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Apstract

Mesh refinement is in general a necessary step in the finite element method. To date, few
p-rvious results are known for 3-D local mesh refinement of tetrahedral meshes in terms of
pre mg guaranteed-quality refined meshes due to the complexity of the 3-1) geometry.
T1  nato: part o this thesis is focused on developing 3-D local refinement. techniques with
euwiphasis on fast algorithr  lor generating qualitv refine ] meshes. Two algorithms, based
on a bisection procedure nd a regular refiteme .t ha.e been designed and implemented.
In both algorithms, the guality of refined meshes is theoretically ensured. With properly
designed data structures, the expected time complexity of the algorithms is linearly related
to the number of refined tetrahedra in a refined mesh. Also, local refinement in a refined
region can be smoothly extended to its adjacent subregions in a small range of expansion.

Implementation details and experimental results of the algorithms are presented.

Another part of the thesis is an analytic study of tetrahedron shape measures. A novel
tetrahedron shape measure, the mean ratio, based on an affine transformation from the
regular tetrahedron. is introduced, and used in analyzing the quality of meshes produced by
our local refinement algorithms. By studying the relationships among three shape measures
(radius ratio, minimum solid angle, and mean ratio), ~e conclude that the three measures
in questicn are “equivalent”, and one can use any of thiem for reporting and interpreting the
quality of vetrahedra in a finite element mesh while being aware of the different distributions

of their values.
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Chapter 1

Introduction

In physical simulation, many problems can be formulated as partial differential equations
(PDEs), e.g. structural analysis of mechanical parts, semiconductor device simulation,
aerodynamics, computational fluid dynamics, etc. A popular method for solving some types

of PDEs is the finite element method (FEM), which in general consists of the following steps:

(a) Mesh generation in the region or domain of interest.
(b) Solution of linear equations.
(¢) Error estimation.

(d) Mesh refinement.

Mesh generation is a process of fitting a geometric region with basic elements, such as tri-
angles, quadrilaterals, tetrahedra, or hexahedra. In this thesis, we only consider tetrahedral
meshes, because this type of mesh is more suitable for fitting complicated regions. In the
error estimation step of FEM, a set of subregions or basic elements (called selected ele-
ments) is identified for further refinement due to unacceptable solution accuracy on these
elements. Subdivision of the selected elements or subregions into a new set of elements of
the same type is referred to as mesh refinement, and the output of the mesh generation step

is provided as input to the mesh refinement step.

The FEM starts with an initial mesh, carries out a finite element analysis using the

mesh, and then refines the mesh based on error estimates. Several iterations of the adaptive

1



process cycle (i.e. steps (b), (c), (d), (b}, ...) may be applied in order to obtain a prescribed
accuracy. Note that the mesh refinement step is usually necessary even if a mesh with
elements of good shape is produced in step (a). In practice, mesh refinement techniques
have proved to be successful tools for decreasing the size of linear systems in step (b)
(compared with the method of remeshing the whole region with smaller elements) and
increasing the accuracy of the solution of PDEs. Also, mesh refinement is needed in the
multigrid method, in which the solution of a problem is obtained by alternatively solving

the problem on several levels of coarse to fine grids.

Most previous existing three dimensional (3-D) tetrahedral mesh refinement approaches
are based on ad-hoc strategies, and there has been little previous theoretical analysis on
the “quality” of a refined mesh, while some guaranteed-quality mesh refinement techniques
do exist for a two dimensional (2-D) triangular mesh. The major part of this thesis will
focus on developing 3-D local mesh refinement techniques with emphasis on fast algorithms
for producing guaranteed-quality refined meshes. In addition, we will also study the shape
of tetrahedra, since producing well-shaped tetrahedra is a major difficult problem in both

tetrahedral mesh generation and refinement.

This chapter is organized as follows. In Section 1.1, we briefly review existing approaches
for mesh generation with emphasis on the shape of tetrahedra produced by different meth-
ods. In Section 1.2, we survey existing mesh refinement techniques. The outline of the

thesis is described in Section 1.3.

1.1 Review of mesh generation

Most problems in 2-D mesh generation have been solved nicely, and various 2-D) mesh
generators are available, e.g. [YeS83, Lo85, JoS86, Ban90]. Although the research of 3-
D mesh generation started a decade ago, currently, some critical problems in 3-D mesh
generation are still in their early stage of research, e.g. how to produce well-shaped elements,
how to control varying element sizes [Sab91, Le88, She88], etc. We review the existing

approaches for mesh generation from three research areas.



1.1.1 Approaches in engineering

Most approaches in this category are described at the “method” level, in which a formal
algorithmic description, a correctness/efficiency analysis, and/or a quality analysis of the
final mesh is lacking. Among them, the most common approach seems to be based on
recursive spatial decompositions or octrees [YeS84, PSK89, $¢S90, Bur90, ShG91, JuL93).
The basic idea behind this approach is as follows. The region of interest is covered by a root
object, e.g. a square, triangle, cube, or tetrahedron. Then the root object is subdivided
into a set of child objects with the same type as the root object. Recursive subdivision of
the root objects forms a tree, with smaller objects at lower levels of the tree. The final mesh
is generated according to the information represented in the tree. One critical problem in
this approach is how to deal with the boundary of the region of interest so that generation
of poorly-shaped elements is avoided, and a valid triangulation is ensured. To reach these
goals, it often needs to significantly increase the number of levels of subdivision and the
number of elements near the boundaries. In practice, this approach does not seem to totally
eliminate poor tetrahedra near the boundaries and is also sensitive to the coordinate system

used in defining the region.

Another approach is based on the advancing front technique [LoP88, PPF88]. At the
start of the process, the front is exactly equal to the collection of triangles on the boundary
of the regions (the boundary faces are first triangulated appropriately). The front is updated
whenever a new element is constructed. A new element is generated by connecting a mesh
point to a triangle of the front. With this approach, it is hard to tell in general whether the
different groups of tetrahedra advancing from the different boundaries will join correctly
in the interior with no tetrahedra of poor shape. Also, this approach is time-consuming
compared to other approaches due to the need to check for a well-shaped element and

determine that it does not intersect other elements on the front.

The third approach is based on first generating mesh points on the boundary and in the
interior of the 3-D region and then connecting the mesh points into a valid triangulation
[CFF85, JaB87, Bak89, FiS91, YTH91]. In general, the Delaunay triangulation (or a vari-
ant) is used to connect mesh points into a triangulation. Since the Delaunay triangulation
(DT) is defined in the convex hull of the given mesh points, for a complicated nonconvex
region, a non-trivial step is needed to extract a valid triangulation from the DT, which is

in general not addressed rigorously. Also the 3-D Delaunay triangulation may include some



very poorly-shaped elements, e.g. sliver tetrahedra as reported in [CFF85, Joe91a], where

the sliver tetrahedron is one with 4 nearly coplanar vertices.

1.1.2 Approaches in theoretical computational geometry

A good survey of this category can be found in [BeE92]. One of main focuses is the DT, since
the 2-D Delaunay triangulation simultaneously optimizes several of the quality measures,
e.g. it maximizes the minimum interior angle [Law77], minimizes maximum circumcircle
[Raj9l], etc. However, for the 3-D Delaunay triangulation, none of the above two criteria
(with the minimum interior angle and maximum circumcircle corresponding to the minimum

solid angle and maximum circumsphere, respectively) is optimized [JoeR9, BeE92].

Another approach is based on first decomposing a polyhedron into convex parts, and
then triangulating each convex part into a tetrahedral mesh [Dey91, DBS91]. Most of
previous results for the first stage, convex decomposition, are of more theoretical interest
than of practical use for mesh generation, due to complicated algorithms (with emphasis on
optimal time complexity or minimum output size) and omission of discussion of degenerate
cases [Cha84, ChP89, Dey91]. Also, the quality of convex parts is in general not considered.
A quality triangulation of a convex polyhedron is discussed in [DBS91], in which all types

of poor tetrahedra but the sliver are eliminated.

Recently, a quality mesh generation algorithm is proposed in [MiV92]. The algorithm
is built on some of the ideas in [BEG90]. A more sophisticated method is first used to
construct an octree, and then a complicated set of warping rules is applied to conforin the
octree to the region boundary so that poorly shaped tetrahedra are avoided. The main
result is that the algorithm produces a triangulation having the best possible quality up to
a constant, independent of the input polyhedron. It is not clear what the constant is, and

there hasn’t been any implementation of this algorithm yet.

- 1.1.3 Approaches in applied computational geometry

Approaches here are somewhere in the middle between the previous two categories, and
have the merits that algorithmic level procedures are provided, parts of the method may

use efficient geometric algorithms, the correctness of the algorithm is ensured, and the



implementation issues are discussed in detail.

Joe [Joe94] develops a 3-D mesh generator by a generalization of his 2-D method [JoS86].
The motivation of his approach is based on the objective of generating well-shaped elements
by using the techniques of computational geometry, i.e. efficient and correct geometric
algorithms are employed for solving well-defined geometric problems. The output of his

method will be the input to our mesh refinement research.

The algorithmic procedure of Joe’s method consists of three stages. The first stage is
a purely geometric stage in which the given polyhedral region is decomposed into convex
parts, with the goal that the creation of small dihedral angles is avoided. In the second
stage, a mesh distribution function is automatically generated based on sizes of edges and
faces and narrowness of subregions, and is used to further subdivide the convex polyhedron
from the first stage into small convex parts, so that the variation of mesh size in each part
is limited and a uniform tetrahedron or mesh size can be used in each part. In the third
stage, 2-D Delaunay triangulations are first constructed on the boundary faces of the convex
polyhedra, and then for each convex part, mesh points are generated on a quasi-uniform
grid in the polyhedron and are connected up to form tetrahedra subject to the boundary
constraints, Local transformations [Joe89] with respect to a tetrahedron shape measure are

used to improve the quality of the tetrahedra in each polyhedron.

The 3-D algorithm is not successful as 2-D in terms of avoiding poorly-shaped convex
parts. His recent work based on combinations of local transformations significantly improves

the quality of tetrahedra in meshes [Joe93].

1.2 Review of mesh refinement

We classify mesh refinement approaches into two categories, local refinement and remeshing.
Local refinement is one in which each selected element is directly refined into a set of
subelements of the same type, i.e. each new refined element in a refined mesh of an original
mesh 7 is a subelement of an element in 7. We refer to all other mesh refinement approaches

based on reducing the size of elements as remeshing.

1.2.1 Local refinement



(a)
Figure 1.1: Illustration for 2-D local refinement based on bisection; t;; = (ti+t;)/2, i < j.

We restrict most of our survey for this category in 2-D, since little previous work exists
in 3-D. One of the local refinement approaches is bisection, in which a triangle is refined by
connecting a vertex to the midpoint of its opposite edge (see Figure 1.1a). One choice is to
divide the longest edge of a triangle, called longest edge bisection. Longest edge bisection
can be applied to a triangle or its subsequent subtriangles to produce a sequence of triangular
meshes. The properties of refined meshes based on longest edge bisection are well studied
[RoS75, Sty80, AdlI83, Kea78]. It has been proved that there are only a finite number of
similar triangles produced in any refined mesh, independent of the number of refinement
levels, and the minimum interior angle over any refined mesh is at least half as good as
the minimum interior angle of the original triangle. The above properties demonstrate that
longest edge bisection of a single triangle does not produce subtriangles of arbitrarily poor
shape. Consequently, several 2-D local refinement techniques based on these properties
have been designed [Riv84, Riv87, Riv89]. In [Riv84], each selected triangle is first bisected
by longest edge. Then iteratively bisecting the non-conforming triangles by longest edge
bisection produces a conforming mesh in a finite number of steps, where a non-conforming
triangle means that at least one of the edges of the triangle is subdivided (see triangle
tortizty in Figure 1.1b). Since the conforming process may introduce a large number of
intermediate triangles, a modified version is given in [Riv87], where a refined triangle T is
first subdivided into two subtriangles T; and T, by the longest edge bisection, and then
T;,i = 1,2, is bisected into two subtriangles by the bisection of the common edge of T and

T;,i = 1,2 (see Figure 1.1c).

In [RiL92], the method of [Riv84] is extended to 3-D, but there hasn’t been any theo-
retical analysis on the shape of tetrahedra produced in a refined mesh, and experimental
results are reported only on some initial meshes of a single tetrahedron. In Chapters 3 and

4, we will present a 3-D local refinement algorithm based on a bisection procedure in which



guaranteed-quality refined meshes are produced.

t') t'l
t.
t | , 2
t L@t O Z]lt
1
0 to] 1 0 1 0 to]

to

(a) (b) (©

Figure 1.2: Mlustration for 2-D local refinement based on regular refinement; t;; = (t; +
t;)/2,i < j. (a) Refinement with no interior angles greater than 7/2. (b) Refinement with
one interior angle greater than /2. (c) Irregular refinement.

The second local refinement approach is regular refinement, in which the midpoints of
the edges of a triangle are connected to each other to subdivide the triangle into four similar
ones having the same shape as the original triangle [LM »53, BaS81] (see Figure 1.2a). When
only selected triangles are subdivided by regular refinement in a conforming mesh, non-
conforming triangles may arise. To fix the non-conformity, regular refinement is repeatedly
applied to any iriangle in which at least two edges of the triangle have been subdivided
due to the subdivision of its adjacent triangles until each non-conforming triangle has a
unique subdivided edge, and then any non-conforming triangle is bisected by its subdivided
edge (see Figure 1.2c). The bisection step cleans up the non-conformity at the boundary of
regularly refined regions. At the next refinement, if any triangle, produced in the cleaning-up
step of the last refinement, needs refinement, its parent is subdivided by regular refinement.
Obviously, the shape of any refined triangle is bounded below, since the triangle created in
a cleaning-up step is never further refined. In [Ban90], the regular refinement is extended
to contain two cases. If no interior angle of a triangle T is greater than 7/2, the regular
refinement on T is the one mentioned above (i.e. Figure 1.2a); otherwise, T is first refined
by bisecting its longest edge, and then each subtriangle is bisected by the common edge
of the subtriangle and T (see Figure 1.2b). It is proved that this refinement produces two
triangles with the same shape as the original, and two triangles of better shape in terms of

the minimum interior angle of a triangle.

Similar to bisection, the regular refinement technique has been used in the 3-D case with

no systematic analysis on the quality of refined tetrahedra, where a 3-D regular refinement



means that each face of a tetrahedron is first refined by the regular refinement of Figure
1.2a, and then the midpoints of a pair of opposite edges are connected to subdivide the inner
octahedron into four tetrahedra. It is pointed out in [CSWSS] that repeated subdivision
of a tetrahedron by regular refinement will yield elements that become arbitrarily slender,
which is not always correct because the shape of refined tetrahedra strongly depends on
how the inner octahedron is triangulated. In Chapter 5, we will extend the 2-D regular

refinement to 3-D, and prove that guaranteed-quality meshes are produced.

In [Mit89], a comparison of adaptive mesh refinement, based on bisection, regular re-
finement, and some variants of the two methods, is made for some elliptic PDE’s problems
in 2-D. The main conclusion is that all of the methods considered are eflicient aund satis-
factory for general purpose PDEs solvers with adaptive refinement. This indicates that the
extension of bisection and regular refinement to 3-D with guaranteed-quality refined meshes

will most likely yield similar results as in 2-D. This is one of the motivations for our thesis.

One main concern of local refinement approaches is how to make them work for a
subregion near a curved surface boundary, since the approaches perform refinement directly
on each selected element of an existing mesh without considering the boundary information
of the original region. A possible solution to this problem is to pull some points on planar

boundary faces to the corresponding curved surface boundary of the original region.

1.2.2 Remeshing

One remeshing approach uses a similar technique as in a method of mesh generation that
is based on recursive spatial decompositions (quadtree/octree) [BaS89, SYBR6]. Since tree-
based structures are the most common data structure adopted in this mesh generation
approach, refinement of selected elements means that a set of leaf-nodes of the tree need a
few more levels of subdivision. It seems very simple to perform mesh refinement based on
recursive spatial decompositions. However, the refinement also inherits the drawbacks of

the corresponding mesh generator.

The second approach for remeshing is based on Delaunay triangulation methods. A set
of new mesh points is first added, and then an incremental technique (e.g. [Wat81, Fie86]) is
used to construct a new Delaunay triangulation. In [NeF91], the new mesh points are added

at the midpoints of edges incident on selected points, which are given by a posteriori error



indicator. In [Fre87], a new mesh point is added somewhere between the circumcentre and
centroid of each selected triangle. Note that in this approach, considerable checking may be
needed to preserve a valid boundary of a resulting mesh. Also, the Delaunay triangulation

in 3-D may contain many “sliver” tetrahedra, which are poorly-shaped.

The third approach is based on an edge “flip” procedure [CSS83]. Each selected triangle
is subdivided into three subtriangles by connecting the centroid of the triangle to its three
vertices, and then local edge “flip” procedure based on the Delaunay criterion (i.e. empty
circamcircle) is used to obtain a global Delaunay triangulation. The extension of this
method to 3-D might not be very promising because of the reasons that local face flip (i.e.
local transformations) based on the Delaunay criterion (or any valid tetrahedron shape
measure) may not produce a global Delaunay (or optimal) triangulation, and that Delaunay

triangulation is not necessary a good-quality triangulation.

In this thesis, we are only concerned with local mesh refinement techniques, which are

independent of mesh generators.

1.3 Outline of thesis

The purpose of this thesis is to study local mesh refinement techniques in 3-D. We choose
our research topics based on extensions of 2-D local refinement techniques (e.g. bisection,
regular refinement, etc.), since the corresponding 2-D approaches have proved to be suc-
cessful in practice, but little previous work has been done in 3-D. The extensions are not

trivial just as in extending a 2-D mesh generator to 3-D, substantial difficulties may exist.

In Chapter 2, we give an analytic study of tetrahedron shape measures. Formulae for
two commonly used shape measures (radius ratio and minimum solid angle) are derived.
A novel shape measure based on a mapping from the regular tetrahedron is introduced.
The new measure is used in analyzing the quality of meshes generated by our algorithms
in later chapters. We conclude that all valid tetrahedron shape measures in question are

“equivalent”.

In Chapter 3, we design a bisection procedure for repeated bisection of a single tetra-
hedron. Some theoretical properties of the procedure are established. In particular, we

prove that the bisection procedure produces only a finite number of similar tetrahedra in a
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refined mesh, and the shape of any refined tetrahedron is bounded below, independent of
the number of refinement levels, in terms of the new tetrahedron shape measure. In Chapter
4, a 3-D local refinement algorithm for a conforming mesh based mainly on the bisection
procedure in Chapter 3 is presented. The algorithm not only inherits the main properties
from the bisection procedure, but also has the properties that the refinement on some local
subregions can be smoothly extended to their adjacent regions, and that the expected time
complexity of the algorithm is linearly related to the number of refined tetrahedra in a

refined mesh.

In Chapter 5, we present a 3-D local refinement algorithm for a conforming mesh based
mainly on a regular refinement. Very similar results to Chapter 4 are obtained, i.e., the
algorithm yields guaranteed-quality meshes. In Chapter 6, experimental results from an
implementation of the algorithms in Chapters 4 and 5 are provided in terms of the quality
of refined meshes as well as the locality of the algorithms. Concluding remarks and some

further research problems are discussed in Chapter 7.

Some parts of the thesis will be published, or have been submitted for publication. In
particular, a version of Chapter 2 except Section 2.4 will appear in BIT, June, 1994 [LiJ94b].
A version of Chapter 3 plus Section 2.4 will be published in Mathematics of Computation,
July, 1994 [LiJ94a). Chapters 4, 5, and 6 have heen reorganized into two papers submitted
for publication [LiJ94c, LiJ94d].



Chapter 2

Tetrahedron Shape Measures and Their
Relationships

Tetrahedron shape measures are used for evaluating the quality of tetrahedra in finite ele-
ment meshes. Researchers have used various quantities for measuring the shape or quality
of tetrahedra. In this chapter, we first study two commonly used tetrahedron shape mea-
sures, and then a novel tetrahedron shape measure is introduced. We compare these three

tetrahedron shape measures, and conclude that the three shape measures are “equivalent”.

2.1 Introduction

In 2-D triangular mesh generation, the minimum interior angle of a triangle is a commonly
used triangle shape measure, and the Delaunay triangulation, which satisfies a max-min
angle criterion [Law77], is often used. A natural extension of the minimum interior angle
to three dimensions is the minimum solid angle 0,,;, of a tetrahedron. For finite ele-
ment meshes, the 3-D Delaunay triangulation may have poorly-shaped tetrahedra [CFF85,
Joe91a], and it does not in general satisfy any max-min solid angle criterion [Joe89]. There-
fore 6,,;y, is used in [Joe91a] to improve the quality of 3-D Delaunay triangulations by local

transformations.

The rad:us ratio p, which is the ratio of inradius to circumradius of a tetrahedron, scaled
by 3, is another shape measure used for tetrahedral meshes [CFF85, Fie86, Joe94]. The

radius ratio is also called the aspect ratio (e.g. in [Fie86]), but we use the former term, since

11



the latter is also used for other tetrahedron shape measures (e.g. in [BEG90]). We define a
novel shape measure, the mean ratio 7, based on a mapping from the regular tetrahedron,
and use it for analyzing the quality of meshes generated by a bisertion procedure in Chapter
3. Some variations of 1), such as 7%/ [Lo91b] and the analogue of 7 in 2-D [Lo91a, Ban90},

are used in mesh generation, but no theoretical basis is given in these latter references.

In addition to 6,,;,, p, and 7, other tetrahedron shape measures have been defined, e.g.
see [BEG90, RiL92]. We naturally hope that all of them are “equivalent” in that larger
values of the measure represent good quality tetrahedra (i.e. close to a regular tetrahedron)
and smaller values represent poor quality tetrahedra (i.e. close to a degenerate tetrahedron).
In [Joe94], experimental results show that local transformations based on the 8,,;, and p
measures produce similar triangulations. Let x and » denote two shape measures (with
values < 1) of a tetrahedron. From experiments, g and » do not seem to possess a linear
relationship, similar to that for different vector norms. We shall look for a relationship
between g and » of the form cou® < v < ¢u® where ¢g, ¢, €, and e; are positive
constants. This means that if one measure approaches zero, so does the other. If ¢g (1)
is the minimum (maximum) possible exponent, then we say that the lower (upper) hound

is optimal. If ¢y (c1) is the maximum (minimum) possible constant, then we say that the

lower (upper) bound is tight.

Throughout this chapter, we will use the following notation. Let T(tg,t;,t2,t3) stand
for a nondegenerate tetrahedron T with vertices tg, t;, tz, and t3; sometimes t; denotes
the column vector of the coordinates of the vertex. Let v denote the volume of T, sy =
area(Atit,tz), 81 = area(Atotats), s = area(Atotits), s3 = area(Atotity), and l;; =

[t; — ti], 0 < i < j <3, denote the edge lengths of T.

This chapter is organized.as follows. In Section 2.2, we derive a new formula for the
computation of the minimum solid angle 6,,,;,,. An expression for the radius ratio p is given
in Section 2.3. The novel measure, mean ratio 7, is introduced in Section 2.4. In Sections
2.5, 2.6 and 2.7, the relationships among the three shape measures are established (to avoid
the use of trigonometric functions, oy, = sin(8y,ir/2) is actually used instead of 6,,:,). In

Section 2.8, we provide a discussion of our results.
9



2.2 Minimum solid angle 0,,;,

The solid angle 6; at vertex t; of tetrahedron T(tq, t1, t2, t3) is defined to be the surface area
formed by projecting each point on the face not containing t; to the unit sphere centered
at t; (see Figure 2.1b). The minimum solid angle 6,,;, is defined to be the minimum of 4;,
i =0,1,2,3. It is shown in [Gad52] that 0 < 3% ,6; < 27. Therefore, a very large solid
angle (near 27) for T implies that T has some small solid angles. That is the reason we

only consider the minimum solid angle.

For tetrahedron T, let a1 = Ltytots, ay = Ltytots, az = Lttote, 7 = (a1 + a2 + a3)/2,
61, 82, and 83 be the dihedral angles at edges tot;, tots, and tots, respectively, and t; , t.'z, and
t_f, be the points on the half-lines i;o_t;, to_t;, and i;_oT,,-; such that ltot'll = ]tot.'z| = |tot;'3| =1
(see Figure 2.1a). A formula for 6p is Oy = 61 + 62 + &3 — m [Bey81, p. 146]. This formula
involves the computation of three dihedral angles, which requires arccosines. It is also not
easy to use this formula to analyze the relationship beween different shape measures. After
the following lemma, a simpler formula for the computation of a solid angle is given in

Theorem 2.1, and an upper bound for 8,,;, is given in Theorem 2.2.

Lemma 2.1 The volume v' of tetrahedron T'(to,t;,t;,t;) is

v’ = y/sin(7) sin(r — a;) sin(r — ay) sin(r — @3)/3. ) (2.2.1)

Proof. It is well known that

v = \/1 — cos2(a) - cos?(ay) — cos?(as) + 2 cos(ay) cos(az) cos(as)/6,
e.g. see [Erj90]. Equations (16) and (17) in [ToLA49, p. 28] state that
n? = sin(7) sin(t — a1) sin(T — a2 sin(r — a3),
4n% = 1 - cos?(ay) — cos®(az) — cos(az) + 2 cos(aq) cos(az) cos(az),

where n is called the norm of the sides of a spherical triangle. Combining the above three

equations yields (2.2.1). O

Theorem 2.1 For any tetrahedron T,
12v

\/ﬁ15i<553(10i +loj + bij)(loi + loj — li7)

where v is the volume of T and the l;; are the edge lengths of T.

sin(fo/2) = (2.2.2)

13
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Figure 2.1: (a) Tetra.hedron'totltzt,-;; |t0t',| = |tot.'2| = |tot;,| = 1. (b) Solid angle 8, at tq
is area of spherical triangle t;t,ts.

Proof. From Cagnoli’s theorem [ToL49, p. 99], we have

Vsin(7) sin(7 — a;) sin(7T — w2) sin(7 — a3)

2 cos( ey /2) cos(az/2) cos(az/2) (2.2.3)

sin(6o/2) =

Let v’ be the volume of tetrahedron T'(to, t1, ty, t3). Combining (2.2.3) and (2.2.1) yields

3v'

2 cos(a;/2) cos(ay/2) cos(a3/2) (2.2.4)

sin(fo/2) =

Let h and A’ be the distances from t3 and t; to the plane containing face tot, t,, respectively.

Then from similar triangles, h/h’ = [tots|/|tots] = los. Also,
area(Atot1tg)/area(Atot;t;) = l()]lo-z.

Therefore,
v h x area(Atgtqts)
— = = v = loilo2los. 2.2.5
v h' x area(Atot,t,) 01702703 (2:25)

Since cos(a;) = (&, + I35 — 143)/(2lo2lo3), it follows that

cos(a1/2) = \ﬁ+ cos(a1))/2 = % (fox + lo3 + 13331(:22 tlos - 123).

Similar formulae can be derived for cos(a;/2) and cos(az/2). Substituting these formulae

into (2.2.4), and using (2.2.5) yields (2.2.2). O

Theorem 2.2 Let Q be the solid angle of the regular tetrahedron. For any tetrahedron T,
Opmin < 2 = 3arccos(1/3) -, (2.2.6)

where the equality holds iff the tetrahedron is regular.

14



Proof. Referring to Figure 2.1, a;, a2, and aj are the arclengths of the three sides of the
spherical triangle t)tyt; on the unit sphere centered at to. By equation (11) in [ToL49, p.
28],

sin(6,/2) = \/Si“("' — ay)sin(r - aa).

sin(ay) sin(as)
Note that 0 < (7 + 6p)/6 < 7/2. When a; = a; = a3, using the above equation, 0 <
sin((m + 60)/6) = sin((61 + 62 + 83)/6) = sin(d;/2) = sin(7/3)/ sin(27/3) = 1/(2 cos(7/3)).
From the well known fact that the area of any spherical triangle does not exceed the area
of the equilateral spherical triangle with the same perimeter, and since the area of the

spherical triangle t;t,t; is 6o, we have

. T+ 6o 1
< * .i .
sin 6 )< 2 cos(1/3)’ (22.7)

where equality holds iff a; = a; = a3. For 0 < 7 < 7/2, cos(t/3) > v/3/2 implies that

sin( T ;9°) < V3/3. (2.2.8)

By (2.2.7), the equality (2.2.8) holds iff &y = a; = a3z = 7/3. Since the sum of all face
angles is 47, there exists a vertex, say tg, at which the sum of face angles around it is at

most 7 (i.e. 7 < 7/2). Since 0 < 6; < 27 and Oy, < 65,7 =0,1,2,3,1t follows that

sin(THminy o (T 00 (2.2.9)
6 6
Combining (2.2.8) and (2.2.9) yields
Oin <6 <6 arcsin(\/§/3) — m = 3arccos(1/3) - =, (2.2.10)

where the last equality follows from elementary trigonometry.

If the tetrahedron is regular, all face angles are /3 and all solid angles are the same.
Thus (2.2.8), (2.2.10), and (2.2.6) hold with equality. On the other hand, suppose 8,,i, =
6arcsin(v/3/3) — 7. We need to prove that the tetrahedron is regular. Since there exists a
vertex at which the sum of its face angles is < =, using (2.2.9) and (2.2.8) with equality,
we obtain that all of the face angles at the vertex must be 7 /3. Therefore, there exists at
least one of the other three vertices at which the sum of its face angles is < 7. By a similar
argument, the value of its face angles can only be w/3. Continuing this argument shows

that the tetrahedron is regular. O



We have not seen the solid angle formula (2.2.2) in the literature. In [Eri90], a formula
is given in terms of tan(fo/2). That is,

’

6v
T+ucup+ucug+uy-uy’

tan(6o/2) = (2.2.11)

where u; = t;—tg, ¢ = 1,2,3. Formula (2.2.2) is as simple as (2.2.11), but has the advantage
that sin(6p/2) is bounded whereas tan(6/2) is unbounded. However, the formula (2.2.11)is
better if §o must be computed since sin(p/2) = sin(ir — p/2); the sign of the denominator

of (2.2.11) can be used to determine whether 6y is closer to 0 or 27.

Since the right hand side of (2.2.2) has no trigonometric functions, a better shape
measure for computation is ¢,,i, = min(ag, 01,02, 03) where a; = sin(8;/2). Suppose 8,,;,, =
0y <0y <6, <03 Since 0 < Z?=0 0; < 27, only 03 may be larger than 7, so a9 < 0y < a,.

Since 6; < 63 < 2w — 6, we have o, < a3. Hence
Tmin = Sin(gmin/:z) < Sin(Q/2) = \/6/9,

with equality holding only for the regular tetrahedron, where the last equality is obtained
using (2.2.3). To 4 decimal places, 0,5, = 0.5513 and oy, = 0.2722 for the regular

tetrahedron.

2.3 Radius ratio p

The radius ratio of a tetrahedron T is defined to be p = 37y, /7¢ire, Where 7j, and 744 are the
inradius and circumradius, respectively, of T (see Figures 2.2a and 2.2b for an illustration

in the 2-D case). The following theorem gives a formula for computing p.

Theorem 2.3 For any tetrahedron T,

B 216v?
Tl silatbro)aFrb—c)latc—0)b+c—a)

where v is the volume of T, the s; are the areas of the four faces of T, and a, b, ¢ arc the

p (2.3.1)

products of the lengths of opposite edges of T.

Proof. From [MPV89, pp. 463, 555]

3
Tin = 3’0/28,‘, (232)

=0
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(a) (b) (c)

Figure 2.2: Ilustration of incircle, circumcircle, and inscribed ellipse for triangles. (a)
Equilateral triangle with iy, = 7, 7cire = 27. (b) For a triangle, p = 275, /7cire. (c) Triangle
and inscribed ellipse are formed by applying affine transformation to equilateral triangle
and incircle of (a); 7 = 2v/A1A2/(M + A2) where Ay = o?/72, Ay = A2/r2.

Va+b+e)atb-cate-b(tec=a) (2.3.3)

Teire = 240
where the latter 3 factors in the numerator are all positive. Combining (2.3.2) and (2.3.3)

yields (2.3.1). O

It is known that p < 1 for any tetrahedron, and the equality holds iff the tetrahedron is
regular [MPVR9, p. 553].

2.4 Mean ratio 7

In this section, we introduce a novel shape measure 7, and derive a simple expression for its
computation. The basic idea is as follows. The regular tetrahedron, in which all edges have
the same length, is considered well-shaped. For any tetrahedron T, we compare the shape of
T with the regular tetrahedron via a transformation matrix from the regular tetrahedron to
T. More details about the application of 7 in local refinement algorithms will be addressed

in Chapters 3, 4, and 5.

Definition 2.1 For any (nondegenerate) tetrahedron T(tg,tq,1t2,t3), define the 3 by 3 non-
singular matriz T = [ty — to,ty — to,t3 — to]. Note that the matriz has the same name as
the tetrahedron but italic font is used instead of bold font, and T depends on the ordering
of vertices of T. For any two tetrahedra S(so,s1,s2,s3) and T(to,t1,t2,t3), define the 3 by
3 matrices M(S,T) = TS~! and A(S,T) = MT(S,T)M(S,T). Note that M and A also
depend on the ordering of teirahedron vertices, and M is the matriz involved in the affine
transformation from points of S to points of T such that t; = M(S,T)s; +b,0< ¢ <3,
where b = tg — M(S, T)so.
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Definition 2.2 Let T(to,t1,t2,t3) be any tetrahedron, and R(ry.r,ry,r3) be a regular

tetrahedron with the same volume as T. Define the tetrahedron shape measure 3(T) =
3V A A2A3/ (A1 + A2 + A3), where A1, Ay, and A3 are the eigenvalues of the matriz A(R,T).
Note that the 3 eigenvalues are positive since A is positive definite, and 0 < 3(T) < 1 with
NT)=1if A=Ay = A3,

Theorem 2.4 For any tetrahedron T(tg,ty,t,. .

-
pA
OS: -3

9(T) = 12(30)*/3/ 1% (2.4.1)

where v is the volume of T and the l;; are the lengths of the edges of T. Furthermore n(T)

is independent of the ordering of vertices of T, R and o, i« verter coordinates of R.

Proof. We first let R(rg,ry,r2,r3) be the regular tetrahedron with the same volume as
T(to,t1,t2,t3), whose vertex coordinates are ro = (—\/§a/2,0,0)7, r, = (0,—(1/2.0)7',
r; = (0,a/2,0)7, and ry = (—v/3a/6,0,v6a/3)T, where a = (6v/20)'/3 and v is the volume
of T. Let T = [t; — to,t2 — to,t3 — to] and R = [r; — ro,ry — ry, 5 ~ ry)]. Then

V3/2 V3/2 V3/3 V3 -1 —1/V6
R=a| -1/2 1/2 0 ,R“=% /v3 1 =1/V6 |- (2.4.2)
0 0 V6/3 0 0 3/V6

Let d;i; = (t; — ti)T(tj —t;),0< 1< j<3. Then

doy (dor + doz — d12)/2  (doy + dos — di3)/2
TTT = | (dot + doz — d12)/2 do; (doz + dos — dg3)/2 |- (24.3)
(do1 + do3 — di13)/2 (doz + do3 — d23)/2 do3

From (2.4.2), (2.4.3), and A(R,T) = MT(R,T)M(R,T) = (R™")TTTTR™', we obtain

. (2do1 + 2do2 — d12)/3  # #
AR,T) = p # dyz #
# # (3dos + 3dy3 + 3dy3 — doy — dop — dy2)/6

(2.4.4)
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where # denotes a value which is irrelevant. Then
M+ Az + Az = trace(A(R, T)) = (doy + doz + dos + diz + diz + da3)/(2a%).  (2.4.5)
Since R and T have the same volume, det(M(R,T)) = £1. So
A3 = det(A(R,T)) = 1. (2.4.6)

From (2.4.5), (2.4.6), and Definition 2.2,

_ 3Ydet(A(R,T)) _  12(3v)*/® o4
M) = el AR )~ Togicica T (241

where the [;; are the lengths of the edges of T.

Now we allow the vertices of T and R to be permuted and different vertex coordinates
for R. Let T, R, M(R,T), and A(R,’I‘) be the resulting matrices. Then T =TPL P,
and R = QRP;L,P,, where Q is an orthogonal matrix, the P; are permutation matrices,

and each L; is either the identity matrix I or

1 0 0
L= 0 1 0 ]
-1 -1 -1

because [t1 — t3,t; — t3,t0 — t3] = [t; — to,t2 — to,t3 — to]L = TL. Since L71= L,
AR, T)= (R"YTTTTR™ = QR P LY P, PT LT PTTTT P, L P, P] L,PTR'QT.

Let A(R,T) = QTA(R,T)Q. If P is a permutation matrix, then PTTTT P just applies a

symmetric permutation to the matrix of (2.4.3). Similarly,

di3 (dia +dyz — d12)/2 (dos + d1z — dor)/2
LTTTTL = | (dia+ das — d12)/2 dss (doa + das — do) /2
(do3+ diz — dn1)/2 (do3 + d23 — do2)/2 do3

Therefore A(R, T) has the same form as (2.4.4), with the d;; permuted, and (2.4.5), (2.4.6),
and (2.4.7) are unchanged if A is replaced with A. Finally, the eigenvalues ); of A(R, T) and
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AR,T) = QA(R,T)QT are identical, so n(T) = 12(3v)*/3/ 20<i<i<a lfJ is independent of

the ordering of vertices of T, R and of the vertex coordinates of R. O

Now we give a geometric explanation of 7)(T). Let O be the inscribed sphere in the
regular tetrahedron R and 7 be its radius. The affine transformation y = M(R,T)x + b,
which transforms the points of R into the points of T, transforms the sphere O into an

inscribed ellipsoid E in T. Let the equation of O be
(% + bo)T(x + bo) = r2.
Then the equation of F is
(¥ +b))T(M'(R, T)TM YR, T)(y + by) =+

Let a, 3,7 be the half-lengths of the three principal axes inside the ellipsoid, and Ay, Ay,
and A3 be the eigenvalues of MT(R, T)M(R,T). After a translation and a rotation, the

equation of the ellipsoid becomes

4,8,4_,
MM ’

where (21,22, 23) is any point on the ellipsoid. So a2 = Ar%, #2 = Ayr?, and 72 = Ayr?,

Since MA2)3 = 1, 2 = Ya?p3242. From Definition 2.2,

3\3//\]/\2/\3 _ 3\3/012/32’)’2

M+A+As a4 2497

So 7)(T) is the ratio of the geometric mean to the arithmetic mean of a?, 42, and ¥* (see

n(T) =

Figure 2.2c for an illustration in the 2-D case). In some sense we can say that 7('T) reflects

the shape of the inscribed ellipsoid E and hence the shape of T.

From Definition 2.2, Theorem 2.4, and the above explanation, it follows that 7(T) = |

iff T is a regular tetrahedron, and 7(T) approaches zero for poorly-shaped tetrahedra.

Since our research is focused on 3-D tetrahedral meshes, the definition of 7 is given in
3-D. In fact, we can define 7 for any n-dimensional simplex T. This is given in Appendix
A.

2.5 Relationship between p and 7

In the remainder of this chapter, we will use the fact that for any tetrahedron T, there is

a coordinate system such that the vertices of T have the coordinates shown in Figure 2.3.
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Sometimes, we will also assume that tot; has the maximum lergth among the edges. Note
that if » = lg; is the maximum length then 0 < s < r,0<t <0< 2z <, ~-r<y<r,

and 0 < z < r. Also we will frequently use the inequality:

n 11,— T2 n .
" Hz,' < Z—'—;—:——'— < fo/n, (2.5.1)
i=1 i=1

where z; > 0, ¢ = 1,...,n. The left inequality states that the arithmetic mean is not less
than the geometric mean [Kaz61, p. 20]. The right inequality can be obtained by expanding

n 2 B [ YR 2 2
(i zi)* and using 2z;z; < =i + ;.

t3($,y,2)
t2(3,ta0)

tO(Oa 07 0)

tl (7‘1 01 0)

Figure 2.3: A tetrahedron with » > 0,¢> 0,z > 0.

The following lemma is needed to establish the relationship between p and 7).

Lemma 2.2 For any tetrahedron T,

3
Zs; >3¥3 /v _max U, (2.5.2)
= 0<i<ji<3

where the lower bound is tight.

Proof. Without loss of generality, suppose the coordinate system is chosen so that T has
the coordinates shown in Figure 2.3 and r = maxXo<i<j<alij. Thenv = rtz/6. Using Heron’s

triangle area formula [Kaz61, p. 35],

so = /(t2)% 4 (rz — $2)% + (tz — sy + ry — r1)?/2, s3 = rt/2,

s = \/(t;:)'2 + (82)2 + (tz — sy)?/2, s; = r\/y? + 22/2.

From [Kaz6l, pp. 106, 27), \/z3 + v} + \/zE +92 > Vz1+z2)2+ (w1 +y2)% forz; >0
and y; > 0,i = 1,2, and |z, £ 23| + |z1] > |z2], so it follows that

2(so+ 1) 2> \/(rz —-s2)2 4+ (tz—sy+ry—rt)2 + \/(sz)2 + (tz — sy)?



> \(r2)2 + (Ite = sy +ry — vt + [tz — sy)? 2 \[(r2)? + 12y = 02 = r\J2 + (y - 02,
2050+ 51+ 82) 2 1"(\/22 +(y-1t)2+ \/z2 +y%) > r\/4z'2 +(y =t +1y])? > rvaz2 + 12,
3
223;/\/17—7' > (rt+ rVAz2 +12)/\/r2tz/6 = V6 (t + V42 + 12)/ iz,

=0
Since f(z) = (t + V2 + 42%)/\/tz achieves the minimum value of 3V2/V3 at z = Viat/2,
Y3 o si/Vor > V6 f(V3t/2)/2 = 33, which is (2.5.2).

We now prove that the lower bound is tight. Using the coordinate system of Fig-
ure 2.3, let s = r/2, t = V3r/2, z = r/2, y = V3r/6, and z = 1 (i.e. Attty
is an equilateral triangle and t3 is above the centroid of Atgtity). Then TP 8 =
V3rt/4 4+ 3r/T+12]12/2 and /o maxocici<s bi; = V3 r /T + r2/3/VIZif r is sufficiently

small. So Y248/ /v maXo<icj<s lij approaches 3¥/3 when r approaches zero, O

Theorem 2.5 For any tetrahedron T,
1 < p < (2/V6) 54, (2.5.3)
Furthermore, the lower bound is optimal and tight, and the upper bound is optimal.

Proof. We first prove the left inequality. From the well known fact that the area of any
triangle does not exceed the area of the equilateral triangle with the same perimeter, we

have
so < (V3/36)(liz + ha + lz3)?, (2.5.4)

where the right side is the area of an equilateral triangle with edge length ({1, 413+ l23)/3.
We can obtain similar inequalities for sy, s;, and s3, so

3
Yosi<(V3/36) Y (lij b+ i)t (2.5.5)

i=0 0<i<j<k<3

Let a = lpyl23, b = lp2lh3, and ¢ = lg3ly2. From the left inequality of (2.5.1),

V@+b+e)a+b—c)a+e—b)b+c—a)< (V3/9)(a+b+c)
= (V3/9)(lorles + lozhia + loshi2)? < (V3/36)( Y 1), (2.5.6)
0<i<j<3
where the last inequality is from (lo; — l23)% + (lo2 = 1i3)? + (loz — h12)? > 0. Combining
(2.3.1), (2.5.5), and (2.5.6), we have
216 - 36 - 1202
(Tocicicalh)? Cogicickgalii + lik G

p2



From (2.4.1), it follows that

LS 6 Yocici<a lf; .
1T Tocicickeallis + ik + Lik)?

Expanding the denominator of the above equation and using 2zy < z2 + y%, we have

p/1* > 1. For the regular tetrahedron, p = 5 = 1, so the lower bound is tight.

We now prove the right inequality in (2.5.3). Since p and 7 are invariant under uniform
scaling (i.e. when the scaling factors along the three axes are the same), without loss
of generality, assume the circumradius of T is 1. Then p = 9v/ Y35 by (2.3.2). So
combining (2.4.1) and (2.5.2), it follows that

plnPt = (34 VR ap A Y Y i < (VB/12)( Y l?,-)"/"/m.
0<i<j<3 i=0 0<i<i<3 stz
Since (Tocicjca lh)/ < V6 /maxogicicaliy and Togicicalfy < 16 from [MPV8Y, p.
558], it follows that
p/ntlt < (6¥412)( Y )P <2/ V6.
0<i<5<3

Finally we show that both bounds in (2.5.3) are optimal, i.e. if there exist constants
co, €1, €0, and €; such that cgp® < p and ¢ > p, then eg > 3 and e; < 3/4. Using the
coordinate system of Figure 2.3, let 7 = 1,5 = 1/2,t = v/3/2,2 = 1/2,and y = Vv3/6. If
z approaches 0, it is easily verified that p = O(2?) and 5 = O(2%/3) by using the formulae
(2.3.1) and (2.4.1). Therefore, it is impossible that con® < p for g < 3, when 2z approaches
zero. If z approaches oo, we obtain p = O(1/z) and 7 = O(1/2%/3). By a similar argument,

e; must be less than or equal to 3/4. O

2.6 Relationship between o,,;, and 7

Let
d2 = (lo1 + lo2 + li2)(lo1 + loz = 12)(lon + Loz + 113)(loa + Loz — l13)

* (loz + lo3 + 123)(loz + lo3 — l23), (2.6.1)
d? = (Ioy + loz + l12)(lor + h2 = lo2){lor + Loz + 113)(lor + l13 — lo3)
«(h2 4 lis + B3)(h2 + ha = bs). (2.6.2)

The following lemma is needed to establish the relationship between 0, = sin(fmin/2)

and 1.
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Lemma 2.3 Suppose lg; is the mazimum edge length and log > o, If lyz > lia,
075/2 o g
max(do, d1) > 2Lt Vo2 + loz — l2a. (2.6.3)

If lp3 < hia,
max(do, dq) > 12, vloalia- (2.6.1)

Proof. Since loy + loz + l12 > 2lp; and loy + log + L1z > 2lp1, from (2.6.1) and (2.6.2), we

have
dj > 418, (lor + loz = 112)(lor + los — liz)(loz + loa — Las)(doa + Lo + Las), (2.6.5)
d? > 413, (loy + li2 = lo2)(lo1 + ha = loa)(lrz + his = L)z + Dis + Laa). (2.6.6)
Case 1: loz > l13. By (2.6.5), we obtain
dg > 4id, - loy - o1 - (loz + los — Las) - (o2 + lo3) = 416 (Lo + los — L2a),

since loz 2 101/2 and 103 Z lo1 /2 ThUS, ll]&X(do,d]) 2 (lo 2 2181/2\/202 + 203 - 223, which is
(2.6.3).

Case 2: 103 < 11:3. From (265), (2.6.6), 102 + 103 + 123 Z 2102 Z l()l, and 112 + lm + 123 >
213 > lo1, it follows that

d3 > 43, (lo1 + lo3 — 3)(loz + loa — Las) = 4l los(loz + los = L2s), (2.6.7)
d3 > 4ld(lo1 + li2 — loa)(hi2 + iz = 123) 2 4lglha(liz + lis = Lay). (2.6.8)

If loz > 3lp1/4, then from (2.6.7),
max(dg, d%) _>_ dé Z 4131103(101/2 + 3[01 /4 —_ 123) 2 181103112,

which is equivalent to (2.6.4). Similarly, if l;; > 3lo1/4, max(d3,d?) > 1§,losli2 by using

(2.6.8). The final subcase is lg3 < 3lo1/4 and L2 < 3lpy/4. From [MPV89, p. 549,
Iz < 102113/101 + 103112/101. Thus, from (2.6.7),

d2 > 4ld los(loz + lo3 — lozlia/lor — losliz/lor) > 418,135(1 = Li2/loy) > 18,035,
Likewise, from (2.6.8), we have d? > I§,12,. Therefore,

max(dg, d}) > (df + d})/2 2 15,(1}, + 155)/2 2 lgyloshe. O
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Theorem 2.8 For any tetrahedron T,
7¥2/16 < Opin < VB 9%/, (2.6.9)
Furthcrmore, the lower bound is optimal and tight, and the upper bound is optimal.

Proof. We first prove the left inequality. Without loss of generality, assume @yin =

sin(6p/2). By (2.5.1), we have

I Goitloi+l) <L Y. (oi+loj+ 1:)/3) = [20lo1+loa+1a3)/3+ (li2+lia+123) /3],
0<1<j<3 0<i<j<3
(2.6.10)

IT Goitloj—ti) < S (loi +loj - 1:)/31 = [2(lo1 +loz +lo3) /3— (ha+l1a+123) /3],
0<i<j<3 0<i<ji<3
(2.6.11)

Combining (2.6.10) and (2.6.11) yields

I Uoi+ loj + i) (loi + loj = 1i5) < [4(lor + lo2 + lo3)? = (Ir2 + ha + 1a3)*°/3°
0<i<i<3

< 43l + log + lo3)®/3°. (2.6.12)

By (2.2.2) and (2.6.12), it follows that
Tiin Z (34/2)1)/([01 + 10'2 + 103)3- (2613)
From (2.4.1) and (2.6.13), we obtain

a'mm/"p/z 2 (3\/_/16)( Z 3/2/ 101 + IOZ + 103)
0<l<]<3

> (3v/3/16)(13, + 12, + 123)*/2/(lor + loz + lo3)® 2 1/16,
since /12, + 13, + 135 2 (lo1 + lo2 + lo3)/V/3 by (2.5.1).

We now prove the right inequality in (2.6.9). Without loss of generality, suppose T has
the coordinates shown in Figure 2.3, lo; is the maximum edge length, and lo; > lo, ie.
s > r/2. From the Cauchy-Schwartz inequality, V's? +t2\/z2 + y% + z% > sz — ty. When
loz 2 hs,

(VETFE +fa2+ g2 + 2 = (2/2+ /(s = a2 + (2= 9)? + 22)°
= 2Vs? 4 82\[22 4 y2 + 22 + 25z + 2y — 2°[4 - z\/(s ~z)2 4+ (t—y)?+ 22




> ‘Zs:z:+2.st:':—:52/4—::\/(3—:z:)2 +(t—y)?+ 22> 204252 -2%4—r2 > 222224 >0,

since s > r/2 and = > r/2. Thus

log +loz—lyz = Vs + 2 4 m‘2+y‘2+z"—\/(s—m)2+(t—y)""+:"2:/‘2,

and by (2.6.3),
r3/2 /722 > 9 /" 3/2 .
max(do, d;) > V2r¥/*V/r2z > 2\/305!}'?3?(531"1' Vv, (2.6.1.1)

since v = rtz/6. When lg3 < 13, by (2.6.4), since logliz = Va2 + y2 + 22\/[r - s)2 + 82 >
tz,

3/ 3/2 " g
max(dp,d;) > r2\/rtz = \/(_5051}%);3 l,-j/ V. (2.6.15)
From (2.2.2), it is obvious that a,,;, < 120/ max(do,d;). Therefore, from (2.4.1), (2.6.14)
and (2.6.15), it follows that

max l?-/ 2 < V8,
0<i<yj<3 Y

61711'11/7’3/4 hS (2\/‘2/123/4)( Z 1:2])3/4/

0<i<j<3
since YCocicjcs i < 6 maxogici<aly.

Finally we show that the lower bound in (2.6.9) is optimal and tight, and the upper
bound is optimal. Using the coordinate system of Figure 2.3, lct s = r/2, t = V3r/2, z =
/2,y = \/§r/6, and z = 1. Using (2.2.2) and (2.4.1), we have a,,j,, = 03 = \/f'fr""/(r'z/:i +
4)3/2 when r is sufficiently small, and 9%/2 = 18r%/(47% + 3)*/2. Whe~ r approaches 0,
Omin = O(r2), 1*/2 = O(r?), and Gyin/7*/? — 1/16. Therefore the con  nt 1/16 and the
power 3/2 in the left inequality of (2.6.9) cannot be improved. If r = 1,8 =1,t = 2,z = 0,
and y = 0, then when z approaches 0, oy, = O(z) and 7 = O(2*/3). Thus the upper

bound is optimal. O

2.7 Relationship between o,,;, and p

Theorem 2.7 For any tetrahedron T,

V3/24 p* < omin < (2/¥/3) pM2. (2.7.1)

Furthermore, the lower bound is optimal and tight, and the upper bound is optimal.
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Proof. Without loss of generality, suppose lg; is the maximum edge length, lo2 > l12, and
the circumradius of T is 1. We first prove the left inequality. From (2.3.2) and (2.5.2),
3
p = Brin/reire = 90/ 3 5 < 3/Y3 \/v/lor. ' (2.7.2)
=0
If @ynin = sin(fp/2) then (2.6.13) holds. If omin = sin(f/2),k > 0, then a similar inequality
holds. In all cases, @iy > (34/2)v/(3l01)%. By (2.7.2), we obtain

("min/p2 2 \/g/(elél)‘

By considering the triangle with vertices to, t;, and circumcenter of T, it follows that

lo1 £ 2reire = 2. So f"min/P?' 2 \/5/24-

We now prove the right inequality in (2.7.1). From [MPV89, p. 551],

3
D si<(V3/6) 3, U5<V3 max I (2.7.3)

i=0 0<i<;<3

Let a = lg1l23, b = lozly3, and ¢ = lozly2. Then combining (2.3.1) and (2.7.3) produces

VP2 6\/:2‘\‘/51)/[0<1£,1<a.1x,<3 li; \‘ﬂa +b+c)a+b-c)at+c—b)(b+c—a)l (2.7.4)

It is obvious that o < 12v/ max(d, d;), by (2.2.2), (2.6.1), and (2.6.2). Thus, from
(2.7.4),

Omin/ VP < (V2/V3) o2 . lgj\‘/(a +b+c)a+b—c)a+c—b)(b+ c— a)/ max(do,dr).
S (2.7.5)

Case 1: lgz > l13. We first prove that
b+c—a< (log+ loz = las)?. (2.7.6)
Since b+ ¢ — a = loph13 + loahiz — loalzs < lozlos + losloz — 135 = 2lozlos — 13,
(loz + los — 1a3)? = b= e+ a > (loz + log — las)® — 2lozlos + 135 = (loz — 23)® + {loa — 123)* 2 0.
Therefore, the inequality (2.7.6) holds. We also have
(a+b-c)atec-b)=a?—(b-c) <a® =115 <1, (2.7.7)

Since a + b+ ¢ = lolaz + loala + loshz < 313, combining (2.7.5), (2.7.6), (2.7.7) and (2.6.3)
yields

e s _ 3. (2.7.8)
201 Vo2 + o3 — I23

Gmin/ \/— <
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Case 2: 103 < 113. Since (a +c - b)(b +c- a) = lé.}llll - (10-2[13 - 10112:})2 < 1331"22 and

(@a+b+c)at+b-c)=(a+b)?-c?<(a+b)?= (lols+ loalia)? < 4iy,
(a+b+c)at+bdb—c)a+c—b)(b+c—a) < 4lg ik, (2.7.9)

By (2.7.5), (2.7.9) and (2.6.4), we have

212, /Toal:
a'min/\/_ S _u?—l S 2/\4/5 (2.7.10)

ey

Inequalities (2.7.8) and (2.7.10) establish the right inequality in (2.7.1). Finally we
show that the lower bound is optimal and tight, and the upper bound is optimal. Using the
coordinate system of Figure 2.3, let s = 7/2,t = V3r/2, 2 = /2, y = V37/6, and z = I.
Then o3 = V37%/(r?/3 4+ 4)%/2 and p = 3v3r/[(V3r/2 + 3T+ 72/12)(1 + r?/3)]. When
r approaches zero, Oyin = a3 = O(r?2), p? = O(r?), and Opin/p? — V3/24. Therefore the
lower bound is optimal and tight. If r = 1, s = 1/2, t = V3/2, 2 = 1/2, and y = V3/6,
then when z approaches zero, p'/? = 0(2) and @y, = O(z). Hence the upper bound is

optimal. O

2.8 Discussion of results

Each of the three measures o,,;,, p, and 7 is invariant under translation, rotation, reflection,
and uniform scaling of tetrahedra. Since each measure attains a maximum value only for
the regular tetrahedron, and the formulae (2.2.2), (2.3.1), and (2.4.1) can each be expressed
as continuous functions of the coordinates r, 3,1, z,y, z shown in Figure 2.3, it follows that a
larger measure value for a tetrahedron means that the tetrahedron is well-shaped, i.e. close
to the regular tetrahedron. At the other end, the inequalities (2.5.3), (2.6.9), and (2.7.1)
imply that if one of the shape measures approaches zero, which indicates a poorly-shaped
tetrahedron, then so do the others. If any shape mea,sﬁre is zero, then the tetrahedron is

degenerate, i.e. it has zero volume.

The relationship cou®® < v < ¢yu®! for different shape measures y and v means that the
bounds a < » < b transform into the bounds ¢’ < g < b, where a, b, d = (a/cl)‘/"", and
b" = (b/co)!/*0 are positive constants. However, the bounds ¢ < ¥(S)/v(T) < b, where ¥(S)
and »(T) are the measures of different tetrahedra S and T, do not transform into hoinds

a' < p(S)/u(T) < b when eg > €; (which is the case in (2.5.3), (2.6.9), and (2.7.1)). These
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properties mean that the three shape measures ayin, p, and 7 are “equivalent” in a weak
sense. This “equivalence” is not as strong as that in the equivalence of different vector
norms [Atk78, p. 414], where the exponents are 1 so that bounds of the latter form do

transform between different norms.

Other tetrahedron shape measures may be defined, such as in [BEG90, RiL92]. From
the above observations, we may define a valid shape measure as one which is invariant under
translation, rotation, reflection, and uniform scaling, attains a maximum value only for the
regular tetrahedron, and approaches zero if and only if @yin, p, or 77 approaches zero. An
example of an invalid shape measure is the ratio of minimum edge length to maximum
edge length, since it is possible for a poorly-shaped tetrahedron to have no short edges (see
Figure 2.12a below). We conjecture that if two valid shape measures p and v can each be
expressed algebraicly in terms of the volume, face areas, and edge lengths of a tetrahedron,

then they have a relationship of the form cou®™ < v < cypu®.

In (2.5.3), (2.6.9), and (2.7.1), different classes of poorly-shaped tetrahedra (see below)
were analyzed to guess at the exponents of the optimal bounds before obtaining the precise
proof. This technique may also be useful if similar relationships are sought for other pairs of
shape measures. Although we were able to obtain tight lower bounds in all three cases, we
were not able to obtain tight upper bounds. From looking at the regular tetrahedron and
different classes of poorly-shaped tetrahedra, we conjecture that the constants for a tight
upper bound in (2.5.3), (2.6.9), and (2.7.1) are 1, v/12/6, and v/6/9, respectively. These
tight upper bounds occur for the regular tetrahedron in the first and third cases, and for a

tetrahedron with opposite edges approaching zero length in the second case.

Let o = 3v6omin /2 be the scaled version of @iy so that o = 1 for the regular tetrahe-
dron. Using the conjectured constants for the tight upper bounds and expressing constants

to 4 decimal places, the relationships between o, p, and 7 are:

P<p<nlh, pP<n<p'l? (2.8.1)
0.2206 7°/% < 0 < 1.1398 34,  0.83990%/° < 5 < 2.6667 0*/3, (2.8.2)
02651 p2 <o < p'?,  6*<p<1.94200"7 (2.8.3)

Although @, p, and 7 are “equivalent” shape measures, they don’t approach 0 or 1

at the same rate for different tetrahedra. Figures 2.4 to 2.11 contain graphs illustrating

29



30
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0.1
0.0
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0.00.10.20.30.40.50.60.70.80.9 1.0 0.00.10.20.30.40.50.60.70.80.91.0
u u
Figure 2.4: No short edges when u — 0; Figure 2.5: No short edges when u — 0;
to = (0,0,0), t; = (1,0,0), * to = (0,0,0), t; = (1,0,0), t, = (1/2,3/2,0),
ty = (1/2,v3/2,0), t3 = (1/2,v/3/6,v6u/3).  t3 = (1/2,~v3/2 + 2V/3u/3, V6u/3).
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Figure 2.6: No short edges when u — 0; Figure 2.7: One short edge when u — 0;
to = (0’010)’ t = (11070)1 to = (0,0,0), t = (1,0,0), t; = (1/2, \/3/2’0)’
ty = (1/2,v31/2,0), ts = (1/2,v3/6,V6/3)u.

ts = (1/2,—v3/2 + 2v/3u/3,16u/3).
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U
Figure 2.8: One short edge when u — 0;
to = (0,0,0), t; = (1,0,0),
ty = (1/2,v3u/2,0),
ts = (1/2,v3u/6,v6u/3).
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Figure 2.10: Three short edges when u — 0;
ty = (0,0,0), t; = (»,0,0),
ty = (u/2,V3u/2,0), tz = (1/2,v3/6,16/3).
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Figure 2.9: Two short edges when u — 0;
to = (0,0,0), t; = (1,0,0),
ty = (1 — u/2,v/3u/2,0),
ts = (1/2,v3/6,v6/3)u.
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Figure 2.11: Three short edges when u — 0;
to = (0,0,0), t; = (»,0,0), t2 = (u/2,v3u/2,0)
ts = (1/2, —v3/2 + 2v/3u/3,/6u/3).



these different behaviors for 8 different families of tetrahedra parameterized by a variable
u, 0 < u £ 1, where u = 1 occurs for the regular tetrahedron and « — 0 for poorly-shaped
tetrahedra. The classification of poorly-shaped tetrahedra used in these figures is based on
the following. For a tetrahedron, we can always assume that the sum of squares of its edge
lengths is not small when compared with its volume raised to the power 2/3, since the ratio
of these two quantities is invariant under uniform scaling. So, from (2.4.1), we can classify
poorly-shaped tetrahedra (with shape measures approaching zero) according to the number
of “short” edges, namely, no short edges, one short edge, two opposite short edges, and
three short edges on the same face (see Figure 2.12). Note that these are the only classes

since two short edges from the same face implies the third edge of the face is also short.

(a) (0) (¢) (d)

Figure 2.12: Dlustration of 4 types of poor tetrahedra; (a) no short edges, and 4 vertices
are nearly coplanar, i.e. “sliver” tetrahedron; (b) 1 short edge; (c) 2 opposite short edges;
(d) 3 short edges on the same face.

The inequalities in (2.8.1), (2.8.2), and (2.8.3) demonstrate that any shape measure can
approach zero faster than the others for poorly-shaped tetrahedra. This is illustrated in
Figure 2.4 (p approaches zero faster than 7 and ), Figure 2.9 (7 approaches zero faster than
p and o), and Figure 2.10 (o approaches zero faster than 7 and p). Also, the inequalities
demonstrate that for a particular tetrahedron, the ranking of the three measures from
highest to lowest values may take on any of the 6 permutations. In the figures, 4 of the 6
permutations can be seen; the exceptions are the two with ¢ having the unique highest value.
For well-shaped tetrahedra, when the three measures are close to 1, the figures indicate a
7 > p > o ordering. This ordering is reflected in some sense by (2.8.1), (2.8.2), and (2.8.3)
as follows. If § > 0.9, then p > 0.729 and ¢ > 0.1960. If p > 0.9, then 5 > 0.8689 and
o > 0.2147. If o > 0.9, then 5 > 0.7298 and p > 0.81. Also, this > p > o ordering is

evident in the tetrahedral meshes generated by the method described in [Joe91a, Joe94].

Finally, we would like to mention that the results of this chapter have helped us in the

interpretation of results and statistics on the quality of tetrahedra using different shape
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measures, and they should also be helpful to others. For example, in the next chapter,
we obtain a positive lower bound for 7(S)/7(T) where S is any tetrahedron obtained by
applying a certain repeated hisection procedure to a tetrahedron T. The weak equivalence
between the shape measures means that this result is not directly extendable to o or p.
Also, in [Joe94], Joe describes an approach which uses local transformations to improve
the quality of tetrahedral meshes with respect to a tetrahedron shape measure; it is found
that similar triangulations are produced using o, p, and 7, due to their “equivalence”. The
1 > p > o ordering mentioned above means that p tends to distribute measure values more
uniformly in the middle of the interval [0, 1], so this might indicate a preference for reporting
statistical results using p. Anyways, one must be aware of the different distributions when

reporting and interpreting statistics using different shape measures.

3
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Chapter 3

On the Shape of Tetrahedra from

Bisection

In this chapter, we present a procedure for bisecting a tetrahedron successively into an
infinite sequence of tetrahedral meshes. We will mainly consider the shape of tetrahedra
from the bisection procedure, which will be used for local refinement in the next chapter,
and demonstrate how the novel shape measure 7 is used in analyzing the quality of meshes

generated.

3.1 Introduction

Let- T(to,t1,t2,t3) be a tetrahedron with vertices tg, t1, t2, t3. Using the midpoint t of
one of the edges, t1t; say, and the face totzt, T can be bisected inte two subtetrahedra
T}(to, t1,t,t3) and T}(to,t,t2,t3). Next, these two tetrahedra can be bisected, producing
four subtetrahedra. This process can be repeated iteratively to produce an infinite sequence

of tetrahedral meshes 7°, 71, 72,..., where 7™ contains 2" tetrahedra.

In the bisection method of [Kea78], which works for simplices of any dimension, the
longest edge is always chosen to be bisected. Let §(S) denote the diameter (length of
longest edge) of a simplex S. [Kea78] derives a bound on how fast the diameters of the
simplices in the sequence of meshes converge to zero. In the tetrahedron case, this bound
is 6(T?) < (vV3/2)"/316(T) where T? is a tetrahedron in 7". In the two-dimensional or
triangle case, [RoS75, Sty80, Adl83] discuss results on the hisection method in which the
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longest edge of each triangle is bisected. [Sty80] and [AdI83] give diameter bounds which

improve on the bound of [Kea78] (in the 2-D case).

In this chapter, we present a bisection procedure for tetrahedra which does not always
bisect the longest edge; instead a mapping to a canonical tetrahedron is used to choose the

bisected edge. We show that this procedure has the following properties:

(1) Each mesh 7™ is conforming, where a conforming mesh is one in which the intersection
of any two tetrahedra Ty, T3 of the mesh is either a common face of Ty and T}, or

a common edge, or a common vertex, or empty.
(2) There are a finite number of classes of similar tetrahedra in all the 7%, n > 0.

(3) 7(T*) > e1n(T) where 7 is the tetrahedron shape measure defined in Section 2.4, and

¢) is a positive constant independent of T.

(4) 6(T?) < €2(1/2)*/36(T) where ¢; is a positive constant independent of T.

Property (1) is not generally satisfied if the longest edge is always bisected and each
subtetrahedron is bisected to the same level. Property (2) generalizes a similar result for
the 2-D case, given in [Sty80] and [AdI83]. The diameter bound in property (4) is better
than that given in [Kea78)]. Property (3) is important for the local refinement of tetrahedral
finite element meshes in which it is desired that poorly-shaped tetrahedra be avoided (to get
better approximations and to avoid ill-conditioned matrices in the finite element method).
In two dimensions, it is shown in [RoS75] that 8 > «/2 where a is the minimum interior
angle in the original triangle and 6 is any interior angle in a refined triangle. So property
(3) extends this result to three dimensions (using a different shape measure and a smaller

constant). There has been no previous result on the shape of the refined tetrahedra.

These properties are useful in designing a local refinement algorithm for tetrahedral
meshes in the next chapter, which is a generalization of Rivara’s algorithms for triangular
meshes [Riv84, Riv87]. After describing our bisection procedure based on a canonical tetra-
hedron in Section 3.2, we establish the properties in Section 3.3. Estimates of the constants

¢1 and ¢, are provided in Section 3.4. Some further remarks are given in Section 3.5.
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3.2 Bisection procedure based on a canonical tetrahedron

When a tetrahedron is bisected, the two resulting subtetrahedra are geunerally not similar
to each other or the original tetrahedron. .So we try to design a bisection procedure that
creates a finite number of classes of similar tetrahedra. To this end, we need the canonical
tetrahedron P shown in Figure 3.2 below. Let |q;q;| denote the length of edge qiq;. The

following two lemmas, which are proved in [Sen81}, are needed for Theorem 3.1 below,

q3

q:

qo q

q1

Figure 3.1: Tetrahedron Q for Lemmas 3.1 and 3.2.

Lemma 3.1 Let Q(qo,9q1,92,93) be a tetrahedron with |apqy| = |qoq:| and |qiqs| =
|g2q3|, and let q be the midpoint of qqy (see Figure 3.1). Then Q1(qo,q1,4q, qz) is similar

to Q'Z(qo, q,q2, q3)‘

Lemma 3.2 Let Q(qo,4q1,92,93) be a tetrahedron with |qoq| = |q2q3] and |quqs| =
|a1q3|, and let q be the midpoint of q1qy (see Figure 3.1). Then Qi(qo,q1,4q,9q3) is similar

to Q2(q0, 4, 92, 93).

Theorem 3.1 In the first three levels of longest edge bisection applied to thc canonical
tetrahedron P, the subtetrahedra at the same level are similar to each other, and the suble-

trahedra at the third level are all similar to P (see Figure 3.2).

Proof. Let p;; = (pi + pj)/2, i < j. The longest edge of P(po, p1,P2,P3) is pi1p:
with |pip2] = 2a. First, P is bisected into two subtetrahedra P}(py,p1,P3,P12) and
P}(po, P2, P3, P12). Since [pop1| = [Popz| = v6a/2 and [p1ps| = |p2psl = v2a, these two

subtetrahedra are similar to each other by Lemma 3.1. Next, we only need to consider

36



p2(«,0,0)

pO(oaa/\/iyo) ~~~~~ '.
p12(0’07 0)

Po1

P1 (—aa 03 0)

Figure 3.2: Canonical tetrahedron P; other coordinates are pg1(—a/2,v2a/4,0),
P02(a/2-, \/‘2(1/4, O)’ pOS(Ov \/:2_(1/4, a’/2)’ p13(—a/2, 0, a/2)a P23(a/2, 0, (1/2)

the subtetrahedron P1(pg,p1,P3, P12), Whose longest edge is pips with |pips| = v2a.
It is bisected into two subtetrahedra P%(po, P1, P12, P13) and PZ(po, P3, P12, P13). Since
|pop1| = |pop3s| = V6a/2 and |pip12| = |Pap12] = @, these two subtetrahedra are sim-
ilar to each other by Lemma 3.1. Finally, we only need to consider the subtetrahedron
P2(po, P1, P12, P13), Whose longest edge is pop: with |pop1| = v/6a/2. It is bisected into
two subtetrahedra P3(po, P12, P13, Po1) and P3(p1, P12, P13, Po1). Since |[pop1z| = [pP1p13| =
a/v2 and |pop13| = |piP12] = @, these two subtetrahedra are similar to each other by

Lemma 3.2.

Since P3(p1, P12, P13, Po1) is similar to P, it follows that after three levels of bisections,
the 8 subtetrahedra P3, P3, P3(po, P12, P13, Po3), P3(P3, P12, P13, Po3), P3(Po, P12, P23, Po2),
P3(p2, P12, P23, Poz), P3(Po, P12, P23, Po3), P3(P3, P12, P23, Po3) are all similar to the origi-
nal tetrahedron P. O

It follows from Theorem 3.1 that if P is iteratively bisected by the longest edge to an
arbitrary number of levels, any subtetrahedron at level 3k, 3k + 1, or 3k + 2 is similar to
P(po, P1, P2, P3), P}(Po, P1,P3, P12), or P{(po, P1, P12, P13), Tespectively, for k = 0,1,....
Hence we define a subtetrahedron at level 3k, 3k + 1, or 3k + 2 to be a tetrahedron of type
PO, P!, or P2, respectively.
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We now present a bisection procedure for iteratively bisecting any tetrahedron T to n
levels. Let P be the canonical = .rahedron of Figure 3.2 such that T and P have the same

volume. By using the notation in Definition 2.1, the procedure is as follows.

(a) Transform T to P by the afline transformation y = M=1(P, T)x + by.
(b) Iteratively bisect P to n levels by always bisecting the longest edge.

(c) Transform all subtetrahedra P? of P back to subtetrahedra T? of T using the inverse

affine transformation y = M(P,T)x + b,.

Note that in the subtetrahedra of T, the longest edge may not be the one bisected,

3.3 Properties of bisection procedure

In this section, we prove the four properties of the bisection procedure stated in Section

3.1. Let 7" and P" be the meshes of 2" subtetrahedra of T and P produced by n levels of

bisection, respectively. Let R be the regular tetrahedron such that T, P, and R have the

same volume,
Theorem 3.2 The mesh T" is conforming.

Proof. Due to the affine transformation used in the bisection procedure, it suffices to prove
that the mesh P of subtetrahedra in P is conforming. By considering the first three levels
of bisection of P, it is easily seen that at any level, each subtetrahedron of P has only one
longest edge and all of the longest edges of the subtetrahedra have the same lengih (e.g.
after the first level, the two subtetrahedra have longest edges pyp3 and pap3, respectively,
and [p1p3| = |p2p3| = V2a, etc.). So the midpoint of any longest edge ¢ is also a bisecting

point of any other subtetrahedra incident on e. Hence P" is a conforming mesh. O

In the above proof, we have assumed that each subtetrahedron is bisected to the
same level. This is not necessary in order to get a conforming mesh. For example, af-
ter P is bisected, if only P}(po,phpg,p,g) is bisected at the first level, and the same for
P%(po, P1, P12, P13) at the second level, then the resulting mesh is still conforming. This

property can be used to smoothly extend local refinements to adjacent tetrahedra. For the

38



case when the bisection starts with more than one tetrahedron, it is not easy to guaran-
tee the conformity of the resulting mesh by using the above procedure alone. In the next
chapter, we will present a local refinement algorithm which uses this procedure plus some

pre-processing to ensure conformity.

Theorem 3.3 There are a finite number of classes of similar tetrahedra in all the T",

n2>0.

Proof. We define two tetrahedra to be in the same equivalence class if one can be trans-
formed into the other by translation and uniform scaling (i.e.. the scale factors for the three
coordinate axes are the same). So any two tetrahedra in the same equivalence class are
similar to each other after any affine transformation. In order to prove the theorem, it
suffices to prove that all subtetrahedra P}, n > 0, generated by the bisection procedure are
only in a finite number of equivalence classes. First we prove that the tetrahedra of type

P? are only in a finite number of equivalence classes.

After three levels of bisection, by Theorem 3.1, all 8 subtetrahedra P? are similar to P.

Let these tetrahedra be labeled P3(po1, p1, P12, P13), P3(Po2, P12, P2, P23), P3(Po1, Po, P13, P12),

P3(Pus, P13, Po, P12), P2(Po3, P3, P12, P13), P3(Poz2, Po, P23, P12), P3(Pos, P3, P12, P23), and
P3(po3, P23, Po, P12). Let M; = M(P,P3?), 1 < i < 8. From the coordinates of Figure 3.2,

we obtain My = M, = 1/2 1, where [ is the identity matrix, and

-1 =2 1 1 V2 1
1 1
M3 = Z "‘V/E 0 "'\/5 ’ M4 = Z \/i 0 —\/:-2- )

1 =2 -1 -1 V2 -1

0 -1 [ 1 V2 -1

M5=% 0 1 0 ,M6=;11' V2 0 2],
-10 0 | 1 V2 -1
0 0 1] [ -1 -2 -1
M7=% 0 10 ,M8=;i- V2 0 =2
-1 0 0| -1 V2 -1

Note that the vertices of the P} are ordered so that M; = 1/2Q; where Q; is an orthogonal

matrix.



Let
[a, 0 0 0 0 a
diag(ai,az,a3)={ 0 ay; 0 |, skew(aj,ez,az)=| 0 a; O
l 0 0 as iy 0 0

The following equations can be obtained by straightforward computation.

Mg = diag(--1,1,1)M3, Mg = diag(—1,1,1)M,,

M2 =1/41, M3My = 1/4 diag(~1,—-1,1), MyMs = 1/2 diag(~1, -1, 1) M.,
MsMs = 1/2 diag(1,~1,1)Ms, MsMs = 1/2 skew(=1, 1, ~1)Ms,

M3iMg = 1/2 skew(—1,-1,1)My, MgM3 = 1/4 diag(-1,1,1),

M3M: = 1/2diag(-1,1,-1)M4, M7 M3 = 1/2 skew(1,1,—1)Ma,

M3Msg = 1/2 skew(—1,-1,1)M3, MgM3 = 1/2 diag(1, -1, 1) My,

M2 = 1/2diag(=1,—1,1)M3, MyMs = 1/2 skew(1,1,1)My,

MsMy = 1/2 skew(-1,1,-1)My, MgMs = 1/4 skew(~-1,1, ~1),

MgMy = 1/4diag(1,-1,1), MyM7 = 1/2 skew(—1,—1,—1)Ms,

M:My = 1/2 skew(1,1,—1)My, MyMs = 1/4 skew(-1,-1,1),

MgMy = 1/2diag(l,—~1,1)M3, M2 = 1/4 1, MsMs = 1/2 skew(—1,1,1)M3,
MgMs = 1/2diag(-1,-1,1)M3, MsM7 = 1/4 diag(1,1,~1),

M:Ms = 1/4diag(—-1,-,1), MsMs = 1/2 skew(-1,1,1)Mjy,

MgMs = 1/2 skew(-1,1,1)M4, ME = 1/2 skew(l,-1,1)My,

MgM; = 1/2diag(1,1,~1)M4, M7 Mg = 1/2 skew(1,1,1)Ms,

MeMs = 1 /2 skew(l,—1,1)M3, MgMg = 1/4 skew(1,1,-1),

M2 = 1/4diag(—1,1,-1), M; Mg = 1/2 skew(1,1,1) My,

MgMy7 = 1/2 skew(l,~1,—-1)M3, M} = 1/4 skew(1,-1,1).

After 6 levels of bisection, M(P,P§) = M(P3, P¢)M(P,P?) where P{ is a subtetrahe-
dron of P3. With a suitable ordering of vertices of P, it follows that Pf = M; P} for some
l. So

M(P.PS) = PSP~ = M;PPP~1 = M;M,,
since P} = MP. By induction, after 3k levels of bisection, for each subtetrahedron P

with a suitable ordering of vertices p?jk, we have

P = MuMp---Myp; + b3, 0<5<3,
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where each M, | < m < k, is one of the M;, 1 < i < 8. Let S be the set of all diagonal
and skew diagonal matrices with elements 1 or —1. Obviously, & is closed under matrix
multiplication, and |S| = 23493 = 16. So, by the above equations, Mu My -« My = fDM,
where f is a scale factor, D is an element of S, and M is either I, M3, or M. Note that
D and —D can be considered to be the same matrix of § due to the factor f. Therefore
the number of different equivalence classes of tetrahedra of type PCin P, n > 0, is
< 3 x 8 = 24. Note that a type P! tetrahedron is generated by bisecting the longest edge
of a type P? tetrahedron. Since the longest edge of a tetrahedron is still the longest edge
under translation and uniform scaling, each one of the 24 possible equivalence classes of
tetrahedra of type PC creates two equivalence classes of tetrahedra of type Pl. So the
number of different equivalence classes of tetrahedra of type P is < 2 x 24 = 48. Using
a similar argument, the number of different equivalence classes of tetrahedra of type P?is
< 2 x 48 = 96. Hence the total number of classes of similar tetrahedra in all the 7", n > 0,

is finite and bounded above by 168. Q

Although there are a large number of subtetrahedra produced with the increase of the
levels of bisection, Theorem 3.3 implies that most subtetrahedra are geometrically similar
to each other. Also, from Theorem 3.3, it follows that 5(T%¥) > ¢;7)(T) for some constant

¢; that may depend on T. The following theorem establishes that ¢; is independent of T.
Theorem 3.4 For any tetrahedron T} in T,

n(T}) 2 e1n(T) (3.3.1)
where ¢y is a positive constant independent of T.

Proof. Let M(P,T) and M(R,P) be the two matrices involved in the affine transforma-

tions from P to T and R to P, respectively. Using the notation in Definition 2.1,
"= M(P,T)P=M(P,T)M(R,P)R.

From step (c) of the bisection procedure, the tetrahedron T? is transformed from P} using
M(P,T), so

T = M(P,T)F].
If P is a tetrahedron of type P?, then with a suitable ordering of vertices of P}, P! = aQP
where a is a positive constant and Q is an orthogonal matrix, since P? is similar to P. If

P! is a tetrahedron of type P!, then P = aQM(P,P})P where a is a positive constant, Q
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42
is an orthogonal matrix, and P}, is any of the two tetrahedra in P'. If P} is a tetrahedron

of type P2, then P! = aQM (P, P? t)P where a is a positive constant, () is an orthogonal

matrix, and P% is any of the four tetrahedra in P2,

Let R" be the regular tetrahedron having the same volume as T¥. Then
T!'=M(P,T)CM(R,P)R"

where (' is one of Q, V2 QM (P, P} x) or V4 QM(P,P? %) depending on the type of P¥,
Due to uniqueness, M(P,T)CM(R,P) = M(R",T*). Since R and R" have the same
volume as T and T%, respectively, det(A(R,T)) = 1, and det(A(R",T%)) = 1. So, from
the formula for the computation of 5 (Eqn. (2.4.7)), it follows that
3 3
M) = fracelA(R,T)) — irace((M(P,T)M (R, P))T M (P, T)M(R, P))’
3 _ 3
trace(A(R*,T?)) ~ trace((M(P,T)CM(R,P))"M(P,T)C' M(R,P))’
Let ||B||r denote the Frobenius norm of matrix B [GoV89], i.e. ||B||r = (trace(BT B))'/?

(3.3.2)

nWTH) = (3.3.3)

is the square root of the sum of squares of the clements of B. From (3.3.2) and (3.3.3),

W(T}) _ IM(P, T)M(R, P)[I%

7(T) ~ |[M(P,T)CM(R,P)|%’ (3.3.4)

Since (|Q)|% = 3 for 3 X 3 orthogonal matrix Q and ||AB|lr < ||A||r||Bl|F for any 3 x 3

matrices A and B,
|4 (P, T)CM(R,P)[l < || M(P, T)M(R,P)|} || M~ (R, P)CM(R, P)|i}

<3| MP, T)M(R,P)|%(IM (R, P)||% | M(R, P)||% max(1, 81, s2), (3.3.5)

where s; = 2%/ max;<k<2(| M(P,PLII%) and sy = 2Y/3 maxycr<a(||M(P, P2)|[%). From
(3.3.4) and (3.3.5), n(T*)/n(T) 2 ¢1 where

a=1/[3||MY(R,P)|%|IMR,P)||% max(1,s1,5,)].0
Theorem 3.5 For any tetrahedron T} in T",
8(T}) < ea(1/2)"78(T)

where ¢, is a positive constant independent of T.



Proof. By Theorem 2.4,

12(3v)*/3
(T) = ———E; v)ﬂ , (3.3.6)

1=1"%1,0
where v is the volume of T and the /; o are the lengths of the edges of T. At each level of

bisection, the volume of a subtetrahedron is decreased by a factor of 2, so after n levels of

hisection, / /
o 12(1/2)23(30)%/3
ey = LB (33.7)

i=1 *{,n

where the ;,, are the lengths of the edges of T?. Substituting (3.3.6) and (3.3.7) in (3.3.1)
yields

fil;-’,n < (1/01)(1/‘2)2"/3il?,o,

i=1 i=1

where ¢; is a positive constant independent of T. So

§(T¥)* < Es:l?,n < (1/01)(1/2)2”/3il?.o < (1/e1)(1/2)*/2 66(T)".

=1 i=1

That is, 6(T?) < ¢z(1/2)"/36(T) where ¢; = \/6/c;. O

3.4 Estimate of constants

In this section, we obtain an estimate of the constant ¢; in Theorem 3.4, which then provides
an estimate of the constant ¢y in Theorem 3.5. Our derivation of the estimate of ¢; starts
from (3.3.4) in the proof of Theorem 3.4, since (3.3.5) provides an estimate that is too

small. At the first two levels of bisection, we use the tetrahedra P](pi2,p1,P3,Po) and

P%(p12, Po, P1, P13)-

By the singular value decomposition [GoV89], M(P,T) = Q1diag(v21,vA2,vVA3)Q2
where Q;, Q3 are orthogonal matrices and A;, A2, A3 are the eigenvalues of A(P,T) VA1,
VA2, VA3 are the singular values of M(P,T)). Similarly,

M(R,P) = Qadiag(\/in1, V2, vi13) @45
V2 M(P,PYM(R,P) = Qsdiag(v/iz1, viz2> Viiz3)@s
VA M(P,PHM(R,P) = Qrdiag(\/liz1, 3z, /F33) Qs

where the Q; are orthogonal matrices and the p;; are eigenvalues. It follows that

IM(P, T)M(R, P)||% = |diag(v/X1, vz, v/33)QeQadiag (VT iz, VE)IE: (3.4.1)
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1M(P, TYCM(R, P} = ldiag(v/Arr Az, v/a)Qodiag(y/Brr v VIS, (34.2)

where Q9 is an orthogonal matrix and 7 is 1, 2, or 3. For any orthogonal matrix Q,

let S = diag(v/Ar, VA2, vA3)Qdiag(\/Iit, /12, \/i3). By carrying out the two matrix

multiplications, it is easy to see that

min(pin, izs i) (M + Az + A3) < ISIIF < max(uin, pizs pia)( M1+ Az + Az). (34.8)

From (3.4.1), (3.4.2), and (3.4.3), it follows that

|M(P, T)M(R,P)|IF 2 (M + A2 + A3) min, (i), (3.4.4)
|M(P, T)CM(R,P)|IF < (M + Az + Aa) ymax (pij). (3.4.5)

Substituting (3.4.4) and (3.4.5) into (3.3.4) yields

n(TY) o minigica(ms)
(T) = maxi<ij<a(fis)

(3.4.6)

We now compute the eigenvalues p;;. Suppose the vertex coordinates of the regular
tetrahedra R are ry = (—v/3¢'/2,0,0)7, r; = (0,-a'/2,0)7, r, = (0,a'/2,0)7, and ry =
(—\/§a'/6,0,\/6a'/3)T, where @' = ¥/2a since R and P have the same volume (see Figure

3.2). Using the coordinates of Figure 3.2 with r; being transformed to p;, we obtain

0 2 0
—V6/3 0 -3/6
0 0 +6/2

=

M(R,P)= PR™' = - >

So in decreasing order, p11 = 4/V/4, 2 = (9 + V17)/(8V4), and pz = (9 - V17)/(8V/4).

From

-v3/3 1 -V6/6
VZMP,PY)MR,P)=| o o0 V32 |,
V3/3 1 —V6/6

po1 = 2, poe = (74 V/17)/8, and a3 = (7 — v/17)/8 in decreasing order. From
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-Vv3/3 -1 —-V6/12
VAMP,PYM(R,P)=V2| VB/6 -v2/2 -3/6 |,
0 0 v6/4

pa = VA (2+ V2)/2, sz = V4/2, and pzz = V4 (2 — v/2)/2 in decreasing order.

From (3.4.6), n(T*)/9(T) 2 ¢1 = wa/pa1 = VA (9-V17)(2 - v2)/32 = 0.1417. Then
it follows from ¢; = /6/c; that c; = 6.5068. By using a different approach, it may be
possible to obtain better estimates of ¢; and ¢y, but we believe that our current estimates

can be improved by at most a small factor (unless a better P tetrahedron can be found).

3.5 Further remarks

It has been conjectured that the shape of any subtetrahedron T} produced by repeated
longest edge bisection of a tetrahedron T is bounded below by a function of the shape of T
[RiL92], and that the diameter bound on T? is §(T?) = O(2-"/3) [AdI83], where n is the
number of levels of bisection applied to T. As far as we know, these two problems are still
open. By formula (2.4.1) and an argument similar to the proof of Theorem 3.5, it follows
that

5(T) o _ TH .

n/3 a(T
6[(1/2) / 6('1"‘)]2 (T) >

6(T")]2

The above equation establishes the relationship between the two open problems mentioned

< 6[( 1/2)"/ :

above, That is, the 1/7/2 convergence rate of the diameter of refined subtetrahedra for
sufficiently large n (i.e. the diameter decreases by a factor of 2 in every three levels of
bisection) precisely reflects the degeneration on the shape of subtetrahedra produced by
repeated longest edge bisection (this is also true for any bisection procedure as long as each
bisection decreases the volume of subtetrahedra by a factor of 2). Due to the “equivalence”
among tetrahedron shape measures (see Chapter 2), we conclude that the two open problems

are equivalent.
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Chapter 4

Quality Local Refinement of Tetrahedral

Meshes Based on Bisection

In this chapter, we present a 3-D local refinement algorithm for tetrahedral meshes based
mainly on the bisection procedure described in the previous chapter. The quality of refined
meshes is discussed, and implementation details are provided. Experimental results from

the algorithm are given in Chapter 6.

4.1 Introduction

As mentioned in Chapter 1, mesh generation is a time-consuming step, and remeshing the
whole region is in general not recommended. A more efficient mesh refinement scheme,
local refinement, is a popular method in current finite element analysis. It is desirable that
the adaptive mesh refinement produce refined elements of good shape using a fast refining

process. These are the goals of our 3-D local refinement algorithm.

We consider a local refinement process that includes two major steps. First, a set §
of basic elements is chosen from an existing mesh 7 according to numerical results and
error estimates from previous computations. Next, each element in .S is refined, and then
a procedure is needed to keep the final mesh conforming. Recall that a conforming mesh is
one in which the intersection of any two tetrahedra Ty, T2 of the mesh is either a common

face of T; and T, or a common edge, or a common vertex, or empty.

One popular refinement technique uses bisection. Let T(tg,t1,t2,t3) be a tetrahedron
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with vertices tg, t1, tz, t3. One step of bisection of a tetrahedron T is as follows. Using
the midpoint t of one of the edges (called bisected edge), t1t2 say, and the face totst, T can
be bisected into two subtetrahedra T;(to,t1,t,t3) and Ty(to,t,t2,t3). Rivara and Levin
[RiL92] present a 3-I} local refinement algorithm based on longest edge bisection. Let .§
be a set of tetrahedra chosen from a conforming mesh 7. If tetrahedra in S are bisected
by longest edge bisection, some non-conforming edges may be produced, where a non-
conforming edge is one that is bisected due to the bisections of some tetrahedra incident on
this edge, but at least one tetrahedron incident on the edge is not bisected using this edge. It
is proved in [RiL92] that iteratively bisecting tetrahedra with a non-conforming edge by the
longest edge produces a conforming mesh in a finite number of steps. They also conjecture
that the shape of refined tetrahedra do not degenerate when the process based on longest
edge bisection proceeds indefinitely, but no theoretical basis is given. By experiments, we
found that their algorithm may bisect many tetrahedra with a non-conforming edge and
introduce a large number of vertices in order to obtain a conforming mesh. This increases

not only the time spent on refinement, but also the time in finite element analysis.

In this chapter, instead of longest edge bisection, we present a local refinement algorithm
based on the bisection procedure described in the previous chapter, which has the following

properties.

(1) For an initial mesh 7, there are only a finite number, which depends on the number

of tetrahedra in 7, of classes of similar tetrahedra in all refined tetrahedra.

(2) 9(T*) > ¢ n(T) where T? is any refined tetrahedron of T and c is a positive constant

independent of 7.

(3) For any interior face in a refined mesh, the absolute value of the difference of the

bisection levels of the two adjacent tetrahedra incident on the face is < 2.

(4) The expected time complexity of the algorithm is O(N) where N is the number of

refined tetrahedra in a refined mesh.

The superscript n of T} indicates that T? is created after n levels of bisection. Properties
(1) and (2) demonstrate that the shape of refined tetrahedra do not get substantially worse.
Property (3) indicates that local refinements on tetrahedra can be smoothly extended to

their neighbors.
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This chapter is organized as follows. In Section 4.2, we describe a procedure for the
bisection of a tetrahedron. The bisection of tetrahedra in a conforming mesh is given in
Section 4.3. In Section 4.4, the properties of our local refinement algorithm are established.
Data structure and algorithmic details are discussed in Section 4.5. Time complexity anal-

ysis is given in Section 4.6. In Section 4.7, we provide a brief summary.

4.2 Bisection of a tetrahedron

In the previous chapter, we presented a method for repeated bisection of a tetrahedron T.
The basic idea is that T is first mapped to the canonical tetrahedron P (see Figure 3.2)
with the same volume as T, and then the bisection is controlled by longest edge bisection
on P. We first recall the procedure for iterative bisection of T from the end of Section 3.2,
which is called TRANBIS.

Algorithm TRANBIS

(a) Transform T to P by the affine transformation y = M~1(P, T)x + bg.
(b) Iteratively bisect P to n levels by longest edge bisection.

(c) Transform all subtetrahedra P? of P back to subtetrahedra T? of T using the inverse

affine transformation y = M(P, T)x + b;.

The above procedure provides an intrinsic view of our bisection procedure, i.e., the uti-
lization of canonical tetrahedron P. However, the use of afline transformations costs extra
computation time. In fact, procedure TRANBIS can be viewed as bisecting T and its
subsequent subtetrahedra in a fixed order so that canonical tetrahedron P and the affine
transformation are not involved. So, the goal of this section is to design a scheme to carry
out the bisection on T and its subtetrahedra directly, and the same set of tetrahedra is

produced as in TRANBIS.

To decide the bisection order on T, we first study the bisection order on P. Instead of
using longest edge, which is not invariant under an affine transformation, we try to describe
step (b) in TRANBIS by another equivalent method such that it can be used on T directly.
The most important property of canonical ietrahedron P is stated in Theorem 3.1. That

is, in the first three levels of longest edge bisection applied to the canonical tetrahedron P,
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the subtetrahedra at the same level are similar to each other, and the subtetrahedra at the

third level are all similar to P.

Notice that P has three types of edges in terms of the lengths of edges (see Figure
3.2), the longest edge (p1pz), the second longest edges (p1ps and pzp3), and the shortest
edges (Pop1, PoP2, and pop3). We assign a type to each edge to indicate the three different
lengths. Namely, the longest edge p1p2 has type 1; the second longest edges p1ps and
p2p3 have type 2; the shortest edges pop1, Pop2, and pops have type 3. In the first level
of bisection on P, the edge p;p2 with type 1 is bisected. Next, the edges with type 2
are bisected at the second level of bisection. Finally, all edges with type 3 are bisected at
the third level of bisection. By Theorem 3.1, all eight subtetrahedra P3,1<i<8,are
geometrically similar to P. We assign a type to each edge of P? in the same way as to P
(i.e., assigning 1 to the longest edge, 2 to the second longest edges, 3 to the shortest edges).
Then the bisected edge in each P? is the one with type 1. If the levels of bisection are

continued, the types of bisected edges form a cycle like 1, 2, 3, 1, 2, 3, ...

The types of the edges formed at each level of bisection on P can be obtained as follows.
Let 7(e) stand for the type of edge €, eg for a bisected edge, and [a, b, 7(ep)] indicate a
configuration associated with a face where a,b, and 7(ep) are the types of the three edges
in the face. Let 7([a,b,7(ep)]) denote the type of the new edge added in the interior of a
face, and

F ={[2,2,1],[1,1,2],[3,3,2),[3,3,1},]1,2,3},[2,1,3],[2,2,3]}. (4.2.1)
The first 6 configurations of F occur in the first three levels of bisection on P, and (2, 2, 3]
is not used until the next section. In each bisection, the types of new edges are assigned as

follows.

Rule NEWTYPE (for the types of new edges in each bisection):

(a) The edge ep is divided into two new edges;
each of them is given the same type as eg.

(b) The types of the other two new edges added in the interior
of the two faces sharing ep are assigned by the following rule:
7([a,b,¢]) = ¢ if [a,b,¢] € F and [a,d,c]} # [3,3,d},d=1,2;
7([3,3,d])=3-d,d = 1,2.

Table 4.1 illustrates the lengths and types of new edges created in the first three levels of



Description Edge Length Type Level created Level bisected
Pi1P2 2a 1 0 1
Original edges PiP3 V32a 2 0 2
of P P2P3 \/'z(l 2 0 2
pop1  V6a/2 3 0 3
pop2  Vba/2 3 0 3
pops  V6a/2 3 0 3
New edges from Pi1P12 a 1 1 4
bisection of P2P12 a 1 1 4
P(po, P1, P2, P3) P3P12 a ([2,2,1)) =1 1 4
using eg = p1p2 pop12 V2a/2 7([3,3,1])=2 1 5
New edges from PiP1a V2a/2 2 P} 5
bisection of PaPiz  V2a/2 2 2 5
P!(po,p1,P12,P3) | PoP13 a 7([3,3,2]) =1 2 4
using eg = p1P3 Pi2P13 \/'2(1/2 r({1,1,2]) = 2 2 5
New edges from pPoPo:  V6a/4 ! 3 6
bisection of pipar Vba/4 3 3 6
P}(po,p1,P12,P13) | PizPar V6a/4  7([1,2,3))=3 3 6
using ep = poPi pispan V6a/d  r([1,2,3])=3 3 6

Table 4.1: Information associated with edges in bisection of P

bisection on P; only one subtetrahedron is shown bisected at the second and third levels,
since the others are similar by Theorem 3.1. It is easy to verify that the types of edges of
subtetrahedra at the third level derived by rule NEWTYPE are | for the longest edge, 2

for the second longest edges, and 3 for the shortest edges.

When repeated bisection is performed on P, the bisected edge eg of a subtet,ahedron
is determined as follows. In the ith level of bisection, where ¢ = 1 or 3 mod 3, cg is the
unique edge with type 1 or 3, respectively. For example, at the first level, cg = pip; is
the unique edge of P with type 1, and at the third level ¢g = pop; is the unique edge of
P2%(po, P1, P12, P13) With type 3. In the ith level of biection, where ¢ = 2 mod 3, g is the
older of the two edges with type 2. For example, at the second level, eg = p1p3 and pypi2

are the edges of P}(po, P1, P12, P3) With type 2, and p;p3 existed before popi3.

The above description of repeated bisection of P is equivalent to longest edge bisection
in step (b) of TRANBIS, and it can be easily generalized for bisection of any tetrahedron.
Let T(to, t1,t2,t3) be a tetrahedron with vertices to, t1, t2, t3, with labels chosen so that p;
is mapped to t;, 0 < ¢ < 3, by an affine transformation. Suppose the bisected edge ¢g of T
is t1t2. The initial set-up for the types of edges of T can be set as follows. Set 7(t;t;) = 1,
T(t1t3) = 2, T(t2t3) = 2, and the types of the three .- - - =dges to 3. The following
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procedure BISECT]1 describes one step of bisection on T or one of its refined subtetrahedra

S.

Procedure BISECT1(S)
if S is the original tetrahedron T then
Set initial types of edges and eg for T
Mark all edges to be old
endif
Bisect S using eg and set types of new edges by rule NEWTYPE
Mark new edges to be new
if no old edges in a subtetrahedron then
Mark all its edges to be old
endif
Set the bisected edge of each subtetrahedron to be the edge
whose type is 7(eg) mod 3 + 1 among the edges marked old

To ensure the validity of the above procedure, we need to prove that any configuration
of a face, which is created by performing BISECT1 to an individual tetrahedron repeatedly,
is in F, and there is a unique bisected edge when a subtetrahedron is bisected. To do this,
we need the lemma below. We say that two tetrahedra are type similar to each other if
there is a one to one mapping in which all corresponding edges have the same types, and

the bisected edges are mapped to each other.

Lemma 4.1 For any tetrahedron T(to, t1,ts,t3), set eg = tity, 7(t1t2) = 1, 7(t1t3) = 2,
T(tat3) = 2, and the types of the three remaining edges to 3. Then after three levels of
bisection by performing BISECT!1 to T and its subtetrahedra, all eight subtetrahedra of T

are type similar to T.

Proof. Note that T is type siniilar to P if t; is mapped to p;, 0 < 7 < 3. By the above

discussion on the bisection of P, the lemma is established. O

We can also verify that, in the first three levels of bisection, each subtetrahedron has a
unique bisected edge, and the configuration of any face is in 7. By Lemma 4.1 and Theorem

3.1, these are also true to any level of bisection.

We now give the relationship between procedure TRANBIS and the procedure in which
BISECT]1 is iteratively performed to T under the initial set-up given in Lemma 4.1.

Theorem 4.1 In procedure TRANBIS, let T be transformed to P such that t; is mapped
top;, 0<i<3. If T and P are bisected to the same level, then iterative bisection on T by



performing BISECT1 under the initial set-up given in Lemma {.1 produces the sume set of
tetrahedra as TRANBIS does.

Proof. Since under affine transformation the midpoint of a line segment is still the midpoint
of the corresponding line segment, this lemma can be verified in the first three levels of
bisection. By Lemma 4.1, after three levels of bisection, in terms of the types of edges
and the bisected edge, all eight subtetrahedra of T are type similar to T; and all eight
subtetrahedra of P are geometrically similar (and also type similar) to P by Theorem 3.1,

Thus the theorem is established by induction. O

Note that BISECT1 does not need to be applied to all subtetrahedra of a tetrahedron
as long as a conforming mesh can be guaranteed. We will use this freedom to design a local

refinement algorithin producing meshes with varying element sizes in the next section.

4.3 Local refinement of a conforming mesh

The basic idea of local refinement of a conforming mesh 7 is that, whenever a tetrahedron
needs to be refined, we want to use BISECT1 because the shape of refined tetrahedra
produced by repeatedly performing BISECT1 are bounded according to the discussion in
Chapter 3. Simply performing BISECT1 to tetrahedra in 7 may produce non-conforming
edges. Therefore, for each tetrahedron in 7, we set up initial types of edges and its bisected
edge such that a conforming mesh is ensured when BISECT1 is performed to each individual

tetrahedron. To this end, we first classify tetrahedra in 7.

Let V = {vy,vq,- -+, vn} be a set of vertices of tetrahedra in 7. We say the label of edge
v;vj is greater than the label of edge vvy if max(¢, j) > max(k,!) or max(i,j) = max(k,!)
and min(z, ) > min(k,!). For each face of 7, a marked point is defined to be the midpoint of
its longest edge. If the longest edge of a face is unique, then the marked noint associated with
the face is uniquely determined; otherwise, the marked point is chosen to be the midpoint
of the edge that has the largest label among the edges with maximum edge length. If two
faces of a tetrahedron share the same marked point, the marked point is called a doubly
marked point of the tetrahedron; otherwise, it is called a singly marked point. It is obhvious
that the midpoint of the longest edge (with largest label if there is a tie) of a tetrahedron
must be a doubly marked point. Therefore, according to the number of marked points and

their layouts, a tetrakedron T € T can be classified into four different classes as follows.
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Figure 1.1: Four types of tetrahedra according to the number of marked points; (a) two
doubly marked points on a pair of opposite cdges; (b) three marked points on the same face;
(¢) three marked points, two singly marked points on a pair of opposite edges; (d) three
marked points, one singly (to3) and one doubly marked point (t12) on a pair of opposite
edges.

e DD: Tetrahedron T has two doubly marked points on a pair of opposite edges, as

illustrated in Figure 4.1a.

e DSS1: Tetrahedron T has one doubly marked point and two singly marked points;

all marked points are on the same face, as illustrated in Figure 4.1b.

e DSS2: Tetrahedron T has one doubly marked point and two singly marked points;

two singly marked points are on a pair of opposite edges, as illustrated in ¥igure 4.1c.

e DSS3: Tetrahedron T has one doubly marked point and two singly marked points;
one singly marked point and the doubly marked point are on a pair of opposite edges,

as illustrated in Figure 4.1d.

Note that the tetrahedron T discussed in the last section is assumed to be a tetrahedron
of class DSS1. Since we want to extend BISEC'T1 to work for all classes of tetrahedra, we
need the initial set-up for a tetrahedron of class DD, DSS2, or DSS3. The motivation for
the initial set-up is as follows. We still use rule NEWTYPE for the types of new edges, and
hope that refined subtetrahedra of a tetrahedron of class DD, DSS2, or DSS3 can be type
similar to a tetrahedron of class DSS1 as soon as possible, since DSS1 is well studied. The
initial set-up, which is specially designed, for a tetrahedron of class DD, DSS1, DSS2, or

D83 is as follows.

e DD: Referring to Figure 4.1a, suppose t;t; is the longest edge. Set 7(t;t2) = 3,
T(tots) = 1, and the types of remaining edges to 2. Set the bisected edge g to tqt,.
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e DSS1: Referring to Figure 4.1b, set the type of the edge with doubly marke:l point
to 1 (7(t1t3) = 1), the types of two edges with singly marked point to 2 (7(t t3) = 2
and 7(t2t3) = 2), and the types of remaining edges to 3. Set the bisected edge g to
tits.

e DSS2: Referring to Figure 4.1c, set the type of the edge with doubly marked point
to 3 (T(t1t2) = 3), the types of two edges with singly marked point to 1 (7(tety) = |
and 7(tyt3) = 1), and the types of remaining edges to 2. Set the bisected edge ey to
tyty.

o DSS53: Referring to Figure 4.1d, set the type of the edge with doubly marked point
to 3 (r(t1t2) = 3), the types of two edges with singly marked point to 1 (7(tgts) =1
and 7(tat3) = 1), and the types of remaining edges to 2. Set the bisected edge ey to
tts.

Note that for a tetrahedron of class DSS3, after one step of bisection, there are two edges
(tots and tat3) whose types are 1 in subtetrahedron Ti(to, ty2, t2, t3). We change the type
of edge tot3 to 2 in this subtetrahedron. So the configurations of face totiats are [3,3,2] and
[3,3, 1] in subtetrahedra Ty(to, t12,t2,t:  nd Ty(to,tq,t12,t3), respectively. This does not
cause any conflict on face tot;st3 because the midpoint of tyts can be thought as the unique
marked point on face tot;2t3, and the marked point uniquely determines ths bisection on a
face. That is, the edge with marked point is bisected first; then other two edges are bisected
if necessary. The last configuration [2, 2, 3] in F (see (4.2.1)), e.g., face tot t, in Figure
4.1a, is the only one that is not in the collection of face configurations in the first three

levels of bisection on the canonical tetrahedron P.

In summary, for any tetrahedron T in the initial mesh 7, based on the above initial
set-up and the rule NEWTYPE for types of new edges, iterative bisection of T is uniquely
determined. The extension of BISECT1 for any tetrahedron of class DD, DSS1, NSS2, or
DSS3 is as follows.

Procedure BISECT2(S)
if S is a tetrahedron in the original mesh 7 then
Classify S as DD, DSS1, DSS2, or DSS3
Set initial types of edges and eg for S according to its class
Mark all edges to be old
endif

e
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Bisect S using cp and set types of new edges by rule NEWTYPE

Mark new edges to be new

if S is an original tetrahedron of class DSS3 in 7 then
Change the type of the edge opposite to the edge with doubly marked
point to be 2 in the subtetrahedron with two edges of type 1

endif
if no old edges in a subtetrahedron then
Mark all its edges to be old
endif
Set the bisected edge of each subtetrahedron to be the edge
whose type is 7{ :) mod 3+ 1 among the edges marked old

The validity of BISECT?2 is guaranteed by Iswypma .. | and the following lemma.

Lemma 4.2 IfT is a tetrahedron of class DD, DSS2, or DSS3, after one level of bisection
by performing BISECT2 to T, each subtetrahedron of T is type similar to a tetrahedron of
class DSS1,

Proof. We first suppose that T is a tetrahedron of class DD. Referring to Figure 4.1a, after
one level of hisection by procedure BISECT?2, according to rule NEWTYPE, T is bisected
into two subtetrahedra having the same configuration as a tetrahedron of class DSS1 in
terms of the types of edges and ue bisected edge, e.g., in subtetrahedron T(to, t1,t12,t3),
T(tots) = 1, T(toty) = 2, 7(t1t3) = 2, the types of remaining edges are 3, and the bisected
edge ep is tots. So T(to,t1,t12,t3) is type similar to a tetrahedron of class DSS1. Similarly,

the result can also be verified for a tetrahedron of class DSS2 or DSS3. O

By Lemmas 4.1 and 4.2, the configuration of any face created by applying BISECT? to
T and its subtetrahedra is in F, and bisected edges can be uniquely determined during the

bisection.

To explain BISECT2 further, suppose T is a tetrahedron of class DSS1 in the original
mesh. Looking at the first three levels of bisection by performing BISECT2 to T and its
subtetrahedra, we notice that the longest edge of T is bisected in the first bisection; in each
of the two subtetrahedra of T, the bisected edge is chosen to be the longest edge among
the edges of T'; in the third bisection, the three remaining edges of T are bisected. We do
not want «ny edge of 'L to be bisected more than ance in three levels of bisection, and at
the =am+ ety 1o bisect longer edges as soon as pnssible {at least in the first three levels

of bisect:n). An intuitive idea is that if the first ithre levels of bisection do not generite



very poorly-shaped tetrahedra, then we keep the same order of bisection (this is carried out
by “type similar”). Hopefully, there are no arbitrarily poor tetrahedra generated while the

bisection procedure goes on.

So far, we have described how to set up initial types of edges and the bisected edge,
and how to repeatedly bisect a tetrahedron of class DD, DSS1, DSS2, or DSS3. A local re-
finement algorithm, called QLRB (quality local refinement based on bisection), is presente:i
here. A more detailed pseudocode is provided after we discuss the data structure in a later

section.

Algorithm QLRB

(1) Set 7%:= T, m:=0.

(2) Select a set S,, of tetrahedra needed to be refined from 7™; perform procedure

BISECT? to each tetrahedron of S,,. The refined mesh is labeled 7™,

. Fm+l . . . . .
3) 7 is non-conforming, i.e., there exist non-conforming edges, then perform pro-
cedure BISECT?2 to any tetrahedron with non-conforming edges; repeat this process

until there is no non-conforming edge. The conforming refined mesh is labeled 7™+!,

(4) m:=m+ 1; go to (2) if necessary or terminate.

~ The superscript m of 7™ indicates that mesh 7™ is created after m levels of refinciment
on 7°. Note that in step (3), the order of processing non-conforming edges does not affect
the final conforming mesh because the order of repeated bisection of a tetrahedron in 79 is
uniquely determined by the class of the tetrahedron. That is, the bisection of a tetrahedron,
which may be incident on more than one non-conforming edge, is determined by its bisected
edge no matter which non-conforming edge is processed first. If a tetrahedron T has a non-
conforming edge e, it is not necessary that the bisected edge cp of T is e. T is bisected
according to ep rather than e. For instance, if T is the case in Figure 4.1b, current bisected
edge eg = tity, and e is toty, then e will be bisected after two levels of bisection on T.
So, in step (3), bisecting a tetrahedron with non-conforming edges way introduce more
non-conforming edges. In the initial mesh 7, each face has a nnique marked point. The
edge with marked point will be bisected first when the face is bisec. i, the other two edges
of the face will be bisected edges when the two subfaces are bisected. Thus the marked

.point associated with a face uniquely determines the bisected edges of the face and its

Ho



subsequent subfaces, and the interior of two distinct subfaces do not intersect. Therefore

edge conformity is sufficient to guarantee the conformity of the refined mesh.

Obviously, we need to prove that step (3) will terminate after a finite number of conform-
ing checks. To do this, we need Lemma 4.3 below. The bisection level of a subtetrahedron

of T is defined to be the number of times that BISECT2 is performed to T to obtain this

subtetrahedron.

So

So1

S

(0) (c)

Figure 4.2: Tetrahedra produced by 1 to 3 levels of bisection of a tetrahedron of class DD,
DSS2, or DSS3. (a) After 1 level. (b) After 2 levels. (c) After 3 levels; the tetrahedron is
type similar to a tetrahedron of class DS52.

Lemma 4.3 If every tetrahedron in T is bisected to level 3r,7 > 0, for some r, then the

refined mesh is conforming.

Proof. From Lemma 4.1, after three levels of bisection on a tetrahedron of class DSS1,
all its edges are bise :ted, and the subtetrahedra are type similar to a tetrahedron of class
DSS1. By a straightforward verification, after one level of bisection on a tetrahedron of
class DD, DSS2, or DSS3, the two subtetrahedra have the same configuration as in Figure
4.2a, where the numbers stand for types of edges, and a star superscript denotes an edge
marked new in BISECT2. One level of bisection on a tetrahedron with configuration shown
in Figure 4.2a produces two subtetrahedra with the same configuration as shown in Figure
4.2b. Likewise, the tetrahedron in Figure 4.2¢c, which is type similar to a tetrahkedron of
class DSS2, is obtained by one level of bisection on the tetrahedron shown in Figure 4.2b.
Therefore, after three levels of bisection on a tetrahedron of class DD, DSS2, or DSS3, all its
edges are bisected, and all subtetrahedra are type similar to a tetrahedron of class DSS2. It
is obvious that the mesh at level 3 is conforming since all original edges are bisected exactly

once and no new edges are bisected. By induction, the lemma is established. O



Theorem 4.2 Step (3) in QLRB will terminate in a finite number of conforming checks,
and the bisection level of any refined tetrahedron in mesh T™ is at most 3m, m > 0, where

m is the number of refinements on TO.

Proof. We prove the theorem by induction. The theorem is obvious for the basis step
m = 0. Suppose the theorem is true for m = k,k > 0, i.e., in T¥, the bisection level of
any refined tetrahedron is < 3k. After step (2) in QLRB, let 7 be the maximum number of
bisection levels in 7°1!. Then » < 3k + 1. Therefore, step (3) in QLRB will terminate in
the worst case that all tetrahedra in 7°7' are bisected to level 3(k + 1), since any edge of
a tetrahedron with hisection level 3(k + 1) can only be bisected as a bisected edge of some
tetrahedron with bisection level no less than 3(k + 1) by Lemma 4.3. By induction, the

theorem is established. O

In our experiments, instead of the worst case behavior, the conforming step in general

converges much faster.

4.4 Properties of meshes generated by QLRB

We establish some theoretical results on the quality of meshes produced by QLR in this

section.

Theorem 4.3 For any initial mesh T, there are only a finitc number, which depends on the
number of tetrahedra in T, of classes of similar tctrahedra in all refined tetrahedra generated

by QLRB.

Proof. By Lemma 4.2, it suffices to prove that each tetrahedron T of class DSSI produces
only a finite number of classes of similar tetrahedra. Note that in QLRB, repeated use
of BISECT2 to T is actually a modified version of TRANBIS (not all subtetrahedra are
bisected to the same level), since Theorem 4.1 demonstrates that any subtetrahedron pro-
duced by iteratively performing BISECT2 (BISECT2(S) is the same as BISECT1(S) when
S is a tetrahedron of class DSS1) to T must also be a subtetrahedron created by perform-
ing TRANBIS to T if T is transformed to P such that the edge with doubly marked point
in T corresponds to the longest edge of P and the edges with singly marked points in T
correspond to the second longest edges of P (see Figure 4.1b). Therefore, by Theorem 3.3
in Chapter 3, which states that there are a finite number of classes of similar tetrahedra in

all refined tetrahedra produced by TRANBIS, the theorem is established. O
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The above theorem implies that the shape of refined tetrahedra do not decrease arbitrar-
ily with the process of refinement. Theorem 4.4 below, which needs Lemma 4.4, provides a

more detailed analysis in terms of the tetrahedron shape measure 7). Recall the formula for

computing 7 (i.e. Eqn. (2.4.1)),

n(T)=12(30)*3/ D 1, (4.4.1)
0<i<;j<3

where v is the volume of T and the [;; are the lengths of the edges of T.

Lemma 4.4 If T is a tetrahedron of class DD, DSS2, or DSS3, and Ty, i = 1,2, are
subtetrahedra produced by performing BISECT2 to T, then

n(Ts) 2 6V2/11 9(T), i = 1,%; (44.2)
and the lower bound is tight.

Proof. Let T be a tetrahedron of class DD, DSS2, or DSS3 as shown in Figure 4.1a, 4.1c,
or 4.1d, respectively. Suppose t;t; is the bisected edge, which is the edge with maximum
length. Label the two subtetrahedra by Tj(te,t1,t12,t3) and T2(to, t12,t2,t3) after per-
forming BISECT2 to T, and let |t;t;| = l;, i < j. By simple algebraic manipulation,
[totaa|? = (203, + 202, — 13,)/4 and [tatyz|? = (235 + 2135 - 13,)/4, so |tot1a|® + [tatiz]® =
(13 + 13, + 135 + 13, - 13,)/2. By (4.4.1) and the fact that the volume of T, is a half of the
volume of T, we obtain
 Yocicics b
G+ 6ldy + 4lg + 208, + 205, - 1y

Since I3, < 2(I3, + I%;) and l32 is the maximum edge length, it follows that

(T1)/(T) = (4/V4) % &

6I2, + 612, + 4lgs + ALy + 2% — 13, <1035 + 13, + 12,)/3+ 513, + 615, <11 Y 13/3,
0<i<i<a

where the last inequality is due to 512, + 613, < 11(1%; + 12, + 133)/3. Thus 5(Tq)/9(T) >
6+/2/11. Similarly, we have 5(T3)/9(T) > 6/2/11.

The lower bound is tight for a tetrahedron of class DSS2. In Figure 4.1c, let |toty| =
|tot3| = ;tztgl nd 0, and ltOtll = |t|t2| = |t1t3|. Then ?{(T])/?}(T) g 6%/11. .|

Theorem 4.4 If T? is a refined tetrahedron of a tetrahedron T of class DD, DSS1, DSS2,
or DSS3, generated by QLRB, then

(T) 2 e n(T), (4.4.3)

where ¢ = 3(9 — V17T)(2 - V2)/88 =~ 0.0974.
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Proof. From Theorem 4.1 and the initial set-up for any tetrahedron T which is type
similar to a tetrahedron of class DSS1, iteratively performing BISECT2 to T and TRAN-

BIS to T produce the same set of subtetrahedra. Section 3.4 shows that for any refined
subtetrahedron ’i‘}' of T, produced by TRANBIS,

n(T¥) 2 VA9 - VIT)(2 - V2)/32 y(T). (4.4.4)

If T is a tetrahedron of class DSS1, then (4.4.4) holds with T = T and T} = T%. Suppose
T is a tetrahedron of class DD, DSS2, or DSS3, and T, is any subtetrahedron produced by
performing BISECT?2 to T. Then from inequality (4.4.2), it follows that.

7(Ty) > 6V/2/115(T). (4.4.5)

By Lemma 4.2, T is type similar to a tetrahedron of class DSS1. Hence, combining (4.4.4),
with T = Ty and T? = T?, and (4.4.5) yields
n(T?) > V49 - VIT)(2 - v2)/329(T1) > 3(9 — VIT)(2 — V2)/88 5(T).  (4.4.6)

Combining (4.4.4), with T = T and T? = T?, and (4.4.6), the theorem is established, O

For any interior face F, let 6(F) denote the absolute value of the diflference of the

bisection levels of the two adjacent tetrahedra incident on F.

t4

Figure 4.3: Iustration for the proof of Theorem 4.5; t;; = (t; + t;)/2, i < j; t =
(tor + t1)/2.

Theorem 4.5 For any interior face F in T™, m > 0, generated by QLRB, §(F) < 2, and
the upper bound is tight.

Proof. Note that any face of a tetrahedron will be bisected after two levels of bisection on

this tetrahedron (this observation will be used below). Suppose F is an interior face in a



conforming mesh 7™, m > 0. Let T} and T3 be two adjacent tetrahedra sharing face F'

with hisection levels p and ¢, p > ¢ > 0, respectively. We shall prove by contradiction that
6(F)=p-q<2.

Suppose there exists an interior face F' such that 6(F) = r = p— g > 3. We have the

following three cases.

Case 1: p = g+ r = 3k for some integer k > 1. Suppose r > 3 levels of bisection are
performed on T3, which has bisection level ¢ = 3k — r. Then F is bisected as a face of T}.
But F is a face of T} with bisection level p = 3k. So, F is not a conforming face at level
3k (all other tetrahedra not sharing F' can be further bisected to level 3k or have bisections

“undone” to level 3k without changing the non-conformity of F'), a contradiction of Lemma

4.3.

Case 2: p= g+ = 3k+1 for some integer k¥ > 1. Let TP~ be the direct parent of T}.
Then F is either a face or part of a face of TP~! with bisection level p — 1 = 3k. Suppose
r—1 > 2 levels of bisection are performed on T3, which has bisection level ¢ = 3k — (r—1).

Then F is bisected as a face of T3. Again, this is a contradiction of Lemma 4.3.

Case 3: p = g+ 7 = 3k + 2 for some integer k > 1. Let TP*! be a subtetrahedron
obtained by one level of bisection on T} such that either F or a direct subface of F' is a
face of TP+!. Then TP*! has bisection level p + 1 = 3(k + 1). Suppose r + 1 > 4 levels of
bisection are performed on T}, which has bisection level ¢ = 3(k+ 1) — (7 + 1). Then F'is
bisected more than once as a face of T3. So, either F or a subface of F is not conforming

at level 3(k + 1), a contradiction of Lemma 4.3.

Now we prove that the upper beund is tight. Suppose two tetrahedra TY(to, t1,t2,t3)
and T(tl,tz,t3,t4) share a common face t1t,t3 shown in Figure 4.3, and both are tetra-
hedra of class DSS1. In T(to;tl,t-z,tg), suppose eg = tot1, T(toty) = 1, T(tots) = 2,
7(t1t3) = 2, and the types of remaining edges are 3. In T(t*l,t'z,t3,t4), suppose €g = t1t3,
T(tits) = 1, 7(t1t2) = 2, 7(tat3) = 2, and the types of remaining edges are 3. Tetra-
hedron T:(t,tq,t12,t13) is produced by bisections of T(to,t1,t2,t3), T1(to1,t1,t2,ta),
T%(tor, t1,t2, t13), and T3(to1,t1,t12,13), respectively. Tetrahedron T3(t1,t12,t13,t4) is
produced by bisections of 'i‘(tl, <2, t3,t4) and ’i‘} (t1,t2, t13,t4), respectively. Therefore, for
face F = ttyoty3, 6(F)=4-2=2. 0
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It is worth mentioning that Theorem 4.5 may not hold for longest edge bisection. In

our experiments, only a few faces generated by QLRB achieve the upper bound of 2.

Using a similar technique and the fact that any edge of a tetrahedron will be bisected
after 4 levels of bisection on this tetrahedron, we can prove the following theorem, where
6(¢) denotes the absolute value of the difference of the maximum aund minimum bisection

levels of all tetrahedra incident on edge e.

Theorem 4.6 For any edge € in 7™, m > 0, generated by QLRB, é(e) < 4, and the upper
bound is tight.

4.5 Data structure and algorithmic details

Generally, refined tetrahedra are only a small part of an existing mesh. An ideal local
refinement algorithm should have a time complexity that is linearly related to the number
of refined tetrahedra in a refined mesh. To reach this goal, the implementation of step (3)
in QLRB is essential. We detail data structures, algorithm, and implementation in this

section.

Let 7°, T, ..., T* be a sequence of conforming tetrahedral meshes produced by QLRB,
where 70 is an initial mesh, and 7% is produced by refining a set of tetrahedra S, in Ti-t

1 < i< k. We first describe some data structures for QLRB.

The vertex coordinates are stored in an array V(' where Vi), VCli}y, and VC[i].2
are the coordinates of the ith vertex. An array TM is used to store a tetrahedral mesh,
where TM([i] records information about the ith tetrahedron. The fields of T M([i] are
v1, V2, U3, V4, 11, t2, t3, 1, bi, flag, where 0 < v; < v; < v3 < vy are the four vertex indices
of the ¢th tetrahedron; tl,tg,tg; t4 are the indices of the four adjacent tetrahedra in TM if
the mesh is conforming (some #; may be zero for boundary faces); bi is zero if the tetrahe-
dron is not bisected, otherwise it is an index of another array BI (bisection information)
which contains all necessary information for the bisection of this tetrahedron; and flag is a
boolean variable, which is initialized to false, for temporary use. If the ith tetrahedron is
bisected, the fields of BI[T M[i).bi] are €ty, ety, et3, eta, €ls, €tg, €5, nref, p, t1, L2, t3, L4, Where
etq, €la, €t3, €ty ets, €lg are the types of the six edges of the tetrahedron; e, points to the

bisected edge; nref is an integer indicating the refinement step in which the ith tetrahe-
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dron is refined; p stores the index of the parent tetrahedron of the ith tetrahedron. Since
a non-conforming mesh may be temporarily produced, whenever TM[i].tx,1 < k < 4, is
negative, it indicates that the corresponding face of the ith tetrahedron has two neighbor
tetrahedra (our algorithin below produces at most two neighbors for each face of a tetra-
hedron); one has index —T M([i].t, and the other BI[TM[é].bi].t;. A new tetrahedron or
vertex is added at the end of TM or VC. Two integer arrays XTM and XV (' are used
to store the first indices of new tetrahedra and vertices created during the stage of refine-
ment to get mesh 7°. That is, original or new tetrahedra are stored in TM from index
XTM|[i]to XTM[i + 1] — 1; original or new vertices are stored in VC' from index X V('[d]
to XVC[i+1]-1. TM,VC, BI, XTM, and XV are the hasic data structures for re-
finement/derefinement algorithms, where derefinement is an inverse process of refinement.
Our data structure keeps all necessary information for derefinement, which will be briefly

discussed in Chapter 7.

To implement the refinement algorithm, we need some temporary data structures. New
vertices will be added at the midpoints of all hisected edges at each step of refinement,
and may be used by several tetrahedra. We use a hash table EHT to store all bisected
edges. Suppose a new vertex v,,, the midpoint of v, and v, where a and b are the vertex
indices in VC, is added. Then v, is stored in VC, and at the same time a, b, m are stored
in EHT with direct chaining, where EHT[i] is the head pointer of the linked list of edges
with hashing function value i. A satisfactory hashing function is A(a,b) = (an + b) mod M
(a < b) where the hash table size, M, is a prime number. and n is the number of vertices in
the last conforming mesh. The linked lists are organized in an increasing order according

to tuples (a,b).

Two temporary stacks S. and S; are used to store non-conforming edges and bisected
tetrahedra, respectively. Whenever a tetrahedron is bisected, one non-conforming edge ep
is produced. Therefore all tetrahedra incident on eg have to be bisected. Since the bisected
edges of these tetrahedra may not be eg, more non-conforming edges may be introduced. S,
is used to store these non-conforming edges (each non-conforming edge € in S, is associated
with a tetrahedron incident on €). A duplicate element is avoided by checking if the element
is in EHT. Stack S, is used to store tetrahedra to be bisected in this step of refinement. A
duplicate element is avoided by checking field flag of TM[i]. If flag is false, which means

that the tetrahedron is not in S, then the tetrahedron is added to S;, and flag is set irue.



To set fields #y,1;,13,24 of TM[i) or BI[T M[i].bi] after the bisection of tetrahedra in
S., we use a temporary hash table FHT with direct chaining to store the faces of the new
tetrahedra produced, where FHT{i] is the head pointer of a linked list of faces with hashing
function value ¢. The neighbor information is set up by scanning the faces of new tetrahedra.
Let vyvpv. be a face, @ < b < ¢, where a, b, c are the indices of v,, v, and v.. A satisfactory
hashing function is hy(a,b,¢) = (an? + bn + c) mod M,, where My is a prime number, and
n is the number of vertices in the last conforming mesh. We say the label of face v,v,v,,
a < b < ¢, is greater than the label of face vyv.vy, d< e < f,ife > f,ore= f,b> e, o0
c= f,b=e,a > d. The fields of an element of the linked list are a, b, ¢, t, flink, where a, b, ¢
are three vertex indices of a face; t is an index of a tetrahedron sharing the face; flink is
used to link to the next element. The linked lists are organized in an increasing order in

terms of the labels of faces.

With the above data structures, we implement steps (2) and (3) o QLRB by a more
sophisticated means. Instead of bisecting T whenever we find that T has a non-conforming
edge, we first determine the possible configuration of T resulting from step (3), and then
perform actual bisection to T or its subtetrahedra. The following procedure PREBISECT
is used to determine the configurations of tetrahedra bisected. We use negative values in
the fields ety, ety, et3, €ty, ets, etg of BI[T M[3].bi] of the ith tetraliedron to indicate that the

corresponding edges need bisection.

Procedure PREBISECT(con form, L, S;)
#Input: Boolean variable conform indicating whether PREISECT is
# performed on a conforming or non-conforming mesh (see proceduze
# REFINE below); Iist L of records (e, T),
# where ¢ is an edge of T and needs to be bisected
#Output: stack S; of tetrahedra to be bisected
Set stacks Se, S¢ to be empty
for each record (e, T) of L do
if con form then
if e is not in EHT then
Insert e into EHT and push (e, T) onto S,
endif
else
Push (e, T) onto S,
endif
i:=index of T in TM
if not TM[i].flag then
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Push T onto S and set TM[i].flag to true
endif
endfor
while S, is not empty do
Pop (e, T) from the top of S,
for each tetrahedron T incident on e do
i:= index of T in TM
if not TM([i).flag then
Push T onto S; and set TM([i].flag to true
Set the bisection information of T in a BI record if TM{i].bi =0
endif
Negate the type of ¢ in its BI[T M{:].bi] field
if e is not the bisected edge of T then
for any edge €, which has positive type in corresponding BI[T M [7].bi]
and needs to be bisected before e is bisected, do
if ¢; is not in EHT then
Insert €; into EHT and push (e;, T) onto S,
endif
endfor
endif
endfor
endwhile

Note that procedure PREBISECT only negates some fields of o BI record to indicate
that the corresponding edges need to be bisected. It is worth mentioning that bisecting
each tetrahedron in S, until all its edges with negative values in Bl are bisected does not
necessarily produce a conforming mesh. That is because some new edges, produced during
the bisection of a tetrahedron, have to be bisected in order to bisect some original edges of
the tetrahedron. For instance, suppose T, shown in Figure 4.4a, is a tetrahedron, obtained
by bisection of a tetrahedron of class DSS1, in a conforming mesh before a refinement
step, where the numbers stand for types of edges, and a star superscript denotes an edge
marked new in BISECT2. The bisected edge of T is t;t3. If tot;2 needs to be bisected for
conformity (e.g., one of the tetrahedra, not T, incident on toty; is bisected using totq: as
the bisected edge), then T is bisected as the following sequence subject to rule NEWTYPE
for the types of edges. First, T is bisected by edge t1t3; one of the resulting subtetrahedra
is T1(to,t1,t12,t13) shown in Figure 4.4b. Next, T, is bisected by edge tot;; one of the
resulting subtetrahedra is Ty(to, to1, t12, t13) shown in Figure 4.4c. In order to bisect tot;2,

edge toty3, which is a new edge produced when T is bisected, must be bisected first; then
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tot12 can be bisected. Therefore, to bisect all edges with negative type, a tetrahedron in S,
may be bisected up to four levels (by analyzing all cases, it is easily seen that five levels are
never needed, and the nuriiber of subtetrahedra produced by 1 to 4 levels of bisection of a
tetrahedron in S; is 2 to 10), and one new edge, e.g., tot13, may be a new non-conforming

edge after the bisection.

Figure 4.4: Tetrahedra produced by 1 to 3 levels of bisection of a tetrahedron of class
DSS1. (a) After 1level. (b) After 2 ievels. (c) After 3 levels; the tetrahedron is type similar
to a tetrahedron of class DSS1.

Tetrahedra needing further bisection (because of the bisection of some new edges) can
be found when we fill in the neighbor information. By scauning faces of new tetrahedra
(all subtetrahedra of tetrahedra in S;), if a face is not in FHT, insert the face into FHT;
otherwise, fill in its neighbor information, and delete the face from FHT. After the above
process, all remaining faces in FHT are either boundary faces (in terms of new tetrahedra)
or non-conforming faces (either being a part of another face or including another face). By
checking whether a face includes a non-conforming edge (the non-conforming edge must
be in EHT, since every edge bisected is inserted into EHT), we can fill in the neighbor
information for non-conforming faces, and find the set of non-conforming edges, which
have been bisected in some but not all of its incident tetrahedra, as well as a tetrahedron

associated with and incident on each non-conforming edge.

We now give the following pseudocode for QLRB.

Algorithm QLRB

# Input: initial conforming mesh 7
# Output: refined conforming mesh 7
m:=1

repeat
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Choose a set .5, of tetrahedra from 7

Set list L to be empty

for each T in 5, do
Set the hisertion informaton of T in a BI record
Add (ex, T) to L where ¢z is the bisected edge of T

endfor

REFINE(T, L, m)

m:=m+ 1

until no more tetrah.dra needed to be refined

Procedure REFINL(T, L, m,
# Input: coniorming wesh T list L of edges, which need to be bisected,
# and tetrahedra associated with these edges; m, the refinement level
# Outpui: refined conforming mesh 7
eon form 1= true
while L is not empiy do
FREBISEC'T(conform, L, St)
fn: each tetrahedron T in S; do
ji=indexof Tin TM
Bisect T and its subtetrahedra using BISECT?2
until al! odges with negative values in BI[T M[j].bi] are bisected
Add subtetr-hedra of T to the end nf T M,
and the new vertices to V('
Update corresponding information in XTM, XV, and BI
if any face of T is not bisected and its other incident
tetrahedron Tp(not T) is not in Sy then
Fill in the neighbor information of T,
and a subtetrahedron of T
endif
endfor
Set L to be empty
(A) Scan new tetrahedra to fill out neighbor information using
hash table FHT; and add (e, T) to L for each
non-conforming 2dge € and its associated T
conferm := false
endwhile

Note that REFINE may make several passes through the while loop, and the meshes
in the interm.uiate passes are not conforming. The while loop will terminate in a finite
number of passes by Thcorem 4.2. To ensure that our data structure works validly for

a non-conforming mesh, i.e., all tetrahedra incident on an edge can be traced correctly in



PREBISECT, we need to prove that each face of a tetrahedron i, shared by at most two other
adjacent tetrahedra, which is given in the following theorem. In the proof of this theorem,
we can further see how the algorithm QLRB works. In particular, we see what kiuds of
configurations of tetrahedra may be produced in QLRB, and how the non-confermity is

dealt with.

Theorem 4.7 In procedure REFINE, cach face of a tetrahedron is shared by at most 2

other adjacent i:traledra.

Proof. Note that Figures 4.2 and 4.4 include all configurations (up to type similar) deduced
from repeated bisection of tetrahedra of classes DSS2 and DSSI1, respectively, and one
level of bisection on a tetrahedron of class DD or DSS3 produces subtetrahedra with the
configuration in Figure 4.2a by the proof of Lemma 4.3. Therefore, the configurations of
tetrahedra of classes DD and DSS3 plus those in Figures 4.2 and 4.4 are all the possible
configurations of tetrahedra in a mesh resulting frem QLRB. From the proof of Lemma 4.3,
after three leveis of bisection on a tetrahedron which is type similar to a tetrahedron of
class I’SS1, DSS2, DSS3, or DD, all its edges are bisected, and no new edges produced in
the three levels of bisection are bisected. Among the configurations in Figures 4.2a, 4.2h,
4.4a, and 4.4b, we can verify that there are exactly two configurations, Figures 4.2b and
4.4a, ir which a new cdge added in the interior of & face may be bisected in order to bisect
all original ~dges of the tetrahedron. Thus, in one pass of the whilc loop of REFINE, each
edge ran he bisected at most once, and some new edges may be bisected. Furthermore, if
a new edge aced in the interior of a face F' is bisected after one pass of the while ioop,
F must be a face with configuration [3*,3*,2] or [3,3, 2] (see Figures 4.2h and 4.4a) at the

start of the pass of the w«.le loop.

Ncw we prove that all non-conforming faces produced in REFINE have the patterns
shown in Figure 4.5. That is, sgsys0; and syssg; are faces of some tetrahedra, respectively,
but sgs;s; is a face of another tetrahedron (this implies that each face of a tetrahedron is
shared by at most 2 other adjacent tetrahedra). The numbers in Figures 4.5 to 4.7 denote

the types of edges.

Suppose F is a conforming interior face uguju; (shared by exactly two tetrahedra) at
the start of a pass of the while loop of REFINE. If F includes some non-conforming subfaces
after one pass of the while loop, by the above discussion, the new edge added in the interior

of F must be bisected. So F must be a face with configuration [3*,3%,2] or [3,3,2] at the
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start of the pass of the while loop, and has the configuration shown in Figure 4.6 in terms of
the types of edges after the pass of the while loop according to rule NEWTYPE. In Figure
4.6, the new edge ujug; is hisected, so the possible non-conforming faces are uzugzu and
ugy ugzu (Or uzu;2u, ugiuypu), which has the pattern shown in Figure 4.5a with uy, 1,

ug2, and u in Figure 4.6 corresponding to s, s1, s2, and sg; in Figure 4.5a, respectively.

S

Figure 4.5: Nlustration of the 2 non-conforming patteias; sos2sor and sys380; are faces of
some tetrahedra, respectivel and sgs;s; is a face of another tetrahedron.

figure 4.6: Mlustration of the non-conforming patterns produced from a conforming face
with configuratica [3%,3%,2] or [3,3,2]; the sequence of bisected edges is ugu;, upuy (or
ujuy), and uyug; in order.

Now supj-ose /' 15 a non-conforming interior face having one of the patterns in Figure
4.5 at the start of a pass of the while loop in REFINE. We prove that any non-conforming
face deduced irom F after one pass of the while loop has one of the patterns shown in
Figure 4.5. In Figure 4.5a or 4.5b, sosysg; (we cr'y consider half of sgsys;) does not have
the configuration {3*,3*,2] or [3,3,2] as a fa . ~f a tetrahedron. Thus, after one pass of
the while loop of REFINE, sss0; is subc. ' -« nto either the pattern shown in Figure
4.7a or 4.7h, respectively, vt a pattern with som- »f the edges sgys, sg28, S1502 missing in
Figure 4.7a or 4.7b, since any new edge added in the interior of spsysg; cannot be bisected

in one pass of the while loop by the al:+ ¢ .‘iscussion. On the other side, sps;s; as a face of



a tetrahedron in the configuration of Figure 4.5a or 4.5b may be subdivided into cithes . he
pattern shown in Figure 4.7¢ (the worst case), or a pattern with edges sy2s and/or sy2sp
missing in Figure 4.7c. There are up to three cases where a non-conforming face may occur.
First, if sg15028 and sgsg2$ in Figure 4.7a or 4.7b are faces of some tetrahedra, respectively,
and sgSp1So2 in Figure 4.7c is a face of another tetrahedron, this non-conformance has the
pattern shown in Figure 4.5a or 4.5b, respectively. Next, if sysp28 and spysges in Figure
4.7a or 4.7b are faces of some tetrahedra, respectively, and sys015¢; in Figure 4.7c is a face
of another tetrahadron, this non-conformance has the pattern shown in Figure 4.5b or 4.5a,
respectively. Finally, if syspgs and spysggs in Figure 4.7c are faces of some tetrahedra, and
52801802 in Figure 4.7a or 4.7b is a face of another tetrahedron, this non-conformance has
the pattern of Figure 4.5a, since the interior edge s,s0; of face sgsys; is bisected in the same

pass in which it is created (cf. Figure 4.6).

| 4
1 § 1 sm

(a)

Figure 4.7: Dlustrat - f the non-conforming patterns produced from a non-conforming
face. (a) The config. ration is produced by bisection of face sgsgisz in Figure 4.5a; the
sequence of bisected edges is sgs2, soSp1, or/and szsg;. (b) The configuration is produced
by bisection of face sgsg1s2 in Figure 4.5b; the seguence of bisected edges is the same as in
(a). (c) The configuration is produced by bisection of face sgs;sz in Figures 4.5a and 4.5b;
the sequence of bisected edges is sps;, sgs2, s152, ™ /and s;sp;.

Note that after the first pass of the while loop in REFINE, the non-conforming faces
occur only if some new edges added in the interior of some faces are bisected, and these
non-conforming faces have the pattern of Figure 4.5a. By the induction argumest of the

previous paragraph, the theorem is established. O
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4.6 Time complexity

We analyze the time complexity for one step of refinement, i.e., for procedure REFINE.
Suppose k is the number of times through the while loop. Let N;,1 < j < k, be the
number of new tetrahedra produced by bisecting tetrahedra in S, at the jth pass. We
assume that the table sizes of EHT and FHT are sufficiently large, and good hashing
functions are used, so the expected time complexity of insertion and deletion of an element
to EHT and FHT is O(1) (otherwise a balanced tree data structure with a logarithmic
time complexity can be used to get a better worst case time complexity) [AHU74]. Note
that in procedure PREBISECT, we only deal with non-conforming edges, i.e., all tetrahedra
incident on a non-conforming edge are pushed onto S;, and for any non-conforming edge e
and tetrahedron T incident on e, the neighbors of T incident on e can be found in constant
time. So, the time complexity for PREBISECT is O(|S:|) = O(N;), where |.5¢| is the number
of tetrahedra in Sy, since there are at most 6 non-conforming edges for each tetrahedron.
As the time used for bisection of each tetrahedron in S; is constant, and the time spent on
line (A) of REFINE is O(N;), the expecteu time complexity of REFINE is Zj‘f___l O(N;).
Suppose N is the number of refined new tetii}: /1. resulting from REFINE. We now prove

that 5, O(N;) = O(N).

Suppose 7™ is the mesh before REFINE is called for the mth time. Let T}*, 1 < ¢ <
r, denote ihe tetrahedra of T™ bisected in the mth call of REFINE. Consider the tree
associated with T2, where the root is tetrahedron T?*, the leaf nodes are subtetrahedra
of TP, produced by repeated bisection of T}*, in the mesh 7™+1 and the interior nodes
are subtetrahedra of T?* (not in the mesh 7"*1) in S, for some passes of the while loop
of REFINE. Suppose /; is the number of leaf nodes and r; is the number of non-leaf nodes
in the tree for T?. Note that the root node and each interior node is bisected into 2 to
10 subtetrahedra. It is straightforward to prove by induction that r; < [,, :ince bisecting a
tetrahedron increases the number of interior nodes by one and the number of leaf nodes by
at least one. Therefore,
&

S O(N;) = Y0 + 1) = S 0(k) = O(N).

i=1 i=1 i=1
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4.7 Summary

We have presented an algorithmn for local refinement of a tetrahedral mesh, and have shown
that the quality of tetrahedra in the refined mesh is guaranteed. As far as we know, this is
the first theoretically guarauteed quality local refinement algorithm for a tetrahedral mesh
based on bisection, although various local refinement algorithms are used in practice. We
have also shown that the expected time complexity of this algorithm is O(N), where N is the
number of refined tetrahedra in the rciined mesh, and N is bounded by a constant times the
number of tetrahedra in the initial mesh by Theorem: 4.2 { ussuming the number of refinement
levels is fixed), which may not be irue using longest edg: Lisection. Experimental results
(see Sections 6.1 and 6.2) on the quality of the refined tetrahedra show a very consistent

performance for numerous test examples, and are much better thau the theoretical estimate

of the constant ¢ in Theorom 4.4.
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Chapter 5

Quality Local Refinement of Tetrahedral
Meshes Based on 8-Subtetrahedron

Subdivision

In this chapter, we present a 3-D local refinement algorithm for tetrahedral meshes, which is
based mainly on a regular refinement procedure, and discuss the quality of meshes generated

by the algorithm.

5.1 Introduction

In the previous chapter, we presented a local refinement algorithm for cetrahedral meshes
based on a bisection procedure, which is the first theoretically guaranteed-quality mesh
refinement algorithm for tetrahedral meshes based on bisection. In this chapter, we present
a quality mesh refinement algorithin based on an §-subtetrahedron subdivision procedure,
which is an extension of the 2-D mesh refinement technique in [BaS81, Ban90, LMZ85].
The 8-subtetrahedron subdivision may be preferable to bisection if the initial mesh is rel-
atively coarse and needs to be refined quickly, because the volume of subtetrakedra in
8-subtetrahedron subdivisicn decreases faster than in bisection. Also, the 8-subtetrahedron
subdivision is useful in the multigrid method, in which the solution of a problem is obtained
Ly alternatively solving the problem on several levels of coarse to fine grids, since the grids

at two consecutive levels should in general be significantly different.
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Figure 5.1: Dlustration for 2-D local refinement in PLTMG; t;; = (t; +t;)/2,i < j. ()
Regular refinement; no interior angle is greater than =/2. (b) Regular refinement; one
interior angle is greater than 7/2. (¢) Irregular refinement.

The basic idea in [Ban90] is as follows. Normally, a triangle is regularly refined Ly
dividing it into 4 similar triangles, as illustrated in Figure 5.1a. If the triangle has an
interior angle greater than 7/2, then it is regularly refined into two similar triangles, and
two geometrically better triangles, as illustrated in Figure 5.1b. At the boundary of a
refined region, it is necessary to divide a triangle into ounly 2 “green” triangles by inserting
a “green” edge, as illustrated in Figure 5.1c. Refinement into green triangles is done ouly
as a temporary measure; at each step of the adaptive process, if the green triangles need
to be further refined, then the green edges of these triangles are removed and the parent
elements are regularly refined. Obviously, the degradation of geometry in this approach is

bounded, since the green triangles are never further refined.

Likewise, in 3-D, we want to use a regular refinement called 8-sublctrahcdron subdivision,
wliich is defined as follows. Suppose each triangular face of a tetrahedron T is refined into
four similar subtriangles by connecting the midpoints of the edges (see Figure 5.]la) as
shown in Figure 5.2. Then we obtain four similar subtetrahedra at the four corners and an
octahedron in the interior. By adding an interior edge, called the centre cdge, tyatys say, in
the middle of the octahedron, T is subdivided into eight subtetrahedra. We use SUBg to

der.nie the 8-subtetrahedron subdivision described here.

Given a ‘etrahedron T, SUBg can be performed to T and its subtetrahedra repeatedly
to produce a sequence of meshes. Note that the centre «dge in SUBg can be any one of
the three choices (e.g., toitas, toztis, or tostyz). Different strategies for choosing centre
edges will produce substantially different meshes in terms of the quality of refined meshes.

In Section 5.2, we design a refinemeu. procedure, i.e., a way of selecting the centre edges,



Figure 5.2: Illustration for the regular refinement (8-subtetrahedron subdivision) SUBg;
t,‘j = (t-[ + tj)/'z, 1< j; eight subtetrahedra are T}(to,tol,tog,tog), T;lz(tol,t],tlg,t13),
Ti(toz tiz,t2,t23),  Th(tos,tis,t2s,t3),  Ti(tor, tis,tos,toz),  Tg(tor, taz, tas, to2),
Th(t23, to2, t13, t12), and Th(t2s, toz, t13, to3).

such that (a) iteratively applying SUBg to any tetrahedron T produces at most 24 classes
of similar tetrahedra, and (b) 7(T?) > 0.57(T), where T} is any refined tetrahedron of T
and 7 is the mean ratio defined in Section 2.4. In light of property (b), it car be shown
that there exists another means of selecting the centre edges, such that the shape of some
subtetrahedra can be arbitrarily poor; in particular, (T?) < (6/7)"n(T) for some refined
tetrabedron T%. In Section 5.3, we present a local refinement algorithm which is extensively
vased o SUBg, and some properties of the algorithm are established. Data structure and
niplementation details are described in Section 5.4. The time complexity analysis is given

ction 5.5, A brief summary is provided in Section 5.6.

5.% Subdivision of a single tetrahedron

In this section, we are mainly concerned about the quality of meshes produced by repeatedly
per{forming SUBg 10 a single tetrahedron T without considering the conformity of the refined
meshes (which will be discussed in the next section). We first recall some notation used in
previous chapters. For any (nondegenerate) tetrahedron T(tn, t1, t2, t3) with to, tq, ., t3
as the coordinates of the four vertices in the form of column vectors in E3, T = [t; —tg,ts —
to,t3 — to]. For any two tetrahedra S(so,s1,s2,s3) and T(tg, t1,t2,t3), M(S,T) = TS
and A(S,T) = MT(S, T)M(S, T). Again, mean ratio 7 is used in analyzing the quality of

meshes generated by our algorithm. We recall the following two forinulae, which are often
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used in the remainder of this chapter, for compnting .
(T) = 39X %2ha/(M + Az + &) = 3{/det(A(R, T))/trace(A(R, T)), (5.2.1)

where '\, A;, and A3 are the eigenvalues of matrix A(R, T), R is a regular tetrahedron with
the same volume as T, and 7 is independent of the ordering of tetrahedron vertices and of
the vertex coordinates of R.
n(T) = 12(30)% > 13, (5.2.2)
0<i<ji<3

where v is the volume of T and the [;; are the lengths of the edges of T.

As mentioned in the previous section, the centre edge in SUBjy is the edge connecting a
pair of opposite edges, called the base ¢4ges. That is, the centre edge is the edge joining the
midpoints of a pair of base edges. We say that a subtetrahedron has the same subdivision
pattern as its direct parent if its base edges include either the contre edge or a half of & base
edge of its parent, e.g., in Figure 5.2, if the base edges of T}(to, to1, ta2, tos) are toty and

to1tos, then T}(to, tor, toz, to3) has the same subdivision pattern as T(tg, tq,1t2,t3), since

totoy is a half of the base edge tot; of T. It can be easily verified that if a subtetrahedron - ‘

has the same subdivision pattern as its parent, then its two base edges and centre edge are
uniquely determined. Now we describe a procedure SUBDIV for iteratively applying SUBy

to T.

Algorithm SUBDIV

(1) Subdivide T = TY into eight subtetrahedra using SUBg (see Figure 5.2); the centre
edge can be any of the three choices, i.e., to1tys, toztis, or tostiy; label the eight
subtetrahedra by T}, 1 <7 < &, and let T} have the same subdivision pattern as T;

n:=1.

2) Subdivide T*, 1 < 7 < 8", using SUBg, and let its subietrahedra have the same
i g

subdivision pattern as T7; label the resulting subtetrahedra by T,’-“"’, ] << 8t
(3) n:=mn+1; repeat (2) or terminate the subdivision.
The superscript n in T} denotes the level of subdivision. We assume that each sub-

tetrahedron is subdivided to the same level (this constraint will be removed in the next

section). In order to study the quality of the mesh produced by SUBDIV (which is a main
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procedure in our local refinement algorithin in the next section), we first describe SUBDIV
by another equivalent procedure, which is relatively easy to use in analyzing the shape of
the refinei meshes. To this end, we introduce a canonical tetrahedror P called a rhombic
tetrahedron [MoW90), shown in Figure 5.3, which is used in an alternative description of
SUBDIV. P has two longer edges of the same length and four shorter edges of the same
length. The wost important property of P is given in the following lemma, which is proved

in [MoW90].

Figure 5.3: Rhombic tetrahedron P(to,t1,ts,t3) with |popi| = |p2P3] = |pip3| =
lpop2l = m, |popal = Ipip2l = 2m/v3; pii = (pi + p;)/2. The coor-

dinates are po(—v2m/v/2,0,0), p1(0, -m/v/3,0), p2(0,m/V3,0), p3(0,0, V2m/V3),
pO](—‘/gnl/sa _\/3-771'/61 0)1 PO‘Z(“\/EW/G, \/§7n/6’ 0)7 p03(—\/6m/67 0, \/6"7'/6)a
p12(0,0,0), p13(0, —v3m/6,v6m/6), and p23(0, V3m/6,v/6m/6).

Lemma 5.1 If SUBg is applied to P with the centre edge connecting its longest edges
Popz and p1p2, then the eight subtetrahedra P1(5y.Do1, Poz, Po3); Pi(Po1,P1, P12 $13),
P3(Poz, P12, P2, P23), PY(p. - Pua.: P23, P3), PY(Po1, P12, Pos. P13), PE(P23; Pos, Pazs Pra'e

Pl(po1, Po3, P12, Pe2), «7d T 5{P23, P12, Po3s Poz) are all similar to the original tetr...cdron

P{po, P1, P2, P3) (see Frgure 5.3).

When SUBg is applied to P, the base edges of P are its longest edges (pops, p1p2). With
each subtetrahedron having the same subdivision pattern as its parent, it is obvious that
the base edges of P}, 1 < i < 4, are its longest edges. Since |posP12| = |Pop3|/2 = |P1P2|/2,
the base edges of P},5 < i < 8, are also its longest edges. Therefore, by Lemma 5.1 and
induction, the base edges of any refined subtetrahedron of P produced by SUBg are always

its two longest edges.
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Let P be the canonical tetrahedron in Figure 5.3 such that T and P have the same
volume, We describe another procedure TRANSUB which uses an affine transformation,
and prove that SUBDIV and TRANSUB are equivalent.

Algorithm TRANSUB

(1) Transform T to P by an affine transformation y = M~1(P,T)x + by, with the
constraint that the two base edges of T in step (1) of SUBDIV are transformed into
the pair of edges with the longest length in P, i.e. pop3 and p;p2 in Figure 5.3.

(2) Iteratively subdivide P to some level, with each subtetrahedron having the same

subdivision pattern as its parent (i.e. the two base edges are the two longest edges).

(3) Transform all subtetrahedra in P back to subtetrahedra in T using the inverse affine

transformation y = M(P, T)x + by.

Theorem 5.1 For any tetrahedron T, if each subtctraledron is refined to the same level,

SUBDIV and TRANSUB produce the same set of refined tetrahedra.

Proof. The theorem can be established by using the fact that the midpoint of a line
segrw- - '~ transformed into the midpoint of the correspondiug line segment under an afline

tra- sosee e, O

We now use TRANSUB to establish the main properties of meshes produced by SUB-
DIV.

Theorem 5.2 There are at most 2/ clusis of similar tetrahedra produced by SUSDIV in

all the refined subtetrahedra ../ T

Proof. We define two tetrahedra to be in the same equivalence class if one can be trans-
formed into ine other by translation and uniform scaling (i.c., the scale factors for the three
coordinate axes are the same). So any two tetrahedra in the same equivalence class are
similar to each other after any affine transformation. Let P? be any subtetrahedron of P
at level n, n > 0. In order to prove the theorem, it suffices to prove that all subtetrahedra

P? generated by TRANSUY are in at most 24 different equivalence classcs.

After one level of subdivision, by Lemma 5.1, all the 8 subtetrahedra, denoted by P},

1 £ 7 < 8, are similar to P. Let these tetrahedra be labeled as in Lemma 5.1. Let
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M; = M(P,P!). From the coordinates shown in Figure 5.3, we obtain M; = M; = M; =
M4 =1/2 1, where I is the identity matrix, and
1 =vZ 1] [ -1 V21
1 1
M5=Z V2 0 V2 ,MG=4— -2 0 2,
1 V21| | -1 =2 1
1 V2 -1] 1 [ -1 -2 -1
1
M7 = 1 V2 0 V2|, Mg= 1 -2 0 V2
I V2 -1 | -1 V2 -1
Let
aq 0 0 0 0 a
diag(ar,az,a3)=| 0 ay 0 |, skew(ai,az,a3)=] 0 a3 O
0 0 as az 0 0

The following equations are derived by straightforward computation.

M7 = skew(-1,-1,—-1)Mg, Mg = skew(-1,-1,-1)Ms,

MsMg = 1/4skew(1,1,-1)1, MgMs = 1/2skew(-1,1,1)Ms,
MsM; = 1/dskew(-1,1,1)1, My M5 = 1/2diag(-1,—1,1)Ms,
MsMg = =1/4skew(1,1,1)I, MgMs5 = 1/4diag(—1,1,-1)1,
MgM7 = 1/2diag(l,~1,~-1)Ms, M7 Mg = 1/2diag(-1,~1,1)Ms,
MgMg = 1/2diag(1,-1,-1)Ms, MgMs = 1/4diag(1,-1,-1)1,
M;Mg = 1/2skew(1,1,-1)Ms, MsM7 = t/4diag(—-1,-1,1)],
M? = 1/4skew(1, -1,1)], M = 1/2skew(-1,1,1)Ms,

M2 = 1/2skew(1,1,-1)Ms, M2 = 1/41.

After 2 levels of subdivision, M(P,P}) = M(P},P})M(P,P}) where P} is a subtetra-
hedron of P}. With a suitable ordering of vertices of P?, it follows that P? = M;P} for
some [. So

M(P,P}) = PP = M;P! P7' = M; M,
since Iy = M;P. By induction, after & levels of subdivision, for each subtetrahedron Pf

with a - aitable ordering of vertices pf., we have

ptkr = MllMl'Z"'Mlkpr'*’b:#a 0<r< 3,
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where each Mp,,,, 1 < m < k, isone of the M;, | <i < &. Let S be the set of all diagonal and
skew diagonal 3 by 3 matrices with elements 1 or —1. Obviously, § is closed under matrix
multiplication and |S| = 23 4+ 2% = 16. By the above equations, My My My = fDM,
where f is a scale factor, D is an element of &, and M is [, Ms, or Mg. Note that D
and —D can be considered to be the same matrix of § due to the factor f. Therefore the
number of different equivalence classes is < 3 x 8 = 24. Hence the total number of classes

similar tetrahedra in all refined subtetrahedra of T is finite and bounded above by 24, O

Theorem 5.2 implies that the shape of subtetrahedra does not d~teriorate arbitrarily.
Moreover, the following theorem shows that the shape of the subtetrahedra are at least haif

as good as the shape of the very first totrahedron T in terms of the shape measure 9.
Theorem 5.3 For any refined subtetrahedron T} of T, produced by SUBDIV,

(TH) > 0.57(T), (5.2.3)
and the lower bound is tight.

Proof. Let M(P,T) and M(R,P) be the two matrices involved in the affine transforma-
tions from P to T and R to P, respectively. Using the notation given at the beginning of

this section,
T=MP,T)P=MP,T)MR,P)R,

where T', P and R are the matrices derived from T, P and R. From step (3) of TRANSURB,

the tetrahedron T}‘ is transformed from P} using M (P, T), so
T!'= M(P,T)FP}.

With a suitable ordering of vertices of P?, P! = aQ P where « is a positive constant and

@ is an orthogonal matrix, since P} is similar to P by Lemma 5.1. So
T!'=aM(P,T)QP = aM(P,T)QM(R,P)R = M(P, T)QM(R,P) 1" = M(R", T}) 11",
wiere R™ is a regular tetrahedron having the same volume as TF.

Frem det(A(R, T)) = det(A(R™, TF)) = 1 and (5.2.1), we have

3Y/def(A(R,T)) _ 3

M) = raccl AR, T)) ~ trace(M(P, T)M(R, P)) M(P, ™ (R, P))’

(5.2.4)




3\/det(A(R",T:-‘)) ~ 3

irace(A(RY, 1)) trace((M(P, T)QM(R, P))TM(P,T)QM(R.P))
(5.2.5)

Let || B||F denote the Frobenius norm of matrix B [GoV$9), i.e., ||B||r = (trace( BT B))'/2,
By (5.2.4) and (5.2.5), it follows that
AT _ M, T)MR, P
o(T)  [IM(P,T)QM(R,P)|
By the singular value decomposition [GoV89], M(P,T) = Qidiag(v/A1, VA2, VA3)Q2 where
Q1, Q2 are orthogonal matrices and Ay, Az, A3 are the eigenvalues of A(P,T) (VA[, vy,
VA3 are the singular values of M(P,T)). It follows that

n(TY) =

(5.2.6)

|M(P, T)M(R,P)|i% = ||diag(v/A1, VA2, VA3)Q: M(R, P)IF:, (5.2.7)
| M(P, T)QM (R, P)|} = ||ldiag(v/M1, VA2, VA3)Q2Q M (R, P)||}. (5.2.8)

Let R(ro, ry, r2,r3) be a regular tetrahedron having the samne volume as P with coordinates
ro = (—v3a/2,0,0)T, r; = (0,-a/2,0)T, r; = (0,a/2,0)7, and r3 = (- v3e/6,0, Via/3)".

From the coordinates shown in Figure 5.3, with r; being transformed to p;, we have

22 0 1
MR,P)=k| 0 2v3 0|,
0 0 3

where k3 = 1/6/72. If U is an orthogonal matrix with elements u;;, | <4, j < 3, we have
lldiag(v/Ar, v V/35)U M (R, P)|f% =

K2 (A9 + 3(1 = (unn = w3)%)] + A2l9 + 3(1 = (uz1 — waz)®)} + As[9 + 3(1 — (w1 — uz3)*)]).

Since 0 < (z + y)? < 2 for any z, y satisfying z? + y% < 1,

6k2(M + Az + A3) < |ldiag(v21, VA2, VA3)UM(R, P} < 12K*(A1 + Az + As).

Then combining (5.2.6), (5.2.7), and (5.2.8) yields

< MT)
- 9(T) ~

0.5 < <2.

We now prove that the lower bound cannot be improved. For any ¢ > 0, we define

a tetrahedron T with vertices to = (0,@ 0), t; = (-1,0,0), t2 = (1,0,0), and



ty = (0, l@ 1). Consider subtetrahedron T} = (to3, t13, t12, t23) produced by using

centre edge tyztgs, where t,J is the midpoint of t; and t;. By straightforward computation

using (5.2.2), 9(T})/n(T) = 0.5 + ¢. Hence the lower bound is tight. O

In the subdivision procedure SUBDIV, the centre edge added in the interior of a tetra-
hedron is selected by a specific rule. Otherwise, refined subtetrahedra with good shape may
not be guaranteed. In fact, there is a means of selecting centre edges such that the shape

of some subtetrahedra become arbitrarily poor, as described by the following lemma and

theorem.

Lemma 5.2 Suppose SUBg is applied to any letrahedron T(to,t1,t2,t3). If the centre edge
of T is chosen such that the minimum 7 value of ile four interior subtetrahedra achieves a
minimum value among the three possible choices of centre edges, then there exists a suble-

trahedron T} of T, such that n(T}) < 6/7y(T), and the upper bound is tight.

Proof. For any edge ¢, let. le| denote the length of e. Let €1 = t1t3, €2 = tot3, €3 = totq,
€4 = tata, c5 = t1ta, and eg = toty. Let €(7) stand for a centre edge connecting the midpoint
of €51 and ey, i = 1,2,3. For any centre edge e(j), by formula (5.2.2) and the fact that
the volume of any subtetrahedron is 1/8 times the volume of T, the 7 measures of the four
interior subtetrahedra are either
3(3v)?/3 3(3v)?/3
S o2/ + e ~ lexa P74 Ty [eilP/4+ eGP = [=a;17/4"

where v is the volume of T. Let é(5) = |e(j)|? — min?(|e2;-1], |e2;|)/4. Then for centre edge
<(7), the minimum 7 value of the four interior subtetrahedra is
3(30)%/3
i lesf?/4 4+ &(5)

Suppose T} is a subtetrahedron such that

3(3v)/3

. 5.2.9
S Jei?/a 1 mame;n 63) (5.29)

2(T}) =

That is, T] is a subtetrahedron of T when the centre edge of T is chosen such that the

minimum 7 value of the four interior subtetrahedra achieves a minimum value. Since |¢(1)| =

[toatiz] = |to + t3 — t1 — t2]/2,

. 1 1 . .
le(1)|* = z(to ~ti+ta-t) (fo—t +tz—t2) = Z(lf?;«xl2 + lea]® + 2(to — t1)7(t3 — t2))
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o |
o
—
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—

(lesl® + leal? + les]? + |ea]* = |es|? = Jeaf?).

o]

Similarly, we obtain
1 . . . . . .
le(2)]* = Z(lﬂll‘2 + le2l® + les|® + les]? — leal® - leal®),

and
1 . . . . . .
le(3))? = 7 (e 2+ leaf® + les|® + leal® — |es|® = leql?).

So,
3

6
Zé(i) = 1/42 |e,~|2 —-1/4 min(|cl|2, lea]?) — 1/4 min(lea|?, |eq]?) — 1/4 n\in(|(-;,|2.|c.;|").

i=1 =1

Combining the above equation with min(|e;[2, leip1]?) < (Jeil? + |eir1]?)/2, ¢ = 1,2, 3, yields

Combining (5.2.9), (5.2.2), and the above inequality yields 5(T}) < 6/71(T).

The upper bound 6/7 is tight because no mean ratios of subtetrahedra generated in the

regular tetrahedron T can be worse than 6/7. O

Theorem 5.4 There exists a means of selecting the centre edges, such that after n levels

of refinement by applying SUBg to T,
(T}) < (6/7)"n(T),
for some refined subtetrahedron T} .

Proof. At each step of refinement, if the cenire edge is chosen as described in Lemm:a 5.2,

the theorem can be established by repeatedly using Lemma 5.2. O

In light of the scheme of selecting the centre edge in Lemma 5.2, we can always choose
the centre edge such that the minimum shape measure of the four interior subtetrahedra
achieves a maximum value, but it seems hard to obtain the nice properties in Theorems 5.2

and 5.3.

In addition, for any tetrahedron T, we prove in Appendix B that there exists a centre
edge of T such that any refined mesh produced by SUBDIV is a Delaunay triangulation
wken all face angles of the tetrahedron T are < 90°. That is, a guaranteed-quality Delar-
triangulation is produced by SUBDIV under the face angle condition, while a Delaunay

triangulation may in general contain some pocrly-shaped tetrahedra.



5.3 Local refinement of a conforming mesh

Similar to the 2-D approach in [Ban90, p. 26], we design a 3-D mesh refinement algorithm
mainly depending on the regular subdivision SUBg illustrated in Figure 5.2, since the shape
of refined tetrahedra produced by repeatedly performing SUBsg to a tetrahedron are bounded
below if each subtetrahedron has the same subdivision pattern as its parent by the discussion
in the previous section. Simply applying SUBs to a set of subtetrahedra of a conforming
mesh may produce non-conformity between tetrahedra. Therefore, at the boundary of a

refined region, other non-regular refinements may be needed to ensure a conforming mesh.

A split point is defined to be the midpoint of an edge whenever the edge needs subdivi-
sion. In an initial mesh 7, suppose a set S of tetrabedra are chosen for refinement. A split

point is added to each edge of each tetrahedron in S. Also, for any face of a tetrahedren
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not in S that contains two split points, a split point is added to the edge that does not -

have a split point so that there are either one or three split points on each face. A face
with 3 or 1 split point(s) is subdivided like Figure 5.1a or 5.1c, respectively; we don’t use
the subdivision of Figure 5.1b, since this will significantly increase the difficulty of keeping
a conforming mesh. Under the above assumptions, the number of split points for a tetrahe-
dron in the initial mesh can be 1, 2 (on a pair of opposite edges), 3 (on the same face), or
6. According to the number of split points, the subdivision of a tetrahedron is illustrated
in Figures 5.4a, 5.4b. 5.4c, and Figure 5.2. respectively. The threc non-regular refinements
in Figures 5.4a, 5.4b, and 5.4c are Jlenoted by SUB2, SUB}), and SUBZ, respectively, and
are applied to the boundary of a refined region. In the next refinement, if any tetrahedron,
produced by SUB,, SUB}, or SUB3, is chosen for refinement, its parven: is always refiz.ed
.i)y SUBg first. Thus we never need to add a split point on an edge, called an irregular edge,
which is generated by connecting a vertex to the midpoint of an edge of a face in SUB,,
SUB!, or SUBZ, e.g. t3t;; in Figure 5.4a and to3ti2 in Figure 5.4b. An irregular face is
defined to be one containing an irregular edge, e.g. face t1tst;; in Figure 5.4a, and may
have 0, 1, or 2 split points (for the next refinement). A face that is not irregutar is called a

regular face, and may have 0, 1, or 3 split points.

We now give a local refinement procedure, QLRS (quality l>cal refinemernt based on
subdivision), based on SUBg, SUB;, SUBJ, and SUB3. A more detailed pseudocode is

provided after we discuss data structures in the next section. A tetrahedron T is called a



t3 t3 ty
to
to t; to =t to t,
t12 t12 ¢ th2
0
t1 t] tI
(@) SUB; . (b) SUB! () SUR?

Figure 5.4: Tlustration for non-regular refinements; t;; = (t;+t;)/2, i -2 j. (a) Subdivision
of a tetrahedron with one split point (t12). (b) Subdivision of a tetrahedron with two split
points (t12, toz) on a pair of opposite edges. (c) Subdivision of a tetrahedron with three
split points (to;, to2, t12) on the same face.

tetrahedron of type Sg if T is either a tetrahedron in the original mesh, or produced by
SUBg. Similarly, a tetrahedron of type Sz, S4, or $2 means that the tetrahedron is produced
by SUB;, SUBL, or SUBZ, respectively. In the following, we assume that whenever SUBy is
applied to a tetrahedron T of the original mesh 7, the centre edge of T is chosen such that
the minimum shape value of the four interior subtetrahedra (i.e., T}, T}, T}, T} in Figure
5.2) of T achieves a maximum value in terms of the tetrahedron shape measure 3. Also, for

any tetrahedron T, an unsplit edge of T is an edge that does rot have a split, point.

Algorithm QLRS

(1) Set 7%:=T; m:= 0.

(2) Select a set Sy, of tetrahedra needing refinement from 7™; for each tetrahedron T in
Sm, if T is a tetrahedron of type Sg, mark a split point on each unsplit edge of T;

otherwise, mark a split point on each unsplit edge of T’s parent.

(3) For each tetrahedron T of type Sz in 7™ (see Figure 5.4a), whenever one of edges
tsty, taty (or toty, totz) has a split point, mark a split point on the other if it does
not have a split point; whenever t;t;2 (or t,t;;) has a split point, mark a split point
on each unsplit edge of T’s parent. For each tetrahedron of type S} or S% in 7™,
whenever one of its edges has a split point, mark a split point on ecach unsplit edge
of T’s parent. In addition, whenever a regular face in 7™ has two split points, mark
a split point on the unsplit edge of the face; repeat the above process until no more

split points are needed.

(4) For any T in 7™ with a non-zero number of split points, if T is a tetrahedron of
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type S, subdivide T w.ing SUBg, SUBy, SUBJ, or SUB3 according to the number of
split points on T, and let the subtetrahedra have the same subdivision pattern as T}
otherwise, remove T's sibling{}, subdivide T’s parent T, using SUBg, SUB}, or SUB}
according to the number of split points on T, and subdivide each subtetrahedron of
T, if necessary using SUB, or SUB? according to the number of split points on the

subtetrahedron; label the conforming mesh by 7™+1,

(5) wn:=m + 1; go to (2) if necessary or terminate.

Note that superscript m of 7™ indicates that mesh 7™ is created after m levels of
refinement on 79 In step (3) of QLRS, whenever a split point is added te an edge of a
tetrahedron T of type S} or S2, the split points are also added to the edges of T’s parent
T,. This guarantees that a tetrahedron of type S or $2 will never be further refined, i.e.,
whenever a tetrahedron T of type S} or S% needs to be refined, T}, is always first refined by
the regular refinement. For a tetrahedron T of type Sy, its parent T, may be subdivided
by SUB), SUBZ, or SUBg, and no subdivision is needed for subtetrahedra of T, if T, is
subdivided by SUB} or SUBZ. Figure 5.5 illustrates possible split points on subtetrahedra

of T, after SUBg is applied to T, in step (4) of QLRS.

Figure 5.5: Illustration for possible split points after SUBg is applied to T’s parent
T,(to,t1,t2,t3). Case 1: T is a tetrahedron of type S; (see Figure 5.4a); possible split
points are on edges with x. Case 2: T is a tetrahedron of type S} (see Figure 5.4b); possi-
ble split points are on edges with X or e. Case 3: T is a tetrahedron of type S (see Figure
5.4c); possible split points are on edges with x or o.

It is obvious that step (3) of QLRS will terminate in a finite number of steps, since in

the worst case each regular edge, which is not an irregular edge, of 7™ has a split point.



To guarantee the validiiv of QLRS, we nced to prove that step (4) of QLRS produces a

conforming mesh.

Theorem 5.5 If T™ is a conforming mesh, then step (4) of Algorithm QLRS produces a

conforming mesh T+,

Proof. Let T be 2 tetrahedron of type S, Si, or $3 in 7™, i.e., T's parent T}, has the
configuration of Figure 5.4a, 5.4b, or 5.4c (we assume that T, has tetrahedron vertices ty,
t1, t, and t3). We first prove that if SUBg is applied to T, in step (4) of QLRS, cach
face of a subtetrahedron of T, has 0, 1, or 3 split points. Note that among edges of T or

s sibling’s). only edges t1t;2, taty2 of Figure 5.4a (see Case 1 in Figure 5.5); totua, tatos,
ti1 .2, tatyg ot Fignre 5.4b (see Case 2 in Figure 5.5); and all 9 edges on face totity of Figure
5.4c¢ (see Case 3 in F' ure 5.3) exist in subtetrahedr . produced by applying SUBy to T, 1t
can be easily verifi.  that each face of o <u.tetrahedron of Ty, has 0, 1, or 3 edges of T™,
and no pair of opposite edges in a subt trahedron of T, are both in 7™. This guarantees
that no extra split point is needed for subtetrahedra of T, in order to satisfy that each face
of a subtetrahedron does not have 2 split points, since only edges of 7™ may have split
points. Therefore, it suffices to apply SUB; or SUB2 to subtetrahedra of T, in step (1) of
QLRS.

Now we prove that step (4) of QLRS produces a conforming mesh. It is obvious that
any two tetrahedra cannot intersect in their interior. Therefore it suffices to prove that the
resulting mesl: is conforming on any face. Suppose F is an interior face in a conforming
mesh 7™, m > 0. If F is a regular face, it wi!l have the configuration of Figure 5.la,
5.1c, or F itself at the end of step (4) of QLRS depending on the number of split points
on the face, independent of the use of SUB2, SUB}, SUBZ, or SUBg on the tetrahedra
sharing F. If F is an irregular face, by step (4) of QLRS, either F' does not change (in
this case, the conformity is obvious) or the paients of the tetrahedra sharing F are first
subdivided by SUBg or SUB? without producing rn-conformity on F’s direct parent F,
i.e. F'issubdivided into the configuration of Figure 5.1a. Further possible subdivisions on
the subfaces of /™ can be treated just like the case for regular face, since the subfaces of F

are regular. Thus 7™+ is conforming. O

Since we mainly use SUBg in QLRS, Theorem 5.6 below gives a property similar to that
in Theorem 5.2. A numerical bound on the shape of subtetrahedra produced by QLRS in

terms of tetrahedron shape measure 7 is given in Theorem 5.7, which needs Lemma 5.3.



Theorem 5.6 For any initial mesh T, there are only a finite number, which depends on
the number of tetrahedra in T, of classes of similar tetrahedra in all the refined tetrahedra

generated by QLRS.

Proof. Note that in QLRS, if a tetrahedron is subdivided to n > 1 levels, SUBg is applied
in the first 2 — 1 levels of refinement, and each subtetrahedron is set to have the same
subdivision pattern as its parent. At the nth level of refinement, SUBgs, SUB,, SUBL,
or SUB? is used. The theorem is established by Theorem 5.2, since each class of similar
tetrahedra in the first n — 1 levels of refinement produces at most 4 new classes of similar

tetrahedra at the last step of refinement. O

Lemma 5.3 Let T} be any subtetrahedron generated by SUB,, SUB], or SUBS applied to

T. Then
n(TL) > 2V/4/119(T). (5.3.1)

Proof. Let t;; denote the midpoint of t;t; and l;; = |t;t;|. For a triangle tatgtc,
ltetasl? = (20 + 25c - i) /4, (5.3.2)
and for a tetrahedron with vertices tg, ty, t3, t3, by (5.2.10),
[bostral? = (13 + By + By + 15 — I35 — B)/4. (5.3.3)
(‘ase 1: T} is a subtetrahedron generated by SUB; (see Figure 5.4a). By simple algebraic

manipulation using (5.3.2), (5.2.2), and the fact that the volume of T}, is half the volume

of T, it follows that

1(Ti(to, t1, t12,t3)) a 20<i<j<3 1% 3 . '
= 2V2 x — : i3y > Y23, 5.3.4
" T) 612, + 613 + 4ld; + 203, + 218, - 15, ~ / (5:34)

Similarly, we obtain
1(Ti(to, t2, trz,83)) 2 V2/30(T). (5.3.5)

Case 2: T} is a subtetrahedron generated by SUB} (see Figure 5.4b). Using (5.3.2),
(5.3.3), and (5.2.2), it {ollows that

n(T(to, t1, 412, tos)) Vi Tocici<a b
= V4 X — - === - . 5.3.6
0T T ey A
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By the triangle inequality,
I§1 < 20183+ B5) < 2008, + 203, + 23y), (5.3.7)

1§y S 2+ 183+ 12 + 1y (5.3.8)
Note that 912, = 12, 4+ 512, /24 1112, /2; if the first two items on the =ight side of this cquality
are replaced by (5.3.7) and (5.3.8), respectively, it follows that the denominator of the right
side of (5.3.6) is < 1103,/2 4+ 113,/2 + 1113,/2 + 1113,/2 + 513, + T133/2. Hence

(T (to, t1, t12, tos)) S 24
7(T) =1

(5.3.9)
Similarly, for the other three subtetrahedra, we obtain the same bound as in (5.3.9).

Case 3: T} is a subtetrahedron generated by SUBZ (see Figure 5.4c). Using similar

techniques as above, we obtain

7(T}(to, o1, toz, t3)) — VIx Locici<a lf
(T) Blgs + 2035 + 203, + 1,

>

: (5.3.10)

{‘/‘—1-
5

since 3l2; < 312, + 313, + 3133 + 31%;. For the other two subtetrahedra in the corners, we

obtain the same bound as in (5.3.10). For the subtetrahedron in the middle, we have

n(Ti(to1, t12, toz, t3)) = VIx Logiciga b > Vi (h.3.11)
7(T) Alfs + Al + 413 — 4 N

Combining (5.3.4), (5.3.5), (5.3.9), (5.3.10), and (5.3.11) yields (5.3.1). O

Theorem 5.7 If TP is a refined tetrahedron of any tetrahedron T in T, produced by QLRS,

then
1(T) 2 en(T), (5.3.12)

where ¢ = V/4/11 =~ 0.1443 .

Proof. If T is of type Sg, then (5.3.12) follows from (5.2.3). Suppose T2 is of type S,, S},
or $2, and T;-"" is the direct parent of T}, n > 1. According to QLRS, T;-"' is produced

by repeatedly applying SUBs to T. By Theorem 5.3,
p(T?™') > 0.59(T). (5.3.13)

By Lemma 5.3,
n(T}) > 2V/4/11 9(T}7). (5.3.14)

SY



Combining (5.3.13) and (5.3.14) yields (5.3.12). O

For any tetrahedron T in 7™, m > 0, we recursively define the subdivision level of T,
denoted by (T), as follows. If T is a tetrahedron of the initial mesh 7, {(T) = 0; otherwise,
((T) = &(Tp) + 3, ((Typ) + 2, or {(T,) + 1if T is a subtetrahedron produced by applying
SUBg, SUB)} or SUBZ, or SUB, to T,, respectively.

Theorem 5.8 For any interior face shared by two adjacent tetrahedra Ty, and Tg in T,

m > 0, gencrated by QuRS, |€(TL) — £(Tr)| < 2, and the upper bound is tight.

Proof. Let F be an interior face shared by two adjacent tetrahedra Ty and Tg in 7™,
m > 0. We first prove by contradiction that if Ty and Tpg are tetrahedra of type Ss,
{(T.) = ((Tg). Let {(TL) = 3p, {(Tr) = 3¢ < 3p, and 0 < r < q. Note that when SUBs
is applied to a tetrahedron, each face of the tetrahedron is subdivided. Therefore, for any
7, the ancestor T, of T, at level 3p — 3r must have a common face with the ancestor Tg
of Tx at level 3¢ — 37. Let r = ¢q. Then ’i‘R is a tetrahedron in the initial mesh, but TL
is a tetrahedron at level 3(p — ¢). These two tetrahedra cannot share a common face, a

contradiction.

Suppose one of the two tetrahedra, Ty say, is not a tetrahedron of type Sg. If Tg is
a tetrahedron of type Sg, then F must be like face totits (or tota2ts) in Figure 5.4a, or a
subface of tott, in Figure 5.4c. In the former case, {(Tgr) = {(TL) — 1. In the latter case,

¢Tr) = ((TL) + 1.

Now suppose T is also not a tetrahedron of type Sg. First, if F is an irregular face,
QTL) = ((TL)+ 1 or ((TL) + 2, and &(Tg) = {(TRr) -1 or {(Tg) + 2, where T and
Tr are T, and Tg’s parents, respectively. So, [((Ty) — ((Tg)| < 1, since {(Tr) = ¢TL)
by the discussion in the first paragraph. Next, if F is a regutar face, the types of Ty, and
Tx can be one of the following pairs (S, S2), (S2, S2), and (S, S3). For the first two
pairs, {(TL) = €(Tg). For the final pair, suppose Tp, is a tetrahedron of type S,, and
Tg is a tetrahedron of type S2. Then the only possible situation is that the parent Tg of
Tx has a common face with the direct grandparent Ty, of Ty. Since ¢(Tr) = €(Tr) + 2,
{(TL) = €(TL) + 3+ 1,and {(TR) = £(TL), it follows that (Tr) = €(Tg) +2. O

Note that if the maximum subdivision level of a tetrahedron in 7% is < 3, then the
maximum subdivision level of a tetrahedron in 7#*1 is < 3(k+1), since each subtetrahedron

of a tetrahedron of type Sg in 7% has subdivision level at most 3k + 3 in 75+!, and each
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subtetrahedron of the parent of a tetrahedron of type Sa, S1, or 53 in 7% has subdivision
level at most 3(k — 1)+ 3 + 2 in T*+1, Sa, by induction on &, the maximum subdivision

level of a tetrahedron in any 7™ is < 3m, m > 0.

5.4 Data structure and algorithmic details

We use data structures similar io those described in Section 4.5. There are no changes for
arrays VC, XTM, and XV(. The BI array in QLRB is not needed. The ounly change
to the fields of TM[i] (where TM[i] records information about the ith tetrahedron) is
that the name of field bi is replaced by si, where si is zero if the tetrahedron belongs to

the original mesh 7 and is not subdivided; otherwise, it is an index of another array S

(subdivision information) which contains some necessary information for the subdivision of

this tetrahedron. The fields of SI[TM[i].st] are nref, p,typc, e f, where nref is an integer
indicating the refinement step in which the ith tetrahedron is refined; p stores the index
of the parent tetrahedron of the ith tetrahedron; type denotes the type (i.e., Sg, Sy, S, or
S2) of the ith tetrahedron; ef is an integer indicating either an edge or a face, depending

on the type of the ith tetrahedron. That is, for a tetrahedron of type Sg, ¢f indicates one

of its base edges for choosing the centre edge of the ith tetrahedron; for a tetrahedron of

type Sz or S2, ¢f indicates a regular face of the ith tetrahedron (tot ty or totats in Figure
5.4a, or a subface of face tot t; in Figure 5.4c), and is used to determine the split edge
tyt1y or toty, in the case of type S, when combined with the record of the sibling of the ith
tetrahedron; ef is not used for a tetrahedron of type S}. TM, V(', S1, XTM, and XV(!

are the basic data structures for our local refinement algorithm.

We still use the temporary hash table EHT to store all edges needing subdivision, i.c.,
an edge with a split point will be inserted into EHT. The two temporary stacks S, and
5S¢ are used to store subdivided edges and tetrahedra, respectively. Each edge ¢ in S, is
associated with a tetrahedron incident on e. Stack S, is used to store tetrahedra needing
subdivision in this step of refinement. Also, the temporary hash table FHT is used to set

fields t,,12,t3,t4 of T M|i] after the subdivision of tetrahedra in 5;.

With the above data structures, we describe an implementation of QLRS. We first de-
termine the possible configuration of each tetrahedron T, which needs refinement, according

to step (3) of QLRS, and then perform the actual subdivision of T , T’s parent, or T’s sub-
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tetrahedra. The following procedure PRESUBDIV is used to determine the configurations

of tetrahedra needing refinement. When we say that an edge has a split point, it means

that the edge is in KT, To determine whether an edge has a split point, EHT must be

searched.

Procedure PRESUBDIV(S,, S;)
# Input: stack S, of regular edges, which need to be subdivided,
#  and tetrahedra associated with these edges.
#Output: stack S, of tetrahedra needing refinement
Set stack S, to be empty
while S, is not empty do
Pop (¢, T) from the top of 9,
for cach tetrahedron T incident on e do
i:= index of T in TM
if not TM|[i].flag then
Push T onto S, and set TM[i].flag to truc
endif
for each regular face F of T with ¢ as an edge of F do
if I has two split points then
Insert the edge e; that does not have a split point into EHT
and push (e;, T) onto S,
endif
endfor
if T is of type Sy (with e = t;t1; or totyy), S, ar S2 then
for each unsplit edge €; of T’s parent do
Insert ¢; into EHT and push (e;, T) onto S,
endfor
else if T is of type Sy with € = t;t3, tots, tot1, or tgty then
€1 = tatz, tity, toty, or toty, respectively
Insert ¢; into EHT and push (e;, T)
onto S, if €1 is an unsplit edge
endif
endfor
endwhile

We now give the following pseudocorle for QLRS.

Algorithm QLRS

# Input: initial conforming mesh 7

# Output: refined conforming mesh 7
m =1
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repeat
Choose a set S5, of tetrahedra from 7
Set stack S. and EHT to be empty
for each T in S, do
if T 1s a tetrahedron of type Sg then
Set the subdivision information of T in an ST record
for each unsplit edge ¢ of T do
Insert ¢ into EHT and push (¢, T) onto 5.
endfor
else _
for each unsplit edge e of T’s parent that is an
edge of a tetrahedron Ty in 7 do
Insert e into EAT and push (e, T;) onto S,
endfor
endif
endfor
REFINEL(T, S., m)
mi:=m+4 1
until no more tetrahedra needed to be refined

Procedure REFINEI(7, S., m)
# Input: conforming mesh 7; stack Se of regular edges needing subdivision,
# and tetrahedra associated with these edges; m, the refinement level
# Output: refined conforming mesh 7
if S, is not empty do
PRESUBDIV(Se, S:)
for each tetrahedron T in S, do
if T is a tetrahedron of type Sg then
Subdivide T using SUBs, 5UB,, SUBJ, or SUB2 according to
the number of split points on T and set cach subtetrahedron
of T to have the same subdivision pattern as T
if T has one split point then
Fill in the neighbor information of any subtetrahedron Ty of T
and a tetrahedron T; that shares a face with Ty but is not in 9,
endif
else
Remove T’s sibling(s); subdivide T’s parent T,
using SUBg, SUB}, or SUB3
if T is of type Sz (with SUB} or SUB3 is applied to T,) or 5% then
Fill in the neighbor information of any subtetrahedron Ty of T,
and a tetrahedron T; that shares a face with Ty but is not in .9,



endif
Subdivide subtetrahedra of T, using SUB, or SUB
if there are a non-zero number of split points in the subtetrahedra
endif
Add new subtetrahedra to the end of TM, update the S7 records of
these new tetrahedra, and add the new vertices to V('
endfor
Update corresponding information in XTM, XV(C
Set hash table FHT to be empty
(A) Scan new tetrahedra to fill out neighbor information using hash table FHT

endif

5.5 Time complexity

Now we analyze the time complexity for one step of refinement, i.e., for procedure REFINE1.
We assume that the table sizes of EHT and FHT are sufficiently large, and good hashing
functions are used (the same hashing functions as in QLRB are uved), so the expected time
complexity of insertion and deletion of an element to EHT and FHT is O(1) (otherwise a
balanced tree data structure with a logarithmic time complexity can be used to get a better
worst case time complexity) [AHU74]. Note that in procedure PRESUBDIV, we only deal
with edges needing subdivision, i.e., all tetrahedra incident on a subdivided edge are pushed
onto .5¢, and for any subdivided edge € and tetrahedron T incident on ¢, the neighbors of T
incident on e can be found in a constant time. So, the time complexity for PRESUBDIV is
O(|Si), where |S,| is the number of tetrahedra in S;, since there are at most 6 subdivided
edges for each tetrahedron. Suppose N is the number of new refined tetrahedra in this
step of refinement. As the time used for subdivision of each tetrahedron in S, is constant
(any tetrahedron of S, or its parent is subdivided into 2 to 20 subtetrahedra), and the
time spent on line (A) of REFINEI is O(N), the expected time complexity of REFINE]1 is
O(|5) + O(N) = O(N).
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5.6 Summary

We have presented a local refinement algorithm based mainly on an 8-subtetrahedron sub-
division, and have shown that the algorithm produces guaranteed-quality meshes in an
expected time complexity that is linearly related to the number of refined tetrahedra in
a refined mesh. The theoretical estimate of the constant ¢ in Theorem 5.7 is better than
the constant in Theorem 4.4 for QLRB. If the degeneration on the shape of tetrahedra
produced by irregular refinement is ignored, QLRS produces meshes with very good quality

by Theorem 5.3. Further comparisons between QLRB and QLRS are given in Section 6.4.

The algorithm presented here is preferable if the mesh in a refined region is relatively
coarse; otherwise, the one described in the previous chapter may be better. It is worth
considering the situation that QLRS is applied to some parts of a refined region while QLRB
is used in other parts. A critical problem is to ensure a conforming mesh with guaranteed-

quality when the expansion of refinement from different parts meet each another.

After obtaining the results in this chapter, we discovered that a similar procedure to
TRANSUB is presented in Ong’s Ph.D. thesis [Ong89]. But instead of using one canonical
tetrahedron as in TRANSUB, a tetrahedron T may be transformed to one of four canonical
tetrahedra in Ong’s procedure, and the centre edges of T and subtetrahedra of T are
controlled by the types of the canonical tetrahedra. No discussion is provided for choosing
centre edges on T and subtetrahedra of T directly without involving affine transformations
as in SUBDIV. The quality of refined tetrahedra is given in terms of ( = 2r;,/d, where
d is the diameter and 7y, is the inradius of a tetrahedron. It is proved in [Ongk9] that
¢(T?¥) 2 0.043 {(T), where T} is any tetrahedron at level n, which means that the shape
of any refined tetrahedron is at least 0.043 times as good as the shape of the original
tetrahedron in terms of (. However, we get a much better bound in Theorem 5.3, which
states that the shape of any refined tetrahedron is at least 0.5 times as good as the shape
of the original tetrahedron in terms of 7. Note that Ong’s method is used in [BEK93],
combined with four types of irregular refinement (i.e., the configurations in Figure 5.4 plus
a case in which a tetrahedron has 2 split points on a single face) at the boundary of a
refined region. But no theoretical and experimental results on the quality of refined meshes
are provided in [BEK93]. Also, implementation details (e.g. algorithmic procedures, data

structures, etc.) and the time complexity are not discussed.



Chapter 6

Performance of the Algorithms

We have implemented algorithms QLRB and QLRS in the C programming language, and
here we report on the quality of tetrahedra in terms of tetrahedron shape measure 7. The
reason for using 7 is because our theoretical results are based on it, and we don’t know
whether Theorems 4.4 and 5.7 hold for other (valid) tetrahedron shape measures. By the
“equivalence” of tetrahedron shape measures as described in Chapter 2, we can expect
similar statistical results based on other tetrahedron shape measures, e.g., radius ratio p,

minimum solid angle 8,,;,, etc. In fact, we did obtain similar results based on p and 8,,;,.

The quantities used to measure the quality at each level of refinement are the number
of tetrahedra NTET in current mesh, the minimum mean ratio 7, (over all tetrahedra),
the average mean ratio 7., and the percentage of tetrahedra whose 7 value is less/greater
than a certain number. The mean ratio 7 (0 < 7 < 1) approaches zero or the maximum
value for a poorly-shaped or well-shaped tetrahedron, respectively. In our experiments, a

tetrahedron with 9 < 0.3 (or 5 > 0.7) is considered poorly-shaped (or well-shaped).

Let NREF denote the number of refinement levels, NTC and NTR denote the number of
tetrahedra chosen for refinement and the number of tetrahedra actually refined at each step
of refinement, respectively. Let CPUT denote the CPU time spent at each step of refinement
in seconds (not including the time in choosing a set of tetrahedra for refinement), and NNT
denote the number of new tetrahedra produced at each step of refinement. Then the ratio
NTR/NTC reflects the expansion of refinement at a refined region, and CPUT/NNT reflects

an empirical time complexity of the algorithms.
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6.1 Test examples

In [RiL92], a local refinement algorithm based on longest edge bisection is presented, and
experimental results are given for five single tetrahedra. We use the first four tetrahedra,
listed in Table 6.1, as our test examples. P1 and P2 are well-shaped tetrahedra; P3 is a
poorly-shaped tetrahedron; P4 is the regular tetrahedron, where V3 and V2 are rounded
to 16 decimal places. We omit the last example in [RiL92], since it is the same as P4 except

that the number of digits after the decimal point in the coordinate is different.

Pl P2 P3 P4

7 = 0.8846 7 = 0.8399 n = 0.2835 n = 1.0000
00 00 0000 00 00{00 00 00!} 00 0.0 0.0
40 2.0 20|40 00 00[05 00 00!2v3 00 0.0
10 50 00|00 40 00|15 50 20| +v3 30 00
05 05 5000 00 40|05 05 50| V3 1.0 22

Table 6.1: Problems 1 to 4

We also provide experimental results for tetrahedral meshes in two polyhedral regions
(one is a convex polyhedron, Figure la in [Joe91a)], see Figure 6.1; the other is a U-shaped
region, Figure 10 in [Joe94], see Figure 6.2). The initial tetrahedral meshes of the two
polyhedral regions are generated by the methods described in [Joe91a, Joe94]. The convex
polyhedron is subdivided into 273 tetrahedra, and has minimum mean ratio 0.6230 after
local transformations [Joe89], which are based on two different triangulations of certain
configurations of five distinct non-coplanar 3-D points, are applied to obtain an improved-
quality mesh with respect to radius ratio p. Similarly, the U-shaped object is subdivided into

466 tetrahedra with minimum mean ratio 0.5580 after local transformations are performed.

For a single tetrahedron, we refine all tetrahedra in a mesh at each step of refinement
as in [RiL92]. For the two tetfahedra.l meshes, a fixed point on each object is chosen as
the center of a sphere; at each step of refinement, we refine any tetrahedron that has at
least one vertex in the sphere, and reduce the radius of the sphere by a factor in the next
refinement. The tests were done on a Sun 4/25 (ELC) workstation running the Sun O/S

4.1.3.
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Figure 6.1: An original mesh of the convex polyhedron.

1= L

Figure 6.2: An original mesh of the U-shaped object.
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6.2 Experimental results for QLRB

We first compare experimental results based on QLRB with those from longest edge bi-
section. The left parts of Tables 6.2 to 6.5 show the results reproduced based on longest
edge bisection with respect to the shape measure 5. The number of tetrahedra at each level
are quite different from those reported in [RiL92}, except in Table 6.2, which is exactly the
same as in [RiL92). The reason for this is because the algorithin based on longest edge
bisection is extremely unstable in terms of the number of tetrahedra produced. Since there
are many tie cases (more than one edge with longest length in subtetrahedra) in the given
examples, different tie-breaking strategies will produce significantly different results. This
phenomenon was also reported in [RiL92], where the number of tetrahedra at level 10 for
Problem 4 is 17478, but if v/3 and v/2 in Table 6.1 are rounded to 2 decimal places (Table V

in [RiL92]), the number of tetrahedra at level 10 is only 3966. Experimental results based

on QLRB for the four problems are given in the right parts of Tables 6.2 to 6.5.

Longest edge bisection QLRB
)] Ui
NREF | NTET  #min Nave <05 >07 | NTET  fmin Yave <05 >07
0 1 0.8846 0.8846  0.00 100.00 1 0.8846 0.8846  0.00 100.00
1 2 0.8425 0.8464  0.00 100.00 2 0.8425 0.8464  0.00 100.00
2 4 0.7306 0.7555  0.00 100.00 4 0.7306 0.7555  0.00 100.00
3 8 0.6819 0.7714 0.00 62.50 8 0.6819 0.7714  0.00  62.50
4 16 0.6669 0.7900 0.00 75.00 16 0.6669 0.7900  0.00  75.00
5 38 0.5709 0.7359 0.00 76.32 32 0.6558 0.7326  0.00  75.00
6 86 0.4792 0.7611 2.33  60.47 64 0.6634 0.7451  0.00 46.88
Table 6.2: Bisection results for }’roblem
Longest edge bisection QLRB
] 7
NREF | NTET  %min Nave <05 207 [ NTET i Nawve <05 207
0 1 0.8399 0.8399 0.00 100.00 1 0.8399 0.8399  0.00 100.00
1 2 0.7326 0.7326 0.00 100.00 2 0.7326 0.7326  0.00 100.00
2 4 0.6667 0.7619 0.00 50.00 4 0.6667 0.7619  0.00  50.00
3 8 0.6574 0.7832 0.00 75.00 8 0.5040 0.7178 0.00  50.00
4 16 0.6350 0.7204 0.00 87.50 16 0.5603 0.6680 0.00 62.50
5 32 0.5455 0.7472 0.00 43.75 32 0.4000 0.6762 18.75  31.25
6 102 0.4582 0.7399 3.92 66.67 64 0.5040 0.6548 0.00 31.25

Table 6.3: Bisection results for Problem 2
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subtetrahedra generated in QLRB is much fewer than from longest edge bisection when
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Longest edge hisection QLRB
7 ]
NREF | NTET  nmin Nawve <02 204 | NTET nin Nave <02 >04
0 1 0.2835 0.2835 0.00 0.00 1 0.2835 0.2835 0.00 0.00
1 2 0.2102 0.2506 0.00 0.00 2 0.2102 0.2506 0.00 0.00
2 4 0.1826 0.2623 25.00 25.00 4 0.1826 0.2623 25.00 25.00

] 8 0.1811 0.2674 25.00 12.50 8 0.1811 0.2400 25.00 0.00
4 19 0.2026 0.2961 0.00 15.79 16 0.2087 0.2443 0.00 0.00
5 61 0.1382 0.3052 16.40 22.95 32 0.1689 0.2582 37.50 25.00
6 192 0.1648 0.3164 16.15 22.40 64 0.1695 0.2372 31.25 0.00

Table 6.4: Bisection results for Problem 3

Longest edge bisection QLRB

/] U)
NREF | NTET  pin Nawe <05 207 | NTET 9min Nave <05 207
1 1.0000 1.0000 0.00 100.00 1 1.0000 1.0000 0.00 100.00

0

I 2 0.7957 0.7957 0.00 100.00 2 0.7957 0.7957  0.00 100.00
2 4 0.6350 0.6838 0.00 50.00 4 0.635G 0.6838 0.00 50.00
3 8 0.5455 0.7030 0.00 25.00 8 0.5455 0.7030  0.00  25.00
4 32 0.4615 0.6791 9.38  50.00 16 0.4877 0.6667 12,50 50.00
5 85 0.4535 0.6858 5.88  40.00 32 0.5603 0.6529 0.00 37.50

6 306 0.4582 0.6850 4.90 45.43 64 0.4286 0.6564 18.75  25.00

Table 6.5: Bisection results for Problem 4

NREF > 6. This indicates in general that the conforming procedure in QLRB converges
much faster than in longest edge bisection. For these specific examples, the number of tetra-
hedra is exactly doubled with the increase of bisection levels in QLRB, but is about tripled
in longest edge bisection. The number of tetrahedra produced by longest edge bisection is
> 10,000 by level 10 or 11, but only about 2000 by QLRB for these examples. We feel that
introducing too many tetrahedra is a main disadvantage of longest edge bisection, since
this increases not only the time spent on refinement, but also the finite element analysis.
Next, the quality of meshes generated by both algorithms is comparable. Observing the
minimum shape measure 7),,;,, at different bisection levels, QLRB obtains better results
for more cases, especially for Problems 1 and 3. However, longest edge bisection produces
bette~ 7). values. It seems that performing longest edge bisection on a poor tetrahedron
tends to improve the shapes of some subtetrahedra (see Problem 3), but at the same time
the shapes of a small portion of subtetrahedra become worse. Third, QLRB in general
creates much fewer number of classes of similar tetrahedra than longest edge bisection from
our experiments. Finally, the constant ¢ in Theorem 4.4 is pessimistic, compared with the
experimental results. It seems that ¢ is at least 0.4, although it is hard to obtain a tight

bound.
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Since the class of a tetrahedron uniquely determines the bisection of the tetrahedron, the

bisection at each step may not be optimal with respect to the tetrahedron shape measure,

Therefore, local transformations can be applied with respect to some criteria, such as locally

improving the minimum tetrahedron shape measure value. The algorithms in [Joe89, Joe03)

can be used to substantially improve the quality of tetrahedra towards an optimal mesh

with respect to 7. To keep the properties in Theorems 4.3 and 4.4, we only apply local

transformations to the final refined mesh, i.e., no refinement is applied to meshes improved

by local transformations. The improvements are significant, especially at some levels 3k, & >

0. The results are provided in Tables 6.6 and 6.7.

Problem 1 Problem 2
7 )
NREF | NTET  %min Nawe <05 >07 | NTET  npn Nawve < 0O 207
0 1 0.8846 0.8846  0.00 100.00 | 0.8399 0.8399  0.00 100.00
1 2 0.8425 0.8464 0.00 100.00 2 0.7326 0.7326  0.00 100.00
2 4 0.7306 0.7555 0.00 100.00 4 0.8571 0.8929  0.00 100.00
3 8 0.8664 0.9068 0.00 100.00 8 0.6872 0.7789  0.00  87.50
4 16 0.6669 0.7900 0.00 75.00 16 0.5603 0.6680 0.00  62.50
5 32 0.6558 0.7326 0.00 75.00 32 0.4000 0.7253 18.75  50.00
6 64 0.8664 0.9124  0.00 100.00 64 0.6872 0.7626 0.00  90.62

Table 6.6:

Improved-quality meshes from QLRB results for Problems | and 2

Problem 3 Problem 4
] ' 1)
NREF | NTET  #min = flave <02 204 | NTET  thnin fave <05 0.7
0 1 0.2835 0.2835 0.00 0.00 1 1.0000 1.0000 0.00 100.00
1 2 0.2102 0.2506 0.00 0.00 2 0.7957 0.7957 0.00 100.00
2 4 0.2026 0.2884 0.00 25.00 4 0.6350 0.6838  0.00 50.00
3 7 0.2088 0.2632 0.00 0.00 8 0.8571 0.9286  0.00 100.00
4 16 0.2087 0.2443 0.00 0.00 16 0.7200 0.7664 0.00 100.00
) 32 0.2026 0.3669 0.00 62.50 32 0.5603 0.6529 0.00 37.50
6 61 0.2088 0.2760 0.00 0.00 64 0.8571 0.9107 0.00 100.00
Table 6.7: Improved-quality meshes from QLRB results for Problems 3 and 4

We now give experimental results based on two tetrahedral meshes. Let IMPR be the

algorithm which

respect to mean

applies local transformations to obtain an improved-quality mesh with

ratio 7. Tables 6.8 and 6.9 give the performance of QLRB and IMPR.

The results seem to confirm that 7),,;, and 7,,. converge asymptotically to a fixed value for

both QLRB and IMPR. Note that, with the increase of bisection level, local transformations

increase the number of tetrahedra. That is because there are many “flat” tetrahedra (one of

vertices of a tetrahedron is near the centroid of its opposite face) after QLRB. This does not
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contradict previous results reported in [Joe93], where the number of tetrahedra in general
decreases after local transformations, since the starting triangulation there is Delaunay or

nearly Delaunay, and may include many “sliver” tetrahedra.

QLRB IMPR
Ul 7
NREF | NTET Nmin Nave <05 Z 0.7 | NTET Mmin Nave < 0.5 2 0.7
0 273  0.6230 0.8185 0.00 92.67 271 0.6230 0.8203 0.00 92.62
1 303 0.4671 0.8058 033 86.14 304 05313 0.8115 0.00 89.47
2 403 0.5064 0.7850 0.00 80.15 399 0.5610 0.8036 0.00 88.72
3 995 0.3185 0.7396 2.31 67.64 1005 0.5231 0.7794 0.00 81.39
4 1082 0.3185 0.7403 2.22 67.19 1095 0.5231 0.7792 0.00 80.37
h 1208 0.2918 0.7331 2.57 64.49 1225 0.5231 0.7745 0.00 77.88
6 1266 0.2918 0.7342 245 64.53 1285 0.5231 0.7730 0.00 77.28
Table 6.8: QLRB and IMPR results for a convex polyhedron
QLRB IMPR
7 7
NREF | NTET  nin Nawe <05 207 NTET  9nin Nawe <05 207
0 466 0.5580 0.7651 0.00 80.47 464 0.5825 0.7664 0.00 80.17
1 499 0.5198 0.7617 0.00 79.36 498 0.5825 0.7637 0.00 79.12
2 601 0.4059 0.7524 0.83 74.71 597 0.5540 0.7662 0.00 78.73
3 784 0.4321 0.7407 1.15 7117 781 0.5644 0.7705 0.00 78.23
4 11568 0.3568 0.7252  3.02 63.30 1158 0.4956 0.7656 0.09 76.51
5 1375 0.3568 0.7231 3.42 6247 1381 0.4956 0.7715 0.07 77.26
6 1435 0.3568 0.7239 3.34 62.58 1443 0.4956 0.7707 0.07 77.41

Table 6.9: QLRB and IMPR results for a U-shaped object

Finally, we discuss the “locality” of algorithm QLRB and the CPU times spent at
each step of refinement. Tables 6.10 and 6.11 list NTC, NTR, NTR/NTC, CPUT, NNT,
CPUT/NNT, and NTET for the two polyhedral regions. At each step of refinement, we
choose either a small number of tetrahedra around a fixed point (Table 6.10) or a rela-
tively large number of tetrahedra around a line segment (Table 6.11) for refinement. The
experimental results show that.the ratio NTR/NTC is bounded above by a small positive
censtant (i.e., NTR does not expand rapidly against NTC), which is what we expect for
“local” refinement. Tables 6.10 and 6.11 also show an approximately linear time complexity

of QLRB with respect to NNT.

Graphical illustrations for the refined meshes of two polyhedral regions based on QLRB
are given in Figures 6.3 to 6.8 at the end of this chapter. For each object, we choose a point
or line segment on the object as a reference for refinement, i.e. a tetrahedron is chosen for

refinement if it has at least one vertex that is within a certain distance from the selected
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point or line segment. Figures 6.3 and 6.4 correspond to the refined meshes in the right
parts of Tables 6.8 and 6.9 with NREF = 4. All refined meshes in the figures are the results
after local transformations are applied, and only boundary triangulations (with backfacing

triangles removed) are shown.

NREF NTC NTR NTR/NTC CPUT NNT CPUT/NNT NTET

Convex 1 8 22 2.75 0.03 52 0.00058 273
Polyhedron 2 31 62 2.00 0.10 162 0.00062 303
3 52 262 5.04 0.48 854 0.00056 403

4 45 63 1.40 0.08 150 0.000563 995

5 31 88 2.75 0.13 214 0.00061 1082

U-shaped 1 17 22 1.29 0.05 55 0.00091 466
Object 2 40 56 1.40 0.10 158 0.00063 499
3 75 106 1.41 0.18 289 0.00062 601

4 120 185 1.54 0.33 559 0.00059 T84

5 104 128 1.23 0.23 345 0.00067 1158

Table 6.10: Expansion of refinement and CPU times around a fixed point for QLRB

NREF NTC NTR NTR/NTC CPUT NNT CPUT/NNT NTET

jonvex 1 45 81 1.80 0.15 214 0.00070 273
Polyhedron 2 94 125 1.33 0.18 309 0.00058 406
3 146 262 1.79 0.48 801 0.00060 590

4 306 1085 3.55 2.55 4023 0.00063 1129

5 623 1020 1.64 1.78 2697 0.00066 4067

U-shaped 1 38 73 1.29 0.15 205 0.00073 466
Object 2 143 287 2.01 0.63 995 0.00063 598
3 415 821 1.98 1.97 3027 0.00065 1306

4 1503 2477 1.65 5.57 7918 0.00070 3512

5 3680 5462 1.48 12.05 16230 0.00074 8953

Table 6.11: Expansion of refinement and CPU times around a line segment for QLRI

6.3 Experimental results for QLRS

Similar tests were done for QLRS on the four single tetrahedra in Table 6.1 and two tetrahe-
dral meshes in Figures 6.1 and 6.2. Tables 6.12 to 6.14 show experimental results based on
QLRS. Again, these results confirm that #,,in and 74, converge asymptotically to a fixed
value for QLRS, and the experimental results indicate that the theoretical ¢stimate of the
constant ¢ in Theorem 5.7 is pessimistic (since we do not have a tight bound). Improved-
quality meshes after application of local transformations are given in Tables 6.15 to 6.17.

Note that there are no changes for Problem 4 and very few changes for Problem 1 after
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local transformations are applied. Overall, the improvements on the quality are not very

significant in terms of 7,,;,,, compared with the improved results for QLRB. This may imply

that QLRS produces tetrahedra of relatively good shape.

Tables 6.18 and 6.19 show the locality of the algorithm and corresponding CPU times
for each refinement. Again, NTR/NTC is bounded above by a small positive constant, and

CPUT and NNT show a roughly linear relationship. Graphical illustrations for the refined

meshes of two polyhedral regions based on QLRS are given in Figures 6.9 to 6.14 at the end

of this chapter. Figures 6.9 and 6.10 correspond to the refined meshes in Table 6.17 with

NREF = 2.
Problem 1 Problem 2
7 7
NREF | NTET  9min Nave <05 >0.7 | NTET  #min Nave <05 207
0 1 0.8846 0.8846 0.00 105.00 ‘ l 0.8399 0.8399 0.00 100.00
1 8 0.8664 0.9069 0.00 100.0:( 8 0.6872 0.7808 0.00 75.00
2 64 0.8664 0.9124 0.00 100.00 64 0.6872 0.7660 0.00 68.75
3 512  0.8664 0.9138 0.00 100.00 | 512  0.6872 0.7623 0.00 67.19
Table 6.12: QLRS results for Problems 1 and 2
Problem 3 Problem 4
n n
NREF | NTET  uin Nave <02 2>04 | NTET 1nnin Nave <05 207
0 1 0.2835 0.2835 0.00 0.00 1 1.0000 1.0000 0.00 100.00
1 8 0.2756 0.2819 0.00  0.00 8 0.8571 0.9286  0.00 100.00
2 64 0.2756 0.2815 0.00  0.00 64 0.8571 0.9107 0.00 100.00
3 512 0.2756 0.2814 0.00 0.00 | 512  0.8571 0.9062 0.00 100.00
Table 6.13: QLRS results for Problems 3 and 4
Convex Polyhedron U-shaped Object
7 U
NREF | NTET  nmin Nave <05 >0.7| NTET  9min Nave <05 207
0 273 0.6230 0.8185 0.00 92.67 466 0.5580 0.7651 0.00 80.47
1 419 0.4265 0.7790 2.63 80.91 588 0.4373 0.7628 1.19 79.25
2 843 0.3729 0.7611  5.10 79.12 931 0.3957 0.7514 3.33 74.33
3 1392 0.3729 0.7616 4.24 78.38 1494 0.3877 0.7430 4.95 73.09
4 1830 03729 0.7611 3.88 77.54 2020 0.3877 0.7378 5.74 72.13

Table 6.14: QLRS results for two polyhedral regions
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Problem 1 Problem 2
) )
NREF | NTET  nmin Nave <05 207 [NTET nin Nave <05 >0.7
0 1 0.8846 0.8846  0.00 100.0u 1 0.8399 0.8399  0.00 100.00
| 8 0.8664 0.9068 0.00 100.00 8 0.6872 0.7789 0.00  87.50
2 64 0.8664 0.9124 0.00 100.00 64 0.6872 0.7626 0.00  90.62
3 512 0.8664 0.9138 0.00 100.00 512 0.6872 0.7581 0.00  94.53
Table 6.15: Improved-quality meshes from QLRS results for Problems | and 2
Problem 3 Problem 4
Ui ]
NREF | NTET  #jmin  flawe <02 >04 | NTET  fmin  flave <05 > 0.7
0 1 0.2835 0.2835 0.00 0.00 1 1.0000 1.0000  0.00 100.00
1 8 0.2756 0.2826  0.00 0.00 8 0.8571 0.9286 0.00 100.00
2 64 0.2756 0.2826  0.00 0.00 64 0.8571  0.9107 0.00 100.00
3 512 0.2756 0.2828 0.00 0.00 512 0.8571 0.9062  0.00 100.00
Table 6.16: Improved-quality meshes from QLRS results for Problems 3 and 4
Convex Polyhedron U-shaped Object,
n "
NREF | NTET  %min Nave <05 20.7|NTET i Nave <05 207
0 271 0.6230 0.8203 0.00 92.62 464 0.5825 0.7664 0.00 R80.17
1 415 0.4297 0.7804 2.41 8241 586 0.55h4 0.7688 0.00 79.86
2 838 0.4297 0.7735 2.15 81.62 929 0.4458 0.7611 0.70  76.21
3 1388 0.4297 0.7710 1.561 80.04 1491 0.4348 0.7536 127 73.91
4 1825 0.4297 0.7700 1.15 79.01 2014 0.4159 0.7478 1.84  72.44

Table 6.17: Improved-quality meshes from QLRS results for two polyhedral regions

NREF NTC NTR NTR/NTC CPUT NNT CPUT/NNT NTET

Convex 1 15 38 2.53 0.08 184 0.00043 273
Polyhedron 2 38 116 3.05 0.27 540 0.00050 119
3 62 121 1.95 0.30 670 0.00045 843

4 47 100 2.13 0.28 h38 0.00052 1392

5 24 54 2.25 0.15 276 0.00054 1830

U-shaped 1 14 26 1.86 0.08 148 0.00054 460
Object 2 39 76 1.95 0.20 419 0.00048 588
3 64 123 1.92 0.33 686 0.00048 931

4 57 116 2.04 0.33 642 0.00051 1494

5 4] 87 2.12 0.25 464 0.00054 2020

Table 6.18: Expansion of refinement and CPU times around a fixed point for QLRS
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NREF NTC NTR NTR/NTC CPUT NNT CPUT/NNT NTET

Convex 1 45 114 2.53 0.25 568 0.00044 273
Polyhedron 2 92 247 2.68 0.58 1182 0.00049 727
3 182 517 2.84 1.23 2406 0.00051 1662

4 350 936 2.67 2.55 4446 0.00057 3551

5 686 1832 2.67 5.17 8702 0.00059 7061

U-shaped 1 38 107 2.82 0.23 498 0.00046 466
Object 2 146 407 2.79 1.10 2069 0.00053 857
3 348 1039 2.99 2.72 4884 0.00056 2519

4 508 1334 2.63 3.67 6624 0.00055 6364

H 810 2209 2.73 6.40 10893 0.00059 11654

Table 6.19: Expansion of refinement and CPU times around a line segment for QLRS

6.4 Summary

Experimental results in Sections 6.2 and 6.3 demonstrate a very high quality performance
of our local refinement algorithms for the test examples, i.e. good quality of refined meshes,
locality of the algorithms, and empirical linear time complexity. The graphical illustrations
for two tetrahedral meshes further show the locality of the algorithms. The degeneration
of §min in any refined mesh is never greater than 0.4 for all the test examples. Possible
improvements on the constants of Theorems 4.4 and 5.7 may help us to explain the high

quality of refined meshes produced by our algorithms.

Comparing the results produced by QLRB at NREF = 6 and QLRS at NREF = 2,
we have following comments. First, QLRS produces refined meshes with better quality
than QLRB in terms of #,,;, and 74, for all the test examples. However, QLRB has the
advantage of providing more flexibility for choosing the levels of refinement, which is useful
for adaptive finite element analysis. Secondly, after local transformations are applied to
meshes produced by QLRB and QLRS for Problems 1 to 4, the resulting meshes have very
similar quality in terms of 7,,:,, and 744, €.g. the corresponding meshes for Problems 1, 2,
and 4 have the exactly same 1), and 74, values (see Tables 6.6, 6.7, 6.15, and 6.16). This
observation further confirms that the use of “local transformations” is a successful tool in

improving the quality of tetrahedra in a mesh.

In both algorithms, operations on hash tables EHT and FHT take a large part of com-
putation times. Experimental results show that the hash functions used in our algorithms
are satisfactory. That is, the time spent on insertion and deletion of an element to these

hash tables are a small constant when the sizes of tables are sufficiently large. Table 6.20
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reports a practical example for QLRB and QLRS, where ESIZE, TNE (FSIZE, TNF) are
the size of the edge (face) hash table and the total number of edges (faces) in the hash
table, respectively, i.e., TNE (TNF) edges (faces) are stored in ESIZE (ISIZE) buckets of
the edge (face) hash table; NB denotes the number of buckets in which the number of edges
(faces) is NEF, and the corresponding percentage of these buckets is denoted by FRE. For
this test example, when NEF is about TNE/ESIZE (TNF/FSIZE), NB and FRE achicve
the maximum values. The average unumber of edge (face) records compared when an edge
(a face) is searched in the hash table is 1.99 (1.88) for QLRB, and 2.56 (3.32) for QLRS, re-
spectively. Note that when EHT (FHT) is organized as a balanced tree data structure, the
average search length for each element is about (log, TNE)/2 = 5.51 ((log, TNF)/2 = 5.37)
for QLRB, and 5.37 (7.25) for QLRS. Therefore, the hash functions used in our algorithms

provide a very satisfactory performance.

Number QLRB QLRS
of edges EHT FHT EHT FHT
or faces | ESIZE = 1009 | FSIZE = 1009 | ESIZE = 521 | FSIZE = 4993
TNE = 2074 TNF = 1733 | TNE = 1703 | TNF = 23110
NEF NB FRE | NB FRE | NB FRE [ NB FRE
0 123 12.19 200 19.82 | 15 2.88 49 0.98
1 251 24.88 280 27.75 | 55 10.56 260 5.21
2 303 30.03 279 27.65 | 114 21.88 499 9.99
3 178 17.64 148 14.67 | 120 23.03 765 15.32
4 111 11.00 69 6.84 | 101 19.39 953 19.09
5 25 248 25 248 | 64 12.28 881 17.64
6 14 1.39 6 0.59 | 37 7.10 680 13.62
7 3 0.30 2 0.20 9 1.73 412 8.25
8 0 0.00 4 0.77 251 5.03
9 1 0.10 1 0.19 132 2.64
10 1 0.19 65 1.30
11 30 0.60
12 1 0.22
13 3 6.06
14 | 0.02
15 1 0.02

Table 6.20: Statistical results for hash tables

Finally, we point out that if local transformations are performed at each step of refine-
ment, there is no significant improvement on the quality of tetrahedra in the final mesh,
compared with the method described in this chapter (i.e., perform local refinements to some
levels, then use local transformations on the final mesh only once), and at the same time
the number of tetrahedra in the final mesh increases substantially. This may be because

applying local transformations at each step of refinement destroys the property stated in
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Theorems 4.3 and 5.6, and in general introduces more classes of similar tetrahedra than in

QLRB and QLRS.
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Figure 6.3: A refined mesh produced by QLRB and IMPR for 4 levels of bisection around
a corner of the convex polyhedron.

Figure 6.4: A refined mesh produced by QLRB and IMPR for 4 levels of bisection around
a corner of the U-shaped object.
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Figure 6.5: A refined mesh produced by QLRB and IMPR for 4 Jevels of bisection around
the midpoint of an edge of the convex polyhedron.

N

Figure 6.6: A refined mesh produced by QLRB and IMPR for 4 levels of bisection around
a point of the U-shaped object.
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Figure 6.7: A refined mesh produced by QLRB and IMPR for 4 levels of bisection around
a line segment of the convex polyhedron.

Ny

Figure 6.8: A refined mesh produced by QLRB and IMPR for 4 levels of bisection around
a line segment of the U-shaped object.




112

Figure 6.9: A refined mesh produced by QLRS and IMPR for 2 levels of subdivision around
a corner of the convex polyhedron.

Figure 6.10: A refined mesh produced by QLRS and IMPR for 2 levels of subdivision
around a corner of the U-shaped object.
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Figure 6.11: A refined mesh produced by QLRS and IMPR for 2 levels of subdivision
around the midpoint of an edge of the convex polyhedron.

Figure 6.12: A refined mesh produced by QLRS and IMPR for 2 levels of subdivision
around a point of the U-shaped object.
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Figure 6.13: A refined mesh produced by QLRS and IMPR for 2 levels of subdivision
around a line segment of the convex polyhedron.

Figure 6.14: A refined mesh produced by QLRS and IMPR for 2 levels of subdivision
around a line segment of the U-shaped object.



Chapter 7

Concluding Remarks

7.1

Summary

The main contributions of the thesis are as follows.

1.

A novel tetrahedron shape measure, the mean ratio 7, based on an affine transforma-
tion from the regular tetrahedron, is introduced, and used in analyzing the quality
of meshes produced by our local mesh refinement algorithms. The formulae for com-
puting three tetrahedron shape measures (radius ratio, minimum solid angle, and
mean ratio) are derived, and the relationships among the measures have heen stud-
ied. We conclude that the three shape measures are “equivalent” in the sense that
they attain a maximum value only for the regular tetrahedron, and approach zero for
a poorly-shaped tetrahedron. Consequently, any of the three measures can he used
for evaluating the quality of tetrahedra in a finite element mesh. However, one must
be aware of the different distributions of their values when reporting and interpreting

statistics using different shape measures.

A bisection procedure for repeated refinement of a single tetrahcdron has been pre-
sented, in which the quality of refined tetrahedra is ensured. Then a 3-D mesh refine-
ment algorithm based mainly on the bisection procedure is designed, with emphasis
on a fast algorithm for producing a guaranteed-quality conforming mesh. In particu-
lar, we have shown that there are no arbitrarily poorly-shaped tetrahedra generated

by the algorithm in terms of the shape measure 7. As far as we know, this is the

115
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first theoretically guaranteed-quality local refinement algorithm based on bisection
for a tetrahedral mesh. With properly designed data structures, an implementation
of the algorithm is provided with an expected time complexity that is linearly related
to the number of refined tetrahedra in a refined mesh. We have also proved that
the refinement on a refined region can be smoothly extended to their adjacent sub-
regions. Numerical results combined with graphical illustrations have demonstrated
a very good “locality” of the algorithm (i.e. the ratio of the number of tetrahedra
actually refined to the number of tetrahedra chosen for refinement is bounded above

by a small positive constaht).

3. Given a coarse mesh to start with, we have successfully extended a 2-D) regular re-
finement technique to 3-D. With the help of mean ratio 7, we have been able to prove
that the 3-D regular refinement produces guaranteed-quality meshes. In particular,
repeated refinement on a tetrahedron by the regular refinement produces refined tetra-
hedra with the shape no worse than a half of the shape of the original tetrahedron
in terms of the mean ratio 7. Accordingly, a 3-D local refinement algorithm based
mainly on regular refinement has been developed and implemented. The algorithm
has very similar properties to the one based on bisection, such as guaranteed-quality
meshes, expecied linear time complexity, mesh smoothness, and the locality of the

algorithm.

7.2 Further research problems

Several problems need to be further studied.

1. We have reported the quality of meshes generated by our local refinement algorithms
in terms of the shape of refined tetrahedra. One research topic is to integrate our
mesh refinement techniques into adaptive finite element analysis, like in [Mit89), to
verify how efficient and satisfactory the algorithms are. Hopefully, the conclusion

made in [Mit89] for the 2-D case can be extended to 3-D.

2. As mentioned in Section 1.2.1, mesh refinement based on local refinement approaches
does not take into consideration the boundary information of the original region. Re-
search is needed to extend our mesh refinement techniques for curved surface bound-

aries. A possible method is to pull some points on a planar boundary face of an
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existing mesh to a corresponding curved surface boundary of the original region after

some levels of refinement.

3. Derefinement, an inverse process of refinement, may be needed in the adaptive mesh

refinement and the multigrid method [Riv89]. Since our data structures record the
whole process of refinement, derefinement can be done as follows. In algorithm QLRB
or QLRS, suppose a set of elements in 7™ needs derefinement. Let 1 < r < m be the
minimum integer such that no derefined element belongs to meshes prior to 7™,
We first recover mesh 777, and then rechoose sets Sy,—r, Smcrd1s+ oy Sm=1 (Where
S; is a set of tetrahedra chosen in 7* for refinement) such that derefincd elements
(or most of them) do not exist in the new refined mesh 7™ when QLRB or QLRS
is reapplied with the new S;, m —r < i < m — 1. Another possible method for
derefinement is to recursively replace each element that is either a derefined element
or causes non-conformity with its neighbors by its parent until a conforming mesh is

obtained.

. The possibility of developing a mesh generator based on our mesh refinement tech-
niques would be an interesting research topic. A possible approach would be to first
construct an initial coarse mesh that covers the region of interest such that the bound-
ary of the mesh is not necessary the same as the boundary of the original region. If the
initial coarse mesh can somehow be constructed such that it extracts most geometric
information on the shape of the original region and contains relatively well-shaped
elements (e.g. using a triangulation of the convex hull of the original region in some
cases), then we may expect to produce a satisfactory mesh by combining our mesh

refinement techniques with the solution of dealing with boundary problems.

"~
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Appendix A

Mean Ratio in n-Dimensional Space

In this appendix, we generalize the mean ratio and its formula to arbitrary dimensions. Let
T he any n-dimensional simplex, and R be a regular n-dimensional simplex. The mean

7(T) = n Yz Ai (A.1)

n .
i=1 ’\1

where A;, 1 < i < n, are the eigenvalues of A(R,T) = MT(R, T)M(R,T), and M(R,T) is

a matrix involved in an affine transformation from R to T.

ratio 7)(T) is defined as

Theorem A.1 For any n-dimensional simplex T,

_n(n+ 1)(r=1/n(ypl)2/n

z 2
0<i<i<n iy

]

n(T)

where v is the volume of T and the l;; are the lengths of the edges of T. Furthermore 1(T)

is independent of the ordering of vertices of T, R and of the vertex coordinates of R.

Proof. Suppose the vertex coorclinates of R arerg = (a/v2,0,...,0)T,r; = (0, a/V2,..., O)T,
oo oy = (0,0,...,0,a/v2)7, 1, = (am/V2, am/V2,...,am//2)T, where a is the length
of any edge of R and m = (14 +/n + 1)/n. Let T be any n-dimensional simplex having the

same volume as R. Let T = (t; — to,...,t, — tg) and R = (r; — ro,...,ry, — rg). Then

T
a | —e m-1
R=— , A.2)
V2 [ I,_.1 me ] (
. n ? T
RV = _\{_Z [ —717377‘3 Fia - :z:Flee :I . (A 3)
1 1T )
‘1 &w 7aTTe
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where e = (1,1,...,1)T is an (n — 1)-vector and /,,_; is the (n — 1) by (n — 1) identity

matrix. Let di; = (t; — t;)T(t; - t;),0 < i < j < n. Then

do (dor + doz — d12)/2 ... (dor + dop — d1n)/2
77T < (do1 + do-z' - d13)/2 dfm vor (do2 + flmf — dp,)/2 (A)
| (dOI + dOn - dln)/2 (d02 + dOn - (1‘211)/2 ces don i
Let

T t
TTT = ,
tT r

where T" is an (n — 1) by (n — 1) submatrix, t is an (n — 1)-vector, and 7 is a scalar.
Suppose r; is transformed to t; by M(R,T). Then M(R,T) = TR, From (A.2), (A.3),
and A(R,T) = MT(R, T)M(R,T) = (R-1)TTTTR"?, we obtain

ARD =2 * (A5)
a # A
where
m o, M ] 1 m . .
= T'e -~ t) - t , AL
Y = (\/ﬁ+1 R ey ) oo ivetaET (A.6)
A = Tyt ~ = eeT)[T (et ~ —2—eeT) + —o—te]
vn+1 v+l v+l
1 T m T 1 T
—_—t' ([, - —= , AT
+\/7z+1e[ (fnmt \/'n+1ee )-I-\/n+l7-e ] ( )

and # denotes a vector which is irrelevant.

Let z;5, 1 < i, j < n, denote the elements of TTT. Then z;; = zj; since TTT is a
symmetric matrix. Note that the trace of the sum of "o matrices is equal to the sum of

the trace of each matrix and the trace of a matrix is equal to the trace of the transpose of



the matrix. By (A.6), (A.7), and simple algebraic manipulation,

2 n-1n-~1

’Ill 2m Tan
n+ nFl ZZ}‘“J T n+1 ;zm+ n+ 1’

i=1 j=
' o, 2m(n — 1), =3
tT(l.CC(A )= + T'rm + ; i+ (\/—L_-i-_— nt 1 ); Tin
m?(n—1) om
H= T — )'}_:;.J

Thus,
. l n
a+trace(A) = D 1)[(n+ 1) E Ti; — z @)

i=1 1<4, j<n
From (A.4),
n
R DA D
1<1, j<n 1=1 1<i<ji<n

and
n n
S = o dos
1=1 i=1

Combining (A.5), (A.8), (A.9), and (A.10) yields

Rl o

Z Ai = trace( A(R, T)):

1<i<n 0<i<j<n

Let v be the volume of T. Since R and T have the same volume,

\/‘ET n
n! (\/—)

v =
and det(M(R,T)) = 1. So

II X =det(AR,T)) = 1.
1<i<n

Combining (A.1), (A.11), (A.12), (A.13) yields

? (T) _n Y def(A(R,T)) _ 7l(7l + 1)(11_1)/"(’072,!)2/"
)= trace(A(R,T)) > o<ici<n lizj )

where the /;; are the lengths of edges of T.

(a+tracc(A)) al(n+1 Z dij.

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

Using an argument similar to the proof of Theorem 2.4, it can be shown that 7(T) is

independent of the ordering of vertices of T, R and of the vertex coordinates of R. O



Appendix B

Delaunay Property in SUBDIV

Let T be any tetrahedron. An infinite sequence of tetrahedral meshes produced by SUBDIV
is denoted by 7° = T, 7!, 72, ..., where 7" = {T%, 1 < i < 8"} and the centre edge
of T can be any of the three choices as in step (1) of SUBDIV. The main purpose of this
appendix is to prove that there exists a centre edge of T such that 7", n > 0, is a Delaunay
triangulation when all face angles of T are < 90°, where a face angle of a tetrahedron refers
to an interior angle of a triangular face of the tetrahedron. This property indicates that
a guaranteed-quality Delaunay triangulation is produced by SUBDIV under the face angle
condition of the initial tetrahedron, while a Delaunay triangulation may in general contain

some poorly-shaped tetrahedra.

We first state some well known properties of a Delaunay triangalation in 2-1) and 3-D.

P1. A triangulation 7 of a set V of points in 2-D (3-D) is a Delaunay triangnlation ifl the
interior of the circumcircle (circumsphere) of every triangle (tetrahedron) of 7 does

not contain any point of V.

P2. A 2-D (3-D) triangulation 7 is a Delaunay triangulation iff every interior edge (face)
of T is locally optimal, where an interior edge (face) shared by two adjacent triangles
(tetrahedra) T; and T, is called locally optimal if the interior of the circumcircle

(circumsphere) of Ty does not contain any vertex of Ty [Law86, Joe91b].

P3. Given a set V = {v;,v2,...,vn} of points in 2-D, an edge v;v; exists in a Delaunay
triangulation of V iff there exists a point v such that the interior of the circle centerad

at v and passing through »; and v; does not contain any point of V [LeS81].
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tu 1

Figure B.1: Iustration for the proof of Lemma B.1; tot;t2ts is a parallelogram.

The following lemimas are needed in Theorem B.1.

Lemma B.1 A triangulation produced by connecting two non-adjacent points to, t3 of a

parallelogram totitats is a Delaunay triangulation iff /tatoty or Ltitatz is < 90° (see

Figure B.1).

Proof. Note that the interior of the circle with diameter t;t3 does not contain to and

t, iff Ztatot; and Lt tats are < 90°. Combined with Property P3, it follows that the

configuration of Figure B.1 is a Delaunay triangulation iff Ztatot; or Ltttz is < 90°. O

ti3
mj my
tos
mg
ms
to2

(0)

Figure B.2: (a) Illustration for the proof of Lemmas B.2, B.3, B.4, and B.5.

(b) A rotated and enlarged version of T}(to1,t13, %03, toz) for the proof of Lemma B.3.

Lemma B.2 7! is a 3-D Delaunay triangulation iff every planar triangulation of T*

Jormed by the union of triangles lying on a plane is a 2-D Delaunay triangulation.

Proof. Suppose 7! is a Delaunay triangulation, i.e. the interior of the circumisphere of any

tetrahedron in 7! does not contain any point of 71, If a 2-D triangulation S on a plane
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is not a Delaunay triangulation, then there exists a triangle A of § such that the iuterior
of the circumcircle of A contains a vertex p of S. It follows that the circumsphere O of a
tetrahedron incident on A must contain p (since the circumcircle of A is the intersection

of plane containing § and sphere O), a contradiction of Property P1.

Now we suppose each planar triangulation in 7! is a 2-D Delaunay triangulation and
the centre edge of T is toat13 (see Figure B.2a). Since toaty2 || tot1 || toatia, toatos || tats ||
ti2t13, tortia || tots || toztas, and toitez || tity || tiates, quadrilaterals toptyatistos and
toitistaatos are parallelograms. Table B.1 lists every interior face of 71, the two adjacent
tetrahedra incident on each interior face, and the four vertices of a planar triangulation.
Note that the four vertices associated with each interior face in the last column of Table
B.1 form a parallelogram in order. It is straightforward to verify that each interior face in
7! is locally optimal due to the corresponding 2-D Delaunay triangulation formed by the
parallelogram in the last column of Table B.1. By Property P2, the lemma is established.

|

Interior face Two adjacent tetrahedra Vertices on a plane
tortoztos T} (to, to1, toz, tos), Ty(to1, t13, tos, toa) to1, t13, tos, to
toitiats Th(tor, t1, t12, t13), Ti(to1, t12, t1s, toz) toi, ti, ti2, toz
tozti2tes T1(toz, t12, t2, t23), TH(t2a, toz, tr3, t12) tiz, ta, tug, tiy
toatistas T (tos, t13, t2a, ta), T§(t2s, too, t13, tos) tos, toy, tes, ts
toatiatiz | Ti(tor, t12, t1a, toz), TH(tas, toz, t1a, t12) | toz, tor, tia, tes
tostoatis | T§(tor, t13, tos, toz), Ta(t2a, toz, t13,tos) | tor tor, tia, tog
tortiztos | Ti(tor, t13, tos, toz), Th(tor, t12, t13,to2) | to: 12, ti1s, tos
tootiatas | Th(tes, toa, t13, t12), Th(t2s, toz, t13, tos) | toz, tiz, tis, tos

Table B.1: Information associated with each interior face of 7!

Lemma B.3 If 7! is a Delaunay triangulation, so is S;, where S; is a mesh produced by
3 J

applying SUBg to any T}, 1 < j < 8.

Proof. Suppose T}, 1 < j < 4, is a tetrahedron at one of the four corners in 7'. It is
obvious that §;,1 < j < 4, is a Delaunay triangulation since T} is similar to T, the centre
edge of T;- has the same subdivision pattern as T, and 7' is a Delaunay triangulation.
Suppose the centre edge of T is tgzt13 (see Figure B.2a). We prove that mesh Ss produced
from T}(to1,t13, tos, toz) is a Delaunay triangulation (see Figure B.2b). By Lemmas B.1
and B.2, it suffices to prove that every face angle in Ss, which is opposite a diagonal edge
of a parallelogram formed from two adjacent triangles, is < 90°. Since 7! is a Delaunay

triangulation, all face angles of T, Ztozte1t13, and Ztgatostis are < 90° by Lemmas B.1 and
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B.2. Note that Atg testiz and Atgytoztos are similar to Atgtyts and Atytats, respectively.
We only need to prove that Ztgitoatis, Ltoatiator, Ltoatozths, Ltostiatoz, Lmimamy, and
/mymgm; are < 90°, where m;, m;, m3, and m4 are the midpoints of to1tos, toztis,
tortis, and toatya, respectively. Let l;; = |t;—t;], i < j. By the fact that the angle between

two vectors is < 90° iff the inner product of the two vectors is > 0, we have

I2/4+ (t1 — t2) - (ta — to)/4

B2/4 4 (t1 = t2) - (tz = t2)/4 — (t1 — t2) - (to - t2)/4
12/4 - (t1 — t2) - (to — t2)/4

13,/4 = (13, + 15, — 13,)/8

(B2 +15 - 15)/8 2 0,

(tor — toz) - (t13 — to2)

[ AV |

since I2, + 13, — 13, = 2(t; —t2) - (to—t2) and 13, + 13 — 1%, = 2(t2 —t1) - (to—t1) > 0. Thus
Ltgrtoatis < 90°. Similarly Ztoptistor, Ltostoztis, and Ztostistoy are each < 90°. Note
that (my — m3) - (mgz — m3) = (toz — t13) - (toz — to1)/4 = (te — tor) - (toz — to1)/4 2 0,
since Ltotgrtoz = Ltotity < 90°. Thus Zmymzm; < 90°, and similarly Zmymsm; < 90°.

So, Ss is a Delaunay triangulation.

Similarly, it can be proved that §;, 6 < j < 8, is a Delaunay triangulation. O

Lemma B.4 If all face angles of T are < 90°, there exists a centre edge of T such that T 1

is a Delaunay triangulation.

Proof. We choose the centre edge of T to be the shortest edge among to1t23, toztis,
and tostiy, say toptiz (see Figure B.2a). Then Ztoytoitia and Ltoytoestiz are < 90°,
since quadrilaterals toyt12t13tos and to1t13t23t02 are parallelograms, and |tostia| < [toitas,

|toatis| < [toatiz]. By Lemmas B.1 and B.2, 7! is a Delaunay triangulation. O

Lemma B.5 Let T}(so,s1,52,53) and T3(so, s1,52.54) be two adjacent tetrahedra in 7", n >
1. Then T} and T3 share one of their base edges, say ss3, on their common face, and

quadrilateral sys3s84 forms a parallelogram (see Figure B.3a).

Proof. Suppose the centre edge of T is topti3. Note that an edge connecting the first and
third vertices in the last column of Table B.1 is one common base edge of two adjacent
tetrahedra incident on the corresponding interior face in the first column, and the four

vertices in the last column form a parallegram in order. It can be easily verified that the
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S Sp

S4

(¢)

Figure B.3: IDlustration for the proof of Lemma B.5; sys4s28, is a parallelogram, and
sij = (si + 8;)/2, i< j.

lemma holds for 7! by Table B.1 (see Figure B.2a). Now we suppose two adjacent tetrahedra
T1(s0, 51,82, 83) and Ty(so,s1,52,54) have the configuration of Figure B.3a, where s;s; is
their common base edge and s;sys;s, is a parallelogram. To prove the lemma, it suffices
to prove that, after SUBg is applied to T; and T;, any two adjacent tetrahedra incident
on a subface of face sgs;s; have the configuration as stated in the lemma. Note that
s12803 and sy2804 are the centre edges of Ty and T; in procedure SUBDIV (see Figure
B.3b and Section 5.2), since sysy is one of their base edges. Thus, sg1sg2 is a base edge of
T} (S0, So1,So2, S03)s S1(S0, 501, 502, S04)s T3(S01,512, 502, 503), and S(so1, 812,802, 804). Since
s03S02 || S253, So01504 || S154, 501503 || 8153, and sp2804 || 5284, quadrilateral sg;8¢3802804 is
a parallelogram. Thus, tetrahedron pairs (T}, S}) and (T}, S}) have the configuration of
Figure B.3a. It can be easily verified that the lemma holds for the two adjacent tetrahedra
T1(s02, 512, S2,523) and S}(sez, 812, 52, 524) from Figure B.3c where quadrilateral s;s;3812824

is a parallelogram; the final case of face sp;s1s;; is similar. O

Now we give the main result of this appendix.

Theorem B.1 If all face angles of T are < 90°, there czists a centre edge of T such that

all the T*, n > 1, are Delaunay triangulations.

Proof. By Lemma B.4, we can choose a centre edge of T such that 7' is a Delaunay
triangulation. Repeatedly using Lemmas B.3, B.2, and B.1, it follows that any face angle

of a tetrahedron in 7%, n > 0, is < 90°.

Suppose F' is an interior face shared by T}(so,s,82,83) and T3(sg,81,82,84) in T".
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By Lemma B.5, T} and T} must have the configuration of Figure B.3a. Note that the
triangulation of parallelogram s;s3s;sy is a 2-D Delaunay triangulation due to £sys3s; <
90°. Thus, F is locally optimal by an argument similar to the proof of Lemma B.2. So,

T" is a Delaunay triangulation by Property P2, since every interior face in 7" is locally

optimal. O
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