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Abstract

Crack initiation and propagation as well as abrupt occurrence of twin-

ning are challenging fracture problems where the transient phase-field

approach is proven to be useful. Early-stage twinning growth and

interactions are in focus herein for a magnesium single crystal at

the nanometer length-scale. We demonstrate herein a basic method-

ology in order to determine the mobility parameter that steers the

kinetics of phase-field propagation. The concept is to use already exist-

ing molecular dynamics simulations and analytical solutions in order

to set the mobility parameter correctly. In this way, we exercise the

model for gaining new insights into growth of twin morphologies,

temporally-evolving spatial distribution of the shear stress field in the

vicinity of the nanotwin, multi-twin, and twin-defect interactions. Over-

all, this research addresses gaps in our fundamental understanding of

twin growth, while providing motivation for future discoveries in twin

evolution and their e↵ect on next-generation material performance.
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1 Introduction

Developing next-generation materials with controlled twinning behaviors o↵ers
promising opportunities for improved mechanical properties [1, 2] and perfor-
mance in engineering applications (e.g., gas turbine engines [3] and lightweight
automotive structures [4]). Among materials that exhibit twinning [5–8], mag-
nesium [9–12] is an example of a light-weight metal where slip and twinning, as
the two main crystallographic mechanisms, play a decisive role in its mechan-
ical response; however, twinning is favorable on pyramidal {1 0 1 2} h1 0 1 1i
systems at room temperature [13]. In magnesium, single twinning occurs
through contraction [14] and extension strains [15] along the c-axis [16]. Recent
twinning studies have focused on observations of asymmetric twin growth due
to heterogeneous grain deformation in the vicinity of the twin [17, 18]. We
understand that interaction of twin boundaries with other defects (i.e., voids
and self-interstitials) increases the likelihood for void nucleation, cracking, and
premature failure, leading to degradation of material performance and reduc-
tion of material lifetime [19, 20]. Recent e↵orts have also been made to model
the twin local stress accurately by means of neighboring grains to accommodate
the transformation [21]. In engineering applications, there is a broad interest
in incorporating magnesium in high strain-rate applications (e.g., aerospace
[22]), where twin growth and evolution limits the mechanical performance [23].
However, knowledge gaps in understanding twin growth [24], thickening [25],
and interactions [26] need to be addressed before the adoption of magnesium-
based alloys into these applications; these are studied herein for a single crystal
Mg material system.

Ample experimental measurements exist on time-resolved twin evolution
in magnesium [27]. In situ data is limited e↵ected by the limitations in avail-
able diagnostics to capture growth and evolution behaviors at su�cient length
and time scales [28]. To this end, atomistic simulations have been widely
adopted to probe e↵ects such as atomic shu✏ing mechanisms for propagation
of twins in magnesium [29], disconnections and other defects associated with
the twin interface [30], and reaction of lattice dislocations with twin bound-
aries [31]. While new understandings have been gained to accurately model
plastic deformation and fracture in magnesium [32, 33], atomistic simulations
are limited in their ability to simulate twinning behaviors at relevant length
and time scales needed for practical implementations in engineering appli-
cations. Challenges also exist in molecular dynamic approaches in applying
characterization algorithms (e.g., centrosymmetry parameter [34] and bond
angle analysis [35]) to interpret post-deformation crystal structure defect types
(e.g., twinning) [36]. Continuum mechanics modeling utilizing crystal plasticity
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theory is yet another modeling approach for predicting the twinning and de-
twinning response in materials with hexagonal close-packed crystal structures
[37–39]. However, crystal plasticity modeling has di�culties to capture the
twinning process correctly due to treating the twinning deformation as a uni-
directional shear deformation mode [40]. Additionally, the conventional crystal
plasticity model is unable to investigate the e↵ect of twin microstructure on
the mechanical behavior of magnesium at the nanometer scale [41]. Overcom-
ing such limitations, we model herein the twinning process by a phase-field
approach where the mobility parameter is determined by an inverse analy-
sis. Such a computational implementation allows us to unravel time-evolved
twinning behavior in magnesium.

For the morphological evolution of twins, the mesoscale phase-field model
[42–47] has been extensively used to study the nucleation [48], growth [49],
and propagation of twinning [50]. Most recent computational approaches to
phase field equations for studying deformation twinning in magnesium at the
microscale were based on the Fourier spectral method [50–52]. However, such
an approach is applicable to cases involving periodic boundary conditions and
for morphologies and microstructures dominated by long-range elastic inter-
actions [53]. Also, spectral method is mostly used for solving linear problems
[54]. In [52, 55, 56], the proposed phase-field simulations for deformation twin-
ning and dislocation induced plasticity in hexagonal closed-pack materials were
formulated on small strain theory; still, the twin evolution is usually accom-
panied by large interface orientation and large shear deformations [57] even
under small strains [58]. Thus, coupling between twin evolution and fracture is
of importance to achieve high accuracy in the numerical solution. In terms of
validating the phase-field results of transmission mechanisms of deformation
twins, atomistic simulations (e.g., molecular dynamics simulations [50, 55] and
density functional theory [52]) and experimental results [51, 59] are the most
widely used. Some drawbacks to these validations exist such as

• discrepancies of the peak stress value from the simulation and experimental
data [51],

• qualitative comparison of distribution of order parameter using the isotropic
gradient energy parameter [52, 55, 56],

• adopting empirically determined large non-physical values for the phase-
field parameters (e.g., twin-twin interfacial energy, initial twin nucleus, and
energy barrier heights between the matrix and the twinning [50, 51]), and

• validating at the di↵erent length-scales [50, 60].

Hence, the application of their model is somehow limited for studying the defor-
mation mechanisms of Mg. The development of nanoscale phase-field models
is therefore required and all the mentioned shortcomings are addressed in this
work.

Building on these past works, this current article utilizes a monolithically-
solved finite element method for solving an advanced physics-based phase-field
approach to study the nanoscale growth of existing twins in anisotropic single
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crystal magnesium. We follow [61] for modeling the twinning interface prop-
agation kinetics, which is important for the realistic description of twinning
deformation. The model sheds light on the growth and evolving of twinning
embryo.

A finite size sample with a hole is considered for studying the interactions
of twin with defects, without the need of periodic boundaries. we implement
nonlinear elasticity coupled to Ginzburg–Landau equations for order parame-
ters. By using a highly nonlinear phase-field approach, we model anisotropic
surface energy allowing to simulate large deformation of defect-free volumes at
the nanoscale. Motivated by the literature [62–66], we use a mobility param-
eter and devote the work for determining this value for a specific material,
namely single crystal Mg. The time evolution of the twin order parameter is
directly proportional to the resolved shear stress. This outcome is useful for
modeling deformation twinning since the propagation speed of twin boundaries
is rather di�cult to measure experimentally, and could even be supersonic if
the driving stress is su�ciently large [67].

We verify the proposed implementation of the time-resolved continuum-
based model for magnesium by the static phase-field model [68] and molecular
dynamics (MD) simulations [69] (Fig. 1). By choosing the same length-scale
for the phase-field model and MD simulations, we assure the compatibility of
MD results with our implementation, which is often left aside in the literature
[51, 56, 60]. It is also worth stating that all MD simulations use extremely high
deformation rates, making it di�cult to understand whether a phenomenon
results from the rate sensitivity of the material or is a numerical artifact [?
? ]. However, various strategies can be used to bridge the gap between the
atomic scale and continuum frameworks, such as large-scale MD calculations
[? ], coarse-graining [? ], and ultra-high strain-rate tests [? ]. Twin propagation
speed is explored (Fig. 2) and compared with MD results [69] and analytical
solutions [70]. In this way, we demonstrate a simple yet e↵ective approach how
to determine the mobility parameter. Moreover, insights in growth rates are
of interest given the limited available data [27] and studying these behaviors
is vital in high-rate applications of magnesium [71]. Our presented results are
then validated in terms of twin area fraction and global shear stress (Fig. 3),
and the role of twin-twin and twin-defect interactions is explored (Fig. 4).
Through these approaches, the research o↵ers broad potential in materials
design, and motivates promising directions in experimental and computational
materials science.

2 Governing equations

We use standard continuum mechanics notation, where Latin indices refer
to spatial coordinates. We understand Einstein’s summation convention over
repeated indices. All tensors are expressed in Cartesian coordinates. The super-
scripts E and IE stand for elastic (recoverable) and inelastic (irreversible)
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deformations, respectively. For the description of the twin, an order (phase-
field) parameter, ⌘, is introduced, where ⌘ = 0 denotes the parent crystal
and ⌘ = 1 means the twin. This order parameter as well as displacement, u,
are the primitive variables in space and time that we are searching for. The
deformation gradient reads

Fij = ui,j + �ij , (1)

where comma denotes a derivative in space. We use a material frame, where the
derivative is taken in the reference configuration that is chosen to be the initial
placement of the continuum body. Kronecker delta, �, is the identity. The
deformation gradient, F , in a large-displacement formulation, is decomposed
into elastic and inelastic parts,

Fij = FE

ikF
IE

kj , (2)

where for (inelastic) twinning [72], we use

F IE

ij = �ij + �(⌘)�0simj . (3)

The interpolation function, �(⌘) = ⌘2(3� 2⌘), causes a steep change between
twin and parent crystal [73] as necessary in phase-field approaches, �0 is the
magnitude of maximum twinning shear, and s andm are the unit vectors along
the twinning direction and normal to the twinning plane, respectively. By fol-
lowing [74], we decompose the Helmholtz free energy per mass into mechanical
and interfacial parts,

 (F , ⌘,r⌘) =  M(F , ⌘) +  r(⌘,r⌘) , (4)

where kinetics of interface is controlled by twin order parameter and its first-
gradient by the latter. As usual, for the mechanical deformation energy density
(per volume), we may use the St. Venant model:

⇢0 
M =

1

2
EijCijklEkl , (5)

or the neo-Hookean model:

⇢0 
M =

µ

2
(IC � 3)� µ ln J +

�

2
(ln J)2 . (6)

For nonlinear isotropic elasticity, the neo-Hookean model defined in Eq. (6)
is used. We use right Cauchy–Green deformation tensor, CE

ij = FE

kiF
E

kj , and

its invariants, IC = CE

ii , J = det(CE). The Green–Lagrange strain mea-
sure, E = 1

2
(CE � �), accommodates geometric nonlinearity necessary for

some applications herein. Lame parameters, �, µ, or the sti↵ness tensor of
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rank four, Cijkl, are given as material coe�cients. The elastic constants are
the Voigt-averaged shear and bulk modulus [75], which are listed in Table 1.
For anisotropic elasticity, the elastic coe�cients are interpolated between the
untwinned CP

ijkl and twinned CT

ijkl domains using the interpolation function,

Cijkl = CP

ijkl + (CT

ijkl � CP

ijkl)�(⌘) . (7)

The same interpolation function is used as in the definition of inelastic part
of the deformation gradient. For the twin phase, ⌘ = 1, we have the sti↵ness
tensor as a rotation of crystal lattice from the parent phase, ⌘ = 0, as follows:

CT

ijkl = QimQjnQkoQlpC
P

mnop, (8)

where Q is the reorientation matrix associated with twinning, for a centrosym-
metric structure [76], it becomes

Qij =

(
2mimj � �ij type I twins,

2sisj � �ij type II twins.
(9)

In the case of a steady-state deformation by neglecting inertial terms, governing
equations for displacement read

Pji,j =0 ,

Pji =
@⇢0 

@Fij
=
@⇢0 M

@Fij
=
@⇢0 M

@Ekl

@Ekl

@Fij
=
@⇢0 M

@Ekl
FE

il (F
IE)�1

jk .
(10)

The Ginzburg–Landau equation is acquired by a thermodynamically-
consistent derivation, as follows:

⌘̇ =� L
 
@⇢0 M

@⌘
+
@⇢0 r

@⌘
�
✓
@⇢0 r

@⌘,i

◆

,i

!
, (11)

where the mobility parameter, L, is generally not known and challenging to
obtain experimentally. The outcome of this work is the methodology how to
set its numerical value.

The first term is formulated by using the product rule

@⇢0 M

@⌘
=
@⇢0 M

@Fij

@Fij

@⌘
= Pji

@FE

ikF
IE

kj

@⌘
= PjiF

E

ik�
0(⌘)�0skmj , (12)

where �0(⌘) = 6⌘(1 � ⌘). For the interfacial energy,  r, we use a standard
double-well potential as in [77, 78] such that the energy density reads

⇢0 
r(⌘) = A⌘2 (1� ⌘)2 + ij⌘,i⌘,j , (13)
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where A = 12�

l characterizes the energy barrier between two stable phases
(minima), related to the twin boundary surface energy, �, and the twin
boundary thickness, l; ij = 0�ij with 0 being the gradient energy param-
eter, given as [68], 0 = 3

4
�l. By inserting the energy definitions into the

Ginzburg–Landau, we obtain the governing equation for twin order parameter,

⌘̇ = �L
⇣
PjiF

E

ik�
0(⌘)�0skmj + 2A⌘

�
1� 3⌘ + 2⌘2

�
� 20⌘,ii

⌘
(14)

By solving Eqs. (10), (14), we obtain u and ⌘ fields.

3 Computational implementation

The presented numerical simulations employ a monolithic strategy in order
to solve Eqs. (10), (14). Because of their inherent coupling, a monolithic solu-
tion method is preferable for capturing all e↵ects accurately, especially in
extreme loading conditions. Mostly, a staggered scheme is implemented partly
to increase e�ciency yet also e↵ected by numerical di�culties in implementing
as monolithic strategy. Herein we use the interface energy as described above,
which helps to circumvent any numerical convergence errors in the implemen-
tation. In a monolithic scheme, for each time step, displacements and order
parameter are solved at once. Therefore, for the space discretization, we use an
adequate mixed space formulation in the implementation. Specifically, we use u
and ⌘ as approximated functions spanned over a triangulation with a compact
support. This well-known finite element method (FEM) ensures a monotonic
convergence for the implementation. We skip a notational distinction between
the analytical functions and their approximations since they never show up
together.

The computational domain, ⌦, is the continuum body’s image in the phys-
ical space. The domain, ⌦, and its closure as a Lipschitz boundary, @⌦, form
a continuous domain without singularities. Therefore, all form functions are
continuous as well. Triangulated domain in finite number of nodes is repre-
senting the approximated unknown functions, u and ⌘, with the interpolation
between the nodes by the form functions, as follows:

V =

(
�
u, ⌘

 
2 [H n(⌦)]DOF :

�
u, ⌘

 
= given 8x 2 @⌦D

)
. (15)

The Hilbertian Sobolev space, H
n, is of polynomial order, n, hence, we use

standard Lagrange elements in the FEM [79]. On each node, we have 2+1 = 3
degrees of freedom (DOFs) in two-dimensional and 3+1 = 4 (DOFs) in three-
dimensional spaces. As known as Galerkin approach, the test functions, �u
and �⌘, are approximated by the same mixed space. They vanish on Dirichlet
boundaries, @⌦D, where the solution, u or ⌘, is given. For other boundaries,
we use Neumann boundary condition, for displacement, u, it denotes the given
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traction vector, t̂, and for twin order parameter, ⌘, we implement zero Neu-
mann boundaries meaning that the twin phase fails to leave the boundary
across boundaries. The latter is justified easily since the twin or parent phase is
neither convective nor conductive. The twin growth is inhibited by the displace-
ment boundary conditions. The twin order parameter gradient also vanishes
at the boundaries due to the Neumann boundary condition.

For time discretization, we use constant time steps in order to be able to
determine an adequate time step by a convergence analysis. Given the data at a
time instant, tn, we solve u and ⌘ by a standard variational formulation leading
to a weak form. The time derivative of order parameter is discretized using a
so-called ✓-scheme, for an arbitrary field, yn = y(tn) and yn�1 = y(tn�1), we
use

yn�✓ = (1� ✓)yn�1 + ✓yn . (16)

This scheme requires the computed solution from the last time step, yn�1, by
evaluating the functions within the time step leading to a higher accuracy in
the discretization [80]. For ✓ = 0, this method is the first-order accurate explicit
Euler method. For ✓ = 1, it becomes the first-order accurate implicit Euler
method. For ✓ = 0.5, we obtain the second-order accurate Crank–Nicolson
method. We use the time discretization in Eq. (14) for one finite element ⌦e,
as follows:

Z

⌦e

 
⌘n � ⌘n�1

�t
+ L

✓
PjiF

E

ik�
0(⌘n�✓)�0skmj + 2A⌘n�✓

⇣
1� 3⌘n�✓

+2(⌘n�✓)2
⌘
� 20⌘

n�✓
,ii

◆!
�⌘ dV = 0 .

(17)

The test function, �⌘, may have a lower continuity than the trial function,
⌘, but we stress that we aim for the Galerkin procedure such that they are
chosen from the same mathematical space. In order to weaken the continuity
condition on ⌘, we integrate by parts terms of second gradient,

Z

⌦e

 
⌘n � ⌘n�1

�t
�⌘ + LPjiF

E

ik�
0(⌘n�✓)�0skmj�⌘

+L2A⌘n�✓
⇣
1� 3⌘n�✓ + 2(⌘n�✓)2

⌘
�⌘ + 2L0⌘n�✓

,i �⌘,i

!
dV

�
Z

@⌦e

2L0⌘n�✓
,i ni dA = 0 .

(18)

By summing over each element, on each boundary of elements we sum twice
with neighboring elements’ surface normal directed oppositely. Therefore, we
obtain a jump condition, which we enforce to vanish by setting it zero. In other
words, the weak formulation searches for a continuous ⌘,ini across element
boundaries resulting a smooth phase change within the finite element. In this
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way, a mesh dependency is prevented as long as the element size is adequately
small such that the numerical result is converged. On the boundaries of the
whole domain, we assume zero Neumann boundaries meaning that ⌘ is not
leaving the domain across the outer boundary. Hence, we obtain for ⌦ =

S
⌦e,

the following weak form:

Form⌘ =

Z

⌦

 
⌘n � ⌘n�1

�t
�⌘ + LPjiF

E

ik�
0(⌘n�✓)�0skmj�⌘

+L2A⌘n�✓
⇣
1� 3⌘n�✓ + 2(⌘n�✓)2

⌘
�⌘ + 2L0⌘n�✓

,i �⌘,i

!
dV .

(19)

Analogously, from Eq. (10), we obtain the weak form for displacement, where
the traction ti = njPji is enforced to be continuous across the element. This
so-called Newton’s second lemma is a basic assumption for regular domains (no
singularities). On outer boundaries, for Dirichlet boundaries, where displace-
ment is given, the test function vanishes and we allow for Neumann boundaries
that traction vector, t̂ in Pa, is given. The weak form for displacements, u,
reads

Formu = �
Z

⌦

Pji�ui,j dV +

Z

@⌦N

t̂i�ui dA . (20)

The objective is to solve both fields as unknowns, p = {u, ⌘}, at once by
satisfying

Form⌘ + Formu = 0 . (21)

The weak form is nonlinear. We use a standard Newton–Raphson lineariza-
tion method, where the weak form is used to get a Jacobian by a derivative
with respect to unknowns, p. High-level tools are exploited to generate com-
puter code automatically by performing a symbolic di↵erentiation for this
linearization. In this manner, use of di↵erent stored energy models is indeed
possible without major changes in the implementation. We use software pack-
ages from the FEniCS Project [81, 82]. The time stepping parameters are
chosen such that the momentum balance scheme is second-order accurate and
stable. Quadratic and linear Lagrange functions are used for the finite element
approximation of the displacement and the twin order parameter, respectively.
The conjugate gradient method with a Jacobi preconditioner from PETSc
packages [83] has been employed for solving the nonlinear equations. The sim-
ulation has been performed by a computing node using Intel Xeon E7-4850,
in total 64 cores each with the 40 MB cache, equipped with 256 GB Memory
in total, running Linux Kernel 5 Ubuntu 20.04.

4 Results and discussion

The material parameters are compiled from di↵erent sources and given in
Table 1. For anisotropic cases, we use sti↵ness tensor with the given compo-
nents and isotropic cases the Lame constants, �, µ. The computational domain
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is a 2-D rectangular shape at nanometer (nm) length-scale. Accordingly, units
are chosen to be nanonewton (nN) and picosecond (ps). A mesh of 423 500
triangular elements is adopted. Initial conditions are prescribed as zero dis-
placement and a given twin/parent phase field, which is described in each
example. It is noted that 10 elements are considered at the interface to resolve
the sharp variation along the interface width.

Table 1 Material properties and model constants for single crystal magnesium compiled

from [16, 25, 69, 77, 84]

Parameters Notation Value

Second order elastic constants

C11 = 63.5GPa

C12 = 25.9GPa

C13 = 21.7GPa

C33 = 66.5GPa

C44 = 18.4GPa

Bulk modulus K = 36.9GPa

Shear modulus µ = 19.4GPa

Poisson’s ratio ⌫ = 0.276

Twin boundary surface energy � = 0.117 J/m2

Twinning shear for h1 0 1 1i {1 0 1 2} �0 = 0.1295

Regularization length l = 1.0 nm

Transformation barrier A = 1.404GPa

Gradient energy parameter 0 = 0.0878 nJ/m

Ginzburg–Landau kinetic factor L = 4200 (Pa · s)�1

4.1 Validation of the phase-field model and twin order
parameter for single crystal magnesium

We validate our time-resolved phase-field model for single crystal magne-
sium using previous static phase-field results [68] and molecular dynamics
simulations [69] (Fig. 1). The presence of pronounced mechanical anisotropy,
local stress concentrations, and high pressure in nanoscale defect-free magne-
sium implies employing ansiotropic mechanical properties, anisotropic surface
energy, and a large displacement formulation in our simulations. The nucle-
ation and evolution of deformation twinning in a magnesium single crystal
is simulated using the same initial twin geometry as in [68]. A circular twin
embryo of initial radius r = 3nm (corresponding to the analytical sharp
interface solution [85]) is embedded into a rectangular domain of dimensions
40 nm⇥40 nm in plane strain conditions. The h1 0 1 1i plane and {1 0 1 2} direc-
tions are considered as the primary twinning system [86]. Consequently, there
is no need to assume the dependency of the mobility parameter to the angle
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between the direction normal to the interface and a specified direction in crys-
tal as well as temperature, due to the fact that the kinetic coe�cients di↵er by
only about 1% in di↵erent planes and directions [? ]. The validation simulations
in Fig. 1 are performed to investigate the twin parameter distribution subject
to simple shear with Dirichlet boundary conditions on the order parameter for
di↵erent cases, including an isotropic (Fig. 1(a, c, d, g, h)) and an anisotropic
surface energy (Fig. 1(b, e, f, i, j)) at three di↵erent time instants. Within the
simulation time of 500 ps, the twin embryo grows until it is repelled by the
rigid outer boundaries. For the anisotropic case, the equilibrium shape of the
twin embryo is wider in the horizontal direction (parallel to the habit plane)
and flatter normal to the habit plane when compared with the isotropic case,
which is in good qualitative agreement with the reference phase-field results
[68] shown in Fig. 1(m). In addition, the twin interface thickness has a lower
value normal to the habit plane for the anisotropic surface energy when com-
pared with the ideal isotropic one. This may be related to the contribution of
the core and elastic energies to the total surface energy of the interface [87].
For large deformation simulations (Fig. 1(b, d, f, h, j)), an orientation of the
twin evolution is realized due to the di↵erence in the driving force for twin-
ning, which is a factor of (F ⌘)�1. Overall, the twin shape predicted by the
current time-dependent phase-field approach shows features in good agree-
ment with the molecular dynamics simulation [69] (Fig. 1(k)) and steady-state
continuum-based model [68] (Fig. 1(l, m)). Finally, it is worth mentioning that
the twin tends to shrink and eventually disappear when the magnitude of the
shear loading was lower than �0 = 0.07 or the size of the initial nucleus were
lower than 3 nm. This detwinning mechanism has been observed previously in
copper [88] and gold nanowires [89], but this is not the focus of the present
contribution.

4.2 The determination of the kinetic coe�cient, L, for
magnesium using twin tip and twin boundary
velocities

The kinetic coe�cient or mobility parameter, L, plays an important role in
describing the twin propagation and its dependence on other parameters (e.g.,
shear stress) during the early stages of twin morphology [90, 91]. Experimental
studies lack a quantification of the twin boundary mobility in magnesium since
the evolution is too quick for obtaining an adequate measurement. In order to
address this, we propose to determine L for single crystal magnesium by using
interface velocity profiles in both twin tip and twin boundary directions by
comparing the present time-resolved phase-field results with molecular dynam-
ics simulations [69] (Fig. 2). Here we assume that the molecular dynamics
solution represents a reliable experiment and try to find the kinetic coe�cient
such that we obtain matching results. Considering a single twinning plane and
direction as the primary deformation mechanism, an isotropic kinetic coe�-
cient is obtained for predicting the microstructure evolution in two-dimensional
single crystal magnesium at room temperature. This assumption is consistent
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Fig. 1 Distribution of the twin order parameter, ⌘, for an initially circular single twin with

radius of 3 nm in a simple-sheared rectangular domain in both small and large deformations

considering both isotropic and anisotropic surface energy and elasticity with zero orientation

of the habit plane. The initial conditions are chosen to match results published in the

literature using a static phase-field approach [68] and molecular dynamics model [69], while

the choice of times are selected to show the evolution of the twin growth under noted

conditions. (a,b) Twin order parameter for small and large strains with an isotropic surface

energy at t = 1ps; (c,d) Twin order parameter for small and large strains and isotropic

surface energy at t = 50ps; (e,f) Twin order parameter for small and large strains and

anisotropic surface energy at t = 50ps; (g,h) Twin order parameter for small and large

strains and isotropic surface energy at t = 500 ps; (i,j) Twin order parameter for small

and large strains and anisotropic surface energy at t = 500 ps; (k) Local orientation of the

twinned region obtained from molecular dynamics simulations [69] and used to contrast with

(g) and (h); (l,m) Order parameter for both isotropic and anisotropic surface energy under

simple shear loading using a phase-field model from the literature [68], to be compared with

(e) and (g). (k) and (l,m) are reproduced with permission from [68] and [69], respectively.

(For interpretation of the references to color in this figure, the reader is referred to the web

version of this article.)

with the other atomistically informed phase-field model [52, 55]. Although,
taking into account an anisotropic kinetic coe�cient which depends on free
energy functional parameters (e.g., temperature or interface orientation) is
required to accurately describe the other phase transformation (e.g., liquid-
liquid, liquid-vapor, and solid-melt phase transformations) interface kinetics
[92]. A rectangular twin embryo with an initial length of 7 nm and width of
4.3 nm inserted at the center of a 77 nm ⇥ 55 nm rectangular domain as in
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Fig. 2(a). The domain is under simple-shear, the
�
1012

�
twinning planes (i.e.,

the horizontal planes) are referred to as twin boundaries (TB), and the
�
1012

�

twinning planes (i.e., the vertical planes) are referred to as twin tips (TT).
Applying the shear deformation in the [1011] direction results in the twin inter-
face profiles illustrated in Figs. 2(b) and 2(c) for the twin boundary and twin
tip for times noted in the sub-figures, respectively. The twin boundary and
twin tip velocities are calculated by tracking the horizontal, �x, and vertical,
�y, interface displacement of the planes of the twin at ⌘ = 0.5 over time—
along the green line in Figs. 2(b) and 2(c). The results indicate that the twin
boundary (black color) and twin tip (blue color) velocities are decreasing and
constant, respectively, with values of velocity summarized in Fig. 2(d). The
constant velocity trend of twin tip mobility may be ascribed to the large back-
stress arising at the twin tip [90]. Mapped in red onto Fig. 2(c) is the explicit
analytical solution for the stationary Ginzburg–Landau equation given by [70]

⌘analytical =

✓
1 + exp

⇣�x

w

⌘◆�1

; w =

r
0
2A

. (22)

The comparison of numerical results with this analytical solution enables the
twin interface width (i.e., di↵erence between twin interface position at ⌘ = 0.01
and ⌘ = 0.99) to be calculated. The determination of the twin interface width is
important because its size can guide the selection of the element size and spatial
mesh refinement in finite element simulations of twinning [78]. Altogether,
Fig. 2 provides a good validation for the present time-dependent phase-field
approach, and, more importantly, enables the first ever determination of the
kinetic energy coe�cient, L = 4200 (Pa · s)�1, for single crystal magnesium.

4.3 The time-evolved shear stress in the combined
matrix-twin embryo

For a better comprehension of the underlying mechanism, we study the evolu-
tion of the twin area fraction and the shear stress, �12, in the parent and twin
phase (Fig. 3). Local stress distribution within a small region in the microstruc-
ture is understood as the driving force for the propagation and growth of a
twin. These insights may inform about the sequence of events leading to the
formation of the visible twins at an early stage in magnesium. In Fig. 3, the
same boundary conditions and a constant 7% shear strain are used in the same
rectangular twin embryo system depicted in Fig. 2(a). Initially, the length and
width of a single rectangular twin embryo at di↵erent times are calculated in
Fig. 3(a); this will be used to obtain the twin area fraction in Fig. 3(b). In the
figure, values are calculated for ⌘ = 0.5 on the interface profile as shown in the
insets at t = 5ps. Results indicate that the twin growth is larger in the twin
tip direction rather than in the twin boundary direction, and this di↵erence
decreases at later time instants as the twin approaches the outer boundaries.

Next, the change of the twin area fraction, defined as the ratio of the
twinned to the whole simulated area, is shown in Fig. 3(b) under shear loading,
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Fig. 2 Evolution of twin growth in a single-crystal pure magnesium. (a) Numerical setup

of the rectangular single crystal with an initial rectangular twin with boundaries and tips in

material configuration; (b) Time evolution of the twin order parameter as a function of the

position y normal to the habit plane. A horizontal line starting from point ⌘ = 0.5 is chosen

for measuring the twin boundary interface velocity to show the interface displacement �y.
The inset demonstrates the interface profile at six di↵erent time instants to show the time-

dependent growth of the twin; (c) Time evolution of the twin order parameter as a function

of the position x in the direction of the habit plane. Fewer time instants than shown in

(b) are used to demonstrate the constant twin tip interface velocity. Similarly, the point

⌘ = 0.5 is chosen for measuring the tip interface velocity and to show the constant interface

displacement �x. The analytical solution of the explicit Ginzburg–Landau equation, which

corresponds to t = 0ps, is shown as the dotted red color; (d) Twin tip and twin boundary

velocities as a function of time obtained from (b) and (c), and compared with those from

the molecular dynamics simulations [69]. (For interpretation of the references to color in this

figure, the reader is referred to the web version of this article.)

and this is compared with molecular dynamics simulations [69]. The insets in
Fig. 3(b) show the morphology of the twin at two di↵erent times for visualiz-
ing how the twins grow. Knowing the twin area fraction evolution is important
towards enhancing our understanding of the crystal grain reorientation asso-
ciated with deformation twinning, where limited data exists because of the
special experimental tools needed to access the length and time scales needed
to capture such measurements [27]. As seen in Fig. 3(b), the present phase-
field model reasonably predicts the evolution of the twin area fraction. Next,
the shear stress profile acting parallel to the x-direction is plotted for various
times in Fig. 3(c), which is used to demonstrate the redistribution of internal
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Fig. 3 The time-evolved shear stress acquired from the phase-field model on deformation

twinning of single-crystal pure magnesium. (a) Time evolution of the length (blue squares)

and width (red circles) of a single rectangular twin embryo that grows at 7% shear strain.

The insets show the twin interface profiles at t = 5ps, parallel and orthogonal to the habit

plane, by which the twin size is obtained; (b) Growth of the twin area fraction (i.e., the

ratio of twinned area to the total area of the numerical geometry) predicted by the proposed

phase-field approach (blue squares) and compared with molecular dynamics simulations

(black line) [69]. The same numerical geometry setup as [69] was used. The insets show the

distribution of the twin order parameter at t = 10ps and t = 25ps to illustrate areal growth;

(c) Spatial variation of initial shear stress along the x-axis in single-twinned magnesium at

various time instants; (d) Variation of the global shear stress as a function of time. The

numerical results (blue squares) are compared with molecular dynamics data (black line)

[69]. The insets show the spatial distribution of local shear stress at t = 10ps and t = 25ps

along the red mid-line. The boundaries of the twin embryo are denoted by the black dashed

line. In the bottom of each insets, the atomic shear stress from snapshots taken at similar

times as [69] are given for comparison. (For interpretation of the references to color in this

figure, the reader is referred to the web version of this article.)

stresses resulting from twinning [93]. The plateau and decreasing regions indi-
cate the shear stress variation in the parent and twin phases, respectively. By
progressing in time, the shear stress decreases as the x-position approaches
the center of the simulation geometry, until it reaches its minimum. The mag-
nitude of the shear stress within the twin decreases as a function of time and,
eventually, becomes negative for the last time instants of the simulation. This
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phenomenon is consistent with experimental results [17]. At the same time,
the profile evolves spatially and temporally.

Finally, the global shear stress field is shown in Fig. 3(d), where the field
is taken as the average across the red line spanning both the twin and the
matrix depicted in the inset. The measurements are important because they
can provide insights into the complex load sharing mechanisms that are gener-
ated by the parent and the twin phase [94]. The results are also compared with
molecular dynamics simulations [69], both qualitatively (the insets at t = 10ps
and t = 25ps) and quantitatively. The phase-field results match the molecu-
lar dynamics simulations well. The results show that the global shear stress is
decreasing as the twin size evolves. Altogether, results from Fig. 3 are impor-
tant for determining the activation force required for twin embryo growth that
may serve as an input into higher scale models [95].

4.4 Studying twin interactions toward microstructure
tailoring and materials design

Finally, simulations have been performed to study the e↵ect of twin-twin
and twin-defect interactions (Fig. 4). Understanding these interactions is an
important step toward developing better predictive models for designing mate-
rials with tailored properties [96–99] and microstructures [100–103]. Damage
in materials is studied by phase-field models [104–108], we use phase-field
approach herein for twin interactions. This interactions [109] may result in the
formation of twin-twin junctions that may cause strain hardening [110] and
crack initiation [111, 112], leading to a strong influence on the overall mate-
rial performance. First, the change of area fraction of the middle twin as a
function of time for a di↵erent number of embryos is illustrated in Fig. 4(a).
Only the middle embryo is considered in the analysis in order to better iso-
late the interactions and reduce boundary e↵ects. The location of the twins
for the three embryo cases is illustrated in the inset. In Fig. 4(a), it is shown
that increasing the number of twins leads to a decrease in the twin area frac-
tion of the middle embryo as a result of its interaction with the other twins.
The di↵erence of the twin area fraction for multi-embryo cases becomes larger
at later time instants. This finding is important as it highlights the e↵ects
of twin interactions on twin evolution, where experimental measurements are
currently very limited [113]. Next, the spatial variation of the order parame-
ter and the corresponding shear stress at t = 10 and t = 20ps are depicted
in Fig. 4(b). This result reveals insights into the expansion of the twin domain
through the accumulation of large plastic shear strain at the nano-scale [114].

The homogeneous growth in the twin area is exemplified in the top left
inset in Fig. 4(b), where the twins have not changed in shape until t = 10ps.
The corresponding shear stress distribution at t = 10ps is shown in the bottom
left inset, where the shear stress inside the twins is negative while it is positive
in the matrix. The heterogeneous stress distribution around the twins is due
to a sudden change in the stresses within the twin interfaces, associated with
the need to accommodate deformation in this region [40]. From the spatial
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Fig. 4 Exploration of twin-twin and twin-defect interactions to inform fundamental growth

mechanisms in single crystal magnesium. (a) Evolution of twin area fraction for 1, 2, and 3

twin embryos. The inset shows the location of each twin for the three-embryo simulation.

The area of the middle twin is measured using its length and width obtained from the

interface profile at ⌘ = 0.5, as was done for Fig. 2; (b) Spatial distribution of the twin order

parameter and shear stress in the parent and twin phases for the numerical setup shown in

the inset of (a) at t = 10 and t = 20ps; (c) Evolution of the shear stress along a horizontal

line through the middle of the single crystal microstructure for di↵erent numbers of embryos.

The numerical setup is subjected to 7% shear strain as was done in the other examples; (d)

Study of twin-defect interactions by considering the time-evolved twin tip interface towards

the boundary and the void. The related simulation dimensions are given in the inset, which

also shows that symmetric boundary conditions were used (the symmetry line is shown by

the dash red line). (For interpretation of the references to color in this figure, the reader is

referred to the web version of this article.)

shear stress distribution, it is observed that the local shear stress reaches a
minimum in the center of each twin. Outside the twins, the shear stress is
lower at the bottom left and top right twins because of the constraining e↵ect
of the adjacent twins to the middle one. In the right insets, the deviatoric
deformation in twin morphology at t = 20ps is identified due to the interaction
of the twins with each other and the disturbing of the stress field by them. The
stress distribution in the vicinity of the twin-matrix interfaces at t = 20ps is
heterogeneous as a result of high stress concentrations in the matrix near the
twin boundaries. It is also shown that the middle twin experiences a maximum
shear stress resulting from the compressive forces generated by the other twins.
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The local stress concentration is one main interaction of crack and twins where
some nucleation site appears in the interfaces inside and around the interface
[115].
Next, the change of shear stress along a horizontal line through a middle section
of the simulation area as a function of a 1, 2, or 3 embryo system is shown in
Fig. 4(c). It is observed that increasing the number of twins leads to decreasing
the shear stress values in the matrix phase, while the di↵erence in shear stress
values for the later time instants are larger as a result of twin-twin interactions.
In the twinned regions at later times, the junctions of di↵erent embryos result
in a negative shear stress with steeper slopes as compared with earlier times.
In addition, it can be observed that the stress concentration in the matrix,
predominantly in the vicinity of the twin boundaries, increases only marginally
with increasing twin thickness (black lines in Fig. 4(c)). Finally, the interaction
of a twin and a defect is investigated in Fig. 4(d) by comparing the change in
the twin tip velocity towards the boundary and the void along the blue dashed
horizontal line. The numerical setup is also given in the inset, where symmetric
boundary conditions are used. The radius of 2 nm is chosen for the void. For
all times, the results indicate that the tip velocity is linearly decreasing in time
in a direction approaching the left boundary. For the void, the velocity at the
tip is constant until some point after which a sudden decrease in the velocity
occurs, resulting from the twin-defect interaction. In addition, the twin tip
velocity is larger toward the void because of the higher stress concentration
influenced by the void.

5 Conclusions

In this paper, the evolution of twinning in magnesium has been studied using a
validated and calibrated phase-field model to gain better insights into the time-
evolved twin morphology, the spatial distribution of the internal shear stress,
and the twin interactions. An accurate monolithic iterative procedure has been
implemented for solving the coupled balance and Ginzburg–Landau equations,
and the governing equations have been solved in the open-source high-level
computing platform, FEniCS. For engineering examples with FEniCS, we refer
to [116].

The results presented in this work confirmed the impact of the current
model by capturing the behavior of the leading deformation mechanism in
single crystal magnesium, twinning. By means of the proposed implementa-
tion, the state variables (i.e., the displacement and the twin order parameter)
have been computed monolithically for various scenarios in discrete time steps,
including small and large deformations with both isotropic and anisotropic sur-
face energies and elasticity. The data have been compared with a continuum
mechanics model [68] and molecular dynamics simulations [69]. The findings
are qualitatively consistent with both literature approaches.
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A notable result emerging from the proposed model is the prediction of the
critical strain and initial twin embryo size required for growth and propaga-
tion under the chosen numerical settings. This computational implementation
is particularly useful because identifying such features experimentally is chal-
lenging given the length and time scales needed to reproduce these events
[117]. Next, the interface velocities for the twin tips and twin boundaries have
been explored in order to determine the kinetic coe�cient using the phase-
field model and compared with recent molecular dynamics simulation [69].
Studying velocity growths is important because they a↵ect hardening, texture
evolution, and ductility in the material [118]. To the authors’ best knowledge,
the present work pioneers the analysis of the interface mobility, showing dif-
ferent trends of twin evolution in the direction parallel and orthogonal to the
twin habit plane.

The interface velocity is considered to be an important factor to determine
the thermodynamic driving force for interface propagation, because knowing
the interface velocity for any value of the driving force potentially leads to the
determination of the kinetic coe�cient for any range of materials [119]. The
interface profile has been compared with the analytical solution of the station-
ary Ginzburg–Landau equation, and the obtained numerical interface width of
1.58 nm is close to the analytical value of 1.62 nm [70]. This information guides
mesh selection and refinement when modeling twinning in this system [120]. In
addition, the current phase-field modeling approach overcomes the challenges
existing in molecular dynamic simulations for calculating the twin size, such
as identifying the orientation of each atom in the twinned region [36], and
is able to capture new behavior of twin growth for t  5 ps, comparing well
with previous molecular dynamics data [69]. The strong point of the current
approach is to track multiple interfaces in order to measure twins’ size with no
additional e↵orts for samples larger or smaller than in atomistic simulations.

A further considerable implication of the proposed model is the possibil-
ity of investigating the local and global shear stress field inside the parent
and twinned phases. Analysis of twin shear stress fields induced in these cases
provides further evidence for the e↵ect of twins’ thickness and their mutual
position on further twin growth and/or further twin nucleation [121–123].
Moreover, the importance of an appropriate strategy for partitioning the stress
fields between the twinned and untwinned domains have been demonstrated
in this paper. A final upshot of the current phase-field model has been to
explore new understandings in twin-twin and twin-defect interactions. For the
case where multiple twins grow in one grain, a common occurrence observed
in experiments [124], it is highlighted that the stress concentration around
the void may significantly increase the twin interface velocity, a↵ecting subse-
quent expansion of the twins. Taken together, our study provides a framework
for a new way to understand local deformation mechanisms in materials by
analyzing the evolution and interaction of twins.
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