semantic segmentation approaches that leverage transformer 

architectures and state-of-the-art natural language models for automating the extraction of rural 

multilane highway infrastructure elements and generating scene descriptions from LiDAR data. 

The first approach employs the Point Transformer v2 model, a Transformer-based architecture 
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tailored for 3D point cloud processing, to process 50-meter highway segments as input along with 

four additional attributes. This approach leverages the self-attention mechanisms of the 

Transformer architecture to capture long-range dependencies and contextual information within 

the point cloud data. The second approach utilizes adaptations of self-attention and cross-attention 

mechanisms from the Transformer architecture, specifically designed for point cloud data, 

operating on individual LiDAR points for point-wise classification. This approach leverages the 

natural language models' ability to process sequential data and applies it to the spatial domain of 

point clouds, enabling efficient feature extraction and classification. 

Experimental results conducted on 2.5 kilometres of highway segments in Alberta, Canada, 

demonstrate the effectiveness of the proposed approaches. The first approach achieved an overall 

Mean Intersection over Union (IoU) score of 78.29% and a Mean F1 score of 86.48%, with most 

individual class accuracies exceeding 95%. The second method achieved an overall Mean IoU 

score of 86.03% and a Mean F1 score of 92.21%. 

This thesis addresses the critical gap between interpreting 3D point cloud data and generating 

natural language descriptions. The thesis proposes a novel approach that converts semantic 

segmentation output into multi-view images and integrates the advanced GPT-4o model under 

specific restrictive conditions. This integration aims to generate accurate and contextually rich 

textual representations of 3D highway scenes. 

This research significantly advances automated infrastructure extraction techniques, providing 

transportation agencies with a more efficient way to inventory rural highway infrastructure 

elements. These advancements have direct implications for future autonomous driving, crash 

environment reproduction for improved highway safety scene understanding, big data analysis, 

maintenance planning, and asset management, making this study highly relevant and vital. 
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Chapter 1. Introduction 

1.1 Background 

Transportation has experienced considerable progress over the past few decades, and society now 

approaches a new era in this domain. The future of transportation holds the promise of 

unprecedented technological advancements, greater sustainability, and improved accessibility. 

The increasing adoption of light detection and ranging (LiDAR) technology presents a promising 

avenue for automating the identification of road features. Notably, the interest in utilizing LiDAR 

technology to map transportation infrastructure has experienced notable growth as LiDAR point 

clouds deliver precise data of the mapped surroundings. 

The future of transportation hinges on automated data collection and big data analytics, with 

LiDAR technology leading the charge. LiDAR's precision in gathering 3D data of infrastructure 

data aligns perfectly with big data analytics, offering insight into road systems. Semantic 

segmentation techniques can accurately identify road features by automating data collection and 

employing advanced machine learning, such as convolutional neural networks. This synergy not 

only enhances autonomous vehicle navigation but also enables data-driven decision-making for 

asset management and maintenance. Integrating LiDAR with automated data analysis promises a 

future of smarter, sustainable, and accessible mobility solutions. 

LiDAR is a remote sensing technology that measures distances by illuminating targets with 

laser light and analyzing the reflected beam objects (Gargoum & El-Basyouny, 2017). Unlike 

traditional video or stereo cameras, which depend heavily on lighting conditions, LiDAR offers 

millimeter-level accuracy, enabling it to scan entire scenes effectively and precisely, regardless of 

lighting. Additionally, LiDAR provides detailed coordinate information, a feature that vision-

based data alone cannot offer. There are various types of LiDAR data, including airborne (gathered 

via aircraft), spaceborne (obtained via satellites), and terrestrial (sourced from ground level). 

Additionally, terrestrial LiDAR setups can be either stationary or mobile. In Mobile Laser 

Scanning (MLS), the scanning equipment is installed on vehicles that travel along specified roads, 

capturing comprehensive 360-degree images of the surroundings (Williams et al., 2013). MLS 

integrates laser scanning equipment, Global Positioning Systems (GPS), and inertial navigation 
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technologies into one system that can acquire positional data and intensity information about 

surrounding objects. 

Government agencies and transportation authorities increasingly leverage LiDAR technology 

to map and monitor transportation infrastructure. This includes roads, highways, bridges, tunnels, 

railways, and airports. Surveying and geospatial companies increasingly utilize LiDAR technology 

for its rapid and comprehensive data acquisition capabilities. Moreover, research institutions and 

academic organizations are conducting studies and experiments to enhance LiDAR technology's 

applications and effectiveness in transportation mapping. LiDAR point clouds deliver precise data 

of the mapped surroundings. Nonetheless, prior research has primarily focused on extracting 

specific road elements such as traffic signs, lane markings, or light poles, neglecting 

comprehensive examination of the composite road components. 

While semantic segmentation and object detection through image processing, typically relying 

on RGB data, have become common practices, the same cannot be said for LiDAR point clouds. 

Unlike images, which capture surface appearance, LiDAR provides precise 3D spatial information, 

enabling more accurate detection and understanding of objects in the environment. LiDAR's 

advantage lies in its ability to directly measure distances and create detailed 3D models, regardless 

of lighting conditions or surface texture. LiDAR is particularly valuable in scenarios where visual 

data alone may be insufficient, such as in low-light conditions or environments with limited texture 

variation. Additionally, LiDAR data is inherently geometrically accurate, allowing for precise 

measurements and analysis of transportation infrastructure. Thus, integrating LiDAR technology 

alongside image processing techniques can significantly enhance the capabilities of transportation 

mapping and monitoring systems. 

Semantic segmentation and object detection are two pivotal techniques in computer vision for 

analyzing lidar data, particularly point clouds, each offering unique advantages. Semantic 

segmentation provides a comprehensive understanding of a scene by classifying every pixel or 

point into predefined categories like road, lane, sign, or vegetation. This approach operates on a 

per-pixel or per-point basis, leveraging deep learning models such as convolutional neural 

networks (CNNs) to assign labels based on surrounding context accurately. Unlike object detection, 

semantic segmentation preserves spatial information, enabling precise localization and detailed 

scene layout and composition analysis. Segmenting the entire scene into semantic regions offers a 

holistic view, facilitating robust application decision-making. While object detection offers precise 
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localization of individual objects, semantic segmentation's ability to comprehend the entire scene 

layout makes it particularly valuable in scenarios where understanding spatial relationships and 

identifying broader patterns are essential.  

Furthermore, semantic segmentation is adept at handling complex scenes with overlapping 

objects or structures, making it a preferred choice for tasks requiring comprehensive extraction of 

diverse road and roadside infrastructure components from lidar data. Combining both techniques 

can enhance the accuracy and completeness of analyses, with semantic segmentation playing a 

pivotal role in providing rich contextual information for informed decision-making. In addition, 

recent studies have found that the Transformer structures with their unique self-attention 

mechanism, which is a natural fit for point clouds because point clouds are essentially sets 

embedded irregularly in a metric space (Zhao et al., 2021), can potentially offer improved 

performance for semantic segmentation of lidar data representing road scenes. 

In recent years, Natural Language Processing (NLP) and computer vision have emerged as 

transformative fields within artificial intelligence, each pushing the boundaries of machine 

understanding in their respective domains. NLP focuses on enabling computers to comprehend, 

interpret, and generate human language, bridging the gap between human communication and 

computer understanding. This capability has become increasingly crucial in our digital age, where 

vast amounts of textual data require efficient processing and analysis. Concurrently, scene 

understanding has evolved to combine computer vision, linguistics, and AI techniques, allowing 

machines to interpret and describe visual scenes using natural language. 

While significant progress has been made in both NLP and visual scene understanding, a 

critical gap remains in the realm of 3D point cloud data interpretation and textual description. Point 

clouds, data points in 3D space, are extensively used in various applications such as autonomous 

driving, robotics, and architectural modelling. However, transitioning from these complex 3D 

representations to meaningful textual descriptions poses unique challenges that current research 

has not fully addressed. 

The importance of addressing this gap cannot be overstated. As 3D sensing technologies 

become more prevalent, the ability to automatically generate human-readable descriptions from 

point cloud data will significantly enhance human-computer interaction in various fields. This 

capability could revolutionize applications in autonomous vehicles, improving their ability to 

communicate scene understanding to passengers or remote operators. In robotics, it could enable 
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more intuitive human-robot collaboration by allowing robots to verbalize their perception of the 

environment. Additionally, this technology could greatly benefit individuals with visual 

impairments by providing detailed verbal descriptions of 3D spaces. 

This thesis proposes two innovative approaches to the semantic segmentation of rural multilane 

highways utilizing LiDAR-acquired point cloud data. Furthermore, it proposes an advanced 

methodology integrating the state-of-the-art GPT-4o model with multi-view images derived from 

3D point cloud processing. This integration facilitates the generation of accurate and contextually 

rich textual representations of 3D scenes. 

The proposed method aims to precisely segment various components within rural highway 

scenes by leveraging extensive point cloud datasets and advanced machine learning models. 

Furthermore, the proposed semantic segmentation approach leveraging LiDAR data holds the 

potential to advance autonomous vehicle navigation in rural environments by providing precise 

mapping of road components. Additionally, the automated identification and segmentation of 

transportation infrastructure assets could facilitate more data-driven asset management practices, 

allowing maintenance operations to be prioritized based on empirical insights. 

However, the direct implementation of such applications extends beyond the present research 

scope, which is dedicated to developing an accurate semantic segmentation methodology for rural 

multilane highways using LiDAR point cloud data.  

1.2 Research Motivation 

The motivation for this research stems from the pressing need to address the limitations of current 

methods for managing highway infrastructure elements, which are time-consuming and labour-

intensive. As the transportation sector rapidly evolves towards greater automation and data-driven 

decision-making, there is an urgent demand for efficient and accurate methods to collect and 

analyze infrastructure data. LiDAR technology, with its ability to provide precise 3D spatial 

information, offers a valuable tool for detailed infrastructure mapping. However, existing research 

often focuses on single or binary-object segmentation, leaving a significant gap in the 

comprehensive extraction of multiple infrastructure elements. 

Moreover, there is a critical gap in converting segmented point cloud data directly into 

meaningful textual descriptions, which could substantially improve highway safety scene 
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understanding, enhance autonomous vehicle safety, streamline maintenance planning, and 

optimize other decision-making processes.  

This research aims to fill these gaps by leveraging advanced deep learning models, particularly 

Transformer-based architectures and GPT-4o, to significantly enhance the capabilities of 

automated infrastructure extraction and point cloud-to-text conversion. 

The proposed methods aim to streamline data collection processes, reduce operational costs, 

and improve the accuracy of infrastructure inventories while also providing more accessible and 

interpretable data outputs. By bridging the gap between raw sensor data and actionable insights, 

this research has the potential to revolutionize how transportation infrastructure is managed and 

monitored. Furthermore, the outcomes of this study could have far-reaching implications for the 

development of autonomous driving systems, potentially enhancing their ability to interpret and 

navigate complex highway environments. 

Ultimately, this research is motivated by the potential to make substantial contributions to the 

field of transportation engineering, supporting the development of more efficient, safe, and data-

driven transportation systems. This work aims to pave the way for smarter, more sustainable 

mobility solutions by addressing current technological limitations and anticipating future needs in 

transportation infrastructure management. 

1.3 Research Objectives 

The primary objective of this thesis is to classify the types of highway infrastructure and 

facilities located in the province of Alberta and then link the results with natural language 

processing to describe the scene in a text format. The ultimate goal of this work is to understand 

and address the challenge of classifying multiple highway infrastructure elements and using 

natural language processing to identify highway safety concerns in human-readable text, thereby 

building a framework for using this technology in the transportation field. 

In summary, the objectives of the project can be outlined as follows: 

1. Conduct a comprehensive review of existing automated extraction methods and natural 

language models applicable to highway infrastructure analysis 

2. Develop and implement automated multi-object semantic segmentation methods for 

extracting key highway infrastructure elements (e.g., traffic signs, concrete barriers, 

guardrails, markings). 
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3. Design and apply a natural language processing model to generate human-readable 

descriptions of highway environments with important facilities. 

4. Evaluate the performance of both semantic segmentation model and natural language 

processing models using suitable metrics and identify the limitations and future research 

directions. 

1.4 Thesis Structure 

The remainder of this thesis is divided into six chapters. Details of the topics covered in each 

chapter are described below: 

Chapter 1 presents an introduction to the thesis, including background information related to the 

research, the research motivation, and the research objectives. It discusses recent developments in 

the transportation sector regarding the use of LiDAR data and the difference between semantic 

segmentation and object detection techniques in the 3D environment. Additionally, based on the 

background and the research motivation, the chapter summarizes the research objective of this 

work. 

Chapter 2 provides a detailed summary of the literature related to this research project, including 

an overview of current semantic segmentation techniques, the application of LiDAR in 

transportation engineering, automated annotation and data collection tools, perviou innovative 

approaches for infrastructure extraction, advancements in LiDAR technology and data processing, 

and existing natural language processing techniques for point cloud data. 

Chapter 3 outlines the two methodologies adopted for semantic segmentation tasks in this research 

and any preliminary procedures. This chapter includes a detailed description of both methods, 

covering the model architecture, data sources, evaluation metrics, and the improvements made. 

Chapter 4 specifies the architecture of the pre-trained natural language model and explains the 

process of converting point cloud data into text descriptions. This chapter elucidates the intricate 

steps in bridging the gap between 3D spatial data and human-readable textual representations. 

Chapter 5 presents a comprehensive analysis of the research outcomes, focusing on three key areas: 

the semantic segmentation results of both proposed models, a comparative analysis of these models, 

and the results obtained from the natural language model. 
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Chapter 6 serves as a comprehensive synthesis of the research, aligning the initial objectives with 

the findings obtained throughout the study. This chapter critically examines the results and their 

implications while exploring potential real-world applications of the developed methodologies. 

Additionally, it addresses the key limitations encountered during the research process, providing a 

balanced and transparent assessment of the study's scope and constraints. 
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Chapter 2. Literature Review 

Numerous studies in the literature have focused on extracting specific classes of highway 

infrastructure from LiDAR data due to the significant volume of data points involved. These 

studies often target single or binary classes such as traffic signs, guardrails, light poles, or lane 

markings. For instance, research has been conducted on the extraction of traffic signs (S. Gargoum 

et al., 2017a; Javanmardi et al., 2019; S. Zhang et al., 2019), the detection of guardrails (Gao et al., 

2020), urban road facilities such as light poles and bus stations (Yu et al., 2015), and lane markings 

(Guan et al., 2014; Kumar et al., 2014; Rastiveis et al., 2020; B. Yang et al., 2012). However, few 

studies have attempted to address the extraction of multiple infrastructure classes simultaneously. 

This paper seeks to address this void by concentrating on the comprehensive extraction of diverse 

road and roadside infrastructure components, encompassing lanes, shoulders, markings, traffic 

signs, light poles, guardrails, concrete barriers, and vegetation. 

Computer vision and machine learning have seen significant advancements in recent years, 

leading to the development of various intelligent systems for object recognition, scene 

understanding, and semantic segmentation. However, LiDAR-based infrastructure solutions 

designed for traffic monitoring systems are currently in their early stages of development (A. Wu 

et al., 2023). LiDAR technology enables data acquisition across diverse environmental scenarios, 

encompassing low solar elevation, overcast atmospheric conditions, and even nocturnal settings. 

This leads to an augmented timeframe available for data collection (Veneziano et al., 2002). 

Electronic Distance Measurement (EDM) and Global Positioning Systems (GPS) are impractical 

for data collection in vast areas as they are time-consuming and require a lot of equipment 

movement.  

On the other hand, LiDAR demonstrates potential in expediting the acquisition of terrain 

information compared to current methodologies for data collection. LiDAR represents an 

integrated technological solution that utilizes laser scanning devices, global navigation satellite 

systems (GNSS), and inertial measurement units (IMU) within a unified scanning framework. This 

integration facilitates the acquisition of point cloud data pertaining to the surrounding roadway 

environment (Gouda et al., 2022). This literature review demonstrates the familiarity of research 

with LiDAR data processing in different engineering fields and enhancing semantic segmentation 

for road features. 



9 

 

2.1 Semantic segmentation techniques 

Approaches for segmenting 3D point clouds generally fall into two broad categories: voxel-based 

and point-based networks, each with distinct methodologies and advantages. Considerable prior 

research has focused on utilizing 3D Convolutional Neural Networks (CNN) to transform point 

clouds into 2D or 3D volumetric grids, voxels, or analogous representations (Maturana & Scherer, 

2015; C. R. Qi et al., 2016; Z. Wu et al., 2015; F. Zhang et al., 2020). Point-based networks, 

pioneered by PointNet and PointNet++, utilize shared multi-layer perceptions (MLP) to aggregate 

features from various points in the point cloud data (C. R. Qi et al., 2017). Additionally, specialized 

networks have been developed for various applications, designed to take raw points as input for 

sampling directly (J. Yang et al., 2019; Yifan et al., 2019), semantic segmentation (Jiang et al., 

2019; Rethage et al., 2018; Wang et al., 2019; Ye et al., 2018; Zhao et al., 2018, 2019), and instance 

segmentation (Wang et al., 2019; Zhao et al., 2019). 

Extracting valuable spatial information from 3D Mobile laser scanning data poses a significant 

challenge due to the diverse array of 3D objects and the vast volume of data points involved (Lari 

et al., 2012). As a result, this process is often characterized by its complexity and time-consuming 

nature. Segmentation emerges as a fundamental step in extracting information from 3D laser point 

clouds. 

In the study by Shen et al., 2020, a new interactive 3D object annotation method was introduced, 

combining point cloud data and RGB imagery. The methodology involved two stages: initial shape 

approximation using existing techniques, followed by correction through a user-friendly 2D 

interface. This interface allowed for easy rectification of 3D errors using scribbles in preferred 2D 

views, with final adjustments made directly to the object mesh vertices via drag-and-drop. 

Corrections were integrated into a 3D Graph Convolutional Network, preserving object structure 

while enhancing local geometry. This interactive ML-driven approach ensures generalizability 

across object categories and delivers high-quality geometric results. 

Wu et al. (2023) found two main hurdles in developing a cost-effective traffic monitoring 

system with LiDAR. The first was the lack of sufficient LiDAR datasets for infrastructure 

perception tasks. The second was the time and cost of creating 3D annotations for LiDAR point 

clouds. They introduced a semi-automated annotation tool to tackle these issues, which used 

tracking algorithms to annotate LiDAR sequences efficiently. This tool seamlessly integrated 

multiple-object tracking, single-object tracking, and trajectory post-processing techniques. 
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2.2 LiDAR applications in transportation engineering 

Gargoum & El-Basyouny (2017) highlighted the significant potential of using LiDAR in 

transportation engineering. However, the body of research in this area remains limited. This could 

be attributed to researchers not fully recognizing the extensive capabilities of such data or 

harbouring concerns about the feasibility of processing such voluminous datasets. Previous studies 

indicate that the utilization of LiDAR in transportation encompasses a broad spectrum of 

applications, including but not limited to on-road aspects like retrieving road surface details, lane 

markings, and road boundaries. Additionally, it extends to roadside elements such as identifying 

traffic signs, light poles, and vegetation and evaluating geometric characteristics pertaining to 

roadways. 

In transportation engineering and planning, gathering highway inventory data is widely 

acknowledged as crucial for multiple purposes. Comprehensive inventory data are essential for 

efficient resource allocation in infrastructure management. Additionally, they aid in safety 

assessment by pinpointing hazardous conditions and prioritizing safety enhancements. Moreover, 

highway inventory data plays a vital role in supporting transportation planning and design, asset 

management systems, compliance, reporting requirements, and research in the transportation 

sector. For instance, the Highway Safety Manual (HSM), published by the American Association 

of State Highway and Transportation Officials (AASHTO), is crucial for analyzing and predicting 

roadway safety. However, its accuracy depends on precise input variables, often requiring costly 

data collection (Jalayer et al., 2014). Various methods are used, but none are comprehensive. 

Therefore, developing efficient and cost-effective automated data collection methods is essential 

for enhancing HSM's predictive capabilities and improving roadway safety. 

Research shows that the application of LiDAR extends far beyond asset management. For 

instance, a report by the National Highway Cooperate Research Program (NCHRP) in the United 

States highlighted several different applications of LiDAR in Transportation (Ai & Tsai, 2016). 

Moreover, it was found that current and emerging applications for Mobile LiDAR Scanning (MLS) 

in transportation cover a wide range of topics (S. Gargoum & El-Basyouny, 2018). 

Veneziano et al. (2002) introduced a method for enhancing highway location and design 

processes by integrating of LiDAR and photogrammetric mapping. This approach aimed to 

expedite these activities while also providing insights into potential reductions in time and costs. 

The anticipated outcome was notable time efficiency, attributable to the necessity of conducting 
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photogrammetric mapping on a limited scale, as opposed to the extensive area coverage typically 

demanded during pre-final alignment selection stages. 

Gargoum et al. (2018a) proposed a new method for extracting cross-sectional features of 

roadways that were scanned using LiDAR technology. This algorithm was characterized by its 

complete automation, enabling efficient evaluation of cross slopes and side slopes across a 

highway network. Notably, unlike prior research, this algorithm demonstrated the capability to 

perform such extraction without the necessity of lane marking data, resulting in enhanced ease and 

efficiency of the extraction process. 

Gargoum et al. (2017b) proposed an algorithm that was introduced to facilitate the automated 

extraction of road signs. To evaluate its performance, the algorithm underwent testing on three 

distinct highways located within the Alberta province. These specific segments were deliberately 

selected to encompass a diverse range of geometric characteristics. The resultant algorithms yield 

a comprehensive compilation of traffic sign data along a designated road stretch. This dataset 

includes precise positioning of signs, intensity measurements, and elevation attributes for 

individual points within sign clusters. The gathered insights empower users with the capability to 

effectively map signs along a given highway, thereby serving the practical purpose of sign 

maintenance and renewal initiatives. Furthermore, these extracted insights hold considerable value 

within Intelligent Transportation Systems (ITS), as they can be seamlessly integrated into 

applications related to connected and autonomous vehicles. 

Gargoum et al. (2018c) employed a systematic approach to produce as-built drawings depicting 

vertical profiles along highways by leveraging LiDAR point cloud information. The outcomes 

showed the viability of precisely deriving road profiles from LiDAR data. Discrepancies in grade 

estimations between the suggested technique and GPS data exhibited an average range of 0.023% 

to 0.061%. Moreover, the proposed methodology exhibited its capacity to capture intricate features 

within the road profile that remained undetected by GPS data, thereby illustrating the advantageous 

application of LiDAR for road profile extraction. 

Gargoum & El-Basyouny (2019) studied how point density affects the extraction of traffic 

signs from LiDAR data. They aimed to guide transportation agencies on balancing cost, precision, 

and coverage when using LiDAR for traffic sign management. Using data from four highway 

sections in Alberta, Canada, they reduced the LiDAR point cloud density to set proportions and 

assessed sign detection at these densities. The study found that large panel signs and those on the 
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scanned approach were detectable with as low as 35% of the original point cloud (105 points per 

square meter). However, detection rates for smaller signs and those on the opposite side of a 

divided highway decreased when point density dropped below 70% of the original. 

2.3 Automated annotation and data collection tools 

Li et al. (2020) introduced SUSTech POINTS, an open-source tool for annotating portable 3D 

point clouds, offering superior visualization and operational capabilities compared to existing tools. 

It included features like stream playback, object locking, and intelligent box initialization for rapid 

and precise annotation. SUSTech POINTS utilizes a registration-based inter-frame annotation 

transfer mechanism, achieving high accuracy and speed. Being web-based enhances its portability 

and scalability for large-scale annotation projects. 

Oliveira & Rocha (2013) classified semantic annotation tools by factors like dynamicity, 

storage, and scalability. Their survey found manual systems costly and error-prone, while fully 

automatic ones lacked accuracy. As a result, many researchers now prioritize semi-automated 

systems, combining human input for better accuracy. 

Manikandan & Ganesan (2019) developed an automated video annotation tool for training 

autonomous driving systems. It employed object detection and classification algorithms to identify 

vehicles, two-wheelers, and pedestrians, determining their properties like direction and occlusion. 

Additionally, it recognizes vehicle lanes and pedestrian positions while tracking and detecting 

object movement. Various algorithms were analyzed for each task, with the best chosen for 

integration into the tool. The resulting GPU-accelerated system operated 1200 times faster than 

manual annotation methods. 

Gargoum et al. (2018b) developed an algorithm to automatically evaluate sight distance along 

highway segments using LiDAR point cloud data. The algorithm's application involved the 

assessment of sight distance along two distinct highway segments in Alberta, Canada. The data 

obtained from this process was subsequently compared with the theoretical values of Stopping 

Sight Distance (SSD) and Passing Sight Distance (PSD). The results indicated the algorithm's 

remarkable efficacy in the automated appraisal of sight distance for highway segments. 

2.4 Innovative approaches for infrastructure extraction 

Y. Chen et al. (2018) introduced ROAD-Net, a model for segmenting urban environments using 

synthetic data. It incorporated two main modules: one for adapting style from real images and 
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another for addressing domain distribution differences by integrating layout information. These 

techniques are vital for adapting the model to various highway environments. 

Gouda et al. (2022) enhanced the PointNet++ neural network architecture to improve its 

efficacy in processing outdoor scenes. They trained several model iterations, incorporating 

different combinations of geometric attributes and the proposed modifications, using annotated 

data from seven highway sections in Alberta, Canada. The results showed that the proposed model 

variations outperformed previous studies' accuracy and computational efficiency for identifying 

signs using point cloud data. This research demonstrated that when appropriately adjusted, the 

tailored PointNet++ neural network effectively isolated traffic signs from LiDAR-derived point 

clouds. Additionally, including local geometric attributes positively impacted the neural network's 

precision, recall, and F1-score metrics. 

Ohgushi et al. (2021) devised a novel road obstacle detection method. They utilized an 

unsupervised autoencoder with semantic segmentation trained solely on typical road data. This 

approach did not require prior knowledge of obstacle features and operated with standard in-

vehicle camera images. The autoencoder consists of a semantic encoder and a photographic 

decoder to generate a reconstructed image. 

Gouda et al. (2022) proposed an automated methodology to delineate the positions of light 

poles. This technique evaluated the appropriateness of light pole placement in the clear zones 

alongside rural highways. The correct positioning of such poles holds significance due to its 

implications for overall safety, given its association with an escalated collision risk. The proposed 

algorithm demonstrated promising results across the evaluated segments, yielding favourable 

performance metrics, including average precision, recall, and F1 scores. However, it is noteworthy 

to acknowledge a limitation in the study, wherein identifying poles concealed by obstructions 

during the scanning process might not have been entirely achievable. 

2.5 Advancements in LiDAR technology and data processing 

Yao et al. (2007) introduced a groundbreaking large-scale ground truth image database for general-

purpose use. They developed a unique annotation tool with tailored functional modules capable of 

executing customized annotation tasks and integrating diverse information forms. Accompanied 

by a comprehensive database, this tool organized labelled visual knowledge universally. It notably 

improved object boundary delineation through fine segmentation, which is crucial for small-sized 
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objects. WordNet served as a reference to ensure naming accuracy. Other databases like LabelMe 

and CalTech 101/256 offer specific features but lack detailed segmentation or real-world context. 

The Berkeley Segmentation Dataset set a benchmark for ground truth annotation but had scale and 

content limitations. The UA (Arizona) localized semantics dataset improved semantic annotations, 

building on Berkeley's information. 

Lato et al. (2012) utilized LiDAR technology to assess block size and shape distributions, slope 

geometry, and ditch profile. This approach aimed to identify potential rockfall hazards along 

highways and railroads in challenging terrains. The collected data was subjected to a structured 

hazard rating system to assign a hazard level to the specific location. This technique was proposed 

to reduce the personal involvement of the evaluating engineer in hazard exposure. 

Michele et al. (2021) introduced a novel method for Zero-Shot Learning (ZSL) and 

Generalized Zero-Shot Learning (GZSL) in 3D data, handling classification and semantic 

segmentation tasks effectively. ZSL predicted classes unseen in training, while GZSL expanded 

this to known and unknown classes. This method showed promise for pre-annotating 3D data with 

applications like autonomous driving. They tested their approach on outdoor 3D GZSL semantic 

segmentation using the SemanticKITTI dataset, showcasing its performance. 

In their recent work, R. Chen et al. (2023) introduced an innovative framework to understand 

geometric primitives across various object categories. They assimilated shared 3D geometric 

attributes among known and unknown categories and then used them for new objects. However, 

the model showed bias towards familiar categories, leading to misclassifications, especially with 

novel representations resembling recognized classes. To fix this, researchers separated visual 

representations of unfamiliar categories from semantic representations of familiar ones. The main 

focus was on addressing misclassification challenges. They evaluated the method using the 

SemanticKITTI dataset, similar to Michele et al. (2021). 

Gao et al. (2021) introduced a fine-grained off-road semantic segmentation and mapping 

method that utilizes contrastive learning. The paper focused on improving the semantic 

segmentation accuracy of road scenes and mapping fine-grained categories. By leveraging 

contrastive learning, the authors effectively learn informative feature representations, which can 

handle fine-grained variations in off-road scenes and directly align with this paper’s objective of 

enhancing semantic segmentation for road features. 
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Zhou et al. (2021) presented an innovative approach for extracting highway alignments and 

reconstructing 3D models. This was achieved by optimizing an energy function, enabling the 

precise reconstruction of highway 3D models while adhering to alignment constraints. The 

methodology exhibited proficiency in delineating the road surface and accurately identifying its 

boundaries and lane markings, particularly in rugged terrains such as mountainous regions. 

Kim et al. (2019) introduced the Highway Driving dataset as a new benchmark for semantic 

video segmentation. This benchmark serves as a valuable resource for evaluating semantic video 

segmentation algorithms. The dataset offers meticulously annotated pixel-level information for 

video frames captured at a rate of 30Hz, making it conducive for training deep neural networks 

aimed at processing video inputs. Prior to the advent of the Highway Driving dataset, the task of 

investigating semantic video segmentation encountered challenges due to the absence of 

annotations densely distributed across temporal frames. 

Golparvar-Fard et al. (2015) introduced an algorithm to semantically segment and recognize 

highway assets by analyzing video frames from a vehicle-mounted camera. The experiment 

demonstrated strong performance, with segmentation accuracy averaging 76.50% and pixel-level 

recognition accuracy at 86.75%. These results highlighted the algorithm's effectiveness in 

identifying 12 categories of assets, showcasing its potential for segmenting and recognizing 

highway assets from image-derived 3D point clouds. 

2.6 Natural language processing techniques for 3D point clouds 

Z. Qi et al. (2024) introduced a novel unified framework for point-language understanding and 

generation, known as GPT4Point. This groundbreaking model introduces the 3D object MLLM, a 

language model that fully utilizes point clouds to perform various point-text tasks. A key 

component of GPT4Point is the Bert-based Point-QFormer, which aligns point-text features. These 

aligned features are then separately input into Large Language Models (LLMs) for text inference 

tasks and into Diffusion models for 3D object generation tasks. Notably, GPT4Point can generate 

higher-quality results from low-quality point cloud features while maintaining geometric shapes 

and colours through controllable text-to-3D generation using point-text aligned features. 

Xu et al. (2023) contributed significantly to 3D point cloud understanding and natural language 

processing by introducing PointLLM. This innovation model tackles three key issues: the lack of 

training data, the need for an appropriate model architecture, and the absence of comprehensive 
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benchmarks. PointLLM combines a pre-trained point cloud encoder with a powerful language 

model, employing a two-stage training strategy. First, it aligns the latent spaces between the 

encoder and the language model, then instruction-tunes the unified model. This approach 

effectively fuses geometric and appearance information from point clouds with the linguistic 

capabilities of the language model. The resulting system can process coloured object point clouds 

alongside human instructions, generating accurate responses demonstrating both 3D data 

understanding and common-sense knowledge. The authors also provide empirical studies on 

various design choices, contributing valuable insights to the field of multimodal AI and opening 

new possibilities for applications in robotics and interactive 3D environments.  

2.7 Summary 

In conclusion, the literature review demonstrates the growing importance and potential of using 

LiDAR and semantic segmentation techniques for automated extraction and analysis of road 

infrastructure features. The implications of this capability extend to multiple crucial aspects of the 

transportation field and other engineering fields, including highway safety assessment, asset 

management, and the advancement of autonomous vehicle technology. 

In addition, the ability to turn machine language into human-readable text is paramount. Recent 

advancements like GPT4Point and PointLLM bridge the gap between complex 3D point cloud 

data and human understanding. This capability allows for improved interpretation of data by non-

technical stakeholders, enhanced decision-making by providing clear, actionable information, 

better communication of complex spatial information, and easier integration of LiDAR-derived 

insights into existing text-based systems. 

The gap in advanced semantic segmentation techniques is particularly evident in their 

multiclass accuracy, where current methods often fail to deliver precise and reliable results across 

multiple categories. Additionally, the ability to convert 3D point clouds into human-readable text 

remains underdeveloped. While significant progress has been made in processing and 

understanding 3D data at the object level, translating this information into coherent and 

contextually appropriate natural language descriptions continues to lag. 
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Chapter 3. Semantic Segmentation Methodology 

3.1 Data collection & description 

Alberta Transportation collected LiDAR point cloud data along rural highways in Alberta, Canada, 

from 2013 to 2020. This data acquisition utilized a versatile surface profiling vehicle, the Tetra 

Tech PSP-7000, outfitted with a REIGL VMX-450 system. The vehicle's REIGL VMX-450 

system facilitated the capture of 360° LiDAR point clouds along the province's rural highways, 

with surveys conducted during regular traffic flow at speeds of up to 100 km/h. The resulting data 

was segmented into individual LAS files, each covering a 2 km section, with point densities 

ranging from 150 to 1000 points/m2 at speeds of 90 km/h. These files were approximately 500 MB 

each in size. Each scanned point within the data set possessed location attributes (X, Y, Z) and 

point intensity information. 

3.2 Dataset development 

For the development of the datasets, segments of 2.5 km in both directions (Northbound and 

Southbound) of Highway 2 (AB-2) were used for training, validation, and testing. The training 

dataset segments were strategically chosen along the highways to encompass various features 

while avoiding poor-quality LiDAR data. For instance, segments with elements like signage and 

guardrails were favoured, given that some highway sections lacked these features. Segments with 

excessive vehicle occlusion or shallow markings were considered poor-quality LiDAR data and 

were avoided. Conversely, the test and inference segments were randomly selected to evaluate the 

model's performance, ensuring no overlap with the training segments. This approach treated the 

test and inference datasets as entirely new and unseen by the model, providing a robust assessment 

of its generalization capabilities. 

Highway 2 (AB-2), spanning a length of 1273 km, is the longest and busiest highway in the 

province, featuring a diverse range of characteristics. This paper considered sections with three or 

more lanes in each direction. The section is separated by a narrow median with either New Jersey 

barriers or guardrails, as shown in Figure 1. Additionally, segments feature auxiliary lanes for 

entrances and exits. 
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(a) 

 

(b) 

 

(c) 

Figure 1. Highway AB-2 (Deerfoot Trail) situated in Alberta, Canada. (a) a satellite image, (b) a street view, and (c) 

a point cloud sample representing a 50-meter segment 

3.3 Data preparation and filtering 

The initial data analysis phase involved preparatory procedures to refine the collected dataset. This 

involved employing CloudCompare, a widely used open-source 3D point cloud editing and 

processing software primarily for visualizing and filtering point clouds (CloudCompare, 

2023).  The dataset was segmented into 50-meter-long segments to facilitate subsequent annotation 

tasks and leverage the computational capabilities of the Graphics Processing Unit (GPU) utilized 

for model training. Additionally, it is noteworthy that the intensity of points significantly 

diminished with increasing distance from the LiDAR scanner, necessitating separate annotations 

for each highway direction. Consequently, points related to the opposite direction were excluded 

prior to annotation, with annotations for the latter being derived from files capturing scans in the 
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reverse direction. Points corresponding to the median were retained in files for both directions. In 

addition, data cleaning was performed using the scan angle rank, considering a 35-meter distance 

from the trajectory on both sides, as shown in Figure 2. 

 

 

(a) 

 

(b) 

Figure 2. A sample of 50-meter segment raw data (a) before and (b) after data cleaning 

Additionally, class-specific filters were applied to delineate distinct components, emphasizing 

splitting lane markings with pavement. Visual inspection of connected components was 

systematically conducted to validate their classification. Manual adjustments and revisions were 

diligently undertaken to ensure accuracy and reliability in our analysis, as depicted in Figure 3. 
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Figure 3. Points filtration using CloudCompare (labelled in different colours) 

The following classes were identified as principal components for rural highways, to be annotated 

in subsequent stages: lane, shoulder, chevron marking, broken line marking, solid line marking, 

arrow marking, vegetation, traffic sign, guardrail, concrete barrier, and light pole. The primary 

challenge was distinguishing between points representing road markings and those delineating the 

road pavement (i.e., lanes and shoulders). We used an intensity filter in CloudCompare to aid in 

differentiation. Points not falling within the purview of these defined classes, such as moving 

vehicles, signposts, and electrical lines, were retained without removal; however, they were 

excluded from the subsequent annotation exercise. 

3.4 Data annotation 

Data annotation or labelling is crucial for semantic segmentation as it provides the ground truth or 

reference for training and evaluating machine learning models. In semantic segmentation, the goal 

is to classify each point in the point cloud into predefined categories. Semantic segmentation is 

typically performed using supervised learning algorithms, where the model learns from labelled 

examples. The annotations serve as the target outputs for the model during training, enabling it to 

learn the relationships between input points and their corresponding semantic classes. Moreover, 

annotated data allows for the evaluation of model performance. By comparing the model's 

predictions with the ground truth annotations, metrics such as accuracy, mean IoU (Intersection 

over Union), or F1 score can be computed to assess the model's accuracy and effectiveness. 
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SUSTech POINTS was selected as the basis for the annotation tool due to its extensive 

capabilities, as outlined by Li et al. (2020). Notably, SUSTech POINTS offers a range of features, 

including the development of visualization modules tailored for fast annotation error localization 

and seamless annotator-data interactions, the creation of interactive tools enabling annotators to 

label 3D point clouds and 2D images rapidly, and the implementation of an innovative annotation 

transfer method facilitating the labelling of identical objects across various data frames. These 

functionalities significantly contribute to the efficiency and accuracy of the annotation process. 

Moreover, enhancements were made to the platform to augment its utility further. These 

improvements included directly utilizing LAS files, implementing a user-friendly interface for 

dynamic label creation, integrating Google Maps for contextual reference, and optimizations for 

handling large-scale datasets, as shown in Figure 4. 

 

 

Figure 4. Modified SUSTech POINTS annotation tool 

As the figure above shows, each object is delineated using a rectangular bounding box. All points 

within this box are assigned to the same class, underscoring the critical importance of the filtering 

and fine-tuning stages. The rectangular nature of the bounding box is fixed, meaning its shape 

cannot be altered to conform precisely to irregular object boundaries. Consequently, the accuracy 

of our classification heavily relies on optimizing these preparatory steps to ensure the most 
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representative assignment of points within each bounding box. 

The initial tool introduced by Li et al. (2020) exclusively accommodated point clouds 

formatted in PCD. However, the updated version facilitates automatic conversion from LAS to 

PCD. Furthermore, a Google Maps tab has been incorporated to provide visualization of annotated 

segments in street view. Additionally, tabs have been included to toggle between rural and urban 

modes. Each tab has unique labelling functionality, enabling annotators to supplement additional 

labels. Moreover, seamless navigation between LAS files depicting different road segments has 

been implemented. To enhance navigation through each scene (road segment) of the point cloud, 

the tool automatically calculated the center point of each LAS file, facilitating navigation through 

the 3D scene, such as zooming and rotating. 

By integrating these enhancements, the modified version of SUSTech POINTS provided a 

comprehensive solution for annotating 3D point clouds, thereby enhancing annotation accuracy 

and efficiency for diverse applications, as evidenced by experimental evaluations conducted on 

both public and private datasets (Li et al., 2020). 

Furthermore, the annotation tool employed in this study has been tailored to suit our specific 

requirements by customizating of Python and Docker. In the Python adaptation, the setup 

procedure entails establishing a virtual environment and installing the essential libraries. This 

encompasses obtaining the requisite model file and TensorFlow, after which the primary Python 

script is executed. Conversely, Docker offers an optimized deployment pathway by encapsulating 

the tool and its adaptations within a container, thereby guaranteeing uniform functionality across 

diverse computing environments. 

The code structure of the annotation tool comprises both backend and frontend components. 

In the backend, routes are defined within the main Python file (`main.py`) using the CherryPy web 

framework. These routes facilitate communication between the frontend interface and backend 

functionalities. Notably, scene-specific information retrieval routes allow users to access scene 

descriptions and annotation data. 

Conversely, the frontend logic resides primarily within JavaScript files in the `/public/js` 

directory. Key files such as `editor.js`, `view.js`, and `annotation.js` are crucial for user interaction 

and data visualization. Modifications to these files enable customization and enhancement of the 

annotation tool's functionalities. 
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The data structure required by the annotation tool necessitates adherence to a specific format 

within the `data` directory. This hierarchical structure dictates the organization of calibration, 

camera, label, lidar, and LAS data folders. Compliance with this structure ensures seamless data 

access and processing during annotation tasks. 

It is worth mentioning that in the domain of computer vision, particularly semantic 

segmentation or object detection tasks, annotating data to establish ground truth labels is crucial 

yet prone to imperfections. Despite rigorous data preparation and filtering efforts, achieving 100% 

accuracy in manual labelling remains challenging due to human error, ambiguity in complex 

scenes, and the sheer volume of pixel-level annotations required (Cordts et al., 2016). Researchers 

often incorporate a tolerance threshold in their evaluation metrics to address this inherent 

uncertainty, typically allowing for up to a 5% discrepancy in label accuracy (Northcutt et al., 2021). 

This acknowledges the intrinsic subjectivity in pixel-level labelling tasks, particularly in boundary 

regions between different semantic classes or occlusion cases (Chen et al., 2018). 

3.5 Data pre-processing 

The initial dataset consisted of point clouds characterized by four attributes: X, Y, Z, and intensity. 

Labels were assigned to the points outlined in the previous section, utilizing the SUSTech POINTS 

annotation tool. Points within a bounding box were given the same label as the bounding box itself. 

Consequently, each point within a bounding box was annotated with a label corresponding to that 

box's label. 

Each annotated road segment underwent meticulous label extraction, discerning various 

predefined categories: lanes, shoulders, chevron markings, broken and solid line markings, arrow 

markings, vegetation, traffic signs, guardrails, concrete barriers, and light poles. Unlabelled points, 

or clutter, were also identified, processed, and segregated into distinct files. The script iterated 

through each section of the point cloud data, executing analogous procedures to capture the 

nuanced characteristics of each section. As a result, the script generated a comprehensive set of 

annotated files that encapsulated the spatial distribution and semantic information of labelled 

points across the dataset. 

The data parsing step involved processing files from the 'las_files', 'labels', and 'centres' 

directories within the data folder. These files were organized into .txt files according to their 

corresponding labels. For instance, a section containing three boxes—two traffic signs and one 
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light pole—was organized into individual .txt files (e.g., "traffic-sign_1.txt," "traffic-sign_2.txt," 

and "light-pole_1.txt") within the parsed folder. This code step was inspired by the nuScenes 

development kit by Caesar et al. (2020). The modified code defined a function (‘points_in_box’) 

that checked whether a set of points lie inside a specified 3D box. A reference corner of the 

bounding box (p1) was chosen for each point within a bounding box, and the vector (v) from this 

reference point to the target point was computed. This vector was then projected onto the three 

principal axes of the bounding box. The lengths of these projections were compared to determine 

the spatial relationship of the point within the bounding box. This method was used to ensure 

accurate labelling of each point, consistent with its position relative to the bounding box, as 

initially annotated using the SUSTech POINTS tool. 

 Subsequently, the pipeline generated a detailed summary outlining the frequency of each label 

type and the total count of points associated with each class. This systematic approach facilitated 

the organization and preparation of labelled point cloud data, serving as a crucial step for 

subsequent analysis and machine learning model training. 

3.6 Model development 

Two approaches were employed for model training, and the test results from each model were 

recorded and compared. The first model leveraged the powerful Pointcept codebase, which 

implements the advanced Point Transformer V2 neural network architecture. In contrast, the 

second approach adopted the mainstream architecture in natural language processing, known as 

Transformer, for point-wise classification, leveraging the self-attention and cross-attention 

modules of Point Transformer (Zhao et al., 2021) and PU-Ray (Lim et al., 2024). The Point 

transformer v2 was trained using an NVIDIA® GeForce RTX™ 4070Ti GPU with 12 GB VRAM. 

Due to the smaller model sizes of the self-attention and cross-attention modules in Point 

Transformer and PU-Ray, the second approach was feasible on a smaller GPU, the NVIDIA® 

GeForce RTX™ 3080 Lite Hash Rate (LHR), with a 10 GB memory size. 

3.6.1 Point Transformer v2 

Point Transformer v2 Architecture 

The proposed semantic segmentation model adopts the Point Transformer v2 architecture in Figure 

5, which follows an encoder-decoder structure inspired by the U-Net design. The encoder branch 
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is responsible for extracting features and progressively downsampling the input point cloud 

through four stages with the block depths [2, 2, 6, 2]. At each stage, a grid size multiplier is applied 

for downsampling, with values [x3.0, x2.5, x2.5, x2.5], resulting in progressively smaller point 

sets. The initial feature dimension is set to 48, which is doubled at each stage, leading to 

dimensions [96, 192, 384, 384]. Correspondingly, the number of attention groups is set to [12, 24, 

48, 64] with a 𝑘-nearest-neighbor (𝑘-NN) of 16 (X. Wu et al., 2022). 

The decoder branch mirrors the encoder, consisting of four stages with a block depth of [1, 1, 

1, 1]. It utilizes grid up modules to reconstruct the point cloud, ultimately restoring it to the original 

input size while incorporating the enriched feature information from the encoder branch.  

 

 

Figure 5 Point Transformer v2 (X. Wu et al., 2022) network for semantic segmentation 

 

Point Transformer v2 introduces several key modifications to improve computational efficiency 

and performance for point cloud processing tasks compared to the original Point Transformer 

model, as shown in Figure 6. 

Firstly, it employs a novel grouped vector attention mechanism instead of calculating 

individual attention weights for each point, which can be computationally inefficient and limit 

generalization. it divides value vector 𝑣 = ℝc  evenly into 𝑔 groups (1 ≤  𝑔 ≤  𝑐), and points 

within the same group share a single scalar attention weight from the corresponding group's 

attention vector (X. Wu et al., 2022). The detailed formulas are shown in Eq. 1. This approach 

reduces computational complexity while maintaining the ability to capture contextual information. 

 

𝜔𝑖𝑗 = 𝜔(𝛾(𝑞𝑖, 𝑘𝑗)),          𝑓𝑖
𝑎𝑡𝑡𝑛 = ∑ ∑ ∑ Softmax(𝑊𝑖)𝑗𝑙𝑣𝑗

𝑙𝑐/𝑔+𝑚

𝑐/𝑔

𝑚=1

𝑔

𝑙=1

𝑀(𝑝𝑖)

𝑥𝑗
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Eq. 1 

Secondly, a position encoding multiplier is incorporated to address the potential capacity 

limitations of the grouped attention mechanism, enhancing the model's ability to capture positional 

information within the point cloud data. 

Thirdly, Point Transformer v2 introduces partition-based pooling to address non-spatially 

aligned query sets and uncontrollable information density in traditional sampling-based pooling 

methods. The point cloud is divided into non-overlapping subsets, where each subset undergoes 

max pooling for feature aggregation and mean pooling for position aggregation, resulting in a 

fused point set for the next encoding stage. During unpooling, the fused set is mapped back to the 

original point set using recorded locations, ensuring efficient and accurate reconstruction. This 

partition-based pooling approach maintains spatial alignment and controlled information density 

within the subsets, leading to improved performance and generalizable representations while 

addressing the limitations of traditional pooling methods. 

 

Figure 6 Left: group vector attention (denoted by red), improved position encoding (denoted by blue), and Right: 

partition-based pooling and unpooling in PTv2 (X. Wu et al., 2022) 

Point Transformer v2 Implementation and Improvement 

The local features for each point (X, Y, Z, intensity), along with the assigned labels from the 

annotation exercise, were insufficient to differentiate between points from various classes. 

Consequently, additional geometric features were computed for each point using the CloudComPy 

library. These features included the Z-gradient, roughness, intensity gradient, and neighbour 

density. The gradient refers to the rate of change in any feature value at a point (e.g., elevation or 

intensity) compared to its neighbours. Definitions of these additional features are detailed in Table 

1 (CloudCompare, 2023).  
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The geometric features were computed prior to down-sampling to maintain higher accuracy 

while simultaneously reducing computational costs. These features were derived for each point 

based on neighbouring points within a spherical neighbourhood of radius R. Although the down-

sampling process inevitably resulted in the loss of fine-shape details, the calculated geometric 

features retained essential information about the local point distribution, thus providing critical 

data to the network. 

Selecting features and determining the optimal sphere radius for each feature were conducted 

through an iterative trial-and-error process. This approach allowed for fine-tuning the feature set, 

balancing the trade-off between information richness and computational efficiency. 

 

Table 1 Additional features computed for each point 

Additional feature Definition 

Z-gradient the gradient of the elevation of a point relative to its neighbours within a 

sphere of radius R 

Roughness the distance between a point and the best fitting plane to its neighbours 

within a sphere of radius R 

Intensity gradient the gradient of the intensity of a point relative to its neighbors within a 

sphere of radius R 

Neighbour density counts the number of neighbour points within a sphere of radius R 

 

The additional features provided valuable information about the surrounding 3D environment 

of each point. For example, points belonging to broken and solid line markings exhibited similar 

local features. However, by calculating the intensity gradient for each point, the training model 

was expected to better distinguish between the classes of these points. 

The 50-meter segments still contained too many points to fit the necessary Point Transformer 

calculations within the memory of an economical GPU. Therefore, the dataset was down-sampled 

before being fed into the neural network using voxelization. Voxelization down-sampling is a 

technique used in computer graphics and 3D data processing to reduce the complexity of a point 

cloud by grouping points into a regular 3D grid called voxels. This process facilitates managing 

and processing large point cloud datasets by converting them into a more structured form that is 

easier to handle. Voxelization divides the 3D space into a grid of small, cube-shaped cells known 

as voxels. Each voxel represents a small volume in 3D space, analogous to a pixel in a 2D image 
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but in three dimensions. Points within a voxel are replaced by their centroid, the average position 

of all points within the voxel. The voxel size, which is the edge length of each cubic voxel, is a 

critical parameter. Smaller voxel sizes result in a finer resolution, with more voxels covering the 

same space, retaining more detail with a decrease in the reduction of the number of points. Larger 

voxel sizes yield a coarser resolution with fewer voxels, significantly reducing the number of 

points and thus the data size but also losing more detail. For each 50-meter segment, the dataset 

initially comprised approximately 1,000,000 points, efficiently down-sampled to around 250,000 

points without losing too much spatial relationship. In addition, the three positions value and five 

features x, y, z, intensity, roughness, density, z-gradient, and intensity gradient, are normalized so 

that the values are in the range of [0, 1].  

In the model development, various loss functions were employed to optimize the training 

process. These included the Cross-entropy loss, Focal loss, Lovasz loss, and Dice loss. Each of 

these loss functions serves a distinct purpose in guiding the training of the neural network. The 

Cross-entropy loss is a standard choice for multi-class classification tasks, providing a measure of 

dissimilarity between predicted and actual class distributions. Focal loss, on the other hand, 

addresses the issue of class imbalance by down-weighting the contributions of well-classified 

examples. Lovasz loss is particularly effective for optimizing intersection-over-union (IoU) based 

metrics while being robust to class imbalance. The Dice loss is designed to address class imbalance 

in segmentation tasks. It measures the overlap between predicted and ground truth segmentation 

masks. By minimizing the Dice loss during training, models learn to produce accurate 

segmentation masks, handling scenarios with imbalanced foreground and background classes. 

Additionally, learning rates and epochs were explored to optimize performance. This iterative 

process involved testing various combinations of learning rates, determining the step size for 

updating model parameters, and epochs, representing the number of complete passes through the 

training dataset. By systematically varying these hyper parameters, the aim was to identify the 

configuration that yielded the most effective convergence and generalization of the neural network. 

The optimal combination of learning rates and epochs was determined to enhance the model's 

ability to improve predictive accuracy through experimentation and evaluation of model 

performance metrics, such as accuracy, F1 score and intersection over union. 

Two models were evaluated: the full model and the reduced model. The full model 

incorporated all 11 classes (plus clutter), whereas the reduced model consolidated similar classes. 
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Specifically, it merged the lane and shoulder into a single 'pavement' class, combined chevron, 

broken line, solid line, and arrow markings into a single 'marking' class, and left the remaining 

classes unchanged. This resulted in 7 classes (plus clutter) for the reduced model. 

The model's performance was assessed using mean Intersection over Union (mIoU), prediction 

precision, and F1 score for each class. The mIoU offered a comprehensive measure of the model's 

performance across all classes by averaging the IoU values, as illustrated in Eq. 2. Meanwhile, the 

precision and recall for each class provided insight into how accurately the model predicted each 

class, considering both correct and incorrect predictions, as calculated in Eq. 3. 

 

𝐼𝑜𝑈𝑖 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
=

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖
 

𝑚𝐼𝑜𝑈 =
1

𝑁
∑ 𝐼𝑜𝑈𝑖

𝑁

𝑖=1

 

Eq. 2 

where: 

TPi = the number of true positive predictions for the class 𝑖. 

FPi = the number of false positive predictions for the class 𝑖. 

FNi = the number of false negative predictions for the class 𝑖. 

N = the number of classes. 

IoUi = the IoU for class 𝑖. 

mIoU = the mean Intersection over Union. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒𝑖 = 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) 
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𝑚𝑒𝑎𝑛 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
∑ 𝐹1 𝑠𝑐𝑜𝑟𝑒𝑖

𝑁

𝑖=1

 

Eq. 3 

where: 

TPi = the number of true positive predictions for the class 𝑖. 

FPi = the number of false positive predictions for the class 𝑖. 

FNi = the number of false negative predictions for the class 𝑖. 

F1 score = the  F1 𝑠𝑐𝑜𝑟𝑒 for each class 𝑖. 

Mean F1 score = the mean F1 for all classes  

A confusion matrix showing the accuracy of the predicted class compared to the ground truth 

class for the test files has been constructed. The confusion matrix is a key tool for evaluating the 

performance of a classification model. For a multi-class classification problem, the confusion 

matrix provided a comprehensive view of the model's predictive capabilities by displaying the true 

positives, false positives, true negatives, and false negatives for each class. This allowed for a 

detailed analysis of where the model performed well and where it struggled, enabling targeted 

improvements to enhance overall accuracy. This evaluation identified specific classes where the 

model exhibited high accuracy and others where further refinement was necessary, thereby guiding 

future model development and optimization efforts. 

The complete data processing and implementation procedure is visually demonstrated in 

Figure 7. 
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Figure 7 Point Transformer v2 flowchart diagram 

 

3.6.2 Transformer-Base point classification 

A point cloud is defined as 𝑃 ⊂ ℝ𝑛×5. A point, 𝑝 ∈ 𝑃, consists of [𝑥  𝑦  𝑧  𝑖  𝑑]𝑇, the 3D 

coordinates (𝑥, 𝑦, 𝑧), the reflection intensity 𝑖 and the density feature 𝑑. An approach for point 

cloud segmentation is by point-wise classification by a neural network function 𝑓(⋅), which 

outputs the one-hot vector representation of a 𝑝’s label class 𝑐 ∈ ℕ|𝑐|, where ∑
|𝑐|
𝑖 𝑐𝑖 = 1. The 

function 𝑓(⋅) takes in the input point 𝑝 and its neighbouring patch 𝑁 ⊂ ℝ𝑘×5:  

𝑐 = 𝑓(𝑝, 𝑁). 
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Figure 8 A sample patch on a 2D point cloud generated with a uniform distribution. Black, red, 

green and blue points are sampled using voxel sizes of 0.1 metre, 0.3 metre, 1.0 metre and 3.0 

metre. 

 

Patch points are selected by 𝑘-nearest-neighbor (𝑘-NN) sampling on the downsampled point 

clouds of 𝑃 with voxelization using different voxel sizes. In other words, 32 nearest points from 𝑝 

are selected in each downsampled point cloud using voxel sizes of 0.1 metre, 0.3 metres, 1 metre 

and 3 metres, resulting in a patch size |𝑁| = 128. For voxelization downsampling, one point in a 

voxel is selected by max-pooling using the 𝑖 value (i.e. one point with the highest intensity in a 

voxel is selected), which is based on the assumption that points with a higher intensity carry more 

information. The multi-resolution point sampling with different voxel sizes imitates human vision, 

where the spatial resolution is higher in the central vision near the focusing point and gets lower 

in the peripheral vision farther away from the focusing point. The voxel sizes are determined to 

minimize the intersections between 𝑘-NNs sampled with different voxel sizes (Figure 8). For 

example, in uniformly distributed points on a surface, 32 𝑘-NN points that are evenly spaced with 

0.3-meter intervals are clustered in a circular area with approximately a 1-meter radius (e.g. 

32 × 0. 32 ≈ 𝜋 × 1. 02). Thus, the points with a finer resolution are less likely to intersect with 

those with a coarser resolution. 

All 3D coordinates (𝑥, 𝑦, 𝑧) of 𝑝 and 𝑁 are translated for relative position encoding (Zhao et 

al., 2021) so that the points are centred at the average point of 𝑃′. The first four features 𝑥, 𝑦, 𝑧 
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and 𝑖 are normalized so that most values are in the range [-1, 1]. In addition, each patch point 𝑝′ ∈

𝑁 has an extra fifth feature 𝑑, which represents the density of the voxel that 𝑝′ belongs in. The 

equation for calculating the density is as follows: 

𝑑 =
# 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑣𝑜𝑥𝑒𝑙

(𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 ∗ 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)2
 

Where the coefficient, determined though empirical studies, is set to 50. 

 For feature vector formatting, the 𝑑 of 𝑝 is filled with a dummy feature 0. Point densities in 

LiDAR point clouds vary in different regions depending on the distance from this sensor. 

Therefore, the density feature compensates for the information loss in the regions that may suffer 

from sparser densities. The information is obtained by counting the input points and normalizing 

the number differently for each voxel size. Random translation, rotation, scaling, and jittering are 

applied for data augmentation, as suggested by (Zhu et al., 2024). 

 

 

Figure 9 Network architecture for point cloud classification 
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Point clouds are permutation-invariant data that follow the characteristics of the set data 

structure. The unorderedness hinders the utilization of early convolutional neural network 

approaches in computer vision, which led to the adoption of the transformer architecture from the 

natural language processing domain (Vaswani et al., 2017) for point cloud processing (Lim et al., 

2024; Zhao et al., 2021). The method adopts a variation of the architecture proposed by Lim et al. 

(Lim et al., 2024) to utilize the transformer network architecture in this study (Figure 9). Firstly, 

all points, including 𝑝 and 𝑁, are fed into a multi-layer perception (𝑀𝐿𝑃p) to extract point-wise 

features in a latent space. In addition, the self-attention layer of Zhao et al. (Zhao et al., 2021) 

encodes each point feature of 𝑁  to extract inter-point relationships within the patch. After 

obtaining the future vectors of all points, a cross-attention layer (Lim et al., 2024) naturally 

accumulates all the features of 𝑁 relating to the latent features of 𝑝. The resulting cross-attention 

feature vector is concatenated with a skip layer of 𝑝’s features resulting from 𝑀𝐿𝑃p. The one-hot 

vector representation results from 𝑀𝐿𝑃𝑐 and a softmax function given the concatenation.  
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Chapter 4. Natural Language Scene Description Methodology 

A significant gap persists in directly converting 3D point cloud data to textual descriptions without 

the intermediary step of 2D image conversion. While existing models, such as PointLLM (Xu et 

al., 2023b), have attempted to address this challenge, their efficacy is primarily limited to scenarios 

on which they were previously trained. Consequently, the results obtained using this model for 

more complex or multi-object point cloud data are suboptimal, underscoring the need for further 

research and development in this domain. 

Given these limitations, converting point cloud data to 2D images is necessary. However, to 

mitigate information loss during this process, we propose utilizing multiple views of an image. 

These multi-view representations can then be fed into a pre-trained model to generate the desired 

textual output, potentially preserving more original 3D information and improving the quality of 

the resulting descriptions. 

4.1 Large language model (LLM) procedure 

GPT-4 is a Transformer-based model pre-trained to predict the next token in a document (Achiam 

et al., 2023). For this natural language scene description task, we leverage GPT-4o by OpenAI, an 

advanced iteration of GPT-4 and GPT-4 Turbo. This model can accept both text and image inputs 

while outputting text, boasting twice the processing speed and 50% improved cost-effectiveness 

compared to GPT-4 Turbo. However, it's important to note that GPT-4o is not open-source, and a 

purchased API key is required for its utilization. The figure below illustrates the full flowchart of 

the large language model (LLM) procedure, demonstrating how GPT-4o is integrated into our 

methodology. 



36 

 

 

Figure 10 Natural language scene description procedure 

The methodology for understanding the scene description is straightforward. We begin with 

the output from the previous semantic segmentation, stored in .csv or .txt files. Each row in these 

files contains the local or global coordinates [x, y, z, R, G, B]. Using the Axes3D toolkit from 

mplot3d, we generate multi-view 2D images. Six views are selected for each scene to input into 

the GPT-4o model. This number of views is chosen because increasing the number of views does 

not significantly improve the results, while fewer views can lead to inaccuracies in describing the 

scene. 

GPT-4o, as a Large Language Model (LLM) trained on nearly 2 trillion parameters, is designed 

to handle many real-life scenarios. To optimize its performance for this specific task, a one-shot 

learning method was used and provided a desired description for the model:  
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"The highway point cloud data represents a multi-lane highway consisting of four lanes. These 

lanes are marked by three broken lines and two solid lines. A concrete barrier median separates 

the lanes for opposing traffic flows. Alongside the road, there is a light pole, and an overhead 

traffic sign provides guidance for drivers." 

Additionally, the model was given contextual information to frame its analysis: 

• Role: “You are an advanced AI assistant installed on the autonomous vehicle, equipped 

with conversational analysis capabilities for discussing autonomous driving scenarios. The 

perspective presented is from the point-of-view of the autonomous vehicle, where the 

camera is mounted. It's important to note that the autonomous vehicle itself is not visible 

in the images provided.”  

• Scenario Overview: “The images uploaded represent scenes captured from the viewpoint 

of the autonomous vehicle's camera. The images are taken from the coloured point cloud 

data. The colours of point denote different objects.” 

• Clarification: “Your role as the AI assistant is to analyze these scenes, considering the 

position, number of lanes or markings, quantify the number of the object, if possible, 

potential interactions of the autonomous vehicle with other objects in the environment.” 

• Additional Information: “Feel free to ask questions or seek clarification regarding the scene 

or any specific details you need to accurately analyze and discuss the autonomous driving 

scenario presented in the images.” 

Utilizing these restrictive conditions in the GPT-4o model, along with multi-view images, 

enables the generation of desired descriptive results that align closely with the specified 

requirements, ensuring a high level of confidence. Once the output was generated by the GPT-4o 

model, three evaluation metrics were used to assess the numerical performance of the generated 

text against the reference text. The reference text was derived from manually checked ground truth 

files. The evaluation focused on three key metrics: 

1. METEOR (Metric for Evaluation of Translation with Explicit ORdering): Assesses the 

quality of the generated text by comparing it to a reference, focusing on alignment, 

paraphrasing, and linguistic variations. It focuses on precision and recall, using exact word 

matches, as well as matching synonyms and stems to assess the alignment between the 

generated and reference text (Banerjee & Lavie, 2005; Saadany & Orasan, 2021). 
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2. Semantic Similarity: Measures how closely the meanings of the generated text and the 

reference text align. It goes beyond word-level matches to assess whether the generated 

text conveys the same message or information as the reference (Chandrasekaran & Mago, 

2021). 

3. Entity Score: Evaluates the performance of a system in recognizing, extracting, and 

classifying named entities in text. It measures how accurately the system identifies these 

entities compared to a reference or ground truth (Daiber et al., 2013; Zhong et al., 2015). 

Each score was calculated using the Natural Language Toolkit (NLTK), with the final total 

score based on a weighted system: 0.1 for METEOR, 0.8 for Semantic Similarity, and 0.1 for the 

Entity Score. This weighting ensures that the evaluation emphasizes semantic meaning, reducing 

the bias of human evaluation and providing a more objective assessment of the model's overall 

performance. 
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Chapter 5. Results & Discussion 

5.1 Semantic Segmentation Results 

The dataset distribution for each class is illustrated in the Figure below. Since this is a semantic 

segmentation task rather than object detection, it is more important to focus on the total number 

of points per class rather than the number of individual objects. The chart shows the number of 

points for each class in the full model. 

 

Figure 11 Dataset point-wise distribution Full model 

In the reduced model, the “Lane” and “Shoulder” classes are combined into a single category 

called “Pavement.” Additionally, all marking-related classes, such as “Broken-line,” “Solid-

line,” “Chevrons,” and “Arrows,” are grouped together under the category “Marking.” 

5.1.1 Point Transformer v2 result: 

The experiments evaluated a 2.5km highway segment in Alberta, Canada, using the proposed 

model with default parameters: roughness radius 1m, density radius 1m, z-gradient radius 0.2m, 

and intensity-gradient radius 1.5m. The model was trained for 200 epochs with a learning rate of 

0.001 and a decay rate of 0.05. Four additional attributes were incorporated into the model (as per 
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Section 3.6.1) to improve accuracy. The evaluation considered 400m divided into eight randomly 

selected segments. The key metrics were intersection over union (IoU) and F1 score for well-

rounded evaluations.  

Table 2 presents the detailed accuracy results for the model before and after incorporating these 

additional features. 

 
Table 2 Model output for both with and without four additional features 

Experiment Results for the four additional attributes 

Model type Roughness Density Z-gradient Intensity-

gradient 

Mean 

IoU 

Mean F1 

score 

Full model Yes Yes Yes Yes 64.30 71.91 

N/A N/A N/A N/A 49.24 59.02 

Reduce model Yes Yes Yes Yes 78.29 86.48 

N/A N/A N/A N/A 60.66 72.95 

 

A sensitivity analysis of the four additional attributes was performed to show the proposed 

strategy's necessity and effectiveness. The results show a significant improvement in additional 

attributes for both models. The local features cannot give enough information for the model to 

learn the shape and pattern. Most researchers use IoU for their evaluation in semantic segmentation 

tasks since it quantifies how well the model can distinguish objects from their backgrounds. The 

full model mIoU improved from 49.24% to 64.30%, and the mean F1 score increased from 59.02% 

to 71.91%. On the other hand, the reduced model mIoU improved from 60.66% to 78.29%, and 

the mean F1 score increased from 72.95% to 86.48%. The results demonstrate the improved 

performance by including the new attributes in the model. 

 

Table 3 Semantic segmentation results on Alberta Highway 2 datasets (reduced model) 

Class F1 score IoU 

Clutter 57.73 40.58 

Concrete barriers 95.78 91.90 

Highway guardrails 85.00 73.91 

Light pole 90.43 82.53 

Marking 74.19 58.97 

Pavement 97.91 95.91 

Traffic sign 97.32 94.78 
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Vegetation 93.48 87.76 

Mean 86.48 78.29 

Total Accuracy 95.03 

 

 
Table 4 Semantic segmentation results on Alberta Highway 2 datasets (full model) 

Class F1 score IoU 

Arrows 0.00 0.00 

Broken Line 45.80 29.70 

Chevrons 14.38 7.74 

Clutter 90.22 82.18 

Concrete Barrier 95.61 91.59 

Highway Guardrail 83.13 71.14 

Lane 97.15 94.45 

Light Pole 89.24 80.57 

Shoulder 88.56 79.46 

Solid Line 67.04 50.42 

Traffic Sign 95.42 91.24 

Vegetation 96.42 93.09 

Mean 71.91 64.30 

Total Accuracy 94.57 

 

Figure 12 and Figure 13 present the optimized models, highlighting areas of misclassification. 

A control variable approach was employed during optimization to ensure optimal model 

performance. For each trial, only one parameter was altered, allowing for precise identification of 

its impact on the model. 
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Figure 12 Confusion matrix for Point Transformer v2 full model 
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Figure 13 Confusion matrix for Point Transformer v2 reduced model 

 

Both models achieved their optimal performance when trained for 200 epochs. Due to GPU 

memory constraints, each epoch consisted of only one batch. The AdamW optimizer was utilized 

with an initial learning rate of 0.001 and a weight decay of 0.05 to prevent overfitting. A 

combination of focal loss, dice loss, Lovász loss, and cross-entropy loss functions were employed 

to address data imbalance. 

After experimenting with multiple trials, the full model achieved the best performance using a 

combination of focal loss and cross-entropy loss with the following parameters: a density radius 

of 1 meter, a roughness radius of 1 meter, a Z-gradient radius of 0.2 meters, and an intensity 

gradient of 1.5 meters. Conversely, cross-entropy loss yielded the best performance for the reduced 

model with a roughness radius of 1 meter, a density radius of 1.5 meters, a Z-gradient of 1 meter, 

and an intensity gradient of 0.875 meters.  

The diagonal values in both confusion matrices represent the correct label percentages. In the 

full model, Chevron, broken line, and arrow marking categories performed the worst. This poor 

performance is attributed to the relatively low number of training examples for these categories in 

the overall training set. Additionally, some markings were faded and unclear, further contributing 
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to misclassification. The similarity among some of these markings also led to confusion in the 

model’s predictions. 

While the F1 score provides a balanced measure of both precision and recall across all classes, 

in this case, prioritizing recall is more critical due to the safety risks posed by false negatives. 

Although precision, which relates to false positives, is important, its impact is less severe, 

primarily causing traffic congestion or disruption. For example, a false negative would miss an 

actual traffic sign, leading to potential safety hazards, while a false positive would detect a non-

existent sign, resulting in minor inconveniences. Therefore, the model should prioritize recall over 

precision to minimize safety risks. 

The visualization below compares the best-performing models with their ground truth values. 

The ground truth colours are assigned as follows: White represents Pavement, Blue represents 

Marking, Green represents Vegetation, Red represents Traffic-sign, Magenta represents Highway-

guardrails, Yellow represents Concrete-barriers, Black represents light poles, and Silver represents 

Clutter. 

Table 5 Point Transformer v2 Reduced model visualization 

Ground truth Prediction 
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A subset of four files from the original eight was carefully selected to visualize model 

predictions based on their representation of diverse environmental conditions. The selection 

process aimed to comprehensively evaluate the model's performance across varied scenarios, 

providing a more robust assessment of its capabilities and potential limitations in different contexts. 

The remaining test files can be found in Appendix A. 

The visualizations reveal that the model generally extracted markings correctly, although there 

were some instances where arrow markings were incorrectly labelled as pavement. Additionally, 

the model showed some confusion with traffic signs attached to light poles. Despite these minor 

issues, the model demonstrated good overall performance in detecting necessary infrastructure. 

This success across various environments highlights the model's potential for future transportation-

related applications.  

The ground truth colours for this full model were more extensive due to the inclusion of 

additional classes. The colour assignments are as follows: White represents Lane, Blue represents 

Shoulder, Olive represents Chevrons, Purple represents Broken line, Cyan represents Solid line, 

and Orange represents arrows. These additional classes provide a more detailed categorization of 

road markings. The remaining colours maintain their previous assignments: Green for Vegetation, 

Red for Traffic signs, Magenta for Highway guardrails, Yellow for Concrete barriers, Black for 
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light poles, and Silver for Clutter. This expanded colour scheme allows a more nuanced 

visualization of the various elements in transportation infrastructure scenes. 

Table 6 Point Transformer v2 Full model visualization 

Ground truth Prediction 
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For the full model, as the class specificity increases, its weaknesses become more apparent. In 

addition to the previously mentioned issues with lane markings, the model also experienced 

confusion between lanes and shoulders, especially in cases where a shoulder is present in the 

middle, leading to misclassification. Despite these challenges, the extraction of traffic signs and 

vegetation was excellent. However, the model still requires further modifications and 

improvements to handle the intricacies of all 12 classes effectively. 

5.1.2 Point classification result: 

The point classification semantic segmentation results and the corresponding confusion matrix are 

below. The point classification results were obtained in the same format as the Point Transformer 

v2 for comparative purposes. 

 
Table 7 Semantic segmentation results on Alberta Highway 2 datasets (reduced model) 

Class F1 score IoU 

Clutter 94.12 88.90 

Concrete Barrier 97.28 94.70 

Highway Guardrail 90.37 82.43 

Light Pole 82.73 70.55 

Marking 83.71 71.99 

Pavement 97.84 95.78 

Traffic Sign 96.36 92.97 

Vegetation 95.25 90.94 

Mean 92.21 86.03 

Total Accuracy 96.69 

 

Table 8 Semantic segmentation results on Alberta Highway 2 datasets (full model) 

Class F1 score IoU 

Arrows 82.65 70.43 

Broken Line 77.81 63.68 

Chevrons 52.48 35.57 

Clutter 90.76 83.09 

Concrete Barrier 97.27 94.69 

Highway Guardrail 88.17 78.84 

Lane 97.44 95.01 

Light Pole 82.70 70.51 

Shoulder 87.56 77.87 
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Solid Line 82.18 69.76 

Traffic Sign 96.95 94.07 

Vegetation 95.36 91.13 

Mean 85.94 77.05 

Total Accuracy 94.52 

 

 

Figure 14 Point classification confusion matrix reduced model 
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Figure 15 Point classification confusion matrix full model 

 

The point classification models were trained using different hyperparameter configurations to 

optimize their performance. Both the full and reduced models employed focal loss as the objective 

loss function, with a modulating factor of 𝛼 = 0.25, 𝛾 = 2. The full model was trained for 300 

epochs, while the reduced model was trained for 200 epochs. A learning rate of 0.001 was used, 

with a decay rate of 1% applied after each epoch. The models were trained with a batch size of 32, 

as detailed in the methodology section. The evaluation results demonstrated the superiority of the 

reduced model over the full model in terms of both the mean F1 score and the mean Intersection 

over Union (mIoU) metrics. Notably, the reduced model achieved an impressive mean F1 score of 

92.21% and a mIoU of 86.03%, outperforming the full model, which obtained a mean F1 score of 

85.94% and a mIoU of 77.05%. 

Table 9 shows the reduced and full model prediction visualization using the point classification 

approach. 
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Table 9 Transformer-based point classification visualization 

Reduce model prediction Full model prediction 

  

  

  

  

5.2 Semantic segmentation result comparison 

A comprehensive evaluation was conducted on both the full and reduced semantic segmentation 

models, with training and testing on the same dataset to ensure a consistent and fair comparison. 
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Notably, the same voxel size of 0.1m was employed across both models, further reinforcing the 

validity of the comparative analysis. A detailed examination of the results revealed distinct 

performance characteristics between the two approaches. 

Both the Point Transformer v2 and the Transformer-based point classification model 

demonstrated strong performance. However, the Transformer-based point classification model 

yielded superior results when applied to the full model with 12 classes. This model exhibited an 

enhanced capability to differentiate between various markings, leading to more precise 

classifications, as evidenced by higher accuracy metrics. 

In terms of visualization, both models produced high-quality results, effectively demonstrating 

misclassifications and laying a strong foundation for subsequent natural language scene 

descriptions. However, when considering processing time, the Point Transformer v2 was faster in 

both training and inference. Specifically, it required approximately 2.5 hours to train for 200 

epochs and 3 minutes for inference on a single segment. In contrast, the Transformer-based point 

classification model required roughly twice as much time for both training and inference, primarily 

due to the use of group vector attention in the Point Transformer v2 model and the 128-per-patch 

configuration in the Transformer-based point classification model. 

These contrasting strengths highlight an inherent trade-off between classification accuracy and 

processing time: 

1. Segmentation Performance: The Transformer-based point classification model excelled in 

overall accuracy for both full and reduced datasets. 

2. Visualization Quality: Both models demonstrated excellent visualization quality, 

effectively representing the highway environment. 

3. Processing time: The Point Transformer v2 exhibited significantly faster processing times, 

making it more efficient for both training and inference compared to the Transformer-based 

point classification model. 

This dichotomy in performance characteristics highlights the importance of aligning model 

selection with the specific requirements of the application. Tasks that prioritize precise 

classification may benefit more from the Transformer-based point classification model, while 

applications where processing time is critical may find greater value in the Point Transformer v2, 

even if it results in some compromise on classification accuracy. 
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Ultimately, selecting the most appropriate model requires careful consideration of the trade-

off between classification accuracy and processing time, based on the intended use case. The 

decision should be driven by the specific needs and priorities of the task, ensuring that the chosen 

model aligns optimally with the project’s objectives. 

5.3 Natural language scene description results 

A comparative study was conducted at the first stage to evaluate the description change regarding 

different views, as illustrated in the Figure below. This analysis employed the identical restrictive 

conditions outlined in the methodology section. The resultant outputs from this comparative 

analysis are presented below. The generated description results can be split into two categories: 

Ground truth results and Predicted results.  

Scene description using Ground truth files: 

Full model scenarios (12 classes): 

(a) (b) (c) 

(d) (e) 
(f)  

Figure 16 Ground truth of a sample (section 16 - Full model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 
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Table 10 Comparison of different views in generating descriptions (section 16) - Full model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A 

The point cloud data depicts a divided highway with either three or four 

lanes, distinguished by broken lines and one solid line marking the lanes. 

The highway features concrete barriers on both sides, indicating a separated 

corridor for traffic directions. Along the side of the road, there is a light 

pole and a stretch of vegetation, providing a clear demarcation between the 

roadway and the non-motoring area. This scenario highlights the 

infrastructure's design for organized traffic flow and safety measures with 

physical separations and illumination. 

Top, Isometric A, 

Isometric B, 

Isometric C 

The point cloud data reveals a highway environment with three lanes, as 

indicated by four broken lines and one solid line. A concrete barrier divides 

the lanes from what appears to be a shoulder area. Vegetation is present 

adjacent to the shoulder on one side of the highway. Additionally, a light 

pole is visible near the vegetation, providing illumination to the area. The 

scene suggests a well-structured highway with clear demarcations and 

safety elements in place. 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data illustrates a divided highway scene with a total of five 

lanes, delineated by multiple broken lines and solid lines. The highway 

includes a concrete barrier along one edge, ensuring clear separation from 

the adjacent area. Vegetation can be seen along the divided portion. 

Additionally, a light pole is clearly present, providing illumination for the 

roadway. This setup facilitates clear guidance and ensures safety for 

autonomous navigation by defining proper lane boundaries and 

emphasizing the divided nature of the highway. 

From the Table above, all generated outputs effectively describe the scene, albeit with varying 

word choices. A critical factor in evaluating these descriptions is their ability to quantify features, 

thereby extracting more detailed information. 

The first description exhibits uncertainty, questioning whether the road contains three or four 

lanes. This ambiguity reduces its utility for precise feature extraction. The second description 

incorrectly states the presence of three lanes. However, it accurately identifies four broken lines, 



54 

 

demonstrating partial accuracy in feature quantification. The confusion likely stems from the 

proximity of solid lines to the shoulder, which appears to have misled the GPT-4o model in its 

lane count. The final description is the most accurate, correctly identifying five lanes in total. 

Although it does not separately quantify broken and solid lines, its overall lane count is correct. 

This accuracy in total lane identification makes it the most valuable description for feature 

extraction purposes despite the lack of granular line-type differentiation. 

While analyzing a single section provides valuable insights, it is insufficient to draw definitive 

conclusions about the model's performance. Additional sections are presented and analyzed below 

to establish a more robust and representative assessment. 

(a)  (b) (c) 

 (d)  (e) 

(f)  

Figure 17 Ground truth of a sample (section 13- Full model) multi-view images (a) Isometric View A (b) Front View 

(c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

Table 11 Comparison of different views in generating descriptions (Section 13) - Full model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A 

The scene depicts a multi-lane highway consisting of three lanes. The lanes 

are delineated by two broken lines and are flanked by a solid shoulder line 
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on the right side. The highway is divided from opposite traffic by concrete 

barriers positioned on both sides. There is vegetation on the right side of 

the highway, along with a light pole and two traffic signs. The signage and 

markings offer essential guidance for drivers navigating this section of the 

road. 

Top, Isometric A, 

Isometric B, 

Isometric C 

The point cloud data depicts a highway with clearly marked lanes, 

including broken lines marking the lanes. There is a substantial shoulder on 

one side and vegetation alongside the road. The highway is bordered by 

vegetation and infrastructure items. Notable features include a light pole 

and traffic signs situated along the roadside. The configuration suggests a 

safe and organized environment designed to facilitate smooth vehicular 

movement. 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The scene depicts a multi-lane divided highway featuring several broken-

line lane markings. The highway is segmented by concrete barriers 

separating the lanes from a shoulder area. Vegetation lines the side of the 

shoulder, and the road is supported by multiple traffic signs. Additionally, 

a light pole is present on the roadside near the shoulder, contributing to the 

overall infrastructure and navigational aids visible in the scene. 

This section demonstrates the model's varying performance in quantifying and describing scene 

elements. In the first description, the model accurately identified the number of traffic signs and 

light poles, showcasing its ability to quantify certain features correctly. However, it incorrectly 

stated the highway had three lanes instead of four, indicating some limitations in quantifying lane 

markings. While unable to provide precise quantification of features, the second and third 

descriptions offered overall descriptions that were sensible and readily comprehensible to humans. 

This variation in performance makes it challenging to determine which description is superior 

definitively. The model's ability to provide useful information even when exact quantification is 

impossible highlights its flexibility. 
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(a)  (b) 
(c)  

 (d)  (e) 
(f)  

Figure 18 Ground truth of a sample (section 18 - Full model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

Table 12 Comparison of different views in generating descriptions (Section 18) - Full model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A 

The point cloud data captures a section of a divided highway with a light 

shoulder and multiple features. The highway consists of three lanes 

discerned by two broken lines and a solid line. A yellow concrete barrier 

separates the traffic flow on opposite sides of the highway. Vegetation lines 

one side of the highway, which is bounded by a shoulder area in blue. A 

red traffic sign is visible along the side of the highway, providing guidance 

or information to drivers. Each lane is clearly demarcated to facilitate the 

autonomous vehicle's navigation and lane-keeping abilities. 

Top, Isometric A, 

Isometric B, 

Isometric C 

The scene depicts a divided multi-lane highway with a concrete barrier 

separating two directions of traffic. The highway has three lanes delineated 

by broken lines, indicating the presence of multiple lanes for traffic flow. 



57 

 

A shoulder runs along the right side of the highway, with vegetation 

situated by the shoulder. Additionally, a traffic sign is present along the 

side of the road, presumably for providing essential information to drivers. 

The top and multiple isometric views provide clarity on the layout and 

different sections of road markings, shoulders, and boundaries. 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The scene captures a section of a multi-lane highway. This highway 

consists of four lanes, indicated by three broken lines and two solid lines, 

accompanied by a solid lane marking on the outer edges. A concrete barrier 

is present on one side, making it a divided highway, ensuring separation 

from the opposing traffic. On the other side, there is a clear shoulder 

followed by a stretch of vegetation. A traffic sign is evident by the roadside. 

Additionally, a vehicle is detected with a detailed depiction from multiple 

viewing angles. The presence of clear lane markings, a separated highway, 

and a vehicle suggests an organized traffic environment well-suited for 

autonomous navigation. 

This scene consists of a vehicle on the road which may affect model performance. However, in the 

six-view trial, GPT-4o could still distinguish four lanes with three broken lines and two solid lines, 

along with other key infrastructure elements. 

Overall, the model performs best when six views are input, demonstrating a high probability 

of correctly quantifying the number of features. This suggests that multiple viewpoints give the 

model more comprehensive information, leading to more accurate results. Interestingly, in cases 

where the model cannot confidently confirm the exact number of features, it resorts to broader 

descriptions instead of producing an incorrect output. This approach makes sense allowing the 

model to convey useful information even when precise quantification is challenging. Overall, these 

findings indicate that the model effectively utilizes multiple perspectives to enhance its 

understanding and description of objects or scenes, with six views seemingly offering an optimal 

balance of information for accurate feature quantification. 

It is important to note that GPT-4o, a large language model (LLM), exhibits some stochastic 

behaviour in its outputs. The generated descriptions may vary slightly even when presented with 

identical input images. This variability is an inherent characteristic of the model, designed to 

handle diverse scenarios while maintaining natural language fluency. Consequently, the output 
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descriptions possess a certain level of randomness, which should be considered when interpreting 

this comparative study's results. 

 

Reduced model scenarios (8 classes): 

(a) 
(b) (c) 

(d) (e) (f)  

Figure 19 Ground truth of a sample (section 16 - Reduced model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

Table 13 Multi-views generated descriptions (Section 16) - Reduced model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data depicts a highway scene encompassing a divided 

highway with a total of five lanes, demarcated by four broken lines and two 

solid lines. A concrete barrier is present, indicating division from opposing 

traffic. Vegetation is visible along the side of the road, and there is a light 

pole prominently located near the vegetation. The arrangement suggests a 

clear and organized highway structure suitable for vehicular navigation. 
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(a) (b)  
(c)  

(d) 
(e) 

(f)  

Figure 20 Ground truth of a sample (section 13 - Reduced model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

Table 14 Multi-views generated descriptions (Section 13) - Reduced model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data depicts a multi-lane highway with a total of three 

lanes, marked by broken and solid lines. The highway is bordered by a 

concrete barrier on one side, indicating it is a divided highway. There is 

also a light pole and a traffic sign located on the side of the road with 

vegetation present in the area. The overall scene suggests a well-defined 

roadway suitable for autonomous driving with clear lane demarcations, a 

physical divider, and navigational aids such as the traffic signs and light 

pole. 

 



60 

 

(a)  (b) (c) 

(d) (e) (f)  

Figure 21 Ground truth of a sample (section 18 - Reduced model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

Table 15 Multi-views generated descriptions (Section 18) - Reduced model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data depicts a divided highway with a total of four lanes, 

featuring two sections with broken lines and two sections with solid lines. 

A concrete barrier separates the opposing traffic flows. Adjacent to the 

highway on the right side is a stretch of vegetation, and a traffic signpost is 

visible near this area. On the left side, there seems to be another lane or 

shoulder lane. Additionally, a vehicle is present in the scene, traveling 

parallel to the highlighted traffic lanes. 

Sections 16 and 18 were described correctly. However, Section 13 contains some mistakes in 

describing the total number of lanes. Even though the six-view approach appears to be the best 

input method, there are still some errors in quantifying certain features. This may be due to the 

inherent randomness of GPT-4o or any Large Language Model (LLM). 

Scene description using predicted files: 
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The purpose of using both ground truth and predicted files in the model is to evaluate the 

performance when noise or misclassification is involved. This approach aims to determine whether 

such factors will affect the overall description generated by the model. Additionally, if the 

predicted files perform well, the intention is to automate the entire process. 

Full model scenarios (12 classes): 

(a)  (b)  (c)  

 (d)  (e) (f)  

Figure 22 Prediction of a sample (section 13- Full model) multi-view images (a) Isometric View A (b) Front View 

(c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

Table 16 Multi-views generated descriptions (Section 13) - Full model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data depicts a multi-lane divided highway. The road 

consists of four lanes separated by three broken lines. There is a wide 

shoulder on one side of the road, marked by a single solid line. Alongside 

the road, there is vegetation and a light pole. A traffic sign is also visible at 

the side of the road, providing guidance for drivers. The clear demarcation 
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of lanes, shoulder, and road objects suggests a well-structured roadway 

environment suitable for autonomous driving. 

 

(a) 
 (b)  

(c)  

 (d)  (e) (f)  

Figure 23 Prediction of a sample (section 16 - Full model) multi-view images (a) Isometric View A (b) Front View 

(c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

Table 17 Multi-views generated descriptions (Section 16) - Full model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The scene depicts a section of a multi-lane divided highway comprising 

three lanes marked by broken lines. The highway is bordered by a shoulder 

on one side and vegetation on the other. A concrete barrier separates the 

lanes in opposing traffic flows, ensuring safety. Additionally, a light pole 

(street light) is visible on the side of the road, which would provide 

illumination during nighttime or low-visibility conditions. This setup 

indicates a standard highway structure with appropriate safety features and 

road markings for lane guidance. 
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(a) 
 (b)  (c)  

(d)  (e) (f)  

Figure 24 Prediction of a sample (section 18 - Full model) multi-view images (a) Isometric View A (b) Front View 

(c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

Table 18 Multi-views generated descriptions (Section 18) - Full model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data represents a segment of a highway with three lanes, 

distinguished by solid and broken lane markings. A concrete barrier 

separates the lanes from the shoulder on one side, indicating this is a 

divided highway. The shoulder includes blue markings and is lined with 

vegetation on one side. Additionally, there is a traffic sign alongside the 

road, and a vehicle is present in the scene, situated near the concrete barrier. 

There are also scattered pieces of clutter throughout the scene. 

As some misclassification came into play, the model's performance was slightly affected. Sections 

16 and 18 have misclassifications between solid and broken lines, making the number of lanes 

challenging to distinguish. However, the model showed slightly better performance when using 

the ground truth files. 
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Reduced model scenarios (8 classes): 

(a)  (b)  (c)  

(d) (e) (f)  

Figure 25 Prediction of a sample (section 13 - Reduced model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

Table 19 Multi-views generated descriptions (Section 13) - Reduced model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data of the scene depicts a three-lane road with a single 

lane marking on each side and two lane markings separating the lanes. 

There is a concrete barrier on the left side of the road, indicating a divided 

highway. The road is lined with vegetation to the right, interspersed with a 

light pole and a traffic sign. The breakdown lane adjacent to the concrete 

barrier offers additional space. The lanes are clearly marked with dashed 

lines, ensuring proper lane guidance. 
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(a) 
 (b)  (c)  

(d)   (e)  (f)  

Figure 26 Prediction of a sample (section 16 - Reduced model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

Table 20 Multi-views generated descriptions (Section 16) - Reduced model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The scene depicts a stretch of a multi-lane highway with several lanes 

marked by broken lines, indicating multiple driving lanes. The highway is 

divided by concrete barriers, ensuring separation between the opposing 

traffic flows. There is visible vegetation along the side of the road. A light 

pole is also present on the roadside, indicating proper illumination for 

nighttime driving. The presence of these elements signifies that the 

environment is well-structured for autonomous driving, providing clear 

demarcations and necessary infrastructure for safe navigation. 
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(a) (b)  (c)  

(d)  (e)  (f)  

Figure 27 Prediction of a sample (section 18 - Reduced model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

Table 21 Multi-views generated descriptions (Section 18) - Reduced model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data shows a scene of a multi-lane highway consisting of 

four lanes. The lanes are demarcated by a mix of solid and broken lines. 

There is a concrete barrier on one side, indicating a divided highway, while 

the other side is bordered by vegetation. In addition, an overhead traffic 

sign is present to provide guidance. The highway shows the presence of 

another vehicle and some miscellaneous objects, potentially roadside 

clutter. The information suggests the autonomous vehicle's immediate 

environment, including crucial elements for navigation and safety, like lane 

markings, barriers, and potential obstacles. 

In summary, the reduced model provides less information than the full model due to combining 

marking and pavement into two classes rather than more split classes. However, the accuracy of 

the predicted files did not significantly affect the GPT-4o results. All the generated descriptions 



67 

 

are reasonable and make sense to humans. The outputs for all other files are provided in Appendix 

B.  
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Chapter 6. Conclusion, Contribution, and Future Works 

6.1 Conclusions 

LiDAR technology holds many potential applications that have yet to be fully developed, and the 

use of Natural Language Processing (NLP) in the transportation sector is even less explored. This 

research addresses this gap by utilizing existing highway LiDAR data, without RGB and image 

inputs, to extract highway infrastructure elements using two advanced Point Transformer models. 

This approach transcends traditional single or binary segmentation tasks and explores the 

conversion of segmented point cloud data into textual descriptions, laying the groundwork for 

future applications. 

The study conducted semantic segmentation tasks on a 2.5km highway segment in Alberta, 

Canada. The Point Transformer v2 achieved an overall Mean Intersection over Union (IoU) score 

of 78.29% and a Mean F1 score of 86.48%. The Transformer-based point classification achieves 

an overall Mean IoU score of 86.03%, a Mean F1 score of 92.21%, and demonstrated strong 

visualization capabilities. These results underscore the efficacy of Transformer structures in 

processing point cloud data. 

The natural language processing tasks integrated multi-view imagery derived from semantic 

segmentation outputs with the GPT-4o model, subject to specific constraints. When utilizing 

ground truth data, the model effectively quantified the number of lanes and other infrastructure 

elements in most cases. As expected, the full class model provides more comprehensive 

information than the reduced class model. However, occasional inaccuracies arose due to scene 

complexity, such as unavoidable vehicle trajectories or indistinct road markings, as well as the 

inherent stochasticity of large language models. Furthermore, discrepancies between the predicted 

segmentation output and the ground truth led to descriptions with diminished accuracy compared 

to those generated from ground truth data.  

This research not only advances state-of-the-art point cloud processing and interpretation but 

also provides a foundation for future work in various domains. Potential applications include 

autonomous vehicle navigation, infrastructure maintenance and asset management, infrastructure 

planning and design, environmental monitoring, accessibility assessment, more accurate accident 

scene reconstruction, and climate change impact assessment. 

The interdisciplinary nature of this work underscores its potential for wide-ranging impact and 

further research opportunities. This study contributes to developing more natural and effective 
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interfaces between humans and 3D-aware AI systems by leveraging advanced machine learning 

models and extensive point cloud datasets. This lays the groundwork for innovative applications 

across multiple fields, emphasizing this research's broad applicability and significance. 

6.2 Contributions 

This research presents a comprehensive pipeline for processing raw point cloud data into human-

readable descriptions, leveraging two Transformer-based architectures and the GPT-4o model. The 

contributions of this work are as follows: 

• Enhancement of Annotation Tools:  improved upon the SUSTech POINT system, 

developing a more user-friendly online annotation format. This enhancement facilitates 

more efficient and accurate labelling of point cloud data, potentially accelerating future 

research in this domain. 

• Novel Application of Transformer-based Models for Highway Infrastructure Segmentation: 

Proposes and implements two Transformer-based semantic segmentation models tailored 

explicitly for extracting multiple highway infrastructure elements in Alberta's rural 

highway environments. This application demonstrates the adaptability of Transformer 

architectures to complex 3D point cloud data in real-world scenarios. 

• Integration of large language model (LLM) for Automated Scene Understanding: Introduce 

a framework of using multi-view images and GPT-4o model to convert segmented point 

cloud data into human-readable text descriptions. This novel integration bridges the gap 

between raw sensor data and easily interpretable scene understanding, opening new 

possibilities for applications in autonomous driving, infrastructure management, and 

beyond. 

• End-to-End Pipeline for LiDAR Data Interpretation: By combining these elements, we 

present a complete process flow from raw point cloud data to semantic segmentation and 

finally to natural language descriptions. This end-to-end approach represents a significant 

step in automating complex 3D environmental data interpretation. 

• Expansion of LiDAR Applications: Our work demonstrates the potential for extending 

LiDAR applications across various fields. We facilitate broader adoption and utilization of 

LiDAR technology in research and practical applications by providing a framework for 

converting point cloud data into human-readable formats. 
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6.3 Research Limitations & Future Works 

6.3A Semantic segmentation limitation and future works: 

While the method demonstrates promising accuracy and visualization capabilities, there remains 

room for improvement, particularly in the accuracy of solid and broken markings in full-class (12 

classes) segmentation tasks. Future work will focus on refining these aspects to further enhance 

the reliability and applicability of LiDAR data in infrastructure management and planning. 

Several limitations of this study must be considered. Firstly, the model was trained, tested, and 

optimized based on 2.5 km road segments specific to the Alberta highway environment. Applying 

this model to other highway environments may not achieve the desired accuracy. Additionally, 

LiDAR sensors can only capture data from surfaces directly visible to the sensor so that occluded 

objects can affect segmentation accuracy. 

Despite addressing class imbalances with different loss functions, the natural characteristics of 

the LiDAR data from Alberta highways resulted in highly imbalanced classes. The large volume 

of highway point cloud data presents significant computational challenges, and limited GPU 

memory restricts the ability to process multiple segments simultaneously. Furthermore, the limited 

training data could lead to overfitting, highlighting the need for an expanded dataset. 

Achieving real-time semantic segmentation is challenging due to high computational demands 

and the need to process continuous data streams rapidly. The lack of colour information in LiDAR 

data makes segmentation more difficult. Clear markings are more likely to be correctly identified 

than faded ones, indicating a limitation of the current approach. 

Transformer models, while powerful for semantic segmentation tasks, face challenges due to 

their substantial computational resource requirements compared to traditional CNNs. This can 

limit their deployment in real-time or resource-constrained environments. 

Future work in semantic segmentation should focus on three key areas. First, expanding the 

training dataset beyond the 2.5 km currently used for both models can enhance performance, 

improve generalization, and reduce the risk of overfitting. Second, while the current accuracy is 

strong, optimizing processing time and achieving multi-segment capabilities are critical for 

improving efficiency. Lastly, exploring alternative deep learning architectures beyond 

transformers is essential, as newer models continue to demonstrate high accuracy. However, this 

exploration requires careful experimentation, as the optimal solution varies depending on the 
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specific segmentation task, available computational resources, and the desired balance between 

accuracy and efficiency. 

6.3B Natural language scene description limitation and future works: 

The scene descriptions were generated using a pre-trained GPT-4o model, which is a large 

language model. While powerful, this approach has several limitations. First, since the model is 

not open-source, it's impossible to fine-tune the parameters to best suit specific use cases. 

Additionally, large language models inherently produce outputs with considerable randomness. 

The model also exhibits instability in quantifying certain features in particular environments, with 

complex scenes proving particularly challenging to describe accurately. These limitations 

highlight the trade-offs between the model's flexibility and consistency, especially when dealing 

with intricate visual information. The inability to adjust the model's parameters and its variable 

performance across different scenarios underscores the challenges of using general-purpose 

language models for specialized tasks like detailed scene description and feature quantification. 

Future work can focus on developing a custom LLM model to address these limitations using 

domain-specific datasets. Additionally, exploring direct point cloud-to-text conversion methods 

using clustering techniques could improve scene descriptions' accuracy and consistency, bypassing 

the need for intermediate image generation. 
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Appendix A 

Table 22 Reduced and full model ground truth visualization 

8 classes (reduced model) 12 classes (full model) 
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Table 23 The rest prediction visualization (4 out of 8) for Full model 

Point Transformer v2 Transformer-based Point Classification 
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Table 24 The rest prediction visualization (4 out of 8) for Reduced model 

Point Transformer v2 Transformer-based Point Classification 
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Appendix B 

Full model: 

(a)  (b)  (c)  

(d)   (e)  (f)  

Figure 28 Prediction of a sample (section 7 - Full model) multi-view images (a) Isometric View A (b) Front View (c) 

Side View (d) Isometric View B (e) Isometric View C (f) Top View 

 

Table 25 Multi-views generated descriptions (Section 7) - Full model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data reveals a scene of a multi-lane highway with 

vegetation alongside. The highway is divided by highway guardrails, 

indicating it is a divided highway. There are three lanes, distinguished by 

broken lines and solid lines, ensuring structured traffic flow. Additionally, 

the presence of a light pole suggests sufficient illumination for nighttime 

driving. The scene provides adequate space for vehicles to navigate and is 

bordered by vegetation, likely offering a buffer between the roadway and 

surrounding areas. 
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(a)  (b)  (c)  

(d)   (e)  

(f)  

Figure 29 Prediction of a sample (section 8 - Full model) multi-view images (a) Isometric View A (b) Front View (c) 

Side View (d) Isometric View B (e) Isometric View C (f) Top View 

 

Table 26 Multi-views generated descriptions (Section 8) - Full model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data captured represents a multi-lane road with three lanes 

demarcated by two solid lines and two broken lines. The roadway is a 

divided highway, evident by the presence of a concrete barrier that 

separates the direction of travel. To the right of the roadway, there is 

vegetation noted. Additionally, a light pole is present near the edge of the 

road, providing illumination for the area. The scene suggests an 

environment designed for organized and clearly-separated lane usage, 

optimal for autonomous navigation. 
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(a)  (b)  
(c)  

(d)  
 (e)  (f)  

Figure 30 Prediction of a sample (section 21 - Full model) multi-view images (a) Isometric View A (b) Front View 

(c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

 

Table 27 Multi-views generated descriptions (Section 21) - Full model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data shows a divided highway with multiple lanes, 

consisting of solid and broken lines that mark four lanes in total. The 

highway is divided by concrete barriers and highway guardrails, providing 

separation for opposing traffic flows. Along the road, there are multiple 

traffic signs and a light pole for guidance and illumination. Vegetation is 

visible on the side of the road, and shoulders are clearly marked. The scene 

reflects a typical highway setup with necessary road signage and 

infrastructure elements for traffic management and safety. 
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(a) 
 (b)  

(c)  

(d)  
 (e)  

(f)  

Figure 31 Prediction of a sample (section 26 - Full model) multi-view images (a) Isometric View A (b) Front View 

(c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

 

Table 28 Multi-views generated descriptions (Section 26) - Full model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The provided point cloud data represents a scene of a roadway featuring 

two lanes marked by broken lines and solid lines, indicating a divided 

highway. There are chevron markings in the lanes, suggesting a merge or a 

start of an offramp or onramp. On the left side of the roadway, there is a 

concrete barrier, highlighting the separation between traffic directions. 

Near the roadway, a light pole is present, providing illumination for the 

area. Additionally, there is a visible traffic sign, potentially giving 

important traffic information or warnings to the drivers. Vegetation borders 

the right side of the roadway, further indicating the roadside environment. 
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(a) 
 (b)  

(c)  

(d)  
 (e)  (f)  

Figure 32 Prediction of a sample (section 34 - Full model) multi-view images (a) Isometric View A (b) Front View 

(c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

 

Table 29 Multi-views generated descriptions (Section 34) - Full model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data captures a scene on a divided highway with multiple 

lanes separated by guardrails. There are three lanes, each marked with 

broken lines. On one side of the road, there is a shoulder, and alongside it, 

vegetation is present. On the other side, there's clearly defined vegetation 

as well. Additionally, an overhead traffic sign is visible, which is mounted 

on a pole, providing guidance for drivers. The scene also contains light 

poles, enhancing visibility in this highway environment. 
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Reduced model: 

(a) 

 (b)  (c)  

(d)   (e)  (f)  

Figure 33 Prediction of a sample (section 7 - Reduced model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

 

Table 30 Multi-views generated descriptions (Section 7) – Reduced model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data depicts a highway scene with three lanes. The lanes 

are delineated by broken line markings. Dividing the highway from the 

surroundings is a guardrail, indicating it is a divided highway. Vegetation 

is observed on both sides of the road, providing a clear boundary. 

Additionally, a tall light pole is present on the right side of the scene, 

contributing to roadway illumination. 
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(a)  (b)  (c)  

(d)  
 (e)  

(f)  

Figure 34 Prediction of a sample (section 8 - Reduced model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

 

Table 31 Multi-views generated descriptions (Section 8) - Reduced model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The scene depicts a multi-lane divided highway from several perspectives. 

The highway features three lanes, each marked by broken lines. The lanes 

are bordered by vegetation along the right side and a concrete barrier 

median on the left, indicating it is a divided highway. A light pole is visible 

near the concrete barrier, providing illumination. The presence of 

vegetation alongside the road further adds to the highway's environmental 

context. This setup provides a clear and orderly driving environment for the 

autonomous vehicle. 
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(a)  (b)  (c)  

(d)  
 (e)  (f)  

Figure 35 Prediction of a sample (section 21 - Reduced model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

 

Table 32 Multi-views generated descriptions (Section 21) - Reduced model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The provided colored point clouds depict a highway scene with multiple 

lanes marked by dotted lines. The highway is divided by concrete barriers, 

indicating opposing traffic flows. Vegetation runs along the highway's 

edges and the median, while traffic signs are present along the route. A light 

pole is visible on the left side of the highway, contributing to the road's 

illumination. This scene includes all elements necessary for safe navigation 

and lane-keeping in autonomous driving scenarios. 
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(a) 
 (b)  

(c)  

(d)  

 (e)  (f)  

Figure 36 Prediction of a sample (section 26 - Reduced model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

 

Table 33 Multi-views generated descriptions (Section 26) - Reduced model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data represents a multi-lane road with clear lane markings 

and directional arrows on the pavement, indicating structured traffic flow. 

There are four visible lanes, with two solid outer lines and multiple internal 

broken lines. A light pole is positioned adjacent to the road. The scene 

includes a concrete barrier on one side, indicating a divided highway. 

Vegetation is present to the side, suggesting a roadside or median green 

space. Additionally, a traffic sign is visible near one of the lanes, providing 

important guidance for drivers. 
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(a)  (b)  (c)  

(d)  
 (e)  

(f)  

Figure 37 Prediction of a sample (section 34 - Reduced model) multi-view images (a) Isometric View A (b) Front 

View (c) Side View (d) Isometric View B (e) Isometric View C (f) Top View 

 

Table 34 Multi-views generated descriptions (Section 34) - Reduced model 

Multi-views Generated Description 

Front, Side, Top, 

Isometric A, 

Isometric B, 

Isometric C 

The point cloud data represents a multi-lane highway scenario with six 

lanes, delineated by five broken lane markings and two solid markings on 

either side. The highway is divided by guardrails separating the opposite 

traffic flows. Vegetation can be seen on both sides of the highway. There 

is an overhead traffic sign supported by a structure extending over the 

roadway and a light pole nearby. The traffic sign is positioned above the 

roadway, likely for visibility and guidance purposes, while the light pole 

contributes to road illumination. 

 


