
University of Alberta

M e d V is : A R e a l -T im e I m m e r s iv e V is u a l iz a t io n En v ir o n m e n t fo r t h e
E x p l o r a t io n o f M e d ic a l V o l u m e t r ic D a t a

by

Rui Shen

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33350-1
Our file Notre reference
ISBN: 978-0-494-33350-1

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An attempt at visualizing the Fourth Dimension: Take a point, stretch it into a line, curl it
into a circle, twist it into a sphere, and punch through the sphere.

- Albert Einstein, 1879-1955, German-born American physicist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my beloved parents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This thesis introduces the Medical Visualizer (MedVis), a real-time visualization

system for analyzing medical volumetric data in various virtual environments,

such as parallax barrier autostereoscopic displays, dual-projector screens and im­

mersive environments such as the CAVE. Direct volume rendering is used for visu­

alizing the details of medical volumetric data sets without intermediate geometric

representations. By interactively manipulating the color and transparency func­

tions, radiologists can either inspect the data set as a whole or focus on a specific

region. In this system, 3D texture hardware is employed to accelerate the rendering

process. The system is designed to be platform independent, as all virtual reality

functions are separated from kernel functions. Due to the modular design, it can

be easily extended to other virtual environments, and new functions can be incor­

porated rapidly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

First, I would like to thank my supervisor Dr. Pierre Boulanger for his guidance

and support throughout my thesis research. Next, many thanks to Dr. Michelle

Noga for initiating the medical visualization project and providing the volumetric

medical data. Special thanks to Ryan Hung for his help in prototyping the visual­

ization pipeline in AVS/Express. Special thanks also go to Jacques-Andre Boulay

for his help on the configuration of VR Juggler for the CAVE. Finally, I would like to

give my thanks to Guowei Wu and Cheng Lei for their help on GPU programming,

and Xingdong Yang for always providing useful feedback when I discuss my ideas

with him.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Visualization... 1
1.2 Medical Visualization.. 1
1.3 Thesis Contributions... 2
1.4 Thesis Overview ... 3

2 Related Work 4
2.1 Medical Data A cq u is itio n ... 4

2.1.1 Computed Tomography.. 4
2.1.2 Magnetic Resonance Im aging.. 4
2.1.3 Other Acquisition Technologies... 5

2.2 Volume Rendering ... 5
2.2.1 Object-Order Volume Rendering.. 6
2.2.2 Image-Order Volume Rendering.. 10
2.2.3 Domain Volume Rendering.. 13
2.2.4 Hardware-Accelerated Volume R endering 14
2.2.5 Critical Review of Volume Rendering A lgorithm s.................. 18

2.3 Virtual Environments.. 18
2.3.1 Projection-Based VR Systems... 19
2.3.2 Monitor-Based VR Systems.. 20
2.3.3 HMD-Based VR Systems ... 21

2.4 Visualization in Virtual Environm ents.. 22
2.4.1 VR Systems for General-Purpose Visualization........................ 22
2.4.2 VR Systems for Medical Visualization....................................... 23

2.5 Summary.. 25

3 System Design and Implementation 27
3.1 Overview .. 27
3.2 Rendering A lgorithm s.. 27

3.2.1 Direct Volume R endering... 28
3.2.2 Stereo Rendering.. 37

3.3 Hardware Setup.. 38
3.3.1 Desktop Version .. 38
3.3.2 Immersive CAVE V ers io n ... 39

3.4 Interaction Modalities .. 40
3.4.1 Desktop Interaction .. 41
3.4.2 CAVE Interaction... 42

3.5 Software Architecture... 44
3.5.1 Toolkits U s e d ... 44
3.5.2 MedVis Kernel Module .. 46
3.5.3 MedVis Desktop Interface M o d u le .. 48
3.5.4 MedVis CAVE Interface M o d u le ... 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Performance and Results 53
4.1 System Performance for Rendering.. 53
4.2 Results for the Desktop Version.. 58
4.3 Results for the CAVE V ers io n ... 59

5 Conclusion and Future Work 61
5.1 Future W o rk .. 62

Bibliography 63

A Cg Code 71
A .l Vertex Shader C ode.. 71
A.2 Fragment Shader C o d e... 72

B GPU-Based Volume Rendering C++ Code 73
B.l vtkVolumeTextureMapper3DCg.h... 73
B.2 vtkVolumeTextureMapper3DCg.cxx... 74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 The computation of the intersection points............................

4.1 The rendering times using different acceleration techniques,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Shear-warp for orthographic projections... 10
2.2 Shear-warp for perspective projections.. 10
2.3 Discrete ray representation.. 13
2.4 Discrete ray tracing algorithm... 13
2.5 Volume rendering using 3D texture mapping... 15

3.1 The comparison of classification first and interpolation first.................29
3.2 The intersection cases between a proxy plane and the volume bound­

ing box.. 32
3.3 The traversal of the bounding box edges... 33
3.4 The dataflow between the CPU and the GPU. 35
3.5 Stereo rendering.. 37
3.6 MedVis desktop hardware setup... 39
3.7 MedVis CAVE hardware setup.. 40
3.8 Microsoft force feedback joystick.. 40
3.9 InterSense IS-900... 40
3.10 The desktop control panel.. 41
3.11 Re-slicing along the current viewing direction.. 43
3.12 The CAVE control panel... 43
3.13 MedVis's visualization pipeline.. 44
3.14 The vtkDICOMVolume class... 47
3.15 The histogram classes... 48
3.16 The vtkStereoRenderWindowInteractor class... 49
3.17 The vtkGtkStereoRenderWindowInteractor class................................... 49
3.18 The vtkGtkColorHistogram class.. 50
3.19 The vtkGtkSliceViewer2 class.. 50
3.20 The vtkVRJApp class.. 50
3.21 The vtkVRJDICOMVolume class... 51
3.22 The vtkVRJTransferFunctionEditor class... 52

4.1 The comparison of the rendering speeds using different acceleration
techniques... 54

4.2 Volume rendering results of a CT-scanned pelvic region in MedVis. . 55
4.3 The rendering speed of MedVis's GPU-based algorithm with differ­

ent sample intervals 56
4.4 Volume rendering results of a CT-scanned pelvic region in MedVis

with different sample intervals.. 57
4.5 Stereo volume rendering of a CT-scanned abdomen in the MedVis

desktop version... 59
4.6 Volume rendering of an MRI-scanned heart in the MedVis CAVE

version.. 60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Visualization

Visualization is the process of converting raw numbers into representations that

can be easily interpreted by the human visual system (HVS) [84]. Exploiting the

human visual system for interpreting the data, visualization has become an es­

sential tool for solving scientific problems. While computers excel at simulations,

data filtering, and data reduction, humans are experts at using their highly devel­

oped pattem-recognition skills to locate regions of interest, features, and anoma­

lies [65] [104]. When visualized data are volumetric data, a specific term is used:

volume visualization. It is the process of projecting a multidimensional data set onto

a two-dimensional image plane for the purpose of gaining an understanding of

the structure (or lack of) contained within the volumetric data [26]. Volume visu­

alization is used in many fields, such as medicine, architecture, archaeology and

engineering.

1.2 Medical Visualization

Medical imaging modalities such as Computed Tomography (CT) and Magnetic Reso­

nance Imaging (M RI) produce high-quality 3D data that radiologists use to diagnose

various health problems of patients. However, because of technological limita­

tions, it is still commonplace for radiologists to observe volumetric data as a set

of slices printed on films viewed in front of a white diffusing light source. Even

though this practice is well accepted in the medical community, it only utilizes a

fraction of the data provided by the imaging systems. The common rational for

using such system, aside from its cost, is that the quality of the contrast in film

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is far superior to normal CRT screens, and more importantly that the data set is

not manipulated by computer processing leaving image interpretation to the far

superior human visual system. The last requirement is key as radiologists want

to observe the data set without prior interpretations by a computer that may hide

important structures that only human can interpret as important. Several systems,

from non-commercial software (e.g., Para View [49]) to commercial products (e.g.,

VolView [48] and AVS/Express [1]), have been developed for this purpose. How­

ever, the visualization and manipulation stay in the 2D space, i.e., users can only

see the volumetric data as a projected 2D image on a screen and the feedback of

an operation on the data is still a 2D image. Although volume rendering is sup­

ported in current systems, radiologists still cannot directly examine 3D volumes in

stereo. This problem can be resolved by using virtual reality (VR) techniques. The

usefulness of VR in scientific visualization has been discussed abundantly in the

literature [11] [104]. In many ways, the major impact of virtual reality technologies

on scientific visualization is in providing a "real-time" intuitive interface for ex­

ploring data while facilitating the use of scientific visualization [11]. In particular,

the effectiveness of VR technology in medicine has also been proven in many appli­

cations described in [82] and [122], Hence, to assist existing diagnostic procedure

by creating a new insight through 3D visual representation, we have developed the

Medical Visualizer (MedVis), a medical visualization system that provides real-time

high-quality volume rendering and interaction with 3D medical data in virtual en­

vironments (VEs).

1.3 Thesis Contributions

This thesis makes contributions to the following aspects of medical volumetric data

visualization:

1. Developing a cross-platform medical data visualization system capable of

dealing with various display modalities. Radiologists can use this system

to interactively explore medical volumetric data in stereo in various non-

immersive or immersive virtual environments.

2. Developing new acceleration techniques of volume rendering using general-

purpose GPU. Remarkable speedups compared to traditional techniques are

observed from real experiments.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Object-oriented programming paradigm and modular design concept are em­

ployed throughout the development of MedVis, which maximizes the exten­

sibility and portability of the system.

1.4 Thesis Overview

The thesis is organized as follows. Chapter 2 introduces medical data acquisition

techniques, and reviews volume rendering methods, virtual reality systems and

the developments of visualization systems in virtual environments. Chapter 3 de­

scribes the design and implementation of MedVis, including the hardware and

software architecture, rendering algorithms and interaction schemes. Chapter 4

presents the results of MedVis and discusses its performance, especially the perfor­

mance of the proposed rendering algorithms. Chapter 5 concludes the thesis and

presents future research directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related Work

2.1 Medical Data Acquisition

Visualization quality depends on the quality of the input data. It is almost im­

possible to generate effective visualization while the acquired data are inaccurate

or insufficient. Given the significance of data acquisition in medicine, this section

gives a brief introduction to medical imaging modalities, which are capable of pro­

ducing high-quality 3D data composed of 2D image slices.

2.1.1 Computed Tomography

Computed Tomography (CT) is a medical imaging modality invented by Hounsfield

in 1972 that uses X-ray to generate cross sections of objects. A CT scanner is a X-ray

instrument capable of digitizing full bodies in 3D at very high precision (~ lm m)

and speed [119]. Images are acquired from a rotary X-ray fan source revolving

around the patient. The X-ray fan source is then digitized by a circular network

of solid state X-ray detectors, to which a tomography reconstruction algorithm is

applied. The values in the CT data set correspond to the average density values

of voxels inside the human body. Dense objects (e.g., bones) tend to absorb more

X-rays than less dense objects (e.g., muscle). The absorption characteristic of each

voxel is calibrated in Hounsfield units (HU), a measurement normalized with re­

spect to the attenuation of X-ray in water.

2.1.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is another medical imaging modality developed

by Lauterbur and Mansfield in the 1970s. An M RI scanner is composed of a large

magnet, a microwave transmitter, a microwave antenna, and several electronic

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components that decode the signal and reconstruct cross-sectional images from the

data [119]. Unlike CT, which uses ironizing radiation, M RI measures the relaxation

properties of excited hydrogen nuclei, i.e., it is based on the measurement of radio

frequency of electromagnetic waves emitted by a nucleus spin when returning to

its equilibrium state from the excited state produced by a microwave emitter [45].

Nuclei within different tissues emit signals of different frequencies, which depend

on water density present in the tissue. Functional M R I (fMRI) is a new type of MRI

modality that records both the patient's anatomy and the physiological functions

of the tissues being studied. By measuring the oxygenation value of blood, fMRI

allows imaging regions with high consumption of oxygen, which is a characteristic

of higher metabolic activities.

2.1.3 Other Acquisition Technologies

In addition to CT and MRI, there are two other types of medical imaging modali­

ties, which are used every day in hospitals. Nuclear medicine techniques, including

Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomog­

raphy (PET), use the decay of injected radioactive isotopes to image the distribu­

tion of the isotope as a function of time and space [45]. Other modalities such as

Ultrasonography work in ways similar to CT, but instead of X-rays, ultrasound is

employed to illuminate the object. The echo information is recorded to determine

the type and position of the object. In most cases, all those sensors produce volu­

metric data, where the scalar value at each volume element (voxel) depends on a

particular tissue property.

2.2 Volume Rendering

Volume rendering deals with how a 3D volume is projected onto the view plane

to form a 2D image. It has been broadly used in medical applications for plan­

ning treatments [61] and to help in diagnosis [38]. At present, there are two main

w a y s to v isu a liz e v o lu m etr ic data: su rface ren d erin g a n d d irect v o lu m e ren d erin g

(DVR). Surface rendering is also referred to as indirect volume rendering, because

it is based on one or more scalar thresholds that are used to compute iso-surfaces

of the volumetric data that are then polygonized and rendered using normal poly­

gon rendering schemes. Iso-surfaces can be generated by using techniques such as

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

marching cubes [62], In contrast to iso-surface methods, which analyze volumet­

ric data in the local neighborhoods, Arvo and Novins [4] propose an iso-contour

method, which operates on the continuous image space to extract curves of con­

stant intensity. However, surface rendering depends on an existence assumption

that a set of iso-surfaces exists, and on a fidelity assumption that w ith the infinitely

thin surface the polygon mesh models the true object structures at reasonable fi­

delity [66]. These two assumptions can hardly be met simultaneously in practice.

In contrast, direct volume rendering bypasses the intermediate geometric repre­

sentation and directly renders the volumetric data set based on its scalar values

alone. Color mapping and transparency schemes are commonly employed to en­

hance the visual contrast between different materials. According to Kaufman [46],

volume rendering approaches can be classified into three categories: object-order,

image-order and domain methods.

2.2.1 Object-Order Volume Rendering

The object-order approaches evaluate the final pixel values in a back-to-front or

front-to-back fashion, i.e., the scalar values in each voxel1 are accumulated along

the view direction.

Drebin et al. [25] propose a material-based rendering method. The volume is as­

sumed to be an image stack. Five steps are performed to generate the final image:

classification, matting, surface extraction, shading and projection. In the classifica­

tion step, for each voxel, the percentage of each material is estimated using proba­

bilistic classifiers. The classification transforms the initial volume into a set of ma­

terial percentage volumes. This set of volumes is used to calculate the properties

of each voxel, such as color2. Next, matte volumes are combined w ith the classified

volume using spatial set operations, roughly like boolean operations in constructive

solid geometry (CSG) [79], to remove undesired regions and/or adjust the percent­

age of a certain material. Surfaces, i.e., boundaries between different materials are

extracted from a so-called p volume. The parameter p, the value of which actually

can be assigned arbitrarily, characterizes the density of a material. While two close

p's blur the boundary between two materials, two diverse p's intensify the bound­

ary. After every material is assigned a p value, the density D of a voxel is computed

1The region of constant value that surrounds each sample in zero-order interpolation [46].
zThe word color when used separately throughout this thesis refers to RGBA color.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by a function proportional to p. The surface normals and magnitudes (strengths)

derived from the gradient V D, which indicates the sharpness of the density tran­

sitions between voxels, are used in the next step for shading. In the shading step,

light rays are cast through the volume from back to front. Let I and I ' denote the

intensities of the incoming ray and outgoing ray respectively, then the resulting

color of a voxel is

I ' = C + { l - c c c) I (2.1)

where ccc is the alpha component of the RGBA color C of the current voxel. If one

takes surface shading into account, C is a function of the surface normal, the surface

strength, the surface diffuse color and the light source color. This shaded volume

is geometrically transformed and resampled to lie along the view direction. To

form the final image, an orthographic projection is performed using the following

equation:

I z = Cz + (1 — occ) Iz + 1 (2.2)

where I z and Cz are the accumulated image and color of the z'th plane respectively.

The initial image is set to black and I Q is the final image. Perspective projections

can also be easily applied by scaling the images in the x-y plane according to the

eye's z coordinate.

Many of the techniques initiated in this paper [25] influence the formation of

the structure of current volume rendering pipelines. This method is suitable for

high-resolution data sets, but for low-resolution data sets, the constant-variation

assumption of the scalar field in each voxel causes discontinuities between voxels.

To generate smoother images for small data sets, Upson [103] proposes an algo­

rithm called V-buffer, which uses a higher-order interpolation technique than the

trilinear interpolation to approximate the variation of a voxel's scalar field. How­

ever, in both methods, each voxel corresponds to only one projected position on

the view plane (i.e., one pixel or several adjacent pixels). As stated in [95], this kind

of projection is simple and fast, but often yields image artifacts due to the discrete

selection of th e projected im a g e p ixel(s). F urtherm ore, th e ren d erin g sp e e d is lo w

because of many complicated operations to be computed in shading and projec­

tion.

Westover [111] [112] addresses this problem by distributing the contributions

of one voxel into a region of image pixels and carrying out such operations using

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a lookup table. This volume rendering method is called splatting. The main idea

gorithm consists of four major steps: view transformation, shading, reconstruction

and visibility test. The most important step is reconstruction, where a kernel con­

volves with the volume to determine the image space footprint (or splat) of each

voxel, i.e., the image pixels that a voxel affects. Normally, two phases of reconstruc­

tion are needed: volume space reconstruction and image space reconstruction. The

first phase reconstructs the discrete input voxels into a 3D continuous function,

whereas the second phase reconstructs discrete intermediate image samples into

continuous pixels. For object-order methods, voxels are directly mapped onto the

final image and the footprint function is a continuous function, therefore, there

is no need to involve two individual reconstruction phases. Instead, during the

volume space reconstruction, the kernel is integrated along the view direction to

generate the final image pixels directly. The footprint function is then defined by:

where (x , y) is the displacement of a pixel from the center of the shaded voxel's

view-plane projection; hv () is the volume reconstruction kernel; and w is the ker­

nel's ^-coordinate. This function is precomputed and the results are stored in a

generic footprint table. For orthographic views, the footprint function ¥ (x , y) of

each voxel is the same except w ith an image space offset as in [112]. However, for

perspective views, the function needs to be evaluated for every voxel separately,

reducing the algorithm's speed significantly.

To attain a higher frame rate, Laur and Hanrahan [58] introduce hierarchical

splatting. The volume is represented in a pyramidal manner and footprints of

different sizes are used in different levels of the pyramid. During motion low-

resolution volume representation is used, and once the motion stops a progressive

refinement is applied.

Another problem with the original splatting algorithm is that the voxel kernels

are integrated within the volume slices that are most parallel to the view plane,

hence disturbing popping artifacts occur when the views are animated. To deal

with this drawback, Mueller et al. [68] propose a new image-aligned splatting al­

gorithm using slicing slabs oriented parallel to the view plane. These slabs are of

certain width and only the contributions of the voxel kernels within the current

is to project a basic function (e.g., a Gaussian kernel) onto the view plane. This al-

(2.3)

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

slab are added to the frame buffer. Another major advantage of this new splatting

algorithm is that based on an occlusion map, only the kernels of the voxels visible

in the final image are projected, which significantly speed up the algorithm.

While the resampling (or reconstruction) in splatting algorithms is view-dependent,

Lacroute and Levoy [56] introduce a very efficient algorithm called shear-warp,

where the complications associated to resampling for arbitrary perspective views

are alleviated. The input volume is composed of image slices, and it is first trans­

formed to a sheared object space, where the viewing rays are perpendicular to the

slices. For orthographic projections, the transformation is only a translation based

on the slice's z-coordinate, as shown at Figure 2.1. For perspective projections, the

transformation is a translation plus a uniform scaling along the volume's z-axis, as

shown at Figure 2.2. The sheared slices are resampled and composited from front

to back to form an intermediate image, which is then warped (resampled) to get

the final image. To take advantage of the fact that the scanlines of the pixels in the

intermediate image are parallel to the scanlines of the voxels in the volume data,

the object-order compositing is performed in scanline order. Run-length encoded

volume scanlines are used to skip transparent voxels and run-length encoding of

image scanlines is used to skip occluded voxels. Run-length encoding of the vol­

ume is possible when the opacity transfer function is known in advance, however,

when the transfer function needs to be changed interactively, a different acceler­

ation scheme must be used. The opacity of a voxel is represented by a function

of several precomputable parameters, such as intensity and gradient. A min-max

octree (described in [114]) is applied to the volume to get the extrema of the pa­

rameters in every subvolume, and then a multi-dimensional summed-area lookup

table (described in [17]) is applied to the rectangular region bounded by these ex­

trema in the feature space to determine transparent regions. Two volume scanlines

are traversed simultaneously to accelerate the compositing process, where opaque

and visible voxels are projected onto the current image scanline using a bilinear

interpolation technique. This algorithm can be parallelized by distributing the in­

termediate image scanlines to multiple processors. Schulze and Lang [92] extend

the parallel architecture for perspective projections in such a way that the com­

positing process is distributed among remote computers using message passing

interface (MPI) programming environment and the final 2D warp is performed on

a single computer using graphics hardware. Although the rendering is fast, one

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

drawback is that three copies of the input volume, i.e., the octree, the summed-area

table and the original voxels, need to be maintained.

rays

volume

view plane

(a) Object space.

rays

volume

inter

view plane

(b) Sheared object space.

Figure 2.1: Shear-warp for orthographic projections.

rays

volume

view plane

(a) Object space.

rays

volume

intermediate ii

view plane

(b) Sheared object space.

Figure 2.2: Shear-warp for perspective projections.

2.2.2 Image-Order Volume Rendering

Image-order volume rendering approach is also called ray casting or ray tracing.

The basic idea is that rays are cast from each pixel on the final image into the vol­

ume and the pixel values are determined by compositing the scalar values encoun­

tered along the rays w ith some ray function.

Like surface rendering, image-order volume rendering can also display iso­

surfaces, but the difference is that in direct volume rendering shading is applied

directly on the voxels to form the final image and hence small features are pre-

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

served. Levoy [59] proposes a pipeline for rendering iso-surfaces. The shading and

classification procedures are separated in this pipeline. The output of the shading

procedure is an RGB color volume and the output of the classification procedure

is a volumetric opacity map. To avoid artifacts caused by a single threshold or

window in traditional iso-surface methods, different opacities are assigned to the

voxels w ith scalar values close or equal to the given threshold. During rendering,

the volume is sampled at evenly-spaced locations along each ray and the color at

each sample location is computed using trilinear interpolation. Parker et al. [72]

apply ray casting for the first time to render iso-surfaces from very large data sets

in an interactive system. Several optimization techniques are used to accelerate the

performance. First, the volume is represented as "bricks" to improve data cache

locality. Second, an octree-like spatial hierarchical data structure is employed to

accelerate voxel traversing. Third, the image space is divided into tiles, and multi­

ple processors are employed, where each processor operates on one or more of the

tiles. When running on a 64-processor machine, a 1GB data set is rendered at an

image resolution of 512x512 resolution at about 10 frames per second. However,

due to random accessibility of the volume required by ray casting methods, the

whole data set needs to be duplicated on every processor.

In addition to iso-surface, image-order volume rendering can display the vol­

ume as a whole. Kajiya and Von Herzen [44] apply ray casting to volume render

natural phenomena, such as clouds, by solving a scattering equation. A major

drawback of ray casting is its high complexity because for every ray the whole vol­

ume needs to be traversed once. One common optimization technique is early ray

termination, which stops tracing a ray when the accumulated opacity along that

ray reaches a pre-defined threshold (usually fully opaque). Levoy [60] determines

the last sample location along a ray as the position with no significant change of

the color of the ray. Let C,„(u; U) and «,„(«; U) be the RGB color and opacity of

the ray u before and after processing the sample U respectively, and let C(U) and

ce(U) be the RGB color and opacity of the sample respectively. Then the RGB color

C0ut(u; U) and the opacity a out(u; U) of the ray u after processing the sample U are

calculated by:

Ca,(«;U)a|„(H;U) + C (d)« (U) (l -a , '„ (« ;U))
a 0U, {u;U)

11

G o w t (M i i - f)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and

ocout{u-,U) = oqn(u; U) + a (lT)(l — «,„(«; i i)) (2.5)

The RGB color and opacity are accumulated from front to back. A significant RGB

color change occurs when C0Ut{u ; U) - Cjn(u; U) > e for some small e > 0. Hence,

a ray terminates when ocout(u ;U) > 1 - e for the first time. Another common

optimization technique is empty space skipping, which accelerates the traversal of

empty voxels (i.e., voxels with zero-opacity). Levoy [60] represents volumetric data

as a pyramid (an octree-like structure). Each cell at each level of the pyramid carries

a binary value. A higher level cell carries a zero when its eight children all contain

zeros. In the lowest level, where a cell corresponds to a voxel, a cell contains zero

if the associated voxel is empty. When ray tracing is performed, empty regions

can be effectively bypassed, because whenever an empty cell is encountered, its

descendants are not traversed.

Danskin and Hanrahan [22] extend Levoy's work by a homogeneity-acceleration

and a ^-acceleration. The homogeneity-acceleration employs a range27 pyramid.

Each cell of the pyramid contains a Manhattan distance, which measures the homo­

geneity at that cell. A smaller distance indicates that the cell is more homogeneous,

and hence a larger ray sampling interval can be used; a larger distance indicates

that the cell is more heterogeneous, and hence a smaller sampling interval should

be used. The fundamental idea of the ^-acceleration is that as the pixel opacity

(i.e., the j3-distance) along a ray accumulates from front to back, less light travels

back to the eye, therefore, fewer ray samples need to be taken without significant

changes to the final image quality. As for the 4D cases, Yagel and Shi [118] use

space-leaping for volume animation, which exploits coherency between consecu­

tive images to shorten the paths that rays take through the volume.

In the previous image-order methods, continuous rays are sampled at uni­

form or jittered intervals. Alternatively, rays can be represented as discrete vox­

els [115] [117] as shown in Figure 2.3. A discrete ray can be either 6-connected or

26-connected. A ray is 6-connected if any two adjacent voxels share only a face,

whereas any two adjacent voxels of a 26-connected ray share a face, an edge or a

vertex. Discrete ray tracing, or 3D Raster Ray Tracing (RRT), is utilized by Yagel

and Kaufman [116] in a template-based ray casting algorithm for orthographic pro­

jections. This algorithm is based on the observation that for orthographic discrete

ray casting all rays have the same form and this coherency between rays can be ex-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ploited to simplify the volume traversal process. Like the shear-warp method [56],

image is warped to form the final image. The difference is that the intermediate

image is generated in a pixel-by-pixel manner. Three phases are involved: initial­

ization, ray casting and 2D mapping. The principle of the algorithm is illustrated

at Figure 2.4. During initialization, a base plane parallel to one of the volume's

faces is determined, and the volume is projected onto the base plane. The form of

the parallel rays is computed and stored in a template. Here, 26-connected rays

instead of 6-connected rays are used, because every voxel in the volume is visited

exactly once. Next, all the rays are generated from this template and cast from the

base plane into the volume. The rays are traced by uniform steps and the voxel

coordinates at each step can be computed efficiently using the template. Finally,

the image on the base plane is transformed onto the view plane. Depending on the

size and position of the view plane, some voxels may not contribute to the final

image, which means that in the second phase rays may not need to be cast to cover

the entire volume, and hence the processing time can be reduced further.

2.2.3 Domain Volume Rendering

Direct volume rendering can also be performed in the frequency domain using the

Fourier projection-slice theorem [63]. Once the volume is transformed from the

spatial domain to the frequency domain, a 2D slice, which is centered at the vol­

ume origin and is parallel to the view plane, is extracted from the 3D spectrum.

This 2D slice is then transformed back to the spatial domain to obtain the final

image. The overall algorithmic complexity is 0 (n 2 logn) for a volume w ith size

the volume is first projected onto an intermediate plane and then the intermediate

(a) 6-connected. (b) 26-connected.
Figure 2.4: Discrete ray trac-

Figure 2.3: Discrete ray representation. ing algorithm.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n3, in contrast to 0 (n 3) for many spatial methods. One problem with frequency

domain volume rendering is that it does not solve occlusion, which is an impor­

tant cue to distinguish shapes and spatial positions of different objects. Totsuka

and Levoy [102] solve this problem in an alternative way, where depth cueing and

directional shading are employed. Depth cueing is implemented by frequency do­

main differentiation and directional shading is implemented by frequency domain

multiplication. Entezari et al. [27] improve the illumination (an alternative to help

determining 3D shapes) and achieve interactive rendering for constant diffusive

light sources. Westenberg and Roerdink [110] incorporate wavelet decomposition

into the Fourier volume rendering, which provides progressive refinement of the

rendered images.

2.2.4 Hardware-Accelerated Volume Rendering

Texture mapping, initially introduced by Catmull [16], is a technique that adds

details to 3D geometric models using photos. A texture can be considered as a

mathematical function, and the domain of the function can be one, two, or three-

dimensional and can be represented by either an array or by an analytical func­

tion [40]. Three dimensional (3D) texture mapping methods were implemented in

software until the RealityEngine system [3] implemented this function in real-time.

Hardware-accelerated texture mapping makes it possible for the computationally

intensive interpolation operations used in direct volume rendering to be moved

from the CPU to the graphics processing unit (GPU), which dramatically enhances

the rendering speed. The normal procedure is illustrated at Figure 2.5. The volume

is first loaded into the texture memory of the GPU, and sampled using trilinear

interpolation to produce a set of equally-spaced slices (proxy polygons) parallel to

the view plane. Then the slices are mapped with textures and blended from back

to front to form the final image.

Cabral et al. [14] treat volume rendering as a generalized Radon transform and

implement the algorithm on the RealityEngine hardware. In the 3D perspective

case, a Radon transform can be defined for each ray as:

P(s,t)= d / ' “ d, (2 6)
n 1 Vs2 + 12 + d2 Jo r2

where f (x , y, z) denotes the volume space; p(s, t) denotes the line integral projec­

tion of f (x , y,z) along the ray [x (l) , y (l) , z (l)] t i.e., the image space; is

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proxy Polygons 3D Texture Final Images

Figure 2.5: Volume rendering using 3D texture mapping.

the path length difference for off-center pixels; c(/) is the blending weighting term;

and 4r is the perspective weighting term. A discrete form of this equation, which

accumulates samples along the ray direction, is utilized for the implementation.

The algorithm proposed by Cabral et al. [14] does not take shading into account.

Later, Van Gelder and Kim [106] incorporate shading into the hardware accelerator

pipeline. The color of a texel (i.e., a texture element) consists of an ambient compo­

nent and a reflecting component. To calculate the ambient component, the volume

is first divided into slabs as in image-aligned splatting [68]. Then the color intensity

and opacity are evaluated slab by slab using the differential intensity and opacity

equations proposed by Wilhelms and Van Gelder [113]. The reflecting component

is calculated based on the cell-diagonal data shift s, a quantity derived from the

voxel's quantized gradient vector and the inter-voxel spacing. According to the

value of s, a voxel is assigned a probability of being on the boundary between d if­

ferent materials. If a voxel is on the boundary, it is assumed to be reflecting and its

response to directional lighting is computed using the probability. For every pos­

sible combination of the quantized gradient and material, the color is calculated

and stored in a lookup table to accelerate the rendering. However, this lookup

table needs to be recomputed when rendering factors, such as light direction, are

changed.

In Van Gelder and Kim's architecture [106], not only does the shading need to be

recalculated when rendering factors are changed, but also the application of non­

linear color transfer functions is impossible since the colors are interpolated using

the hardware. Dachille et al. [21] improve this architecture in a way that the shading

and compositing are moved to the main memory and CPU, and the hardware only

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deals with ray sampling and perspective scaling (if perspective projection is used).

Space-leaping is performed (in software) before Phong shading and front-to-back

compositing take place to efficiently skip transparent regions. Unlike conventional

texture hardware sampling methods that produce texture-mapped polygons par­

allel to the view plane, this method generates a set of polygons perpendicular to

the view plane. The advantage of such oriented polygons is that the compositing

can be performed one image scanline at a time and one polygon contributes to one

scanline, like the shear-warp method [56], therefore, early ray termination can be

employed.

Aside from object-order methods, image-order methods can also be implemented

using 3D texture interpolation hardware. Guan and Lipes [35] introduce an inno­

vative parallelization scheme for hardware-accelerated image-order volume ren­

dering, in which a computation node operates on a subvolume and rays are sam­

pled in the volume by parallel plane cutting. However, it only supports simple ray

functions, such as maximum intensity projection.

To achieve higher rendering speed and quality using ray casting, specialized

hardwares are designed. Cube-4 proposed by Pfister and Kaufman [75] is a paral­

lel architecture that performs slice-parallel ray casting and is able to handle very

high-resolution data sets (e.g., 10243). Based on the Cube-4 architecture, Pfister

et al. [74] develop VolumePro, the first single-chip real-time volume rendering sys­

tem for consumer PCs, which performs orthographic projections at very high frame

rate. The shear-warp factorization algorithm described in [56] is utilized, but trilin-

ear interpolation is performed instead of bilinear interpolation. In addition, rays

can be casted from sub-pixel locations. Therefore, view-dependent artifacts can

be eliminated when the base plane changes. Several advanced features, such as

supersampling and cropping, are also incorporated into VolumePro's architecture.

With the development of commodity graphics hardware, GPU-based ray cast­

ing can be implemented without specialized hardware. Kruger and Westermann [54]

integrate early ray termination and empty space skipping into GPU-based ray cast­

ing. Before ray traversal, the entry points and ray directions are computed and

stored in two separate 2D textures. The entry points are computed as the 3D texture

coordinates of the intersection points between the volume's three front faces and

the rays. The generated 2D texture has the same resolution as the current viewport,

which guarantees one ray per pixel. For each ray entry point, the corresponding

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exit point on the volume's three back faces is calculated. Then, each ray direction,

i.e., the difference between the exit and entry points, is stored as an RGBA pixel

in the second 2D texture. During ray traversals, M equi-spaced samples are taken

along each ray that is determined by the entry point and the direction stored in the

two 2D textures. Between each ray traversal, a z-test is performed for early ray ter­

mination. Empty space skipping is applied via a min-max octree structure together

with a 2D texture that stores the transparency information for every scalar range

bounded by a different min-max pair. For the data sets with transfer functions

that map a large amount of scalar values to low opacity, this method has superior

performance to GPU-based object-order approaches.

Based on the method proposed by Kruger and Westermann [54], Scharsach [86]

introduces some improvements for rendering pre-classified volumes. Empty space

skipping is applied via a data-dependent bounding geometry instead of a min-max

octree. Taking advantage of the vertex shader, a tighter bounding geometry other

than a simple bounding box is utilized to exclude empty regions and regions of no

interest while rendering. As for iso-surface rendering, a hitpoint refinement algo­

rithm is proposed. Every time an iso-surface point is found with sample step size

d along a ray, the point \d back along the ray is checked to see whether it is also

on the iso-surface. If it is, another point \ (\ d) back along the ray is checked. By

taking six such bisection steps, a volume can be sampled at 4 to 5 times the speed

of the ordinary equi-spaced sampling. The resulting image is produced with un­

compromised quality. In this algorithm, the whole volume needs to be loaded into

the texture memory for ray casting, making rendering of large data sets impossible

because of limited texture memory on current hardwares. Scharsach deals with

this problem by only caching the regions of interest via a 2-way blocking scheme.

Although this is not a radical solution, it makes possible the rendering of sparse

large data sets with ray casting.

As for the frequency domain volume rendering, Viola and Kanitsar [107] move

the rendering stage to the GPU and achieve a speedup factor of 17 compared to

the CPU-based approach. After a pre-processing step on the CPU where the vol­

ume is transformed into frequency domain, slicing and interpolation, as well as

the inverse fast Fourier transform, are all performed on the GPU. For 4D data,

Binotto et al. [7] use a fragment-shader compression approach to achieve real-time

volume rendering. Based on hierarchical vector quantization, Schneider and West-

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ermann [89] propose a compression scheme for rendering both 3D and 4D volu­

metric data sets.

2.2.5 Critical Review of Volume Rendering Algorithms

In the previous sections, a review of most important direct volume rendering al­

gorithms are presented. Different algorithms can be classified into three main cat­

egories, i.e., object-order, image-order and domain methods. Hardware acceler­

ation can be applied to all algorithms in the three categories. Some hybrid meth­

ods [36] [39] [67] are proposed by researchers in recent years, but their fundamental

operations still fall into one of the three main categories. Meiliner et al. [66] give a

detailed comparison between the four most popular volume rendering techniques:

ray casting, splatting, shear-warp and 3D texture hardware-based methods. Their

experiments demonstrate that ray casting and splatting generate high-quality im­

ages at the cost of rendering speed, whereas shear-warp and 3D texture mapping

hardware are able to maintain an interactive frame rate at the expense of image

quality. When utilizing splatting for volume rendering, it is difficult to determine

the parameters such as the type of kernel, the radius of the kernel, and the resolu­

tion of the footprint table to achieve an optimal appearance of the final image as

described in [95]. In shear-warp, the memory cost is high since three copies of the

volume need to be maintained. Most of current graphics cards support 3D texture,

therefore hardware-accelerated methods can be easily applied on these cards. The

frequency domain methods perform fast rendering, but they are limited to ortho­

graphic projections and X-ray type rendering [27]. In addition, there are two intrin­

sic problems with the frequency domain methods: high interpolation cost and high

memory cost [102]. Hence, ray casting is a better choice for high-quality volume

rendering, while hardware-accelerated approach is a better choice for high-speed

volume rendering.

2.3 Virtual Environments

Bishop and Fuchs [8] define virtual environments (VE) to be real-time interactive

graphics with three-dimensional models, when combined with a display technol­

ogy that gives the user a sense of immersion in the model world and direct manipu­

lation. A synonymous term for virtual environments is virtual reality (VR). According

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to Burdea and Coiffet [13], virtual reality is a high-end user-computer interface that

involves real-time simulation and interactions through multiple sensorial channels,

i.e., visual, auditory, tactile, smell and taste. Research on VE dates back to 1965

when Sutherland [98] proposed the ultimate display system. Since then, new tech­

niques and systems have been continuously developed, and VR has been adopted

in more and more applications, such as medicine [96], geoscience [32] and educa­

tion [47]. As described in [10], to achieve immersive effects from VR, four crucial

technologies are necessary: visual displays, graphics rendering system, tracking

system, and database construction and maintenance system. Based on their dis­

play technology, VR systems can be divided into three categories: projection-based,

monitor-based and HMD-based [76]. This section focuses on the major develop­

ments that one can find in the scientific literature on the visual displays used in

VR, especially the ones found for medical applications.

2.3.1 Projection-Based VR Systems

Projection-based VR systems use rear-projection and/or front-projection screens to

create stereopsis for the users. Typically the user needs to wear shutter or polar­

ized glasses to see the stereo image. The CAVE (CAVE Automatic Virtual Environ­

ment) [18] [19], invented at the Electronic Visualization Laboratory at the Univer­

sity of Illinois at Chicago, is one of the most popular VR systems for scientific visu­

alization. The CAVE is composed of a cubic space created by surrounding screens.

Appropriate stereoscopic images are displayed on these screens and merged to­

gether to form a 3D virtual world. A small group of users (normally 5 to 10) can

be in the CAVE simultaneously with one user serving as the guide, whose head

movement is tracked to generate correct projecting images for the current view. A

wand equipped with 3D tracker is usually used for various interactions.

The CAVE produces a large field of view (FOV) and even panoramic view. Nev­

ertheless, due to its size, the CAVE cannot be deployed in offices. In contrast, at the

expense of immersion, the Workbench [2] [55] provides a portable VE that is ideal

for applications such as architecture and virtual prototyping. In the Workbench

configuration, a rear-projection screen is laid horizontally in front of the user. The

viewing parameters can be adjusted to set the virtual objects above or below the

screen. A similar system called ImmersaDesk is developed by Czemuszenko et

al. [20]. The difference is that in the ImmersaDesk setup the screen is placed at a

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45-degree angle so that the user can look down as well as forward.

A ll the previous systems use active stereo where the images for each eye are

projected onto the screen separately where the left and right shutters on the glasses

become transparent and opaque alternately to let each eye see only the correspond­

ing images. Unlike active stereo systems, passive polarized stereo systems achieve

the stereo effect by using dual projectors with polarizing filters placed in front

of each lens. Pape et al. [71] develop a low-cost dual-projector VR system based

on LCD (liquid crystal display) projectors with polarized stereo glasses. A high-

resolution stereo tiled display named ICWall is developed by van der Schaaf et

al. [105] using a similar concept. Eight tiles are employed w ith one dual-projector

for each tile. The projectors are automatically calibrated using geometric, photo­

metric and viewpoint calibration to insure the left and right eye images are pre­

cisely aligned. This system is capable of generating a stereo image of roughly

2x4096x1524 pixels.

With the emergence of autostereoscopic displays, users do not need to wear

special glasses but can see the stereo images with their naked eyes. Physically

realizable autostereoscopic displays can be classified into three broad categories:

re-imaging displays, volumetric displays, and parallax displays [37]. Re-imaging

displays use optical effects to generate stereo illusion. The Cambridge display [24]

uses red, green and blue CRT projectors to project a 3D scene onto a 50-inch con­

cave spherical mirror. Different views of the scene are illuminated in turn. One

common design of volumetric displays (e.g., the DepthCube [97]) is to fill the space

with display media and show a proper image on each layer. The Perspecta display

produced by Actuality Systems Inc. [28] is 360-degree viewable by projecting hun­

dreds of slices onto a fast rotating screen. Parallax displays emit lights with various

intensities in different directions. When the user is at some special location, he or

she can see the stereo image. More on parallax displays w ill be discussed under

monitor-based VR systems.

2.3.2 M o n ito r-B a s e d V R System s

Normally, a monitor-based VR system cannot provide the immersion level that a

projection-based system can, since the virtual scene is mixed with the workplace.

Ware et a l [108] introduce the Fish Tank VR where a stereo image of a 3D scene

is displayed on a monitor based on the user's head position, and with a pair of

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shutter glasses the user can get a stereoscopic view.

Autostereoscopic displays mentioned in the previous section can also be monitor-

based, but most of them are parallax displays. The DTI 3D display developed by

Dimension Technologies Inc. [23] takes advantage of the screen parallax, the signed

distance measured on the screen between two corresponding image points [109], to

generate stereopsis. The left and right images are interlaced and then illuminated

simultaneously by a special illumination plate to produce screen parallax. With

a similar concept, Holografika Kft. devise the HoloVizio system [5]. Unlike the

DTI 3D display, which requires the user to stay at specific positions, the HoloVizio

display provides a much larger FOV, about 50 degree. Sandi et al. [85] introduce a

large curved autostereoscopic display, Varrier display, by tiling 35 display panels

together. The large FOV plus sub-pixel resolution gives the user a strong feeling of

immersion.

2.3.3 HMD-Based VR Systems

Head-mounted displays (HMDs) are among the earliest display interfaces used in

VR. The fundamental principle is that a perspective 2D image is shown for each

eye, and the images are adjusted according to the head's movement, which gives

the user an illusion that he/she is present in a 3D virtual world. The first HM D

that uses CRTs was invented by Sutherland [99]. Over the decades, the resolution

and color quality of HMDs increase dramatically, while the cost decreases due to

the use of LCD [73] [101]. The resolution is not the only factor that affects the im­

mersion provided by HMDs, and the other factor is the FOV (Field of View). The

stronger a feeling of immersion is required, the larger a FOV is needed. Using hy-

perboloidal and ellipsoidal mirrors, Nagahara et al. [69] devise a wide FOV HM D,

which provides a 180-degree horizontal view and a 60-degree vertical view includ­

ing a 60-degree stereoscopic view at a resolution of about 7 pixels /degree. To attain

a higher resolution while maintaining a relatively large FOV, a trade-off between

the two factors is required since a limited number of pixels need to be spread on the

microdisplay(s) across the FOV. Yoshida et al. [121] resolve the issue by tracing the

eyes' gaze point and providing high resolution for that region of interest (ROI). The

horizontal FOV of this High-Resolution Insert H M D is 50 degree at a resolution of

8 pixels/degree, and its ROI is 12.5 degree at a resolution of 32 pixels/degree. A

recent technological breakthrough by Sensics Inc. [94] achieves a 180-degree hor-

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

izontal FOV at a resolution of 20 pixels /degree, using an array of microdisplays

combined seamlessly into one large image that warps round the eyes. A detailed

discussion on the current techniques and applications of HMDs can be found in a

survey by Cakmakci and Rolland [15].

2.4 Visualization in Virtual Environments

In the field of scientific visualization, virtual reality offers a natural interface be­

tween human and computer that simplifies complicated data manipulations [81].

Due to such significance of VR technology, various visualization systems have

been proposed for virtual environments over the decades. Some are designed for

general-purpose visualization [42], while others are devised for particular applica­

tions, such as medical analysis [30] and natural phenomena simulation [12].

2.4.1 VR Systems for General-Purpose Visualization

Rajlich [77] develops a visualization framework that is able to work both in a CAVE

and on a desktop. The design is based on the Visualization Toolkit (VTK) [91]

and IRIS Performer [83]. The VTK pipeline and the Performer scenegraph are con­

nected by a translator, vtkActorToPF. This combination enables the usage of VTK's

visualization algorithms and Performer's multi-channel rendering capability that

supports simultaneous rendering for multiple screens. Three major components

are involved: VisGen, Application and Interface. The VisGen component is built

on VTK to generate geometries, which are then passed to the Application compo­

nent that is in charge of the state of the system. The interface component is the

graphical user interface (GUI). The separation of different functional modules fa­

cilitates the transfer from the CAVE tool to the desktop tool. The user is presented

with stereo images in the CAVE environment, but only 2D images on the desk­

top. Surface rendering is employed and the user can view different iso-surfaces by

changing the iso-value parameters.

Schulze et al. [93] introduce a volume rendering system for visualizing scalar

volumetric data in the CUBE, a CAVE-like virtual environment. The system is built

on COVISE [78], a general visualization framework, and COVER [78], a VR inter­

face library integrated with COVISE that supports basic rendering and tracking in

VE. Hardware-accelerated direct volume rendering is accomplished by a plug-in

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

module for COVER, called VIRVO. Two rendering modes are incorporated: the

adaptive mode with coarse image quality to maintain a high rendering speed and

the high-quality mode where the user can investigate the data in detail. The user

can use a transfer function editor to interactively manipulate the color and opacity

mapping functions. Once a specific scalar value is selected, virtual rotary knobs

are used to adjust the mapping from the scalar value to color and opacity. A probe

mode is developed to help the user focus on the ROI, where a user-controlled cu­

bic subset of the volume is rendered. Visualization of time-dependent volumetric

data sets is also supported. However, since the entire time series is loaded into

the texture memory before rendering, only small 4D data sets can be rendered at

interactive speed.

While the previous systems are specialized for visualizing static volumetric

data with little or no consideration for time-varing data, Jaswal [42] develops a

distributed system, CAVEvis, to visualize time-dependent large scalar or vector

field data in the CAVE. The visualization task is distributed among a number of

modules running on different computers, which work asynchronously to maintain

high rendering speed. Iso-surfaces are rendered for scalar field data and flows of

particles are rendered for vector field data. The whole data set is randomly acces­

sible to the user in both the spatial domain and the temporal domain.

2.4.2 VR Systems for Medical Visualization

Visualization in VEs has been proven useful in medicine for applications ranging

from medical education, surgical training and planning, to the enhancement of

minimally invasive surgeries [82].

Forsberg et al. [30] develop an immersive system for visualizing simulated blood

flow through an artery model in the CAVE, aiming at understanding the factors

that may cause the failure of coronary artery grafts. The flow is modeled numeri­

cally and simulated via particle techniques. The artery is rendered as a triangulated

mesh and the shear stress, an essential quantity to determine the flow behavior, is

encoded into the arterial wall color. An important feature of this system is its ges­

tural and voice interaction techniques. The user can use different tools to examine

the flow behavior, such as throwing a virtual particle into a particular region of the

flow. The tools are selected from a virtual toolkit using voice commands and/or

gestures when the user looks down.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While the previous system is for visualizing simulated medical data, many sys­

tems are designed to visualize real medical data acquired from imaging sensors

such as CT and MRI. Zhang et al. [123] devise a system for visualizing diffusion

tensor magnetic resonance imaging (DT-MRI) data sets of brains in a CAVE en­

vironment. Its potential applications are in the study of changes in white matter

structures before and after gamma-knife capsulotomy, and pre-operative planning

for brain tumor surgery. Hence, the major concern is the representation of neural

structures and anatomical context in the brain. The fibrous structures in the regions

of linear anisotropy and the planar structures in the regions of planar anisotropy

are represented as streamtubes and streamsurfaces respectively. The ventricles are

represented as iso-surfaces produced by the marching cubes algorithm [62]. A ll the

generated geometric models are simplified beforehand to achieve a higher frame

rate. A yellow line is drawn according to the position and direction of the wand

to serve as a virtual pointer for indicating the region of interest. Traditional 2D

image slices can also be displayed together with the geometric models to help the

doctors, who are already familiar w ith the conventional analytical techniques, to

identify the anatomical structures in a 3D virtual environment. However, due to

a large amount of decimation required to obtain an interactive rendering speed,

many details are lost in the final rendered models making it useless for routine

radiological observations.

Lapeer et al. [57] introduce the ARView, a generic software framework for stereo­

scopic augmented reality microsurgery, which combines the surgical scene cap­

tured by a stereo pair of cameras in real time and the images pre-acquired from

medical imaging modalities. For instance, a baby's skull and its brain are displayed

together on an HM D. The surgical scene is surface rendered, while the pre-acquired

medical images stored in the DICOM or raw format are volume rendered with the

assistance of 2D or 3D texture hardware. The design of the ARView follows the

factory design pattern [33], in which a high-level factory class deals w ith initiating

the appropriate sub-class based on the computer system's software and hardware

configurations. This kind of design enhances the reusability of the software frame­

work. One drawback of the ARView lies in the rendering part, as it only produces

gray-level images and does not support run-time modification to the transfer func­

tions.

Kratz et al. [53] integrate high-quality perspective direct volume rendering into

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the Studierstube [8 8], a virtual reality system developed in their laboratory. The

rendering part is built on the hardware volume rendering framework introduced

by Scharsach et al. [87]. Shaded iso-surface rendering and unshaded direct volume

rendering are combined to enhance depth perception and visualization of bound­

aries. Volume rendered images are also combined w ith polygon rendered widgets

by blending the geometry image on top of the volume. Several types of interac­

tion are supported: navigation, clipping cube, lighting manipulation, slice viewer

and fly-through. However, the transfer functions can only be designed off line and

loaded at runtime. This inability to interactively manipulate the transfer functions

impairs the effectiveness of analyzing the data as it relies on prior information to

display the data set. This is contrary to the needs of practicing radiologists who

want to have the minimal interpretation performed on the data set by the computer

as those interpretation may hide subtle structures that are the important ones they

are looking for.

Kniss et al. [52] apply hardware-accelerated volume rendering and VR tech­

niques to visualizing multi-field medical data sets. Two dual-projector screens are

placed side by side to provide 3D stereoscopic imagery, and a desktop PC is placed

in front of one screen to provide 2D classification, i.e., manipulation of the transfer

functions. The 2D classification interface is built on the multi-dimensional transfer

functions proposed in [51]. 3D classification interface is also supported, and like

in [93], rotary knobs are used for adjusting the mapping from a scalar value to vi­

sual attributes. The visualization in VR is built on the same framework used in [93],

i.e., COVISE and COVER, and volume rendering is performed via the integration

of Simian [50], a multi-field volume rendering tool. The system is limited to a fixed

environment and cannot be extended to various display modalities that exist in

real-world radiology department ranging from radiologist desktop to the operat­

ing room. In addition, the system cannot scale as data modalities get more complex

and larger such as doppler M RI or temporal CT, desktop PCs cannot easily scale in

bus bandwidth and memory.

2.5 Summary

Volumetric data rendering has become an important tool in various medical pro­

cedures as it allows the unbiased visualization of fine details of volumetric med-

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ical data (CT, MRI, fMRI). However, due to a large amount of computation in­

volved, the rendering time increases dramatically as the size of the data set grows,

even when using GPU-based methods. In this thesis, we propose several accel­

eration techniques of volume rendering using general-purpose GPU. Some tech­

niques enhance the rendering speed of software ray casting based on voxels' opac­

ity information, while the other implementations improve traditional hardware-

accelerated object-order volume rendering.

Some [30] [123] of the previous medical visualization systems support only sur­

face rendering. Although they may be useful in a specific area, they are not suit­

able for a radiologist, who needs the fine details of the data set, to use in his or her

daily workflow. Our system, MedVis, has integrated the advantages of many of the

systems found in the literature, as MedVis supports enhanced GPU-based volume

rendering, allowing for various real-time interaction modalities, and the ability of

extensibility and portability.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

System Design and
Implementation

3.1 Overview

The system, called Medical Visualizer (or MedVis for short), supports visualization

and interaction with DICOM medical data sets in various virtual reality setups,

such as parallax barrier autostereoscopic displays, dual-projector screens, and the

CAVE. Multiple direct volume rendering techniques, i.e., software-based ray cast­

ing and GPU-based object-order volume rendering, are integrated to meet differ­

ent visualization requirements and to accommodate different hardware configu­

rations. The whole system is designed in a modular fashion and consists of three

major elements: the kernel module, the desktop interface module and the CAVE in­

terface module. The kernel module deals with all VR-independent operations; the

desktop interface module exports the kernel functions to the PC-based VR systems,

like autostereoscopic displays; and the CAVE interface module extends the visual­

ization pipeline into the immersive CAVE. Due to this modular design, MedVis can

be easily extended to support other VR setups, such as the Workbench [2] or the

Geo Wall [43]. The implementation of MedVis is platform-independent. Although

MedVis is currently running under Windows, its cross-platform nature allows it to

run under Linux, IRIX etc. with minimal modifications.

3.2 Rendering Algorithms

As stated in Section 2.2, surface rendering and direct volume rendering can both be

applied to visualize volumetric data. However, surface rendering depends on the

assumption that the important structures in medical images can be segmented us-

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing simple algorithms such as the marching cubes. This is contrary to most medical

practice as radiologists need to see the data set as it is, as simple minded computer

interpretation may hide important structures [6 6] required to perform a diagnosis.

On the contrary, direct volume rendering bypasses the intermediate geometric rep­

resentation and directly renders the volumetric data set based on its scalar values.

This allows a radiologist to visualize the fine details of medical data as he/she is the

one who by law must make the final interpretations. Considering the advantages

for radiology of direct volume rendering over standard surface rendering, this is

why direct volume rendering (DVR) is employed in MedVis as the main rendering

algorithm.

3.2.1 Direct Volume Rendering

As mentioned in Section 2.2.5, ray casting is a better choice for high-quality vol­

ume rendering, and hardware-accelerated approach is a better choice for high­

speed volume rendering. In order to accommodate different system configura­

tions, software-based ray casting and GPU-based object-order DVR are both incor­

porated into MedVis.

Software-Based Ray Casting Volume Rendering

Software-based ray casting approach casts one ray per screen pixel into the volume.

Samples (trilinear interpolated) are taken along each ray and the color of each sam­

ple is accumulated from front to back to form the final color of the current pixel.

This approach produces high-quality images, but due to the huge amount of calcu­

lation, the basic algorithm suffers from poor real-time performance. To accelerate

software-based ray casting, several enhancements are proposed in this thesis.

As mentioned in Section 2.2.2, there are two common acceleration techniques

for ray casting volume rendering: early ray termination and empty space skipping.

Early ray termination exploits the fact that when a region becomes fully opaque or

of high opacity, the space behind it can hardly be seen. Therefore, ray tracing stops

at the first sample point where the remaining opacity is less than a user-specified

threshold.

Empty space skipping is achieved via the use of a precomputed min-max octree

structure. It can only be performed efficiently when classification is done before in­

terpolation, i.e., when the scalar values in the volume are converted to colors before

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Classification first. (b) Interpolation first.

Figure 3.1: The comparison of classification first and interpolation first.

the volume is resampled. However, this often produces coarser results than apply­

ing interpolation first. As compared in Figure 3.11, the volume-rendered images of

a whole pelvic region data set using classification first (Figure 3.1(a)) are blurrier

than those rendered using interpolation first (Figure 3.1(b)), and the blur is most

obvious in the spinal area. If empty space skipping is applied w ith interpolation

prior to classification, one additional table lookup operation is needed to determine

whether there are non-empty voxels in the current region. Nevertheless, the ma­

jor drawback w ith this empty space skipping technique lies in that every time the

transfer functions change, the data structure that encodes the empty regions or the

lookup table need to be updated. Instead, an intuitive empty space skipping tech­

nique is employed in MedVis: only the non-transparent sample points are involved

in the color accumulation.

However, only w ith early ray termination, the rendering speed is still often far

from satisfactory, even for medium-size data sets (e.g., 2563). Therefore, another

acceleration technique is necessary. Jittered sample interval borrowed from the 15-

acceleration [22], is applied together w ith early ray termination. The basic idea is

that the sample interval along each ray becomes larger as the pixel opacity accu­

mulates. Unlike the ^-acceleration, which depends on a pyramidal organization of

the volumetric data, the jittered sample interval is applied directly to the data set in

MedVis. We term the modified /3-acceleration as ^'-acceleration. Instead of going

1 A ll o f the medical data used in this thesis is provided by the Departm ent of Radiology & Diag­
nostic Im aging, University of Alberta.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

up one level in the pyramid whenever the remaining pixel opacity is less than a

user-defined threshold after a new sample is taken, the sample interval is modified

according to a function of the accumulated pixel opacity:

s = s x (1.0 + a x /) (3.1)

where s denotes the length of the sample interval; a denotes the accumulated opac­

ity; and / is a predefined jittering factor. The initial value of s is set by the user.

Normally, the smaller s is, the better image quality. For every sample point, the re­

maining opacity y is compared against a user-specified threshold. If y is less than

the threshold, the current sample interval is adjusted according to Equation 3.1.

To further enhance the performance of software-based ray casting during inter­

action, the sample interval is automatically enlarged to maintain a high rendering

speed, and once interaction stops, the sample interval is set back to normal. When

multiple processors are available, the viewport is divided into several regions and

each processor handles its own region.

Algorithm 3.1 MedVis ray casting algorithm.
Break current viewport into N regions of equal size
Initialize early ray termination threshold V
Initialize jittering start threshold V
Initialize jittering factor /

5: Initialize sample interval s
for each region do

for every pixel in the current region do
Compute ray entry point, direction, maximum tracing distance D
w h ile the traced distance d < D and y < V do

1 0 : Interpolate at current sample point
Get opacity value oc according to opacity mapping function
i f oc ^ 0 then

Compute pixel color according to color mapping function
y y x (1 . 0 — oc)

15: end i f
i f y < T' then

s <— s x (1 . 0 + (1 - y) x /)
end i f
d <— d + s

2 0 : Compute next sample position
end w h ile

end for
end for

The whole process is executed in CPU using main memory. The enhanced al-

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gorithm is illustrated at Algorithm 3.1. Not only is this parallel software approach

suitable for computers with low-end graphics cards, but since parallel ray tracing

is employed, it is also suitable for multi-processor computers or clusters.

GPU-Based Object-Order Volume Rendering

GPU-based object-order volume rendering has several advantages over GPU-based

ray casting. First, perspective projections can be more easily implemented with

object-order volume rendering, since only a proper scaling factor needs to be as­

signed to each slice based on several viewing parameters while in ray casting the

direction of each ray needs to be determined individually. Second, as pointed out

in [8 6], GPU-based ray casting has the limitation that it can only render volumes

that fit in the texture memory. Since ray tracing needs to randomly access the whole

volume, it is impossible to break the volume into subvolumes and load each sub­

volume only once per frame. Finally, most of the speedup from GPU-based ray

casting comes from empty space skipping, and ray casting with only early ray

termination shows performance comparable to object-order volume rendering if

implemented in the GPU (see comparison in [54]). In addition, the object-order

volume rendering has a more regular processing structure, in which the volume

is processed slice by slice, therefore it is more suitable to be implemented in hard­

ware. Hence, the GPU-based object-order volume rendering is employed in Med­

Vis.

The rendering algorithm is similar to the one proposed by Rezk-Salama and

Kolb [80], which balances the workload between the vertex shader and the frag­

ment shader. Most of previous implementations generate the proxy polygons in the

CPU and use the fragment shader for trilinear interpolation and texture mapping.

Little work has been done to exploit the vertex shader in the hardware-accelerated

volume rendering pipeline. Based on the observation of different box-plane inter­

section cases, the generation of proxy polygons can be moved from the CPU to the

GPU. The intersection between a proxy plane and the bounding box of the vol­

ume has five different cases, ranging from 3 intersection points to 6 , as illustrated

at Figure 3.2. Let n ■ (x, y,z) = d represent a plane, where n is the normalized

plane normal and d is the signed distance between the origin and the plane, and let

Vi + Aei'j represent the edge E, j from vertex V) to V), where e,y = V) — Vi, then the

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.2: The intersection cases between a proxy plane and the volume bounding
box.

intersection between the plane and the edge can be computed by

—1 , otherwise.
(3.2)

If Ai'j € [0,1], there is a valid intersection; otherwise, no intersection.

The edges of the volume bounding box are checked following a specific order,

so that the intersection points can be obtained as a sequence that forms a valid

polygon. If Vq is the front vertex (the one closest to the viewpoint) and V7 is the

back vertex (the one farthest from the viewpoint), then the edges are divided into

six groups, as shown in Figure 3.3 marked w ith different colors. For a given plane

parallel to the viewport that does intersect w ith the bounding box, there is exactly

one intersection point for each of the three groups (red, blue and green), and at

most one intersection point for each of the other three groups (yellow, cyan and

purple). The six intersection points P0 to P5 are computed in the way described

in Table 3.1. For the other seven pairs of front and back vertices, the only extra

computation is to map each vertex to the corresponding vertex in this case, which

can be implemented as a simple table lookup.

In Rezk-Salama and Kolb's method [80], the coordinates of a sample point in

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V2

Figure 3.3: The traversal of the bounding box edges.

Table 3.1: The computation of the intersection points.

Point Checked Edges Intersection Position
P0 The red edges:

E0,i, Ei,4 and £4,7

Px The yellow edge: £ 4 ,5

Pa The green edges:
Eo,2, £ 2,5 and £ 5,7

The cyan edge: E2 , 6

The blue edges:
Eo,3/ E3,6 and E6,7

The purple edge: £ 3 , 4

^ i , j '

where (/,;) € {(0 ,1), (1 ,4), (4 ,7)} A A(// € [0,1]
f 3 i/5, A1 / 5 e [0 , 1];
\ P0, otherwise.
K j '
where (/,;) € {(0 ,2), (2 ,5), (5 ,7)} A A1<;- e [0,1]

^2,6/ ^2,6 € [0, 1];
P3, otherwise.

where (1, j) € {(0 ,3), (3 ,6), (6 ,7)} A \ j e [0,1]
^3 ,4 / ^3 , 4 € [0 , 1];
P4, otherwise._________________________

the world coordinate system are required to be the same as the coordinates of the

corresponding sample point in the texture coordinate system. However, this is not

true for most cases, where the size of the volume in the data coordinate system or

the world coordinate system is not the same as that in the texture coordinate sys­

tem. In MedVis, the box-plane intersection test is carried out in the data coordinate

sy stem . S in ce ty p ic a lly th e tex tu re co o rd in a tes n e e d to be n o rm a liz e d to a ra n g e be­

tween [0 , 1], a conversion of the valid intersection points' coordinates is required.

If the point Pfc intersects the edge Ei;y at the proportional position then each

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coordinate of the resulting texture-space intersection point P'k is obtained by:

where p denotes either x, y or z; B denotes the volume bounding box; and Bp

denotes the length of B in the p-direction. The coordinates of P'k are then scaled

and translated in order to sample near the center of the cubic region formed by

eight adjacent voxels in the texture memory.

One enhancement with respect to the rendering speed is also incorporated: the

sample interval is adjusted based on the size of the volume in the world coordinate

system and the distance from the viewpoint to the volume. This idea of adaptive

sample interval is like level-of-detail (LOD) in mesh simplification. The sample

interval is calculated by:

where S denotes the constant initial sample interval; F ^ 1 denotes the predefined

interval scale factor; Bx, By, and Bz denote the length of the volume bounding box B

in the x, y, and z-direction respectively; and max(d) denotes the distance between

the farthest vertex of B and the view plane.

Now that the proxy polygons are generated, one can then perform texture map­

ping. The fragment shader performs two texture lookups per fragment to attach

the textures onto the proxy polygons. The first texture lookup gets the scalar value

associated with the sample point from a 3D texture that holds the volumetric data.

The hardware does the trilinear interpolation automatically for every sample. The

second texture lookup uses the scalar value to get the corresponding color from

a 2D texture that encodes the transfer function. Then, the textured polygons are

written into the framebuffer from back to front to produce the final image. The

dataflow between the CPU and the GPU is illustrated in Figure 3.4.

The vertex program and the fragment program are both written in Cg, a high-

le v e l shading language developed by N VID IA . To exploit the most powerful profile

supported by a graphics card, the shader programs are compiled at runtime in­

stead of at compile time. Rezk-Salama and Kolb's method requires at least OpenGL

NV_vertex_program 3.0 profile to compile. However, to accommodate graphics cards

with different vertex processing capabilities, the amount of work assigned to the

vertex shader should vary from card to card. The more capable the programmable

Pk-P ~ ' eitj.p > 0 ;
1 A,- j, ^ 0 *

(3.3)

max(rf)

(3.4)

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Transfer Functions

Figure 3.4: The dataflow between the CPU and the GPU.

graphics hardware is, the larger the amount of processing are moved from the

CPU to the vertex shader. Currently, the vertex program has variations for all the

OpenGL vertex program profiles supported by the Cg compiler. The fragment pro­

gram only requires OpenGL ARB fragment program profile or OpenGL NV_texture_shader

and NV_register_combiners profile to compile, which are supported by all graphics

cards that have fragment shader programmability. Therefore, theoretically the pro­

posed GPU-based volume rendering program can be executed on any computer

with a programmable graphics card.

Gradient Opacity Mapping

Gradient opacity mapping can help amplify the boundaries between different ma­

terials, which can be used together w ith scalar color mapping in the classification

of the volume. The gradient g at every voxel is evaluated using finite difference

method. If the voxel does not lie on the volume boundary, its gradient is calculated

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by the central difference:

f { x + \ A x , y , z) ~ f (x - \ A x , y r z)
8x = A x

f { x , y + |A y ,z) — f { x , y — | Ay,z)
g , = ----------------------- A j ---------------------- <3'5)

f (x , y, z + \ Az) - f (x , y , z - \ A z)
* z = ---------------------- A i -----------------------

where f (x , y, z) denotes a function that returns the scalar value at volume location

(x, y, z). If the voxel is on the volume boundary, then at least one of its three gra­

dient components needs to be calculated by the forward or backward difference.

For instance, if the voxel is located at the bottom-left vertex of the back face of

the volume, all of its three gradient components are calculated using the forward

difference.

f (x + A x , y , z) - f (x , y , z)

g x ~ A i
_ f (x , y + Ay, z) — f (x , y, z)

~ ----------------- A j --------------- (3 ' 6)

f (x , y , z + A z) - f (x , y , z)
g z ~ Az

In another extreme case when the voxel is located at the top-right vertex of the

front face of the volume, all of its three gradient components are calculated using

the backward difference:

f (x , y , z) - f { x - A x . y . z)
g x ~ A i

f (x , y , z) - f { x , y - A y , z)
~ A y

f { x , y , z) —f (x , y , z — A z)
g z ~ A i

After the three components of a gradient g are evaluated, the magnitude ||g|| is

mapped to an opacity value a 1. Now, the final opacity of a voxel is ct' x a, where oc

is the opacity value obtained from the scalar opacity mapping. When the gradient

opacity mapping is incorporated, the transfer function moves from ID to 2D do­

main. When integrated with the GPU-based volume rendering, like the ID case, the

2D transfer function is also encoded in a 2D texture. The s-coordinate corresponds

to the scalar value and the t-coordinate corresponds to the gradient magnitude.

Each pixel of the 2D texture stores the quantized RGBA color associated with the

corresponding scalar-gradient pair.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.2 Stereo Rendering

Stereo rendering takes advantage of the binocular parallax, the horizontal difference

in the position of one object seen by each eye. The brain merges the two slightly

different 2D images. Therefore, if the rendering system generates the two images

based on each eye's viewing positions and delivers each image to the correspond­

ing eye, the user can experience stereopsis. As pointed out by Hodges [41], there

are two ways to present the left and right images: time parallel and time m ulti­

plexed. Time parallel methods display the two images simultaneously on a single

display or two separate displays. In the one-display case, the stereopsis is gener­

ated either by interlacing the images inside the display (e.g., the D TI Virtual Win­

dow) or by exploiting some external optical devices (e.g., the dual-projector polar­

ized passive stereo display). In the two-display case, i.e., the H M D , the generation

of stereo images is much easier. Since each small display is very close to both eyes,

each eye can only see the images shown on the display right in front of it. When

the two images are displayed separately, no extra work is needed for delivering the

correct images for each eye. Time multiplexed methods display the two images al­

ternately on a single display. W ith a pair of shutter glasses, the frequency of which

is synchronized w ith the display, at every time point, the currently displayed im ­

age is always delivered to the corresponding eye. When the alternate images are

displayed in sequence at 120 H z or more, the user can see a flicker-free 3D image.

Focal PointScreen Parallax
Eye AngleLeft Eye

Right Eye

Figure 3.5: Stereo rendering.

For both methods, the most important task is to generate the correct left and

right images based on the binocular parallax. When a virtual object is observed

through a display (or screen), the binocular parallax can be considered as an effect

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the screen parallax. Figure 3.5 illustrates how the screen parallax occurs. The

same point of the object is projected for each eye's respective viewing direction,

which results in two different footprints on the screen (or view plane in the world

coordinate system). To find the exact two positions that a point of the object is

projected to, the eye positions, the eye separation distance and the eye focal point

need to be obtained first. Based on this information, the left and right screen foot­

prints of an object can be calculated. The average eye separation distance is 6.35

cm. Alternatively, the eye angle can also be used to control the amount of parallax,

since the relative position of the virtual object to the view plane(s) can be easily

calculated. In MedVis, we use the eye angle to control the amount of the screen

parallax.

In practice, two virtual cameras are used to simulate the eyes in the world co­

ordinate system. For such time-parallel systems as the HM D, which uses two dis­

plays, when each camera is positioned along the corresponding eye's viewing di­

rection, a simple perspective projection to each of the two view planes (yellow line

segments in Figure 3.5) can generate the correct left and right images. For other

time-parallel systems with one display and time-multiplexed systems, the left and

right images share the same view plane (blue line segment in Figure 3.5). In this

case, an additional oblique projection is performed to project the images from each

camera's respective view plane to the shared view plane.

3.3 Hardware Setup

3.3.1 Desktop Version

In the desktop configuration MedVis runs on a consumer PC with an autostereo­

scopic display. The current configuration uses an 18-inch DTI autostereo display

(on the left) to deliver glassless stereoscopic imagery and a normal display (on the

right) to display the control interface, as shown in Figure 3.6.

As mentioned in Section 2.3.2, the DTI 3D display developed by Dimension

T ech n o log ies tak es a d v a n ta g e o f screen parallax to gen erate stereop sis. A sp ecia l

illumination plate is placed behind an LCD screen, so that the strips of the left and

right eye images are interlaced across the screen. Once the plate is illuminated, the

space before the screen is divided into alternate left eye and right eye zones the so

called sweet spot. When the user's left and right eyes are positioned in the left eye

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.6: MedVis desktop hardware setup.

and right eye zones respectively, the left eye can only see through the odd columns

of the LCD screen and the right eye can only see through the even columns. Hence,

each half of the pair of stereo images is delivered to the corresponding eye. As for

interaction, a 2D mouse is used to manipulate the volume or the control panel.

Since this version only requires to add one autostereoscopic display to a normal

PC setup, it can easily fit on a radiologist's workplace.

3.3.2 Immersive CAVE Version

Our CAVE is a 10' x 10' x 8 ' cube w ith rear-projected front, right and left walls, as

shown in Figure 3.7. The CAVE version runs on a cluster, where each cluster node

handles one of the three walls.

A Microsoft joystick (Figure 3.8) or InterSense motion tracker is used for navi­

gation or interaction. The current configuration employs an InterSense IS-900 (Fig­

ure 3.9), a 6 -DOF (degree of freedom) inertial-acoustic motion tracking system. A

head tracker is placed on the user's head or the shutter glasses, and a tracked wand

with 4 buttons is used by the user as a controller.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.7: MedVis CAVE hardware setup.

(a) Head tracker. (b) Wand.
Figure 3.8: Microsoft
force feedback joystick. Figure 3.9: InterSense IS-900.

3.4 Interaction M odalities

MedVis supports several types of interaction that helps analyze the medical vol­

umetric data, such as real-time manipulation of the transfer functions and trans­

formation of the displayed volume. Although the basic concepts remain the same

from th e d e sk to p in teraction m o d e to th e CA VE in teraction m o d e , th ere is so m e

difference between them.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.1 Desktop Interaction

In the desktop interaction mode, the transfer functions can be adjusted through a

2D widget, and for all the transfer function changes, the volume-rendered images

are updated correspondingly in realtime. The style of the widget resembles the one

used in VolView. Figure 3.10 shows the control panel.

Scalar Opacity Mapping:
E*s tfew Qptlon

takrw Mapper Typo; 3D Texture Mapper (CgHtftftesduHon)

SemplngOfctance(urtt! voxel):

Scalar Color Mapping:

■ r m i* F ir r
0 r w w w rm u w r r Gradient Opacity Mapping:

Figure 3.10: The desktop control panel.

The middle region of the control panel holds the transfer function editor. The

top part of the widget controls the scalar opacity mapping. Its background shows

the log-based histogram of the current scalar data. The foreground is the piecewise

linear opacity transfer function represented as a combination of lines and spheres.

The spheres are the control points that actually determine the shape of the transfer

function. Once a control point is selected, it is highlighted by changing its color

from blue to red and enlarging the radius. Once the control point loses focus, the

color and size are back to normal. Except for the two control points at the ends,

other control points can be added, deleted and moved u s in g a mouse to ch a n g e

the scalar opacity mapping. The end control points can only be moved upward or

downward and cannot be deleted for a transfer function to exist.

The middle part controls the scalar color mapping. The color representation

is based on the Hue, Saturation and Value (HSV) model. Below the histogram,

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is defined the same as in the scalar opacity mapping, is a color bar that

displays the current color transfer function. Once a control point is selected, the

palette right below the color bar is enabled and the user can change the color for

the current selected scalar value. Like in the scalar opacity mapping, except the two

control points on the ends, other control points can be added, deleted and moved

horizontally using a mouse to change the scalar color mapping.

The bottom part controls the gradient opacity mapping. Its background is the

log-based histogram of the gradients computed from the current scalar data. The

control points can be moved by a mouse but cannot be deleted nor added. The

use of the gradient opacity mapping is optional, which can be turned on/off at any

time.

Four interaction styles for transforming the displayed volume (e.g., rotation,

panning, etc.) are supported: joystick camera, joystick actor, trackball camera and

trackball actor. A mouse is used to simulate a joystick or trackball. The joystick

styles perform transformation based on the position of the mouse, while the track­

ball styles perform transformation based on the magnitude of the mouse motion.

The joystick-camera and trackball-camera styles normally guarantee a higher ren­

dering speed than the other two, because they move the camera instead of trans­

forming the volume. The volume can be re-sliced along the current viewing di­

rection and the slices are displayed in a separate window. Figure 3.11(a) shows

the slice viewer with slices generated from the pelvic volume displayed in Fig­

ure 3.11(b). Those interactions are defined in the InTml framework [29] to guar­

anty easy re-targeting to other VEs. InTml is an XML-based language developed

at the University of Alberta for the description of complex VR application systems

that allow to create formal model of interaction that is hardware-independent and

component-based, allowing for easy re-targeting and code re-use.

3.4.2 CAVE Interaction

In the CAVE interaction mode, the transfer function editor is a 3D extension of the

2D widget used in the desktop interaction mode. Figure 3.12 shows the 3D transfer

function editor. The bottom part controls the scalar opacity mapping and the top

part controls the scalar RGB color mapping. The 3D palette contains three regions

(from left to right): the hue/saturation display, the value display and the color

preview display.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) (b)

Figure 3.11: Re-slicing along the current viewing direction.

Figure 3.12: The CAVE control panel.

Although the appearance of the editor changes, the operations on the transfer

fu n c tio n s rem a in s im ila r to th o se in th e d e sk to p in tera c tio n m o d e . H o w e v e r , a s the

widget is placed in a 3D environment, the interaction is a little more complicated

than the 2D case. A wand (or joystick) is used instead of a 2D mouse. A red line

is drawn from the wand's position and along its direction. This red line serves as

a 3D pointer, like the idea employed by Zhang et al. [123]. This 3D pointer is used

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to manipulate the editor or the displayed volume. A thin bounding box of the

transfer function editor is updated whenever the position of the editor changes.

The point on the editor that the 3D pointer is aiming at is determined by the inter­

section between the bounding box and the infinite red line. The interaction style

for transforming the displayed volume resembles the joystick-camera style in the

desktop interaction mode.

3.5 Software Architecture

MedVis is built using several open-source toolkits and follows the object-oriented

programming paradigm. Figure 3.13 gives a high-level block diagram of the vi­

sualization pipeline. Medical data acquired from CT or M RI is usually stored in

DICO M format. The D ICO M image series are read in memory by the reader and or­

ganized in an internal structure, which is then passed to the renderer. The interactor

handles user input and exchanges states w ith the renderer to adjust the rendered

images. The rest of this section describes the underlying software architecture of

MedVis in detail.

3.5.1 Toolkits Used

Different toolkits are integrated together to support basic visualization and inter­

action, upon which more sophisticated techniques and algorithms are applied. A ll

the toolkits are cross-platform and widely used in their respective areas.

The Insight Toolkit

The Insight Toolkit (ITK) is an application programming interface (API) for image

processing, especially the segmentation and registration of medical images [1 2 0].

M ultiple registration methods and segmentation algorithms are supported. The

DICOM
Series

► R^der Renderer - * ^ 2 .
Jpf

►-Interactor ^

Figure 3.13: MedVis's visualization pipeline.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data processing pipeline of ITK supports not only an automatic updating mech­

anism that causes a filter to execute if and only if its input or its internal state

changes, but also streaming, the ability to automatically break data into smaller

pieces, process the pieces one by one, and reassemble the processed data into a fi­

nal result [70]. Images with DICOM format are read via the GDCM library (part

of ITK) and then treated as ITK internal images. Besides the support for reading

DICOM-format images, the ITK pipeline can be seamlessly connected to the VTK

(the Visualization Toolkit) pipeline. As such, ITK is chosen as the interface between

the DICOM format and MedVis's visualization classes.

The Visualization Toolkit

The Visualization Toolkit (VTK) is an open source C++ class library for 3D graphics

and visualization [91]. VTK is well-known for its powerful rendering capability:

Its rendering model supports 2D, polygonal, volumetric, and texture-based ap­

proaches that can be used in any combination [90]. Some of its design concepts

are the same as ITK, such as the separation of data objects and process objects, au­

tomatic updating mechanism. In addition, object factories and virtual functions are

largely utilized to maximize the portability and extensibility, which makes adding

new rendering classes (or classes of other purposes) very convenient. Although

VTK does not depend on any graphical user interface (GUI), it can be easily in­

tegrated with many existing G UI toolkits such as Qt, Tk and MFC. Due to VTK's

well-structured visualization pipeline and extensibility, it is chosen as a basic visu­

alization layer, upon which the MedVis's rendering model is built.

The Gimp Toolkit

The Gimp Toolkit (GTK+) is a multi-platform toolkit for creating graphical user in­

terfaces, which offers a complete set of 2D widgets [31]. The desktop interface of

MedVis is built on it as VTK does not provide any GUI. With vtkgtk, an interface for

using VTK within a GTK+ widget in the X Window system [34], VTK's rendering

output can be redirected into a GtkDrawingArea widget, therefore, a VTK render

window can be embedded into a GTK+ render window. GTK+ passes the received

user input signal (e.g., clicking a mouse button or pressing a key) to VTK's interac­

tor, where the actual processing takes place. We have extended vtkgtk to work in

the Windows environment and added new functions.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VR Juggler

VR Juggler is a virtual platform for the creation and execution of immersive appli­

cations, which provides a VR system-independent operating environment [6]. It

provides the abstraction of the hardware via the kernel interface and the abstrac­

tion of the graphics API via the draw manager. With a proper configuration file,

VR Juggler can automatically handle the correct projections for each w all in the

CAVE and the synchronization between each cluster node. The CAVE interface of

MedVis is built on it. As MedVis's visualization model is based on VTK's pipeline,

v jVTK [9] is employed to enable the use of VTK within VR Juggler.

The Virtual Reality Peripheral Network

The Virtual Reality Peripheral Network (VRPN) provides a device-independent and

network-transparent interface to VR peripherals [100]. It supports many devices,

including Microsoft joysticks and InterSense motion trackers. VR Juggler has a

VRPN driver that can act as an client and access the states of VR peripherals through

a VRPN server that runs separately from VR Juggler applications. Therefore, VRPN

is used together w ith VR Juggler to provide a uniform hardware interface for Med­

Vis's CAVE edition.

CMake

CMake is an open source build manager for software projects that allows develop­

ers to specify build parameters in a simple configuration file [64]. This file is then

used by CMake to generate native makefiles or workspaces for compilers or inte­

grated development environments (IDE) under various operating systems, such as

Microsoft Visual Studio under Windows or the GNU Compiler Collection (GCC)

under Linux. We use CMake to generate platform and compiler-dependent project

files for compiling MedVis in different environments, which enhances the portabil­

ity of MedVis.

3.5.2 MedVis Kernel Module

The kernel module deals with all VR setup-independent operations. The opera­

tions, together with the data structures that they are applied to, are encapsulated

in classes.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The D ICO M volumes are represented by the vtkDICOMVolume class, which

also takes care of rendering the volume into a 3D scene. Figure 3.14 illustrates

the structure of the vtkDICOMVolume class. The classes represented by the green

boxes are VTK's classes and those represented by the yellow boxes are MedVis's

kernel classes2. vtkDICOMVolume inherits VTK's vtkVolume. Besides the map­

pers that vtkVolume supports, vtkDICOMVolume has two additional rendering

options: vtkVolmeTextureMapper3DCg, which implements the GPU-based object-

order volume rendering algorithm described in Section 3.2.1, and vtkVolumeR-

ayCastMapper w ith vtkVolumeRayCastJitteredCompositeFunction, which imple­

ments the ray casting algorithm w ith jittered sample intervals described in Sec­

tion 3.2.1.

vtkDICOMVolume vtkVolumeTextureMapper3DCg

vtkVolumeReyCaitJitteredCompoiiteFunctlon

Figure 3.14: The vtkDICOMVolume class.

The manipulation of the transfer functions is carried out via a set of histogram

classes, as shown in Figure 3.15. The vtkHistogram class provides basic back­

ground histogram rendering, and foreground transfer function rendering and in­

teraction . Its th ree su b c la sse s , v tk C o lo rH isto g ra m , vtkOpacityHistogram and vtk-

GradientOpacityHistogram, control the specific rendering and interaction require­

ments for their respective transfer functions through their own interactor style

classes.

2 A ll the subsequent figures that illustrate MedVis's classes follow the same mode of representa­
tion.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vtkDICOMVolume

vtkColorMappingFunction

vtkColorHistogram
\ / 1

vtkHistogram

vtkOpacityMappingFunction ^ ^.ytkOpacityHistogram

t
vtkGradientOpacityMappingFunction^— ^vtkGradlentOpacityHlstogram

Figure 3.15: The histogram classes.

The vtkDICOMVolume and the histogram classes are connected by several trans­

fer function classes. For instance, the color mapping of vtkDICOMVolume is con­

trolled by vtkColorFIistogram via vtkColorMappingFunction. Whenever the vtk­

ColorMappingFunction is changed, the active mapper of vtkDICOMVolume up­

dates the rendering output accordingly.

3.5.3 MedVis Desktop Interface Module

The desktop interface module exports the kernel functions to the PC-based VR sys­

tems, like autostereoscopic displays. The time-parallel stereo rendering is imple­

mented by dividing the display window into a left viewport and a right viewport

and placing a virtual camera into each viewport. Generating the correct images for

each viewport is done in the vtkStereoRenderWindowInteractor class, as shown in

Figure 3.16. The classes represented by the blue boxes are Me Vi's desktop interface

classes. This class also handles the synchronization of the interaction in the two

viewports. The four interaction styles mentioned in Section 3.4.1 can be switched

at runtime via the vtkStereoInteractorStyleSwitch class.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.16: The vtkStereoRenderWindowInteractor class.

The desktop G U I is built upon GTK+. The vtkGtkStereoRenderWindowInter-

actor class embeds a vtkRenderWindow w ith two viewports (left and right) into a

GTK+ window. As shown in Figure 3.17, it is a subclass of the vtkStereoRender-

Windowlnteractor, which synchronizes the interaction in the two viewports, and

the vtkGtkRenderWindowInteractor, which actually connects the kernel rendering

output w ith GTK+'s drawing area and passes the user input signals intercepted by

GTK+ to the kernel.

Figure 3.17: The vtkGtkStereoRenderWindowInteractor class.

The abstraction of a high-level GUI class, together w ith the multiple inheri-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tance, facilitates the addition of basic interaction functions without modification to

the kernel module and subclasses that provide specific interactions. W ith the same

concept, the kernel histogram classes are extended to form a GTK+-style trans­

fer function editor. For instance, the relationship between the vtkGtkColorHis-

togram class and its superclasses is illustrated in Figure 3.18. The slice viewer

is implemented in the vtkGtkSliceViewer2 class (Figure 3.19) w ith the vtkGtklm -

ageViewer2 class displaying the current selected slice.

vtlcHUtogram

vtkColorHistogram

Figure 3.18: The vtkGtkColorHis- Figure 3 .1 9 ; The vtkGtkSlice-
togram class. Viewer2 class.

3.5.4 MedVis CAVE Interface Module

The CAVE interface module extends the kernel visualization pipeline into the im ­

mersive VE, CAVE. MedVis's CAVE G UI is built upon VR Juggler and vjVTK. VR

Juggler uses the application object instead of the traditional mainO function, and the

VR Juggler kernel schedules the application by calling the object's interface meth-

Figure 3.20: The vtkVRJApp class.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ods. MedVis's CAVE application interface is defined in the vtkVRJApp class. The

relationship between vtkVRJApp and its superclasses is illustrated in Figure 3.20.

The classes represented by the gray, brown and orange boxes are MedVis's CAVE

interface classes, vjVTK classes and VR Juggler classes respectively.

The base application object interface is defined in the vrj::App class, which is in

charge of initializing an application and invoking the frame functions during the

kernel frame loop. vrj::App's subclass vrj::GlApp defines the draw manager inter­

face that allows the rendering of OpenGL graphics. The VTKApp_mixin class cre­

ates a VTK rendering environment w ith derived vtkRenderWindow, vtkRenderer

and vtkCamera classes. The VTKApp class, derived from both vrj::GlApp and

VTKApp_mixin, renders a VTK scene into the VTK context setup by VTKApp_mixin

in the VR Juggler draw manager. The vtkVRJApp class utilizes the interfaces and

functions provided by VTKApp, and connects the MedVis's rendering classes and

interaction classes together to work correctly in the CAVE environment.

The vtkVRJDICOMVolume class (Figure 3.21), derived from vtkDICOMVol-

ume, uses vtkVRJVolumeTextureMapper3DCg to provide the hardware-accelerated

volume rendering. The vtkVRJVolumeTextureMapper3DCg class inherits all the

functions and properties of vtkVolumeTextureMapper3DCg except that the head

position is now determined by a position proxy that transfers the position data

captured in real world to VR Juggler-based applications.

vtkDICOMVolume vtkVolumeTextureMapper3DCg

Figure 3.21: The vtkVRJDICOMVolume class.

The transfer function editor in the CAVE is a 3D widget that provides the user

interface for real-time modification of the transfer functions. The structure of the

vtkVRJTransferFunctionEditor class is shown in Figure 3.22. The vtkVRJOpaci-

tyHistogram class controls the editing of the opacity mapping, while the vtkVR-

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JColorHistogram class, together w ith the vtkVRJColorSelection class that holds

the color palette, controls the editing of the RGB color mapping. The vtkVR-

JOpacityHistogram and vtkVRJColorHistogram classes both have a common su­

perclass, vtkVRJHistogram, which serves a basic interface between MedVis kernel

histogram classes and VR Juggler. Their the other respective superclasses (vtkOpac-

ityHistogram and vtkColorHistogram) are the classes that actually provide the spe­

cific interaction cababilities.

vtkColorSelection

vtkHistogram vtkColorHistogram

vtkOpadtyHistogram

Figure 3.22: The vtkVRJTransferFunctionEditor class.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Performance and Results

4.1 System Performance for Rendering

The system is tested on a dual-core 2.0GHz computer running Windows XP with

a 256MB-memory N V ID IA GeForce 7800 GTX graphics card. The data used for

testing is a medium-size (512x512x181) CT-scan of the pelvic region.

Table 4.1: The rendering times using different acceleration techniques.
Viewport Size Rendering Time (unit: second)

(unit: pixel) Without 13' With 0' Tex' 1.0 Tex' 1.15 Tex 1.0 Tex 1.15
2 0 0 x2 0 0 0.172 0.125 0.031 0.016 0.015 0.015
300x300 0.422 0.281 0.031 0.016 0.015 0.015
400x400 0 . 6 8 8 0.484 0.031 0.016 0.015 0.015
500x500 1.078 0.750 0.047 0.031 0.031 0.015
600x600 1.641 1.125 0.047 0.031 0.031 0.016
700x700 2.078 1.562 0.062 0.047 0.047 0.031
800x800 2.704 2.187 0.062 0.047 0.047 0.031
900x900 3.391 2.469 0.078 0.062 0.062 0.047

1 0 0 0 x1 0 0 0 4.312 3.062 0.094 0.078 0.078 0.047

Software-based ray casting provides high quality images, but only with small

viewports or for small data sets it can maintain an acceptable rendering speed,

even with the proposed ^'-acceleration. With the transfer functions shown at Fig­

ure 4.2(g), the rendering times using software ray casting with both early ray termi­

nation and /J'-acceleration and with only early ray termination are enumerated in

the first two columns of Table 4.1. Figure 4.1(a) depicts the two cases' performance

curves with respect to the viewport size. The x-axis is the size of the viewport in

pixels and the y-axis is the rendering speed in hertz. The dark gray line denotes

the performance of the method without ^'-acceleration, and the other line denotes

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 H-------------------------.------------------------ .------------------------ ■------------------------■------------------------ .------------------------ 1------------------------ 1------------------------ .-----------------------

200x200 300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000

Viewport Size (unit: pixel)
[Without Beta'-Acceleration With Beta'-Acceleration |

(a) Ray Casting.

70

60

C 50 3.
•oO
g .4 0</>mc

'g 30
■oc
& 20

10

0
700x700 800x800 900x900 1000x1000200x200 300x300 400x400 500x500 600x600

Viewport Size (unit: pixel)

[Tex 1.0 - » -T e x 1.15 ^ Tex’ I.O ^ e -T e x 11^15 [

(b) Object-Order.

Figure 4.1: The comparison of the rendering speeds using different acceleration
techniques.

the performance of the one with ^'-acceleration. On the average, software ray cast­

ing with both early ray termination (r=0 .0 2) and ^'-acceleration (T'=0 . 6 and /= 0 .1)

takes 28% less time than that with only early ray termination (P=0.02). The result­

ing images are shown in Figure 4.2(a)(b). There is no noticeable difference between

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(e) Tex' F = 1.0.

Scalar Opacity Mapping:

1.0

(f) Tex' F = 1.15.

-3024
Scalar Color Mapping:

1.0

1831

-3024 1831

(g) Transfer functions.

Figure 4.2: Volume rendering results of a CT-scanned pelvic region in MedVis.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these two images.

High-quality images and interactive rendering speed are both achieved by ex­

ploiting the processing power of the GPU. The rendering times under four different

conditions are enumerated in Table 4.1. Tex' 1.0 denotes no acceleration; Tex' 1.15

denotes adaptive sample interval w ith interval scale factor F=1.15; Tex 1.0 denotes

only with vertex shader acceleration; Tex 1.15 denotes with both acceleration tech­

niques and F=1.15. Figure 4.1(b) gives a comparison of the performance curves

under the four different conditions. In all cases, the rendering speed decreases as

the viewport grows, but even for the 1 0 0 0 x1 0 0 0 viewport the rendering times are

below 0 . 1 second, i.e., the rendering speeds are above the psycho-physical lim it of

10 Hz. With only adaptive sample interval enabled, when F=1.15, we get an av­

erage 33% speedup. With only vertex shader acceleration enabled, the algorithm's

performance is almost the same as Tex' 1.15. With both acceleration techniques en­

abled, when F=1.15, an average 53% speedup is achieved with respect to the Tex'

1.0 case and an average 28% speedup is achieved with respect to the Tex' 1.15 case.

Since stereo rendering is necessary, the actual rendering time is doubled. However,

an interactive frame rate is still maintained. Stereo volume rendering of this data

20

N
X

c
3 15

10 © ©aWo>
.5 *101_
©

■oc
©

5

0 J------------------ ■--------- ,--------- .--------- .---------■--------- .--------- .---------=--------- .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sample interval (unit: voxel)

Figure 4.3: The rendering speed of MedVis's GPU-based algorithm with different
sample intervals.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) s = 0.1.

(d) s = 0.4.

(g) a = 0.7.

(j) s = 1.0.

(b) s = 0.2. (c) s = 0.3.

(e) s = 0.5. (f) s = 0.6.

(h) s = 0.8.

Scalar Opacity Mapping:

(i) s = 0.9.

3024

Scalar Color Mapping:

1.0

(k) Transfer functions.

Figure 4.4: Volume rendering results of a CT-scanned pelvic region in MedVis w ith
different sample intervals.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

set into two 512x512 viewports using our method with F=1.0 has an average frame

rate of 17Hz. If F=1.15, the average frame rate is about 33Hz. The final images

are shown in Figure 4.2(c)-(f), together with the images produced by software ray

casting. From these images, no significant difference can be observed between the

image quality of image-order methods and that of object-order methods, as long as

the original data set is at high resolution.

Normally, the rendering speed increases as the sample interval increases. Fig­

ure 4.3 depicts the change of the rendering speed with respect to the sample in­

terval (from 0.1 to 1.0). The data is collected based on MedVis's GPU-based al­

gorithm with only inside-vertex-shader polygon generation acceleration enabled.

The x-axis is the sample interval in voxels and the y-axis is the rendering speed in

hertz. The applied transfer functions are shown in Figure 4.4(k). When s=0.1, the

rendering speed is lowest, i.e., 0.453 second to render a single image; but when s

decreases to 0.9 or 1.0, the rendering speed increases to 21.28 Hz, which is about 10

times faster than s=0.1. However, the image quality decreases as well, as shown in

Figure 4.4(a)-(j). There are noticeable differences when s increases from 0.1 to 0.3.

However, there is no noticeable difference when s increases from 0.3 to 1.0. This in­

dicates that when sample interval has reached a threshold (not necessarily a large

threshold), an even larger sample interval can be used to enhance the rendering

speed with almost no degradation of the image quality. The gradient opacity map­

ping is applied in addition to the scalar color-opacity mapping. This enables the

extraction of material boundaries. At Figure 4.4, the skin (a blue thin 3D surface) is

separated from other tissues.

4.2 Results for the Desktop Version

Figure 4.5 shows the rendering result of a CT-scanned abdomen (data size: 512x512x333)

in MedVis desktop version. The left and right images shown in Figure 3.6 are

merged together to form a 3D image. The user can observe the rendered volume

from any position, either inside the volume or outside the volume by transforming

the volume with a 2D mouse. The transfer functions and other control parameters

can be adjusted by the user using a 2D mouse at runtime, and the changes to the

volume are applied in realtime.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.5: Stereo volume rendering of a CT-scanned abdomen in the MedVis desk­
top version.

4.3 Results for the CAVE Version

Figure 4.6(a)(b) show the rendering results of an MRI-scanned heart in MedVis

CAVE version. M ultiple users can stay in the CAVE simultaneously to analyze the

data. The displayed volume can be transformed using the wand, or the user can

walk around to observe the data from different directions. The transfer function

editor (shown in Figure 4.6(a)) can be turned on /o ff (shown/hidden) at any time,

and it can be dragged by the wand to be placed in a convenient position. Like in

the desktop version, the changes of the transfer functions are applied to the volume

in realtime, i.e., the user can get the visual feedback of the influence of the current

transfer functions immediately. Figure 4.6(b) shows the visually segmented heart.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(b)

Figure 4.6: Volume rendering of an MRI-scanned heart in the MedVis CAVE ver­
sion.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusion and Future Work

This thesis presents the Medical Visualizer, a VR system for visualizing volumetric

medical data in various VR systems, ranging from non-immersive to immersive

systems. Our main goal is to provide radiologists more help in understanding

the data produced by CT and MRL Real-time high-quality stereo volume render­

ing and interactive manipulation of the color and transparency classifications are

supported for effectively analyzing the fine details in the data sets. Several vol­

ume rendering acceleration techniques are proposed for medical data visualiza­

tion. /3'-acceleration enhances the rendering speed of software-based ray casting

using voxels' opacity information, while vertex shader proxy polygon generation

and adaptive sample interval improve the performance of traditional hardware-

accelerated object-order volume rendering. Remarkable speedups are observed

from experiments on average-size medical data sets. In addition, since only an

autostereoscopic display and a standard PC are required, MedVis desktop version

can be easily incorporated into radiologists's daily workflow for pre-surgical plan­

ning or diagnosis. With MedVis CAVE version, radiologists can explore the vol­

umetric data sets in a more natural way and easily get a better understanding of

the 3D structure. The VR setup-dependent functions are separated from the ker­

nel module, which only deals with volume rendering and interactive classification.

The user interface modules handle stereo rendering and the connection between

th e G U I an d th e k ern el m o d u le . D u e to th e m o d u la r d es ig n , MedVis is a lso eas­

ily extensible to other virtual environment modalities, and new functions can be

incorporated rapidly.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Future Work

What is now required is to perform a user study to demonstrate the advantages of

our system relative to the traditional film-based approach. This is key for accept­

ability of this system in the radiology community as we are competing with a well

established practice and it is up to us to prove that this approach does improve the

effectiveness of radiologists to analyze their data sets. Furthermore, we are also

exploring more efficient and effective rendering algorithms using GPU clusters to

handle larger and larger data sets produced by doppler M RI and temporal CT. In

addition, based on modular design concept, we w ill extend MedVis to work in

other VR setups (e.g., with haptic feedback) that may provide more help to radiol­

ogists in understanding the data sets.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Advanced Visual Systems Inc. AVS/Express. http://ww w .avs.com /.

[2] M. Agrawala, A. C. Beers, I. McDowall, B. Frohlich, M. Bolas, and P. Han-
rahan. The two-user Responsive Workbench: support for collaboration
through individual views of a shared space. In SIGGRAPH '97: Proceedings of
the 24th annual conference on Computer graphics and interactive techniques, pages
327-332,1997.

[3] K. Akeley. Realityengine graphics. In SIGGRAPH '93: Proceedings of the 20th
annual conference on Computer graphics and interactive techniques, pages 109-
116,1993.

[4] J. Arvo and K. Novins. Iso-contour volume rendering. In W S '94: Proceedings
of the 1994 symposium on Volume visualization, pages 115-122,1994.

[5] T. Balogh. The HoloVizio system. In Proceedings of SP1E, Stereoscopic displays
and virtual reality systems X III , volume 6055, pages 279-290,2006.

[6] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-Neira.
VR Juggler: a virtual platform for virtual reality application development. In
VR '01: Proceedings of the Virtual Reality 2001 Conference, pages 89-97,2001.

[7] A. P. D. Binotto, J. L. D. Comba, and C. M. D. Freitas. Real-time volume ren­
dering of time-varying data using a fragment-shader compression approach.
In PVG '03: Proceedings of the 2003 IEEE symposium on Parallel and large-data
visualization and graphics, pages 69-75, 2003.

[8] G. Bishop and H. Fuchs. Research directions in virtual environments: re­
port of an NSF invitational workshop, march 23-24,1992, university of north
Carolina at chapel hill. A C M SIGGRAPH Computer Graphics, 26(3):153-177,
1992.

[9] K. Blom. vjVTK: a toolkit for interactive visualization in virtual reality. In
VRST '01: Proceedings of the A C M symposium on Virtual reality software and
technology, pages 17-19,2006.

[10] F. P. Brooks. What's real about virtual reality? IEEE Computer Graphics and
A p p l ic a t io n s , 19(6):16-27 ,1999.

[11] S. Bryson. Virtual reality in scientific visualization. Communications of the
A C M , 39(5):62-71,1996.

[12] S. Bryson and M. Gerald-Yamasaki. The distributed virtual wind tunnel. In
Supercomputing '92: Proceedings of the 1992 AC M /IEEE conference on Supercom­
puting, pages 275-284,1992.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.avs.com/

[13] G. C. Burdea and P. Coiffet. Virtual reality technology. Wiley-IEEE Press, sec­
ond edition, 2003.

[14] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomo­
graphic reconstruction using texture mapping hardware. In VVS '94: Pro­
ceedings of the 1994 symposium on Volume visualization, pages 91-98,1994.

[15] O. Cakmakci and J. Rolland. Head-worn displays: a review. Journal of Display
Technology, 2(3):199-216,2006.

[16] E. E. Catmull. A subdivision algorithm for computer display of curved surfaces.
PhD thesis, University of Utah, 1974.

[17] F. C. Crow. Summed-area tables for texture mapping. A C M SIGGRAPH Com­
puter Graphics, 18(3):207-212,1984.

[18] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-screen projection-
based virtual reality: the design and implementation of the CAVE. In SIG­
G RAPH '93: Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, pages 135-142,1993.

[19] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart. The
CAVE: audio visual experience automatic virtual environment. Communica­
tions of the A C M , 35(6):64-72,1992.

[20] M . Czemuszenko, D. Pape, D. Sandin, T. DeFanti, G. L. Dawe, and M. D.
Brown. The ImmersaDesk and Infinity Wall projection-based virtual reality
displays. A C M SIGGRAPH Computer Graphics, 31(2):46-49,1997.

[21] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kaufman. High-quality
volume rendering using texture mapping hardware. In HWWS '98: Proceed­
ings of the A C M SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware,
pages 69-77,1998.

[22] J. Danskin and P. Hanrahan. Fast algorithms for volume ray tracing. In VVS
'92: Proceedings of the 1992 workshop on Volume visualization, pages 91-98,1992.

[23] Dimension Technologies Inc. Virtual Window, http://w w w .dti3d.com /.

[24] N. A. Dodgson, J. R. Moore, S. R. Lang, G. J. Martin, and P. M . Canepa. A 50"
time-multiplexed autostereoscopic display. In Proceedings ofSPIE, Stereoscopic
displays and virtual reality systems V II, volume 3957, pages 177-183,2000.

[25] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. In SIG­
G RAPH '88: Proceedings of the 15th annual conference on Computer graphics and
interactive techniques, pages 65-74,1988.

[26] T. T. Elvins. A survey of algorithms for volume visualization. A C M SIG­
G RAPH Computer Graphics, 26(3):194-201,1992.

[27] A . E ntezari, R. S cogg in s, T. M oller, an d R. M achiraju. S h a d in g for fourier
volume rend erin g . In VVS '02: Proceedings of the 2002 IEEE symposium on
Volume visualization and graphics, pages 131-138, 2002.

[28] G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Rich­
mond, and W. S. Chun. 100-million-voxel volumetric display. In Proceed­
ings ofSPIE, Cockpit displays IX : Displays for defense applications, volume 4712,
pages 300-312, 2002.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dti3d.com/

[29] P. Figueroa, M. Green, and H. J. Hoover. InTml: a description language for
VR applications. In Web3D '02: Proceeding of the seventh international conference
on 3D Web technology, pages 53-58, 2002.

[30] A. S. Forsberg, D. H. Laidlaw, A. van Dam, R. M. Kirby, G. E. Karniadakis,
and J. L. Elion. Immersive virtual reality for visualizing flow through an
artery. In VIS '00: Proceedings of the conference on Visualization '00, pages 457-
460,2000.

[31] GNOME Foundation. The Gimp Toolkit, h ttp://w w w .gtk.org /.

[32] B. Frohlich, S. Barrass, B. Zehner, J. Plate, and M. Gobel. Exploring geo-
scientific data in virtual environments. In VIS '99: Proceedings of the conference
on Visualization '99, pages 169-173,1999.

[33] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley, Inc., first edition, 1995.

[34] D.Grobgeld. vtkgtk. http://im agic.w eizm ann.ac.il/dov/freesw /gtk/vtkgtk/.

[35] S.-Y. Guan and R. G. Lipes. Innovative volume rendering using 3d texture
mapping. In Proceedings ofSPIE, Medical imaging 1994: image capture, format­
ting, and display, volume 2164, pages 382-392,1994.

[36] M. Hadwiger, C. Berger, and H. Hauser. High-quality two-level volume ren­
dering of segmented data sets on consumer graphics hardwarem. In VIS '03:
Proceedings of the conference on Visualization '03, pages 301-308,2003.

[37] M. Halle. Autostereoscopic displays and computer graphics. In SIGGRAPH
'05: A C M SIGGRAPH 2005 Courses, page 104,2005.

[38] N. Hata, T. Wada, T. Chiba, Y. Tsutsumi, Y. Okada, and T. Dohi. Three-
dimensional volume rendering of fetal MR images for the diagnosis of con­
genital cystic adenomatoid malformation. Academic Radiology, 10(3):309-312,
2003.

[39] H. Hauser, L. Mroz, G. I. Bischi, and M. E. Groller. Two-level volume render­
ing. IEEE Transactions on Visualization and Computer Graphics, 7(3):242-252,
2001.

[40] P. S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Ap­
plications, 6(11):56—67,1986.

[41] L. F. Hodges. Tutorial: time-multiplexed stereoscopic computer graphics.
IEEE Computer Graphics and Applications, 12(2):20-30,1992.

[42] V. Jaswal. CAVEvis: distributed real-time visualization of time-varying scalar
and vector fields using the CAVE virtual reality theater. In VIS '97: Proceed­
ings of the 8th conference on Visualization '97, pages 301-308,1997.

[43] A . Johnson , J. L eigh , P. M orin , an d P. Van K eken. G eoW all: stereoscop ic
visualization for geoscience research and education. IEEE Computer Graphics
and Applications, 2(6):10-14,2006.

[44] J. T. Kajiya and B. P. Von Herzen. Ray tracing volume densities. A C M SIG­
GRAPH Computer Graphics, 18(3):165-174,1984.

[45] A. C. Kak and M. Slaney. Principles of computerized tomographic imaging. Soci­
ety for Industrial and Applied Mathematics, 2001.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gtk.org/
http://imagic.weizmann.ac.il/dov/freesw/gtk/vtkgtk/

[46] A. E. Kaufman. Volume visualization. A C M Computing Surveys, 28(1):165-
167,1996.

[47] H. Kaufmann, D. Schmalstieg, and M . Wagner. Construct3D: a virtual reality
application for mathematics and geometry education. Education and Informa­
tion Technologies, 5(4):263-276,2000.

[48] Kitware Inc. VolView. http://ww w .kitw are.com /.

[49] Kitware Inc., Sandia National Laboratories, Los Alamos National
Laboratory, Army Research Laboratory, and CSimSoft. ParaView.
http://www.paraview .org/.

[50] J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume rendering using
multi-dimensional transfer functions and direct manipulation widgets. In
VIS '01: Proceedings of the conference on Visualization '01, pages 255-262,2001.

[51] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions
for interactive volume rendering. IEEE Transactions on Visualization and Com­
puter Graphics, 8(3):270-285, 2002.

[52] J. Kniss, J. P. Schulze, U. Wossner, P. Winkler, U. Lang, and C. Hansen. Med­
ical applications of multi-field volume rendering and VR techniques. In Pro­
ceedings of the Joint Eurographics-IEEE TCVG symposium on Visualization, pages
249-254,2004.

[53] A. Kratz, M. Hadwiger, R. Splechtna, A. Fuhrmann, and K. Buhler. GPU-
based high-quality volume rendering for virtual environments. In Proceed­
ings of international workshop on Augmented environments for medical imaging
and computer aided surgery, 2006.

[54] J. Kruger and R. Westermann. Acceleration techniques for GPU-based vol­
ume rendering. In VIS '03: Proceedings of the 14th IEEE Visualization 2003,
pages 287-292,2003.

[55] W. Kruger, C.-A. Bohn, B. Frohlich, H. Schiith, W. Strauss, and G. Wesche.
The Responsive Workbench: a virtual work environment. Computer,
28(7):42-48,1995.

[56] P. Lacroute and M . Levoy. Fast volume rendering using a shear-warp fac­
torization of the viewing transformation. In SIGGRAPH '94: Proceedings of
the 21st annual conference on Computer graphics and interactive techniques, pages
451-458,1994.

[57] R. J. Lapeer, R. S. Rowland, and M. S. Chen. Pc-based volume rendering for
medical visualisation and augmented reality based surgical navigation. In
IV '04: Proceedings of the 8th international conference on Information visualisation,
pages 67-72,2004.

[58] D. Laur and P. Hanrahan. Hierarchical splatting: a progressive refinement
algor ith m for v o lu m e rend erin g . In S IG G R A P H '91: Proceedings o f the 18th
annual conference on Computer graphics and interactive techniques, pages 285-
288,1991.

[59] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and
Applications, 8(3):29-37,1988.

[60] M . Levoy. Efficient ray tracing of volume data. A C M Transactions on Graphics,
9(3):245-261,1990.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.kitware.com/
http://www.paraview.org/

[61] M . Levoy, H. Fuchs, S. M. Pizer, J. Rosenman, E. L. Chaney, G. W. Sherouse,
V. Interrante, and J. Kiel. Volume rendering in radiation treatment planning.
In Proceedings of the first conference on Visualization in biomedical computing,
pages 22-25,1990.

[62] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d sur­
face construction algorithm. In SIGGRAPH '87: Proceedings of the 14th annual
conference on Computer graphics and interactive techniques, pages 163-169,1987.

[63] T. Malzbender. Fourier volume rendering. A C M Transactions on Graphics,
12(3):233-250,1993.

[64] K. Martin and B. Hoffman. Mastering Cmake: a cross-platform build system.
Kitware Inc., 2006.

[65] B. H. McCormick, T. A. DeFanti, and M. D. Brown. Visualization in scientific
computing. A C M SIGGRAPH Computer Graphics, 21(6), 1987.

[6 6] M . Meifiner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A practical eval­
uation of popular volume rendering algorithms. In W S '00: Proceedings of
the 2000 IEEE symposium on Volume visualization, pages 81-90,2000.

[67] B. Mora, J. P. Jessel, and R. Caubet. A new object-order ray-casting algorithm.
In VIS '02: Proceedings of the conference on Visualization '02, pages 203-210,
2002.

[6 8] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. High-quality splatting on
rectilinear grids with efficient culling of occluded voxels. IEEE Transactions
on Visualization and Computer Graphics, 5(2):116—134,1999.

[69] H . Nagahara, Y. Yagi, and M. Yachida. Wide field of view catadioptrical head-
mounted display. In Proceedings of the 2003 IEEE/RSJ international conference
on Intelligent robots and systems, volume 4, pages 3738-3743,2003.

[70] L. Ib4 nez and W. Schroeder. The IT K software guide. Kitware Inc., second
edition, 2005.

[71] D. Pape, J. Anstey, and G. Dawe. Low-cost projection-based virtual reality
display. In Proceedings ofSPIE, Stereoscopic displays and virtual reality systems
IX , volume 4660, pages 483-491,2002.

[72] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive ray
tracing for isosurface rendering. In VIS '98: Proceedings of the conference on
Visualization '98, pages 233-238,1998.

[73] R. Pausch. Virtual reality on five dollars a day. In C H I '91: Proceedings of the
SIG C HI conference on Human factors in computing systems, pages 265-270,1991.

[74] H . Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The volumepro
real-time ray-casting system. In SIGGRAPH '99: Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, pages 251-260,1999.

[75] H. Pfister and A. Kaufman. Cube-4 - a scalable architecture for real-time
volume rendering. In W S ’96: Proceedings of the 1996 symposium on Volume
visualization, pages 47-54,1996.

[76] W. Qi, R. M. Taylor II, C. G. Healey, and J.-B. Martens. A comparison of
immersive HM D, fish tank VR and fish tank with haptics displays for vol­
ume visualization. In A PG V '06: Proceedings of the 3rd symposium on Applied
perception in graphics and visualization, pages 51-58, 2006.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[77] P. J. Rajlich. An object oriented approach to developing visualization tools
portable across desktop and virtual environments. Master's thesis, Univer­
sity of Illinois at Urbana-Champaign, 1998.

[78] D. Rantzau, K. Frank, U. Lang, D. Rainer, and U. Wossner. COVISE in the
CUBE: an environment for analyzing large and complex simulation data. In
Proceedings of the 2nd Workshop on Immersive Projection Technology, 1998.

[79] A. G. Requicha. Representations for rigid solids: theory, methods, and sys­
tems. A C M Computing Surveys, 12(4):437-464,1980.

[80] C. Rezk-Salama and A. Kolb. A vertex program for efficient box-plane inter­
section. In Proceedings of the 10th international fa ll workshop on Vision, modeling
and visualization, 2005.

[81] W. Ribarsky, J. Bolter, A. Op den Bosch, and R. van Teylingen. Visualization
and analysis using virtual reality. IEEE Computer Graphics and Applications,
14(1):10-12,1994.

[82] G. Riva. Applications of virtual environments in medicine. Methods of Infor­
mation in Medicine, 42(5):524-534,2003.

[83] J. Rohlf and J. Helman. IRIS performer: a high performance multiprocessing
toolkit for real-time 3D graphics. In SIGGRAPH '94: Proceedings of the 21st
annual conference on Computer graphics and interactive techniques, pages 381-
394,1994.

[84] D. Salzman and J. von Neumann. Visualization in scientific computing: sum­
mary of an nsf-sponsored panel report on graphics, image processing, and
workstations. International Journal of High Performance Computing Applications,
1:106-108,1987.

[85] D. J. Sandin, T. Margolis, J. Ge, J. Girado, T. Peterka, and T. A. DeFanti. The
Varrier™ autostereoscopic virtual reality display. A C M Transactions on Graph­
ics, 24(3):894-903,2005.

[8 6] H. Scharsach. Advanced GPU raycasting. In Proceedings of CESCG 2005,
pages 69-76,2005.

[87] H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, and K. Btihler. Per­
spective isosurface and direct volume rendering for virtual endoscopy appli­
cations. In Proceedings ofEurovis/IEEE-VGTC symposium on Visualization, 2006.

[8 8] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavdri, L. M. Encama^ao,
M . Gervautz, and W. Purgathofer. The studierstube augmented reality
project. Presence: Teleoperators and Virtual Environments, 11(1):33—54,2002.

[89] J. Schneider and R. Westermann. Compression domain volume rendering. In
VIS '03: Proceedings of the 14th IEEE Visualization 2003, pages 293-300,2003.

[90] W. J. Schroeder, L. S. Avila, and W. Hoffman. Visualizing with VTK: a tutorial.
IEEE Computer Graphics and Applications, 2 0 (5):2 0 -2 7 ,2000.

[91] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The design and implemen­
tation of an object-oriented toolkit for 3D graphics and visualization. In VIS
'96: Proceedings of the 7th conference on Visualization '96, pages 93-102,1996.

[92] }. P. Schulze and U. Lang. The parallelization of the perspective shear-warp
volume rendering algorithm. In EGPGV '02: Proceedings of the fourth Euro­
graphics workshop on Parallel graphics and visualization, pages 61-69, 2002.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[93] J. P. Schulze, U. Wossner, S. P. Walz, and U. Lang. Volume rendering in a
virtual environment. In Proceedings of the 5th IP T W and Eurographics Virtual
environments, pages 187-198, 2001.

[94] Sensics Inc. piSight. http://www.sensics.com/.

[95] W. Shroeder, K. Martin, and B. Lorensen. The visualization toolkit: an object-
oriented approach to 3D graphics. Pearson Education, Inc., fourth edition, 2006.

[96] A. Sourin, O. Sourina, and H. T. Sen. Virtual orthopedic surgery training.
IEEE Computer Graphics and Applications, 20(3):6-9,2000.

[97] A. Sullivan. Depthcube solid-state 3d volumetric display. In Proceedings of
SPIE, Stereoscopic displays and virtual reality systems X I, volume 5291, pages
279-284, 2004.

[98] I. E. Sutherland. The ultimate display. In Proceedings of the IF IP Congress,
volume 2, pages 506-508,1965.

[99] I. E. Sutherland. A head-mounted three dimensional display. In Proceedings
of the AFIPS Fall Joint Computer Conference, volume 33, pages 757-764,1968.

[100] R. M . Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and A. T. Helser.
Vrpn: a device-independent, network-transparent VR peripheral system. In
VRST '01: Proceedings of the A C M symposium on Virtual reality software and
technology, pages 55-61,2001.

[101] M . A. Teitel. The Eyephone: a head-mounted stereo display. In Proceedings of
SPIE, Stereoscopic displays and applications, volume 1256, pages 168-171,1990.

[102] T. Totsuka and M. Levoy. Frequency domain volume rendering. In SIG­
G RAPH '93: Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, pages 271-278,1993.

[103] C. Upson and M. Keeler. V-buffer: visible volume rendering. In SIGGRAPH
'88: Proceedings of the 15th annual conference on Computer graphics and interactive
techniques, pages 59-64,1988.

[104] A. van Dam, A. S. Forsberg, D. H. Laidlaw, J. J. La Viola, and R. M . Simpson.
Immersive VR for scientific visualization: a progress report. IEEE Computer
Graphics and Applications, 20(6):26-52, 2000.

[105] T. van der Schaaf, D. M. Germans, M. Koutek, and H. E. Bal. ICWall: a
calibrated stereo tiled display from commodity components. In VRCIA '06:
Proceedings of the 2006 A C M international conference on Virtual reality continuum
and its applications, pages 289-296,2006.

[106] A. Van Gelder and K. Kim. Direct volume rendering with shading via three-
dimensional textures. In W S '96: Proceedings of the 1996 symposium on Volume
visualization, pages 23-30,1996.

[107] I. Viola, A. Kanitsar, and M . E. Groller. GPU-based frequency domain volume
rendering. In SCCG '04: Proceedings of the 20th spring conference on Computer
graphics, pages 55-64,2004.

[108] C. Ware, K. Arthur, and K. S. Booth. Fish tank virtual reality. In C H I '93:
Proceedings of the SIG CHI conference on Human factors in computing systems,
pages 37-42,1993.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sensics.com/

[109] Z. Wartell, L. F. Hodges, and W. Ribarsky. Characterizing image fusion tech­
niques in stereoscopic htds. In Proceedings of Graphics interface 2001, pages
223-232, 2001.

[110] M. A. Westenberg and J. B. T. M . Roerdink. Frequency domain volume ren­
dering by the wavelet x-ray transform. IEEE Transactions on Image Processing,
9(7):1249-1261, 2000.

[111] L. Westover. Interactive volume rendering. In W S '89: Proceedings of the 1989
Chapel H ill workshop on Volume visualization, pages 9-16,1989.

[112] L. Westover. Footprint evaluation for volume rendering. A C M SIGGRAPH
Computer Graphics, 24(4):367-376,1990.

[113] J. Wilhelms and A. Van Gelder. A coherent projection approach for direct
volume rendering. A C M SIGGRAPH Computer Graphics, 25(4):275-284,1991.

[114] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. A C M
SIGGRAPH Computer Graphics, ll(3):201-227,1992.

[115] R. Yagel, D. Cohen, and A. Kaufman. Discrete ray tracing. IEEE Computer
Graphics and Applications, 12(5):19-28,1992.

[116] R. Yagel and A. Kaufman. Template-based volume viewing. In Computer
Graphics Forum (Proceedings of EUROGRAPHICS '92), volume 11, pages 153-
167,1992.

[117] R. Yagel, A. Kaufman, and Q. Zhang. Realistic volume imaging. In VIS '91:
Proceedings of the 2nd conference on Visualization '91, pages 226-231,1991.

[118] R. Yagel and Z. Shi. Accelerating volume animation by space-leaping. In VIS
'93: Proceedings of the 4th conference on Visualization '93, pages 62-69,1993.

[119] T. S. Yoo, editor. Insight into images: principles and practice for segmentation,
registration, and image analysis. A K Peters, Ltd., first edition, 2004.

[120] T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Ayl-
ward, D. Metaxes, and R. Whitaker. Engineering and algorithm design for
an image processing API: a technical report on ITK - the Insight Toolkit. In
Proceedings of Medicine Meets Virtual Reality, pages 586-592,2002.

[121] A. Yoshida, J. P. Rolland, and J. H. Reif. Design and applications of a high-
resolution insert head-mounted-display. In VRAIS '95: Proceedings of the vir­
tual reality annual international symposium, volume 4, pages 84-93,1995.

[122] R. Zajtchuk and R. M . Satava. Medical applications of virtual reality. Com­
munications of the A C M , 40(9):63-64,1997.

[123] S. Zhang, C. Demiralp, D. F. Keefe, M . DaSilva, D. H. Laidlaw, B. D. Green­
berg, P. J. Basser, C. Pierpaoli, E. A. Chiocca, and T. S. Deisboeck. An im­
mersive virtual environment for DT-MRI volume visualization applications:
a case study. In VIS '01: Proceedings of the conference on Visualization '01, pages
437-440, 2001.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Cg Code

A .l Vertex Shader Code

void V_ComputingPolygons(
int2 p o s : POSITION,
uniform float dPlaneStart,
uniform float4x4 modelViewProj,
uniform float frontlndex,
uniform float dPlanelncr,
uniform float3 vecVertices[ll],
imiform float nSequence[64],
uniform float vl[24],
uniform float v2[24],
out float4 v er tex : POSITION,
out float3 texCoordO : TEXCOORDO)

f
float dPlaneDist = dPlaneStart + pos.y * dPlanelncr;
float3 position;
float3 vecV l, vecV2, vecDir;
float denom, lambda;
int i = 0, v id x l, vidx2;
for (i = 0; i < 4; i++)

(
vid x l = int(nSequence[int(frontIndex * 8 + v l[p os.x * 4 + i])]);
vidx2 = int(nSequence[int(frontIndex * 8 + v2[pos.x * 4 + i])]);
vecV l = vecVertices[vidxl];
vecV2 = vecVertices[vidx2];
vecDir = vecV2 - vecVl;
denom = dot(vecDir, vecVertices[8]);
lambda =

(denom != 0)?(dPlaneDist - dot(vecV l, vecVertices[8]))/denom:-1.0;
if (lambda >= 0.0 && lambda <= 1.0)
I

position = vecV l + lambda * vecDir;
break;

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vertex = mul(modelViewProj, float4(position, 1.0));
if (vecDir.x == 0)

texCoordO.x = (vecV l.x == vecVertices[0].x)?l:0;
else

texCoordO.x = (vecDir.x > 0)?lambda:(l - lambda);
if (vecDir.y == 0)

texCoordO.y = (vecV l.y == vecVertices[0].y)?l:0;
else

texCoordO.y = (vecDir.y > 0)?lambda:(l - lambda);
if (vecDir.z == 0)

texCoordO.z = (vecV l.z == vecVertices[0].z)?l:0;
else

texCoordO.z = (vecDir.z > 0)?lambda:(l - lambda);
texCoordO = texCoordO * vecVertices[9] + vecVertices[10];

A.2 Fragment Shader Code

void F_Sampling(
float3 texCoordO: TEXCOORDO,
out float4 color : COLOR,
uniform sampler3D volum e : TEXO,
uniform sam pler2D colorLookup : TEX1)

(

color = tex2D(colorLookup, tex3D(volum e, texCoordO).ar);

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

GPU-Based Volume Rendering

B.l vtkVolumeTextureMapper3DCg.h

class vtkVolumeTextureM apper3DCg: public vtkVolumeTextureMapper3D 1
public:

virtual vo id Initialize()
virtual v o id Render (vtkRenderer* ren, vtkVolume* vol);

static const float V_START_INDICES[24];
static const float V_END_INDICES[24];
static const float N_SEQUENCE[64];

protected:

virtual vo id ComputePolygonsParameters(vtkRenderer* ren,
vtkVolume* vol, float vertices[][3], float tCoordScale[3],
float tCoordOffset[3], double plane[4], double &minDistance,
double &stepSize, int &frontIndex);

virtual v o id ComputePolygonsFP(vtkRenderer* ren, vtkVolume* vol);
virtual vo id Com putePolygonsVPFPl (vtkRenderer* ren, vtkVolume* vol);
virtual vo id ComputePolygonsVPFP2(vtkRenderer* ren, vtkVolume* vol);
virtual vo id ComputePolygonsVPFP3(vtkRenderer* ren, vtkVolume* vol);
virtual vo id ComputePolygonsVPFP4(vtkRenderer* ren, vtkVolume* vol);

virtual int UpdateVolumes();
virtual int UpdateColorLookup (vtkVolume* vol);
virtual void RenderFP(vtkRenderer* ren, vtkVolume* vol);
virtual vo id RenderVPFP(vtkRenderer* ren, vtkVolume* vol);
void RenderOneIndependentNoShadeVPFP(vtkRenderer* ren,

vtkVolume* vol);

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void SetupOneIndependentTextures(vtk Volume* vol);
void Setup3DTextureParameters(vtkVolumeProperty* property);
void RenderPolygonsfvtkRenderer* ren, vtkVolume* vol);

private:

B.2 vtkVolumeTextureMapper3DCg.cxx

void vtkVolumeTextureMapper3DCg::Initialize()
(

if (this->RenderMethod >= VPFPl_CG_METHOD)

(
if (this->RenderMethod == VPFPl_CG_METHOD)

this->CGVertexProgram = cgCreateProgram(this->CGContext,
CG_SOURCE, vtkVolumeTextureMapper3DCg_OneComponentBasicV,
this->CGVertexProfile, "V_Passthrough", NULL);

else if (this->RenderMethod == VPFP2_CG_METHOD)
this->CGVertexProgram = cgCreateProgram(this->CGContext,

CG_SOURCE, vtkVolumeTextureMapper3DCg_OneComponentV2,
this->CGVertexProfile, "V_ComputingPolygons", NULL);

else if (this->RenderMethod == VPFP3_CG_METHOD)
this->CGVertexProgram = cgCreateProgram(this->CGContext,

CG_SOURCE, vtkVolumeTextureMapper3DCg_OneComponentV3,
this->CGVertexProfile, "V_ComputingPolygons", NULL);

else if (this->RenderMethod == VPFP4_CG_METHOD)
this->CGVertexProgram = cgCreateProgram(this->CGContext,

CG_SOURCE, vtkVolumeTextureMapper3DCg_OneComponentV4,
this->CGVertexProfile, ”V_ComputingPolygons", NULL);

this->CGFragmentProgram = cgCreateProgram(this->CGContext,
CG_SOURCE, vtkVolumeTextureMapper3DCg_OneComponentNoShadeF,
this->CGFragmentProfile, "F_Sampling", NULL);

if (this->RenderMethod == VPFP4_CG_METHOD)
(

CGparameter CGparameter_nSequence =
cgGetNamedParameter(this->CGVertexProgram, "nSequence");

cgGLSetParameterArraylf(CGparameter_nSequence, 0, 64,
vtkVolumeTextureMapper3DCg::N_SEQUENCE);

CGparameter CGparameter_vl =
cgGetNamedParameter(this->CGVertexProgram, "vl");

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cgGLSetParameterArraylf(CGparameter_vl, 0 ,24 ,
vtkVolumeTextureMapper3DCg::V_START_INDICES);

CGparameter CGparameter_v2 =
cgGetNamedParameter(this->CGVertexProgram, "v2");

cgGLSetParameterArraylf(CGparameter_v2,0 ,24,
vtkVolumeTextureMapper3DCg::V_END_INDICES);

void vtkVolumeTextureMapper3DCg::Render(vtkRenderer* ren,
vtkVolume* vol)

if (this->RenderM ethod == FP_CG_METHOD)
this->RenderFP(ren, vol);

else if (this->RenderMethod >= VPFPl_CG_METHOD)
this->RenderVPFP(ren, vol);

void vtkVolumeTextureMapper3DCg::RenderVPFP(vtkRenderer* ren,
vtkVolume* vol)

I
glAlphaFunc(GL_GREATER, (GLclampf)0);
glEnable(GL_ALPHA_TEST);

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

int com ponents = this->GetInput()->GetNumberOfScalarComponents();
sw itch (components)

1

case 1:
if (!vol->GetProperty()->GetShade())

this->RenderOneIndependentNoShadeVPFP(ren, vol);
break;

default:
break;

vtkgI::ActiveTextureARB(vtkgl::TEXTUREl_ARB);
glDisable(GL_TEXTURE_2D);
glDisable(vtkgl::TEXTURE_3D_EXT);

vtkgl::ActiveTextureARB(vtkgl::TEXTUREO_ARB);
glDisable(GL_TEXTURE_2D);
glDisable(vtkgl: :TEXTURE_3D_EXT);

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void vtkVolumeTextureMapper3DCg::RenderOneIndependentNoShadeVPFP(
vtkRenderer* ren, vtkVolume* vol)

(

cgGLLoadProgram(this->CGVertexProgram);
cgGLBindProgram(this->CGVertexProgram);

CGparameter CGparameter_modelViewProj =
cgGetNamedParameter(this->CGVertexProgram, "modelViewProj");

cgGLSetStateMatrixParameter(CGparameter_modelViewProj,
CG_GL_MODELVIEW_PROJECTION_MATRIX, CG_GL_MATRIX_IDENTITY);

cgGLEnableProfile(this->CGVertexProfile);

cgGLLoadProgram(this->CGFragmentProgram);
cgGLBindProgram(this->CGFragmentProgram);
cgGLEnableProfile(this->CGFragmentProfile);

this->CGTex3DParameter_volume =
cgGetNamedParameter(CGFragmentProgram, "volume");

this->CGTex2DParameter_colorLookup =
cgGetNamedParameter(CGFragmentProgram, "colorLookup");

cgGLEnableTextureParameter(this->CGTex3DParameter_volume);
cgGLEnableTextureParameter(this->CGTex2DParameter_colorLookup);

this->SetupOneIndependentTextures(vol);
this->RenderPolygons(ren, vol);

cgGLDisableTextureParameter(this->CGTex3DParameter_volume);
cgGLDisableTextureParameter(this->CGTex2DParameter_colorLookup);

cgGLDisableProfile(this->CGFragmentProfile);
cgGLDisableProfile(this->CGVertexProfile);

}

void vtkVolumeTextureMapper3DCg::RenderPolygons(vtkRenderer* ren,
vtkVolume* vol)

1

vtkRenderWindow* ren Win = ren->GetRenderWindow();

if (this->RenderM ethod >= VPFP2_CG_METHOD)

(
if (this->RenderM ethod == VPFP2_CG_METHOD)

this->ComputePolygonsVPFP2(ren, vol);
else if (this->RenderMethod == VPFP3_CG_METFIOD)

this->ComputePolygonsVPFP3(ren, vol);

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else if (this->RenderMethod == VPFP4_CG_METHOD)
this->ComputePolygonsVPFP4(ren, vol);

for (int i = this->NumberOfPolygons -1; i >= 0; i-)
I

if (i % 64 == 1)
1

glFlush();
glFinish();

1

if (renWin->CheckAbortStatus())
return;

gIBegin(GL_POLYGON);
for (int j = 0 ; j < 6 ; j++)

glVertex2f(j, i);
glEnd();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

