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Abstract

The goal of this paper is to provide an account of the development of
multiplication skill and knowledge. I examined age-related changes and individual
differences for Grade 4 and 6 children in (a) the computational skills used to solve simple
multiplication problems including the procedures used and indices thought to reflect the
representation of facts in memory, (b) concepts important for understanding
multiplication, and (c) working memory important for mathematics. The use of multiple
measures allowed for the opportunity to provide an integrated account of the development
of multiplication including evaluating the developing relations between different areas
important for multiplication. The performance of 60 children from Grade 4 and 60 children
from Grade 6 was evaluated using a number of tasks. Specifically, children solved 28
multiplication problems. Accuracy and latency were recorded, as were immediately
retrospective self-reports on how the problem was solved. As well, children solved a
number of problems based on the following concepts: (a) commutativity, (b) relations
between repeated addition and multiplication, (c) part-whole relations, (d) relative effects
of operations on numbers, (e) relative magnitudes of numbers, (f) concepts important for
solving word problems, and (g) relations between concrete manipulatives and symbolic
representations of specific problems. Working memory was assessed using a backward
digit span and an operation span task. Finally, children's performance on a test of
mathematical achievement was evaluated. I terms of simple multiplication I found that:
children use multiple procedures to solve multiplication problems, problem characteristics
are important in predicting solution latencies, children use specific procedures on specific

types of problems, and variables important for predicting solution latencies change with



age. Ifound that conceptual understanding in multiplication is influenced by the context in
which it is assessed, and that the development of concepts is uneven. Specifically, it
appears that concepts which can be directly applied to solve problems are acquired first,
followed by concepts used to enable solving novel problems. In terms of working
memory, it appears that mathematical achievement is related to domain-specific working
memory in Grade 4 but global working memory in Grade 6. Implication of the results are
discussed in terms the appropriate assessment of children's performance, models of
performance in multiplication, principles of development, and the development course in

the acquisition of multiplication skill and knowledge.
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DEVELOPMENTAL CHANGE AND INDIVIDUAL DIFFERENCES IN CHILDREN'S
MULTIPLICATION

Human cognition is characterized by change. Memory changes as new information
is added (e.g., Loftus, 1992) and young children often solve problems differently than
older children, adolescents, and adults (e.g., Inhelder & Piaget, 1958; Piaget, 1952).
Researchers interested in human thinking must try to understand the changes that occur
with development and mathematics is a useful domain for studying these changes.

The importance of mathematics is evident across the developmental spectrum.
Young children must make decisions regarding "more" or "less" and learn to count to
interact with their environment. Mathematics is an important part of the curriculum for
school-aged children. As well, the acquisition of mathematical skill is necessary to function
in a complex financial and technological society such as ours. Sales clerks must use basic
mathematics in retail transactions. Individuals in the construction industry must
understand measurement and use geometric principles. Physicians and nurses require
mathematics ability to calculate an appropriate dosage of medicine. Accountants,
engineers, and scientists all use mathematics. Research on the processes that underlie
mathematics has been important for generating insights about the development of
remembering, problem-solving, and conceptual understanding, and these insights have led
to hypotheses and conclusions that extend beyond the domain of arithmetic.

Unfortunately, an integrated account of development in mathematics has not been

provided because most researchers have focused exclusively on a single area of cognition:
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either computational skills, conceptual knowledge, or working memory. Although it is
important to study and understand change within a specific area, an unfortunate
consequence of this approach is that research on mathematics has become fragmented. To
address the fundamental questions about the acquisition of mathematics skill an integrated
account of the different areas of cognition is needed.

My goal is to provide an account of age-related changes in children's multiplication
skill and knowledge that includes examination of computational skills, conceptual
knowledge, and working memory. The paper is organized using two themes:
Developmental Changes in Multiplication Skill and Knowledge; and Individual Differences
and Mathematical Achievement. It is important to evaluate age-related changes to
understand the acquisition of multiplication skill and knowledge. Although normative
models may fit group data well, they may misrepresent the patterns in data from each
individual in the group (Widaman & Little, 1992). Consequently, it is also important to
examine individual differences, and relations among measures of mathematics skill.

The Introduction is divided into three sections. In the first section the importance
of multiplication skill and knowledge is discussed and a rationale for the use of multiple
measures is presented. To study changes in multiplication skill, clearly defined models are
needed in order to measure important aspects of behavior. Consequently, the underlying
theories of computational skill, conceptual knowledge, and working memory are also
presented. In the second and third sections, background information and rationale are

provided for the study of (a) developmental changes, and (b) individual differences in
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multiplication skill and knowledge. In each of these sections, previous research related to
computational skill, conceptual knowledge and working memory is reviewed. As well, the
empirical questions addressed in this study, possible outcomes, and implications for
development are presented.

The organization of the Results and Discussion section follows that of the
Introduction. First, data related to age-related changes in multiplication skill and
knowledge are presented. Second, data regarding individual differences in multiplication
skill and knowledge, and mathematical achievement are presented. Finally, conclusions
regarding the development of multiplication are reviewed in the General Discussion
section.

Models of Multiplication Skill and Knowledge

Children's acquisition of basic multiplication knowledge is important for complex
mathematical processing. As children encounter advanced mathematics problems (i.e.,
multi-digit multiplication), the ability to compute multiplication facts efficiently allows
them to focus on the problem-solving strategies required for accurate performance.
Children with poor multiplication skills often have difficulty in advanced mathematics.
Although researchers have evaluated mathematical skills important for children's counting,
addition, subtraction (Siegler & Schrager, 1984), and for addition and multiplication in
adults (Ashcraft, 1987; Widaman & Little, 1992; LeFevre, Bisanz, Daley, Buffone,
Greenham, & Sadesky, 1996; LeFevre, Sadesky, & Bisanz, 1996), few investigations have

been conducted on processes that underlie the development of multiplication in children
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(Ashcraft & Christy, 1995; Campbell & Graham, 1985; Cooney, Swanson, & Ladd, 1988;
Koshmider & Ashcraft, 1991; Siegler, 1988a).

In this study multiple measures of computational skills, conceptual knowledge,
working memory, and mathematical achievement were used to examine age-related
changes, and individual differences in multiplication abilities of children in Grades 4 and 6.
The use of multiple measures allowed the opportunity to provide an integrated account of
the development of multiplication not present in the existing literature. By using measures
of computational skills, conceptual knowledge, and working memory, I was able to
identify some principles of mathematical development that are common to all areas. As
well, having a number of measures on each subject was useful in evaluating the developing
relations between different areas important for multiplication.

Computational Skill

In most models of arithmetic performance, computational skill is considered to
consist of (a) the representation of number facts in long-term memory, and (b) the
procedures children use to access those facts. Procedures are mental operations or
sequences of operations that occur over time, accomplish a goal, and can be stored in
memory (Bisanz & LeFevre, 1990). Studying computational skill in multiplication
provides information regarding changes in the representation of mathematical knowledge
and the different mental operations children use to solve problems. Two families of
models have been used to characterize children's computational performance in

multiplication. Problem-answer association models are based primarily on direct retrieval
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of problem-answer associations from memory. Memory/procedure models are similar, but
they also incorporate alternative procedures children use when solving problems.
Problem-Answer A iation Model

Most models of arithmetic performance in children and adults share the assumption
that numbers are stored as nodes in an associative network in long-term memory
(Ashcraft, 1982, 1992; Campbell & Graham, 1985 ; Campbell, 1987). When an arithmetic
problem is presented, the network becomes activated and the activation spreads to the
nodes representing the numbers specified in the problem. These models differ in how the
candidate nodes become activated and how the network is organized, and so the ways in
which they are used to explain empirical findings differ as well. The most frequent
empirical finding in simple arithmetic is the problem-size effect: as the magnitudes of the
operands in a single digit arithmetic problem increase, so do solution times and errors
(Ashcraft & Christy, 1995; Campbell & Graham, 1985; Cooney et al., 1988; Koshmider &
Ashcraft, 1991). For example, latencies for "large" problems, such as 7 x 8, tend to be
longer than for "small" problems, such as 2 x 3.

In structural accounts of arithmetic performance, problems are thought to be
stored in a representation similar to a two-dimensional table (Ashcraft & Battaglia, 1978;
Widaman & Little, 1992; Widaman, Geary, Cormier, & Little, 1989). Operands from 0 to
9 define the rows and columns of the table, and correct answers are stored at the
intersection of the rows and columns. When a problem is presented, activation spreads

from the corresponding operands across the table until an intersection occurs at the
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location of the product (Widaman et al., 1989). Time to retrieve an answer is assumed
to be the time required for the search across the table until the row and column intersect,
which in turn is a function of the size of the operands. Because problems with large
operands require searching through a greater number of links than problems with small
operands, the problem-size effect is the result of the search distance in the network. A
number of structural variables have been used as indices of the problem-size effect,
including sum of the operands (Stazyk, Ashcraft, & Hamann, 1982), sum square (Ashcraft
& Battaglia, 1978), and the product of operands (Miller, Perlmutter, & Keating, 1984).
Although this line of research has led to insights about how arithmetic facts may be
represented in memory, relatively little attention has been paid to the process through
which facts are acquired or to how the representation of number facts may change with
development.

In learning or experiential models, arithmetic facts are stored in a network with
nodes representing problem operands connected to nodes representing answers. The
strength of associations between nodes varies as a function of the experience an individual
has during the learning of basic multiplication facts. Acquisition of number facts and age-
related differences in performance are linked to frequency of exposure and order of
acquisition (Ashcraft, 1987; Ashcraft & Christy, 1995; Campbell & Graham, 1985;
Campbell, 1987; Graham & Campbell, 1992). Because small-number problems are
encountered sooner and more often than large-number problems, the predictive power of

structural variables derives, in part, from a correlation with order of acquisition and
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frequency (Campbell & Graham, 1985). By this account, the problem-size effect is not a
consequence of the distance searched through the network. Instead, it is largely the result
of large-number problems being tested less often and occurring later in the learning
sequence. However, frequency alone cannot account for the advantages shown by some
classes of problems. For example, tie problems and problems with "S" as an operand are
not presented more frequently than other problems of a similar magnitude, but children
solve them more quickly and accurately (LeFevre et al., 1996a).
Memory/Procedure Models

In memory/procedure models of multiplication, number facts are considered to be
stored in an associative network, but retrieval from that network is assumed to be
supplemented by other procedures. Siegler and Shipley (1995) developed the Adaptive
Strategy Choice Model (ASCM) to account for how children choose a procedure and
progress from using counting-based procedures to use of retrieval. In ASCM each fact is
associated with a variety of possible answers. The strongest or most "peaked" association
develops between the problem and its correct solution, but related answers may also have
appreciable connections, resulting in a distribution of associations. ASCM also includes
stored procedural knowledge about non-retrieval solutions. Whether retrieval or some
other procedure is chosen for problem solving is governed by the relative strengths of all
associated procedures and associative strengths in the stored representation of answers.

When a problem is solved, ASCM stores information not only about the answer to

the particular problem but also about the solution procedure. This information is then
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used to modify the data base regarding the procedure, the problem, and their interaction.
Knowledge of each procedure includes information about (a) its past speed and accuracy
aggregated over all problems (global data), (b) its speed and accuracy on problems with a
particular feature (featural data), (c) its speed and accuracy on each particular problem
(problem-specific data), and (d) its newness (novelty data). Whenever a problem is
presented, speed, accuracy, and novelty data for each procedure are used to make
projections concerning how well the procedure is likely to do in solving the problem.
Selection of a procedure is based on the projected strength of each procedure as
determined by global data, featural data, problem-specific data, and novelty data (the
strength of a relatively new procedure is boosted beyond what it's past performance alone
would justify). The probability of choosing a particular procedure is proportional to that
procedure's projected strength relative to that of all procedures combined. Ifa backup
procedure is chosen, it is executed to completion. If retrieval is chosen an individual
attempts to retrieve an answer to a problem directly from his or her knowledge base of
arithmetic facts. The probability of any given answer being retrieved on a particular
retrieval effort is proportional to the associative strength of that answer relative to the
associative strengths of all answers to the problem. If the associative strength of the
retrieved answer exceeds a pre-set confidence criterion, then the child states the answer
(Siegler & Schrager, 1984). If not, the individual tries to retrieve again or chooses a

backup procedure.

Lemaire and Siegler (1995) used ASCM as a basis for making several predictions
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about developmental changes in the use of procedures. First, use of retrieval should
become increasingly frequent with development. Answers become associated with the
problem on which they were stated and the increment is greater for correct answers than
for incorrect ones. Assuming that backup procedures result in the correct answer more
frequently than any other answer, the correct answer grows in strength relative to all other
answers. As the associative strength between the problem and the correct answer grows
relative to associations between the problem and incorrect answers, the probability of
retrieving the correct answer grows. The increasing success of retrieval also leads to it
being tried before other procedures. Second, execution of procedures should improve in
terms of accuracy and latency. Knowledge about each procedure's past speed and
accuracy are stored. Consequently, when children can choose among alternative ways of
executing a given procedure, they should increasingly choose the ones that are fastest and
that yield the most accurate results. Finally, choice among procedures should become
more adaptive. In ASCM, the same factors that determine problem difficulty -the number
and difficulty of operations needed to execute backup procedures correctly - also
determine probability of use of retrieval. Consequently, the more difficult the problem, the
more likely that a backup procedure will be used. As experience in solving problems is
gained, ASCM predicts that the ability to estimate the likely effectiveness of each
procedure for specific problems should increase.

Conceptual Knowledge

Educators and researchers have often ignored the potentially important role of
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conceptual knowledge in children's acquisition of multiplication. Children are typically
taught to memorize multiplication facts. Most research on multiplication is related to the
storage of number facts in memory and the procedures used to access those facts
(Ashcraft & Christy, 1995; Campbell & Graham, 1985; Lemaire & Siegler, 1995).
Mathematics involves more than rote memorization or learning algorithms, and a complete
account of multiplication skill should include evaluation of the underlying concepts.

Researchers have examined conceptual knowledge in areas such as rational
numbers (Behr, Lesh, Post, & Silver, 1983), whole numbers and numeration (Steffe &
VonGlaserfeld, 1983), strategy use (Dixon & Moore, 1996), and the relations with
procedural knowledge (Ohlsson & Rees, 1991). A number of terms have been used to
describe conceptual knowledge, including intuitive understanding, informal understanding,
and principled knowledge Despite the diverse domains studied and different terms used,
many researchers have consistently defined conceptual knowledge in terms of the
underlying principles for a domain and their interrelations (Baroody & Ginsburg, 1986;
Byrnes & Wasik, 1991; Dixon & Moore, 1996; Hiebert & LeFevre, 1986).

m nt for Multiplication

When researchers have studied conceptual development in multiplication their
focus has been narrow. For example, Nunes and Bryant (1995) examined only
commutativity in multiplication. However, many forms of behavior are related to
conceptual knowledge (Bisanz & LeFevre, 1992) and understanding multiplication

involves "understanding" a host of related concepts that can be assessed in different
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contexts. These concepts include (a) commutativity, (b) relations between repeated
addition and multiplication, (c) part-whole relations, (d) relative effects of operations on
numbers, (e) relative magnitudes of numbers, (f) concepts important for solving word
problems, and (g) relations between concrete manipulatives and symbolic representations
of specific problems. These concepts provide the basis for the flexible application of
multiplication skill in problem-solving, not just retrieval of facts from memory.

Commutativity. An important mathematical principle in children's understanding
of arithmetic is commutativity of multiplication (i.e., ax b =b x a). Nunes and Bryant
(1995) found that commutativity of multiplication was relatively late in developing (10
years of age), and that understanding was influenced by the context in which the problem
was presented. Assessment of commutativity often involves examining whether a child
can directly apply the principle to solve a problem. For example, Baroody and Gannon
(1984) studied kindergarten children's understanding of the principle of commutativity by
examining their solutions for a number of problems. Each child was first presented with a
problem to solve, such as 6 + 4. Next, the experimenter wrote down the same addends in
the reverse order, 4 + 6, and asked if the sum would be 10. If a child understood that
addition was commutative, then he would answer "yes" without having to recalculate the
answer. A child who did not understand that addition was commutative would add 4 and
6, usually by counting, before answering the question.

Repeated addition. Most elementary school mathematics programs use models

such as sets, arrays, number lines, and successive addition to teach multiplication. Central
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to each of these methods is the procedure of repeated addition of equal addends (Cooney
et al, 1988). If children recognize the connection between repeated addition and
multiplication, they can directly apply their understanding of repeated addition to solve
multiplication problems (e.g., solving 4 x 13 by using 13 + 13 + 13 +13).

Part-whole relations. In multiplication the part-whole schema specifies relatisns
among three numbers, a whole and two parts that multiply to the value of the whole
(Resnick, 1983). Interpreting quantities in terms of parts and wholes permits children to
think of numbers as compositions of other numbers, enabling them to develop flexible
numerical computation (Greeno, 1991). Because procedures such as grouping and
repeated addition are often used to teach multiplication, an understanding of part-whole
relations is important for developing multiplication skills. Derived-fact strategies have
been used to examine children's understanding of part-whole relations. They involve using
a set of known number facts to derive the solution to unknown combinations. For
example, when solving 4 x 6 children may break the problem into two parts. One part
may be a fact that is already known (i.e, 4 x § = 20). They then add the remaining 4 to
that product to get the answer (i.e., 20 + 4 = 24). Grade 3 and 4 children have been
reported to use derived-fact strategies on 20-50% of selected simple addition and
subtraction problems (Hubbard, 1994; Putnam, deBettencourt, & Leinhardt, 1990).

Rﬂlamﬁeﬁmumanmﬂmmx Number sense refers to
several important but elusive capabilities, including flexible mental computation, numerical

estimation, and quantitative judgment (Greeno, 1991; Howden, 1989). It develops
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gradually as a result of exploring numbers, visualizing them in a variety of contexts, and
relating them in ways that are not limited by traditional algorithms (Howden, 1989). Two
related principles of number sense important for multiplication are understanding the
relative magnitudes of numbers and understanding the relative effects of operations on
numbers (Thompson & Rathmell, 1989). The product-less-than-operand principle
specifies the allowable minimum magnitude of the product in multiplying two whole
numbers (i.e., that the product must not be less than either operand). The product-equal-
to-operand principle specifies that the product can only equal an operand if the other
operand is one (Krzanowska, 1988). These principles can be assessed by having children
directly apply them to evaluate the accuracy of answers for specific problems.
Krzanowska (1988) found that 40% of Grade 4 and 6 children use the product-equal-to-
the-operand principle and 24% use the product-less-than-operand principle to solve
verification problems in multiplication. Number sense also involves the ability to estimate
answers to problems. For estimation in multiplication, children's understanding of place-
value and the influence of arithmetic operations enables them to generate an answer close
to the correct answer.

Word problems. Many children at all ages have difficulty with non-routine
problems that require some analysis or thinking (Carpenter, Corbitt, Kepner, Linquist, &
Reys, 1980; Carpenter, Matthews, Lindquist, & Silver, 1984). Solving word problems
requires a thoughtful analysis: defining the problem; planning a solution strategy;

implementing the solution strategy; and checking the results (Baroody, 1987). A
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thoughtful analysis entails conceptual understanding. Specifically, to solve word problems
children must generalize previously learned information to a novel setting. Use of
conceptual knowledge helps children in deciding what information is needed to solve the
problem (and what information is irrelevant), which solution methods are appropriate (and
which are inappropriate), and which solutions are reasonable (and which indicate the need
for further effort) (Baroody, 1987).

Proofs using manipulatives. In teaching multiplication concrete manipulatives are
often used to demonstrate the symbolic representation of specific problems. For example,
to demonstrate that 4 x 3 = 12, a teacher may separate colored blocks into 4 groups of 3
and ask the children to add them together to make 4 groups of 12 blocks. Conceptual
knowledge involves seeing the relations between concrete and symbolic information.

Itiplicati n

Based on the task demands and materials used to evaluate understanding, the
concepts important for multiplication can be defined in two ways: (a) direct application,
and (b) enabling-application of concepts. Direct application of concepts in defined as
children's ability to directly apply some concepts to a problem-solving situation. The
direct application of concepts has been used as a measure of conceptual knowledge
(Baroody & Gannon; 1984). Presumably, children's understanding of these concepts
fulfils the requirements or conditions of a specific problem situation, or it does not. If
knowledge of the concept meets the problem requirements, then children's existing

knowledge is sufficient for solving the problem. For example, if children understand the




Multiplication
15

principle of commutativity, they do not need to recalculate the answer to the problem if
the operands are simply reversed. They know that the answer must be the same, because
if the operands are the same then their position does not matter.

Enabling application of concepts is defined as children's use of concepts to
generate new operations and use them in a flexible manner. Specifically, conceptual
knowledge provides a starting point that enables inferences and operations beyond the
original concept to be carried out. Typically this enabling function involves the application
of previous knowledge to a novel task (Bisanz & LeFevre, 1990; Greeno, Riley, &
Gelman, 1984; Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 1989). For
example, if children understand part-whole relations, then they can use combinations of
known number facts to derive the solution to a novel problem (Putnam et al., 1990).

Working Memory

The concept of working memory is commonly invoked as a mechanism for the
processing and temporary storage of information in a wide variety of cognitive tasks
(Logie, Gilhooly, & Wynn, 1994). Researchers have claimed that the limited capacity of
working memory can place constraints on cognitive tasks such as reasoning, problem-
solving, and reading comprehension (Daneman & Carpenter, 1983; Logie et al., 1994;
Turner & Engle, 1989). Although few researchers have explicitly examined the role of
working memory in relation to multiplication skills, most agree that temporary storage and
processing of information is required during calculation of number facts, even single digit

multiplication problems (Ashcraft, Donley, Halas, & Vakali, 1992; Logie et al., 1994).
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A Model of Working Memory

Baddeley and his colleagues (Baddeley, 1986; Baddeley & Hitch, 1974) have
developed a model of working memory that includes three components: a central
executive and two slave systems, the visuo-spatial scratch pad and the articulatory loop.
The central executive is considered to be a limited capacity system that is involved in
cognitive processing, such as problem-solving, and in coordination of the activities of the
other two components. Part of the limited capacity of the central executive is thought to
be responsible for the processing of information and the remainder is used for the storage
of the products resulting from that processing. The visuo-spatial scratch pad and the
articulatory loop are maintenance systems controlled by the central executive and they are
primarily responsible for the storage of either visual-spatial or verbal information.
Memory Span Tasks

Measurement of working memory capacity typically involves combing two tasks: a
processing (primary) task and a disruption or storage (secondary) task. In memory span
tasks, subjects are required to work on a primary task and at the same time remember
information from a secondary task. The amount of information stored from the secondary
storage task is thought to reflect working memory capacity. Use of this methodology is
based on the assumption that more efficient processing of the primary task will be
reflected in more resources being available to accomplish the secondary task. For
example, Case, Kurland, and Goldberg (1982) used a counting span task where

participants were presented with a set of white cards, one at a time. On each card there
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was a number of colored dots, which the participants were asked to count (primary task).
After the last card was counted and removed, the participants were asked to recall the
number of dots on each card (secondary task). The number of cards in each set was
gradually increased, so the memory load became greater. The number of final counts
recalled was considered an index of working memory capacity.

A distinction has been made between domain-specific and global working memory
(Daneman & Carpenter, 1983; LeFevre, 1993). For example the problem 123 + 59
requires component processes such as calculation, carrying, and storage of intermediate
solutions. As each task component (e. g., calculation) becomes more efficient and requires
less of the limited working memory resources, more resources become available for other
aspects of processing and storage (Ashcraft et al., 1992; LeFevre, 1993). In this view, a
working memory task that taps the efficiency of task-specific processes will be the best
measure of how important working memory is within a specific domain. To examine
specific processes, researchers have developed complex memory span tasks. In these
complex span tasks, a primary and secondary task are used but by manipulating the task
specificity of the primary task, a distinction can be made between global and task specific
processes.

Developmental Changes in Multiplication Skill and Knowledge

Theorists and researchers have agreed that to understand how knowledge is

represented and manipulated in memory, it is important to understand how it is acquired

and constructed. An effective means for studying the acquisition of knowledge is to
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examine the changes that occur with development. I examined age-related changes in (a)
the computational skills used to solve simple multiplication problems including the
procedures used and indices thought to reflect the representation of facts in memory, (b)
concepts important for understanding multiplication, and (¢) working memory important
for mathematics.

Computational Skill

Different types of models provide different accounts of children's computational
skills. For example, in ASCM, relations between memory for number facts and use of
procedures are emphasized. In structural models, memory is organized via numerical
indices (i.e., sum, sum square, and product) in fairly direct ways. No specific account of
the selection and use of procedures is presented in problem-answer association models
because the focus is on retrieval. Using these existing models as a reference,
understanding age-related changes in computational skill entails studying at least two
areas: (a) changes in the procedures children use to solve simple multiplication facts, and
(b) changes in the representation of facts in memory.

First, children use multiple procedures to solve simple multiplication problems
(Cooney et al., 1988,; Siegler, 1988a; Lemaire & Siegler, 1995). What is less clear is how
children acquire new procedures, and how changes in the frequency with which children
use different procedures take place. A goal of my research is to use ASCM to explore
changes in the use of procedures that occur during a time when children are learning

multiplication facts.
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A second goal of my research is to use structural accounts and ASCM to explore
age-related changes in the representation of multiplication facts in memory'. Inferences
regarding the representation of multiplication facts in memory are typically made using
accuracy data and solution latencies. Hence, studying changes in memory representation
really involves studying age-related changes in (a) accuracy and solution latencies, and ®)
the effectiveness of hypothetical indices used to interpret accuracy and solution latency
data. The most frequent empirical finding related to accuracy and latency for solving
simple multiplication problem:s is the problem-size effect (Ashcraft & Christy, 1995;
Campbell & Graham, 1985; Cooney et al., 1988; Koshmider & Ashcraft, 1991).

Typically, the problem-size effect has been assumed to apply to all problems, regardless of
how the problem was solved. Because structural variables (e.g., sum or product) account
for the problem-size effect reasonably well, they have been used extensively to interpret
accuracy and latency data in terms of the underlying structure of memory. Few
researchers have evaluated whether other variables are useful for predicting accuracy and
latency data, and whether age-related changes are evident in the effectiveness of different
variables.

To examine age-related changes in the use of procedures and the representation of

muitiplication facts, children in Grades 4 and 6 were asked to solve 28 multiplication

Learning/experiential models are not discussed further because they share similar assumptions
with ASCM regarding the influence of problem frequency on the representation of number facts, but
do not include an account of the procedures children use.
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problems. Accuracy and latency were recorded, as were immediately retrospective self-
reports on how the problem was solved.
Use of Procedures

Researchers have used overt behavior and self-reports to examine the use of
multiple procedures in simple multiplication by children in Grades 2 to 3 (Lemaire &
Siegler, 1995; Siegler, 1988a) and adults (LeFevre et al., 1996a). Very little research of
this type has been conducted with children in later elementary grades (but see Cooney et
al., 1988), despite the fact that multiplication facts are heavily practiced when children are
in Grades 4 through 6.

Siegler and his colleagues (Lemaire & Siegler, 1995, Siegler, 1988a) used the
overt behavior of children in Grades 2 and 3 when solving simple multiplication problems,
to identify a number of procedures including retrieval, repeated addition, writing the
problem, and counting sets. Use of self-reports, especially with older children and adults,
often provides critical information not obtained from observed behavior. Using Grade 3
and 4 children's self-reports, Cooney et al. (1988) identified procedures similar to those
Siegler discussed. They also identified other procedures, including use of derived facts,
rules, and explanations. LeFevre and her colleagues (LeFevre et al 1996a; LeFevre,
Sadesky, & Bisanz, 1996b) evaluated adults' self-reports of how they solved simple
arithmetic problems and found that adults use multiple procedures, not just retrieval, to
solve both addition and multiplication problems.

Given that children in Grades 2 and 3 and adults have been found to use many
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procedures to solve simple multiplication problems, it is reasonable to expect that children
in Grades 4 and 6 will also report using multiple procedures. At least two implications
would arise from such a finding. First, models that account for multiple procedure use,
such as ASCM, could be considered more helpful for understanding children's
multiplication than models focused solely on retrieval from memory. Second, the finding
that children use multiple procedures, even during a period of schooling when
memorization and retrieval of multiplication facts is emphasized, would influence how
development of multiplication is understood. Specifically, development is often described
in terms of a progression through stages where a single procedure or way of thinking
predominates. As children move from one stage to the next, more advanced procedures
are thought to replace less advanced ones. Ifit is found that children at different ages use
multiple procedures, then developmental accounts of multiplication must also emphasize
variability in behavior. Any results obtained must be interpreted in terms of the constraints
of using self-reports to measure behavior.

Self-reports of procedure use have been criticized on the basis that they may be
misleading in two ways (Cooney & Ladd, 1992; Russo, Johnson, & Stephens, 1989). A
self-report is ponveridical if it does not accurately reflect the underlying solution process.
Errors of omission (e.g., not reporting some thoughts) and errors of commission (e.g.,
reporting mental events that did not occur) reduce the veridicality of self-reports. Another
source of process data (i.e., accuracy or latency data) is necessary to evaluate the

accuracy of self-reports (Russo et al., 1989). To address the issue of veridicality, latency
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and error data for each reported procedure were compared. If self-reports are veridical,
for example, then reported use of retrieval should be associated with high accuracy and
short latency when compared to backup procedures. Performance is reactive if self-report
verbalization changes the primary process underlying performance. Tests of reactivity
usually compare a silent control to the self-report condition. Although a silent control was
not included in this study, data were compared to previous research on multiplication
where self-reports were not used. More specifically, observed patterns of errors and
latencies were compared with data from previous research. If self-reports are not reactive,
the present results should be similar to previous research.
h i r

The development of multiplication skill has been characterized as a progression
from the use of effortful procedures to retrieval from an associative network (Cooney et
al., 1988, Geary, Brown, & Samaranayake, 1991). A more precise depiction of this
progression must involve evaluation of the cognitive changes that occur. In a longitudinal
study with Grade 2 children, Lemaire and Siegler (1995) found that children's behavior
changed in ways consistent with predictions made in ASCM. Children used retrieval more
frequently over time and the speed and accuracy with which each procedure was executed
increased substantially. To determine whether the changes described in ASCM are usefiil
for understanding the performance of older children, differences between the performance
of children in Grades 4 and 6 were evaluated. Changes in the frequency with which each

procedure was used were evaluated to determine whether retrieval becomes more
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dominant. Changes in the speed and accuracy with which procedures were examined to
determine if use of specific procedures becomes more efficient. Confirming the
hypotheses made in ASCM with older children is significant because the predictions in
ASCM can provide the basis for generating greater insight into the development of
multiplication procedures, beyond the simplistic description that effortful procedures give
way to efficient ones.
lem-Si

To study children's changing representation of multiplication facts, variables that
index the problem-size effect and constraints that may qualify the interpretation of the
problem-size effect were examined. Problem size, as indexed by product, accounts for
approximately 40 to 83 percent of the variance in solution latencies for children
(Campbell & Graham, 1985; Cooney et. al., 1988; Siegler, 1988a), and 36 to 42 percent
for adults (Campbell & Graham, 1985; LeFevre et al., 1996a). Although problem size is a
reliable predictor of latencies and errors, the structural variables used to index problem
size provide an incomplete account of the variability in solution latencies on single-digit
multiplication problems (LeFevre et al., 1996a). Problem characteristics can influence the
effectiveness of product as a predictor of latencies. For example, ties (e.g., 3 x 3) and
problems with 5 as an operand are solved more quickly than other problems of comparable
magnitude (Campbell & Graham, 1985). Campbell and Graham reported that only
problems with 4, 8, and 9 in them occupied the rank order position predicted by structural

variables.
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To determine the role of problem-size and problem characteristics in children's
representation of multiplication facts, the effectiveness of these variables in accounting for
variance in children's solution latencies was compared. If problem-size is an important
determinant of performance in multiplication, then an empirical relation should exist
between it and both accuracy and latency data; individual problems should not deviate
markedly and systematically from this pattern. Further, problems with different operands
but the same product should have similar accuracy rates and solution latencies. If, in
contrast, specific problem characteristics are important in influencing Grade 4 and 6
children's performance, then simple multiplication problems should not all conform to
patterns of accuracy and latency data predicted by the problem size effect.

If different patterns of accuracy rates and solution latencies are observed for
different identifiable problem types, then it is plausible that children use different
procedures selectively, depending on problem characteristics. In ASCM, Siegler and
Shipley (1995) propose that problem characteristics are useful for predicting latency and
accuracy. Specifically, knowledge is stored about the speed and accuracy of particular
procedures on problems with specific features. Ifa procedure is fast and accurate on
certain types of problems, then the probability that it will be used increases, For example,
problems with operands of 5 are more often solved with a counting-string procedure
(e.g., "S5, 10, 15, 20, . . .") than with derived facts or repeated addition. Counting-string
procedures are acquired earlier and may be less error prone than derived-fact or repeated-

addition solutions (Ashcraft et al., 1984). According to ASCM, solving 5-operand
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problems with a counting-string procedure would be more likely to be accurate than using
other backup procedures, resulting in higher levels of associative strength. To evaluate the
role of problem characteristics in multiplication performance, the strategic use of
procedures on specific types of problems was examined.

-Size an r

If the use of different procedures plays an important role in children's
multiplication performance, then the relations between solution latencies, the problem-size
effect, and multiple procedure use must be examined. Again, few researchers have
addressed the influence of individual procedures when accounting for solution latencies, or
how the use of different procedures may mediate the problem-size effect. Backup
procedures are related to longer solution latencies compared to retrieval (Siegler, 1988a).
LeFevre and her colleagues (1996b) found that the problem-size effect in simple addition
can be attributed largely to the use of only retrieval on smaller problems, and the use of
backup procedures and retrieval on larger problems. Furthermore, they found the
problem-size effect was greatly diminished on problems where retrieval was used,
suggesting the associative links among problems are not structured entirely according to
size. If the problem-size effect can be accounted for by the strategic use of procedures,
then models that reflect the connections between multiple procedure use and memory may
be more appropriate than structural models for understanding children's multiplication.

To examine the influence procedure use may have on solution latencies, two sets

of analysis were conducted. First, for each grade, product was used to predict solution
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latencies on problems where retrieval and backup procedures were used, versus problems
where only retrieval was used. If multiplication facts are stored via structural indices in
memory, then the procedure used should not influence solution latencies. Consequently,
product should be equally effective in predicting solution latencies for both sets of
problems. If children do use procedures strategically on different problems, then the
effectiveness of product in predicting solution latencies should vary depending on the
procedures used. Specifically, if retrieval is used mainly on small problems, and retrieval
and backup procedures are used on large problems, then product should effectively predict
solution latencies when all trials are considered. However, the effectiveness of product
should decrease when only retrieval trials are considered. Differences between Grades 4
and 6 in the effectiveness of product in predicting solution latencies depending on the
procedures used should be important for understanding the development of the
representation of math facts.

In the second set of analyses, variables derived from structural models and ASCM
were compared directly. Specifically, product and percent retrieval were used to predict
children's solution latencies. According to ASCM, probability of using retrieval reflects the
distribution of associations between problems and answers, and so probability of retrieval
was used as the primary index of associative strength. If memory/procedural accounts
such as ASCM are more appropriate than structural accounts, then the associative index
should better predict solution latencies. Further changes in the relations between

structural or associative variables were examined between Grades 4 and 6 in order to
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evaluate the influence of different variables on the developing representation.
Conceptual Knowledge

The acquisition of multiplication skill and knowledge involves more than memory
for facts and the use of procedures. Conceptual knowledge has been demonstrated to be
important for the development of mathematical skills (Baroody, 1995; Geary et al., 1992).
Consequently, a detailed examination of conceptual development seems essential for
studying the acquisition of multiplication skill and knowledge. Two questions related to
conceptual understanding and the development of multiplication were addressed: (a)
Does conceptual knowledge for multiplication develop with age and, if so, what is the
course of that development? and (b) Do measures of the product of children's thinking
(i.e., number correct) reflect conceptual knowledge? Grade 4 and 6 children solved a
number of problems that involved either the direct application of concept or the use of a
concept to enable a novel operation. The problems were based on a number of concepts
and domains important for multiplication, including: commutativity, repeated addition,
number sense, part-whole relations, word problems and proofs.

vel n n l w

If children's conceptual knowledge develops during a period of schooling when so
much emphasis is put on memorization and computation, then Grade 6 children should
understand more concepts than Grade 4 children. Further, the distinction between direct
and enabling applications has implications for understanding the development of concepts

related to multiplication. Often conceptual development is thought to occur in an all-or-
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none fashion, and many theories of cognitive development have involved simple
descriptions of these all-or-none changes in children. In Piaget's theory, stages of
development are defined by the specific conceptual advances that occur within a particular
period of time. A child in the concrete operational stage understands reversibility and a
child in the pre-operational stage does not. However, conceptual development may
involve the uneven advancement of concepts, with a child being in different "stages"
depending upon the specific concept being evaluated. In fact, the uneven development of
concepts has been observed in children's understanding of the use of metaphors in different
domains (Kiel, 1989). Demonstrating that conceptual development in multiplication
occurs unevenly, instead of in an all-or-none fashion, changes the focus of research from
describing absolute changes in children's thinking to that of trying to understand the
mechanisms through which concepts change gradually.

By studying the many concepts important for multiplication and how they are
applied, we can evaluate whether knowledge develops in an all-or-none or uneven manner
in multiplication. Specifically, it is reasonable to expect that the direct application of
concepts in multiplication would be evident in children's reasoning earlier than enabling
concepts because some direct-application of a concept is required before an enabling
function can be demonstrated. If the development of conceptual knowledge in
multiplication is uneven, then understanding of direct-application concepts should remain
relatively constant between Grades 4 and 6, but understanding of enabling application

concepts should improve.
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Product Measures and Conceptual Knowledge

Assessment of children's performance in multiplication most often involves
examining the number of problems solved correctly on an achievement test. Number
correct on an achievement test may reflect the product of children's thinking, but it is
questionable whether it reflects the processes children use. Understanding the processes
children use to solve problems is important for theory and remediation. Does number
correct reflect children's understanding of multiplication as reflected in their knowledge of
concepts important for multiplication? If number correct accurately reflects children's
performance, it should be closely related to measures of conceptual knowledge.

Working Memory

Researchers have found that working memory constrains the performance of adults
on simple counting and single digit arithmetic problems (Ashcraft et al., 1992; Logie et al.,
1994). If subjects continuously repeated letters or words, presumably suppressing sub-
vocal rehearsal in the articulatory loop, then counting and single-digit addition
performance was impaired (Ashcraft et al., 1992: Logie et al., 1994). How might sub-
vocal rehearsal in the articulatory loop be involved in simple arithmetic? In the case of
simple addition the initial problem may be stored in the articulatory loop while a procedure
is used to calculate or retrieve the answer (Logie et al., 1994).

As well, researchers have examined the age-related changes in working memory.
Siegel and Ryan (1988) found that, from the ages of 7 to 13 years, children's working

memory improved for semantics, syntax in sentences, and simple counting spans. Case et
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al. (1982) observed an increase in children's counting span from ages 6 to 12. They
argued that improved working memory capacity is related to an increase in the efficiency
with which children process information. As less space is required for operating on
information, more becomes available for storage.

Researchers have not examined age-related changes in working memory important
for arithmetic. A clear account of the role of working memory in mathematics must
included development. Simple counting spans may not reflect the demands placed on
working memory when it is used in arithmetic. Consequently, age-related changes in
working memory measures thought to involve mathematical processing were examined.
Working Memory Tasks

To evaluate development in working memory when numbers are being processed,
two tasks were used: backward digit span from the Wechsler Intelligence Scale for
Children, and an operation span. Often working memory tasks are used in research
without a clear theoretical basis or a detailed analyses of what the task are intended to
measure. Consequently the construct of working memory is often ambiguous. To avoid
this ambiguity, a detailed analysis of the tasks used in this paper is presented. In the
analysis the components of the working memory tasks are identified and what they are
intended to measure is discussed.

Backward digit span. Backward digit span involves reversing the order of a series
of numbers (primary task), and then recalling the numbers in the reversed order

(secondary task). Because it does not involve processing arithmetic operations, it is
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considered to be a measure of global working memory capacity. According to the
Baddeley model, the task involves processing by the central executive and storage by the
central executive in the articulatory loop. Global processing may take the form of
strategic chunking of the digit into meaningful units by the central executive. Storage may
involve sub-vocal repetition of the digits in the articulatory loop. Because simple digit
spans do not involve arithmetic operations, these tasks may not reflect the demands placed
on working memory in arithmetical problem-solving tasks.

Operation span. The operation span task is a complex measure of working
memory that more closely approximates the demands placed on children when they are
solving multiplication problems. In this task, which is a modification of the complex span
used by LeFevre (1993), children had to solve a series of multiplication problems (primary
task) and at the end of the series recall the answers to each problem (secondary task).
Researchers have assumed that complex span tasks reflect only domain specific processing
(Daneman & Carpenter, 1983; LeFevre, 1993). We argue that complex span tasks involve
both global and domain specific processing. The operation span task presumably involves
the same global storage of numbers through the articulatory loop that the backward digit
span does. It is influenced by domain-specific processing in that if an individual's math
skills are inefficient, then more resources will be required for processing, and storage in
articulatory loop will be limited. As well, operation span may also involve global working
memory processing, such as, placing the answers in serial order or making connections

between answers.
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In the section on Individual Differences, the global and domain-specific
components of operation span are examined by using backward digit span and simple
measures of multiplication processing to predict individual differences in performance on
it. The purpose now, however, is to examine age-related changes. If working memory
related to numbers and simple arithmetic increase with age then children in Grade 6 should
have longer memory spans than children in Grade 4 on the backward digit span and the
operation span task.

Individual Differences and Mathematical Achievement

Studying age-related changes in groups of children has provided important information
regarding the general course of development in mathematics. However, much variability
exists in the performance of children. Individual children progress at different rates in the
acquisition of mathematics skill and knowledge, and attain different levels of mathematical
proficiency (Siegler, 1988b). The consideration of individual differences provides valuable
information regarding constraints on skilled mathematical performance, different
developmental outcomes, and the relations among measures important for mathematics
performance.

When multiple measures are used to evaluate mathematical ability, as is the case
presently, an important issue to address is what measure of mathematical ability should be
used as the criterion on which individual differences are assessed. Achievement tests are
used extensively in educational, clinical, and research settings to measure proficiency and

development in mathematics. These tests are rarely evaluated in terms of relations to
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different areas of cognitive functioning important for mathematics. Consequently,
individual differences in mathematical achievement for children in Grades 4 and 6 were
evaluated using computational, conceptual, and working memory measures related to
multiplication. Analysis of individual differences provides information on how
achievement is constrained by children's computational skill, conceptual understanding, or
working memory capacity. As well, different developmental outcomes were assessed by
evaluating the changing relations from Grade 4 to Grade 6 in mathematical achievement
and measures of multiplication performance.

If computational skill, conceptual knowledge, working memory, and mathematical
achievement are examined in isolation, a fragmented picture of children's thinking is
portrayed. Mathematical cognition, like all complex human behavior, involves the
integration of different cognitive processes. Consequently, individual differences were
also used to identify the overall relations between mathematical achievement,
computational skill, conceptual understanding, and working memory. Specifically,
mathematical achievement was no longer used as criterion of mathematical performance.
Instead, cluster analysis was employed to evaluate the relations among all the different
areas of cognition important for multiplication.

ional Skill
Individual differences are important for understanding arithmetic performance in
children and adults (LeFevre et al., 1996a; Lemaire & Siegler, 1995; Siegler, 1988b).

LeFevre et al. (1996a) found that adults varied widely in the extent to which they rely on
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direct retrieval, and individual differences in latencies and patterns of performances were
linked to the degree to which participants routinely uses direct retrievai on simple
multiplication problems. Siegler (1988b) found consistent individual differences in first
graders' choice of procedures in addition, subtraction, and reading. Good children, not-
so-good children, and perfectionists differed in their knowledge about problems, the
stringency of -thresholds for stating retrieved answers, and on an achievement test.
Perfectionists were children who set very high confidence criteria and had peaked
distributions. Good children also had peaked distributions but set less high confidence
criteria. Both perfectionists and good children did well on an achievement test. Not-so-
good children set lower confidence criteria, had less peaked distributions, and did poorly
on the achievement test compared to the other children. In a longitudinal study, Lemaire
and Siegler (1995) demonstrated that individual differences in the early execution of
backup procedures predicted efficiency in later use of retrieval. They argued that more
accurate early execution of backup procedures leads to stronger associations between
each problem and its correct answer, and to weaker associations between the problem and
incorrect answers. Consequently, correct answers are retrieved more frequently.

To examine the role of computational skills in relation to individual differences in
achievement, correlations between standard achievement and measures of computational
skill in multiplication were examined for each grade. Given that (a) individual differences
exist in children's and adults' use of procedures and representation of multiplication facts,

(b) these individual differences are related to proficiency in multiplication, and (c) the




Multiplication
35

emphasis on calculation of facts in most measures of mathematical achievement, then it is
expected that accuracy, solution latency, and procedure use for solving simple
multiplication problems should be correlated with mathematical achievement. As well,
examining differences between children in Grades 4 and 6 in the relations between
computational skill and mathematical achievement should be informative regarding
different developmental outcomes. Specifically, comparing the pattern of relations for
Grade 4 students to those of students in Grade 6 should be suggestive regarding possible
developmental courses that would led to the observed changes.
Conceptual Knowledge

Unfortunately very little research exists on individual differences in conceptual
understanding. The distinction between direct and enabling applications has implications
for understanding individual differences in children understanding of multiplication.
Specifically, individual differences may exist in children understanding of direct versus
enabling applications. Consequently, I addressed whether individual differences exist in
children's understanding of concepts important for multiplication. Researchers have argued
that understanding mathematical concepts is important for the early development of
computational skills (Baroody, 1995; Geary et al., 1992). If conceptual understanding is
important for the initial development of computational skills, then mathematical
achievement and measures of conceptual knowledge should be related, at least for children
in Grade 4. Presumably, by Grade 6, children have had a substantial amount of practice

and have learned computational skills. Hence, measures other than conceptual
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understanding may be more important for predicting mathematical achievement.
Working Memory

Because of its limited capacity, variability in working memory has been thought to be
an important source of individual differences in complex tasks such as reading and
mathematics (Ashcraft et al., 1992; Daneman & Carpenter, 1980; LeFevre, 1993).
Researchers have examined the development of working memory in children (Case et al.,
1982; Siegel & Ryan, 1989) and they have evaluated the relations between working
memory and arithmetic in adults (Ashcraft et al., 1992; Hitch, 1978: Logie et al., 1994).
Researchers have not evaluated age-related changes in the relations between working
memory and arithmetic. The changing relations between working memory and arithmetic
were evaluated in two steps. First, the underlying components of the operation span task
were probed to ensure a clear understanding of working memory. Second, individual
differences in the relations between working memory and arithmetic were explored and
age-related changes in these relations were examined.

lobal Versus Domain- ific Worki m

The distinction between global versus domain-specific working memory is important
for understanding individual differences. Individuals may vary in the total amount of
resources they have available for processing in the central executive (global working
memory), and may also vary in the efficiency with which specific processes use central
executive resources (domain specific skills) (LeFevre, 1993). When using a complex span

task, by manipulating the specificity of the primary task a distinction can be made between
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individuals who may have the same total capacity but vary in the efficiency with which
they execute task-specific process (LeFevre, 1993). Presumably, a working memory task
that taps the efficiency of task-specific processes may be the most potent predictor of
skilled performance. Based on this assumption, the operation span may be the best
predictor of skilled arithmetic performance. However, before this span task is used to
predict performance it is important to evaluate whether it does indeed reflect global and
task-specific processes.

If operation span measures global working memory and arithmetic-specific processes,
then individual differences in both backward digit span and simple measures of
multiplication skill should be correlated with individual differences on operation span.
Backward digit span should correlate with individual differences on the operation span
because both presumably involve the same storage of numbers through the articulatory
loop, and global working memory processes. If operation span also involves domain-
specific processing, simple measures of mathematics processing should predict individual
differences on the operation span. Hence, the proportion of times children use retrieval
when solving simple multiplication problems should influence the operation span.
Children who use effortful, repeated-addition procedures more frequently than retrieval
should have fewer resources to hold the answers in the articulatory loop, and not
remember as many answers. Median solution latency for simple multiplication problems
should reflect the operational efficiency of children's processing (Case et al., 1982).

Children who recall the answers on the operation span very quickly would not have to
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hold the series of answers in memory for a long time, reducing the possibility of decay.
To evaluate whether the operation span reflects both global and domain-specific working
memory processing, I used children's backward digit span, proportion retrieval on simple
multiplication, and median latency on simple multiplication to predict individual
differences in operation span.
Worki n i jevemen

Often the goal of using a working memory measure is to account for individual
differences in skilled performance on a complex task such as reading or arithmetic. For
example, researchers have found that adults' skilled performance on a variety of reading
measures is related to a large reading span (Daneman & Carpenter, 1983: LeFevre, 1993;
but see Turner & Engle, 1989). As well, skilled performance in arithmetic is associated
with larger mathematical operation spans (LeFevre, 1993). I examined whether working
memory capacity in children predicts individual differences in arithmetic achievement. If
working memory, either general or specific, is related to mathematical skill in children,
then measures of working memory should correlate with measures of arithmetic, such as
mathematics achievement and problem-solving in multiplication. As well, the extent to
which measures of mathematics-specific process in working memory and measures of
global resources in working memory predicted individual differences in mathematics
achievement was evaluated.

A number of tasks important for measuring the different components of working

memory have been described in this paper. Further, it has been argued that (a) backward
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digit span reflects global processing and storage, (b) operation span involves global
processing, domain-specific processing, and storage, and (c) simple measures of
arithmetic, such as mean solution latency for multiplication problems and percent use of
retrieval on multiplication problems, reflect domain-specific processing efficiency. To
understand the changing relations between working memory and arithmetic between
Grades 4 and 6, it is necessary to evaluate the relative importance of these different
measures of working memory at each grade. First, the relative importance of the two span
tasks for predicting individual differences in mathematics achievement in each grade was
evaluated. If domain-specific processes are more important, then operation span should
be a better predictor than backward digit span. If global processes are more important,
then backward digit span should be a better predictor than operation span.

Previous researchers have only included the span tasks in their analyses of the
importance of working memory for accounting for individual differences in domains.
They have assumed that the domain-specific operations required in their complex span
tasks are a sufficient measure of processing efficiency. I included specific measures of
processing efficiency, along with the memory span task, to further clarify the role of
domain-specific processes. Specifically, in a second set of analyses the span task that was
the best predictor of mathematics achievement based on the previous analyses was used,
along with a measure of processing efficiency, to predict individual differences in
mathematics achievement. Using this approach, the combined influence of different

components of working memory on arithmetic could be examined.
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Relations Among Measures

Researchers have found that conceptual knowledge is important for the development
of later computational skills in addition (Baroody, 1995; Geary et al., 1992). Geary et al.
(1992) found that counting procedures in young children with mathematical disabilities are
related to their understanding of essential and unessential concepts of counting (i.e., one-
to-one correspondence). If conceptual knowledge is important for the early development
of multiplication procedures, then the relations between conceptual knowledge and
computational skill should be greater for Grade 4 than for Grade 6 children.

Working memory may also be related to children's procedure use. For example, when
using a counting procedure to solve an addition problem, if the original representation of
the problem's integers decays quickly in working memory, then the answer generated by
this count and the original representation of the problem would not become associated in
long-term memory. As a result, the probability of using retrieval to solve the problem in
the future would not increase. Further, efficient use of mathematical procedures may
leave more resources available for storage in the working memory system. Because of the
close association between procedure use and memory, we would accept that working
memory and computational skill should be highly related for both Grade 4 and Grade 6
children.

The relations between computational skills, conceptual knowledge, working memory,
and mathematical achievement were examined in two ways. First, for each grade the

correlations among multiple measures of children's multiplication skill were calculated,
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including: (a) the proportion of retrieval use on simple multiplication problems, (b)
solution latency for simple multiplication facts, (c) raw score on the WRAT-II, (d)
proportion of principally based responses for commutativity/repeated addition, related-fact
problems, greater than/equal-to, and estimation problems, (e) proportion of principally
based responses for word problem, (f) backward digit span, and (g) operation span.
Correlations only provide information about how closely related each measure is to the
next one. Consequently, hierarchical cluster analysis was also used to detect the
interrelations among the set of measures separately for Grades 4 and 6. In hierarchical
cluster analysis each measure is considered as a separate cluster, and then the two most
similar variables are joined to form a cluster. Similarity is determined through association
or distance between variables. The amalgamating process continues in a step-wise fashion
(Joining variables or clusters of variables) until a single cluster is formed that contains all
the variables. Relations among variables can be established by evaluating which variables
cluster together first, and the order with which variables cluster.
METHOD
Participants

Sixty children from Grade 4 (30 females, 30 males) and 60 children from Grade 6 (30
females, 30 males) were assessed individually in two sessions. Grade 4 children ranged in
age (in years:months) from 9:2 to 11:3 years, with a median age of 9:11 years. Grade 6
children ranged in age from 11:3 to 13:2 years, with a median age of 11:11 years.

Studying the performance of children in Grades 4 and 6 allows for the examination of a
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range of experience in multiplication. According to the curriculum guidelines for the
province of Alberta Education, multiplication is taught for the first time in Grade 4 and
hence it is a relatively novel domain for children. By Grade 6, children have had
substantial instruction and practice in many areas of multiplication.
Procedures and Materials
Children were assessed individually in two sessions lasting approximately 30 minutes
each. In the first session an arithmetic achievement test, a multiplication computation
task, and tests of working memory were administered. In the second session tasks
evaluating conceptual knowledge were administered.
ndardi iev
The Wide Range Achievement Test, third revision (WRAT-III; Jastak & Jastak, 1993)
arithmetic subtest was used to measure general computational ability. The WRAT-III has
been used extensively in practice and research to assess children’ achievement and to
identify children with learning disabilities (Goldman, Pellegrino, & Mertz, 1988: Rourke &
Strang, 1983, Siegel & Ryan, 1989; Strang & Rourke, 1985). The arithmetic subtest
consists of addition, subtraction, multiplication, and division problems as well as problems
on measurement, fractions, percentages, and decimals. Children were given 10 minutes to
answer as many problems as they could. Specific instructions for the subtest are found in
Appendix A. Raw scores were converted to standard scores using the age-based norms

provided in the WRAT-III.
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Computational Task

The computational task was used to measure children’ performance when solving
simple multiplication problems. The problem set consisted of 28 combinations of
multiplicand (2-9) and multiplier (2-9), excluding tje problems (e.g., 2x2). Only one of
each commuted pair of problems (e.g., 3 x 7 but not 7 x 3) was presented. A second
order was created by reversing the first. The complete set of problems is listed in
Appendix B.

Problems were presented on a computer monitor controlled by a microcomputer. First
the children were asked to solve each multiplication problem and answer aloud as quickly
as possible without making any mistakes. Specific instructions for the task are found in
Appendix A. Problem presentation and timing were controlled by a microcomputer
connected to a microphone through a voice-activated relay. Children initiated each trial
by saying "go" after a fixation point (an asterisk) appeared on the computer screen.
Following a 100-ms tone and a 700-ms blank interval, the problem appeared and timing
was initiated. When presented at a distance of 0.6 m, the problem subtended a visual
angle of 3.3° vertically and 1.15° horizontally. The children's vocal response activated a
voice key. Each distinct latency was counted and recorded in order to decrease the
number of spoiled trials. In the few cases where the children made more than one
response (e.g., coughed before responding), the experimenter keyed in the count for the
intended response and the corresponding latency was recorded. The experimenter

recorded the children's answer on the computer. Correct answers were followed by a
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high-pitched tone and incorrect answers were followed by a low-pitched buzzer. If no
vocal response was detected within 30 seconds, the trial was terminated. F ollowing the
response, the cue "How Did You Get Your Answer?" appeared on the screen, prompting
children to describe the procedure that they used.

Based on the children's overt behavior and verbal self-report, procedures were coded
on-line by the experimenter according to previously defined categories. Responses were
classified as retrieval when children claimed that they remember the answer, "just knew it,"
or solved the problem "from memory" and there was no evidence of overt calculations.
Special trick procedures involved use of previously learned information to help solve a
current problem. Two kinds of special tricks were coded. Derived-fact procedures
involved the use of known arithmetic facts to derive solutions. For example, for the
problem 6 x 7 a children might report "I know that 6 x 6=36, and so 6 more would be
42." Nines rules were algorithms particular to nine-times problems. For example, for 4 x
9, the children would hold ten fingers and identify the fourth finger. He or she would then
count the number of the fingers before the fourth fingers and state this as the tens number
(3), and count the number of fingers after the fourth finger and state this as the ones
number (6). Repeated addition procedures involved adding an operand the appropriate
number of times, for example, adding 5 + 5 to solve 5 x 2. Counting string procedures
involved use of a memorized string to produce the answer, for example, solving 5 x 7 by
counting "S, 10, 15, 20, 25, 30, 35" Responses were classified as guess if the children

stated they guessed the answer. Qther denoted ambiguous responses or responses that
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did not fit the other categories.
Conceptua] Tasks

Conceptual understanding was assessed with a series of tasks relating to the
underlying principles of multiplication, and to the ability to generalize previously learned
knowledge to novel stimuli and situations. All of the problems included double-digit
numbers so that they could not be easily solved using retrieval. The full text of
instructions for all the conceptual tasks is found in Appendix C.

rison Task

For the Comparison task children were presented with a piece of paper with two
adjacent columns of 18 pairs of arithmetic problems, each with an answer. Children were
told that the answer for the left problem in each pair was correct. The task was to
determine, based on the information provided on the left, whether the answer to the
corresponding problem on the right was correct. The children were instructed to do so
without multiplying. Problems on the left and right were related by three different
principles: repeated addition (8 pairs); commutativity (6 pairs), and derived or related facts
(4 pairs). A complete list of the stimuli for the comparison task is found in Appendix D.
According to the Alberta Education Program of Studies (1994), an educational goal for
Grade 4 children is that they be able to multiply whole numbers by one- and two-digit
whole numbers. Consequently, all problems involved multiplying 2-digit and 1-digit
numbers. For repeated addition, commutativity, and related-fact problems, the 2-digit

numbers were between 10 and 90, and the 1-digit numbers were between 3 and 9.
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For the eight repeated-addition pairs, the problem on the left side was a correct
repeated-addition problem and the problem on the right side was a multiplication problem.
Half of the multiplication problems on the right were equivalent to the repeated addition
problem on the left (e.g., 28 + 28 + 28 + 28 =112 paired with 28 x 4 = 112). For the rest
of the pairs, the 1-digit multiplier for the problem on the right was not equal to the
number of addends in the left problem, but the 2-digit multiplier and product were the
same (e.g., 28 + 28 + 28 + 28 = 112 paired with 9 x 28 = 112).

For the six commutativity pairs, the problem on the left side was a correct
multiplication problem and the problem on the right included the same multiplier and
multiplicand but in the reverse order. For half of the pairs, the products for the left and
right were the same (e.g., 8 x 59 =472 paired with 59 x 8 = 472). For the rest of the
pairs, the product on the right was greater or less than the product on the left (e.g., 4 x 64
=256 paired with 64 x 4 = 236).

For the four related-fact pairs, the problem on the left side was a correct multiplication
problem. The problem on the right side had the same multiplicand, the muitiplier was
increased or decreased by one, and the product was different than the problem on the left.
For half the problems the answer on the right was the correct product (e. g.,35x4=140
paired with 34 x 4 = 136), and for half the problems it was an incorrect product (e.g., 37 x
5 = 185 paired with 38 x 5 = 205). Related-fact problems are similar to derived-fact
problems and useful in evaluating children' understanding of part-whole relations and their

ability to use a set of known number facts to derive the solutions to unknown
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combinations.

Six orders for the comparison task were created based on the following constraints:
(a) half of the orders started with a true problem and half started with a false problem; (b)
different problem types were evenly distributed across the list of 18 problem pairs in a
mixed fashion; (c) true and false problems were evenly distributed and; (d) 2 orders started
with a repeated-addition problem, 2 with a commutativity problem, and 2 with a
related-fact problem.

Number Sense Task

Children were asked to determine, without multiplying or dividing, whether the
answers to multiplication problems were probably right or probably wrong. Problems
were designed so that three principles of number sense could be used by the children to
Jjudge whether the answer to a problem was correct: the relative effects of operations on
numbers, the allowable minimum magnitude of a product in multiplying two whole
numbers, and estimation. Number sense problems involved simple multiplication of a
2-digit multiplier between 10 and 90 and a 1-digit multiplier between 3 and 9.

A complete list of the stimuli for the number sense task is found in Appendix E. For
the three operand-equal-to-product problems, the answer given was equal to one of the
operands, and the other operand was not equal to 1 (e.8., 32 x 6 =32). These problems
were designed to assess children's ability to recognize that the product can not equal the
multiplicand if the multiplier is a number other than one. For the three operand-greater-

than-product problems, the answer given was less than the larger operand (e.g., 5 x 67 =
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55). These problems were designed to assess use of a principle that specifies the allowable
minimum magnitude of the product in multiplying two whole numbers (i. e., that the
product must not be less than both operands). Three estimation problems were presented
in which the answer given was close to the correct answer (e.g., 72 x 7=514). Children
were to estimate to determine whether the answer was probably right or probably wrong.
These problems were designed to assess children' ability to use their understanding of
place value to generate an answer close the correct answer.

Six problem orders were created based on the following constraints: (a) two orders
started with estimation problems, two started with product-less-than-multiplicand
problems, and two started with product-equal-to-multiplicand problems; and (b) different
problem types were evenly distributed through the task in a mixed fashion.

rd Pr k

Four problems were designed to assess children' ability to apply the principles of
multiplication in novel, non-routine tasks. Children were asked to report how they would
solve each problem, but they did not need to carry out the computational steps and
provide an answer. Stimuli for the word problems are found in Appendix F. For the
repeated addition/irrelevant information problem, children were required to apply the
principle of multiplication as repeated addition to determine the correct steps needed to
solve the problem. They also needed to ignore irrelevant information in the problem. For

the insufficient information problem children needed to realize that the problem does not

provide enough information for it to be solved. The_multiplicative compare problem
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involved three steps. Children needed to identify which numbers they needed to multiply,
identify which numbers they needed to add, and realize that they needed to compare their
answer with a number given in the problem. The Cartesian multiplication problem
required children to combine elements of two sets orthogonally. Four problem orders
were presented.
Proofs Task

For the Proofs task children were given manipulatives (beads), and asked to prove,
using the manipulatives, why a certain product was the correct answer for a specified
question. For example, children were asked to prove, using the beads, that 3 x 4 = 12.
Three problems of this type were administered. The presentation of problems was varied
to create 9 orders. A complete list of the stimuli for the proofs task is found in Appendix
G.

Working Memory Tasks

Backward Digit Span

The backward digit span subtest from the Wechsler Intelligence Scale for Children
(WISC-III) was used as an index of general working memory capacity. Participants were
presented with a series of numbers and asked to recall the numbers in reverse order.
Digits were presented orally in series progressing from 2 to 8 digits. Two series of the
same length were presented before incrementing the number of digits in the series by one.
Consequently 7 pairs of series were presented, for a total of 14 number series. The

backward digit span stimuli are found in Appendix H. Children received one point if they
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accurately recalled all the numbers in the correct order for one of the number series a
group. If children failed to accurately recall all the numbers in the correct order for both
series of a particular length, the task was discontinued. Children could score a maximum
of 14 points on the backward digit span task.
Operation Span

The operation span task was used to evaluate the role of mathematics processes in
working memory. As a primary task, children were asked to produce the answer to a
series of multiplication problems. Simultaneously, the children were required to remember
the answer they gave for each problem in the series. As a secondary, task children were
asked to recall the answers for each of the problems after viewing all the problems in a
series. Problems were presented visually in series of lengths 2 through S, one problem at a
time. Four lengths of problems were presented, with two problem series in each 'ength for
a total of 8 problem series. Problems presented in the operation span were identical to the
problems presented in the multiplication task to allow for analysis of the relations between
simple multiplication processes and working memory ability. A complete list of the stimuli
is found in Appendix I. Children received one point for accurately recalling all the
numbers they had given as answers for a problem series. If children' failed to accurately
recall all the numbers they had given as answers for both problem series of a particular
length, they received no points and the task was discontinued. The maximum score that

could be obtained on the operation task was 8 points.
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RESULTS AND DISCUSSION
Developmental Changes in Multiplication Skill and Knowledge
Computational Skill

Results are reported in five sections. First, analyses of error and latency data are
presented to indicate the difficulty of the task and to evaluate whether the use of self-
reports influenced children' performance. Second, children's use of procedures is
examined, including analyses of the veridicality of self-reports. The third section focuses
on changes in the use of procedures between Grades 4 and 6. Fourth, the value of using
structural variables to account for the problem-size effect is examined. Finally, regression
analyses are used to compare associative and structural variables in terms of their ability to
account for the problem-size effect.

Iror 1

Emors. For Grades 4 and 6 respectively, 1.6% and 1.8% of trials were invalid due to
malfunctioning of the voice-activated relay. These trials were excluded from all analyses.
As well, children in Grades 4 and 6 were unable to produce an answer within 30 seconds
on 1.3% and .06% of valid trials, respectively. These trials were coded as errors and
response latencies were estimated at 30 seconds. Grade 4 children were incorrect on
9.0% of valid trials, a rate lower than previously reported for children in Grades 3,4, and
5. Grade 6 children were incorrect on 1.6% of valid trials, a rate lower than previously
reported for adults (see Table 1).

Children’ errors were categorized into a number of different types. An operand-related
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eITOr Is an incorrect answer that is the product for another problem that shares an operand
with the present problem (e.g., 8 x 3 = 21). An operand-unrelated error is an incorrect
answer that is the product for another problem that does not share an operand with the
present problem (e.g., 8 x 3 =28). A non-table error is a responses that is not a correct
product to any single-digit multiplication problem (8 x 3 = 23). Following Siegler
(1988a), close-miss errors also were identified. Close-miss errors were responses that
were within 10% of the correct product for the 26 problems with products of 10 or more.
For problems with products smaller than 10, no incorrect answer could be within 10% of
the product. All close-miss errors were coded as either operand-unrelated or non-table
errors.

The percentage of each type of error, excluding close-miss errors, is shown in Table 2,
with the values from Campbell and Graham (1985) included for comparison. We
compared our data with Campbell and Graham's because they had participants of similar
ages and detailed analyses of errors. Consistent with Campbell and Graham's research,
operand-related errors were the most frequent type for children in Grades 4 and 6. The
distributions of errors across types in Grades 4 and 6 were similar to patterns exhibited by
Campbell and Graham's children in Grades 3-5. Changes in error patterns were also
similar to changes observed by Campbell and Graham: with increasing age the proportion
of operand-related errors increased and the number of operand-unrelated and non-table
errors decreased. When eligible operand-unrelated and non-table errors were identified as

close-miss errors, Grade 4 children displayed a similar number of errors as Grade 3
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chfldren in previous research (24% vs. 29%) (Siegler, 1988a). There are no comparable
subjects in previous research for children in Grade 6 on this measure.

Latencies. Mean latency was calculated by identifying the median latency for correct
problems for each child and averaging across children for each grade (see Table 3). Grade
4 children's mean latency (2.56 s) was marginally faster than Campbell and Graham's
(1985) children in Grades 3 and 4 and considerably faster than the means obtained by
Siegler and his colleagues for children in Grades 2 and 3 (Siegler, 1988a; Lemaire &
Siegler, 1995). Grade 6 children's mean latency (1.53 s) was somewhat faster than
Campbell and Graham's Grade 5 children but slower than their adults. Implications of our
analyses of error and latency data for evaluating use of self-reports are discussed in the
Discussion.

Use of Procedures

We examined the frequency and distribution of procedures used to solve the 28
multiplication problems. The percentage of valid problems on which each procedure was
used, the percentage of children using each procedure at least once, the mean across
children of median latencies for correct trials for children using the procedure at least two
times, and the accuracy for each procedure are shown in Table 4.

Procedyres. Children in both grades used retrieval and three backup strategies: special
trick, repeated addition, and counting string. Most children in Grade 4 and all children in
Grade 6 reported using retrieval at least once (see Table 4). For both grades retrieval

was used most frequently across trials, followed by special trick, repeated addition, and
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counting string, respectively. Diverse use of procedures was evident for individuals as
well. Of the children in Grade 4, 87% used two or more procedures, 63% used three or
more, and 32% used at least four. For Grade 6, 58% used two or more procedures, 22%
used three or more, and 3% used at least four. Thus younger children tended to use more
procedures than older children, but even in Grade 6 most children used multiple
procedures to solve simple multiplication problems.

In both grades the various nonretrieval procedures (i.e., repeated addition, counting
string, and special trick) were slower than retrieval; use of a special trick was particularly
slow (see Table 4). In Grade 4, children were almost 100% accurate when they reported
using retrieval and were less accurate when they used nonretrieval procedures.
Changes in Use of Procedures

Increased use of retrieval. Although all children used multiple procedures, changes
between Grades 4 and 6 occurred in both the mean number of procedures used and the
proportion of times each procedure was used. Mean number of procedures used
decreased from 2.86 for Grade 4 to 1.85 for Grade 6 children, F(1,118) = 29.84, p< .05
Children in Grade 6 reported using retrieval more frequently than children in Grade 4, E(1,
118) =19.68, p <.01, and using special trick, repeated addition, and counting string less
frequently than children in Grade 4,Es(1, 118) <6.93, ps < .01 (see Table 4).

Increased efficiency of procedures. Changes occurred in how efficiently Grade 4 and
Grade 6 children used procedures. For each procedure I calculated the percent correct

and median latency for children using the procedure at least twice across trials. Use of
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retrieval was more accurate and faster in Grade 6 than in Grade 4, Es(1,119)>9.66, p <
.01 (see Table 4). This improvement is even more striking given the fact that Grade 6
children used retrieval on a broader set of problems than Grade 4 children. Effective use
of backup procedures also increased substantially between children in Grade 4 and 6 in
terms of accuracy and speed, Fs (1, 79) > 3.96, ps < .0S.

Problem Size

For each grade we calculated a median latency across children for each of the 28
problems. Only correct trials were used to calculate these latencies. Median latency was
then correlated with the product of the operands. Product accounted for a significant
amount of variance in solution latencies in Grades 4 (=43)and 6 ¢ = 47).

Problem characteristics. To evaluate whether product predicts solution latencies
effectively for problems with different characteristics, we plotted mean latency as a
function of product. We then inserted onto the plot the regression line for product as a
predictor of latency. Finally we labelled each of the plotted points with the specific
problem they represented (see Figure 1). Many exceptions to the problem-size effect were
evident. For example, for both grades many problems with the same or similar product
had very different latencies. Both 2 x 6 and 3 x 4 have the product 12, but the mean
latency for 3 x 4 was much greater than it was for 2 x 6. Similar discrepancies were
evident for 2 x 9 compared to 3 x 6 and 5 x 7 compared to 8 x 4. There were also
systematic differences between the problems that fell above and below the regression line.

For Grade 4, problems including 2 and $ all fell below the regression line, as did 9 x 8.
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The same distribution was evident for Grade 6 with two exceptions (7 x 3 and 2 x 8).
Although product is a moderately good predictor of latency, examination of specific
problems revealed that problem characteristics also influence latency. Specifically,
problems including 2s and 5s are solved more quickly than would be expected based on
product-size alone.

To identify the contribution that specific problem characteristics may make in
accounting for latencies, two regression analyses were carried out. First, latency was
regressed on product, and then a variable that coded whether a problem hada 2 ora § in it
was added to determine whether it made an independent contribution Model 1).
Subsequently, the order of entry of the variables was reversed (Model 2). As shownin
Table 5, both product and the 2s and Ss variable, entered first, explained significant
variance in the latencies for children in Grades 4 and 6. Importantly, the unique
contribution of 2s and 5s taken together was larger than that of product for Grade 4 (.31
versus .08) and Grade 6 children (.22 versus .14). These results support the hypothesis
that problem characteristics are at least as effective as product in predicting latencies.

Based on our analyses, the use of product to demonstrate the appropriateness of a
structural model of multiplication may not be warranted. The fact that different patterns
of latencies are observed for certain types of problems raises the possibility that children
may use different procedures selectively, depending on problem characteristics.

Problem characteristics and ASCM. ASCM incorporates a way for problem

characteristics to influence the procedure chosen. In ASCM structural features of a
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particular problem are thought to influence which backup procedure will be used to solve
it (Siegler & Shipley, 1995). To illustrate, the percentage of repeated addition, number
series, and special-trick procedures used on problems is shown in Figure 2 as a function of
operand families (see Campbell, 1994). In this presentation of the data each problem
occurs twice (e.g., 7 x 8 appears in both the 7 operand and the 8 operand families). The
use of many backup procedures was directly tied to problem characteristics. For example,
for Grade 4 and 6 children, repeated addition was used primarily on problems with smaller
operands, mainly operands of 2. Counting string was used mainly on problems with
operands of 5. Finally, special tricks were used more frequently on large than small
problems. For backup strategies there were strong connections between problem families
and selection of procedures. These results support the conclusion that the selection of
procedures was not random but systematically related to problem characteristics.
Problem-Size Effect and Use of Procedures

The purpose of the following analysis was to determine whether the problem-size
effect is present when some procedures are used and not others, and if the overall
problem-size effect is the result of averaging across different kinds of procedure trials.
Specifically, we used product to predict solution latencies for all trials and retrieval trials
only. The variance accounted for by product differs in Grade 4 (R? = .43 for all trials, .25
for retrieval trials) but not in Grade 6 (.47). Slope values differed substantially (77.6 and
23.3 in Grade 4, and 22.58 and 14.60 in Grade 6) (see Figure 3). Nevertheless, the

product slope on retrieval trials is still statistically significant for both grades.
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For Grade 4, the problem-size effect across all trials may be attributed at least in part
to children's use of backup procedures on large problems (cf. LeFevre et al., 1996b).
However, Grade 6 children used retrieval more frequently than Grade 4 children, meaning
that the influence of backup procedures on all trials was reduced. As a result, for Grade 6
there was no difference between the variance accounted for by product on all trials versus
retrieval trials only. In both grades the problem-size effect was not eliminated when only
retrieval trials were considered. That the problem-size effect is evident on retrieval trials
may result because the distribution of associations underlying the use of retrieval and the
problem-size effect both are influenced by common factors, such as problem frequency
and order of acquisition (Ashcraft & Christy, 1995; Campbell & Graham, 198S5; Siegler,
1988a). These factors, and not problem-size per se, may be important in the developing of
associations between problems and answers.

Differences between Grades 4 and 6 in the effectiveness of product in predicting
latency on retrieval trials may reflect the influence that presentation frequency and use of
procedures have on the associations between problems and answers. Associative
measures may be better predictors than product in Grade 4 because they reflect the diverse
use of procedures. Further, measures that influence the ability of product to predict
solution latency, such as frequency of problem presentation, may not have strong
influences on associations in Grade 4 because of lack of experience. However, as
children gain experience, frequency may become more influential in determining the

distribution of associations, allowing problem-size to appear more important because of its
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relation with this measure.

To examine whether frequency of problem presentation becomes more important, we
calculated estimates of problem frequency based on frequencies for simple multiplication
problems identified by Ashcraft and Christy (1995) in elementary mathematics textbooks.
Frequencies for Grade 4 children were based on the number of times each problem was
presented in Grade 3 and 4 textbooks. To reflect the cumulative influence of frequency of
presentation on associations with experience, frequency estimates in Grade 6 were based
on Grade 3, 4, 5, and 6 textbooks. Frequency of problem presentation was then used to
predict solution latency. Frequency did account for solution latency in Grade 6 ( = .42),
but not for Grade 4 (2 = .01).

To determine whether the contribution of product is due to its relations with
frequency, we contrasted the roles of product and percent retrieval in predicting latencies,
after problem frequency was taken in account (see Table 6). According to ASCM,
probability of retrieval-use reflects the distribution of associations between a problem and
answers, and so probability of retrieval was used as the primary index of associative
strength (see LeFevre et al., 1996a). In the first set of regressions, latency was first
regressed on percent retrieval and problem frequency (Model 1) and then product was
added to determine whether it made an independent contribution. Subsequently, latency
was regressed on product and problem frequency (Model 2) and then percent retrieval was
added to determine whether it made an independent contribution. In Grade 4 the

probability of retrieval explained significant unique variance in latencies when entered after
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product and frequency, whereas product did not explain unique variance (see Table 6).
For Grade 6, although it approached significance, percent retrieval did not account for
unique variance when entered after product and frequency, and neither did product explain
unique variance.

For Grade 4 the most important predictor is percent retrieval. Presumably, percent
retrieval reflects the diverse procedures used and how accurately backup procedures are
used. For Grade 6, the inclusion of problem frequency nullifies the unique influence of
both product and percent retrieval. Theoretically, frequency is important in determining
both the strength of associations and the problem-size effect. With development the
associations between the problem and one particular answer become peaked. Product
may become a better predictor because it is related to frequency, a variable that indexes
this peaked structure.

Conceptual Understanding

Children's responses on the conceptual tasks were scored in two ways. First, the
number of correct answers was recorded separately for the comparison and the number
sense tasks. Accuracy was an inappropriate measure for the remaining two tasks:
Children were not required to give a final answer on the word problems task, and on the
proofs task accuracy was redundant with the measure described below.

Second, a coding scheme was designed to categorize children's justifications on the

comparison, number sense, word problems, and proofs tasks. The scheme was developed
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by analyzing the responses of a subset of children and identifying the different
justifications they reported. Although similar justifications were reported on different
tasks, justifications were coded separately across tasks. Descriptions of the Justifications
observed and scoring criteria are found in Appendix J. Justifications were placed into two
categories based on the amount of conceptual knowledge of multiplication they reflected:
justifications that reflected complete understanding of the underlying principles in
question, and justifications that reflected partial or no understanding of the principles in
question. The degree to which conceptual knowledge was demonstrated as reflected by
the two categories was used for subsequent analyses of conceptual knowledge.
Comparison task. Children gave three justifications that reflected complete
understanding of the principles assessed on the comparison task. The mean frequency of
use across problems for all justifications is found in Table 7. For repeated-addition
problems, children's responses were coded as application of repeated addition if they
reflected the understanding that repeatedly adding a number is the same as multiplying that
number by the number of times it was added. For commutativity problems, children's
responses were coded as application of commutativity if they knew that the order in
which two numbers are multiplied does not matter. For the related-fact problems, if
children demonstrated that they understood the relations between two multiplication
problems, then their responses were coded as a related-fact justification. Appendix J
includes descriptions of all the justifications that did not reflect complete understanding of

the important concepts.
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Number Sense task. Frequency of use for the Justifications is found in Table 8. For
the operand-equal-to-product problems, one justification was judged to reflect complete
conceptual knowledge. Children's responses were coded as the multiply-by-1 rule if they
demonstrated knowledge that the product can only be equal to an operand if the other
operand is one. For the operand-greater-than-product problems, the greater-than rule was
Judged as reflecting conceptual knowledge. Children demonstrated the understanding
that in whole number multiplication an answer cannot be less than either the multiplicand
or the multiplier. Finally, for estimation problems three justifications were identified as
reflecting conceptual knowledge. Using multiplication, children reported that they
muitiplied all the digits in the problem together, and provided a correct answer, 1o see
whether the given answer was correct?. Using partial multiplication, children reported
multiplying some but not all of the digits in the problem and they did not provide a final
answer to verify the accuracy of the given answer. Finally, some children justified their
response with an ambiguous justification related to the appropriate magnitude of the
answer or the appropriate direction of the operation given (ambiguous justification:
direction or magnitude).

Word problems. For word problems, five justifications were judged to reflect

conceptual understanding (see Table 9 for frequencies of all justifications used). For the

* In the instructions, children were specifically asked not to multiply the two numbers
together. However, we coded the use of multiplication as conceptually based because by using it
students demonstrated their knowledge of the appropriate direction of the operation and
magnitude of the final answer.
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irrelevant-information problem, children's responses were coded as correct multiplication
if they applied multiplication to solve the word problem without using the irrelevant
information provided. For the insufficient-information problem, some children realized
that the problem did not contain the information needed to solve it (insufficient). If
children correctly applied the multiplication, addition, and comparison steps (complete
solution) on the multiplicative-compare problem, their response was considered
conceptually based. Finally, for the Cartesian problem, two justifications were considered
to reflect conceptual understanding. Children's responses were coded as correct
multiplication if they appropriately used multiplication to solve the problem. Children's
responses were coded as correct diagram if they used a diagram to demonstrate how the
items in the problem could be grouped into sets.

Proofs Conceptual understanding on the proofs task was reflected by a grouping
procedure where children correctly divided beads into appropriate groups to demonstrate
why an answer was correct (see Table 10 for all justifications used).

Reliabili

An independent rater scored the responses from 30% of subjects, and reliability with
the experimenter's scoring was calculated in two ways. First, a conservative reliability
coefficient was calculated as the proportion of agreements between the two raters divided
by the total number of agreements and disagreements. Second, an experimenter-specific
reliability coefficient was calculated as the proportion of agreements between the two

raters divided by the total number of agreements and disagreements on only the responses
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that the experimenter coded for a given problem. This was the probability that the second
coder’s judgment matched that given by the experimenter.

For the proofs problems raters agreed on all the justifications used. Inter-rater
reliabilities for justifications used on the repeated-addition, commutativity, and word
problems were also very high (see Table 11). Although not as high as the other problem
types, there was also substantia] agreement between the raters about justifications used on
related-fact, operand-equal-to-product, operand-greater-than-product problems (see Table
11). Inter-rater reliabilities for justifications used on the estimation problems were
considerably lower than those calculated for the other problem types, but there was still
substantial agreement between raters (see Table 11). Any conclusions based on analyses of
the number sense task estimation problems must be qualified by the somewhat lower
reliability.

Changes in Conceptual Knowledge

To examine whether conceptual development in multiplication occurs during a period
of time when empbhasis is placed on memorization, the effects of grade on the proportion
of conceptually based procedures were examined. Proportions were calculated using only
Justifications that reflected complete understanding of the concepts relevant for each
problem. Proportions were calculated by dividing the number of conceptually based
justifications for each individual on a specific problem type by the total number of
problems of that type. Eight proportions of conceptual use were generated for each child,

one for each problem type. Because two types of concepts were used to assess children's




Multiplication
65

understanding of concepts important for multiplication, and changes in conceptual
knowledge between Grades 4 and 6, two separate analyses of variance were carried out:
one for concepts assessed using direct-application contexts, and one for concepts assessed
using enabling contexts.

The first analysis included problems where concepts could be directly applied to a
situation: proofs, repeated addition, commutativity, operand-equal-to-product, and
operand-greater-than-product problems. Proportions were subjected to a 2(Grade) X
2(Sex) X 5(Problem Type) analysis of variance with repeated measures on the last
variable. Use of conceptually based Justifications varied as a function of sex and problem
type. Across all problems, males used conceptually-based justifications somewhat more
frequently than females (.85 vs .80), E(1, 116) > 4.39, ps< .05. The number of
conceptually based justifications varied as a function of problem type, E (4, 464) = 69 .45,
R <.001. Mean proportions were .97, .97, .53, .69, and .96 for the repeated-addition,
commutativity, operand-equal-to-product, operand-greater-than-product, and proofs
problems respectively. Examination of simple effects revealed that children used fewer
conceptually based justifications on the number sense probiems than the other problems,
Es(1, 348)> 70, ps < .01. No changes between Grades 4 and 6 were evident. Thus on
problems that required recall and application of a specific conceptual principles, children in
Grade 4 were just as competent as those in Grade 6, However, ceiling effects are evident
for the repeated-addition, commutativity and proofs problems, and so any conclusions

regarding the development of concepts related to these problems must be tentative. If
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harder problems had been used to assess repeated addition, commutativity, and the ability
to prove the answer, differences may have existed between the two grades. However, the
absolute success of Grade 4 children on these problems is not trivial: Children displayed
notable understanding of some concepts assessed in specific contexts.

The second analysis included problems where the relevant concepts enabled the
generation of novel operations or inferences: related-fact, estimation, and word problems.
Proportions were subjected to a 2(Grade) X 2(Sex) X 3(Problem Type) analysis of
variance with repeated measures on the last variable. Use of conceptually based
justifications varied as a function of sex and grade. Males used conceptually based
Justifications more frequently than females (.69 vs .58), E(1, 1 16) = 7.00, p < .01 and
Grade 6 children used these Justifications more than Grade 4 children (.71 vs .57), E(1,
116) 11.88, p < .01. The number of conceptually based justifications did not vary as a
function of problem type. Mean proportions were .64, .66, and .61 for the estimation,
related fact, and word problems respectively.

Our results are consistent with the hypothesis that conceptual knowledge about
multiplication develops unevenly. Generally, children displayed greater understanding on
problems that involved direct application of a concept compared to enabling application.
As well, on the problems that involve direct application of concept, there is no change
from Grades 4t0 6. On related-fact, estimation, and word problems, where children were
required to use previously learned knowledge in a new situation, performance improves

markedly from Grades 4 to 6.
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Accuracy and Proportion of Conceptual Use

Comparisons between accuracy and conceptual justifications are important for
understanding the relation between the product of children's thinking (accuracy) and the
underlying concepts they use to solve the problem (conceptual justification). Furthermore,
this analysis allowed me to examine the effectiveness of product measures in assessment.

Proportions of accurate responses were examined with a 2(Grade) x 2(Sex) x 2(Task)
analysis of variance with repeated measures on the last variable. Grade 4 children were
less accurate than Grade 6 children on comparison and number sense tasks (.88 vs. .92 for
comparison and .82 vs. .89 for number sense), and children generally were less accurate
on the number sense task than on the comparison task (.85 vs. -90), Es(1, 116) > 6.01, ps
<.0l.

The relations between percent correct and proportion conceptual use were examined
for specific problem types. This analysis is based on two assumptions. First, principled
verbal justifications imply conceptual understanding. Specifically, if children can explicitly
explain or describe the principles or concepts important in a domain, then they are
assumed to understand those principles or concepts; if they cannot, their understanding is
assumed to be incomplete. Second, children can make correct responses without
conceptual understanding. For example, children can solve problems in multiplication by
rote memorization, without understanding the relevant concepts (McKenzie, 1993). The
probability of a principled justification given a correct response for each of four types of

problems in the comparison and number sense tasks was calculated for each subject. If
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there is a direct relation between the answer a child produces and the conceptual basis of
that answer, the conditional probability should approach 1.0. If measures of product do
not exactly represent the underlying process of thought, the conditional probability should
be much less than 1.0. Repeated addition and commutativity problems were grouped
together because children's responses were similar for these problems and they were both
used to assess the direct application of concepts. Operand-equal-to-product and operand-
greater-than-product were grouped together for the same reasons. Related-fact and
estimation problems were also evaluated. Conditional probabilities for repeated
addition/commutativity, related fact, operand-equal-to-product/operand-greater-than-
product, and estimation problems were .98, .67, .71, and .75 for Grade 4 and .99, .74, .64,
and .83 for Grade 6 children. Only on the repeated addition/commutativity problems does
the probability approach 1.0. For the other problem types, many children were able to
produce a correct answer without being able to justify that answer. Consequently,
measures of performance that are based on whether a child is right or wrong may not
reflect complete, explicit understanding of the domain.

The effects of grade, sex, and problem type on the proportion of conceptually based
justifications on correct problems were examined using a 2(Grade) x 2(Sex) x 4(Problem
type) analysis of variance with repeated measures on the last variable. Males used a
greater proportion of conceptually based justifications than females (-85 vs. .73), E(1, 105)
=14.04, p <.001. Mean proportions were .98, .70, .67, and .79 for the repeated

addition/commutativity, related fact, operand-equal-to-product/operand-greater-than-
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product and estimation problems respectively, E(3, 315) = 13.78, p <.001. Tests of
simple effects revealed that on correct trials, children used more conceptually based
justifications for repeated addition and commutativity problems than all other problems,
and for estimation problems than for related fact or operand-equal-to-product and
operand-greater-than-product problems, Fs(1, 315) > 5.53, ps <.05.

The effects of sex and task were qualified by a grade by sex by problem type
interaction, F(3, 315) = 3.27, R<.05. There were no differences between boys and girls, at
either grade, for the repeated addition and commutativity problems and the estimation
problems. For related fact problems, there was no difference between Grade 4 boys and
girls, but Grade 6 boys used more conceptually based justifications than girls did (.91
versus .57), F (1, 420) = 12.22, p < .01. Forthe operand-equal-to-product and operand-
greater-than-product problems, Grade 4 boys used more conceptually based justifications
on correct trials than girls (.88 versus .55), F (1, 420) = 10.00, p < .01, but Grade 6 boys
and girls did not differ. There were no grade differences for any of the problem types,
indicating there were no developmental changes in the relations between the answers
children produce and their underlying conceptual knowledge.

Except for problems where children only needed to apply a previously learned
principle, many children were able to produce an accurate answer but did not provide a
conceptually based justification of that answer. Consequently, assessment instruments that
rely solely on accuracy measures may not provide a complete characterization of children's

thinking
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Working Memory

To evaluate age-related change in working memory, analysis of variance was used to
compare backward digit and operation spans for children in Grades 4 and 6. Children's
mean memory span increased from Grades 4 to 6 for the backward digit span (5.17 versus
6.43) and operation span (3.42 versus 4.63), Es(1, 149) <4.98, ps > .05. Both global and
domain-specific working memory related to numbers and simple arithmetic increased with
age. An increase in the ability to store and manipulate numbers and arithmetic
information may be important for the development of arithmetic skill and individual
differences.

Di .

- ional Skill

Structural accounts and ASCM were used to explore the development of
multiplication performance. Because self-reports were used to identify the procedures
children used, data pertaining to reactivity and validity of the reports are discussed first.
Next, four areas relevant to children's performance in multiplication are discussed:
changes in the use of procedures, relations between the problem-size effect and problem
characteristics, how use of procedures may be related to problem characteristics, and the
relative effectiveness of structural versus associative indices in accounting for children's
solution latencies.

Self-reports. The issue of whether self-reports of procedures are veridical and non-

reactive is critical to the interpretation of the present data. To evaluate veridicality, self-
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reports are often compared to another source of data that reflect the processes involved.
For example, self-reports could be compared to overt behavior as an index of use of
procedures. Unfortunately, adults and older children rarely show evidence of overt
calculation on simple arithmetic problems. Thus the veridicality of self-reports generated
by older children must be evaluated based on the Plausibility of the reports in relation to
other, more objective measures (LeFevre et al 1996a). To address the issue of
veridicality, we compared latency and error data for each procedure. Because retrieval
involves relatively few steps, we would expect that it would be the fastest and least error-
prone procedure. We found that non-retrieval procedures (i.e., repeated-addition,
number-series, and solutions based on special tricks) were slower than retrieval. As well,
Grade 4 children were almost 100% accurate when they reported using retrieval, and were
much less accurate when they used other non-retrieval procedures. Children's reports of
procedure use were also consistent with the characteristics of the problems on which they
were used. For example, children reported using repeated addition on smaller problems
where this procedure would be effective. Thus, self-reports of procedures appear to be
veridical.

In terms of reactivity, children in our study displayed similar errors and solved
problems as quickly as children in research where no self-reports were used. However,
they displayed fewer errors than previously reported. Three factors may account for the
lower error rates. First, children in our study were required to solve only 28 multiplication

problems as compared to 91-100 problems in previous studies. Our children may have
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been less fatigued and consequently had lower error rates. Second, procedural differences
may have contributed to the lower error rates. In most of the previous studies problem
presentation was controlled by the experimenter, usually within a specified time period. In
our task, however, each trial was initiated by the children. Because children controlled
when the next problem appeared, they may have been more prepared for each trial than
children in previous studies. Finally, the requirement to verbalize performance may have
affected processing (Russo et al., 1989). Specifically, use of self-reports may have caused
children to attend to the accuracy of their answer more carefully than children in the other
studies, resulting in lower error rates (Cooney & Ladd, 1992). If this hypothesis were
correct, however, longer latencies might also be expected, but such was not the case. The
influence of these different variables cannot be distinguished based on the present data.

Procedure use. Children in Grades 4 and 6 used multiple procedures to solve simple
multiplication problems, and so an adequate model of children's performance in
multiplication must account for use of multiple procedures. ASCM (Siegler & Shipley,
1995) includes an account of multiple procedure use. We found that changes in use of
procedures between Grades 4 and 6 were consistent with predictions made in ASCM.
The first prediction is that with increasing experience the distributions of associations
should become peaked and consequently the use of retrieval should increase with age.
Grade 4 children used retrieval on 67% of trials whereas Grade 6 children used retrieval
on 88% of trials. Second, ASCM predicts that because information regarding the

effectiveness of each procedure is stored in memory, the speed and accuracy with which
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each procedure was executed should increase with age. Grade 6 children were faster and
more accurate than Grade 4 children on both retrieval and backup procedures. These
results are consistent with the conclusion that development should not be viewed solely in
terms of the acquisition of new, more effective procedures. Development also includes
changes in the frequency of use of existing procedures and the refinement of those
procedures (Lemaire & Siegler, 1995; Siegler, 1988a).

Problem-size effect and problem characteristics. There is no question that problems
with larger numbers are solved more slowly that problems with smaller numbers. How to
explain this phenomenon, and the importance of it, is less clear. Because structural
variables successfully predict solution latencies, most models have emphasized problem
size as an index of how retrieval occurs by means of spreading activation in the mental
network. Without considering the multiple procedures children use, this emphasis may be
misleading. Our results support the hypothesis that, although the problem-size effect is
still evident when product is used to predict solution latencies, it decreases when problems
with different characteristics are examined and different procedures are taken into
account. For Grade 4 and 6 children, problems with a 2 or a 5 are solved much more
quickly then would be expected based on problem size alone. We also found that whether
a problem had a 2 or § in it was just as effective as product in predicting latencies. The
use of product to demonstrate the appropriateness of a structural model of multiplication
may not be warranted. The fact that different patterns of latencies are observed for

different identifiable problem types suggests that children may be using different
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procedures selectively, depending on problem characteristics.

A striking finding was that children used procedures strategically on specific types of
problems. Our results are consistent with predictions made by ASCM that problem
characteristics are important in determining selection of procedures. For children in both
Grades 4 and 6, repeated addition was used primarily on problems with smaller operands,
counting string was used mainly on problems with operands of S, and special tricks were
used most frequently on problems with products greater than 40. My results support the
conclusion that children in Grades 4 and 6 do not select procedures randomly but instead
use problem characteristics to select procedures. Thus a complete account of the

problem-size effect must include the strategic use of procedures for different problem

types.

Mﬁmummmmmum&mﬂg We found that percent

retrieval was as good a predictor, if not a better predictor, of latencies than product for
children in both grades. According to ASCM, percent retrieval indexes the underlying
distributions of associations for problem-answer pairs and these associations are
influenced by children's use of procedures. For Grade 4 children, percent retrieval
accounted for much more of the variance in solution latencies than product. The strategic
use of procedures in Grade 4 may be related to the observed problem-size effect.
Procedures used on small problems may be faster and less error prone than those used on
larger problems. For example, using repeated addition on small problems requires few

steps, and hence there is less chance of error and faster solution times than if the
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procedure were used on a large problem. Use of special tricks on large problems involves
first recalling previously learned information and then applying it to the present problem.
Consequently, more time is required and there is a greater opportunity for errors to occur
compared to use of repeated addition on small problems.

By Grade 6 structural and associative variables are equally predictive of solution
latencies. How must the memory representation of number facts develop for product to
increase in its predictiveness? Many researchers have argued that product is a surrogate
of other, more psychologically plausible variables, such as frequency of problem
presentation (Campbell & Graham, 1985; LeFevre et al., 1996b). Perhaps changes in the
influence of problem frequency on associations and subsequently solution latencies are
related to changes in the influence of product. Researchers have assumed that frequency
of problem presentation should have the same influence across development (Siegler &
Schrager, 1984). In this study, the influence of problem frequency changes between
Grades 4 and 6. In Grade 4, frequency of problem presentation appears unimportant.
Only use of procedures appears to influence the distribution of associations. If we
consider multiplication to be a relatively novel task for Grade 4 children, the previous
findings can be interpreted. Early in learning the important process for the acquisition of
number facts is that associative connections must be made between problems and correct
answers. This process should be more related to use of procedures than frequency of
problem presentation because only the effective execution of backup procedures will

strengthen associative connections between a problem and a correct answer. A problem
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can be presented numerous times, but if it is solved incorrectly, the association between
the problem and correct answer will not be made. However, once initial associations have
been made, then more frequent presentation of a problem should strengthen associative
links because of the increasing success of retrieval. Consequently, frequency of problem
presentation has a cumulative effect, so that by Grade 6, it is important for predicting
solution latencies. Because small problems are presented more frequently than large
problems, product appears to be a better predictor of solution latencies in Grade 6.
Conceptual Knowledge

Analyzing children's performance on a number of measures allowed me to observe
many behaviors related to conceptual understanding and to examine the conditions that
influence those behaviors. First, I found that children's understanding of concepts
important for multiplication varied as a function of the context in which the concept was
assessed. Children displayed better understanding of concepts more amenable to
assessment involving direct application compared to concepts more amenable to
assessment involving enabling applications. Second, changes between grades varied
depending on the assessment context. Grade 6 children's performance was improved
compared to that of Grade 4 children on problems where concepts were used to enable
children to solve novel tasks, but not when concepts were directly applied to solve a
problem. Finally, product (i.e. accuracy) measures of performance do not provide a

complete account of children's performance.
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Conceptual categories. The way in which conceptual knowledge is assessed can

exercise a substantial influence on children's ability to demonstrate their understanding
(Bisanz & LeFevre, 1992; Nunes & Bryant, 1995; Siegler, 1991). Based on evaluation of
children’ performance on the different types of problems, we found that children's
understanding of mathematical concepts can vary depending on the concept being
assessed. For example, on problems where children were required to directly apply core
principles of multiplication, no differences existed in the performance of Grade 4 versus
Grade 6 children. However, on related-fact, estimation, and word problems, where
children were required to use previously learned knowledge in a new situation, older
children's performance was better than younger children's. Because word problems
involve understanding written language, perhaps changes in language comprehension
account for differences between grades. However, on problems such as related-fact and
estimation, which do not rely as heavily on language comprehension, Grade 6 children
also did better than Grade 4 children.

Acquisition of core principles may be necessary for the development of procedures
based on those principles, which can be generalized to novel settings. Children may have
to understand a principle in a basic situation before they can understand it in another,
novel setting (Nunes & Bryant, 1995). For example, understanding of principles may set
an upper bound for generating procedures in novel or unstructured domains, because they
influence and constrain the generation of new procedures (Dixon & Moore, 1996). How

might core principles influence the construction of new procedures or adaptation of old
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procedure for novel tasks? Using a production system may help to understand the
transition. A production system is a set of productions stored, presumably, in long-term
memory. Productions are condition-action rules for changing the set of information
currently activated in the cognitive system and they take the following form: "If X is
present, then Y occurs.” Bisanz and LeFevre (1992) argued that core principles could be
represented in terms of productions (condition-action statements). These conceptual
productions could be modified by knowledge-acquisition productions to create new
procedures in novel settings. For example, a production for the principle of repeated
addition takes the form "IfW+W+W+W=Yand4xW=Y, thenW+W+W+W=
4 x W." A production for the principle of commutativity takes the form "If WxY =Z
andYxW=2Z thenWxY=YxW." These production statements can be modified by a
knowledge-acquisition productions to create knowledge about part-whole relations and
related-fact procedures: "If W+ W + W + W = 4xW,and Wx Y=Y xW, then (A)
numbers can be divided into parts, and (B) there are different ways to derive a number. If
A and B, then numbers are compositions of other numbers and known number facts can be
broken down to derive the solution to unknown combinations."

With potential relations between basic principles and the construction of novel
procedures made explicit through productions, in future research we could examine the
development of conceptual understanding in multiplication through a training study.
Specifically, children with little experience in multiplication could be taught the principles

of repeated addition and commutativity during a number of sessions. In each session their
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understanding of part-whole relations and related-facts could be assessed to determine if
training in basic principles led to the construction of novel procedures.
Amumnndmpmmmm Verbal justifications were used to evaluate
the relations between the product of children's thinking (accuracy) and conceptual
understanding. The use of verbal Justifications was based on the assumption that they
reflect conceptual understanding. However, requiring verbal justifications to demonstrate
conceptual understanding may underestimate children's knowledge. For example, children
with language difficulties may have conceptual understanding in multiplication, but be
unable to express that understanding verbally. Even though verbal justifications may lead
to underestimating children's understanding, they still provide valuable information.
Specifically, if children can explicitly explain or describe the principles or concepts
important in a domain, then we can be relatively certain they understand those principles
or concepts. We found that many children in both grades were able to produce an
accurate answer but did not provide a conceptually based justification of that answer,
especially on problems requiring the application of previously learned knowledge to novel
settings. This discrepancy could be the result of two factors. First, many students may
have provided a correct answers on problems through a rote procedure or incomplete
knowledge, even if they did not have a full understanding of the important concepts.
Second, children may have provided correct answers because they understood the
important concept, even though they could not explain the concept. Likely, different

children fell into either of these two categories. The purpose of this study was not to
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determine whether verbal justifications reveal complete understanding and we do not
argue that verbal justifications should replace accuracy and other measures. Rather, we
conclude that assessment instruments that rely solely on accuracy measures may not
provide a complete characterization of children's thinking. Multiple measures, including
verbal justifications, are required to evaluate conceptual understanding.
Working Memory

Age-related changes in working memory involves children's ability to process and
store increasingly large strings of information with development. We found that Grade 6
children can remember more digits on the backward digit span, and remember more
answers to multiplication problems on the operation span, than Grade 4 children.

Individual Differences and Mathematical Achievement

c ional Skill and C | Und i
Use of procedures

Relations between children's performance on the WRAT-III and on the computational
task were analyzed separately for each grade. In Grade 4, participants who did well on
the WRAT-III were more likely to use retrieval on the computational task, r(58) = .49, p
< .01, and less likely to use relatively inefficient procedures such as counting string, r(58)
=-.31, p <.02, and repeated addition, 1(58) =-.42, p <01. These results support the
view that selection of procedures is related to individual differences i skill. As well, for
Grade 4 mathematics achievement was associated negatively with solution latency, (58) =

=-37, p <.01 and positively with accuracy, r(58) = .62, p <.01. In contrast to Grade 4, in
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Grade 6 mathematics achievement was not associated with proportion use of retrieval,
counting string, or repeated addition, perhaps because there was little variability among
children in terms of procedures (retrieval was used on 88% of the problems by Grade 6
children). The only significant association was between achievement and solution latency,
£(58) =-.35,p<.0l. Interms of procedural skills, the efficient use of procedures by
skilled Grade 4 children may lead to problem-answer associations that are highly
connected, leading to faster retrieval in Grade 6.
Conceptual Understanding

Relations between mathematics achievement and conceptual knowledge on each
problem type were analyzed separately for each grade. The proofs task was not included
because of restricted range in variability. In Grade 4, high achievement on the WRAT-III
arithmetic subtest was related to increased use of conceptually based justifications on all
problems (see Table 12). Achievement was not related to use of conceptually-based
justifications in Grade 6. Similar to the findings with the computational task, perhaps
early understanding of concepts facilitates skilled children in developing broader problem-
solving skills.

Working Memory

Results are reported in three sections. F irst, to evaluate the underlying components of
the operation span, backward digit span and measures of multiplication processing were
used to predict individual differences on the operation span. Second, operation span and

backward digit span were correlated with simple measures of processing skill in simple
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multiplication to determine whether working memory is related to mathematics. Third,
memory span tasks were used to predict individual differences in mathematics
achievement after measures of multiplication processing had been taken into account in
order to evaluate whether domain specific processes in working memory are related to
mathematics.

Underlying C  the Q .

For each grade, score on the backward digit span, mean solution latency on correct
multiplication problems on the computational task and proportion retrieval use on the
computational task were used to predict individual differences on operation span.
Solution latency and proportion retrieval are correlated, and solution latency has a greater
correlation with operation span than percent retrieval for both grades (see Table 12).
Consequently, of these two tasks, solution latency was always entered first in regression
analyses. First, score on backward digit span was regressed on operation span, and then
solution latency and percentage retrieval were added to determine whether they made an
independent contribution (Model 1). Subsequently, solution latency and percentage
retrieval were entered followed by score on the backward digit span (Model 2). As shown
in Table 13 both backward digit span and solution latency accounted for significant
variance in the score on operation span for children in Grade 4. As well, backward digit
span and solution latency added unique variance when they were the second variable
added. For Grade 6 only solution latency explained significant variance. Proportion

retrieval did not contribute any unique variance after solution latency was taken into




Multiplication
83

account for either grade.

For Grade 4 children, operation span appears to involve global processing in the
central executive because backward digit span accounts for significant variance. As well,
domain-specific processing, mainly speed of processing simple multiplication problems is
also involved. In Grade 4, it may be that global and domain-specific processing are
involved in the operation span task because the domain is not clearly specified (i.e.,
children have not consolidated multiplication facts in memory). By Grade 6, efficiency in
mathematics processing is more important for accounting for individual differences in the
operation span than global working memory. As children's multiplication knowledge
develops, assessment of working memory must include domain specific processing
because of the increased experience in ithe domain. A substantial portion of variance was
not accounted for in both grades by the backward digit span and multiplication processing
measures. Perhaps another factor is important for performance on this measure, such as a
strategic process not accounted for by the backward digit span (e.g., putting the answers
in numerical order).

Relations between children's performance on the span tasks and measures of
mathematics achievement and processing were analyzed separately for each grade. In
Grade 4, children with larger backward digit span, and children with larger operation span
solved simple multiplication problems faster, used more retrieval on simple multiplication

problems, and had higher scores in mathematics achievement (see Table 12). These
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results are consistent with the hypothesis that global processing in the central executive,
storage, and domain-specific processing are related to mathematics achievement and
simple mathematical processing in Grade 4.

For Grade 6, children with larger backward digit span and children with larger
operation spans solved simple multiplication problems faster, and used more retrieval on
simple multiplication problems (see Table 12). Of the two memory tasks, only backward
digit span was related to mathematics achievement in Grade 6 (see Table 12). We know
from our previous results that by Grade 6, operation span is related to working memory
processing specific to multiplication. Because tests of mathematics achievement like the
WRAT-III involve skills other than multiplication, more global measures of working
memory may be more directly related to tests of mathematics achievement.

Based on the task analyses I argue that backward digit span reflects global processing
and storage for children in both grades. The importance of global working memory, as
indexed by the backward digit span, remains consistent from Grades 4 to 6 in relation to
mathematics achievement. The ability to hold and manipulate numbers in memory remains
important for simple multiplication and mathematics achievement regardless of age.
Changes in the relations between measures of arithmetic and operation span require more
precise interpretation because earlier we found that the processes underlying the operation
Span may change with age. Specifically, in Grade 4, the operation span involves both
global and domain specific processing. By Grade 6, only domain-specific processing is

important. As the operation span progressively reflects domain-specific processing (i.e.,
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efficient multiplication fact retrieval), it changes from being important to a broad range of
mathematics skills to being related to just multiplication performance in Grade 6.
Consequently, even within mathematics the efficiency with which the central executive
executes task-specific processes is important in understanding the relations between
arithmetic and working memory. Again, any conclusions regarding age-related changes
must be tentative because they are made on the basis of comparing correlations for two
different groups.
: f Working M | Matl ics Achi

To determine whether mathematics-specific processes account for performance better
than general processes, operation span and backward digit span were used to predict
individual differences in mathematics achievement. First, I entered the score on backward
digit span, then operation span (Model 1). Second, the order of entry for the variables
was reversed (Model 2). For Grade 4, both backward digit span and operation span
entered first explained significant variance in the score on the WRAT-III (8% versus
10%), Es > 5.06, ps < .05. Neither of these variables explained significant unique variance
in mathematics achievement when entered second (see Table 14). For Grade 6, only
backward digit span explained significant variance in the score on the WRAT-III, F =
11.96, p < .01 (see Table 14). These results are consistent with the hypothesis that global
working memory processing becomes increasingly important in predicting general
mathematics achievement with development.

To determine the best mathematics efficiency predictor, solution latency and
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proportion retrieval were used to predict WRAT-III. In the first step, we entered solution
latency and then proportion retrieval (Model 1). In the second model the order was
reversed (Model 2). For Grade 4, both solution latency and proportion retrieval entered
first explained significant variance on the WRAT-II (33% versus 24%), Es>16.54, ps <
.01. Only solution latency explained significant unique variance in mathematics
achievement when entered second (see Table 15). For Grade 6 children, only solution
latency entered first explained significant variance in the score on the WRAT-II (13%
versus .004%), Es >12.78, ps < .01. It appears that solution latency, which presumably
reflects speed of processing and acquisition history, is more important than specific
acquisition history as measured by percentage retrieval. Consequently, solution latency
was used to predict WRAT-III scores in subsequent analyses.

For Grade 4 solution latency and operation span were used to predict WRAT-III. In
the first model I entered solution latency and then operation span (Model 1). In the
second model the order was reversed (Model 2). Solution latency accounts for a larger
amount of variance in mathematics achievement compared to operation span (33%
versus 10%). Solution latency explained significant unique variance in mathematics
achievement when entered after operation span whereas operation span did not (see Table
16). For Grade 6, backward digit span and solution latency were used to predict WRAT-
III scores. In the first model I entered solution latency then backward digit span (Model
1). In the second model the order was reversed (Model 2). For Grade 6, backward digit

span accounts for a larger amount of variance than solution latency (17% versus 13%).
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Both solution latency and backward digit span explained significant unique variance in
mathematics achievement when entered after the other (see Table 16).
Relations Among Measures

Correlations are presented in Table 12. Many of the relations between specific
variables have been discussed previously. Consequently, in the present discussion only the
main patterns of relations are highlighted. First, the correlations among the measures are
discussed and then results from the cluster analysis for each grade.

Generally, individual differences in the performance of Grade 4 students were highly
related among the measures. For example, individual differences in raw scores on the
WRAT-1II were related to performance on all other measures. The specific nature of
these relations for computational, conceptual, and working memory measures has been
discussed previously in this paper. Further, working memory and computational measures
were significantly related. Finally, individual differences on some of the conceptual
measures (1.e., Equal-to/Greater-Than, Estimation, and Word Problems) were related to
variation on the computational and working memory measures. Hierarchical cluster
analysis revealed two clear clusters. Specifically, a computational/achievement cluster was
evident which included median latency for solving multiplication problems, the percent of
retrieval use, and raw score on the WRAT-III. A working memory cluster consisting of
the operation span and backward digit span was also present. Measures of conceptual
understanding were not clearly part of any cluster.

In contrast to Grade 4, few significant relations among the measures were present for
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students in Grade 6. Individual differences in the raw score on the WRAT-III are only
related to performance on the backward digit span and median latency for solving simple
multiplication problems. The only other significant relations in individual differences
present are between (a) operation Span, median latency, and proportion retrieval, (b)
operation span and backward digit span, and (c) related-fact and word problems. In terms
of cluster analysis, two clear clusters are evident. First, raw score on the WRAT-III and
backward digit span form a cluster. Added to this cluster in later steps are median latency
and operation span. A second clustering of measures includes the related-fact and word
problems.
Di .

Computational Skill and Conceptual Knowledge

The changing relations between mathematics achievement and multiplication skill were
similar when computational skill and conceptual understanding were evaluated. In Grade
4, low achievement was associated with use of immature procedures and ineffective use of
procedures. By Grade 6, however, only slow solution latency was associated with low
achievement. Perhaps the early efficient use of procedures by higher-achieving children
influences the developing problem-answer associations so that they are better connected
and consequently retrieved faster later on. Conversely, low-achieving children's use of a
greater mix of immature strategies may also influence the developing connections, but in a
different way. Specifically, the distribution of associations for individual problems for

these children would be flat, leading to less retrieval. Although, they eventually may use
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retrieval, their distributions still may not be as peaked as those for higher-achieving
children. Consequently low-achieving Grade 6 children may attempt to retrieve more
times before their confidence interval is exceeded, leading to longer latencies.

Consistent with the changes in individual differences observed using computational
measures, conceptual ability is related to standard achievement measures in younger
children but not in older ones. Perhaps the early understanding of concepts provides
skilled children with a "head start" in multiplication that allows them to practice problem-
solving skills for a longer period of time. By Grade 6, even though all children understand
the basic concepts of multiplication, skilled children may demonstrate more advanced
problem-solving abilities because of the greater amount of experience using concepts.
Any hypotheses related to computational and conceptual knowledge must be tentative,
however, pending longitudinal evidence showing that the low-skilled children in Grade 4
would still be the low-skilled children in Grade 6.

Working Memory

We found that working memory is related to achievement in mathematics. Our results
differ somewhat from the existing literature on working memory and performance on
complex tasks. Two positions are currently held regarding the effectiveness of working
memory measures in predicting individual differences on complex tasks: (a) measures of
global working memory are more effective than domain-specific measures (Engle &
Turner, 1989), and (b) domain-specific measures are more effective than global measures

(Daneman & Carpenter, 1983; LeFevre, 1993). I found that both global and domain
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specific working memory can account for individual differences, depending on age and
what aspect of a complex skill that is measured.

Different working memory processes accounted for mathematics achievement in Grade
4 compared to Grade 6 children. For Grade 4 children, processing speed of multiplication
facts is the most important predictor of mathematics achievement. Because operation
span does account for some variance on its own, it would appear that working memory
processes involving specific mathematics capabilities is also important. Consequently,
efficiency of processing of mathematics-specific information by the central executive was
most important for mathematics achievement in Grade 4. By Grade 6 however, general
processing in the central executive was most important.

This difference may be due to the nature of the problems solved by the children on the
WRAT-IIIL. The problems solved by the Grade 4 children involved simple and multi-digit
arithmetic problems. Past learning is important for these problems, and speed of
processing as measured by solution latency may reflect this past learning. Although the
Grade 6 children solved these problems, most of them also solved more difficult problems
that required more novel problem solving skill such as algebra and fractions. Perhaps
general working memory is more important for these novel problems. Another reason for
why solution latency was more related to achievement in Grade 4 compared to Grade 6
was the restricted range of latencies observed in Grade 6. For Grade 4 there was large
variability in solution latency for correct multiplication problems (S.D.= 1139 ms). By

Grade 6, the variability was much smaller (465 ms), resulting deflated correlations with
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other variables.

Age related change in working memory may be the result of increases in total space
(storage and processing space ), or a redistribution of space between storage and
operating components. Case et al. (1982) present evidence supporting the latter. They
argued that as children become faster and more efficient in processing information, less
processing space is required and more space becomes available for storage. As a result,
longer strings of information can be remembered. The present results are consistent with
this hypothesis. Specifically, I found that measures of processing speed (solution latency)
become more important in predicting individual differences on operation span from Grades
410 6. As performance on operation span increases, so does the relative importance of
processing speed in predicting performance.

Relations Among Measures

Based on the patterns of correlations and cluster analysis, in Grade 4 individual
differences in computational knowledge, conceptual knowledge, and working memory are
all related. For students in Grade 6, fewer relations among different areas of mathematical
knowledge are present; mathematics functioning is compartmentalized into
computational/working memory and conceptual domains. The finding that conceptual
knowledge is related to computational skills in Grade 4 but not in Grade 6 may be due the
fact that conceptual knowledge is important in the development of computational skills
(Baroody, 1995; Geary et al., 1992). In Study 1 it was found that computational skills in

multiplication are forming in Grade 4 and are established by Grade 6. In Grade 4, to
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develop and use repeated addition and derived fact procedures to solve simple
multiplication problems, students need to understand part-whole relations. However, by
Grade 6, students have well-developed procedures and do not need to rely on conceptual
principles when solving simple multiplication problems.

Based on these results it appears that although standardized achievement tests, such as
the WRAT-III, do reflect individual differences in children's computation abilities, they are
less effective in assessing conceptual knowledge, especially in later grades. This
shortcoming of standardized achievement tests has important implications for assessing
children's performance. If assessment of mathematics skills is based solely on standardized
achievement tests that only measure computational skills, researchers and clinicians will
lose valuable information about children's understanding.

GENERAL DISCUSSION

The present results on age-related change and individual differences in multiplication
have implications for four areas important to providing an integrated account of the
acquisition of mathematical skill and knowledge. First, any inquiry into the acquisition of
skill or knowledge requires careful consideration of the methods employed for assessing
children's performance. Implications from the present findings for the assessment of
children's performance in multiplication are addressed. Second, clearly defined models of
multiplication are needed to interpret data gathered through assessment. Implications
from the present results are discussed in terms of models of performance in multiplication.

Third, an integrated account of the acquisition of multiplication skill and knowledge
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involves identifying principles of development common to the different areas involved in
multiplication. Consequently, implications of the current findings are discussed in terms of
principles of development. Finally, changing patterns from younger to older children in
the relations between measures can be used to make inferences regarding the development
course in the acquistion of multiplication skill and knowledge.
Implications for Assessment

A core issue for both empirical and clinical work is the assessment of children's skill
and knowledge. How performance is assessed has a substantial impact on the models of
knowledge acquistion and development. Based on the present findings, the use of multiple
measures appears essential for a complete understanding of children's acquistion of
multiplication skill and knowledge. Evidence for the necessity of multiple measures is
found in three areas: self-reports of procedure use, verbal justification and conceptual
understanding, and limitations of standardized achievement measures.

Self-Reports

Muitiple measures are necessary for providing converging evidence. The assessment
of simple arithmetic in children has typically involved accuracy data, solution latencies,
and behavioral observations. I found immediately retrospective self-reports provided
valuable information regarding the diversity of procedures children use to solve problems.
The use of self-reports helped to distinguish between procedures such as repeated addition
and counting string, that would appear the same based on behavior data alone. Although

self-reports provide detailed information, it would be unwise to use them without other
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measures of performance. Other concurrent measures are required to evaluate the
veridicality and reactivity of self-reports. To evaluate veridicality, self-reports were
compared to latency and error data for each procedure. For example, because retrieval
involves relatively few steps, it would be expected to be the fastest and least error-prone
procedure. In fact non-retrieval procedures (i.e., repeated-addition, number-series, and
solutions based on special tricks) were slower than retrieval. As well, Grade 4 children
were almost 100% accurate when they reported using retrieval, and were much less
accurate when they used other non-retrieval procedures.

Concurrent accuracy and latency data were also required to evaluate the reactivity of
self-reports. Although children in this study displayed similar errors and solved problems
as quickly as children in research where no self-reports were used, they displayed fewer
errors than previously reported. Differences in methods between the other studies and this
one may account for these findings. However, it also may be that use of self-reports
caused children to change their behavior. As long as concurrent measures are used to
evaluate self-reports, the added information they provide warrants their use.

Verbal Justificati {C | Und n

Using a number of measures provides additional information that may go unnoticed if
only a single measure is used. For example, children are considered to understand a
concept if they produce the correct answer to problems related to the concept. Using
measures of accuracy and verbal justifications, I found that many Grade 4 and 6 children

were able to produce a correct answer, but could not provide a conceptually based
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justification for that answer. Some children who answered correctly may have understood
the concept, even though they could not explain it. However, many children may have
used a rote procedure to solve the problem and had little understanding of the concept
involved. Assessment instruments that rely solely on accuracy measures may not provide
a complete characterization of children's thinking. Multiple measures, including verbal
justifications, are required to evaluate conceptual understanding.

Multiple measures are need to provide a complete account of children's skills and
knowledge. Standardized achievement tests are used extensively in educational, clinical,
and research settings as the sole measure of mathematical ability. Many of these tests, like
the WRAT-3, involve only mathematical computations and may not reflect all areas of
mathematical functioning. By using multiple measures of multiplication and examining
relations with the WRAT-3, the utility of the achievement tests for assessing all areas
important to simple arithmetic was evaluated. Although standardized achievement tests,
such and the WRAT-III, do measure children's computation abilities, they are less
effective in assessing conceptual knowledge, especially in later grades. If assessment of
mathematics skills is based solely on standardized achievement tests that only measure
computational skills, researchers and clinicians will lose valuable information about
children's understanding.

Implications for Cognitive Models of Muiltiplication

A reciprocal relationship exists between empirical data and theoretical models of



Multiplication
96

performance. Models are necessary to organize and interpret empirical data. In the
Results and Discussion sections theoretical models were used to interpret data. However,
empirical data are important for developing and shaping models of performance. For
models to remain relevant they must be flexible enough to account for and incorporate
new data. Implications of the present data for models of computational skills, conceptual
knowledge, and working memory are discussed.
. ional Skill

Based on empirical data gathered on Grade 4 and 6 children's performance on simple
multiplication problems, models of computational skill must account for the influence of
problem characteristics on performance and the strategic use of procedures on different
problems. First, different patterns of solution latencies were evident for different
identifiable types of problems. As well, whether a problem had a 2 or a § in it was just as
effective in predicting solution latencies as a structural variable like product. Children
were also observed to use procedures strategically on specific types of problems. For
example, repeated addition was used primarily on problems with smaller operands, and
special tricks were used only on problems with operands greater than forty. Any account
of children's performance in multiplication must include how problem characteristics are
important in determining solution latency, and the strategic use of procedures. A model
that is promising in this regard is ASCM. Although this model accounts for why a new
procedure may be used, and why after a procedure is used it is applied more frequently to

specific problem types, it does not account for why a specific kind of procedure may be
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used initially on some kinds of problems but not others. Further research is needed on the
processes by which children use a procedure for the first time, on specific types of
problems.
Models of Conceptual Understanding
Researchers and educators often assume that children either have conceptual
understanding in a domain or they do not (Greeno, 1983). I found that children's
understanding of concepts important for multiplication can vary depending on the
particular concept, and how the concept is assessed. Specifically, children's understanding
of concepts that could be directly applied to solve a problem was greater than those
concepts used to enable the generation of novel knowledge. Nunes and Bryant (1995)
found that children's understanding of commutativity in multiplication can vary from one
situation to another. One way that appears to be useful for promoting conceptual
knowledge is to ask children to come up with as many ways as possible to solve a
particular problem (Sweller, Mawer, & Ward, 1983). Consider a child's understanding of
counting. A good understanding of counting may be demonstrated when the child knows
that counting can occur from left to right, from right to left, or haphazardly and, as long as
all of the items are counted, still yield the same answer (Geary, 1994). Hence, models of
conceptual understanding must account for how children can understand some important
concepts but not others.
Working Memory

Models of working memory and of the influence of working memory on skilled
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performance focus on global versus domain-specific memory processes. I found that both
global and domain specific working memory can account for individual differences,
depending on age and what aspect of a complex skill that is measured. Different working
memory processes accounted for mathematics achievement in Grade 4 compared to Grade
6 children. For Grade 4 children, processing speed of multiplication facts is the most
important predictor of mathematics achievement. By Grade 6, however, general
processing in the central executive was most important. Hence models of working
memory need to incorporate both global and domain-specific processes. Further, models
need to be useful for determining when specific versus global processes are used on
different types of tasks and under what conditions different memory processes are
employed.
Implications for Principles of Development

The use of multiple measures allowed the opportunity to provide an integrated account
of the development of multiplication not present in the existing literature. By using
measures of computational skills, conceptual knowledge, and working memory, I was able
to identify a principle of mathematical development common to all areas.

Variability Within A

A characteristic of children’s performance was variability: Children in Grades 4 and 6
used various procedures to solve simple multiplication problems, and their understanding
of concepts important for multiplication varied depending on the context. Development is

often described in terms of a progression through stages where a single procedure or way
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of thinking predominates. As children move from one stage to the next, more advanced
procedures replace less advanced ones. My results are inconsistent with this view of
development.

There is no question that young children use multiple procedures to solve cognitive
tasks (Lemaire & Siegler, 1995; Siegler, 1987, 1988a, 1988b, 1989; Siegler & McGilly,
1989). However, variability in use of procedures is not limited to young children. Older
children used multiple procedures to solve multiplication problems even during a period of
time when heavy emphasis is placed on memorization. Adults also use multiple
procedures on simple tasks (LeFevre et al., 1996a; LeFevre et al , 1996b; Siegler &
Lemaire, 1997). Variability in use of procedures can no longer be viewed as reflecting
immature performance, while use of a single procedure is considered to be the norm for
advanced processing. My results support the hypothesis that development involves not
only the addition of new procedures, but changes in how often individual procedures are
used and also improved execution of procedures (Lemaire & Siegler, 1995). Having a
variety of procedures to use allows children to apply procedures adaptively. Depending
on the task demands or problem characteristics, they can apply the most effective
knowledge from their repertoire.

Conceptual development is also often considered to occur in an all-or-none fashion:
Older children understand multiplication, younger children do not. However, because
many forms of behavior are related to understanding, and understanding can vary

depending on the situation, conceptual development cannot be viewed in absolute terms.
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Based on the present results it appears that conceptual development may involve the
uneven advancement of concepts, with a child being in different "stages" depending upon
the specific concept being evaluated. Specifically, Grade 4 and Grade 6 students'
understanding of multiplication was not substantially different. For example, there were
no differences in their understanding of concepts important for the direct application of a
principle. Further, many students in Grades 4 and 6 demonstrated understanding of
enabling concepts, although more students in Grade 6 understood these concepts.
Development of simple multiplication skill and knowledge does not involve a
uniform progression through stages where one type of thinking or procedure dominates.
Rather, development appears to be uneven and variable, with children at many ages
demonstrating use of similar procedures and ways of thinking. What changes is the
frequency with which different procedures are used, or ways of thinking are applied.
These conclusions are limited to development in simple arithmetic. It would be important
to determine if the principle of variability applies in the development of more complex
skills.
Changing Relations Among Measures

Computational skill, conceptual knowledge, and working memory were all related to
individual differences in achievement. However, the pattern of the relations was different
in Grade 4 compared to Grade 6. By examining theses different patterns of individual
differences, inferences can be made about how development must occur in order to

observe the change in patterns from Grades 4 to 6. For example, examination of the
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changing relations between achievement and computational skills, and achievement and
conceptual understanding provides information from which inferences can be made
regarding the development of mathematical achievement. In Grade 4, low achievement
was associated with use of immature procedures and ineffective use of procedures. By
Grade 6, however, only slow solution latency was associated with low achievement.
Similarly, conceptual knowledge was related to standard achievement measures in younger
children but not in older ones. Perhaps the early efficient use of procedures and
understanding of concepts facilitates the quick acquisition of multiplication facts, resulting
in increased achievement levels for children in Grade 4. This may also lead to a longer
period to practice multiplication facts for high achieving children, resulting in increased
speed of retrieval being related to achievement in Grade 6. Although these analyses are
speculative, they point to the influence of early experience on mathematical achievement.
Different patterns in the relations among all the measures were observed for students
in Grade 4 versus students in Grade 6. | found that mathematical knowledge is relatively
homogeneous for students in Grade 4. Computational knowledge, conceptual knowledge,
and working memory are all related. For students in Grade 6, fewer relations among
different areas of mathematical knowledge are present; mathematics functioning is
compartmentalized into computational/working memory and conceptual domains. A
problem with the analyses used in the present study is that individual differences in two
different grades were used to make inferences regarding development. While these

inferences can guide future research, they are only speculative. An effective evaluation of
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individual differences and developmental outcomes must involve the longitudinal study of

a number of individuals.
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Error Rates 7 ) on Single-Digit Multiplication Problems i Six Studi

Cooney = Campbell Lemaire LeFevre
Present Siegler etal & Graham & Siegler etal.
Grade Study  (1988a) (1988) (1985) (1995) (1996a)
2 - - - - 55.0 -
3 - 29.8 17.1 23.1 - -
4 9.0 - 13.7 253 - -
5 - - - 16.8 - -
6 1.6 - - - - -
Adults - - - 7.7 - 3.0




Multiplication
104

Table 2

Studies

Present Study Campbell & Graham (1985)
Errors Grade4 Grade6 Grade3 Graded4 Grade5 Adults
Operand Related 41 61 49 48 69 79
Operand Unrelated 16 13 21 22 14 14
Non-table 27 19 30 31 17 7

Out of Time 16 7 - - - -
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Table 3

Campbell Lemaire &

Present Siegler =~ & Graham Siegler LeFevre et

Grade Study (1988a)  (1985) (1995)  al. (1996a)
2 - - - 9.90 .
- 10.77 2.84 - )
4 2.56 - 3.64 - )
5 - - 187 ] ]
6 1.53 - - - -

Adults - - .83 - 1.34
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Table 5
S (R} | for L ies F { on Prod { T Ei
Yarables
Order of Entry Grade 4 Grade 6
Model 1
Product 43* 47*
Twos/Fives 31* 22%*
Model 2
Twos/Fives .66* .55*
Product .08 .14*

*p<.05
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Table 6

Order of Entry of Variables Grade 4 Grade 6
Model 1
Percent Retrieval and Problem Frequency 75% .54*
Product .03 .06
Model 2
Product and Problem Frequency 49* .52*
Percent Retrieval 29% .08

*p<.05
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Table 7
Percent Use

Problem Type Justification Grade 4 Grade 6
Repeated Addition

Application 96.7 98.0

No Application 33 1.7

Computation 0.0 0.0
Commutativity

Application 96.4 98.0

No Application 2.8 1.0
Related Fact

Application 60.8 72.0

Direction or Magnitude 19.2 11.0

No Application 16.7 15.0

Computation 1.7 04
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Table 8
Percent Use

Problem Type Justification Grade 4 Grade 6
Operand = Product

Multiply By 1 51.1 54.0

Direction or Magnitude 42.8 43.0

None 5.0 1.1
Operand > Product

Greater than Rule 66.1 73.0

Direction 205 26.0

None 12.2 0.0
Estimation

Multiplication 15.6 31.0

Partial Multiplication 20.6 18.0

Ambiguous Justification: 239 21.0

Direction or Magnitude

Ambiguous Justification 11.7 11.0

None 222 14.0
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Percent Use

Problem Type Justification Grade 4 Grade 6
Irrelevant Information
Correct Multiplication 60.0 75.0
Irrelevant Computation 31.7 233
Addition 6.6 0.0
Insufficient Information
Insufficient 35.0 68.3
Unsure 10.0 5.0
Inappropriate Multiplication 45.0 20.0
Addition 10.0 33
Irrelevant Computation 0.0 1.7
Multiplicative Compare
Complete Solution 58.3 78.3
Incomplete Solution - 6.7 1.7
Addition
Incomplete Solution - 15.0 13.3
Compare
Incomplete Solution - Extra 10.0 3.3
Addition 83 0.0
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Table 9 continued
E f Justification Use for Word Probl
Percent Use
Problem Type Justification Grade 4 Grade 6
Cartesian
Correct Muiltiplication 41.7 483
Correct Diagram 33 15.0
Incorrect Matching 26.0 333
Incomplete Solution -Extra 0.0 0.0
Addition 6.7 1.7
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Percent Use
Problem Type Justification Grade 4 Grade 6
Proofs
Grouping 933 100.0
Inappropriate Grouping 6.7 0.0




Table 11

Iter Rater Relsbliy for Individual Jusificatons ag | Tag

Multiplication

Rater-
Number of Conservative  Specific
Problem Type Justification® Observations®  Reliability Reliability
Repeated Addition  All 248 99.2% 100.0%
Commutativity All 186 97.8% 97.8%
Related Fact All 124 88.7% 95.6%
Related Fact 79 96.0% 96.0%
Direction 25 76.0% 86.4%
No Application 16 62.5% 71.4%
Operand > Product  All 90 90.0% 96.4%
Great-than-Rule 75 92.0% 95.8%
Direction 22 63.6% 82.4%
None 3 66.6% 66.6%
Operand = Product  All 90 88.9% 96.4%
Multiplication Rule 56 94.6% 96.5%
Direction 32 75.0% 88.9%
None 5 60.0% 80.0%

114
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Table 11 continued

tec.F fability for Individual Strategies on C | Tas

Rater
Number of Conservative  Specific

Problem Type Justifications® Observations®  Reliability Reliability

Estimation All 90 77.8% 92.1%
Multiplication 17 82.3% 93.3%
Ambiguous Justification 33 72.0% 80.0%
Partial Multiplication 21 57.1% 80.0%
None 20 40.0% 80.0%
Addition 8 50.0% 57.0%
Word Problems  All 120 94.2% 98.3%

a "All" refers to all the justifications for the problem type.

b Number of observations in reliability check.
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Table 13

Order of Entry of Variables Grade 4 Grade 6
Model 1
Backward digit span 31* .07
Solution Latency d1* .09*
Percent Retrieval .01 .04
Model 2
Solution Latency .20* 12*
Percent Retrieval .01 .04
Backward digit span 21* .04

*p<.05
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Table 14

Order of Entry of Variables Grade 4 Grade 6
Model 1
Operation span .10* .02
Backward digit span .02 .16*
Model 2
Backward digit span .08* 17
Operation span .04 .01

*p<.05
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Table 15

Order of Entry of Variables Grade 4 Grade 6
Model 1
Solution Latency .33* 13*
Proportion Retrieval .03 .00
Model 2
Proportion Retrieval .24* .00
Solution Latency 12%* 13*

*R<.05
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Table 16

Order of Entry of Variables Grade 4 Grade 6
Model 1
Solution Latency 33* 13*
Operation span/Backward digit span .01 d1*
Model 2
Operation/Backward digit span .10* 17*
Solution Latency 23* 07*

*p<.01
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Figure Capti
Figure 1 Mean solution latencies for each problem as a function of product size for
children in Grade 4 (top panel) and Grade 6 (bottom panel).

Eigure 2 Frequency of use of each procedure for Grade 4 (top panel) and Grade 6
(bottom panel) by operand families.

Eigure 3 Mean solution times on memory retrieval and all trials for Grade 4 (top panel)

and Grade 6 (bottom panel) as a function of product.




Mean Latency for All Trials (ms)

Mean Latency for All Trials {ms)

Multiplication
122

Grade 4
9000

8000+

20 30 40 50 60 70 80

Product

Grade 6
8000
8000+
7000
6000 1
5000 1
4000+
30001

2000+

1000




F requency of Use

Frequency of Use

Multiplication
123

Grade 4

—_—

Retrieval

Special Trick

Repeated addition

Counting string
Operand Family
Grade 6
400
3004
2001
Retrieval
100- Special Trick
-7 Repeated Addition
0E= if'f-?':_--.--_--_-;;.u--.-..:.—:'-.;.‘.-...ﬁ-.-;..- S T ==, Counting String
2 3 4 5 6 7 8 9

Operand Family




Latency (ms)

Latency (ms)

9000,

8000+

7000+

6000+

Multiplication

¢ mean latency for all
tnals

mean latency for

retrieval trals

v v —_—

0 10 20 30 40 50 60 70 80

Product

Grade 6

mean latency for all
trials

* mean latency for

retrieval trials

—

10 20 30 P 50 60 70 80

124




Multiplication
125

REFERENCES

Ashcraft, M. H. (1982). The development of mental arithmetic: A chronometric
approach. Developmental Review, 2, 213-236.

Ashcraft, M. H. (1987). Children's knowledge of simple arithmetic: A developmental
model and simulation. In J. Bisanz, C. J. Brainerd, & R. Kail (Eds.), Formal methods in
developmental psychology: Progress in cognitive development research (pp. 302-338).
New York: Springer-Verlag.

Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory.
Cognition, 44, 75-106.

Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: Evidence for retrieval
and decision processes in mental addition. Journal of Experimental Psychology: Human
Leaming and Memory, 4, 527-538.

Ashcraft, M. H,, Fierman, B.A., & Bartolotta, R. (1984). The production and
verification tasks in mental addition: An empirical comparison. Developmental Review,
4, 157-170.

Ashcraft, M. H,, Donley. R. D, Halas, M. A., & Vakali, M. (1992). Working

memory, automaticity, and problem difficulty. InJ. I D. Campbell (Ed.), The pature and

origins of mathematical skills (pp 189-253). Amsterdam: Elsevier Science Publishers.

Ashcraft, M. H. & Christy, K. S. (1995). The frequency of arithmetic facts in
elementary texts: Addition and multiplication in grades 1-6. Journal for Research in
Mathematics Education, 26, 396-421.




Multiplication
126

Alberta Education (1994). LProgram of Studies: Elementary Schools.
Baddeley, A. D. (1986). Working memory. New York: Oxford University Press.

Baddeley, A. D, & Hitch, G. (1974). Working memory. In G. Bower (Ed.), The

psychology of learning and motjvation (vol. 8, pp. 47-89). New York: Academic Press.
Baroody, A. J. (1987). Children's mathematical thinking: A developmental

W hool, pri New York: Teachers
College Press.
Baroody, A. J. (1995). The role of the number-after rule in the invention of

computational shortcuts. Qngn.Qn_agd_[ﬂw 189-219.

Baroody, A. J., & Gannon, K. (1984). The development of the commutativity

principle and economical addition strategies. Cognition and [nstruction, 1, 321-339.

Baroody, A. I, & Ginsburg, H. P. (1986). The relationship between initial meaningful

and mechanical knowledge of arithmetic. InJ. Hiebert (Ed.), Conceptual and procedural
knowledge: The case of mathematics (pp. 75-112). Hillsdale, NJ: Erlbaum.

Behr, M., Lesh, R, Post, T, & Silver, E. (1983). Rational number concepts. InR.

Lesh & M. Landua (Eds.), Acquisition of mathematical concepts and processes (pp-

57-90). New York: Academic Press.

Bisanz, J., & LeFevre, J. (1990). Strategic and nonstrategic processing in the
development of mathematical cognition. InD. F. Bjorklund (Ed.), Children's strategies:

mwmmmﬁwmmmmm (pp. 213-244). Hillsdale, NJ: Lawrence

Erlbaum Associates.




Multiplication
127

Bisanz, J., & LeFevre, J. (1992). Understanding elementary mathematics. In J.
Campbell (Ed.), mmmmmm (pp. 113-136). Elsevier
Science Publishers.

Byrnes, J. P., & Wasik, B. A. ( 1991). Role of conceptual knowledge in mathematical
procedural learning. Developmental Psychology, 27, 777-786.

Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition, 53, 1-
44.

Campbell, J. I. D. (1987). Network interference and mental multiplication. Journal of

MWBMMWMQ 109-123.

Campbell, J. I. D., & Graham, D. J. (1985). Mental multiplication skill: Structure,
process, and acquisition. Qma.dm_.[o_u_mal_g_ﬁzsxgmlg. 338-366.

Carpenter,. T.P., Corbitt, MK, Kepner, H.S, Lindquist, M.M., & Reys, R. E.
(1980). Solving verbal problems: Results and implications from the National Assessment.
Arithmetic Teacher, 28, 8-12.

Carpenter, T. P, Lindquist, C., Brown, C., Kouba, V., Silver, E. & Swafford, J.

(1988). Results of the fourth NAEP assessment of mathematics: Trends and conclusions.

The Arithmetic Teacher, 4, 38-41.

Carpenter, T. P., Matthews, W, Lindquist, M. M., & Silver, E.A. (1984).

Achievement in mathematics: Results from the National Assessment. Elementary School

Journal, 84, 485-495.
Case, R., Kurland, DM, & Goldberg, J. (1982). Operational efficiency and the




Multiplication
128

growth of short-term memory span. Joumnal of Experimental Child Psychology, 33, 386-
404.

Cooney, J. B, & Ladd, S. F. (1992). The influence of verbal protocol methods on
children's mental computation. Lﬂammndlndmwmﬁ_‘ 237-257.

Cooney, J. B., Swanson, H. L.,&Ladd, S. F. (1988). Acquisition of mental
multiplication skill: Evidence for the transition between counting and retrieval strategies.
Cognition & Instruction, S, 323-345.

Daneman, M, & Carpenter, P. A. (1983). Individual differences in integrating
information between and within sentences. Joumnal of Experimental Psychology:
Leaming, Memory, and Cognition, 9, 561-583.

Dixon, J. A., & Moore, C. F. (1996). The developmental role of intuitive principles in
choosing mathematical strategies. Developmental Psychology, 32, 241-253.

Geary, D. C. (1994). Children's mathematical development. Washington, DC:

American Psychological Association.

Geary, D.C., Bow-Thomas, CC, & Yay, Y. (1992). Counting knowledge and skill in
cognitive addition: A comparison of normal and mathematically disabled children.
Joumnal of Experimental Child Psychology, 54, 372-391.

Geary, D. C,, Brown, S.C., & Samaranayake, V. A. (1991). Cognitive addition: A

short longitudinal study of strategy choice and speed-of-processing differences in normal

and mathematically disabled children. Developmental Psychology, 27, 787-797.

Goldman, S. R, Pellegrino, J. W., & Mertz, D. L. (1988). Extended practice of basic




Multiplication
129

addition facts: Strategy changes in learning-disabled children. QQEmLLQn_an_d_I_rmm_g_uQﬂ.
5, 223-265.

Graham, D. J., & Campbell, J. L. D. (1992). Network interference and number-fact
retrieval: Evidence from children's alphaplication. Camdm&ummmlghg_m
65-91.

Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain.

Mmﬂfor.ﬂmam:_mmmmgnmz 170-218.

Greeno, J. G, Riley, M. S., & Gelman, R. (1984). Conceptual competence and

children's counting. Cognitive Psychology, 16, 94-143.

Hiebert, J., & LeFevre, P. ( 1986). Conceptual and procedural knowledge in
mathematics: An introductory analysis. InJ. Hiebert (Ed.), Conceptual and proceduyral
kmlﬁ.dxﬁ.;_ﬂ\ms_e_gf_mﬂmm (pp. 1-27). Hillsdale, NJ: Lawrence Erlbaum

Associates.

Hitch, G. C. (1978). The role of short-term working memory in mental arithmetic.

Cognitive Psychology, 10, 302-323.
Howden, H. (1989). Teaching number sense. The Arithmetic Teacher, 2, 6-11.

Hubbard, K. E. (1993). Mmmmmmmmﬂ
faﬂ_s.tmlgmgs_mmhmm Unpublished honor's thesis, University of Alberta, Edmonton,

Alberta, Canada.

Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to

adolescence, New York: Basic Books.



Multiplication
130

Jastak, J. F., & Jastak, S. (1993). Manual for the Wide Range Achievement Test:

Third Revision, Wilmington, DE: Jastak Associates, Inc.

Kiel, F. C. (1989). Concepts, kinds, and cognitive development, Cambridge, MA:

The MIT Press.

Koshmider, J. W., & Ashcraft, M. H. (1991). The development of children's mental

multiplication skills. Journal of Experimental Child Psychology, 51, 53-89.
Krzanowska, E. (1988). Relation between procedural skill and understanding in

multiplication, Unpublished master's thesis, University of Alberta, Edmonton, Alberta,
Canada.

LeFevre, J. (1993). Individual differences in working memory. Unpublished

manuscript.
LeFevre, J., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L, & Sadesky, G. S.
(1996a). Multiple routes to solution of single-digit multiplication problems. Joyurnal of
xperi logy: r
LeFevre, I, Sadesky, G. S., & Bisanz, J. (1996b). Selection of procedures in mental

addition: Reassessing the problem size effect in adults. Joumal of Experimental
Psychology: Learning. Memory, and Cognition, 22, 216-230.

Lemaire, P., & Siegler, R. S. (1995). Four aspects of strategic change: Contributions

to children's learning of multiplication. Journal of Experimental Psychology: General,

124, 83-97.
Loftus, E. F. (1992). When a lie becomes memory's truth: Memory distortion after




Multiplication
131

exposure to misinformation. @anm;mxmmmmm 121-123.

Logie, R. H., & Baddeley, A. D. (1987). Cognitive processes in counting. Journal of

Experimental Psychology, 13, 310-326.

Logie, R. H,, Gilhooly, K. J., & Wynn, V. (1994). Counting on working memory in
arithmetic problem solving. Memory and Cognition, 22, 395-410.

McKenzie, W. S. (1993). Qﬂﬂwmmmmmummﬂ
education: A descriptive profile, Unpublished doctoral thesis, University of Toronto,

Toronto, Ontario, Canada.

Miller, K., Perlmutter, M., & Keating, D. (1984). Cognitive arithmetic: Comparison
of operations. m 1 h X in nition
10, 46-60.

Nunes, T., & Bryant, P. (1995). Do problem situations influence children's
understanding of the commutativity of multiplication? Mathematical Cognition, |, 245-
260.

Ohlsson, S., & Rees, E. ( 1991). The function of conceptual understanding in the

learning of arithmetic procedures. Cognition and Instruction, 8, 103-179.
Piaget, J. (1952). The child's concept of number. New York: W.W. Norton.

Putnam, R. T., deBettencourt, L. U_, & Leinhardt, G. (1990). Understanding of

derived-fact strategies in addition and subtraction. Cognition and Instruction, 7, 245-285.

Resnick, L. B. (1983). A developmental theory of number understanding. In H. P.

Ginsburg (Ed.), The development of mathematical thinking (pp. 109-151). New York:




Multiplication
132

Academic Press.
Resnick, L. B., Nesher, P., Leonard, F., Magone, M, Omanson, S., & Peled, I.
(1989). Conceptual bases of arithmetic errors: The case of decimal fractions. Joumnal for

Research in Mathematics Education, 20, 8-27.

Rourke, B. P., & Strang, J. D. (1983). Subtypes of reading and arithmetic disabilities:
A neuropsychological analysis. In M. Rutter (Ed)), Developmental Neuropsychiatry (pp.
473-488). London: The Guildford Press.

Russo, J. E, Johnson, E. J., & Stephens, D. L. (1989). The validity of verbal
protocols. Memory & Cognition, 17, 759-769.

Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in
normally achieving and subtypes of learning disabled children. Chil velopment, 60
973-980.

Siegler, R. S. (1987). The perils of averaging data over strategies: An example from

children's addition. Journal of Experimental Psychology: General, 116, 250-264.

Siegler, R. S. (1988a). Strategy choice procedures and the development of

multiplication skill. Ioumal of Experimental Psychology: General, 117, 258-275.

Siegler, R. S. (1988b). Individual differences in strategy choices: Good children

not-so-good children, and perfectionists. Child Development, 59, 833-851.

Siegler, R. S. (1989). Hazards of mental chronometry: An example from children's

subtraction. Journal of Educational Psychology. 81, 497-506.

Siegler, R. S. (1991). Children’s thinking (2nd ed.). Englewood Cliffs, NJ: Prentice




Multiplication
133

Hall.
Siegler, R. S., & Lemaire, P. (1997). Older and younger adults' strategy choices in
multiplication: Testing predictions of ASCM via the choice/no-choice method. Joumal of

Experimental Psychology: General, 126, 71 - 91.

Siegler, R. S., & McGilly, K. (1989). Strategy choices in children's time telling. Inl.
Levin & D. Zakay (Eds.), Time and human cognition: A life-span perspective (pp.
181-218).  New York: North-Holland.

Siegler, R. S., & Shipley, E. (1995). Variation, selection, and cognitive change. In
G. Halford & T. Simon (Eds.), Developing cognitive competence: New approaches to
process modelling (pp. 31-76). Hillsdale, NJ: Lawrence Erlbaum Associates.

Siegler, R. S., & Schrager, J. (1984). Strategy choices in addition and subtraction:
How do children know what to do? In C. Saffian (Ed.), Qrigins of cognitive skills (pp.
229-293). Hillsdale, NJ: Lawrence Erlbaum Associates.

Stazyk, E. H., Ashcraft, M. H., & Hamann, M. S. (1982). A network approach to

mental multiplication. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 8, 320-335.

Steffe, L., & von Glaserfeld, E. (1983). Children’s counting types: Philosophy, theory,
and application. New York: Praeger Publishers.

Strang, J. D., & Rourke, B. P. (1985). Adaptive behavior of children who exhibit

specific arithmetic disabilities and associated neuropsychological abilities and deficits. In

B. P. Rourke (Ed.), Neuropsychology of learning disabilities: Essential




Multiplication
134

analysis (pp. 167-183). London: The Guilford Press.

Sweller, J., Mawer, R. F., & Ward, M. R. (1983). Development of expertise in
mathematical problem solving. MWMMMM 639-
661.

Thompson, C., & Rathmell, E. (1989). By way of introduction. The Arithmetic

Teacher, 2, 2-3.
Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent?

Journal of Memory and Language, 28, 127-154.

Widaman, K. F., Geary, D. C., Cormier, P, & Little, T. D. (1989). A componential

model for mental addition. ] imental P l . L in m n

Cognition, 15, 898-919.

Widaman, K. F., & Little, T. D. (1992). The development of skill in mental

arithmetic: An individual differences perspective. InJ. I. D. Campbell (Ed.), The nature

and origins of mathematical skills (pp 189-253). Amsterdam: Elsevier Science Publishers.




Multiplication
135

Appendix A
I . Partici
oy Revician 1. A . 3

Directions for Arithmetic: Begin the test with the written computations. In examining
children 8 years and up, say: This is an arithmetic test. Turn to pages 2 and 3 where it
says Arithmetic). Look at the problems printed below the heavy line and going on to the
next page. (Hold test form up and point to both pages.) I'd like to know how many of the
problems you can figure out. Look at each problem carefully to see what you are
supposed to do - add, subtract, multiply or divide - and then put down your answer in the
space on or under the lines. Should you wish to figure on the paper, you may use the
empty spaces or the sides to write on. There is also space at the bottom of page
3(indicate by pointing). First do the top row, then the second row, the third, etc. The
problems get more difficult as you go down the page and on the next. Don't spend too
much time on any one problem. You can skip a problem if it is too difficult for you, but
do as many as you can one by one. You will have 10 minutes. Now, go ahead and do as
many as you can. Don't forget to go on to the second page of problems.
Computational Task

These are the instructions to precede presenting the multiplication problems on the
computer: I am trying to find out how children solve different math problems. Can you
help me with this, (child's name)? I would like you to solve a number of multiplication

problems and tell me how you solved them. I will show you some problems on the
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computer screen one at a time, and when you get an answer for each problem, say it out
loud. I will then ask you to tell me what you were thinking as you solved the problem.
You will see a math problem on the screen. Remember to say your answer out loud and as
quickly as you can without making mistakes. Then tell me how you got your answer. For
example, you may just know it, you may count in your head, you may have some special
trick you use to solve some problems. However you solve a problem, [ would like you to
tell me about it. Before each problem is shown you will see a star. When you are ready to
solve the problem say "Go" and the problem will appear on the screen. (Place microphone
on child:) You will say "go" into this microphone, which is connected to the computer.
The microphone will also help us to see how long it takes you to solve each problem.
(Test microphone.) To give you some practice, I want you to tell me what you think the
answer is for the following problems. Some of the problems will be easy and some will be
hard. When you are correct you will hear one sound, and when you are incorrect you will
hear another. But what I am interested in is how you think about math, so don't worry if
you have trouble with some of the problems. This is not a test. AllT want you to do is try
your best. Can we begin?"
[Start program here and continue until practice problems are finished]

So those were some practice problems. Now lets continue with new problems.
Remember, I want you to tell me the answer as quickly as you can without making
mistakes. Then tell me what you were thinking as you solved the problem. Are you ready

to begin?
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(If the child has difficulty solving a problem, it still may be useful to get information on
how he or she is trying to solve the problem. Some useful prompts to help a children
explain how they are trying to solve a problem are listed below.]

Tell me how you solved this problem? If you could solve the problem, how would you do
it?

What did you do first, and then what did you do? What numbers did you look at first, and
then what numbers did you look at? Tell me what you are thinking?

Remember you may just know it, you may count in your head, you may have some special
trick you use to solve some problems.

[If the child says "I don't know", say] Do you want to guess? How did you come up
with that guess? [If the child doesn't want to guess, say] How did you try to get an
answer?

(If the child guesses, code "guess" and ask] How did you come up with that guess?
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Appendix B
. ional Task Stimuli
4x2
6x7
3x8
9x7
2x3
49
6x5S
9x2
4x3
2x7
4x6
9x8
3x6
5x7
8x4
2x6
9x3
8x6

4x5




2x8

7x3

5x2

6x9

3x5

7x8

9x5

7x4

5x8
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Appendix C
Instructions for Conceptual Tasks

The following instructions were read to children at the beginning of each session: "I
have the homework of a boy (girl) in Grade 4 (6). He (she) has answered a number of
different multiplication problems. I want you to help me correct each problem without
multiplying, O.K.? I want you to look at each problem and tell me if the boy/girl got the
right answer. I also want you to tell me why you think that. Are you ready? " Sex and
grade were selected to match those of the child. As well, instructions for the specific tasks
were also read to the children.
Comparison

The following instructions were read for the comparison task: "Look at this group of
problems here (show first page of repeated addition, commutativity, and related-fact
problems). For these problem, he (she) was given the correct answer to one problem
(point to the problem on the left), and he (she) tried to use it to solve another problem
(point to problem on the right). So, for all the problems on the left side (point to problems
on left side), the correct answer is given (point to answers on left side). On the right side
are the problems that the boy (giri) had to solve (point to problems on right side).
Sometimes the correct answer here (point to problem on right side) might not be the same
as the answer here (point to left side), and sometimes they might be the same.

So, for this problem (cover all problem pairs except first one and state problem on the
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right side without answer) he (she) knew from looking at the left side that (state problem
on left side with answer). He (she) tried to use the information from the problem on the
left side (point to problem on left) to solve the problem on the right side (point to problem
on the right) and got this answer (state answer presented for problem on the right). Can
you tell without multiplying whether his (her) answer is correct or not? Why (or) Why
not?"

If the child gave a response that indicated he or she multiplied the numbers on the
right, the following prompt was given: "Well yes that is correct using multiplication, but if
you couldn't multiply in your head, could you find out if the answer is correct or not by
using information from this problem (point to problem on the left)? Is there a way you
can use the information from this problem (point to problem on the left) to see if his (her)
answer to this problem (point to problem on the right) is correct or not? Why, why not?"

If the children only examined whether the numbers on the left and right were the same
to determine if the answer was correct, the following prompt was given: "Remember,
sometimes the correct answer here (point to problem on the right) might not be the same
as the answer here (point to problem on the left), and sometimes it might be the same. So,
can you tell me another reason why you think that the answer is correct or incorrect?"

For related-fact problems, if the children understood that the problem can be
decomposed, and notes the direction of change but did not give a specific answer, the
following prompt was given: "Can you tell me how much more this problem is going to

be (point at problem on right) than this one (point at problem on left)?"



Multiplication
142

Number Sense

The following instructions were read for the number sense task: "Here are some more
multiplication problems that the boy (girl) worked on. I know you could solve them by
multiplying, but I want to find out if you can tell if the answers are probably right or
wrong, without multiplying. So, car you tell without multiplying whether his (her) answer
is correct or not? Why? (or Why not?)"

If the children solved the problem by multiplying, the following question was asked:
"If you couldn't multiply, is there anyway you could estimate, just by looking, whether his
(her) answer is correct or not? Why? (or Why not?)"
Word Problems

The following instructions were given for the word problems task: "I want you to
read each of the following word problems aloud, and tell me how you would solve the
problem. For example you could tell me what numbers you looked at, and what you did
with those numbers."
Proofs

The following instructions were given for the proofs task: "Look at this problem, S +
4 =9. I can prove the 5 + 4 = 9 using these beads. Watch me. First I count out S beads,
then I count out 4 more. When I add them together and count them I find there are 9

beads. I want you to use these beads to for the following multiplication problems."
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Stimuli for the C ison Tas}

Children were presented with three types of problem on the comparison task.

Repeated Addition Problems
I3+13+13+13+13+13=78
47 + 47 + 47 = 141
28+28+28+28=112
36 +36+36+36+36 =180
29+29+29+29=116
44 + 44 + 44 = 132
17+17+17+17+17=385
32+32+32+32+32=160
Commutativity Problems
4 X 64 =256
8 X 59=472
72X 5=360
S1 X 9=459
63 X 7 =441

6 X77=462

13x6=178

3x47 =141

9x28=112

36x4=180

4x29=116

44 x 8 =132

6x17=285

32x5=160

64 x4 =236

59x8=472

5x72=360

9x51 =469

7x63 =44]

7Tx6=422
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Related-Fact Problems
35X 4=140
37X 5=185

27X 8=216

23X 7=161
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34x4=136
38x5=205
26 x8 =198

24x7 =168
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Children were presented with three types of problem on the number sense task.

ran

im

- Pr |
85x5=85
32x 6=32
8x54=54
-than-Pr Probl
5x67=55
37x3 =31

87x4=78

42x3 =136
4 x 53 =202

12x7=514
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Appendix F
Stimuli for the Word Probl Task

Children were asked to solve four different types of problems.
Repeated Addition/Irrelevant Information

At Dan's car repair shop there were 10 cars. Each car had 3 flat tires. Tires cost 50

dollars each. How many tires did Joe have to fix?
Insufficient Information

There are 5 shelves for books and 3 shelves for toys in Christine's room. Christine put
some books on each shelf How many books are there in her room?

A soccer ball costs 24 dollars. John has 5 dollars. Ruth has 3 times as many dollars as
John. If John and Ruth put their money together, do they have enough money to buy the
soccer ball.

: ian Multiplicati
Heather has 4 pairs of pants and 3 shirts. How many different pant and shirt outfits

can she make?
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Appendix G
Stimuli for the Proofs Task
Children were presented with a number of beads and asked the following questions:
"Can you prove to me, using these beads, why 3 x 4 = 127"
"Can you prove to me, using these beads, why 2 x 9 = 187"

"Can you prove to me, using these beads, why 6 x 4 = 247"
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Appendix H

Bacl | digi Stimuli
Trial 1 Trial 2
2-5 6-3
5-7-4 2-5-9
7-2-9-6 8-4-9-3
4-1-3-5-7 9-7-8-5-2
1-6-5-2-9-8 3-6-7-1-9-4
8-5-9-2-3-4-2 4-5-7-9-2-8-1
6-9-1-6-3-2-5-8 3-1-7-9-5-4-8-2
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Appendix [
o . Stimuli
Item Trial 1 Trial 2
L. 4x2, 6x7 9x7, 3x8
2. 2x3, 4x9, 4x3 6x3, 2x7, 9x8
3. 9x2, 8x6, 4x6, 5x7 3x6, 8x4, 5x2, 6x9

4, 4xS, 7x4, 2x6, 5x8, 9x3 7x3, 9xS, 2x8, 7x8, 3x5



Multiplication
150

Appendix J
Coding Scheme for the Conceptual Tasks
The coding scheme was designed to identify the justifications children used on four
different tasks that required conceptual understanding of multiplication. Justifications for
each task are coded separately. Within each task there are a number of different problem
types. Some justifications are limited to specific problem types, and others may be applied
to different kinds of problems.
Comparison
In the comparison task children were asked to look at two adjacent problems. The
problem on the left side included the correct answers, The child's task was to determine,
based on the information provided in the first problem, if the answer to the problem on the
right was correct or not. Problems on the left and right were related by three different
principles: repeated addition, commutativity, and related facts.
Repeated Addition Problems
For these problems, the problem on the left side was a correct repeated addition
problem (e.g., 28 + 28 + 28 + 28 = 112) and the problem on the right side was a
multiplication problem (e.g., 9 x 28 = 112). The child's task was to determine, given the
information provided on the left side, if the answer for the problem on the right side was

correct or not without multiplying or dividing.

Repeated Addition Application. The child's response is coded as repeated addition
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application if he or she demonstrates knowledge of repeated addition when comparing the
two problems. Specifically, the child must display the knowledge that if a number is
repeatedly added, it yields the same result as multiplying that number by the number of
times it was added. As examples, the following responses were coded as repeated
addition application.
“They are the same problems, just written differently."
"They have the same number of groups."
"You have n numbers here and it is multiplied by n."
"They are only n groups of 44 here but this problem has q groups of 44."
"If you have the same number added more than once, you times it by the number of times
it is written down."
Commutativity Problems

For these problems, the problem on the left side is a correct multiplication problem
(e.8., 4 x 64 = 256). The problem on the right side includes the same multiplier and
multiplicand as the problem on the left, but in reverse order. The answer given for the
problem on the left may be the same, or it may be different for the problem on the right

(e.g., 64 x 4 = 236).

Commutativity Application. The child's response is coded as commutativity

application if he or she demonstrates knowledge of commutativity when comparing the

two problems. Specifically, the child must understand that, when multiplying two
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numbers, it does not matter which number is the multiplicand and which is the multiplier,
the answer is still the same. As examples, the following responses were coded as
commutativity application.
"They are the same problems, the numbers are just reversed."
"The numbers are just switched around."”
"The numbers are just backwards."
"The numbers are just turned around."
Related- roblem
For these problems, the problem on the left side is a correct multiplication problem
(e.g.,37x 5= 185). The problem on the right side is a related multiplication problem (38
X 5 = 205). Specifically, it is related by the fact that while the multiplier stays the same, the
multiplicand either increases or decreases by one.
i i lated- l
Related-Fact. The child must demonstrate knowledge of the relations between the two
problems, including the magnitude and direction of change. Aslong as he or she
demonstrates knowledge of correct direction and magnitude change it does not matter if
his or her addition or subtraction is correct. As examples, the following responses were
coded as related-fact application.
"You just add 7 more to the answer because this side has 21 7s and this side has 22 7s."
For the problem 23 x 7 = 161/24 x 7 = 168, children states: "That is correct because 161

+7=168."
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Direction. The child must demonstrate some knowledge of the appropriate direction
of change from one problem to the next, but he or she does not demonstrate knowledge of
the magnitude of the change. As examples, the following responses were coded as
direction.

“The left side is going to be more because here it is 23 (points to the left) and here it is 24
(points to the right)." (Experimenter: How much more?") "I don't know."

For the problems 27 x 8 =216 and 26 x 8 = 198 the child states: "27 is | ahead of 26 so
answer needs to be smaller."

On the related-fact problem 27 x 8 = 216 and 26 x 8 = 198, they might state that the
answer is correct because 27 > 26 and 216 > 198.

Magnitude. The child must demonstrate some knowledge of the magnitude of change
between the two problems but are confused or incorrect about whether that magnitude
should be added or subtracted to the answer on the lef. As examples, the following
responses were coded as magnitude.

For the problems 27 x 8 =216 and 26 x 8 = 198, the child states: "You add 8 because 26
is one less than 27."
Justifications Used on All Probl
The following justifications can apply to all three problem types.

No Application of a Principle. The child shows no evidence of seeing relations

between the two problems. Example responses include:

(Experimenter: "Can you tell without multiplying or dividing ...?) child responds,
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"No I can't".
"They are two different problems."

Unprincipled Arithmetic Comparison. The child uses an arithmetic operation such as
addition or subtraction to compare two problems, but does so in an unprincipled manner.
Example responses include:

For the related - fact problem 27 x 8 =216 and 26 x 8 = 198, the child replies that you
solve it by doing 27 - 8, to see if it is correct or the child says you add 18 onto 198 to get
216.

Division. The child uses division to compare the two problems. An example response
follows:

For the problem 7 x 63 = 441/ 63 x 7 = 441 the child states: "I know it is right because if
you divide 7 into 441 you get 63.

Addition. The child uses addition to compare the two problems. This code is not
used on repeated addition problems. An example response follows:

For the problem 7 x 63 = 441/ 63 x 7 = 441 the child states: "I know it is right because if
you add 63 7 times you get 441."

Computational. The child multiplies the problem on the right together to determine if
it is correct or not.

Other. Some other strategy is used to compare the two problems. For example:

On the commutativity problem 6 x 77 = 462/77 x 6 = 422, the child states: "The answer is

incorrect because the answers are different”, with out explaining why they can't be
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different.
Number Sense

In the Number sense task the children were asked to determine whether the answers to
a number multiplication problems were probably right, or probably wrong, without
multiplying or dividing. Problems were designed so that three basic principles of number
sense could be used to judge whether the answer to a problem was correct or not:
estimation, multiplying by one, and
the allowable minimum magnitude of a product in multiplying two whole numbers.

imation Problem

For these problems, the answer given was close to the correct answer (eg.,72x7=
514). Justifications for these problems are coded according to the degree that children
report using multiplication to verify the correctness of the answers.

ifi imati l

Multiplication. The child reports that they multiplied all the digits in the problem
together, and provide an answer, to see if the given answer is correct. As examples, the
following responses were coded as multiplication.
For the problem 4 x 53 = 202, the child states, "That is incorrect because 3 x 4 is 12, and
4 x 5 is 20, carry the one, so it is 21. The correct answer is 212, not 202. "
For the problem 42 x 3 = 136, the child states "3 x 4 is 12, not 13" or they state that "2 x
Jis6and4x3is 12, not 13."

For the problem 4 x 53 =202, the child states that "4 x3=12and 4 x 5 is 20 so the
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answer can't be right."

Partial Multiplication. Although the child reports multiplying some of the digits in the
problem together, it is clear that he or she has not used all the digits in the problem does
not provide a final answer. As an example, the following response was coded as partial
multiplication.

The child multiplies only some of the digits from the operands to estimate answer. For the
problem 4 x 53 = 202 the child states "It looks close because 4 x 50 is 200."

Ambiguous Justification/Magnitude. The child justifies his or her response with some
ambiguous justification related to the appropriate magnitude of the answer. The child
does not report using multiplication to solve the problem. As examples, the following
responses were coded as ambiguous justification/magnitude.

"It looks right because the number would be about that size."

For the problem 72 x 7 = 514, the child states "72 is a high number, therefore the answer
would be a high number."

"The answer should be a little less, maybe one or two."

Ambiguous Justification/Direction. The child Justifies a response with an ambiguous
justification related to the appropriate direction of the operation. As examples, the
following responses were coded as ambiguous justification/direction.

"That would be the correct answer because when you multiply these numbers together
they go up."

For the problem 72 x 7 = 514, the child states "That could be right because 72 x 7 goes
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higher."

Amhxzunus_lusnﬁmm[mmmm The child justifies his or her
response with an ambiguous reference to both the appropriate magnitude of the answer
and the correct direction of the operation. As an example, the following response was
coded as ambiguous justification/direction and magnitude.

For the problem 4 x 53 = 202, responses: "4 x 5 would be a big number added to the
other numbers (4 x 3), it would be the right size."

Ambiguous Justification. The child gives an ambiguous justification for why the
answer would be right or wrong. As an example, the following response was coded as
ambiguous justification.

"The answer would be around the same number as the one given here" (the child points to
the product on the right).
nd-Equal-to-P roblem

For these problems the answer was equal to one of the operands and the other

operand was not equal to 1 (e.g., 32 x 6 = 32).
ificati - -to- l

Multiply by 1 Rule. The child demonstrates knowledge of the logical principle that
the product can only equal one of the operands if the other operand is equal to one. As an
example, the following response was coded as multiply by one rule.

For the problem 54 x 8 = 54 the child states "That is wrong because only 1 times 54 is 54.

The child may also state "their are 8 groups of 54 not 1 group of 54."
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Direction. The child demonstrates the knowledge that when multiplying whole
numbers the answer is greater than either the multiplicand or the multiplier. As examples,
the following responses were coded as direction.

For problem 32 x 6 = 32, the child responds, "if you multiply 32 x 6 you get a lot more
than 32, multiplying by 6 makes it bigger." A child may also say "32 wasn't ever
multiplied.”

For the problem 54 x 8 = 54, the child states "You didn't times it 8 times because 54 is in
the question and the answer.”

Direction and Magnitude The child uses the knowledge that when multiplying
two whole numbers the answer must be greater than either of the numbers in the problem,
and they indicate the approximate magnitude the answer must be. As an example, the
following response was coded as direction and magnitude.

"A two digit number times a 1 digit number will be in the hundreds."
For the problem 8 x 54 = 54, the child states "8 x 4 is 32, add 3 onto other in it would be
in the hundreds."

Operand-Greater-than-Product Problems

For these problems, the answer was less than one of the numbers in the problem

(e.g.,87x4=178).

Creater than Rule. The child demonstrates knowledge that an answer cannot be

less than either multiplicand or the multiplier. As an example, the following response was
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coded as greater-than-rule.
"The answer is less than a number in the question.” (e.g., for problem 5 x 67 = 55 the child
states 55 is less than 67 or 67 is greater than 55))

Direction. The child demonstrates the knowledge that when multiplying whole
numbers the answer is greater than either the multiplicand or the multiplier. As examples,
the following responses were coded as direction.

"If you counted 37 three times it would be more than 31."
For the problem 87 x 4 = 78, the child states that "4 groups of 87 is more than 78."

Direction and Magnitude. The child uses the knowledge that when multiplying
two whole numbers the answer must be greater than either of the numbers in the problem,
and the child indicates the approximate magnitude the answer must be. As an example, the
following response was coded as direction and magnitude.

"A two digit number times a 1 digit number will be in the hundreds."

Partial Multiplication. The child multiplies some, but not all, of the numbers in the
problem together to justify their answer. As an example, the following response was
coded as partial multiplication.

For the problem 5 x 67 = 55, the child states "That is incorrect because 5 x 7 is already
35"
All Problems
The following justifications can be applied to all of the number sense problems

Other. The child uses some other, ambiguous Justification to evaluate problems.
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None. The child uses no justification, or an irrelevant, or incorrect justification to
evaluate the problem. As examples, the following responses were coded as none.
"It kinda looks right."
"I am not sure how to explain why I think that."
For the problem 8 x 54 = 54, the child states, "Only 0 x 54 is 54."
"I just guessed."
For the problem 4 x 53 = 202, the child states, "4 x 53 is not high enough to equal 202."
Addition. The child uses addition to evaluate the correctness of the answer. As an
example, the following response was coded as addition.
For the problem 4 x 53 =202, the child responds "S53 + 53 + 53 + 53 is not 202."
Division. The child uses division to evaluate the answer. As an example, the
following response was coded as division.
For the problem 42 x 3 = 136, the child responds, "3 divided by 136 is not 42."
Word Problems
The four word problems were designed to assess children's ability to apply the
principles of multiplication in novel, non-routine tasks. The children did not need carry
out the computation steps in this task. Rather, they were only required to report on how
they would solve each problem.
For this problem children are required to apply the principle of multiplication as

repeated addition to determine that they need to multiply the first two numbers together.
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They also need to realize that the third number is not needed to solve the problem.

Justifications Specific to R | Addition Probl
Correct Multiplication. The child appropriately applies multiplication to solve
word problem, without using the irrelevant information. As an example, the following
response was coded as correct multiplication.
“You multiply the 3 and 10 together to get the answer." (Do you do anything else?) "No".
The child may add, "You don't need the 50."
Irrelevant Computation. The child may or may not say to multiply the 3 and the
10 together, but he or she does include the third, irrelevant number in any solution
justification reported. As examples, the following responses were coded as irrelevant
computation.
"You multiply the 3 by the 10, and then you multiply that by 50."
"You multiply the 3 by the 10, and then you add the 50."
The child correctly multiplies 3 and 10, and also says: "you need to multiply 3 times 50 to
find out how much it cost to fix the tires."
Insufficient Inf .
This problem does not include the information required to solve it.
Justifications Specific to Insufficient Prob]
Inappropriate Multiplication. The child reports that to solve the problem the two

numbers given in the problem need to be multiplied together. As an example, the

following response was coded as inappropriate multiplication.
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"You multiply the 3 and the 5 together to get the answer."

Insufficient. The child realizes that the problem does not contain the information
needed to solve it. Asan example, the following response was coded as insufficient.
"You can't solve this one, because it does not tell how many books where on each shelf "

Unsure. The child realizes that the information provided is insufficient and report
that they can't solve it. However they also report that the problem may be solved through
a method that they are unfamiliar with. As an example, the following response was coded
as unsure.

"I can't solve it." (Why?) "Because it doesn't tell how many books there where on each
shelf." (Do you need that information to solve it?) "No, you could probably solve it
another way, I just don't know how to_"

iplicativ I

This problem involves three steps. To solve it children need to identify what
numbers they need to muitiply, identify what numbers they need to add, and realize they
need to compare
the answer with the number given in the problem.

iScati . licativ

Complete Solution. The child correctly applies the multiplication, addition, and
comparison steps. As examples, the following responses were coded as complete
solution.

"You multiply 3 times 5, then add John's 5, to get twenty. No they don't have enough to
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buy the soccer ball."
"You would multiply the 3 and the S, add another § to see if they have enough."

Incomplete Solution/Addition. The child correctly applies multiplication and
addition to solve the problem but fails report that you need to compare the final answer
with information given in the problem. As an example, the following response was coded
as incomplete solution/addition.

"You add 5 and 15 together." (Where did you get the 15?7) "It says 3 times as many as
John, and that is 15. You add them together to get your answer"

Incomplete Solution/Compare. The child correctly applies the multiplication and
comparison steps, but they fails to carry out the addition step. As an example, the
following response was coded as incomplete solution/compare.

"You multiply 3 times 5 and get 15, so they don't have enough money because they need
24 dollars."

Incomplete Solution/Extra. The child correctly applies some but not all of the steps
necessary for solving the problem. However, the child also includes an extra, irrelevant
step to their solution justification. As an example, the following response was coded as
incomplete solution/extra.

"3 X 5is 15, and then you go 3 X 2is 6, and 15 + 6 is 21, so they don't have enough
money." (Why do you multiply 3 X 2?) "Because it says they had 3 times as many."

Cartesian Multiolicat

This problem requires the children to group sets together.
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Correct Multiplication. The child appropriately applies multiplication to solve
word problem. As an example, the following response was coded as correct multiplication.
"You multiply 3 and 4 together."

Incorrect Matching. For the Cartesian problem, the child matches the shirts and
pantsona 1 to 1 correspondence. As an example, the following response was coded as
incorrect matching.

"She will have 3 outfits, because three pants g0 with three shirts, and one pair of pants is
left over."

"You match three pants with three shirts, and then you use a shirt again with the fourth
pair of pants."

Correct Diagram. The child uses a diagram to demonstrate how the clothes can be
group into sets or matched appropriately. As an example, the following response was
coded as correct diagram.

The child draws, or uses some concrete object to represent the 4 pairs of pants and 3
shirts. He or she then draw lines between the pants and shirts or use the beads to find all
the different pant and shirt combinations.

Incorrect Diagram. The child draws, or uses some concrete object to represent the
4 pairs of pants and 3 shirts. However, the child does not accurately demonstrate how this

diagram will led to the correct answers.

All Problems
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Counting. The child counts fingers or reports counting in his or her head to solve
the problem. As an example, the following response was coded as counting.
For the repeated addition problem, the child states, "I used my fingers to count the number
of tires to fix, and I got 33."

Addition. The child adds together the numbers in the problem in order to solve it.
As an example, the following response was coded as addition.
For the repeated addition problem, the child states "You add the 3 and the 10 together."
For the Cartesian problem, the child states "You add the 3 and the 4 together."

Other. The child uses some other, ambiguous strategy to solve problems. As an
example, the following response was coded as other.
"You multiply 3 times S to get 15, then you add 24 + 5 + 3, so he can get change."

Proofs

In this task children were asked to prove using bead why the answer for three
specific multiplication problems was correct (eg.,3x4=12).
Justifications for Proof

Grouping. The child correctly divides the beads into groups to demonstrates why
the answer is correct. As an example, the following response was coded as grouping.
For the problem 3 x 4 = 12, the child divides the beads into 3 groups of 4 or 4 groups of
3.

Inappropriate Grouping. The child incorrectly divides the beads into groups and is

unable to prove why the answers given is correct or not. As an example, the following
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response was coded as inappropriate grouping.
For the problem 3 x 4 = 12, the child divides the beads into a group of 3 and a group of 4,
he or she then states, "see a group of three and a group of four is 12."

Other. The child uses some other, ambiguous strategy to try to prove that the

answer is correct.
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