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Abstract

Collisions of motorized transport with wildlife impact a wide range of species and

can cause injuries and economic losses to people. On roads, vehicle collisions

with animals have been studied extensively, resulting in mitigation measures

that reduce collisions by segregating animals and vehicles, warning drivers about

animals, or encouraging animals to be more wary of vehicles. Wildlife–train

collisions have received less attention despite documented impacts to species

of conservation concern. In addition, characteristics of railways may limit the

feasibility of using mitigation measures designed for roads. As part of a larger

initiative studying grizzly bear (Ursus arctos) mortality from train collisions in

Banff and Yoho National Parks (Alberta and British Columbia, Canada), the aim of

this dissertation was to determine how collisions might be reduced, particularly

for grizzly bears and at locations where collisions have occurred in the past.

I considered the problem of wildlife–train collisions as a complex systems

failure at the interface of the animal, train, and railway environment systems.

Within a hierarchy of causal mechanisms, I identified potential for reducing

collisions by improving animal awareness of approaching trains. I approached

this problem with three specific objectives: (1) to understand better the availability

of acoustic signals that indicate train approach, (2) to design a warning system to

alert wildlife about approaching trains, and (3) to test whether that system causes

animals to leave the track earlier when a train approaches.

For the first objective, I measured the audibility of approaching trains along

sections of railway track to determine if train audibility could be predicted from

features of the track environment, and I tested if poor audibility was associated

with the density of recorded animal collisions. I showed that raised topography
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within track curves might reduce train audibility around curves. Differences in

train speed and in the sound power emitted by locomotives contributed more

consistently to differences in audibility within sites, while background noise from

adjacent roads and rivers appeared to create differences among sites. Where the

audibility of trains was lower, collisions occurred at higher densities on average.

Using a physics-based model to predict train audibility along the entire railway,

I found that clusters of collisions only sometimes coincided with locations of

low predicted audibility; this result suggested that low train audibility is not a

necessary condition for the occurrence of collision clusters.

For the second objective, I tested multiple low-cost sensors in two configu-

rations for their ability to detect trains, leading to the invention of an electronic

system to promote wildlife avoidance of trains via associative learning. I showed

that magnetic and vibration sensors could reliably detect trains as they passed,

enabling my design of a warning system in which warning signals are triggered

wirelessly by distant train detectors.

For the third objective, I built working prototypes of this warning system, and

I used remote cameras triggered by train approach to measure the responses of

wildlife to trains where warning signals were and were not provided. I demon-

strated that animals that were provided with warning signals left the track earlier

than those that were not: on average, 62% earlier for larger animals (coyotes, Canis

latrans, and larger) and 29% earlier for smaller animals.

Together, my results suggest that the risk of wildlife–train collisions may be

high where trains are difficult for animals to hear, that this risk could be mitigated

with a train-triggered warning system, and that such a system increases the time

interval between wildlife leaving the track and a train arriving at their location.

With the increasing overlap between vulnerable populations of wildlife and fre-

quent, fast-moving trains, this approach to reducing wildlife–train collisions could

help to protect diverse species in locales around the world.
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Chapter 1

General introduction

Transportation networks and their associated infrastructure affect wildlife in com-

plex ways. For instance, the widespread effects of roads have received substantial

attention in recent decades (Fahrig & Rytwinski 2009; Benıtez-López et al. 2010;

Rytwinski & Fahrig 2012). Roads may attract some species with opportunities

for habitat (e.g., Li et al. 2010), travel (e.g., DeMars & Boutin 2018), and foraging

(e.g., Martinig & Mclaren 2019). Roads may also harm animals through noise

(Parris 2015) and chemical pollution (Folkeson et al. 2009), and can form barriers

to animal movement, with potential to fragment habitat and isolate populations

(Jaeger et al. 2005; Rytwinski & Fahrig 2012). Roads can also encourage predatory

access by humans (Nielsen, Herrero, et al. 2004) or other species (DeMars & Boutin

2018). For some species, attractive and harmful effects of roads may act together

to create ecological traps (Nielsen, Stenhouse, et al. 2006; Barrientos & Bolonio

2009; Penteriani et al. 2018).

Direct mortality from collisions with vehicles is among the most visible effects

of roads on wildlife. The loss of animals to vehicle collisions has had measureable

impacts on populations, notably of endangered species including the Iberian lynx

(Lynx pardinus; Ferreras et al. 1992), Florida panther (Puma concolor couguar;

Schwab & Zandbergen 2011), and red wolf (Canis rufus; Fazio 2007), suggesting the

potential of collisions to alter community composition and ecosystem dynamics

(van der Ree et al. 2015b). These mortalities also impact humans because utility

and intrisic values of animals are lost (Schneider 2019). For example, hunting and

tourism revenues are often used to quantify the economic value of animals lost to
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collisions (K.J. Boyle & Bishop 1987; Conover 1997). Collisions with large animals

on roads (e.g., ungulates) also result in substantial economic costs to society in

the form of human injuries or fatalities as well as damage to property (Conover

1997; Huijser, Duffield, et al. 2009). Wildlife–vehicle collisions also occur for other

transportation modalities, with potentially similar effects for wildlife and people

(Lima, Blackwell, et al. 2015; Blackwell, DeVault, Fernández-Juricic, et al. 2016).

Collisions with watercraft endanger manatees (Trichechus manatus latirostris;

reviewed by Rycyk et al. 2018) and right whales (Eubalaena glacialis; Nowacek

et al. 2004). In aviation, 194000 collisions with birds and terrestrial animals

were reported in the United States between 1990 and 2017 (Federal Aviation

Administration 2018), damaging aircraft and creating substantial danger for pilots

and passengers.

Trains on railways also collide with and kill animals, and their associated infras-

tructure may exert similar effects on ecosystems to those of roads (Borda-de-Água

et al. 2017; Barrientos, Ascensão, et al. 2019). Railway collisions appear to exert

demographic effects on populations (van der Grift 1999), have been documented

to kill endangered species including Asian elephants (Elephas maximus; Dasgupta

& Ghosh 2015) and red-headed vultures (Sarcogyps calvus; Khatri et al. 2019).

Train-caused mortality may also threaten vulnerable populations of leopards

(Panthera pardus; Joshi 2010) and elk (Cervus canadensis; Popp, Hamr, et al. 2018).

Train collisions may sometimes kill more animals than adjacent roads (Huber et al.

1998; COST 341 Management Committee 2000; Waller & Servheen 2005). Despite

these effects, railway ecology has garnered less attention than road ecology (Popp

& S. Boyle 2017), perhaps because human health and property are less at risk

than for road or air transportation. However, derailments and human injuries

have been documented, especially outside of North America (e.g., Langbein 2011;

Morse et al. 2014; NDTV 2018).

In this dissertation, I focused on the context of train collisions with grizzly

bears (Ursus arctos) and other animals in Banff National Park, Alberta, Canada

(hereafter, Banff). Grizzly bears, though not globally endangered, are a threatened

species in Alberta, and in Banff suffer human-caused mortality from a number
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of sources including removal by wildlife officials for conflict management, road

collisions, and railway collisions (Bertch & Gibeau 2009). Between 2000 and 2019,

14 train-caused grizzly bear mortalities were confirmed and another seven bears

were reported to have been struck (but no carcasses were found) on the Canadian

Pacific railway that runs through Banff. This rate of mortality represented a sharp

increase from previous decades and a substantial number for a local population

near 60 individuals (St. Clair et al. 2019) with one of the lowest reproductive rates

in North America (Garshelis et al. 2005). The railway was the largest direct source

of human-caused grizzly bear mortality between 1990 and 2008 (Bertch & Gibeau

2009). These facts have led to ongoing public scrutiny of railway management

within Banff, including concerns about spilled grain that can attract grizzly bears

and other species to the track (St. Clair et al. 2019). Despite the public focus on

grizzly bears and other large carnivores (e.g., wolves (Canis lupus); CBC News

2016), a wide range of species are killed by trains in Banff ranging in size from

moose (Alces alces) and black bears (Ursus americanus) to small birds and squir-

rels (Tamiasciurus hudsonicus) (Parks Canada, unpublished data). Elk and deer

(Odocoileus spp.) are the species most frequently killed by trains in Banff, on

the order of dozens of individuals per year (Parks Canada and Canadian Pacific,

unpublished data).

This work was part of a larger project undertaken in cooperation with the

Parks Canada – Canadian Pacific Joint Initiative for Grizzly Bear Conservation.

In 2010, Canadian Pacific announced one million dollars in research funding to

address the problem of grizzly bear mortality from train collisions in Banff and

neighbouring Yoho National Park, British Columbia, Canada. A portion of this

funding was awarded in 2012 to the research lab of Colleen Cassady St. Clair

at the University of Alberta, and later matched by a Collaborative Research and

Development Grant provided by the Natural Sciences and Engineering Research

Council of Canada (NSERC). Research was undertaken to measure the presence of

bear attractants along the railway (Pollock, Nielsen, et al. 2017), grain deposition

rates along the railway (Gangadharan et al. 2017), and use of the railway and

railway-associated forage by grizzly bears (Hopkins III et al. 2014; Murray et al.
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2017; Pollock, Whittington, et al. 2019, A. Friesen, unpublished data). Research

also sought to determine if mitigation on the adjacent Trans-Canada Highway

had affected patterns of railway mortality (Gilhooly et al. 2019) and if the caching

behaviour of red squirrels enhanced availability of spilled grain to bears (Put

et al. 2017). Other research projects were also funded to fit multiple grizzly bears

in Banff with telemetry collars (Parks Canada, unpublished data), to observe

the responses of bears to trains with train-mounted cameras (Burley 2015), and

to enhance natural travel and escape routes for wildlife along the railway (I.G.

Pengelly and J.D. Hamer, unpublished data). In the context of these works by

others, which largely examined the factors that lead bears and other animals to

encounter trains, I sought to understand the circumstances that lead to collisions

within the context of animal–train encounters. I also sought to determine if

collisions could be reduced with interventions designed for this context.

1.1 Problem analysis

The Canadian Pacific railway was Canada’s first transcontinental railway, con-

necting the ports of Montreal and Vancouver with a route that crosses the Rocky

Mountains of Alberta and British Columbia. The railway parallels the Trans-

Canada Highway as well as the secondary Bow Valley Parkway through much of

Banff. An average of 19 trains per day (Chapters 2, 4) travel through Banff, carrying

mainly agricultural products and natural resources west and manufactured goods

east from the port of Vancouver to the rest of Canada with a small proportion

of passenger traffic. The highways and railway connect centres of human use

including the Banff and Lake Louise townsites as well as numerous campgrounds

and trail systems throughout the Bow River valley.

Tending to follow the valley bottom, this major transportation corridor bisects

some of the most productive wildlife habitat in Banff. In the eastern half of the

park, the montane ecoregion is characterized by wetlands, grasslands, and mixed

forest of white spruce (Picea glauca) and trembling aspen (Populus tremuloides),

while at higher elevations in the west, sub-alpine forests of lodgepole pine (Pinus
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contorta) dominate (Holland & Coen 1983). A diversity of wildlife coexist within

this ecosystem, including large carnivores like grizzly bears, black bears, wolves,

and cougars (Puma concolor) as well as ungulates such as elk, deer, and moose.

Many species favour the productive habitat at the valley bottom, and were struck

by vehicles on the Trans-Canada Highway until fencing of the highway followed its

twinning through the park from east to west between 1981 and 2014 (Clevenger et

al. 2001; Gilhooly et al. 2019). This fencing was accompanied by the construction

of 44 wildlife crossing structures that support connectivity of wildlife populations

across the highway (Parks Canada 2017).

Animal access to the adjacent railway was not restricted. For wildlife in Banff,

the railway appears to be one of few continuous routes with low levels of human

use through the area of dense human use around the Banff townsite in the east

and through the increasingly rugged topography in the west. Grizzly bears, for

example, are known to travel along the railway within Banff (Pollock, Whittington,

et al. 2019). These bears may also take advantage of enhanced vegetative forage at

the edge of the right-of-way (Pollock, Nielsen, et al. 2017), forage on agricultural

products spilled from trains (Gangadharan et al. 2017), and opportunistically gain

access to rail-killed ungulates (Murray et al. 2017). Ungulates, birds, and other

species appear to use the railway for similar purposes (Chapter 4).

It is within this context that trains encounter and sometimes collide with

animals when moving through Banff. A growing body of literature has examined

the features of railways and their adjacent landscapes that tend to increase the

probability of collisions in space and time. Collisions appear to be more frequent

where the track curves (Popp, Hamr, et al. 2018; Jasińska et al. 2019) and where

vegetative forage occurs near the track (Gundersen, Andreassen & Storaas 1998),

sometimes resulting in high spatial collision densities (hereafter, hotspots; cf. Bıl,

Andrášik, Dul’a, et al. 2019). However, little is known within the road or railway

contexts about the conditions that determine whether a given animal–vehicle

encounter will result in a collision (Lima, Blackwell, et al. 2015).

Animal–train collisions might logically be viewed as a problem occurring at

the interface of three entities: the animal, the train (including train operator),
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and the railway environment. These entities may be viewed as complex systems,

each made up of interacting component parts that together produce emergent

behaviours that can be difficult to predict (Hitchins 2007; Meadows 2008). This

framing is a common analytical approach in the safety and human factors litera-

ture, where accidents that at one time may have been ascribed to errors on the part

of individual people are better understood in terms of the complex sociotechnical

systems that create conditions from which accidents emerge (Salmon et al. 2015).

This perspective helps to avoid narrow framing when identifying mechanisms that

create deviations from the desired systems performance (i.e., failures; Berk 2009).

I chose this approach with the intent to systematically identify opportunities for

countermeasures that could reduce the likelihood of animal–train collisions.

As one approach to examining the animal–train–environment interface, I

conducted a fault tree analysis (Appendix A). Fault tree analysis is one common

approach to deducing possible causes for failures in complex systems (Vesely et al.

2002; Berk 2009). A fault tree analysis begins by identifying the undesired event

and proceeds to identifying the “immediate, necessary, and sufficient causes” for

the event that are related to each other with logical operators such as AND or

OR (Vesely et al. 2002, pg. 47). These causes are similarly broken down until the

desired level of detail is reached. I defined the top event of my fault tree as “the

injury or death of a large mammal in a collision with a train” and restricted the

scope of the fault tree to the train (including train operator), a single animal, and

their immediate environment. Although the fault tree I produced was too large to

include in this dissertation, the process was valuable for providing a systematic

way to think about possible causes. I noted that many of the possible causes I

identified related to a failure of the train (including the train operator) and the

animal to exchange information early enough for either of these agents to avoid a

collision. In this discussion, I focus on the animal’s response to the train because

heavy freight trains cannot change direction or slow quickly enough to avoid

collisions unless animals are detected well in advance.

As others have suggested, an animal’s response to a vehicle may be viewed

as a three-stage process: detection of the vehicle, assessment of the vehicle as
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a threat, and evasion of the vehicle (Lima, Blackwell, et al. 2015). Success in all

three stages is necessary to avoid a collision (Lima, Blackwell, et al. 2015), and

delays in detection or threat assessment might logically constrain the time of an

animal’s evasion response. This conceptual model seemed plausible in light of

video footage of grizzly bear collisions shown to us early in the project by project

partners at Canadian Pacific. Locomotive-mounted cameras revealed that bears

appeared to retreat suddenly from the train, as if surprised, and were struck after

being overtaken by the train as they fled from the train between the rails. Other

work has observed similar responses to trains by ungulates (Rea, Child, et al. 2010).

When surprised by a train, bears and other animals may see the flat, open railway

track as their most efficient escape route, especially where deep snow (Becker

& Grauvogel 1991; Rea, Child, et al. 2010), steep topography, bodies of water, or

dense vegetation restrict escape from one or both sides of the right-of-way. Even

if other escape routes are available, the acute stress that animals might experience

during a train encounter is known to adversely affect decision-making (Mobbs &

Kim 2015). Maladaptive flight responses might then be prevented if the conditions

that lead to surprise could be prevented.

Although it may seem unlikely that animals could fail to detect vehicles as large

and loud as trains (Lima, Blackwell, et al. 2015), conditions present in the track

environment might plausibly delay an animal’s detection and assessment of a train

to the point where surprise were possible. Given the speed at which trains often

travel, animals likely rely on their senses of vision and hearing to detect them. In a

mountainous protected area like Banff, the railway corridor often curves around

regions of dense vegetation and raised topography that limit visibility of oncoming

trains (as has been found elsewhere; Hamr et al. 2019; Jasińska et al. 2019). Despite

these issues with visibility, I have personally been surprised by trains in Banff that

I was able to see before I could hear them, leading me to suspect that audibility

of trains could also be an issue for animals (as described in Chapter 2). That

collisions have been found to occur more frequently near track curves suggests

that spatial features of the track environment might contribute mechanistically

to wildlife collisions (Popp, Hamr, et al. 2018; Jasińska et al. 2019). Features of
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the environment that change in time may also contribute, including light level

and weather effects (fog, precipitation, wind) (reviewed by Steiner et al. 2014).

However, related work on roads has shown that the most dangerous locations

and times for animals may not coincide with collision hotspots if populations are

locally suppressed by collisions (Eberhardt et al. 2013; Ascensão et al. 2019) or if

animal use is simply low for other reasons (Neumann et al. 2012).

To mitigate the risk of wildlife–vehicle collisions, especially in the road context,

a diverse suite of tools has been developed. These measures work by (1) reducing

animal–vehicle encounters, (2) modifying the behaviour of vehicle operators,

or (3) modifying the responses of animals to vehicles. For method (1), physical

exclusion of animals from transportation corridors with fencing and crossing

structures appears to be the most consistently effective method of reducing colli-

sions (Clevenger et al. 2001; Huijser, Duffield, et al. 2009). Related methods seek

to remove animals from the vicinity of roads or reduce the attractiveness of roads,

including population culls (Doerr et al. 2001), vegetation removal (Jaren et al.

1991; Andreassen et al. 2005), or scent deterrents (Bıl, Andrášik, Bartonička, et al.

2018). For method (2), static wildlife warning signs and reduced speed limits are

low-cost measures but largely ineffective if ignored by drivers (Huijser, Mosler-

Berger, et al. 2015). Active measures seek to improve driver responsiveness by

providing more specific information in space and time, for example with wayside

(Huijser, McGowen, et al. 2006) and in-vehicle (Forslund & Bjärkefur 2014) animal

detection systems. However, this method seems more practical on roadways than

on railways, where heavy freight trains cannot change direction or slow quickly on

time scales required to avoid collisions. Collision mitigation for trains has conse-

quently focused on method (3), encouraging animals to avoid incoming vehicles.

On roads, passive wayside deterrents have been devised that reflect the head-

lights of incoming vehicles to scare animals away from the road (D’Angelo et al.

2006); active deterrents detect approaching vehicles and provide light-and-sound

stimuli to frighten animals (Mulka 2009). Little published evidence supports the

effectiveness of these methods on roads (D’Angelo et al. 2006), though new meth-

ods are emerging (Riginos et al. 2018). Vehicle-mounted sonic deterrents seem
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similarly ineffective on roads (Valitzski et al. 2009), but they may be more effective

on railways (Muzzi & Bisset 1990; Shimura et al. 2018). Perhaps because of these

mixed results, collision mitigation via animal deterrents or warnings has received

less attention than either driver warning or animal separation methods.

Reasons for the ineffectiveness of some passive animal deterrents are unclear.

Perhaps the visual or auditory stimuli are too weak to reach the target animals

(e.g. from deer whistles or headlight reflectors; D’Angelo et al. 2006; Valitzski et al.

2009). It may also be that the stimuli lack the temporal and spatial specificity to

convey the intended meaning—for animals, via a process of associative learning

(Domjan 2005). Habituation to the stimuli may also occur if animals receive no

unconditioned stimulus that reliably follows the deterrent (Rankin et al. 2009;

Blumstein 2016), as is known to occur for systems intended to scare animals

away from crop fields or livestock (Koehler et al. 1990). An active warning system

designed to cause a learned association, e.g., between arbitrary conditioned

stimuli and the unconditioned aversive experience of the close passage of a train,

could bridge the information gap between train and animal (Chapter 3). Similar

approaches have shown promise in limited tests elsewhere, though the success

of this test was attributed to the use of warning signals composed of naturally

aversive sounds (Babińska-Werka et al. 2015).

Two central questions emerge from this discussion. First, why are animals

vulnerable to train collisions? Spatial and temporal factors in the railway envi-

ronment are known to increase collision risk, but the processes that determine

retreat behaviour during an animal–train encounter remain difficult to study

(Lima, Blackwell, et al. 2015). Towards an answer to this first question, I chose

to explore the relationship between train audibility and features of the railway

environment, as poor train audibility could affect how animals respond to trains.

Second, what can be done to reduce collisions? Could collisions be reduced

without excluding animals or trains from the system? Towards an answer to this

second question, I chose to design, build, and test an animal warning system ca-

pable of creating learned associations between warning stimuli and train passage.

If animals were able to interpret the information about train approach that such
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a system would be intended to convey, perhaps they would be less frequently

surprised by approaching trains and thereby more likely to choose an appropriate

escape response.

1.2 Scope of this work

The broad aims of this dissertation were to understand if problems with train

audibility could contribute to wildlife–train collisions in Banff and to determine if

an active warning system could effectively intervene to increase train detectability

and collision avoidance for animals. In answering these research questions, I

aimed to generate insights that could be generalized to other parts of the world

where wildlife are struck and killed by trains.

The dissertation is organized into three data chapters. In Chapter 2, I used

self-contained weatherproof sound recorders to measure the audibility of trains at

10 locations along the railway in Banff. I used these data to test hypotheses about

the relationship between track curvature, topography within track curves, and

audibility with regression and physics-based models. I also compared measured

and simulated audibility data with historical data on the locations of wildlife–

train collisions in Banff. In Chapter 3, I proposed a design for an animal warning

system that would be capable of creating learned associations between arbitrary

stimuli and train passage according to the principles of associative learning. I

built and tested two low-cost methods for detecting approaching trains that did

not interfere with railway infrastructure, which I saw as a key requirement for

adoption by railway companies like Canadian Pacific. In Chapter 4, I developed

a working prototype of this animal warning system and tested its ability to mod-

ify the responses to trains of wild, free-ranging animals. I used self-contained

weatherproof cameras triggered by approaching trains to observe the behaviour

of animals before and during train approaches at locations where I alternated the

provision and omission of warning signals. I measured the time between each

animal’s flight initiation and the arrival of the train at the location where it fled. I

compared results for trains approaching from straight and curved track sections
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to additionally test for a relationship between train detectability and the effect of

the warning system on the flight initiation times of animals.

The dissertation concludes with a general discussion in Chapter 5. Appendices

for each data chapter are included, including complete designs for the warning

systems as built for Chapters 3 and 4.
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Chapter 2

Low audibility of trains may
contribute to increased collisions
with wildlife*

2.1 Abstract

Transportation collisions with wildlife are a global issue, causing mortality of

animals and creating risk of injuries and economic losses for people. Measures for

mitigating the risk of collisions sometimes focus on enhancing the detectability

of vehicles to animals, a strategy that might be most effective on low-use roads

and railways in locations where detection failures are most likely. Some literature

suggests that detection is impeded by lack of visibility, but the audibility of vehicles

to animals is rarely explored in this context. We sought to test the hypotheses the

audibility of trains could be obscured by raised topography within track curves and

that reduced audibility could contribute to the mortality of wild animals from train

collisions within Banff National Park, Alberta, Canada. We measured the relative

audibility of trains via the ratio of train approach sound to background sound

(signal-to-noise ratio) as trains approached at 10 locations with raised topography

within track curves. We compared relative audibility measurements to the history

of train collisions with wildlife at these locations and, via simulation from a

physical model, along 45.6 km of the railway through our study area. Mean relative

audibility was negatively associated with the historical number of collisions at our

*Authors: J.A.J. Backs, J.A. Nychka, and C.C. St. Clair

19



10 measurement sites and a similar association was found for the lowest quartile

of simulated train audibilities across our study area. Topography within curves

reduced train audibility by an average of 3.2 dB per 6.2 m of topography height

above track grade, but high variance in these estimates produced marginal p-

values. Train audibility was also reduced by 1.9 dB for every 8.6 kmh−1 increase in

train speed and by at least 2.0 dB for every 4.7 dB reduction in train sound power.

Speeds were lower and sound powers were higher for trains moving west rather

than east through Banff, suggesting locomotives were in higher throttle states

when climbing the elevation gradient through the park. Comparisons of three

physical models with our measured audibilities similarly suggested that train

speed and sound power could be at least as influential as topography. Variation

in background noise among (mean range 52.0 dB to 66.8 dB SPL) and within (SD

range 1.8 dB to 11.8 dB) sites may have been most influential, and included noise

from nearby road traffic, a river, and weather effects. Although audibility may

be only one of several factors that contribute to collision risk, measurement

of vehicle audibility may help conservationists and transportation managers to

better-understand and mitigate wildlife collisions on railways and roads.

2.2 Keywords

Acoustics; hearing; vehicles; detection; railway; strikes; mortality; learning

2.3 Introduction

Transportation networks and their associated infrastructure alter the natural

systems in which they exist. Although some organisms thrive in these altered

systems (Fahrig & Rytwinski 2009; Morelli et al. 2014), many species are affected

negatively. On land, roads fragment landscapes and degrade habitat while the

vehicles that traverse them collide with and kill animals (reviewed in van der Ree

et al. 2015a). When large animals are struck, people can be injured and vehicles

can be damaged (Bissonette et al. 2008). Railways and trains appear to exert

similar effects (reviewed by van der Grift 1999; Dorsey et al. 2015; Barrientos,
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Ascensão, et al. 2019). Despite the continued expansion of railways worldwide

(Dulac 2013), documented impacts to species of conservation concern (e.g., Roy

& Sukumar 2017), and risks of injury to passengers and damage to trains (Morse

et al. 2014; NDTV 2018), wildlife collisions on railways remain understudied (Popp

& S. Boyle 2017).

Mitigation of terrestrial wildlife collisions has been a focus of research for

decades, producing a suite of tools applicable to both roads (van der Ree et al.

2015a) and railways (Borda-de-Água et al. 2017). The most consistently effective

methods reduce or prevent animal access to rights-of-way, typically with fences

accompanied by crossing structures that reduce barrier effects for wildlife (Cle-

venger et al. 2001; Glista et al. 2009). Other strategies seek to modify the behaviour

of vehicle operators with some combination of speed reduction and advanced

warning (Huijser, Mosler-Berger, et al. 2015). In contrast, operators of trains (espe-

cially heavy freight trains) have no ability to change direction and limited ability

to slow safely on the time scales necessary to avoid collisions with wildlife. Hence,

recent work on railway mitigation has focused on helping animals to avoid trains

(Babińska-Werka et al. 2015; Backs et al. 2017; Seiler & Olsson 2017).

Roadside and trackside mitigations may be strategically deployed in locations

where collisions with wildlife occur most frequently (hereafter, hotspots; e.g.,

Bıl, Andrášik, Dul’a, et al. 2019), though danger can exist where hotspots do not

(Eberhardt et al. 2013; Ascensão et al. 2019). The spatial distribution of hotspots

can often be correlated to local features of the road or railway environment (e.g.,

Gundersen, Andreassen & Storaas 1998; Gunson, Mountrakis, et al. 2011; Jasińska

et al. 2019). Some features may increase the probability of encounters between

animals and vehicles, such as forested habitat adjacent to a roadway that promotes

animal use of the area (Gunson, Mountrakis, et al. 2011). Other features may

increase the probability of a collision once an encounter has occurred, where the

same vegetation that attracts animals to a roadway can limit visibility for drivers

and reduce the time available for drivers to avoid animals (Bashore et al. 1985).

The ability of animals to detect and respond to vehicles might also be affected

by the local environment of the road or railway (reviewed by Lima, Blackwell, et al.
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2015). To detect a fast-approaching vehicle, animals are likely to rely on vision

and hearing, but visibility to animals of oncoming vehicles can be obstructed

where a transportation corridor curves around vegetation or rugged topography

(Hamr et al. 2019; Jasińska et al. 2019). While low visibility of vehicles to animals

is rarely suggested as a collision mechanism on roads, visibility of vehicles for

human pedestrians is known to be important (reviewed by Ulrich et al. 2014),

and low visibility of trains has been proposed to contribute to the clustering of

wildlife collisions near curves on railways (Dorsey et al. 2015; Popp, Hamr, et al.

2018; Jasińska et al. 2019). Where the visibility of trains is obstructed, animals

might logically rely on hearing to detect approaching trains. However, audibility to

animals of oncoming vehicles could also be reduced by topography within curves,

and to some extent by dense forest (F.M. Wiener & Keast 1959; Yip et al. 2017), as

earthen berms have long been used for noise abatement along transportation cor-

ridors (reviewed by Ekici & Bougdah 2003). In other contexts, greater collision risk

has been found where road vehicle audibility is reduced for human pedestrians

(e.g., Ulrich et al. 2014) and where train audibility is reduced for vehicle drivers

(Lipscomb 1995) or pedestrians (Mortimer 1994; Lichenstein et al. 2012). While

studies have examined the audibility of vehicle-mounted acoustic deterrents (e.g.,

Valitzski et al. 2009; Shimura et al. 2018), the audibility of vehicles themselves is

rarely considered in the context of terrestrial animal–vehicle collisions (excepting

Huber et al. 1998; Vidya & Thuppil 2010; Heske 2015).

The purpose of this study was to determine if animals might be more vulnera-

ble to collisions where vehicles are more difficult to hear, especially where visibility

is obstructed by topography and vegetation within curves in the transportation

corridor. On a railway through a mountainous protected area where visibility is

frequently obstructed, we used sound recorders to measure sound from trains

(25 s to 35 s before train arrival) and background sound (5 min to 90 min before

train arrival) using as a relative measure of train audibility the ratio of train sound

to background sound (signal-to-noise ratio, SNR). We measured SNR at 10 sites

where track that curved around raised topography met a straight section of track,

allowing us to compare train approaches from curved and straight track within
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each site. Within each site, we simultaneously recorded train sound at two dis-

tances from the track to determine if the availability of train sound to animals

differed within the width of the cleared right-of-way. Using these data, we sought

to test the hypothesis (1) that low train audibility contributes to an increased

rate of animal–train collisions, predicting that historical counts of animal–train

collisions at each site would be negatively correlated with (a) the mean measured

SNR at each of our 10 sites and (b) the SNR across the study area simulated by a

physical model of the interaction of train sound with topography. We then sought

to test the hypothesis (2) that raised topography impedes the transmission of train

sound around curves in the track, predicting that (a) trains approaching from track

curves would be less audible on average than trains approaching from straight

sections of track, that (b) topography height would be negatively correlated with

SNR for trains approaching from around curves, and that (c) a physical model

accounting for the interaction of sound with topography would more accurately

and precisely predict our measured SNR data than simpler physical models that

did not account for the presence of topography.

2.4 Methods

2.4.1 Study area and period

We recorded train sounds along the Canadian Pacific railway in Banff National

Park, Alberta, Canada (hereafter, Banff). Here, train collisions are a leading cause

of mortality for wildlife, including elk (Cervus canadensis), deer (Odocoileus spp.),

wolves (Canis lupus), black bears (Ursus americanus), and the provincially threat-

ened grizzly bear (Ursus arctos; Bertch & Gibeau 2009; Gilhooly et al. 2019). The

ballast-covered portion of the railway extends 3 m to 5 m from the track centre-

line, beyond which lie sub-alpine forests of lodgepole pine (Pinus contorta) in the

western half of Banff and montane wetlands, grasslands, or mixed forests of white

spruce (Picea glauca) and trembling aspen (Populus tremuloides) in the eastern

half of Banff (Holland & Coen 1983). Vegetation and topographical features tend

to abut the track along its length, limiting visibility around curves. Parallel to the
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railway through much of Banff are the four-lane Trans Canada Highway (0.0 km

to 1.2 km from the railway in the eastern half of Banff) and the two-lane Bow

Valley Parkway (0.0 km to 0.9 km away in the eastern half), following the Bow

River (0.0 km to 2.4 km away in the eastern half) through the Canadian Rocky

Mountains.

Sound recordings were made over two multi-day recording sessions during the

summer of 2016 (27 June–1 July, 2–5 August). Coinciding with peak tourist season

in Banff, mean traffic volumes on the Trans Canada Highway were 33290 vehicles

per day (range 24972 to 41349 vehicles per day), far above the daily average for

2016 of 22769 vehicles per day (counted 1.6 km west of Banff park gates; Alberta

Transportation 2019). The mean ambient temperature was 15.4 ◦C (range 3.1 ◦C

to 28.2 ◦C) with occasional winds from the southeast or northwest gusting up

to 44 kmh−1. Total rainfall was 0.7 mm but weather varied across the study area

(Environment and Climate Change Canada 2019).

2.4.2 Survey design

We restricted recordings to a 45.6 km portion of the railway in the eastern half of

Banff, where the highest densities of wildlife–train collisions within Banff occured

in recent decades (Gilhooly et al. 2019). Within this region, we selected 10 sites

where the railway curved around topography with areas higher in elevation than

the adjacent track bed (determined from a digital elevation model for Banff viewed

with geographic information systems (GIS) software) and where this curve met

a straight section of track greater than 300 m in length (Table 2.1; Table B.1). We

recorded sound at up to three sites concurrently, changing sites after 1–2 days to

distribute recording time among the 10 sites.

We measured train audibility at two locations per site as well as train speed

by placing three sound recorders (SM2+GPS, Wildlife Acoustics, USA) in an array

configuration (Fig. 2.1[a]). On the inside of each track curve where the straight-

away began, one recorder was mounted on a tripod near the track (trackside

recorder), a second where vegetative cover abutted the right of way (forest edge

recorder), and a third 100 m along the straightaway from the trackside recorder
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(speed recorder). To ensure that trains passed both recorders simultaneously, the

trackside and forest edge recorders were placed on a line perpendicular to the

track using a length of string, a plumb bob, and a tape measure (e.g., Brouwer et al.

1985). Recorder positions were marked with stakes to support identical placement

where sites were revisited for multiple recording sessions. Once positioned, the

trackside and forest edge recorders were aligned with their microphones oriented

parallel to the track (Fig. 2.1[a]) by sighting across spirit levels placed on top of

the recorder housings.

We equipped the trackside and forest edge recorders with two microphones

each (SMX-II, Wildlife Acoustics, USA) to allow train direction to be determined

from the audio recordings, while we used a single microphone on the speed

recorder. Sound recorders were programmed to record continuously (59 min-

utes on, 1 minute off every hour due to hardware limitations) in uncompressed

WAV format at a sample rate of 96 kHz. To allow recorded sound levels to be

compared across different microphones, we calibrated each microphone with a

1 kHz, 94 dB SPL (re 20µPa) signal (SM-CAL1, Amprobe, USA) at the beginning

(entry calibration) and end (exit calibration) of each recording session. Entry

calibrations were used exclusively for the audio analysis, but no pair of entry and

exit calibration levels differed by more than 3.0 dB. The timing of events could

be compared across recordings because sound recorders automatically synchro-

nized with global positioning system (GPS) time signals to within 1 ms for most

recordings.

2.4.3 Audio analysis

We examined recordings in Audacity software version 2.1.2 (Audacity Team 2016).

A single observer determined the times of train arrival at each trackside and speed

recorder to within 0.2 s typically by comparing the recording spectrogram with

audible playback to find the centre of the Doppler shift created by the passage

of the front wheelset on the lead locomotive. Train passages were excluded from

further analysis if this moment of arrival was not captured by all recorders at a

site (e.g., if any recorder in the array was in the inactive portion of its hourly cycle).
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We catalogued from the recordings the direction of travel for each train (by ear)

and other events including recorder setup, calibrations, and passages of non-train

track vehicles.

Because recording took place at up to three sites concurrently, individual

trains were recorded 1–3 times as they travelled through the study area. Trains

typically proceeded through the study area without stopping and could be identi-

fied unambiguously across sites by comparing arrival times, direction of travel,

length, and distinctive acoustic features (e.g., locomotive timbre, wheel flats).

Each unique train was assigned an identification code (hereafter, train identity).

Train speeds were measured to within 3 kmh−1 typically by comparing the

time difference of train arrival at the trackside and speed recorders (Table 2.1).

We excluded from further analysis all trains with speed less than 30 kmh−1 be-

cause these trains exhibited excessive rail squeal, a type of train sound generated

disproportionately by slow trains on track curves (M. Rudd 1976). This noise

would have obscured our tests of hypotheses about topography and curvature

because rail squeal appears to propagate well through the track rails (Rose et al.

2004). For trains with measured speeds that exceeded the posted speed by more

than 10 kmh−1, we confirmed our measurements by estimating the width of the

Doppler shift as their locomotives passed (e.g., Young et al. 2004); speed measure-

ments were corrected for two trains at Site G by this method, where GPS time

synchronization was temporarily lost.

To convert the root-mean-square (RMS) of a set of sample values (from a

recorded WAV file) to the equivalent RMS value in pascals, we derived from each

entry calibration a conversion factor for each recording session:

FCal =
PCal

s̄Cal
, (2.1)

where PCal = 94dBSPL = 1.002Pa is the calibration sound pressure and s̄Cal is the

RMS of the sample values recorded during a microphone calibration.

As an indicator of train audibility, we measured the signal-to-noise ratio (SNR)

in decibels (dB) of approaching trains 25 s to 35 s before arrival (hereafter, the

approach interval). Previously, we speculated that 20 s before arrival was a key
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time for animals to detect the approach of the train if they were to leave the track

safely (Backs et al. 2017); this time has also been identified as minimum warning

interval for human safety at railway level crossings (Richards & Heathington

1990). We chose 25 s to 35 s before arrival for our audibility measurements after

observing that trains were usually audible above the background noise in this

interval. Further, we found that trains travelling at the measured mean speed

(61.2 kmh−1) took approximately 30 s to fully traverse track curves at our recording

sites, suggesting the 25 s to 35 s interval would be likely to expose an effect of

topography if one existed. We used the decibel scale for SNR as an indicator for

audibility because the sound pressure levels from which SNR is calculated are

perceived (by humans) on an approximately logarithmic scale (Barron 2002).

Train passages were excluded from further analysis if any portion of the ap-

proach interval was not recorded by both the trackside and forest edge recorders,

or if excessive noise (e.g., recorder setup, thunder, train horns, motorcycles, air-

craft) or microphone artifacts (from rain, wind) were present during the approach

interval. Within each 10 s approach interval, we calculated the RMS of the audio

samples (from a recorded WAV file) for overlapping 1 s sub-intervals every 0.5 s,

multiplied each of these 19 values by the calibration conversion factor FCal from

(2.1), then calculated the mean of the resulting sound pressures (hereafter, the

approach sound level). Background sound levels were calculated similarly for

the 5 min to 90 min before each train arrival (hereafter, the background interval),

excluding from each background interval regions of interference from recorder

setup, other trains, and non-train track vehicles. Every background sound level

was calculated from at least 5 minutes of interference-free recording. We con-

verted mean sound pressure values for the approach interval P̄ approach to decibel

(dB) sound pressure levels (SPL) Lapproach using

Lapproach = 20log10

P̄ approach

Pref
, (2.2)

where Pref = 20µPa is the SPL reference pressure (Barron 2002). Lbackground was

found similarly. We then defined the SNR in dB as

SNRdB = Lapproach −Lbackground. (2.3)
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We note this definition of SNR departs from convention because Lapproach (the

“signal” in SNR) is not measured independently of the background sound:

P̄
2
approach = P̄

2
train + P̄

2
background, (2.4)

where P̄ train is the RMS sound level due to the train alone and we assume P̄ background

during the approach interval is the same as it was during the background interval.

This implies that SNRdB = 3dB when the sound from the train and background

contribute equally to the approach sound level, but allows us to retain data where

the measured SNRdB < 0dB (i.e., where the sound level during the approach

interval is less than during the background interval).

We also estimated the sound power emitted by each train using sound level

measurements when the train was close to the recorder. We calculated the mean

sound level as before, but using the interval 1.0 s to 2.0 s before train arrival (or

up to 6.5 s to 7.5 s before arrival if necessary to avoid train horns). Assuming

that background sound and topography effects were negligible, and treating the

train as a point source of sound over perfectly reflective ground, we expected the

near-distance measured sound level P̄ near to relate to the sound power level in dB

SWLtrain based on the inverse square of the distance rnear (Barron 2002):

SWLtrain = 20log10
P̄ near

Pref
−10log10

Q

4πr 2
near

, (2.5)

where Q = 2 is the directivity factor over flat, perfectly reflecting ground (Barron

2002). rnear was found using the measured train speed.

2.4.4 Animal collision data

We used a mortality database collected by Parks Canada Agency spanning 1981

to 2016 that provided locations of wildlife–train collision events within our study

area (n = 1062). Events in this dataset included collisions where mortality was

confirmed by Parks staff (94%) as well as reported collisions where the fate of the

animal was not confirmed (6%). Multi-animal collisions (4%) were counted as

single events to ensure that each counted event was independent. Precision of

recorded locations changed over time, as collisions prior to the mid-1990s were
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recorded to the nearest mile marker (i.e., within 0.8 km) while collision locations

were later recorded with handheld GPS units. We used a version of the database

where the accuracy of locations was enhanced where possible by interpretation

of descriptive notes from the original data (Gilhooly et al. 2019). Consistency of

reporting also improved from 1998 onwards, when Parks Canada Agency stan-

dardized the reporting of collisions (Gilhooly et al. 2019). The directions of train

travel for collision events were not available.

Because coordinates provided with each event only approximately aligned

with a GIS layer of the railway track (Canadian Pacific, unpublished data), we

snapped the location of each collision event to the nearest point on railway layer.

We used for subsequent analyses the number of collision events within a 400 m

length of track centred on each measurement site (Table 2.1). This method re-

flected our estimate of the length of track over which a train traversing the curve

could have its sound level at 30 s farther along the track affected by the topography

within that curve. This length also provided robustness against the imprecision of

recorded locations for collision events.

2.4.5 Association of measured audibility with collisions

We tested for an association between the audibility of trains (indicated by the

measured SNR values in dB) and collision counts (response variable) at our 10

measurement sites using a Poisson generalized linear model (GLM) with a loga-

rithmic link (Zuur, Ieno, Walker, et al. 2009). Because train directionality was not

available for the collision data, measured SNRs were averaged across trains ap-

proaching from both directions within sites before conversion to decibel units. We

assessed model fit with a likelihood-ratio χ2 test comparing the model of interest

with the null model (Dunn & Smyth 2018). We used Wald z-statistics and associ-

ated p-values to assess the importance of each parameter in the model (Murtaugh

2014a,b) with the understanding that Wald statistics may be conservative due to

the small sample size (Dunn & Smyth 2018). Because the model fit suggested that

our recorder position had no effect on the association between collision count
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and audibility, all subsequent analyses used data from the trackside recorders

only.

2.4.6 Linear tests of topography and curvature

Topography and curvature were quantified for the curved approach direction

within each site. A train travelling at the mean speed of our analyzed trains

(mean±SD = (63.7±8.6)kmh−1) would be 531 m along the track curve from the

recorder at 30 s before arrival (half-way through the approach interval). In GIS

software, we drew a polygon for each site from the trackside recorder, along

the 531 m of track between the recorder and the train, then along a straight line

back to the recorder. The maximum elevation within this polygonal area minus

the mean elevation along the 531 m length of track was used to represent this

topographical feature (hereafter, the topography height). Elevations were from

light detection and ranging (LiDAR) data for all sites except Site J, where only a

lower-resolution DEM was available (Parks Canada, unpublished data). Track

curvature was quantified by taking the ratio of the recorder–train straight-line

distance and the 531 m on-track distance (hereafter, the track curvature ratio).

We tested our hypotheses about the effects of track curvature and topography

on measured SNR by developing a single regression model for each hypothesis

(Harrell 2015; Ver Hoef & Boveng 2015): one to test for a difference between

audibility of train approaches from straight vs. curved track, a second to test

for effects of topography height and degree of curvature on the audibility of

trains approaching around curves, and a third to test for a potential confound

of audibility with train direction of travel. In each case, a linear mixed-effects

model was used (Zuur, Ieno, Walker, et al. 2009) with the measured SNR (in

dB) of each train observation as the response. To account for the conditional

independence of samples measured within each of our 10 sites and within up to

89 unique trains, each of which was recorded at between one and three sites as it

travelled through the study area, we included crossed random intercepts of site

and train identity in each model (Gelman & Hill 2007; Zuur, Ieno, Walker, et al.

2009; Zuur, Ieno & Elphick 2010). We compared trains approaching from straight
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vs. curved track and from east vs. west using all train observations (hereafter, the

all approaches dataset); we compared by-site values of topography height and

track curvature ratio using trains approaching from curved track only (hereafter,

the curved approaches dataset). In each model, we controlled for the measured

by-train speed and sound power level. We assessed each model fit with respect

to a null (intercept-only) model with the same random effects structure using a

conditional F-test with the Kenward-Roger correction for degrees of freedom (df;

Kenward & Roger 1997; J.C. Pinheiro & D.M. Bates 2000; Halekoh & Højsgaard

2014; D. Bates et al. 2015). We used Wald t-statistics with Kenward-Roger corrected

df (Halekoh & Højsgaard 2014; Kuznetsova et al. 2017) and associated p-values

to assess the importance of each parameter in each model (Murtaugh 2014a,b).

We also assessed relationships among train speed, sound power, and direction

of travel using Welch’s unequal variance t-tests (Ruxton 2006) and the Pearson

correlation coefficient.

2.4.7 Development of physical predictions

Although our linear statistical model allowed a straightforward test of our hypothe-

ses, we suspected that it would not detect effects of topography and curvature

because it did not account for the complex relationship between these variables

and the sound level at the recorder. We derived a set of three progressively more so-

phisticated models to approximate the acoustical physics of our experiment, and

we tested each model for its ability to predict the measured SNRs. To distinguish

these physics-based models from the statistical models with which we tested

them, we refer hereafter to the physics-based models as physical predictions.

In the simplest case, we supposed that the approaching train contributed neg-

ligibly to the the sound level at the recorder 25 s to 35 s before arrival, meaning the

SNR would simply be equal to one (i.e. 0 dB; hereafter, the background prediction;

Fig. 2.1(b)):

SNRdB = Lapproach −Lbackground = 0dB, (2.6)
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where Lapproach, Lbackground, P̄ approach, and P̄ background are as from (2.2). Given

(2.4), the background prediction is equivalent to stating P̄
2
train = 0.

To improve the prediction, we included the sound from the train Ltrain in the

predicted approach sound level. Rearranging (2.5), replacing both P̄ near and rnear,

Ltrain = 20log10
P̄ train

Pref
= SWLtrain +10log10

Q

4πr 2
30s

, (2.7)

where Q = 2 as before. r30s is the straight-line distance between the train and

sound recorder at 30 s before arrival (half-way through the approach interval),

found using the measured train direction, train speed, and a GIS layer of the

railway track to estimate the position of the train along the track 30 s before arrival.

We added this train sound to the background sound to obtain the background &

train prediction (Fig. 2.1(c)):

SNRdB = 10log10

⎛⎝ P̄
2
train

P̄
2
background

+1

⎞⎠ . (2.8)

To include the effect of topography, we approximated the topography within

the curve as a rectangular acoustic barrier (hereafter, the equivalent barrier; Fig.

2.1(d); Maekawa 1968). Sound was not allowed to transmit through the barrier,

but was allowed to diffract over the top and around a vertical edge placed near

the railway. The attenuation imposed by this barrier on the sound from the train

is termed the insertion loss IL in dB (Barron 2002), allowing us to construct the

background & train & barrier prediction (Fig. 2.1(d)):

SNRdB = 10log10

⎛⎝ P̄
2
train

P̄
2
background

·10
−IL
10 +1

⎞⎠ . (2.9)

An expression for the insertion loss of the equivalent barrier was adapted from the

work of others (Maekawa 1968; Kurze & Anderson 1971; Lam 1994; Muradali & Fyfe

1998) and simplified by ignoring interference effects (cf. the energy summation

approach Lam 1994):

IL = M1 +10log10

⎡⎢⎢⎢⎣ 4

4+2 · 10
−M5

10

10
−M1

10

⎤⎥⎥⎥⎦ . (2.10)
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Here, Mi refers to the value of an empirical relation called the Maekawa curve

(Maekawa 1968; Kurze & Anderson 1971), which relates the value of the Fres-

nel number Ni = 2
λ (di −do) and the attenuation of a diffracted path i ∈ (1, ...,8),

where i = 1 corresponds to the two-segment linear path overtop of the equivalent

barrier, i = 5 corresponds to the two-segment linear path around one vertical

edge of the equivalent barrier, and subscript o corresponds to the direct path

without any barrier (sensu Muradali & Fyfe 1998). For this model, we assumed

a single wavelength λ= f
cs

for the train sound, using a frequency f = 74.3Hz, a

typical value for the strongest frequency component of locomotive sound in our

measured train samples (cf., Remington & M.J. Rudd 1976), and a speed of sound

cs = 340.5ms−1, the value for dry air at 15 ◦C (Rumble 2019), within the ambient

temperature range during our study. We adapt our definition of Mi as follows

(Lam 1994; Muradali & Fyfe 1998):

Mi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, Ni ≤−0.3

5, Ni = 0

5+20sgn(Ni ) log10

[︃ ⎷
2π|Ni |

tanh
⎷

2π|Ni |

]︃
, otherwise

(2.11)

This expression shows that the contribution to the total attenuation of a given

diffracted ray path i increases with the path length difference (di −do), which

depends not only on the height of the topography within the track curve but also

its nearness to the train and the recorder.

We determined the size and location of each equivalent barrier from a linear

topographical profile between the recorder position, which was the same for all

trains at a given site, and the train position, which was derived from the speed of

each train. At 1000 evenly spaced points along a line between the recorder and

train, we bilinearly interpolated the value of elevation from LiDAR data for all

trains except a subset at Site G and all at Site J where we used a lower-resolution

DEM (as above). We projected lines along this profile from the train and recorder

points that were allowed to touch the topography only once; where these lines

met was the top of the equivalent barrier (hereafter, the Maekawa point; Maekawa

1968). If no topography obstructed line of sight between the train and recorder

points, a Maekawa point was chosen from the available topography that yielded
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the smallest absolute value of the Fresnel number, indicating that the selected

topographical feature might interact most strongly with the train sound. To

find the horizontal extent of the equivalent barrier, a line was drawn from the

Maekawa point perpendicular to the train–recorder line towards the railway track;

the horizontal extent of the barrier was terminated 5 m from the track, or half the

distance between the Maekawa point and the track if this distance was less than

5 m.

2.4.8 Tests of physical predictions

We compared our three physical predictions using one fixed- and one mixed-

effects linear model for each, yielding a total of six models. In each model, the

measured SNR (in dB) of each train was used as the response variable and one of

the three sets of physical predictions was used as an offset variable such that the

only estimated fixed effect in each model was the intercept (Dunn & Smyth 2018).

Thus, for fixed-effects models, the intercept parameter was equal to the mean of

the difference of the measured SNRs and the physically predicted SNRs (hereafter,

the physical residuals). For the mixed-effects models, crossed random intercepts

for site and train identity were also estimated, yielding physical residuals that were

estimated in light of the conditional independence of the observations (Gelman

& Hill 2007; Zuur, Ieno, Walker, et al. 2009). Parameter-specific t-statistics were

derived exactly for the intercept parameters of the fixed-effects models (Dunn

& Smyth 2018), while Wald t-statistics were used for mixed-effects models with

Kenward-Roger corrected df (Halekoh & Højsgaard 2014; Kuznetsova et al. 2017).

p-values indicated the degree to which each intercept was statistically different

from zero (Murtaugh 2014a,b; Dunn & Smyth 2018). We contrasted the accuracy

and precision of the physical predictions by the distance from zero and SE values

of each estimate of the physical residuals.

2.4.9 Simulation of physical predictions

The statistical power of our test for an association between measured audibility

and collision counts may have been limited by our measurement of train audi-
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bility at only 10 sites. To increase the spatial scope of this test, we applied the

background & train & barrier physical predictions to the entire railway within our

study area. We generated points every 10 m along the railway track (n = 4523),

then simulated trains approaching from both directions at each point according

to (2.9). Because we had no recordings at most of these locations, we assumed a

constant background sound level of 61.2 dB SPL and a sound power level for all

trains of 132.4 dB, each equal to the mean values measured for data used in our

previous analyses. We also assumed that trains travelled at the posted train speed

for each location (Table 2.1; Canadian Pacific, unpublished data).

2.4.10 Association of simulated audibility with collisions

We tested for an association between the simulated SNR values (in dB) and col-

lision counts (response variable) within 200 m of each simulated point using

a Poisson GLM with logarithmic link (Zuur, Ieno, Walker, et al. 2009) for each

direction of train travel. To test for a suspected association at only low values

of audibility, we fitted similar models only for data in the lowest quartile of the

simulated SNR for each direction. We computed Wald z-statistics for each pa-

rameter, but the inherent spatial correlation present in these data likely yielded

anti-conservative p-values (Zuur, Ieno & Elphick 2010). Therefore, we did not rely

on p-values for inference and only compared each model’s predicted difference

in the collision count over the range of simulated SNR values.

All analyses were performed in R version 3.5.1 (R Core Team 2018) except

where noted above. Statistical analyses are summarized in Table 2.2.

2.5 Results

Recorder arrays were active for 281.5 hours in total (mean [SD] = 28.2 [7.4] hours

per site) over which 222 train passages were captured (104 unique trains), sug-

gesting that 18.9 trains per day (SD 2.7) passed through Banff during the study

period (using site as the unit of replication and weighting by number of hours

sampled). The average passing speed for recorded trains was 61.2 kmh−1 (SD
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12.6), though this differed substantially among sites and by direction within site

with some trains substantially faster and slower than the posted speed (Table 2.1).

After exclusion of train samples for incompleteness of approach and background

intervals (8 trains), for interference from noise in the approach interval (42 more

trains), and for passing speeds less than 30 kmh−1 (9 more trains), 163 train pas-

sages remained. Train audibilities appeared to vary substantially both among and

within sites (Fig. 2.2), and background sound levels preceding each of these train

approaches differed widely among sites from 52.0 (SD 1.8) dB SPL at Site J to 66.8

(SD 3.1) dB SPL at Site H (Table 2.1).

2.5.1 Association of measured audibility with collisions

Wildlife–train collisions were more frequent where we measured that trains were

harder to hear (Fig. 2.3). Our Poisson GLM fit the data better than the null

model (df = 3, χ2 = 99.4, p < 0.001) and suggested that train audibility at the

trackside recorders was strongly correlated with collision count (mean SNR (dB)

parameter, Table 2.3). For forest edge recorders, the model predicted a slightly

weaker correlation but this difference was not statistically significant (interaction

parameter, Table 2.3).

2.5.2 Linear tests of topography and curvature

We found no difference in audibility (as indicated by SNR) between trains ap-

proaching from straight versus curved track. The linear mixed-effects model

comparing straight and curved approaches was an improvement over a null

model with the same random effects structure (df = (4,109.4), F = 8.7, p < 0.001),

but the parameter for straightaways vs. curves was not different from zero regard-

less of whether we controlled for effects of train speed and train sound power

and regardless of whether we included a suspected interaction with train speed

(straight vs. curve, Table 2.4). Train speed and sound power emerged as stronger

predictors of audibility, with audibility decreasing as train speed increased (Fig.

2.4(a)) and audibility increasing as train sound power increased (Fig. 2.4(b)).
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For train approaches from curves alone, we found a possible effect of topog-

raphy on audibility. Our model incorporating track curvature ratio and topogra-

phy height was only a marginal improvement over the null model (df = (5,12.8),

F = 2.0, p = 0.152). The model fit showed a marginal effect of topography height,

a non-significant effect of track curvature ratio, and a non-significant interaction

(within curves, Table 2.4). Although we caution against their interpretation due to

the marginal or non-significant p-values, the directions of these effects in the fit-

ted model suggested that topography had a more pronounced effect on audibility

for sharper track curves (Fig. 2.5).

We also explored the effect of train travel direction on audibility in addition to

our hypothesis about approach curvature. Our model incorporating train direc-

tion was an improvement over the null model (df = (3,129.9), F = 11.8, p < 0.001),

but the parameter for train direction was not significant when we controlled for

effects of train speed and sound power (eastbound vs. westbound, Table 2.4).

This result was plausible because westbound trains travelled more slowly on av-

erage than eastbound trains (Welch’s t-test: df = 116.1, t = 5.3, p < 0.001) and

westbound trains emitted more sound power than eastbound trains (Welch’s t-

test: df = 148.9, t = −10.3, p < 0.001). Train speed and train sound power were

nevertheless uncorrelated (Pearson’s r =−0.31).

2.5.3 Tests of physical predictions

Comparing the three sets of physical predictions, we found the background &

train and the background & train & barrier predictions were similar in their ability

to predict the measured data (Fig. 2.6). Mixed-effects models on each set of

physical predictions estimated intercepts that were similarly distant from zero for

the background & train and the background & train & barrier predictions, with the

intercept for the background & train & barrier predictions being nearest to zero

in absolute value (1.8 dB difference) and smallest in SE (0.7 dB difference; Table

2.5). Fixed-effects models yielded similar results, although the background & train

estimate was instead closest to zero (−1.6 dB difference; Table 2.5). Both mixed-

and fixed-effects model sets showed that the background predictions substantially
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underestimated the SNR of measured trains (intercept larger than zero), while the

background & train predictions tended to overestimate (intercept smaller than

zero) and the background & train & barrier predictions tended to underestimate

the same data. The residual SD was smallest among the mixed-effects models

for the background & train predictions (3.3 dB difference) while the residual SD

was smallest among the fixed-effects models for the background & train & barrier

predictions (4.4 dB difference).

2.5.4 Associations of simulated audibility with collisions

Applied along the railway through the study area, the background & train & barrier

model predicted regions of low train audibility (indicated by SNR) that appeared

to coincide with regions of high collision count; regions of high collision count

also appeared to exist with no corresponding region of low audibility (Fig. 2.7).

The simulated data revealed a baseline-like structure visible in the simulated

SNR (Fig. 2.7[a]), corresponding to the SNR value expected for flat, straight track.

This baseline showed that the predicted audibility decreased as the speed of the

simulated trains increased. Local decreases of near 1 dB in the simulated SNR

occurred where simulated trains were approaching from around track curves with

no interposing topography, while larger local decreases of 2 dB to 4 dB occurred

where the track curved around larger topographical features. The simulated SNRs

did not agree closely with measured values at our 10 sites (Table 2.1).

Poisson GLMs comparing the collision counts to the corresponding simulated

audibilities found only a small association overall (Table 2.6, all SNR datasets;

Fig. 2.8, long black lines). Over the range of SNRs for simulated westbound

trains (0.25 dB to 6.06 dB), the westbound model predicted a difference of 5.1

animal collisions—only 12% of the largest strike count observed within 200 m of a

simulation point. For simulated eastbound trains, we found a similar difference

of 4.9 collisions over the 0.49 dB to 5.93 dB of predicted SNR. Over just the lowest

quartile of simulated audibilities (Table 2.6, SNR lowest quartile datasets; Fig.

2.8, short red lines), regressions revealed a larger difference in the number of

predicted collisions over a smaller SNR range. The westbound model predicted a
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difference of 18.3 collisions (44% of largest strike count) over 0.25 dB to 4.31 dB

of predicted SNR. The eastbound model predicted a difference of 6.2 collisions

(15% of largest strike count) over 0.49 dB to 4.31 dB of predicted SNR. All tested

relationships were statistically significant, but we did not interpret the p-values

further due to the spatial correlation inherent in these data.

2.6 Discussion

Animals might routinely use acoustic cues to detect and avoid vehicles like trains,

especially in protected areas where visibility can be limited by dense vegetation

and rugged topography. Yet, the availability of these acoustic cues to animals and

the corresponding effects on animal–vehicle collision risk are not well understood.

In measuring and modelling the audibility of trains in Banff, we found evidence

consistent with our first hypothesis in that animal–train collisions occurred more

frequently at locations with low train audibility. The evidence was not clearly

consistent with our second hypothesis about the effect of raised topography on

attenuating the sound of approaching trains. While train audibility was perhaps

affected by site-specific variables like track curvature and topography, it was more

clearly associated with train-specific variables like train speed and sound power.

We also found substantial variation in train audibility among and within sites that

could make train detection more difficult for animals.

As our first hypothesis, we suspected that low train audibility would contribute

to an increased rate of animal–train collisions. We predicted that higher counts

of animal–train collisions would be associated with low train audibility, and this

association was evident for the measured data at our 10 sites. In contrast, one

previous study found no significant mean difference in train audibility between

collision and random locations, although the method for assessing train audibility

was not described (Huber et al. 1998). We found no other quantitative studies

relating audibility of terrestrial vehicles to collision risk, despite existence of

literature identifying aircraft sound as a factor in the behavioural responses to

aircraft terrestrial mammals and birds as well as responses to watercraft of marine
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mammals (reviewed by Lima, Blackwell, et al. 2015). In our study, because we

measured audibility using the SNR, the loudness of both background and train

approach sounds necessarily contributed to the observed association. Among

the 10 measured sites, the two sites with the lowest mean SNRs and highest

collision counts also had the highest mean background levels. Road traffic was the

primary source of background noise at these sites, and traffic noise can increase

or decrease the distance at which some species flee in response to approaching

predators or humans (Barber et al. 2010; Shannon et al. 2016; Petrelli et al. 2017).

Yet in the simulated data across the study area, where differences in background

noise were ignored, the lowest simulated audibilites were also associated with

collision counts. This result suggests that the approach sound level may be as

important as the background sound level when determining train audibility, as

has been found for humans (Lipscomb 1995). The similar associations found for

the trackside and forest edge recorders likely stem from the close proximity of

these recorders (3 m to 13 m; Table B.1) relative to the scale of the topographical

features involved in the acoustical diffraction process, which were on the order of

500 m.

As our second hypothesis, we suspected that raised topography within track

curves impedes the transmission of train sound. We predicted that trains would

be less audible when they approached from around curves with topography than

from straightaways and that the obstructing effect of topography would explain

this difference. However, we found no difference on average between the audi-

bilities of trains approaching from curves and straightaways. Strong differences

in audibility nevertheless existed between sites and among curved and straight

approaches within some sites, suggesting that the existence of a track curve alone

was not enough to explain differences in audibility among trains. Previous studies

have found that curvature sometimes does and sometimes does not correlate with

locations of animal–vehicle collisions (on roads, cf. Gunson, Chruszcz, et al. 2005;

Gunson, Mountrakis, et al. 2011; on railways, cf. Huber et al. 1998; Popp, Hamr,

et al. 2018; Jasińska et al. 2019), perhaps because methods varied for measuring

curvature and for accounting for potential confounds. Looking within curved
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approaches, our analysis revealed a strong but marginally significant effect of to-

pography height and no significant effect of track curvature ratio. Given that raised

topography is routinely used for noise abatement along transportation corridors

(Ekici & Bougdah 2003), we suggest this analysis does not rule out the existence

of a topography effect, which despite its marginal significance was of a direction

and strength consistent with our hypothesis. Our detection of a marginal effect

could be attributed to limitations of our study design, including the low number

of uncorrelated degrees of freedom available to test the topography and curvature

effects (Kenward & Roger 1997) and the simplistic measure of topography used

(maximum height within the curve). Variation in background sound levels could

also be more important than topography in determining train audibility, as even

the largest expected effect of topography from the background & train & barrier

predictions (5.7 dB; Fig. 2.7) was less than the variation in background sound

level within some sites (SD values ranged from 1.8 dB to 11.8 dB; Table 2.1). The

comparison of our physical predictions also appeared not to support or rule out

a topography effect, as we found that predictions accounting for (background &

train & barrier) and not accounting for (background & train) topography were dif-

ferent from each other but a similar distance from the measured data on average.

Future tests of this hypothesis might be improved using models that accounted

for the full topographical profile of the railway environment (e.g., Karantonis et al.

2010) as well as potential confounding interactions with the atmosphere, the

ground, and vegetation (F.M. Wiener & Keast 1959; Embleton 1996; ISO Technical

Committee ISOK 43, Acoustics, Subcommittee SC 1, Noise 1996).

We measured and controlled for train speed and train sound power in our sta-

tistical models to isolate potential effects of topography, curvature, and approach

direction. However, speed and sound power emerged as similar in strength to

the topography effect and their parameters were more statistically significant.

The comparison of physical predictions similarly suggested that train speed and

sound power were comparably important to topography in generating the data.

All analyses indicated that trains emitting more sound power were generally more

audible and that faster-moving trains were generally less audible. These results
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seem reasonable given that fast trains are further from the recorder than slow

trains at 30 s before arrival and given that sound pressure at a receiver is inversely

proportional to the squared distance from the source (see (2.7) for background &

train). Our statistical model suggests that halving a train’s speed from 66 kmh−1

to 33 kmh−1 would increase its SNR at 30 s before arrival from 7.2 dB to 14.4 dB

(straight approaches; Table 2.4, straight vs. curve), in close agreement with (2.7)

(background & train) and equivalent to more than double the approach sound

level. Other studies have suggested that reduced train speed reduces risk of col-

lisions for animals (Becker & Grauvogel 1991; Gundersen & Andreassen 1998;

Visintin et al. 2018), and increased audibility could be one mechanism by which

this occurs. Further, we found that westbound trains were generally more audible

because they moved more slowly and emitted more sound power on average. As

elevation increases along the railway within Banff from east to west, westbound

locomotives may be in higher throttle states that emit more noise (Remington &

M.J. Rudd 1976) and may travel at a lower speeds while climbing. Train sound

power (via throttle state) is likely also affected by variables we did not measure

including train length and loading, which can vary by direction in our study area

(e.g., Gangadharan et al. 2017), as well as conditions of excessive wheel–rail squeal

known to be caused by a combination of low train speed and high track curvature

(M. Rudd 1976) for which we excluded most westbound trains at Site H.

Although we found that collisions occurred more frequently where trains were

consistently less audibile, we speculate that the wide variation in train audibility

among trains and locations could increase the collision risk even where audibility

is not often low. For instance, we observed that trains were sometimes audible

(especially via horn sounds) up to 10 minutes before they arrived. Instances like

these might plausibly lead animals to ignore sounds of train approach because the

sounds are not promptly reinforced by the aversive stimulus of a close approach

of a train (i.e., habituation; Rankin et al. 2009). Animals at locations with normally

consistent audibility might learn avoidance responses for trains that are audible

well before they arrive (as in a discriminated avoidance procedure; Domjan 2005).

An animal used to highly audible trains might be more likely to respond maladap-
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tively (e.g. Rea, Child, et al. 2010) if it were surprised by an unusually fast and quiet

train at the same location (e.g., Sites A, F, and J; Fig. 2.2) or by a train with a lower

audibility at a different location (e.g., Sites I vs. J; Fig. 2.2).

Under ideal conditions, it seems unlikely that animals could be surprised by

vehicles as large and loud as trains. Low train audibility might more plausibly

increase vulnerability to collisions when other stimuli demand an animal’s cogni-

tive resources (Owen, Swaisgood, et al. 2017). The threshold sound level required

for detection of a sound and for recognition of the same sound may differ (as

for humans, Lipscomb 1995; cf. threat assessment, Lima, Blackwell, et al. 2015).

While the minimum detectable difference in loudness between two sounds is

near 1 dB depending on the loudness and frequency (Florentine et al. 1987), train

sounds must be at least 10 dB louder than background noise to reliably provoke

an alerting response in vehicle drivers at road–rail level crossings (Mortimer 1994;

Lipscomb 1995). Further, it may be that only when the train stimulus is intense

enough does it elicit a response from an animal because of the inherent cost

to responding (Frid & Dill 2002). Animals might underestimate the cost of not

responding if they are habituated to train stimuli (Lima, Blackwell, et al. 2015;

Blumstein 2016) and perhaps especially if they are accessing resources within

the railway corridor including spilled grain (Gangadharan et al. 2017), enhanced

vegetative forage (Pollock, Nielsen, et al. 2017), rail-killed ungulates (Murray et

al. 2017), or rodent prey (J. Backs, personal observation). Foraging and other

distractions may also increase the amount of train stimulus required to elicit a

response (Lima & Bednekoff 1999), analagous to inattentional deafness in humans

(Mack & Rock 1998). Reducing the presence of attractants in a transportation

corridor may reduce collisions (e.g., Grilo et al. 2012; Murray et al. 2017), though

the mechanism of distraction has not been tested in this context (Lima, Blackwell,

et al. 2015). Distracted human pedestrians have more difficulty hearing simulated

approaching vehicles (Davis & Barton 2017).

Looking at maps of the largest collision clusters in our study area, we observed

that multiple factors known to increase collision risk appeared to exist at each

cluster location (Appendix B.2). As we acknowledged in our study design, visibility
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of trains is already limited around curves where vegetation and raised topography

abut the track. In this work, we found that the same topography along with

high background noise (e.g., from nearby roads) may reduce train audibility

for animals at some collision clusters. The same steep embankments, along

with adjacent water bodies and highway fencing present near some collision

clusters, seem likely to reduce the ability of animals to escape collisions with trains

(e.g., Hamr et al. 2019). These same features could also create situations where

animals are compelled to use the railway to travel between habitat patches amidst

the otherwise high density of human activity in the Bow River valley (Pollock,

Whittington, et al. 2019). The co-occurrence of these issues with detectability,

escapability, and attraction appear to be implicit in the design of the railway

corridor for this mountainous area: to limit track grades, the track tends to follow

topographical contours. Because the co-occurrence of these issues may have

confounded our ability to attribute collision risk to train audibility, future efforts

to model collision risk in this and other mountainous areas should strive to be

comprehensive in their accounting for risk factors. To facilitate future research in

this area, we further recommend that railway companies and wildlife managers

rigorously record not only the precise locations of wildlife–train collisions but also

the direction of travel for the train that struck each animal.

We observed during the course of our study three other phenomena that af-

fected our auditory detection of trains but that we did not examine. First, large

transport trucks and motorcycles on the nearby Trans-Canada Highway convinc-

ingly imitated train sounds to the point that we were occasionally fooled into

leaving the railway track as per our safety protocol; the effect of this regular ex-

posure was to reduce our willingness to leave the track when train sounds were

heard (i.e., a secondary source of habituating stimuli). Second, we occasionally

experienced illusory localizations of train sound that led us to believe that a train

was approaching from the opposite of its actual approach direction. This effect

can result when the reflected path (e.g. off nearby topography or vegetation) from

a sound source to a receiver is louder than the direct path that might be addition-

ally obscured by topography within a track curve (von Békésy 1949). Third, we
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observed that both ultrasound (up to 48 kHz) and infrasound (suggested by the

subtle shake of buildings over 500 m from the track) were excited by trains, but we

had limited ability to measure either with our sound recorders. Ultrasonic signals

from approaching trains were sometimes recorded well before human-audible

train sounds, and both ultrasound (transmitted through track rails; (Rose et al.

2004; Backs et al. 2017)) and infrasound (transmitted through the ground; Thomp-

son 2009, Chapter 12) are likely unaffected by track curvature or topography. Yet,

diverse species are able to hear sounds that humans cannot (e.g. ultrasound

for deer, H. Heffner & H.E. Heffner 2010; infrasound for elephants (e.g., Elephas

maximus), R.S. Heffner & H.E. Heffner 1982), and measurements of train audibil-

ity within multiple frequency bands may yield insights that our total spectrum

measurements did not.

If the acoustic detectability of trains contributes to collision risk, this source

of risk might be mitigated not only by improving train audibility but perhaps also

by reducing the variance in train audibility. These objectives might be practically

achieved in locations of high collision risk with targeted reductions in train speed,

with consistent use of train horns, and potentially with trackside wildlife warning

signals. Our results showed that trains are audible at a longer time before arrival

at lower speeds, and speed reductions appear to be effective in reducing collisions

(Visintin et al. 2018). Reduced variation in train speed may also reduce instances

of surprise from low-audibility outliers. Train horns also increase the audibility of

trains, consistent with requirements in Canada and elsewhere that horns be blown

whenever approaching road–rail crossings (Transport Canada 2018) and evidence

for their benefit to drivers as well as pedestrians (Mortimer 1994; Lipscomb 1995).

Wildlife warning signals deployed along the railway track would emit light and

sound stimuli at a consistent time before train arrival, allowing animals to learn to

associate the signals with train approach because the signals are always provided

at the same intensity and only to animals within the high risk location (Babińska-

Werka et al. 2015; Backs et al. 2017). Similarly, warning signals are used worldwide

to protect drivers and pedestrians at road–rail crossings (reviewed by Caird et

al. 2002). For locations with the highest collision risk, changes in the design of
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the railway corridor might be necessary that either exclude wildlife (e.g. fences

and crossing structures; Clevenger et al. 2001) or reduce the confluence of risk

factors such as proximity with roads and rivers, obstructing vegetation, and steep

topography.

In summary, we showed that train audibility and background noise varied

among sites along a railway through a mountainous protected area, and that

low train audibility was correlated with the history of wildlife collisions at those

sites. We attempted to predict train audibility with both linear statistical and

nonlinear physical models incorporating measures of topography within track

curves, which suggested increases in audibility with decreased train speed and

increased train sound power. The effect of topography generally was unclear

due to poor model fits, and when applied across the study area, the nonlinear

physical model incorporating topography effects correlated with collisions only

at locations in the lowest quartile of predicted audibility. We conclude that more

research is warranted about train audibility and its effect in animal–train collisions,

and recommend the use of more sophisticated models to explore both background

noise and train audibility in the acoustic context of the surrounding landscape.

Increased attention to vehicle audibility may increase understanding of collision

mechanisms and increase options for mitigating the risk of wildlife–train collisions

with potential application to wildlife–vehicle collisions on roads.
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Babińska-Werka, J. et al. (2015) Effectiveness of an acoustic wildlife warning device

using natural calls to reduce the risk of train collisions with animals. Trans-

portation Research Part D: Transport and Environment, 38, 6–14.

Backs, J.A.J., Nychka, J.A. & St. Clair, C.C. (2017) Warning systems triggered by trains

could reduce collisions with wildlife. Ecological Engineering, 106, 563–569.

Barber, J.R., Crooks, K.R. & Fristrup, K.M. (2010) The costs of chronic noise exposure

for terrestrial organisms. Trends in Ecology & Evolution, 25(3), 180–189.

Barrientos, R., Ascensão, F., et al. (2019) Railway ecology vs. road ecology: similari-

ties and differences. European Journal of Wildlife Research, 65(1), 12.

Barron, R.F. (2002) Industrial noise control and acoustics, CRC Press.

Bashore, T.L., Tzilkowski, W.M. & Bellis, E.D. (1985) Analysis of deer-vehicle collision

sites in Pennsylvania. The Journal of Wildlife Management, 49(3), 769–774.

47

https://www.alberta.ca/highway-traffic-counts.aspx
https://www.alberta.ca/highway-traffic-counts.aspx
https://audacityteam.org/


Bates, D. et al. (2015) Fitting Linear Mixed-Effects Models Using lme4. Journal of

Statistical Software, 67(1), 1–48.

Becker, E.F. & Grauvogel, C.A. (1991) Relationship of reduced train speed on moose–

train collisions in Alaska. Alces, 27, 161–168.

von Békésy, G. (1949) The moon illusion and similar auditory phenomena. The

American Journal of Psychology, 62(4), 540–552.

Bertch, B. & Gibeau, M. (2009). Grizzly bear monitoring in and around the moun-

tain national parks: Mortalities and bear/human encounters 1990–2008. Sum-

mary report, Parks Canada Agency, Banff, Alberta, Canada.

Bissonette, J.A., Kassar, C.A. & Cook, L.J. (2008) Assessment of costs associated with

deer–vehicle collisions: human death and injury, vehicle damage, and deer loss.

Human–Wildlife Conflicts, 2(1), 17–27.

Bıl, M., Andrášik, R., Dul’a, M., et al. (2019) On reliable identification of factors

influencing wildlife-vehicle collisions along roads. Journal of Environmental

Management, 237, 297–304.

Blumstein, D.T. (2016) Habituation and sensitization: new thoughts about old

ideas. Animal Behaviour, 120, 255–262.

Borda-de-Água, L. et al., eds. (2017). Railway Ecology, Springer, Switzerland.

Brouwer, C. et al. (1985). Irrigation Water Management: Training Manual No. 2

- Elements of Topographic Surveying. Food, Agriculture Organization of the

United Nations, Land, and Water Development Division, Rome, Italy. URL:

http://www.fao.org/3/R7021E/r7021e00.htm.

Caird, J. et al. (2002). Human factors analysis of highway-railway grade crossing ac-

cidents in Canada. Tech. rep. TP 13938E, Transportation Development Centre

(Transport Canada), Montreal, Quebec, Canada.

Clevenger, A.P., Chruszcz, B. & Gunson, K.E. (2001) Highway mitigation fencing

reduces wildlife–vehicle collisions. Wildlife Society Bulletin, 29(2), 646–653.

Davis, S.J. & Barton, B.K. (2017) Effects of secondary tasks on auditory detection and

crossing thresholds in relation to approaching vehicle noises. Accident Analysis

& Prevention, 98, 287–294.

48

http://www.fao.org/3/R7021E/r7021e00.htm


Domjan, M. (2005) The Essentials of Conditioning and Learning. 3rd ed., Wadsworth,

Cengage Learning, Belmont, California, USA.

Dorsey, B., Olsson, M. & Rew, L.J. (2015). Ecological effects of railways on wildlife.

Handbook of Road Ecology (eds R. van der Ree, D.J. Smith & C. Grilo), pp. 219–

227. Wiley, Chichester, UK.

Dulac, J. (2013). Global land transport infrastructure requirements: Estimating road

and railway infrastructure capacity and costs to 2050. Tech. rep., International

Energy Agency, Paris, France.

Dunn, P.K. & Smyth, G.K. (2018) Generalized Linear Models With Examples in R,

Springer Science+Business Media, New York, New York, USA.

Eberhardt, E., Mitchell, S. & Fahrig, L. (2013) Road kill hotspots do not effectively

indicate mitigation locations when past road kill has depressed populations.

The Journal of Wildlife Management, 77(7), 1353–1359.

Ekici, I. & Bougdah, H. (2003) A review of research on environmental noise barriers.

Building Acoustics, 10(4), 289–323.

Embleton, T.F. (1996) Tutorial on sound propagation outdoors. The Journal of the

Acoustical Society of America, 100(1), 31–48.

Environment and Climate Change Canada (2019). Historical Climate Data. URL:

http://climate.weather.gc.ca/historical_data/search_historic_data_e.html

(accessed Aug. 7, 2019).

Fahrig, L. & Rytwinski, T. (2009) Effects of roads on animal abundance: an empirical

review and synthesis. Ecology and Society, 14(1), 21.

Florentine, M., Buus, S. & Mason, C.R. (1987) Level discrimination as a function

of level for tones from 0.25 to 16 kHz. The Journal of the Acoustical Society of

America, 81(5), 1528–1541.

Frid, A. & Dill, L. (2002) Human-caused disturbance stimuli as a form of predation

risk. Conservation Ecology, 6(1), 11.

Gangadharan, A. et al. (2017) Grain spilled from moving trains create a substantial

wildlife attractant in protected areas. Animal Conservation, 20(5), 391–400.

Gelman, A. & Hill, J. (2007) Data Analysis Using Regression and Multilevel/Hierarchical

Models, Cambridge University Press, New York, New York, USA.

49

http://climate.weather.gc.ca/historical_data/search_historic_data_e.html


Gilhooly, P.S. et al. (2019) Wildlife mortality on roads and railways following high-

way mitigation. Ecosphere, 10(2), e02597.

Glista, D.J., DeVault, T.L. & DeWoody, J.A. (2009) A review of mitigation measures

for reducing wildlife mortality on roadways. Landscape and Urban Planning,

91(1), 1–7.

van der Grift, E. (1999) Mammals and railroads: impacts and management impli-

cations. Lutra, 42, 77–98.

Grilo, C. et al. (2012) Individual spatial responses towards roads: implications for

mortality risk. PLOS ONE, 7(9), e43811.

Gundersen, H. & Andreassen, H.P. (1998) The risk of moose Alces alces collision:

a predictive logistic model for moose–train accidents. Wildlife Biology, 4(2),

103–110.

Gundersen, H., Andreassen, H.P. & Storaas, T. (1998) Spatial and temporal corre-

lates to Norwegian moose–train collisions. Alces, 34(2), 385–394.

Gunson, K.E., Chruszcz, B. & Clevenger, A.P. (2005). What features of the landscape

and highway influence ungulate vehicle collisions in the watersheds of the

Central Canadian Rocky mountains: a fine-scale perspective? In: Proceedings

of the 2005 International Conference on Ecology and Transportation, San Diego,

California, USA, pp. 545–556.

Gunson, K.E., Mountrakis, G. & Quackenbush, L.J. (2011) Spatial wildlife–vehicle

collision models: a review of current work and its application to transportation

mitigation projects. Journal of Environmental Management, 92(4), 1074–1082.

Halekoh, U. & Højsgaard, S. (2014) A Kenward-Roger approximation and paramet-

ric bootstrap methods for tests in linear mixed models – the R package pbkrtest.

Journal of Statistical Software, 59(9), 1–30.

Hamr, J., Hall, M. & Popp, J.N. (2019) An assessment of moose and elk train collisions

in Ontario, Canada. Alces, 55, 1–12.

Harrell, F.E. (2015) Regression Modeling Strategies: With Applications to Linear

Models, Logistic and Ordinal Regression, and Survival Analysis. 2nd ed., Springer

International Publishing, Switzerland.

50



Heffner, H. & Heffner, H.E. (2010) The behavioral audiogram of whitetail deer

(Odocoileus virginianus). Journal of the Acoustical Society of America, 127(3),

EL111–EL114.

Heffner, R.S. & Heffner, H.E. (1982) Hearing in the elephant (Elephas maximus):

absolute sensitivity, frequency discrimination, and sound localization. Journal

of Comparative and Physiological Psychology, 96(6), 926.

Heske, E.J. (2015) Blood on the tracks: track mortality and scavenging rate in urban

nature preserves. Urban Naturalist, 4, 1–13.

Holland, W. & Coen, G. (1983). Ecological (Biophysical) Land Classification Of

Banff and Jasper National Parks. Volume I: Summary. Tech. rep. Publication

No. M-83-2, Alberta Institute of Pedology, Edmonton, Alberta, Canada.

Huber, D., Kusak, J. & Frkovic, A. (1998) Traffic kills of brown bears in Gorski kotar,

Croatia. Ursus, 10, 167–171.

Huijser, M.P., Mosler-Berger, C., et al. (2015). Wildlife warning signs and animal

detection systems aimed at reducing wildlife-vehicle collisions. Handbook of

Road Ecology (eds R. van der Ree, D.J. Smith & C. Grilo), pp. 198–212.

ISO Technical Committee ISOK 43, Acoustics, Subcommittee SC 1, Noise (1996).

Acoustics — Attenuation of sound during propagation outdoors. Part 2: General

method of calculation. Standard IS0 9613-2, International Organization for

Standardization (ISO), Geneva, Switzerland.
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2.10 Tables
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Table 2.1: Summary of train sound measurements and related features at 10 sites along the Canadian Pacific railway within Banff National Park,
Alberta, Canada. Within each train direction (Train dir.), we contrast the number n of trains recorded (for which “Measured speed” is reported
to within 3 kmh−1 typically) with the number of trains analyzed (for which background levels and signal-to-noise ratios [SNR] are reported)
after exclusion of slow trains (speed < 30 kmh−1) and noisy approaches (from weather or horn presence). The background & train & barrier
physical predictions are used for “Predicted SNR” (see Methods). We provide the number of animal collisions recorded within 200 m of each site
(Colls.), the direction from recorders to each track curve (Dir. to curve), the track curvature ratio where values closer to one are more straight
(Curve ratio), the maximum height of topography above the mean track grade (Topo. height), and the nominal maximum speed of trains at
each site (Posted speed; Canadian Pacific, unpublished data). Locations, straightaway lengths, and recorder separations are given in Table B.1.

Site Name Colls. Train
dir.

Dir. to
curve

Curve
ratio

Topo.
height

(m)

Posted speed
(kmh−1)

n recorded,
analyzed

Measured
speed

(kmh−1)

Background
level (dB)

Measured
SNR (dB)

Predicted
SNR (dB)

A Castle East 4 W E 0.986 7.5 80 8, 8 58 (10, 50–75) 59.0 (4.5) 10.0 (5.4) 8.3 (3.0)

E – – 9, 6 76 (20, 25–97) 8.0 (3.5) 4.4 (4.1)

B Johnston
Canyon

2 W W – – 80 11, 4 47 (6, 38–59) 62.3 (11.8) 21.3 (3.9) 16.8 (3.5)

E 0.984 3.3 11, 7 77 (4, 71–82) 12.9 (4.7) 7.0 (3.8)

C Hillsdale
West

12 W E 0.967 24.3 64 9, 7 45 (13, 28–63) 64.0 (4.6) 6.8 (4.5) 1.6 (1.1)

E – – 13, 4 58 (9, 41–67) 5.5 (2.7) 1.6 (0.7)

D Muleshoe 7 W E 0.983 2.4 64 9, 7 61 (6, 49–65) 53.0 (3.2) 13.6 (3.5) 15.5 (2.8)

E – – 10, 10 63 (3, 58–68) 14.7 (3.4) 14.4 (3.6)

E Five Mile A 16 W E 0.957 12.9 64 13, 11 59 (3, 54–64) 58.9 (9.6) 9.9 (4.0) 8.7 (3.2)

E – – 12, 3 63 (2, 61–65) 13.1 (3.1) 12.9 (4.5)

F Five Mile S 8 W E 0.918 3.1 64 7, 7 62 (4, 52–65) 60.0 (4.4) 16.4 (2.9) 11.2 (4.1)

E – – 16, 11 64 (2, 60–68) 8.1 (6.2) 7.1 (3.7)

G Five Mile C 6 W W – – 64 5, 3 57 (11, 39–63) 61.5 (3.8) 13.0 (4.4) 10.6 (2.8)

E 0.915 7.9 13, 9 61 (5, 52–67) 4.3 (3.8) 2.6 (1.9)

H Stables 33 W E 0.875 13.1 64 13, 1 28 (12, 19–64) 66.8 (3.1) 8.1 (1.5) 2.8 (0.8)

E – – 15, 12 62 (5, 55–72) 3.9 (4.6) 2.7 (2.0)

I Anthracite 28 W W – – 72 14, 10 62 (9, 48–73) 64.9 (2.2) 7.5 (3.0) 4.6 (1.6)

E 0.98 1.8 18, 16 67 (4, 62–77) 4.8 (4.5) 0.6 (0.5)

J Carrot
East

4 W W – – 72 14, 11 66 (8, 53–78) 52.0 (1.8) 19.5 (2.7) 16.1 (3.4)

E 0.967 5.4 16, 16 71 (3, 68–77) 15.6 (3.2) 6.0 (2.0)
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Table 2.2: Summary of statistical models used in this work. Response variables were modelled as a function of the fixed and random
effects, depending on the model type (see Methods). Model types included generalized linear models (GLMs; all Poisson-distributed
with logarithmic links), linear mixed-effects models (LMEs), and linear fixed-effects models (LFEs). Each model included a fixed
intercept. Fixed effects marked with “(offset)” were included in the model with no estimated parameter. “:” indicates interaction
effects. Each model used the all approaches dataset, except for the within curves model (as indicated).

Analysis, model name (all approaches
dataset)

Model
type

Response Fixed effects Random
effects

Association of measured audibility
with collisions

GLM Collision
count

Measured SNR

Linear tests of topography and
curvature

Straight vs. curve LME Measured
SNR

Approach direction, train speed, train sound power, direction:speed Site, train
ID

Within curves (curved approaches
dataset)

LME Measured
SNR

Topography height, track curvature ratio, train speed, train sound
power, height:curvature

Site, train
ID

Eastbound vs. westbound LME Measured
SNR

Train direction, train speed, train sound power Site, train
ID

Tests of physical predictions

Fixed, background LFE Measured
SNR

Background SNR (offset)

Fixed, background & train LFE Measured
SNR

Background & train SNR (offset)

Fixed, background & train & barrier LFE Measured
SNR

Background & train & barrier SNR (offset)

Mixed, background LME Measured
SNR

Background SNR (offset) Site, train
ID

Mixed, background & train LME Measured
SNR

Background & train SNR (offset) Site, train
ID

Mixed, background & train & barrier LME Measured
SNR

Background & train & barrier SNR (offset) Site, train
ID

Associations of simulated audibility
with collisions

GLM Collision
count

Background & train & barrier SNR
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Table 2.3: Parameter estimates (Est.), standard errors (SE), and Wald z statistics for
a Poisson GLM with logarithmic link comparing wildlife collision counts (response
variable) with measured signal-to-noise ratios (SNR) in decibels (dB), recorder
position (trackside or forest edge), and their interaction. SNRs were averaged
by direction (westbound and eastbound) within each of ten measurement sites
(Table 2.1) separately for sound recorders positioned at the trackside and at the
forest edge. Reference categories (ref.) are indicated in parentheses. “:” indicates
interaction effects.

Parameter Est. SE z p

Intercept 4.20 0.24 17.3 <0.001

Mean SNR (dB) -0.18 0.03 -6.7 <0.001

Recorder position (forest edge, ref. trackside) -0.42 0.32 -1.3 0.188

SNR:Forest edge 0.04 0.04 1.1 0.291
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Table 2.4: Parameter estimates (Est.), standard errors (SE), and Wald t statis-
tics from three linear mixed-effects models for which the response variable was
signal-to-noise ratio (SNR) of approaching trains in decibels. All models included
crossed random intercepts for site and train identity. Reference categories (ref.)
are indicated in parentheses. “:” indicates interaction effects. Degrees of free-
dom (df) were approximated using the Kenward-Roger method. Boldface lines
(excluding intercepts) indicate statistical significance at α = 0.05. Straight vs.
curve and eastbound vs. westbound models used data for trains approaching
from both directions, while the within-curves model used data only for trains
approaching from track curves. Continuous variables were centered and scaled
to aid interpretation: for the bi-directional data, train speed (original mean [SD]
= 63.7 [8.6] kmh−1), train sound power (original mean [SD] = 129.0 [4.7] dB); for
the within-curves data, topography height above track (original mean [SD] = 7.1
[6.2] m), track curvature ratio (original mean [SD] = 0.962 [0.026] dB), train speed
(original mean [SD] = 63.6 [8.7] kmh−1), train sound power (original mean [SD] =
128.3 [5.1] dB).

Model name (dataset) Est. SE df t p

Straight vs. curve (all approaches)

Intercept 7.6 1.6 11.5 4.7 <0.001

Approaching from curve (ref. straight) -0.4 0.6 85.3 -0.7 0.473

Train speed (kmh−1, scaled) -1.9 0.5 111.5 -3.5 <0.001

Train sound power (dB, scaled) 2.0 0.5 134.4 4.3 <0.001

Curve:speed 0.3 0.7 91.1 0.4 0.711

Within curves (curved approaches)

Intercept 7.8 1.7 5.9 4.6 0.004

Topography height above track (m, scaled) -3.2 1.7 7.1 -1.9 0.096

Track curvature ratio (scaled) 0.3 1.4 7.0 0.2 0.847

Train speed (kmh−1, scaled) -1.9 0.9 67.2 -2.2 0.035

Train sound power (dB, scaled) 3.1 1.2 48.0 2.6 0.014

Topography:curvature 1.3 1.9 10.0 0.7 0.519

Eastbound vs. westbound (all approaches)

Intercept 6.9 1.6 13.8 4.2 <0.001

Train moving westbound (ref. eastbound) 1.2 1.4 126.2 0.8 0.416

Train speed (kmh−1, scaled) -1.6 0.5 138.5 -3.5 <0.001

Train sound power (dB, scaled) 1.8 0.5 113.1 3.6 <0.001
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Table 2.5: Parameter estimates (Est.), standard errors (SE), and Wald t statistics
for linear models comparing physical predictions with measured values for the
signal-to-noise ratio (SNR) in decibels (dB). Each model has the measured SNR
as the response and the physical predictions as an offset variable; the intercept
in each case estimates the mean of the physical residuals (measured SNR minus
predicted SNR). We contrast estimates of the residuals among each set of physical
predictions (model name) for linear mixed models using crossed random inter-
cepts of train ID and site with linear models using only fixed effects. We report for
comparison the estimated standard deviations (SD) of the random intercepts for
mixed models and residual SDs for all models.

Model type: model name Est. SE df t p

Fixed: background

Intercept 8.4 0.6 162 15.1 <0.001

Residual SD 7.1

Fixed: background & train

Intercept -1.6 0.4 162 -4.1 <0.001

Residual SD 4.8

Fixed: background & train & barrier

Intercept 2.1 0.3 162 6.1 <0.001

Residual SD 4.4

Mixed: background

Intercept 7.7 1.4 12.0 5.4 <0.001

Train ID (random effect SD) 5.6

Site (random effect SD) 4.0

Residual SD 2.9

Mixed: background & train

Intercept -2.1 1.0 9.6 -2.1 0.054

Train ID (random effect SD) 2.0

Site (random effect SD) 2.9

Residual SD 3.3

Mixed: background & train & barrier

Intercept 1.8 0.7 9.7 2.3 0.042

Train ID (random effect SD) 1.7

Site (random effect SD) 2.1

Residual SD 3.5
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Table 2.6: Parameter estimates (Est.), standard errors (SE), and Wald z statistics
for four Poisson GLMs with log links comparing wildlife collision counts (response
variable) with simulated signal-to-noise ratios (SNR) in decibels (dB). SNRs were
simulated using the background & train & barrier physical predictions. GLMs
were regressed on either the full set of data within a train direction (all SNR; n =
4523) or the lowest quartile of the SNR data within a train direction (SNR lowest
quartile; n = 1131).

Train direction (dataset) Est. SE z p

Westbound (all SNR)

Intercept 2.620 0.021 126.2 <0.001

Simulated SNR (dB) -0.082 0.004 -19.0 <0.001

Westbound (SNR lowest quartile)

Intercept 3.275 0.023 139.7 <0.001

Simulated SNR (dB) -0.345 0.007 -46.8 <0.001

Eastbound (all SNR)

Intercept 1.680 0.026 63.5 <0.001

Simulated SNR (dB) 0.114 0.005 21.4 <0.001

Eastbound (SNR lowest quartile)

Intercept 2.580 0.033 79.2 <0.001

Simulated SNR (dB) -0.191 0.010 -20.1 <0.001
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2.11 Figures

64



Figure 2.1: Illustration of the experimental setup and physical predictions. (a)
Sound recorders were mounted on tripods near the track (trackside recorder), at
the edge of vegetative cover (forest edge recorder), and 100 m along the straight
section of track (speed recorder) on the inside of track curves around raised
topography. Topography height and track curvature varied by site (Table 2.1).
Inset: Photograph of a trackside recorder. (b) The background physical predictions
assumed that background noise was the dominant factor determining the sound
level at the recorder. (c) The background & train physical predictions added
sound from the train to the background predictions, supposing the topography
between the train and recorder had no effect on train sound. (d) The background
& train & barrier predictions were developed using an equivalent acoustic barrier
to estimate the attenuating effect of the raised topography within the track curve.

65



Figure 2.2: Comparison of measured train audibilities by site and direction of
approach for trackside (upper panel) and forest edge recorders (lower panel).
Audibilities were measured as signal-to-noise ratios (SNRs) and calculated by
dividing the approach sound level 25 s to 35 s before each arrival by the back-
ground level 5 min to 90 min before each arrival. Trains with passing speeds less
than 30 kmh−1 are shown as open circles but were not included in subsequent
analyses. Box plots show medians, first and third quartiles, and range to 1.5 times
the interquartile range.
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Figure 2.3: Comparison of measured signal-to-noise ratio (SNR, in dB; response
variable) for approaching trains and historical counts of animal–train collisions.
SNRs were averaged by direction (westbound and eastbound) separately for sound
recorders positioned at the trackside and at the forest edge. Lines show fitted
values for collision count within 200 m of the sound measurement location (with
95% point-wise confidence band on the predictions; Dunn & Smyth 2018) for
the model of Table 2.3. Mean SNRs for each site and recorder are indicated with
points labelled by site (Table 2.1).
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Figure 2.4: Comparison of train audibilities as indicated by signal-to-noise ratio
(SNR, in dB; response variable) for trains approaching from track curves and
straightaways. (a) Comparison across train speeds. (b) Comparison across train
sound powers. Lines with shaded regions show mean predicted values and 95%
prediction intervals at the population level for the Straight vs. curve model (Table
2.4). Point-wise 95% confidence bands on the population-level predictions were
computed by bootstrap resampling (D. Bates et al. 2015; Knowles & Frederick
2018) using for (a) the mean train sound power of 129 dB and for (b) the mean
train speed of 63.7 kmh−1.
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Figure 2.5: Comparison of train audibilities as indicated by signal-to-noise ratio
(SNR, in dB; response variable) with topography height and track curvature for
trains approaching from curves only. The solid line and shaded region show mean
predicted values and point-wise 95% confidence bands at the population level for
the within curves model (Table 2.4) computed by bootstrap resampling (D. Bates
et al. 2015; Knowles & Frederick 2018) using the mean value of track curvature ratio
(0.962) for the curved approaches dataset. Track curvature ratios approaching
1.0 indicate straight track and lower values indicate greater curvature. Dashed
lines (reflecting statistical non-significance of curvature effects; Table 2.4) show
model-predicted values for track curvature ratios of 0.937 (darker dashes) and
0.988 (lighter dashes).
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Figure 2.6: Comparison of three physical predictions modelling the signal-to-
noise ratio (SNR) of an approaching train at 30 s before arrival. Residual values
(measured SNR minus predicted SNR) are shown for each data point in our exper-
iment. Boxplots show medians, first and third quartiles, and ranges to 1.5 times
the inter-quartile range. Larger points with error bars show estimates and 95%
CIs on the predictions at the population level computed by bootstrap resampling
(D. Bates et al. 2015; Knowles & Frederick 2018) for the mixed-effects models of
Table 2.5.
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Figure 2.7: Comparison of animal collision count and simulated train audibilities
as indicated by signal-to-noise ratio (SNR) along the railway through the east half
of Banff National Park, Alberta, Canada. (a) Train SNRs from the background &
train & barrier physical predictions using a constant background noise level of
61.2 dB SPL. The horizontal axis, shared with panel (b), indicates the position
of a listener on the railway towards which westbound or eastbound trains are
approaching. (b) Count of animal collision events recorded from 1981–2016 (Parks
Canada, unpublished data) measured with a sliding window of 400 m length. Red
vertical lines correspond to sites where sound measurements were taken (Table
2.1).
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Figure 2.8: Comparison of collision counts (response variable) with simulated
train audibilities as indicated by signal-to-noise ratio (SNR, in dB) for eastbound
and westbound trains. Long black lines represent predictions for models regressed
on the full set of simulated SNRs within each train direction (all SNR models;
Table 2.6), while short red lines represent predictions for models regressed on
the lowest quartile of simulated SNRs within each train direction (SNR lowest
quartile models; Table 2.6). Point-wise 95% confidence bands are shown for each
prediction line but are often narrower than the depicted lines.
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Chapter 3

Warning systems triggered by trains
could reduce collisions with wildlife*

3.1 Abstract

Ecosystems are degraded by transportation infrastructure partly because wildlife

mortality from collisions with vehicles can threaten the viability of sensitive popu-

lations and alter ecosystem dynamics. This problem has attracted extensive study

and mitigation on roads, but little similar work has been done for railways despite

the occurrence of wildlife–train collisions worldwide. We propose a method for

reducing wildlife losses on railways by providing animals with warning signals

that are triggered by approaching trains, particularly in areas of high strike risk.

Analogous to the warning signals provided for people at road–rail crossings, our

system emits flashes of light and bell sounds approximately 20 seconds before

train arrival at the location where the system is deployed. Learning theory predicts

that animals will associate these warning signals with train arrival if the warning

signal (conditioned stimulus) consistently precedes train arrival (unconditioned

stimulus). We tested two designs for a warning system: one that detects passing

trains and wirelessly relays this information to warning devices further along the

track, and one that integrates detection of trains at a distance with warning signals

in a single device. The most reliable design detected passing trains with magnetic

*Originally published as J.A.J. Backs, J.A. Nychka, & C.C. St. Clair (2017) Warning systems
triggered by trains could reduce collisions with wildlife, Ecological Engineering, 106, 563–569.
Reproduced with modification (materials details added to Methods) under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).
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or vibration sensors and relayed the information to warning devices. We have

developed an affordable and publicly available prototype of this design that can

be built for a material cost of US$225. With refinement, this technology could

become an inexpensive means of protecting wildlife and people around the world

from fatal train strikes wherever strike risk is known or predicted to be unusually

high.

3.2 Keywords

Railway; strikes; animals; associative learning; train detection; sensors; vibration;

infrared; magnetism; machine learning

3.3 Introduction

Wild animals interact with transportation networks in complex ways. Through

habitat loss, fragmentation, and degradation as well as direct mortality, the abun-

dance of many species is reduced near roads (Fahrig & Rytwinski 2009; Benıtez-

López et al. 2010; Rytwinski & Fahrig 2012, reviewed by) with potential to alter

community composition and ecosystem dynamics (van der Ree et al. 2015b).

Although the effects of roads on wildlife are typically negative, some species have

been found to increase in abundance near roads (e.g., Fahrig & Rytwinski 2009;

Morelli et al. 2014) while others are attracted to the vicinity of roads despite high

risk of mortality (e.g., Nielsen, Stenhouse, et al. 2006). Strikes on railways have

received less attention, perhaps because they present less risk to people (Langbein

2011; Morse et al. 2014) or because railways are less prevalent than roads (Dulac

2013). Nevertheless, train strikes have been associated with population effects

(reviewed by van der Grift 1999; Seiler, Helldin, et al. 2011; Dorsey et al. 2015)

and animals are sometimes struck more often on railways than on adjacent roads

(Huber et al. 1998; COST 341 Management Committee 2000; Waller & Servheen

2005). Additional incentive for strike reduction on railways applies for sensitive

or threatened populations and charismatic, keystone, or culturally-important

species.
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The best methods for reducing wildlife–vehicle collisions on roads are often

impractical on railways. Collision reduction is increasingly achieved through

the installation of wildlife exclusion fencing and crossing structures, which can

reduce the frequency of wildlife–vehicle collisions by up to 80% (Clevenger et

al. 2001) while maintaining habitat connectivity (reviewed by Glista et al. 2009).

These road mitigation measures are costly, however, and despite the consumptive,

passive-use, and management values of animals killed by vehicles (K.J. Boyle

& Bishop 1987; Conover 1997; Schwabe & Schuhmann 2002), mitigations may

be less cost-effective on railways where strikes typically do not damage human

assets (cf. Huijser, Duffield, et al. 2009). Exclusion fencing may also reduce animal

access to beneficial foraging (Wells et al. 1999; Dorsey 2011), travel (H.H. Kolb

1984; S. Hedeen & D. Hedeen 1999), and habitation (Moroń et al. 2014; Kaczmarski

& Kaczmarek 2016) opportunities along railways, and exclusion from these op-

portunities may be unnecessary where traffic intensity on railways is dramatically

lower than on a typical road. As an alternative to exclusion fencing, road vehicle

operators can sometimes avoid wildlife strikes by detecting animals and slowing

down, especially if driver awareness is improved with warning signs or animal

detection systems (Huijser, McGowen, et al. 2006). In contrast, train operators

cannot change course and require minutes of warning time to slow safely. Sys-

tematic speed reductions reduce stopping distances and can often reduce wildlife

strikes on both road (Gunson, Mountrakis, et al. 2011) and rail (Gundersen &

Andreassen 1998). However, unless the speed reduction is drastic it may be inef-

fective (Rea, Child, et al. 2010), especially where deep snow, steep topography, or

adjacent water bodies encourage animals to retreat along the track (e.g., Becker &

Grauvogel 1991).

An alternative approach to reducing wildlife–train collisions is to increase the

probability that animals will leave the track after detecting an approaching train.

For people and other animals, failure to detect an oncoming train can lead to

a collision directly or via a maladaptive escape response (Lima, Blackwell, et al.

2015), perhaps induced by panic. Such detection failures are especially likely if

the visual or acoustic cues of an approaching train are obscured by vegetation,
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topography, or deep snow, especially around track curves, or if the cues are masked

by competing stimuli from nearby roads and rivers (Figure 3.1(a)). When these

conditions occur in areas used frequently by animals, heightened collision risk

presumably results. The risk of detection failures in these areas (hereafter, strike

zones) might be reduced if warning signals were provided in advance of train

arrival in a way that could not be obscured or masked. Animals could learn to

associate these warning signals with train approach if the signals were provided at

a consistent time relative to train arrival and if the signals differed from stimuli that

occur in other contexts (Domjan 2005). The warning signal need not be aversive

because the close approach of a vehicle is, itself, an aversive unconditioned

stimulus (e.g., Rea, Child, et al. 2010). Similar behavioural principles govern the

logic behind road–railway crossing signals for people and were recently applied in

a wildlife warning system (Babińska-Werka et al. 2015). Although effective, these

systems rely on close integration with railway infrastructure and require expensive

proprietary hardware. Lower-cost wildlife warning devices used on roads, such as

headlight reflectors and deer whistles, are largely ineffective (D’Angelo et al. 2006;

Valitzski et al. 2009). This may be because reflectors and whistles lack the spatial

and temporal precision of association between the conditioned warning stimuli

and the unconditioned stimulus of close approach by a vehicle.

Here, we describe an electronic system for reducing wildlife–train collisions

that combines the precise signaling of active warning systems (e.g., road–railway

crossing signals) with the flexibility of installation and affordability of passive

warning systems (e.g., headlight reflectors). We tested two designs for such a

system (Figure 3.1(a)–(c)). One is based on paired but spatially separated devices

in which the first device detects a passing train and relays that information to a

distant warning device positioned within the strike zone (hereafter, the passing

relay). The other is based on a single device positioned within the strike zone

that predicts train arrival time from a distance and activates integrated warning

stimuli at the desired time (hereafter, the approach detector). Both methods

can be implemented with low-cost, off-the-shelf components, assembled with
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basic electronics tools, and installed without affecting railway infrastructure or

operations.

3.4 Methods

3.4.1 Study area

The two methods were tested on a freight railway owned and operated by Cana-

dian Pacific within Banff National Park, Alberta, Canada (hereafter, Banff) and

Yoho National Park, British Columbia, Canada (hereafter, Yoho). This railway bi-

sects the two parks, runs alongside the four-lane Trans-Canada Highway, and was

the largest single source of direct human-caused mortality for grizzly bears (Ursus

arctos) within Banff between 1990 and 2008 (Bertch & Gibeau 2009). Black bears

(Ursus americanus), wolves (Canis lupus), elk (Cervus canadensis), and moose

(Alces alces) are also struck (Parks Canada Agency, unpublished data).

Road–rail crossing signals in our study area generally activate near 20 s before

train arrival (cf. Richards & Heathington 1990). To mimic the effectiveness of

these signals, we chose a target warning time for our tests of (20±5) s. Both of the

methods we propose can provide longer warning times if desired.

3.4.2 Passing relay

The passing relay comprises two types of devices placed along a railway track:

sensing devices are placed at a distance from either side of a strike zone to detect

trains that pass them, and warning devices are placed within the strike zone to

provide warning signals along the length of the zone (Figure 3.1(b)). When a

sensing device detects a train, it transmits a wireless radio signal that activates

all warning devices within the strike zone. Sensing devices are placed far enough

from the strike zone that a train moving at average speed takes 20 s to reach the

centre of the strike zone.

Seven commercially available sensors were used to detect trains at close range

(Table 3.1): a digital compass, an infrared rangefinder, an infrared motion detec-

tor, an accelerometer, and three vibration switches designed to trigger on weak,
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medium, and strong vibrations. Each sensor was placed in a plastic enclosure and

attached with a magnet to the outside web of the track rail (vibration sensors) or

laid flush with the ballast rock between the track rails (infrared sensors and com-

pass). Data from each sensor were logged continuously (Arduino Uno and Data

Logging Shield, Adafruit Industries, USA) for a minimum of ten train passages over

one or more recording sessions. An adjacent stereo audio recorder (SM2+GPS,

Wildlife Acoustics, USA) measured the time of each train arrival according to its

internal clock, which was synchronized with the Global Positioning System (GPS).

All recordings were made at a single site within Banff.

Train arrival times were estimated from spectrograms of the audio recordings

to within ± 0.2 s. Sensor data were then examined for changes coinciding with

train arrival. Thresholds could be set part-way between the noise floor and the

train signal, yielding no false positives or negatives for most sensors (Table 3.1).

Each sensor’s data were then searched by computer for signals exceeding the

corresponding threshold (hereafter, a detection), skipping six minutes of data after

each detection to allow trains to pass. Detections were matched to train arrivals

from the audio recordings if their times coincided within 60 s. Detections with

no matching arrival were recorded as false positives; arrivals with no matching

detection were recorded as false negatives. Other track vehicles (e.g., maintenance

trucks) were treated identically because most sensors had no trouble detecting

them.

We were unable to closely synchronize the internal clock of the data logger

with that of the audio recorder, and this limited our ability to compare detection

accuracy among the sensors. While the clocks were within 10 s of each other at

the beginning of every recording session, the actual value changed each time the

data logger was reprogrammed. Further, the compass and rangefinder recordings

used a different internal clock that drifted by 10 s per day. We assumed a model for

these effects where the detection times from each recording session were given an

unknown offset and an offset that changed with time. To recover detection preci-

sion, we linearly regressed the difference of detection and arrival times against the

recording time for each recording session. For recording sessions whose models
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had a significant slope (p < 0.05), we report the regression residuals, rather than

the raw differences of detection and arrival times; for recording sessions with

non-significant models, we report the differences of detection and arrival times

with the mean value subtracted. Recording sessions comprising less than three

detections were excluded. This transformation of the data reflects the loss of

information about sensor accuracy (systematically early or late detection) caused

by the clock synchronization problem (but see Discussion).

Hypothetical warning times were estimated from this measure of detection

precision. Since train detections can be relayed from the sensing device to the

warning device in a negligibly short time, a highly precise sensor would provide

an equally precise warning time only at the centre of the strike zone and only if

train speeds in the area were always the same. If a particular train had a higher

speed than average, the passing relay would provide a warning time shorter than

the target time. Moreover, an animal nearer to the train than the strike zone centre

would perceive a warning time shorter than the target time. To simulate these

effects, speed was measured for each train detected by the accelerometer using

a pair of GPS-synchronized audio recorders (SM2+GPS, Wildlife Acoustics, USA)

placed 200 m apart along the track. A hypothetical strike zone of 200 m length (12 s

at 60 kmh−1) was then centred 20 s away from the sensor at the average speed of

this sample of trains. For each train, a hypothetical animal was placed randomly

within the strike zone. Assuming each train maintained its speed, the warning

time provided to the animal was the time elapsed between train detection by the

accelerometer and train arrival at the animal.

3.4.3 Approach detector

The approach detector is a standalone device placed within the strike zone that

detects trains at a distance (Figure 3.1(c)). When a detected train is determined to

be 20 s from the device, integrated warning signals are activated. Each approach

detector detects trains and activates independently.

To detect trains at long range, we chose to use the train-generated vibrations

that travel long distances in track rails. Rail vibrations cannot be obscured by
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vegetation or topography because they are confined to and guided by the track

rails. Moreover, noise from rivers or roads near the track (Figure 3.1(a)) cannot

vibrate the rails, allowing rail-attached vibration sensors to achieve a higher signal-

to-noise ratio than in-air microphones. Similar vibrations are commonly used

to detect defects in track rails (Loveday 2012), and train-generated vibrations

have been observed over 2 km ahead of train arrival (Rose et al. 2004), but to our

knowledge they have never been used to predict train arrival time.

Piezoelectric film sensors (polyvinylidene fluoride film printed with silver

ink for shielding; Table 3.1) were used as contact microphones to transduce rail

vibrations into electrical signals. The sensors were adhered with epoxy (Speed Set

Epoxy, LePage, Canada) or cyanoacrylate glue (Super Glue Gel Control, LePage,

Canada) to neodymium magnets (BY0X02, K&J Magnetics, USA). This enabled

secure attachment to the outer web of the track rails while the stiffness of the

cured adhesive and magnet allowed for acoustic transmission from the rail to

the sensor. Signals from these sensors were received by a custom preamplifier

(Appendix C.2) and recorded (SM2BAT and SM2BAT+, Wildlife Acoustics, USA) at

sample rates of 192 kHz or 384 kHz, allowing us to measure acoustic signals from

10 Hz to 48 kHz for all recordings (Mandal & Asif 2007).

To sample a range of conditions that could affect the generation and trans-

mission of rail vibrations, trains were recorded with the piezoelectric sensors at

six sites along the railway within Banff and Yoho and as well as one site along the

Canadian Pacific railway south of Edmonton, Alberta, Canada. Sites and recording

times were selected to sample many possible track conditions, including curved

and straight track, the inside and outside rails on curves, and locations near to

and far from track joints and rail lubrication equipment. For Banff and Yoho sites,

recordings were collected at winter and summer temperatures.

Because we could not discern any clear threshold from vibration spectrograms

to indicate when trains were 20 s away, we chose to automate the classification of

patterns with machine learning. We first split recordings for each train approach

into smaller intervals (Appendix C.3). Each interval was then assigned a class

of “true” or “false” to indicate whether the interval fell within 20 s of train arrival.

80



Classification models were trained with 10-fold 10-repeat cross-validation (using

Kuhn et al. 2015; R Core Team 2015) on a data set containing all intervals from a

site-stratified random sample of 80% of approach recordings (the training set).

One model was trained for all sites together and another model for each site alone.

The random forest classifier (using Liaw & M. Wiener 2002; R Core Team 2015) was

chosen for its robustness to overfitting (Breiman 2001). Approaches of non-train

track vehicles were excluded from this analysis to optimize the models for train

detection.

Warning times provided by this method were estimated from the predictions

of the trained models on the remaining 20% of approach recordings (the test set).

The first interval a model classified as “true” gave the time at which an approach

detector would have activated its warning signal. Activation times more than 60 s

before train arrival were recorded as false positives; approaches for which the

model did not predict a trigger were recorded as false negatives.

3.5 Results

For the passing relay, we compared 183 combinations of seven sensor types and

105 unique vehicle passages (103 trains and 2 other track vehicles) to arrival

times from the audio recordings. As expected, the slopes in the linear models to

remove clock drift were statistically significant (at p < 0.001) only for the compass

and infrared rangefinder; means were subtracted for the other sensors (with two

extreme outliers excluded from the mean for the infrared motion detector). Five of

the seven sensors detected every passage and did so with high precision (85–100%

within 2 s of the mean; Figure 3.2). Of these, only the compass and accelerometer

achieved no false detections and precision within ± 2 s for all detections, but

the compass achieved this with triple the sample size. The single false positive

reported for the infrared rangefinder (Figure 3.2) may have been caused by the

passage of an animal. The other two sensors were so imprecise (less than 50%

within ± 2 s for the medium switch) or missed so many passages (82% missed by

the strong switch) that we did not consider them further.
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Warning times provided by the passing relay were simulated using the speeds

of the 13 trains detected by the accelerometer (mean and standard deviation:

(61.7±2.4) kmh−1) and 13 random animal locations within a hypothetical 200 m

strike zone (range: −99 m to +95 m). This simulation yielded a range of values

largely within or very near to the target interval ((20±5) s; Figure 3.3, left).

For the approach detector, we assessed 430 combinations of up to four si-

multaneous recording locations and 116 unique train passages. On average,

site-specific classification models detected 80% of train approaches in its test set.

These models provided a median warning time 1.8 s earlier than the 20 s target and

an interquartile range (i.e., the middle 50% of values) of 15.9 s (Figure 3.3, centre).

The model incorporating all sites detected more approaches from the same test

set (88%) but with reduced accuracy and precision: The median warning time was

4.7 s earlier than the target with an interquartile range of 18.5 s (Figure 3.3, right).

In spectrograms of the approach recordings, we could see vibration signals from

approaching trains at least 20 s and sometimes as much as 210 s before arrival.

However, background noise from other frequency bands was often strong enough

that these signals did not affect the time-average signal level until 5 s to 10 s later.

Comparisons of the accuracy, precision, and false detection rates of the two

wildlife warning methods (Figure 3.3) clearly favour the passing relay.

3.6 Discussion

Our results show that a highly precise train detector can be built with simple,

off-the-shelf components. The passing relay missed no trains and triggered only

when trains passed, and the timing of triggers was highly precise for both the

compass and accelerometer sensors. The model of the approach detector built

with data from all sites achieved fewer false detections than models built with data

from each site alone, but with less accuracy and precision. Even with variations in

train speed and animal location, the passing relay provided warning times largely

within the target interval and did so far more consistently than the approach

detector.
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Three of the remaining passing relay sensors performed nearly as well as the

compass and accelerometer. For instance, the infrared rangefinder yielded similar

precision—apart from the single false positive—and was tested far longer than

accelerometer. However, the mechanisms of detection for the infrared sensors are

inherently different: the passage of animals could easily trigger false positives in

both infrared sensors but not in the compass or accelerometer. Furthermore, the

infrared motion detector has an activation time threshold of 80 s (Table 3.1). The

extra distance the train would travel during this time means that communication

between the sensing and warning devices would require signal repeaters that

would increase the cost and complexity of the system.

For all five sensors presented, our use of linear regression or mean subtraction

to transform the data could have removed real differences in the median detection

times among the sensors. However, one could easily compensate for any such

differences by changing the spacing between the sensor and the strike zone. Train

speed and animal location will more strongly affect the warning times.

Because true positive and true negative signals are so similar in train approach

recordings, approach detection is much harder than passage detection. This

similarity in signals is likely driven by variation in train speed; differences in how

well rail sections transmit vibration; and the complex interactions of train wheels,

rail surface, car mass, train speed, and track curvature that produce the vibrations

(Remington 1976; M. Rudd 1976). Our visual comparison of spectrograms derived

from the train recordings suggested that the time before train arrival of each first

observable signal was related to the train speed as well as the proximity of track

lubrication equipment. Moreover, the in-rail acoustic train signals detectable

at the greatest distances were exclusively ultrasonic (typically 20 kHz to 40 kHz),

but lower in frequency than the 40 kHz to 80 kHz range expected from other work

(Rose et al. 2004) (Appendix C.4).

Our >80% detection rates are nonetheless promising for a first use of in-rail

acoustic signals to detect trains, and the approach detector could be improved

with further effort. Alternative data processing strategies could separate the ap-

proach signal into frequency bands before computing mean signal levels. Such
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strategies might be identified automatically using unsupervised feature learn-

ing algorithms on large datasets (Coates et al. 2011). At the cost of including

a more sophisticated computer in each device, approach detectors could itera-

tively improve their accuracy and precision with each train passage via online

machine learning techniques (Shalev-Shwartz 2011). The cost of such technology

continues to decline.

If the approach detector could be improved, it would have four advantages

over the passing relay. First, the classification model may (with sufficient training

sample size) learn to account for variations in train speed. Second, independent

triggering of each warning system within the strike zone would increase the

warning time consistency experienced by nearby animals, as long as the warning

stimuli of nearby devices are more salient than those of distant devices. Third, the

approach detector does not require separate sensing devices, allowing the system

to accommodate small strike zones at the same cost per metre as large zones.

Fourth, the approach detector should be more reliable because all devices in the

zone would be fully redundant and would not depend on wireless communication.

Meanwhile, the passing relay results are strong enough to warrant implemen-

tation and further testing for the purpose of wildlife warning. The choice of

sensor among compass, accelerometer, and weak vibration switch will depend

on factors other than precision of detection, including not only cost (Table 3.1)

but also power requirements and durability (Table C.2, Appendix C.5). Similar

multi-dimensional comparisons must be made to select a controller; a wireless

communication system; a warning signal; a power source; and a means of protect-

ing the components from water, dust, ultraviolet degradation, and mild impact

(e.g., shifting ballast rock). The parts for our prototype cost US$100 for the sensing

device and US$125 for the warning device (Appendix C.5). These costs could be

reduced with design refinement and mass production.

The passing relay design is ideal for protecting short sections of track (e.g.,

200 m or less for train speeds near 60 kmh−1) with a history or predicted risk of

high strike rates. Ideally, multiple warning devices should be placed on the track

within a strike zone (one every 50 m) with a sensing device placed 20 s (at average
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train speed) from the strike zone center to detect trains approaching from either

direction. Greater lengths of track could be protected by repeating this pattern on

adjacent track sections, as long as care were taken to limit warning times to the

same (20±5) s within each consecutive protected zone. An ideal approach may

be to combine these warning systems with short sections of fencing, excluding

wildlife from the most dangerous areas while also mitigating strike risk at the

fence ends (cf. Lehnert & Bissonette 1997; M. Olsson pers. comm.). Strike risk

could be further reduced if these measures were combined with reductions in

train speed (Rea, Child, et al. 2010), especially in areas of high strike risk.

The use of train-triggered warnings for the reduction of wildlife–train strikes

makes two assumptions that require further study. First, it assumes that the in-

consistent availability of train approach signals increases the risk of animals being

struck. Second, it assumes that a warning signal will change animal behaviour so

as to reduce their risk of being struck. In a recent test of another train-triggered

wildlife warning system, animals reacted to trains earlier and were more likely to

leave the track when a precisely timed acoustic warning was provided (Babińska-

Werka et al. 2015). This study did not determine whether the success of the system

was driven by the temporal consistency of the warning signal, the choice of animal

distress calls as warning sounds, or both. However, wildlife are prone to habituate

to warning signals that are not followed by reinforcement or punishment (Ujvari

et al. 1998; Gilsdorf et al. 2002), suggesting that learning plays a role in the success

of this train-triggered warning system (Babińska-Werka et al. 2015). Associative

learning in this context requires that the warning stimuli are salient, uniquely

associated with trains, and consistently timed relative to train arrival (Domjan

2005). Learning of this type, especially as part of an avoidance learning process,

has been demonstrated in wild animals using auditory and visual cues (Vollrath &

Douglas-Hamilton 2002; Kloppers et al. 2005) as well as olfactory stimuli (Baker

et al. 2007). Seemingly-similar wildlife warning technologies, such as wildlife

warning reflectors (D’Angelo et al. 2006) and deer whistles (Valitzski et al. 2009),

have had a limited effect on collision rates, potentially because the warning stim-
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uli could not be associated specifically enough with the unconditioned aversive

stimulus of close approach by a vehicle.

Although aversiveness of conditioned stimuli is not a requirement for asso-

ciative learning (Domjan 2005), the literature offers incomplete guidance on the

design of non-aversive warning stimuli for animals (Appendix C.5). Optical and

acoustic signals are natural choices because they can be turned on and off quickly

and are easily produced with low-cost, low-power technologies such as light-

emitting diodes and piezoelectric speakers. Visual and auditory perceptual ranges

have been measured for some wild mammals (e.g., white-tailed deer, D’Angelo

et al. 2008; H. Heffner & H.E. Heffner 2010; Cohen et al. 2014), but data are in-

complete or unavailable for many other species (for reviews see Fay 1988; Ahnelt

& H. Kolb 2000; Jacobs 2010). Additional work is needed to explore the effects

of flashing versus steady light (but see Blackwell & Seamans 2009), the effects of

light colour on night vision (in humans, Mertens 1955), or the interaction of light

colour with a possible magnetoreceptive sense (cf. Poot et al. 2008; Niessner et al.

2016).

Ultimately, this work allows confident selection of a train detection method

for train-triggered wildlife warning systems. Our system potentially achieves the

temporal and spatial specificity required for associative learning while limiting

the financial, logistical, and technical barriers that might apply to similar tech-

nology. Warning systems based on our train detection methods may have further

application outside of the wildlife protection and train contexts. For instance,

pedestrians on railway tracks are sometimes struck while distracted by head-

phones (Lichenstein et al. 2012), and a visual warning may reduce the frequency

of these events. For this application, we recommend the approach detector over

the passing relay, because the self-contained approach detector can be deployed

at lower densities over larger areas. We expect the inconsistency of warning time

of the approach detector to be less of a problem for humans than for wildlife.

However, the passing relay could be used by railway workers in countries around

the world as a portable, precise, and inexpensive train warning system. The pass-

ing relay may also be useful for providing warnings to wildlife and pedestrians on
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roads, as road vehicles would be detectable with infrared and magnetic sensors:

non-train track vehicles were detected flawlessly by these sensors. Vibrations in

the road created by vehicles may also be detectable with the accelerometer and

piezoelectric sensors, potentially enabling an approach detector. Importantly,

vibration-based and magnetic sensing remain reliable under diverse weather and

lighting conditions—a distinct advantage over optical headlight detection that

has been used previously (Mulka 2009). This work offers a new way to help wildlife

and people coexist with transportation networks worldwide.
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3.10 Tables

Table 3.1: Sensors tested in this work, including the sensing modality and chosen
detection thresholds. Costs may be significantly lower for parts purchased in bulk.
(See Appendix C.1 for suppliers, manufacturers, and part numbers.)

Sensor Method Mode of train
detection

Threshold chosen Cost (US$)

Digital
compass

Passing
relay

Residual
magnetization of
train steel

Vector magnitude of
signal > 700 arb. units

10

Infrared
rangefinder

Passing
relay

Intensity of infrared
light reflected

Rolling mean of 5
readings > 100 arb.
units

15

Infrared
motion
detector

Passing
relay

Motion of heat
source

“On” duration > 80 s 10

Accelerometer Passing
relay

Slow rail vibrations Vertical signal < 800 arb.
units

15

Vibration
switch, weak

Passing
relay

Weak rail vibrations Activation rate > 5 Hz 1

Vibration
switch,
medium

Passing
relay

Moderate rail
vibrations

Activation rate > 2 Hz 1

Vibration
switch,
strong

Passing
relay

Strong rail vibrations Activation rate > 1 Hz 1

Piezoelectric
film,
shielded

Approach
detector

Fast rail vibrations Random forest model 30
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3.11 Figures

Figure 3.1: Concept for a train-triggered wildlife warning system. (a) Warning
signals produced by trains are inconsistently available at some locations: light
and sound from the train can be obscured, distorted, masked, or imitated by
the surroundings. As a result, wildlife may be unaware of approaching trains or
confused by the stimuli and become surprised when the train is very near. (b) The
passing relay uses a sensing device to detect trains and relay triggers to a remote
warning device. (c) The approach detector uses in-rail vibrations to detect trains
at a distance and trigger integrated warning signals. For both warning systems,
we rely on animals to associate the warning signals with train approach. Animals
that have learned this association leave the track when the warning activates.
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Figure 3.2: Train detection precision was similarly high for five of the sensors
tested. Clock synchronization errors are removed from the arrival and detection
time differences shown. Box plots indicate medians, first and third quartiles, and
range to 1.5 times the interquartile range. Outliers are shown as black dots. The
above table shows the number of trains and other track vehicles (n), false positives
(FP), and false negatives (FN) recorded for each sensor.
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Figure 3.3: Simulated warning times provided by the passing relay (left) were more
accurate and precise than those provided by the approach detector. Approach
detector classification models were trained and tested separately on data from
each site (center) or on data from all sites together (right). All data points are
shown (open circles). Box plots indicate medians, first and third quartiles, and
range to 1.5 times the interquartile range. The above table shows the number of
trains (n), false positives (FP), and false negatives (FN) recorded for each method.
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Chapter 4

Warning systems triggered by trains
increase flight-initiation times of
wildlife*

4.1 Abstract

1. Trains on railways collide with and kill animals, incurring economic costs

for railway operators and impacting species of conservation concern. Few

solutions have been demonstrated to mitigate collision risk on railways,

especially solutions that could economically target locations where colli-

sions occur most frequently. We proposed to address this problem with

train-triggered warning signals, consisting of flashing lights and bell sounds

emitted in the 30 seconds leading up to train arrival, that could teach ani-

mals to avoid encounters with trains.

2. We installed our warning systems at four test sites located adjacent to track

curves on an active railway. We used remote cameras to observe the be-

havioural responses of wild animals up to 45 s before train arrival in alter-

nating treatment periods with and without warning signals. We contrasted

the observed flight initiation times when warning signals were and were not

provided and when trains approached from straight versus curved sections

of track, predicting that trains approaching from curves would be harder for

animals to detect.

*Authors: J.A.J. Backs, J.A. Nychka, and C.C. St. Clair
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3. When warning signals were provided, animals larger than and including

coyotes (Canis latrans) initiated a flight response from the track an aver-

age of 62% earlier, from 10.5 s (SE = 1.2) to 17.0 s (SE = 1.5), while animals

smaller than coyotes initiated flight responses an average of 29% earlier

from 11.3 s (SE = 1.6) to 14.6 s (SE = 1.9). For trains approaching from curves,

animals in both species groups fled earlier on average in the presence of

warning signals, but there was no statistical difference between treatment

and control periods. The treatment effects were substantially larger for

trains approaching from straightaways.

4. Synthesis and applications. Our work shows that non-aversive warning

systems could be an effective means for reducing the likelihood of train

collisions by providing additional time for animals to adopt an effective

escape trajectory. Additional work could demonstrate the generality of this

approach for the benefit of wildlife, and perhaps people.

4.2 Keywords

Collisions; behaviour; deterrents; learning; mortality; railway; railroad; technol-

ogy

4.3 Introduction

Transportation networks create complex challenges for the management of adja-

cent natural systems. Roads now influence ecosystems around the world (van der

Ree et al. 2015a) and have extensive effects on wildlife populations (Benıtez-López

et al. 2010; Rytwinski & Fahrig 2012; Morelli et al. 2014) that include the provision

of foraging opportunities (Barrientos & Bolonio 2009; Martinig & Mclaren 2019),

promotion of animal movement (DeMars & Boutin 2018), and collisions of vehi-

cles with animals (reviewed by Fahrig & Rytwinski 2009). Railways seem to exert

similar effects on wildlife (Borda-de-Água et al. 2017), but their ecological effects

have garnered much less attention (Popp & S. Boyle 2017). This dearth of infor-
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mation is unfortunate because railways may sometimes kill more animals than

adjacent roads (Huber et al. 1998; COST 341 Management Committee 2000; Waller

& Servheen 2005), with potential for demographic effects and damage to species

of conservation concern (van der Grift 1999; Dorsey et al. 2015; Borda-de-Água

et al. 2017). One reason for the lack of attention is that wildlife–train collisions

rarely harm people (in contrast with wildlife collisions on roads; e.g., Bissonette

et al. 2008), although derailments are sometimes caused by collisions with large

animals (e.g., Langbein 2011; Morse et al. 2014). Wildlife–train collisions may

nevertheless incur economic costs when mortalities affect threatened species

or species with a high value to people (K.J. Boyle & Bishop 1987; Conover 1997;

Huijser, Duffield, et al. 2009).

Despite the problems posed by wildlife–train collisions, few practical mitiga-

tion options exist. Wildlife exclusion fencing, an effective means of separating

terrestrial animals from vehicles on roads (Clevenger et al. 2001), may not be

cost-effective for railways where collisions are of little risk to human safety (Hui-

jser, Duffield, et al. 2009). Fencing may also exacerbate low habitat connectivity

and population viability unless the barrier includes gaps in the fence (potentially

risking entrapment; e.g., Lehnert & Bissonette 1997) or wildlife crossing structures

(at great expense, reviewed by Glista et al. 2009). An alternative to wildlife exclu-

sion on roads is to create opportunities for vehicle operators to detect and avoid

animals (Huijser, McGowen, et al. 2006), but this is not practical for trains, which

cannot slow down safely on short notice or change direction to avoid animals.

Systematic reduction of train speed has been shown to reduce collision risk (Gun-

dersen & Andreassen 1998; Visintin et al. 2018), but reduced speed could reduce

the economic advantages of railway transport including high throughput and en-

ergy efficiency (AREMA 2003). Animal collisions on railways, as on roads, are also

more prevalent in some areas (collision hotspots) than others (e.g., Gundersen,

Andreassen & Storaas 1998; Popp, Hamr, et al. 2018; Jasińska et al. 2019).

The problem of reducing wildlife–train collisions motivated our previous de-

velopment of a train-triggered, track-mounted warning system which signals, via

a flashing light and bell sound, the impending arrival of a train (Backs et al. 2017).
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The system works by (1) detecting a train as it passes a device containing magnetic

and vibration sensors and (2) relaying that information wirelessly to (3) trigger

the warning devices installed on a nearby section of track where collision risk is

to be mitigated. The relative positions of the train detector and warning devices

are determined by prior measurements of train speed to generate a consistent

warning time of 30 s. The stimuli generated by the warning devices are assumed

to be more predictable in time and space than the sound, light, or vibrations

generated by the train itself, which we found to be highly variable both in time

and space (J. Backs, unpublished data). Importantly, this system does not attempt

to provide an aversive stimulus to deter animals from the area comparable to

some similar systems (Babińska-Werka et al. 2015; Shimura et al. 2018; cf. Seiler

& Olsson 2017), only to alert them to the impending arrival of a train and to do

so with greater temporal and spatial specificity than can be achieved by vehicle-

mounted whistles (Valitzski et al. 2009) or wayside headlight reflectors (D’Angelo

et al. 2006).

Here, we tested the ability of this warning system to modify the responses

of animals to trains. We used remote cameras to observe wild, free-ranging ani-

mals on a live railway track at locations where the warning system was installed

(treatment) or not (control) for periods of 2–4 weeks and then reversed treatment

assignments. Based on the hypothesis that animals would learn to associate

warning signals with trains, passages of which we assumed were already aversive,

we predicted that animals would leave the railway track sooner (relative to train

arrival) when warning signals were provided. Increasing this escape time would be

expected to reduce the risk of collisions, particularly if earlier departures lessened

the likelihood of panic-like responses or erratic flight paths (Lee et al. 2010; Rea,

Child, et al. 2010; Mobbs & Kim 2015). If the presence of intervening topography

or vegetation made it more difficult to detect approaching trains, we predicted

that animals would flee later (during controls) and exhibit greater responsive-

ness to the warning signals (during treatments) when trains were approaching

from around curves in the track. To facilitate this comparison, warning systems

were installed at the intersections of curves and straightaways, such that trains
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approached from straight track in one direction and curved track in the other

direction.

4.4 Methods

4.4.1 Study area

We conducted the study on the Canadian Pacific main line railway, which bisects

the Bow river valley within Banff National Park, Alberta (hereafter, Banff) in the

Canadian Rocky Mountains. In the western half of Banff, the railway runs adja-

cent to subalpine forests dominated by lodgepole pine (Pinus contorta); in the

eastern half, the lower-elevation montane eco-region is characterized by wet-

lands, grasslands, and mixed forests dominated by white spruce (Picea glauca)

and trembling aspen (Populus tremuloides) (Holland & Coen 1983). The railway

parallels the four-lane Trans-Canada Highway (TCH) as well as the two-lane Bow

Valley Parkway through much of Banff. Traffic volumes on the TCH averaged near

23000 vehicles per day in 2016–2017, ranging from less than half of this average in

November 2016 to more than double this average over the July 2017 long weekend

(measured 1.6 km west of Banff park gates; Alberta Transportation 2019). This

traffic, together with the nearby Bow River and the mountainous terrain, exposed

the railway corridor and adjacent forest to diverse conditions of acoustic noise (J.

Backs, unpublished data). The ballast-covered portion of the right-of-way typi-

cally extended 3 m to 5 m from the track on both sides, outside of which vegetation

and topography often limited visibility around curves. Ambient temperatures

during our study ranged from −36.7 ◦C (January 2017) to +31.4 ◦C (July 2017) with

snow accumulation present but varying in depth from November 2016 to April

2017 with a maximum of 39 cm in March 2017 (Environment and Climate Change

Canada 2019); wind and precipitation conditions often changed hourly. Snow on

the railway track was plowed routinely and melted earlier (via sun exposure) on

the dark-coloured rails and ballast rock than in the surrounding forest.

In Banff, collisions with trains have become a major source of mortality for

grizzly bears (Ursus arctos; Bertch & Gibeau 2009), a threatened species in Al-
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berta. Trains also kill annually up to several dozen individuals of other species

of mammals including black bears (Ursus americanus), wolves (Canis lupus), elk

(Cervus canadensis, moose (Alces alces), and deer (Odocoileus spp.; Gilhooly 2016;

Gilhooly et al. 2019) as well as smaller mammals and birds.

4.4.2 Site choices

We chose test sites on the eastern half of the railway within Banff (from the east-

ern park boundary to Castle Junction, 45.6 km west), where train collisions with

wildlife are most common (Gilhooly et al. 2019). Using a digital elevation model,

we identified all sites within this region where the railway curved around an area

of raised topography and where this curve ended in a long straightaway (>300 m).

These sites were expected to have the greatest contrast in train detectability by

direction because trains arriving from around such a curve are often obscured by

both vegetation and topography. Of ten such sites identified within the study area,

we chose a subset of four where we expected to observe animals on the track most

frequently (Table 4.1; P. Busse, Canadian Pacific, December 2016 pers. comm.;

S. Cherry, A. Forshner, D. Gummer, and J. Whittington, Parks Canada, December

2016 pers. comm.).

4.4.3 Experiment design

Each warning system comprised four types of self-contained electronic devices

connected through a wireless radio-frequency network, which we termed train

detectors, warning devices, camera controllers, and signal repeaters (Appendix

D.1; Backs et al. 2017). These devices were deployed along the railway track to

coordinate the activation of warning signals and cameras (for observing animal

responses) with the arrival of a train. We targeted a warning time of (30±5) s, in

contrast to our previous work that targeted (20±5) s (Backs et al. 2017), based on

our desire to ensure that conditioned (warning) stimuli were typically presented

to animals before unconditioned (train) stimuli (Domjan 2005).

At each site, a 200 m length of track was designated for our experimental

treatment (hereafter, the test zone), which began at the point where the curved
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track met the straightaway and continued 200 m along the straightaway (Fig.

1). Train detectors were mounted on the track 40 s away at mean train speed

(measured previously with sound recorders) in both directions from the test zone

center. When a train moving towards the test zone passed a detector, this device

sent a radio signal to all other devices in the network. This signal was received

by camera controllers (two per site) mounted in trees on either side of the test

zone, where they triggered trail cameras (HP900 with external trigger, Reconyx,

USA) facing the test zone to take 90 photographs at up to two frames per second,

yielding at least 45 s of footage. The radio signal was also received by warning

devices (four per site) within the test zone, which emitted the warning signals

(flashing amber lights and bell sounds; Appendix D.1) after a 10 s delay for a

period of 35 s (30 s before and 5 s after train arrival at the test zone center). Signal

repeaters were placed as needed (one to four per site) between the train detectors

and camera controllers to ensure network connectivity. Following activation, all

devices were programmed to wait six minutes while the train passed.

We deployed warning systems at two sites (treatment pair 1, Table 4.1) for the

first six treatment rotations (November 2016–February 2017) and expanded to the

remaining sites (treatment pair 2, Table 4.1) for the remaining six rotations (Febru-

ary 2017–July 2017). At any given time, only one of the sites in each treatment pair

was deployed with warning devices (hereafter, the treatment condition), while the

other site was deployed without warning devices (hereafter, the control condition).

The treatment and control conditions were swapped within treatment pairs every

2–4 weeks to control for seasonal effects. Warning systems were inactive between

experimental periods when the batteries in the devices were depleted.

4.4.4 Image analysis

We recorded calibration images at each site where the experimenters were stand-

ing at known locations within the test zone. These images provided references

for the locations of animals and trains captured in subsequent image sequences.

Location references remained accurate enough throughout the experiment to

identify the near edge of the test zone to within 5 m. These references further
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allowed estimation of train speed to within ± 4 kmh−1 to ± 10 kmh−1 (Appendix

D.2).

For sites under the treatment condition, we verified the correct operation of

the warning signals by observing the flashing warning lights in camera images

(Fig. 2(b)). Occasionally, flashes were not observed in a treatment sequence

because of snow accumulation in front of the lights or because the capture rate

of the cameras was similar to the flash rate of the warning lights. In these cases,

we judged that the treatment was likely delivered (even if only aurally) when

sequences recorded before and after the sequence in question showed flashing

lights. If this condition was not met, we excluded the sequence from further

analysis because the treatment was likely not delivered (e.g., when batteries were

depleted).

To support analysis and interpretation, we recorded several environmental

variables that could have affected the responses of animals to trains. These in-

cluded weather conditions (rain, snow, and wind), light level (dawn, day, dusk,

night), and foliage presence (off, emerging, on) that might have visually or aurally

obscured train approaches and snow cover (none, light, moderate, heavy) that

can affect the retreat behaviours of animals (e.g., Rea, Child, et al. 2010).

4.4.5 Behavioural coding

A team of observers reviewed images retrieved from the cameras. In each se-

quence of 90 images, we recorded the number of animals visible for each species

present. We identified duplicate events from opposing cameras to prevent double

counting. A single observer then reviewed all sequences with animals to eliminate

inter-observer variation in the interpretation of behaviours.

We designated the first animal to flee (regardless of species) within the field

of view of either camera at a site as the focal animal (Fig. 2(a)). We classified the

initial behaviour of this animal as one of foraging (small, occasional movements

with head down), travelling (steady movement along the track), alert (head up,

ears erect, face oriented towards the train), flight (fast movement along or away

from the track), crossing/approaching/leaving (movement perpendicular to the
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track), or unknown (behaviour not discernable). Image numbers were recorded

where this animal changed its behaviour to alert (if observed) and flight. We did

not consider further the timing of alert responses because too few clear alert

responses were observed. We also excluded sequences where an animal was

initially fleeing. To increase the sample size for larger species, we chose a large

animal as focal over an earlier-fleeing small animal if independence of the flight

response seemed likely (e.g., substantial interposing vegetation and distance).

When the focal animal displayed flight behaviour, we noted the position of

the animal, and the image for which the train was closest to this position. The

time stamp of this image revealed the time between the initiation of the animal’s

flight response (Fig. 2(c)) and train arrival at the location where retreat began

(Fig. 2(d)). We termed this time difference the flight initiation time tFIT, related

to the more common flight initiation distance dFID (reviewed by Stankowich &

Blumstein 2005) as

dFID = vTtFIT (4.1)

where vT is the train speed. We excluded treatment sequences from further analy-

sis where the flight response was observed before the warning signals were active

(i.e., within 8 s of the first image in the sequence). We also excluded sequences

where flight behaviour did not have a discrete beginning, where flight did not

lead an animal to leave the ballast (rock-covered) area or to seek cover within the

ballast area without stopping its movement, or where the animal returned to the

ballast area within the same image sequence.

We only used animal sequences for our analyses where we were confident

that we had correctly coded the flight response, that the warning signals acti-

vated (during treatment periods), and that a flight response did not occur before

we expected the warning signals to activate (during treatment periods; together,

the high-confidence criteria). To increase our sample size, we did not exclude

sequences where the focal animal began within the test zone as long as the se-

quences otherwise met the high-confidence criteria. We chose not to analyze

small animal sequences recorded after April 20, 2017 because a sufficient sample

of small animals was obtained from earlier months.
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4.4.6 Statistical analysis

We tested our hypotheses on two groupings of the data: coyotes and larger ani-

mals (hereafter, large animals) and animals smaller than coyotes (hereafter, small

animals). Although we were primarily interested the effect of treatment on large

animals, for which mortality records are kept by both Parks Canada and Canadian

Pacific, many more samples were obtained for small animals. We also expected

large and small animals to respond differently to trains based on expected differ-

ences in their perceptual ranges (Mech & Zollner 2002; Blumstein 2006).

For each species group, we developed a regression model for flight initiation

time testing for the effects of treatment and track curvature while controlling

for potential confounding factors (Gelman & Hill 2007; Harrell 2015; Ver Hoef

& Boveng 2015). Our experimental design suggested the inclusion of a random

effect of test site (Zuur, Ieno, Walker, et al. 2009), but the severe imbalance of high-

confidence samples among sites caused singularity in mixed model fits where

test site was included as a random effect (D. Bates et al. 2015). Sites were instead

pooled for large animals as the smaller sample permitted the inclusion of at most

three parameters (Harrell 2015), while for the larger sample of small animals test

site was included as a fixed factor (i.e., no pooling; Gelman & Hill 2007, pg. 275).

Generalized linear models (GLMs) were fitted with Gamma-distributed errors

due to the positive continuous nature of the response (Zuur, Ieno, Walker, et al.

2009) and with an identity link function for convenience of interpretation. We

report Wald t-statistics for each parameter estimate with the understanding that

they are generally conservative (Dunn & Smyth 2018), and we infer importance

of the parameters to the model fit using the corresponding p-values (Murtaugh

2014a,b). Model fits were assessed by likelihood ratio F-tests comparing the

model of interest with the null model (Dunn & Smyth 2018). Where averaged

comparisons between factor levels were desired, contrasts were calculated by

estimating the marginal means (Lenth 2019) with significance estimated with

Wald t-statistics (Dunn & Smyth 2018). Dispersion estimates for our models

were generally greater than recommended for the use of Wald statistics (Dunn
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& Smyth 2018, pg. 277), but parameter values and standard errors nevertheless

agreed closely with estimates obtained by other techniques (e.g., bootstrapping;

Appendix D.3).

For large animals we modelled treatment, approach curvature, and their in-

teraction only. For small animals, we modelled these effects while controlling for

train speed (centered and scaled to zero mean and unity SD) and Boolean effects

of noise-generating weather, snow cover, and animals beginning their sequences

foul of the track (i.e., within 1.2 m of the nearest rail; Canadian Pacific 2010). We

excluded from further analysis variables with under-represented categories (initial

behaviour of the focal animal, whether the focal animal crossed the track during

its flight, whether vision-obscuring weather was present) or that showed collinear-

ity with treatment (number of days since start of experiment; Zuur, Ieno & Elphick

2010). We excluded from all analyses the small number of samples for which train

speeds were less than 45 kmh−1, both to prevent their undue influence on the

small-animals regression (Harrell 2015, pg. 90) and because slow trains traversing

curves tend to emit loud, high-frequency noise (M. Rudd 1976) that would likely

change their acoustic detectability for animals.

All statistical analyses were performed in R version 3.5.1 (R Core Team 2018).

4.5 Results

Sampling for a total of 520 site-days, we recorded 1.6 million images in 17679

sequences capturing 9628 unique events with and without animals present, sug-

gesting that an average of 19 trains passed each site per day. Animals were visible

in 838 sequences (711 unique events; 90 large animals, 619 small animals, 2 of

unknown size) involving 1942 individual animals (Appendix D.4), predominantly

deer, elk, red squirrels (Tamiasciurus hudsonicus), and unidentified birds. No ani-

mals were visibly struck by trains, and all animals (where the train did not obscure

the camera view before the animal retreated) were observed to flee in response

to train approach. Of the 711 unique events in which animals were visible, 280

were interpretable with our behavioural coding: e.g., our cameras recorded the
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focal animal initiating a flight response as well as the train reaching the animal’s

position of first flight. Retaining from these only high-confidence sequences (27

large, 157 small) with train speeds greater than 45 kmh−1 (see Methods), n = 25

large animal sequences and n = 149 small animal sequences remained.

Large animals displayed earlier flight initiation times in the presence of warn-

ing signals (Fig. 3). Our model fit was better than the null model (df = (3,24),

F = 4.9, p = 0.010) and suggested that the treatment parameter had a strong effect

on flight initiation time with marginally significant but large parameters for track

curvature and its interaction with treatment (Table 4.2). The model predicted

a mean increase in flight initiation time of 6.5 s (SE = 1.9, t = −3.4, p = 0.003)

from 10.5 s (SE = 1.2) for control to 17.0 s (SE = 1.5) for treatment, averaged across

curved and straight approaches. The mean difference between flight initiation

times for trains from curves and straightaways was negligible (est. 0.8 s lower

for straightaways, SE = 1.92, t = −0.4, p = 0.695), but the treatment effect was

substantially weaker when considering only trains approaching from curves (est.

2.7 s earlier flight for treatment, SE = 2.8, t =−0.9, p = 0.34).

Small animals also displayed earlier flight initiation times in the presence of

warning signals, but to a lesser degree than large animals (Fig. 3). Our model fit

was better than the null model (df = (10,148), F = 2.5, p = 0.010) and suggested

a small but important effect for track curvature, a marginally significant effect

of treatment, and no significant interaction (Table 4.2). Averaged over levels of

all other variables, the model predicted that treatment increased flight initiation

time of small animals by 3.3 s (SE = 1.5, t =−2.2, p = 0.03) from 11.3 s (SE = 1.6)

for control to 14.6 s (SE = 1.9) for treatment. The model also predicted a decrease

in average flight initiation time from straightaways at 14.9 s (SE = 1.9) to curves

at 11.1 s (SE = 1.7) (difference of 3.9 s, SE = 1.4, t = 2.7, p = 0.007). The model

predicted a small and statistically marginal decrease in the ability of the treatment

to increase flight initiation times for trains approaching from curves (2.4 s greater

for treatment, SE = 1.6, t = −1.5, p = 0.137) compared to straightaways (4.2 s

greater for treatment, SE = 2.4, t =−1.7, p = 0.085).
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4.6 Discussion

Wildlife mortality from collisions with trains might be reduced without train speed

reductions or animal exclusion measures if animals more consistently left the track

before trains arrived. We tested a track-mounted wildlife warning system designed

to encourage the avoidance of trains by animals. We expected that animals would

have earlier flight initiation times in response to warning signals, especially when

trains were otherwise difficult to detect, which we assumed to apply when trains

approached from curves. When warning signals were present, animals had earlier

flight initiation times on average, but contrary to our prediction, the effect was

most pronounced when trains approached from straight sections of track. If flight

initiation time is related to collision risk, our results suggest that train-triggered

warning systems could mitigate collision risk for wildlife and offer insight into

where warning systems may be most useful.

When we provided warning signals, both large and small animals retreated

earlier from trains than when signals were not provided. Averaged across trains

approaching from curves and straightaways, large animals retreated 6.5 s earlier

and small animals retreated 3.3 s earlier. Although apparently small, these dif-

ferences represent 62% and 29% increases over the mean flight initiation time

with no warning signals, respectively. At the mean train speed in our analyzed

sample (60.5 kmh−1), these time differences correspond to increased separations

between animal and train of 110 m (large animals) and 55 m (small animals) at

the moment of flight initiation. Perhaps the most comparable study to date used

a track-side warning system that emitted a sequence of animal alarm calls and

predator vocalizations for 60 s leading up to train arrival (Babińska-Werka et al.

2015), in contrast to the 30 s warning time targeted in our study. These authors

achieved a larger increase in escape time from control to treatment conditions

(26 s for roe deer), although the variation they measured in escape time under

the treatment condition (mean ± SD = (35.0±38.3) s) was much larger than in the

present study (mean ± SD = (17.3±6.0) s for large animals). This difference could

be attributable to the larger interval between stimulus onset and train arrival
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(60 s versus 30 s in this work; Babińska-Werka et al. 2015) or the use of aversive

warning stimuli (Babińska-Werka et al. 2015). Our warning stimuli appeared to

cause earlier retreats without the use of aversive stimuli (Backs et al. 2017).

Track curvature had differing effects for large and small animals. For large

animals, flight initiation times for curves and straightaways did not differ meaning-

fully; for small animals, the mean decrease in flight initiation time from straight-

aways to curves was 3.9 s, comparable to the mean difference between treatment

and control for the same species group. The small animals difference appears

to be consistent with our prediction that animals would respond later to trains

approaching from curves. Studies of wildlife–vehicle collisions on both roads

and railways have highlighted the association of collisions with curves (Gunson,

Mountrakis, et al. 2011; Popp, Hamr, et al. 2018; Jasińska et al. 2019), citing visi-

bility as an issue for drivers (Bashore et al. 1985) and potentially animals (Hamr

et al. 2019), and recommending vegetation clearing as a potential means of re-

ducing collision risk (Andreassen et al. 2005). Acoustic detectability of trains

might also be reduced where the track curves around steep topography (J. Backs,

unpublished data). Contrary to our expectation, both large and small animal

models revealed decreases in the effect of treatment for curves compared to

straightaways. We speculate that this could occur if animals were more likely to

initiate early flight responses when both warning signals and train stimuli were

presented together, which would in general occur earlier for trains approach-

ing from straightaways. Animals appear to flee earlier in response to multiple

as opposed to single predator-like stimuli (Geist et al. 2005), and so may also

flee earlier in response to the combination of a predator-like stimulus and the

novel warning stimulus. From this perspective, our warning signals may have

sometimes functioned more like an animal deterrent (cf. Muzzi & Bisset 1990;

Babińska-Werka et al. 2015; Shimura et al. 2018) than the learning instrument we

had intended (Domjan 2005; Backs et al. 2017). It could also be that the warning

signals increased animal alertness in a way that encouraged their detection of

the train, as the gaze of the focal animal sometimes appeared to be drawn by the

warning signals towards an approaching train (e.g., Fig. 4.2).
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Although our warning system increased flight initiation times for animals, the

relationship between flight initiation and collision risk was not clear from our

observations. Animals often moved off the track in as little as 1 s to 2 s when they

chose to do so, but only infrequently did animals move directly off the track as

their first response to a train. For instance, focal animals crossed the track as

part of their flight response in 17% of high-confidence sequences (30% for large

animals, 15% for small animals), in rare cases missing the train arrival by less

than one second. These near-misses tended to occur when animals (especially

deer, elk, and pigeons) were present in groups: As one animal moved off the

track, its conspecifics often crossed in front of the train to follow. This grouping

behaviour in both ungulates and birds may afford some protection from collisions

where collective detection of trains enables earlier flight initiation (Elgar 1989;

Beauchamp 2017), but any benefit of earlier responding appeared to be unim-

portant in cases where elk continued to cross in front of the train until the train

arrived, separating the herd (cf. Altmann 1952). In one extreme event, a herd of

elk appeared unable to detect an approaching train until the train operator turned

off the locomotive headlight, after which the elk fled from the train between the

rails. This behaviour is known to lead to collisions when the animal continues to

retreat along the track until struck (e.g., Rea, Child, et al. 2010); an animal’s choice

of flight response has also been found to precipitate collisions with vehicles on

roads (Lee et al. 2010). For both of these collision modes, earlier flight initiation

caused by warning signals may plausibly reduce the risk of collisions, although

determinants of an animal’s choice of flight response are not yet well-understood

(reviewed by Lima, Blackwell, et al. 2015). We can only speculate about changes in

collision risk attributable to the warning system until collision rates are measured

experimentally, although future tests of wildlife warning systems may yield more

insight (Seiler & Olsson 2017).

We observed other instances where animals ran parallel to the tracks before

leaving the right of way. Occasionally, animals used the same escape routes

(potentially, game trails) in different retreat sequences, consistent with the idea

that animals inform their flight decisions with the locations of refugia (reviewed
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by Stankowich & Blumstein 2005). If presence of escape routes determines an

animal’s escape trajectory off the right-of-way, management of vegetation and

topography within the right-of-way could help to reduce collisions (I.G. Pen-

gelly and J.D. Hamer, pers. comm.). Vegetation clearing has also been shown

to reduce wildlife–train collisions (Jaren et al. 1991; Andreassen et al. 2005), its

effectiveness often attributed to the reduction in attractants along the railway (cf.

Pollock, Nielsen, et al. 2017). Vegetation clearing might also reduce collisions by

increasing the distance to the nearest refuge, encouraging earlier flight responses

(Stankowich & Blumstein 2005). However, vegetation clearing could potentially

increase collision risk if uprooted vegetation is left at the edge of the right of way,

blocking escape routes that may already be constrained by steep topography or

adjacent bodies of water.

The potential effectiveness of vegetation clearing in reducing collisions may

also be limited because other factors attract animals to the railway, including

opportunities to forage on spilled grain (Gangadharan et al. 2017) or other train-

killed animals (Murray et al. 2017) or to travel efficiently (Pollock, Whittington,

et al. 2019). We observed that 74% of our 280 codable sequences began with

the focal animal displaying foraging behaviour. In 29% of sequences that began

with foraging behaviour, animals were present between the rails where vegetation

was not generally found, suggesting the animals were foraging on grain. We also

observed that carnivores most often appeared to be travelling (in 8 of 9 sequences;

cf. Pollock, Whittington, et al. 2019) while other species groups exhibited foraging

behaviour more often than any other single behaviour, including ungulates (18 of

40 sequences) and small animals (189 of 230 sequences).

Future implementations of this warning system may benefit from increased

warning time. Animals in 13 treatment sequences (3 large animals, 10 small; ex-

cluded from our analysis) began to flee before the warning devices were expected

to emit signals. Two other large animals (also excluded) appeared to interrupt or

delay their retreat from the train to look directly towards the warning devices. An

increase in warning time to 35 or 40 seconds might have allowed the activation of

warning signals to precede the flight responses of all observed animals. However,
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the time between warning activation and train arrival must remain short enough

that learning can occur (Cooper 1991; in humans, cf. Richards & Heathington

1990).

The positive effect of warning signals on flight initiation time shown in this

work may encourage further development and testing. The ability of warning

devices to reduce wildlife collisions could be assessed by measuring collisions

directly, but the sampling effort would be substantial if a similar experiment

design to ours was used. We estimated that 55000 site-days (compared to the 520

site-days observed in this work) would be required if the present study design

were used to collect a statistically useful sample of collision events (Appendix

D.5). Advances in computer vision (Janzen et al. 2017) and more efficient energy

management in the warning system devices (Appendix D.1) would lower the

cost of such an effort. Alternative monitoring techniques such as train-mounted

cameras may observe more animals per unit effort (Burley 2015), but they cannot

observe the behaviours of animals around track curves. More invasive approaches

(such as barrier fencing; Clevenger et al. 2001; Seiler & Olsson 2017) may be

needed to reduce collisions with large groups of ungulates (e.g. elk herds) that

take longer than 30 s to cross the track even when given early warning of train

approach.

Wildlife warning systems could reduce the needless loss of animals to train

collisions, and we suggest that the design studied here warrants a test of its ability

to reduce collisions. Warning systems like this one could be implemented as a

cost-effective alternative or as a complement to exclusion fencing. Reductions in

wildlife collisions would allow railways to remain leaders in safety and stewardship

as they serve the ever-growing transportation needs of people.
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4.10 Tables

Table 4.1: Test site summary. Treatment pairs define sites that shared warning
devices during the experiment: when MLS was in the treatment condition, 5MS
was in the control condition and vice versa. Topography height is the difference
in elevation between the track bed at the intersection of the track curve and
straightaway and the elevation at the highest point inside the curve, both derived
from LiDAR data. Sample sizes (n) were those used for analyses. Site locations
are in Universal Transverse Mercator (UTM) coordinates for NAD83 zone 11N
(EPSG:26911).

Site
name
(ab-
brev.)

Treatment
pair

UTM
East-

ing

UTM
Nor-

thing

Test zone
to

curve
direc-

tion

Topography
height

(m)

n large
ani-

mals

n small
ani-

mals

Muleshoe
(MLS)

1 589728 5670054 East 2.4 7 20

Five Mile
S
(5MS)

1 593279 5669582 East 2.9 8 27

Five Mile
C
(5MC)

2 594293 5669496 West 4.7 7 97

Stables
(STB)

2 602264 5673880 East 11.9 3 5
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Table 4.2: Parameter estimates (est.), standard errors (SE), and Wald t statistics
from two Gamma generalized linear models with identity links for which the
response variable was animal flight initiation time in seconds. Reference cate-
gories (ref.) for categorical variables are indicated in parentheses. “:” indicates
interactions. Boldface lines (excluding intercepts) indicate statistical significance
at α= 0.05. Train speed was centered and scaled to aid interpretation (original
mean ± SD = (60.5±4.6) kmh−1).

Est. SE t p

Large animals

Intercept 8.3 1.4 5.8 <0.001

Treatment (ref. control) 10.3 2.6 4.0 <0.001

Approaching from curve (ref. straight) 4.6 2.3 2.0 0.060

Treatment:curve -7.6 3.8 -2.0 0.060

Small animals

Intercept 9.2 1.5 6.2 <0.001

Treatment (ref. control) 4.2 2.4 1.7 0.085

Approaching from curve (ref. straight) -3.0 1.4 -2.2 0.030

Auditory weather present (ref. absent) 1.0 1.2 0.8 0.411

Heavy snow (ref. light) 0.5 1.2 0.5 0.638

Animal starts on track (ref. off track) 3.2 1.7 1.9 0.061

Train speed (kmh−1; scaled) -0.5 0.6 -0.9 0.383

Site, 5MS (ref. 5MC) -2.1 1.5 -1.4 0.164

Site, MLS (ref. 5MC) 1.9 2.1 0.9 0.373

Site, STB (ref. 5MC) 5.1 6.0 0.9 0.391

Treatment:curve -1.8 2.8 -0.6 0.533
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4.11 Figures

Figure 4.1: Equipment layout at test sites. Sites were chosen where a section of
straight track met a section of track that curved around topography and vegetation.
Cameras were placed at each end of the test zone; train detectors were placed
40 s (at mean train speed) from the center of the test zone in both directions.
When a train passed a train detector, wireless signals were transmitted to activate
cameras that recorded the presence and subsequent responses of wildlife. During
treatment periods, warning devices activated 30 s before trains arrived. Warning
devices were not present during control periods.
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Figure 4.2: Example of key events in an animal sequence. (a) A deer (circle added)
was visible foraging near the track in the first image. (b) 12 s following system
activation, flashes of light from two warning devices were visible. These were not
likely the first flashes, as the deer raised its head from foraging one image (1 s)
earlier. (c) 6 s later, the deer turned to flee and continued to move perpendicular
to the track until it was no longer visible. (d) 29 s (the flight initiation time) later,
the train arrived where the deer began its retreat.
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Figure 4.3: Effect of treatment on flight initiation time for four groupings of
approach curvature and animal size. Box plots indicate medians, first and third
quartiles, and range to 1.5 times the interquartile range. Means and standard
errors are indicated by the filled circles with ranges. All data points are shown
with test site indicated by shape and position grouping.
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Chapter 5

General discussion

The overarching objective of this dissertation was to find a way to reduce the risk

of wildlife–train collisions for grizzly bears (Ursus arctos) and other highly mobile

species. To achieve this, I explored a rarely examined route of potential vulnerabil-

ity to train collisions and designed, built, and tested a potential countermeasure

to this sensory vulnerability. This chapter discusses the contributions and lim-

itations of this thesis within the broader contexts of railway and transportation

ecology.

5.1 Summary of results

In Chapter 2, I measured the audibility of approaching trains at 10 locations

within Banff National Park and related these measurements to features of the track

environment, features of the approaching trains, and records of past collisions. I

found that raised topography within curves appeared to have a substantial effect

on reducing train audibility, but this effect could not be confidently assessed

with only 10 unique measurement sites. Track curvature alone had no mean

effect on train audibility, but strong patterns in audibility emerged within and

among sites. Pronounced variation in background noise related to roads and river

may have driven differences among sites. Train speed and sound power also had

significant relationships with audibility, and these appeared to be driven in part by

the higher energy requirements and locomotive throttle states required to ascend

the elevation gradient when moving west. I also found among the 10 locations
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that animal collisions historically occurred most frequently where train audibility

was lowest, but when I simulated the audibility of trains across the study area, this

pattern only emerged for locations with very low audibility, suggesting that train

audibility is not the only factor that determines collision vulnerability in Banff.

In Chapter 3, I proposed and developed a train-triggered warning system that

could help to improve the detectability of trains for animals. At locations of high

collision risk, I proposed to deploy a wayside device that provides light-and-sound

signals to animals in the vicinity of the track at 20 s before every train arrival. Based

on learning theory, I would expect animals to learn to associate these signals with

the aversive experience of train arrival and thus to leave the track when signals

were provided. I designed the warning signals to be highly salient to animals but

not aversive in themselves. To reduce barriers to adoption, I designed the system

to require no disturbance of or integration with railway infrastructure. To meet

these requirements, I devised two designs for the train detection sub-system: (1)

the passing relay detected trains as they passed and wirelessly triggered warning

devices placed further along the track, while (2) the approach detector detected

trains as they approached and provided warning signals within a single device.

I found that the passing relay design was highly reliable when detecting trains

with magnetic or vibration sensors, while the approach detector design could not

detect trains at reliable times using machine learning algorithms applied to in-rail

vibration recordings.

In Chapter 4, I built and tested the wildlife warning system proposed in the

previous chapter on wild, free-ranging animals in Banff. Using self-contained

weatherproof cameras, I observed the responses of animals to trains at locations

where warning signals were and were not provided, and where trains were ap-

proaching from either curved or straight track. I found that the flight initiation

time of animals increased when warning signals were provided by 6.5 s for animals

coyote-sized (Canis latrans) and larger and by 3.3 s for smaller animals. Contrary

to my expectation, the increases in flight initiation time when warning signals

were provided were most pronounced when trains approached from straight track,
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whereas for curved approaches alone the effect of the warning signals was positive

but not statistically different from zero.

5.2 Implications for the reduction of wildlife collisions
on railways

5.2.1 Train audibility may contribute to collision risk

A core contribution of this dissertation lies in the evidence I obtained suggesting

that low train audibility could be related to an increase in collision risk for animals

(Chapter 2). Although literature exists describing the behavioural responses of

animals to noise generated by aircraft and watercraft (reviewed by Lima, Black-

well, et al. 2015), to the best of my knowledge no prior works have explored the

effect of terrestrial vehicle audibility on collisions with wildlife. Other works may

examine the effects of vehicle-mounted acoustic deterrents, but not the sound

generated by the vehicles themselves (e.g., Valitzski et al. 2009; Shimura et al.

2018). I also found that train audibility appears to be affected by spatial (e.g.,

topography within curves, road traffic noise), temporal (e.g., noise from weather),

and train-related factors (e.g., train speed and sound power; Chapter 2). While

train detection with vision may be limited by analagous spatial, temporal, and

vehicle-related factors, work so far has tended to examine in isolation factors

that are spatial (Gunson, Mountrakis, et al. 2011), temporal (Steiner et al. 2014),

and vehicle-related (Blackwell, Seamans & DeVault 2014), potentially limiting our

understanding of collision processes where multiple factors interact (Rea, Child,

et al. 2010; Rea, Johnson, et al. 2018). Our understanding of factors that contribute

to collision vulnerability is complicated further by the idea that locations with

heightened collision risk can exist independently of locations where animals are

recorded to die most frequently (Ascensão et al. 2019). This complication may

have been demonstrated by the inconsistent alignment of locations with low sim-

ulated audibility and locations with a high density of recorded collisions, though

audibility appeared to be only one of multiple risk factors present on the railway

(Chapter 2).

130



Further widening the scope of consideration illustrates features of the animal–

train–environment system that could contribute to collision vulnerability in the

ultimate, rather than proximate, sense (sensu Seiler & Olsson 2017). Improving

train detectability in mountainous terrain without the use of active warning sys-

tems could require changes to the way railways are designed (e.g. near rock cuts,

roadways, waterways, dense vegetation) and operated (e.g. speed, horn use), but

organizational, policy, and historical factors have shaped the railway as it is today.

As a further consequence, locations where the track curves around raised topog-

raphy may also offer animals opportunities to travel efficiently among rugged

topography (Pollock, Whittington, et al. 2019) and endanger animals because

of limited opportunities for escape where steep topography or bodies of water

abut the track. Well-intentioned interventions might also have unintended side-

effects if the context of the intervention is not adequately considered (Discussion,

Chapter 4). However, predictive models of collision vulnerability that integrated

diverse factors may help to suggest locations where mitigation measures like

warning systems might be most helpful. Such models would be independent of

collision records that can obscure locations where populations are locally sup-

pressed by collisions (Eberhardt et al. 2013) or that may simply be unavailable in

many locales.

5.2.2 Non-invasive, non-aversive animal warning systems could
reduce collision risk

Another core contribution of this dissertation lies in my finding that animals

respond earlier to trains when warning signals are provided, even when those

warning signals have no apparent biological relevance (Chapters 3 and 4; cf.

Babińska-Werka et al. 2015). The warning systems may rely on simple vibration

and magnetic sensors to detect trains, thereby limiting the impact on railway

operations and infrastructure (Chapter 3). Based on these findings as well as the

work of others (Babińska-Werka et al. 2015; Seiler & Olsson 2017; Shimura et al.

2018), active warning systems seem promising for use in the railway context.
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This acknowledged, this work does not suggest that wayside active warning sys-

tems are the only or best way forward for wildlife collision mitigation on railways.

Vehicle-mounted warning signals (ultrasonic whistles), though found ineffective

for road vehicles, have been found useful in the railway context in at least one prior

study (Muzzi & Bisset 1990). Others have investigated the mounting of airbags

or other structures on the front of locomotives to reduce injuries to people even

when collisions occur (Paden et al. 2016). Where wayside warning systems might

cost-effectively target the locations where risk of collisions is highest, vehicle-

mounted solutions could plausibly mitigate collisions risk across entire railway

networks if every locomotive were thus equipped. Collision mitigation may not

even require new technologies, as speed reductions have been demonstrated to

reduce collision risk (Visintin et al. 2018), and more consistent use of train horns

could improve the consistency of train audibility (Chapter 2). Regulatory changes

promoting the dimming of headlights when a train operator spots wildlife on

the tracks might under some conditions reduce the risk of collisions (Chapter 4),

though this mechanism merits further study. In other contexts where lighter pas-

senger trains are more common and wildlife collisions pose greater risk to trains

(e.g., India and Asian elephants, Elephas maximus), animal detection and warning

of the train driver to slow the train may be a viable solution (A. Gangadharan, pers.

comm.).

5.2.3 Applicability of results to other contexts

Wildlife–vehicle collisions occur around the world for a wide array of species

and transportation modes. Aspects of this dissertation may translate to other

contexts, but I encourage caution when interpreting my results more broadly

than the problem of train collisions in Banff. I have discussed elsewhere how

limitations of my study designs necessarily qualify the conclusions I drew from

my results (Chapters 2 and 4). Outside of the mountainous landscape of Banff,

train audibility and visibility may not be so frequently limited or as widely variable;

on the other hand, long-distance visibility and audibility of trains over flat terrain

(J. Backs, personal observation) might encourage animal habituation to train
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stimuli. Different species in other parts of the world seem to respond differently

to trains, exemplified by the observation that all animals observed in this work

moved away from the track in response to approaching trains (Chapter 4) while

this did not occur for a comparable study in Poland (Babińska-Werka et al. 2015).

Of the other transportation modes, roads may be most similar to railways because

road vehicles are confined to roadways where curves occur that limit visibility

(Gunson, Mountrakis, et al. 2011) and could also limit audibility for animals.

However, driver behaviour plays a substantial role in wildlife–vehicle collisions

on roads and may be easier to alter than animal behaviour (e.g., via warning

signage). Aircraft and watercraft collisions with animals may be more similar to

those of trains in that the burden of collision avoidance is largely on the animals,

but the vehicles are not confined to specific paths; collision mitigation research

for these transportation modes has logically focused on vehicle-mounted stimuli

to encourage animal avoidance (Blackwell, DeVault, Seamans, et al. 2012; E.R.

Gerstein & L.A. Gerstein 2017, but see also for road vehicles Blackwell & Seamans

2009).

5.3 Limitations

In Chapter 2, I attempted to assess train audibility in a way that resembled what

animals perceive. I did this by calculating full-spectrum sound levels when trains

approached dividing this result by the full-spectrum background sound level when

trains were not present. In fact, it is not clear that these measurements resembled

what animals perceive, as many species of interest including grizzly bears, black

bears (Ursus americanus), moose (Alces alces), elk (Cervus canadensis), and wolves

(Canis lupus) do not have published audiograms. To support our inferences, I

relied on published audiograms for deer (Odocoileus virginianus; H. Heffner &

H.E. Heffner 2010) and dogs (Canis lupus familiaris; H.E. Heffner & R.S. Heffner

2007) that in fact suggest these species can detect sounds that include and exceed

the range of human hearing (typically, 20 Hz to 20 kHz). The sound recorders I

used often recorded sound produced by trains up to and beyond 40 kHz, with
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the onset of these ultrasonic sounds sometimes preceding the onset of human-

audible sounds. While I chose to calculate the sound power for the full measured

spectrum, trains produce sound at higher (Chapter 3) and lower frequencies,

suggesting that the aural experiences of other species could differ substantially

from our own.

In Chapters 3 and 4, the design of the wildlife warning system relied on the as-

sumption that train passages were aversive to animals. This assumption appeared

to be the case in my study system, as I observed that animals always moved away

from the track in response to train approach (Chapter 4). Within our study system,

bears familiar with the experience of train passage have been anecdotally reported

to simply step aside as trains passed before resuming their activity within the

right-of-way. In at least one study of wildlife responses to trains, a substantial

proportion of animals showed no change in behaviour as trains passed (Babińska-

Werka et al. 2015). I speculate that this difference in response could be related

to the larger size of freight locomotives and trains in North America compared

to Europe (Busschots 2011), and the consequently stronger auditory and visual

stimuli they might produce; stronger stimuli are less prone to habituation (Blum-

stein 2016). It might also be the lower frequency of train traffic in our study area

(19 trains per day vs. 90 trains per day in Poland, Babińska-Werka et al. 2015) that

reduces opportunities for habituation to train stimuli (reviewed by Blumstein

2016).

A second assumption underlying my development of the animal warning

system in Chapters 3 and 4 was that animals leaving the railway track earlier in

advance of train arrival would be less likely to be struck. While earlier responses

might logically reduce the proportion of animals surprised by trains (Chapters 1

and 3), I did not collect data on the internal state of animals responding to trains

nor did I observe any animal responses that led to collisions (Chapter 4).

One more limitation of the study in Chapter 4 was the inability of my study

design to demonstrate that associative learning was responsible for the earlier

responding of animals to trains. The usable sample of large animal responses

was too small to model the effect of time through the study, and a confound with
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season (winter vs. summer) was likely. Further, I had no means of identifying

individual animals, necessary for identifying any change in behaviour over multi-

ple trials (Domjan 2005). The measured effect of the warning system could have

arisen through other mechanisms, including an enhancement of animal attention

to approaching trains or an increase in perceived risk from the approaching train

due to the simultaneous presence of novel warning stimuli (Chapter 4).

I also emphasize that the results of Chapter 4 allow me to make inferences only

about the two species groups I used in my analysis (i.e., animals larger and smaller

than coyotes). My conclusions cannot be applied to other species groupings or

any single species without speculation based on limited anecdotal evidence. For

instance, although the impetus for this project arose from an increase in train-

caused mortality of grizzly bears, only two observed bears could be included

in my analysis for large animals: one black bear in the control group, and one

unidentified bear in the treatment group.

5.4 Future work

As suggested in Chapter 2, a clearer picture is needed of the importance of train au-

dibility relative to other factors that appear to co-occur with audibility problems.

These other factors included circumstances relating to animal attraction and

abundance, train visibility, and right-of-way escapability. High-resolution infor-

mation on animal use of the railway may be difficult to acquire, but is nonetheless

critical for disentangling the contributions of animal presence and collision dan-

ger to resultant collision densities (Ascensão et al. 2019). Future work might also

examine other railway contexts to determine if problems with train audibility

are present more broadly than in mountainous protected areas. Manipulated

experiments necessary to establish causal relationships between local topography

and train audibility may be impractical in most settings, but this gap may be filled

by acoustic scale models (e.g., Chambers & Berthelot 1997) and more detailed

computer simulations (e.g., Karantonis et al. 2010) that may lead to the develop-

ment of better approximations for the acoustic effects of hillsides than the one I
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developed (Chapter 2). Realistic simulations of acoustic conditions on the railway

within the Bow Valley would likely require topographical data of LiDAR resolution,

at least for the vicinity of the railway, and substantial computing resources (S.

Bilawchuk, Acoustical Consultants Inc., pers. comm.). I also suggest separate

examination of different frequency ranges of sound that may be acoustically af-

fected by different features of the railway environment (Chapter 2). Measurement

of acoustic illusions related to train sound localization or imitation (Chapter 2)

may suggest alternative collision mechanisms and mitigation measures.

As suggested in Chapter 4, a larger-scale experiment (in time or in space)

would be needed to determine whether warning systems can reduce train-caused

mortality of wildlife. Although an experiment of this scale could be made more

practical by recording only the locations and times of collisions rather than record-

ing every animal response, such an experiment might ideally capture details of

animal responses to trains as well. To reduce the intensity of data collection,

alternative means of monitoring might be considered, including self-contained

camera systems with computer vision capabilities that would detect animals be-

fore storing images (WildTech 2019). If such technology had been used in my

experiment, the number of person-hours required for image screening might

have been reduced by a factor of 100. I also speculate that advances in satellite

imagery may one day allow perpetual video monitoring of the entire Bow Valley

at temporal and spatial resolutions that allow interactions of large animals and

trains to be viewed. One company, UrtheCast, currently offers full-colour, 30

frames-per-second video at 1 m resolution as a commercial product. Aerial video

capture by drones at high enough altitudes that animals are not disturbed may

also be feasible. If ground-based cameras were used as in my work, marking

of individual animals (e.g., with paint, ear tags, telemetry collars) or the use of

higher-resolution imagery that could identify individuals by their distinguishing

features (Kühl & Burghardt 2013) could enable assessment of animal learning.

Learning questions might be more easily studied with captive animals, but the

intensity of visual and auditory train stimuli are difficult to simulate and results

may not readily generalize to wild individuals.
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To enable this larger-scale test of the train-triggered warning system from

Chapter 4, improvements to the design would likely be required. The long-term

reliability of technological devices in field conditions tends to limit their uptake (M.

Huijser [regarding animal detection systems] and A. Gangadharan, pers. comm.).

This vulnerability is soluble with the right engineering expertise and perhaps a

higher overall system cost. With my present design, the longest maintenance-

free time I was able to achieve on a single set of alkaline batteries was about

three weeks. However, maintenance-free periods on the order of months or years

would be desireable for multi-year, large-scale experiments. I predicted that

refinements to the design of the electronics, wireless system, and power system

(potentially including energy harvesting from rail vibrations or the rail signal

voltage) could achieve maintenance-free periods of this length (see appendices

for Chapter 4). A lower-profile design or movement of the devices off the track

rails (e.g., to posts within the right-of-way or nearby trees) might also be required,

as on multiple occasions through my nine month study period, Canadian Pacific

maintenance equipment disturbed or destroyed some on-rail devices. The safety

of tree-mounted devices is also not guaranteed, as some trees holding my cameras

were uprooted during vegetation management by Canadian Pacific, effectively

ending the experiment in July 2017. For these reasons, close collaboration with

railway operators should be a prerequisite for future efforts in wayside animal

warning. I also note that wayside warning systems may not be practical for

protecting very long regions of track; train-based warning systems (e.g., Shimura

et al. 2018) or drones that travel ahead of trains to warn animals (on track or in

the air) have the potential to apply across entire railway networks. Alternative

approaches that target a completely different point of failure (animal injury from

collisions) might also be viable, such as air bags placed on the front of locomotives

(Paden et al. 2016).

The long-term effectiveness of a warning system based on associative learn-

ing might rely on the long-term aversiveness of train stimuli, but it is not clear

from existing literature whether this would be the case. I acknowledged earlier

the lack of information regarding the hearing abilities of wild mammals, and

137



data is similarly lacking on the visual system (excepting, e.g., deer; Cohen et al.

2014) that might help to determine why some visual stimuli appear useful for

reducing collisions (e.g., Blackwell, Seamans & DeVault 2014) while others appear

dangerous (e.g., train headlights, Chapter 4). More broadly, animals are known

to habituate to some fear-inducing stimuli and not others, but the reasons for

this are not conpletely understood (Blumstein 2016). For instance, African ele-

phants (Loxodonta africana) have been shown to avoid the sound of African bees

(Apis mellifera africana; Vollrath & Douglas-Hamilton 2002), but animals readily

habituate to many types of frightening stimuli used to protect crops (Gilsdorf

et al. 2002). These findings might suggest that the use of stimuli that are naturally

meaningful to animals will produce stronger responses, though my work showed

that animals appear to respond meaningfully to warning stimuli with no natural

analogue (Chapter 4).

If future studies found that associative learning could be demonstrated with

an animal warning system, more work should be done to define constraints on

the type, timing, and spatial placement of conditioned stimuli used. Our choices

of warning stimuli were largely speculative, based on limited information about

animal senses (Chapter 3, Appendix C.5). It is also unclear from the literature

what the optimal timing might be between the onset of the warning stimulus

and the train arrival (intertrial interval, sensu Cooper 1991), though work on

this question for humans suggests the optimal region may be between 20 s and

50 s (Richards & Heathington 1990). My choice to place the warning devices on

the track rails was also guided by speculation that animals might more readily

associate warning signals with trains if the signals appeared to emanate from the

track. Although it is clear that only animals near enough to the track to experience

the aversive train stimuli should receive the conditioned warning stimuli (Domjan

2005), it is unclear whether the process of associative learning would be affected

by placement of the warning signals on the track, on posts near the track, or on

trees outside the right-of-way.

The lack of data on animal–vehicle encounters, especially those that lead

to collisions, remains an obstacle to their understanding and mitigation (Lima,
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Blackwell, et al. 2015). Yet, some data of this type have already been collected by

Canadian Pacific with locomotive-mounted cameras. More data of this type could

be collected and made available to researchers; to avoid analysis of countless

hours of video footage (cf. Burley 2015), self-overwriting recorders in common

use for surveillance cameras could allow train operators to store video only when

they see or collide with wildlife on the tracks. Trackside camera installations

might capture more useful data (i.e., animal behaviour before the train is visible),

but at a much higher cost barring technological improvements (see discussion

above, this section). Where videos are recorded, audio could be recorded as well

to facilitate an integrated analysis of sensory factors that might have contributed

to an animal’s response. Collision events are currently recorded by train operators

and reported to Parks Canada, and additional information might be reported

with little additional effort, including the direction of travel for the train, local

conditions like light or weather, and perhaps the approximate location of flight

initiation as well as the location of the collision.

In light of the focus on animal sensory perception in this dissertation, I specu-

late that my own sensory perception may have limited my insight into the problem

of wildlife–train collisions by restricting the set of hypotheses I chose to test. Al-

though our knowledge of non-human perception is limited, it is clear that the

limits of hearing, vision, and other senses vary widely across species and perhaps

even within species (e.g., for humans with age-related hearing loss). In Chapter

2, I discussed the potential role of ultrasound and infrasound in train detection

for animals with the capabilities to detect them. Colour and light intensity sensi-

tivites different from our own (Peichl et al. 2005; Cohen et al. 2014) or the potential

for ultraviolet vision in many mammals (Douglas & Jeffery 2014) could suggest

mechanisms for sensitivity to train headlights (Chapter 4). If some mammals

possess a magnetoreceptive sense as birds are known to (reviewed by Begall et al.

2013), disorientation might conceivably result from the magnetic properties of

track rails and other steel parts (Chapter 3; C.C. St. Clair, unpublished data). The

most important sense for grizzly bears is widely regarded to be olfaction, perhaps

giving structure to the bears’ perceptual world that few humans can conceive
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(von Uexküll 1934; Conover 2007, Chapter 14). Accurate simulations of animal per-

ceptual worlds might lend new insights to our understanding of animal–vehicle

interactions (Wilson 2019).

Though the most recent confirmed mortality of a grizzly bear from a train

collision in Banff was in 2012 (when two cubs were killed; St. Clair et al. 2019),

wildlife–train collisions continue for many species in Banff and around the world.

The Western Environmental Law Center recently filed notice of intent to sue BNSF

Railway Company over the deaths of eight grizzly bears in northwest Montana,

USA in 2019 (Associated Press 2019), indicating continued public interest in

reducing train-caused mortality and suggesting that new solutions are needed.

Most pragmatically, railway companies might further aid research on this problem

by recording more information on collisions that occur (from train direction to

video footage; see above) and sharing more of these data with researchers. This

would aid efforts towards an integrated multi-sensory understanding of wildlife

vulnerability to collisions with trains and other vehicles. Meanwhile, technological

improvements to the warning system proposed in this dissertation would set the

stage for larger-scale tests. Work in this field may encourage further applications

of behavioural theory and technology to ongoing conservation issues (Blackwell,

DeVault, Fernández-Juricic, et al. 2016; Marvin et al. 2016; Proppe et al. 2017) for

the benefit of both wildlife and people.
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Appendix A

Fault tree Analysis for wildlife–train
collisions

A.1 How to interpret the fault tree

A fault tree is a type of failure analysis that begins by identifying the undesired

event and proceeds to identifying the immediate, necessary, and sufficient causes

for the event. Causes are related to each other with logical operators such as

AND or OR (Vesely et al. 2002). Without easy access to fault tree software that

would provide a conventional two-dimensional layout with appropriate symbols,

I performed my analysis using nested, numbered lists where list items of the same

level are all “under” the preceding list level and “above” the subsequent list level. I

also used all-capitalized labels in place of symbols as follows (Vesely et al. 2002):

BASIC An event that is not necessarily a fault and is not developed further

NORMAL An event that is expected to occur under normal conditions

UNDEVELOPED A fault event that I have chosen not to explore further

COMMAND A fault event that involves the proper functioning of components at

the wrong time or in the wrong place

OR A logical gate stating that if any events below the gate occur, the event above

will occur

AND A logical gate stating that if and only if all events below below the gate occr,

the event above will occur
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SeqAND As for AND, but events must occur in the specified sequence

INHIBIT A gate that inhibits the event below from causing the event above unless

the inhibiting condition is met

XFERFROM A symbol used to link from events in a different part of the fault tree.

XFERTO A symbol used to link to events in a different part of the fault tree.

Unnumbered (bulleted) list items are simply notes that I made regarding a given

event. The alignment of list items of the same level in the tree is consistent across

pages of the tree.

Please note that I performed this fault tree analysis in January of 2014, and my

understanding of the problem of wildlife–train collisions have evolved since that

time.
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A.2 Fault tree analysis

The fault tree begins on the following page.
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1 COMMAND Animal dies or is disabled by a collision with a train.

1.1 OR

1.1.1 COMMAND Locomotive strikes animal causing impact damage to animal

1. INHIBIT (Difference between locomotive velocity and animal velocity is sufficient to damage the animal) 
1. COMMAND Locomotive and animal come into contact 

1. AND 
1. NORMAL Train is present on the track and moving 
2. NORMAL Animal is present on or near the track 
3. COMMAND Distance between locomotive and animal approaches zero. 

1. OR 
1. COMMAND Animal moves towards the locomotive 

1. OR 
1. UNDEVELOPED Animal detects train and responds with an aggressive charge towards the train 

Perception of train by the animal leads to misinterpretation of the train as an aggressor
Perceptual error includes the mistaken assessment that the train is a competitor that can be beaten or at least intimidated

Potentially related to:
Appearance of train
Motion of train towards animal
Sound of train
Species of animal (e.g., common in moose, less so in grizzly bears)
Whether the animal is protecting territory, food, or offspring

2. COMMAND Animal detects train and otherwise errors in judgement, responding by moving towards the train 
What is the response of animals when they are startled?

Run away directly, or at an angle, or not at all?
1. OR 

1. UNDEVELOPED Animal detects train, tries to retreat, and mistakenly chooses to move towards the train 
While this is conceivable, I think there are more likely failure modes.
On the other hand, deer tend to move in front of moving cars the moment the headlights start to pass

Is there enough information about how this process works to dig deeper?
2. UNDEVELOPED Animal detects train, tries to retreat, and chooses an escape route that brings it closer to the train, implicitly misjudging train speed or direction 

2. COMMAND Animal moves away from the locomotive, but fails to avoid it 
1. AND 

1. COMMAND Animal retreats down the track away from the train (instead of off the track or towards the train) 
1. SeqAND (Top to bottom) 

1. COMMAND Animal percieves “down the track away from the train” as the most promising retreat path 
1. OR 

1. COMMAND Animal’s perception of other available retreat paths is obscured 
We assume that perception of retreat paths is mainly visual.
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1. OR 
1. COMMAND Rain or snow obscures available retreat paths 

1. INHIBIT (Rain or snow is sufficient to obscure available retreat paths) 
1. COMMAND It is raining or snowing 

1. OR 
1. NORMAL It is raining 
2. NORMAL It is snowing 

2. COMMAND Train headlights illuminate mostly along the track; other retreat paths hidden by contrast between light and dark and/or loss
of night vision due to headlight exposure 

1. INHIBIT (Contrast of illuminated vs. non-illuminated paths is sufficient to obscure animal’s perception of non-illuminated
paths) 

1. COMMAND Train headlights illuminate mostly along the track, creating contrast between the track and other available
retreat paths 

1. AND 
1. COMMAND Ambient conditions are darkened. 

1. OR 
1. NORMAL It is night 
2. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.1.1.1.1.1.1.1 
3. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.1.1.1.1.1.1.1 

2. NORMAL Train headlights are turned on 
Train headlights may under some circumstances be turned off; for example, if the train operator
detects an animal ahead and believes that turning off the headlights will reduce the chances of a
collision

2. COMMAND Animal’s assessment of other available retreat paths is prevented by interfering signals 
1. INHIBIT (Interfering signals are significant enough to prevent a sound retreat path assessment) 

1. COMMAND Animal’s assessment of other available retreat paths has to compete with other stimuli 
1. OR 

1. COMMAND Animal sensory or perceptual systems are overloaded or confused by interfering signals from the train 
1. OR 

1. COMMAND Animal’s vision is saturated by train headlights 
1. AND 

1. NORMAL Animal’s vision is sensitive to train headlights 
Depends on species, but many species of interest are sensitive to low-light conditions,
which may exacerbate sensitivity to headlights
Depends on headlight type
Sensitivity to headlights may depend on natural light levels (day/night, weather)

2. NORMAL 1.1.1.1.1.1.3.1.2.1.1.1.1.1.1.1.2.1.1 
2. COMMAND Animal’s perception of the train is confused by headlight interaction with the environment 

1. OR 
1. COMMAND Headlights reflect off the rails in a confusing way 

1. AND 
1. NORMAL The rails are not snow-covered 
2. UNDEVELOPED The headlight reflections off the rails are confusing 
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2. COMMAND Headlights interact with falling precipitation in a confusing way 
1. AND 

1. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.1.1.1.1.1.1.1 
2. UNDEVELOPED The headlight interactions with the rain or snow are confusing 

3. COMMAND Headlights reflect off wet or snow-covered surfaces in a confusing way 
1. AND 

1. NORMAL Snow is present on the ground or the ground is wet from rain or dew 
2. UNDEVELOPED Headlights reflect off these surfaces in a confusing way 

3. COMMAND Animal’s hearing is saturated by train vibrations 
1. AND 

1. NORMAL Animal’s hearing can detect train vibrations 
2. BASIC Train is close enough that the vibrations are loud 

4. COMMAND Animal’s hearing is saturated by train whistle 
1. AND 

1. NORMAL Animal’s hearing can detect the train whistle 
2. BASIC Train is close enough that the whistle is loud 
3. NORMAL Train whistle is being blown 

Train operators must choose whether and how much to blow the whistle
Operator choice to blow the whistle may be affected by detection of an animal in the path
of the train

2. COMMAND Animal sensory or perceptual systems are overloaded or confused with interfering signals from the environment 
1. OR 

1. COMMAND Animal is disoriented by local magnetic fields 
Note that other exotic senses, such as electroreception, are not expected to play a role in animal
orientation
Magnetoreception is assumed to not play a significant role in train detection and localization

1. AND 
1. UNDEVELOPED The animal passes a track location where local magnetic fields overwhelm Earth’s

magnetic field 
Preliminary experiments indicate that some track locations may have locally strong
magnetic fields

2. UNDEVELOPED Animal has magnetoreceptive ability that contributes to orientation 
Evidence exists that some mammals possess magnetoreceptive ability that contributes to
their behaviour

2. COMMAND Non-train noise overloads or confuses the animal’s hearing 
1. OR 

1. COMMAND Animal is disoriented by anthropogenic noise 
1. AND 

1. COMMAND Anthropogenic noise exists at the animal’s location 
1. OR 

1. NORMAL Road traffic is present nearby 
Normal for some track locations

2. NORMAL Construction is occuring nearby 
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Less common, but happens near some track locations (e.g., Five
Mile Bridge construction)

3. NORMAL Aircraft are passing overhead 
Happens regularly

2. NORMAL Animal can percieve the anthropogenic noise present 
2. UNDEVELOPED Animal is disoriented by non-anthropogenic noise 

Wind, rain, thunder could be significant sources of noise, but animals may be accustomed
to these noise sources

3. UNDEVELOPED Non-train visual stimuli overloads or confuses the animal’s vision 
Not sure if anything could realistically cause this. Sun in one’s eyes, or reflecting off snow?

3. COMMAND Animal’s assessment of all available retreat paths is pre-empted by the urgency of the need to retreat 
1. COMMAND Animal is in a state of panic 

1. COMMAND Animal has been surprised by the train 
1. OR 

1. COMMAND Animal suddenly realizes that train arrival is imminent and dangerous 
1. AND 

1. UNDEVELOPED Animal realizes the train is dangerous 
2. COMMAND Animal suddenly perceives the train arrival is imminent 

1. AND 
1. NORMAL Train signals are perceived by the animal. 

Train is close enough that it is immediately visible and audible.
2. COMMAND Train signals were not previously perceived or were perceived but also ignored by the

animal 
1. OR 

1. COMMAND Train signals were previously perceived by the animal, but animal ignored
these signals 

1. COMMAND Train signals were previously received by the animal, but were not
recognized as train signals 

1. UNDEVELOPED Animal has little experience with trains 
Assumption is that animals who have survived train encounters
before, will be more likely to survive subsequent train
encounters

2. COMMAND The animal is desensitized to train signals 
1. NORMAL The animal often perceives train signals when a train approach

is not imminent 
e.g. whistles can be heard throughout Bow Valley, even if a train
approach is not imminent

2. COMMAND Train signals were not previously perceived by the animal 
1. OR 

1. COMMAND Non-train signals were saturating the animal’s attention 
1. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.1.1.2.1.1.1.2 

2. COMMAND Train signals were not previously received by the animal 
1. AND 
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1. COMMAND Train signals that were produced were not
receivable by the animal (out of detection range, below
sensitivity threshold, or obscured by interfering signals) 

1. OR 
1. BASIC Signals transmitted to the animal were

outside of the animal’s sensory detection
range 

2. COMMAND Signals transmitted to the animal
were below the animal’s sensory sensitivity
threshold 

1. OR 
1. NORMAL Train was too far away to

be detected 
2. COMMAND Train signals were

passively obscured by
environment 

1. AND 
1. NORMAL Acoustic

signals obscured by
environment 

e.g. by
vegetation or
topography,
around a
corner

2. NORMAL Visual
signals obscured by
environment 

e.g. by
vegetation or
topography,
around a
corner

3. COMMAND Signals transmitted to the animal
were obscured by interfering signals 

1. OR 
1. XFERFROM

1.1.1.1.1.1.3.1.2.1.1.1.1.1.2.1.1.1.2
2. XFERFROM

1.1.1.1.1.1.3.1.2.1.1.1.1.1.2.1.1.1.2
2. COMMAND Train whistle was not produced in advance of

train arrival near the animal 
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Train whistle produced only once animal is visible
to train operator may just cause the animal to be
surprised.
Train headlights are always on, unless train operator
detects animal and chooses to turn them off
Train vibration is always produced (if to varying
degrees)
We assume here that if a train whistle is produced, it
can be received almost anywhere in the Bow Valley.

1. OR 
1. NORMAL Train operator was not required to

whistle on the segment of track train was
approaching from 

2. UNDEVELOPED Train operator was required to
whistle by a whistle sign, but failed to do so 

2. COMMAND Train suddenly appears to be coming from a different direction than it appeared a moment ago 
1. AND 

1. NORMAL Train signals are now transmitted by the environment such that localization from signals is
consistent with the train location 

2. COMMAND Train signals were previously transformed by environment to appear to be coming from a different
direction than the train 

1. COMMAND Train sound previously appeared to be coming from somewhere other than the train location 
1. BASIC Topography and/or vegetation causes illusory reflection of train sound in certain

transmitter–receiver configurations 
4. UNDEVELOPED All other retreat paths appear less available 

Examples
Steep embankment down from the track may appear risky
Steep embankment up from the track may appear impassable
Nearby body of water makes retreat in that direction seem futile

Predict this probability using the percentage of track where one or both sides of the track have embankments that appear steep (Patrick’s
work?) or vegetation that appears dense

2. COMMAND Animal persists in this retreat direction until it is struck by the train 
Not clear why this would be the case

Animal version of the sunk cost fallacy?
“Down the track” continues to be perceived as the path of least risk
Could model this in a simulation by re-testing the “animal percieves down the track as the most promising retreat path” for each unit of time

1. OR 
1. COMMAND Animal’s judgement is impaired and so does not choose a different retreat direction 

1. INHIBIT (Impairment is sufficient that the animal does not choose a different retreat direction) 
1. COMMAND Animal’s judgement is impaired physiologically 

1. OR 
1. COMMAND Animal’s judgement is impaired by fear / panic 

1. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.1.1.3.1 
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2. COMMAND Animal’s judgement is impaired by its consumption of fermented grain 
1. COMMAND Animal has consumed fermented grain recently in sufficient quantities to affect judgement 

1. AND 
1. UNDEVELOPED Fermented grain is available for consumption by the animal in sufficient quantities to

affect judgement 
2. UNDEVELOPED Animal consumed the fermented grain in sufficient quantities to affect judgement 

3. UNDEVELOPED Animal’s judgement is impaired by other physiological conditions (hunger, fatigue) 
2. COMMAND Animal’s unimpaired judgement dictates that this retreat direction is still the best 

1. INHIBIT (“Down the track away from the train” continues to be the best-judged direction as the retreat progresses.) 
1. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.1 

2. COMMAND Train is moving down the track faster than the animal 
1. OR 

1. NORMAL Train is travelling at the posted speed limit, which is greater than the maximum run speed of the animal 
2. UNDEVELOPED Train speed is greater than the maximum run speed of the animal, regardless of the posted speed limit 

Accounts for train speed greater than posted limit, as well as train speed less than posted limit but still greater than run speed of animal
3. COMMAND Animal takes no action to move 

Deer are famously unable to retreat when confronted by bright light at night
1. OR 

1. COMMAND Animal is transfixed, paralyzed by fear, or otherwise overwhelmed by train signals 
1. INHIBIT (Train signals received are sufficient to transfix, cause paralyzing fear, or otherwise overwhelm the animal) 

1. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.1.1.2.1.1.1.1 
2. COMMAND Animal is temporarily disoriented by non-train signals 

1. INHIBIT (Disorientation from other stimuli is sufficient to prevent movement) 
1. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.1.1.2.1.1.1.2 

3. COMMAND Animal is temporarily prevented from acting by train or non-train signals compounded by impaired judgement 
1. INHIBIT (This combination of factors is significant enough to prevent action) 

1. COMMAND Influence of train or non-train signals on the animal are compounded by impaired animal judgement 
1. AND 

1. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.1.1.2.1.1.1.1 
2. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.1.1.2.1.1.1.2 
3. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.2.1.1.1.1 

1.1.2 COMMAND Locomotive runs over animal causing crushing damage to animal

1. INHIBIT (Locomotive and animal make contact such that the animal falls under the locomotive) 
1. XFERFROM 1.1.1.1.1 

1.1.3 COMMAND Train component other than locomotive strikes animal causing impact damage to animal

1. INHIBIT (Difference between train component velocity and animal velocity is sufficient to damage the animal) 
1. COMMAND Train component and animal come into contact 

1. AND 
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1. NORMAL Train is passing 
2. NORMAL Animal present near the track 
3. COMMAND Animal moves towards train side while train is passing 

1. AND 
1. COMMAND Animal fails to perceive or disregards the train hazard 

1. OR 
1. UNDEVELOPED Animal has a mental illness that causes erratic behaviour or sensory disabilities 

e.g., chronic wasting disease?
2. UNDEVELOPED Animal has a sensory disability previous to the train encounter 

e.g., unable to hear and/or see normally
This could be a common-cause failure mode for many other parts of the tree.

3. COMMAND Animal does not associate available train signals with danger 
1. AND 

1. XFERFROM 1.1.1.1.1.1.3.1.2.1.1.1.1.1.3.1.1.1.1 
2. UNDEVELOPED Animal’s species has not evolved to associate train signals with danger 

4. COMMAND Train signals that would indicate danger to the animal are unreceivable by the animal 
1. OR 

1. COMMAND Visual signals of the train passage are unreceivable 
1. OR 

1. NORMAL Heavy precipitation is occuring (rain or snow) 
2. NORMAL Thick fog is present 
3. NORMAL It is a dark night 

No moon or overcast.
2. COMMAND Audio signals of the train passage are obscured 

1. OR 
1. NORMAL There are high winds 
2. NORMAL A heavy thunderstorm is occuring (near-constant thunder) 

2. COMMAND Animal compelled to cross or move towards tracks during train passage 
1. OR 

1. UNDEVELOPED Animal disoriented by sensory experience of train passage and is drawn towards it or is unable to stop previous progress towards it 
Visual motion is dizzying to humans

2. UNDEVELOPED Animal can see members of its herd or family or potential mates or rivals on the other side of the train (i.e. between cars) 
3. UNDEVELOPED Animal is being pursued by predators 
4. UNDEVELOPED Animal is under distress from parasitic infection or biting insects 
5. UNDEVELOPED Animal is moving to avoid human contact or hunters 

1.1.4 COMMAND Train component other than locomotive runs over animal causing crushing damage to animal

1. INHIBIT (Train component and animal make contact such that the animal falls under the train) 
1. XFERFROM 1.1.3.1.1 
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Appendix B

Supporting Information for “Low
audibility of trains may contribute to
increased collisions with wildlife”*

B.1 Site locations, straightaway lengths, and recorder
placements

We provide precise locations for each site along with the straightaway length

measured from each trackside recorder (Table B.1). Coordinates indicated are

for the location of the trackside recorder location with a Global Positioning Sys-

tem (GPS)-indicated accuracy of 3 m to 5 m. Straightaway lengths provide the

approximate distances between a given trackside recorder and the start of the

nearest appreciable curve along the straightaway. Recorder separations indicate

the distance between trackside and forest edge microphone pairs in the plane

perpendicular to the axis of the railway track.

*Authors: J.A.J. Backs, J.A. Nychka, and C.C. St. Clair
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Table B.1: Site locations where acoustic measurements were taken for this experiment. Universal Transverse Mercator (UTM) coordinates are
provided within zone 11N of the NAD83 coordinate reference system (EPSG:26911). Recorder (rec.) vertical separation (sep.) is negative when
the forest edge recorder microphones were at a lower elevation than the trackside recorder microphones.

Site Name UTM Easting UTM Northing Straightaway length (km) Rec. horizontal sep. (m) Rec. vertical sep. (m) Rec. total sep. (m)

A Castle East 576017 5679520 3.4 10.80 6.35 12.50

B Johnston Canyon 579466 5678232 1.1 6.60 -1.20 6.71

C Hillsdale West 583183 5675495 0.4 4.88 0.80 4.95

D Muleshoe 589728 5670054 3.1 4.28 0.41 4.30

E Five Mile A 591301 5669279 0.3 9.77 4.95 11.00

F Five Mile S 593279 5669582 0.6 7.73 -3.20 8.37

G Five Mile C 594293 5669496 0.5 2.81 -0.11 2.81

H Stables 602264 5673880 2.3 3.65 0.72 3.72

I Anthracite 606930 5670109 0.8 4.58 -0.07 4.58

J Carrot East 609546 5666682 1.8 3.16 -0.08 3.16
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B.2 Features of cluster and measurement sites

Although we observed a correlation between low measured audibility and high

collision frequency at our 10 measurement sites, background & train & barrier

physical predictions simulated across the study area sometimes failed to predict

reductions in train audibility where collisions were concentrated (Fig. 2.7). We

examined our 10 measurement sites and six other locations where the highest

densities of collisions were found (Fig. B.1) for other features that might explain

these collision patterns. Collision clusters were identified from the data (Fig. 2.7)

using a peak detection algorithm (https://github.com/stas-g/findPeaks/blob/ma

ster/find_peaks.R), removing peaks with less than 20 collisions recorded within

200 m, resulting in the identification of nine clusters. Clusters identified within

400 m of a measurement site (three locations) were assigned to the location of

that measurement site.
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Figure B.1: Map of 10 sites (letter labels) where train audibility was measured in this study and locations of known collision hotspots
or clusters (number labels). The 10 measurement sites were chosen where track curves around raised topography met straightaways
greater than 300 m in length. Clusters existing within 400 m of three of the measurement sites were assumed coincident (red letter
labels).
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In Table B.2, we suggest features at each location affecting train detectability

(excluding audibility of the train itself), animal attraction to the right-of-way, and

escapability of the right-of-way for animals. These features were identified using

freely available aerial imagery of the study area as well as our own measurements

and experiences in the study area. Rather than providing a rigorous analysis, we

offer this information as a guide to the development of future hypotheses about

the relative effects of train audibility and other factors on wildlife–train collision

locations. For all columns, locations where the presence of a feature was not

measured are indicated with “–”, while locations where a feature was not present

are left blank. Columns were defined as follows:

• Name. Boldface location names identify the nine collision clusters found.

• Colls. Specifies the number of collisions recorded within 200 m of the loca-

tion.

• Train detectability:

– Horn detected. We report the percentage of eastbound (EB) and west-

bound (WB) train approaches recorded for which at least one horn

blow could be heard at any point within the five minutes prior to train

arrival.

– Visibility low. We report locations where to the east (E) or west (W)

the track curves enough to obscure visibility around vegetation or

topography.

– Noise sources. We indicate locations where noise sources (road or

river) may substantially obscure the sounds of train approach, al-

though road noise was audible to some extent at every measurement

location.

• Animal attraction:

– Apparent corridor. We report locations that could (true, T or false, F)

serve as travel corridors for wildlife as suggested by the presence of
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roads, water bodies, rugged topography, or human use features near

the location.

– Railway siding. We report locations with railway sidings (true, T or

false, F), where trains frequently stop and where spilled agricultural

products are thought to accumulate as a result (Gangadharan et al.

2017). Small quantities of spilled grain were visibly detected at all

measurement sites.

• Right-of-way escapability:

– Steep embankment. We indicate locations with steep embankments

to the north (N) or south (S) sides of the right-of-way.

– Water body. We indicate locations with water bodies present to the

north (N) or south (S) sides of the right-of-way.

– Fencing. We indicate locations with fencing (including Trans-Canada

Highway wildlife exclusion fencing and other fencing) present to the

north (N) or south (S) sides of the right-of-way.
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Table B.2: Summary of local features that could contribute to wildlife–train collision risk, exclusive of train audibility, at the 10
measurement sites from this study and six additional collision hotspots or clusters.

Site Name (cluster) Colls. Horn detected (%EB,
%WB)

Visibility
low

Noise
sources

Apparent
corridor

Railway
siding

Steep
embankment

Water
body

Fencing

A Castle East 4 (100, 88) E River T F N,S S

B Johnston
Canyon

2 (27, 38) W F F

C Hillsdale West 12 (77, 70) E River T F N,S S

1 Hillsdale
Siding

25 – – T T N S

D Muleshoe 7 (9, 67) E T F N,S

E Five Mile A 16 (92, 85) E,W T F N,S S

F Five Mile S 8 (19, 100) E T F N,S

3 Five Mile
Bridge

38 – E,W Road T F N,S S N

G Five Mile C 6 (93, 75) W T F

4 Vermillion
Wetland

21 – W – T F N,S

5 Townsite West 42 – – T T N,S

6 Townsite
Central

21 – E – T T

H Stables 33 (62, 7) E Road T F N,S

8 Anthracite
West

42 – E,W – T F N

I Anthracite 28 (0, 7) W Road T F N

J Carrot East 4 (0, 73) W F F S
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We additionally examined the collision data for the species, years, and seasons

for which collisions were most frequent at each location (Table B.3). Columns

were defined as follows:

• Name. Boldface location names identify the nine collision clusters found.

• Colls. Specifies the number of collisions recorded within 200 m of the loca-

tion.

• Top species. We list the species struck at each location (and number of colli-

sions recorded within 200 m of the location) in descending order of collision

frequency. Species abbreviations include BLAC (black bear, Ursus ameri-

canus), COUG (cougar, Puma concolor), COYO (coyote, Canis latrans), DEER

(unidentified deer, Odocoileus spp.), ELK (elk, Cervus canadensis), GRIZ

(grizzly bear, Ursus arctos), LYNX (lynx, Lynx canadensis), MOOS (moose,

Alces alces), MULE (mule deer, Odocoileus hemionus), SHEE (bighorn sheep,

Ovis canadensis), WHIT (white-tailed deer, Odocoileus virginianus), WOLF

(wolf, Canis lupus).

• Top years. We list the top five years, including ties, in which collisions

occurred (and number of collisions recorded within 200 m of the location)

in chronological order.

• Collisions by season. We list the total numbers of collisions recorded within

200 m of the location in each of winter (W), spring (Sp), summer (Su), and

fall (F). Seasons are divided according to the meteorological reckoning with

winter spanning Dec.–Feb., spring Mar.–May, summer Jun.–Aug., and fall

Sep.–Nov.
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Table B.3: Summary of wildlife–train collision patterns at the 10 measurement sites from this study and six additional collision
hotspots or clusters.

Site Name
(cluster)

Colls. Top species Top years Collisions by season
(W, Sp, Su, F)

A Castle East 4 ELK (4) 1995 (1), 2001 (2), 2003 (1) (0, 2, 1, 1)

B Johnston
Canyon

2 MOOS (1), MULE (1) 1985 (1), 2004 (1) (2, 0, 0, 0)

C Hillsdale
West

12 ELK (7), MOOS (3), MULE (1),
WOLF (1)

1981 (1), 1985 (1), 1986 (1), 1987 (1), 1988 (1), 1993 (2), 2004 (1), 2006
(2), 2010 (1), 2012 (1)

(4, 5, 1, 2)

1 Hillsdale
Siding

25 ELK (18), WHIT (3), MULE (2),
BLAC (1), WOLF (1)

1987 (2), 1991 (3), 1999 (3), 2007 (3), 2013 (3) (12, 8, 3, 2)

D Muleshoe 7 ELK (3), WHIT (3), MULE (1) 1984 (1), 1988 (1), 1991 (1), 2006 (1), 2008 (1), 2013 (1), 2015 (1) (3, 2, 0, 2)

E Five Mile A 16 ELK (12), WHIT (3), WOLF (1) 1981 (1), 1985 (1), 1986 (1), 1987 (1), 1988 (1), 1989 (3), 1995 (1), 1996
(1), 1999 (2), 2011 (2), 2015 (1), 2016 (1)

(9, 4, 1, 2)

F Five Mile S 8 ELK (3), SHEE (3), GRIZ (1),
WHIT (1)

1987 (1), 1990 (1), 1994 (1), 1999 (1), 2000 (1), 2008 (1), 2009 (1), 2016
(1)

(4, 1, 1, 2)

3 Five Mile
Bridge

38 ELK (29), SHEE (4), WHIT (3),
GRIZ (1), MULE (1)

1986 (4), 1987 (4), 1990 (3), 1992 (4), 2010 (4) (16, 10, 6, 6)

G Five Mile C 6 ELK (4), LYNX (1), MULE (1) 1991 (1), 1994 (1), 2002 (1), 2008 (1), 2010 (1), 2013 (1) (3, 2, 1, 0)

4 Vermillion
Wetland

21 ELK (15), MOOS (2), MULE (2),
WHIT (2)

1998 (3), 1999 (2), 2007 (3), 2011 (2), 2012 (2), 2016 (2) (12, 3, 4, 2)

5 Townsite
West

42 ELK (36), MULE (2), WHIT (2),
BLAC (1), DEER (1)

1997 (5), 1999 (3), 2000 (6), 2001 (4), 2011 (3), 2015 (3) (10, 13, 17, 2)

6 Townsite
Central

21 ELK (13), MULE (5), WHIT (2),
BLAC (1)

1998 (2), 2000 (3), 2004 (2), 2009 (2), 2012 (4) (14, 1, 2, 4)

H Stables 33 ELK (27), WHIT (3), DEER (1),
MULE (1), WOLF (1)

1989 (2), 1993 (2), 1995 (3), 1996 (2), 1999 (2), 2001 (2), 2009 (4), 2010
(2), 2016 (2)

(19, 5, 4, 5)

8 Anthracite
West

42 ELK (30), WHIT (5), COYO (3),
MULE (3), DEER (1)

1992 (5), 1996 (6), 2008 (4), 2015 (4), 2016 (5) (17, 7, 3, 15)

I Anthracite 28 ELK (21), WHIT (4), COUG (1),
COYO (1), WOLF (1)

1985 (3), 1987 (2), 1990 (2), 1991 (2), 1993 (2), 2004 (2) (9, 10, 4, 5)

J Carrot East 4 WHIT (3), ELK (1) 1993 (1), 2008 (2), 2016 (1) (3, 0, 0, 1)
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B.3 References

Gangadharan, A. et al. (2017) Grain spilled from moving trains create a substantial

wildlife attractant in protected areas. Animal Conservation, 20(5), 391–400.
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Appendix C

Supplementary material for “Warning
systems triggered by trains could reduce
collisions with wildlife”*

*Originally published with J.A.J. Backs, J.A. Nychka, & C.C. St. Clair (2017) Warning systems triggered by
trains could reduce collisions with wildlife, Ecological Engineering, 106, 563–569. Reproduced without
modification under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).
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C.1 Purchasing information for sensors tested

Table C.1 lists detailed information on manufacturers and suppliers for the sensors

used to detect trains in this work.

Table C.1: Part numbers, manufacturers, and suppliers for sensors tested in this
manuscript.

Sensor Part
Number

Manufacturer Supplier

Digital compass HMC5883L Honeywell Adafruit, with board (Product
#1746)

Infrared rangefinder GP2Y0A21YK0FSHARP Adafruit (Product #164)

Infrared motion
detector

– Various Adafruit (Product #189)

Accelerometer ADXL335 Analog Devices Adafruit, with board (Product
#163)

Vibration switch,
weak

SW-18010P Bai Ling Electronics Adafruit (Product #1766)

Vibration switch,
medium

SW-18020P Bai Ling Electronics Adafruit (Product #2384)

Vibration switch,
strong

SW-18030P Bai Ling Electronics Adafruit (Product #1767)

Piezoelectric film,
shielded

SDT1 Measurement
Specialties

Durham Instruments
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C.2 Preamplifier for the piezoelectric sensor

Figure C.1 shows a schematic of the custom preamplifier designed for the ap-

proach detector. This device performs three major functions to interface the

piezoelectric film sensor (model SDT1, Measurement Specialties, USA) with the

ultrasonic sound recorders (models SM2BAT and SM2BAT+, Wildlife Acoustics,

USA). First, it buffers the high electrical impedance of the piezoelectric film sensor,

allowing the low-impedance input of the sound recorders to receive an accurate

signal (Measurement Specialties Inc. 2008). Second, it changes the average value

of the signal from 0 V (at the output of the sensor) to approximately 1.2 V, the

midpoint of the input range of the sound recorder (0 V to 2.5 V). Third, it protects

the input of the sound recorder from electric potentials outside the range 0 V to

3.3 V, which could damage the sound recorder. This circuit is our own design, but

draws from examples published by the manufacturer (Measurement Specialties

Inc. 2008).

We assembled this device on a prototyping board, placed it in a die-cast

aluminum enclosure, and electrically connected the enclosure to the common

ground (GND) only at the sensor input to minimize the effects of electromagnetic

interference on our measurements (Rich 1983). A 10 m three-conductor micro-

phone cable (Wildlife Acoustics, USA), also shielded, was used to connect the

preamplifier to the sound recorder.

Figure C.1: Schematic of the preamplifier for the approach detector.
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C.3 Details of the machine learning algorithm for the
approach detector.

We converted continuous recordings from our piezoelectric sensors into a form

suitable for machine learning via the following procedure.

1. Sensor recordings were converted to spectrograms and systematically in-

spected for patterns characteristic of train arrival. We defined train arrival

as the moment the first wheel of a train passed over the sensor. The arrival

times could be identified by eye in the spectrograms to within ± 0.05 s be-

cause of the distinctive acoustic patterns caused by the passage of train

wheels over the sensor.

2. To extract and convert the train approach recordings into a useful form, the

following operations were performed for each train approach identified.

(a) During our inspection of the spectrograms, we noted that signals of

train approach could be visually detected up to a maximum of 210 s

before train arrival (though usually 30 s to 60 s). To reduce the size

of the dataset for analysis, data were extracted from 0 s to 220 s be-

fore each train arrival (hereafter, approach recordings) for use in the

following steps. For some train approaches, the full 220 s could not

be captured because the SM2BAT recorder happened to start a new

recording file within 220 s of train arrival. In these cases, approach

recordings smaller than 220 s were kept only if this shorter period cap-

tured 5 s to 10 s of silence (i.e., before any signals of train approach

could be seen in the spectrogram). If this condition could not be met,

the train approach was not used in the model fitting. Approaches of

non-train track vehicles were also not used.

(b) Some recordings were made with 384 kHz sound recorders (SM2BAT+),

while others were made with 192 kHz recorders (SM2BAT). To homog-

enize the data, 384 kHz recordings were down-sampled to 192 kHz

(Bagwell et al. 2015).
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(c) We noted that the piezoelectric film sensors recorded a great deal of

power line noise (60 Hz and harmonics) as well as other unknown

signals below 10 kHz. These signals did not appear to correlate with

train approach and moreover tended to have a larger amplitude than

signals at higher frequencies that did correlate with train approach.

Recordings were thus high-pass filtered to remove all signals below

10 kHz (Bagwell et al. 2015).

(d) The signal envelope was then calculated via the Hilbert transform

(Dugundji 1958; Bagwell et al. 2015). This was used as a measure of the

amplitude of the signal (in total for all frequencies) over time.

3. Each train approach recording was then partitioned into smaller pieces that

standard classification algorithms could operate on. For compatibility with

machine learning literature, we use the following terms: the size of each

piece is termed the receptive field size; the time between the starting time of

one piece and the starting time of the subsequent piece is termed the stride

time; a series of consecutive pieces passed to the classification algorithm as

a group is called an observation.

(a) We set the receptive field size to 1.0 s and the stride time to 0.5 s. We

define an observation to be a set of 9 consecutive receptive fields to

allow the classification algorithm to take into account 5.0 s of data

each time it classifies an observation.

(b) With these settings of the receptive field size and the stride time, each

220 s approach was broken down into 439 overlapping receptive fields.

The values of the signal envelope within each receptive field were

averaged (arithmetic mean) such that the resulting 439 numbers form

a condensed representation of the original train approach recording.

(c) From this condensed representation, a two-dimensional array was

assembled. The first column of this array contained the 439 num-

bers from the previous step, ordered by receptive field start time from

197



220.0 s to 1.0 s before train arrival. The second column contained a

zero in the first row, then rows from the second onwards were filled

with the first 438 numbers ordered from 220.0 s to 1.5 s before train

arrival. The third column contained a zero in the first and second

rows, then rows from the third onwards were filled with the first 437

numbers ordered from 220.0 s to 2.0 s before train arrival. This pattern

continued until nine columns were filled in total, with each row (from

left to right) containing one receptive field’s mean value followed by

mean values from the eight previous receptive fields. Each row of this

array formed one observation.

(d) A label column was added to the array. Each cell of the label column

contained “true” if the value in the first column of an observation was

formed from a receptive field whose start time was less than or equal

to 20.0 s before train arrival; otherwise, the cell contained “false”. In

other words, for most approaches, only the bottom 39 values of the

label column were “true”.

4. The data were then partitioned into the training set (used to train or fit

the classification model) and the testing set (used to test the performance

of the classifier on data it had not seen). A site-stratified random sample

of 80% of train approaches were designated for the training set, while the

other 20% were used for the testing set. Within each of these data sets, the

arrays containing labelled observations for the various train approaches

were concatenated.

The data were then ready for model fitting (see Methods).
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C.4 Characteristics of recorded spectrograms and the
railway track

C.4.1 Observations from in-rail vibration spectrograms

We note here two observations of interest from the spectrograms of our train

approach recordings that were not directly relevant to our manuscript. We also

include information about the materials of the railway track.

1. Within each site and for each approach direction, train speed appeared to

be inversely proportional to the time in advance of arrival at which vibration

signals were visible; i.e., lower train speed resulted in earlier signal onset.

This indicated that vibration transmission distance was roughly the same for

each train along a given track section. We also observed that this distance

was decreased wherever joints or lubrication stations (which apply thick

grease to rails) were located between the approaching train and the sensor.

If approach detectors are implemented in the future, they should be placed

at least 20 s at maximum train speed away from these signal obstructions.

2. The in-rail acoustic train signals detectable at the greatest distances were

exclusively ultrasonic, mainly 20 kHz to 40 kHz. The absence of lower fre-

quency vibrations at long range is not an artifact of our equipment, as the

piezoelectric sensor (Measurement Specialties Inc. 2009) and preampli-

fier (Figure C.1) both have flat frequency responses in the range recorded

(10 Hz to 192 kHz). Trains generate considerable track vibration over a wide

frequency range, but ultrasonic waves likely propagate the farthest as an

unintended feature of the shape, construction, and materials of the track

(see railway track details, below; Rose et al. 2004).

C.4.2 Railway track details

For all sites, the railway track comprised two continuously welded steel rails with a

typical distance between bolted joints of 1.5 km to 2.5 km. The rails were attached

via steel tie plates and straight spikes (typical on straight track) or screw-spikes
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and curved clips (typical on curved track) to creosote-treated wooden ties, which

were lain within and underlain by ballast rock to an unknown depth. Bolted

rail joints were either electrically conductive (allowing electrical continuation

of the track circuit through a fishplate, which connects the rail segments) or

electrically insulated (by epoxy resin placed between the rails and fishplates).

Typical rails were manufactured from eutectoid steel (e.g., Nippon Steel grade

DHH370S) or hyper-eutectoid steel (e.g., Nippon Steel grade HE370S) in the 136

pounds-per-yard 136RE (Railway-Engineered) American Railway Engineering and

Maintenance-of-Way Association (AREMA) standard rail profile. The rails had also

been subjected to vacuum hydrogen elimination and head-hardening treatments

(Nippon Steel and Sumimoto Metal Corporation 2015).
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C.5 Design of a passing relay prototype.

We discuss here our selection of the warning stimuli and other parts for a prototype

of the passing relay. Schematics, assembly suggestions, and code follow.

C.5.1 Warning signals design

As mentioned in our paper, little data are available on auditory and visual percep-

tion ranges of many of the wild species in our study area (e.g., grizzly bears, black

bears, wolves, elk, moose). However, available information for other species may

guide preliminary designs for warning signals. Here we draw from the literature

on animal perception as well as design guidelines for warning signals used in

human contexts.

Visual stimuli

Our need for a low-cost, power-efficient visual stimulus may be met most simply

by a light source. Modern light-emitting diodes (LEDs) are both inexpensive and

efficient, and they are offered in a wide range of colours and luminous flux ratings.

To select an LED and decide how it will be used, one must consider the suitability

of various colours, flux ratings, and flash patterns (if any) for the situation of

interest. The choice of LED will not affect the weather resistance of the warning

device because light can be transmitted from within a weather-proof enclosure

via transparent materials.

To be perceived by an animal, light must reach and stimulate photorecep-

tors in the eye. In mammals, the colours of light transmitted by the cornea and

lens can vary among species. This may lead, for example, to variation in mam-

malian ability to perceive ultraviolet light (Douglas & Jeffery 2014). The colours

of light most likely to stimulate photoreceptors also vary among species, with

most mammals being dichromatic (Bowmaker 1998) and thus relatively insen-

sitive to red light (wavelengths greater than approximately 620 nm; e.g., Cohen

et al. 2014). A stimulus intended for perception by many species should then be

chosen from within the remaining visible spectrum (from yellow through green
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to blue), bearing in mind that the effects of light colour within this range could

still vary substantially by light level among species. For instance, green lighting

has been suggested for nighttime use on offshore oil drilling platforms to allow

birds to maintain their light-sensitive magnetoreceptive sense, which is disrupted

by longer-wavelength light (Poot et al. 2008). Some carnivores may possess a

similar cryptochrome-mediated magnetic sense (Niessner et al. 2016), and this

sense could conceivably be interrupted by exposure to long-wavelength light

(including white train headlights). On the other hand, a magnetic sense could be

unhelpful for orientation in the railway environment due to the highly variable

residual magnetization of steel track components (Colleen St. Clair, unpublished

data). Additionally, we may wish to help animals maintain their dark-adapted

(scotopic) vision at night by avoiding wavelengths to which rod photoreceptors

(primarily responsible for low-light vision) are sensitive. For humans, red lights

are often used at night for this reason (Mertens 1955). However, dichromatic

animals do not have a photoreceptor specialized for long-wavelength light, and

our warning signal must be highly salient both at night and during daylight hours.

As a compromise, we have chosen to use amber light (near 590 nm).

To attract attention, visual stimuli must contrast highly with their surround-

ings. To create this contrast during daylight conditions, warning lights must have

a high luminous intensity (i.e., luminous flux per unit solid angle). For instance,

traffic warning lights, whether flashing or steady, must have an intensity of 200 cd

to be highly salient at a viewing distance of 100 m in normal daylight (Cole &

Brown 1966, 1968). The transportation literature also recommends that warning

lights be dimmed at night by up to a maximum of 50% (Institute of Transporta-

tion Engineers 1998), reducing glare that could affect drivers’ ability to see their

surroundings. Dimming at night, along with the use of an amber colour, could

help animals maintain the use of their scotopic vision while moving off the rail-

way tracks. To meet these requirements, the LEDs chosen should have a high

maximum luminous flux, and their power supply should have dimming capability.

Flashing lights are generally considered to be more attention-grabbing than

steady lights for humans (Gerathewohl 1953; De Lorenzo & Eilers 1991). Based
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on research in the contexts of emergency vehicle and fire alarm warning lights,

shorter and brighter flashes may be disproportionately attention-grabbing com-

pared to longer, dimmer flashes of equal time-averaged (“effective”) intensity

(Bullough & Zhu 2012). Flash durations of 1 ms to 200 ms (depending on intensity)

at frequencies of 0.5 Hz to 4 Hz are suggested by a number of studies (reviewed by

Bullough & Zhu 2012). Multiple adjacent lights should also be synchronized, so as

to avoid a 10 Hz to 90 Hz flash frequency that may trigger epileptic phenomena in

humans in exceedingly rare cases (De Lorenzo & Eilers 1991; Bullough & Zhu 2012).

Thus, for our warning lights, both flash rate and duration should be adjustable

through control of the LED power supply.

Auditory stimuli

Auditory stimuli can be reproduced by small, low-cost technologies such as minia-

ture speakers and piezoelectric buzzers. The salience of a stimulus is governed

by the frequency content of the sound and the sound power level (De Lorenzo &

Eilers 1991). The requirement for uniqueness of the stimulus in the experience of

animals (to enable a unique learned association) leaves a wide range of possible

choices. Weatherproofing may be an issue, because the sound emitted by speak-

ers or buzzers will be reduced if no holes exist in the enclosure through which

the sound can efficiently escape. As a simple alternative, a surface transducer

(a specialized speaker that uses a flat surface or cavity to produce sound) can

be attached to an inner wall of the warning device enclosure to produce sound

external to the enclosure without the need for holes.

Though the hearing ranges of few large wild mammals have been charac-

terized, polar bears (Owen & Bowles 2011), white-tailed deer (H. Heffner & H.E.

Heffner 2010), and many smaller mammals (Fay 1988) are known to share at least

part of their hearing range with humans. In particular, sensitivity in the frequency

range 1 kHz to 4 kHz is common. Any warning sound with spectral components

in this range should be perceptible to the large mammals that our system targets.

The sound should also be loud enough to be obvious over background noise

wherever the device is placed on the railway. Although we have not quantified
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noise levels along the railway nor the sound power level produced by a surface

transducer on our enclosure, the dependence of signal-to-noise ratio on distance

from the warning device may determine the maximum spacing between warning

devices. The sound should not be loud enough to damage any animal’s hearing—

human safety standards place a limit at, for example, 115 dB (A-weighted) for 28 s

of daily exposure (NIOSH 1998). A smaller upper limit on the sound power level

may be imposed by our intention to limit the audibility of the stimulus away from

the railway track. In particular, the sound should not be heard by animals far

from the track in a way that might encourage habituation to the stimulus. Loud

sounds on the railway track may also be undesirable for people living, working, or

engaging in recreation near the railway track.

Siren-like patterns and sudden noises may be more attention-grabbing at the

same time-averaged sound power level than other sound patterns (De Lorenzo &

Eilers 1991). However, in our study area (a national park), some areas of the railway

track with a history of animal strikes are near tourist viewpoints. Pedestrians are

also sometimes present on the tracks, despite the illegality of this activity. To

maximize the effectiveness of the warning stimuli without being intrusive to

visitors or unintentionally aversive to animals, we may choose to use the familiar

sound of warning bells used at road–rail crossings in the area. Since animals and

people may already associate this sound with train approach, this would likely be

an advantage for our system.

C.5.2 Parts selection

Some experience with electronics design and assembly is assumed in the following

subsections. All datasheets referenced are available online from manufacturer

websites.

Sensing device

Sensor: We selected the digital compass (Honeywell HMC5883L; Table C.1) for

our train detector prototype because of its train detection precision (discussed in

our paper), low power consumption, and mechanical durability (Table C.2). We
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note that the guaranteed operating temperature range of the compass extends

down only to −30 ◦C (see HMC5883L datasheet), but ambient temperatures fall

below this range only infrequently in winter in our study area. Further testing

would be needed to determine how cold weather affects sensor performance.

The digital interface of the compass allows the sensor to remain in an idle

state until a measurement is requested. In this idle state, its current consumption

is as low as 2µA (see HMC5883L datasheet). The accelerometer (Analog Devices

ADXL335) does not have this capability, and would consume more current on

average (see ADXL335 datasheet). Although the vibration switch (Bai Ling Elec-

tronics SW-18010P) by our estimates would consume the least power on average,

this advantage is outweighed by its poor durability.

The vibration switch uses a post-and-spring mechanism to detect vibration.

The operating lifetime of this mechanism “can reach” 200000 switchings (see

SW-18010P datasheet), but our tests indicate the sensor is activated an average

of 120000 times per day in service. Although our test sensor seemed to function

normally after more than 200000 switchings, further testing would be needed to

determine if the 200000 cycle rating is realistic. Regardless, in a remote device

where detection and repair of sensor problems is difficult, we cannot afford to

use a sensor that could fail so quickly. The digital compass and accelerometer

datasheets report no such vulnerability.

Table C.2: Comparison of three best sensor candidates for the passing relay.

Sensor Cost
(US$)

Mounting requirement Current used
(µA)

Lifespan

Digital compass 10 Away from magnets < 100 No stated
limit

Accelerometer 15 Acoustic contact with
rail

350 No stated
limit

Vibration switch,
weak

1 Acoustic contact with
rail

0.001
(estimated)

200000
cycles

Controller: The Atmel ATmega328P functions as a miniature computer that con-

trols our passing relay prototype. This microcontroller is the same one used in the
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popular Arduino Uno platform. The chip has enough memory and input/output

for our needs, is inexpensive (a few dollars), and supports many power man-

agement features (see ATmega328P datasheet). The popularity of the Arduino

platform also ensures the ready availability of programming libraries compatible

with the other components we choose.

This microcontroller requires a few external components that are often pack-

aged together with it in kits or on completed circuit boards. For ease of proto-

typing, we used a compact Ardweeny kit (CDN$10; Solarbotics, Canada). Future

iterations of this prototype may consider ATmega328P kits specialized for low-

power applications, such as the Arduino Pro Mini (3.3V, 8MHz version; US$10;

Sparkfun Electronics, USA).

Radio: A wireless communication system is needed to relay trigger signals from

the sensing device to the warning device. Based on a comparison of cost, range,

legality, and power consumption (Table C.3), we selected the XBee-PRO DigiMesh

2.4 (Digi International, USA). In particular, the power management features of

the DigiMesh networking protocol may significantly extend the battery life of our

devices: whereas the IEEE 802.15.4 (ZigBee) protocol requires some devices on

the network to remain powered on at all times, the DigiMesh protocol allows every

device on the network to enter low-power “sleep” modes when not in use (see

XBee-PRO DigiMesh 2.4 datasheet). Although simpler and less expensive point-

to-point radio links such as the Seeed Studios WLS102B5B (Seeed Studios, China)

could be adequate for our needs, we cannot legally use point-to-point radio

link kits in Canada because they have not received regulatory approval from the

Canadian government. Only holders of Amateur Radio Operator Certificates with

Advanced Qualifications from Innovation, Science and Economic Development

Canada are allowed to use unapproved radio links in Canada.

Anyone reproducing this prototype must consider the legal requirements for

radio communication in their jurisdiction. While the 2.4 GHz band is designated

for unlicensed use worldwide, some governments require lower transmission

powers for devices that use this band. However, in many countries, other unli-

206



censed bands are available for which higher-power transmission is allowed. Digi

International produces alternate versions of their XBee-PRO DigiMesh radios to

accommodate these restrictions and allowances.

Table C.3: Detailed comparison of radio candidates for the passing relay. Current
use is listed for both transmission mode (TX) and receiving mode (RX).

Radio Cost
(US$)

Line-of-sight
range (km)

Fre-
quency

(GHz)

Low-
power
support

Current used
(TX/RX; mA @

V)

Basic radio link (e.g.,
QAM-RX2-433)

8 per
pair

0.2 0.433 Via micro-
con-
troller

22/4.5 @ 5

Seeed Studios encoded
link (WLS102B5B)

15 per
pair

2 0.433 Via micro-
con-
troller

2.5 @ 5

XBee-PRO ZigBee (S2C
hardware)

28
per
unit

3.2 2.4 Some
nodes
sleep

205/45 @ 3.3

XBee-PRO DigiMesh
2.4 (S1 hardware)

32
per
unit

1.6 2.4 All nodes
sleep

250/55 @ 3.3

XBee-PRO 900HP (S3B
hardware)

39
per
unit

14.5 0.900 All nodes
sleep

215/29 @ 3.3

Atmel ZigBit
(ATZB-A24-UFLBR)

39
per
unit

Not specified 2.4 Some
nodes
sleep

157/7.5 @ 3.3

Power:

Voltage regulation. Voltage regulation is required to provide a stable 3.3 V to

every component of the sensing device. In this case, voltage regulators convert

energy from a battery (where output voltage varies over the discharge cycle) into

a stable voltage. To do this, regulators either reduce the voltage by dissipating

power as heat (linear regulators) or switch on and off at high frequencies to

maintain the desired voltage (switched regulators). Switched regulators can be

far more efficient, but are somewhat more expensive and require more external

components to function.
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We want the sensing device to operate without intervention for months at a

time. From the previous parts selections, we recognize that the XBee radios will

require the most peak current of any component (up to 250 mA when transmitting;

see XBee-PRO DigiMesh 2.4 datasheet). However, the sensing device will spend the

vast majority of its time waiting for a train to arrive (less than 1 mA required; Table

S7). Thus, an ideal regulator would be highly efficient at both of these required

currents, but especially at near-zero currents. We selected the LM3671 (Texas

Instruments, USA), a switched 3.3 V regulator with maximum 600 mA output. This

unit is not a best fit in terms of efficiency or cost, but it provides good efficiency at

both low and high currents (see LM3671 datasheet) and is available pre-assembled

on a breakout board (US$5; Adafruit, USA). A more specialized regulator could be

selected for later prototypes.

Power source. Batteries are a convenient, low-cost source of power for re-

mote devices. Single-use alkaline batteries, for example, provide a high capacity at

the maximum current draw of the sensing device, a low self-discharge rate, and an

operating temperature range suitable for year-round operation in some climates

(Table C.4). For convenience of prototyping, we chose to use rechargeable nickel

metal hydride (NiMH) batteries, but the high self-discharge rate of NiMH batteries

makes them unsuitable for long-term field use. The LM3671 regulator should be

compatible with four “D”-size cells of either alkaline or NiMH type, based on the

maximum rated input voltage of 6 V (see LM3671 datasheet). In colder climates,

more costly lithium iron disulphide batteries would work with the LM3671 in four

parallel battery packs of three cells each. Use of two lithium thionyl chloride cells

would require a regulator with a larger input voltage range, but these batteries

have a wider operating temperature range and a much higher energy density.

Power budget. To estimate the operating lifetime of the sensing device, the

power required by each component is totalled under three different operating

states: transmitting a detection to the warning devices, monitoring for trains, and

waiting (powered-down). When a train is detected, we allow the sensing device
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Table C.4: Comparison of power source candidates for the passing relay.

Power system Cost
(US$)

Capacity at
250 mA

(Wh)

Self-
discharge

(%/month)

Operating
tempera-

ture
(◦C)

Alkaline battery (4 D cells + holder) 10 69 <0.3 -18 to +55

Nickel metal hydride battery (4 D
cells + holder)

24 48 15 0 to +50

Lithium iron disulphide (4×3 AA
cells + holders)

42 50 <0.1 -40 to +60

Lithium thionyl chloride (2 D cells
with hybrid capacitors + holder)

90 137 <0.1 -55 to +85

to use its radio for up to 5 s to contact the warning devices. If the sensing device

checks for the presence of trains once per second, the remainder of the time can

be spent in a powered-down state. We also allow six minutes of the powered-

down state after each train detection to allow the entire length of trains to pass.

All components we have selected (controller, radio, and sensor) require a 3.3 V

power supply, so the power consumption in each operating state can be obtained

by multiplying this voltage by the current drawn (as specified in component

datasheets). The total power drawn from the battery by the voltage regulator

is the amount required by device components divided by the efficiency of the

voltage regulator at the provided input voltage and at the required output current.

Assuming 20 trains are detected by the sensing device per day, our estimates

suggest that the sensing device will consume 0.19 Wh in total per day (Tables

C.5–C.7), yielding an operating lifetime of up to one year on four alkaline D cells.

However, we note that more realistic networks with more than two devices may

require more frequent radio communication, reducing the ability for radios to

sleep between train detections and thus reducing the operating lifetime.

Enclosure: Size, material, mounting, and security requirements must be consid-

ered when selecting an enclosure.

Characteristics. The sensing device must be placed in an enclosure to pro-

tect it from water, dust, mild impact (e.g., shifting ballast rock), and ultraviolet
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Table C.5: Power budget of the sensing device for a train detection event. If
20 trains are detected per day, and 5 s are spent transmitting to the warning
devices per train (1.3 mWh per event), a total of 25 mWh will be expended in the
transmission state per day.

Component Power state Power used (mW)

Sensor Idle 0.007

Controller Active 30

Radio Active 830

Total Train detection 860

Regulator Efficiency: 93% 920

Table C.6: Power budget of the sensing device while monitoring for trains. If
an estimated 0.2 s out of every second are spent in this state, excluding time
within 360 s of a train detection to allow trains to pass, a total of 160 mWh will be
expended in the monitoring state per day.

Component Power state Power used (mW)

Sensor Active 0.330

Controller Active 33

Radio Sleeping 0.170

Total Monitoring 33

Regulator Efficiency: 89% 37

Table C.7: Power budget of the sensing device while not monitoring for trains and
not transmitting. If an estimated 0.8 s out of every second are spent in this state,
apart from the 360 s after train detection which is fully spent in this state, a total
of 5.5 mWh will be expended in the idle state per day.

Component Power state Power used (mW)

Sensor Idle 0.007

Controller Power-save 0.003

Radio Sleeping 0.170

Total Waiting 0.180

Regulator Efficiency: 65% 0.280
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radiation. The enclosure must also be able to accommodate the size of the com-

ponents selected for the sensing device (Table C.8). For testing purposes, we

desired an enclosure that could be mounted either on the outer web of the rail

or in the ballast between the rails. The enclosure must also allow radio signals to

pass freely through its walls, or else a separate antenna external to the enclosure

will be needed (at additional cost).

We selected the Bud PN-1334-C enclosure (US$23.70; Bud Industries, USA)

to meet these requirements. Additionally, this enclosure features an optional

clear lid to allow viewing of the device components (used for this prototype

only). The enclosure is composed of polycarbonate, offering greater impact

resistance, ultraviolet resistance, and radio-frequency transparency than other

plastics commonly used for electronics enclosures. The enclosure also has a

NEMA (National Electrical Manufacturers Association) 4 rating which guarantees

resistance to dust, sprayed or falling liquids, and ice formation.

Table C.8: Space budget for the enclosure of the passing relay sensing device.
Dimensions are from component datasheets.

Component Length (mm) Width (mm) Height (mm)

Battery holder 137.5 71.5 28.5

Ardweeny controller 40 14 20

XBee-PRO (wire antenna) 33 24.5 28

Compass breakout board 18 18 3

Enclosure (Bud PN-1334-C) 200 (outer) 120 (outer) 75 (outer)

Mounting and security. The selected enclosure also features through-holes

at its four corners that are external to the enclosure. These could be used to

attach countersunk bolts and rare earth magnets for mounting to the rail, though

this option is costly if we require magnets strong enough to deter theft of the

devices (e.g., four magnets at a minimum of US$15 each from K&J Magnetics,

USA). Adhesives could be used as a lower-cost and more secure means of attaching

the enclosure to the rail, though a permanent bond would be needed to deter theft

(e.g., methacrylate two-part adhesives). Bolting the enclosure to the rail is a less-
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attractive option because this would require holes to be drilled in the rail, and this

requirement may not be supported by railway companies. Placing the enclosure

flush with the ballast rock between ties requires no means of attachment, but this

strategy relies on camouflage alone to deter theft and vandalism. Additionally,

radio range may be significantly reduced by the combined obstruction of the steel

rails and the wooden ties.

Other theft deterrents are possible. For example, a short steel cable could be

secured with a padlock between the enclosure and a permanent fixture (such as

a rail spike). The enclosure itself could be modified with a locking mechanism

or security screws, or the electronics could be fully potted (engulfed in epoxy)

to prevent removal and tampering. To reduce detectability of sensing devices

and inactive warning devices, the devices could be designed with lower-profile

enclosures and then painted to match the rusty surface of the rail. Design and

testing of these ideas may be pursued for later prototypes.

Warning device

Radio: The radio used in the warning device must match the one selected for the

sensing device. In this case, we selected the XBee-PRO DigiMesh 2.4 (S1 hardware,

wire antenna). Because these radios are two-way, power must be provided in the

warning device for both transmission and reception.

Controller: As did the sensing device, the warning device used the ATmega328P

microcontroller.

Warning signals:

Visual. As discussed earlier, we have chosen to provide LED light of amber

colour (near 590 nm) to minimize interference with animal scotopic vision but still

be easily detected by the long-wavelength cone photoreceptors of dichromatic

animals. The LED power supply must be compatible with our chosen microcon-

troller to allow programmable dimming and flashing of the LED. The LED must

also be extremely bright (50 cd to 200 cd luminous intensity).
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We selected the Cree XP-E2 PC (phosphor-converted) Amber LED (US$2.60;

Cree, USA), which is among the brightest amber LEDs available (100 lm to 107 lm

at 350 mA). If the enclosure is mounted on the outer web of the rail, two LEDs

will be used per warning device to cast light out along the track from opposite

sides of the enclosure. These can be made to flash for 10 ms every 1 s, minimizing

the impact of their high instantaneous power draw on battery life and avoiding

the added expense of large heat sinks for each LED. The LEDs were mounted

on metal-substrate printed circuit board (MSPCB) starboards to provide some

heat sinking. The starboards were then attached to lenses and lens holders (Table

C.9) to focus the LED light down the tracks and thereby increase the number of

candelas per lumen. We also designed an LED driver based on the TI LM3405

regulator (Texas Instruments, USA; Table C.9), which is dimmable and flashable

with our microcontroller but which draws its power directly from the batteries. To

simplify the design, one driver was used per LED, but for later prototype versions

a single driver could be used for both LEDs with power transistors switching the

drive current between them.

For future prototypes, we may suggest using an amber LED without phosphor

conversion, because the phosphor-converted amber has a broad emission spec-

trum that may interfere somewhat with animal scotopic vision at night. We also

suggest that warning devices mounted flush with the ballast between ties could

use a single LED and a 360-degree reflector mounted on the top of the enclosure

to ensure no light is wasted.

Auditory. As discussed earlier, we chose to provide auditory stimuli with a

surface transducer adhered to the inner surface of the warning device enclosure.

We selected a surface transducer capable of accepting up to 1 W input power

and producing a sound power level of up to 90 dB (Bone Conductor Transducer

with Wires, 8Ω 1 W, US$9; Adafruit Industries, USA). Playback of sound can be

produced by the ATmega328P via its pulse-width modulation (PWM) output in

combination with a power transistor acting as a basic audio amplifier (Table

C.10). Sound quality could be improved in later prototypes with the addition of
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Table C.9: Parts list for the visual warning system (per light-emitting diode (LED)).

Subsystem Component Quantity

Light Cree XP-E2 PC Amber LED 1

MSPCB Starboard 1

Optics Carlco 20 mm lens 1

Carlco universal 20 mm lens holder 1

Driver TI LM3405 regulator 1

SOT23 breakout board 1

1N5817 Schottky diode 1

BAT85S Schottky diode 1

0.01µF capacitor 1

10µF capacitor 1

1µF capacitor 2

10µH inductor 1

0.22Ω resistor 1

a simple low-pass RC (resistor and capacitor) filter. The memory on board the

ATmega328P can be used to store approximately 2 s of audio at 8 bits per sample

and 8000 samples per second, sufficient for a warning bell sound similar to that

used at road–rail crossings in the area. For alternative sounds that are longer or

have higher-frequency content, additional memory could be added with low-cost

integrated circuits or SD (secure digital) memory cards.

Table C.10: Parts list for the auditory warning system.

Subsystem Component Quantity

Amplifier FDP8896 Power NFET (transistor) 1

SB560 Protection diode 1

Speaker Surface transducer 1

Power:

Voltage regulation. The same LM3671 regulator selected for the sensing

device can be used to power the controller, radio, and auditory warning system.

The LEDs, however, require regulated currents of up to 1 A to achieve their full

brightness. The LM3405 regulator described above was chosen for this purpose.
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Power source. As for the sensing device, four alkaline D cells would provide

a large amount of energy at a low cost for the warning device. We used nickel

metal hydride batteries for prototype testing purposes only.

Power budget. To estimate the operating lifetime of the warning device, we

totalled the power drawn by each component in different operating states as was

done for the sensing device. The three states were for a train detection event

(warning signals active), checking for messages from the sensing device (radio

active), and power-down (all components sleeping). In each case, estimating the

power drawn by an LED driver is more complicated because the driver draws

power directly from the battery (for which the voltage varies as it drains), rather

than from the 3.3 V regulator. However, we will assume an average battery voltage

of 4.9 V (1.225 V per cell) over the discharge cycle (AllAboutBatteries.com 2016).

Given the LM3405 is designed to provide an output voltage of 3.5 V at an output

current of 1 A (see LM3405 datasheet), and since the LM3405 is near 80% efficient

under these conditions, it will consume 4.4 W when turned on. Each LED is

assumed to flash for 10 ms every 1 s, staggered so that the LM3405s are not turned

on simultaneously. This flashing occurs for 25 s every time the warning device

receives a train detection trigger so that, accounting for both LEDs, 0.6 mWh

will be consumed each time the visual warning system is activated. When the

visual warning system is inactive, the two LM3405 systems together will consume

approximately 3µW. We also assume that the audio amplifier will be providing

current to the transducer half of the time (on average) over the 25 s warning period,

consuming an average of 205 mA or 0.7 W during this time. The amplifier should

consume 6µA or 20µW when inactive. We also assume the radio is set to check for

messages once per second and only requires 100 ms to do so. The time required

for message checking may increase with the size of the radio network, so 100 ms

may not be feasible for realistic networks with more than two devices. Increased

time spent checking for messages will decrease the estimated operating lifetime.

All components are powered down for six minutes following the completion of a

train detection event.
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Assuming 20 trains are detected by the sensing device per day, our estimates

suggest that the warning device will consume 0.16 Wh per day (Tables C.11–C.13),

yielding an operating lifetime of up to 1.2 years on four alkaline D cells.

We note that driving the LEDs alone requires in excess of 1 A of current directly

from the batteries, and driving the audio warning system at the same time the

radio is active may require up to 1.5 A. Drawing this much current would reduce

the effective capacity of alkaline batteries if the draw were constant over time.

Testing should be done on the built prototype to determine the likelihood of the

device lasting for the estimated 1.2 years. Incorporation of a small supercapacitor

as a secondary power source or the use of more specialized LED flash drivers

with inductive or capacitive energy storage could reduce the maximum current

demand on the batteries.

Table C.11: Power budget of the warning device during a train detection event.
If 20 trains are detected per day, if 5 s are spent communicating with the sensing
device per train, and if this time plus 20 s is spent activating the warning signals
(7.5 mWh per event), a total of 150 mWh will be expended per day in the warning
state.

Component Power state Power used (W)

Radio Active (first 5 s only) 0.825

Controller Active 0.33

Auditory warning Active 0.700 (time average)

Subtotal Reception and audio warning 1.6 for first 5 s; 0.7 thereafter

LM3671 regulator Efficiency: 93% 1.7 for first 5 s; 0.8 thereafter

Visual warning Active 0.88 (time average, 2 LEDs)

Total Reception and warning 1.8 for first 5 s; 0.9 thereafter

Enclosure: The addition of the LEDs, LED drivers, an audio amplifier, and a sur-

face transducer did not significantly increase the space required for the warning

device electronics over that needed for the sensing device electronics. The same

enclosure (Bud PN-1334-C) was thus used as for the sensing device prototype.

216



Table C.12: Power budget of the warning device while checking for messages
from the sensing device. If 900 ms of every 1 s (apart from train detection events
and the subsequent power-down) is spent in this state, a total of 2.8 mWh will be
expended per day in the checking state.

Component Power state Power used (mW)

Radio Active 0.825

Controller Active 0.33

Auditory warning Inactive 0.020

Subtotal Checking 1.2

LM3671 regulator Efficiency: 94% 1.3

Visual warning Inactive 0.003

Total Checking 1.3

Table C.13: Power budget of the warning device while inactive (not checking
for messages and not providing warning signals). If all time except time during
warning events and message checks is spent in this state, a total of 6.5 mWh will
be expended per day in the sleeping state.

Component Power state Power used (mW)

Radio Sleeping 0.170

Controller Power-save 0.003

Auditory warning Inactive 0.020

Subtotal Sleeping 0.193

LM3671 regulator Efficiency: 65% 0.296

Visual warning Inactive 0.003

Total Sleeping 0.3
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C.5.3 Bills of materials

Tables C.14–C.16 list the parts (with costs) used to build the prototype devices. We

list the parts used in each device (Tables C.14 and C.15) as well as materials that

were needed for assembly but not entirely used (Table C.16).

Table C.14: Bill of materials for the passing relay sensing device.

Part Part Number Supplier Cost (US$ @ qty.
1)

Digital compass with breakout board 1528-1030-
ND

Digi-Key 9.95

Solarbotics Ardweeny controller KARDW Solarbotics (CDN$)13.43

XBee-PRO DigiMesh 2.4 (S1, wire
antenna)

602-1482-ND Digi-Key 32.00

XBee breakout board 1568-1099-
ND

Digi-Key 2.95

4 × D-cell N105-ND Digi-Key 4 × 1.60

Battery holder BH4DW-ND Digi-Key 3.89

LM3671 regulator breakout 1528-1430-
ND

Digi-Key 4.95

Bud PN-1334-C enclosure 377-1257-ND Digi-Key 23.70

Consumables (protoboard, solder, glue) (Estimated) 5.00

Total 98.84

C.5.4 Schematics

Schematics are provided for the sensing device (Figure C.2) and the warning

device (Figure C.3).
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Table C.15: Bill of materials for the passing relay warning device.

Part Part Number Supplier Cost (US$ @
qty. 1)

XBee-PRO DigiMesh 2.4 (S1, wire
antenna)

602-1482-ND Digi-Key 32.00

XBee breakout board 1568-1099-ND Digi-Key 2.95

Solarbotics Ardweeny controller KARDW Solarbotics (CDN$)13.43

4 × D-cells N105-ND Digi-Key 4 × 1.60

Battery holder BH4DW-ND Digi-Key 3.89

LM3671 regulator breakout 1528-1430-ND Digi-Key 4.95

Bud PN-1334-C enclosure 377-1257-ND Digi-Key 23.70

2 × TI LM3405 regulator LM3405XMK/NOPBCT-
ND

Digi-Key 2 × 1.38

2 × 1N5817 Schottky diode 1N5817FSCT-ND Digi-Key 2 × 0.43

2 × BAT85S Schottky diode BAT85S-TAPCT-ND Digi-Key 2 × 0.56

2 × 0.01µF ceramic capacitor BC2662CT-ND Digi-Key 2 × 0.22

2 × 10µH inductor RLB0912-100KL-ND Digi-Key 2 × 0.50

2 × 10µF ceramic capacitor 445-8549-ND Digi-Key 2 × 0.45

4 × 1µF ceramic capacitor 445-8417-ND Digi-Key 4 × 0.32

2 × 0.22Ω 5% resistor A105965CT-ND Digi-Key 2 × 0.30

2 × Cree XP-E2 PC Amber LED,
starboard-mounted

CREEXPE2-PCA-1 LEDSupply 2 × 4.99

2 × Carlco TIR 20mm ripple wide optic 1066-1026-ND Digi-Key 2 × 2.28

2 × Carlco 20mm universal optic holder 1066-1068-ND Digi-Key 2 × 0.65

3 × 10 kΩ 5% resistor CF14JT10K0 Digi-Key 3 × 0.10

Acoustic surface transducer 1674 Adafruit 8.95

Power MOSFET FDP8896-ND Digi-Key 1.29

SB560 protection diode SB560FSCT-ND Digi-Key 0.52

Consumables (protoboard, solder, glue) (Estimated) 5.00

Total 121.99
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Table C.16: List of consumables, prototyping products, and programming acces-
sories.

Part Part Number Supplier Cost (US$ @
qty. 1)

Header pins (male) 392 Adafruit 4.95

Header sockets (female) 598 Adafruit 2.95

Adafruit SMT breakout set (includes 5 × SOT23) 1528-1072-ND Digi-
Key

4.95

Prototyping board, FR-4 V2012-ND Digi-
Key

10.59

IC sockets (28-pin 0.1“ mating pitch, 0.3” row
pitch DIP for ATmega328P)

2205 Adafruit 1.25

3.5mm headphone jack (for audio system tests) 1699 Adafruit 0.95

FTDI-compatible XBee Adafruit breadboard
adapter

1528-1119-ND Digi-
Key

10.00

FTDI-to-USB adapter 39240 Solarbotics (CDN$)20.18

Micro USB to USB male cable 14085 Solarbotics (CDN$)6.68

Lead-free solder paste (for LED mounting) MG Chemicals
4900P-25G

Amazon.com 15.02

Acrylic lacquer conformal coating (protects
electronics)

MG Chemicals
419C

Amazon.com 15.79

Silicone RTV adhesive sealant Permatex 80050 Amazon.com 5.72

Heat sink for LED testing 345-1105-ND Digi-
Key

2.34

Thermal tape for bonding LED to heat sink 1168-1853-ND Digi-
Key

0.37
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Figure C.2: Sensing device schematic for the passing relay.
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Figure C.3: Warning device schematic for the passing relay.

222



C.5.5 Code

The code used to program the sensing and warning devices is included in the on-

line supporting information for the published manuscript (Backs et al. 2017). The

file sensing.ino programs the sensing device and requires the included library

Adafruit_HMC5883_Unified_Mod. The file warning.ino programs the warning

device and requires the included header file oneRing.h. License information and

references are included in the body of the code. Code was compiled and uploaded

to the microcontrollers using version 1.6.9 of the Arduino integrated develop-

ment environment and the TTLyFTDI USB-to-TTL Cable Adapter (Solarbotics

Ltd., Canada; Table C.16).
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C.5.6 Completed prototype photographs

Figure C.4: Photographs of the completed sensing device. (a) Top-down view of
the whole device. (b) Close-up view of the circuit board.
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Figure C.5: Photographs of the completed warning device. (a) Top-down view of
the whole device. (b) Close-up view of the circuit board.
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Appendix D

Supporting information for
“Warning systems triggered by trains
increase flight-initiation times of
wildlife”*

D.1 Warning system design

This appendix provides the information needed to reproduce the warning sys-

tems used in our experiment. Familiarity with the fundamentals of electrical

engineering is assumed. Datasheets for specific components are available from

the component manufacturers, and will not be listed in the References. The warn-

ing system prototypes were designed by Jonathan Backs, including electronic and

mechanical components except where noted. Printed circuit board layouts were

designed in collaboration with G2V Optics Inc. (Edmonton, Alberta, Canada), but

the authors of this manuscript retain ownership of the layouts.

D.1.1 System concept and requirements

In previous work, we designed a prototype warning system capable of providing

light and sound stimuli to animals at a consistent time before train arrival (Backs

et al. 2017). We improved upon and modified that prototype in these ways:

1. Trains will be detected 40 s before they arrive at the center of the test zone.

This will allow cameras on both sides of the test zone to be triggered 10 s

*Authors: J.A.J. Backs, J.A. Nychka, and C.C. St. Clair
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before the warning devices activate at 30 s before train arrival. The warning

devices will provide stimuli for 35 s, allowing trains to pass before the stimuli

cease.

2. To reduce equipment costs, only four warning devices will be used per

200 m test zone. The warning stimuli are then required to be visible and

audible at a distance of at least 25 m.

3. The system must function in the presence of moisture and dust, and through-

out the temperature range −40 ◦C to 80 ◦C, based on the expected climatic

variation (plus solar heating) on the railway track in Banff National Park,

Alberta, Canada.

4. The system must function for at least two weeks on a single set of batteries.

5. Train detectors and warning devices mounted on the outer web of the

railway track must be

(a) low enough in profile that they are not struck by passing trains or other

track vehicles, and

(b) resistant to vibration.

6. All devices should be visually inconspicuous to minimize theft and vandal-

ism, and also to reduce the presence of visual cues that could influence the

behaviour of animals within the test zone.

Our new prototypes were developed iteratively based on these revised require-

ments. In the following sections, we offer detailed instructions for the reproduc-

tion of our most recent prototypes. We also document some of the lessons learned

through this process. In the last section, we propose some improvements we

envision for this system.

D.1.2 Enclosures

Our enclosures for the devices composing the warning system were designed to

protect the electronics within each device at a low cost and with a low physical
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profile. We first used an enclosure system where the devices were fitted inside

an acrylonitrile butadiene styrene (ABS) tubing with an inner diameter of 1.5

inches (schedule 40 tubing; Figure D.1). ABS material was selected due to its

modest transparency to wireless radio-frequency signals, its durability under a

wide temperature range, and its acceptable resistance to chemical degradation

from both aliphatic hydrocarbons and fresh water present in the railway environ-

ment (Campo 2008; Wiłkomirski et al. 2011; MatWeb 2020a). While polycarbonate,

another common enclosure material, performs better on all of these metrics

and additionally has high resistance to ultraviolet degradation, ABS was lower in

cost and could be painted to provide some protection against sunlight (MatWeb

2020a,b). For mechanical stability and to transmit vibrations directly to the train

detector’s circuit board, we designed half-round aluminum mounts that fit snugly

within the tubes and screwed directly through the tube body to external magnets

that attached to the railway track (Figure D.2). This design constrained our circuit

boards to be long-and-narrow in shape (e.g., Figure D.7). The tubes were made

long enough to accommodate the circuit board mount as well as a set of three

D-cells in series for power. While the resulting devices were indeed low in profile,

they proved difficult to maintain.

Figure D.1: Photograph of the tube enclosure (a train detector) attached to the
railway track.

Part-way through the present study, we retrofitted the warning system with

box-shaped enclosures (Figure D.3). We selected a hinged box with a gasket seal

(Table D.1) that was large enough to accommodate our existing circuit boards and
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Figure D.2: Cross-sectional concept drawing for the tube enclosure. Detailed
drawings for each of the tubes and the aluminum circuit board mounts are not
shown.

batteries, yet small enough to be mounted within the outer web of the railway

track. Whereas the tube enclosures had to be near-completely disassembled

to check for damage and replace batteries, the box enclosures allowed quick

access to all components of each device. Circuit boards and battery holders were

attached to the interior of the enclosure using a sandwiched combination of

foam mounting tape and nylon hook-and-loop, where foam tape was attached

to the underside of the circuit board, followed by a layer of hook and loop, then

another layer of foam mounting tape that attached to the interior of the enclosure.

This mechanism was designed to reduce vibrational coupling between the circuit

board and the track, reducing damage to the electronics caused by train vibrations

while not appreciably hindering our ability to detect trains via vibrations. Holes

were drilled in the enclosures for the speakers and lights of the warning devices

as well as the camera cable on the camera controller. The components were

mounted in these holes with hot-melt adhesive, and the remaining space was

then sealed with silicone.

Common features

Each enclosure was provided with a dessicant packet (Table D.1) as a precaution-

ary measure to reduce the potential for moisture to interfere with the electronics.

232



Figure D.3: Photograph of the box enclosure (a train detector) attached to the
railway track.
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Table D.1: Bill of materials for one box enclosure. Consumables are indicated with
unspecified quantities. Components specific to track-mounted and tree-mounted
devices are separated.

Part Qty. Supplier/Mfr. Part
number

All enclosures

Hinged box ABS gray 10.63“L X 3.93”W with mounting
hardware

1 Bud
Industries

NBF-
32008

Paint (Ultimate Hammered Burnished Amber) Rust-oleum –

Device decal (printable labels, paper + clear) 1 Avery –

Foam mounting tape, weather resistant, 3/4“x1.5”, .063“
thick

McMaster-
Carr

76535A31

General purpose nylon hook-and-loop, 3/4“ width,
adhesive

McMaster-
Carr

9273K33

Dessicant pack, indicating, silica gel, for 36 cu in space 1 McMaster-
Carr

3492T13

Hot melt adhesive, craft grade (Unknown) –

Silicone (3M Super Silicone, 3oz tube) McMaster-
Carr

74955A53

Track-mounted devices

Mounting magnets, countersunk for #6 screws 2 K&J
Magnetics

MMR-A-
X8

#6-32 screws, countersunk, 18-8 stainless steel, 3/8“ 4 McMaster-
Carr

91771A146

Washer for mounting screw, #6 4 McMaster-
Carr

92141A008

Nut for mounting screw, #6-32 4 McMaster-
Carr

91841A007

Loctite 222 (purple, low strength) McMaster-
Carr

1810A27

Tree-mounted devices with external antennas

Self-sealing tape (protects antenna–RP-SMA joint) McMaster-
Carr

7682A65

Electrical tape, black (3M Super 33+) McMaster-
Carr

76455A22

Wood screws, 18-8 stainless steel, #8, 1-5/8“ 2 McMaster-
Carr

98643A350
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Although a few of the enclosures occasionally allowed water entry in quantities

the dessicant packets could not absorb, we did not record any instances where

the electronics were found to fail because of moisture ingress.

Every enclosure (tube and box alike) was painted with a textured spray paint

selected to imitate the rusted appearance of railway tracks. This treatment was

remarkably effective at making the enclosures difficult to see at a distance. We also

affixed upon each enclosure a label that identified the device inside and included

text intended to deter theft and vandalism: “Wildlife Protection System. DO NOT

DISTURB. Area is monitored.” The text was printed onto white label paper, and

each label was then affixed to the painted surface of the enclosure. Clear plastic

labels of the same size were then affixed overtop of the paper labels to provide

some protection against moisture and debris.

Methods of attachment

Track-mounted devices were attached to the railway track with a pair of neodymium

magnets (Table D.1). We used mounting magnets that came with countersunk

holes for #6 screws, which were initially screwed directly into tapped holes in the

aluminum circuit board mount for the tube enclosures. Later, we mounted the

same magnets on the box enclosures by connecting them to the built-in mount-

ing brackets with #6 hardware (Figure D.4). Loctite 222 was used to keep this

assembly from dismantling under the influence of train vibrations. Further, for

train detectors, mounting brackets were rotated such that the magnets were held

outside the footprint of the enclosure, keeping them as far away as possible from

the digital compass.

Tree-mounted devices were attached to trees with wood screws (Table D.1)

inserted through the mounting brackets included with the box enclosures (Figure

D.5). The earlier tube enclosures were more simply tethered to tree branches using

bungee cords, so that they could be easily removed for maintenance. Electrical

tape wrapped overtop of self-sealing tape protected the external RP-SMA antenna

connectors from moisture and dust, while a bead of silicone at the top edge of
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Figure D.4: Photograph of the track-facing side of a box enclosure (a train de-
tector). This image was taken following field service, so the magnets and other
surfaces are covered with iron filings and dust.
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each connection (where the tape met with the enclosure body) helped to keep

rainwater out of the connection.

Figure D.5: Photograph of a tree-mounted box enclosure (camera controller,
upper) along with a Reconyx camera (lower). The black line between the two is
the external trigger cable for the camera.

D.1.3 Train detector

Train detectors are track-mounted devices that, when passed by a train, provide a

wireless activation signal to the rest of the system.
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Electronic design

Our train detector was designed with two sensors together to detect trains passing

over the device (Figure D.6). The two integrated sensors, an accelerometer (Analog

Devices ADXL335) and a compass (Honeywell HMC5883L), were convenient to use

as they were sold pre-soldered onto breakout boards with supporting components

(sold by Adafruit Industries). In addition to soldering, these breakout boards were

attached to the main board with non-magnetic brass hardware to reduce potential

interference with the compass readings. A microcontroller (Atmel ATMega 328P)

was used to read data from the sensors, determine whether a train was passing

over the device, and send activation signals via the attached XBee Pro 900HP (Digi

International). These radios used a mesh networking protocol that allowed all

devices at a site to communicate with each other. The smaller wire antenna was

chosen for the XBee, eliminating the need for an external antenna that would

have made the device more fragile and vulnerable to moisture. Two pushbutton

switches were integrated with the circuit board to provide quick access to “reset”

and “system test” functionality. An FTDI-compatible programming header was

also provided to facilitate in-field reprogramming of the microcontroller.

All components were selected to run off 3.3 V provided by a buck converter

(Texas Instruments LM3671) also sold pre-soldered on a breakout board (Adafruit

Industries). The buck converter was powered by a set of three D-cells in series

with a total nominal rating of 4.5 V, but the design of the LM3671 allowed battery

voltage begin as high as 5.5 V and to drop as low as 3.5 V as the batteries discharged.

This flexibility enabled our use of higher-voltage lithium iron disulphide cells

(Energizer L91 AAs; custom battery packs were made with three sets in series of

four cells in parallel) when ambient temperatures dropped below −20 ◦C. Our

design did not include any reverse-polarity protection for the LM3671, so care

was always taken to insert the battery pack in the correct orientation.

This circuit schematic was converted to a circuit board layout, designed

in collaboration with G2V Optics Inc. (Figure D.7). After receiving custom-
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manufactured boards, we hand-soldered the electronic components to the boards

(Table D.2).

Figure D.6: Schematic of the train detector electronics.

Table D.2: Bill of materials for one train detector. The designator column
indicates the label used on the printed circuit board, where applicable (Figures
D.6 and D.7). Where manufacturer is unknown, the supplier is indicated in
parentheses.

Part Designator Qty. Manufacturer Part number

HMC5883L compass breakout U$1 1 Adafruit 1746

ADXL335 accelerometer breakout U$5 1 Adafruit 163

LM3671 breakout U$3 1 Adafruit 2745

Female header, 0.1“ pitch, by posi-
tion

4 (Adafruit) 598

RESET cap 0.1µF C1 1 AVX SR201C104KAR

VCC filter cap 0.01µF C2 1 TDK FK18X7R1H103K

Clock cap 18 pF C3, C4 2 TDK FK18C0G1H180J

Pin 13 LED, 5 mm, yellow D13LED 1 Wurth Electron-
ics

151051YS04000

LED current limit resistor, 100Ω R2 1 Yageo MFR-25FBF52-
100R

Pin header, 0.1“ pitch, straight, 6
pos.

FTDI_

PROG_3V3

0.17 TE Connectivity 4-103741-0

Pin header, 0.1“ pitch, positive lock,
polarity enf., gold 30 microinch

PWR<5.5V 1 Molex 0705430106

2 position rectangular housing with
latch, polarity enf.

PWR<5.5V 1 Molex 0050579402

Continued on next page
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Part Designator Qty. Manufacturer Part number

Contact crimp socket 22-24 AWG
gold 30 microinch, high force

PWR<5.5V 2 Molex 0016021115

Stranded core wire, black, per inch 12 (Adafruit) 2976

Stranded core wire, red, per inch 12 (Adafruit) 3068

Pull-up/down resistor, 10 kΩ R1 1 Yageo MFR-25FBF52-
10K

Momentary pushbutton S1, S2 2 TE Connectivity 1825910-6

Microcontroller U1 1 Atmel ATMEGA328P-
PU

28-pin DIP socket U1 1 3M 4828-3004-CP

Clock crystal, 8 MHz, HC49US
shape

Y1 1 TXC Corp AS-8.000MAHK-
B

XBee Pro 900HP, DigiMesh non-
prog, wire ant.

U$2 1 Digi Interna-
tional

XBP9B-DMWT-
002

Female headers, 2 mm, 10 pos. U$2 2 Sullins Connector
Solutions

NPPN101BFCN-
RC

Train detector printed circuit board 1 Gold Phoenix (Custom)

Low-profile steel battery holder 1 Keystone Elec-
tronics

2199

Retaining clips for battery holder 2 Keystone Elec-
tronics

63

Breakout board hold screw, brass,
pan head, #1-64, 1/4“ length

4 (McMaster-Carr) 94070A043

Breakout board hold washer, brass,
#1

4 (McMaster-Carr) 95395A102

Breakout board hold nut, brass, #1-
64

4 (McMaster-Carr) 92671A002

Programming

Before installation on the printed circuit board, each ATMega328P microcontroller

was programmed with an Arduino bootloader. To do this, we built a chip pro-

grammer based on the Arduino Uno (http://www.arduino.cc) using an Adafruit

protoshield kit (Adafruit part number 2077) and a compatible ZIF socket (3M part

number 228-1371-00-0602J) according to a tutorial available on Adafruit’s website

(https://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduinoisp).

With the chip programmer connected to a computer, the Arduino IDE could be

used to program the chip mounted in the programmer by selecting Board “Arduino

Pro or Pro Mini,” the Processor “ATmega328 (3.3V, 8 MHz),” and the Programmer

“ArduinoISP,” then selecting Burn Bootloader. Once a microcontroller with boot-
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Figure D.7: Circuit board layout of the train detector electronics. Designed for
manufacture as a two-layer FR4 board, >100 mil thick, 1 oz copper, white silk
screen and green solder mask. Top layer traces are indicated in red, bottom layer
traces in blue, and exposed copper in green. Holes and silk screen markings are
indicated in grey. The SCL pin from the HMC5883L_BO was erroneously connected
to pin 26 of the microcontroller in this layout; SCL had to be manually connected
to pin 28 of the microcontroller with a jumper.
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loader was installed on the board, it could be programmed via USB through the

six pin FTDI interface (using a device such as the TTLyFTDI USB-to-TTL Cable

Adapter, Solarbotics part number 39240, ensuring the USB voltage is stepped

down to 3.3 V).

The C program sensing.ino was compiled and written to the microcon-

troller in each train detector. This code, including the required library Adafruit_

HMC5883_Unified_Mod, will be available at https://github.com/jbacks/wildlife

-warning-system upon publication of this manuscript. This program reads the

values of both the compass and accelerometer once per second, and uses these

readings to establish baseline readings for each sensor that is the average of the

past several readings. Following the establishment of a sensor-specific baseline,

each new reading is compared with the baseline for that sensor. If the difference

does not exceed a pre-specified threshold value, the reading is incorporated into

the running average of the baseline. If the threshold is exceeded, a flag is set until

the threshold is no longer exceeded. Only if the threshold is exceeded for both

sensors at once is an activation signal is transmitted to the rest of the warning

system via the XBee network. In this way, only sudden and strong sources of

both magnetic and vibrational changes can activate the warning system, and slow

drifts in either sensor reading have no effect. This algorithm helps to reduce the

number of false positives generated by the detectors. Following a trigger event,

the train detector goes idle for six minutes to prevent spurious activations as the

train passes.

Programming the XBees required only that we set the Preamble ID, Network

ID, and encryption key to the same values as the rest of the XBees at the same

site. We additionally gave each XBee a name containing the type of device and

a unique number (e.g., “TD-03”; Figure D.17) via the Node Identifier parameter.

We did not make use of the advanced power-saving features of the XBees in this

version of the warning system.
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Mechanical design

The layout of components within the enclosure was intended to maximize the

performance of the train detectors (Figure D.8). The sensors were placed towards

the upper end of the circuit board, which was affixed to the rear wall of the

enclosure (with foam tape and hook-and-loop; Table D.1), so that each sensor

would have relatively unobstructed access to their respective signals. Because

train detectors were mounted on the track, battery holders (heavy when full) were

attached to the bottom face of the enclosure’s interior so that the holders were not

shaken loose by train vibrations. Further protection against vibration-induced

damage was provided by application of hot-melt adhesive and silicone sealant

that held the LM3671 and XBee headers in place. The brass hardware reinforcing

the connections with the sensor breakout boards was held against disassembly

with Loctite 222. The wire antenna for the XBee was extended as far as possible in

the direction perpendicular to the circuit board to maximize radio transmission.

D.1.4 Warning device

Electronic design

We designed our warning device to provide light and sound stimuli with attention

to the balance between stimulus intensity, battery life, and cost (Figure D.9). For

visual stimuli, we selected two high-power LEDs, amber in colour (Backs et al.

2017), and supporting optics that could be mounted flush with the outer face

of the enclosure and sealed with silicone. Each LED was driven by a constant-

current buck regulator (Texas Instruments LM3405). For auditory stimuli, we

selected a weatherproof piezoelectric buzzer that could protrude from the en-

closure to emit sound directly into the environment. This buzzer was driven by

a pulse-width modulation signal from the microcontroller, amplified through a

piezo-specialized boost regulator (Linear Technologies LT3469), to roughly ap-

proximate bell sounds as per our original design (Backs et al. 2017). When not in

use, current drawn directly from the batteries by the LT3469 was reduced using a

low-quiescent-current load switch (Fairchild Semiconductor FPF2701) that could
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Figure D.8: Photograph of the interior of a train detector.
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be turned on by the microcontroller only when warning signals were active. Power,

microcontroller, programming, and radio subsystems were re-used from the train

detector design.

This circuit schematic was converted to a circuit board layout, designed

in collaboration with G2V Optics Inc. (Figure D.10). After receiving custom-

manufactured boards, we hand-soldered the electronic components to the boards

(Table D.3).

Earlier versions of this design included optional space for a more powerful

piezo driver (Texas Instruments DRV2700), but after multiple attempts we were

unable to get this part to work with our design. With our imprecise tools for reflow

soldering, it is possible that we damaged the delicate VQFN package every time

we attempted to attach it to the circuit board.

Figure D.9: Schematic of the warning device electronics.
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Figure D.10: Circuit board layout for the warning device electronics. Designed
for manufacture as a two-layer FR4 board, >100 mil thick, 1 oz copper, white silk
screen and green solder mask. Top layer traces are indicated in red, bottom layer
traces in blue, and exposed copper in green. Holes and silk screen markings are
indicated in grey.
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Table D.3: Bill of materials for one warning device. The designator column
indicates the label used on the printed circuit board, where applicable (Figures
D.9 and D.10). Where manufacturer is unknown, the supplier is indicated in
parentheses.

Part Designator Qty. Manufacturer Part number

LM3671 breakout U$3 1 Adafruit 2745

Female header, 0.1“ pitch, by posi-
tion

4 (Adafruit) 598

RESET cap 0.1µF C1 1 AVX SR201C104KAR

VCC filter cap 0.01µF C2, C5, C9 3 TDK FK18X7R1H103K

Clock cap 18 pF C11, C12 2 TDK FK18C0G1H180J

Pin 13 LED, 5 mm, yellow D13LED 1 Wurth Electron-
ics

151051YS04000

LED current limit resistor, 100Ω R2 1 Yageo MFR-25FBF52-
100R

Pin header, 0.1“ pitch, straight, 6
pos.

FTDI_

PROG_3V3

0.17 TE Connectivity 4-103741-0

Pin header, 0.1“ pitch, positive lock,
polarity enf., gold 30 microinch

PWR<5.5V 4 Molex 0705430106

2 position rectangular housing with
latch, polarity enf.

PWR<5.5V 4 Molex 0050579402

Contact crimp socket 22-24 AWG
gold 30 microinch, high force

PWR<5.5V 8 Molex 0016021115

Stranded core wire, black, per inch 42 (Adafruit) 2976

Stranded core wire, red, per inch 42 (Adafruit) 3068

Pull-up/down resistor, 10 kΩ R1, R4, R6,
R19

4 Yageo MFR-25FBF52-
10K

Momentary pushbutton S1, S2 2 TE Connectivity 1825910-6

Microcontroller U1 1 Atmel ATMEGA328P-
PU

28-pin DIP socket U1 1 3M 4828-3004-CP

Clock crystal, 8 MHz, HC49US
shape

Y1 1 TXC Corp AS-8.000MAHK-
B

XBee Pro 900HP, DigiMesh non-
prog, wire ant.

U$2 1 Digi Interna-
tional

XBP9B-DMWT-
002

Female headers, 2 mm, 10 pos. U$2 2 Sullins Connector
Solutions

NPPN101BFCN-
RC

VIN filter cap 10µF C3, C7,
C21

3 TDK FK16X7R1C106K

LM3405 L–LED caps, LT3469 input
filter, 1µF

C4, C6, C8,
C10, C20

5 TDK FK18X7R1C105K

LT3469 storage cap, 0.47µF 50 V C22 1 TDK FK14X7R1H474K

Schottky diode 1N5817 D2, D4 2 Fairchild 1N5817

Small signnal diode BAT85S D3, D5 2 Vishay BAT85S-TAP

LM3405 inductors 10µH, 5 mm
lead spacing

L1, L2 2 Bourns RLB0912-100KL

Continued on next page
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Part Designator Qty. Manufacturer Part number

LM3405 sense resistor, 0.22Ω R5, R7 2 TE Connectivity LR1LJR22

LT3469 inductor, 47µH, 5 mm lead
spacing

L4 1 Bourns RLB0914-470KL

Pull-up/down resistors, 100 kΩ R3, R14,
R15, R17,
R20

5 Yageo MFR-25FBF52-
100K

FPF2701 ISET resistor, 274 kΩ R16 1 Yageo MFR-25FBF52-
274K

LT3469 input resistor, 9.09 kΩ R18 1 Yageo MFR-25FBF52-
9K09

LT3469 FB resistor, 453 kΩ R21 1 Yageo MFR-25FBF52-
453K

LT3469 FB resistor, 16.5 kΩ R22 1 Yageo MFR-25FBF52-
16K5

LM3405, SOT23 U$1, U$4 1 Texas Instru-
ments

LM3405XMK/NOPB

FPF2701, 8SOIC U$7 1 Fairchild FPF2701MX

LT3469, TSOT23-8 U$8 2 Linear Technolo-
gies

LT3469ETS8#TRMPBF

IP68 piezo buzzer, 50 V max 1 CUI Inc. CPT-2521C-500

Cree XP-E2 PC-Amber, mounted,
107 lm

LED-L,
LED-R

2 Opulent North
America

XPEBPA-L1-0000-
00D01-SB01

Optic holder, 20 mm 2 Carlco Technical
Plastics

10734

Optic, 20 mm ripple wide 2 Carlco Technical
Plastics

10209

Warning device printed circuit
board

1 Gold Phoenix (Custom)

Low-profile steel battery holder 1 Keystone Elec-
tronics

2199

Retaining clips for battery holder 2 Keystone Elec-
tronics

63

Programming

ATMega328P microcontrollers were loaded with Arduino bootloaders and pro-

grammed with the same procedure as was used for the train detectors.

The C program warning.inowas compiled and written to the microcontroller

in each warning device. This code, including the required header file oneRing.h,

will be available at https://github.com/jbacks/wildlife-warning-system upon pub-

lication of this manuscript. The warning device remains idle until an activation sig-

nal is received through the XBee network (i.e., from a remote train detector). The
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device then waits for 10 s before activating its warning signals for 35 s. The micro-

controller then alternatingly turns on and off the left and right LEDs while playing

the bell sound via one of its pulse-width modulation (PWM) pins. A low-sample-

rate version of the bell sound is stored as a sequence of numbers in oneRing.h.

These numbers are used sequentially (at a rate of 8 kHz) to vary the duty cycle of a

square-wave signal present at the PWM pin of the microcontroller. That signal is

then amplified by the LT3469 and converted to sound energy by the piezo buzzer.

The code is adapted from the PCMAudio example provided by Michael Smith on

the Arduino website (http://playground.arduino.cc/Code/PCMAudio), but uses a

different interrupt mechanism and one instead of two internal timers for the PWM

output, allowing the microcontroller to manage the LED flashes concurrently. The

timers and registers used are described in the ATmega328P datasheet.

XBees were programmed as for the train detectors.

Mechanical design

The interior of the warning devices is laid out similarly to the train detectors

(Figure D.11), with the circuit board mounted on the rear interior wall and the

battery holder on the floor of the enclosure. The warning light optics sit flush

with the side panels of the enclosure, while the speaker protrudes through the

central floor of the enclosure. When the warning device is mounted on the track,

the flashes from these warning lights are visible from hundreds of meters away.

We designed the speaker to point downwards with the intention that sound would

be reflected by the rocky ballast, travelling more horizontally along the track than

vertically into the air. The warning bell sounds are generally audible at a distance

of 50 m or more, depending on ambient noise conditions. Protection against

vibration damage is provided by hot-melt adhesive and silicone sealant on the

LM3671 header, the XBee header, and around the three heavy inductors (black

cylinders) on the right hand side of the circuit board.
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Figure D.11: Photograph of the interior of a warning device. D-cells were removed
for this image.

D.1.5 Camera controller

Electronic design

Our camera controller functions as a wireless interface to the Reconyx PC900

cameras, which we used to observe wildlife in our experiment (Figure D.12). To

trigger the external trigger on these cameras, Reconyx requires a pulse of 6 V

to 12 V with 0.1 s to 0.5 s duration across the trigger terminal. We designed the

camera controller to provide a 9 V pulse via a boost regulator (Texas Instruments

LM2733) which is turned on for the required duration by the microcontroller. As

for the warning device, a load switch (FPF2701) is placed between the battery

output and the boost regulator input to reduce current consumption when the

LM2733 is not in use. Power, microcontroller, and programming subsystems were

re-used from the train detector design. An XBee radio was selected that used a

u.FL connector, facilitating a flexible connection to a large external antenna that

extended the radio range of the device.

This circuit schematic was converted to a circuit board layout, designed

in collaboration with G2V Optics Inc. (Figure D.13). After receiving custom-

manufactured boards, we hand-soldered the electronic components to the boards

(Table D.4).
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Figure D.12: Schematic of the camera controller electronics.

Table D.4: Bill of materials for one camera controller. The designator column
indicates the label used on the printed circuit board, where applicable (Figures
D.12 and D.13). Where manufacturer is unknown, the supplier is indicated in
parentheses.

Part Designator Qty. Manufacturer Part number

LM3671 breakout U$3 1 Adafruit 2745

Female header, 0.1“ pitch, by posi-
tion

4 (Adafruit) 598

RESET cap 0.1µF C1 1 AVX SR201C104KAR

VCC filter cap 0.01µF C2 1 TDK FK18X7R1H103K

Clock cap 18 pF C11, C12 2 TDK FK18C0G1H180J

Pin 13 LED, 5 mm, yellow D13LED 1 Wurth Electron-
ics

151051YS04000

LED current limit resistor, 100Ω R2 1 Yageo MFR-25FBF52-
100R

Pin header, 0.1“ pitch, straight, 6
pos.

FTDI_

PROG_3V3

0.17 TE Connectivity 4-103741-0

Pin header, 0.1“ pitch, positive lock,
polarity enf., gold 30 microinch

PWR<5.5V 2 Molex 0705430106

2 position rectangular housing with
latch, polarity enf.

PWR<5.5V 2 Molex 0050579402

Contact crimp socket 22-24 AWG
gold 30 microinch, high force

PWR<5.5V 4 Molex 0016021115

Continued on next page
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Part Designator Qty. Manufacturer Part number

Stranded core wire, black, per inch 12 (Adafruit) 2976

Stranded core wire, red, per inch 12 (Adafruit) 3068

Pull-up/down resistor, 10 kΩ R1, R3 2 Yageo MFR-25FBF52-
10K

Momentary pushbutton S1, S2 2 TE Connectivity 1825910-6

Microcontroller U1 1 Atmel ATMEGA328P-
PU

28-pin DIP socket U1 1 3M 4828-3004-CP

Clock crystal, 8 MHz, HC49US
shape

Y1 1 TXC Corp AS-8.000MAHK-
B

XBee Pro 900HP, DigiMesh non-
prog, u.FL

U$2 1 Digi Interna-
tional

XBP9B-DMUT-
002

U.FL to RP-SMA, 6“ 1 Digi Interna-
tional

JF1R6-CR3-6I

900 MHz antenna 1 Digi Interna-
tional

A09-HASM-7

Female headers, 2 mm, 10 pos. U$2 2 Sullins Connector
Solutions

NPPN101BFCN-
RC

VIN filter cap 10µF, 16 V C3, C5, C6 3 TDK FK16X7R1C106K

LM2733 feed-forward cap 220 pF
50 V

C4 1 Murata Electron-
ics

RDER71H221K0P1H03B

Schottky diode 1N5817 D1 1 Fairchild 1N5817

LM2733 inductor, 10µH, 5 mm lead
spacing

L1 1 Bourns RLB0912-100KL

Pull-up/down resistor, 100 kΩ R4, R8 2 Yageo MFR-25FBF52-
100K

LM2733 FB network, 84.5 kΩ R5 1 Yageo MFR-25FBF52-
84K5

LM2733 FB network, 13.3 kΩ R6 1 Yageo MFR-25FBF52-
13K3

FPF2701 ISET resistor, 274 kΩ R7 1 Yageo MFR-25FBF52-
274K

LM2733 SOT23-5 U$4 1 Texas Instru-
ments

LM2733YMF/NOPB

FPF2701, 8SOIC U$5 1 Fairchild FPF2701MX

Warning device printed circuit
board

1 Gold Phoenix (Custom)

Reconyx external trigger cable 1 Reconyx

Low-profile steel battery holder 1 Keystone Elec-
tronics

2199

Retaining clips for battery holder 2 Keystone Elec-
tronics

63
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Figure D.13: Circuit board layout for the camera controller electronics. Designed
for manufacture as a two-layer FR4 board, >100 mil thick, 1 oz copper, white silk
screen and green solder mask. Top layer traces are indicated in red, bottom layer
traces in blue, and exposed copper in green. Holes and silk screen markings are
indicated in grey.
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Programming

ATMega328P microcontrollers were loaded with Arduino bootloaders and pro-

grammed with the same procedure as was used for the train detectors.

The C program camera.ino was compiled and written to the microcontroller

in each camera controller. This code will be available at https://github.com/jba

cks/wildlife-warning-system upon publication of this manuscript. The camera

controller remains inactive until an activation signal is received through the XBee

network. Upon activation, the attached camera is activated by turning on the

LM2733 for 300 ms. The device is then inactive for six minutes to preclude any

spurious activations as the train is passing.

XBees were programmed as for the train detectors.

Mechanical design

The interior of the camera controllers is laid out with both the circuit board and

the battery holder against the rear wall of the enclosure (Figure D.14). The circuit

board is placed to minimize stress on the fragile u.FL connector, where the adapter

is connected that links the XBee radio to the external antenna.

Figure D.14: Photograph of the interior of a camera controller. D-cells were
removed for this image.
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D.1.6 Signal repeater

Electronic design

Signal repeaters functioned as additional nodes in the XBee DigiMesh network

to bridge the distance between train detectors and camera controllers. We used

an LM3671 buck regulator (as for the train detector) to bring the battery output

down to 3.3 V. The outputs of the regulator were connected directly to the power

inputs of the XBee. As for the camera controller, an XBee radio was selected that

used a u.FL connector and connected to an external antenna, increasing the radio

range of the device.

The simplicity of this design allowed us to reduce costs by hand-assembling

the components on prototyping board (Table D.5). For future deployments, how-

ever, the time for assembly would be significantly reduced with a printed circuit

board.

Table D.5: Bill of materials for one signal repeater. Where manufacturer is un-
known, the supplier is indicated in parentheses.

Part Qty. Manufacturer Part number

LM3671 breakout 1 Adafruit 2745

Female header, 0.1“ pitch, by position 4 (Adafruit) 598

Pin header, 0.1“ pitch, positive lock, polarity enf.,
gold 30 microinch

1 Molex 0705430106

2 position rectangular housing with latch,
polarity enf.

1 Molex 0050579402

Contact crimp socket 22-24 AWG gold 30
microinch, high force

2 Molex 0016021115

Stranded core wire, black, per inch 12 (Adafruit) 2976

Stranded core wire, red, per inch 12 (Adafruit) 3068

XBee Pro 900HP, DigiMesh non-prog, u.FL 1 Digi International XBP9B-
DMUT-002

U.FL to RP-SMA, 6“ 1 Digi International JF1R6-CR3-6I

900 MHz antenna 1 Digi International A09-HASM-7

Female headers, 2 mm, 10 pos. 2 Sullins Connector
Solutions

NPPN101BFCN-
RC

FR4 prototyping board, pad per hole, cut to size 1 Vector Electronics 8016-1

Low-profile steel battery holder 1 Keystone
Electronics

2199

Retaining clips for battery holder 2 Keystone
Electronics
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Programming

No microcontrollers were used in the signal repeaters. XBees were programmed

as for the train detectors.

Mechanical design

The layout of the signal repeaters was similar to that of the camera controllers,

with both the circuit board and the battery holder attached to the rear interior

wall of the enclosure (Figure D.15). The circuit board was placed to minimize

stress on the u.FL connector.

Figure D.15: Photograph of the interior of a signal repeater. D-cells were removed
for this image.

D.1.7 System installation and commissioning

At a typical warning system test site, we installed four warning devices (under

the treatment condition only), two train detectors, two camera controllers, and

two signal repeaters. Warning devices were placed every 50 m within the 200 m

test zone starting at 25 m from the test zone edge (as described in the present

manuscript for the treatment condition). Camera controllers were installed in

trees alongside Reconyx trail cameras, one on either side of the test zone, which

observed animals within the test zone. Train detectors were placed 40 s at mean
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train speed from the center of the test zone. Signal repeaters were placed in trees

near the train detectors where they could connect with both their train detector

and the nearest camera controller.

Finding good locations for the signal repeaters was a trial-and-error process.

For sites with dense vegetation or long distances between the train detectors

and the test zone, up to four signal repeaters were used to maintain reliable

connections among devices. As spring arrived and foliage began to appear on the

trees, radio connectivity became less reliable as we had anticipated. Rather than

deploying additional repeaters, Yagi-Uda antennas with gains of 10–17 dBi were

used to strengthen problematic links (Figure D.16).

With every device in the network assembled, programmed, and powered as

described, and the Reconyx cameras also powered and programmed, we used an

additional XBee radio to test network connectivity among the devices. This XBee

was programmed identically to those deployed in the devices, and connected to a

laptop computer using an XBee adapter (Adafruit part number 126) and a USB

FTDI interface (such as the TTLyFTDI USB-to-TTL Cable Adapter, Solarbotics

part number 39240). Proprietary XCTU software (Digi International) was used to

interact with the XBee radio and command it to build a map of its network. Use

of a mesh networking protocol on these radios allowed this test radio to receive

information about all radios in a given site’s network, even if they were out of

range of the test radio, because it could receive information about the furthest

radios from the intermediate radios. If the network map showed that all nodes

were reachable with bi-directional links (e.g., Figure D.17), the site was deemed

functional.

D.1.8 Potential improvements to the design

We offer here a collection of potential improvements to the warning system that

would make its design more practical and effective. We use “warning zone” instead

of “test zone” in this section to refer to the length of track along which warning

signals are provided.
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Figure D.16: Photograph of a signal repeater connected by a cable to a high-
gain Yagi–Uda antenna. These antennas were used at some sites to increase the
reliability of connections between tree-mounted devices.
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Figure D.17: Network map of the Five Mile Cluster site generated by XCTU soft-
ware (Digi International). Each arrow represents a bi-directional link between
network nodes. Each radio is represented by a grey (networked radio) or green
(test radio) polygon. Serial numbers and node identifiers of each radio are dis-
played, aiding in their identification (TD = train detector, WD = warning device,
CC = camera controller, RP = signal repeater). The strength of each link in dBm is
indicated with a pair of numbers (one for each direction) beside each arrow; less
negative values indicate stronger links.
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Train speed measurement

Warning times provided to animals could be made more precise if train speed

was measured for each train as it approached. For instance, suppose that the

single train detectors in Figure 4.1 were replaced with pairs of train detectors

with a known spacing l (Figure D.18). The speed of a train that passed this pair

of detectors would then be v = l
∆t , where ∆t is the difference of the train arrival

times at each train detector. This speed can then be used to calculate the time to

arrival at any point further down the track, assuming that the train speed remains

approximately constant. Because freight trains rarely accelerate or decelerate

quickly, we suggest this is often a safe assumption where distances between the

train detectors and the warning zone are less than 1 km.

Compared with the most recent prototype of the warning system, where train

detectors are placed according to the average speed of trains, the speed measure-

ment approach has four main advantages:

1. Precision. If the train speed is known, the target warning time (e.g., 30 s) can

be provided to animals in the test zone regardless of the variation in train

speeds. Whereas speed distributions like those seen from westbound trains

at the Stables site (20 kmh−1 to 55 kmh−1) can create wide distributions in

warning time (51.3 s to 19 s, respectively), speed measurement would have

kept warning times close to 30 s. This could be important for enabling

animals to learn an association between the warning signals and train

arrival, a mechanism for early warning that is especially important where

animals may have more difficulty detecting trains on their own (e.g., around

curves in the track).

2. Redundancy. If one in a pair of train detectors were to fail, the other would

still be able to detect the train and activate the warning signals, though not

with the same precise timing.

3. Direction detection. The pair of train detectors could determine the di-

rection of a passing train, reducing the need for communication between
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Figure D.18: Example configurations for train speed measurement with train
detectors, in a situation analagous to that of Figure 4.1. (a) Two detectors placed a
known distance apart can calculate the speed of a passing train by comparing the
times of arrival that each records. (b) We can achieve the same end while avoiding
redundancy of the power and communication systems by building a detector with
an extra sensor attached externally via a cable. (c) If the sensors can detect the
arrival of a train with high spatial and temporal precision, the distance between
them can be reduced without sacrificing the precision of the speed measurement.
In this case, it makes sense to include both sensors in the same enclosure for
increased simplicity and ruggedness.
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train detectors on either side of the warning zone. (This communication

would normally be required to prevent spurious activations of the warning

signals.) Additionally, where multiple warning zones are placed adjacent

to each other (e.g., to protect a long region of track where animals are vul-

nerable to collisions), one pair of train detectors could detect trains for

both warning zones adjacent to it, and sending activation signals to the

appropriate warning devices depending on the train direction.

4. Placement flexibility. Whereas the single train detectors in the latest pro-

toype of our warning system had to be placed at specific locations according

to the mean speed of the passing trains, a pair of train detectors could be

placed anywhere within a large region: at least 30 s at maximum train speed

from the warning zone, and at most 1 km or so, depending on how likely

trains in the area are to change their speed. The system would only require

that the distance between the train detectors and the warning zone is known,

so that the warning devices could be activated after an appropriate delay.

This flexibility of placement would allow warning system deployments to

avoid track infrastructure like switches, frogs, or bridges where it would be

dangerous or impossible to place train detectors.

Speed measurement with train detectors could be implemented in different

ways. As already described, two independent train detectors separated by a known

distance could accomplish this task (Figure D.18(a)), but system costs could be

reduced by avoiding complete redundancy of the power and communications

systems for devices that are not separated by more than a few metres. For example,

instead of two train detectors, the same purpose could be accomplished by one

train detector with two sensors. One sensor could be integrated with the device’s

main enclosure while a second sensor could be placed nearby in a second smaller

enclosure, connected to the other with a cable for power and data transfer (Figure

D.18(b)). If alternative sensors were chosen that had a higher precision in space

and time (e.g., contact microphones or treadles), the pair of sensors could be

placed on opposite sides of the same enclosure (e.g., less than 50 cm apart; Figure
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D.18(c)), improving the mechanical robustness and ease of installation for the

device.

Technologies also exist that can both detect trains and measure speed at a

distance. Examples include grade crossing predictors that measure train speed

and direction through the track rails (e.g., Richards, Heathington & Fambro 1990),

or the acoustic predictors proposed in our previous work (Backs et al. 2017).

This approach has a number of benefits, including the ability to integrate the

warning device(s) with the train detection system. Combined with longer-range

warning stimuli (e.g., brighter lights and louder bell sounds), this approach could

eliminate the cost and complexity of providing power to and communication

among multiple devices. Alternatively, one predictor unit (for example, at the

center of a warning zone) could control the activation of a series of nearby warning

devices similar to the ones tested in the present manuscript.

Further, with a known train speed, warning devices could be activated individ-

ually or in sub-groups to precisely maintain the target warning time throughout

warning zones longer than 200 m. To achieve this, each warning device could be

programmed with its location relative to the train detectors, and could calculate

independently for how much time it should wait before activating based on the

speed measured by the train detectors. Alternatively, the train detectors could be

given the same position information, and could command each warning device

to activate individually. With a slight increase in device cost, the acquisition of

this position information could be performed automatically via GPS.

Communication alternatives

Alternative means of communication could also enhance the practicality of the

warning system. Low-power, long-range, low-data-rate communications tech-

nologies such as LoRa (Sanchez-Iborra et al. 2018), have become widely available

only in recent years. Our warning system transfers only small amounts of data

with each communication, and given that the XBee radios were among the largest

consumers of power in our present prototypes, the system may increase signifi-

cantly in battery life using this alternative technology. The longer range of LoRa
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radios may also reduce or eliminate the need for signal repeaters, further reducing

the cost for protecting a given length of railway.

It may also be possible for the devices to communicate through the railway

track itself. Railway signaling systems already use the electrical properties of

the track rails to detect train presence (i.e., the track circuit). Warning systems

could be designed to communicate via the same medium without interfering with

railway signals (for example, via high-frequency alternating current signals). The

benefits of this approach could be many, including increased power efficiency

(signal energy is bound to the track, and not radiated to the surroundings) and

more reliable communications (track signals may not be as vulnerable to weather,

vegetation, and interference). The need for signal repeaters beside the track

would be eliminated; repeaters would only be needed to cross insulated joints in

the track. However, such a system would require close cooperation with railway

companies to ensure the system did not interfere with existing railway signals.

Different railways may use different signalling systems, potentially requiring

adaptation of the system for different railways.

To minimize interference with railway operations and risk of damage from

railway maintenance, warning system devices could be mounted on posts or trees

beside the track. Such a system could use wireless communications (XBee or

LoRa, for example) but with reduced need for signal repeaters, as radio antennas

mounted above ground level and away from other objects tend to have greater

range. Sensor systems for the train detectors could still be placed on or near

the track and attached to their parent devices with buried cables. This scheme

would have other advantages, including reduced need for a low-profile enclosure

(reducing cost and complexity), potentially higher visibility and audibility of

warning signals for wildlife on the track, and greater potential to power the devices

with solar energy because warning light optics and solar panels alike would be

less prone to covering by dirt or snow if they were off the ground.
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Energy supply

Alternatives to reliance on battery power may drastically increase the operational

lifetime of a warning system. Solar cells, for instance, are commonly used to

power unattended right-of-way equipment for both railways and roads—even

for other wildlife warning systems (Mulka 2009). Although the seasonal availabil-

ity of sunlight at northern altitudes and in mountainous terrain decreases the

practicality of this solution, solar panels can be increased in size to compensate.

However, such increases in size would require the panels to be mounted on posts

or in trees adjacent to the track—the panels would be too large, too fragile, or

would become covered in dust too quickly to be mounted on the track at ground

level. Other complications include the need for energy storage—often lead acid

batteries—that require heating when ambient temperatures fall below −20 ◦C.

The solar panel itself may also require heating to keep snow from building up and

preventing further energy capture.

Mechanical energy harvesting is another potential alternative, given the great

quantity of vibration that moving trains emit. Energy harvesters with a variety of

designs have been demonstrated for powering remote devices in railway applica-

tions (e.g. Cahill et al. 2018; Lin et al. 2018). A key advantage of this approach is

that, unlike solar cells, vibration harvesters will still provide energy regardless of

how dirty or snow-covered they become. Moreover, for this application, energy

is provided by a passing train following every activation of the warning system,

requiring only that enough energy is captured from the passing train to provide

warning signals upon the arrival of the next train. Energy storage with superca-

pacitors may be ideal for this scenario, as these have a greater energy efficiency

and longer operational life than most batteries and are often compatible with a

wide range of temperatures.

One further alternative power source would be the electrical energy already

supplied to the track rails by the railway signalling system. In many track circuit

designs, a constant and small voltage is applied across the rails that is shunted by

trains as they enter a signalling block, allowing detection of the train’s presence
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within the block. Between train passages, warning system devices connected to

both rails could siphon off small amounts of this electrical energy for storage in

a battery or supercapacitor. As long as the siphoning circuits have a sufficiently

high electrical impedence, they should have a negligible effect on the operation of

the track circuit. However, this scheme only makes sense if the track circuit itself

is powered with mains or solar electricity and not batteries.

Regardless of the energy source, refinement of the electrical design of each

warning system device would minimize its energy needs. Using the power-saving

features of the ATmega328P and the XBee radios alone, the lifetime of each device

could be increased from three weeks to several months on three alkaline D-cells

(assuming the ambient temperatures were appropriate for these batteries).
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D.2 Camera calibration

D.2.1 Camera distance calibration

Cameras were manually triggered while researchers were standing along the

railway track at both ends of the test zone (0 m and 200 m from the end of the track

curve). These images were examined for the coordinates (in pixels) of the tops

of both rails that were nearest to the photographed researchers at each distance.

For one camera where these images were unavailable, the coordinates of the rail

tops were recorded that were nearest to the two warning devices visible from that

camera (25 m and 125 m from the nearest test zone edge). A 200 m ruler was

drawn and perspective-projected using these four points for each camera, then

composited onto a copy of every image belonging to sequences where animals

had been recorded. Calibration references also gave an impression of the distance

to the far edge of the test zone, assisting with judgements about whether a visible

animal was within the test zone.

D.2.2 Camera timing and train speed

For image sequences where speed was measured, the image number was recorded

in which the train was visually closest to the near edge of the test zone. Assuming

that the cameras in each pair were triggered by each passing train at nearly the

same time, the within-pair differences between trigger timestamps were modelled

as a linear function of time since the camera pair was deployed. This function

estimated the true within-pair difference in timestamps for any train passage,

allowing comparison of the clock times of the images from each camera where

the train was observed to enter or leave the test zone. This procedure allowed

train speeds to be estimated to within ± 4 kmh−1 to ± 10 kmh−1.
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D.3 Parameter values obtained by bootstrapping

In the Methods section of the manuscript, we asserted that our Wald statistics were

accurate despite violation of the small dispersion assumption (Dunn & Smyth

2018, pg. 277). We illustrate this claim with the fact that estimates and standard

errors obtained by bootstrapping with R package car (Fox & Weisberg 2011) were

similar to the estimates and standard errors obtained by our presented models

(Table D.6), suggesting that inferences made from the data would be similar in

either case.

Table D.6: Comparison of original vs. bootstrapped parameter estimates (Orig.
Est. vs. Boot Median) and standard errors (Orig. SE vs. Boot SE) from two
Gamma generalized linear models with identity links for which the response
variable was animal flight initiation time in seconds. For the small animals model,
bootstrapped models would not converge with the Site variable so we present
results here excluding the Site variable; estimates are nevertheless similar to those
presented in the manuscript (Table 4.2). As before, reference categories (ref.)
for boolean variables are indicated in parentheses. “:” indicates interactions.
Train speed was centered and scaled to aid interpretation (original mean ± SD =
(60.5±4.6) kmh−1).

Orig. Est. Orig. SE Boot Median Boot SE

Large animals

Intercept 8.3 1.4 8.2 1.0

Treatment (ref. control) 10.3 2.6 10.5 2.7

Approaching from curve (ref. straight) 4.6 2.3 4.7 2.5

Treatment:curve -7.6 3.8 -7.8 3.7

Small animals

Intercept 9.7 1.5 9.6 1.7

Treatment (ref. control) 3.1 2.4 3.0 2.6

Approaching from curve (ref. straight) -3.1 1.4 -3.2 1.5

Auditory weather present (ref. absent) 1.0 1.2 1.1 1.5

Heavy snow (ref. light) 0.1 1.2 0.0 1.5

Animal starts on track (ref. off track) 3.7 1.7 3.7 1.9

Train speed (kmh−1; scaled) -0.7 0.7 -0.8 0.7

Site, 5MS (ref. 5MC) – – – –

Site, MLS (ref. 5MC) – – – –

Site, STB (ref. 5MC) – – – –

Treatment:curve -1.4 2.9 -1.1 3.2
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D.4 Animals observed, total and over time

We provide a list of species observed and number of indiduals per species at all

four sites, including control events, treatment events, and unused events (Table

D.7). Numbers per species are approximate as some species were difficult to

identify or count in the photos. Size categories were chosen for convenience of ob-

servation: “Unidentified large bird” includes birds appearing to be approximately

the size of an American robin and larger; “Unidentified large animal” includes

animals appearing to be approximately the size of a coyote and larger.

We also summarize the number of individuals observed by month, site, and

species group (Figure D.19) but offer no further interpretation. Species groups

are as in Table D.7, except that “Carnivores” refers to ursids and canids together,

“Small Mammals” refers to lagomorphs and rodents together, and “Unknown”

refers to unidentified animals of all sizes. Counts for each species group within

each month and site were divided by the number of unique train events captured

in each month at each site. Thus, the mean numbers of individuals observed

per event (vertical axis) allow approximate comparisons of animal use of the

railway across months, sites, and species groups. See Table 4.1 for site names and

locations.
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Table D.7: List of animals observed.

Species Number observed

Ursids

Grizzly bear (Ursus arctos) 1

Black bear (Ursus americanus) 2

Unidentified bear (Ursus spp.) 3

Canids

Wolf (Canis lupus) 2

Coyote (Canis latrans) 5

Unidentified canid (family Canidae) 2

Ungulates

Elk (Cervus canadensis) 126

Whitetail deer (Odocoileus virginianus) 10

Unidentified deer (Odocoileus spp.) 80

Unidentified ungulate (family Cervidae) 20

Lagomorphs

Rabbit (family Leporidae) 1

Rodents

Beaver (Castor canadensis) 1

Red squirrel (Tamiasciurus hudsonicus) 243

Unidentified rodent (order Rodentia) 1

Birds

Raven (Corvus corax) 14

Crow (Corvus brachyrhynchos) 36

Magpie (Pica hudsonia) 28

Unidentified corvid (family Corvidae) 2

Osprey (Pandion haliaetus) 4

Chickadee (Poecile spp.) 5

Pigeon (family Columbidae) 115

Unidentified large bird 280

Unidentified small bird 387

Unidentified bird 564

Unidentified animals

Unknown large animal 21

Unknown small animal 16

Unknown animal 3

Total, all species 1972
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Figure D.19: Summary of unique animals observed by month, site, and species
grouping in our study. Note that vertical axes differ in scale. Sequences with small
animals (Birds, Small Mammals, Unknown) were recorded only opportunistically
after April 20, 2017 and were not included in the analyses of this manuscript.
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D.5 Encounter rate extrapolation

Averaging (weighted by sampling time) across our sites, 7.3% of unique events

showed animals (1.0% large species, 6.3% small species). This could be interpreted

as the probability that any given train passing through one of our sites would have

encountered one or more animals. We then extrapolate over the total length of

track in the study area (east half of Banff, 45.6 km), assuming that the length of

track observed at each site was 300 m on average and that the distance a train

travels before encountering an animal is exponentially distributed with a constant

rate parameter across the study area (Chamaillé-Jammes & Blumstein 2012). We

would then expect any given train passing through the study area to encounter at

least one animal with near-certainty (probability > 0.99999 for all species; 0.79 for

large species, >0.9999 for small species). Trains would encounter animals once

every 4 km on average (every 29 km for large species, every 5 km for small species),

or 12 animal encounters (2 large, 10 small) for every transit through the study area.

We thus expect trains to have on the order of ten thousand encounters with large

animals every year, 0.3% of which will result in a collision (1141 collisions recorded

over 34 years; Gilhooly 2016). This estimate is consistent with our observation of

zero collision events, as at this collision rate we could have expected to observe

0.3 collisions in the 90 large animal sequences obtained. These figures likely

underestimate the encounter rate, as our cameras only captured animals at night

that were illuminated by train headlights.

Our extrapolation of animal encounter rates should be taken as an order-

of-magnitude estimate only. The calculation assumes our set of four test sites

(total observed length near 1.2 km) is representative of the animal encounter

rate for the entire study area (track length of 45.6 km). It further assumes that

the rate parameter is constant along this length of track, which is clearly not

the case given the variability among sites in the ratios of animal sequences to

train sequences captured (11% at 5 Mile Cluster, 5% at Stables). Sites also did

not represent a spatially random sample of possible sites, as they were chosen

using prior knowledge to maximize the likelihood of animal–train encounters.
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Nevertheless, if our choice of an exponential distribution is reasonable—that

is, if trains encounter animals as a Poisson point process (Chamaillé-Jammes &

Blumstein 2012)—the probability of any given train encountering animals would

be high (>0.95) even for average animal-to-train ratios as low as 2%. The predicted

encounter rate of 29 km per large animal is only three times greater than the

rate reported for wildlife sightings on train trips in a different location in Canada

(Muzzi & Bisset 1990), suggesting our estimate is of the correct order of magnitude.

We might predict from these figures that 1800 site-days of sampling (compared

to 520 site-days for this study) would be necessary to expect observation of a

single collision event involving a large animal. Follow-up studies may note that a

statistically useful sample of 30 collision events with large animals may require on

the order of 55000 site-days of sampling (38 years with the four sites used in this

study).
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