
Residential Household Non-Intrusive Load Monitoring
Using Multi-Label Classification Methods

by

Ding Li

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software Engineering & Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

c©Ding Li, 2018



Abstract

Smart grid provides a sustainable and environment-friendly vision of the

future power systems by incorporating smart meter, remote control and com-

munication technologies into the network of electricity generation, distribution

and consumption. Residential Demand-Side Management (RDSM) is an im-

portant part of smart grid since a large part of electricity is consumed by

residential sector. It refers to programs implemented at the residential cus-

tomers’ side and can be utilized to reduce the overall load demand, most

importantly, the peak demand. Since the grid is designed for the peak de-

mand instead of the average demand, the grid is under-utilized for most of

the time. By reducing the peak demand or shifting load to off-peak time, the

peak-to-average ratio is reduced, grid reliability can be improved, energy can

be saved coupled with carbon dioxide and other greenhouse gases emission

can be minimized.

However, currently it is impossible for residential customers to identify

ways to save electricity. On the one hand, residents have no idea of each

share of the total electricity consumed by individual appliances since they

only receive an aggregate monthly bill. On the other hand, there are more

and more electrical appliances in a household nowadays. In order to solve this

problem, Non-Intrusive Appliance Load Monitoring (NIALM)was proposed to

disaggregate energy consumption to appliance level or circuit level, specifical-

ly, it refers to inferring what appliances are operating and how much energy
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they consuming in a household at a given time solely from house-level ag-

gregate measurements from the main panel. It is one approach to residential

demand-side management strategies in the Smart Grid and is now commonly

implemented via machine learning. However, by and large, the learning-based

NIALM algorithms to date have been single-label approaches; each feature

vector is associated with a scalar, categorical value (which means there is on-

ly a single appliance associates with an instance of aggregate power). This,

however, is a poor match to the NIALM problem, in which multiple indepen-

dent concepts (active appliances) may simultaneously hold true. To model

this characteristic, multilabel classification algorithms (which associate a vec-

tor of categorical variables to each feature vector) have been employed for

NIALM in this thesis. Furthermore, those learning algorithms generally re-

quire a ground-truth classification of the observed fluctuations into the set of

appliances then operating; data which is not ordinarily available. As a com-

promise, we examine semi-supervised learning algorithms, which only need a

ground truth from a small sample (e.g from an initial “registration” period).

Thus this thesis presents multi-label algorithms for NIALM, either supervised

or semi-supervised, to recognize the operational states of appliances simulta-

neously, and based on the states information, appliance energy consumption

can be calculated. Extensive experiments have been conducted on five public

datasets and comparisons have been made against other methods in the-state-

of-the-art literature, which prove that graph-based manifold semi-supervised

multi-label classification might be a promising approach to NIALM.

In the end, a reliance weighting strategy is proposed to improve the perfor-

mance of graph-based manifold multi-label classification. And extensive ex-

periments have been carried out on another four general multi-label datasets.
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Preface

• Chapter 2 and chapter 3 have been submitted as “Li, D., & Dick, S.

Disaggregating household appliance loads using multi-label classication

methods. International Transactions on Electrical Energy Systems.” A

short version has been published as “Li, D., & Dick, S. (2016, July).

Whole-house non-intrusive appliance load monitoring via multi-label

classification. In Neural Networks (IJCNN), 2016 International Joint

Conference on, Vancouver, BC, 2016, pp. 2749-2755.”

• Chapter 4 has been accepted for publication by IEEE Transactions on

Smart Grid as “Li, D., & Dick, S., Residential Household Non-Intrusive

Load Monitoring via Graph-Based Multi-Label Semi-Supervised Learn-

ing. IEEE Transactions on Smart Grid.” A short version has been

published as “Li, D., & Dick, S. (2017, July). A Graph-Based Semi-

Supervised Learning Approach Towards Household Energy Disaggrega-

tion. In 2017 IEEE international conference on Fuzzy Systems (FUZZ-

IEEE), Naples, Italy.”

• Chapter 5 has been submitted as “Li, D., & Dick, S. Semi-Supervised

Multi-Label Classification Using Graph-Based Manifold Regularization.

IEEE Transactions on Pattern Analysis and Machine Intelligence.”

• “Li, D., Sawyer, K., & Dick, S. (2015, August). Disaggregating house-

hold loads via semi-supervised multi-label classification. In Fuzzy Infor-

mation Processing Society (NAFIPS) held jointly with 2015 5th World

Conference on Soft Computing (WConSC), 2015 Annual Conference of

the North American, Redmond, WA, 2015, pp. 1-5.” is a preliminary

work on semi-supervised learning.
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Chapter 1

Introduction

1.1 Background

Electricity demand usually varies significantly with the time of day and

human activities. As a consequence, utilities must devote extensive resources

to providing reserve power generation to handle the peak demand in a day.

Literally billions of dollars worth of boilers, turbines and generators thus sit

idle - or worse, are operating and producing greenhouse gases without being

connected to the transmission grid - awaiting the moment when demand is high

enough to bring them on-stream. Thus, even minor reductions in peak demand

may imply significant energy savings for both consumers and utilities [114, 127,

150]. In order to reduce this waste of resources, Demand-Side Management

(DSM) has been proposed to shape customer demand patterns (especially peak

shaving) to allow more efficient utilization of power system assets, improve grid

reliability, and reduce emissions [117]. DSM has been practiced since the 1980s

[57, 93], and continues to be a critical element of the Smart Grid. Within the

DSM umbrella, Residential Load Management Programs (RLMPs) focus on

residential rather than industrial customers; this class accounts for over 30%

of total power consumption [1], and so must be a part of any practical DSM

solutions.

A significant reduction of energy wastage in the residential sector is possi-

ble via providing fine-grained energy consumption details [36]. By providing

customers with itemized, appliance-specific tariffs instead of an aggregated

monthly bill, we can raise awareness of which appliances consume the most

electricity. Older units may be repaired or replaced with more efficient ones.

Consumers can time portions of their energy usage to take advantage of lower
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off-peak pricing when it is offered. Energy management systems could devise

load scheduling schemes to optimize energy generation and utilization. More-

over, a recommender system could be produced to help customers modify

their behaviors to cut down electricity bills and conserve energy. All of these

behaviors are reasonable responses to a more detailed price signal. Plainly,

however, obtaining those detailed tariffs first requires us to identify the times

when an appliance is operating, and how much power was consumed during

those times. The large-scale deployment of smart meters in the UK and the

USA, for instance, is driven by the vision of time-of-use pricing on a national

scale [36]. Modern networked appliances can automatically communicate this

information to a utility; older devices, however, cannot. Thus, a mechanism

for obtaining the needed consumption data is required.

One straightforward method for gathering the necessary data is to install

sensors on each appliance within a household, and transmit that data to the

utility [129]. Needless to say, this is a significant invasion of privacy (hence

untenable for most North American customers) [48], and would impose signif-

icant operating costs on the utility as well. An alternative is thus needed for

households unable or unwilling to be so connected; Hart’s Non-Intrusive Ap-

pliance Load Monitoring (NIALM) approach [62] is a well-known candidate.

The set of appliances operating in a household at a given time is inferred from

fluctuations on the main power feeder only; this is an instance of the general

blind-source separation problem in signal processing [67].

The task of Non-Intrusive Appliance Load Monitoring (NIALM) is to dis-

aggregate the total power consumption at the meter into the individual ap-

pliance draws based on their energy consumption features (load signatures).

The fundamental assumption are that appliances have characteristic power

demand patterns, which are usually discriminative, and they can be identi-

fied in the aggregate household power signal. In practice, the power signal ( it

usually means aggregate current and voltage on each phase) will be monitored

by a sensor at the house-level power meter (like the nation-wide deployment

of smart meters in the UK and US [36]). This information is then sent to the

utility in real-time. No sensors need to be placed on appliances within the

home. Data volumes are relatively small (only a single sensor per household),

which also minimizes networking and data storage costs. (Note that recent

proposals suggest that for practical NIALM, a one-time training data collec-
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tion process for each individual appliance may be needed [45].) Subsequently,

the utility will need to disaggregate appliance-specific power draws from the

aggregated power signal; machine learning and data mining techniques are

frequently used for this purpose. Surveys in [150, 168, 20] and most recently

[134] have noted the wide variety of learning algorithms that have been used

in NIALM. An open source toolkit integrating many popular algorithms was

developed in [14].

1.2 Problems and Motivations

Non-intrusive appliance load monitoring is a technique to help power com-

panies monitor and analyze residential energy usage. Aggregated power load

measurements for a household (i.e. the signal on the main powerline) are dis-

aggregated into individual appliance loads by examining the appliance-specific

power consumption characteristics. This data can then be used to modify con-

sumer behaviors via detailed billing and/or demand-pricing tariffs. A number

of advances in the field have been reported in the past two decades, many

of which apply machine learning algorithms. However, a systematic review

in [134] found that, by and large, the learning-based NIALM algorithms to

date have been single-label approaches; each feature vector is associated with

a scalar, categorical value. This, however, is a poor match to the NIALM

problem, in which multiple independent concepts (active appliances) may si-

multaneously hold true. To model this characteristic, multi-label classification

algorithms (which associate a vector of categorical variables to each feature

vector) have been introduced for NIALM in [12, 13, 134]. However, this re-

search work is still in its early stages. At this time, most of the results for

multi-label classification come from implementations of the label powerset ap-

proach. This is a meta-classification technique, in which each element of the

power set of labels for a dataset is associated with a new, scalar label. Ex-

isting single-label classifiers can then be used to model the dataset. There

has been very little work exploring bespoke multi-label algorithms for NIALM

[12, 13, 86]. Furthermore, only a limited set of high-power appliances are

disaggregated.

A large number of statistical and machine-learning algorithms have been

applied to the NIALM problem (see [134] for a recent survey), but all en-

counter significant problems in real-world deployment. Supervised learning
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algorithms tend to be very accurate, even for large numbers of appliances in

a house, but require a ground truth (a general term for the actual state of

the world, e.g., exactly which appliances are operating at any given sample

instant, in addition to the observed signal on the main feeder). Unsupervised

learning algorithms do not require this information, and the class of Factorial

Hidden Markov Models (FHMMs) can in theory be very accurate. Howev-

er, unsupervised solutions to blind-source separation can only be accurate up

to permutation [65]; an appliance may be detected, but there is no way for

an FHMM (for example) to decide if this is a washing machine or television.

Additional ground-truth information is needed to make that determination.

Even then, the performance of FHMM algorithms degrades as the number

of appliances rises [149]. Furthermore, the NIALM problem does not map

well to standard classification algorithms where the dependent variable is a

scalar [13, 134]. While some appliances often operate together, the overall

household is best considered a collection of independent loads, and thus the

output of NIALM should be a vector. Finally, current smart metering infras-

tructures (which have recently been rolled out at considerable expense in e.g.

Europe, North America and Australia) have relatively long sampling intervals,

on the order of 10-60 seconds [67]. Taken together, these requirements indi-

cate that a practical NIALM algorithm must minimize the ground-truth data

required, remain accurate even for large numbers of appliances, and model

the simultaneous operations of an arbitrary number of appliances in a house-

hold, accomplishing all of this with a data sampling rate no faster than tens

of seconds.

Considering the above requirements, we are proposing a low-rate NIALM

algorithm based on Semi-Supervised Multi-Label (SSML) classification algo-

rithms. Semi-supervised algorithms learn from a small number of labeled ex-

amples (those having a classification label from the ground truth appended)

joined with a large number of unlabeled ones; this is a typical approach to

machine learning in domains where labeled examples are difficult or expensive

to acquire [166, 161]. Multi-label classifiers associate a feature vector with

a vector of labels, each representing some separate concept; this appears to

be a closer match to the NIALM problem. In this paper, we develop three

new SSML graph signal processing algorithms, and apply them to NIALM.

Experiments on five benchmark NIALM datasets show that our approach can
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outperform state-of-the-art results reported in the literature for each one.

1.3 Objectives and Contributions

The goal of this dissertation is to develop multi-label non-intrusive load

monitoring approaches for residential households, either supervised or semi-

supervised, to identify real time operational states of individual appliances

from house-level measurements (aggregate data) from the main panel. And

calculate each share of electricity consumed by individual appliances. The

main focus is to develop a low cost and applicable installation of NIALM for

residential households.

The major contributions in this thesis that distinguish it from other work

are summarized as follows:

• The first empirical evaluation of bespoke multi-label classifiers for NIALM

across multiple benchmark datasets, in a supervised way.

• A demonstration that the “best” of these algorithms is competitive with

or superior to existing results on those datasets.

• A semi-supervised multi-label disaggregation framework for NIALM, in-

cluding graph-based Local and Global Consistency (LGC), Gaussian

Field and Harmonic Functions (GFHF) and Manifold Regularization

(MR).

• Integration of the Multi-Label k Nearest Neighbor (ML-KNN) algorithm

in LGC and GFHF to extend the methods from transductive learning

to inductive learning.

• Extended manifold regularization to multi-label classification with a re-

liance weighting strategy to improve the classification performance.

• Extensive experiments on public datasets to compare the performances

using different methods and demonstrate the efficiency of the proposed

methods.

1.4 Thesis Outline

The remainder of the thesis is organized as follows:
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Chapter 2 presents an overview on non-intrusive appliance load monitoring,

including a brief overview, the basics of NIALM which contains household

appliance types and general steps of the NIALM, literature review of NIALM

which contains features used for NIALM and load disaggregation algorithms,

public data sets for NIALM are introduced in the end.

Chapter 3 presents load disaggregation via multi-label classification, in-

cluding an overview, problem formulation, four bespoke multi-label classifica-

tion methods which contains four bespoke multi-label algorithms(ML-KNN,

ML-RBF, ML-BPNN and ML-SVM), performance metrics, experimental de-

sign which contains filling small gaps, labeling, downsampling and delay em-

bedding, experimental results and summaries are given at last.

Chapter 4 presents semi-supervised learning for non-intrusive load moni-

toring, it firstly gives a brief overview and presents the problem formulation,

including load disaggregation via semi-supervised multi-label classifiers and

framework of the method, then it introduces graph-based semi-supervised

learning for multiple labels, including graph construction, graph Laplacian

regularization and manifold regularization, next, it presents the experimen-

tal methodology, including data preparation, experimental design and perfor-

mance metrics, then, it demonstrates the experimental results and discussions,

including five case studies, summaries are given at the end.

Chapter 5 presents manifold regularization incorporated with a reliance

weighting strategy for multi-labels. Including a brief overview, the back-

ground, preliminaries on manifold regularization which contains basics and

notations, regularization in Reproducing Kernel Hilbert Space and Manifold

regularization, the proposed method which includes graph construction, man-

ifold regularization with multiple labels and reliance weighting strategy for

performance improvement, experimental design which includes datasets, ex-

perimental setup and performance metrics and experimental results which

demonstrates four case studies and discussion. Summaries are given in the

end.

Chapter 6 concludes the research work and gives the directions for future

work.
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Chapter 2

Review on the Non-Intrusive
Appliance Load Monitoring

2.1 Overview

Non-intrusive appliance load monitoring, refers to a technique using ar-

tificial intelligence to infer the operational states as well as the energy con-

sumption of individual appliances from a single or limited measurements of

the households. This technique will provide a lot of benefits (environment

sustainability, energy sustainability, grid stability and so on) to all kinds of

respects for the whole society. In this chapter, general information including

the basics, the household appliance types and the steps of Non-intrusive ap-

pliance load monitoring is given. Then a comprehensive literature review of

features and algorithms used in NIALM is introduced. Lastly, several public

benchmark data sets are presented.

2.2 Basics of the NIALM

Non-Intrusive Appliance Load Monitoring (NIALM), which is also called

energy disaggregation, was introduced by Hart in the early 1980s [62, 60, 61].

The goal of NIALM is to infer energy consumption and operational states

of individual appliances from an aggregated power signal. The fundamental

assumptions in NIALM are that appliances have unique characteristic power

demand patterns, which is also called appliance signature, and that the aggre-

gate household power demand is a mixture of them. The objective of NIALM

is thus to train models or use inference techniques to recognize which combi-
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nations of appliances are operating at a given instant, given the time history

of the aggregate power. This history might consist of transient features (e.g.

current and voltage harmonics) and/or steady-state features (e.g. active and

reactive power, total harmonic distortion) [134, 168].

2.2.1 Household Appliance Types

In a modern household, there exists a large number of electrical appliances

with different functions. Like kitchen stoves for cooking, bulbs for lighting

and washing machines for cleaning as well as more and more electronic prod-

ucts (phone, computer) for entertaining. Different appliances show different

electrical characteristics. Hart categorized appliances into 4 categories, name-

ly, two-state appliance, multi-state appliance, continuously-varying appliance

and always-on appliance.

• Two-state appliance: appliances that only have two states, either on or

off, and they consume a constant power when they are run and no power

when in off state, e.g. bulbs and kettle.

• Multi-state appliance: appliances that have finite states, and they con-

sume different more or less constant power when in different modes,

like washing machine that consumes differently in different procedure of

water-fill, immerse, rinse, spin and dry operations.

• Continuously-varying appliance: appliances like refrigerator whose pow-

er consumption varies continuously during operation.

• Always-on appliance: appliances that are continuously run and consum-

ing the same amount of power, like alarm monitoring.

Fig. 2.1 gives examples of the power characteristics of the first three cat-

egories of appliances. In Hart’s technical report, two-state appliances were

disaggregated quite well with high accuracy, the difficulty lay in how to dis-

aggregate multi-state appliances [61]. Later on, other researcher found out

that continuously-varying appliance and always-on appliance are difficult to

disaggregate as well.
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Figure 2.1: Power curves of three types of appliances.

2.2.2 General Steps of the NIALM

The objective of NIALM is to automatically identify the operational states

and energy consumption of individual appliances from a single measurement

(smart meter) with data mining techniques. There are three steps to achieve

this goal, including data acquisition, feature extraction, and inference and

disaggregation.

• Data acquisition: aggregated power data is measured and recorded from

the main panel with specific sampling rate. The electrical quantities

and the sampling rate are determined by features used in the second

step. Usually, the aggregated current, voltage, real power and reactive

power are measured on each phase. Steady state features (active power,

reactive power, ) can be extracted with low sampling rate. Transient

features (harmonics, current wave, start-up ad turn-off transients ) can

be obtained with high sampling rate.

• Feature extraction: from the beginning, P-Q plane of active power and

reactive power was used to distinguish two-state appliances which have

resistive, capacitive and inductive characteristics. Later on, more and

more other features are used to characterize the signatures of appliances.

e.g. steady state features like peak and root mean square values of

voltage, transient features like start-up transients of current,active power

and reactive power, and non-electrical features like seasons, time of the

day and on duration distribution.

• Inference and disaggregation: the core of NIALM is using machine learn-

ing techniques to detect signatures of appliances in the aggregated data

thus to identify appliances. The algorithms can be supervised like pat-
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tern recognition methods ( K nearest neighbor algorithm, support vector

machine), or unsupervised like Factorial hidden Markov model, or semi-

supervised algorithm like graph-based manifold regularization.

2.3 Literature Review of the NIALM

This subsection presents a literature review of the NIALM from two per-

spectives, namely, the features used for the NIALM and the load disaggrega-

tion algorithms.

2.3.1 Features used for the NIALM

The fundamental assumptions in NIALM are that appliances have char-

acteristic power demand patterns, and that the aggregate household power

demand is a mixture of them. The objective of NIALM is thus to train

models that recognize which combinations of appliances are operating at a

given instant, given the time history of the aggregate power. This histo-

ry might consist of transient features (e.g. current and voltage harmonics)

and/or steady-state features (e.g. active and reactive power, total harmonic

distortion) [134, 168]. The steady state signatures include steady active power,

reactive power, voltage, current, total harmonic distortion, power factor and

voltage-current trajectory and so on. Usually the steady state signatures take

with low frequency and over long period. Transient signatures include start-

up or turn-off transient of active power, reactive power, current and voltage,

transient duration, harmonics and so on. These features require high frequen-

cy sampling rate up to kHz or even higher, thus are difficult and expensive

to gather. But they can be incorporated to identify appliances with the simi-

lar steady-state signatures. Besides, electric irrelevant signatures such as the

weather, season, occupancy and temporal information have also been used for

load disaggregation [168].

In [53, 116, 106], peak and Root Mean Square (RMS) current and volt-

age were extracted as signatures to distinguish appliances. RMS was found

to be more discriminative than peak values. In [106, 128], researchers have

combined harmonics with real and reactive power to improve disaggregation

performance. In [85, 83], V-I trajectory with normalized current and voltage

values was creatively proposed to cluster appliances into 8 groups and then
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sub-partition within each group, this approach was proved to be more effective

than many other existing approaches using power measurements. Transient

signatures to date also develops fast. Researcher in [30] showed that energy

calculated during the starting-up transient could be an effective signature to

discriminate appliances. Power spikes and overshoots were tried as features in

[34] to decompose loads. A very untraditional and novel method was present-

ed in [145] to discriminate appliances without pre-training and supervision,

the author used two basic units, namely rectangles and triangles, as features

to identify appliances. Triangle unit was described by starting time, peak

time, peak value and ending time while rectangle was described by starting

time, peak time, peak value, steady time and steady power. The identification

accuracy was 80%. Context-based information like the location of the house

residents, house temperature, duration and time of appliance usage have been

utilized in [78]. Although the disaggregation performance of NIALM can be

improved by these additional features, however, it incurs extra cost and in-

stallation of these sensors.

2.3.2 Load Disaggregation Algorithms

Currently, machine learning approaches, whether supervised or unsuper-

vised, dominate the NIALM literature [134]. There are three types of su-

pervised learning in NIALM, all of which require a ground truth associated

with each observation made: 1) The optimization based methods construct a

database of appliance power draw characteristics for a house, and then iden-

tify a subset of operating appliances that minimizes the residual between the

observed and expected aggregate power draw [91]. 2) The second type builds

appliance models for the target house and disaggregates the corresponding

aggregate power with these models [91, 3, 128, 20, 86, 87]. 3) The last type

builds a database comprising of general models of different appliances and uses

the general models to disaggregate power for unknown households [3, 13].

In contrast, unsupervised NIALM models require no ground truth for indi-

vidual observations (but see below for a caveat). In this case, NIALM closely

resembles the classic Blind-Source Separation (BSS) problem from signal pro-

cessing. An m-dimensional vector of signals S are mixed together as X = AS,

where A is a nonsingular square m-dimensional matrix. The BSS problem

is to reconstruct S given only the mixed signals X. NIALM is specifically
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the under-determined case, where X is a scalar, but S remains a higher-

dimensional vector [67]. A large number of solutions to the BSS problem have

been proposed, with Independent Components Analysis prominent amongst

them. A key limitation to note is that BSS can only be solved (the vector S

recovered) up to permutation; it is not possible to recover the ordering of com-

ponents in S [66]. In NIALM this corresponds to not knowing what physical

machine matches with which disaggregated component.

The Factorial Hidden Markov model (FHMM) is currently the most suc-

cessful and popular unsupervised approach in NIALM [50]. Hidden Markov

Models (HMM) can be expressed as a graphical model with two layers. One

layer is composed of the hidden state sequences (st)
T
t=1 and the sequences form

a Markov chain. The other layer consists of the observations (ot)
T
t=1. States

change according to the transition probabilities πij = p(st+1 = i|st = j) and

st ∈ {1, 2, · · · , n}. π = (πi,j)
n
i,j=1 for hidden states i, j. HMMs assume that

transitions are completely independent of all other variables except for the

current observation. In general, the probability of observing ot at state st

is p(ot|st) = p(s1)p(o1|s1)
∏T

t=2 p(st|st−1)p(ot|st)). Factorial hidden Markov

models (FHMM) are an extension of HMM where multiple HMMs evolve in-

dependently and in parallel, with the observation being the joint function of

all the hidden states. Four variants of FHMM were adapted for NIALM in

[78]. In addition to the observed aggregate power, exogenous variables includ-

ing time of day and the dwell time for each appliance state were incorporated

in the models. Additive FHMM and differential FHMM [79] are combined to

model the aggregate power and the difference between the successive outputs.

The observation is the sum of all the HMMs, with the constraint that only one

appliance can change state at a time. A hierarchical HMM based approach

were proposed in [109], where each appliance was modeled as an HMM and

then aggregated by another HMM. Many other FHMM based NIALM tech-

niques have been proposed in e.g. [110, 97]. However, as above, the separate

appliances detected by an HMM must still be mapped to actual appliances in

the home - which requires at least some ground-truth information. Further-

more, the accuracy of HMMs has been observed to degrade as the number of

appliances being modeled increases [149].

Ground-truth information in NIALM is scarce, but a small amount can

likely be collected for each house. A registration period, during which res-

12



idents operate individual appliances for a brief time, was proposed in [55].

Based on the review in [36], consumers seem willing to put forward a small

amount of effort if provided with a modest inducement (e.g. a discounted tar-

rif). Thus, NIALM data for a house potentially consists of a large volume of

unlabeled data, augmented by a small number of labeled observations, leading

to our proposed use of semi-supervised learning. To the best of our knowl-

edge, there is little existing literature using semi-supervised algorithms for

NIALM. References [90] and [88] present our preliminary results of applying

semi-supervised algorithms in NIALM. Note also that our labeled examples

include no appliance mixtures; in field use we do not expect the consumer to be

willing to operate numerous appliance combinations during this registration

period.

2.4 Public Datasets for the NIALM

The development and public release of benchmark NIALM datasets, gath-

ered from field measurements in real-world households, has spurred further

work in the area. Table 2.1 summarizes the basic information of each dataset.

Table 2.1: Description of public datasets

Dataset Location Num. of
appli-

ances/circuits

Aggregate
sampling
period

Appliance
sampling
period

Duration

House1 MA, USA 20 1 sec 3 sec 36 days
House3 MA, USA 24 1 sec 3 sec 45 days
Blued PA, USA 43 1/12,000

sec
- 1 week

Smart* MA, USA 26 1 sec 1 sec 3 months
AMPds BC, Canada 21 1 min 1 min 1 year
ECO Swiss 6-10 1 Hz 1Hz 8 months
DRED Netherlands 12 1 Hz 1Hz 2 months

The Reference Energy Disaggregation Dataset (REDD) [80] measures both

house-level and circuit/appliance level data from 6 US households over various

durations, ranging from a few weeks to a few months. The data from two

houses, specifically house 1 and house 3, have been selected for experiments

in this study, because the two datasets covered longer time periods compared

with those from other houses; we focus on analyzing the low frequency data
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for each house. The Circuit/device level data allows us to label the power

waveform with the appliances in use at each sample instant.

The Building-Level fUlly labeled Electricity Disaggregation dataset (BLUED)

[4] records house-level data of a single US household for a whole week. Cur-

rent and voltage measurements of the mains are sampled at high frequency (12

kHz). A time-stamped list of every operational state transition of the individ-

ual appliances in the home is kept during the measurement period, forming

the ground truth for this dataset.

The UMASS Smart* Home Data Set (Smart*) [7] gathers a variety of elec-

trical and environmental data as well as operational data of switches for three

households in Western Massachusetts. Experiments are only carried out on

household A since it contains both aggregate and sub-metered electrical data

and it is the most thoroughly instrumented home. The average active and

apparent power of the mains and individual circuits are sampled at intervals

of one second, and the active power of each plug load is sampled every few sec-

onds. Moreover, on-off events of all of the house’s wall switches are recorded.

There are 26 individual circuits from the electrical panel.

The Almanac of Minutely Power Dataset (AMPds) [98] records data of the

mains and 21 individual circuits from a household in the great Vancouver area,

BC, Canada, over a period of one year. Each reading includes measurements

of voltage, current, active power, reactive power, apparent power, power factor

and frequency sampled at 1 minute intervals.

The Electricity Consumption & Occupancy (ECO) [16] data set collected

aggregate data as well as 6-10 selected plug-level data for ground truth from

6 households in Swiss for 8 months. For each household, the aggregate data

(voltage,current and phase shift between voltage and current for each phase)

and the plug-level data were sampled at 1 Hz frequency. Besides, the occupan-

cy information was manually entered into a tablet by residents and monitored

by a passive infrared sensor.

Dutch Residential Energy Dataset (DRED)[142] provides house level and

appliance level electricity consumption data at 1 Hz frequency for a single

house in the Netherlands. Besides, it collects ambient information (room

level indoor temperature, outside temperature, wind speed, precipitation and

humidity), occupancy data (room-level information of occupants) as well as

household information (house layout, number of residents, appliance-location
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mapping). This dataset is useful for algorithms using context-based features

(occupancy,temperature, number of residents) for NIALM.

Many other public datasets are available as well, like COOLL [112], BERD-

S [94] and Tracebase [115].
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Chapter 3

Load Disaggregation via
Multi-Label Classification

3.1 Overview

This section explores the applications of bespoke multi-label classifica-

tion algorithms in NIALM and conduct experiments to compare their per-

formances. Four existing bespoke multi-label classification algorithms (ML-

KNN, ML-RBF, ML-BPNN, ML-SVM) have been applied to disaggregate

several public data sets. The power signal of each individual household is dis-

aggregated into all of the sub-metered appliances that are available, and the

experimental results are compared to the existing literature on these datasets.

Two of the algorithms are found consistently superior to the other two, with

the consistently “best” generally outperforming all other approaches that have

been attempted on these data sets. The remainder of this section is organized

as follows. In Section 3.2, the problem of load disaggregation is formulat-

ed, and machine-learning approaches to NIALM are reviewed. Multi-label

classification algorithms are then reviewed in Section 3.3. We discuss the

performance metrics and our experimental design in Sections 3.4 and 3.5. Ex-

perimental results are presented in Section 3.6. A summary is offered in the

last subsection.

3.2 Problem Formulation

The objective of NIALM is to disaggregate the total power demand of a

household into its major constituents, and identify the household appliances in
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use. The general problem of NIALM can be briefly described as follows. Given

a labeled database of household power loads, a mathematical model represent-

ing the relations between features and appliances is trained first. Then, the

unknown aggregated power load is broken down into a set of constituents that

are used to identify appliances in use based on the trained model. According

to [62, 91], the general NIALM problem can be formulated as

min
{âi,t:i=1,··· ,L}

ε = ht

( L∑
i=1

(xi × âi,t), χt

)
(3.1)

where L denotes the number of household appliances, χt is the aggregated

power load at time instant t, xi is the load signature of the ith appliance, âi,t

is the estimated operating status of the ith appliance at time t, formulated as

âi,t =

{
1, if the ith appliance is on at t

0, if the ith appliance is off at t
(3.2)

and ht is a loss function.

Thus the NIALM problem is to identify the status âi,t of appliances from

the unknown dataset χt based on the known features xi. Figure 3.1 presents

an example of aggregated power load of four different appliances. In this

case, the basic NIALM problem is to determine â1,t, â2,t, â3,t, and â4,t from the

observed power signal, using the known load signatures x1, x2, x3, and x4.

In the machine-learning variant of NIALM, we do not have access to the load

signatures xi. Instead, we extract features from the observed power signal, use

them to inductively learn appliance load models, and then use those models

to predict the operating statuses âi,t.

One broad strategy for solving the NIALM problem is to derive a set of

descriptive features from the power waveform at the meter, and use machine

learning to relate these features to a subset of the appliances in a household

that are operating at that sample instant. The review in [134] discovered

literally hundreds of approaches following this pattern. The features ranged

from the active power signal [45, 160, 113], to current harmonics [96, 101, 128,

146], and the V-I trajectory [63, 64]. Other studies employ transformations

of the power signal including the discrete wavelet transform [51, 124], the

Stockwell transform [24, 74, 92], and the short-time Fourier transform [70, 73,

72]. Side channels (correlates of appliance usage) are used in [2, 136, 137,

148]. There are a number of other feature sets, but they do not appear to be

frequently used.
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Figure 3.1: (a)Aggregated power load measured from the meter at the entry
point; (b)The on-off states of four unique household appliances.

The learning algorithms in use can broadly be classified into supervised,

unsupervised, and semi-supervised approaches, which are differentiated by

whether they require that a ground truth be known for each observation. Su-

pervised approaches (those that require ground truth for every input example)

include parametric statistical approaches (e.g. [81]), and (much more com-

monly) non-parametric approaches (i.e. those that do not assume a particular

probability distribution for the data). Commonly-used approaches include the

K-Nearest-Neighbor algorithm [13, 15, 52], neural networks [28, 29], recent-

ly including deep learning algorithms [77, 100], and support vector machines

[73, 74, 82]. A number of researchers attempt to inductively build an ap-

pliance signature database, e.g. [84, 101]. Unsupervised approaches, on the

other hand, do not need a ground truth for any examples. Clustering [40, 44],

and certain types of Bayesian inference [98, 147, 160], are unsupervised meth-

ods, but the most frequently used unsupervised approach seems to be hidden

Markov models (particularly the Factorial Hidden Markov Model (FHMM)),

and their variants [79, 2, 46, 59]. FHMM models, in particular, have proven

to be very accurate in NIALM. Finally, semi-supervised methods only require

a ground truth for a small subset of all the examples in a training set [16, 90].
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Side channel information can sometimes be used as a proxy for the ground

truth [148].

Most studies on NIALM are event based. The techniques work by detecting

on/off transitions, namely the edges shown in Figure 3.1-(a). This requires

the assumption that events do not occur simultaneously. However, in reality,

multiple appliances may operate simultaneously, such as shown in Figure 3.1.

By contrast, the non-event based techniques only detect whether appliances

are on over a specific time period [13]. Thus, this requires the classifier to have

the ability to identify multiple appliances in use simultaneously. A class of

algorithms that possesses this property, known as multi-label classifiers, can

be formulated as follows [154].

Let x denote a vector of aggregated power samples in a d-dimensional space

χ and γ = {1, 2, · · · ,L} be the appliances, namely, the multiple labels. Given

a training dataset D = {(x1, Y1), (x2, Y2), · · · , (xn, Yn)}(xi ∈ χ, Yi ∈ γ), the

goal of the learning system is to produce a multi-label classifier h : χ → 2γ by

optimizing a specific performance metric. In other cases, the learning system

will output a real-valued function f : χ × γ → R. The assumption is that,

given an instance (xi, Yi), a successful learning system will output larger values

for labels in Yi than those not in Yi, namely, f(xi, yi) > f(xi, yj), ∀yi ∈ Yi∧yj �∈
Yi(i+ j = L).

The real-valued function f : χ×γ → R can also be transformed to a rank-

ing function Rank(f) by mapping the outputs of f(xi, yi) to {1, 2, · · · ,L}. It
is assumed that if f(xi, yi) > f(xi, yj), then Rank(f(xi, yi))< Rank(f(xi, yj)).

The multi-label classifier h(·) can also be obtained through f(xi, yi), i.e.,

h(xi) = {Yi|f(xi, yi) > t(xi)} , where t(·) is a threshold which is usually

set to zero.

3.3 Multi-Label Classification Methods

In the Multi-Label (ML) classification problem, we assume that a given

learning problem contains multiple separate concepts that must simultaneous-

ly be modeled. These concepts, while distinct, might not be independent in

the statistical sense. For instance, the microwave and the stove in a kitchen

are separate appliances, with no causal link between the operation of either

one. However, their usage might well not be independent, as many people

cook meals using the stove and microwave simultaneously (using each for the
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dishes they are best suited for). From the machine-learning point of view,

each appliance is a concept, which we assume means it is associated with a

(preferably convex) region of the feature space for the problem. The particu-

lar difficulty of the ML problem is that the feature-space regions for different

concepts may overlap heavily. Hence the need for ML algorithms instead of

single-label classification; the latter implicitly assumes that overlaps between

classes are fairly minor [155], [126].

Many ML algorithms have been proposed in the literature. These meth-

ods can be categorized into two groups, namely problem transformation and

algorithm adaptation [126]. Problem transformation is an indirect solution to

the ML task, as it transforms the learning problem into one or more single

label classification problem. The Binary-Relevance (BR) and Label-Powerset

(LP) methods are problem transformation approaches [126]. As previously dis-

cussed, LP methods create a new multi-class single-label problem by assigning

a new label to each element of the power set of appliance labels. Accordingly,

this problem can then be solved using any multi-class learning algorithm [13].

The RAndom k labELsets (RAkEL) algorithm is a typical LP method, which

has been integrated into a multi-label learning tool named MULAN [139, 140].

The method is believed to improve substantially over the basic label power-

set approach, especially with a large number of labels, and performs better

than other multilabel learning methods [139]. However, a disadvantage of LP

methods is the relatively high computational demands [13]. The BR approach

creates a single binary classifier for each label of the ML problem, and then

combines them all into an ensemble [155, 126]. The BR method has been used

as the building block of many state-of-the-art multi-label learning algorithms

[155]. However, it has also been criticized for its implicit assumption of label

independence, which might not hold in a given dataset [126]. Both the LP

and BR methods have been used to solve the multi-label load disaggregation

problem in [13], while an LP method (RAkEL) was also employed in [134].

Algorithm adaptation is a direct solution to the ML task, in which bespoke

ML algorithms are created (often by modifying known single-label algorithms)

[155].

In [10], the BR and LP methods (both using decision trees as the base clas-

sifier; the LP method is RAkEL), plus a second BR instance using boosting,

were compared against each other, ML-KNN, and a single-label meta-classifier
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for NIALM, using features of the active power signal sampled every 10 min-

utes. In testing on three high-power appliances across 100 houses from the

IRISE database [12], the LP method was slightly superior to the others. [9]

expands on this study, testing eight appliances and the sum of all lighting in

each house, adding side-channel information, but reducing the data sampling

rate to once per hour. Again, the LP approach was slightly superior. In [11],

LP and BR classifiers are used to forecast future usage of four high-power

appliances, using features extracted from the active power signal sampled at

1-hour intervals. Both approaches performed approximately equally well. [12]

divides those 100 houses into three categories, with different numbers of high-

power appliances disaggregated in each (between three and six). BR and LP

are explored, with decision trees and support vector machines as the under-

lying classifiers. These are comapred against ML-KNN, and Hidden Markov

Models. The “best” approach seemed to vary between categories of houses.

3.3.1 ML-KNN

The ML-KNN [154] is adapted from the well-known single-label k-nearest

neighbor algorithm. The rationale behind this algorithm is that a new in-

stance’s labels should be strongly correlated with the labels assigned to it-

s neighboring data points. Given an unclassified instance x, its k nearest

neighbors N(x) in the training dataset are first identified, and the number

of neighbors having each label is counted. Let −→yx denotes a label vector

for x.
−→
Cx represents the label counting vector of x, and its lth element

Cx(l) sums up the number of x’s neighbors having label l. Then the label

set of the instance is determined through maximizing a posteriori principle
−→yx(l) = arg maxb∈{0,1}P

(
Hb

l |E
−→
Cx(l)
l

)
. where H1

l is the event that x belongs

to label l and H0
l is the event that x not having label l. Ej

l (j ∈ 0, 1, · · · , K)

denotes the event that there are j instances among x’s neighbors assigned

label l.

3.3.2 ML-RBF

ML-RBF is a three-layer neural network [152], much like the familiar Ra-

dial Basis Function Network (RBFN). The input layer of identity neurons is

fully connected to the hidden layer of RBF neurons, which in turn is fully

connected to the output layer, where each output neuron corresponds to a la-
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bel. There are two stages for training. K-means clustering is performed in the

first layer; Ul = {(xi, Yi), l ∈ Yi} denotes the set of training instances with the

label l ∈ {1, 2, · · · ,L}. kl = β × |Ul| clusters are formed for each label, with

0 < β < 1 limiting the number of clusters for that label to less than the number

of examples. A total of K =
∑L

l=1 kl clusters are formed, each corresponding

to one neuron in the hidden layer. Weights are learned in the second step by

minimizing the sum of squared error E = 1
2

∑n
i=1

∑L
l=1 ((yl(xi)− til)

2
, where

til is the true value of the ith label, yl(xi) =
∑K

d=0 wdlφd(xi) is the activation

of the ith output neuron (label). The radial basis neurons use the Gaussian

activation function φd(xi) = exp
(
−dist(xi,cd)

2

2σ2
d

)
, where dist(xi, cd) is the Eu-

clidean distance between xi and the dth prototype vector cd. The smoothing

parameter σd (d = 1, 2, · · · , K ) is given by σ = μ×
(∑K−1

p=1

∑K
q=p+1dist(cp,cq)

K(K+1)/2

)
, μ

a scaling factor. Differentiating the sum-of-squares error function with respec-

t to weights and setting the derivative to zero, (φTφ)W = φTT is obtained.

Weights are trained by solving this equation via singular value decomposi-

tion. φ is the matrix [φid]n×(K+1) with elements φid = φd(xi), W is the matrix

[wdl](K+1)×L, and T is the matrix [til]n×L with elements til = til.

3.3.3 ML-BPNN

As with ML-RBF, ML-BPNN [153] is a three-layer neural network, having

an input layer of identity neurons, and a hidden and output layer. Again,

each neuron in the output layer corresponds to one appliance label. The

layers are fully connected to one another, and both the hidden and out-

put layer employ the tanh() activation function. The network is trained

(using the error back propagation algorithm) to minimize the global error

E =
∑n

i=1 Ei =
∑n

i=1
1

|Yi||Y i|
∑

(l,λ)∈Yi×Y i
exp

(−(yli − yλi )
)
, where Ei is the er-

ror on the training instance xi, Yi are the true labels of instance xi, Y i is the

complementary set of Yi, |·| measures the cardinality of a set, exp
(−(yli − yλi )

)
measures the difference between labels (l ∈ Yi) belonging to xi and labels

(λ ∈ Y i) not belonging to xi. Minimizing the global error tends to assign

higher values to labels that belong to an instance than those not belonging to

it. A threshold function t(x) is determined through training to finally predict

labels for unknown instances, i.e. Y = {j|yj > t(x), j ∈ γ}. t(x) is modelled as

a linear function t(x) = wT ·C(x)+ b. Given training data (xi, Yi)(1 ≤ i ≤ n),

Ci(x) = (ci1, c
i
2, · · · , ciL) is the predicted label set of instance i and the target
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values of t(xi) are t(xi) = arg min(|{l|l ∈ Yi, c
i
l ≤ t}| + |{j|j ∈ Y i, c

i
j > t}|).

When the minimum is not unique and the optimal values are an interval, the

middle value of the interval is chosen. Parameters (w, b) are learned by solving

a matrix equation Φ ·ω = t via linear least squares. Φ is a n× (L+1) matrix

and the ith row is (ci1, c
i
2, · · · , ciL, 1), ω is a (L+ 1)-dimensional vector (w, b),

and t is (t(x1), t(x2), , t(xn)) of n-dimensions.

3.3.4 ML-SVM

A SVM-based ranking approach is proposed by [47]. Given an instance

x, suppose there exists k labels for x. A ranking function can be defined

as Rj(x) =< ωj, x > +bj and j is in the label set if Rj(x) is among the

largest k elements of (R1(x), R2(x), · · · , RL(x)). For a system that ranks the

values of < ωj, x > +bj, the decision boundary for x is defined by the hy-

perplanes < ωj − ωλ, x > +bj − bλ = 0, where j is in the label set and λ

is not in the label set. The margin of (x, Y ) is minj∈Y,λ∈Y
<ωj−ωλ,x>+bj−bλ

||ωj−ωλ|| .

Maximizing the margin on the whole training data set D and using the

method of Lagrange multipliers, the optimization problem is transformed

to minωl,l=1,2,··· ,L
∑L

j=1 ||ωj||2 + ϕ
∑n

i=1
1

|Yi||Y i|
∑

(j,λ)∈Yi×Y i
εijλ and subject to

< ωj − ωλ,xi > +bj − bλ ≥ 1 − εijλ, (j, λ ∈ Yi × Y i) and εijλ ≥ 0. εijλ is a

relaxing constraint term, ϕ is a trade-off parameter. When predicting labels

for unknown instances, the method is the same as that used in BPNN-Based

ML Classification.

3.4 Performance Metrics

The evaluation of multi-label classifiers requires different metrics than

those used in single label classification. A unified categorization of the state-

of-the-art multi-label classification criteria can be found in [155, 126]. Seven

popular evaluation measures are provided in this report, including the Ham-

ming loss, ranking loss, one error, coverage and average precision. Moreover,

the widely used micro F1 and macro F1, which are based on label averaging

methods, are also adopted [90, 108] for evaluation. Average precision, F1micro

and F1macro are commonly used in NIALM studies, while the other metrics

commonly appear in multi-label classification research. These performance

metrics are a combination of metrics commonly used in NIALM and metrics
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widely used in multi-label classification problems.

The Hamming Loss evaluates how many times an instance-label pair is

misclassified, i.e., a label not belonging to the instance is predicted or a label

belonging to the instance is not predicted. The smaller the value of hloss(h),

the better the performance.

hloss(h) =
1

n

n∑
i=1

1

L |h(xi)ΔYi| (3.3)

where Δ stands for the symmetric difference between two sets. h(·) is the

multi-label classifier, and Yi is the true label set for instance xi.

Ranking Loss measures the average fraction of label pairs that are reversely

ordered for instance xi. The smaller the value of rloss(f), the better the

performance.

rloss(f) =
1

n

n∑
i=1

1

|Yi||Y i|
|{(yj, yk)|f(xi, yj) ≤ f(xi, yk),

(yj, yk) ∈ Yi × Y i}| (3.4)

where Yi is the true label set of instance xi, Y i is the complementary set of

Yi. yj and yk are the predicted labels.

One Error evaluates how many times the top-ranked label is not in the

predicted label set of xi. The smaller the value of one error(f), the better the

performance.

one error(f) =
1

n

n∑
i=1

[[
argmax

y∈γ
f(xi, y)

]
/∈ Yi

]
(3.5)

where γ is the complete label set for the training dataset.

A list of class labels are sorted in descending order based on f(xi, y).

Coverage measures how far it is needed, to go down this label list so that all

the true labels of xi are covered. The smaller the value of coverage(f), the

better the performance.

coverage(f) =
1

n

n∑
i=1

max
y∈Yi

rankf (xi, y)− 1 (3.6)

where rankf (xi, y) denotes the rank of each label y ∈ γ.

Average Precision calculates the average fraction of labels ranked above a

particular label y ∈ Y that are predicted. The larger the value of avgprec(f),
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the better the performance.

avgprec(f) =
1

n

n∑
i=1

1

|Yi|
∑
y∈Yi

|{y′|rankf (xi, y
′) ≤ rankf (xi, y), y

′ ∈ Yi}|
rankf (xi, y)

(3.7)

The F1 metric is the harmonic mean of precision and recall and it is widely

adopted for single-label classification.

F1 =
2× tp

2× tp+ fp+ fn
(3.8)

Where tp is the number of true positives, tn is the number of true negatives,

fp is the number of false positives, and fn is the number of false negatives.

Macro F1 and micro F1 are multi-label classifier metrics derived by com-

puting the F1 measure across the label set; either after summing true and

false positives and false negatives across all labels, or by averaging the F1

measure for each label.

F1micro = F1(ΣM
λ=1tpλ,Σ

M
λ=1fpλ,Σ

M
λ=1fnλ) (3.9)

F1macro =
1

M
ΣM

λ=1F1(tpλ, fpλ, fnλ) (3.10)

where there are M labels in the dataset, tpλ is the number of true positives,

fpλ is the number of false positives, and fnλ is the number of false negatives

of label λ after being evaluated by binary evaluation of F1.

3.5 Experimental Design

This section describes the datasets used in our experiments and the pre-

processing methods employed. The multi-label classifiers were applied to four

publicly available datasets, including the Reference Energy Disaggregation

Dataset (REDD) [80], the Building-Level fUlly labeled Electricity Disaggre-

gation dataset (BLUED) [4], the UMASS Smart* Home Data Set (Smart*)

[7], and the Almanac of Minutely Power Dataset (AMPds) [98]. Each data set

is treated as a time series (containing observations of the aggregate power in

one house) in these experiments. The data set is first cleaned (missing values

replaced), labeled, and downsampled. Features are then extracted from the

time series using the method of delay embedding.
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3.5.1 Filling Small Gaps

Missing values in each data set appear as small gaps in the time series,

usually less than 10 seconds. We replace the missing gaps with the last-known

value of the time series (i.e. a zero-order hold).

3.5.2 Labeling

The algorithm proposed in [43] is adapted to recognize events in the pow-

er series of individual appliances, by breaking the time series of sub-metered

power into continuous small segments with the slope method and consider-

ing each segment as an event. Then the power of each segment is averaged,

and labeled with the appropriate appliance. The process is composed of the

following steps [43]:

1. Calculate the slopes of all data points in the power series. Since the time

interval between data points is constant, the slope can be calculated as

ΔPn = Pn+1 − Pn.

2. From a starting point, joining the subsequent points with small slopes

as a segment. If the slope value is beyond a threshold, or the difference

of the steady points after the point and before the point is beyond a

threshold, stop joining the point into the current segment. And the

point is called as an interruption point. In order to prevent cutting off

a segment due to occasional noisy points, an additional check is applied

to the points behind the noisy data, namely, if the value of the steady

points behind the noisy data is close to the value of steady points before

the noisy data, then the noisy data is “ignored” and the following points

will continue to be added to the segment.

3. Stating a new segment from the interruption point, add points into the

segment with the method described in step 2.

4. Steps 2 and 3 iterate until all points have been added to segments. Thus

the power series have been broken into continuous small segments.

5. Averaging the power of each segment.

6. Labeling for each segment.
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The above labeling method is applied to the REDD, Smart* and AMPds

dataset. The Blued dataset provides an event list which includes timestamp-

s, events (every state transition of each appliance) and which phase it is on

instead of power consumption data of individual appliance. Thus a different

labeling method is proposed. The event list is matched against the aggregate

main power. The difference between the average of the main power before

an event and after the event is calculated (the average is taken over 60 data

points). If there is an increase of main power, then it is a turn on event, oth-

erwise it is a turn off event. For multi-state appliances, subsequent increases

or decreases may be found in the main power when subsequent events hap-

pen for the same appliance. The event is considered an on event if there is a

subsequent increase, or the last event is labeled off if there exist subsequent

decreases for the same appliance. For all appliances, state only changes due

to an event, and is otherwise constant.

3.5.3 Downsampling

The sampling rate of the data sets varies from 1 minute to 12 kHz. 12 kHz

is a high sampling rate, considering that a 10-minute sampling frequency was

still adequate for NIALM in [12] and [13]. Moreover, the size of the data set is

too large to process. Downsampling is applied to decrease the sampling rate

by keeping every jth sample starting with the first sample. For example, the

raw data is down sampled to take every 100th data point starting with the

first one in Smart*.

3.5.4 Delay Embedding

A NIALM dataset such as Smart* is an example of a time series, which

is entirely distinct from the feature-space representation assumed in machine

learning algorithms. It is thus necessary to extract features from this time

series, so that a learning algorithm can be trained. One common method for

doing so is to use delay embeddings (also known as lagged inputs). Embedding

vectors are formed from prior observations from the time series concatenat-

ed together. According to Takens’ embedding theorem [135], the underlying

phase space of a physical system is equivalent to the space defined by the
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embedding vectors. Given a single time series

R = {RN , RN−1, · · · , R2, R1} (3.11)

embedding vectors are given by

Φn = {RN−(m−1)τ , RN−(m−2)τ , · · · , RN} (3.12)

where R is the observable time measurement. Φn is the reconstructed vector

and each of the vector is a set of features. The number of reconstructed vectors

is N−(m−1)τ . m is the embedding dimension, τ is generally referred to as the

delay or lag, and allows us to select each sequential observation, every second

observation, every third, etc. into the embedding vector. The parameters m

and τ are critical to a proper embedding; too small of a dimensionality will

leave some of the subspaces of the original state space unexpanded, while τ

allows us to adjust the relative importance of temporal and spatial correlations

in the delay vectors. There is no definitive means of determining appropriate

values of m and τ , so the field of nonlinear time series analysis has instead

developed heuristics. In this report, the time-delayed mutual information

and false nearest neighbor heuristics are respectively adopted to find the best

embedding delay time τ and embedding dimension m [76].

3.6 Experimental Results

Experiments with the multi-label classifiers in section III are implemented

in Matlab and are carried out following a ten-fold cross validation design.

Parameter exploration is conducted beforehand with five-fold cross-validation,

and the best set of parameters is used for training in the final ten-fold design.

Table 3.1 summarizes the final experimental results as means and standard

deviations over the ten folds using the ML-KNN approach with the number of

nearest neighbors set as 10. According to the metrics calculated in Table 3.1, it

is obvious that ML-KNN achieves impressive scores over all the datasets. Both

F1micro and F1macro are very high, indicating that ML-KNN disaggregates well

for each monitored appliance.

Table 3.2 summarizes the experimental results using the ML-RBF ap-

proach over the ten folds. The fraction parameter β is set to be 0.1 and

the scaling factor μ is 1. According to Table 3.2, ML-RBF performs well over
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Table 3.1: Ten-fold cross validation results (mean±std) with ML-KNN over
five datasets.

House 1 House 3 Blued Smart* AMPds
Hamming 0.02 0.03 0.03 0.15 0.03

Loss (0.0008) (0.002) (6.98e-4) (6.93e-4) (2.25e-4)
Ranking 0.01 0.02 0.01 0.08 0.006
Loss (0.0006) (0.001) (6.33e-4) (7.99e-4) (1.36e-4)

One Error
0.05 0.05 0.01 1.69e-4 0.002

(0.003) (0.004) (0.001) (1.5e-4) (2.5e-4)

Coverage
0.12 0.37 4.13 9.09 2.92

(0.007) (0.03) (0.03) (0.01) (0.007)
Average 0.97 0.97 0.98 0.96 0.99
Precision (0.002) (0.002) (0.79e-4) (4.64e-4) (2.53e-4)

F1micro
0.92 0.9 0.93 0.89 0.94

(0.003) (0.004) (0.001) (5.67e-4) (3.78e-4)

F1macro
0.82 0.89 0.91 0.86 0.83

(0.016) (0.006) (0.004) (0.001) (0.01)

all the datasets in terms of Hamming loss, ranking loss, one error, average

precision and F1micro. The scores of F1macro are not that good over all the

datasets except for Smart*, indicating some appliances can not be disaggre-

gated well using ML-RBF.

Table 3.2: Ten-fold cross validation results (mean±std) with ML-RBF over
five datesets.

House 1 House 3 Blued Smart* AMPds
Hamming 0.04 0.07 0.13 0.17 0.08

Loss (0.001) (0.002) (0.002) (0.001) (7e-4)
Ranking 0.03 0.08 0.09 0.1 0.03
Loss (0.003) (0.002) (0.002) (0.001) (3.85e-4)

One Error
0.13 0.17 0.09 0.01 0.03

(0.004) (0.006) (0.004) (0.001) (0.001)

Coverage
0.26 0.6 5.58 9.26 2.62
(0.02) (0.036) (0.05) (0.016) (0.02)

Average 0.92 0.89 0.87 0.96 0.95
Precision (0.003) (0.003) (0.0026) (5.54e-4) (5.2e-4)

F1micro
0.83 0.8 0.74 0.88 0.83

(0.005) (0.004) (0.003) (0.001) (0.001)

F1macro
0.67 0.71 0.68 0.84 0.67
(0.01) (0.009) (0.006) (0.002) (0.007)
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Table 3.3 summarizes the final experimental results using the ML-BPNN

approach over the ten folds. The number of hidden neurons, the learning rate,

and the training epochs are set to be 120, 0.05, and 50, respectively. Accord-

ing to Table 3.3, ML-BPNN performs poorly over all the datasets except for

Smart*.

Table 3.3: Ten-fold cross validation results (mean±std) with ML-BPNN over
five datesets.

House 1 House 3 Blued Smart* AMPds
Hamming 0.19 0.38 0.35 0.32 0.36

Loss (0.052) (0.016) (0.04) (0.003) (0.044)
Ranking 0.14 0.22 0.39 0.25 0.14
Loss (0.057) (0.026) (0.051) (0.031) (0.063)

One Error
0.56 0.57 0.76 0.0003 0.37

(0.245) (0.046) (0.069) (0.0004) (0.335)

Coverage
0.95 1.12 9.79 11.31 7.78

(0.371) (0.106) (0.651) (0.348) (1.119)
Average 0.66 0.63 0.47 0.9 0.78
Precision (0.125) (0.027) (0.053) (0.012) (0.109)

F1micro
0.4 0.48 0.51 0.81 0.67

(0.206) (0.011) (0.009) (0.005) (0.028)

F1macro
0.15 0.28 0.45 0.77 0.42

(0.058) (0.006) (0.024) (0.008) (0.015)

Table 3.4 summarizes the experimental results using the ML-SVM ap-

proach over the ten folds. The radial basis function is used and the kernel is

exp(−Γ× |(x(i)− x(j)|2)). x(i) and x(j) are the input instances. Γ is set to

be 1. According to Table 3.4, ML-SVM performs poorly over all the datasets

except for Smart*.

From Tables 3.1, 3.2, 3.3 and 3.4, it can be concluded that ML-KNN

and ML-RBF perform significantly better than ML-BPNN and ML-SVM with

all the metrics over all the datasets, while ML-KNN also outperforms ML-

RBF, and is generally effective on all datasets. We therefore compare the

ML-KNN algorithm with existing results in the literature for each dataset.

The comparison results on REDD are summarized in Table 3.5. ML-KNN is

superior to the other approaches except for semi-Markov models and Dynamic

Time Warping; note however, that results for the latter are superior to ML-

KNN as measured by F1macro, but inferior when measured by accuracy. This

appears to be a statistical tie.
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Table 3.4: Ten-fold cross validation results (mean±std) with ML-SVM over
five datesets.

House 1 House 3 Blued Smart* AMPds
Hamming 0.23 0.23 0.35 0.22 0.14

Loss (0.0007) (0.002) (0.002) (0.02) (0.001)
Ranking 0.16 0.14 0.22 0.14 0.07
Loss (0.001) (0.002) (0.004) (0.015) (0.004)

One Error
0.71 0.16 0.18 0.001 9.55e-5

(0.006) (0.005) (0.005) (0.004) (0.0001)

Coverage
1.08 2.01 1.79 9.69 7.01

(0.012) (0.012) (0.015) (0.156) (0.191)
Average 0.56 0.86 0.85 0.94 0.92
Precision (0.003) (0.003) (0.003) (0.006) (0.003)

F1micro
0.49 0.62 0.45 0.85 0.78

(0.003) (0.004) (0.002) (0.01) (0.001)

F1macro
0.16 0.23 0.17 0.74 0.26

(0.001) (0.001) (0.001) (0.037) (0.0001)

Table 3.5: Comparison results on REDD.

Method CO[14] FHMM[14] FHMM1[23] Watzzup[114]
Average
accuracy

- - 0.827 0.88

Fmacro 0.31 0.31 0.7129 -

Method AFAMAP[79] SMF[79] Bayesian[149] Semi-MM[149]
Average
accuracy

- - - -

Fmacro 0.52 0.22 0.83 0.9

Method DTW[23] ML-KNN
Average
accuracy

0.9124 0.97

Fmacro 0.8616 0.82

The comparison results on Blued (phase B) are summarized in Table 3.6.

ML-KNN outperforms all the other state-of-the-art algorithms in terms of ture

positive rate (the most commonly used metric for this dataset).

Table 3.6: Comparison results on Blued (TPR denotes the true positive rate).

Method GLR[5] UAED[8] Fast Shapelets[111] ML-KNN
TPR 0.44 0.8896 0.8226 0.9343
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The comparison results on AMPds are summarized in Table 3.7. ML-KNN

is superior to the other algorithms in literature in terms of F1macro.

Table 3.7: Comparison results on AMPds.

Method CO[14] FHMM[14] ML-KNN
F1macro 0.55 0.71 0.83

The comparison results on Smart* are summarized in Table 3.8. ML-KNN

outperforms the other algorithms in terms of F1macro.

Table 3.8: Comparison results on Smart*.

Method CO[14] FHMM[14] ML-KNN
F1macro 0.53 0.61 0.86

3.7 Summary

Fine-grained power monitoring technique is quite critical to help end users

with the daily management of household appliances and achieve significan-

t reduction of energy consumption. Since the NIALM, or known as energy

disaggregation, was firstly proposed by Hart, increasing attentions have been

attracted to this research area and a variety of NIALM techniques have been

proposed in the past two decades. A detailed literature survey is given in this

section to summarize the existing algorithms and results. However, most ex-

isting studies assume that simultaneous events do not occur and thus are only

able to recognize a single appliance while simultaneous utilization of multiple

appliances are quite common in reality. In view of this, this section explores

the utilization of different multi-label classification algorithms in household

appliance disaggregation and implements experiments using some public data

sets. The experimental results demonstrate the effectiveness and applicability

of the multi-label classification in household appliance disaggregation. The

algorithms exploited in this section, such as the ML-KNN, ML-RBF, ML-

SVM, and ML-BP outperform the methods from the references. In further,

the ML-KNN achieves the best performance score compared with all the other

algorithms.
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Chapter 4

Semi-Supervised Learning for
Non-Intrusive Load Monitoring

4.1 Overview

For real applications of NIALM, you might be able to collect few labeled da-

ta from households by persuading residents to take samples for each appliances

during a short period of time, however, it seems impossible to sub-metering the

households all the time because of privacy concern for being intrusive. Thus a

few labeled data as well as a large number of unlabeled data (the house-level

aggregate power data) could be gathered for NIALM. To solve NIALM in this

case, a graph-based multi-label semi-supervised learning is proposed in this

work. To the best of our knowledge, there is little research work in the existing

literature using semi-supervised algorithms for NIALM. References [90] and

[88] present our preliminary results of applying semi-supervised algorithms

in NIALM. In contrast to supervised NIALM techniques which require sub-

metering to gather the ground truth for training and unsupervised NIALM

techniques which make no use of prior information, the semi-supervised learn-

ing method stands in the middle. Brief samples of individual appliances are

taken during a temporary registration period. During the process, individ-

ual appliance is turned on for a short time period so its load signatures are

captured. Thus a small number of labeled instances covering all the elec-

tric appliances inside the household are gathered. By incorporating massive

unlabeled training data, this section disaggregates residential household ag-

gregate power non-intrusively in a semi-supervised way. The same idea has

been studied in other areas for binary labeled case [166, 161]. However, binary
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labeling is a poor match to NIALM since multiple appliances can be operat-

ing simultaneously. Each appliance is regarded as a concept, thus multiple

concepts exist for a single instance. The remainder of the section is organized

as follows: Section II formulates NIALM in a semi-supervised multi-label way

and introduces the proposed framework. Section III presents graph-based

semi-supervised learning for multi-labels, including graph construction, graph

Laplacian regularization, extension from transduction to induction, and man-

ifold regularization. Section IV illustrates experimental design, including data

preparation, experiment design and evaluation metrics. Section V gives ex-

perimental results and discussions, followed by conclusions in Section VI.

4.2 Problem Formulation

This subsection formulates the NIALM problem in the framework of semi-

supervised learning, and introduces graph-based regularization methods for

semi-supervised learning.

4.2.1 Load Disaggregation via Semi-Supervised Multi-
Label Classifiers

Ground-truth information in NIALM is scarce, but a small amount can

perhaps be collected for each house. A registration period, during which res-

idents operate individual appliances for a brief time, was proposed in [55].

Based on the review in [36], consumers seem willing to put forward a small

amount of effort if provided with a modest inducement (e.g. a discounted tar-

rif). Thus, NIALM data for a house potentially consists of a large volume of

unlabeled data, augmented by a small number of labeled observations, leading

to our proposed use of semi-supervised learning. To the best of our knowl-

edge, there is little existing literature using semi-supervised algorithms for

NIALM. References [90] and [88] present our preliminary results of applying

semi-supervised algorithms in NIALM. Note also that our labeled examples

include no appliance mixtures; in field use we do not expect the consumer to be

willing to operate numerous appliance combinations during this registration

period.

Let X = R
d and Y = {1, 2, · · · ,L} denote the feature space (aggregated

power) and the label space (currently operating appliances) of an ML classifier,
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respectively. In the framework of semi-supervised learning, the multi-label

training dataset D is a combination of labeled and unlabeled data, namely,

D = Dl ∪ Du, where Dl = {(xi,yi) : xi ∈ X ,yi ∈ {−1, 1}L, i = 1, 2, · · · , l} is

the labeled set and Du = {xj ∈ X , j = l+1, l+2, · · · , l+u} is the unlabeled set.

l and u are the numbers of labeled and unlabeled samples respectively. xi =

[xi1, xi2, · · · , xid]
T denotes the ith aggregated power sample in a d-dimensional

feature space X . yi = [yi1, yi2, · · · , yiL]T is the corresponding ith label vector.

For labeled instances, yij = 1 indicates that the appliance j ∈ Y is active

whereas yij = −1 denotes that the appliance j is inactive, while yij = 0, ∀j ∈ Y
indicates that the ith instance xi, i = l + 1, · · · , l + u is unlabeled. The

matrices of features and labels are denoted by X = [x1,x2, · · · ,xN ]
T and

Y = [y1,y2, · · · ,yN ]
T , where N = l + u.

The objective of this study is to learn a semi-supervised multi-label clas-

sifier f : X → 2Y from the training dataset D, so that future observations

Dt = {xt
i ∈ X : i = 1, 2, · · · , t} can be correctly mapped to the appliances

then active. We will accomplish this using low-rate NIALM data; observation-

s from five public NIALM datasets will be down-sampled, yielding effective

sampling rates between 6 and 60 seconds. This section furthermore explores

classifying future instances either transductively or inductively (the latter al-

lowing for generalization beyond the training set).

4.2.2 Framework of the Method

Graph-based learning is among the most active areas of Semi-Supervised

Learning (SSL). We represent instances as nodes V of the graph and their rela-

tions as edges E connecting nodes. Graph-based methods involve two stages:

first, a graph is constructed over the whole training data, including both the

labeled set and the unlabeled set; then, labels for the unlabeled training in-

stances are estimated through label propagation. Given a training dataset

D = Dl ∪Du, an adjacency graph G = (V,E) is firstly constructed with nodes

V and edges E. Usually the edge is weighted by a similarity measurement

wij between node i and node j. The principal objective in this stage is to

obtain a weight matrix W that faithfully represents the similarities between

instances. This is normally assumed to mean that the labels are smooth with

respect to the graph [151, 167]. In other words, given two instances with a

close connection on the graph, their labels tend to be the same.
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Mathematically, given labels of the labeled training set Dl and the simi-

larity weight matrix W on Dl ∪Du, the label set Fi = [Fi1, Fi2, · · · , FiL] of an

unlabeled instance xi ∈ X , i = l+1, l+2, · · · , l+u is predicted by minimizing

some loss function with respect to W. This can be achieved through graph

regularization methods, e.g. graph Laplacian regularization and manifold reg-

ularization [131, 167, 48, 162]. The graph Laplacian regularization learns a

transductive classifier f , which can only predict labels for unlabeled train-

ing samples in Du. Methods have been proposed to extend such transductive

methods to produce inductive solutions, so that the labels for out-of-sample

data can be predicted [31, 37]. By contrast, the manifold regularization is

intrinsically inductive. It learns a classifier f defined on the whole training set

D over feature space X [19]. In the next section, we define novel extensions of

these methods to the multi-label case, and ultimately apply them to NIALM.

It is noteworthy that [67], [157] also employ graph signal processing. Those

works differ from ours in the following aspects: firstly [67] is a supervised learn-

ing algorithm, and [157] is an unsupervised one. Secondly, neither employs

multi-label classification. Finally, both use a simpler variation regularization,

instead of the more complex manifold regularization that was the best option

in our work.

4.3 Graph-Based Semi-Supervised Learning for

Multiple Labels

This subsection extends graph-based SSML classification algorithms to the

multi-label case. Three graph regularization methods are studied: Gaussian

Fields and Harmonic Functions (GFHF), Local and Global Consistency (L-

GC), and Manifold Regularization (MR). In subsection A, we first review the

methods available for constructing the ”graph” portion of this algorithm from

a dataset with real-valued independent and categorical dependent variables.

We discuss the design alternatives available for graph construction, and our

rationale for the choices we have made. In subsection B, we then extend two

algorithms (Gaussian Fields and Harmonic Functions, and Local and Global

Consistency) that employ graph Laplacian regularization for label induction

on unlabeled examples. These algorithms are exclusively transductive, so we

also need to extend them to permit out-of-sample predictions. In subsection

36



C, we extend a third alternative (manifold regularization) to the multi-label

case.

4.3.1 Graph Construction

Graph-based SSML learning begins with the construction of an adjacency

graph, followed by determining the weight matrix W. The idea of graph

construction is as follows: Both labeled and unlabeled samples from a dataset

are treated as nodes in a graph and pairwise edges are built to connect labeled

nodes to unlabeled nodes. Edge weights represent the similarity between two

samples. Then labels for unlabeled nodes can be predicted based on their

connections to labeled nodes.

There are three types of commonly used graph, the fully connected graph,

the k-Nearest Neighbor (kNN) graph, and ε-radius graph [131, 167]. For

improved efficiency, better accuracy, and robustness to noise, the graph con-

struction method in [144] is exploited here. Given the feature matrix X, a full

N×N distance matrix U is calculated with each element given by a Gaussian

kernel

uij = exp

(
−||xi − xj||2

2σ2

)
, (4.1)

where σ is the bandwidth, calculated from each data set. A wide variety of

kernel forms and distance measures may be substituted into eqn. (1); we

empirically explored the use of Gaussian, linear and polynomial kernels, with

the Euclidean and Cosine distances, before settling on the Gaussian kernel

and Euclidean distance above.

At this point, we must also note that, since eqn. (1) requires the creation

of an N × N distance matrix, the time complexity for graph construction

is necessarily O(N2). This is a common limitation in graph-based learning,

as well as in manifold- and kernel-based learning in general. In Section IV

of this section we will discuss how we used undersampling to manage this

time complexity; we later discuss how our results in Section V show that this

strategy was successful.

Once U has been calculated, the derived matrix H with each elemen-

t given by hij =
√
uii + ujj − 2uij is then used to determine W through

graph sparsification and edge reweighting. There are two primary graph s-

parsification approaches: neighborhood search algorithms and matching al-

gorithms (i.e., b-matching). The b-matching algorithm produces more bal-
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anced graphs (i.e. each vertex in the graph has exactly the same number of

edges) than neighborhood-based algorithms. This advantage plays a key role

in conducting label propagation on unevenly and non-uniformly distributed

samples [71, 144], and we therefore adopt it in this section. Mathematically,

b-matching finds the binary matrix B = [Bij]N×N by minimizing the following

optimization problem

min
B∈{0,1}N×N

N∑
i=1

N∑
j=1

BijHij,

s.t.
N∑
j=1

Bij = b, Bii = 0, Bij = Bji, ∀i, j = 1, · · · , N.

(4.2)

The above optimization problem can be solved using polynomial algorithm-

s, which however have high computational complexity. As an alternative,

loopy belief propagation is a much faster solution for the problem [69]. Belief

Propagation (BP) is a classical dynamic programming approach. It computes

conditional probabilities on the rest of the graph based on some given sub-

set of the graph. The authors in [69] extended this method by setting up

the b-matching optimization as BP on a loopy graphical model. The resulting

algorithm circumvents the combinatorial message updates and thus is on aver-

age much faster than polynomial algorithms. With B = [Bij]N×N computed,

the graph edge between node i and node j can be removed if Bij = 0.

Following this sparsification, the remaining edges must be reweighted.

There are two popular reweighting methods, including the binary weighting

and Gaussian kernel weighting. Using binary weighting, the weight matrix

is obtained simply as W = B. Using Gaussian kernel weighting, the weight

matrix W is calculated with each element given by

wij = Bijuij. (4.3)

Ultimately, the adjacency graph is represented via the sparse symmetric ma-

trix W. Then, the unnormalized graph Laplacian is

L = D−W, (4.4)

where D is a diagonal matrix with Dii =
∑N

j=1 Wij. The normalized graph

Laplacian is

Δ = D−1/2LD−1/2. (4.5)
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Both the unnormalized and normalized graph Laplacian matrices are com-

monly used in regularization for graph smoothness.

4.3.2 Graph Laplacian Regularization

We now extend label induction algorithms from the single-label to the

multi-label case; generally, this means that the dependent variable becomes a

categorical vector instead of a scalar. The work below parallels the develop-

ment in [151] and [161], but is our own. Assuming F is the matrix of predicted

labels for the whole training data Dl ∪ Du, the optimal labels F∗ can usually

be estimated through graph Laplacian regularization [144] by optimizing a

certain objective function

F∗ = argmin
F∈F

Γ(F), (4.6)

where F denotes the domain of F. Γ(F) is a cost function given by

Γ(F) = Γf (F) + Γs(F), (4.7)

where Γf (F) is the empirical cost over labeled training set D and Γs(F) ensures

graph smoothness. The optimal solution F∗ can be obtained using Gaussian

Fields and Harmonic Functions (GFHF) [151] or Local and Global Consistency

(LGC) [161], which have different forms for Γf (F) and Γs(F).

Gaussian Fields and Harmonic Functions

In the GFHF framework [151], the empirical cost and the regularization

term in eqn. (4.7) for multiple labels are given by [151]

Γf (F) = tr
(
(F−Y)TΨ(F−Y)

)
, (4.8)

Γs(F) = tr
(
FTLF

)
, (4.9)

where tr(·) denotes the trace of a matrix, and Ψ is a diagonal matrix with

each element given by

Ψii =

{
1 for i ≤ l,
0 for l < i ≤ l + u.

(4.10)

The optimal solution F∗ is obtained by differentiating Γ(F) in eqn. (4.7)

with respect to F, [151]:

∂Γ(F)

∂F

∣∣∣∣
F=F∗

= 2Ψ(F∗ −Y) + 2LF∗ = 0, (4.11)
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which is rewritten as

(Ψ+ L)F∗ = ΨY. (4.12)

Partitioning L and F∗ into blocks corresponding to the labeled and unlabeled

sets, we have L =

[
Lll Llu

Lul Luu

]
and F∗ =

[
F∗l
F∗u

]
. Since Ψii = 0, l < i ≤ l+u,

there is

LulF
∗
l + LuuF

∗
u = 0. (4.13)

As a result, the optimal solution for multiple labels is given by [151]:{
F∗l = [y1,y2, · · · ,yl]

T ,
F∗u = −L−1uuLulF

∗
l .

(4.14)

Accordingly, the estimated label matrix Ŷ is obtained as: ŷij = 1, if Fij ≥ 0;

otherwise, ŷij = 0, where Fij is an element of F.

Local and Global Consistency

In the LGC framework [161], the empirical cost and the regularization term

in eqn. (4.7) for multiple labels are given by [144, 151]

Γf (F) = μ tr
(
(F−Y)T (F−Y)

)
, (4.15)

Γs(F) = tr
(
FTΔF

)
. (4.16)

By differentiating Γ(F) in eqn. (4.7) with respect to F, i.e.,

∂Γ(F)

∂F

∣∣∣∣
F=F∗

= 2μ(F∗ −Y) + 2ΔF∗ = 0, (4.17)

the optimal F∗ is eventually obtained as

F∗ =
(
Δ

μ
+ I

)−1
Y, (4.18)

where I is a N ×N identity matrix, and μ > 0 is the regularization parameter

[161]. Analogous to the GFHF method, the estimated label matrix Ŷ is

obtained by comparing F∗ with 0. However, unlike GFHF, LGC also relabels

some labeled examples, under the assumption that some given labels might

be wrong. In other words, LGC assumes that the true, correct mapping from

observations to labels is smooth, and if some of the labels provided as ground

truth violate graph smoothness, those are noise or errors. LGC will therefore

correct those erroneous labels to ensure overall smoothness.
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Extension from Transduction to Induction

GFHF and LGC are transductive learning algorithms, and thus can only

predict labels for in-sample data. However, the application to NIALM re-

quires an inductive step, so as to predict labels for future out-of-sample data.

Studies in [37] and [31] present inductive solutions by simply minimizing a

regularization criterion applied to each out-of-sample instance. Here, we ex-

tend the graph-based SSL methods to inductive learning by taking the labeled

set and the unlabeled set as well as their estimated labels Ŷ to train a multi-

label classifier, e.g., ML-KNN [154] (which was found to outperform a group

of other ML classifiers on the NIALM problem in [86]).

Specifically, k nearest neighbors for xi, i = 1, 2, · · · , N , are determined; let

these neighbors be denoted as N (xi). A membership counting vector C for

xi is given by [154]:

C(xi)(m) =
∑

xj∈N(xi)

yjm, (4.19)

where m ∈ Y . Then given a test sample x, its mth label is determined as

ym = argmax
b∈{−1,1}

P
(
Hb

m|ECx(l)
m

)

= argmax
b∈{−1,1}

P
(
Hb

m

)
P
(
E

Cx(m)
m |Hb

m

)
P
(
E

Cx(m)
m

)
= argmax

b∈{−1,1}
P
(
Hb

m

)
P
(
ECx(m)

m |Hb
m

)
, (4.20)

whereH1
m (H−1

m ) is the event that x has (no)mth label, and Ej
m(j ∈ 0, 1, · · · , k)

denotes the event that there are j instances among its neighbors having the

mth label. The prior probabilities P (Hb
m) and the posterior probabilities

P
(
E

Cx(m)
m |Hb

m

)
are calculated from the whole training dataset. Eventual-

ly, the predicted label vector for the test sample x is y = [y1, y2, · · · , yL]T
[154].

4.3.3 Manifold Regularization

In contrast to the GFHF and LGC regularizations, Manifold Regular-

ization (MR) is intrinsically an inductive method that includes elements of

spectral graph theory, manifold learning, and regularization in Reproducing

Kernel Hilbert Space (RKHS). Again, this work parallels the developments
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in [19, 162], but is our own. We extend MR for multiple labels, learning

a mapping function f : X → R
L in an RKHS K by solving the following

optimization problem

min
f :X→RL

Γf (F) + γAΓk (F) + γIΓs (F) , (4.21)

where F = f(X). Γf (F) is a loss function term with respect to F and Y,

Γk (F) is a smoothness penalty term related with respect to the RKHS norm,

and Γs (F) is a smoothness penalty with respect to the graph Laplacian, while

γA and γI are their respective regularizers; the values for γA and γI must be

determined empirically. Depending on the choices of Γf (F,Y), γA, and γI ,

there are different algorithms to solve the above optimization problem [19]. In

this section, the Laplacian Regularized Least Squares (LapRLS) is adopted.

Accordingly, the three regularization terms in eqn. (4.21) are

Γf (F) =
1

l
tr
(
(F−Y)TΨ(F−Y)

)
, (4.22)

Γk (F) = tr
(||F||2K) , (4.23)

Γs (F) =
1

N2
tr
(
FTLF

)
, (4.24)

where ||F||K is a norm of F in the chosen RKHS.

Analogous to the single label case in [19], the solution of the optimization

problem in eqn. (4.21) is an expansion of kernel functions over both the labeled

and unlabeled instances:

F∗ = KΛ, (4.25)

where Λ is a N×L coefficient matrix. K is a N×N matrix obtained from the

kernel function K(·) with respect to all training samples X. Then, ||F||2K =

ΛTKΛ. Taking K(·) as a Gaussian kernel function, the kernel matrix can be

obtained as K = U using eqn. (4.1). The coefficient matrix Λ∗ is obtained

though
∂ (Γf (KΛ) + γAΓk(KΛ) + γIΓs(KΛ))

∂Λ

∣∣∣∣
Λ=Λ∗

= 0. (4.26)

Analogous to the result in [131], Λ∗ for the case of multiple labels is

Λ∗ =
(
ΨK+ lγAI+

lγI
N2

LK

)−1
Y, (4.27)

where I is a N ×N identity matrix.
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In the test phase, the output Ft for a given test sample x can be obtained

as follows: First, a kernel vector Kt = [Kt
1, K

t
2, · · · , Kt

N ] is calculated with

Kt
i = K(x,xi), where xi is the ith sample from the training set X. Second,

based on eqn. (4.25), the output Ft for x is estimated as

Ft = KtΛ∗. (4.28)

Eventually, the estimated label vector Yt for the test sample x is obtained by

comparing Ft with 0.

4.4 Experimental Methodology

This subsection describes our evaluation methodology, including data prepa-

ration, experimental design, and performance metrics, for the proposed NIALM

methods.

4.4.1 Data Preparation

Multiple public power disagreggation datasets are used in this section to

test our algorithms. The Reference Energy Disaggregation Dataset (REDD)

[80] was collected from a number of real households in United States over var-

ious periods of a few months each. Specifically, one phase each from House

1 and House 3 (which are widely used in comparative studies) are used in

our experiments. The Building-Level fUlly labeled Electricity Disaggregation

dataset (BLUED) [4] was collected from a single US household over one week.

The UMass Smart* Home Dataset (Smart*) [7] was collected from three house-

holds in Western Massachusetts. Specifically, the data from household A is

used in our experiments. The Almanac of Minutely Power Dataset (AMPds)

[98] was collected from a household in the great Vancouver area, Canada. To

distinguish these datasets from each other in the experiments, they are denot-

ed as House 1, House 3, BLUED, Smart*, and AMPds, respectively. For each

dataset, we only use active (real) power in our experiments. Some appliances

were excluded as they were always active or inactive. The actual number-

s of appliances used from House1, House3, Blued, Smart*, and AMPds, are

9, 7, 25, 25, and 13, respectively. The list of appliances (or circuits) mod-

eled for each dataset is presented in the tables of individual disaggregation

performance in the next subsection.
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These datasets are classic time series, and thus not formatted in the man-

ner our algorithms (or most other learning algorithms) require. We will per-

form a delay embedding [135] to convert our datasets to collections of fea-

ture vectors (each being a sequence of lags relative to the current sample

instant). Given a single time series R = {RN , RN−1, · · · , R2, R1}, the de-

lay vector for the i-th sample is xi = [Ri−(m−1)τ , Ri−(m−2)τ , · · · , Ri], where

i = N,N − 1, · · · , (m − 1)τ + 1. τ and m are the embedding delay and di-

mension, respectively, which can be estimated using the mutual information

and false nearest neighbors heuristics [86, 76]. Each of these feature vectors

is equivalent to a reconstructed state vector for the household power signal at

that time instant, which (assuming that household power consumption is a dy-

namical system) implies that appliance labels for the (i+1)-th sample can be

predicted independently for each feature vector. Additional data preprocess-

ing is required to impute missing values, associate labels with observations,

and down sample the data. The detailed procedures of our data preprocessing

are presented in [86].

The labeling of House 1, House 3, Smart*, and AMPds is performed using

the slope algorithm [43], which breaks the time series of sub-metered power

into continuous small segments. Then the power of each segment is averaged

and labeled with the active appliances. The labeling of the BLUED dataset is

different since an event list of state transitions of each appliance is available,

making the labeling more straightforward. The slope algorithm in [43] is ca-

pable of recognizing significant power variances in the data as noisy points.

Whenever such noisy points are detected, they will be filtered out from the

dataset. This procedure can reduce the influence of power variances on disag-

gregation performance.

We down-sample the datasets by keeping every jth sample starting with

the first sample. In this study, the first four datasets have been downsampled

to take every 10th, 10th, 72000th, and 60th data point in House 1, House 3,

Blued, and Smart*, respectively, and AMPds has not been downsampled. As

a result, the sampling periods of House 1, House 3, Blued, and Smart* after

downsampling are 30 s, 30 s, 6 s, and 60 s, respectively, while AMPds remains

at one minute. These sampling periods are compatible with the capabilities

of the smart metering infrastructures outlined in the Introduction. While

different downsampling rates could be adopted, and may have some impact
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on disaggregation performance, the research on low-rate NIALM does seem

to adopt sampling periods not dissimilar to what we are using [67]. Our

experiments thus assume the sampling rates above, and focus on exploring

the ratio of labeled to unlabeled examples in the datasets, as this seems to be

the more influential parameter. We select a portion of the training dataset to

label, leaving the rest unlabeled; this “labeling rate” varies from 5% to 50%,

in increments of five percentage points. Examples to be labeled are chosen

randomly, with the restriction that the “on” and “off” states of every appliance

must appear in the labeled set.

At this point, we must acknowledge that our experiments (and indeed,

much of the experimental work reported in the NIALM literature) are not

strictly comparable on a like-for-like basis. Early NIALM work was commonly

based on unique datasets collected by a research group, and thus very difficult

to replicate; this changed with the release of the REDD dataset and other

public datasets [134], but problems of comparability still remain. The datasets

are very large, and so most experimental studies must down-sample them,

select appliance subsets to model, and determine how training and testing

sets will be selected. For example, two of our major contrasts, [67] and [157],

employ different appliance subsets and select different test sets even though

both are evaluated on the ”same” NIALM dataset.

4.4.2 Experimental Design

As discussed, we assume that NIALM data will consist of a small amount of

labeled observations, and a large number of unlabeled ones. The relative sizes

of the two groups are unknown, so our experiments are designed to explore

the performance of our algorithms across a range of size ratios.

The down-sampling described above reduces the datasets to roughly 100,000

observations apiece (save AMPds, which contains roughly 525,000). While a

times series of this size is not enormous by today’s standards, our graph-based

methods require quadratic time. Hence, the experiments we have outlined

above would require months of compute time to complete for even the down-

sampled data. Instead, we seek to leverage the smoothness property for the

graphs we constructed in Section III. Specifically, if the graphs are smooth,

then the observed feature vectors should actually map to a lower-dimensional

set of latent variables that still predict class labels just as accurately as the
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observed ones (note that the methods in this section do not explicitly define

those latent variables, but they are implicit in the classifier models). Further-

more, it should still be possible to find those same latent variables with only

a subset of the full dataset. This then implies that if we assemble a subset

of the dataset by drawing without replacement, and then train our models

on it, those models should perform roughly as well as if the full dataset was

used. Alternatively, if we repeatedly assemble these subsets, randomly draw-

ing a small fraction of the dataset each time, then the resulting models should

perform very similarly (i.e. the variance in their performance should be low).

This is one of the hypotheses we will examine in our experimental results.

As discussed earlier, we are already randomly drawing examples from the

training set to be labeled in our experiments; combining this with the random

draws of examples is trivial. Thus, for a given labeling rate, the experiment

is replicated 10 times for each algorithm applied to each dataset; in each

experiment, only a randomly-selected subset of examples are used. 90% of the

drawn examples will form the training set, subdivided into the labeled and

unlabeled groups. The remaining 10% forms the test data set. We choose the

size of the sample to be 10% of the down-sampled training data for House

1, House 3, BLUED, and Smart*, respectively; for AMPds we draw only

2% of the data, leaving each of the datasets roughly equal in size. In total,

there are 10368, 12960, 10080, 12960 and 10512 observations for each dataset,

respectively. Modeling datasets of this size is easily accomplished on a personal

computer. In our case, the experiments are programmed using MATLAB and

conducted on a personal computer with an Intel Core i7-4770 CPU at 3.4GHz,

12 GB RAM, running Windows 10 Home Edition (64-bit), and MATLAB

R2014a.

4.4.3 Performance Metrics

The performance of multi-label classification methods can be evaluated

using a variety of metrics; state-of-the-art reviews are presented in [155, 126].

It would be fair to say that these are generally based on the usual single-label

classification measures (e.g. accuracy, precision, the F-measure, etc.) NIALM

algorithms can also be evaluated with a variety of metrics; these include both

those same classification measures, and ones based on the total amount of

energy correctly assigned to appliances (e.g. root-mean-square error, energy
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error, etc.)

We select four popular ML classification metrics, including Hamming loss,

average precision, F1macro, and F1micro, and one energy based metric, namely,

the average normalized error. The Hamming loss is the fraction of examples

misclassified:

hloss(h) =
1

n

n∑
i=1

1

L |h(xi)Δyi| , (4.29)

where Δ stands for the symmetric difference between two sets. h(·) is the

multi-label classifier, and yi is the true label set for instance xi.

Average precision calculates the average fraction of labels (for one instance)

ranked above a given label in that instance that are correctly predicted.

avgprec(f) =
1

n

n∑
i=1

1

|yi|
∑
yij∈yi

|{y′i|rankf (xi, y
′
i) ≤ rankf (xi, yij), y

′
i ∈ yi}|

rankf (xi, yij)
, (4.30)

where y′i is the chosen particular label, yij is the jth label of instance i. F1macro

and F1micro are both based on the well-known F1 measure for single-label

classifiers [90, 108]:

F1 =
2× tp

2× tp+ fp+ fn
, (4.31)

where tp, fp, and fn are the number of true positives, false positives, and

false negatives, respectively. For the multi-label case, the F1 measure must

be averaged across labels; the two metrics we use differ in how that averaging

is done.

F1micro = F1

( L∑
λ=1

tpλ,
L∑

λ=1

fpλ,
L∑

λ=1

fnλ

)
, (4.32)

F1macro =
1

L
L∑

λ=1

F1(tpλ, fpλ, fnλ), (4.33)

where tpλ, fpλ and fnλ are the numbers of true positives, false positives and

false negatives of label λ ∈ Y evaluated by F1.

The average normalized error metric [67] is adopted to evaluate the energy

disaggregation accuracy. The ANE metric is given by

ANE =

∣∣∣∑n
i=1 Pi −

∑n
i=1 P̂i

∣∣∣∑n
i=1 Pi

, (4.34)
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where Pi and P̂ij represent the actual and estimated total power consumptions

of all known appliances in Y at sample i, respectively. In this section, P̂ij is

a combination of average active/inactive power consumptions of individual

appliances in Y based on their on/off states.

4.5 Experimental Results and Discussions

Our experimental results are now presented for each dataset. Our results

are primarily presented in the fifteen plots; the tables below summarize those

results.

4.5.1 Case I: REDD House 1

Table 4.1 presents each performance metric for the four methods applied to

the REDD House 1 data. This table provides the overall mean and standard

deviation of our experiments across all labeling rates; we present the mean of

means of each performance metric across the ten replicates of each labeling

rate, and the mean of the standard deviations of those same experiments. The

mean of the average precision, Micro F1, and Macro F1 measures for each

labeling rate are plotted in Figs. 4.1, 4.2 , and 4.3; standard deviations for

each labeling rate are presented as error bars. The best performance for each

metric is highlighted in bold. The SSML techniques all outperform ML-KNN

on all metrics, with ML-MR the overall best. Two of the SSML techniques,

namely, ML-GFHF and ML-LGC, outperform ML-KNN slightly, and ML-

MR achieves the best performance. In contrast, the current best experimental

results on the REDD dataset are an average accuracy of 0.9124 and F1macro of

0.8616 in [23], and an F1macro of 0.9 in [149]. ML-MR acheives similar results

with a labeling rate of 10%.

Table 4.2 presents the average F1-measure of each individual appliance in

the REDD House 1 data. The results also demonstrate the superior perfor-

mance of ML-MR over the other methods. We can compare our method to [67]

and [157], the other current graph signal processing approaches to NIALM,

on this dataset only, and then only for the appliances in common with each

of those papers. These are the Refrigerator, Microwave, Kitchen Outlet and

Washer-Dryer circuits for [67]; the Macro-F1 measure for that paper is 0.72,

while our ML-MR algorithm achieves 0.93 on those appliances. For [157], the
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Table 4.1: The mean value and standard deviation (in bracket) of each per-
formance metric for each method for the REDD House 1 data.

Performance Semi-supervised learning
Metrics ML-KNN ML-GFHF ML-LGC ML-MR

Hamming loss
0.0705 0.0694 0.0706 0.0491
(0.0182) (0.0165) (0.0193) (0.0116)

Average precision
0.9075 0.9090 0.9095 0.9184
(0.0204) (0.0189) (0.0203) (0.0169)

Micro F1
0.8457 0.8512 0.8509 0.8955
(0.0400) (0.0335) (0.0360) (0.0240)

Macro F1
0.8443 0.8483 0.8464 0.9171
(0.0637) (0.0506) (0.0522) (0.0241)

ANE
0.0671 0.0397 0.0313 0.0096
(0.0189) (0.0183) (0.0169) (0.0052)

Table 4.2: The average F1-measure of each individual appliance in the REDD
House 1 data.

Appliance
Semi-supervised learning

ML-KNN ML-GFHF ML-LGC ML-MR
3 Oven 0.8624 0.8290 0.8168 0.9459
5 Refrigerator 0.8803 0.8899 0.8938 0.9170
9 Lighting 0.8663 0.8692 0.8666 0.8887
11 Microwave 0.7672 0.8225 0.8315 0.9269
12 Bathroom GFI 0.8891 0.8947 0.8957 0.9450
13 Electric heat 0.7760 0.7778 0.7752 0.9321
15 Kitchen outlets 0.8476 0.8548 0.8446 0.9377
18 Lighting 0.7621 0.7684 0.7735 0.8068
20 Washer dryer 0.9476 0.9281 0.9195 0.9539

Refrigerator, Microwave, Kitchen Outlet, Washer-Dryer, Oven, Lighting (un-

known which one), and Bathroom GFI circuits are common with our work;

the Macro-F1 measure for that paper is 0.68, while our ML-MR algorithm

achieves 0.86 on those appliances (choosing Lighting-18 instead of Lighting-9,

as the former was the weaker result in our experiments).

4.5.2 Case II: REDD House 3

Table 4.3 again summarizes the detailed results from Figure 1 on REDD

House 3. Figs. 4.4, 4.5 , and 4.6, present the precision, Micro F1, and Macro

F1 under different labeling rates for the four classification algorithms. Again,
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Figure 4.1: Classification precision v.s. labeling rates for classification al-
gorithms applied to REDD House 1. Four algorithms are used, including
ML-GFHF (blue circles), ML-LGC (green crosses), ML-MR (red triangles),
and ML-KNN (black Asterisk).
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Figure 4.2: Micro F1 v.s. labeling rates for classification algorithms applied
to REDD House 1. Four algorithms are used, including ML-GFHF (blue cir-
cles), ML-LGC (green crosses), ML-MR (red triangles), and ML-KNN (black
Asterisk).
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Figure 4.3: Macro F1 v.s. labeling rates for classification algorithms applied
to REDD House 1. Four algorithms are used, including ML-GFHF (blue cir-
cles), ML-LGC (green crosses), ML-MR (red triangles), and ML-KNN (black
Asterisk).

the three SSML techniques outperform ML-KNN on all metrics, with ML-MR

again the overall best. In the literature, the best experimental results on this

dataset reported as F1macro of 0.492 and F1micro of 0.959 , were presented in

[134]. ML-MR achieves a better F1macro even when the labeling rate is just

5%. However, our best result with F1micro is 0.88. Table 4.4 presents the

average F1-measure of each individual appliance in the REDD House 3 data.

The results also demonstrate the superior performance of ML-MR algorithm

over the other methods.

4.5.3 Case III: BLUED

Table 4.5 again summarizes the detailed results from Figure 1 on BLUED.

Figs. 4.7, 4.8 , and 4.9, present the precision, Micro F1, and Macro F1 under

different labeling rates for the four classification algorithms. It is obvious that

the three SSML methods outperform the ML-KNN method. ML-MR performs

much better than the other algorithms, especially under lower labeling rates.

The best experimental result in the literature is a true-positive rate of 0.8896,

presented in [8]. ML-MR achieves a similar performance when the labeling
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Table 4.3: The mean value and standard deviation (in bracket) of each per-
formance metric for each method for the REDD House 3 data.

Performance Semi-supervised learning
Metrics ML-KNN ML-GFHF ML-LGC ML-MR

Hamming loss
0.1216 0.1173 0.1188 0.1099
(0.0127) (0.0094) (0.0121) (0.0115)

Average precision
0.8835 0.8866 0.8855 0.8922
(0.0122) (0.0105) (0.0131) (0.0096)

Micro F1
0.8509 0.8560 0.8552 0.8647
(0.0160) (0.0124) (0.0146) (0.0149)

Macro F1
0.8600 0.8667 0.8636 0.8775
(0.0241) (0.0151) (0.0169) (0.0127)

ANE
0.0356 0.0315 0.0226 0.0272
(0.0127) (0.0144) (0.0116) (0.0085)

Table 4.4: The average F1-measure of each individual appliance in the REDD
House 3 data.

Appliance
Semi-supervised learning

ML-KNN ML-GFHF ML-LGC ML-MR
3 outlet 0.8078 0.8225 0.8236 0.8408
7 Fridge 0.7874 0.8058 0.8050 0.8185
9 Dishwasher 0.8844 0.8985 0.8776 0.9128
11 Lighting 0.8809 0.8811 0.8798 0.8868
13 Washer dryer 0.9744 0.9680 0.9654 0.9803
17 Lighting 0.8691 0.8725 0.8728 0.8788
19 Lighting 0.8163 0.8184 0.8211 0.8248
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Figure 4.4: Classification precision v.s. labeling rates for classification al-
gorithms applied to REDD House 3. Four algorithms are used, including
ML-GFHF (blue circles), ML-LGC (green crosses), ML-MR (red triangles),
and ML-KNN (black Asterisk).
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Figure 4.5: Micro F1 v.s. labeling rates for classification algorithms applied
to REDD House 3. Four algorithms are used, including ML-GFHF (blue cir-
cles), ML-LGC (green crosses), ML-MR (red triangles), and ML-KNN (black
Asterisk).
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Figure 4.6: Macro F1 v.s. labeling rates for classification algorithms applied
to REDD House 3. Four algorithms are used, including ML-GFHF (blue cir-
cles), ML-LGC (green crosses), ML-MR (red triangles), and ML-KNN (black
Asterisk).

rate is approximately 25%. Table 4.6 presents the average F1-measure of each

individual appliance in the BLUED data.

4.5.4 Case IV: Smart*

Table 4.7 again summarizes the detailed results from Figure 1 on Smart*.

Figs. 4.10, 4.11 , and 4.12, present the precision, Micro F1, and Macro F1

under different labeling rates for the four classification algorithms. It can be

seen that ML-GFHF and ML-LGC show better performances on the average

precision and Micro F1 compared to the ML-KNN method, but not on the

Macro F1. ML-MR achieves outstanding performance over all the other three

methods, especially, on Micro F1 and Macro F1. In the literature, the best

experimental result was F1macro = 0.61, presented in [14]. ML-MR can achieve

the same result with a 5% labeling rate. Table 4.8 presents the average F1-

measure of each individual circuit in the Smart* data.
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Table 4.5: The mean value and standard deviation (in bracket) of each per-
formance metric for each method for the BLUED data.

Performance Semi-supervised learning
Metrics ML-KNN ML-GFHF ML-LGC ML-MR

Hamming loss
0.1279 0.1187 0.1175 0.1068
(0.0196) (0.0114) (0.0113) (0.0099)

Average precision
0.8244 0.8404 0.8444 0.8520
(0.0375) (0.0219) (0.0200) (0.0150)

Micro F1
0.7028 0.7312 0.7370 0.7659
(0.0535) (0.0278) (0.0232) (0.0219)

Macro F1
0.5996 0.6307 0.6531 0.7363
(0.1304) (0.0807) (0.0570) (0.0328)

ANE
0.0566 0.0403 0.0319 0.0179
(0.0214) (0.0164) (0.0157) (0.0123)
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Figure 4.7: Classification precision v.s. labeling rates for classification al-
gorithms applied to Blued. Four algorithms are used, including ML-GFHF
(blue circles), ML-LGC (green crosses), ML-MR (red triangles), and ML-KNN
(black Asterisk).
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Table 4.6: The average F1-measure of each individual appliance in the BLUED
data.

Appliance
Semi-supervised learning

ML-KNN ML-GFHF ML-LGC ML-MR
1 Desktop lamp 0.6517 0.7019 0.7101 0.7335
2 Tall desk lamp 0.6517 0.7018 0.7102 0.7335
3 Garage door 0.3589 0.3279 0.4430 0.7827
4 Washing machine 0.7968 0.8151 0.8174 0.8371
10 A/V living room 0.6794 0.6975 0.7168 0.7470
12 Computer A 0.8700 0.8709 0.8695 0.8816
13 Laptop B 0.7126 0.7632 0.7611 0.7776
16 DVR, A/V basement 0.3627 0.4222 0.4466 0.5635
20 LCD Monitor A 0.7120 0.7633 0.7613 0.7776
21 TV Basement 0.4727 0.5054 0.5784 0.7973
23 Printer 0.6677 0.6841 0.6824 0.8594
25 Iron 0.6957 0.8318 0.9354 0.8695
26 Living room socket 0.5106 0.5582 0.5873 0.6799
28 Monitor B 0.5875 0.6208 0.6435 0.7087
31 Office lights 0.6125 0.7069 0.7353 0.7814
32 Closet lights 0.4579 0.5492 0.5617 0.5752
33 Upstairs hallway light 0.8363 0.8436 0.8399 0.8442
34 Hallways stairs lights 0.5082 0.6651 0.6707 0.6547
35 kitchen hallway light 0.6475 0.6791 0.6998 0.7194
36 kitchen overhead light 0.4710 0.5737 0.5884 0.6372
38 Dining room light 0.7421 0.7860 0.7849 0.8072
40 Basement light 0.7908 0.8158 0.8197 0.8447
41 Microwave 0.4629 0.4464 0.4919 0.7378
42 Air conditioner 0.5000 0.2469 0.2712 0.7076
43 Dryer 0.2307 0.1914 0.2016 0.3498
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Figure 4.8: Micro F1 v.s. labeling rates for classification algorithms applied to
Blued. Four algorithms are used, including ML-GFHF (blue circles), ML-LGC
(green crosses), ML-MR (red triangles), and ML-KNN (black Asterisk).
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Figure 4.9: Macro F1 v.s. labeling rates for classification algorithms applied to
Blued. Four algorithms are used, including ML-GFHF (blue circles), ML-LGC
(green crosses), ML-MR (red triangles), and ML-KNN (black Asterisk).
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Table 4.7: The mean value and standard deviation (in bracket) of each per-
formance metric for each method for the Smart* data.

Performance Semi-supervised learning
Metrics ML-KNN ML-GFHF ML-LGC ML-MR

Hamming loss
0.1248 0.1217 0.1203 0.0970
(0.0066) (0.0036) (0.0032) (0.0072)

Average precision
0.9300 0.9333 0.9350 0.9414
(0.0065) (0.0052) (0.0049) (0.0050)

Micro F1
0.8412 0.8438 0.8454 0.8762
(0.0084) (0.0043) (0.0041) (0.0091)

Macro F1
0.5028 0.4860 0.5173 0.7569
(0.0424) (0.0335) (0.0112) (0.0433)

ANE
0.1288 0.1190 0.1021 0.0370
(0.0278) (0.0273) (0.0268) (0.0162)
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Figure 4.10: Classification precision v.s. labeling rates for classification al-
gorithms applied to Smart*. Four algorithms are used, including ML-GFHF
(blue circles), ML-LGC (green crosses), ML-MR (red triangles), and ML-KNN
(black Asterisk).
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Table 4.8: The average F1-measure of each individual circuit in the Smart*
data.

Circuit
Semi-supervised learning

ML-KNN ML-GFHF ML-LGC ML-MR
Circuit 2 0.4447 0.3080 0.3247 0.6395
Circuit 3 0.0035 0.0071 0.0327 0.3751
Circuit 4 0.7086 0.7313 0.7291 0.7617
Circuit 5 0.4626 0.2113 0.2602 0.8608
Circuit 6 0.1383 0.1764 0.1838 0.8182
Circuit 7 0.1734 0.1512 0.2357 0.5784
Circuit 8 0.3614 0.2979 0.3794 0.7429
Circuit 9 0.6013 0.6298 0.6427 0.6793
Circuit 10 0.1755 0.1409 0.1877 0.4043
Circuit 11 0.0210 0.0211 0.1071 0.5488
Circuit 12 0.9862 0.9862 0.9867 0.9900
Circuit 13 0.9229 0.9220 0.9198 0.9289
Circuit 14 0.1213 0.0913 0.1376 0.5751
Circuit 15 0.8820 0.8823 0.8780 0.8808
Circuit 16 0.8103 0.8085 0.8129 0.8353
Circuit 17 0.0469 0.0512 0.1157 0.7456
Circuit 18 0.4917 0.4950 0.5562 0.6811
Circuit 19 0.8546 0.8640 0.8669 0.9067
Circuit 20 0.8431 0.8411 0.8380 0.8516
Circuit 21 0.9853 0.9858 0.9859 0.9939
Circuit 22 0.9794 0.9794 0.9796 0.9849
Circuit 23 0.5737 0.5880 0.6249 0.6970
Circuit 24 0.0892 0.0773 0.1545 0.8773
Circuit 25 0.8795 0.8744 0.8725 0.8801
Circuit 26 0.0142 0.0291 0.1201 0.6859
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Figure 4.11: Micro F1 v.s. labeling rates for classification algorithms applied
to Smart*. Four algorithms are used, including ML-GFHF (blue circles), ML-
LGC (green crosses), ML-MR (red triangles), and ML-KNN (black Asterisk).
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Figure 4.12: Macro F1 v.s. labeling rates for classification algorithms applied
to Smart*. Four algorithms are used, including ML-GFHF (blue circles), ML-
LGC (green crosses), ML-MR (red triangles), and ML-KNN (black Asterisk).
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Table 4.9: The mean value and standard deviation (in bracket) of each per-
formance metric for each method for the AMPds data.

Performance Semi-supervised learning
Metrics ML-KNN ML-GFHF ML-LGC ML-MR

Hamming loss
0.1576 0.1537 0.1511 0.1162
(0.0036) (0.0033) (0.0028) (0.0107)

Average precision
0.8753 0.8817 0.8841 0.9000
(0.0067) (0.0049) (0.0047) (0.0075)

Micro F1
0.7050 0.7170 0.7269 0.8017
(0.0070) (0.0106) (0.0048) (0.0239)

Macro F1
0.2684 0.2886 0.3339 0.6978
(0.0221) (0.0372) (0.0170) (0.0742)

ANE
0.3476 0.3167 0.2808 0.1351
(0.0271) (0.0185) (0.0199) (0.0137)

4.5.5 Case V: AMPds

Table 4.9 again summarizes the detailed results from Figure 1 on Smart*.

Figs. 4.13, 4.14 , and 4.15, present the precision, Micro F1, and Macro F1 un-

der different labeling rates for the four classification algorithms. It is obvious

that the three SSML methods outperform ML-KNN method, with ML-MR

again the best. In the literature, the best experimental result was F1macro =

0.71, presented in [14]. ML-MR will match that performance with a labeling

rate between 10 and 15%. Table 4.10 presents the average F1-measure of each

individual appliance in the AMPds data.

When we now consider the totality of the results in Figure 1, we see that the

reported error bars all correspond to small standard deviations. This matches

our predicted outcome from sub-sampling the low-rate NIALM data. Thus,

sub-sampling even low-rate NIALM data seems to lead to highly effective

models when using our proposed algorithms, and ML-MR in particular.

We have also tested the actual running times of our algorithms. Ta-

ble 4.11 presents the mean and standard deviations of the running time for

each method. It is obvious that ML-KNN is much faster than the three SSML

algorithms. This is reasonable since ML-KNN is a supervised algorithm and

thus only labeled instances are used, whereas the SSML algorithms use both

labeled and unlabeled instances. Depending on the labeling rate, the size of

data exploited by ML-KNN is 5%-50% of that exploited by SSML algorithms.

In summary, our general conclusion is that semi-supervised multi-label
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Table 4.10: The average F1-measure of each individual circuit in the AMPds
data.

Appliance
Semi-supervised learning

ML-KNN ML-GFHF ML-LGC ML-MR
B2E Master/south Br 0.1428 0.1527 0.2504 0.4959
BME Basement 0.0287 0.0592 0.1366 0.4556
CDE Clothes dryer 0.3388 0.2830 0.3404 0.5464
CWE Clothes washer 0.0017 0.0016 0.0357 0.7107
DNE Dining room 0 0.0009 0.0332 0.7003
DWE Dishwasher 0.0052 0.0027 0.0210 0.6447
EBE Electronics 0.7390 0.7507 0.7598 0.7711
FGE Kitchen fridge 0.0732 0.2278 0.2874 0.5137
GRE Garage 0.0004 0.0024 0.0679 0.8611
HPE heat pump 0.9634 0.9634 0.9632 0.9710
HTE Instant hot water 0.1590 0.3067 0.4124 0.6006
OFE home office 0.9570 0.9571 0.9579 0.9742
WOE Wall oven 0.0800 0.0443 0.0750 0.8264

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

A
ve

ra
ge

 p
re

ci
si

on

Figure 4.13: Classification precision v.s. labeling rates for classification al-
gorithms applied to AMPds. Four algorithms are used, including ML-GFHF
(blue circles), ML-LGC (green crosses), ML-MR (red triangles), and ML-KNN
(black Asterisk).
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Figure 4.14: Micro F1 v.s. labeling rates for classification algorithms applied
to AMPds. Four algorithms are used, including ML-GFHF (blue circles), ML-
LGC (green crosses), ML-MR (red triangles), and ML-KNN (black Asterisk).
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Figure 4.15: Macro F1 v.s. labeling rates for classification algorithms applied
to AMPds. Four algorithms are used, including ML-GFHF (blue circles), ML-
LGC (green crosses), ML-MR (red triangles), and ML-KNN (black Asterisk).
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Table 4.11: The mean value and standard deviation (Std) of the running time
for each method.

ML-KNN ML-GFHF ML-LGC ML-MR
Mean 26 s 489 s 291 s 741 s
Std 12 s 185 s 105 s 256 s

learning is an effective alternative to existing NIALM methods, with our best

algorithm capable of outperforming state-of-the-art approaches.

4.6 Summary

We have proposed semi-supervised multi-label learning for non-intrusive

appliance load monitoring. We have extended three graph-based semi-supervised

learning algorithms to multi-label classification, and applied them to the

NIALM problem. Our methods exploit a limited amount of ground-truth

data, and a large pool of unlabeled observations, to accurately disaggregate

household-level energy demand into the power draws of individual appliances.

Experiments on five public energy disaggregation datasets show that our meth-

ods perform well on each one, with our best algorithm able to outperform

the state-of-the-art. From the satisfying experimental results, the proposed

methods could be an alternative to NIALM for practical use in demand side

management programs.
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Chapter 5

Manifold Regularization with
Multiple Labels

As demonstrated in the previous chapter that the multi-label manifold reg-

ularization works significantly better than the other algorithms on NIALM, we

therefore extend the method in a generalized case and incorporate a relliance

weighting strategy to improve its performance.

5.1 Overview

This section extends a graph-based manifold regularization algorithm in

the framework of semi-supervised learning for multi-label case. Specifically,

it firstly constructs an adjacency graph over all the data points including the

labeled data and unlabeled data with some similarity measure or distance

measure. In addition to the empirical cost over the labeled data, it adds

two regularization terms. The first regularization term controls the complex-

ity of the function in the Reproducing Kernel Hilbert Space (RKHS). The

second regularization term is the manifold regularization which uses the ge-

ometric structure of the data by assuming that points come from the same

marginal distribution p(x) should have the same conditional distribution (la-

bel distribution) p(yi|x), i = 1, 2, · · · ,L. Namely, functions for classification

should vary smoothly along the geodesics of the geometry of p(x). Moreover, a

weighting strategy is proposed to trust the labeled data more than the predic-

tions of the unlabeled training data for forecasting labels for future instances.

And extensive experiments show that the proposed algorithm is effective in

using unlabeled data for multi-label classification. The rest of this section
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are organized as follows: Section 5.2 introduces the background of the graph

based semi-superved learning. Section 5.3 presents the preliminaries, includ-

ing introducing the basis and notations, regularization in reproducing Kernel

Hilbert space and manifold regularization. Section 5.4 presents the proposed

approach, including graph construction, manifold regularization with multi-

ple labels and weighting strategy for trusting labeled data more for labeling

future data points. Section 5.5 illustrates the experimental design including

introducing the data sets, experimental setup, performance metrics and sig-

nificance test. Section 5.6 presents experimental results and gives discussion.

Section 5.7 concludes this work.

5.2 Background

In many real world applications, such as bioinformatics and video annota-

tion, obtaining labeled data is sometimes very difficult, expensive and time-

consuming since it requires domain experts to manually label the data. How-

ever, obtaining unlabeled data is quite easily and cheaply. For instance, there

exists a lot of unlabeled videos or images on the web. Therefore there exists

a large amount of unlabeled data and a limited number of labeled data. The

large amount of unlabeled data could tell us useful information about the data,

e.g., estimating the distribution of the data as well as the data structure[167].

Therefore, the semi-supervised learning becomes more and more popular in

the machine learning community that people use unlabeled data to improve

the learning performance [31].

Semi-Supervised Learning (SSL) has received extensive studies in the lit-

erature [33, 35, 17, 133, 18, 165, 123, 163, 99]. A comprehensive review on

the semi-supervised learning was provided in [164], and an older survey on

the learning problems with labeled and unlabeled data was presented in [120].

The common purpose of semi-supervised algorithms lies in exploiting the data

structure composed of labeled data and unlabeled data to improve the learn-

ing performance. According to [31], self-training (also known as self-learning

or self-labeling) is among the earliest approaches that use unlabeled data in

classification. The idea of the self-training firstly appeared in [119]. In self-

training, a classifier is firstly trained only with the labeled data, and then used

to predict labels for unlabeled data. The process of exploiting the previous

prediction to teach itself is repeated until all the unlabeled data is labeled.
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As revealed in [120], the expectation-maximization (EM) [38] can be applied

naturally to SSL as it can be used on joint models to train on labeled and

unlabeled data. Co-Training [22] is a learning paradigm to address problems

with strong structural prior knowledge available, and is regarded as a variant

of EM on the probabilistic model [120, 31]. It assumes that features can be

split into two complementary and independent feature subsets and each fea-

ture subset is enough to train a classifier for the data. Then each classifier

uses its most confidently predicted points and their labels to teach the other

classifier. The process of using the other classifier’s most confidently predict-

ed labels to teach itself is iterated until some criteria is achieved. Another

framework of the SSL is the transductive learning based on the idea of per-

forming predictions only for test samples [31]. Transductive Support Vector

Machines (TSVM) is such an early work on the transductive learning [143].

Various extensions have been proposed [41, 32, 159, 27]; the common point

is that the algorithms try to learn a hyperplane over the labeled data and

the unlabeled data by optimizing a tradeoff between maximizing the margin

over the labeled data and regularizing the decision boundary over low-density

regions of all data samples.

Graph-based semi-supervised learning is an important sub-class of the SS-

L, and has drawn plentiful attentions in the recent past [31, 131, 130]. Various

graph-based SSL algorithms have been developed [156, 68, 141, 151, 166, 21,

144, 75, 161, 19] and a number of successful applications can be found in

recent publications [158, 6, 88, 89]. Some popular graph based algorithm-

s include the Local and global consistency[161], Gaussian random fields and

harmonic functions[166], mincuts[21], greedy max-cut[144], and spectral graph

transducer[75]. All the graph based algorithms start with constructing a graph

with nodes and edges. each node is represented by a sample including the la-

beled data and the unlabeled data. Edges connecting nodes and the weight

of each edge is calculated by some similarity measure or distance measure

representing the degree of similarity between two nodes. The labeled data are

then used to perform graph clustering or propagate labels from labeled points

to unlabeled points by minimizing the empirical cost over labeled data and

regularizing the smoothness over the graph using all the data. Another rep-

resentative semi-supervised learning is the manifold regularization [19], which

assumes data on a low-dimensional manifold in the input space and recently
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has attracted plentiful attentions in academia [105, 49, 132].

Most existing algorithms aim for problems with binary labels. However, in

many application domains, like image classification, bioinformatics and news

categorization, each instance contains more than one concept simultaneously,

each concept is a label, which means that each instance associates with mul-

tiple labels simultaneously. Thus binary classification algorithms are unable

to work for them. This work extends a semi-supervised graph-based binary

algorithm for multi-label case and incorporates a reliance weighting strategy

to improve the classification performance. A complete review of algorithms

for multi-label learning can be found in[155][126].

5.3 Preliminaries on Manifold Regularization

This section presents the notations and basics that are used throughout

this section, and revisits the basic principle of the manifold regularization.

5.3.1 Basics and Notations

In the framework of semi-supervised learning, the data set D in the training

phase consists of two parts, namely, D = Dl ∪ Du, where Dl and Du indicate

the labeled and unlabeled training data sets, respectively. Both Dl and Du are

drawn from the same distribution p(x), where x indicates a feature variable.

In the case with single label, the feature space and label space of a data set D

are denoted by X = R
d and Y = {−1, 1}, respectively. Then, the labeled and

unlabeled training data sets are represented by Dl = {(xi, yi) : xi ∈ X , yi ∈
Y , i = 1, 2, · · · , l} and Du = {xi : xi ∈ X , i = l + 1, l + 2, · · · , l + u}, where
l and u indicate the numbers of labeled and unlabeled instances. The total

number of all training instances in D is n = l + u. The feature instance

is xi = [xi1, xi2, · · · , xid]
T for i = 1, 2, · · · , n, where d indicates the feature

dimension. The goal of semi-supervised learning with single label is to infer

the labels Ỹ = {ỹi ∈ Y , i = 1, 2, · · · , e} for future instances De = {x̃i ∈ X , i =

1, 2, · · · , e} given the training data set D = Dl ∪ Du [167, 131].

In the case with multiple labels, the label space of D is denoted by Y =

{−1, 1}L, where L indicates the number of labels. Analogously, the labeled

training data set becomes Dl = {(xi,yi) : xi ∈ X ,yi ∈ Y , i = 1, 2, · · · , l} and

the label vector is yi = [yi1, yi2, · · · , yiL]T , whereas the other notations remain
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the same as the case with single label. The goal of semi-supervised learning

with multiple labels is to infer the labels Ỹ = {ỹi ∈ Y , i = 1, 2, · · · , e} for

De = {x̃i ∈ X , i = 1, 2, · · · , e} given D = Dl ∪ Du.

Using the graph-based semi-supervised learning, a crucial step is to con-

struct a graph G = (V,E) representing the connections between training in-

stances xi ∈ X [167, 151, 131]. Specifically, G = (V,E) has n vertices Vi and

each vertex Vi represents an instance xi, i = 1, 2, · · · , n. The notation E is

the edge set and Eij is an edge connecting vertices Vi and Vj. There are three

typical methods to construct such a graph, including the k nearest neighbor

algorithm, ε distance measure and full connection with a certain similarity

measure. For example, using the k nearest neighbor algorithm, each edge Eij

connects the vertices Vi and Vj if vertex Vi is among the k nearest neighbors

of vertex Vj, or vertex Vj is among the k nearest neighbors of vertex Vi. A

weight matrix W is formed over the graph G = (V,E). Wij is the weight

associates with edge Eij and it represents the similarity between vertices Vi

and Vj (namely, the training instances xi and xj). Then, the unnormalized

graph Laplacian is given by L = D−W, where D is a diagonal matrix with

Dii =
∑N

j=1 Wij.

The label inference of the graph-based SSL is usually based on two graph

assumptions [167, 151]: 1) the prediction should be close to the given labels on

labeled vertices; 2) the prediction should be smooth on the whole graph (i.e.,

vertices that are close in the graph tend to have the same labels). The label

inference algorithms for graph-based SSL can be categorized into two major

classes, including the transductive learning (e.g., the graph Laplacian regular-

ization [166, 161]) and the inductive learning (e.g., the manifold regularization

[19]). The transductive learning infers the labels only on the unlabeled data

and cannot make predictions on out-of-sample data. By contrast, the induc-

tive learning infers the labels on the whole domain, i.e., a function f : X → Y
is learned given D = Dl ∪ Du and then the labels for De are predicted. The

work in this paper is based on the manifold regularization [19], which is a

typical inductive learning method, combining the inductive ability and the

geometry of the data domain [162]. The next subsection revisits the regular-

ization in the reproducing Kernel Hilbert space that is the core of manifold

regularization.
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5.3.2 Regularization in Reproducing Kernel Hilbert S-
pace

For a Mercer kernel K : X × X → R, there exists an associated Repro-

ducing Kernel Hilbert Space (RKHS) HK of functions X → R with the norm

|| · ||K [118]. The standard supervised learning estimates an unknown function

f ∈ HK from the labeled data set Dl as

f ∗ = argmin
f∈HK

1

l

l∑
i=1

V (xi, yi, f) + γA||f ||2K , (5.1)

where V (xi, yi, f) is the loss function, such as the squared error loss (yi −
f(xi))

2 for regularized least square (RLS). ||f ||2K is a regularization term in the

RKHS imposing the smoothness condition on possible solutions. γA balances

the tradeoff between the empirical cost and the regularization term. l is the

number of labeled instances.

The difference of semi-supervised learning to supervised learning lies in the

utilization of the marginal distribution of D = Dl∪Du to improve the learning

performance in addition to the empirical cost obtained over the labeled data

set Dl. According to the discussions in [19], there is an identifiable relation

between marginal distribution p(x) and conditional distribution p(y|x), i.e., if
two instances xi,xj ∈ X are close in the intrinsic geometry of p(x), then their

conditional distributions p(y|xi) and p(y|xj) are similar.

Another regularization term can be added to ensure that the solution is

smooth with respect to the marginal distribution p(x). Incorporating the

smoothness penalty term with respect to the graph Laplacian L, the learning

problem turns out to be[19]

f ∗ = argmin
f∈HK

1

l

l∑
i=1

V (xi, yi, f) + γA||f ||2K +
γI
n2

fTLf , (5.2)

where f = [f(x1), f(x2), · · · , f(xn)]
T , and fTLf is a penalty term that reflect

the intrinsic structure of p(x), and is a smoothness penalty corresponding to

the probability distribution. n = u + l is the number of total instances. The

normalizing coefficient 1
n2 is the natural scale factor for the empirical esti-

mate of the Laplace operator. Coefficients γA and γI controls the complexity

of the function in the ambient space and the intrinsic geometry of the p(x)

respectively. In real case, p(x) is unknown. But we can get the empirical esti-

mate from sufficient large amount of unlabeled data Du by assuming the data
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set lies on a manifold in R
d and modeling the manifold with the adjacency

graph G = (V,E) from the data set D. According to the classical Representer

Theorem[118], the solution to eqn. (5.2) in HK is given by[19]

f ∗(x) =
l+u∑
i=1

θiK(xi,x) (5.3)

which is an expansion of the Representer Theorem in terms of labeled data

and unlabeled data D = Dl ∪ Du. Accordingly, the problem is essentially an

optimization problem over the space of coefficients θi.

The RKHS has been extended to vector valued functions [26] and ex-

ploits to formulate the vector-valued manifold regularization [105]. Let F =

(f1(x1), · · · , fn(xn)) ∈ Yn be components of a vector-valued function where

each fi ∈ HK [105]. Here Y can be R for the single label case or R
L for

multi-label case. The optimization problem of the vector-valued manifold reg-

ularization is given by [105]

f ∗ = argmin
f∈HK

1

l

l∑
i=1

V (xi,yi, f) + γA||f ||2K
+γI < F,MF >Yn , (5.4)

where the matrix M is a symmetric, positive operator, such that < y,My >Yn

for all y ∈ Yn. Yn is the usual n-direct product of Y , with the inner product

< (y1, · · · , yn), (w1, · · · , wn) >Yn=
n∑

i=1

< yi, wi >Y .

It has been proved in [105] that the minimization problem in (5.4) has a

unique solution taken the form f ∗(x) =
∑l+u

i=1 K(xi,x)Θi for some vectors

Θi ∈ Y , 1 ≤ i ≤ n. The vector-valued manifold regularization is a generalized

form of manifold regularization, and can be used for single label, multi-label,

and multi-view learning [105, 104].

The Representer Theorem in the vector valued RKHS is given and proved

in [105]. LetHK,x = {∑u+l
i=1 K(xi,x)yi,y ∈ Yu+l}. For f ∈ H⊥

K,x, the sampling

operator Sx satisfies < Sxf,y >Yu+l=< f,
∑u+l

i=1 K(xi,x)yi >HK
= 0. This

holds true for all y ∈ Yu+l and yields to Sxf = (f(x1), · · · , f(xu+l)) = 0.

Denote the right handside of (5.4) by I(f). For any arbitrary f ∈ HK , it can be

decomposed orthogonally as f = f0+ f1, with f0 ∈ HK,x and f1 ∈ H⊥
K,x. This
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results in I(f) = I(f0 + f1) ≥ I(f0) with equality if and only if ||f1||HK
= 0,

since ||f0 + f1||HK
= ||f0||HK

+ ||f1||HK
. As a result, the minimizer of (5.4)

must liet in HK,x.

5.4 The Proposed Method

The work in [19] initially proposed the manifold regularization and proved

the Representer Theorem for univariate cases; further, reference [105] proved

the Representer Theorem for the general cases of the vector manifold regres-

sion. Following the two fundamental theoretical works, this work on the ex-

tended manifold regularization is essentially an important special case of the

theorem in [105]. In existing literatures, there is no study on such a special

case and no proof to the corresponding more compact Representer Theorem.

Nevertheless, simpler proofs for special cases are usually interesting even if

the general case has been proven. Lots of such examples can be found in

the community of computing science. As shown in a comprehensive suvery in

[103], the Dirichlets theorem was firstly proved by [42], followed by extensive

studies of special cases of the Dirichlets theorem [121, 58, 107]. Analogously,

studying the important special case of the manifold regularization and showing

more compact proof of the Representer Theorem are also interesting and novel

contributions. This is exactly what this chapter is going to solve. In this sec-

tion, a systematic study of the semi-supervised multi-label classification based

on an extended manifold regularization is presented. A reliance weighting s-

trategy is proposed to improve the performance. The method includes three

components, namely, the graph construction, the manifold regularization with

multiple labels, and the adoption of a reliance weighting strategy.

5.4.1 Graph Construction

Given the whole data set D = Dl ∪ Du, a full n × n distance matrix U

is calculated between each pair of instances xi,xj ∈ X based on a Gaussian

kernel; and each element Uij is calculated using a Gaussian kernel K(xi,xj)

as

Uij = K(xi,xj) = exp

(
−||xi − xj||2

2σ2

)
, (5.5)

where σ denotes the bandwidth of the Gaussian kernel. Equivalently, an

alternative distance matrix H can be calculated with each element Hij given
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by [144, 71]

Hij =
√
Uii + Ujj − 2Uij. (5.6)

The constructed graph G = (V,E) is a fully connected graph given each

edge Eij weighted by Hij. According to [144, 71], the graph sparsification

can improve the efficiency of label inference. It removes edges by recovering

a full n × n binary matrix B with 1’s and 0’s representing the presence and

absence of connections, respectively. Three sparsification approaches can be

used, including the ε-neighbor search, k-nearest neighbor search, and the b-

matching [144, 71]:

1. The ε-neighbor search recovers a binary matrix B as

Bij =

{
1 if 1−Hij ≤ ε
0 if 1−Hij > ε or i = j

(5.7)

2. The k-nearest neighbor search obtains the binary matrix B by minimiz-

ing the following optimization problem

min
B∈{0,1}n×n

n∑
i=1

n∑
j=1

BijHij

s.t.
n∑

j=1

Bij = k,Bii = 0, ∀i, j = 1, · · · , n.
(5.8)

3. Using the b-matching algorithm, the optimization problem to recover B

is

min
B∈{0,1}n×n

n∑
i=1

n∑
j=1

BijHij

s.t.
N∑
j=1

Bij = b, Bii = 0, Bij = Bji, ∀i, j = 1, · · · , n
(5.9)

The binary matrix B obtained using the k-nearest neighbor search is not

symmetric; thus the final B can be calculated as Bij = max(Bij, Bji). By

contrast, the b-matching algorithm produces a graph with every node having

the same number of neighbors, namely, B = BT . Whichever of the above

methods is applied, the graph G = (V,E) is sparsified by removing the edges,

i.e., the weight Wij for the edge Eij is assigned with 0 if Bij = 0. For an
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edge Eij with Bij = 1, the weight Wij can be calculated with respect to the

distance matrix H and expressed as

Wij = HijBij (5.10)

The final graph G = (V,E) is then constructed and represented by a sparse

weight matrix W. Proceeding to label inference, the graph Laplacian is cal-

culated as L = D − W, where each element of D is Dii =
∑N

j=1 Wij and

Dij = 0.

5.4.2 Manifold Regularization with Multiple Labels

In this subsection, we extend the manifold regularization in [19] to solve

multi-label learning problem. LetX = [x1,x2, · · · ,xn]
T andY = [y1,y2, · · · ,yn]

T

denote the matrix of all feature instances and label instance. In Y, yi for i ≤ l

takes 1 or −1 for its elements and yi is an all-zero vector for l < i ≤ n. In

the framework of the Laplacian Regularized Least Squares (LapRLS) [19], the

optimization problem of manifold regularization with multiple labels is

f ∗ = argmin
fj∈HK ,j=1,··· ,L

1

l
tr
(
(ΨF−Y)T (ΨF−Y)

)
+γA||f ||2K +

γI
n2

tr
(
FTLF

)
, (5.11)

where F = [fj(xi)]n×L, i = 1, · · · , n, j = 1, · · · , L is a matrix representing

the predicted outputs, tr(·) denotes the trace of a matrix, and Ψ is a n × n

diagonal matrix with the diagonal elements given by

Ψii =

{
1 for i ≤ l,
0 for l < i ≤ n.

(5.12)

The second term ||f ||2K =
∑L

j=1 ||fj||2K in eqn. (5.11) measures the complexity

of F in the ambient space. The third term represents the intrinsic smoothness

with respect to the geometric distribution. L is the graph Laplacian obtained

in the graph construction phase. The optimization problem in (5.11) is essen-

tially one natural extension of the LapRLS for multi-label cases as indicated

in [105].

The minimization problem in eqn.(5.11) is guaranteed to have a unique

global solution. The theorem for the solution in (5.11) are given and proved

as follows.
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Theorem 1. The minimizer of optimization problem in eqn.(5.11) admits an

expansion

f ∗j (x) =
n∑

i=1

ΘijK(xi,x), j = 1, 2, · · · , L (5.13)

in terms of the labeled and unlabeled instances; K(·, ·) represents the kernel

function, which must be positive semi-definite.

Proof. In the multi-label classification problem (5.11), the norm of the function

f can be represented by the sum of each function fj in the Reproducing Kernel

Hilbert Space HK , i.e., ||f ||2K =
∑L

j=1 ||fj||2K .
Given any function in the Reproducing Kernel Hilbert Space HK , it can

be decomposed into two orthogonal components; specifically given each fj,

it can be decomposed to a function f 0
j in the linear subspace spanned by

{K(xi, ·)}ni=1 and f 1
j orthogonal to f 0

j [19]. Accordingly, fj can be represented

by

fj = f 0
j + f 1

j =
n∑

i=1

ΘijK(xi, ·) + f 1
j ,

Since ||fj||2K = ||f 0
j ||2K + ||f 1

j ||2K ≥ ||f 0
j ||2K , there is

||f ||2K =
L∑

j=1

||fj||2K =
L∑

j=1

||f 0
j ||2K +

L∑
j=1

||f 1
j ||2K ≥

L∑
j=1

||f 0
j ||2K

The equality is achieved if and only if ||f 1
j ||2K = 0, j = 1, 2, · · · , L. Therefore

the minimizer must be f ∗j (x) =
∑n

i=1 ΘijK(xi,x), j = 1, 2, · · · , L. �

Denote the K as a n×n matrix of the kernel estimation with respect to all

the data samples X, and Θ as a n×L matrix of the coefficients. The solution

can be represented by

F∗ = KΘ. (5.14)

Therefore, the problem in eqn.(5.11) is reduced to optimizing over the finite

dimensional space of coefficients Θ. According to [19], the kernel function

K(·, ·) must be positive semi-definite which gives rise to an RKHS. A choice

of the kernel function is the heat kernel, which can be approximated using

a sharp Gaussian kernel. Thus, U in eqn. (5.5) can be taken as the kernel

matrix K.
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5.4.3 Reliance Weighted Kernel for Performance Im-
provement

In the framework of manifold regularization, the classifier is trained using

both labeled training set Dl and the unlabeled training set Du. Although both

Dl and Du contribute to the classification, the prediction of the label vector ỹ

of an unforeseen future sample x̃ is based on the label information provided

by the labeled training set Dl. Naturally, this motivates us to have more trust

to the labeled training set than the unlabeled training set for label referring.

Thus, a reliance weighting strategy is proposed to assign different weights to

the training instances, so as to make Dl have more impacts to label inference

than Du. Given a heat kernel function K(xi,x), the weighted kernel function

for x is

K̃(xi,x) = K(xi,x) · Ξi (5.15)

where Ξi represents the reliance weights of the ith instance. Denote the K̃

as the matrix of the weighted kernel estimation with respect to all the data

samples X, and the reliance weight matrix Ξ as

Ξ =

⎡
⎢⎢⎢⎣

Ξ1 0 · · · 0
0 Ξ2 · · · 0
...

...
. . .

...
0 0 · · · Ξn

⎤
⎥⎥⎥⎦ (5.16)

Then, the weighted kernel matrix is K̃ = KΞ. In order to yield to the mini-

mizer in (5.13), the kernel function K̃(·, ·) must be positive semi-definite.

Proposition 1. Given a heat kernel function K(·, ·), the weighted kernel

K̃(·, ·) = K(·, ·) · Ξi is positive semi-definite if and only if Ξi ≥ 0.

Proof. Given an arbitrary vector v ∈ R
d, we have

vT K̃v =
d∑

i=1

d∑
j=1

K(xi,xj) · Ξi · vivj. (5.17)

where vi and vj are the ith and jth elements of v. The kernel estimation

based on a heat kernel function is always nonnegative, namely, K(xi,xj) ≥ 0.

Therefore, K(xi,xj) · Ξi ≥ 0 if and only if Ξi ≥ 0. Accordingly, vT K̃v ≥ 0 if

and only if Ξi ≥ 0. As a conclusion, the weighted kernel K̃(·, ·) = K(·, ·) · Ξi

is positive semi-definite if and only if Ξi ≥ 0. �
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Using the reliance weighted kernel function instead of the heat kernel func-

tion, the solution in (5.14) can be transferred to be

F∗ = K̃Θ = KΞΘ. (5.18)

The coefficient matrixΘ∗ can be estimated by differentiating the righthand

side of (5.11) as

2

l
ΨKΞ(ΨKΞΘ∗ −Y) + 2γAKΞΘ∗

+
2γI
n2

(KΞ)TLKΞΘ∗ = 0

The coefficients matrix is eventually obtained as

Θ∗ =
(
ΨKΞ+ lγAI+

lγI
n2

LKΞ

)−1
Y. (5.19)

where I is a n× n identity matrix.

For unforeseen future samples X̃ = [x̃1, x̃2, · · · , x̃e]
T in De, the label matrix

F̃ is obtained as follows: firstly, a e × n kernel matrix Ke is calculated using

eqn. (4.1), i.e., K̃ij = K(x̃i,xj) for i = 1, 2, · · · , e and j = 1, 2, · · · , n. Next,

the output F̃ for X̃ can be calculated as

F̃ = KeΞΘ
∗. (5.20)

Eventually, the label matrix Ỹ of X̃ is obtained by comparing each element

of F̃ with 0. In this paper, the learning method with a general positive semi-

definite kernel function is called the Multi-Label Manifold Regularization (ML-

MR), and that with a reliance weighted positive semi-definite kernel function

is called the ML-MR with the Reliance Weighting strategy (ML-MRRW). In

fact, the ML-MRRW is reduced to ML-MR when the reliance matrix Ξ is an

identity matrix.

The setting of reliance weights can be based on prior knowledge. A choice

is to assign uniform weights, namely, Ξi = ν1 ∈ [0, 1], 1 ≤ i ≤ l and Ξi = ν2 ∈
[0, 1], l < i ≤ l+u for all labeled and unlabeled training instances, respectively.

These two parameters decide the balance of impacts to label inference from

labeled and unlabeled training data. The extended manifold regularization is

supervised if ν1 = 1 and ν2 = 0 are used, and is unsupervised for the choice of

ν1 = 0 and ν2 = 1. The relation ν1 = ν2 indicates that the impacts of Dl and

Du to label inference are equal, whereas ν1 > ν2 indicates that more weight
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is put on labeled instances Dl than that on unlabeled instances Du. In this

work, we are trying to improve the performance of manifold regularization by

trusting more on labeled instances than unlabeled instances when predicting

for future instances, thus the choices of ν1 and ν2 must follow two criterions,

namely, ν1 = 1 and ν1 > ν2 > 0.

5.5 Experimental Design

This section designs experiments to validate the effectiveness of the pro-

posed method in semi-supervised learning with multiple labels. Some com-

monly used benchmark data sets are selected. Other semi-supervised multi-

label classification methods are exploited for comparisons. Performance met-

rics for multi-label classification are introduced.

5.5.1 Datasets

Four public data sets from different domains are chosen for the experimen-

tal study. Table 5.1 presents the basic information about these data sets. The

first data set “Emotions” [138] consists of sampled wave forms of sound clips

generated from different genres of musical songs; and each instance is labeled

by 6 emotions, including the amazed-surprised, happy-pleased, relaxing-calm,

quiet-still, sad-lonely, and angry-aggressive emotions. The second data set

“Scene” [25] is a commonly used image data set with each image represent-

ed by a 294-dimension feature vector and labeled by 6 classes, including the

beach, sunset, field, fall-foliage, mountain, and urban. The third data set

“Yeast” [47] is formed by micro-array expression data and phylogenetic pro-

files with 2107 genes. Each gene is associated with a set of functional classes,

which are grouped into 14 functional categories. The last data set “mediamill”

[125] consists of digital video achieves for the TREC Video Retrieval Evalu-

ation (TRECVID) challenge; and this data contains 120-dimensional visual

features and 101 annotation concepts. These data sets are properly formatted

and represented as features and labels. So there is no further pre-processing

with these data sets.
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Table 5.1: Basic information of the selected public data sets.

Data set Domain # Features # labels # instances
Emotions [138] Music 72 6 593

Scene [25] Image 294 6 2409
Yeast [47] Life 103 14 2417

Mediamill [125] Video 120 101 43907

5.5.2 Experiment Setup

The experiments are carried out to test the performance of the extended

graph-based manifold regularization algorithm for multi-label semi-supervised

case, and compare it with some well-known semi-supervised multi-label classi-

fication algorithms. In each experiment, the data set is firstly partitioned into

two parts: the training data and out-of-sample testing data occupy two third

and one third of the whole data set, respectively. Then, the labels of a portion

of the instances in the training data are omitted to construct labeled training

data and unlabeled training data. The labeling rate η varies from {5%, 10%,

15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%}. For each labeling rate, experi-

ments are conducted 100 times by randomly resampling the labeled training

data, unlabeled training data, and out-of-sample testing data. The first three

datasets “Emotions”, “Scene”, and “Yeast” are fully used in the experiments,

whereas only a portion (10% randomly selected) of the “Mediamill” data is

used in view of the large amount of repetitive experiments.

In each experiment, six algorithms are applied: 1) the Multi-Label Man-

ifold Regularization (ML-MR), 2) the ML-MR with the Reliance Weighting

strategy (ML-MRRW) in Section 5.4.3, 3) the Multi-Label Local and Global

Consistency (ML-LGC)[151], 4) the Multi-Label Gaussian Fields and Har-

monic Functions (ML-GFHF)[151], 5) the Fixed-Size Multi-Label Regular-

ized Kernel Spectral Clustering (ML-FSKSC)[102], and 6) the Multi-Label k

Nearest Neighbors (MLkNN) [154]. Among all of the algorithms, MLkNN is

supervised and all the other algorithms are semi-supervised. Accordingly, the

MLkNN algorithm only uses the labeled training data in the training phase,

whereas all the other algorithms exploits both the labeled training data and

unlabeled training data. The parameters in each algorithm are determined by

parameter exploration using a small portion of the data. For the ML-MRRW

algorithm, a good choice of two parameters for the reliance weighting strategy
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is [ν1, ν2] = [1, 0.1].

5.5.3 Performance Metrics

Many performance metrics or criteria for multi-label classification have

been proposed and a complete metrics is given in [126] and [155]. In this work,

three popular metrics are used to evaluate the performance of algorithms in

learning multi-label problems.

The average precision calculates the average fraction of labels ranked above

a particular label that are truly predicted. The larger the value of it, the better

the learning performance.

avgprec(f) =
1

n

n∑
i=1

1

|yi|
∑
yij∈yi

|{y′ij|rankf (xi, y
′
ij) ≤ rankf (xi, yij), y

′
ij ∈ yi}|

rankf (xi, yij)
(5.21)

where y′i is the chosen particular label. yij is the jth label of instance i.

F1 is a popular measure for single label. It is the harmonic mean of

precision and recall.

F1 =
2× tp

2× tp+ fp+ fn
(5.22)

where tp is the number of true positives, tn is the number of true negatives, fp

is the number of false positives, and fn is the number of false negatives. Macro

F1 and micro F1 are multi-label classifier metrics derived by computing the

F1 measure across the label set; either after summing true and false positives

and false negatives across all labels, or by averaging the F1 measure for each

label.

F1micro = F1

(
L∑

λ=1

tpλ,
L∑

λ=1

fpλ,
L∑

λ=1

fnλ

)
(5.23)

F1macro =
1

L

L∑
λ=1

F1 (tpλ, fpλ, fnλ) (5.24)

where tpλ is the number of true positives, fpλ is the number of false positives,

and fnλ is the number of false negatives of label λ after being evaluated by

binary evaluation of F1. Larger values of F1micro and F1macro denote better

performance.
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5.5.4 Significance Test

Statistical test is usually used for comparisons of algorithms in machine

learning community to verify that there is a significant difference among the

algorithms statistically[39, 56, 122]. In this paper, Friedman test and a post

hoc test are utilized to verify our proposed algorithm outperforming the other

algorithms. Friedman’s Test is a simple and robust nonparametric method for

testing the differences between multiple algorithms over multiple data sets. It

ranks the algorithms from the smallest rank to the largest rank based on their

performance value for each data set separately, and average ranks are assigned

to ties. The Friedman’s statistic FR[54] is given by

FR =
12

NK(K + 1)

K∑
i=1

R2
i − 3N(K + 1) (5.25)

whereK is the number of algorithms applied on N different data sets, Ri is the

rank sum of the ith algorithm, i = 1, 2, 3, · · · , K. The null hypothesis H0 is

that there are no significant differences between the algorithms, the alternative

hypothesis H1 is that there are significant differences between the algorithms.

FR tests the null hypothesis H0 against the alternative hypothesis H1. For K

is larger than 5, the statistical test FR can be approximated by a chi-square

distribution with K − 1 degree of freedom. Thus, for any pre-chosen α level

of significance, a critical chi-square value χ2
α is also determined by looking up

the Chi-Square table in terms of the degree of freedom K − 1 and level of

significance α. The null hypothesis H0 is rejected if FR > χ2
α; otherwise, do

not reject H0. In this paper, there are 6 algorithms, leading to the degree of

freedom K − 1 = 5. Thus, the critical chi-square value is χ2
α = 12.5916 under

the level of significance α = 0.05.

When the null hypothesis is rejected, the analysis proceeds with a post

hoc test[39, 56, 122]. Denote the difference Dij = Ri − Rj between the rank

sums of algorithms i and j. The performance of two algorithms is significantly

different if the difference |Dij| between their corresponding rank sums is no

less than the critical difference

CD = z

√
NK(K + 1)

6
(5.26)

where z is the z-score from the standard normal curve corresponding to α
K(K−1) ,

and α is the level of significance. It can be concluded that the performance of
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the algorithm i is significantly better than that of the algorithm j, if |Dij| ≥
CD and Dij < 0; otherwise, worse, if |Dij| ≥ CD and Dij > 0.

5.6 Experimental Results and Discussion

To evaluate the performance of the proposed algorithm, experiments are

conducted using proposed ML-MR and ML-MRRW against three famous semi-

supervised multi-label algorithms and a famous supervised multi-label algo-

rithm on the public datasets. When calculating the friedman’s statistic test

and post hoc statistic test for each data set, the sampled data sets under

each labeling rate (from 5% to 50%) are considered as different data sets,

thus, there are 10 different data sets to calculate the statistical significance

differences between the algorithms for each data set.

5.6.1 Case I: Emotions

The experimental results for the “Emotions” data are shown in Figs. 5.1,

5.2, and 5.3. The sub-figures from left to right present the average precision,

Micro F1, and Macro F1, respectively for all the algorithms under different

labeling rates respectively. The error bars indicate one standard deviations

of the metrics. Table 5.2 presents the Friedman’s statistics FR for the three

different performance metrics. It can be found that all of them are greater

than the critical chi-square value χ2
α = 12.5916. Thus, the null hypothesis is

rejected, and it can be concluded that there is significant difference between

performances of the 6 algorithms. Further, the difference between the rank

sums of the ML-MRRW and the other algorithm is calculated and presented

in Table 5.3. Denote MLkNN, ML-GFHF, ML-LGC, ML-FSKSC, ML-MR by

algorithm 1, 2, 3, 4, and 5, respectively. Then, D6i, i = 1, 2, · · · , 5 represents

the difference between rank sums of the ML-NRRW and the ith algorithm.

The critical difference for K = 6 and α = 0.05 is CD = 7.77. For each

performance metric, any difference value |Di| ≥ CD indicates the significant

difference between ML-MRRW and the algorithm i with respect to this met-

ric. Further, |Di| ≥ CD and Di < 0 indicate ML-MRRW outperforms the

algorithm i with respect to the metric in the corresponding column of the

Table 5.3.

The following conclusions can be drawn from the plots and tables:
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Table 5.2: The Friedman’s statistics FR for different performance metrics in
Case I.

A-precision Micro-F1 Macro-F1
FR 39.6571 37.1429 38.5714

Table 5.3: The difference between the rank sums of the ML-MRRW and each
other algorithm in Case I.

A-precision Micro-F1 Macro-F1
D61 -38 -42 -45
D62 -9 -25 -30
D63 -13 -1 -5
D64 -42 -26 -20
D65 -24 -20 -20

1. The five semi-supervised multi-label learning algorithms show much bet-

ter overall performance compared to the MLkNN method, except that

ML-FSKSC has lower average precision for large labeling rates.

2. The ML-MRRW algorithm has the highest average precision, Micro F1,

and Macro F1 among the semi-supervised multi-label learning algorithm-

s, for most labeling rates.

3. Overall, ML-MRRW, namely, the extended ML-MR incorporating the

reliable weighting strategy outperforms all the other algorithms and

shows significant superior performance.

Moreover, ML-MRRW is also compared with an extensive supervised multi-

label algorithms from the state-of-the-art literature [95] on the “Emotions”

data in Table 5.4. The last column presents the mean values of the average

precision, Micro F1, and Macro F1 for ML-MRRW under the labeling rate

50%. From the Table 5.4, ML-MRRW outperforms most algorithms in terms

of A-precision (A-precision stands for average precision), Macro-F1 and Micro-

F1.

5.6.2 Case II: Scene

The experimental results for the “Scene” data are shown in Figs. 5.4,

5.5, and 5.6. Table 5.5 presents the Friedman’s statistics FR for the three

different performance metrics. It can be found that all of them are greater
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Figure 5.1: Average precision v.s. labeling rates for six classification algo-
rithms applied to the “Emotions” data. ML-KNN (black Asterisk), ML-GFHF
(blue cross), ML-LGC (green triangle), ML-FSKSC (yellow square), ML-MR
(magenta circle), and ML-MRRW (red diamond)
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Figure 5.2: Micro F1 v.s. labeling rates for six classification algorithms ap-
plied to the “Emotions” data. ML-KNN (black Asterisk), ML-GFHF (blue
cross), ML-LGC (green triangle), ML-FSKSC (yellow square), ML-MR (ma-
genta circle), and ML-MRRW (red diamond)
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Figure 5.3: Macro F1 v.s. labeling rates for six classification algorithms ap-
plied to the “Emotions” data. ML-KNN (black Asterisk), ML-GFHF (blue
cross), ML-LGC (green triangle), ML-FSKSC (yellow square), ML-MR (ma-
genta circle), and ML-MRRW (red diamond)

Table 5.4: Comparison with the state-of-the-art literature [95] on the “Emo-
tions” data.

BR CC CLR QWML HOMER
A-precision 0.721 0.724 0.718 0.679 0.698
Micro-F1 0.509 0.503 0.512 0.528 0.588
Macro-F1 0.440 0.420 0.443 0.458 0.570

ML-C4.5 PCT ML-KNN RAKEL ECC
A-precision 0.759 0.713 0.649 0.713 0.687
Micro-F1 0.655 0.571 0.457 0.533 0.554
Macro-F1 0.630 0.568 0.385 0.488 0.500

RFML-C4.5 RF-PCT ML-MRRW
A-precision 0.812 0.812 0.796
Micro-F1 0.647 0.672 0.650
Macro-F1 0.620 0.650 0.628
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Table 5.5: The Friedman’s statistics FR for different performance metrics in
Case II.

A-precision Micro-F1 Macro-F1
FR 42 40.7429 41.6000

Table 5.6: The difference between the rank sums of the ML-MRRW and each
other algorithm in Case II.

A-precision Micro-F1 Macro-F1
D61 -45 -21 -18
D62 -39 -43 -40
D63 -15 -20 -17
D64 -27 2 8
D65 -12 -26 -23

than the critical chi-square value χ2
α = 12.5916. Thus, the null hypothesis is

rejected, and it can be concluded that there is significant difference between

performances of the 6 algorithms. Further, the difference between the rank

sums of the ML-MRRW and each other algorithm is calculated and presented

in Table 5.6.

The following conclusions can be drawn from the plots and tables:

1. The average precisions of ML-LGC, ML-GFHF, ML-FSKSC, and M-

LkNN, are quite close, whereas the ML-MR and ML-MRRW have sig-

nificant large values on this metric under different labeling rates.

2. The performances of the six algorithms vary significantly on the metrics

Micro F1 and Macro F1. For the smallest labeling rate, ML-FSKSC, ML-

LGC, and ML-MRRW outperforms MLkNN; ML-MR and ML-GFHF

perform worse than MLkNN. For the largest labeling rate, ML-MRRW,

ML-FSKSC, and ML-MR outperforms MLkNN; ML-LGC and ML-GFHF

perform worse than MLkNN.

3. Overall, ML-FSKSC and ML-MRRW achieve the best performances

with Micro F1 and Macro F1. ML-MRRW performs better than ML-

FSKSC with Micro F1 and Macro F1 for high labeling rates.

Moreover, ML-MRRW is also compared with an extensive supervised multi-

label algorithms from the state-of-the-art literature [95] on the “Scene” data in

Table 5.7. The last column presents the mean values of the average precision,
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Figure 5.4: Average precision v.s. labeling rates for six classification algo-
rithms applied to the “Scene” data. ML-KNN (black Asterisk), ML-GFHF
(blue cross), ML-LGC (green triangle), ML-FSKSC (yellow square), ML-MR
(magenta circle), and ML-MRRW (red diamond)

Micro F1, and Macro F1 for ML-MRRW under the labeling rate 50%. From

the Table 5.7, ML-MRRW outperforms HOMER, ML-C4.5, PCT, and ML-

KNN in terms of A-precision (A-precision stands for average precision). It

performs better than ML-C4.5, PCT, ML-KNN, and RF-PCT in terms of

Macro-F1 and it performs better than ML-C4.5, PCT, RFML-C4.5 and RF-

PCT in terms of Micro-F1.

5.6.3 Case III: Yeast

The experimental results for the “Yeast” data are shown in Figs. 5.7, 5.8,

and 5.9. Table 5.8 presents the Friedman’s statistics FR for the three different

performance metrics. It can be found that all of them are greater than the

critical chi-square value χ2
α = 12.5916. Thus, the null hypothesis is rejected,

and it can be concluded that there is significant difference between perfor-

mances of the 6 algorithms. Further, the difference between the rank sums

of the ML-MRRW and each other algorithm is calculated and presented in

Table 5.9.

The following conclusions can be drawn from the plots and tables:
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Figure 5.5: Micro F1 v.s. labeling rates for six classification algorithms applied
to the “Scene” data. ML-KNN (black Asterisk), ML-GFHF (blue cross), ML-
LGC (green triangle), ML-FSKSC (yellow square), ML-MR (magenta circle),
and ML-MRRW (red diamond)
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Figure 5.6: Macro F1 v.s. labeling rates for six classification algorithms ap-
plied to the “Scene” data. ML-KNN (black Asterisk), ML-GFHF (blue cross),
ML-LGC (green triangle), ML-FSKSC (yellow square), ML-MR (magenta cir-
cle), and ML-MRRW (red diamond)
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Table 5.7: Comparison with the state-of-the-art literature [95] on the “Scene”
data.

BR CC CLR QWML HOMER
A-precision 0.893 0.881 0.886 0.864 0.848
Micro-F1 0.761 0.757 0.758 0.756 0.764
Macro-F1 0.765 0.762 0.762 0.759 0.768

ML-C4.5 PCT ML-KNN RAKEL ECC
A-precision 0.751 0.745 0.851 0.862 0.856
Micro-F1 0.593 0.516 0.661 0.772 0.762
Macro-F1 0.596 0.593 0.692 0.777 0.770

RFML-C4.5 RF-PCT ML-MRRW
A-precision 0.862 0.874 0.856
Micro-F1 0.717 0.669 0.697
Macro-F1 0.514 0.658 0.692

Table 5.8: The Friedman’s statistics FR for different performance metrics in
Case III.

A-precision Micro-F1 Macro-F1
FR 46.7429 36.4000 43.6571

Table 5.9: The difference between the rank sums of the ML-MRRW and each
other algorithm in Case III.

A-precision Micro-F1 Macro-F1
D61 -35 -33 -28
D62 -16 -33 -32
D63 -33 -25 -5
D64 -49 -45 14
D65 -11 -14 -15

1. The ML-MRRW and ML-MR algorithms have the best performances in

terms of the average precision for almost all the labeling rates.

2. ML-MRRW has the superior performance among the six algorithms in

terms of Micro F1.

3. Although ML-FSKSC has the best performance in terms of Macro F1, it

has poor performances with the other two metrics, namely, the average

precision and Micro F1.

Moreover, ML-MRRW is also compared with an extensive supervised multi-
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Figure 5.7: Average precision v.s. labeling rates for six classification algo-
rithms applied to the “Yeast” data. ML-KNN (black Asterisk), ML-GFHF
(blue cross), ML-LGC (green triangle), ML-FSKSC (yellow square), ML-MR
(magenta circle), and ML-MRRW (red diamond)

label algorithms from the state-of-the-art literature on scene in Table 5.10.

The last column presents the mean values of the average precision, Micro F1,

and Macro F1 for ML-MRRW under the labeling rate 50%. From the Ta-

ble 5.10, ML-MRRW outperforms all the algorithms in terms of A-precision

(A-precision stands for average precision). It performs better than ML-C4.5,

PCT, ML-KNN, RFML-C4.5 and RF-PCT in terms of Micro-F1 and it per-

forms better than all the algorithms except for HOMER in terms of Micro-F1.

Case IV: Mediamill

The experimental results for “Mediamill” data are shown in Figs. 5.10,

5.11, and 5.12. Table 5.11 presents the Friedman’s statistics FR for the three

different performance metrics. It can be found that all of them are greater

than the critical chi-square value χ2
α = 12.5916. Thus, the null hypothesis is

rejected, and it can be concluded that there is significant difference between

performances of the 6 algorithms. Further, the difference between the rank

sums of the ML-MRRW and each other algorithm is calculated and presented

in Table 5.12.
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Figure 5.8: Micro F1 v.s. labeling rates for six classification algorithms applied
to the “Yeast” data. ML-KNN (black Asterisk), ML-GFHF (blue cross), ML-
LGC (green triangle), ML-FSKSC (yellow square), ML-MR (magenta circle),
and ML-MRRW (red diamond)
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Figure 5.9: Macro F1 v.s. labeling rates for six classification algorithms ap-
plied to the “Yeast” data. ML-KNN (black Asterisk), ML-GFHF (blue cross),
ML-LGC (green triangle), ML-FSKSC (yellow square), ML-MR (magenta cir-
cle), and ML-MRRW (red diamond)
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Table 5.10: Comparison with the state-of-the-art literature [95] on the “Yeast”
data.

BR CC CLR QWML HOMER
A-precision 0.722 0.727 0.719 0.718 0.663
Micro-F1 0.652 0.650 0.655 0.654 0.673
Macro-F1 0.392 0.390 0.392 0.394 0.447

ML-C4.5 PCT ML-KNN RAKEL ECC
A-precision 0.620 0.705 0.732 0.715 0.667
Micro-F1 0.610 0.577 0.625 0.656 0.658
Macro-F1 0.370 0.293 0.336 0.359 0.350

RFML-C4.5 RF-PCT ML-MRRW
A-precision 0.738 0.744 0.758
Micro-F1 0.593 0.617 0.638
Macro-F1 0.283 0.322 0.396

Table 5.11: The Friedman’s statistics FR for different performance metrics in
Case IV.

A-precision Micro-F1 Macro-F1
FR 34.3429 46.0571 47.8857

Table 5.12: The difference between the rank sums of the ML-MRRW and each
other algorithm in Case IV.

A-precision Micro-F1 Macro-F1
D61 -24 -44 -39
D62 7 -26 -29
D63 -18 -25 -15
D64 9 -45 -49
D65 14 -10 -12

The following conclusions can be drawn from the plots and tables:

1. From the sub-figure of average precisions, it can be identified that the six

algorithms achieve similar performances. The ML-MRRW and ML-MR

outperform other algorithms for high labeling rates.

2. From the sub-figures of Micro F1 and Macro F1, it can be seen that

the ML-MR and ML-MRRW methods outperform all the other meth-

ods quite a lot. Especially, the ML-MRRW method achieves the best

performances on these two metrics.
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Figure 5.10: Average precision v.s. labeling rates for six classification al-
gorithms applied to the “Mediamill” data. ML-KNN (black Asterisk), ML-
GFHF (blue cross), ML-LGC (green triangle), ML-FSKSC (yellow square),
ML-MR (magenta circle), and ML-MRRW (red diamond)

3. Overall, ML-MRRW defeats ML-MR and show superior performances

over all the other algorithms on Micro F1 and Macro F1.

Moreover, ML-MRRW is also compared with an extensive supervised multi-

label algorithms from the state-of-the-art literature on mediamill in Table

5.13. The last column presents the mean values of the average precision, Mi-

cro F1, and Macro F1 for ML-MRRW under the labeling rate 50%. Since

this experiment only exploits a portion of the data set. In order to compare

the metrics with those obtained from the whole “Mediamill” data, it is nec-

essary to calculate the confidence interval. The 95% confidence intervals for

A-precision, Macro-F1, and Micro-F1 using the ML-MRRW are obtained as

[0.7268, 0.7325], [0.3355, 0.3539], and [0.6343, 0.6404], respectively. Compar-

ing the metrics, it can be found that ML-MRRW performs better than all

algorithms except for RF-PCT in terms of A-precision (A-precision stands for

average precision). It outperforms all algorithms in terms of Macro-F1 and

Micro-F1.
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Figure 5.11: Micro F1 v.s. labeling rates for six classification algorithms ap-
plied to the “Mediamill” data. ML-KNN (black Asterisk), ML-GFHF (blue
cross), ML-LGC (green triangle), ML-FSKSC (yellow square), ML-MR (ma-
genta circle), and ML-MRRW (red diamond)
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Figure 5.12: Macro F1 v.s. labeling rates for six classification algorithms ap-
plied to the “Mediamill” data. ML-KNN (black Asterisk), ML-GFHF (blue
cross), ML-LGC (green triangle), ML-FSKSC (yellow square), ML-MR (ma-
genta circle), and ML-MRRW (red diamond)
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Table 5.13: Comparison with the state-of-the-art literature [95] on the “Me-
diamill” data.

BR CC CLR QWML HOMER
A-precision 0.686 0.672 0.450 0.492 0.583
Macro-F1 0.056 0.052 0.037 0.037 0.073
Micro-F1 0.533 0.509 0.118 0.119 0.553

ML-C4.5 PCT ML-KNN RAKEL ECC
A-precision 0.669 0.654 0.703 0.492 0.453
Macro-F1 0.003 0.031 0.113 0.019 0.022
Micro-F1 0.007 0.477 0.545 0.440 0.453

RFML-C4.5 RF-PCT ML-MRRW
A-precision 0.728 0.737 0.730
Macro-F1 0.088 0.112 0.345
Micro-F1 0.546 0.563 0.637

5.7 Summary

This section studies the semi-supervised multi-label classification prob-

lem, and extends the graph-based manifold regularization to the multi-label

case. The proposed method includes three essential components, including

the graph construction, the manifold regularization with multiple labels, and

the exploitation of a reliance weighting strategy. Especially, the last compo-

nent is supposed to improve the learning ability by assigning higher weights

to labeled training set and lower weights to unlabeled training sets. Exten-

sive experiments are conducted on public data sets to test the performance

of the proposed Multi-Label Manifold-Regularization (ML-MR) with/without

the Reliance Weighting (RW) strategy. Other well-known semi-supervised and

supervised multi-label algorithms are used for comparisons. Generally, the ex-

perimental results show that the proposed ML-MR and ML-MRRW algorithm-

s have overall better performance that all the other algorithms under different

labeling rates with statistical significance test. And ML-MRRW show better

performance than ML-MR, indicating the proposed reliance weighting strate-

gy is effective in improving the learning performance of the ML-MR method.

Further, unlike the other algorithms, ML-MRRW works consistently well on

all the datasets. Also ML-MRRW is compared with 12 supervised multi-label

algorithms from the literature on the public data sets. Generally, ML-MRRW

can compete against most of the supervised multi-label algorithms. All in all,
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ML-MRRW is a promising semi-supervised multi-label algorithm.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis firstly gives a broad overview of NIALM in terms of data ac-

quisition, feature extraction, reference learning and energy disaggregation.

But mostly, the research work focuses on developing learning algorithms for

NIALM. The achievements of the research work in this thesis are summarized

as follows:

It explores the use of four bespoke multi-label supervised classification algo-

rithms in NIALM. Four existing bespoke multi-label classification algorithms

(ML-KNN, ML-RBF, ML-BPNN, ML-SVM) have been applied to disaggre-

gate several public data sets. Comparison have been made to the existing

literature on these datasets. And find that two of the algorithms are con-

sistently superior to the other two, with the consistently ”best” generally

outperforming all other approaches that have been attempted on these data

sets.

A semi-supervised multi-label disaggregation framework for NIALM is pro-

posed, which we believe is a better match for the characteristics of the NIALM

problem than the single-label approaches (supervised or unsupervised) used

currently. Following this framework, we extend single-label graph based semi-

supervised learning algorithms to the multilabel case. Where needed, we also

extend the algorithms to allow out-of-sample prediction. And experiments on

public NIALM datasets demonstrate that the best of our proposed method

outperforms current results in the literature.

A graph-based semi-supervised manifold regularization algorithm is ex-

tended for multi-label problems. A weighting strategy is proposed to put more
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trust in the labeled instances when forecasting labels for unforeseen points.

The proposed approach is compared against four famous semi-supervised multi-

label algorithms and a well-known supervised multi-label algorithm with ex-

tensive experimental study.

6.2 Future Work

Any study needs continuous efforts and research work. In the field of

NIALM, the following promising directions deserve efforts for future work:

A worthwhile direction is to incorporate more electric and non-electric

features like reactive power, temporal information and seasonality effects into

disaggregation to improve its performance. For instance, reactive power can

disaggregate well between purely resistive, inductive and capacitive appliances.

Time usage duration could provide useful information, some appliances are

running all the time like fridge and some devices are used for a few minutes like

microwave. And seasonality changes appliance usage patterns. Incorporating

these as additional signatures into semi-supervised learning might be able to

improve the disaggregation accuracy and it would be worthwhile future work.

Another promising direction would be focusing on energy disaggregation

in addition to operational states detection. Particulary for multi-state and

continuously varying appliances. Currently, it’s possible to identify the opera-

tional states of multi-state and continuously varying appliances, but accurately

estimating their energy consumption is still a big challenge since they have

different energy consumption level in different states.

In the field of further developing SSML algorithms, two immediate direc-

tions that suggest themselves are generalizing the concept of similarity in the

adjacency matrix, and exploring alternatives to LapRLS.
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