
University of Alberta

Parallel-Node Low-Density Parity-Check
Convolutional Code

Encoder and Decoder Architectures

by

Tyler Brandon

A thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

© Tyler Brandon
Spring 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the
copyright in the thesis and, except as herein before provided, neither the thesis nor

any substantial portion thereof may be printed or otherwise reproduced in any
material form whatsoever without the author’s prior written permission.

Examining Committee

Dr. Duncan Elliott, Electrical and Computer Engineering

Dr. Bruce Cockburn, Electrical and Computer Engineering

Dr. P. Glenn Gulak, Electrical and Computer Engineering, University of
Toronto

Dr. Ioanis Nikolaidis, Computing Science

Dr. Vincent Gaudet, Electrical and Computer Engineering

Dr. Ivan Fair, Electrical and Computer Engineering

Give a man a fish; he eats for a day.
Teach a man to fish; he eats for a lifetime.

Teach a computer to fish; man becomes the fish.

– modified Chinese proverb

To the mystery of insight
and the beauty of innovation

Abstract

We present novel architectures for parallel-node low-density parity-check con-

volutional code (PN-LDPC-CC) encoders and decoders. Based on a recently

introduced implementation-aware class of LDPC-CCs, these encoders and de-

coders take advantage of increased node-parallelization to simultaneously de-

crease the energy-per-bit and increase the decoded information throughput. A

series of progressively improved encoder and decoder designs are presented and

characterized using synthesis results with respect to power, area and through-

put. The best of the encoder and decoder designs significantly advance the

state-of-the-art in terms of both the energy-per-bit and throughput/area met-

rics. One of the presented decoders, for an Eb/N0 of 2.5 dB has a bit-error-rate

of 10−6, takes 4.5 mm2 in a CMOS 90-nm process, and achieves an energy-

per-decoded-information-bit of 65 pJ and a decoded information throughput

of 4.8 Gbits/s. We implement an earlier non-parallel node LDPC-CC encoder,

decoder and a channel emulator in silicon. We provide readers, via two sets of

tables, the ability to look up our decoder hardware metrics, across four different

process technologies, for over 1000 variations of our PN-LDPC-CC decoders.

By imposing practical decoder implementation constraints on power or area,

which in turn drives trade-offs in code size versus the number of decoder pro-

cessors, we compare the code BER performance. An extensive comparison to

known LDPC-BC/CC decoder implementations is provided.

Acknowledgements

Special thanks goes to Zhengang Chen, without whose work this project would
not have been possible.

Also, I’d like to thank Amirhossein Alimohammad, Leendert van den Berg,
Zhengang Chen, Jason Klaus, John Koob and Ramkrishna Swamy for their
contributions to the LP3 chip design.

For their guidance: Duncan Elliott, Bruce Cockburn, Stephen Bates, and
Vincent Gaudet.

Thanks also goes to the VLSI and HCDC lab members.

Table of Contents

1 Introduction 1

2 Background 5
2.1 Evolution of LDPC-CC Encoders 10
2.2 Evolution of LDPC-CC Decoders 11
2.3 LDPC-BCs versus LDPC-CCs 14
2.4 Parallel-Node LDPC-CCs . 15

3 A Highly Pipelined LDPC-CC Encoder and Decoder Implementation 20
3.1 Overview . 20
3.2 The Challenge . 22
3.3 Meeting the Test Challenge - Design for Test 22

3.3.1 The Channel . 22
3.3.2 Random-Number-Generator 23
3.3.3 The Phase-Locked-Loop 23
3.3.4 System Configuration 23
3.3.5 Asynchronous Memory Interface 24
3.3.6 The BIST Modules . 25

3.4 Encoder and Decoder Architecture 26
3.4.1 Encoder . 26
3.4.2 Decoder . 28

3.5 Testing . 30
3.6 Test Results . 32

3.6.1 Test Setup . 33
3.6.2 General Test Chip Measurements 33
3.6.3 Encoder Measurements 34
3.6.4 Decoder Measurements 35

3.7 Conclusion . 39

4 Parallel-Node LDPC-CC Encoder Architecture Exploration 41
4.1 Parallel-Node LDPC-CC Encoders 43
4.2 Encoder v2 - Circular Buffer (Encv2) 45
4.3 Encoder v3 - Replacing a 3-Input XOR-Gate 58
4.4 Encoder v4 - Clock-Gating (Encv4) 63

4.5 Encoder v5 - Variable Input Databus Size (Encv5) 70
4.6 Encoder v6 - De-multiplexing the Input Databus

(Encv6) . 74
4.7 Encoder v7 - Merged PN-LDPC-CC Encoders

(Encv7) . 74
4.8 Comparison to other LDPC Encoders 75
4.9 PN-LDPC-CC Encoder Summary 76

5 Parallel-Node LDPC-CC Decoder Architecture Exploration 77
5.1 Decoder v1 - Parallel-Node LDPC-CC Decoder

(Decv1) . 79
5.2 Decoder v2 - Removing the Saturation Bit (Decv2) 88
5.3 Decoder v3 - Removing the Rotation Switch-Matrix (Decv3) . 96
5.4 Decoder v4 - Clock Gating (Decv4) 104
5.5 Decoder v5 - Removing Reset Circuitry (Decv5) 111
5.6 Decoder v6 - Truncated Min-Sum Check-Node

(Decv6) . 117
5.7 PN-LDPC-CC Decoder Hardware and BER Performance Analysis125
5.8 Comparison to Other LDPC Decoders 147
5.9 PN-LDPC-CC Decoder Summary 154

6 Conclusions 155

Bibliography 158

A Appendix - Methods 164
A.1 Overview . 164
A.2 Design Description . 164
A.3 Bit-Error-Rate Simulations - Matlab 164
A.4 Behavioral Design Verification - VCS 2006.03 165
A.5 Synthesis - Design Compiler 2007.03 165
A.6 Power Estimation and Analysis 167

A.6.1 Power Estimation using the Switching Activity of a Syn-
thesized Gate-level Netlist 167

B Asynchronous Resets and Their Gate-Level Mapping 169

C Encoder - Extras 171
C.1 Encv4 versus Encv3 - Correlations to Energy-Per-Bit 171
C.2 Encoder v7 - Merged PN-LDPC-CC Encoders (Encv7) 174

D Encoder - Future Work 177
D.1 De-multiplexing the Input Databus (Encv6) 177

E Encoder - Extra Graphs with Grouping by Node-Parallelization 179

F PN-LDPC-CC Decoder Future Work 182
F.1 Removing Reset Circuitry While Maintaining BER Performance

for Short Streams . 182
F.2 Using Synchronous Memories 183
F.3 Pipelined Processor . 183
F.4 Memory Reduction . 184
F.5 Re-analyzed using a Single Code with High Parallelism 184
F.6 DRAM . 184
F.7 Latches . 184
F.8 SIMD . 184
F.9 Higher Rate PN-LDPC-CCs 185

List of Figures

1.1 The bit-error-rate (BER) versus the ratio of the energy per
transmitted bit to the spectral noise density (Eb/N0, or the
signal-to-noise ratio normalized to the number of bits repre-
sented per symbol). 3

2.1 Transmitted -1s or 1s corrupted by noise form Gaussian distri-
butions around -1 and 1. 7

2.2 Check-node operation, when K = 6. 7
2.3 LDPC-CC direct encoder. 11
2.4 A 1.1-GHz encoder. 12
2.5 A 1.1-GHz encoder’s termination circuitry. 12
2.6 Partial syndrome encoder for LDPC-CC codes. 13
2.7 Partial syndrome encoder for the architecture-aware PN-LDPC-

CC codes with ρ=8 [1]. 13
2.8 An example of a bipartite or Tanner graph for a regular LDPC-

BC block code. 15
2.9 BERs for the PN-LDPC-CCs. Codes and BER performance

data provided by Zhengang Chen [1]. 16
2.10 BER performance for the Ts=480, ρ=8 code for various bit-

precision and iterations. 17
2.11 BER versus ρ for Ts=768 codes. 18
2.12 BER versus ρ for Ts=576 codes. 19

3.1 LP3 block diagram [2]. 21
3.2 LP3 BIST Variable Length FIFO [2]. 25
3.3 Architecture of the 1.1-GHz encoder [2]. 27
3.4 Termination mechanism for the encoder [2]. 27
3.5 Decoder controller and the decoder processor data path [2]. . . 28
3.6 LP3 LDPC-CC packaged die photo with a 2-mm2 core [2]. . . 32
3.7 Module power consumption versus frequency with a 1-V supply

at an Eb/N0 of 2.0 dB [2]. 34
3.8 Encoder module power consumption versus frequency with a

1-V supply at an Eb/N0 of 2.0 dB [2]. 35
3.9 Encoder module shmoo plot [2]. 36
3.10 Encoder energy per bit from synthesis data [2] compared with [3]. 36

3.11 Measured energy per decoded bit using 3 processors [2]. 37
3.12 Decoder module power consumption versus frequency [2]. . . . 38
3.13 Decoder bit-error rate versus Eb/N0 [2]. 39

4.1 Partial syndrome encoder for the architecture-aware codes with
ρ=8 [1]. 43

4.2 Encv2 encoder node. 45
4.3 One-hot encoding of the phase. 47
4.4 Encv2 parity output circuitry. 47
4.5 Encv2 energy-per-bit versus throughput. 48
4.6 Encv2 energy-per-bit versus the information throughput for the

PN-LDPC-CCs. 49
4.7 Encv2 energy-per-encoded-bit versus throughput for Ts=768 codes

with a ρ of 4, 8, 16, 32 and 64. 50
4.8 Encv2 energy-per-encoded-bit versus throughput for Ts=576 codes

with a ρ of 4, 8, 12, 16 and 24. 50
4.9 Encv2 energy-per-encoded-bit versus clock frequency for Ts=768

codes with a ρ of 4, 8, 16, 32 and 64. 51
4.10 Encv2 area versus clock frequency for Ts=768 codes with a ρ of

4, 8, 16, 32 and 64. 52
4.11 Encv2 area versus ρ for Ts=768 codes for clock frequencies of

250, 500, 750, 1000 and 1250 MHz. 52
4.12 Encv2 area versus throughput for ρ=8 codes of lengths Ts equal

to 288, 480, 576, 768 and 960. 53
4.13 Encv2 area versus the information throughput, for the PN-

LDPC-CCs. 54
4.14 Encv2 energy-per-encoded-bit versus throughput for ρ=8 codes

of various lengths Ts=288, 480, 576, 768, 960. 55
4.15 Encv2 energy-per-encoded-bit versus the clock frequency for

various codes with a common T ′
s of 36. 55

4.16 Encv2 energy-per-encoded-bit versus T ′
s for various codes at a

clock frequency of 500 MHz. 56
4.17 Encv3 encoder node. 58
4.18 Encv3 energy-per-bit versus throughput for all the PN-LDPC-

CCs. 59
4.19 Encv3 energy-per-bit versus the information throughput for the

PN-LDPC-CCs. 60
4.20 Comparison of encv3 and encv2 for various codes in terms of

energy-per-encoded-bit versus throughput. 61
4.21 Comparison of encv3 and encv2 for various codes with respect

to the area versus throughput. 61
4.22 Encv3 area versus the information throughput, for the PN-

LDPC-CCs. 62
4.23 Encv4 encoder node. 63

4.24 Clock-gating timing diagram. 64
4.25 Encv4 energy-per-bit versus throughput. 65
4.26 Encv4 energy-per-bit versus the information throughput for the

PN-LDPC-CCs. 66
4.27 Encv4, Encv3, energy-per-bit versus throughput for various codes. 67
4.28 Encv4 (4- prefix), Encv3 (3- prefix), area versus throughput for

various T ′
s=36 codes. 67

4.29 Encv4 area versus the information throughput, for the PN-
LDPC-CCs. 69

4.30 Encv5 encoder node. 70
4.31 Comparing encv5 and encv4 with respect to the energy-per-

encoded-bit versus throughput for various codes. 73
4.32 Comparing encv5 and encv4 with respect to the area versus the

throughput for various codes. 73

5.1 Decv1 processor. 79
5.2 Decv1 energy-per-bit versus the throughput for the PN-LDPC-

CCs. 83
5.3 Decv1 energy-per-bit versus the information throughput for the

PN-LDPC-CCs. 84
5.4 Decv1 area for one processor versus the throughput, for all of

the PN-LDPC-CCs. 85
5.5 Decv1 area for one processor versus the information throughput,

for all of the PN-LDPC-CCs. 86
5.6 Decv1 processor area versus Ts for a 100-MHz clock. 87
5.7 Decv1 energy-per-bit versus T ′

s for a 100-MHz clock. 87
5.8 Decv2 processor. 88
5.9 Decv2 energy-per-decoded-bit per processor versus throughput

for all the PN-LDPC-CCs. 89
5.10 Decv2 energy-per-bit versus the information throughput for the

PN-LDPC-CCs. 90
5.11 Decv2 area for a processor versus throughput for all the PN-

LDPC-CCs. 91
5.12 Decv2 area for one processor versus the information throughput,

for all of the PN-LDPC-CCs. 92
5.13 Decv2 processor area versus Ts at 100 MHz. 93
5.14 Decv2 (prefix 2) and decv1 (prefix 1) compared in terms of the

energy-per-decoded-bit versus the throughput for various codes. 94
5.15 Decv2 and decv1 compared in terms of area versus throughput

for various codes. 95
5.16 Decv2 energy-per-bit versus T ′

s for a 100-MHz clock. 95
5.17 Decv3 processor. 96
5.18 Decv3 energy-per-decoded-bit per processor versus throughput

for all of the PN-LDPC-CCs. 97

5.19 Decv3 energy-per-bit versus the information throughput for the
PN-LDPC-CCs. 98

5.20 Decv3 (prefix 3) and decv2 (prefix 2) energy-per-decoded-bit
per processor versus throughput. 99

5.21 Decv3, decv2 area per processor versus throughput. 100
5.22 Decv3 area for one processor versus the information throughput,

for all of the PN-LDPC-CCs. 101
5.23 Decv3 processor area versus Ts at 100 MHz. 102
5.24 Decv3 energy-per-bit versus T ′

s for a 100-MHz clock. 102
5.25 Decv4 with clock-gating. 104
5.26 Decv4 energy-per-decoded-bit per processor versus the through-

put for all of the PN-LDPC-CCs. 105
5.27 Decv4 energy-per-bit versus the information throughput for the

PN-LDPC-CCs. 106
5.28 Decv4 (prefix 4) and decv3 (prefix 3) energy-per-decoded-bit

per processor versus the throughput for various codes. 107
5.29 Decv4, Decv3, area per processor versus throughput for various

codes. 107
5.30 Decv4 area for one processor versus the information throughput,

for all of the PN-LDPC-CCs. 108
5.31 Decv4 processor area versus Ts at 100 MHz. 109
5.32 Decv4 energy-per-bit versus T ′

s for a 100-MHz clock. 110
5.33 Decv5 energy-per-decoded-bit per processor versus throughput

for all of the PN-LDPC-CCs. 112
5.34 Decv5 energy-per-bit versus the information throughput for the

PN-LDPC-CCs. 113
5.35 Decv5 (prefix 5) and decv4 (prefix 4) energy-per-decoded-bit

per processor versus throughput for various PN-LDPC-CCs. . 114
5.36 Decv5 (prefix 5) and decv4 (prefix 4) area per processor versus

throughput for various PN-LDPC-CCs. 114
5.37 Decv5 area for one processor versus the information throughput,

for all of the PN-LDPC-CCs. 115
5.38 Decv5 energy-per-bit versus T ′

s for a 100-MHz clock. 116
5.39 Decv6 energy-per-decoded-bit per processor versus throughput

for all the PN-LDPC-CCs. 118
5.40 Decv6 energy-per-bit versus the information throughput for the

PN-LDPC-CCs. 119
5.41 The Ts=288, ρ=24 code with 5, 10, and 24 processors is used to

compare the BER performance of decoders using the min-sum
(Min-Sum) and the truncated min-sum (TMS) operations. . . 120

5.42 Decv6 (prefix 6) and decv5 (prefix 5) energy-per-decoded-bit
per processor versus throughput for various PN-LDPC-CCs. . 121

5.43 Decv6 and decv5 area per processor versus throughput for var-
ious PN-LDPC-CCs. 121

5.44 Decv6 area for one processor versus the information throughput,
for all of the PN-LDPC-CCs. 122

5.45 Decv6 energy-per-bit versus T ′
s for a 100-MHz clock. 123

5.46 Decv6 area versus Ts for a 100-MHz clock. 123
5.47 Decv6 (TMS) and decv5 (Min-Sum) BER performance for the

Ts=288, ρ=24 code, constrained to 4 mm2 of area. The number
of LLR magnitude bits (3 or 4) and number of processors are
varied to fit into the 4 mm2 of area. 124

5.48 Decv6 (prefix 6) and decv1 (prefix 1) compared for T ′
s=12 codes,

in terms of the energy-per-bit versus the throughput/area. . . 125
5.49 Decv6 processor area versus the LLR bit-width. 126
5.50 Decv6 energy-per-decoded-bit per processor versus the LLR bit-

width for various PN-LDPC-CC codes. 127
5.51 For 1 mm2 of area, the Ts=192, ρ=16 code with 4-bit LLRs and

6 processors (192 C2 p16-6) has the best BER performance of
10−6 at an Eb/N0 of 4.0 dB. 129

5.52 For 2 mm2 of area, the Ts=192, ρ=16 code with 4-bit LLRs and
12 processors (192 C2 p16-12) has the best BER performance
of 10−6 at an Eb/N0 of 2.9 dB. 129

5.53 For 3 mm2 of area, the Ts=192, ρ=16 code with 4-bit LLRs and
18 processors (192 C2 p16-18) has the best BER performance
of 10−6 at an Eb/N0 of 2.6 dB. 130

5.54 For 4 mm2 of area, the Ts=192, ρ=16 code with 4-bit LLRs and
25 processors (192 C2 p16-25) has the best BER performance
of 10−6 at an Eb/N0 of 2.4 dB. 130

5.55 For 5 mm2 of area, the Ts=192, ρ=16 code with 4-bit LLRs and
31 processors (192 C2 p16-31) has the best BER performance
of 10−6 at an Eb/N0 of 2.35 dB. 131

5.56 For 6 mm2 of area, the Ts=288, ρ=24 code with 4-bit LLRs and
25 processors (288 C2 p24-25) has the best BER performance
of 10−6 at an Eb/N0 of 2.2 dB. 131

5.57 For 8 mm2 of area, the Ts=288, ρ=24 code with 4-bit LLRs and
33 processors (288 C2 p24-33) has the best BER performance
of 10−6 at an Eb/N0 of 2.1 dB. 132

5.58 For 10 mm2 of area, the Ts=384, ρ=32 code with 4-bit LLRs and
31 processors (384 C2 p32-31) has the best BER performance
of 10−6 at an Eb/N0 of 2.05 dB. 132

5.59 For 12 mm2 of area, the Ts=384, ρ=32 code with 4-bit LLRs and
37 processors (384 C2 p32-37) has the best BER performance
of 10−6 at an Eb/N0 of 1.97 dB. 134

5.60 For 100 mW of power, the Ts=192, ρ=16 with 4-bit LLRs and
12 processors (192 C2 p16-12) has the best BER performance
of 10−6 at an Eb/N0 of 2.9 dB. 135

5.61 For 200 mW of power, the Ts=192, ρ=16 with 4-bit LLRs and
25 processors (192 C2 p16-25) has the best BER performance
of 10−6 at an Eb/N0 of 2.4 dB. 136

5.62 For 300 mW of power, the Ts=288, ρ=24 with 4-bit LLRs and
25 processors (288 C2 p24-25) has the best BER performance
of 10−6 at an Eb/N0 of 2.2 dB. 136

5.63 For 400 mW of power, the Ts=288, ρ=24 with 4-bit LLRs and
34 processors (288 C2 p24-34) has the best BER performance
of 10−6 at an Eb/N0 of 2.1 dB. 137

5.64 Decv6 energy-per-decoded-bit versus the throughput/area for
various T ′

s=12 codes with 4-bit LLRs in 4 different process tech-
nologies. 138

5.65 Decoder processor energy-per-decoded-bit versus the through-
put/area in a TSMC 180-nm CMOS process with 4-bit LLRs. 139

5.66 Decoder processor energy-per-decoded-bit versus the through-
put/area in a IBM 130-nm CMOS process with 4-bit LLRs. . . 140

5.67 Decoder processor energy-per-decoded-bit versus the through-
put/area in a STM 90-nm CMOS process with 4-bit LLRs. . . 141

5.68 Decoder processor energy-per-decoded-bit versus the through-
put/area in a STM 65-nm CMOS process with 4-bit LLRs. . . 142

C.1 Encv7, comparing the energy-per-encoded-bit versus the through-
put for various codes. 174

C.2 Encv7 versus Encv5: comparing the energy-per-encoded-bit ver-
sus the throughput for various codes. 175

C.3 Encv7 versus Encv5: comparing area versus throughput for var-
ious codes. 175

D.1 A 1:2 de-multiplexor built from simple gates for a T ′
s=60 code. 177

E.1 Encv5 energy-per-bit versus the information throughput for the
PN-LDPC-CCs. 180

E.2 Encv5 area versus the information throughput, for the PN-
LDPC-CCs. 181

List of Tables

3.1 System Module Silicon Area. 32
3.2 LP3 power measurement results at 1 V. 33

4.1 Encv2 switching activity per clock-cycle. 57
4.2 Encv4, Encv3, comparison of energy-per-encoded-bit for a 500-

MHz clock. A larger ratio represents a greater reduction in
energy-per-bit. 68

4.3 Encv5 check for a simple implementation of a 64-bit input data-
bus. 72

4.4 Comparison of LDPC encoders. 75

5.1 Decv1 component standard cell areas for Ts=768 codes, at 100
MHz with a 5-bit LLR. 85

5.2 Decv2 and decv3 comparison of component standard cell areas
at 100 MHz with 5-bit LLRs. 103

5.3 Compares decv6 and decv5 in terms of area, power and through-
put. 120

5.4 A single decv6 decoder processor in a CMOS 90-nm process,
running at 100 MHz, comparing area, power and throughput
versus LLR bit-width. 128

5.5 A single decv6 decoder processor in a CMOS 90-nm process,
running at 200 MHz, comparing area, power and throughput
versus LLR bit-width. 133

5.6 CMOS 65-nm 4-bit LLR decv6 decoder processor area, power,
throughput, energy-per-bit and throughput/area. 143

5.7 CMOS 90-nm 4-bit LLR decv6 decoder processor area, power,
throughput, energy-per-bit and throughput/area. 144

5.8 CMOS 130-nm 4-bit LLR decv6 decoder processor area, power,
throughput, energy-per-bit and throughput/area. 145

5.9 CMOS 180-nm 4-bit LLR decv6 decoder processor area, power,
throughput, energy-per-bit and throughput/area. 146

5.10 Number of T ′
s=12 code decv6 processors required to achieve a

BER of 10−6 for a given Eb/N0. 146
5.11 Comparison of CMOS 180-nm LDPC decoders where a BER of

10−6 is achieved at an Eb/N0 ratio of around 4.0. 148

5.12 Comparison of LDPC decoders where a BER of 10−6 is achieved
at an Eb/N0 ratio of 3.0 and 2.5 in a CMOS 180-nm process. . 149

5.13 Comparison of known CMOS 130-nm LDPC decoders where a
BER of 10−6 is achieved at an Eb/N0 ratio around 4.5. 150

5.14 Comparison of known CMOS 130-nm LDPC decoders with BERs
of 10−6 and target Eb/N0 ratios of 3.6, 3.0 and 2.5. 151

5.15 Comparison of LDPC decoders in a CMOS 90-nm process, with
various BERs and target Eb/N0. 152

5.16 Comparison of LDPC decoders in a CMOS 90-nm process, with
various BERs and target Eb/N0. 153

6.1 Decoder version contributions to reductions in the power con-
sumption for our set of PN-LDPC-CC codes. 156

6.2 Decoder version contributions to reductions in the decoder pro-
cessor area for our set of PN-LDPC-CC codes. 156

C.1 encv4, encv3, comparison of dynamic power for a 250 MHz clock.172
C.2 encv4, encv3, comparison of dynamic power for a 500 MHz clock.173

List of Symbols

ρ - node-parallelization factor, in this case referring to
the parallelization of the variable-node and parity-check
node processing.

A priori - prior knowledge about a population.
φ,φ′ - phase and the group phase.
AA-LDPC - Architecture-Aware Low-Density Parity-Check
ASIC - Application-Specific Integrated Circuit
API - Application Programming Interface
AWGN - Additive White Gaussian Noise
BCJR - Balh, Cocke, Jelinik, Raviv
BER - Bit-error-rate is the ratio of the number of incorrectly

decoded information bits to the total number of trans-
mitted information bits.

BIST - Built-In Self-Test
BP - Belief Propagation
Check Node - The circuitry or method that combines LLRs to de-

termine confidence in the sign value of the output LLR.
The check node is also responsible for determining the
sign of the output LLRs based on the XOR of the signs
of the input LLRs. The check node is defined to have a
degree, that corresponds to the number of input LLRs.

circulant matrix - A matrix where each row is the previous row rotated
by one element to the right.

code length - The maximum potential distance over which symbols
can be chosen for input to the parity-check operations.

code memory - In LDPC-CCs, the shortest sequence of most recent
information and parity-check bits that includes all of
the bits that can be involved in a parity-check constraint
involving the most recent check bit.

Cnode - see Check Node
clk - Clock
CRC - Cyclic Redundancy Check
CVS - Concurrent Versions System
DE - Density Evolution

DUT - Device Under Test
DRC - Design Rule Check
Eb/N0 - Energy-per-bit divided by the spectral noise density;

also known as the SNR per bit.
encoder node - the circuitry that is repeated for each row in the code.

i.e. if the code length is 1152 then there are 1152 encoder
nodes.

encv1, encv2,
. . .

- encoder versions 1, 2, . . .

FEC - Forward Error Correction
FIFO - First-In First-Out
fflop - Flip-flop
FPGA - Field Programmable Gate Array
H - Parity check matrix (PCM)
HT - Transpose of H
Hamming
weight

- number of ones in a binary vector. In a bipartite graph,
the number of edges connecting nodes in the two dis-
jointed sets of nodes.

HDL - Hardware Description Language
HDL2GDS - An automated digital design flow, developed at the

University of Alberta by Tyler Brandon
Helium - A command line program designed to run tests on

the HP81200 developed at the University of Alberta by
Christian Giasson

J - column weight of HT .
K - row weight of HT .
LDPC - Low-density parity-check
LDPC-BC - Low-density parity-check block code
LDPC-CC - Low-density parity-check convolutional code
LFSR - Linear Feedback Shift Register
LLR - Log-Likelihood Ratio
LP3 - Name of a LDPC-CC decoder chip designed and tested

at the University of Alberta
LVS - Layout Versus Schematic
ms - syndrome former memory, also known as the code

memory.
MSMP - Merged-Schedule Message-Passing
OMS - Offset Min-Sum
null space - given a matrix A, the set of all vectors x such that

xAT = 0

P&R - Place and Route
PCM - Parity check matrix. In the case of LDPC-CCs this is

a periodic sparse matrix that describes edges between
variable and check nodes (bipartite or factor graph).

period - The number of phases before the phases start repeat-
ing. Also, the number of rows in the PCM.

PF - Parallelization factor
phase - refers to the specific row in the PCM. There are 1/T

phases.
PLL - Phase Locked-Loop
PN-LDPC-CC - Parallel-Node Low-Density Parity-Check

Convolutional-Code
puncture - to throw away symbols from the output of the encoder

to effectively raise the rate of a code. The lost symbols
are reconstructed at the decoder.

register bank - a set of registers.
rst - Reset
RTL - Register Transfer Level
SNR - Signal-to-Noise Ratio
SISO - Soft-Input Soft-Output
SoC - System on a Chip
SVN - Subversion, a source file version control system.
switching activity - probability of a signal transition occurring, from logic

0 to logic 1, per clock period.
Ts - the period of the code.
T ′

s - the group period, equal to Ts/ρ
TDMP - Turbo-Decoding Message-Passing, also known as lay-

ered decoding
TPMP - Two-phase Message-Passing, also known as belief

propagation
Variable Node - The circuit or method that sums LLRs from Cnodes

to produce another LLR. The degree of the variable
node is equivalent to the number of LLR inputs from
the check node plus one.

Vnode - see Variable Node

Chapter 1

Introduction

Forward error correction (FEC) is the method by which redundancy is added to
information to protect the information from corruption when transmitted over
a noisy channel. To successfully recover the original information, the amount
and method of redundancy is adjusted to compensate for the expected level
of corruption in the received transmission. If the FEC is sufficient to recover
the original information, re-transmission is not necessary.

FEC has found its way into many applications, from hard-drives, to cell-
phones to satellite communications. There are two main classes of FEC: block
coding and convolutional coding. Block codes encode and protect fixed-length
blocks of data, whereas convolutional codes encode and protect a stream of
data of arbitrary length by inserting check bits at predictable intervals. Well
known FEC code types include: Hamming codes, Reed-Solomon codes, Turbo
codes and LDPC codes. Both Turbo and LDPC codes are capable of ap-
proaching the Shannon limit. The Shannon limit establishes an upper bound
on channel capacity for a continuous-time analog communications channel in
the presence of Gaussian noise [4]. The channel capacity is defined as the
maximum rate at which digital data can be transmitted without error within
a given bandwidth at a given signal-to-noise ratio. The Shannon limit for an
analog system is expressed by

C = B · log2(1+SNR) (1.1)

where C is the channel capacity in bits of information per second, B is the
bandwidth of the channel in Hertz, and SNRis the signal-to-noise ratio. The
SNR can alternatively be expressed as the energy-per-bit divided by the spec-
tral noise density (Eb/N0), also known as the SNR normalized per bit, where
the number of bits is equal to the number of bits represented in a modulation
symbol. In BPSK modulation there is 1 bit per symbol. In QPSK modulation
there are 2 bits per symbol. The relationship between SNR and Eb/N0 is given
by Equation (1.2).

1

Chapter 1: Introduction

SNR=
Eb

N0
·

fb
B

(1.2)

where fb is the channel bit rate.
Substituting SNR with Eb/N0 in Equation (1.1) gives

C = B · log2

(

1+
Eb

N0
·

fb
B

)

(1.3)

“For transimission over a binary-input, continuous-output AWGN channel
with BPSK signaling, the Shannon limit (in terms of Eb/N0) as a function of
code rate does not have a closed from” [5]. An important goal of the field
of information theory over the past 60 years is to identify code constructions
whose error correcting performance approaches the Shannon limit.

LDPC codes have been developed in each of the two FEC types: block
codes (LDPC-BC) and convolutional codes (LDPC-CC). As an alternative
to the LDPC-BCs, originally developed by Gallager in 1962 [6], LDPC-CCs
were introduced in [7]. Well-designed LDPC-BCs and LDPC-CCs have similar
capacity-approaching error-correcting performance [7]. However, LDPC-CCs
have certain inherent advantages over LDPC-BCs. Compared to LDPC-BCs,
LDPC-CC encoder implementations tend to be very simple [8, 2]. On the
other hand, for fixed-length data streams, LDPC-CC encoders require the use
of encoder termination, which adds to the complexity of the encoder [9]. With
respect to power consumption, the added cost of the termination circuitry is at
least minimized by the fact that it remains inactive during normal operation
and only becomes active at the end of the data stream. LDPC-BC encoders,
on the other hand, are inherently more complex than LDPC-CC encoders
and require padding to the data stream to fully fill the data capacity of each
coded block. For larger block codes this can lead to significant overhead [9].
Overall it would appear that LDPC-CC encoders would especially benefit those
applications where one side of the communications link is sensitive to power
and transmits far more than it receives. Figure 1.1 depicts the error-correcting
performance of a Turbo and LDPC code in relation to an uncoded channel,
and the Shannon limit.

This thesis deals with novel hardware encoder and decoder implementa-
tions for LDPC-CCs. More specifically, a new class of parallel-node LDPC-CC
(PN-LDPC-CC) encoders and decoders is presented that takes advantage of
the architecture-aware PN-LDPC-CCs introduced in [1]. Our PN-LDPC-CC
encoder/decoder architectures improve the data throughput and decrease the
energy-per-bit to the point that our new architectures outperform the state-
of-the-art of both LDPC-CC encoders/decoders and LDPC-BC encoders/de-
coders. This work should demonstrate that LDPC-CC decoders can compare
favorably to LDPC-BC decoders in terms of the energy-per-decoded-bit and
the throughput/area.

2

Chapter 1: Introduction

Figure 1.1: The bit-error-rate (BER) versus the ratio of the energy per
transmitted bit to the spectral noise density (Eb/N0, or the signal-to-noise
ratio normalized to the number of bits represented per symbol). LDPC
and Turbo codes both approach the Shannon limit. As Eb/N0 increases, the
BER typically decreases.

Even the most recent published implementations of LDPC-CCs have not
been able to match LDPC-BCs in terms of the energy-per-bit and the through-
put/area [10]. While many LDPC-BC encoder and decoder implementations
have been described in the literature, their convolutional brethren, the LDPC-
CC encoders and decoders, have made fewer appearances. This can be par-
tially attributed to the LDPC-BC decoder’s ability to be fully-parallelized
with only area and routing being an issue [11]. Historically, the lack of node-
parallelization in LDPC-CC decoders has limited their throughput [8, 2, 10].
Node-parallelization for time-varying LDPC-CCs has only recently been in-
troduced in [1]. Another aspect of LDPC-BCs that benefits their hardware
implementation is that LDPC-BC error-correcting performance is improved by
iterating in the time domain; in contrast, LDPC-CC decoders typically require
an additional decoder processor to perform each additional decoding iteration
in space. The net effect of more iterations is that LDPC-BC decoders suffer
lower data throughput, whereas LDPC-CC decoders require more area. As
the number of iterations increases, both LDPC-BC and LDPC-CC decoders
require more energy-per-decoded-bit.

In this thesis we throughly analyze a sequence of new PN-LDPC-CC en-
coder and decoder architectures using the common hardware metrics of power,
throughput and area, as well as BER performance. We make comparisons with
the characteristics of previously published encoder and decoders. Using the
competing decoder’s process technology, we match their BER performance and
Eb/N0 and then compare the energy-per-bit and throughput/area metrics. Our
comparisons cover four different process technologies and 14 different LDPC
decoders from the literature. Our PN-LDPC-CC encoders and decoders set
new energy-per-bit and throughput/area benchmarks for both LDPC-CC and
LDPC-BC implementations.

3

Chapter 1: Introduction

The rest of this thesis is organized as follows. The background review,
Chapter 2, covers the general structure of LDPC-CC encoders and decoders,
the variable-node and check-node operations, and the evolution of improve-
ments made to LDPC-CC encoders and decoders. In Chapter 3 we discuss sil-
icon results for a LDPC-CC encoder and decoder that targets high-throughput.
In Chapter 4 we introduce a set of novel encoder and decoder ASIC architec-
tures for parallel-node LDPC-CC codes. The new LDPC encoders and de-
coders are throughly quantified in terms of BER performance, power, area
and throughput. The most advanced decoder architecture is throughly an-
alyzed over process technologies, clock frequency, log-likelihood-ratio (LLR)
bit-width and BER performance. The new encoders and decoders are shown
to set efficiency benchmarks, not only for LDPC-CCs but for LDPC-BCs as
well, by comparing them to the state-of-the-art decoders disclosed in the lit-
erature. In Chapter 6, a summary of our results is presented and the major
conclusions are reviewed.

4

Chapter 2

Background

LDPC codes have been shown to approach the Shannon limit [12]. LDPC-
CCs were first proposed in [7]. LDPC-CCs, compared to LDPC-BCs of the
same code length, have better bit-error-rate (BER) performance [7]. In fact,
LDPC-CCs have similar BER performance to LDPC-BCs with ten times the
length [13]. Code lengthrefers to the maximum distance between data when
viewed from the perspective of the parity-check operations. LDPC-CC BER
performance curves do not have the relatively high error floor of Turbo codes
at large Eb/N0 [7].

LDPC-CCs are linear codes that generate code bits based on parity-check
operations [14]. Any given code bit, v(t), is generated using the present and
previous information bits, u(t), and previously generated code bits. LDPC-
CCs operate on a continuous stream of data bits. Usually the added code bits
are interleaved among the original information bits, as with other convolutional
codes.

An LDPC-CC is defined as the null space of a parity-check matrix, which is
the same way in which other linear codes (including LDPC-BCs) are defined.
If H is the parity-check-matrix (PCM), then all valid codewords v satisfy
vHT = 0. For an LDPC-CC of rate b/c (b < c), the corresponding infinitely-
large parity-check matrix can be written as

H =

. . .
. . . 0

Hms(t) . . . H0(t)

. . .
...

. . .

Hms(t+ms) . . . H0(t+ms)

0
. . .

...
. . .

, (2.1)

where Hi(t) (i = 0,1, · · · ,ms) is a sub-matrix of size (c−b)×c. The parameter
ms in (2.1) is called the code memory, not to be confused with the memory
definition used in digital circuits. The constraint lengthof the rate-b/c LDPC-
CC is defined as ν = c · (ms+ 1). For regular LDPC-CCs, both the column

5

Chapter 2: Background

weight (K) and the row weight (J) of HT are constant. We will call such a
code an (ms,J,K) LDPC-CC.

If the parity-check constraints defined by each row of H are fixed, then
the LDPC-CC is called time-invariant. Otherwise, the code is a time-varying
LDPC-CC. In general, time-varying LDPC-CCs can achieve better BER per-
formance than time-invariant codes. Let the period be Ts, then Hi(t) = Hi(t +
Ts) for all i and t. For both encoding and decoding, due to the periodicity of H,
a phaseparameter φ, φ ∈ [0,Ts), is used to specify the parity-check constraints
at each instant in time. Given any time t ∈ [0,∞), φ = t modTs.

LDPC-CC encoders add parity-check bits to a stream of user data in accor-
dance with H. The encoded data, both user data and parity-bits, is transmit-
ted though a channel. For evaluation purposes the channel consists of additive
white Gaussian noise (AWGN). The noise corrupts the data stream in accor-
dance with the power of the noise relative to the transmit signal strength.
More specifically, the quality of the signal is expressed as the ratio of the
energy-per-transmitted bit versus the spectral noise density (Eb/N0). At the
decoder, channel samples are scaled and quantized into log-likelihood-ratios
(LLRs). In the case of LDPCs, the LLR is defined by Equation (2.2).

LLRi(y) = ln

(

P(xi = 0|yi)

P(xi = 1|yi)

)

(2.2)

where P(xi = 0|yi) is the probability that xi is zero given the known value of
yi . In the case where the data stream is transmitted using the values -1 or
1, the additive noise from the channel corrupts these values and thus creates
a Gaussian distribution around -1 and 1, as illustrated in Figure 2.1. The
greater the noise, the greater the standard deviation of the signal distribu-
tions. Those data values, originally transmitted as -1 or 1, that are offset
by the noise and cross the mid-level 0, become errors in the data stream. A
decoder’s ability to correct errors is determined by a number of factors, which
include: the theoretical code strength, channel sample scaling, LLR precision,
LLR range, the number of decoder iterations and the check-node operation.
The decoder attempts to correct errors in accordance with H. The BER per-
formance measures how well a decoder corrects errors in the received data.
The BER performance is often represented as a graph, plotting how the BER
declines with increasing Eb/N0. As the energy-per-bit is increased relative
to the spectral noise density (commonly called the signal-to-noise-ratio per
normalized bit), fewer signal detection errors are caused by the noisy chan-
nel. Given a fixed Eb/N0, a decoder’s ability to correct errors within the data
stream will determine its BER. If all the errors created by the channel noise
are corrected by the decoder, the output stream from the decoder will match
the original user data stream.

In a (ms,J,K) code, the column weight (K) determines the number of LLRs
entering the check-node from the variable-nodes. A common check-node op-

6

Chapter 2: Background

Figure 2.1: Transmitted -1s or 1s corrupted by noise form Gaussian distri-
butions around -1 and 1. Those values that get bumped by the noise and
cross 0, become errors in the data stream.

Figure 2.2: Check-node operation, when K = 6.

eration is given by equation (2.3) [7].

L′(k) = sign

K

∏
k′=1
k′ 6=k

L(k)

× min

k′=1,...,K
k′ 6=k

|L(k′)| (2.3)

where L′(k) is the k-th check-node output, L(k′) is the k′-th check-node input,
where k′ ∈ {1, · · · ,K} and k ∈ {1, · · · ,K}. The sign bit of the k-th output of
the check-node is the XOR of the input sign bits, excluding the k-th input’s
sign bit. The k-th check-node output’s magnitude is the minimum of the input
magnitudes, excluding the k-th input’s magnitude. There are b check-nodes
per decoder processor. Figure 2.2 depicts a check-node, where K = 6.

In a regular (ms,J,K) code, the row weight (J) determines the number of
LLRs entering each variable-node from the check-nodes. In the variable-node,
for each LLR input, an LLR output is generated that is the sum of the original
un-altered noisy channel sample and the other LLR inputs. The un-altered
channel sample is output from the variable-node, un-altered. If the signs of
the LLRs in the variable-node operation are all equal, then the output value

7

Chapter 2: Background

becomes more certain, as its magnitude is increased. If the signs of the LLRs in
the variable-node operation differ, the output value becomes less certain. The
magnitude of an LLR thus represents the probability, confidence or likelihood
of the sign-bit being correct. The LLR sign-bit represents estimated the binary
value of one bit in the stream, 0 or 1.

The variable-node operation is given by equations (2.4,2.5) [7]. This case
shows a 1/2 rate code, where one information and one parity bit is decoded
per phase φ.

L(0) = L′(0) (2.4)

L(j) = L′(0)+
J

∑
j ′=1
j ′ 6= j

L′(j ′) (2.5)

where L(0) is the unaltered channel sample, L is the output from the variable-
node, j ∈ {1, · · · ,J} is the number of variable-node outputs (excluding L(0)),
L′ is the input to the variable-node from the check-nodes. There are c variable-
nodes per decoder processor.

One row and one column are processed per phase φ. Rows are processed
before columns. The J 1’s in the H rows determine the LLR inputs to the
check-nodes, and the K 1’s in the H columns determine the LLR inputs to the
variable-nodes.

The amount of LLR storage per processor is given by equation 2.6.

MLLRs= (J+1) ·c·Ts·q (2.6)

where MLLRs is the number of LLR storage bits per processor, J is the row
weight, c is the number of variable-nodes per processor, Ts is the code period,
and q is the number of bits per LLR. For a (128,3,6) LDPC-CC decoder with
5-bit LLRs, the amount of LLR storage per processor is 5,120 bits.

There are a number of modifications to the min-sum check-node operation
to improve BER performance [15], which include normalizedBP−baseddecoding
and o f f setBP− baseddecoding. The normalizedBP− baseddecodingdivides
the resulting minimum magnitude by a constant. The o f f setBP−baseddecoding
subtracts a constant value from the minimum magnitude. Significant work
goes into calculating the values of the normalized and offset terms [15].

In most cases, LDPC-CC encoding is applied to finite-length data streams.
Encoder termination is used to ensure that the trailing bits at the end of the
data stream are as well protected as the earlier bits. It has been determined
that the size of the termination circuitry usually dominates the encoder com-
plexity [9]. For a detailed discussion of parallel all-phase termination see [1].

8

Chapter 2: Background

For LDPC-CC decoders, the design effort can be focused to optimize one
processor. Then a suitable number of copies of that processor can be concate-
nated together to form a decoder. Increasing the number of decoder processors
generally improves the error correcting performance.

Hardware implementations have three common metrics for design compari-
son: area, power and throughput. Less common, but arguably more important,
hardware metrics include the energy-per-bit and the throughput/area. Other
hardware metrics include the clock frequency and the latency.

For LDPC encoders and decoders we define throughput as the information
or user data rate. Throughput can be calculated as the number of information
bits, excluding parity-bits, produced per clock cycle, multiplied by the clock
frequency.

Area is typically presented in one of three ways: standard cell area, core
area and chip area. The standard cell area is the sum of all the areas of the
standard cells within a gate-level netlist. The gate-level netlist is a technol-
ogy process specific representation of the design using the provided technology
logic gates. The technology logic gates are a library of logical functions that
have associated physical representations that are manufactureable as semi-
conductor circuits. The core area is the area required to place and route the
standard cells from a gate-level netlist. Placement consists of instantiating a
cell within a given area, such that the cells do not overlap with any other cells
and such that the cell is relatively close to the other cells to which it will be
connected. Routing is the process of “wiring-up” the design by connecting the
standard cells together with physical representations of metal strips. The chip
area includes the place and route area plus the area required for input-output
cells used to communicate off-chip. A rule of thumb we use is that the core
area is approximately 70% of the chip area and that the standard cell area is
approximately 75% of the core area.

Power, like area, can be presented in three forms: measured power, post
place and route power estimate, and synthesis power estimate. Measured
power takes the chip operating voltage and multiplies it by the measured
chip current consumption. Synthesis power estimates the power based on the
switching-activity of a gate-level netlist combined with the standard cell library
power consumption information along with operating conditions and wire-load
models. Switching activity specifies how often a transition is made from 0
to 1 for a given net in the design. Standard cell library power consumption
information consists of power consumed for various input transitions as well as
drive strengths and input gate capacitances. The operating conditions specify
different process technology corners and operating voltages. Wire-load models
are generalized estimates of the parasitics due to the routing and scale with
the size of the design. Post place and route power estimates are the same
as synthesis power estimates, with the main difference being that extracted
wiring parasitics are back-annotated onto the gate-level netlist.

9

Section 2.1: Evolution of LDPC-CC Encoders

Energy-per-bit and throughput/area are metrics of efficiency. The energy-
per-bit takes the power consumption and divides it by the throughput. In
this way, we can compare the power efficiency between various designs. Power
consumption by itself can be misleading. For example, a circuit that consumes
100 mW and outputs 10 Mbits/s of information consumes less power but is
less energy efficient than a circuit that consumes 1 W and outputs 1 Gbit/s of
information. In the first case the energy-per-bit is 10 nJ; in the second case
the energy-per-bit is 1 nJ. Throughput/area gives us a metric for how well the
area is being used. Similar to power consumption, providing throughput or
area by itself can be misleading.

Latency is the time it takes for information to travel through a design.
Latency is the number of clock cycles information takes to propagate through
a design, multiplied by the clock period. Latency only becomes an issue if it
becomes too large for a given application.

Clock frequency, in many cases, is a secondary metric that can be used by
designers familiar with the process technology to gauge how the design may be
altered to better optimize target hardware metrics. If an unexpectedly high
clock frequency is achieved, then power can be saved by lowering the operating
voltage while sacrificing throughput and latency.

2.1 Evolution of LDPC-CC Encoders

LDPC-CC encoders are distinguished by their relatively simple implementa-
tions [8]. The classic serial-node direct encoder is described in [8, 16]. Figure
2.3 shows a LDPC-CC serial direct encoder [8]. M bits of history of the in-
formation and parity bit stream, u(t) and v(t), are stored in the bottom and
top rows of flip-flops, respectively. The current parity-bit is the XOR of five
values, two from the history of v(t) and three from the history of u(t). The
phase φ determines which five historical values are selected.

We present a high-throughput serial-node LDPC-CC encoder in [2]. This
design improves the power consumption and throughput of the encoder shown
in Figure 2.3. The shift chains and multiplexors in 2.3, are replaced with ad-
dressed flip-flops and a pipelined XOR tree. Figure 2.4 shows the resulting
high-throughput encoder [2], while Figure 2.5 shows the corresponding termi-
nation circuitry [2]. The result is an encoder with termination implemented in
62,304 µm2 in a CMOS 90-nm process, capable of operating at 1.1 GHz with
a power consumption of 23 mW with a 1.2 V supply.

A parallel encoder without termination is presented in [17]. This encoder
generates ρ parity-bits in parallel. The design does not alter the parity-check
matrix and the parity-check matrix itself does not guarantee that the ρ parity
bits within each group will not depend on each other. In the cases where one
parity bit is generated based on another parity bit within the same group,

10

Section 2.2: Evolution of LDPC-CC Decoders

Figure 2.3: LDPC-CC direct encoder.

then parallel processing cannot happen because of the data dependency. In
such cases, an internal serialization of the calculation may be needed within a
group of ρ parity bits, which increases the latency and lowers the throughput.
As ρ grows, this issue becomes more serious [17]. For a (128,3,6) code encoder
implementation in a CMOS 90-nm process, with ρ=8, an information through-
put of 5.4 Gbits/s is achieved in an area of 80,040 µm2. For a (2048,3,6) code
in a CMOS 90-nm process, with ρ=8, a throughput of 3.6 Gbits/s is achieved
in an encoder with an area of 761,900 µm2.

Altering the original encoder structure, a so-called partial syndrome en-
coder is presented in [18]. The partial syndrome encoder reduces the amount
of storage to equal ms by updating J−1 storage registers per phase φ. As the
code size increases, the partial syndrome encoder’s throughput scales better
than the direct encoder, due to the growth of the direct encoder’s multiplexors
[16]. Figure 2.6 shows a partial syndrome encoder.

For rate-b/c LDPC-CCs, the number of state bits for the partial syndrome
encoder is (cb)/c = (1R) of that for the direct encoder, which reduces the
termination complexity, where R is the code rate [1].

A partial syndrome parallel-node LDPC-CC encoder is introduced in [1].
The partial syndrome parallel-node LDPC-CC encoder increases the through-
put and decreases the energy-per-encoded-bit by processing multiple informa-
tion bits in parallel. Figure 2.7 depicts a partial syndrome encoder for the
architecture aware PN-LDPC-CC codes described in [1].

2.2 Evolution of LDPC-CC Decoders

The first reported ASIC LDPC-CC decoder is presented in [8]. This decoder
uses 10 cascaded processors to form the decoder. Each decoder processor
contains multiple sets of shift registers for the LLRs. When LLRs reach a

11

Section 2.2: Evolution of LDPC-CC Decoders

d d d d

p0 p1 p128 p129

d d d d

Code−bit Generation

Phase − one−hot encoded

p50 p125

u0

p109

p43

p9

v0

p126p69

u129

p118

p82

p39

v129

Info Regs, repeats for Code Regs (v0 to v129)

3 Stage XOR Tree

p0 p1 p128 p129

u129u128u1u0

Info−bit u(t)

code−bit v(t)

Figure 2.4: A 1.1-GHz encoder. Replacing the shift chains and multiplexors,
found in the direct encoder, with addressed flip-flops and a pipelined XOR
tree results in a high-speed encoder.

u0

tP

v0

tP tP

v128

tP

u128

Terminate
p0 p1 p127 p128

tP0 tP1 tP127 tP128

3−Stage XOR Tree

Termination Bit Generation

Termination Phase Control

Termination Bit u(t)

Figure 2.5: A 1.1-GHz encoder’s termination circuitry.

12

Section 2.2: Evolution of LDPC-CC Decoders

Figure 2.6: Partial syndrome encoder for LDPC-CC codes.

Figure 2.7: Partial syndrome encoder for the architecture-aware PN-LDPC-
CC codes with ρ=8 [1].

certain point in the shift chain, as determined by the phase φ, they are routed
to the parity-check node. The updated LLR outputs of the parity-check node
are routed back to their originating positions in the shift chains. The parity-
check-node updates each LLR exactly once. When the updated LLRs reach
the end of the shift chain they go through the variable-node operation and on
to the next processor.

A highly-pipelined LDPC-CC decoder is presented in [2]. Instead of energy-
inefficient shift chains, as in [8], a memory structure is used. In order to
facilitate conflict-free memory access, the number of memory banks is increased
and the LLRs are assigned specific memories based on their access pattern.
A relatively complex switch matrix is needed to connect the relatively large
number of memory banks to the check-node unit and the variable-node units.
The decoder processor has 7 pipe-line stages, allowing the decoder to run
at 600 MHz. While these pipeline stages allow the decoder to reach higher
throughputs, the overhead associated with the extra registers, in terms of area
and power, is significant.

A serial LDPC-CC decoder is presented in [19]. This decoder uses a pro-
cessor combined with memory to store a frame of soft data as it is being
iteratively processed. Each iteration consists of the frame being read from
memory, fed through the decoder and then written back to memory. The
decoder achieves a throughput of less than 10 Mbits/s with a maximum of
100 iterations and occupies 15% of a Altera Stratix EP1S80 for a length-2048

13

Section 2.3: LDPC-BCs versus LDPC-CCs

code. The authors show that their design uses a very small number of logic
elements, and claim that their design reduces “memory consumption” and is
suitable for large LDPC-CC codes.

A tail-biting LDPC-CC flexible decoder, that is programmable like a spe-
cialized microprocessor, is presented in [10]. Consisting of memory, cross-bar
switches, vector arithmetic units and very long instruction words, this LDPC-
CC decoder is capable of processing codes of different lengths and rates. The
processor takes 1152K gates, consumes 370 mW and achieves a throughput of
100 Mbits/s for 10 decoding iterations.

We present a parallel-node LDPC-CC decoder in [1]. The node-paralleliz-
ation factor ρ is equal to the number of information channel samples processed
in parallel. To achieve a high throughput, the memory architecture is designed
to complete the node update cycle in one memory cycle. The decoder achieves
a single memory cycle per phase by using a combination of single and dual-
port asynchronous memories. The parallel-node decoder attains relatively high
throughput while lowering the energy-per-decoded-bit. In addition, the decod-
ing latency is also reduced significantly due to the node-parallelization.

2.3 LDPC-BCs versus LDPC-CCs

The decoders for both LDPC-BCs and LDPC-CC use parity-check nodes and
variable nodes; however, the number of nodes and how they are connected
differ [13].

Compared to LDPC-BCs, LDPC-CCs can achieve similar BER perfor-
mance using a code length of approximately an order of magnitude less [13].
However, LDPC-BCs and LDPC-CC have the same computational complexity
[13]. The theoretical memory storage for LDPC-BCs and LDPC-CCs is equal
when the LDPC-BC code length (N) is equal to the LDPC-CC constraint
length times the number of iterations (ν∗ I) [13]. A comparison of LDPC-BC
and LDPC-CC decoder hardware is attempted in [13], but in every case there
are exceptions and caveats that complicate the argument. In the comparison
a number of challenges became apparent: some decoders are implemented in
FPGAs (of differing types), others in ASICs of various fabrication technolo-
gies, all with different BER performance with each decoder targeting various
hardware performance metrics. Prior to this thesis research, a comprehen-
sive or meaningful comparison of LDPC-BC and LDPC-CC decoders was not
available.

For LDPC-BCs, the iterative message passing decoding algorithm based
on the code graph representation (called a Tanner graph) leads to a natural
parallelization in the decoder design. Multiple nodes in the graph can be
physically realized. Figure 2.8 depicts a Tanner graph with check-nodes and
variable-nodes. The parallelization in the node dimension signicantly increases

14

Section 2.4: Parallel-Node LDPC-CCs

Figure 2.8: An example of a bipartite or Tanner graph for a regular LDPC-
BC block code. The bipartite graph is regular because the number of con-
nections to the check-nodes is the same for all the check-nodes.

the decoding throughput. However, fully-parallel LDPC-BC decoders tend
to have a high silicon area cost in a VLSI implementation due to the large
number of physically implemented nodes as well as the routing between nodes.
Large LDPC-BCs can fall victim to routing congestion [11], which requires an
increase in silicon area to fix. Many different approaches have been proposed to
address the LDPC-BC design challenges, including partially-parallel decoders
[20, 21] and layered decoders [22]. These approaches partition the decoding
problem into stages rather than tackling a full decoder iteration all at once; the
goal of partitioning is to achieve a better trade-off between area, throughput
and power.

Conventional LDPC-CCs are not easily parallelized in the node dimen-
sion, due to the serial nature of the node processing [7]. This limits their
implementations’ throughput, compared to LDPC-BC implementations that
can parallelize the node operations [11]. Recently new LDPC-CCs have been
developed that allow parallelism in the node dimension [10, 1]. This thesis
will explore LDPC-CC encoder and decoder implementations for the parallel-
node LDPC-CCs (PN-LDPC-CCs) presented in [1]. When code design and
decoder design are considered jointly, we will show that more efficient designs
are achievable [1].

2.4 Parallel-Node LDPC-CCs

PN-LDPC-CCs were developed at the University of Alberta by Zhengang Chen
[1]. These codes are the result of applying coding and hardware constraints.
As a result, these codes naturally fit into efficient hardware implementations,
while maintaining good BER performance. We will talk about the origins
of PN-LDPC-CCs, give their BER performance and comment on the factors
impacting BER performance.

The BER performance of a code, typically with an additive white Gaussian
noise (AWGN) channel, allows us to compare it to other codes. The PN-
LDPC-CCs have good BER performance compared to other LDPC codes [1].

15

Section 2.4: Parallel-Node LDPC-CCs

1 1.2 1.4 1.6 1.8 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

T=2304, p=64
T=1152, p=32
T=1152, p=48
T=1152, p=96
T=768, p=1
T=768, p=4
T=768, p=8
T=768, p=16
T=768, p=32
T=768, p=64
T=768, p=64, code 2
T=576, p=1
T=576, p=4
T=576, p=8
T=576, p=12
T=576, p=16
T=576, p=24
T=576, p=48, code 2
T=288, p=4
T=288, p=6
T=288, p=8
T=288, p=24
T=192, p=16

Figure 2.9: BERs for the PN-LDPC-CCs. Codes and BER performance
data provided by Zhengang Chen [1]. Note the relative independence of
the BER performance with ρ. Codes with the same Ts (T in the plot) and
different ρ have similar BER performance.

Figure 2.9 shows the BERs for our set of PN-LDPC-CC codes, constructed by
Zhengang Chen using the method presented in [1]. Two important factors of
PN-LDPC-CCs are the code length, Ts, and the node-parallelization factor, ρ.
In the figure, codes with the same Ts have the same shade. It is interesting to
note that the ρ can be increased significantly with little impact on the BER
performance of the code. The length of the code (Ts) is the dominant factor
governing its BER performance. This is seen in the figure, by the grouping of
lines of the same color. 1000 bit errors are gathered before calculating each
BER point on the BER performance curves. The shown codes were chosen by
trial and error. Typically, a number of codes of the same Ts and ρ are generated
and run though simulations, and the best performing code is chosen. To recap,
the BER performance of a code is significantly impacted by the length of the
code (Ts).

The method of decoding also plays a large role in the BER performance.
Figure 2.10 shows the impact of fixed-point versus floating-point and the effects
of a variable number of iterations on BER performance. In the case of the
Ts=480 code, variations in the number of iterations and the LLR bit-width,
dramatically impact the BER performance. For a BER of 10−6, using the
Ts=480, ρ=8 code, compared to the ideal case, the fixed-point decoder using
30 iterations and a 6-bit LLR, loses an Eb/N0 of 0.75 dB. To summarize, the
major factors effecting BER performance are Ts and the decoding method.

16

Section 2.4: Parallel-Node LDPC-CCs

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it

E
rr

or
 R

at
e

T=480, p=8, I=100, floating point
T=480, p=8, I=50, floating point
T=480, p=8, I=30, floating point
T=480, p=8, I=50, floating point, minsum
T=480, p=8, I=30, floating point, minsum
T=480, p=8, I=50, fixed point 6 bits
T=480, p=8, I=50, fixed point 5 bits (no saturation)
T=480, p=8, I=30, fixed point 6 bits

Figure 2.10: BER performance for the Ts=480, ρ=8 code for various bit-
precision and iterations. The bit-precision and number of iterations has
a large impact on the BER performance. We generated this figure using
Zhengang Chen’s BER data.

Taking a closer look at the clusters of Ts=768 codes reveals that the ρ has
little predictable impact on BER performance. Figure 2.11 plots the BER
of Ts=768 codes versus ρ for various values of Eb/N0. Increasing ρ, to the
limit that we are capable of generating, does not negatively impact the BER.
While there are deviations in BER performance, no trends relating to ρ are
present. Both high-ρ and low-ρ codes have similar BER performance. The
same holds true for Ts=576 codes. Figure 2.12 plots the BER of Ts=576 codes
versus ρ. Again, there is no observable relationship between ρ and the BER
performance. This same relationship hold true for the other codes.

In Chapters 4 and 5, novel encoder and decoder architectures are presented
for these PN-LDPC-CCs.

17

Section 2.4: Parallel-Node LDPC-CCs

10 20 30 40 50 60
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p

B
it

E
rr

or
 R

at
e

Eb/No 1.00
Eb/No 1.10
Eb/No 1.20
Eb/No 1.22
Eb/No 1.24
Eb/No 1.26
Eb/No 1.30

Figure 2.11: BER versus ρ for Ts=768 codes. Increasing the node paralleliz-
ation ρ does not negatively impact the BER. We generated this figure using
Zhengang Chen’s BER data.

18

Section 2.4: Parallel-Node LDPC-CCs

2 4 6 8 10 12 14 16 18 20 22 24
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p

B
it

E
rr

or
 R

at
e

Eb/No 1.00
Eb/No 1.10
Eb/No 1.20
Eb/No 1.30
Eb/No 1.40

Figure 2.12: BER versus ρ for Ts=576 codes. Increasing the node paralleliz-
ation ρ does not negatively impact the BER. We generated this figure using
Zhengang Chen’s BER data.

19

Chapter 3

A Highly Pipelined LDPC-CC Encoder
and Decoder Implementation

3.1 Overview

This chapter describes the first LDPC-CC encoder and decoder design, called
LP3, for which I was the principal designer. As later chapters present re-
sults based on synthesis results, it is important to present the experimental
verification in silicon of synthesis results. LP3 is a relatively complex chip de-
sign that pushed the throughput envelope for encoder and decoder LDPC-CC
implementations. This work is presented in [2]. The subsequently designed
parallel-node LDPC-CC encoders and decoders, presented in Chapter 4 and
Chapter 5, build upon the experience gained with LP3 and far surpass LP3 in
terms of increased throughput, decreased area and decreased power consump-
tion.

LP3 is a rate-1/2 (128,3,6) LDPC-CC 1.1-Gbits/s encoder and 600-Mbits/s
decoder test chip fabricated in ST Microelectonics’s 90-nm CMOS logic pro-
cess (for a list of standard cell libraries used see A.5). LP3 is a self-testing
design, capable of generating user-data on chip, encoding the data, adding
noise, decoding the data and counting errors. To facilitate high-speed testing,
despite our relatively slow 133-MHz digital tester, a PLL is included on-chip
to generate the necessary high-frequency clock on-chip. Figure 3.1 depicts the
major blocks. The flow of data originates with user data, generated in LP3
by the random number generator. The user data is encoded and redundancy
added according to a sparse matrix that defines the “code”. The encoded data
is passed though an AWGN channel emulator that adds Gaussian noise to the
encoded data. The resulting noisy baseband channel samples are then quan-
tized and processed by the decoder. The results of the decoder are compared
to the original user data, which is kept saved in a FIFO, and the resulting
errors are counted.

There are a number of contributors to LP3. Leendert van den Berg de-

20

Section 3.1: Overview

Encoder DecoderChannel

Write Enable

Data−Out Bus

Data−In Bus

Address Bus

Controller

Processor1

Processor2

Processor3
Encoder

Termination

Scaling &

BIST

PLL

Quantization

All−Phase

Event Counters

Error Counter

FIFO

PRPG CRC

Asynch. IO

System Configuration

AWGN

Generator

Figure 3.1: LP3 block diagram [2].

signed the PLL. Amirhossein Alimohammad designed the AWGN generator
and random number generator. Zhengang Chen contributed to the introduc-
tion and provided the sections on the coding theory. Jason Klaus created a
graph coloring algorithm that not only minimized the number of colors, but
balanced the number of edges in each color thus balancing the sizes of the
memory banks and therefore reducing the size of the largest required memory
bank. Ramkrisha Swamy helped with specifications, discussions on the archi-
tectures and understanding the decoding algorithm. John Koob was one of the
designers and the primary editor/writer for the LP3 paper. Both John Koob
and Leendert van den Berg helped implement and verify LP3 during tape-out
and assisted in testing LP3. I designed the encoder and decoder, integrated
all components, designed the built-in self-test (BIST), helped write the LP3
paper and tested LP3. Figures in this section are © IEEE and are used with
permission.

EDA tools used include: VCS 2005.06, DesignCompiler 2005.09, Conformal
50, Encounter 41, Formality 2005.12, Virtuoso 51, Calibre DRC 2006.2, Calibre
LVS 2006.2, StarXtract 2005.06, and PrimeTime 2005.12.

21

Section 3.2: The Challenge

3.2 The Challenge

The primary goal of implementing LP3 in silicon was to gather power vs.
throughput measurements for a new high-speed, low-power LDPC-CC archi-
tecture. Every module LP3 was a new design that had never been tested in
silicon. This project was therefore a high-risk scenario for the overall function-
ality of the design. In a conventional design, test features accessed through
a serial JTAG interface could be used to test the functionality of individual
modules, but in this design a JTAG testing interface would make power vs.
throughput measurements difficult to achieve. As LP3 consists mostly of flip-
flops, the area and power overhead required for a full JTAG interface would
be considerable. Given that every module had the potential for failure, we
needed a test method that would do more than just detect failures, we needed
to be able to localize any failures by being able to test each module indepen-
dently of the others. In addition, the LP3 modules were estimated to function
correctly in the range of a few hundred MHz to just over a GHz. The available
HP81200 tester is only capable of driving signals at a couple of hundred MHz.
The available on-chip IO drivers and the re-use of a previous test PCB limits
the chip-to-tester IO frequency to a maximum of 100 MHz.

3.3 Meeting the Test Challenge - Design for Test

LP3 has features that allow all internal digital components to be tested inde-
pendently or together, at high-speed, on-chip and with only the results of the
tests being relayed off-chip. This is accomplished with a PLL, an asynchronous
memory interface, a custom system configuration module and a number of
BIST components, that include a variable length FIFO, counters, a signature
generator and an LFSR.

3.3.1 The Channel

The “channel” module consists of an additive-white-Gaussian-noise (AWGN)
generator and a scaling function. The AWGN provides high quality noise that
is added to the “info” and “code” bits produced by the encoder and is capable
of achieving an range greater than 6σ. Noise is scaled according to the SNR
value set in the configuration registers and added to the “info” and “code”
bits. The combined signal and noise is then scaled by a linear function and
quantized to 8-bit LLRs.

To eliminate the need for an external noise generator, a compact and ac-
curate white Gaussian noise generator, as described in [23], was implemented
on-chip. The AWGN provides two 16-bit noise samples per clock cycle. Accu-
rately distributed and uncorrelated noise samples are important when verifying
the behavior of very low BER systems, such as LDPC coded systems [23]. In

22

Section 3.3: Meeting the Test Challenge - Design for Test

addition, the noise samples should be generated as fast as possible to keep up
with other blocks in the system.

3.3.2 Random-Number-Generator

Instead of a using a conventional linear feedback shift register (LFSR) to gener-
ate random digital data for stimulus, a combined Tausworthe pseudo-random-
pattern-generator (PRPG) was used to generate random numbers for testing
on-chip modules. Without sufficiently good randomness properties, a set of
generated vectors might never excite certain hard-to-detect faults [24]. We
implemented a three-component Tausworthe generator to improve the ran-
domness properties of the produced numbers [23, 25].

3.3.3 The Phase-Locked-Loop

To facilitate high speed testing, a custom phase-locked-loop (PLL) is included
on-chip that allows us to create on-chip clock frequencies in the range of 100
MHz to over 2.5-GHz. The IO drivers on-chip are limited to a maximum toggle
rate of 100-MHz. The PLL thus helps to make high-speed on-chip testing of
the core modules possible.

3.3.4 System Configuration

The system configuration registers are used to configure all aspects of the
design, including initialization variables, data-flow between modules, module
configurations and timing events. The system configuration module is at the
heart of the modularity and configurability of the LP3 design. This module
is the hub of all on-chip inter-module data communication. The timing of
every event within the LP3 is controlled from the system control registers.
All module inputs and outputs are fed through this module. There are three
types of control registers and two sets of addresses in this module. The first
set of addresses correspond to control registers. The second set of addresses
correspond to the system modules. The module addresses include the inputs
and outputs of each module (and in some cases to sub-modules). The three
types of system configuration registers include: system control registers, event
timing registers and module configuration registers.

The system configuration registers are the same size as the off-chip databus,
16-bits. Multiple system configuration registers can be used together to form
larger values. System configuration registers are written with the off-chip
input-databus when the write-enable signal is asserted. The off-chip input
and output databusses behaves like any other module in the design.

The system control registers control the flow of data between modules. The
system can be configured such that almost any given module can be connected

23

Section 3.3: Meeting the Test Challenge - Design for Test

with any other module. The interconnections are facilitated with multiplexors.
The inputs to the multiplexors consist of the other module outputs and a
zero-state register. The zero-state register allows the user to pass zeros into a
module. The value of a control register determines which module output will
go to a module’s input.

System configuration timing-event-registers are used to control timing events.
The most common event is the “reset” event. Each module has a reset sig-
nal. The module reset signals are tied to an associated event signal that is
activated when the system configuration counter reaches the value stored in
a timing-event-register. The off-chip “reset” signal only controls the system
configuration reset. The assertion of the off-chip reset sets the system config-
uration registers to their default values.

The module-configuration-registers store configuration setting for the mod-
ules. For example the AWGN module takes a 128-bit seed value. This seed
value is stored across 8 module-configuration-registers.

When the LP3 chip is reset, it enters an idle state. At this time the user
can configure the system control registers to setup a desired test. Once the
system control registers are set, an additional control register is cleared to start
the system configuration counter, which will, in turn, trigger other events and
thus perform the test.

3.3.5 Asynchronous Memory Interface

To simplify tester communication with the chip, we chose a memory style
interface. The memory interface consists of an 14-bit address bus, a write-
enable signal, a 16-bit input databus and a 16-bit output databus. A major
advantage of this memory interface is that it can be easily made asynchronous.
Nothing happens inside the chip unless the write-enable signal is asserted. The
input databus and address bus are free to toggle and glitch, but the chip will
remains unaffected until the write-enable signal is asserted. To write data into
the chip, the user should wait until the address bus and input databus have
settled then assert the write-enable signal. In this way the external clock and
internal clock do not need to be synchronized in any way. Multiple writes of
the same value to the same address location have no effect on the state of the
circuit. The value of the output databus is solely dependent on the value of
the address bus. Two points are important to emphasize. First, that only
the 1-bit write-enable signal controls the latching of data into the chip. And
second, provided that the address bus and input databus signals remain stable,
a single write or multiple writes makes no difference to the internal state of the
design. LP3’s asynchronous interface makes getting data in and out of LP3 a
relatively easy task.

24

Section 3.3: Meeting the Test Challenge - Design for Test

in

ctrl[9] ctrl[8] ctrl[1] ctrl[0]

1 1 1 1

0 000

out

F
IF

O
 l

en
gt

h
51

2

F
IF

O
 l

en
gt

h
25

6

F
IF

O
 l

en
gt

h
2

F
IF

O
 l

en
gt

h
1

Figure 3.2: LP3 BIST Variable Length FIFO [2].

3.3.6 The BIST Modules

Our BIST module consists of several sub-modules used to test LP3 that in-
clude: a CRC, FIFOs, random number generators and counters instead of
state-machines.

The LFSR is primarily used as a data generator whose output can be
connected to the input of any other module in the design, including the output
databus.

The CRC can be used to generate a 32-bit signature (hash) of the con-
secutive outputs of any module within the chip. The CRC uses the same
polynomial as the IEEE 802.3 standard. The CRC can be programed, via
the system configuration registers, to stop updating after a fixed number of
cycles. Once stopped, the CRC will hold its value, until reset. An on-chip
module is deemed to be behaving as expected if its on-chip signature matches
its simulation signature.

The FIFO is a programmable variable-length FIFO, capable of buffering 1-
bit inputs over a range of 0 to 1023 cycles. The variable-length FIFO is created
by concatenating ten FIFOs of the following lengths: 1,2,4,8,16,32,64,128,256,
and 512. A 10-bit control register acts as a bit-mask for the FIFOs. If a bit
in the bit-mask is a “1” the associated FIFO is enabled, however, if the bit is
“0” the associated FIFO is by-passed and input-bit is sent directly to the next
FIFO. Figure 3.2 illustrates this configuration. The FIFO’s primary use is to
delay values from the BIST LFSR so that they can be later compared with
the output of the decoder to calculate the BER.

An important difference in our BIST circuitry was the use of counters
rather than state-machines. The desired degree of programmability in our de-
sign warranted the use of counters rather than state-machines. In LP3, there
are a number of modules that required different initialization sequences. For
example the encoder needed to be started after 10 cycles, the noise generator
after 1 cycle and the decoder after 22 cycles. All of these events are pro-
grammable via the system control registers. In addition, there are a number
of stop events that send control signals to individual components after a set
number of cycles. For example, the encoder can begin its termination sequence

25

Section 3.4: Encoder and Decoder Architecture

anywhere from 1 cycle to 264 - 1 cycles (an approximate time of 1000 years,
running at 1 GHz). The ability for the design to run for relatively long pe-
riods of time is important when power measurements are performed as our
current-meter takes measurements at 150 ms intervals.

The LFSR and CRC together allow us to perform high-speed testing and
take power measurements. The LFSR is a “random number generator” that
we use to supply inputs to the various on-chip modules. The CRC is key in
testing our design. The CRC generates a 32-bit hash value of the current
16-bit input and the previous 32-bit hash value. We can compare the hash
values generated in simulation to the chip hash values generated in silicon to
verify that the chip is behaving as expected. For example, if a simulated CRC
and the on-chip CRC receive the same 1 million 16-bit values, we would get
two identical 32-bit hash values. However, if any bit in the inputs were to be
different, then the on-chip and simulated hash values would be different. This
allows us to detect errors in any on-chip module. The chance of the simulated
and on-chip CRC producing identical hashes from non-identical inputs is 1/232

if the CRC is designed appropriately.

3.4 Encoder and Decoder Architecture

3.4.1 Encoder

The LP3 LDPC-CC encoder is a compact design with built-in all-phase termi-
nation. LDPC-CC encoder implementations are typically much simpler than
an LDPC-BC encoders with similar capabilities, even though both types of
encoders add redundancy to a stream of information bits. The LP3 encoder
design has been improved compared to the previous implementation presented
in [3]. The LP3 encoder was redesigned to consume less energy-per-bit while
operating at higher frequencies of up to 1.1 GHz.

The structure of an LDPC-CC encoder consists of phase control, registers
for information bits and code bits, and logic for code bit generation (see Fig-
ure 3.3). The phase signals are created by one-hot encoding logic. One-hot
encoded phase signals reduces the amount of encoder logic that is active in
any given cycle and simplifies the encoder logic, which reduces the power con-
sumption and permits a higher frequency clock. As shown in Figure 3.3, the
one-hot encoded phase signals control when the previous information and code
bits are loaded into the appropriate registers. The current code bit is gener-
ated based on the XOR of a specific phase-dependent set of previous code
and information bits. The three-stage XOR tree in Figure 3.3 is pipelined to
increase the throughput.

Unlike block codes, convolutional codes require a termination scheme to
ensure that the trailing information bits at the end of a transmission are pro-
tected. Truncating a data stream without termination results in loss of bit-

26

Section 3.4: Encoder and Decoder Architecture

u127

p127

d

u128

d

p128p1

d

p0

d

ddd d

p69

u128

p126

3−Stage XOR Tree

Code Bit v(t)

v0

p50 p125

u0 v128

p39p9 p109 p82p43 p118

u1u0

Code Bit Generation

Information Bit u(t)

p128p127p0 p1

One−Hot Encoded Phase Generation

Information Registers (Design reused for Code Registers)

Figure 3.3: Architecture of the 1.1-GHz encoder [2]. As previously shown
in the background section.

u0

tP

v0

tP tP

v128

tP

u128

Terminate
p0 p1 p127 p128

tP0 tP1 tP127 tP128

3−Stage XOR Tree

Termination Bit Generation

Termination Phase Control

Termination Bit u(t)

Figure 3.4: Termination mechanism for the encoder [2]. As previously
shown in the background section.

error rate (BER) performance for those bits [26]. Termination is accomplished
by returning the encoder to the all-zero state, where “0” value information
bits result in code bits of value “0” from the encoder. Knowing that the en-
coder is in the all-zero state allows the decoder generate zeros at its input to
complete the decoding process. Unfortunately, built-in termination increases
the standard cell area of the encoder from 14,575 µm2to 55,272 µm2.

The LP3 LDPC-CC encoder implementation utilizes the all-phase termina-
tion scheme described in [26]. The LP3 encoder termination circuitry is shown

27

Section 3.4: Encoder and Decoder Architecture

1 LLR = 1w

Memory Controller

Switch Matrix Controller

I − 1ProcessorProcessor 0

8w

Switch Matrix

28 Memory Banks

28w

Switch Matrix

7w 5w 5w 7w

V−NodeC−Node
1w1w8w

28 Memory Banks

28w

7w

1w
C−Node

1w
V−Node

5w5w

8w

7w

Figure 3.5: Decoder controller and the decoder processor data path [2].

in Figure 3.4. The value of the termination bit depends on the current state
of the encoder. Based on the phase, approximately half of the information
and code bit values are XORed to form the termination bit, which is then
fed back into the encoder as the current information bit. The encoder will
reach the all-zero state after approximately M cycles, where M is the encoder
memory size. At this point, the termination bit will remain at ‘0’. The ter-
mination circuitry is inactive most of the time if the data segments are much
longer than the termination sequence, so its contribution to the overall encoder
power consumption is primarily leakage power.

3.4.2 Decoder

The LP3 decoder concatenates 3 identical decoder processors together. Pro-
cessor concatenation helps reduce routing congestion. To save area, the LP3
decoder processor controller has been implemented separately and is shared
among all the decoder processors. Since each processor performs the same set
of operations as defined by the code, it is possible to share one set of control
circuitry. Data and control signals are registered between decoder processors
to create pipelined decoding logic.

3.4.2.1 Decoder Data Path

The LP3 decoder processor data path, as shown in Figure 3.5, processes 8-bit
LLRs. For the (128,3,6) code, a variable-node consists of two variable-nodes
each with a degree of three and a single check-node with a degree of six. A
given LLR follows a predefined path through a processor. For example, an
LLR flows from a memory bank, through the switch matrix, into a check-node
or variable-node, back through the switch matrix or out of the processor and
then returns to a memory bank. LLRs are registered at the memory output,
the input and output of the switch matrix, the output of the check-node, the
input and output of the switch-matrix again and in a memory bank. The
memory write itself counts as the seventh register in the pipeline.

The critical path of the decoder starts at the registered output of the check-

28

Section 3.4: Encoder and Decoder Architecture

node, passes through the switch-matrix and ends at the registered output of
the switch-matrix.

Our LDPC-CC implementation used 8-bit LLRs, but simulations show that
similar BER performance would be achievable with 6-bit LLRs. An 8-bit LLR
was originally chosen to allow support for adjustable LLR widths in the range
of 4 bits to 8 bits. However, due to time constraints, this feature did not get
implemented. A 6-bit LLR width would be preferable because it would reduce
decoder area while attaining similar BER performance.

3.4.2.2 Decoder Control Path

As shown in Figure 3.5, the decoder controller consists of memory controllers
and a switch matrix controller. Each processor registers the control signals
before passing them to the next processor. This phase delay, allows two clock
cycles for the evaluation of the parity-check and variable-node operations. The
switch matrix routes LLRs between the memory banks, two check-nodes, one
variable-node and the processor’s inputs and outputs.

3.4.2.3 Decoder-Memory Interface

LP3’s decoder design sought to minimize the number of memory banks while
preserving an information throughput of 1 bit per cycle. It was believed that
the memory peripheral overhead was significant and that by minimizing the
number of memory banks the silicon area could be reduced. Only single-port
memories were used since dual-port memories have approximately 1.5 times
greater area as well as higher power consumption. The minimum number of
memory banks depends on the degree of the variable and check-node operations
and the desired throughput. In our case, twelve LLRs are read and written
from the memory banks per clock cycle.

The code itself specifies the LLRs required for each node operation. The
memory needs to be able to supply the LLRs when they are required. The
presence of seven internal pipeline stages in the data path increases the com-
plexity of this problem. A graph-coloring algorithm was developed to find
the minimum number of memory banks given the constraints of the code and
pipelining timing. As shown in Figure 3.5, the algorithm indicated that 28
memory banks are required even though only 24 reads and writes occur in
each cycle. The algorithm was also able to sort the LLRs so as to balance the
number of LLRs in each memory bank.

3.4.2.4 Power Consumption Issues

A memory-based decoder design was chosen to reduce power consumption and
area. The decoder was originally designed to function with custom SRAMs.

29

Section 3.5: Testing

However, since the SRAM blocks were unproven in silicon, registers were in-
stantiated instead to ensure reliability.

In hardware design, it is advantageous when the control path is completely
independent of the data path. In the LDPC-CC decoder, all operations are
predetermined thus the control of a memory bank is independent of the other
memory banks and the rest of the system. The reset signal synchronizes the
individual memory controller sub-circuits, thus allowing each sub-circuit to
operate without communicating with any other sub-circuit. This reduces the
amount of long-distance routing and the associated power consumption. The
same principles apply to the design of the switch matrix controller.

3.5 Testing

Our test system consisted of an HP81200 tester along with an Agilent E3647A
power supply. The PCB board used, was previously used for two LDPC de-
signs. The controlling PC system was installed with Cygwin [27] and ssh to
enabled remote access and scripting of the tests.

The HP81200 has limited IO frequency and is further limited by PCB
design and chip IO driving cells. In the case of LP3, our IO are rated around
100 MHz. However, internal components were expected to run at up to 1 GHz.
As previous discussed, the on-chip PLL would allow us to reach frequencies
exceeding 1-GHz.

Initial tests focused on the verifying that the IO could transfer data onto
and off of the chip successfully. We then proceeded to verify that the PLL
was generating a clock signal and that it could achieved higher frequencies.
Next, individual components were verified by capturing all output at low-clock
frequencies. These results were compared with the gate-level simulations of
the RTL. Once the individual components passed the functional verification
tests, we proceeded to the high-frequency and power tests. Input data was
generated on-chip by the random-number generator and then switched to the
component under test. The output of the component under test was then
directed to the CRC to generate a signature of the output data. The chip gen-
erated signatures were compared to the signatures generated in simulation.
If the signatures did not match, this represent a failed test. Each test was
run over 3.2 billion vectors. The 3.2 billion vector size was chosen to pro-
vide sufficient time to allow sufficiently accurate current measurements to be
taken. During the test, current measurements were taken at 150 ms intervals.
The maximum operating frequency of an individual module is determined by
increasing the clock frequency until the on-chip CRC signature value fails to
match the simulated CRC signature value.

To run the tester over 3.2 billion vectors, the Helium program [28] was
modified to detect and enable loop segments from the generator file. The

30

Section 3.5: Testing

HP81200 pattern memory is limited to 65k vectors, so the HP81200 generator
files were constructed to have three segments: an initialization segment, a loop
segment and a capture segment. The initialization segment configures the chip
for the test and runs the test. The loop segment repeats one pattern to allow
the chip to run its internal test for the desired length of time. The capture
segment extracts and records the output of the chip after the internal-test has
finished. A custom waveform file format is used to specify both simulation
input vectors as well as tester input vectors. Below is a sample of our custom
waveform file:

loop 5000 1 0 0 0 // reset for 5000 cycles
loop 5 0 0 0 0 // wait 5 cycles after turning off the reset
0 2c 1 1 // Set the clock to the PLL x8
loop 5000 0 0 0 0 // wait 5000 cycles for the PLL to stabilize
0 2c 1 1 // Set the clock to the PLL x8 (this op is not really needed)
0 1 13 1 // Set the databus-out to all zeros
0 1b 1 1 // Attach the decoder info-code0 to the CRC
0 1c 2000 1 // Set the CRC (1f,1e,1d,1c) to 0xBEBC2000
0 1d bebc 1 // (internal cycles = 8 x 400,000,000 cycles)
0 1f 0 1
0 2e f 1 // Clock gate everything except the bist and encoder
0 0 0 1 // Start the test
loop 400000000 0 0 0 0 // loop 400,000,000 cycles
0 1 d 1 // Attach the CRC to the output databus
loop 20 0 0 0 0 // Wait 20 cycles

For those lines with a “loop” command, the value following “loop” is the
number of times to repeat the following command. For non-loop statements,
each line represents a four-argument command comprising the off-chip reset
signal, the control register address, the input databus value and the write-
enable signal (in that order). The custom waveform file is processed to create
functional simulation stimulus file as well as a vector input file for the HP81200
tester. The results of the functional simulator are compared to the outputs of
the tester to validate the functionality of the on-chip module under test.

Furthering the automation process, test-runs are scripted. Although the
HP81200 software runs on a Windows PC, we are able to access the tester
via a custom command line program [28] and the Linux-like shell, Cygwin.
These programs combined together allow files to be securely copied to/from
the tester system and commands remotely executed on the tester system. With
scripted tests, we were able to queue frequency versus power sweeps over var-
ious voltages and on-chip modules thus allowing us to make efficient use of
tester time.

The modularity of LP3 allowed us to approach testing the same way we
approached the design, one module at a time. The first thing we did was
by-pass the PLL and output the LFSR values on to the output databus. Once
we saw that the LFSR was working, we routed the LFSR values into the CRC
and configured the CRC to stop after 100 cycles. We compared the chip CRC
value to the simulated CRC value. Seeing that they matched, we enabled the
PLL. Now we ran the same test, directing the LFSR output to the CRC at

31

Section 3.6: Test Results

Figure 3.6: LP3 LDPC-CC packaged die photo with a 2-mm2 core [2].

System Module Area (µm2) Percentage

System Configuration 59,185 3.0

BIST 52,233 2.6

PLL 26,500 1.3

AWGN Generator 292,362 14.6

Encoder 62,304 3.1

Decoder 1,507,416 75.4

Table 3.1: System Module Silicon Area.

higher speeds. Having established that our data generation and results col-
lection work a high-frequency, we started verifying the other components by
disabling the PLL and capturing the output data to be compared with simu-
lated data. Once all modules were deemed functional at low clock frequencies,
we connected them between the LFSR and the CRC and dialed up the clock
frequency until they failed. Power measurements were collected at various
voltages and clock frequencies. We were able to quickly work through any
issues that arose during testing and completed our testing goals within one
month.

3.6 Test Results

LP3 is shown in Figure 3.6. The LP3 component silicon areas are shown in
Table 3.1. The encoder and decoder occupy 3.1% and 75.4% of the 2-mm2 core
chip area. If more decoder processors were included in the design the area of
the testing modules would be amortized. The termination circuitry increases
the area of the encoder by almost four times (not shown).

32

Section 3.6: Test Results

Chip Measured1 Allocated2 Net3

Module Power (mW) Power (mW) Power (mW)

BIST and Leakage 33.2 – 33.2
Encoder 45.3 33.2 12.1

Noise Generator 163.1 33.2 129.9
Decoder 543.9 175.2 368.7

Table 3.2: LP3i CMOS 90 nm power measurement results with a 1 V supply.
1The measured power consumption of one or more active modules. 2Power
already allocated for one or more other active modules. 3The calculated
power consumption of a system module. Note that the IO cells are included
in the power measurements but remain inactive at that time, except for the
clock input pad.

3.6.1 Test Setup

Our test system consists of an HP81200 digital integrated circuit tester and a
programmable Agilent E3647A power supply. While the tester, design-under-
test (DUT) board and IO drivers all limited the IO performance to 100-MHz,
our LDPC-CC modules were designed to run at significantly higher speeds.
For example, the encoder module can operate independently at 1.1 GHz and
the maximum core frequency of the entire system is 600 MHz. As discussed in
Section 3.3.3, the on-chip PLL is available to produce clock frequencies that
exceed the capabilities of the IO drivers.

3.6.2 General Test Chip Measurements

The power consumption of individual test chip modules is achieved by mea-
suring the current drawn by the test chip when specific modules are active.
These current measurements are made by running the test chip for 3.2 billion
clock cycles at various operating frequencies. Billions of vectors are necessary
to provide sufficient time to make current measurements at 150-ms intervals.
Unless otherwise indicated, the power measurements were made for an energy-
per-bit divided by the spectral noise density (Eb/N0) of 2 dB and a core clock
frequency of 600 MHz and is operating with a supply voltage of 1 V.

Individual module power consumption can be measured independently.
Measuring the test circuitry power and then the other modules, makes it pos-
sible to subtract the test circuitry power from the measured module-under-test
power to obtain the individual module power. Unless otherwise specified the
operating voltage is 1 V. The measured power consumption of the BIST cir-
cuitry, including 9.3 mW of chip leakage, is 33.2 mW. The encoder power is
equal to the measured power of encoder and BIST, minus the previously mea-
sured power of BIST. Table 3.2 lists the measured and calculated power for

33

Section 3.6: Test Results

 0

 0.1

 0.2

 0.3

 0.4

 200 400 600 800 1000 1200

P
ow

er
 (

W
at

ts
)

Frequency (MHz)

Decoder
AWGN
Encoder

BIST

Figure 3.7: Module power consumption versus frequency with a 1-V supply
at an Eb/N0 of 2.0 dB [2].

the BIST, the encoder, the AWGN generator and the decoder, operating at
600 MHz. Assuming that the phase control circuitry’s power consumption is
negligible, each decoder processor consumes at most 123 mW. When operating
at 1.1 GHz, the encoder module consumes 22 mW.

The module re-configurability of the LP3 design allows both the power and
the speed of individual modules to be measured independently. The power
consumption versus the operating frequency for individual modules is shown
in Figure 3.7. The AWGN generator and the decoder, operate over a relatively
narrow range of frequencies (from 400 MHz to 600 MHz), whereas, the encoder
and BIST can operate at a wide range of frequencies, from 250 MHz to as high
as 1.1 GHz.

3.6.3 Encoder Measurements

Reducing the operating voltage results in a significant reduction in the encoder
power consumption. Figure 3.8 plots the measured encoder power consump-
tion versus the clock frequency for various core voltages. For a core voltage
of 1.0 V the maximum operating frequency of the encoder is 1.1 GHz. The
encoder, when operated at 1.0 V and 600 MHz, consumes approximately 12
mW of power. Reducing the operating voltage from 1.0 V to 0.7 V reduces
the encoder power consumption from 12 mW to 5 mW, while limiting the

34

Section 3.6: Test Results

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 200 400 600 800 1000 1200

P
ow

er
 (

W
at

ts
)

Frequency (MHz)

1.1 V
1.0 V
0.9 V
0.8 V
0.7 V

Figure 3.8: Encoder module power consumption versus frequency with a
1-V supply at an Eb/N0 of 2.0 dB [2].

maximum operation frequency to 600 MHz.
The shmoo plot in Figure 3.9 shows the ranges of voltages and frequencies

for which the encoder correctly operates (with only leakage from the termina-
tion circuitry) with a 1-V supply at an Eb/N0 of 2.0 dB.

Comparing LP3’s encoder to a previous LDPC-CC encoder design [3] re-
veals that we have significantly reduced the energy-per-encoded-bit. Figure
3.10 shows the energy-per-encoded-bit and the maximum operating frequency.
These results are based on synthesis reports. The encoders were synthesized
without termination circuitry, and the LP3 encoder design was synthesized
with both one and three stages of pipelining. Compared to the reference en-
coder in [3] the LP3 encoder reduces the energy-per-encoded-bit by 40%.

3.6.4 Decoder Measurements

Figure 3.11 shows the measured energy-per-decoded-information-bit versus fre-
quency for various values of Eb/N0. Eb/N0 changes the distribution of proba-
bilities of receiving a ’1’ or a ’0’. An increase in Eb/N0 results in the channel
samples being more tightly grouped around ’1’ and ’0’. Conversely, decreasing
Eb/N0 results in the channel samples having a larger standard deviation out
around ’1’ and ’0’. The decoder has a lower switching activity factor when
Eb/N0 is high as fewer channel samples are in error. Conversely, the decoder
works harder to correct errors when Eb/N0 is low because the distribution of
channel samples widens and more of the channel sample magnitudes deviate
further from the nominal values of ’1’ and ’0’.

35

Section 3.6: Test Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 200 400 600 800 1000 1200

V
ol

ta
ge

 (
V

)

Frequency (MHz)

Functioning Encoder

Figure 3.9: Encoder module shmoo plot [2].

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 500 1000 1500 2000 2500 3000

E
ne

rg
y

pe
r

B
it

(n
J)

Frequency (MHz)

Reference Encoder
3-Stage Encoder
1-Stage Encoder

Figure 3.10: Encoder energy per bit from synthesis data [2] compared with
[3].

36

Section 3.6: Test Results

 0.3

 0.4

 0.5

 0.6

 0.7

 400 450 500 550 600

E
ng

er
y

(n
J)

Frequency (MHz)

Eb/N0 2.0 (dB)
Eb/N0 4.0 (dB)
Eb/N0 8.0 (dB)
Eb/N0 Infinity

Figure 3.11: Measured energy per decoded bit using 3 processors [2].

In Figure 3.11, the lowest energy-per-decoded-bit occurs when Eb/N0 is
infinite. In this case, the channel samples are either ’1’ or ’0’ with no exceptions
nor errors. The decoder does not alter the original channel samples in any way.
The LLRs are simply passed through the decoder. Power is consumed by the
clock-tree network, the control signals and the sign-bits flowing through the
decoder data path. The decoder energy, when Eb/N0 is decreased from infinite
to 2 dB, increases by 25 percent. This can be viewed as the energy required
to correct errors within the channel samples.

Dynamic power is typically linearly related to frequency and the energy-
per-decoded-bit is an indirect measure of the amount of computation done to
decode an information bit. However, in Figure 3.11, it is interesting to observe
that the energy-per-decoded-bit decreases slightly with frequency. Consider-
ing that the power associated with leakage should not change with operating
frequency, we suspect that as the operating frequency is increased, the voltage
across some standard cell supply rails droops slightly due to IR drops. This
drop in voltage results in a reduction in the energy-per-decoded-bit. Alter-
natively, the reduction in the energy-per-decoded-bit could be attributed to
the reduced voltage swing of internal nets. At high frequencies, the internal
signals may not have time to swing rail to rail, thus consuming less power.
We do not believe this is the case, as the drop in the energy would be more
pronounced at higher clock frequencies, just before the operational failure of
the circuit. In our case, we see a steady, constant, decline in the energy with
increasing clock frequency. While Figure 3.11 shows a decrease in energy with
an increase in Eb/N0, this would not typically be the case.

37

Section 3.6: Test Results

 0

 0.1

 0.2

 0.3

 0.4

 200 250 300 350 400 450 500 550 600

Po
w

er
 (

W
at

ts
)

Frequency (MHz)

1.0 V
0.9 V
0.8 V
0.7 V

Figure 3.12: Decoder module power consumption versus frequency [2].

The energy for three processors operating at 600 MHz with an Eb/N0 of 2
dB is 0.61 nJ per decoded information bit. The energy-per-decoded-bit for 30
processors would actually be less than ten times this value (6.1 nJ) due to an
effective decrease in the average Eb/N0 as LLRs pass through the 30-processor
decoder.

As the operating voltage is reduced, the power consumption is reduced.
Figure 3.12 shows the decoder power versus frequency for various core voltages.
The minimum operating frequency of the PLL at a frequency multiple of 8 is
240 MHz. As the power supply is decreased the maximum decoder operating
frequency decreases along with the power consumption. At a supply voltage
of 1 V, it is interesting to note that the decoder has a minimum operating
frequency of 400 MHz. For a 1 V supply, we hypothesize that hold time
violations limit the decoder operation at frequencies below 400 MHz. For
frequencies above 400 MHz, we believe that the internal core voltage drops
slightly below 1 V due to IR drops, which causes the hold time violations
to disappear. This hypothesis is supported by the correct operation of the
decoder at clock frequencies below 400 MHz with a supply voltage of 0.9 V or
less.

Although the LP3 decoder implementation consisted of only three proces-
sors, the LP3 LDPC-CC decoder results can be scaled for comparison purposes.
Given 50 mm2 of area, 30 decoder processors could be implemented. Figure
3.13 compares the BER versus Eb/N0 for an LP3 decoder 10 and 30 proces-
sors using 8-bit LLRs, a conventional 10-iteration LDPC-BC decoder [7] and
a 10-processor LDPC-CC decoder [3]. The 8-bit (128,3,6) LDPC-CC decoders

38

Section 3.7: Conclusion

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 2 3 4

B
E

R

Eb/N0 (dB)

BC (N=1024), float, 10 iter.
CC (M=128), float, 10 proc.
CC (M=128), 8-bit, 10 proc.
CC (M=128), 8-bit, 30 proc.

Figure 3.13: Decoder bit-error rate versus Eb/N0 [2].

start to show error floors around a BER of 1e-06.

3.7 Conclusion

We have presented a rate-1/2 (128,3,6) LDPC-CC encoder and decoder archi-
tecture that targets high-throughput operation. LP3, implemented in a 90-nm
CMOS process, features an architecture that enables power and performance
measurements to be made at operating speeds. On-chip test circuitry permits
accurate power measurements to be made at selectable SNR settings.

LP3, a high-throughput encoder and decoder, improves upon previous work
[3]. The LP3 encoder uses techniques, such as one-hot encoding logic, to reduce
the power consumption. Operating at 1.1-Gb/s, the encoder is compact and
consumes 22 mW of power at 1 V while in normal operation and includes
built-in termination. The LP3 encoder reduces the energy-per-encoded-bit by
40% compared to a previous convolutional encoder design [3].

The LP3 decoder adds novelty with respect to previous LDPC-CC decoders
by removing the control circuitry from the decoder processor by phase-aligning
the decoder processors, as well as introducing a new memory organization di-
rected by graph coloring. A single decoder controller can be shared among
an arbitrary number of processors. The decoder design uses a memory-based
architecture with a minimum number of memory banks to deliver an informa-
tion throughput of 1 bit per clock cycle. The decoder has energy-per-decoded-
information-bit of 0.61 nJ per 3 decoder processors at an Eb/N0 of 2 dB and

39

Section 3.7: Conclusion

produces a decoded information throughput of 600 Mb/s. When operating at
600 MHz with an Eb/N0 of 2 dB, and a 1 V supply voltage, the three-processor
decoder consumes 369 mW of power. A 30-processor LP3 decoder would have
an energy-per-decoded-information-bit of less than 6.1 nJ.

40

Chapter 4

Parallel-Node LDPC-CC Encoder
Architecture Exploration

We present new encoder and decoder architectures that exploit code paral-
lelism to increase both the throughput and decrease the energy-per-bit. These
new architectures, compared to non-parallelized architectures, improve the
throughput/area. The new encoder and decoder architectures are specific to
the architecture-aware Parallel-Node Low-Density Parity-Check Convolutional-
Codes (PN-LDPC-CCs) developed by Zhengang Chen and presented in [1].
PN-LDPC-CCs are constrained to allow parallel processing of the multiple in-
formation and parity bits. The maximum number of parallel information bits
that can be processed at a time will be called the node-parallelization factor,
ρ [1].

We present results for 26 1/2 rate (3,6) PN-LDPC-CCs. These particular
PN-LDPC-CCs are a result of initial work by Zhengang Chen and later, as a re-
sult of the evolution of the encoder and decoder designs and resulting hardware
metrics. As the BER performance and hardware metrics showed the benefits,
and lack of consequences, of increased parallelism, we obtained codes with an
increase in code parallelism to the extent which the code design process was
capable of achieving. From the comparison against the published results in the
literature, it became apparent that smaller codes would have sufficient BER
performance for the comparisons. On account of this need, Zhengang Chen
designed codes with shorter lengths and increased parallelism. In addition, to
allow us to achieve a comprehensive set of results, Zhengang Chen designed
PN-LDPC-CCs with varying node-parallelism and fixed code lengths. As a
result, we ended up with 26 PN-LDPC-CCs. The results presented herein, are
applicable to higher-rate codes as well, for more discussion on the higher-rate
PN-LDPC-CCs see [1].

LDPC-CC decoders are significantly more complex than their correspond-
ing encoders [2]. However, for those applications where one terminal will
transmit far more information than they will receive, the performance of the

41

Chapter 4: Parallel-Node LDPC-CC Encoder Architecture Exploration

encoder becomes critical. In Section 4.1, PN-LDPC-CC encoder architec-
tures are presented that set new low-power and throughput benchmarks for
all known LDPC-CC and BC encoders.

Compared to previous LDPC-CC implementations, the new PN-LDPC-CC
decoder architectures (described in Chapter 5) dramatically reduce the energy-
per-decoded-bit while at the same time increasing the data throughput.

42

Section 4.1: Parallel-Node LDPC-CC Encoders

Figure 4.1: Partial syndrome encoder for the architecture-aware codes with
ρ=8 [1]. Note that the “SW0” switches have an implementation complexity
of O(ρ2) and that all registers are updated every clock cycle.

4.1 Parallel-Node LDPC-CC Encoders

First we will describe the initial work done in the area of parallel-node LDPC-
CC (PN-LDPC-CC) encoder architectures and then proceed to describe the
base version of the novel encoder architecture. Then we present a series of im-
provements to the novel architecture. Each improvement is qualified in terms
of energy-per-encoded-bit versus throughput and area versus throughput. The
results are obtained from synthesis runs. Area, speed and power estimates are
obtained from synthesis to a standard cell gate-level netlist without final lay-
out. In the case of the encoder in Chapter 3, the silicon area was 13 percent
larger than the standard cell area. Note that synthesis results can vary de-
pending on a number of factors some of which include: effort level, synthesis
algorithms (i.e. different synthesis tool versions) and HDL coding. For more
details on the methods used to generate the results and the variability in syn-
thesis results, please refer to Appendix A.

Initial work on the PN-LDPC-CC encoder was presented in [1]. Figure 4.1
depicts the initial architecture. This encoder is a partial syndrome encoder
[18], with ρ=8. For a given 1/2-rate PN-LDPC-CC, 8 bits of user data (v) and
8 bits of parity data (u) are output per phase. Note that the input databus
data[ρ-1:0] is connected to each register bank regX[ρ-1:0] via a rotation switch
matrix (SW0) and a summation circuit. Depending on the phase signal, the
SW0 can produce either a circulant of the input vector or a zeroed output.
The circuitry required to implement SW0 grows greater than linearly with ρ
because SW0 has ρ inputs and outputs and ρ2 paths between those inputs and
outputs.

To facilitate efficient hardware implementations, it is advantageous to link
the phase with memory addressing. This allows the same memory addresses
to be used for the same phase in every period. For this to hold true: ms <= Ts.
In our set of PN-LDPC-CCs this is always the case.

All encoders discussed in this chapter process one phase per clock cycle.
While it is possible, in both the encoder and decoder, to use multiple clock

43

Section 4.1: Parallel-Node LDPC-CC Encoders

cycles per phase, the total switched gate capacitance increases with this ap-
proach. Thus the total dynamic power would normally increase with a multi-
cycle approach. However, in the case of poorly implemented high-fanout nets,
that have excessive internal node slews, a multi-cycle approach may actually
reduce the dynamic power. Dynamic-power and switched gate-capacitance are
highly correlated and the power associated with short slew times, is usually
small. Thus in a multi-cycle approach, for a non-clock-gated implementation,
such as the encoder discussed in Section 4.2, the repeated switching of the
clock network in addition to the extra storage required to store intermediate
signals, would be undesirable. As a general rule, when high fanout nets are
not present, introducing extra cycles can indeed improve throughput, but at
the cost of higher power consumption. In rare cases with nets with long slews,
then introducing pipelining can potentially save power. However, in order
for power savings to occur the power associated with the extra load on the
clock and data path in the form of latches or flip-flops must be less than the
power consumed via prolonged crowbar current due to longer slews. Typically,
buffering shortens the slew, but at the cost of greater latency. Should the la-
tency increase unacceptably, then pipelining may be required, regardless of the
increase in power consumption. Given our emphasis on low-power, multi-cycle
datapaths will be be avoided in favor of doing as much as possible in a single
cycle.

The throughput of an encoder is determined by both the code and imple-
mentation architecture. When one phase is processed per cycle, the through-
put is equal to the clock frequency multiplied by the ρ:

NencThroughput= fclk ·ρ (4.1)

where NencT hroughputis the encoder throughput, fclk is the clock frequency and
ρ is the node-parallelization factor.

In the following sections, we present a series of improvements to the initial
encoder architecture shown in Figure 2.7. Section 4.2 describes a design that
eliminates the hardware dependence on ρ. Section 4.3 describes a design that
swaps XOR gates for OR gates to reduce the power consumption. Section
4.4 describes a design that uses clock-gating to reduce power consumption.
Section 4.5 describes a design that increases the databus size to further reduce
the switching activity and thus the power consumption. Section 4.6 shows how
de-multiplexing the input-databus reduces the power consumption. Section 4.7
shows how to merge multiple PN-LDPC-CC encoders together to reduce the
energy per encoded bit as well as the throughput/area. Section 4.8 compares
the best of the new PN-LDPC-CC encoders to the state-of-the-art for LDPC
encoders. Section 4.9 summarizes the main conclusions about the new PN-
LDPC-CC encoders. Our encoder version numbering starts at v2. Encoder v1
was a non-functional design and will not be be discussed.

44

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

Figure 4.2: Encv2 encoder node. The register is updated only 5 times per
T ′

s . This architecture is free from the O(ρ2) hardware complexity.

4.2 Encoder v2 - Circular Buffer (Encv2)

In this section we present the novel encv2 architecture that removes the hard-
ware dependence on the value of ρ. In other words, increasing ρ has no impact
on the circuit area. In addition, we show that using the encv2 architecture
decreases the energy-per-encoded-bit when the ρ is increased. Recall that in
the previous section, we established that the throughput is linearly related to
ρ.

The development of the encv2 architecture is best described using a few
high-level concepts. The encv2 architecture is created by constraining the reg-
ister banks so they do not need to shift; instead they become, in the next phase,
the next register bank in the shift-chain. Also, the registers are constrained
to accept input data unique to each phase. In this way the shift chain in the
reference design has been transformed into a circular buffer. This requires
the control logic for each encoder node to be updated to compensate for such
changes. As a result, the phase-dependent switch matrices (SW0) from Figure
2.7 are eliminated and are replaced with fixed re-wiring and phase-gated in-
puts. Figure 4.2 shows the new encoder node architecture. The datapath for
encv2 is formed by replicating the encoder node for each phase in the group
period T ′

s. The hardware complexity has been simplified.
The flow of data through encv2 (Figure 4.2) is altered compared to the

reference design (Figure 2.7). In the reference encoder architecture, data flows
through the shift-chain of registers to the end register where it becomes the
parity-output. In encv2, register data is updated according to the PC-LDPC-

45

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

CC, but stays with a flip-flop until it is replaced in the next period. In encv2,
the parity-output is actively chosen from one set of the T ′

s encoder node regis-
ters. Similar to the reference design, the input-data vector is broadcast to all
register banks. This allows the register to update itself with the appropriate
phase selected input data. Listing 4.1 contains pseudo code for the encoder
operation.

0.05
pcm = par i ty check mat r i x
cur r ent phase = 0
whi le (not end o f frame)

data input = user data ()
f o r each encoder node in p a r a l l e l with a l l en code r node s

i f cur r ent phase i s used in encoder node
i f cur r ent phase i s used f o r data input to encoder node

xorInA <= rewi r e (data input , pcm [cur r ent phase])
e l s e

xorInA <= 0

i f cur r ent phase i s used f o r r eg i npu t to encoder node
xorInB <= reg [pcm [cur r ent phase]]

e l s e
xorInB <= 0

i f cur r ent phase i s the update phase f o r t h i s encoder node
reg <= regs (pcm(e , cur r ent phase))

e l s e
reg <= xor (xorInA , xorInB , reg)

e l s e
reg <= reg

i f cur r ent phase == encoder node
par i ty output <= reg

end for each encoder node
cur r ent phase = (cur r ent phase + 1) MOD T’ s

end whi le

Listing 4.1: Encoder pseudo code.

The phase is one-hot encoded to reduce circuit complexity. One-hot en-
coding, also referred to as “a one in a field of zeros”, also reduces the switching
activity of the control circuitry. Figure 4.3 shows how the phase is one-hot
encoded. When the encoder reset signal is asserted (not shown), all registers
are zeroed, except the one register that is being set. Using this signal the
one-hot encoded phase is initialized.

A consequence of the parity data not shifting through the registers is that
all of the registers need to be connected to the parity output. This differs
from the reference design, where only one register bank is connected to the
parity-output. As shown in Figure 4.4, depending on the phase, the output
parity bits are multiplexed out from one of the registers. Here the one-hot
encoded phase is used to conditionally connect T ′

s register banks, of width ρ,
to the parity output vector v(t). The hardware complexity of the OR tree is
given by Equation (4.2).

46

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

Figure 4.3: One-hot encoding of the phase. In this case for a Ts=480, ρ=8
code. Upon reset, one register is set and all other register are unset.

Figure 4.4: Encv2 parity output circuitry. Only one “regPhase” signal is
asserted at any given time.

CORtreeComplexity= O(T ′
s· log(T′

s)) (4.2)

The number of OR trees is equal to ρ. From the perspective of the info-input
and parity-output databusses, the shift-register chain has been transformed
into a circular buffer.

Given insight as to how the PN-LDPC-CCs work, area and power can be
saved by replacing XOR gates with OR gates. Knowing that multiple info
or multiple parity updates cannot occur in the same phase, encv2 uses OR
gates to combine info and code updates before XORing the current register’s
contents with that of the info and parity updates. This is significant in that
XOR gates consume more area, more power and are slower than OR gates. In
this case, we know that only one info update and only one parity update are
performed per phase. A further optimization would be to detect when both
an info and parity update occur in a single phase and then use an XOR gate;
otherwise, use an OR gate (this is further explored in Section 4.3).

Synthesis results for cell area, power and timing were obtained using Syn-
opsys Design Compiler version 2007.03. To account for the clock tree network,
the timing constraints include a skew of 50 ps. Unless otherwise specified,

47

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

 0.1

 1

 10

 100

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p1
1152_C2_p32
1152_C2_p48
2304_C2_p64

Figure 4.5: Encv2 energy-per-bit versus throughput. Throughput and
energy-per-bit are not mutually exclusive. Those codes with a higher ρ
also have lower energy-per-encoded-bit values. Those codes with a lower ρ
have higher energy-per-encoded-bit values. Consecutive points on the same
line are a result of synthesis runs targeting higher clock frequencies. Parts
of this graph are examined in detail in Figures 4.7 and 4.8.

the results are based on a ST Microelectonic’s CMOS 90-nm standard cell
library (for more details see Appendix A). Timing was analyzed using both
the best and worst case timing libraries, with the included wireload models.
Power estimates were made via Design Compiler, using the worst-case timing
libraries, after back-annotating internal node switching activities derived from
a 10,000-clock-cycle gate-level functional simulation. Each encoder circuit was
independently synthesized for a target clock frequency of 250, 500, 750, 1000
and 1250 MHz. Results are reported if the synthesized encoder passes Design
Compiler’s static-timing analysis (i.e. has zero or positive slack).

As was noted earlier, as ρ increases, the energy-per-encoded-bit decreases
while the throughput increases. Figure 4.5 shows the energy-per-encoded-bit
versus the throughput for our PN-LDPC-CCs. These results are based on the
encv2 architecture. This graph provides a helpful visual reference showing
extremes and trends. The maximum encv2 throughput is 64 Gbits/s (pro-
duced by the Ts=2304 and Ts=768 codes with ρ=64). The lowest energy-per-
encoded-bit is achieved by those codes with the lowest T ′

s and is on the order
of 4×10−13 Joules. It is interesting to note that the codes with the high-
est ρ simultaneously achieve the maximum throughput and nearly the lowest
energy-per-encoded-bit. Figure 4.6 show the energy-per-encoded-bit versus the

48

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

 0.1

 1

 10

 100

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

192
288
480
576
768
864
960

1152
2304

Figure 4.6: Encv2 energy-per-bit versus the information throughput for
the PN-LDPC-CCs. The higher the ρ, the higher the information
throughput and the lower the energy-per-encoded-bit. Code lengths (Ts)
and parallel-node (ρ) values are as specified: for Ts=192 ρ ∈{16}, for
Ts=288 ρ ∈{1,4,8,24}, for Ts=384 ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576
ρ ∈{1,4,8,12,16,24,48}, for Ts=768 ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24},
for Ts=960 ρ ∈{8}, for Ts=1152 ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. A
clock frequency of 250 MHz is used.

throughput versus ρ for a 250-MHz clock. Each curve in the figure corresponds
to a fixed code length. Points along a curve, moving from left-to-right, repre-
sent an alternative code with the same Ts but an increased ρ. As ρ increases,
energy-per-encoded-bit decreases and throughput increases.

As ρ goes up, the energy-per-bit goes down. Comparing the Ts=768 codes
(Figure 4.7) and Ts=576 codes (Figure 4.8) for various values of ρ, we see a
nearly inverse linear relationship between energy-per-encoded-bit and ρ. Both
sets of codes, Ts=768 and Ts=576, clearly display the trend that as ρ goes up
the energy-per-bit goes down.

However, there is no systematic relationship between ρ and the maximum
clock frequency. Figure 4.9 shows, for the Ts=768 codes, that the maximum
attainable clock frequency is unaffected by increasing ρ. All Ts=768 codes are
able to meet timing at a clock frequency of 1250 MHz. None of the Ts=768
codes are able to meet timing at a clock frequency of 1500 MHz. This lack of
correlation between ρ and the maximum attainable clock frequency also holds
true for the other Ts codes.

The standard cell area required to implement the encv2 architecture is in-

49

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

4
8

16
32
64

Figure 4.7: Encv2 energy-per-encoded-bit versus throughput for Ts=768
codes with a ρ of 4, 8, 16, 32 and 64. For codes with the same Ts, note how
increasing ρ lowers the energy-per-bit and raises the throughput.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30 35 40 45 50

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

4
8

12
16
24
48

Figure 4.8: Encv2 energy-per-encoded-bit versus throughput for Ts=576
codes with a ρ of 4, 8, 12, 16 and 24. Again, for codes with the same Ts,
note how increasing ρ lowers the energy-per-bit and raises the throughput.

50

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Clock Frequency (GHz)

4
8

16
32
64

Figure 4.9: Encv2 energy-per-encoded-bit versus clock frequency for Ts=768
codes with a ρ of 4, 8, 16, 32 and 64. The maximum attainable clock
frequency is the same from all five values of ρ.

dependent of ρ. Figure 4.10 shows, for the Ts=768 codes, the impact of ρ
on the standard cell area over a range of clock frequencies. While increasing
the clock frequency does indeed increase the standard cell area, increasing ρ
has little impact on standard cell area. This can be explained intuitively by
noting that the number of registers in the encoder remains constant regardless
of changes in ρ. As ρ increases, the number of encoder nodes decreases pro-
portionally to the increase in ρ while the number of registers in each encoder
node increases proportionally to the increase in ρ. By eliminating the rotation
switch-matrix found in the reference design, changing ρ has almost no net
impact on hardware complexity.

To confirm encv2’s area-independence from ρ, Figure 4.11 plots area versus
ρ for the Ts=768 codes for clock frequencies of 250, 500, 750, 1000 and 1250
MHz. Note that the area changes very little as ρ increases.

The standard cell area is affected by the clock frequency. Figure 4.12, shows
the area versus the throughput for various codes with ρ=8. As expected, the
area slightly increases with throughput and nearly linearly increases with Ts.
Throughput increases linearly with the clock frequency. As the clock frequency
increases the synthesis tool will use more gates or larger gates in order to meet
timing, hence the slight increase in area as the throughput goes up.

The required area is primarily determined by Ts. Figure 4.13 shows the
standard cell area versus throughput versus ρ. Each curve in the figure corre-

51

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
re

a
(u

m
2)

Clock Frequency (GHz)

1
4
8

16
32
64

Figure 4.10: Encv2 area versus clock frequency for Ts=768 codes with a ρ
of 4, 8, 16, 32 and 64. The encoder area appears to be independent of ρ,
but is correlated to the clock frequency.

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 0 10 20 30 40 50 60 70

A
re

a
(u

m
2)

ρ

250
500
750

1000
1250

Figure 4.11: Encv2 area versus ρ for Ts=768 codes for clock frequencies of
250, 500, 750, 1000 and 1250 MHz. The encoder area is uncorrelated to ρ.

52

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 2 4 6 8 10

A
re

a
(u

m
2)

Throughput (GBits/s)

288
480
576
768
960

Figure 4.12: Encv2 area versus throughput for ρ=8 codes of lengths Ts equal
to 288, 480, 576, 768 and 960. Note that area increases with Ts. The area
also increases slightly as the throughput increases.

sponds to a fixed code length. Points along a curve, moving from left-to-right,
represent an alternative code with the same Ts but an increased ρ.

As Ts increases, the energy-per-encoded-bit increases. Given ρ=8, Figure
4.14 shows the relationship between Ts and the energy-per-encoded-bit. Al-
though the number of computations done per cycle remains the same for the
ρ=8 codes, increasing Ts increases the number of registers, the size of the clock
network and the fanout and fan-in of the input databus and output databus,
respectively. Thus, for the encv2 architecture, the relationship between Ts and
energy-per-encoded-bit is nearly linear.

The energy-per-encoded-bit appears to be a function of T ′
s, which is de-

fined to be ratio of Ts to ρ. Figure 4.15 compares the energy-per-encoded-bit
versus clock frequency for codes with a T ′

s of 36. For the various codes that
have a T ′

s of 36, the energy-per-encoded-bit is roughly independent of Ts, over
a range of clock frequencies. At the highest operating frequency we see a
scatter in the energy-per-bit that appears to be uncorrelated to either ρ or
Ts. Figure 4.9 shows the energy-per-encoded-bit for a constant code length for
various values of ρ, while Figure 4.14 shows the energy-per-encoded-bit for a
constant ρ for various values of Ts. In both figures, the energy-per-bit changes
with Ts and ρ and confirms the observation that T ′

s has the largest impact
on the energy-per-bit. This belief is confirmed in Figure 4.16, which plots the
energy-per-encoded-bit versus T ′

s for all codes at a clock frequency of 500 MHz.

53

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0.1 1 10 100

A
re

a
(u

m
2)

Throughput (GBits/s)

192
288
480
576
768
864
960

1152
2304

Figure 4.13: Encv2 area versus the information throughput, for the
PN-LDPC-CCs. Code lengths (Ts) and parallel-node (ρ) values are as
specified: for Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24}, for Ts=384
ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48}, for Ts=768
ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for Ts=1152
ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. A clock frequency of 250 MHz is
used.

Note that the energy-per-encoded-bit is nearly linearly dependent on T ′
s. The

plotted line, generated using least-squares fitting, has an intercept of 0.0834
pJ, a slope of 1.68×10−14, and matches the plotted data with a coefficient
of determination of 0.996. In summary, neither the code length Ts nor the ρ
alone predict the energy-per-encoded-bit, but their ratio, T ′

s, does.
Examining the internal circuit switching activity with knowledge of the

factors effecting the loading allows us to focus on design modifications with
the largest potential for power savings. Table 4.1 shows the typical switching
activity per clock cycle for the encv2 architecture. The clock, “clk”, switches
once per cycle. The switching activity of “regPhase[0]” represents the pro-
cessing of a databus input vector of size ρ. Multiplying the switching activity
of “regPhase[0]” by the T ′

s will always produce a value approximately equal
to one. Another way of looking at this is that “regPhase[0]” will have two
transitions per T ′

s. Register “regs[0]” will statistically toggle 2.5 times per T ′
s.

This is consistent with our (3, 6) half rate codes. The registers are potentially
updated five times per T ′

s. Half of the time, a register will be updated with the
value already present in the register, resulting in no output node switching.
Thus the average toggle rate is 2.5 times per T ′

s. Given the random values

54

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

288
480
576
768
960

Figure 4.14: Encv2 energy-per-encoded-bit versus throughput for ρ=8 codes
of various lengths Ts=288, 480, 576, 768, 960. Note that the energy-per-bit
grows with Ts.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Clock Frequency (GHz)

288_C2_p8
576_C2_p16
864_C2_p24

1152_C2_p32
2304_C2_p64

Figure 4.15: Encv2 energy-per-encoded-bit versus the clock frequency for
various codes with a common T ′

s of 36. The bunching of the curves supports
our claim that T ′

s is a predictor of energy-per-encoded-bit.

55

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

 0.1

 1

 10

 100

 10 100 1000 10000

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

T’s

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p1
1152_C2_p32
1152_C2_p48
2304_C2_p64

linear

Figure 4.16: Encv2 energy-per-encoded-bit versus T ′
s for various codes at

a clock frequency of 500 MHz. A best-fit line, with an intercept of 0.0834
pJ and a slope of 1.68 × 10−14, is plotted to show the correlation of the
data. The coefficient of determination is 0.996. These results confirm T ′

s as
a predictor of energy-per-encoded-bit.

generated for the input databus, databus inputs will, on average, toggle at a
rate of 0.5 times per clock cycle. Given the nature of the code, the “code[0]”
output is expected to toggle at a rate of 0.5 times per clock cycle. Varia-
tions from the predicted values are statistical deviations due to the simulation
over only 10,000 clock cycles. To reduce the power consumption, the impor-
tant factor to consider is the capacitance of a net multiplied by its switching
activity. In this case, the clock network and the input databus both have
relatively large networks and high switching rates. Section 4.4 explores the
possibility of clock-gating and Section 4.6 explores how power can be reduced
by de-multiplexing the databus.

Considering the encoder switching activity helps us to explain the nearly
linear relationship between T ′

s and the energy-per-encoded-bit. In the encv2
architecture the switching power is dominated by the clock network, with rel-
atively little combinational circuitry active in each clock cycle. As ρ increases,
the active combinational circuitry activity does indeed increase roughly lin-
early; however, the resulting contribution of dynamic power remains small
compared to that of the clock network. The number of registers in the en-
coder datapath and the size of the clock network is proportional to the code
length (Ts). The larger the value of ρ, the fewer registers in the one-hot control
circuitry, and the more bits encoded per clock-cycle. The larger the value of

56

Section 4.2: Encoder v2 - Circular Buffer (Encv2)

code T ′
s clk data[0] regPhase[0] regs[0] code[0]

Ts 1152 ρ 32 36 1.000 0.255 0.028 0.035 0.253
Ts 1152 ρ 48 24 1.000 0.251 0.042 0.051 0.250
Ts 2304 ρ 64 36 1.000 0.248 0.028 0.034 0.246
Ts 288 ρ 4 72 1.000 0.244 0.014 0.018 0.248
Ts 288 ρ 8 36 1.000 0.247 0.028 0.036 0.250
Ts 480 ρ 8 60 1.000 0.248 0.017 0.021 0.245
Ts 576 ρ 12 48 1.000 0.249 0.021 0.027 0.251
Ts 576 ρ 16 36 1.000 0.249 0.028 0.035 0.249
Ts 576 ρ 24 24 1.000 0.252 0.042 0.052 0.248
Ts 576 ρ 4 144 1.000 0.244 0.007 0.009 0.249
Ts 576 ρ 8 72 1.000 0.248 0.014 0.018 0.248
Ts 768 ρ 16 48 1.000 0.248 0.021 0.021 0.249
Ts 768 ρ 32 24 1.000 0.255 0.042 0.052 0.249
Ts 768 ρ 4 192 1.000 0.244 0.006 0.007 0.250
Ts 768 ρ 8 96 1.000 0.248 0.011 0.014 0.252
Ts 864 ρ 24 36 1.000 0.252 0.028 0.036 0.248
Ts 960 ρ 8 120 1.000 0.248 0.009 0.010 0.247

Table 4.1: Encv2 switching activity per clock-cycle.

ρ, the more the power of the clock network is amortized over a larger number
of encoded bits. As was established earlier, the throughput is proportional
to ρ. Thus, in a simplified view of encv2, the energy-per-bit can be viewed
as the energy consumed by the clock network divided by the ρ multiplied by
the clock frequency. If the clock network is a major source of power con-
sumption in the encv2 architecture, then it stands to reason that replacing the
clock network with the clock-gated phase signals should significantly reduce
the energy-per-encoded-bit. This strategy is explored in Section 4.4.

At low clock frequencies, the leakage power dominates the total power
consumption and increases the energy-per-encoded-bit. In Figures 4.9 and
4.15, which plot the energy-per-encoded-bit versus the clock frequency, we see
a slight increase in the energy-per-encoded-bit at the lowest clock frequency
(250 MHz). This is due to the static power consumption becoming a more sig-
nificant source of power consumption. At 250 MHz and 500 MHz, the static
power consumption represents approximately one-quarter and one-eighth, re-
spectively, of the total power consumption. As the clock frequency increases,
the dynamic power dominates the power consumption.

In summary, increasing the node-parallelization factor ρ in the PN-LDPC-
CC encv2 architecture increases the throughput, decreases the energy-per-
encoded-bit and does not impact the required silicon area. For the encv2
architecture, we have shown that T ′

s is a predictor of the energy-per-encoded-
bit.

57

Section 4.3: Encoder v3 - Replacing a 3-Input XOR-Gate

Figure 4.17: Encv3 encoder node. We can conditionally replace the 3-input
XOR from Figure 4.2 with a 2-input XOR and a 2-input OR gate.

4.3 Encoder v3 - Replacing a 3-Input XOR-Gate with a

2-Input XOR-Gate and 2-Input OR-Gate (Encv3)

In this section to reduce the power consumption, we replace most of the 3-input
XOR gates with one simpler 2-input XOR gate and one OR-gate. We refer
to this operation as gate-swapping. In encv2, Figure 4.2, we can see that the
phases controlling the data (“info”) and register (“parity”) updates are not the
same. Thus we can OR the phase-gated “info” and “parity” updates together
and input the result into a 2-input XOR. When the “info” and “parity” updates
occur in the same phase, the 3-input XOR is still required. In the Ts=480,
ρ=8 code, which has a T ′

s of 60, the “info” and “parity” updates only occurred
simultaneously, twice out of 60 phases. In the case of the Ts=768, ρ=16 code
(T ′

s of 48), simultaneous “info” and “parity” updates occur in 5 out of 48
phases. In the case of the Ts=768, ρ=64 code (T ′

s of 12), simultaneous “info”
and “parity” updates occur in 4 out of 12 phases. This pattern is representative
of the other PN-LDPC-CCs.

Gate swapping results in little change in the energy-per-encoded-bit. Fig-
ure 4.18 is shown as a reference for the energy-per-bit versus throughput for
the PN-LDPC-CCs. Compared to Figure 4.5, we see that there is actually
little change in the minimum energy-per-encoded-bit. Figure 4.19 show the
energy-per-encoded-bit versus the throughput versus ρ for a 250-MHz clock.
Each curve in the figure corresponds to a fixed code length. Points along a
curve, moving from left-to-right, represent an alternative code with the same
Ts but an increased ρ. As ρ increases, energy-per-encoded-bit decreases and
throughput increases.

58

Section 4.3: Encoder v3 - Replacing a 3-Input XOR-Gate

 0.1

 1

 10

 100

 0.1 1 10 100 1000

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
1152_C2_p1

1152_C2_p32
1152_C2_p48
1152_C2_p96
2304_C2_p64

Figure 4.18: Encv3 energy-per-bit versus throughput for all the PN-LDPC-
CCs. Compared to encv2, there is an overall slight reduction in the ratio of
energy-per-encoded-bit to throughput.

In most cases, gate swapping slightly reduces the energy-per-encoded-bit
for those codes with larger T ′

s. Figure 4.20 compares encv2 and encv3 for a
subset of codes in terms of energy-per-encoded-bit versus throughput. The
conditional replacement of the 3-input XOR gates slightly reduces the energy-
per-encoded-bit for those codes with larger T ′

s. The reduction in energy-per-
encoded-bit is typically greater at higher clock frequencies, with the excep-
tion of the ρ=64 codes where decv3’s energy-per-decoded-bit converges with
decv2’s. Swapping 3-input XORs for 2-input XORs produces a small, but
systematic reduction in power.

On average, gate swapping reduces the area by 4 percent. For the same set
of codes, as in Figure 4.20, Figure 4.21, compares the area versus throughput
of encv3 to that of encv2. For all but the highest throughputs, area is reduced
for every code by using encv3 instead of encv2. At the highest clock frequencies
the area savings are the smallest. Overall, gate swapping saves area.

The required area is primarily determined by Ts. Figure 4.22 shows the
standard cell area versus throughput versus ρ. Each curve in the figure corre-
sponds to a fixed code length. Points along a curve, moving from left-to-right,
represent an alternative code with the same Ts but an increased ρ.

In summary, conditionally swapping the 3-input XOR with a 2-input XOR
and a 2-input OR gate is advantageous in terms of the energy-per-encoded-bit
and area. The gate swapping is most effective in those codes with larger T ′

s.

59

Section 4.3: Encoder v3 - Replacing a 3-Input XOR-Gate

 0.1

 1

 10

 100

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

192
288
384
480
576
768
864
960

1152
2304

Figure 4.19: Encv3 energy-per-bit versus the information throughput
for the PN-LDPC-CCs. The higher the ρ, the higher the information
throughput and the lower the energy-per-encoded-bit. Code lengths (Ts)
and parallel-node (ρ) values are as specified: for Ts=192 ρ ∈{16}, for
Ts=288 ρ ∈{1,4,8,24}, for Ts=384 ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576
ρ ∈{1,4,8,12,16,24,48}, for Ts=768 ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24},
for Ts=960 ρ ∈{8}, for Ts=1152 ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. A
clock frequency of 250 MHz is used.

As a general practice, gate swapping is recommended.

60

Section 4.3: Encoder v3 - Replacing a 3-Input XOR-Gate

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

2-768_C2_p16
2-768_C2_p64

2-1152_C2_p32
2-2304_C2_p64
3-768_C2_p16
3-768_C2_p64

3-1152_C2_p32
3-2304_C2_p64

Figure 4.20: Comparison of encv3 and encv2 for various codes in terms of
energy-per-encoded-bit versus throughput. The conditional replacement of
the 3-input XOR gates slightly reduces the energy-per-encoded-bit. fclk ∈
{250,500,750,1000,1250}MHz for all encoders.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 10 20 30 40 50 60 70 80

A
re

a
(u

m
2)

Throughput (GBits/s)

2-768_C2_p16
2-768_C2_p64

2-1152_C2_p32
2-2304_C2_p64
3-768_C2_p16
3-768_C2_p64

3-1152_C2_p32
3-2304_C2_p64

Figure 4.21: Comparison of encv3 and encv2 for various codes with respect
to the area versus throughput. Swapping XOR gates for OR gates reduces
the required area.

61

Section 4.3: Encoder v3 - Replacing a 3-Input XOR-Gate

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0.1 1 10 100

A
re

a
(u

m
2)

Throughput (GBits/s)

192
288
384
480
576
768
864
960

1152
2304

Figure 4.22: Encv3 area versus the information throughput, for the
PN-LDPC-CCs. Code lengths (Ts) and parallel-node (ρ) values are as
specified: for Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24}, for Ts=384
ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48}, for Ts=768
ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for Ts=1152
ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. A clock frequency of 250 MHz is
used.

62

Section 4.4: Encoder v4 - Clock-Gating (Encv4)

Figure 4.23: Encv4 encoder node. The clock is gated with the “regPhase”
signals to reduce the power consumption. One instance of the clock gating
circuitry is shared among ρ registers.

4.4 Encoder v4 - Clock-Gating (Encv4)

Clock-gating is a standard strategy for reducing dynamic power consumption
[29]. Encv4 uses the phase signal to gate the clock to reduce power consump-
tion. For all PN-LDPC-CCs, over all explored clock frequencies, this strategy
produces a 23 to 45 percent reduction in power consumption.

In encv4, latch-based clock-gating [30] is applied to the encoder node reg-
isters. For each encoder node, the one-hot phase signals associated with the
encoder node are ORed together and the result is latched. The output of the
latch is ANDed with the clock to form a new clock signal that is used to con-
trol the encoder-node registers. Figure 4.23 shows the latch-based clock-gated
encv4 encoder node architecture. In essence, the one-hot phase signals are
turned into clocks. Referring back to Table 4.1, we see the switching activity
of the phase control signals, represented by “regPhase[0]”, have switching rates
of 1/2 ·T ′

s with respect to that of the clock. These slowly switching control
signals make ideal candidates for gating the clock.

Glitches on the gated-clock signal are avoided by using an active-low clock-
sensitive latch. The active low clock-gating latch allows the gating control
signal (clock enable) to track the latch input until the clock goes high. When
the clock goes high, the value of the gating control signal is held until the
clock falls. The gating control signal is ANDed with the clock to produce

63

Section 4.4: Encoder v4 - Clock-Gating (Encv4)

Figure 4.24: Clock-gating timing diagram.

the gated-clock. Only when the clock and the gating control signal are high
can the gated-clock be high. Figure 4.24 illustrates the clock-gating timing.
Compared to the original clock, the AND gate, after the latch, delays the
arrival of the gated-clock signal. This delay allows a slightly longer evaluation
time, on the order of an AND gate’s propagation delay, for the logic between
a non-clock-gated register and the clock-gated register. Conversely, the AND
gate delay results in slightly less evaluation time for the logic between the
clock-gated register and a non-clock-gated register. Glitches on the gated-
clock are prevented in the first half of the clock cycle by the active-low latch
continuing to hold its value when the clock is high. Glitches on the gated-
clock are prevented in the last half of the clock cycle as the clock is low
and thus the output of the AND gate is low. During the falling edge of the
clock, glitches are prevented by the path delay of the latch, which allows the
falling edge of the clock signal to reach the AND gate before the output of the
latch. Conversely, on the rising edge of the clock, glitches are prevented via
the synthesis tool meeting the setup-timing constraint that the gating control
signal (clock enable) must stabilize at the input to the latch before the clock
arrives at the latch and must remain stable after the clock arrives in accordance
with the hold-time of the latch. The encoder clocks are now delayed relative
to the original clock. The output circuitry of the encoder re-synchronizes the
data with the original clock.

Clock-gated flip-flops require the use of asynchronous resets and careful
attention to reset design [31]. The clock-gated flip-flops were coded in Ver-
ilog as conditionally enabled flip-flops with asynchronous resets. Listing 4.2
shows this using Verilog HDL. The synthesis tool can convert this HDL syntax
structure into a clock-gated flip-flop with asynchronous reset.

0.05
always @(posedge c l k or posedge rstClkPosFF) begin

i f (rstClkPosFF) begin
r egs0 <= 0 ;

end e l s e i f (enReg [0]) begin
r egs0 <= . . .

end
end

Listing 4.2: Encv4 Verilog code representing a clock-gated flip-flop with an
asynchronous reset.

64

Section 4.4: Encoder v4 - Clock-Gating (Encv4)

 0.1

 1

 10

 100

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p1
1152_C2_p32
1152_C2_p48
2304_C2_p64

Figure 4.25: Encv4 energy-per-bit versus throughput. An overall reduction
in energy-per-encoded-bit is achieved with respect to encv3.

As ρ increases, the energy-per-encoded-bit decreases and the throughput
increases. Figure 4.25 shows the energy-per-encoded-bit versus the throughput
for our set of PN-LDPC-CCs. We provide this graph as a reference for extremes
and trends. The maximum encv4 throughput, produced by the ρ=64 codes,
is 64 Gbits/s. The lowest energy-per-encoded-bit, achieved by one of the
T ′

s=12 codes, is 0.263 pJ/bit. Figure 4.26 show the energy-per-encoded-bit
versus the throughput versus ρ for a 250-MHz clock. Each curve in the figure
corresponds to a fixed code length. Points along a curve, moving from left-to-
right, represent an alternative code with the same Ts but an increased ρ. As
ρ increases, energy-per-encoded-bit decreases and throughput increases.

Clock-gating clearly reduces the energy-per-encoded-bit. Figure 4.27 com-
pares encv4 and encv3, for various codes, in terms of their energy-per-bit versus
throughput. For a 500-MHz clock, the reduction in energy-per-bit ranges from
17 to 45 percent (see Table 4.2). Clock gating appears to be somewhat more
effective at reducing the energy-per-encoded-bit at the lower frequencies than
at the higher frequencies (see Appendix C.1). There appears to be no simple
correlation between Ts, ρ, T ′

s and the reduction in energy-per-bit. However,
some rough generalizations can be made at various clock frequencies. For ex-
ample, at 250 MHz, two factors appear to be at play, Ts and T ′

s. The Ts=288
codes, with a T ′

s of 36 and 72, have a reduction in energy-per-encoded-bit of
30 percent. The T ′

s=24 codes, with a Ts of 576 and 1152, have a reduction
in energy-per-encoded-bit of 30 percent. As Ts increases beyond 288, or the

65

Section 4.4: Encoder v4 - Clock-Gating (Encv4)

 0.1

 1

 10

 100

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

192
288
384
480
576
768
864
960

1152
2304

Figure 4.26: Encv4 energy-per-bit versus the information throughput
for the PN-LDPC-CCs. The higher the ρ, the higher the information
throughput and the lower the energy-per-encoded-bit. Code lengths (Ts)
and parallel-node (ρ) values are as specified: for Ts=192 ρ ∈{16}, for
Ts=288 ρ ∈{1,4,8,24}, for Ts=384 ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576
ρ ∈{1,4,8,12,16,24,48}, for Ts=768 ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24},
for Ts=960 ρ ∈{8}, for Ts=1152 ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. A
clock frequency of 250 MHz is used.

ρ increases above 24, we see a further reduction in energy-per-encoded-bit.
Overall, it is clear that clock gating reduces the power consumption.

Clock gating has the unexpected and fortuitous side-effect of typically re-
ducing the required area. Figure 4.28 compares the areas of encv4 and encv3
encoder for various T ′

s=36 codes. For this method of clock-gating, less circuit
area is required. Given that clock gating requires more logic, the reduction
in area is unexpected and may be attributed to a slackening of timing along
the critical paths. As the gated clock arrives after the original clock, there
is a slightly longer clock cycle in the transition from the non-clock gated cir-
cuitry to the clock gated circuitry. Thus there is slightly more time available
for logic evaluation. Conversely, the transition from the clock-gated circuitry
to the non-clock gated circuitry has a slightly shorter clock period. In other
words, although the clock-gated encoder (encv4) uses more gates than the
encv3, encv4 consumes less silicon area. We assume the extra gate delay in
the gated clock extends the evaluation time from data to gated-clock making
equivalent size design faster or equivalent speed designs smaller.

The required area is primarily determined by Ts. Figure 4.29 shows the

66

Section 4.4: Encoder v4 - Clock-Gating (Encv4)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

3-768_C2_p8
3-768_C2_p32
3-768_C2_p64

3-2304_C2_p64
4-768_C2_p8

4-768_C2_p32
4-768_C2_p64

4-2304_C2_p64

Figure 4.27: Encv4, Encv3, energy-per-bit versus throughput for various
codes. Clock gating significantly reduces the power consumption.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 10 20 30 40 50 60 70

A
re

a
(u

m
2)

Throughput (GBits/s)

3-288_C2_p8
3-576_C2_p16
3-864_C2_p24

3-1152_C2_p32
3-2304_C2_p64

4-288_C2_p8
4-576_C2_p16
4-864_C2_p24

4-1152_C2_p32
4-2304_C2_p64

Figure 4.28: Encv4 (4- prefix), Encv3 (3- prefix), area versus throughput
for various T ′

s=36 codes. Unexpectedly, clock gating reduces the area.

67

Section 4.4: Encoder v4 - Clock-Gating (Encv4)

Code T ′
s Encv3 Encv4 Ratio

energy-per-bit energy-per-bit
(pJ) (pJ)

Ts 1152 ρ 32 36 0.6463 0.3492 1.851
Ts 1152 ρ 48 24 0.4911 0.3004 1.635
Ts 2304 ρ 64 36 0.6490 0.3548 1.829
Ts 288 ρ 24 12 0.3294 0.2731 1.206
Ts 288 ρ 4 72 1.309 0.8776 1.492
Ts 288 ρ 8 36 0.7026 0.4515 1.556
Ts 480 ρ 8 60 0.9882 0.6006 1.645
Ts 576 ρ 12 48 0.8391 0.4971 1.688
Ts 576 ρ 16 36 0.6645 0.4092 1.624
Ts 576 ρ 24 24 0.5046 0.3414 1.478
Ts 576 ρ 4 144 2.466 1.485 1.661
Ts 576 ρ 8 72 1.199 0.8260 1.452
Ts 768 ρ 16 48 0.8294 0.4561 1.818
Ts 768 ρ 32 24 0.5008 0.3162 1.584
Ts 768 ρ 4 192 3.258 1.910 1.706
Ts 768 ρ 64 12 0.3394 0.2630 1.290
Ts 768 ρ 8 96 1.551 0.8705 1.782
Ts 864 ρ 24 36 0.6794 0.3747 1.813
Ts 960 ρ 8 120 1.965 1.310 1.500

Table 4.2: Encv4, Encv3, comparison of energy-per-encoded-bit for a 500-
MHz clock. A larger ratio represents a greater reduction in energy-per-bit.

standard cell area versus throughput versus ρ. Each curve in the figure corre-
sponds to a fixed code length. Points along a curve, moving from left-to-right,
represent an alternative code with the same Ts but an increased ρ.

In summary, clock-gating slightly reduces the throughput for some codes,
slightly reduces the silicon area and significantly reduces the power consump-
tion for all codes. For our PN-LDPC-CC encoder architecture, clock-gating is
recommended as a very effective method of reducing power consumption.

68

Section 4.4: Encoder v4 - Clock-Gating (Encv4)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0.1 1 10 100

A
re

a
(u

m
2)

Throughput (GBits/s)

192
288
384
480
576
768
864
960

1152
2304

Figure 4.29: Encv4 area versus the information throughput, for the
PN-LDPC-CCs. Code lengths (Ts) and parallel-node (ρ) values are as
specified: for Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24}, for Ts=384
ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48}, for Ts=768
ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for Ts=1152
ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. A clock frequency of 250 MHz is
used.

69

Section 4.5: Encoder v5 - Variable Input Databus Size (Encv5)

Figure 4.30: Encv5 encoder node. The input databus is expanded to reduce
the switching activity on a high fanout net, which in turn, lowers the overall
power consumption.

4.5 Encoder v5 - Variable Input Databus Size (Encv5)

In encv5 we increase the input databus width to reduce the power consump-
tion. In previous versions of the encoder, the data bus was attached to all
encoder registers and was scaled according to the ρ. As a consequence, codes
with a larger ρ would have smaller fanouts on the individual lines in the input
databus. Encv5 will allow us to vary the input databus at multiples of the ρ.
As a result we expect to see a decrease in power consumption for the codes
with smaller ρ. In addition, we feel that having the same size of input data-
bus, regardless of ρ, allows the codes to be compared more fairly. Figure 4.30
shows the encv5 encoder node. Note that the number of input databusses has
been increased. This decreases the fanout on each databus.

In previous versions of the encoder, each bit in the input databus would
have a 50 percent chance of toggling per cycle and is capacitively loaded by T ′

s
encoder nodes. Doubling the number of databus inputs allows us to update
the input databus every other clock cycle. This reduces the overall power
consumption. Note that each databus input is now connected to half the
number of encoder nodes. While there are now twice as many inputs, those

70

Section 4.5: Encoder v5 - Variable Input Databus Size (Encv5)

inputs switch at half their normal rate. This results in fewer gates switching
per clock cycle. Equations 4.3–4.5, show the relationship between the size of
the input databus, the rate at which those inputs switch, and the number of
associated gates affected per cycle.

Wu(t) = ρ ·MinputDB (4.3)

Ru(t) = 1/MinputDB (4.4)

NgatesE f f ectedPerCycle=
Wu(t) ·T

′
s ·NgatesPerEncNode·Ru(t)

ρ ·MinputDB

=
(ρ ·MinputDB) ·T′

s ·NgatesPerEncNode

ρ ·MinputDB
×

1
MinputDB

=
T ′

s ·NgatesPerEncNode

MinputDB
(4.5)

where
Wu(t) is the width of the input databus,
MinputDB is the input databus multiplier,
T ′

s is the number of encoder nodes,
Ru(t) is the rate at which the input databus switches,
NgatesPerEncNodeis the number of gates in an encoder node affected by

changes in the input databus, and
NgatesE f f ectedPerCycleis the number of gates affected by the input databus

per clock-cycle.
As can be seen, increasing the input databus size Wu(t) is expected to decrease
the power associated with the input databus by the multiple MinputDB of the
databus size increase. Note that the dynamic power of the wires does not
change if the wire length stays the same, as the wire switching remains the
same before and after increasing the databus width.

For ease of implementation, the databus size should be a multiple of the ρ.
If the input databus size is not a multiple of ρ then more complex circuitry is
needed to shuffle data around so that it gets to the correct encoder node. This
defeats the goal of reducing the power consumption. In addition, T ′

s should be
wholly divisible by the multiple of the ρ; otherwise, the input vector must be
padded with known values to compensate. Table 4.3 shows the codes that can
be implemented with a 64-bit input databus with only minor modifications.

Increasing the input databus to 64 bits slightly reduces the power con-
sumption for those codes with a lower ρ. As expected, when ρ increases to 64,
the reduction in power consumption diminishes to zero. Figure 4.31 compares
encv5 with encv4 in terms of energy-per-encoded-bit versus throughput for

71

Section 4.5: Encoder v5 - Variable Input Databus Size (Encv5)

Code T ′
s 64-bit Input DB T ′

s / Simple
ρ Multiple ρ Multiple Implementation

Ts=1152 ρ=32 36 2 16 yes
Ts=1152 ρ=48 24 1.33 18 no
Ts=2304 ρ=64 36 1 36 yes
Ts=288 ρ=24 12 2.67 4.5 no
Ts=288 ρ=4 72 16 4.5 no
Ts=288 ρ=8 36 8 4.5 no
Ts=480 ρ=8 60 8 7.5 no
Ts=576 ρ=12 48 5.33 9 no
Ts=576 ρ=16 36 4 9 yes
Ts=576 ρ=24 24 2.67 9 no
Ts=576 ρ=4 144 16 9 yes
Ts=576 ρ=8 72 8 9 yes
Ts=768 ρ=16 48 4 12 yes
Ts=768 ρ=32 24 2 12 yes
Ts=768 ρ=4 192 16 12 yes
Ts=768 ρ=64 12 1 12 yes
Ts=768 ρ=8 96 8 12 yes
Ts=864 ρ=24 36 2.67 13.5 no
Ts=960 ρ=8 120 8 15 yes

Table 4.3: Encv5 check for a simple implementation of a 64-bit input data-
bus. A simple implementation is possible when T ′

s is wholly divisible by the
multiple of ρ.

various codes for an input databus width of 64. Those codes with a ρ signifi-
cantly lower than 64 benefit the most from the increased databus width. For
the Ts=768 codes with a ρ of 4, 8, 16, and 32, the reduction in energy-per-
encoded-bit is 23%, 23%, 5% and -1%, respectively. As the Ts=2304, ρ=64
code already has a 64-bit input bus, the energy-per-encoded-bit remains un-
changed.

Increasing the input databus has no effect on the area. Figure 4.32 shows
that the area remains relatively unchanged.

In summary, increasing the input bus width may not always be an op-
tion; however, should the option present itself, a reduction in the energy-per-
encoded-bit is possible. Increasing the databus size has little to no impact on
the area; however, there were certain cases where the maximum throughput
was reduced. In general, if it is possible to increase the input databus, this
option should be evaluated for a possible reduction in the power consumption.

72

Section 4.5: Encoder v5 - Variable Input Databus Size (Encv5)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

4-768_C2_p4
4-768_C2_p8

4-768_C2_p16
4-768_C2_p32
4-768_C2_p64

4-2304_C2_p64
5-inDataBusSize-64-768_C2_p4
5-inDataBusSize-64-768_C2_p8

5-inDataBusSize-64-768_C2_p16
5-inDataBusSize-64-768_C2_p32
5-inDataBusSize-64-768_C2_p64

5-inDataBusSize-64-2304_C2_p64

Figure 4.31: Comparing encv5 and encv4 with respect to the energy-per-
encoded-bit versus throughput for various codes. As expected, increasing
the databus width to 64 bits has the largest impact in terms of energy-per-
encoded-bit on those designs/codes with the smallest initial databus widths
(ρ).

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50 60 70

A
re

a
(u

m
2)

Throughput (GBits/s)

4-768_C2_p4
4-768_C2_p8

4-768_C2_p16
4-768_C2_p32

4-2304_C2_p64
5-inDataBusSize-64-768_C2_p4
5-inDataBusSize-64-768_C2_p8

5-inDataBusSize-64-768_C2_p16
5-inDataBusSize-64-768_C2_p32

5-inDataBusSize-64-2304_C2_p64

Figure 4.32: Comparing encv5 and encv4 with respect to the area versus
the throughput for various codes. Increasing the databus width to 64 bits
results in a negligible change in area.

73

Section 4.6: Encoder v6 - De-multiplexing the Input Databus(Encv6)

4.6 Encoder v6 - De-multiplexing the Input Databus

(Encv6)

In encv5 we explored increasing the databus width to reduce the power. In
encv6 we will add a de-multiplexor in between the input databus and the
encoder nodes (please see Appendix D.1).

4.7 Encoder v7 - Merged PN-LDPC-CC Encoders

(Encv7)

Merging multiple PN-LDPC-CC encoders and sharing control circuitry does
not further reduce the energy-per-encoded-bit (see Appendix C.2).

74

Section 4.8: Comparison to other LDPC Encoders

Code Eb/N0 Tech Info. Energy Cell Incl.
for through- per area termin-

BER put info-bit ation
10−6 (nm) (Gbits/s) (pJ) (µm2)

Ts=2304 ρ=64 (this work) 1.21 90 64 0.783 177,701 no
Ts=2304 ρ=64 (this work) 1.21 90 48 0.482 161,557 no
Ts=2304 ρ=64 (this work) 1.21 90 32 0.355 133,424 no
Ts=1152 ρ=96 (this work) 1.24 90 96 0.568 102,205 no
Ts=1152 ρ=96 (this work) 1.24 90 48 0.274 71,841 no
Ts=2048 P8 [17] 1.25 90 3.60 na 761,900 no
Ts=2048 P4 [17] 1.25 90 1.95 na 426,300 no
Ts=2048 P2 [17] 1.25 90 1.09 na 279,300 no
Ts=2048 P1 [17] 1.25 90 0.57 na 189,800 no
Ts=768 ρ=64 (this work) 1.3 90 64 0.420 62,586 no
Ts=768 ρ=64 (this work) 1.3 90 48 0.344 58,328 no
Ts=768 ρ=64 (this work) 1.3 90 32 0.263 47,920 no
Ts=288 ρ=24 (this work) 1.7 90 30 0.562 27,776 no
Ts=128 P8 [17] 2.5 90 5.41 na 80,400 no
Ts=128 P4 [17] 2.5 90 2.70 na 48,400 no
Ts=128 P2 [17] 2.5 90 1.35 na 28,200 no
Ts=128 P1 [17] 2.5 90 0.71 na 28,200 no
(8158,7136)
QC [32] 250 0.86 628 10,562,500 yes

Table 4.4: Comparison of LDPC encoders.

4.8 Comparison to other LDPC Encoders

In this section the best of our results will be compared with the state-of-the-
art. Table 4.4 compares our results with those reported by others, in terms of
Eb/N0 for a BER of 10−6, process technology, information throughput, energy-
per-encoded information-bit and standard cell area. The “Incl. termination”
column indicates if the encoder has built-in termination circuitry. Termination
is the method by which streams of data are ended in LDPC-CCs and the
encoder returned to a known state. For a discussion on termination and its
application to PN-LDPC-CCs see [1].

The primary metric of comparison used in [17] is the area divided by the
information throughput. Our encoder, with a BER of 10−6 for an Eb/N0 of
1.24, has an area over throughput ratio of 1.06 µm2/Mbps. For the 2048 code,
the best area over throughput result presented in [17] is 211.6 µm2/Mbps.
Our result is 205 times better than the best result presented in [17]. For the
low coding performance codes, with a Eb/N0 of 2.5 for a BER of 10−6, our
encoder has an area over throughput ratio 16 times better than the best result
presented in [17]. Note that our code also achieves a BER of 10−6 at an Eb/N0

of 1.7 dB compared to 2.5 dB in [17].

75

Section 4.9: PN-LDPC-CC Encoder Summary

4.9 PN-LDPC-CC Encoder Summary

In this chapter we have presented a series of novel encoder architectures for
the PN-LDPC-CCs. The novel architectures have removed the hardware com-
plexity relationship to the node parallelization factor ρ, while retaining the
benefits of ρ: increased throughput and reduced energy-per-encoded-bit. The
result of applying the new ideas is a new benchmark for LDPC-CC encoders
in terms of energy-per-encoded-bit and throughput. For a PN-LDPC-CC that
achieves a BER of 10−6 at an Eb/N0 of 1.21 dB, we presented an encoder
architecture that has an area of 177,701 µm2, an energy-per-encoded-bit of
0.783 pJ and a throughput of 64 Gbits/s. For a PN-LDPC-CC that achieves
a BER of 10−6 at an Eb/N0 of 1.3 dB, we presented an encoder architecture
that has an area of 62,586 µm2, an energy-per-encoded-bit of 0.42 pJ and a
throughput of 64 Gbits/s.

The encv2 architecture for the Ts=2304, ρ=64 code has an energy-per-
encoded-bit of 1.101pJ and the encv5 architecture has an energy-per-encoded-
bit of 0.7834pJ. This represents a 29 percent reduction in energy-per-encoded-
bit.

Given two codes with the same Ts, it is always advantageous to choose the
code with the larger ρ.

The keys to the development of the novel architectures is the realization
that all LDPC-CCs have a control-path that is independent of the data-path,
and that this allows:

• Pipelining within the datapath without consequence to the complex-
ity of the control-path.

• Datapath operations to be re-ordered (provided data dependences
are retained).

• One control circuit to control multiple copies of the datapath.

• The removal of all perceived conditional operations within the data
path and control path. Note there are no actual conditions, there are
only data dependencies.

Applying the preceding keys, the presented PN-LDPC-CC architectures
have established the following relationships:

Throughput= clock f requency·ρ (4.6)

energy-per-encoded bit∝ T ′
s (4.7)

area∝ Ts (4.8)

This ends our discussion of the PN-LDPC-CC encoder. In Chapter 5, we
discuss the new PN-LDPC-CC decoder.

76

Chapter 5

Parallel-Node LDPC-CC Decoder
Architecture Exploration

In this chapter novel Parallel-Node LDPC-CC (PN-LDPC-CC) decoder archi-
tectures are presented that have the lowest reported energy-per-decoded-bit
and the greatest throughput performance. First we will describe the pre-
existing decoder design and then proceed to describe a series of improvements.
Each improvement is quantified in terms of the energy-per-decoded-bit versus
the throughput, the area versus the throughput, and the energy-per-decoded-
bit versus the group period T ′

s. Results presented herein are based on synthesis
results and adhere to the following conditions. Unless otherwise specified, all
results are expressed on a per-processor basis, the presented results have been
obtained using an Eb/N0 of 1.8 dB, and the LLRs have a magnitude precision
of 4 bits and a sign bit. An Eb/N0 of 1.8 dB is chosen because it represents an
extreme worst-case condition under which practical implementations of these
codes could be expected to operate. To fairly assess timing information, three
decoder processors are synthesized together. The middle processor receives its
inputs from the first decoder processor and its outputs go to the third decoder
processor. Worst-case timing cell libraries are used. Bit-accurate simulations
with 32,000 input vectors are used to determine internal net switching activ-
ity. From the switching activity, dynamic power can be estimated. For more
details on the methods used to gather the decoder results, please see Appendix
A.

To facilitate efficient LDPC decoder implementations we found it to be
advantageous to link the phase with memory addressing. Specifically, the
same memory address is used at the same phase in every period. For this
to hold true: ms <= Ts. Our PN-LDPC-CC codes have all been designed to
ensure that this is always the case.

All decoders discussed in this section process one phase per clock cycle.
While this constraint is possible in both the encoder and decoder, using mul-
tiple clock cycles per phase increases the overall amount of switched gate-

77

Chapter 5: Parallel-Node LDPC-CC Decoder Architecture Exploration

capacitance. Since our decoders process one phase per cycle, the information
throughput of the decoder is equal to the clock frequency multiplied by ρ.

In the following sections, a series of PN-LDPC-CC decoder architectures
are presented. Section 5.1 reviews the first PN-LDPC-CC decoder. Section
5.2 describes a design that removes the saturation bit to reduce the power
consumption and the area. Section 5.3 describes a design that removes the
rotation switch matrix to remove the greater than linear hardware area de-
pendence on ρ. Section 5.4 describes a design that uses clock-gating to reduce
the power consumption. Section 5.5 describes a design that removes the reset
circuitry to reduce the area. Section 5.6 describes a design that uses an alter-
native check-node operation to improve the BER performance while reducing
the power consumption and the area. Section 5.7 analyzes hardware metrics
and BER performance trade-offs. Section 5.8 compares the best of the new
PN-LDPC-CC decoders to the state-of-the-art. Section 5.9 summarizes the
main conclusions that arise from the new PN-LDPC-CC decoders.

78

Section 5.1: Decoder v1 - Parallel-Node LDPC-CC Decoder(Decv1)

Figure 5.1: Decv1 processor. Consists of eight memory banks: four banks
for the information LLRs and four banks for the parity LLRs. The number
of variable-nodes and check-nodes is equal to the ρ. The rotation switch
matrices, “SW1”, have a hardware implementation complexity of order(ρ2).

5.1 Decoder v1 - Parallel-Node LDPC-CC Decoder

(Decv1)

Decv1, like our PN-LDPC-CC encoders, displays the same relationship be-
tween ρ, throughput and the energy-per-decoded-bit. As ρ increases, the
throughput increases and the energy-per-decoded-bit decreases. Initial work
on our baseline PN-LDPC-CC decoder, decv1, was presented in [1]. Fig-
ure 5.1 shows the decv1 processor. Similar to previous LDPC-CC decoder
implementations [2], this decoder uses cascaded decoder processors to form
the decoder. A decoder processor consists of variable-node units, check-node
units and multiple memories. Unlike previous LDPC-CC decoder processors
the PN-LDPC-CC decoder includes rotation switch-matrices (SW1) and mul-
tiple copies, for ρ > 1, of the variable-node and check-node units per processor.
Based on the phase φ, the rotation switch-matrices perform the rotation and
reverse rotation operations on LLR data routed between the memories and the
ρ check-nodes.

As is shown in Figure 5.1, LLR data from the channel or previous decoder

79

Section 5.1: Decoder v1 - Parallel-Node LDPC-CC Decoder(Decv1)

processor enters on the info and parity input lines and is stored in memory, with
the exception of one of the parity input LLRs, that is routed directly through
the memory and into a switch matrix SW1. The bit-width of the information
input databus is equal to 4ρq, where 4 represents the degree of the variable-
node, ρ is the node parallelization factor and q is the LLR bit-width. In each
group phase φ′, LLRs from the info and parity memories are read and routed
via SW1 to the appropriate check-node units. After the check-node operations,
the processed LLRs are routed back to the memory locations they were read
from, with exception of one of the parity LLRs which is routed directly to a
variable-node unit. Concurrent with the check-node operation, the memories
supply processed LLRs to the variable-node units. LLRs leaving variable-node
units make up the decoder processor info and parity outputs. The info and
parity LLR outputs can be routed to the next decoder processor for another
decoding iteration, or they can be routed to the hard decision circuitry where
the decoded data stream is formed. Listing 5.1 contains pseudo code for the
decoder operation.

0.05
pcm = par i ty check mat r i x
cur r ent phase = 0
whi le (not end o f data)

r h o l l r d a t a [0] = channel data ()
// s t a r t the p r oc e s s i ng at the l a s t p r o c e s s o r
f o r each decode r p r o c e s s o r in p a r a l l e l r ev e r s e a l l d e c o d e r p r o c e s s o r s

memoryStoreInputLLRs(pcm , cur r ent phase) = \
r h o l l r d a t a [d e code r p r o c e s s o r]

r h o l l r c n od e i n pu t s = memoryCnodeAccess (pcm , cur r ent phase)
r h o l l r c n od e i n pu t s = switchMatr ixRotate (r h o l l r c n od e i npu t s , pcm,\

cur r ent phase)

r h o l l r c n od e ou tpu t s = cnode (r h o l l r c n o d e i npu t s)

r h o l l r c n od e ou tpu t s = switchMatr ixRotateReverse (\
r ho l l r cnode ou tpu t s , pcm , cur r ent phase)

memoryStoreCnodeOutputs (r ho l l r cnode ou tpu t s , pcm , cur r ent phase)

r h o l l r v n od e i npu t s = memoryVnodeAccess (pcm , cur r ent phase)
r h o l l r d a t a [d e code r p r o c e s s o r +1] = vnode (r h o l l r v n od e i npu t s)

end for each

cur r ent phase = (cur r ent phase + 1) MOD T’ s
end whi le

Listing 5.1: Decoder pseudo code.

When the decoder is reset, all LLR sign and magnitude bits are set to “0”
while the LLR saturation bit is set to “1”. The LLR saturation bit protects
invalid LLR data from corrupting valid data in the check-node operation. With
the saturation bit set, the LLR will pass through the check-node operation
unaltered nor will it in any way alter the check-node operation. The saturation
bit can be de-asserted in the variable-node operation. If the saturation bit

80

Section 5.1: Decoder v1 - Parallel-Node LDPC-CC Decoder(Decv1)

is not de-asserted in the variable-node operation, then it is passed into the
next processor. If the memory is constructed out of flip-flops then the reset
operation can take place in just one or two clock cycles; however, if the memory
is SRAM based, then multiple cycles are required as each memory bank address
location needs to be sequentially written.

Decv1 uses a simple memory structure, with functionally complex mem-
ories, such as an asynchronous dual-port memory. The result is that the
memory-to-check-node/variable-node (MCV) switch-matrix, found in [2], is
not required. In [2], the focus was on minimizing the number of required
memory banks when using synchronous single-port memories. As a result of
this approach a MCV switch-matrix is required to interface each memory bank
to each input and output of the check-node and variable-node units. The ab-
sence of the MCV switch matrix in decv1 saves significant area and power.
The MCV’s per processor area and power consumption for a (128,3,6) conven-
tional LDPC-CC, in a CMOS 90-nm process, with no input delays or output
loads, synthesized with a target clock frequency of 1.5 GHz, is 62,000 µm2 and
52 mW, respectively.

Decv1 uses 8 register-based memory banks. By “register-based” we mean
that the memory banks are constructed as arrays of conventional flip-flops.
Four banks are associated with the “info” LLRs and four with the “code”
LLRs. Of the four “info” LLR memory banks, three are dual-port memories
and one is a signal-port memory. Of the four “code” LLR memory banks,
two are dual-port memories, one is a dual-read/single-write memory and one
is a single-port memory. The dual-port memory banks have 4 databus ports
of size ρq and two address ports. Two databus ports and one address port is
used for the input and output of variable-node LLRs and two databus ports
and one address port is used for the input and output of the check-node LLRs.
The dual-read/single-write memory bank is identical to the dual-port memory
bank with the except it lacks a check-node input databus port. The single-port
memory has 2 databus ports, one for input data and one for output data, and
a single address port.

All of the register-based memory banks are capable of one read operation
followed immediately by one write operation in the same clock-cycle (hence
the need for memory bank input and output databus ports). This allows LLRs
to be read from the desired memory location, processed and then written back
to that location within one clock-cycle. The register-memories are designed for
asynchronous reads and synchronous writes. In other words, after a rising edge
of the clock has occurred, the address to the memories changes, which causes
the data associated with the updated address to be read out of the memories.
Before the end of the clock cycle, the data input to the memories needs to
stabilize. Thus when the next rising-edge of the clock arrives, the data input
to the memories is captured in the same address location that was just read.
If standard synchronous memories were to be used instead of register-based

81

Section 5.1: Decoder v1 - Parallel-Node LDPC-CC Decoder(Decv1)

memories or asynchronous memories, this single clock-cycle read-modify-write
operation would need to be split over multiple clock-cycles or, alternatively,
more memory locations would need to be used.

The amount of memory required to implement a decoder processor is pro-
portional to the code period Ts, the variable-node degree and the LLR bit
width, as expressed in Equation (5.1). In the case of the Ts=480, ρ=8, (3,6)
code, with a 6-bit LLR, the total memory size would be 23,040 bits.

NmemoryBits= Ts ·2 · (NvnodeDegree+1) ·NllrBitWidth (5.1)

The input and output databus widths of each register-memory bank is
given by Equation (5.2). In the case of the Ts=480, ρ=8, (3,6) code, the input
and output databus width of the register-memory banks would be 40 bits.

NmemoryBankIOBusWidth= NllrBitWidth ·ρ (5.2)

The number of rows in each memory bank is equal to T ′
s = Ts/ρ. For

example, the Ts=480, ρ=8 code has 60 rows in each memory bank.
The variable-node sums up three of the 4 LLR inputs to calculate each of

the 4 outputs. The check-node performs the min-sum operation.
The PN-LDPC-CC decoders exhibit similar characteristics to the PN-

LDPC-CC encoders. As ρ increases, the throughput increases and the energy-
per-decoded-bit decreases. Figure 5.2 shows the energy-per-decoded-bit versus
the throughput for all of our PN-LDPC-CCs. The energy-per-decoded-bit is
expressed on a per-processor basis. The 6-bit LLRs have 4 bits of magnitude,
one sign bit and one saturation bit. The results are based on worst-case tim-
ing libraries from a CMOS 90-nm process technology (for more details on the
method used to generate the results, please see Appendix A). For each code,
results at clock frequencies of 100 and 200 MHz were generated. The lowest
throughput and highest energy-per-decoded-bit is displayed by those codes
with ρ=1. As the node-parallelization factor ρ is increased, the throughput
increases and the energy-per-decoded-bit decreases. Figure 5.3 illustrates this
point. Each curve in the figure corresponds to a fixed code length. Points along
a curve, moving from left-to-right, represent an increasing ρ. As ρ increases
the energy-per-decoded bit decreases and the throughput increases.

The total area of the decv1 processor correlated to Ts and is also impacted
by ρ and the clock frequency. Figure 5.4 shows the area for a processor ver-
sus the throughput for the PN-LDPC-CCs. Note that the area increases as
the clock frequency is increased from 100 MHz to 200 MHz. Also, the area
increases as ρ is slightly increased. Figure 5.5 shows that as ρ increases be-
yond 8, the area increases. Each curve in the figure corresponds to a fixed code
length. Points along a curve, moving from left-to-right, represent an increasing
ρ. Finally, the area increases as Ts is increased.

82

Section 5.1: Decoder v1 - Parallel-Node LDPC-CC Decoder(Decv1)

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48
2304_C2_p64

Figure 5.2: Decv1 energy-per-bit versus the throughput for the PN-LDPC-
CCs. Similar to the encoders, the higher the ρ, the higher the throughput
and the lower the energy-per-decoded-bit. The energy-per-decoded-bit is
expressed on a per-processor basis. Clock frequencies of 100 and 200 MHz
are used.

There is clearly a strong linear correlation between Ts and the area. Figure
5.6 compares the area for a processor versus Ts for all of the PN-LDPC-CCs at
a clock frequency of 100 MHz. Note the strong linear correlation between Ts

and the area. For a given Ts, variations in area correspond to variations in ρ.
For a 100-MHz clock, in the case of the Ts=768 codes, increasing the ρ from 1 to
64 increases the total processor area by 25%. The combinational circuitry area
associated with the variable-nodes and check-nodes increases proportionally to
ρ. The ratio of the combinational to non-combinational (flip-flop) area for a
ρ of 1 and 64 is 0.832 and 1.425, respectively.

The rotation switch-matrix (SW1) (see Figure 5.1) will produce a phase
dependent circulant of the input vector. The number of SW1 units is equal
to 2 ·NcodeDegree, or in the case of (3,6) codes used here, 6 units. Note that
the SW1 components are bi-directional, rotating the LLR values from the
memories to the check-nodes and then performing the reverse rotation for the
LLR values coming from the check-nodes to the memories. The number of
paths in the SW1 component is given by Equation (5.3).

NSW1Paths= 2 ·NllrBitWidth ·ρ2 (5.3)

The complexity of SW1 grows greater than linearly with ρ.

83

Section 5.1: Decoder v1 - Parallel-Node LDPC-CC Decoder(Decv1)

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

100-192
100-288
100-384
100-480
100-576
100-768
100-864
100-960

100-1152
100-2304
200-192
200-288
200-384
200-480
200-576
200-768
200-864
200-960

200-1152

Figure 5.3: Decv1 energy-per-bit versus the information throughput for
the PN-LDPC-CCs. Similar to the encoders, the higher the ρ, the higher
the information throughput and the lower the energy-per-decoded-bit. The
energy-per-decoded-bit is expressed on a per-processor basis. Code lengths
(Ts) and parallel-node (ρ) values are as specified: for Ts=192 ρ ∈{16}, for
Ts=288 ρ ∈{1,4,8,24}, for Ts=384 ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576
ρ ∈{1,4,8,12,16,24,48}, for Ts=768 ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24},
for Ts=960 ρ ∈{8}, for Ts=1152 ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. Clock
frequencies of 100 (prefix 100) and 200 (prefix 200) MHz are used.

The area of the rotation switch matrix (SW1) increases greater than lin-
early with increasing ρ. Table 5.1 lists the component areas, for a clock fre-
quency of 100 MHz, for Ts=768 codes for ρ equal to 4, 8, 16, 32 and 64. The
switch matrix, with ρ=4, starts off very small, representing less that a per-
cent of the total processor area. However, when ρ=64, the switch matrix area
represents 15 percent of the total processor area.

The relationships between the decv1 component areas, from Table 5.1, and
the characteristics of the PN-LDPC-CCs are as follows. There is a linear
relationship between each of the check-node and variable-node areas and the
ρ. As was described above, the switch matrix area is greater than linearly
dependent on ρ. As was seen in Figure 5.4, the register memory area grows
nearly linearly with Ts.

There is a nearly linear relationship between T ′
s and the energy-per-decoded-

bit. Figure 5.7 compares the energy-per-bit versus T ′
s for a 100-MHz clock. The

smallest value of T ′
s in our set of PN-LDPC-CCs is 12. These codes, with a T ′

s
of 12, have the lowest energy-per-decoded-bit.

84

Section 5.1: Decoder v1 - Parallel-Node LDPC-CC Decoder(Decv1)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.1 1 10 100

A
re

a
(m

m
2)

Throughput (GBits/s)

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48
2304_C2_p64

Figure 5.4: Decv1 area for one processor versus the throughput, for all of
the PN-LDPC-CCs. Clock frequencies of 100 and 200 MHz are used.

Code Variable Check Switch Register Processor
decv1 Node Node Matrix Memory
Ts=768 (SW1)

(µm2) (µm2) (µm2) (µm2) (mm2)
ρ=4 11264 (1%) 5312 (0%) 5520 (0%) 1277989 (98%) 1.300 (100%)
ρ=8 20288 (2%) 11096 (1%) 15168 (1%) 1190341 (96%) 1.237 (100%)
ρ=16 40576 (3%) 22192 (2%) 40452 (3%) 1181698 (92%) 1.285 (100%)
ρ=32 81152 (6%) 44320 (3%) 103788 (7%) 1184175 (84%) 1.414 (100%)
ρ=64 162304 (10%) 88768 (5%) 249084 (15%) 1170049 (70%) 1.669 (100%)

Table 5.1: Decv1 component standard cell areas for Ts=768 codes, at 100
MHz with a 5-bit LLR. Note the greater than linear increase in the switch
matrix area as ρ increases. Also note that the register-memory represents
the majority of the decoder processor area. The variable-node and check-
node areas increase nearly linearly with ρ.

The critical path for the Ts=768, ρ=64 code running at 200 MHz, starts
at a dual-port “memory” flip-flop, flows through a variable-node, out of the
processor into a dual-port memory in the next processor. The propagation
delay from the rising edge of the clock at the flip-flop to the variable-node is
1.64 ns. From the input of the variable-node to its output the delay is 2.65 ns.
From the output of the variable-node to the flip-flop, including a 0.4 ns setup
time, the delay is 0.66 ns.

In this section, we have introduced the first parallel-node LDPC-CC de-
coder (decv1) and have established that:

85

Section 5.1: Decoder v1 - Parallel-Node LDPC-CC Decoder(Decv1)

 0.1

 1

 10

 0.1 1 10 100

A
re

a
(m

m
2)

Throughput (GBits/s)

100-192
100-288
100-384
100-480
100-576
100-768
100-864
100-960

100-1152
100-2304
200-192
200-288
200-384
200-480
200-576
200-768
200-864
200-960

200-1152

Figure 5.5: Decv1 area for one processor versus the information throughput,
for all of the PN-LDPC-CCs. The area is expressed on a per-processor
basis. Code lengths (Ts) and parallel-node (ρ) values are as specified: for
Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24}, for Ts=384 ρ ∈{32}, for Ts=480
ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48}, for Ts=768 ρ ∈{1,4,8,16,32,64},
for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for Ts=1152 ρ ∈{32,48}, and for
Ts=2304 ρ ∈{64}. Clock frequencies of 100 (prefix 100) and 200 (prefix 200)
MHz are used.

• As the node-parallelization factor ρ increases, the energy-per-decoded-
bit decreases and the throughput increases.

• The rotation switch-matrix (SW1) grows greater than linearly with
ρ.

• There is a strong linear correlation between the decoder processor
area and the code period Ts.

Decv1 has been characterized in simulation and synthesis, with respect to
energy-per-bit, area and throughput.

86

Section 5.1: Decoder v1 - Parallel-Node LDPC-CC Decoder(Decv1)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 500 1000 1500 2000 2500

A
re

a
(m

m
2)

Ts

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48
2304_C2_p64

linear trend

Figure 5.6: Decv1 processor area versus Ts for a 100-MHz clock. Note the
strong linear correlation between Ts and the area. For a given Ts, variations
in area, correspond to variations in ρ. In the case of the Ts=768 codes,
increasing ρ from 1 to 64 increases the total processor area by 25%.

 10

 100

 1000

 10 100 1000

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Ts’

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48
2304_C2_p64

linear trend

Figure 5.7: Decv1 energy-per-bit versus T ′
s for a 100-MHz clock. There is a

nearly linear relationship between T ′
s and the energy-per-decoded-bit.

87

Section 5.2: Decoder v2 - Removing the Saturation Bit (Decv2)

Figure 5.8: Decv2 processor. Decv2 has the same structure as decv1, how-
ever, the saturation bit has been removed and its function is emulated by
the maximum LLR magnitude. The result is a minor loss of BER per-
formance in short frames, but an area and power savings proportional to
1/NllrBitWidth.

5.2 Decoder v2 - Removing the Saturation Bit (Decv2)

In this section, a decoder architecture is presented that operates without an
LLR saturation-bit. Removing the saturation bit reduces the area by approx-
imately 1/NllrBitWidth and reduces the power consumption slightly, with only
a small loss in BER performance. Upon reset, the memories are initialized
to the maximum LLR magnitude with the sign-bit set to zero. Essentially
the function of the saturation bit will be approximated using the maximum
LLR magnitude. As can be seen in Figure 5.8, the overall resulting decoder
architecture remains unchanged. For shorter data streams, there is a minor
decrease in BER performance (according to unpublished work by Zhengang
Chen) due to the lack of the saturation-bit protection at the beginning of the
data stream. Initializing the LLRs using the maximum magnitude does pro-
vide some protection at the beginning of the stream, but it is not as strong
as the protection offered by a true saturation bit. In normal operation with
a saturation bit, the saturation bit can only be replaced with a signal mag-
nitude value in the check-node, whereas an LLR value at the maximum LLR

88

Section 5.2: Decoder v2 - Removing the Saturation Bit (Decv2)

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
2304_C2_p64

Figure 5.9: Decv2 energy-per-decoded-bit per processor versus throughput
for all the PN-LDPC-CCs. Clock frequencies of 100 and 200 MHz are used.

magnitude can be altered in both the check-node as well as the variable-node.
Removing the saturation bit does indeed reduce the energy-per-decoded-

bit. Figure 5.9 shows the energy-per-bit versus throughput for all the PN-
LDPC-CCs. Figure 5.10 shows the energy-per-decoded bit versus throughput
versus ρ. Each curve in the figure corresponds to a fixed code length. Points
along a curve, moving from left-to-right, represent an increasing ρ. The general
trend of increasing parallelism resulting in lower energy-per-decoded bit, holds
true.

For small values of ρ the area of the decoder is primarily determined by Ts.
Figure 5.11 shows the required standard cell area for a decoder processor versus
the throughput for our set of PN-LDPC-CCs. Figure 5.12 shows the standard
cell area versus throughput versus ρ. Each curve in the figure corresponds to a
fixed code length. Points along a curve, moving from left-to-right, represent an
alternative code with the same Ts but an increased ρ. In addition to the area
being correlated with Ts, note that as ρ increases to larger values, the required
area begins to grow greater than linearly due to the rotation switch-matrix.

Similar to decv1, decv2 displays a strong linear correlation between Ts and
the area. Figure 5.13, for a clock frequency of 100 MHz, compares the area of
a processor versus Ts for all of the PN-LDPC-CCs. For a given Ts, variations
in area correspond to variations in ρ. For a 100-MHz clock, in the case of the
Ts=768 codes, increasing ρ from 1 to 64 increases the total processor area by
24%. With these same changes, Decv1 had a 25% increase in total processor

89

Section 5.2: Decoder v2 - Removing the Saturation Bit (Decv2)

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

100-288
100-480
100-576
100-768
100-864
100-960

100-1152
100-2304
200-288
200-480
200-576
200-768
200-864
200-960

200-1152

Figure 5.10: Decv2 energy-per-bit versus the information throughput for the
PN-LDPC-CCs. The higher the ρ, the higher the information throughput
and the lower the energy-per-decoded-bit. The energy-per-decoded-bit is
expressed on a per-processor basis. Code lengths (Ts) and parallel-node
(ρ) values are as specified: for Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24},
for Ts=384 ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48},
for Ts=768 ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for
Ts=1152 ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. Clock frequencies of 100
(prefix 100) and 200 (prefix 200) MHz are used.

area.
Compared to decv1, removing the saturation bit reduces the power con-

sumption by 11.1% on average and the area by 13.9% on average. Figure 5.14
compares decv2 and decv1 in terms of energy-per-decoded-bit versus through-
put for various codes. Figure 5.15 compares decv2 and decv1 in terms of area
versus throughput for various codes. Again, there is a strong linear correla-
tion between T ′

s and the energy-per-decoded-bit. Figure 5.16 compares the
energy-per-bit versus T ′

s for a 100-MHz clock. The group period T ′
s is inversely

proportional to ρ. As ρ increases more decoded bits are produced per clock-
cycle. The power consumption of a decoder increases with Ts as Ts determines
the number of required registers, which in turn determines the size of the
clock network. The energy-per-decoded-bit is the power consumption of the
decoder, which is nearly linearly related to Ts, amortized over the number of
decoded bits produced per cycle, which is directly proportional to ρ. Recall
that T ′

s is defined to be Ts/ρ. This ensures the energy-per-bit is almost directly
proportional to T ′

s.

90

Section 5.2: Decoder v2 - Removing the Saturation Bit (Decv2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.1 1 10 100

A
re

a
(m

m
2)

Throughput (GBits/s)

288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
2304_C2_p64

Figure 5.11: Decv2 area for a processor versus throughput for all the PN-
LDPC-CCs. The area of the decoder is primarily determined by Ts with ρ
having a secondary effect. Clock frequencies of 100 and 200 MHz are used.

The critical path for the Ts=768, ρ=64 code running at 200 MHz, starts at
the memory address control and flows through a variable-node output. The
delay from the activation of the memory address control to the variable-node
input is 1.60 ns, and the delay from the input of the variable-node to its output
is 2.85 ns. Finally, the processor output delay is 0.5 ns, as we specified.

While removing the saturation bit results in a minor loss in BER perfor-
mance for short frames, removing the saturation bit also reduces in energy-
per-decoded-bit by 11.1% on average (min. 6.5%, max 22.4%, σ=3.3%) and
reduces the area by 13.9% on average (min 11.5%, max 19.1%, σ=1.8%). Thus
we recommend removing the saturation bit. Later, in Section 5.5 we show how
to compensate for the loss in coding performance caused by dropping the sat-
uration bit.

91

Section 5.2: Decoder v2 - Removing the Saturation Bit (Decv2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.1 1 10 100

A
re

a
(m

m
2)

Throughput (GBits/s)

100-288
100-480
100-576
100-768
100-864
100-960

100-1152
100-2304
200-288
200-480
200-576
200-768
200-864
200-960

200-1152

Figure 5.12: Decv2 area for one processor versus the information through-
put, for all of the PN-LDPC-CCs. The area is expressed on a per-processor
basis. Code lengths (Ts) and parallel-node (ρ) values are as specified: for
Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24}, for Ts=384 ρ ∈{32}, for Ts=480
ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48}, for Ts=768 ρ ∈{1,4,8,16,32,64},
for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for Ts=1152 ρ ∈{32,48}, and for
Ts=2304 ρ ∈{64}. Clock frequencies of 100 (prefix 100) and 200 (prefix 200)
MHz are used.

92

Section 5.2: Decoder v2 - Removing the Saturation Bit (Decv2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500

A
re

a
(m

m
2)

Ts

288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
2304_C2_p64

linear trend

Figure 5.13: Decv2 processor area versus Ts at 100 MHz. Note the strong
linear correlation between Ts and the area. For a given Ts, variations in area
correspond to variations in ρ. In the case of the Ts=768 codes, increasing ρ
from 1 to 64 increases the total processor area by 24%.

93

Section 5.2: Decoder v2 - Removing the Saturation Bit (Decv2)

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

1-576_C2_p48
1-768_C2_p16
1-768_C2_p32
1-768_C2_p64

1-1152_C2_p32
2-576_C2_p48
2-768_C2_p16
2-768_C2_p32
2-768_C2_p64

2-1152_C2_p32

Figure 5.14: Decv2 (prefix 2) and decv1 (prefix 1) compared in terms of the
energy-per-decoded-bit versus the throughput for various codes. Removing
the saturation bit reduces the LLR bit-width from 6 bits to 5 bits and
reduces the energy-per-decoded-bit by 11.1% on average. Clock frequencies
of 100 and 200 MHz are used.

94

Section 5.2: Decoder v2 - Removing the Saturation Bit (Decv2)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 2 4 6 8 10 12 14

A
re

a
(m

m
2)

Throughput (GBits/s)

1-576_C2_p48
1-768_C2_p16
1-768_C2_p32
1-768_C2_p64

1-1152_C2_p32
2-576_C2_p48
2-768_C2_p16
2-768_C2_p32
2-768_C2_p64

2-1152_C2_p32

Figure 5.15: Decv2 and decv1 compared in terms of area versus throughput
for various codes. Removing the saturation bit reduces the LLR bit-width
from 6 bits to 5 bits and reduces the area by 13.9% on average. Clock
frequencies of 100 and 200 MHz are used.

 10

 100

 1000

 10 100 1000

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Ts’

288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
2304_C2_p64

linear trend

Figure 5.16: Decv2 energy-per-bit versus T ′
s for a 100-MHz clock. There is

a strong linear correlation between T ′
s and the energy-per-decoded-bit.

95

Section 5.3: Decoder v3 - Removing the Rotation Switch-Matrix (Decv3)

Figure 5.17: Decv3 processor. Decv3 removes the rotation switch-matrix
transforming a greater than linear hardware cost relationship to ρ to a less
than linear hardware dependence. This design improvement further reduces
the area and power consumption.

5.3 Decoder v3 - Removing the Rotation Switch-Matrix

(Decv3)

The decv3 architecture removes the rotation switch-matrices present in the
decv1 and decv2 architectures. As a result the energy-per-decoded-bit per
processor is reduced further by 13.8%. In the two previous architectures decv1
and decv2, as ρ increases linearly, the area of the rotation switch matrix in-
creases greater than linearly. By re-arranging the memory to eliminate the
rotation switch matrix, decv3 removes a greater than linear hardware cost de-
pendence on ρ. In the case of the decv3 architecture applied to the Ts=768,
ρ=64 code, synthesized for a 100-MHz clock frequency, the decoder processor
area is reduced by 10%.

The higher the ρ the higher the throughput and the lower the energy-per-
decoded-bit. Figure 5.18 shows the energy-per-bit per processor versus the
throughput for all of the PN-LDPC-CCs. Figure 5.19 shows the energy-per-
decoded bit versus throughput versus ρ. Each curve in the figure corresponds
to a fixed code length. Points along a curve, moving from left-to-right, repre-
sent an increasing ρ.

Compared to decv2, removing the rotation switch-matrix in decv3 further
reduces the energy-per-decoded-bit. Figure 5.20 compares decv3 to decv2 in
terms of energy-per-decoded-bit per processor versus throughput. The energy

96

Section 5.3: Decoder v3 - Removing the Rotation Switch-Matrix (Decv3)

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32

Figure 5.18: Decv3 energy-per-decoded-bit per processor versus throughput
for all of the PN-LDPC-CCs. The higher the ρ the higher the throughput
and the lower the energy-per-decoded-bit. Clock frequencies of 100 and 200
MHz are used.

saving ranges from a few percent to roughly 50% (Ts=768, ρ=64, 12.8 Gbits/s).
Removing the rotation switch-matrix only reduces the decoder processor

area for codes with large values of ρ (i.e., 64). Figure 5.21 compares decv3
to decv2 in terms of area per processor versus throughput. For smaller val-
ues of ρ the area may slightly increase (less than 5%). Without the rotation
switch-matrix the design can no longer be described hierarchically with mem-
ory modules, switch-matrices, check-nodes and variable-nodes. Instead the
design must be described in a flattened form with individual registers con-
necting directly to check-nodes and variable-nodes. These direct connections
replace the rotation switch-matrix. As a result, in decv3 the register memories
cannot be synthesized independently. In reality the switch matrix structure
was purely a figment of our imagination (or perhaps more accurately the lack
of our imagination) caused by our desire to impose structure in what is actu-
ally unstructured. Unfortunately our synthesis tool has a much harder time
optimizing large flat designs that lack hierarchy. The disassembly of the mem-
ories and removal of the switch matrices is an architecture change and not a
logic optimization. Thus the synthesis tool is unable to make such a change to
the design, as the design change crosses decoder control register boundaries.

Figure 5.22 shows the standard cell area versus throughput versus ρ. Each
curve in the figure corresponds to a fixed code length. Points along a curve,
moving from left-to-right, represent an alternative code with the same Ts but

97

Section 5.3: Decoder v3 - Removing the Rotation Switch-Matrix (Decv3)

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

100-192
100-288
100-384
100-480
100-576
100-768
100-864
100-960

100-1152
200-192
200-288
200-384
200-480
200-576
200-768
200-864
200-960

200-1152

Figure 5.19: Decv3 energy-per-bit versus the information throughput for the
PN-LDPC-CCs. The higher the ρ, the higher the information throughput
and the lower the energy-per-decoded-bit. The energy-per-decoded-bit is
expressed on a per-processor basis. Code lengths (Ts) and parallel-node
(ρ) values are as specified: for Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24},
for Ts=384 ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48},
for Ts=768 ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for
Ts=1152 ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. Clock frequencies of 100
(prefix 100) and 200 (prefix 200) MHz are used.

an increased ρ.
Area is linearly correlated to Ts. Figure 5.23 compares the area for a

decoder processor versus Ts for all of the PN-LDPC-CCs at a clock frequency
of 100 MHz. For a given Ts, variations in area correlate with variations in ρ.
In the case of the Ts=768 codes, increasing ρ from 1 to 64 increases the area
by 9.3%.

In the two previous decoder versions, decv1 and decv2, the rotation switch
matrices grow greater than linearly with a linearly increasing ρ. Decv3 removes
this dependence. Table 5.2 shows the component areas for decv2 and decv3
for the Ts=768 code with a ρ of 4, 8, 16, 32 and 64, at 100 MHz assuming 5-bit
LLRs. One can verify that the decv1 and decv2 switch-matrix areas increase
greater than linearly with ρ. In the first decv3 component area analysis, the
register memory area is taken to be the same as the decv2 register memory
area, as the individual modules have been combined in decv3 and are no longer
independently observable. In the second decv3 component area analysis, the
register memory area is estimated by taking the average area of the decv2

98

Section 5.3: Decoder v3 - Removing the Rotation Switch-Matrix (Decv3)

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

2-768_C2_p16
2-768_C2_p32
2-768_C2_p64

2-1152_C2_p32
3-768_C2_p16
3-768_C2_p32
3-768_C2_p64

3-1152_C2_p32

Figure 5.20: Decv3 (prefix 3) and decv2 (prefix 2) energy-per-decoded-bit
per processor versus throughput. Removing the switch-matrix results leads
to significant power savings. Note the large savings for the Ts=768, ρ=64
code at the higher throughput. This can be attributed to the synthesis tool
no longer needing to use larger more power intensive gates in the rotation
switch-matrix to meet timing. As will be shown later, the rotation switch-
matrix consumes a large amount of area in decv2. Clock frequencies of 100
and 200 MHz are used.

register memory. In both decv3 component analysis, the switch-matrix area
is approximated by subtracting the register memory, variable-node and check-
node areas from the processor area. Unlike decv1 and decv2, the decv3 area
associated with the “rotation switch-matrix” no longer grows greater than
linearly with ρ. The increase in decv3 processor area with increasing ρ can
now be attributed solely to the increasing variable-node and check-node areas.
The rotation switch matrix component has been eliminated, and with it, the
greater than linear hardware area dependence on ρ.

There is a nearly linear relationship between T ′
s and the energy-per-decoded-

bit. Figure 5.24 compares the energy-per-bit versus T ′
s for a 100-MHz clock.

The critical path for the Ts=768, ρ=64 code running at 200 MHz starts
at a phase control flip-flop, flows through a variable-node, and exits at the
output of the processor. The delay from the activation of the phase control
flip-flop to the variable-node is 1.59 ns. From the input of the variable-node
to its output the delay is 2.86 ns. As we specified, the output delay from the
processor is 0.5 ns.

In summary, eliminating the rotation switch-matrix component reduces the

99

Section 5.3: Decoder v3 - Removing the Rotation Switch-Matrix (Decv3)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 2 4 6 8 10 12 14

A
re

a
(m

m
2)

Throughput (GBits/s)

2-768_C2_p16
2-768_C2_p32
2-768_C2_p64

2-1152_C2_p32
3-768_C2_p16
3-768_C2_p32
3-768_C2_p64

3-1152_C2_p32

Figure 5.21: Decv3, decv2 area per processor versus throughput. Removing
the rotation switch-matrix saves area for those codes with a large value of
ρ (i.e. 64). Clock frequencies of 100 and 200 MHz are used.

power consumption by 13.8% on average (min -5.6%, max 39.1%, σ=10.4%)
and reduces the area by 1.9% on average (min -5.9%, max 19.3%, σ=4.9%).

100

Section 5.3: Decoder v3 - Removing the Rotation Switch-Matrix (Decv3)

 0

 0.5

 1

 1.5

 2

 2.5

 0.1 1 10 100

A
re

a
(m

m
2)

Throughput (GBits/s)

100-192
100-288
100-384
100-480
100-576
100-768
100-864
100-960

100-1152
200-192
200-288
200-384
200-480
200-576
200-768
200-864
200-960

200-1152

Figure 5.22: Decv3 area for one processor versus the information through-
put, for all of the PN-LDPC-CCs. The area is expressed on a per-processor
basis. Code lengths (Ts) and parallel-node (ρ) values are as specified: for
Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24}, for Ts=384 ρ ∈{32}, for Ts=480
ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48}, for Ts=768 ρ ∈{1,4,8,16,32,64},
for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for Ts=1152 ρ ∈{32,48}, and for
Ts=2304 ρ ∈{64}. Clock frequencies of 100 (prefix 100) and 200 (prefix 200)
MHz are used.

101

Section 5.3: Decoder v3 - Removing the Rotation Switch-Matrix (Decv3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000 1200

A
re

a
(m

m
2)

Ts

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
linear trend

Figure 5.23: Decv3 processor area versus Ts at 100 MHz. Note the strong
linear correlation between Ts and the area. For a given Ts, variations in area
correspond to variations in ρ. In the case of the Ts=768 codes, increasing ρ
from 1 to 64 increases the area by 9.3%.

 10

 100

 1000

 10 100 1000

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Ts’

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
linear trend

Figure 5.24: Decv3 energy-per-bit versus T ′
s for a 100-MHz clock. The

energy-per-decoded-bit appears linearly proportional to T ′
s .

102

Section 5.3: Decoder v3 - Removing the Rotation Switch-Matrix (Decv3)

Code Ts=768 Variable Check Switch Register Processor
nodes nodes matrix memory
(mm2) (mm2) (mm2) (mm2) (mm2)

decv1 ρ=1 0.003 (0%) 0.001 (0%) 0.000 (0%) 1.373 (98%) 1.402 (100%)
decv1 ρ=4 0.011 (1%) 0.005 (0%) 0.006 (0%) 1.278 (98%) 1.301 (100%)
decv1 ρ=8 0.020 (2%) 0.011 (1%) 0.015 (1%) 1.190 (96%) 1.237 (100%)
decv1 ρ=16 0.041 (3%) 0.022 (2%) 0.040 (3%) 1.182 (92%) 1.285 (100%)
decv1 ρ=32 0.081 (6%) 0.044 (3%) 0.104 (7%) 1.184 (84%) 1.414 (100%)
decv1 ρ=64 0.162(10%) 0.089 (5%) 0.249(15%) 1.170 (70%) 1.669 (100%)
decv2 ρ=1 0.002 (0%) 0.001 (0%) 0.000 (0%) 1.169 (98%) 1.197 (100%)
decv2 ρ=4 0.009 (1%) 0.004 (0%) 0.005 (0%) 1.103 (98%) 1.121 (100%)
decv2 ρ=8 0.017 (2%) 0.008 (1%) 0.013 (1%) 1.034 (97%) 1.072 (100%)
decv2 ρ=16 0.035 (3%) 0.015 (1%) 0.034 (3%) 1.018 (92%) 1.102 (100%)
decv2 ρ=32 0.070 (6%) 0.031 (3%) 0.084 (7%) 1.022 (85%) 1.207 (100%)
decv2 ρ=64 0.140(10%) 0.062 (4%) 0.207(15%) 0.994 (71%) 1.403 (100%)

decv3 ρ=1 0.002 (0%) 0.001 (0%) 0.0062 (1%) 1.1691 1.175 (100%)
decv3 ρ=4 0.009 (1%) 0.004 (0%) 0.0362 (3%) 1.1031 1.145 (100%)
decv3 ρ=8 0.017 (2%) 0.008 (1%) 0.1032 (9%) 1.0341 1.155 (100%)
decv3 ρ=16 0.035 (3%) 0.016 (1%) 0.1082 (9%) 1.0181 1.176 (100%)
decv3 ρ=32 0.070 (6%) 0.031 (3%) 0.0952 (8%) 1.0221 1.218 (100%)
decv3 ρ=64 0.140(11%) 0.062 (5%) 0.1222 (9%) 0.9941 1.318 (100%)

decv3 ρ=1 0.002 (0%) 0.001 (0%) 0.1342 (12%) 1.0343 1.175 (100%)
decv3 ρ=4 0.009 (1%) 0.004 (0%) 0.0992 (9%) 1.0343 1.145 (100%)
decv3 ρ=8 0.017 (2%) 0.008 (1%) 0.0952 (8%) 1.0343 1.155 (100%)
decv3 ρ=16 0.035 (3%) 0.016 (1%) 0.0922 (8%) 1.0343 1.176 (100%)
decv3 ρ=32 0.070 (6%) 0.031 (3%) 0.0832 (7%) 1.0343 1.218 (100%)
decv3 ρ=64 0.140(11%) 0.062 (5%) 0.0822 (6%) 1.0343 1.318 (100%)

Table 5.2: Decv2 and decv3 comparison of component standard cell areas
at 100 MHz with 5-bit LLRs. For decv1 and decv2 the area of the switch
matrix increases greater than linearly with ρ.
1In decv3, the register memory is estimated by taking the area of the decv2
register memory.
2In decv3, the switch matrix area is approximated by subtracting the reg-
ister memory, variable-node and check-node area from the processor area.
3In this case the memory area is fixed based on an average of the decv2
memory area. The decv3 switch matrix area no longer grows greater than
linearly with ρ. The increase in decv3 processor area with increasing ρ can
be attributed to the increasing variable-node and check-node areas.

103

Section 5.4: Decoder v4 - Clock Gating (Decv4)

Figure 5.25: Decv4 with clock-gating. Decv4 uses clock-gating to signifi-
cantly reduce the power consumption.

5.4 Decoder v4 - Clock Gating (Decv4)

Decv4 uses clock-gating to reduce the power consumption and processor area.
Clock-gating is more effective at reducing the power consumption for those
codes with a high T ′

s, The drop in power consumption is proportional to the
reduction in the switching activity of the registers, which is inversely propor-
tional to T ′

s. Each register is written and read at most twice per T ′
s. Figure

5.25 shows an example clock-gated register and how it is clock-gated by the
phase. When the synthesis tool is looking to gate the clock and it meets the
structure shown in Figure 5.25, it converts the structure into a clock-gated
structure as was described in Section 4.4.

The energy-per-decoded-bit versus throughput trend remains the same as
in the previous versions of the decoder. Figure 5.26 shows the energy-per-bit
per processor versus the throughput for all the PN-LDPC-CCs. Figure 5.27
shows the energy-per-decoded bit versus throughput versus ρ. Each curve in
the figure corresponds to a fixed code length. Points along a curve, moving
from left-to-right, represent an increasing ρ. The higher the ρ the higher the
throughput and the lower the energy-per-decoded-bit.

Clock-gating can reduce the energy-per-decoded-bit by 39.8%. Figure 5.28
compares decv4 and decv3 in terms of the energy-per-decoded-bit per proces-
sor versus the throughput. In the case of the Ts=768, ρ=64 code operating at
200 MHz, the power consumption is slightly higher than the non-clock gated
version. However, in all other examined cases, clock-gating significantly re-
duces the power consumption.

Clock gating has the unexpected and fortuitous side-effect of reducing the
area. Figure 5.29 compares decv4 and decv3 in terms of area per processor
versus throughput. Given that clock gating requires more logic, the reduction
in area is unexpected and may be attributed to a slackening of timing along
the critical paths. As the gated clock arrives after the original clock, there is a
slightly longer clock cycle in the transition from the non-clock gated circuitry
to the clock gated circuitry. Thus there is slightly more time available for
logic evaluation. Conversely, the transition from the clock-gated circuitry to

104

Section 5.4: Decoder v4 - Clock Gating (Decv4)

 1

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48
2304_C2_p64

Figure 5.26: Decv4 energy-per-decoded-bit per processor versus the
throughput for all of the PN-LDPC-CCs. The higher the ρ the higher the
throughput and the lower the energy-per-decoded-bit. Clock-gating further
reduces the energy-per-decoded-bit. Clock frequencies of 100 and 200 MHz
are used.

the non-clock gated circuitry has a slightly shorter clock period. However, the
implemented logic transitioning from the clock-gate circuitry is simpler than
that of the logic entering the clock-gated circuitry. As a result, the timing on
the critical paths is eased, resulting in smaller and/or fewer gates and thus
less area. For those cases examined, the reduction in area is significant, 13.5%
on average.

Required area is primarily determined by Ts and secondary factors include:
clock frequency and ρ. Figure 5.30 shows the standard cell area versus through-
put versus ρ. Each curve in the figure corresponds to a fixed code length.
Points along a curve, moving from left-to-right, represent an alternative code
with the same Ts but an increased ρ.

Similar to the previous decoders, decv4 has a strong linear correlation
between Ts and the area. For a given Ts, variations in area correspond to
variations in ρ. Figure 5.31 compares the area for a processor versus Ts for
all of the PN-LDPC-CCs at a clock frequency of 100 MHz. In the case of the
Ts=768 codes, increasing ρ from 1 to 64 increases the area by 17.9%.

Again, similar to previous decoders, there is a nearly linear relationship
between T ′

s and the energy-per-decoded-bit. Figure 5.32 compares the energy-
per-bit versus T ′

s for a 100-MHz clock. The relationship between the energy-
per-decoded-bit and T ′

s is no longer purely linear as those designs with larger

105

Section 5.4: Decoder v4 - Clock Gating (Decv4)

 1

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

100-192
100-288
100-384
100-480
100-576
100-768
100-864
100-960

100-1152
100-2304
200-192
200-288
200-384
200-480
200-576
200-768
200-960

200-1152

Figure 5.27: Decv4 energy-per-bit versus the information throughput for the
PN-LDPC-CCs. The higher the ρ, the higher the information throughput
and the lower the energy-per-decoded-bit. The energy-per-decoded-bit is
expressed on a per-processor basis. Code lengths (Ts) and parallel-node
(ρ) values are as specified: for Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24},
for Ts=384 ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48},
for Ts=768 ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for
Ts=1152 ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. Clock frequencies of 100
(prefix 100) and 200 (prefix 200) MHz are used.

values of T ′
s experience a greater reduction in the energy-per-decoded-bit due

to clock-gating.
The critical path for the Ts=768, ρ=64 code running at 200 MHz, starts at

a phase control flip-flop and then flows through a variable-node before exiting
out of the processor. From the activation of the phase control flip-flop to the
variable-node the delay is 1.60 ns. From the input of the variable-node to its
output the delay is 2.85 ns. Finally, from the output delay is specified to be
0.5 ns.

In summary, clock-gating reduces the decoder area by 13.5% on average
(min 7.6%, max 20.1%, σ=2.7%) and the energy-per-decoded-bit by 39.8%
on average (min 9.3%, max 53.6%, σ=10.4%). Thus we recommend using
clock-gating in the decoder.

106

Section 5.4: Decoder v4 - Clock Gating (Decv4)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

3-768_C2_p8
3-768_C2_p16
3-768_C2_p32
3-768_C2_p64

3-1152_C2_p32
4-768_C2_p8

4-768_C2_p16
4-768_C2_p32
4-768_C2_p64

4-1152_C2_p32

Figure 5.28: Decv4 (prefix 4) and decv3 (prefix 3) energy-per-decoded-bit
per processor versus the throughput for various codes. Note for the Ts=768,
ρ=8 code operating at 100 MHz, clock-gating reduces the energy-per-bit by
roughly 50%. Clock frequencies of 100 and 200 MHz are used.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 2 4 6 8 10 12 14

A
re

a
(m

m
2)

Throughput (GBits/s)

3-768_C2_p8
3-768_C2_p16
3-768_C2_p32
3-768_C2_p64

3-1152_C2_p32
4-768_C2_p8

4-768_C2_p16
4-768_C2_p32
4-768_C2_p64

4-1152_C2_p32

Figure 5.29: Decv4, Decv3, area per processor versus throughput for various
codes. Note that the typical reduction in area is 13.5%. Clock frequencies
of 100 and 200 MHz are used.

107

Section 5.4: Decoder v4 - Clock Gating (Decv4)

 0.1

 1

 10

 0.1 1 10 100

A
re

a
(m

m
2)

Throughput (GBits/s)

100-192
100-288
100-384
100-480
100-576
100-768
100-864
100-960

100-1152
100-2304
200-192
200-288
200-384
200-480
200-576
200-768
200-960

200-1152

Figure 5.30: Decv4 area for one processor versus the information through-
put, for all of the PN-LDPC-CCs. The area is expressed on a per-processor
basis. Code lengths (Ts) and parallel-node (ρ) values are as specified: for
Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24}, for Ts=384 ρ ∈{32}, for Ts=480
ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48}, for Ts=768 ρ ∈{1,4,8,16,32,64},
for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for Ts=1152 ρ ∈{32,48}, and for
Ts=2304 ρ ∈{64}. Clock frequencies of 100 (prefix 100) and 200 (prefix 200)
MHz are used.

108

Section 5.4: Decoder v4 - Clock Gating (Decv4)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500

A
re

a
(m

m
2)

Ts

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48
2304_C2_p64

linear trend

Figure 5.31: Decv4 processor area versus Ts at 100 MHz. Note the strong
linear correlation between Ts and the area. For a given Ts, variations in area
correspond to variations in ρ. In the case of the Ts=768 codes, increasing ρ
from 4 to 64 increases the area by 17.9%.

109

Section 5.4: Decoder v4 - Clock Gating (Decv4)

 1

 10

 100

 1000

 10 100 1000

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Ts’

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48
2304_C2_p64

linear trend

Figure 5.32: Decv4 energy-per-bit versus T ′
s for a 100-MHz clock. There

is a strong positive correlation between the energy-per-decoded-bit and T ′
s .

However, the relationship to T ′
s is no longer purely linear as those designs

with larger values of T ′
s experience a greater reduction in the energy-per-

decoded-bit due to clock-gating.

110

Section 5.5: Decoder v5 - Removing Reset Circuitry (Decv5)

5.5 Decoder v5 - Removing Reset Circuitry (Decv5)

Decv5 removes the decoder processor reset circuitry to further reduce the area.
Typically, the reset circuitry runs over the entire decoder processor. In the case
of short data stream segments, the reset circuitry would be activated often. In
previous decoders, the decoder must finish processing the present data stream
plus termination bits or padding bits before it can begin processing the next
data stream. Reset circuitry also adds to the size of the decoder. Flip-flops
with resets are larger than those without resets. Memories do not have the
ability to reset their entire contents in a single clock-cycle. In fact, memories
need to be addressed at every row and written with the reset values.

LDPC-CC decoders are deterministic in that the order of operations de-
pends on the code and not the data. With this knowledge it is possible to
pre-determine which registers hold uninitialized values. Knowing which regis-
ters are uninitialized, at any given point in time, allows us to multiplex in the
maximum LLR magnitude into the check-node rather than allowing uninitial-
ized LLR data, from uninitialized memory locations, to enter the check-node.
Using this method, we no longer need to explicitly initialize or “reset” the de-
coder memory. The controller circuitry required to multiplex in the maximum
magnitude into the check-node is simple. Each input into the check-node is
held at the maximum magnitude until a specific phase, which is determined in
advance by analyzing the code, is reached. Once this predetermined phase is
reached, then the values from memory are used. All inputs to the check-nodes
begin to use computed LLR values from memory within T ′

s phases.
In the case of decv5, multiplexors are only placed at the check-node in-

puts; the datapaths from the check-nodes and to/from the variable-nodes re-
main unchanged. The result is that the BER performance is expected to fall
between that of the “maximum magnitude” decoder implementations and the
“saturation-bit” implementations. If multiplexors are used at the inputs to the
check-nodes and the outputs of the variable-nodes, then the same BER perfor-
mance as the “saturation-bit” implementations can be achieved (see Section
F.1 for more details).

The use of a small amount of extra control circuitry in decv5 eliminates the
need for the memory initialization/reset circuitry and thus reduces the energy-
per-decoded-bit. Figure 5.33 shows the energy-per-bit per processor versus
throughput for all of the PN-LDPC-CCs. Figure 5.34 shows the energy-per-
decoded bit versus throughput versus ρ. Each curve in the figure corresponds
to a fixed code length. Points along a curve, moving from left-to-right, rep-
resent an increasing ρ. The higher the ρ the higher the throughput and the
lower the energy-per-decoded-bit.

Eliminating the reset circuitry has little impact on the energy-per-decoded-
bit. Figure 5.35 compares decv5 and decv4 in terms of the energy-per-decoded-
bit per processor versus the throughput for various PN-LDPC-CCs. The dy-

111

Section 5.5: Decoder v5 - Removing Reset Circuitry (Decv5)

 1

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48

Figure 5.33: Decv5 energy-per-decoded-bit per processor versus throughput
for all of the PN-LDPC-CCs. The higher the ρ the higher the throughput
and the lower the energy-per-decoded-bit. Clock frequencies of 100 and 200
MHz are used.

namic power consumption associated with the reset circuitry is amortized over
the data stream length. With a stream length of 32,000 bits, the reduction
in the dynamic power consumption due to the removal of the reset circuitry
is not noticeable. Any observable reduction in the power consumption can be
attributed to a reduction in the static power consumption.

Eliminating the reset circuitry reduces the decoder processor area. Figure
5.36 compares encv5 and encv4, for various codes, with respect to their area
per processor versus throughput. Note that the reduction in area is 11.6% on
average.

Required area is primarily determined by Ts and secondary factors include:
clock frequency and ρ. Figure 5.37 shows the standard cell area versus through-
put versus ρ. Each curve in the figure corresponds to a fixed code length.
Points along a curve, moving from left-to-right, represent an alternative code
with the same Ts but an increased ρ.

Again, similar to previous decoders, there is a nearly linear relationship
between T ′

s and the energy-per-decoded-bit. Figure 5.38 compares the decv5
processor energy-per-bit versus T ′

s for a 100-MHz clock. Due to the clock-
gating introduced in decv4, the relationship between the energy-per-decoded-
bit and T ′

s is non-linear. Removing the reset circuitry has no perceivable
impact on this relationship.

Removing the reset circuitry has little impact on the energy-per-decoded-

112

Section 5.5: Decoder v5 - Removing Reset Circuitry (Decv5)

 1

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

100-192
100-288
100-384
100-480
100-576
100-768
100-864
100-960

100-1152
200-192
200-288
200-384
200-480
200-576
200-768
200-864
200-960

200-1152

Figure 5.34: Decv5 energy-per-bit versus the information throughput for the
PN-LDPC-CCs. The higher the ρ, the higher the information throughput
and the lower the energy-per-decoded-bit. The energy-per-decoded-bit is
expressed on a per-processor basis. Code lengths (Ts) and parallel-node
(ρ) values are as specified: for Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24},
for Ts=384 ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48},
for Ts=768 ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for
Ts=1152 ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. Clock frequencies of 100
(prefix 100) and 200 (prefix 200) MHz are used.

bit (reduction of 2.4% on average; min -20.0%; max 16.8%, σ=8.7%) and
reduces the area by roughly 11.5% on average (min 0.7%, max 17.6%, σ=3.6%).
Thus we recommend removing the reset circuitry on a case by case basis.

113

Section 5.5: Decoder v5 - Removing Reset Circuitry (Decv5)

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

4-768_C2_p8
4-768_C2_p16
4-768_C2_p32
4-768_C2_p64

4-1152_C2_p32
5-768_C2_p8

5-768_C2_p16
5-768_C2_p32
5-768_C2_p64

5-1152_C2_p32

Figure 5.35: Decv5 (prefix 5) and decv4 (prefix 4) energy-per-decoded-bit
per processor versus throughput for various PN-LDPC-CCs. Removing the
reset circuitry has little impact on the power consumption. Clock frequen-
cies of 100 and 200 MHz are used.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10 12 14

A
re

a
(m

m
2)

Throughput (GBits/s)

4-768_C2_p8
4-768_C2_p16
4-768_C2_p32
4-768_C2_p64

4-1152_C2_p32
5-768_C2_p8

5-768_C2_p16
5-768_C2_p32
5-768_C2_p64

5-1152_C2_p32

Figure 5.36: Decv5 (prefix 5) and decv4 (prefix 4) area per processor versus
throughput for various PN-LDPC-CCs. For every PN-LDPC-CC compared,
eliminating the reset circuitry reduces the area.

114

Section 5.5: Decoder v5 - Removing Reset Circuitry (Decv5)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.1 1 10 100

A
re

a
(m

m
2)

Throughput (GBits/s)

100-192
100-288
100-384
100-480
100-576
100-768
100-864
100-960

100-1152
200-192
200-288
200-384
200-480
200-576
200-768
200-864
200-960

200-1152

Figure 5.37: Decv5 area for one processor versus the information through-
put, for all of the PN-LDPC-CCs. The area is expressed on a per-processor
basis. Code lengths (Ts) and parallel-node (ρ) values are as specified: for
Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24}, for Ts=384 ρ ∈{32}, for Ts=480
ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48}, for Ts=768 ρ ∈{1,4,8,16,32,64},
for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for Ts=1152 ρ ∈{32,48}, and for
Ts=2304 ρ ∈{64}. Clock frequencies of 100 (prefix 100) and 200 (prefix 200)
MHz are used.

115

Section 5.5: Decoder v5 - Removing Reset Circuitry (Decv5)

 1

 10

 100

 1000

 10 100 1000

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Ts’

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48

linear trend

Figure 5.38: Decv5 energy-per-bit versus T ′
s for a 100-MHz clock. There is

a strong positive correlation between T ′
s and the energy-per-decoded-bit.

116

Section 5.6: Decoder v6 - Truncated Min-Sum Check-Node(Decv6)

5.6 Decoder v6 - Truncated Min-Sum Check-Node

(Decv6)

Removing the LSB in the check-node operation improves the BER perfor-
mance1, reduces the area and reduces the power consumption. We will call
this technique the truncated min-sum (TMS) check sum operation. The effect
of removing the LSB in the check-node operation ripples though the hardware
requirements for the rest of the decoder processor. The LLR bit-width of the
storage elements for all the LLRs, with the exception of the channel sam-
ples, can be reduced by 1 bit. The variable-node implementation is simplified
as three of the four input LLRs have their bit-width reduced by 1 bit. The
check-node implementation is simplified as all of the LLR inputs have their
bit-width reduced by 1 bit. The result of these simplifications is a significant
reduction in the power consumption and the area, and an improvement in the
BER performance.

Using a simpler check-node, as in decv6, reduces the power consumption.
Figure 5.39 shows the energy-per-bit per processor versus the information
throughput for all of the PN-LDPC-CCs. Figure 5.40 shows the energy-per-
decoded bit versus throughput versus ρ. Each curve in the figure corresponds
to a fixed code length. Points along a curve, moving from left-to-right, repre-
sent an increasing ρ. As ρ increases, the throughput increases and the energy-
per-decoded-bit decreases.

The benefit of the truncated min-sum operation can be viewed from the
point of view of the check-node or the variable-node. From the point of view
of the check-node, the truncated min-sum can be viewed as equivalent to
sometimes subtracting a constant from the check-node LLR magnitudes. Sim-
ilar to the offset min-sum operation described in [15], the truncated min-sum
operation also subtracts a constant. However, unlike the offset min-sum oper-
ation, the truncated min-sum conditionally subtracts a constant value, which
is equal to that of the maximum value that the LSB can represent. The trun-
cated min-sum only subtracts the constant value when the LLR LSB is set. In
other words, if the LSB is set, it is subtracted. In effect, the LSBs of the LLRs
entering the check-node are truncated and do not participate in the check-
node operation. As a result, from the point of view of the variable-node, the
truncated min-sum operation can be viewed as a normal check-node min-sum
operation with LLRs missing their LSB bits. Only the un-altered channel
LLRs have full LLR bit precision.

Interestingly, the truncated min-sum technique can actually improve the
variable-node operation. In the variable-node operation the higher precision of
the un-altered-channel-LLRs helps to preserve, in certain cases, the resulting

1The author has been led to believe that truncating the LSB in the check-node operation
has been published before; however, the author has not been able to find the work, yet.

117

Section 5.6: Decoder v6 - Truncated Min-Sum Check-Node(Decv6)

 1

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48
2304_C2_p64

Figure 5.39: Decv6 energy-per-decoded-bit per processor versus throughput
for all the PN-LDPC-CCs. The higher the ρ the higher the throughput and
the lower the energy-per-decoded-bit. Clock frequencies of 100 and 200
MHz are used.

sign bit. In the cases where the addition of the LLRs in the variable-node would
have resulted in a value of zero, a higher precision un-altered-channel-LLR
allows the variable-node operation to potentially produce a result of negative
zero (from the perspective of the next check-node).

For example, given an LLR with a value of -0.375, represented in binary
sign-magnitude as 1011, where the MSB is the sign and there are 3-bits of
magnitude. In the TMS operation, the value entering the cnode would be
truncated to 101. In the variable-node operation, if we where to add 0.25 to
-0.375, the result would be -0.125, or 1001 in binary sign-magnitude. When
the resulting value of the variable-node operation enters the TMS check-node
operation, its LSB is dropped (truncated) and the binary sign-magnitude value
is transformed from 1001 (-0.125) to 100 (-0.000). Note how the sign is pre-
served. Even though the magnitude is now 0, the sign bit contributes to the
outcome of the min-sum check-node operation. Thus we have, in this partic-
ular case, preserved the effect of the truncated LSB through the preservation
of the sign bit.

The truncated min-sum improves the BER performance by as much as
0.2 dB. For the Ts=288, ρ=24 code and a 4-bit LLR bit-width, Figure 5.41
compares the effect on BER performance of the truncated min-sum operation.
For 24 processors the truncated min-sum operation improves the BER per-
formance by 0.2 dB. For 10 processors, the BER performance is improved by

118

Section 5.6: Decoder v6 - Truncated Min-Sum Check-Node(Decv6)

 1

 10

 100

 1000

 0.1 1 10 100

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

100-192
100-288
100-384
100-480
100-576
100-768
100-864
100-960

100-1152
200-192
200-288
200-384
200-576
200-768
200-960

200-1152
200-2304

Figure 5.40: Decv6 energy-per-bit versus the information throughput for the
PN-LDPC-CCs. The higher the ρ, the higher the information throughput
and the lower the energy-per-decoded-bit. The energy-per-decoded-bit is
expressed on a per-processor basis. Code lengths (Ts) and parallel-node
(ρ) values are as specified: for Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24},
for Ts=384 ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48},
for Ts=768 ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for
Ts=1152 ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. Clock frequencies of 100
(prefix 100) and 200 (prefix 200) MHz are used.

0.1 dB. For 5 processors, the BER performance is indistinguishable. In cases
where there are fewer than 5 processors, the min-sum operation outperforms
the truncated min-sum.

Removing the LSB from the check-node operation reduces the power con-
sumption and the area. Table 5.3 compares decv6 and decv5 in terms of area,
power and throughput. The clock frequency is set to 200 MHz. In the case of
the Ts=288, ρ=24 code with a 5-bit LLR, the power consumption is reduced
by 29% and the decoder processor area is reduced by 12% percent.

Using the truncated min-sum operation significantly reduces the power
consumption. Figure 5.42 compares decv6 (prefix 6) and decv5 (prefix 5)
in terms of the energy-per-decoded-bit per processor versus throughput for
various PN-LDPC-CCs.

Compared to the min-sum operation, the truncated min-sum operation
significantly reduces the area consumption. Figure 5.43 compares decv6 and
decv5 in terms of area per processor versus throughput.

Required area is primarily determined by Ts and secondary factors include:

119

Section 5.6: Decoder v6 - Truncated Min-Sum Check-Node(Decv6)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

in
fo

B
E

R

Eb/N0 (dB)

MinSum-5
MinSum-10
MinSum-24

TMS-5
TMS-10
TMS-24

Figure 5.41: The Ts=288, ρ=24 code with 5, 10, and 24 processors is used to
compare the BER performance of decoders using the min-sum (Min-Sum)
and the truncated min-sum (TMS) operations. In all cases a 5-bit LLR is
used. For 24 processors, the BER performance is improved by 0.2 dB. For 10
processors, the BER performance is improved by 0.1 dB. For 5 processors,
the BER performance is indistinguishable.

Code Version LLR bit Area Energy Through-
width per bit put

(um2) (pJ) (GBits/s)
Ts 288 ρ 24 decv5 5 432666 12.54 4.800
Ts 288 ρ 24 decv6 5 379666 8.890 4.800

Table 5.3: Compares decv6 and decv5 in terms of area, power and through-
put. The clock frequency is set to 200 MHz. A CMOS 90-nm process is
used. We see that the truncated min-sum approach, used in decv6, signifi-
cantly reduces both the area and the power consumption.

clock frequency and ρ. Figure 5.44 shows the standard cell area versus through-
put versus ρ. Each curve in the figure corresponds to a fixed code length.
Points along a curve, moving from left-to-right, represent an alternative code
with the same Ts but an increased ρ.

Decv6 has a strong positive correlation between the energy-per-decoded-
bit and T ′

s. Figure 5.45 compares the processor energy-per-bit versus T ′
s for a

100-MHz clock. Due to the clock-gating introduced in decv4, the relationship
between the energy-per-decoded-bit and T ′

s is non-linear. Other than reducing
the energy-per-bit, using the TMS has no impact on the relationship between

120

Section 5.6: Decoder v6 - Truncated Min-Sum Check-Node(Decv6)

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 2 4 6 8 10 12 14

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

5-192_C2_p16
5-288_C2_p24
5-384_C2_p32
5-576_C2_p48
5-768_C2_p64
6-192_C2_p16
6-288_C2_p24
6-384_C2_p32
6-576_C2_p48
6-768_C2_p64

Figure 5.42: Decv6 (prefix 6) and decv5 (prefix 5) energy-per-decoded-bit
per processor versus throughput for various PN-LDPC-CCs. Using the
truncated min-sum operation reduces the power consumption. Clock fre-
quencies of 100 and 200 MHz are used.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14

A
re

a
(m

m
2)

Throughput (GBits/s)

5-192_C2_p16
5-288_C2_p24
5-384_C2_p32
5-576_C2_p48
5-768_C2_p64
6-192_C2_p16
6-288_C2_p24
6-384_C2_p32
6-576_C2_p48
6-768_C2_p64

Figure 5.43: Decv6 and decv5 area per processor versus throughput for
various PN-LDPC-CCs. Using the truncated min-sum check-node operation
reduces the area. Clock frequencies of 100 and 200 MHz are used.

121

Section 5.6: Decoder v6 - Truncated Min-Sum Check-Node(Decv6)

 0.1

 1

 10

 0.1 1 10 100

A
re

a
(m

m
2)

Throughput (GBits/s)

100-192
100-288
100-384
100-480
100-576
100-768
100-864
100-960

100-1152
200-192
200-288
200-384
200-576
200-768
200-960

200-1152
200-2304

Figure 5.44: Decv6 area for one processor versus the information through-
put, for all of the PN-LDPC-CCs. The area is expressed on a per-processor
basis. Code lengths (Ts) and parallel-node (ρ) values are as specified: for
Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24}, for Ts=384 ρ ∈{32}, for Ts=480
ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48}, for Ts=768 ρ ∈{1,4,8,16,32,64},
for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for Ts=1152 ρ ∈{32,48}, and for
Ts=2304 ρ ∈{64}. Clock frequencies of 100 (prefix 100) and 200 (prefix 200)
MHz are used.

the energy-per-decoded-bit and T ′
s.

Decv6, displays the similar correlation between area and Ts. Figure 5.46
shows decv6 area versus Ts for all our PN-LDPC-CCs. A clock frequency of
100 MHz is used.

In Figure 5.41 we showed that the TMS operation outperformed the min-
sum operation for an equal number of processors. We then showed that the
TMS version of the decoder, decv6, generally consumes less power and area.
Figure 5.47 compares the BER performance of decv5 (Min-Sum) and decv6
(TMS) for a fixed amount of area. In this case both decoder types occupy
4 mm2 of area. The number of LLR magnitude bits is allowed to vary from
3 to 4. The number of processors is increased until the 4 mm2 area limit is
reached. As can be seen in the figure, decv6 (TMS) with 3 magnitude bits
has the best BER performance. This trend holds true for the other codes and
for the various amounts of area (processors). The trend is broken only for
extremely few processors (i.e. 5 or less).

In summary, we have shown that decv6 (TMS) compared to decv5 (min-
sum) improves the BER performance for the same number of processors. On a

122

Section 5.6: Decoder v6 - Truncated Min-Sum Check-Node(Decv6)

 1

 10

 100

 1000

 10 100 1000

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Ts’

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48

linear trend

Figure 5.45: Decv6 energy-per-bit versus T ′
s for a 100-MHz clock. There is

a strong positive correlation between T ′
s and the energy-per-decoded-bit.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 200 400 600 800 1000 1200

A
re

a
(m

m
2)

Ts

192_C2_p16
288_C2_p1
288_C2_p4
288_C2_p8

288_C2_p24
384_C2_p32
480_C2_p8
576_C2_p1
576_C2_p4
576_C2_p8

576_C2_p12
576_C2_p16
576_C2_p24
576_C2_p48
768_C2_p1
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
768_C2_p64
864_C2_p24
960_C2_p8

1152_C2_p32
1152_C2_p48

linear trend

Figure 5.46: Decv6 area versus Ts for a 100-MHz clock.

123

Section 5.6: Decoder v6 - Truncated Min-Sum Check-Node(Decv6)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.8 2 2.2 2.4 2.6 2.8 3

in
fo

B
E

R

Eb/N0 (dB)

MinSum-3-13
MinSum-4-10

TMS-3-16
TMS-4-12

Figure 5.47: Decv6 (TMS) and decv5 (Min-Sum) BER performance for the
Ts=288, ρ=24 code, constrained to 4 mm2 of area. The number of LLR
magnitude bits (3 or 4) and number of processors are varied to fit into the 4
mm2 of area. Note how using the truncated min-sum check-node operation
improves the BER performance.

per-processor basis, decv6 (TMS) compared to decv5 (min-sum) decreases the
energy-per-decoded-bit by 21.0% on average (min 1.1%, max 45.5%, σ=8.5%)
and reduces the processor area by 18.6% on average (min 11.3%, max 27.6%,
σ=4.4%). In nearly all circumstances the min-sum operation/hardware should
be replaced with the TMS operation/hardware.

124

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput/Area (GBits/s•mm2)

1-192_C2_p16
1-288_C2_p24
1-384_C2_p32
1-576_C2_p48
1-768_C2_p64
6-192_C2_p16
6-288_C2_p24
6-384_C2_p32
6-576_C2_p48
6-768_C2_p64

Figure 5.48: Decv6 (prefix 6) and decv1 (prefix 1) compared for T ′
s=12

codes, in terms of the energy-per-bit versus the throughput/area. The re-
sults are based on a CMOS 90-nm process, 5-bit LLRs and 100 and 200-MHz
clocks.

5.7 PN-LDPC-CC Decoder Hardware and BER Perfor-

mance Analysis

In the previous sections we introduced a number of progressively improved PN-
LDPC-CC decoder processor designs. The decoder designs were compared
in terms of their energy-per-decoded-bit, area and information throughput.
Codes with a group period T ′

s of 12 have the lowest energy-per-decoded bit.
Codes with the largest node-parallelization factor ρ have the highest through-
put. Area is proportional to the code period Ts. The decv6 architecture has
the lowest energy-per-decoded-bit and the smallest area per processor.

For the T ′
s=12 codes, the decv6 processors, compared to the decv1 proces-

sors, reduce the energy-per-decoded-bit by approximately 2.5 times and they
double the throughput-to-area ratio. Figure 5.48 compares decv6 and decv1
in terms of the energy-per-decoded-bit versus the throughput over the area
for the T ′

s=12 codes. The results are based on a CMOS 90-nm process and a
100 and 200 MHz clock. Note that, similar to the energy-per-decoded-bit, the
throughput-to-area ratio is strongly correlated to T ′

s.
The previous sections compare decoder processor designs using 4 bits of

LLR magnitude precision. In this section we will take a closer look at the
relationship of the hardware to the BER performance. First we will establish

125

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3 3.5 4 4.5 5 5.5 6

A
re

a
(m

m
2)

llrBitWidth

100-192_C2_p16
100-288_C2_p24
100-384_C2_p32
100-576_C2_p48
100-768_C2_p64
200-192_C2_p16
200-288_C2_p24
200-384_C2_p32
200-576_C2_p48
200-768_C2_p64

Figure 5.49: Decv6 processor area versus the LLR bit-width. The results
are based on a CMOS 90-nm process and 100 and 200-MHz clocks (prefixes
100 and 200, respectively). Note that there is a nearly linear relationship
between the decoder processor area, the LLR bit-width and clock frequency.

a relationship between the number of LLR bits and the energy-per-decoded-bit
and the decoder processor area. The LLR-bits-to-energy-per-decoded-bit and
LLR-bits-to-processor-area relationships will be used to determine our best
hardware solution for a given amount of silicon area or a given power budget.

As one might expect, the decoder processor area is nearly linearly related
to the LLR bit-width. Figure 5.49 plots the decoder processor area relative
to the LLR bit-width. As can be seen, area grows nearly linearly with the
number of LLR bits.

For a 100-MHz clock, the decv6 energy-per-decoded-bit is nearly linearly
related to the number of LLR bits. However, for a 200-MHz clock, the energy-
per-decoded-bit is no longer linearly related to the number of LLR bits. The
increase in clock frequency makes it harder for the synthesis tool to meet
timing. As a result the designs that the synthesis tool finds have more variation
between them. Figure 5.50 shows the relationship between the number of LLR
bits and the energy-per-decoded-bit. For the codes examined, as the LLR bit-
width increases the power consumed increases.

Tables 5.4 and 5.5 summarize, for a single decv6 processor, the area, power
and information throughput for 100 and 200-MHz clocks. PN-LDPC-CC De-
coders consist of a cascade of multiple decoder processors. The decoder area,
power and energy-per-decoded-bit for a decoder is thus equal to the value for a

126

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 0

 5

 10

 15

 20

 25

 3 3.5 4 4.5 5 5.5 6

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

LLR bit width

100-192_C2_p16
100-288_C2_p24
100-384_C2_p32
100-576_C2_p48
100-768_C2_p64
200-192_C2_p16
200-288_C2_p24
200-384_C2_p32
200-576_C2_p48
200-768_C2_p64

Figure 5.50: Decv6 energy-per-decoded-bit per processor versus the LLR
bit-width for various PN-LDPC-CC codes. The results are based on CMOS
90-nm process and 100 and 200-MHz clocks. For the 100-MHz clock (prefix
100), note the linear relationship between the energy-per-decoded-bit and
the bit-width of the LLRs. For the 200 MHz clock (prefix 200) we begin to
see non-linear increases in the energy-per-decoded-bit with increasing LLR
bit-widths.

single decoder processor multiplied by the number of processors. The decoder
throughput remains unchanged as the number of processors increases, how-
ever, the overall error-correcting-performance should increase. The decoder
throughput/area for a decoder is equal to the single decoder processor value
divided by the number of processors. The decoder processor running at 200
MHz has greater throughput/area and higher energy-per-decoded-bit than the
same decoder processor running at 100 MHz. Given the metrics of a single
PN-LDPC-CC decoder processor, it is possible to calculate the metrics of the
PN-LDPC-CC decoder provided the number of decoder processors is known.

Now that we know the hardware cost for each decoder processor, two key
questions arise: “What is the best BER performance that we can achieve given
a fixed amount of area?” and “What is the best BER performance that we
can achieve given a fixed amount of power?” The BER performance of the
T ′

s=12 codes will now be examined while constraining first the area and then
the power. Specifically, the area will be constrained to 1, 2, 3, 4, 5, 6, 8, 10
and 12 mm2. Then the power will be constrained to 100, 200, 300 and 400
mW.

For 1mm2 of decoder area, choosing Ts=192, ρ=16 with 3-bit magnitude

127

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

Code LLR bit Area Power Through- Energy Throughput
width put per bit /Area
(bits) (mm2) (mW) (GBits/s) (pJ) (GBits/s·mm2)

Ts 192 ρ 16 3 0.105 4.773 1.600 2.983 5.069
Ts 192 ρ 16 4 0.159 7.767 1.600 4.853 3.350
Ts 192 ρ 16 5 0.215 10.88 1.600 6.803 2.486
Ts 192 ρ 16 6 0.270 14.08 1.600 8.800 1.977
Ts 288 ρ 24 3 0.158 7.117 2.400 2.966 5.071
Ts 288 ρ 24 4 0.239 11.67 2.400 4.867 3.348
Ts 288 ρ 24 5 0.326 16.64 2.400 6.933 2.453
Ts 288 ρ 24 6 0.404 21.38 2.400 8.910 1.979
Ts 384 ρ 32 3 0.210 9.467 3.200 2.958 5.080
Ts 384 ρ 32 4 0.318 15.67 3.200 4.897 3.352
Ts 384 ρ 32 5 0.433 22.48 3.200 7.027 2.461
Ts 384 ρ 32 6 0.537 28.89 3.200 9.030 1.987
Ts 576 ρ 48 3 0.316 14.32 4.800 2.985 5.071
Ts 576 ρ 48 4 0.482 23.51 4.800 4.900 3.322
Ts 576 ρ 48 5 0.660 33.83 4.800 7.050 2.424
Ts 576 ρ 48 6 0.813 43.60 4.800 9.083 1.969
Ts 768 ρ 64 3 0.420 19.33 6.400 3.021 5.082
Ts 768 ρ 64 4 0.640 31.64 6.400 4.943 3.331
Ts 768 ρ 64 5 0.866 44.96 6.400 7.027 2.462
Ts 768 ρ 64 6 1.085 59.16 6.400 9.243 1.967

Table 5.4: A single decv6 decoder processor in a CMOS 90-nm process,
running at 100 MHz, comparing area, power and throughput versus LLR
bit-width.

LLRs and 12 processors results in the best BER performance. Our results are
based on a CMOS 90-nm process and a 100-MHz clock. Note that all of the
decoders use the same area; however, the required Eb/N0 to achieve the target
BER of 10−6 can vary by as much as 1.0 dB. The following figures show the
BER performance achieved given increasing area budgets ranging from 1 mm2

to 12 mm2. Figures 5.51 to 5.59 show the BER characteristics for areas of 1,
2, 3, 4, 5, 6, 8, 10 and 12 mm2, respectively.

128

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.5 2 2.5 3 3.5 4 4.5 5

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-6
288_C2_p24-4
384_C2_p32-3
576_C2_p48-2
768_C2_p64-1

Figure 5.51: For 1 mm2 of area, the Ts=192, ρ=16 code with 4-bit LLRs
and 6 processors (192 C2 p16-6) has the best BER performance of 10−6 at
an Eb/N0 of 4.0 dB. The results are based on a CMOS 90-nm process and
a 100-MHz clock.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.5 2 2.5 3 3.5 4 4.5 5

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-12
288_C2_p24-8
384_C2_p32-6
576_C2_p48-4
768_C2_p64-3

Figure 5.52: For 2 mm2 of area, the Ts=192, ρ=16 code with 4-bit LLRs
and 12 processors (192 C2 p16-12) has the best BER performance of 10−6

at an Eb/N0 of 2.9 dB. The results are based on a CMOS 90-nm process
and a 100-MHz clock.

129

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.5 2 2.5 3 3.5 4

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-18
288_C2_p24-12
384_C2_p32-9
576_C2_p48-6
768_C2_p64-4

Figure 5.53: For 3 mm2 of area, the Ts=192, ρ=16 code with 4-bit LLRs
and 18 processors (192 C2 p16-18) has the best BER performance of 10−6

at an Eb/N0 of 2.6 dB. The results are based on a CMOS 90-nm process
and a 100-MHz clock.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-25
288_C2_p24-16
384_C2_p32-12
576_C2_p48-8
768_C2_p64-6

Figure 5.54: For 4 mm2 of area, the Ts=192, ρ=16 code with 4-bit LLRs
and 25 processors (192 C2 p16-25) has the best BER performance of 10−6

at an Eb/N0 of 2.4 dB. The results are based on a CMOS 90-nm process
and a 100-MHz clock.

130

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-31
288_C2_p24-20
384_C2_p32-15
576_C2_p48-10
768_C2_p64-7

Figure 5.55: For 5 mm2 of area, the Ts=192, ρ=16 code with 4-bit LLRs
and 31 processors (192 C2 p16-31) has the best BER performance of 10−6

at an Eb/N0 of 2.35 dB. The results are based on a CMOS 90-nm process
and a 100-MHz clock.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-37
288_C2_p24-25
384_C2_p32-18
576_C2_p48-12
768_C2_p64-9

Figure 5.56: For 6 mm2 of area, the Ts=288, ρ=24 code with 4-bit LLRs
and 25 processors (288 C2 p24-25) has the best BER performance of 10−6

at an Eb/N0 of 2.2 dB. The results are based on a CMOS 90-nm process
and a 100-MHz clock.

131

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.8 1.9 2 2.1 2.2 2.3 2.4

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-50
288_C2_p24-33
384_C2_p32-25
576_C2_p48-16
768_C2_p64-12

Figure 5.57: For 8 mm2 of area, the Ts=288, ρ=24 code with 4-bit LLRs
and 33 processors (288 C2 p24-33) has the best BER performance of 10−6

at an Eb/N0 of 2.1 dB. The results are based on a CMOS 90-nm process
and a 100-MHz clock.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-62
288_C2_p24-41
384_C2_p32-31
576_C2_p48-20
768_C2_p64-15

Figure 5.58: For 10 mm2 of area, the Ts=384, ρ=32 code with 4-bit LLRs
and 31 processors (384 C2 p32-31) has the best BER performance of 10−6

at an Eb/N0 of 2.05 dB. The results are based on a CMOS 90-nm process
and a 100-MHz clock.

132

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

Code LLR bit Area Power Through- Energy Throughput
width put per bit /Area
(bits) (mm2) (mW) (GBits/s) (pJ) (GBits/s·mm2)

Ts 192 ρ 16 3 0.110 9.180 3.200 2.868 9.741
Ts 192 ρ 16 4 0.174 18.76 3.200 5.863 6.146
Ts 192 ρ 16 5 0.237 31.06 3.200 9.707 4.509
Ts 192 ρ 16 6 0.307 42.53 3.200 13.29 3.479
Ts 288 ρ 24 3 0.168 14.23 4.800 2.965 9.525
Ts 288 ρ 24 4 0.260 27.82 4.800 5.797 6.151
Ts 288 ρ 24 5 0.380 42.66 4.800 8.890 4.213
Ts 288 ρ 24 6 0.469 73.86 4.800 15.39 3.410
Ts 384 ρ 32 3 0.221 19.15 6.400 2.993 9.637
Ts 384 ρ 32 4 0.351 42.66 6.400 6.663 6.078
Ts 384 ρ 32 5 0.499 76.46 6.400 11.94 4.278
Ts 384 ρ 32 6 0.629 99.06 6.400 15.48 3.393
Ts 576 ρ 48 3 0.350 37.90 9.600 3.947 9.133
Ts 576 ρ 48 4 0.542 70.93 9.600 7.390 5.909
Ts 576 ρ 48 5 0.785 131.1 9.600 13.66 4.076
Ts 576 ρ 48 6 1.009 205.8 9.600 21.43 3.172
Ts 768 ρ 64 3 0.462 51.43 12.80 4.020 9.242
Ts 768 ρ 64 4 0.739 105.6 12.80 8.253 5.776
Ts 768 ρ 64 5 1.033 169.4 12.80 13.24 4.132
Ts 768 ρ 64 6 1.175 167.8 12.80 13.11 3.633

Table 5.5: A single decv6 decoder processor in a CMOS 90-nm process,
running at 200 MHz, comparing area, power and throughput versus LLR
bit-width.

133

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1.8 1.85 1.9 1.95 2 2.05 2.1

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-75
288_C2_p24-50
384_C2_p32-37
576_C2_p48-24
768_C2_p64-18

Figure 5.59: For 12 mm2 of area, the Ts=384, ρ=32 code with 4-bit LLRs
and 37 processors (384 C2 p32-37) has the best BER performance of 10−6

at an Eb/N0 of 1.97 dB. The results are based on a CMOS 90-nm process
and a 100-MHz clock.

134

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.5 2 2.5 3 3.5 4

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-12
288_C2_p24-8
384_C2_p32-6
576_C2_p48-4
768_C2_p64-3

Figure 5.60: For 100 mW of power, the Ts=192, ρ=16 with 4-bit LLRs and
12 processors (192 C2 p16-12) has the best BER performance of 10−6 at an
Eb/N0 of 2.9 dB. The results are based on a CMOS 90-nm process and a
100-MHz clock. Note that all the decoders use the same amount of power,
but vary the codes, number of processors and LLR bit-width. The Ts=192,
288, 384, 576 and 768 codes have an energy-per-decoded-bit of 62.5 nJ, 41.7
nJ, 31.3 nJ, 20.8 nJ and 15.6 nJ, respectively.

For our decoders and a given power budget, there is an optimal combination
of codes, LLR bit-widths and processors that will minimize the BER. The
following BER performance figures show our best hardware solutions, given a
fixed amount of power. Figures 5.60, 5.61, 5.62 and 5.63 shows the achievable
BER given a power limit of 100, 200, 300 and 400 mW, respectively. The
energy-per-bit in the caption of Figure 5.60 scales linearly with the power.

From the BER performance given area or power constraints, we see that
the BER differs dramatically. From this we can conclude that when compar-
ing LDPC decoders, it is extremely important that the BER performance and
the Eb/N0 be matched before comparing power, area or other hardware met-
rics. Failure to align the BER performance and the Eb/N0 will result in an
inaccurate comparison and misleading conclusions.

While area and power are important design metrics they do not capture
a full and satisfactory notion of decoder implementation “efficiency”. It can
be argued that more useful metrics for LDPC decoders are the energy-per-
decoded-bit and the throughput/area. Figure 5.64 compares the energy-per-
decoded-bit versus the throughput/area for various T ′

s=12 codes with 4-bit
LLRs in 4 different process technologies. The process technologies include

135

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-25
288_C2_p24-17
384_C2_p32-12
576_C2_p48-8
768_C2_p64-6

Figure 5.61: For 200 mW of power, the Ts=192, ρ=16 with 4-bit LLRs and
25 processors (192 C2 p16-25) has the best BER performance of 10−6 at an
Eb/N0 of 2.4 dB. The results are based on a CMOS 90-nm process and a
100-MHz clock.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-38
288_C2_p24-25
384_C2_p32-19
576_C2_p48-12
768_C2_p64-9

Figure 5.62: For 300 mW of power, the Ts=288, ρ=24 with 4-bit LLRs and
25 processors (288 C2 p24-25) has the best BER performance of 10−6 at an
Eb/N0 of 2.2 dB. The results are based on a CMOS 90-nm process and a
100-MHz clock.

136

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3

in
fo

B
E

R

Eb/N0 (dB)

192_C2_p16-51
288_C2_p24-34
384_C2_p32-25
576_C2_p48-17
768_C2_p64-12

Figure 5.63: For 400 mW of power, the Ts=288, ρ=24 with 4-bit LLRs and
34 processors (288 C2 p24-34) has the best BER performance of 10−6 at an
Eb/N0 of 2.1 dB. The results are based on a CMOS 90-nm process and a
100-MHz clock.

TSMC 180-nm CMOS (art18.3.0), IBM 130-nm CMOS (ibm130.1.5), STM
90-nm CMOS (cmos90nm.3.0) and STM 65-nm CMOS (cmos65nm). The
results are based upon a Eb/N0 of 1.8 dB and the clock frequencies 50 MHz,
100 MHz, 150 MHz and 200 MHz.

Each process technology has different energy-per-decoded-information-bit
versus throughput/area curves. Figure 5.64 is split by process into four Fig-
ures: CMOS 180-nm (Figure 5.65), CMOS 130-nm (Figure 5.66), CMOS 90-
nm (Figure 5.67) and CMOS 65-nm (Figure 5.68). As can be seen from
the previous figures, the process technology significantly impacts both the
energy-per-decoded-information-bit and the throughput/area metrics. In gen-
eral, the more recent technology processes achieve a lower energy-per-decoded-
information-bit and a greater throughput-to-area ratio. The ratio of static to
dynamic power consumption is higher in the CMOS 90-nm process technology
compared to other process technologies. This creates the bath tub curve seen
in Figure 5.67. In all process technologies, increased throughput/area can be
traded off for an increase in the energy-per-decoded-information-bit. In the
specific process technologies, the decv6 architecture sees only moderate differ-
entiation between the various T ′

ss=12 codes in terms of energy-per-decoded-
information-bit and the throughput/area. In general for the examined process
technologies, a sweet spot for the energy-per-decoded-information bit exists at
around 100 MHz. The exception to this observation is found in the CMOS

137

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 1

 10

 100

 1000

 0.1 1 10

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput/Area (GBits/s•mm2)

art18.3.0-192_C2_p16
art18.3.0-288_C2_p24
art18.3.0-384_C2_p32
art18.3.0-576_C2_p48
art18.3.0-768_C2_p64

cmos65nm.1.0-192_C2_p16
cmos65nm.1.0-288_C2_p24
cmos65nm.1.0-384_C2_p32
cmos65nm.1.0-576_C2_p48
cmos65nm.1.0-768_C2_p64
cmos90nm.3.0-192_C2_p16
cmos90nm.3.0-288_C2_p24
cmos90nm.3.0-384_C2_p32
cmos90nm.3.0-576_C2_p48
cmos90nm.3.0-768_C2_p64

ibm130.1.5-192_C2_p16
ibm130.1.5-288_C2_p24
ibm130.1.5-384_C2_p32
ibm130.1.5-576_C2_p48
ibm130.1.5-768_C2_p64

Figure 5.64: Decv6 energy-per-decoded-bit versus the throughput/area for
various T ′

s=12 codes with 4-bit LLRs in 4 different process technologies.
Process technologies include TSMC 180-nm CMOS (art18.3.0), IBM 130-
nm CMOS (ibm130.1.5), STM 90-nm CMOS (cmos90nm.3.0) and STM
65-nm CMOS (cmos65nm). The results are based upon a Eb/N0 of 1.8 dB.
The clock frequency was set to 50, 100, 150 and 200 MHz. Based on process
technology, the curves in this Figure are split out in to individual Figures
5.65, 5.66, 5.67 and 5.68.

90-nm process, where the sweet spot is located at around 150 MHz. In all
the process technologies examined, an increase in the clock frequency up to
150-200 MHz increases the throughput/area at a greater rate than the energy-
per-decoded-information-bit.

In previous sections, we established for the CMOS 90-nm process, with
designs running at 100 MHz, that the energy-per-decoded-bit varied nearly
linearly with T ′

s. While this generally remains true, the correlation is weaker
for the other examined process technologies. We have seen that the energy-
per-decoded-bit can vary by as much as 25% at 100 MHz (see Figure 5.65
CMOS 180-nm energy-per-decoded-bit versus throughput/area).

Given a target BER and Eb/N0, there is a combination of codes, processors
and LLR bit-widths that minimizes the energy-per-decoded-information-bit
or that maximizes the throughput/area. Tables 5.6, 5.7, 5.8 and 5.9 list the
hardware metrics for the decv6 decoder processor with 4-bit LLRs in 65-nm,
90-nm, 130-nm and 180-nm CMOS processes, respectively. Combined with the
number of processors required to achieve the target BER performance, given
an Eb/N0, it is possible to determine the optimum solution that minimizes the

138

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput/Area (GBits/s•mm2)

192_C2_p16
288_C2_p24
384_C2_p32
576_C2_p48
768_C2_p64

Figure 5.65: Decoder processor energy-per-decoded-bit versus the through-
put/area in a TSMC 180-nm CMOS process with 4-bit LLRs. The results
are based upon a Eb/N0 of 1.8 dB and an supply voltage of The clock fre-
quency was set to 50, 100, 150 and 200 MHz. Note that two codes meet
timing at a clock frequency of 200 MHz.

energy-per-decoded-information-bit or that maximizes the throughput/area.
Table 5.10 shows, for each T ′

s=12 code, the number of processors required to
a BER of 10−6 at the target Eb/N0. The results in Table 5.10 are based on
fixed-point simulations.

Our presented decoder architectures have latencies similar to LDPC-BC
decoders. The latency for our decoders is given by Equation (5.4).

Tlatency= T ′
s ·Nprocessors·Tclk (5.4)

where T ′
s is the group period, Nprocessorsis the number of decoder processors

and Tclk is the period of the clock. In the case of a T ′
s=12 code, with 15 decoder

processors and a 100-MHz clock, the latency would be 1.8 µs. This is similar
to what is reported for LDPC-BCs [33].

This concludes the hardware and BER performance analysis. In the next
section we use the results presented in this section to compare against the
state-of-the-art in LDPC decoders.

139

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput/Area (GBits/s•mm2)

192_C2_p16
288_C2_p24
384_C2_p32
576_C2_p48
768_C2_p64

Figure 5.66: Decoder processor energy-per-decoded-bit versus the through-
put/area in a IBM 130-nm CMOS process with 4-bit LLRs. The results are
based upon a Eb/N0 of 1.8 dB. The clock frequency was set to 50, 100, 150
and 200 MHz. Note that three codes meet timing at a clock frequency of
200 MHz.

140

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput/Area (GBits/s•mm2)

192_C2_p16
288_C2_p24
384_C2_p32
576_C2_p48
768_C2_p64

Figure 5.67: Decoder processor energy-per-decoded-bit versus the through-
put/area in a STM 90-nm CMOS process with 4-bit LLRs. The results
are based upon a Eb/N0 of 1.8 dB. The clock frequency was set to 50, 100,
150 and 200 MHz. Note that the bathtub curve is caused by leakage: not
until 150 MHz does the leakage power drop down to represent 25% of the
total power consumption. In none of the other process technologies does
the leakage power ever reach these levels.

141

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 1 2 3 4 5 6 7 8 9 10

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput/Area (GBits/s•mm2)

192_C2_p16
288_C2_p24
384_C2_p32
576_C2_p48
768_C2_p64

Figure 5.68: Decoder processor energy-per-decoded-bit versus the through-
put/area in a STM 65-nm CMOS process with 4-bit LLRs. The results are
based upon a Eb/N0 of 1.8 dB. The clock frequency was set to 50, 100, 150
and 200 MHz. Note that three codes meet timing at a clock frequency of
200 MHz.

142

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

Code Clock Area Power Through- Energy Throughput
Freq. put per bit /Area
(MHz) (um2) (mW) (GBits/s) (pJ) (GBits/s·mm2)

Ts 192 ρ 16 50 90066 1.375 0.800 1.719 8.880
Ts 192 ρ 16 100 92133 2.849 1.600 1.781 17.36
Ts 192 ρ 16 150 100600 5.040 2.400 2.099 23.85
Ts 192 ρ 16 200 117800 8.260 3.200 2.582 27.16
Ts 288 ρ 24 50 136100 2.072 1.200 1.727 8.817
Ts 288 ρ 24 100 139966 4.300 2.400 1.791 17.14
Ts 288 ρ 24 150 151200 7.517 3.600 2.088 23.81
Ts 288 ρ 24 200 176366 12.60 4.800 2.626 27.21
Ts 384 ρ 32 50 181533 2.767 1.600 1.729 8.814
Ts 384 ρ 32 100 187366 5.777 3.200 1.805 17.07
Ts 384 ρ 32 150 201266 10.09 4.800 2.103 23.84
Ts 384 ρ 32 200 239233 15.96 6.400 2.494 26.75
Ts 576 ρ 48 50 274633 4.180 2.400 1.742 8.739
Ts 576 ρ 48 100 317600 9.983 4.800 2.080 15.11
Ts 576 ρ 48 150 327166 16.52 7.200 2.294 22.00
Ts 576 ρ 48 200 393333 26.20 9.600 2.729 24.39
Ts 768 ρ 64 50 367000 5.573 3.200 1.742 8.724
Ts 768 ρ 64 100 385666 11.75 6.400 1.837 16.58
Ts 768 ρ 64 150 na na 9.600 na na
Ts 768 ρ 64 200 513999 33.50 12.80 2.618 24.90

Table 5.6: CMOS 65-nm 4-bit LLR decv6 decoder processor area, power,
throughput, energy-per-bit and throughput/area. To determine a decoder’s
hardware metrics, multiply the area, power and energy-per-bit by the re-
quired number of processors and divide the throughput/area by the required
number of processors.

143

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

Code Clock Area Power Through- Energy Throughput
Freq. put per bit /Area
(MHz) (um2) (mW) (GBits/s) (pJ) (GBits/s·mm2)

Ts 192 ρ 16 50 163433 5.410 0.800 6.763 4.896
Ts 192 ρ 16 100 159200 7.767 1.600 4.853 10.05
Ts 192 ρ 16 150 163700 10.95 2.400 4.563 14.66
Ts 192 ρ 16 200 173533 18.76 3.200 5.863 18.43
Ts 288 ρ 24 50 238400 8.050 1.200 6.707 5.034
Ts 288 ρ 24 100 238933 11.67 2.400 4.867 10.04
Ts 288 ρ 24 150 241533 16.39 3.600 4.553 14.90
Ts 288 ρ 24 200 260100 27.82 4.800 5.797 18.45
Ts 384 ρ 32 50 317366 10.74 1.600 6.713 5.043
Ts 384 ρ 32 100 318200 15.67 3.200 4.897 10.05
Ts 384 ρ 32 150 322900 22.35 4.800 4.657 14.86
Ts 384 ρ 32 200 351000 42.66 6.400 6.663 18.23
Ts 576 ρ 48 50 477333 16.05 2.400 6.690 5.028
Ts 576 ρ 48 100 481666 23.51 4.800 4.900 9.966
Ts 576 ρ 48 150 492000 35.06 7.200 4.870 14.63
Ts 576 ρ 48 200 541666 70.93 9.600 7.390 17.72
Ts 768 ρ 64 50 637000 21.49 3.200 6.717 5.022
Ts 768 ρ 64 100 640333 31.64 6.400 4.943 9.993
Ts 768 ρ 64 150 665000 52.03 9.600 5.420 14.43
Ts 768 ρ 64 200 738666 105.6 12.80 8.253 17.32

Table 5.7: CMOS 90-nm 4-bit LLR decv6 decoder processor area, power,
throughput, energy-per-bit and throughput/area. To determine a decoder’s
hardware metrics, multiply the area, power and energy-per-bit by the re-
quired number of processors and divide the throughput/area by the required
number of processors.

144

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

Code Clock Area Power Through- Energy Throughput
Freq. put per bit /Area
(MHz) (mm2) (mW) (GBits/s) (pJ) (GBits/s·mm2)

Ts 192 ρ 16 50 0.253 5.843 0.800 7.303 3.168
Ts 192 ρ 16 100 0.254 11.65 1.600 7.280 6.303
Ts 192 ρ 16 150 0.260 21.19 2.400 8.830 9.246
Ts 192 ρ 16 200 0.272 34.20 3.200 10.68 11.74
Ts 288 ρ 24 50 0.379 9.137 1.200 7.617 3.168
Ts 288 ρ 24 100 0.381 18.70 2.400 7.793 6.294
Ts 288 ρ 24 150 0.390 34.23 3.600 9.510 9.225
Ts 288 ρ 24 200 0.412 56.90 4.800 11.85 11.64
Ts 384 ρ 32 50 0.504 12.19 1.600 7.623 3.174
Ts 384 ρ 32 100 0.509 26.17 3.200 8.180 6.291
Ts 384 ρ 32 150 0.519 45.20 4.800 9.420 9.252
Ts 384 ρ 32 200 0.551 75.80 6.400 11.84 11.60
Ts 576 ρ 48 50 0.755 17.83 2.400 7.430 3.177
Ts 576 ρ 48 100 0.759 38.80 4.800 8.083 6.321
Ts 576 ρ 48 150 0.776 68.23 7.200 9.480 9.279
Ts 576 ρ 48 200 0.825 112.3 9.600 11.70 11.63
Ts 768 ρ 64 50 1.003 25.64 3.200 8.013 3.192
Ts 768 ρ 64 100 1.012 53.73 6.400 8.397 6.327
Ts 768 ρ 64 150 1.035 95.40 9.600 9.937 9.270
Ts 768 ρ 64 200 1.111 161.6 12.80 12.62 11.52

Table 5.8: CMOS 130-nm 4-bit LLR decv6 decoder processor area, power,
throughput, energy-per-bit and throughput/area. To determine a decoder’s
hardware metrics, multiply the area, power and energy-per-bit by the re-
quired number of processors and divide the throughput/area by the required
number of processors.

145

Section 5.7: PN-LDPC-CC Decoder Hardware and BER Performance Analysis

Code Clock Area Power Through- Energy Throughput
Freq. put per bit /Area
(MHz) (mm2) (mW) (GBits/s) (pJ) (GBits/s·mm2)

Ts 192 ρ 16 50 0.537 44.86 0.800 56.06 1.489
Ts 192 ρ 16 100 0.547 86 1.600 53.73 2.925
Ts 192 ρ 16 150 0.599 183.7 2.400 76.53 4.008
Ts 192 ρ 16 200 0.718 318.1 3.200 99.40 4.455
Ts 288 ρ 24 50 0.807 66.76 1.200 55.63 1.487
Ts 288 ρ 24 100 0.839 149.8 2.400 62.40 2.860
Ts 288 ρ 24 150 0.903 291.2 3.600 80.90 3.987
Ts 288 ρ 24 200 1.099 495 4.800 103.1 4.368
Ts 384 ρ 32 50 1.075 96.36 1.600 60.23 1.489
Ts 384 ρ 32 100 1.108 209.1 3.200 65.33 2.888
Ts 384 ρ 32 150 1.214 419 4.800 87.30 3.954
Ts 384 ρ 32 200 na na na na na
Ts 576 ρ 48 50 1.611 143.7 2.400 59.86 1.490
Ts 576 ρ 48 100 1.680 340.3 4.800 70.90 2.857
Ts 576 ρ 48 150 1.830 648.3 7.200 90.03 3.933
Ts 576 ρ 48 200 na na na na na
Ts 768 ρ 64 50 2.145 191.2 3.200 59.76 1.492
Ts 768 ρ 64 100 2.214 434.6 6.400 67.90 2.891
Ts 768 ρ 64 150 2.453 861 9.600 89.70 3.915
Ts 768 ρ 64 200 na na na na na

Table 5.9: CMOS 180-nm 4-bit LLR decv6 decoder processor area, power,
throughput, energy-per-bit and throughput/area. To determine a decoder’s
hardware metrics, multiply the area, power and energy-per-bit by the re-
quired number of processors and divide the throughput/area by the required
number of processors.

Eb/N0 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.5 4.0
Ts 192 ρ 16 50 32 25 21 18 16 14 12 11 8 6
Ts 288 ρ 24 50 35 26 22 18 16 14 13 11 11 10 8 6
Ts 384 ρ 32 34 30 22 18 16 14 13 12 11 10 9 7 6
Ts 576 ρ 48 28 22 18 16 14 13 12 11 10 10 9 7 6
Ts 768 ρ 64 23 19 17 14 13 11 11 10 10 9 8 7 6

Table 5.10: Number of T ′
s=12 code decv6 processors required to achieve

a BER of 10−6 for a given Eb/N0. The results are based on bit-accurate
simulations using 4-bit LLRs.

146

Section 5.8: Comparison to Other LDPC Decoders

5.8 Comparison to Other LDPC Decoders

Our PN-LDPC-CC decoder architectures outperform the LDPC decoders found
in the literature in terms of throughput/area and energy-per-decoded-bit. To
facilitate a fair comparison between our decoder and those found in the lit-
erature, we match our competitor’s BER performance, Eb/N0 and process
technology and then compare the decoders in terms of the throughput/area
and the energy-per-decoded-bit. As was demonstrated in the previous section,
changes in the target BER performance can result in dramatic changes in
hardware requirements. Thus it is very important that the BER performance
be matched for a fair comparison. In certain cases we do compare against
competitors that have a higher Eb/N0 for a give BER. In these cases we are
demonstrating that our design is significantly better, given that we outperform
them even when we are using a lower Eb/N0. A number of LDPC decoder de-
signs in the literature lack BER performance and Eb/N0 information, making a
comparison to these decoders impractical. Published decoders which lack the
BER performance and Eb/N0 values, needed for our comparisons, are thus not
included in our tables. Decoders used in the first comparison table include: a
3.6 Gb/s flexible LDPC decoder [34], a 5 Gb/s shift-LDPC decoder [35] and
1.45 Gb/s LDPC decoder for the IEEE 802.16e standard [36].

The comparison results are tabulated based on the BER and process tech-
nology.

• Table 5.11 deals with CMOS 180-nm designs with Eb/N0 ratios in the
range of 3.9 to 7.

• Table 5.12 deals with CMOS 180-nm designs with Eb/N0 ratios in the
range of 2.5 to 3.0.

• Table 5.13 deals with CMOS 130-nm designs with Eb/N0 ratios in the
range of 4.5 to 5.

• Table 5.14 deals with CMOS 130-nm designs with Eb/N0 ratios in the
range of 2.5 to 3.8.

• Table 5.15 deals with CMOS 90-nm designs with Eb/N0 ratios in the
range of 2.2 to 2.4.

• Table 5.16 deals with CMOS 90-nm designs with Eb/N0 ratios in the
range of 3.2 to 3.2.

For competing LDPC-BC or LDPC-CC decoders known to us, with a BER of
10−6 and an Eb/N0 in the range of 2.0 dB to 3.0 dB, we have a PN-LDPC-CC
decoder that matches the Eb/N0 and BER performance and simultaneously
outperforms the competing decoder in terms of both the energy-per-decoded-
information-bit and the throughput/area.

147

Section 5.8: Comparison to Other LDPC Decoders

[34] [35] [36] This
work

(decv5)

Eb/N0 for a BER of 10−6 (dB) 4.06 3.9 ∼7 3.95
tech (nm) 180 180 180 180
info. throughput (Gbits/s) 3.15 4.5 1.45 3.6
power consumption (mW) 553 1120
die area (mm2) 13.1 16.8
core area (mm2) ∼8.8 11.3
synthesis cell area (mm2) ∼6.6 7.9 ∼8.6 5.8
gates (KGates) 881 593
latency (µs) 0.96
energy-per-info-bit (nJ) 0.38 0.31
throughput/Area (Gb/mm2·s) 0.48 0.57 0.17 0.62
clock frequency (MHz) 290 317 100 150
operating voltage (V) 1.8 1.8
code type BC BC BC CC
block size or period 8192 8192 576 288
info bits in the block 7168 7168 288
degrees (4, 32) (4, 32) (3, 6)
LLR bit width 4 7 2
BC iterations 16 15 10
CC processors 12

Table 5.11: Comparison of CMOS 180-nm LDPC decoders where a BER
of 10−6 is achieved at an Eb/N0 ratio of around 4.0. This work’s power
estimates are based on an Eb/N0 ratio of 1.8 dB.

148

Section 5.8: Comparison to Other LDPC Decoders

[11] This [37] This This This
work work work work

(decv6) (decv6) (decv6) (decv6)

Eb/N0 for a BER of 10−6 (dB) ∼3.1 3.0 2.5 2.5 2.5 2.5
tech (nm) 160 180 180 180 180 180
info. throughput (Gbits/s) 0.5 1.6 0.75 1.6 2.4 3.2
power consumption (mW) 630 946 787 1806 2384 2926
die area (mm2) 52.5 14.3
core area (mm2) ∼37 ∼10
synthesis cell area (mm2) ∼18 6.0 ∼7.5 11.5 13.4 15.5
gates (KGates) 1750 606
latency (µs) 1.32 2.52 1.92 1.68
energy-per-info-bit (nJ) 1.26 0.59 1.05 1.13 0.99 0.91
throughput/Area (Gb/mm2·s) 0.03 0.27 0.10 0.14 0.18 0.21
clock frequency (MHz) 64 100 125 100 100 100
operating voltage (V) 1.5 1.8 1.8 1.8 1.8 1.8
code type BC CC BC CC CC CC
block size or period 1024 192 2048 192 288 384
info bits in the block 512 1024
degrees (3, 6) (3,6) (3,6) (3,6) (3,6)
LLR bit width 4 4 4 4 4
BC iterations 64 10
CC processors 11 21 16 14

Table 5.12: Comparison of LDPC decoders where a BER of 10−6 is achieved
at an Eb/N0 ratio of 3.0 and 2.5 in a CMOS 180-nm process. This work’s
power estimates are based on an Eb/N0 ratio of 1.8 dB.

149

Section 5.8: Comparison to Other LDPC Decoders

[38] [38] [39] This
work

(decv5)

Eb/N0 for a BER of 10−6 (dB) 4.7 4.7 5+ 4.47
tech (nm) 130 130 130 130
info. throughput (Gbits/s) 2.4 0.48 3.6 4.8
power consumption (mW) 1290 71 268 115
die area (mm2) 10.24
core area (mm2) 7.3 7.3
synthesis cell area (mm2) 5.5 5.5 5.3 1.55
gates (KGates) 1150 332
latency (µs) 0.42
energy-per-info-bit (nJ) 0.54 0.15 0.074 0.024
throughput/Area (Gb/mm2·s) 0.44 0.087 0.68 3.1
clock frequency (MHz) 300 59 200
operating voltage (V) 1.2 0.6 1.02 1.08
code type BC BC BC CC
block size or period 660 660 1200 288
info bits in the block 480 480 720
degrees (4, 15) (4, 15) (3, 6)
LLR bit width 4 4 6 2
iterations 15 15 8
CC processors 7

Table 5.13: Comparison of known CMOS 130-nm LDPC decoders where a
BER of 10−6 is achieved at an Eb/N0 ratio around 4.5. This work’s power
estimates are based on an Eb/N0 ratio of 1.8 dB.

150

Section 5.8: Comparison to Other LDPC Decoders

[40] [41] This [42] This [10] This
work work work
decv5 decv6 decv6

Eb/N0 for a BER of 10−6 (dB) 3.6 3.8 3.63 2.5 2.5 3.0 3.0
tech (nm) 130 130 130 130 130 130 130
info. throughput (Gbits/s) 0.06 0.125 2.4 2.3 4.8 0.1 1.6
power consumption (mW) 52 76 114 910 370 128
die area (mm2) 8.29 7.39
core area (mm2) 4.45 3.88 5.3
synthesis cell area (mm2) ∼3.3 ∼2.5 2.4 ∼4 6.6 ∼5.3 2.8
gates (KGates) 420 444 504 1152 600
latency (µs) 0.84 0.96 1.32
energy-per-info-bit (nJ) 0.87 0.61 0.048 0.19 3.7 0.08
throughput/Area (Gb/mm2·s) 0.018 0.050 1.0 0.58 0.73 0.02 0.57
clock frequency (MHz) 83 111 100 100 200 200 100
operating voltage (V) 1.2 1.2 1.08 1.08 1.08
code type BC BC CC BC CC CC CC
block size or period 2304 1944 288 2082 288 127 192
info bits in the block 1152 972 1024
degrees (3,6) (3,6) (3,6) (3,5) (3,6)
LLR bit width 7 3-4 3 5-6 4 4
BC iterations 8 8 15 10
CC processors 7 16 11
multi-mode yes yes no no yes no

Table 5.14: Comparison of known CMOS 130-nm LDPC decoders with
BERs of 10−6 and target Eb/N0 ratios of 3.6, 3.0 and 2.5. This work’s
power estimates are based on an Eb/N0 ratio of 1.8 dB.

151

Section 5.8: Comparison to Other LDPC Decoders

[43] This This This [44] This
work work work work

(decv6) (decv6) (decv6) (decv6)
log10(BER) -6 -6 -6 -6 -3 -3
Eb/N0 (dB) 2.2 2.2 2.2 2.2 2.4 2.4
tech (nm) 90 90 90 90 90 90
info. throughput (Gbits/s) 0.67 2.4 3.2 4.8 1.6 4.8
power consumption (mW) 248 326 345 492 224
die area (mm2) 3.5 5.01
core area (mm2) 2.98 ∼3.8
synthesis cell area (mm2) ∼2.2 6.7 7.0 7.1 ∼2.6 3.2
gates (KGates) 2417
latency (µs) 3.36 2.64 1.76 0.80
energy-per-info-bit (nJ) 0.37 0.14 0.11 0.10 0.05
throughput/Area (Gb/mm2·s) 0.30 0.36 0.46 0.68 0.61 1.50
clock frequency (MHz) 450 100 100 150 400 150
operating voltage (V) 0.9 0.9 0.9 0.9
code type BC CC CC CC CC
block size or period 2304 288 384 384 1024 384
info bits in the block 1152 512
degrees (3,6) (3,6) (3,6) (3,6)
LLR bit width 4 4 4 4 4
BC iterations 15
CC processors 28 22 22 10
multi-mode no no no no

Table 5.15: Comparison of LDPC decoders in a CMOS 90-nm process, with
various BERs and target Eb/N0. This work’s power estimates are based on
an Eb/N0 ratio of 1.8 dB.

152

Section 5.8: Comparison to Other LDPC Decoders

[45] This
work

(decv6)
log10(BER) -6 -6
Eb/N0 (dB) 3.2 3.2
tech (nm) 90 90
info. throughput (Gbits/s) 13.21 3.2
power consumption (mW) 1513 187
die area (mm2) 3.5
core area (mm2) 4.97
synthesis cell area (mm2) ∼3.7 1.74
gates (KGates)
latency (µs) 0.6
energy-per-info-bit (nJ) 0.115 0.059
throughput/Area (Gb/mm2·s) 2.66 1.84
clock frequency (MHz) 400 200
operating voltage (V) 1.2 0.9
code type BC CC
block size or period 1024 192
info bits in the block 512
degrees (3,6) (3,6)
LLR bit width 4 4
BC iterations
CC processors 10
multi-mode no

Table 5.16: Comparison of LDPC decoders in a CMOS 90-nm process, with
various BERs and target Eb/N0. This work’s power estimates are based on
an Eb/N0 ratio of 1.8 dB.

153

Section 5.9: PN-LDPC-CC Decoder Summary

5.9 PN-LDPC-CC Decoder Summary

We have presented a series of novel PN-LDPC-CC decoder designs. Compared
to the state-of-the-art, these designs have excellent energy-per-decoded-bit and
throughput/area metrics for target combinations BER and Eb/N0. For a target
combinations of BER and Eb/N0, we have explored code selection, LLR bit-
width and number of decoder processors, in conjunction with power and area
trade-offs to determine the best selection of these variables to achieve a desired
hardware metric. We introduced a number of PN-LDPC-CC designs. From the
introduction of the PN-LDPC-CC decoder, decv1 to the last improved design,
decv6, we have reduced energy-per-decoded-bit by 2.5 times and doubled the
throughput/area.

For 10−6 BER performance for a given area, in a CMOS 90-nm process, it
is advantageous to use the smallest of our codes, the Ts=192, ρ=16 code with
a 4-bit LLR until the Eb/N0 drops below 2.3 dB. At that point the Ts=288,
ρ=24 code has better BER performance for a constrained area. The Ts=288,
ρ=24 code is itself supplanted by the Ts=384, ρ=32 code at an Eb/N0 of 2.05
dB.

For 10−6 BER performance for a given amount of power, in a CMOS 90-nm
process, it is advantageous to use the smallest of our codes, the Ts=192, ρ=16
code with a 4-bit LLR until the Eb/N0 drops below 2.3 dB.

Given, our set of codes, to reduce the energy-per-decoded-information-bit
at a target BER of 10−6 and Eb/N0 it is better to choose the largest T ′

s code
available.

Given our set of codes, to increase throughput/area at a target BER of
10−6 and Eb/N0 it is better to choose the largest T ′

s code available.
Choosing a PN-LDPC-CC, given a power or area constraint, to achieve

the lowest possible BER performance and Eb/N0 does not result in the most
efficient decoder, with respect to either the energy-per-decoded-bit nor the
throughput/area. Provided T ′

s is not increased, it is generally advantageous,
in terms of the energy-per-decoded-information-bit and throughput/area, to
choose a larger code.

We have compared our work to the state-of-the-art and have shown in each
case, that our PN-LDPC-CC decoders outperform the competition in terms
of energy-per-decoded-information-bit and throughput/area.

For a target BER performance of 10−6 with an associated Eb/N0 in the
range of 2.0 to 3.0 dB, we can recommend our PN-LDPC-CC decoders over
any known LDPC-BC or LDPC-CC decoders.

154

Chapter 6

Conclusions

We have presented a series of progressively improved parallel-node LDPC-CC
encoders and decoders. For each encoder and decoder we used synthesis results
for a 90-nm CMOS process to quantify the improvements with respect to the
energy-per-bit, area and throughput. We have shown that the energy-per-
bit, for both the encoder and decoder, has an almost linear relationship with
the group period T ′

s. Increasing the node-parallelization factor, for both the
presented encoders and decoders, decreases the energy-per-bit and increases
the throughput. The area of the encoder and decoder is strongly correlated to
the code period Ts and weakly correlated to the node-parallelization factor, ρ.
Predictably, the coding gain of PN-LDPC-CCs increases with Ts [1].

The improvements to the PN-LDPC-CC encoder that reduce the power
consumption and/or reduce the area include:

• Encv2 4.2 - Removes the rotation switch-matrix and replaces the shift
register chain with a circular buffer structure.

• Encv3 4.3 - Simplifies the encoder logic based on knowledge of how
the code operates.

• Encv4 4.4 - Applies clock-gating to reduce the power consumption.

• Encv5 4.5 - Optimizes the input databus size.

The improvements to the PN-LDPC-CC decoder that reduce the power
consumption and/or reduce the area include:

• Decv2 5.2 - Simplifies the hardware by removing the saturation bit.

• Decv3 5.3 - Removes the rotation switch-matrix.

• Decv4 5.4 - Applies clock-gating.

• Decv5 5.5 - Removes the reset circuitry.

155

Chapter 6: Conclusions

Decoder Incremental Power Reduction Cumulative Power Reduction
Version Average Minimum Maximum Average Minimum Maximum
decv2 11.1% 6.5% 22.4% 11.1% 6.5% 22.4%
decv3 13.8% -5.6% 39.1% 24.1% 4.3% 44.7%
decv4 39.8% 9.3% 53.6% 53.2% 34.7% 65.1%
decv5 2.4% -20.0% 16.8% 54.0% 35.7% 66.7%
decv6 21.0% 1.1% 45.5% 63.2% 46.2% 74.4%

Table 6.1: Decoder version contributions to reductions in the power con-
sumption for our set of PN-LDPC-CC codes.

Decoder Incremental Area Reduction Cumulative Area Reduction
Version Average Minimum Maximum Average Minimum Maximum
decv2 13.9% 11.5% 19.1% 13.9% 11.5% 19.1%
decv3 1.9% -5.9% 19.3% 15.8% 6.6% 31.4%
decv4 13.5% 7.6% 20.1% 26.5% 18.0% 36.6%
decv5 11.5% 0.7% 17.6% 35.3% 25.8% 46.2%
decv6 18.6% 11.3% 27.6% 47.1% 40.8% 53.2%

Table 6.2: Decoder version contributions to reductions in the decoder pro-
cessor area for our set of PN-LDPC-CC codes.

• Decv6 5.6 - Replaces the min-sum check-node operation with the
simpler truncated min-sum check-node operation.

Each version of the decoder improves upon the previous version. Tables
6.1 and 6.2 show the contribution of each decoder version to the reduction
of the power consumption and the reduction in the decoder processor area,
respectively. The largest incremental reductions in the power consumption
come from the use of clock-gating (decv4) and the truncated-min-sum check-
node operation (decv6). Significant reductions in the power consumption are
achieved by removing the saturation bit (decv2) and removing the rotation
switch-matrix (decv3). Significant reductions in the decoder area are made
by removing the saturation bit (decv2), clock-gating (decv4), removing the
reset circuitry (decv5) and using the truncated min-sum check-node operation
(decv6).

Turbo codes have low encoder complexity and LDPC-BCs have relatively
low decoder complexity [46]. The PN-LDPC-CC encoders and decoders, pre-
sented herein, have both low encoder and decoder complexity. We have shown,
in terms of the energy-per-bit and the throughput/area, that our PN-LDPC-
CC encoders and decoders are capable of outperforming the best LDPC en-
coders and decoders presented in the literature (see Tables 4.4, 5.11, 5.12,
5.13, 5.13, 5.14 and 5.15). The best of our PN-LDPC-CC encoders, in a 90-
nm CMOS process, has an energy-per-encoded-information-bit on the order of
0.5 pJ and a throughput up to 64 Gbits/s. For a BER of 10−6 at an Eb/N0

of 2.5 dB, in a 90-nm CMOS process, the best of our PN-LDPC-CC decoders

156

Chapter 6: Conclusions

has an energy-per-decoded-information-bit of 65 pJ and a decoded information
throughput of 4.8 Gbits/s.

For future comparison purposes, we provide the ability to calculate the
hardware metrics for over 1000 variations of our PN-LDPC-CC decoders. Ta-
ble 5.10 specifies the number of processors required, for each code, to achieve
a target BER of 10−6 for various Eb/N0 ratios. Four process technologies,
shown in Tables 5.6, 5.7, 5.8 and 5.9, provide the key hardware metrics: area,
power, throughput, energy-per-bit and throughput/area, for our family of PN-
LDPC-CCs on a per processor basis. Once the required number of processors
is ascertained, the hardware metrics in the process tables are multiplied or di-
vided by the number to processors to calculate the decoder hardware metrics.
By providing these tables we hope to provide an extensive cross-process refer-
ence so that any future work on LDPC decoders can be more readily compared
to our work and, in turn, to other published works.

There are a number of proposed improvements to the decoder architecture
that have yet to be explored (see Appendix F). Some of the improvements
to be explored include: using SRAM memory to reduce area and power, the
analysis of a single highly parallelized PN-LDPC-CC with reduced parallelism
implementations, reducing the amount of required memory by storing only
unique values and introducing pipelining into the architectures to improve
throughput. As well, this work would greatly benefit from the inclusion of
termination circuitry for the encoder. PN-LDPC-CCs are still relatively new,
there are many improvements that have been made to LDPC-BCs that could
also be applied to PN-LDPC-CC architectures.

157

Bibliography

[1] Z. Chen, T. Brandon, D. Elliott, S. Bates, W. Krzymien, and B. Cock-

burn, “Jointly designed architecture-aware LDPC convolutional codes and

high-throughput parallel encoders/decoders,” IEEE Transactions on Cir-

cuits and Systems I: Regular Papers, accepted.

[2] T. Brandon, J. C. Koob, L. van den Berg, Z. Chen, A. Alimohammad,

R. Swamy, J. Klaus, S. Bates, V. C. Gaudet, B. F. Cockburn, and D. G.

Elliott, “A 600-Mb/s encoder and decoder for low-density parity-check

convolutional codes,” in Proc. of the IEEE International Symp. on Cir-

cuits and Systems (ISCAS), Seattle, WA, USA, May 2008, pp. 3090–3093.

[3] R. Swamy, S. Bates, T. L. Brandon, B. F. Cockburn, D. G. Elliott, J. C.

Koob, and Z. Chen, “Design and test of a 175-Mb/s, rate-1/2 (128,3,6)

low-density parity-check convolutional code encoder and decoder,” IEEE

Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2245–2256, 2007.

[4] C. E. Shannon, “A mathematical theory of communication,” Bell System

Technical Journal, vol. 27, pp. 379–423 and 623–656, 1948.

[5] S. Lin and J. Daniel J. Costello, Error Control Coding. Pearson Prentice

Hall, 2004.

[6] R. Gallager, “Low-density parity-check codes,” IRE Transactions on In-

formation Theory, vol. 8, no. 1, pp. 21–28, January 1962.

[7] A. Jimenez Felstrom and K. Zigangirov, “Time-varying periodic convo-

lutional codes with low-density parity-check matrix,” IEEE Transactions

on Information Theory, vol. 45, no. 6, pp. 2181–2191, 1999.

[8] R. Swamy, S. Bates, and T. Brandon, “Architectures for ASIC implemen-

tations of low-density parity-check convolutional encoders and decoders,”

158

BIBLIOGRAPHY

in Proc. of the IEEE International Symp. on Circuits and Systems (IS-

CAS), vol. 5, 2005, pp. 4513–4516.

[9] Z. Chen, T. Brandon, S. Bates, D. Elliott, and B. Cockburn, “Efficient

implementation of low-density parity-check convolutional code encoders

with built-in termination,” IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 55, no. 11, pp. 3628–3640, Dec. 2008.

[10] M. Tavares, S. Kunze, E. Matus, and G. Fettweis, “Architecture and VLSI

realization of a high-speed programmable decoder for LDPC convolutional

codes,” in International Conference on Application-Specific Systems, Ar-

chitectures and Processors, 2008. ASAP 2008, July 2008, pp. 215–220.

[11] A. Blanksby and C. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-

density parity-check code decoder,” IEEE Journal of Solid-State Circuits,

vol. 37, no. 3, pp. 404–412, 2002.

[12] D. MacKay and R. Neal, “Near Shannon limit performance of low density

parity check codes,” IET Electronics Letters, vol. 32, no. 18, pp. 1645–,

Aug 1996.

[13] D. J. Costello, A. E. Pusane, S. Bates, and K. S. Zigangirov, “A compari-

son between LDPC block and convolutional codes,” in Proc. of the IEEE

Information Theory and Applications Workshop, San Diego, CA, USA,

Feb. 2006.

[14] C. Schlegel and L. Perez, Trellis and Turbo Coding, 1st ed. New York:

IEEE Press, 2004.

[15] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu,

“Reduced-complexity decoding of LDPC codes,” IEEE Transactions on

Communications, vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[16] Z. Chen, R. Swamy, and S. Bates, “A new encoder implementation for low-

density parity-check convolutional codes,” in IEEE Northeast Workshop

on Circuits and Systems, 2007. NEWCAS 2007, Aug. 2007, pp. 883–886.

[17] S. Bates and R. Swamy, “Parallel encoders for low-density parity-check

convolutional codes,” in Proc. of the IEEE International Symp. on Cir-

cuits and Systems (ISCAS), 2006, pp. 4–8.

159

BIBLIOGRAPHY

[18] A. Pusane, A. Feltstrom, A. Sridharan, M. Lentmaier, K. Zigangirov,

and D. Costello, “Implementation aspects of LDPC convolutional codes,”

IEEE Transactions on Communications, vol. 56, no. 7, pp. 1060–1069,

July 2008.

[19] S. Bates, Z. Chen, L. Gunthorpe, A. Pusane, K. Zigangirov, and

D. Costello, “A low-cost serial decoder architecture for low-density parity-

check convolutional codes,” IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 55, no. 7, pp. 1967–1976, Aug. 2008.

[20] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding sys-

tem,” IEEE Journal on Circuits and Systems I, vol. 52, no. 4, pp. 766–775,

Apr. 2005, no synthesis, they present logic circuits and count gates.

[21] L. Yang, H. Liu, and C.-J. R. Shi, “Code construction and FPGA im-

plementation of a low-error-floor multi-rate low-density parity-check code

decoder,” IEEE Journal on Circuits and Systems I, vol. 53, no. 4, pp.

892–904, Apr. 2006.

[22] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11,

no. 6, pp. 976–996, 2003.

[23] A. Alimohammad, S. F. Fard, B. F. Cockburn, and C. Schlegel, “A com-

pact and accurate Gaussian variate generator,” IEEE Journal of VLSI,

vol. 16, no. 5, pp. 517–527, 2008.

[24] P. H. Bardell and W. H. McAnney, “Pseudorandom arrays for built-in

tests,” IEEE Transcations on Computers, vol. c-35, no. 7, pp. 653–658,

1986.

[25] A. Alimohammad, S. F. Fard, B. F. Cockburn, and C. Schlegel, “On the

efficiency and accuracy of hybrid pseudo-random number generators for

FPGA-based simulations,” in Proc. of the IEEE International Symp. on

Parallel and Distributed Processing, Apr. 2008, pp. 1–8.

[26] Z. Chen, S. Bates, D. Elliott, and T. Brandon, “Efficient encoding and

termination of low-density parity-check convolutional codes,” in Proc. of

the IEEE Global Telecommunications Conf. (GlobeCom), San Francisco,

CA, USA, 2006, pp. 1–5.

160

BIBLIOGRAPHY

[27] “Cygwin.” [Online]. Available: www.cygwin.com

[28] C. Giason, “Helium,” 2005, technical document in the VLSI lab at the

Univeristy of Alberta.

[29] T. Lang, E. Musoll, and J. Cortadella, “Individual flip-flops with gated

clocks for low power datapaths,” Circuits and Systems II: Analog and

Digital Signal Processing, IEEE Transactions on, vol. 44, no. 6, pp. 507–

516, Jun 1997.

[30] Power Compiler User Guide, Version z-2007.03 ed., Synopsys, March

2007.

[31] S. G. Clifford E. Cummings, Don Mills, “Asynchronous & synchronous

reset design techniques - part deux,” SNUG, 2003.

[32] L. Miles, J. Gambles, G. Maki, W. Ryan, and S. Whitaker, “An 860-

Mb/s (8158,7136) low-density parity-check encoder,” IEEE Journal of

Solid-State Circuits, vol. 41, no. 8, pp. 1686–1691, Aug. 2006.

[33] E. Amador, R. Pacalet, and V. Rezard, “Optimum LDPC decoder: A

memory architecture problem,” in Design Automation Conference, 2009.

DAC ’09. 46th ACM/IEEE, July 2009, pp. 891–896.

[34] C. Zhang, Z. Wang, J. Sha, L. Li, and J. Lin, “Flexible LDPC decoder

design for multi-Gb/s applications,” IEEE Transactions on Circuits and

Systems I, 2009.

[35] J. Sha, Z. Wang, M. Gao, and L. Li, “Multi-Gb/s LDPC code design

and implementation,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 17, no. 2, pp. 262–268, Feb. 2009.

[36] J.-H. Hung and S.-G. Chen, “A 1.45Gb/s (576,288) LDPC decoder for

802.16e standard,” in IEEE International Symposium on Signal Process-

ing and Information Technology, 2007, Dec. 2007, pp. 916–921.

[37] M. Mansour and N. Shanbhag, “A 640-Mb/s 2048-bit programmable

LDPC decoder chip,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3,

pp. 684–698, 2006.

[38] A. Darabiha, A. Carusone, and F. Kschischang, “A 3.3-Gbps bit-serial

161

www.cygwin.com

BIBLIOGRAPHY

block-interlaced min-sum LDPC decoder in 0.13-um CMOS,” in IEEE

Custom Integrated Circuits Conference, 2007. CICC ’07., Sept. 2007, pp.

459–462.

[39] C.-C. Lin, K.-L. Lin, H.-C. Chang, and C.-Y. Lee, “A 3.33Gb/s (1200,720)

low-density parity check code decoder,” in Proceedings of the 31st Euro-

pean Solid-State Circuits Conference, 2005. ESSCIRC 2005, Sept. 2005,

pp. 211–214.

[40] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, “An 8.29 mm2 52 mW

multi-mode LDPC decoder design for mobile WiMAX system in 0.13 um

CMOS process,” IEEE Journal of Solid-State Circuits, vol. 43, no. 3, pp.

672–683, March 2008.

[41] X.-Y. Shih, C.-Z. Zhan, and A.-Y. Wu, “A 7.39mm2 76mW (1944, 972)

LDPC decoder chip for IEEE 802.11n applications,” in Solid-State Cir-

cuits Conference, 2008. A-SSCC ’08. IEEE Asian, Nov. 2008, pp. 301–304.

[42] K. Gunnam, G. Choi, and M. Yeary, “A parallel VLSI architecture for

layered decoding for array LDPC codes,” in 20th International Conference

on VLSI Design, 2007. Held jointly with 6th International Conference on

Embedded Systems, Jan. 2007, pp. 738–743.

[43] Y. Sun and J. Cavallaro, “A low-power 1-Gbps reconfigurable LDPC de-

coder design for multiple 4G wireless standards,” in 2008 IEEE Interna-

tional SOC Conference, Sept. 2008, pp. 367–370.

[44] N. Onizawa, T. Ikeda, T. Hanyu, and V. Gaudet, “3.2-Gb/s 1024-b

rate-1/2 LDPC decoder chip using a flooding-type update-schedule al-

gorithm,” in 50th Midwest Symposium on Circuits and Systems, 2007.

MWSCAS 2007, Aug. 2007, pp. 217–220.

[45] N. Onizawa, T. Hanyu, and V. C. Gaudet, “Design of high-throughput

fully parallel LDPC decoders based on wire partitioning,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, Accepted for

future publication, 2009.

[46] A. Goldsmith, Wireless Communications. Cambridge University Press,

2005.

162

BIBLIOGRAPHY

[47] STMicroelectronics, CORE90GPHVT 2.2 1.00 V Standard Cell Library

User Manual and Data Book May 2006.

163

Appendix A

Appendix - Methods

A.1 Overview

In this section we discuss the methods we use to gather our results and make
comparisons.

A.2 Design Description

A challenge in designing an LDPC decoders is the implementation of the inter-
leaver. The interleaver can be implemented in hardware in two ways. The first
is with variable connections. The second is with fixed connections. Coding a
fixed-connection interleaver by hand is inefficient. A more efficient technique is
to use a programming language to transform the parity-check-matrix (PCM)
into an HDL description of the interleaver.

Our encoders and decoders are described with a custom Perl netlisting API.
Engineering effort to description of the hardware is reduced. The Ts 384 ρ 32
decv6 decoder is described in 794 lines, whereas the generated Verilog HDL
takes 20473 lines. This is a line ratio of 1 to 25. The custom netlisting API
generates Verilog HDL for the testbenches and the encoder/decoder designs.

A.3 Bit-Error-Rate Simulations - Matlab

Zhengang’s Matlab program was modified to support parallel operation, allow-
ing us to run bit-accurate simulations for each of the PN-LDPC-CC codes and
a variety of LLR bit-widths. We collect 1000 bit-errors before terminating the
simulation and calculating the BER. We modified the check-node operation to
add the truncated min-sum operation (as is described in Section 5.6).

164

A.4: Behavioral Design Verification - VCS 2006.03

A.4 Behavioral Design Verification - VCS 2006.03

Every encoder and decoder design is verified to be bit-accurate. Zhengang’s
Matlab program can output fixed-point outputs for any PN-LDPC-CC PCM
for both the encoding operation and decoding operation. The same input
that is used for the Matlab simulations is used as stimulus for the behavioral
functional simulations of the encoder and decoder designs. The output of the
functional simulations are compared to the output of the Matlab simulations.
If the outputs match, the designs are verified at the behavioral level.

A.5 Synthesis - Design Compiler 2007.03

Synthesis transforms behavioral HDL to a gate-level netlist. The gate-level
netlist is technology dependent. We synthesize designs for four technology
processes: CMOS 180 nm (TSMC), CMOS 130 nm (IBM), CMOS 90nm (ST
Microelectronics) and CMOS 65 nm (ST Microelectronics). Each technology
has differing timing libraries and wire-load models, but the method of synthesis
is the same for all of them.

Synthesis includes the following steps/setup:

• worst case and best case libraries for timing.

• worst case libraries for power and timing estimates.

• simulation of rtl to generate switching activity for synthesis.

• compile using low effort for area optimization.

• simulation of gate-level netlist to generate switching activity for ac-
curate power estimation.

• incremental compile with low effort for power optimization.

• incremental compile with no effort for power or area optimization to
fix any remaining timing issues.

• simulation of gate-level netlist to generate switching activity for ac-
curate power estimation.

As is mentioned above, the intermediate gate-level netlist is re-simulated
to generate more accurate switching activity which can be used to generate
power estimates.

The standard cell libraries used are as follows:

• TSMC 180 nm - Artisan tpz973g 230a

165

A.5: Synthesis - Design Compiler 2007.03

• IBM 130 nm - scx3 cmos8rf rvt and lvt cell libraries

• ST Micro 90 nm - CORE90GPSVT SNPS-AVT 2.1,

CORE90GPHVT SNPS-AVT 2.1.a, CORX90GPSVT SNPS-AVT 4.2,
CORX90GPHVT SNPS-AVT 4.2, CLOCK90GPSVT SNPS-AVT 2.1,
CLOCK90GPHVT SNPS-AVT 2.1.a, DP90GPSVT SNPS-AVT 1.2,
DP90GPHVT SNPS-AVT 1.2 and PR90M7 SNPS-AVT 3.0

• ST Micro 65 nm - CORE65LPSVT SNPS-AVT-CDS 4.1,

CORE65LPHVT SNPS-AVT-CDS 4.1,

CORX65LPSVT SNPS-AVT-CDS 6.0,

CORX65LPHVT SNPS-AVT-CDS 6.0,

CLOCK65LPSVT SNPS-AVT-CDS 2.1,

CLOCK65LPHVT SNPS-AVT-CDS 2.1,

CORL65LPSVT SNPS-AVT-CDS 4.0,

CORL65LPHVT SNPS-AVT-CDS 3.0

and PRHS65 SNPS-AVT-CDS 5.0

There are a number of synthesis options that effect the output gate-level
netlist. On of the trade-off presented to the designer is that of time and the
quality of the result. The designer can choose to have the synthesis tool try
longer to come up with a “better” gate-level netlist. Generally a balance
between synthesis time and the “quality” of the gate-level netlist is desirable.
In our case, with hundreds of synthesis runs, we choose to use “low effort”
settings to limit the amount of time each run would take. Even with this
limitation, some of the larger codes in the decoder designs took 20 hours to
complete. In some cases, the synthesis tool failed to generate a gate-level
netlist that met the target timing (these data points are missing in the figures
or show up as “na” in the tables).

To illustrate the variation in results that can be achieved, we took the
T ′

s = 768, ρ = 64 code and ran the encoder v2 (encv2) design at different “area
effort” settings. On “low effort”, the encoder standard cell are was 7.270e-08
m2, whereas with “high effort” the area was 6.392e-08 m2, a difference of 13
percent more in the case of the “low effort” option. In the case of power,
the “low effort” option has a power consumption of 4.382e-02 W and the
“high effort” option a power consumption of 3.580e-02 W, a difference of 22
percent more in the case of the “low effort” option. These results are specific
to the encv2 encoder, no generalized statement about the magnitude of the
improvement can be made, only that the synthesis tool will try for longer or
use more time consuming methods to try to attain better results.

166

A.6: Power Estimation and Analysis

In our case for the three decoder processor synthesis, early synthesis runs
would often fail, after a number of hours, to produce a netlist that met timing.
As a result, we were missing many data points of interest. Changing our
approach to synthesis, by first doing a “low effort” run, followed by a power
optimization stage, then followed by an optimization stage with no constraints
(to guarantee that the synthesis tool would meet timing for the design), yeilded
a larger number of synthesis runs that met timing. The result of this approach
was the area ended up being larger than the original synthesis approach. Given
that it was important to us to compare decoders, we opted to use the more
consistent synthesis approach even though the reported area, and often the
power number, would be larger than the original approach.

In many cases we have set conservative constrains and condition for our
synthesis runs. These constrains include, “low effort” options, synthesizing
three processors together in one large design and using switching activity for
the decoders based on an Eb/N0 of 1.8 dB.

A.6 Power Estimation and Analysis

Three primary methods are used to generate power consumption of various
circuits/architectures/designs. The first of which is the synthesis power esti-
mation methods that consists of generating switching activity for a gate-level
netlist followed by using DesignCompiler’s built in power estimation. The sec-
ond method is similar to the first with the back annotation of parasitics on to
a P&R gate-level netlist. The third method is an actual power measurement
made using test equipment.

We employ the first method.

A.6.1 Power Estimation using the Switching Activity of a Syn-
thesized Gate-level Netlist

To generate an estimation of power using the switching activity of a synthe-
sized gate-level netlist, we provide a clock at a target frequency, toggle the
reset at the beginning of the simulation and apply Matlab generated stimulus
to the data inputs. Using a functional simulator we simulate the synthesized
gate-level netlist. The functional simulator saves a voltage change dump file
(VCD) that contains the transitions of every node in the design for the entire
simulation. Post-processing the VCD, the transitions on each node are trans-
formed into a switch activity factor for each internal node in the gate-level
netlist and is saved in a switching-activity-interface file (SAIF). The SAIF
is back-annotated into the DesignCompiler synthesis tool to set the switch-
ing activity on every node in the design. Power estimation is then run using
the worst case timing library for the target technology. The resulting power

167

A.6: Power Estimation and Analysis

estimation is used for comparison purposes.
The switching-activity is always generated using a Eb/N0 of 1.8 dB.

168

Appendix B

Asynchronous Resets and Their
Gate-Level Mapping

This section is for those curious about asynchronous resets in Verilog and
their mapping to gate-level netlists. The first couple of Verilog code listings
B.1 and B.2 fail to synthesize in Design Compiler. Listing B.1 fails to map
due to the presence of the “rst” signal in the sensitivity list and the absence
of an associated ’if’ cause inside the associated procedural block. Listing B.2
appears to have simply confounded Design Compiler, in that Design Compiler
could not find a logically-equivalent gate to map to. Verilog code listings B.3
and B.5 synthesize to the same gate-level structure, as shown in listings B.4
and B.6. Verilog code listing B.3 is a standard way to represent the desire
for an asynchronous reset. Verilog code listing B.5 tries to confuse Design
compiler by moving the conditional statement outside the procedural block,
but Design Compiler is not fooled. The FD2QHVT cell is described as, ”D
Flip-Flop with 1 Phase Positive Edge Triggered Clock, Clear Active Low, Q
Output Only, 4x Drive” [47].

0.05
a s s i gn tmpData = (r s t)? 0 : dataIn [2] ;
// l o g i c equ i va l en t to asynchronous r e s e t
always @(posedge c l k or posedge r s t) begin

dataOut [2] <= tmpData ;
end

Listing B.1: Fails to synthesize. Logical equivalent to an asynchronous reset
with no internal ’if’ statement.

0.05
// asynchronous r e s e t with va r i ab l e r e s e t value
always @(posedge c l k or posedge r s t) begin

i f (r s t)
dataOut [1] <= dataIn [0] ;

e l s e
dataOut [1] <= dataIn [1] ;

end

Listing B.2: Fails to synthesize. Asynchronous reset with variable reset
value.

169

0.05
// asynchronous r e s e t
always @(posedge c l k or posedge r s t) begin

i f (r s t)
dataOut [1] <= 0 ;

e l s e
dataOut [1] <= dataIn [1] ;

end

Listing B.3: Verilog code for fflop with an asynchronous reset.

0.05
IVSVTX0H U3 (.A(r s t) , . Z(n2)) ;
FD2QHVTX1 dataOut r eg 1 (.D(dataIn [1]) , .CP(c l k) , .CD(n2) , .Q(dataOut [1])

Listing B.4: Synthesized gate-level netlist for a fflop with an asynchronous
reset.

0.05
a s s i gn tmpData = (r s t)? 0 : dataIn [2] ;
always @(posedge c l k or posedge r s t) begin

i f (r s t)
dataOut [2] <= tmpData ;

e l s e
dataOut [2] <= tmpData ;

end

Listing B.5: Logically equivalent to a fflop with an asynchronous reset.

0.05
IVSVTX0H U3 (.A(r s t) , . Z(n2)) ;
FD2QHVTX1 dataOut r eg 2 (.D(dataIn [2]) , .CP(c l k) , .CD(n2) , .Q(dataOut [2])

Listing B.6: Synthesized gate-level netlist for a logically equivalent fflop
with an asynchronous reset (listing B.5).

170

Appendix C

Encoder - Extras

C.1 Encv4 versus Encv3 - Correlations to Energy-Per-Bit

The following tables show the effect of clock-gating and the XOR-gate swap-
ping, present in the encv4 encoder, on the energy-per-bit for a range of clock
frequencies.

171

C.1: Encv4 versus Encv3 - Correlations to Energy-Per-Bit

code encv3 encv4 ratio
dynamic power dynamic power

1152 C2 p1 5.310e-03 5.343e-03 0.994
1152 C2 p32 4.333e-03 2.155e-03 2.011
1152 C2 p48 4.947e-03 2.992e-03 1.653
1152 C2 p96 7.156e-03 5.556e-03 1.288
192 C2 p16 1.207e-03 1.007e-03 1.199
2304 C2 p64 8.664e-03 4.244e-03 2.041
288 C2 p1 1.376e-03 1.429e-03 0.963
288 C2 p24 1.748e-03 1.444e-03 1.211
288 C2 p4 1.117e-03 6.363e-04 1.755
288 C2 p8 1.205e-03 7.186e-04 1.677
384 C2 p32 2.289e-03 1.822e-03 1.256
480 C2 p8 1.738e-03 8.586e-04 2.024
576 C2 p1 2.688e-03 2.462e-03 1.092
576 C2 p12 2.136e-03 1.071e-03 1.994
576 C2 p16 2.278e-03 1.226e-03 1.858
576 C2 p24 2.623e-03 1.683e-03 1.559
576 C2 p4 2.052e-03 1.022e-03 2.008
576 C2 p48 3.462e-03 2.770e-03 1.250
576 C2 p8 2.041e-03 9.592e-04 2.128
768 C2 p1 3.565e-03 3.556e-03 1.003
768 C2 p16 2.779e-03 1.328e-03 2.093
768 C2 p32 3.353e-03 2.057e-03 1.630
768 C2 p4 2.685e-03 1.277e-03 2.103
768 C2 p64 4.629e-03 3.662e-03 1.264
768 C2 p8 2.595e-03 1.114e-03 2.329
864 C2 p24 3.341e-03 1.737e-03 1.923
960 C2 p8 3.188e-03 1.297e-03 2.458

Table C.1: encv4, encv3, comparison of dynamic power for a 250 MHz clock.

172

C.1: Encv4 versus Encv3 - Correlations to Energy-Per-Bit

code encv3 encv4 ratio
dynamic power dynamic power

1152 C2 p1 1.096e-02 1.100e-02 0.996
1152 C2 p32 8.829e-03 4.450e-03 1.984
1152 C2 p48 9.994e-03 6.060e-03 1.649
1152 C2 p96 1.457e-02 1.132e-02 1.287
192 C2 p16 2.440e-03 2.940e-03 0.830
2304 C2 p64 1.763e-02 8.864e-03 1.989
288 C2 p1 2.908e-03 2.884e-03 1.008
288 C2 p24 3.580e-03 2.926e-03 1.224
288 C2 p4 2.299e-03 1.301e-03 1.767
288 C2 p8 2.496e-03 1.475e-03 1.692
384 C2 p32 4.606e-03 3.874e-03 1.189
480 C2 p8 3.548e-03 1.806e-03 1.965
576 C2 p1 5.494e-03 5.136e-03 1.070
576 C2 p12 4.368e-03 2.214e-03 1.973
576 C2 p16 4.679e-03 2.548e-03 1.836
576 C2 p24 5.332e-03 3.479e-03 1.533
576 C2 p4 4.256e-03 2.101e-03 2.026
576 C2 p48 7.278e-03 5.637e-03 1.291
576 C2 p8 4.214e-03 1.995e-03 2.112
768 C2 p1 7.295e-03 7.247e-03 1.007
768 C2 p16 5.658e-03 2.736e-03 2.068
768 C2 p32 6.842e-03 4.260e-03 1.606
768 C2 p4 5.566e-03 2.633e-03 2.114
768 C2 p64 9.458e-03 7.464e-03 1.267
768 C2 p8 5.293e-03 2.412e-03 2.194
864 C2 p24 6.851e-03 3.596e-03 1.905
960 C2 p8 6.541e-03 2.797e-03 2.339

Table C.2: encv4, encv3, comparison of dynamic power for a 500 MHz clock.

173

C.2: Encoder v7 - Merged PN-LDPC-CC Encoders (Encv7)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

576_C2_p8
576_C2_p16
768_C2_p4
768_C2_p8

768_C2_p16
768_C2_p32
960_C2_p8

1152_C2_p32
2304_C2_p64

Figure C.1: Encv7, comparing the energy-per-encoded-bit versus the
throughput for various codes. The datapath has been doubled, to process
two independent data streams, resulting in twice the throughput.

C.2 Encoder v7 - Merged PN-LDPC-CC Encoders (Encv7)

Merging multiple PN-LDPC-CC encoders with synchronized but indepen-
dent data streams and sharing control circuitry does not further reduce the
energy-per-encoded-bit. We initially thought that sharing the control circuitry
would amortize the power consumed in the creation of the control signals over
the multiple data-paths. Figure C.1 shows the energy-per-encoded-bit versus
throughput for various codes. The datapath has been doubled, resulting in
twice the throughput.

Unfortunately, merging multiple encoder datapaths together does not re-
sult in reduced energy-per-encoded-bit. Figure C.2 compares the power of a
design that shares the control circuitry, encv7, with a design that does not,
encv5, in terms of the energy-per-bit versus the throughput for various codes.
The energy-per-encoded-bit shows no improvement.

Doubling the datapath doubles the area. Figure C.3 compares the area
versus the throughput for various codes.

In summary, the multiple datapath approach offers no perceivable benefit
over replicating the original encoder circuitry. While it might appear that the
multiple datapath approach allows the designer, for an equivalent throughput,
to trade-off an increase in area for a decrease in the energy-per-encoded-bit,
the original circuit can be replicated with the same result. For the given the
bit-widths of the examined datapaths, sharing the control circuitry for multiple

174

C.2: Encoder v7 - Merged PN-LDPC-CC Encoders (Encv7)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 20 40 60 80 100 120 140

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

5-576_C2_p16
5-768_C2_p8

5-2304_C2_p64
7-datapathMult-2-576_C2_p16
7-datapathMult-2-768_C2_p8

7-datapathMult-2-2304_C2_p64

Figure C.2: Encv7 versus Encv5: comparing the energy-per-encoded-bit
versus the throughput for various codes. The energy-per-encoded-bit shows
no improvement.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 20 40 60 80 100 120 140

A
re

a
(u

m
2)

Throughput (GBits/s)

5-576_C2_p16
5-768_C2_p8

5-2304_C2_p64
7-datapathMult-2-576_C2_p16
7-datapathMult-2-768_C2_p8

7-datapathMult-2-2304_C2_p64

Figure C.3: Encv7 versus Encv5: comparing area versus throughput for
various codes. Doubling the datapath doubles the area.

175

C.2: Encoder v7 - Merged PN-LDPC-CC Encoders (Encv7)

datapaths is not recommended.

176

Appendix D

Encoder - Future Work

D.1 De-multiplexing the Input Databus (Encv6)

In encv5 we explored increasing the databus width to reduce the power. In
encv6 we will add a de-multiplexor in between the input databus and the
encoder nodes. Figure D.1 shows a de-multiplexor built from simple gates.
Each bit of the data input is attached to two gate inputs and a select signal
is connected to two gate inputs. The output of each AND gate is attached to
half the encoder nodes. The select signal, derived from the “regPhase” signals,
toggles twice per T ′

s. The result is that the input now can only potentially
toggle inputs of a maximum of T ′

s/2 encoder nodes per cycle instead of T ′
s

encoder nodes.
This concept can be expanded from 1:2 de-multiplexors to 1:N de-multiplex-

ors. The limiting factor becomes the ratio of the consumed power of the de-
multiplexors and their associated control circuitry versus the power saved by
not switching the associated encoder node gates.

There is a basic relationship, that if not met, limits the practicality of this
approach. Specifically, the number of gate inputs to which the input databus
is attached must be greater than two. The de-multiplexor has two gate inputs
for the input databus that will be switching at the same rate as the input
databus. In our case, the encoder nodes have three gate inputs. This means

data

attached to the other
half of the encoder
nodes

attached to half
the encoder nodes

d q

en

regPhase[0]

regPhase[0]

regPhase[30]

clk

Figure D.1: A 1:2 de-multiplexor built from simple gates for a T ′
s=60 code.

177

D.1: De-multiplexing the Input Databus (Encv6)

we can reduce the power associated with the gate input capacitance of the
dynamic power of the input databus by at most 1/3. Once we add the control
circuitry, the reduction in power will be even less.

In the unlikely case where the input data is all ones, the switching activity
is higher than in the previously presented encoders. The return to zero nature
of the phase gating results in the inputs toggling twice per code period.

While the dynamic power associated gate capacitance is reduced using this
technique, the dynamic power associated with the wiring capacitance remains
almost unchanged. Doubling the number of wires results in those wires switch-
ing at half the original rate.

178

Appendix E

Encoder - Extra Graphs with Grouping
by Node-Parallelization

Here we present the encoder energy-per-bit versus throughput and area ver-
sus throughput graphs while grouping different codes in terms of the node-
parallelization factor. These graphs were not included in the main document.
By grouping different codes in terms of the node-parallelization factor we can
more clearly see the impact of increasing the node-parallelization.

179

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10 12 14 16

E
ne

rg
y-

pe
r-

bi
t (

pJ
)

Throughput (GBits/s)

576
768
960

1152
2304

Figure E.1: Encv5 energy-per-bit versus the information throughput
for the PN-LDPC-CCs. The higher the ρ, the higher the information
throughput and the lower the energy-per-encoded-bit. Code lengths (Ts)
and parallel-node (ρ) values are as specified: for Ts=192 ρ ∈{16}, for
Ts=288 ρ ∈{1,4,8,24}, for Ts=384 ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576
ρ ∈{1,4,8,12,16,24,48}, for Ts=768 ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24},
for Ts=960 ρ ∈{8}, for Ts=1152 ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. A
clock frequency of 250 MHz is used.

180

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 2 4 6 8 10 12 14 16

A
re

a
(u

m
2)

Throughput (GBits/s)

576
768
960

1152
2304

Figure E.2: Encv5 area versus the information throughput, for the
PN-LDPC-CCs. Code lengths (Ts) and parallel-node (ρ) values are as
specified: for Ts=192 ρ ∈{16}, for Ts=288 ρ ∈{1,4,8,24}, for Ts=384
ρ ∈{32}, for Ts=480 ρ ∈{8}, for Ts=576 ρ ∈{1,4,8,12,16,24,48}, for Ts=768
ρ ∈{1,4,8,16,32,64}, for Ts=864 ρ ∈{24}, for Ts=960 ρ ∈{8}, for Ts=1152
ρ ∈{32,48}, and for Ts=2304 ρ ∈{64}. A clock frequency of 250 MHz is
used.

181

Appendix F

PN-LDPC-CC Decoder Future Work

The work that we presented in this thesis is the first generation of PN-LDPC-
CC architectures. However, there are a number of ideas generated during the
duration of this work that warrant further exploration. For example there are a
number of improvements that have been made to LDPC-BC architectures that
could be applied to our PN-LDPC-CC architectures. The following sections
give a quick summary of some of the possible improvements and the expected
benefits.

F.1 Removing Reset Circuitry While Maintaining BER

Performance for Short Streams

In Section 5.5 we eliminated the reset circuitry by replacing the function of
the saturation bit with maximum magnitude and additional control circuitry.
We propose to add multiplexors to the variable-node outputs to achieve the
same BER performance as the “saturation-bit” decv1 implementation without
the use of a saturation bit. As was mentioned previously, LDPC-CC are
deterministic. Thus we can predetermine when the outputs of the variable-
node are “saturated” and when they carry actual data.

The addition of multiplexors at the outputs of the variable-node is expected
to result in more slightly higher power consumption. The addition of the
variable-node output multiplexors is not expected to impact the overall trend
that the higher the ρ, the higher the throughput and the lower the energy-
per-decoded-bit.

Compared to decv6, the addition of variable-node output multiplexors is
expected to result in slightly higher area consumption.

182

F.2: Using Synchronous Memories

F.2 Using Synchronous Memories

The register-memory represents 87% of the total decoder processor area. Re-
ducing the area of the memory would thus significantly impact the total area
of the decoder processor.

Replacing register-memories with synchronous memories would require the
number of memory banks to double to avoid memory access conflicts. In the
current register-memory architecture, a read and write operation is performed
in a single clock cycle. With synchronous memories only a single read or a sin-
gle write can be done in one clock cycle. To preserve single-cycle throughput,
we can double the number of memory banks on the condition that we do not
need to both read and write to any given memory bank in any specific cycle.

If all memories were implemented using purely synchronous memories, we
would see an increase in the number of memory banks. As a result, we would
need to approximately double the number of memory banks. Likewise, chang-
ing from dual-port to single-port port memories would require each dual-port
memory be replaced with two single-port memories and thus approximately
double the required number of memory banks. Using only single-port memo-
ries would require that we again double the number of memory banks to avoid
collisions between check-node and variable-node accesses.

Given that clock-gating was effective at reducing the area and power con-
sumption, it would be a very interesting to see if using actual memories reduces
the area, power and/or throughput.

F.3 Pipelined Processor

The maximum clock frequency of previous decoder is limited by the signal
path that runs from the memory to the check-node, through the variable-node
and back to the memory. Examining the previous decoder timing reports re-
veals that significant time is spent in both the check-node and variable-node.
By adding a pipeline stage between the check-node and variable-node, this
bottleneck could be alleviated. The addition of a pipeline stage would require
that the variable-node operation occur 1 cycle later. As a result the next pro-
cessor would need to start one cycle later as well. As values in “memory” will
need to be stored an extra cycle, it is very likely that a collision would occur.
By extending the group period T ′

s by one cycle and expanding the “memory”
to compensate, this should allow the delayed variable-node operation. The
trade-offs between area, power and throughput would need to be examined
carefully.

183

F.4: Memory Reduction

F.4 Memory Reduction

As pointed out in [42], the output of the check-node produces K outputs of
which only two are unique and only these two check-node values need to be
stored. By storing the check-node input that had the minimum value and also
storing the two unique “min” values, then the correct “min” value could be
selected for the variable-node operations. Implementation of this idea may
reduce area as well as power consumption.

F.5 Re-analyzed using a Single Code with High Paral-

lelism

It is possible to analyze PN-LDPC-CCs with different degrees of parallelism.
It would be interesting to take a single code with large parallelism and re-
analyze it with lower degrees of parallelism. As increased parallelism simply
avoids collisions in read/write accesses, there should be no issue in treating a
code with higher parallelism as a code with lower parallelism.

F.6 DRAM

The use of DRAM may possibly reduce power consumption and required area.
DRAM consumes very little space, however, to achieve the highest density, a
specialized DRAM IC process is required. A DRAM cell implemented in a
logic process, may be an acceptable alternative. Given the periodic access to
the memory, the DRAM would not need to be refreshed. Additionally, give
that we eliminated the need for reset circuitry, the DRAM would not need to
be initialized nor reset between streams of data.

F.7 Latches

Latches typically consume less area and power than flip-flops. By replacing the
flip-flops in the design a reduction in power and area may be achieved. Further
following this concept, the use of dynamic latches may yield ever better results.

F.8 SIMD

With the increased node-parallelism, the PN-LDPC-CC may take advantage
of vector processors. As the ρ increases, more operations are capable of being
processed in parallel. This will allow SIMD type architectures to efficiently
execute the operations required to encode and decoder the PN-LDPC-CCs.

184

F.9: Higher Rate PN-LDPC-CCs

F.9 Higher Rate PN-LDPC-CCs

As Eb/N0 is increased beyond a certain point, higher-rate codes of the same
length will begin to achieve better hardware performance compared to the
lower-rate codes. We believe it is possible to design high-rate PN-LDPC-CCs
[1] while retaining a number of the benefits of the PN-LDPC-CC encoder and
decoder architectures.

185

	Introduction
	Background
	Evolution of LDPC-CC Encoders
	Evolution of LDPC-CC Decoders
	LDPC-BCs versus LDPC-CCs
	Parallel-Node LDPC-CCs

	A Highly Pipelined LDPC-CC Encoder and Decoder Implementation
	Overview
	The Challenge
	Meeting the Test Challenge - Design for Test
	The Channel
	Random-Number-Generator
	The Phase-Locked-Loop
	System Configuration
	Asynchronous Memory Interface
	The BIST Modules

	Encoder and Decoder Architecture
	Encoder
	Decoder

	Testing
	Test Results
	Test Setup
	General Test Chip Measurements
	Encoder Measurements
	Decoder Measurements

	Conclusion

	Parallel-Node LDPC-CC Encoder Architecture Exploration
	Parallel-Node LDPC-CC Encoders
	Encoder v2 - Circular Buffer (Encv2)
	Encoder v3 - Replacing a 3-Input XOR-Gate
	Encoder v4 - Clock-Gating (Encv4)
	Encoder v5 - Variable Input Databus Size (Encv5)
	Encoder v6 - De-multiplexing the Input Databus (Encv6)
	Encoder v7 - Merged PN-LDPC-CC Encoders (Encv7)
	Comparison to other LDPC Encoders
	PN-LDPC-CC Encoder Summary

	Parallel-Node LDPC-CC Decoder Architecture Exploration
	Decoder v1 - Parallel-Node LDPC-CC Decoder (Decv1)
	Decoder v2 - Removing the Saturation Bit (Decv2)
	Decoder v3 - Removing the Rotation Switch-Matrix (Decv3)
	Decoder v4 - Clock Gating (Decv4)
	Decoder v5 - Removing Reset Circuitry (Decv5)
	Decoder v6 - Truncated Min-Sum Check-Node (Decv6)
	PN-LDPC-CC Decoder Hardware and BER Performance Analysis
	Comparison to Other LDPC Decoders
	PN-LDPC-CC Decoder Summary

	Conclusions
	Bibliography
	Appendix - Methods
	Overview
	Design Description
	Bit-Error-Rate Simulations - Matlab
	Behavioral Design Verification - VCS 2006.03
	Synthesis - Design Compiler 2007.03
	Power Estimation and Analysis
	Power Estimation using the Switching Activity of a Synthesized Gate-level Netlist

	Asynchronous Resets and Their Gate-Level Mapping
	Encoder - Extras
	Encv4 versus Encv3 - Correlations to Energy-Per-Bit
	Encoder v7 - Merged PN-LDPC-CC Encoders (Encv7)

	Encoder - Future Work
	De-multiplexing the Input Databus (Encv6)

	Encoder - Extra Graphs with Grouping by Node-Parallelization
	PN-LDPC-CC Decoder Future Work
	Removing Reset Circuitry While Maintaining BER Performance for Short Streams
	Using Synchronous Memories
	Pipelined Processor
	Memory Reduction
	Re-analyzed using a Single Code with High Parallelism
	DRAM
	Latches
	SIMD
	Higher Rate PN-LDPC-CCs

