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An attempt at visualizing the Fourth Dimension: Take a point, stretch it into a line, curl it 
into a circle, twist it into a sphere, and punch through the sphere.

-  Albert Einstein, 1879-1955, German-born American physicist.
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Abstract

This thesis introduces the Medical Visualizer (MedVis), a real-time visualization 

system for analyzing medical volumetric data in various virtual environments, 

such as parallax barrier autostereoscopic displays, dual-projector screens and im­

mersive environments such as the CAVE. Direct volume rendering is used for visu­

alizing the details of medical volumetric data sets without intermediate geometric 

representations. By interactively manipulating the color and transparency func­

tions, radiologists can either inspect the data set as a whole or focus on a specific 

region. In this system, 3D texture hardware is employed to accelerate the rendering 

process. The system is designed to be platform independent, as all virtual reality 

functions are separated from kernel functions. Due to the modular design, it can 

be easily extended to other virtual environments, and new functions can be incor­

porated rapidly.
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Chapter 1

Introduction

1.1 Visualization

Visualization is the process of converting raw numbers into representations that 

can be easily interpreted by the human visual system (HVS) [84]. Exploiting the 

human visual system for interpreting the data, visualization has become an es­

sential tool for solving scientific problems. While computers excel at simulations, 

data filtering, and data reduction, humans are experts at using their highly devel­

oped pattem-recognition skills to locate regions of interest, features, and anoma­

lies [65] [104]. When visualized data are volumetric data, a specific term is used: 

volume visualization. It is the process of projecting a multidimensional data set onto 

a two-dimensional image plane for the purpose of gaining an understanding of 

the structure (or lack of) contained within the volumetric data [26]. Volume visu­

alization is used in many fields, such as medicine, architecture, archaeology and 

engineering.

1.2 Medical Visualization

Medical imaging modalities such as Computed Tomography (CT) and Magnetic Reso­

nance Imaging (M RI) produce high-quality 3D data that radiologists use to diagnose 

various health problems of patients. However, because of technological limita­

tions, it is still commonplace for radiologists to observe volumetric data as a set 

of slices printed on films viewed in front of a white diffusing light source. Even 

though this practice is well accepted in the medical community, it only utilizes a 

fraction of the data provided by the imaging systems. The common rational for 

using such system, aside from its cost, is that the quality of the contrast in film

1
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is far superior to normal CRT screens, and more importantly that the data set is 

not manipulated by computer processing leaving image interpretation to the far 

superior human visual system. The last requirement is key as radiologists want 

to observe the data set without prior interpretations by a computer that may hide 

important structures that only human can interpret as important. Several systems, 

from non-commercial software (e.g., Para View [49]) to commercial products (e.g., 

VolView [48] and AVS/Express [1]), have been developed for this purpose. How­

ever, the visualization and manipulation stay in the 2D space, i.e., users can only 

see the volumetric data as a projected 2D image on a screen and the feedback of 

an operation on the data is still a 2D image. Although volume rendering is sup­

ported in current systems, radiologists still cannot directly examine 3D volumes in 

stereo. This problem can be resolved by using virtual reality (VR) techniques. The 

usefulness of VR in scientific visualization has been discussed abundantly in the 

literature [11] [104]. In  many ways, the major impact of virtual reality technologies 

on scientific visualization is in providing a "real-time" intuitive interface for ex­

ploring data while facilitating the use of scientific visualization [11]. In particular, 

the effectiveness of VR technology in medicine has also been proven in many appli­

cations described in [82] and [122], Hence, to assist existing diagnostic procedure 

by creating a new insight through 3D visual representation, we have developed the 

Medical Visualizer (MedVis), a medical visualization system that provides real-time 

high-quality volume rendering and interaction with 3D medical data in virtual en­

vironments (VEs).

1.3 Thesis Contributions

This thesis makes contributions to the following aspects of medical volumetric data 

visualization:

1. Developing a cross-platform medical data visualization system capable of 

dealing with various display modalities. Radiologists can use this system 

to interactively explore medical volumetric data in stereo in various non- 

immersive or immersive virtual environments.

2. Developing new acceleration techniques of volume rendering using general- 

purpose GPU. Remarkable speedups compared to traditional techniques are 

observed from real experiments.

2
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3. Object-oriented programming paradigm and modular design concept are em­

ployed throughout the development of MedVis, which maximizes the exten­

sibility and portability of the system.

1.4 Thesis Overview

The thesis is organized as follows. Chapter 2 introduces medical data acquisition 

techniques, and reviews volume rendering methods, virtual reality systems and 

the developments of visualization systems in virtual environments. Chapter 3 de­

scribes the design and implementation of MedVis, including the hardware and 

software architecture, rendering algorithms and interaction schemes. Chapter 4 

presents the results of MedVis and discusses its performance, especially the perfor­

mance of the proposed rendering algorithms. Chapter 5 concludes the thesis and 

presents future research directions.
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Chapter 2

Related Work

2.1 Medical Data Acquisition

Visualization quality depends on the quality of the input data. It is almost im­

possible to generate effective visualization while the acquired data are inaccurate 

or insufficient. Given the significance of data acquisition in medicine, this section 

gives a brief introduction to medical imaging modalities, which are capable of pro­

ducing high-quality 3D data composed of 2D image slices.

2.1.1 Computed Tomography

Computed Tomography (CT) is a medical imaging modality invented by Hounsfield 

in 1972 that uses X-ray to generate cross sections of objects. A CT scanner is a X-ray 

instrument capable of digitizing full bodies in 3D at very high precision (~ lm m ) 

and speed [119]. Images are acquired from a rotary X-ray fan source revolving 

around the patient. The X-ray fan source is then digitized by a circular network 

of solid state X-ray detectors, to which a tomography reconstruction algorithm is 

applied. The values in the CT data set correspond to the average density values 

of voxels inside the human body. Dense objects (e.g., bones) tend to absorb more 

X-rays than less dense objects (e.g., muscle). The absorption characteristic of each 

voxel is calibrated in Hounsfield units (HU), a measurement normalized with re­

spect to the attenuation of X-ray in water.

2.1.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is another medical imaging modality developed 

by Lauterbur and Mansfield in the 1970s. An M RI scanner is composed of a large 

magnet, a microwave transmitter, a microwave antenna, and several electronic

4
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components that decode the signal and reconstruct cross-sectional images from the 

data [119]. Unlike CT, which uses ironizing radiation, M RI measures the relaxation 

properties of excited hydrogen nuclei, i.e., it is based on the measurement of radio 

frequency of electromagnetic waves emitted by a nucleus spin when returning to 

its equilibrium state from the excited state produced by a microwave emitter [45]. 

Nuclei within different tissues emit signals of different frequencies, which depend 

on water density present in the tissue. Functional M R I (fMRI) is a new type of MRI 

modality that records both the patient's anatomy and the physiological functions 

of the tissues being studied. By measuring the oxygenation value of blood, fMRI 

allows imaging regions with high consumption of oxygen, which is a characteristic 

of higher metabolic activities.

2.1.3 Other Acquisition Technologies

In addition to CT and MRI, there are two other types of medical imaging modali­

ties, which are used every day in hospitals. Nuclear medicine techniques, including 

Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomog­

raphy (PET), use the decay of injected radioactive isotopes to image the distribu­

tion of the isotope as a function of time and space [45]. Other modalities such as 

Ultrasonography work in ways similar to CT, but instead of X-rays, ultrasound is 

employed to illuminate the object. The echo information is recorded to determine 

the type and position of the object. In most cases, all those sensors produce volu­

metric data, where the scalar value at each volume element (voxel) depends on a 

particular tissue property.

2.2 Volume Rendering

Volume rendering deals with how a 3D volume is projected onto the view plane 

to form a 2D image. It has been broadly used in medical applications for plan­

ning treatments [61] and to help in diagnosis [38]. At present, there are two main 

w a y s  to  v isu a liz e  v o lu m etr ic  data: su rface ren d erin g  a n d  d irect v o lu m e  ren d erin g  

(DVR). Surface rendering is also referred to as indirect volume rendering, because 

it is based on one or more scalar thresholds that are used to compute iso-surfaces 

of the volumetric data that are then polygonized and rendered using normal poly­

gon rendering schemes. Iso-surfaces can be generated by using techniques such as

5
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marching cubes [62], In contrast to iso-surface methods, which analyze volumet­

ric data in the local neighborhoods, Arvo and Novins [4] propose an iso-contour 

method, which operates on the continuous image space to extract curves of con­

stant intensity. However, surface rendering depends on an existence assumption 

that a set of iso-surfaces exists, and on a fidelity assumption that w ith the infinitely 

thin surface the polygon mesh models the true object structures at reasonable fi­

delity [66]. These two assumptions can hardly be met simultaneously in practice. 

In  contrast, direct volume rendering bypasses the intermediate geometric repre­

sentation and directly renders the volumetric data set based on its scalar values 

alone. Color mapping and transparency schemes are commonly employed to en­

hance the visual contrast between different materials. According to Kaufman [46], 

volume rendering approaches can be classified into three categories: object-order, 

image-order and domain methods.

2.2.1 Object-Order Volume Rendering

The object-order approaches evaluate the final pixel values in a back-to-front or 

front-to-back fashion, i.e., the scalar values in each voxel1 are accumulated along 

the view direction.

Drebin et al. [25] propose a material-based rendering method. The volume is as­

sumed to be an image stack. Five steps are performed to generate the final image: 

classification, matting, surface extraction, shading and projection. In the classifica­

tion step, for each voxel, the percentage of each material is estimated using proba­

bilistic classifiers. The classification transforms the initial volume into a set of ma­

terial percentage volumes. This set of volumes is used to calculate the properties 

of each voxel, such as color2. Next, matte volumes are combined w ith the classified 

volume using spatial set operations, roughly like boolean operations in constructive 

solid geometry (CSG) [79], to remove undesired regions and/or adjust the percent­

age of a certain material. Surfaces, i.e., boundaries between different materials are 

extracted from a so-called p volume. The parameter p, the value of which actually 

can be assigned arbitrarily, characterizes the density of a material. While two close 

p's blur the boundary between two materials, two diverse p's intensify the bound­

ary. After every material is assigned a p value, the density D of a voxel is computed

1The region of constant value that surrounds each sample in zero-order interpolation [46].
zThe word color when used separately throughout this thesis refers to RGBA color.

6
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by a function proportional to p. The surface normals and magnitudes (strengths) 

derived from the gradient V D, which indicates the sharpness of the density tran­

sitions between voxels, are used in the next step for shading. In the shading step, 

light rays are cast through the volume from back to front. Let I  and I '  denote the 

intensities of the incoming ray and outgoing ray respectively, then the resulting 

color of a voxel is

I ' =  C + { l - c c c ) I  (2.1)

where ccc is the alpha component of the RGBA color C of the current voxel. If one 

takes surface shading into account, C is a function of the surface normal, the surface 

strength, the surface diffuse color and the light source color. This shaded volume 

is geometrically transformed and resampled to lie along the view direction. To

form the final image, an orthographic projection is performed using the following

equation:

I z =  Cz +  (1 — occ) Iz + 1  (2.2)

where I z and Cz are the accumulated image and color of the z'th plane respectively. 

The initial image is set to black and I Q is the final image. Perspective projections 

can also be easily applied by scaling the images in the x-y plane according to the 

eye's z coordinate.

Many of the techniques initiated in this paper [25] influence the formation of 

the structure of current volume rendering pipelines. This method is suitable for 

high-resolution data sets, but for low-resolution data sets, the constant-variation 

assumption of the scalar field in each voxel causes discontinuities between voxels. 

To generate smoother images for small data sets, Upson [103] proposes an algo­

rithm called V-buffer, which uses a higher-order interpolation technique than the 

trilinear interpolation to approximate the variation of a voxel's scalar field. How­

ever, in both methods, each voxel corresponds to only one projected position on 

the view plane (i.e., one pixel or several adjacent pixels). As stated in [95], this kind 

of projection is simple and fast, but often yields image artifacts due to the discrete 

selection of th e  projected  im a g e  p ixel(s). F urtherm ore, th e  ren d erin g  sp e e d  is  lo w  

because of many complicated operations to be computed in shading and projec­

tion.

Westover [111] [112] addresses this problem by distributing the contributions 

of one voxel into a region of image pixels and carrying out such operations using

7
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a lookup table. This volume rendering method is called splatting. The main idea

gorithm consists of four major steps: view transformation, shading, reconstruction 

and visibility test. The most important step is reconstruction, where a kernel con­

volves with the volume to determine the image space footprint (or splat) of each 

voxel, i.e., the image pixels that a voxel affects. Normally, two phases of reconstruc­

tion are needed: volume space reconstruction and image space reconstruction. The 

first phase reconstructs the discrete input voxels into a 3D continuous function, 

whereas the second phase reconstructs discrete intermediate image samples into 

continuous pixels. For object-order methods, voxels are directly mapped onto the 

final image and the footprint function is a continuous function, therefore, there 

is no need to involve two individual reconstruction phases. Instead, during the 

volume space reconstruction, the kernel is integrated along the view direction to 

generate the final image pixels directly. The footprint function is then defined by:

where (x , y) is the displacement of a pixel from the center of the shaded voxel's 

view-plane projection; hv () is the volume reconstruction kernel; and w  is the ker­

nel's ^-coordinate. This function is precomputed and the results are stored in a 

generic footprint table. For orthographic views, the footprint function ¥ ( x , y )  of 

each voxel is the same except w ith an image space offset as in [112]. However, for 

perspective views, the function needs to be evaluated for every voxel separately, 

reducing the algorithm's speed significantly.

To attain a higher frame rate, Laur and Hanrahan [58] introduce hierarchical 

splatting. The volume is represented in a pyramidal manner and footprints of 

different sizes are used in different levels of the pyramid. During motion low- 

resolution volume representation is used, and once the motion stops a progressive 

refinement is applied.

Another problem with the original splatting algorithm is that the voxel kernels 

are integrated within the volume slices that are most parallel to the view plane, 

hence disturbing popping artifacts occur when the views are animated. To deal 

with this drawback, Mueller et al. [68] propose a new image-aligned splatting al­

gorithm using slicing slabs oriented parallel to the view plane. These slabs are of 

certain width and only the contributions of the voxel kernels within the current

is to project a basic function (e.g., a Gaussian kernel) onto the view plane. This al-

(2.3)

8
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slab are added to the frame buffer. Another major advantage of this new splatting 

algorithm is that based on an occlusion map, only the kernels of the voxels visible 

in the final image are projected, which significantly speed up the algorithm.

While the resampling (or reconstruction) in splatting algorithms is view-dependent, 

Lacroute and Levoy [56] introduce a very efficient algorithm called shear-warp, 

where the complications associated to resampling for arbitrary perspective views 

are alleviated. The input volume is composed of image slices, and it is first trans­

formed to a sheared object space, where the viewing rays are perpendicular to the 

slices. For orthographic projections, the transformation is only a translation based 

on the slice's z-coordinate, as shown at Figure 2.1. For perspective projections, the 

transformation is a translation plus a uniform scaling along the volume's z-axis, as 

shown at Figure 2.2. The sheared slices are resampled and composited from front 

to back to form an intermediate image, which is then warped (resampled) to get 

the final image. To take advantage of the fact that the scanlines of the pixels in the 

intermediate image are parallel to the scanlines of the voxels in the volume data, 

the object-order compositing is performed in scanline order. Run-length encoded 

volume scanlines are used to skip transparent voxels and run-length encoding of 

image scanlines is used to skip occluded voxels. Run-length encoding of the vol­

ume is possible when the opacity transfer function is known in advance, however, 

when the transfer function needs to be changed interactively, a different acceler­

ation scheme must be used. The opacity of a voxel is represented by a function 

of several precomputable parameters, such as intensity and gradient. A min-max 

octree (described in [114]) is applied to the volume to get the extrema of the pa­

rameters in every subvolume, and then a multi-dimensional summed-area lookup 

table (described in [17]) is applied to the rectangular region bounded by these ex­

trema in the feature space to determine transparent regions. Two volume scanlines 

are traversed simultaneously to accelerate the compositing process, where opaque 

and visible voxels are projected onto the current image scanline using a bilinear 

interpolation technique. This algorithm can be parallelized by distributing the in­

termediate image scanlines to multiple processors. Schulze and Lang [92] extend 

the parallel architecture for perspective projections in such a way that the com­

positing process is distributed among remote computers using message passing 

interface (MPI) programming environment and the final 2D warp is performed on 

a single computer using graphics hardware. Although the rendering is fast, one

9
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drawback is that three copies of the input volume, i.e., the octree, the summed-area 

table and the original voxels, need to be maintained.

rays

volume

view plane

(a) Object space.

rays

volume

inter

view plane

(b) Sheared object space.

Figure 2.1: Shear-warp for orthographic projections.

rays

volume

view plane

(a) Object space.

rays

volume

intermediate ii

view plane

(b) Sheared object space.

Figure 2.2: Shear-warp for perspective projections.

2.2.2 Image-Order Volume Rendering

Image-order volume rendering approach is also called ray casting or ray tracing. 

The basic idea is that rays are cast from each pixel on the final image into the vol­

ume and the pixel values are determined by compositing the scalar values encoun­

tered along the rays w ith some ray function.

Like surface rendering, image-order volume rendering can also display iso­

surfaces, but the difference is that in direct volume rendering shading is applied 

directly on the voxels to form the final image and hence small features are pre-

10
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served. Levoy [59] proposes a pipeline for rendering iso-surfaces. The shading and 

classification procedures are separated in this pipeline. The output of the shading 

procedure is an RGB color volume and the output of the classification procedure 

is a volumetric opacity map. To avoid artifacts caused by a single threshold or 

window in traditional iso-surface methods, different opacities are assigned to the 

voxels w ith scalar values close or equal to the given threshold. During rendering, 

the volume is sampled at evenly-spaced locations along each ray and the color at 

each sample location is computed using trilinear interpolation. Parker et al. [72] 

apply ray casting for the first time to render iso-surfaces from very large data sets 

in  an interactive system. Several optimization techniques are used to accelerate the 

performance. First, the volume is represented as "bricks" to improve data cache 

locality. Second, an octree-like spatial hierarchical data structure is employed to 

accelerate voxel traversing. Third, the image space is divided into tiles, and multi­

ple processors are employed, where each processor operates on one or more of the 

tiles. When running on a 64-processor machine, a 1GB data set is rendered at an 

image resolution of 512x512 resolution at about 10 frames per second. However, 

due to random accessibility of the volume required by ray casting methods, the 

whole data set needs to be duplicated on every processor.

In addition to iso-surface, image-order volume rendering can display the vol­

ume as a whole. Kajiya and Von Herzen [44] apply ray casting to volume render 

natural phenomena, such as clouds, by solving a scattering equation. A major 

drawback of ray casting is its high complexity because for every ray the whole vol­

ume needs to be traversed once. One common optimization technique is early ray 

termination, which stops tracing a ray when the accumulated opacity along that 

ray reaches a pre-defined threshold (usually fully opaque). Levoy [60] determines 

the last sample location along a ray as the position with no significant change of 

the color of the ray. Let C,„(u; U ) and «,„(«; U ) be the RGB color and opacity of 

the ray u before and after processing the sample U  respectively, and let C( U)  and 

ce(U) be the RGB color and opacity of the sample respectively. Then the RGB color 

C0ut(u; U ) and the opacity a out(u; U ) of the ray u after processing the sample U  are 

calculated by:

Ca,(«;U)a|„(H;U) +  C (d )« (U ) ( l -a , '„ (« ;U ) )
a 0U, {u;U)
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and

ocout{u-,U) =  oqn(u; U ) +  a (lT )(l — «,„(«; i i ) )  (2.5)

The RGB color and opacity are accumulated from front to back. A significant RGB 

color change occurs when C0Ut{u ; U ) -  Cjn(u; U)  >  e for some small e >  0. Hence, 

a ray terminates when ocout(u ;U )  >  1 -  e for the first time. Another common 

optimization technique is empty space skipping, which accelerates the traversal of 

empty voxels (i.e., voxels with zero-opacity). Levoy [60] represents volumetric data 

as a pyramid (an octree-like structure). Each cell at each level of the pyramid carries 

a binary value. A higher level cell carries a zero when its eight children all contain 

zeros. In the lowest level, where a cell corresponds to a voxel, a cell contains zero 

if the associated voxel is empty. When ray tracing is performed, empty regions 

can be effectively bypassed, because whenever an empty cell is encountered, its 

descendants are not traversed.

Danskin and Hanrahan [22] extend Levoy's work by a homogeneity-acceleration 

and a ^-acceleration. The homogeneity-acceleration employs a range27 pyramid. 

Each cell of the pyramid contains a Manhattan distance, which measures the homo­

geneity at that cell. A  smaller distance indicates that the cell is more homogeneous, 

and hence a larger ray sampling interval can be used; a larger distance indicates 

that the cell is more heterogeneous, and hence a smaller sampling interval should 

be used. The fundamental idea of the ^-acceleration is that as the pixel opacity 

(i.e., the j3-distance) along a ray accumulates from front to back, less light travels 

back to the eye, therefore, fewer ray samples need to be taken without significant 

changes to the final image quality. As for the 4D cases, Yagel and Shi [118] use 

space-leaping for volume animation, which exploits coherency between consecu­

tive images to shorten the paths that rays take through the volume.

In the previous image-order methods, continuous rays are sampled at uni­

form or jittered intervals. Alternatively, rays can be represented as discrete vox­

els [115] [117] as shown in Figure 2.3. A discrete ray can be either 6-connected or 

26-connected. A ray is 6-connected if any two adjacent voxels share only a face, 

whereas any two adjacent voxels of a 26-connected ray share a face, an edge or a 

vertex. Discrete ray tracing, or 3D Raster Ray Tracing (RRT), is utilized by Yagel 

and Kaufman [116] in a template-based ray casting algorithm for orthographic pro­

jections. This algorithm is based on the observation that for orthographic discrete 

ray casting all rays have the same form and this coherency between rays can be ex-
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ploited to simplify the volume traversal process. Like the shear-warp method [56],

image is warped to form the final image. The difference is that the intermediate 

image is generated in a pixel-by-pixel manner. Three phases are involved: initial­

ization, ray casting and 2D mapping. The principle of the algorithm is illustrated 

at Figure 2.4. During initialization, a base plane parallel to one of the volume's 

faces is determined, and the volume is projected onto the base plane. The form of 

the parallel rays is computed and stored in a template. Here, 26-connected rays 

instead of 6-connected rays are used, because every voxel in the volume is visited 

exactly once. Next, all the rays are generated from this template and cast from the 

base plane into the volume. The rays are traced by uniform steps and the voxel 

coordinates at each step can be computed efficiently using the template. Finally, 

the image on the base plane is transformed onto the view plane. Depending on the 

size and position of the view plane, some voxels may not contribute to the final 

image, which means that in the second phase rays may not need to be cast to cover 

the entire volume, and hence the processing time can be reduced further.

2.2.3 Domain Volume Rendering

Direct volume rendering can also be performed in the frequency domain using the 

Fourier projection-slice theorem [63]. Once the volume is transformed from the 

spatial domain to the frequency domain, a 2D slice, which is centered at the vol­

ume origin and is parallel to the view plane, is extracted from the 3D spectrum. 

This 2D slice is then transformed back to the spatial domain to obtain the final 

image. The overall algorithmic complexity is 0 (n 2 logn) for a volume w ith size

the volume is first projected onto an intermediate plane and then the intermediate

(a) 6-connected. (b) 26-connected.
Figure 2.4: Discrete ray trac- 

Figure 2.3: Discrete ray representation. ing algorithm.
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n3, in contrast to 0 (n 3) for many spatial methods. One problem with frequency 

domain volume rendering is that it does not solve occlusion, which is an impor­

tant cue to distinguish shapes and spatial positions of different objects. Totsuka 

and Levoy [102] solve this problem in an alternative way, where depth cueing and 

directional shading are employed. Depth cueing is implemented by frequency do­

main differentiation and directional shading is implemented by frequency domain 

multiplication. Entezari et al. [27] improve the illumination (an alternative to help 

determining 3D shapes) and achieve interactive rendering for constant diffusive 

light sources. Westenberg and Roerdink [110] incorporate wavelet decomposition 

into the Fourier volume rendering, which provides progressive refinement of the 

rendered images.

2.2.4 Hardware-Accelerated Volume Rendering

Texture mapping, initially introduced by Catmull [16], is a technique that adds 

details to 3D geometric models using photos. A  texture can be considered as a 

mathematical function, and the domain of the function can be one, two, or three- 

dimensional and can be represented by either an array or by an analytical func­

tion [40]. Three dimensional (3D) texture mapping methods were implemented in 

software until the RealityEngine system [3] implemented this function in real-time. 

Hardware-accelerated texture mapping makes it possible for the computationally 

intensive interpolation operations used in direct volume rendering to be moved 

from the CPU to the graphics processing unit (GPU), which dramatically enhances 

the rendering speed. The normal procedure is illustrated at Figure 2.5. The volume 

is first loaded into the texture memory of the GPU, and sampled using trilinear 

interpolation to produce a set of equally-spaced slices (proxy polygons) parallel to 

the view plane. Then the slices are mapped with textures and blended from back 

to front to form the final image.

Cabral et al. [14] treat volume rendering as a generalized Radon transform and 

implement the algorithm on the RealityEngine hardware. In the 3D perspective 

case, a Radon transform can be defined for each ray as:

P(s,t)= d / ' “  d, (2 6)
n  1 Vs2 + 12 +  d2 Jo r2

where f ( x ,  y, z) denotes the volume space; p(s, t ) denotes the line integral projec­

tion of f ( x ,  y,z)  along the ray [ x ( l ) , y ( l ) , z ( l ) ] t i.e., the image space; is
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Proxy Polygons 3D Texture Final Images

Figure 2.5: Volume rendering using 3D texture mapping.

the path length difference for off-center pixels; c(/) is the blending weighting term; 

and 4r is the perspective weighting term. A discrete form of this equation, which 

accumulates samples along the ray direction, is utilized for the implementation.

The algorithm proposed by Cabral et al. [14] does not take shading into account. 

Later, Van Gelder and Kim [106] incorporate shading into the hardware accelerator 

pipeline. The color of a texel (i.e., a texture element) consists of an ambient compo­

nent and a reflecting component. To calculate the ambient component, the volume 

is first divided into slabs as in image-aligned splatting [68]. Then the color intensity 

and opacity are evaluated slab by slab using the differential intensity and opacity 

equations proposed by Wilhelms and Van Gelder [113]. The reflecting component 

is calculated based on the cell-diagonal data shift s, a quantity derived from the 

voxel's quantized gradient vector and the inter-voxel spacing. According to the 

value of s, a voxel is assigned a probability of being on the boundary between d if­

ferent materials. If a voxel is on the boundary, it is assumed to be reflecting and its 

response to directional lighting is computed using the probability. For every pos­

sible combination of the quantized gradient and material, the color is calculated 

and stored in a lookup table to accelerate the rendering. However, this lookup 

table needs to be recomputed when rendering factors, such as light direction, are 

changed.

In Van Gelder and Kim's architecture [106], not only does the shading need to be 

recalculated when rendering factors are changed, but also the application of non­

linear color transfer functions is impossible since the colors are interpolated using 

the hardware. Dachille et al. [21] improve this architecture in a way that the shading 

and compositing are moved to the main memory and CPU, and the hardware only
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deals with ray sampling and perspective scaling (if perspective projection is used). 

Space-leaping is performed (in software) before Phong shading and front-to-back 

compositing take place to efficiently skip transparent regions. Unlike conventional 

texture hardware sampling methods that produce texture-mapped polygons par­

allel to the view plane, this method generates a set of polygons perpendicular to 

the view plane. The advantage of such oriented polygons is that the compositing 

can be performed one image scanline at a time and one polygon contributes to one 

scanline, like the shear-warp method [56], therefore, early ray termination can be 

employed.

Aside from object-order methods, image-order methods can also be implemented 

using 3D texture interpolation hardware. Guan and Lipes [35] introduce an inno­

vative parallelization scheme for hardware-accelerated image-order volume ren­

dering, in which a computation node operates on a subvolume and rays are sam­

pled in the volume by parallel plane cutting. However, it only supports simple ray 

functions, such as maximum intensity projection.

To achieve higher rendering speed and quality using ray casting, specialized 

hardwares are designed. Cube-4 proposed by Pfister and Kaufman [75] is a paral­

lel architecture that performs slice-parallel ray casting and is able to handle very 

high-resolution data sets (e.g., 10243). Based on the Cube-4 architecture, Pfister 

et al. [74] develop VolumePro, the first single-chip real-time volume rendering sys­

tem for consumer PCs, which performs orthographic projections at very high frame 

rate. The shear-warp factorization algorithm described in [56] is utilized, but trilin- 

ear interpolation is performed instead of bilinear interpolation. In addition, rays 

can be casted from sub-pixel locations. Therefore, view-dependent artifacts can 

be eliminated when the base plane changes. Several advanced features, such as 

supersampling and cropping, are also incorporated into VolumePro's architecture.

With the development of commodity graphics hardware, GPU-based ray cast­

ing can be implemented without specialized hardware. Kruger and Westermann [54] 

integrate early ray termination and empty space skipping into GPU-based ray cast­

ing. Before ray traversal, the entry points and ray directions are computed and 

stored in two separate 2D textures. The entry points are computed as the 3D texture 

coordinates of the intersection points between the volume's three front faces and 

the rays. The generated 2D texture has the same resolution as the current viewport, 

which guarantees one ray per pixel. For each ray entry point, the corresponding
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exit point on the volume's three back faces is calculated. Then, each ray direction, 

i.e., the difference between the exit and entry points, is stored as an RGBA pixel 

in the second 2D texture. During ray traversals, M  equi-spaced samples are taken 

along each ray that is determined by the entry point and the direction stored in the 

two 2D textures. Between each ray traversal, a z-test is performed for early ray ter­

mination. Empty space skipping is applied via a min-max octree structure together 

with a 2D texture that stores the transparency information for every scalar range 

bounded by a different min-max pair. For the data sets with transfer functions 

that map a large amount of scalar values to low opacity, this method has superior 

performance to GPU-based object-order approaches.

Based on the method proposed by Kruger and Westermann [54], Scharsach [86] 

introduces some improvements for rendering pre-classified volumes. Empty space 

skipping is applied via a data-dependent bounding geometry instead of a min-max 

octree. Taking advantage of the vertex shader, a tighter bounding geometry other 

than a simple bounding box is utilized to exclude empty regions and regions of no 

interest while rendering. As for iso-surface rendering, a hitpoint refinement algo­

rithm is proposed. Every time an iso-surface point is found with sample step size 

d along a ray, the point \d  back along the ray is checked to see whether it is also 

on the iso-surface. If it is, another point \ ( \ d )  back along the ray is checked. By 

taking six such bisection steps, a volume can be sampled at 4 to 5 times the speed 

of the ordinary equi-spaced sampling. The resulting image is produced with un­

compromised quality. In this algorithm, the whole volume needs to be loaded into 

the texture memory for ray casting, making rendering of large data sets impossible 

because of limited texture memory on current hardwares. Scharsach deals with 

this problem by only caching the regions of interest via a 2-way blocking scheme. 

Although this is not a radical solution, it makes possible the rendering of sparse 

large data sets with ray casting.

As for the frequency domain volume rendering, Viola and Kanitsar [107] move 

the rendering stage to the GPU and achieve a speedup factor of 17 compared to 

the CPU-based approach. After a pre-processing step on the CPU where the vol­

ume is transformed into frequency domain, slicing and interpolation, as well as 

the inverse fast Fourier transform, are all performed on the GPU. For 4D data, 

Binotto et al. [7] use a fragment-shader compression approach to achieve real-time 

volume rendering. Based on hierarchical vector quantization, Schneider and West-
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ermann [89] propose a compression scheme for rendering both 3D and 4D volu­

metric data sets.

2.2.5 Critical Review of Volume Rendering Algorithms

In the previous sections, a review of most important direct volume rendering al­

gorithms are presented. Different algorithms can be classified into three main cat­

egories, i.e., object-order, image-order and domain methods. Hardware acceler­

ation can be applied to all algorithms in the three categories. Some hybrid meth­

ods [36] [39] [67] are proposed by researchers in recent years, but their fundamental 

operations still fall into one of the three main categories. Meiliner et al. [66] give a 

detailed comparison between the four most popular volume rendering techniques: 

ray casting, splatting, shear-warp and 3D texture hardware-based methods. Their 

experiments demonstrate that ray casting and splatting generate high-quality im­

ages at the cost of rendering speed, whereas shear-warp and 3D texture mapping 

hardware are able to maintain an interactive frame rate at the expense of image 

quality. When utilizing splatting for volume rendering, it is difficult to determine 

the parameters such as the type of kernel, the radius of the kernel, and the resolu­

tion of the footprint table to achieve an optimal appearance of the final image as 

described in [95]. In shear-warp, the memory cost is high since three copies of the 

volume need to be maintained. Most of current graphics cards support 3D texture, 

therefore hardware-accelerated methods can be easily applied on these cards. The 

frequency domain methods perform fast rendering, but they are limited to ortho­

graphic projections and X-ray type rendering [27]. In addition, there are two intrin­

sic problems with the frequency domain methods: high interpolation cost and high 

memory cost [102]. Hence, ray casting is a better choice for high-quality volume 

rendering, while hardware-accelerated approach is a better choice for high-speed 

volume rendering.

2.3 Virtual Environments

Bishop and Fuchs [8] define virtual environments (VE) to be real-time interactive 

graphics with three-dimensional models, when combined with a display technol­

ogy that gives the user a sense of immersion in the model world and direct manipu­

lation. A synonymous term for virtual environments is virtual reality (VR). According
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to Burdea and Coiffet [13], virtual reality is a high-end user-computer interface that 

involves real-time simulation and interactions through multiple sensorial channels, 

i.e., visual, auditory, tactile, smell and taste. Research on VE dates back to 1965 

when Sutherland [98] proposed the ultimate display system. Since then, new tech­

niques and systems have been continuously developed, and VR has been adopted 

in more and more applications, such as medicine [96], geoscience [32] and educa­

tion [47]. As described in [10], to achieve immersive effects from VR, four crucial 

technologies are necessary: visual displays, graphics rendering system, tracking 

system, and database construction and maintenance system. Based on their dis­

play technology, VR systems can be divided into three categories: projection-based, 

monitor-based and HMD-based [76]. This section focuses on the major develop­

ments that one can find in the scientific literature on the visual displays used in 

VR, especially the ones found for medical applications.

2.3.1 Projection-Based VR Systems

Projection-based VR systems use rear-projection and/or front-projection screens to 

create stereopsis for the users. Typically the user needs to wear shutter or polar­

ized glasses to see the stereo image. The CAVE (CAVE Automatic Virtual Environ­

ment) [18] [19], invented at the Electronic Visualization Laboratory at the Univer­

sity of Illinois at Chicago, is one of the most popular VR systems for scientific visu­

alization. The CAVE is composed of a cubic space created by surrounding screens. 

Appropriate stereoscopic images are displayed on these screens and merged to­

gether to form a 3D virtual world. A small group of users (normally 5 to 10) can 

be in the CAVE simultaneously with one user serving as the guide, whose head 

movement is tracked to generate correct projecting images for the current view. A  

wand equipped with 3D tracker is usually used for various interactions.

The CAVE produces a large field of view (FOV) and even panoramic view. Nev­

ertheless, due to its size, the CAVE cannot be deployed in offices. In contrast, at the 

expense of immersion, the Workbench [2] [55] provides a portable VE that is ideal 

for applications such as architecture and virtual prototyping. In the Workbench 

configuration, a rear-projection screen is laid horizontally in front of the user. The 

viewing parameters can be adjusted to set the virtual objects above or below the 

screen. A similar system called ImmersaDesk is developed by Czemuszenko et 

al. [20]. The difference is that in the ImmersaDesk setup the screen is placed at a
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45-degree angle so that the user can look down as well as forward.

A ll the previous systems use active stereo where the images for each eye are 

projected onto the screen separately where the left and right shutters on the glasses 

become transparent and opaque alternately to let each eye see only the correspond­

ing images. Unlike active stereo systems, passive polarized stereo systems achieve 

the stereo effect by using dual projectors with polarizing filters placed in front 

of each lens. Pape et al. [71] develop a low-cost dual-projector VR system based 

on LCD (liquid crystal display) projectors with polarized stereo glasses. A high- 

resolution stereo tiled display named ICWall is developed by van der Schaaf et 

al. [105] using a similar concept. Eight tiles are employed w ith one dual-projector 

for each tile. The projectors are automatically calibrated using geometric, photo­

metric and viewpoint calibration to insure the left and right eye images are pre­

cisely aligned. This system is capable of generating a stereo image of roughly 

2x4096x1524 pixels.

With the emergence of autostereoscopic displays, users do not need to wear 

special glasses but can see the stereo images with their naked eyes. Physically 

realizable autostereoscopic displays can be classified into three broad categories: 

re-imaging displays, volumetric displays, and parallax displays [37]. Re-imaging 

displays use optical effects to generate stereo illusion. The Cambridge display [24] 

uses red, green and blue CRT projectors to project a 3D scene onto a 50-inch con­

cave spherical mirror. Different views of the scene are illuminated in turn. One 

common design of volumetric displays (e.g., the DepthCube [97]) is to fill the space 

with display media and show a proper image on each layer. The Perspecta display 

produced by Actuality Systems Inc. [28] is 360-degree viewable by projecting hun­

dreds of slices onto a fast rotating screen. Parallax displays emit lights with various 

intensities in different directions. When the user is at some special location, he or 

she can see the stereo image. More on parallax displays w ill be discussed under 

monitor-based VR systems.

2.3.2 M o n ito r-B a s e d  V R  System s

Normally, a monitor-based VR system cannot provide the immersion level that a 

projection-based system can, since the virtual scene is mixed with the workplace. 

Ware et a l [108] introduce the Fish Tank VR where a stereo image of a 3D scene 

is displayed on a monitor based on the user's head position, and with a pair of
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shutter glasses the user can get a stereoscopic view.

Autostereoscopic displays mentioned in the previous section can also be monitor- 

based, but most of them are parallax displays. The DTI 3D display developed by 

Dimension Technologies Inc. [23] takes advantage of the screen parallax, the signed 

distance measured on the screen between two corresponding image points [109], to 

generate stereopsis. The left and right images are interlaced and then illuminated 

simultaneously by a special illumination plate to produce screen parallax. With 

a similar concept, Holografika Kft. devise the HoloVizio system [5]. Unlike the 

DTI 3D display, which requires the user to stay at specific positions, the HoloVizio 

display provides a much larger FOV, about 50 degree. Sandi et al. [85] introduce a 

large curved autostereoscopic display, Varrier display, by tiling 35 display panels 

together. The large FOV plus sub-pixel resolution gives the user a strong feeling of 

immersion.

2.3.3 HMD-Based VR Systems

Head-mounted displays (HMDs) are among the earliest display interfaces used in 

VR. The fundamental principle is that a perspective 2D image is shown for each 

eye, and the images are adjusted according to the head's movement, which gives 

the user an illusion that he/she is present in a 3D virtual world. The first HM D  

that uses CRTs was invented by Sutherland [99]. Over the decades, the resolution 

and color quality of HMDs increase dramatically, while the cost decreases due to 

the use of LCD [73] [101]. The resolution is not the only factor that affects the im­

mersion provided by HMDs, and the other factor is the FOV (Field of View). The 

stronger a feeling of immersion is required, the larger a FOV is needed. Using hy- 

perboloidal and ellipsoidal mirrors, Nagahara et al. [69] devise a wide FOV HM D, 

which provides a 180-degree horizontal view and a 60-degree vertical view includ­

ing a 60-degree stereoscopic view at a resolution of about 7 pixels /degree. To attain 

a higher resolution while maintaining a relatively large FOV, a trade-off between 

the two factors is required since a limited number of pixels need to be spread on the 

microdisplay(s) across the FOV. Yoshida et al. [121] resolve the issue by tracing the 

eyes' gaze point and providing high resolution for that region of interest (ROI). The 

horizontal FOV of this High-Resolution Insert H M D  is 50 degree at a resolution of 

8  pixels/degree, and its ROI is 12.5 degree at a resolution of 32 pixels/degree. A  

recent technological breakthrough by Sensics Inc. [94] achieves a 180-degree hor-
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izontal FOV at a resolution of 20 pixels /degree, using an array of microdisplays 

combined seamlessly into one large image that warps round the eyes. A detailed 

discussion on the current techniques and applications of HMDs can be found in a 

survey by Cakmakci and Rolland [15].

2.4 Visualization in Virtual Environments

In  the field of scientific visualization, virtual reality offers a natural interface be­

tween human and computer that simplifies complicated data manipulations [81]. 

Due to such significance of VR technology, various visualization systems have 

been proposed for virtual environments over the decades. Some are designed for 

general-purpose visualization [42], while others are devised for particular applica­

tions, such as medical analysis [30] and natural phenomena simulation [12].

2.4.1 VR Systems for General-Purpose Visualization

Rajlich [77] develops a visualization framework that is able to work both in a CAVE 

and on a desktop. The design is based on the Visualization Toolkit (VTK) [91] 

and IRIS Performer [83]. The VTK pipeline and the Performer scenegraph are con­

nected by a translator, vtkActorToPF. This combination enables the usage of VTK's 

visualization algorithms and Performer's multi-channel rendering capability that 

supports simultaneous rendering for multiple screens. Three major components 

are involved: VisGen, Application and Interface. The VisGen component is built 

on VTK to generate geometries, which are then passed to the Application compo­

nent that is in charge of the state of the system. The interface component is the 

graphical user interface (GUI). The separation of different functional modules fa­

cilitates the transfer from the CAVE tool to the desktop tool. The user is presented 

with stereo images in the CAVE environment, but only 2D images on the desk­

top. Surface rendering is employed and the user can view different iso-surfaces by 

changing the iso-value parameters.

Schulze et al. [93] introduce a volume rendering system for visualizing scalar 

volumetric data in the CUBE, a CAVE-like virtual environment. The system is built 

on COVISE [78], a general visualization framework, and COVER [78], a VR inter­

face library integrated with COVISE that supports basic rendering and tracking in 

VE. Hardware-accelerated direct volume rendering is accomplished by a plug-in
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module for COVER, called VIRVO. Two rendering modes are incorporated: the 

adaptive mode with coarse image quality to maintain a high rendering speed and 

the high-quality mode where the user can investigate the data in detail. The user 

can use a transfer function editor to interactively manipulate the color and opacity 

mapping functions. Once a specific scalar value is selected, virtual rotary knobs 

are used to adjust the mapping from the scalar value to color and opacity. A probe 

mode is developed to help the user focus on the ROI, where a user-controlled cu­

bic subset of the volume is rendered. Visualization of time-dependent volumetric 

data sets is also supported. However, since the entire time series is loaded into 

the texture memory before rendering, only small 4D data sets can be rendered at 

interactive speed.

While the previous systems are specialized for visualizing static volumetric 

data with little or no consideration for time-varing data, Jaswal [42] develops a 

distributed system, CAVEvis, to visualize time-dependent large scalar or vector 

field data in the CAVE. The visualization task is distributed among a number of 

modules running on different computers, which work asynchronously to maintain 

high rendering speed. Iso-surfaces are rendered for scalar field data and flows of 

particles are rendered for vector field data. The whole data set is randomly acces­

sible to the user in both the spatial domain and the temporal domain.

2.4.2 VR Systems for Medical Visualization

Visualization in VEs has been proven useful in medicine for applications ranging 

from medical education, surgical training and planning, to the enhancement of 

minimally invasive surgeries [82].

Forsberg et al. [30] develop an immersive system for visualizing simulated blood 

flow through an artery model in the CAVE, aiming at understanding the factors 

that may cause the failure of coronary artery grafts. The flow is modeled numeri­

cally and simulated via particle techniques. The artery is rendered as a triangulated 

mesh and the shear stress, an essential quantity to determine the flow behavior, is 

encoded into the arterial wall color. An important feature of this system is its ges­

tural and voice interaction techniques. The user can use different tools to examine 

the flow behavior, such as throwing a virtual particle into a particular region of the 

flow. The tools are selected from a virtual toolkit using voice commands and/or 

gestures when the user looks down.
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While the previous system is for visualizing simulated medical data, many sys­

tems are designed to visualize real medical data acquired from imaging sensors 

such as CT and MRI. Zhang et al. [123] devise a system for visualizing diffusion 

tensor magnetic resonance imaging (DT-MRI) data sets of brains in a CAVE en­

vironment. Its potential applications are in the study of changes in white matter 

structures before and after gamma-knife capsulotomy, and pre-operative planning 

for brain tumor surgery. Hence, the major concern is the representation of neural 

structures and anatomical context in the brain. The fibrous structures in the regions 

of linear anisotropy and the planar structures in the regions of planar anisotropy 

are represented as streamtubes and streamsurfaces respectively. The ventricles are 

represented as iso-surfaces produced by the marching cubes algorithm [62]. A ll the 

generated geometric models are simplified beforehand to achieve a higher frame 

rate. A yellow line is drawn according to the position and direction of the wand 

to serve as a virtual pointer for indicating the region of interest. Traditional 2D 

image slices can also be displayed together with the geometric models to help the 

doctors, who are already familiar w ith the conventional analytical techniques, to 

identify the anatomical structures in a 3D virtual environment. However, due to 

a large amount of decimation required to obtain an interactive rendering speed, 

many details are lost in the final rendered models making it useless for routine 

radiological observations.

Lapeer et al. [57] introduce the ARView, a generic software framework for stereo­

scopic augmented reality microsurgery, which combines the surgical scene cap­

tured by a stereo pair of cameras in real time and the images pre-acquired from 

medical imaging modalities. For instance, a baby's skull and its brain are displayed 

together on an HM D. The surgical scene is surface rendered, while the pre-acquired 

medical images stored in the DICOM or raw format are volume rendered with the 

assistance of 2D or 3D texture hardware. The design of the ARView follows the 

factory design pattern [33], in which a high-level factory class deals w ith initiating 

the appropriate sub-class based on the computer system's software and hardware 

configurations. This kind of design enhances the reusability of the software frame­

work. One drawback of the ARView lies in the rendering part, as it only produces 

gray-level images and does not support run-time modification to the transfer func­

tions.

Kratz et al. [53] integrate high-quality perspective direct volume rendering into
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the Studierstube [8 8 ], a virtual reality system developed in their laboratory. The 

rendering part is built on the hardware volume rendering framework introduced 

by Scharsach et al. [87]. Shaded iso-surface rendering and unshaded direct volume 

rendering are combined to enhance depth perception and visualization of bound­

aries. Volume rendered images are also combined w ith polygon rendered widgets 

by blending the geometry image on top of the volume. Several types of interac­

tion are supported: navigation, clipping cube, lighting manipulation, slice viewer 

and fly-through. However, the transfer functions can only be designed off line and 

loaded at runtime. This inability to interactively manipulate the transfer functions 

impairs the effectiveness of analyzing the data as it relies on prior information to 

display the data set. This is contrary to the needs of practicing radiologists who 

want to have the minimal interpretation performed on the data set by the computer 

as those interpretation may hide subtle structures that are the important ones they 

are looking for.

Kniss et al. [52] apply hardware-accelerated volume rendering and VR tech­

niques to visualizing multi-field medical data sets. Two dual-projector screens are 

placed side by side to provide 3D stereoscopic imagery, and a desktop PC is placed 

in front of one screen to provide 2D classification, i.e., manipulation of the transfer 

functions. The 2D classification interface is built on the multi-dimensional transfer 

functions proposed in [51]. 3D classification interface is also supported, and like 

in [93], rotary knobs are used for adjusting the mapping from a scalar value to vi­

sual attributes. The visualization in VR is built on the same framework used in [93], 

i.e., COVISE and COVER, and volume rendering is performed via the integration 

of Simian [50], a multi-field volume rendering tool. The system is limited to a fixed 

environment and cannot be extended to various display modalities that exist in 

real-world radiology department ranging from radiologist desktop to the operat­

ing room. In addition, the system cannot scale as data modalities get more complex 

and larger such as doppler M RI or temporal CT, desktop PCs cannot easily scale in 

bus bandwidth and memory.

2.5 Summary

Volumetric data rendering has become an important tool in various medical pro­

cedures as it allows the unbiased visualization of fine details of volumetric med-
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ical data (CT, MRI, fMRI). However, due to a large amount of computation in­

volved, the rendering time increases dramatically as the size of the data set grows, 

even when using GPU-based methods. In this thesis, we propose several accel­

eration techniques of volume rendering using general-purpose GPU. Some tech­

niques enhance the rendering speed of software ray casting based on voxels' opac­

ity information, while the other implementations improve traditional hardware- 

accelerated object-order volume rendering.

Some [30] [123] of the previous medical visualization systems support only sur­

face rendering. Although they may be useful in a specific area, they are not suit­

able for a radiologist, who needs the fine details of the data set, to use in his or her 

daily workflow. Our system, MedVis, has integrated the advantages of many of the 

systems found in the literature, as MedVis supports enhanced GPU-based volume 

rendering, allowing for various real-time interaction modalities, and the ability of 

extensibility and portability.
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Chapter 3

System Design and 
Implementation

3.1 Overview

The system, called Medical Visualizer (or MedVis for short), supports visualization 

and interaction with DICOM medical data sets in various virtual reality setups, 

such as parallax barrier autostereoscopic displays, dual-projector screens, and the 

CAVE. Multiple direct volume rendering techniques, i.e., software-based ray cast­

ing and GPU-based object-order volume rendering, are integrated to meet differ­

ent visualization requirements and to accommodate different hardware configu­

rations. The whole system is designed in a modular fashion and consists of three 

major elements: the kernel module, the desktop interface module and the CAVE in­

terface module. The kernel module deals with all VR-independent operations; the 

desktop interface module exports the kernel functions to the PC-based VR systems, 

like autostereoscopic displays; and the CAVE interface module extends the visual­

ization pipeline into the immersive CAVE. Due to this modular design, MedVis can 

be easily extended to support other VR setups, such as the Workbench [2] or the 

Geo Wall [43]. The implementation of MedVis is platform-independent. Although 

MedVis is currently running under Windows, its cross-platform nature allows it to 

run under Linux, IRIX etc. with minimal modifications.

3.2 Rendering Algorithms

As stated in Section 2.2, surface rendering and direct volume rendering can both be 

applied to visualize volumetric data. However, surface rendering depends on the 

assumption that the important structures in medical images can be segmented us-
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ing simple algorithms such as the marching cubes. This is contrary to most medical 

practice as radiologists need to see the data set as it is, as simple minded computer 

interpretation may hide important structures [6 6 ] required to perform a diagnosis. 

On the contrary, direct volume rendering bypasses the intermediate geometric rep­

resentation and directly renders the volumetric data set based on its scalar values. 

This allows a radiologist to visualize the fine details of medical data as he/she is the 

one who by law must make the final interpretations. Considering the advantages 

for radiology of direct volume rendering over standard surface rendering, this is 

why direct volume rendering (DVR) is employed in MedVis as the main rendering 

algorithm.

3.2.1 Direct Volume Rendering

As mentioned in Section 2.2.5, ray casting is a better choice for high-quality vol­

ume rendering, and hardware-accelerated approach is a better choice for high­

speed volume rendering. In order to accommodate different system configura­

tions, software-based ray casting and GPU-based object-order DVR are both incor­

porated into MedVis.

Software-Based Ray Casting Volume Rendering

Software-based ray casting approach casts one ray per screen pixel into the volume. 

Samples (trilinear interpolated) are taken along each ray and the color of each sam­

ple is accumulated from front to back to form the final color of the current pixel. 

This approach produces high-quality images, but due to the huge amount of calcu­

lation, the basic algorithm suffers from poor real-time performance. To accelerate 

software-based ray casting, several enhancements are proposed in this thesis.

As mentioned in Section 2.2.2, there are two common acceleration techniques 

for ray casting volume rendering: early ray termination and empty space skipping. 

Early ray termination exploits the fact that when a region becomes fully opaque or 

of high opacity, the space behind it can hardly be seen. Therefore, ray tracing stops 

at the first sample point where the remaining opacity is less than a user-specified 

threshold.

Empty space skipping is achieved via the use of a precomputed min-max octree 

structure. It can only be performed efficiently when classification is done before in­

terpolation, i.e., when the scalar values in the volume are converted to colors before
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(a) Classification first. (b) Interpolation first.

Figure 3.1: The comparison of classification first and interpolation first.

the volume is resampled. However, this often produces coarser results than apply­

ing interpolation first. As compared in Figure 3.11, the volume-rendered images of 

a whole pelvic region data set using classification first (Figure 3.1(a)) are blurrier 

than those rendered using interpolation first (Figure 3.1(b)), and the blur is most 

obvious in the spinal area. If  empty space skipping is applied w ith interpolation 

prior to classification, one additional table lookup operation is needed to determine 

whether there are non-empty voxels in the current region. Nevertheless, the ma­

jor drawback w ith this empty space skipping technique lies in that every time the 

transfer functions change, the data structure that encodes the empty regions or the 

lookup table need to be updated. Instead, an intuitive empty space skipping tech­

nique is employed in MedVis: only the non-transparent sample points are involved 

in the color accumulation.

However, only w ith early ray termination, the rendering speed is still often far 

from satisfactory, even for medium-size data sets (e.g., 2563). Therefore, another 

acceleration technique is necessary. Jittered sample interval borrowed from the 15- 

acceleration [22], is applied together w ith early ray termination. The basic idea is 

that the sample interval along each ray becomes larger as the pixel opacity accu­

mulates. Unlike the ^-acceleration, which depends on a pyramidal organization of 

the volumetric data, the jittered sample interval is applied directly to the data set in 

MedVis. We term the modified /3-acceleration as ^'-acceleration. Instead of going

1 A ll o f the medical data used in  this thesis is provided by the Departm ent of Radiology &  Diag­
nostic Im aging, University of Alberta.
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up one level in the pyramid whenever the remaining pixel opacity is less than a 

user-defined threshold after a new sample is taken, the sample interval is modified 

according to a function of the accumulated pixel opacity:

s =  s x (1.0 + a x / )  (3.1)

where s denotes the length of the sample interval; a  denotes the accumulated opac­

ity; and /  is a predefined jittering factor. The initial value of s is set by the user. 

Normally, the smaller s is, the better image quality. For every sample point, the re­

maining opacity y  is compared against a user-specified threshold. If y  is less than 

the threshold, the current sample interval is adjusted according to Equation 3.1.

To further enhance the performance of software-based ray casting during inter­

action, the sample interval is automatically enlarged to maintain a high rendering 

speed, and once interaction stops, the sample interval is set back to normal. When 

multiple processors are available, the viewport is divided into several regions and 

each processor handles its own region.

Algorithm 3.1 MedVis ray casting algorithm.
Break current viewport into N  regions of equal size 
Initialize early ray termination threshold V 
Initialize jittering start threshold V  
Initialize jittering factor /

5: Initialize sample interval s 
for each region do 

for every pixel in the current region do 
Compute ray entry point, direction, maximum tracing distance D 
w h ile  the traced distance d <  D  and y  <  V do 

1 0 : Interpolate at current sample point
Get opacity value oc according to opacity mapping function 
i f  oc ^  0 then

Compute pixel color according to color mapping function 
y  y  x ( 1 . 0  — oc)

15: end i f
i f  y  <  T' then  

s <— s x ( 1 . 0  +  ( 1  -  y )  x / )  
end i f  
d <— d +  s

2 0 : Compute next sample position
end w h ile  

end for  
end for

The whole process is executed in CPU using main memory. The enhanced al-
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gorithm is illustrated at Algorithm 3.1. Not only is this parallel software approach 

suitable for computers with low-end graphics cards, but since parallel ray tracing 

is employed, it is also suitable for multi-processor computers or clusters.

GPU-Based Object-Order Volume Rendering

GPU-based object-order volume rendering has several advantages over GPU-based 

ray casting. First, perspective projections can be more easily implemented with 

object-order volume rendering, since only a proper scaling factor needs to be as­

signed to each slice based on several viewing parameters while in ray casting the 

direction of each ray needs to be determined individually. Second, as pointed out 

in [8 6 ], GPU-based ray casting has the limitation that it can only render volumes 

that fit in the texture memory. Since ray tracing needs to randomly access the whole 

volume, it is impossible to break the volume into subvolumes and load each sub­

volume only once per frame. Finally, most of the speedup from GPU-based ray 

casting comes from empty space skipping, and ray casting with only early ray 

termination shows performance comparable to object-order volume rendering if 

implemented in the GPU (see comparison in [54]). In  addition, the object-order 

volume rendering has a more regular processing structure, in which the volume 

is processed slice by slice, therefore it is more suitable to be implemented in hard­

ware. Hence, the GPU-based object-order volume rendering is employed in Med­

Vis.

The rendering algorithm is similar to the one proposed by Rezk-Salama and 

Kolb [80], which balances the workload between the vertex shader and the frag­

ment shader. Most of previous implementations generate the proxy polygons in the 

CPU and use the fragment shader for trilinear interpolation and texture mapping. 

Little work has been done to exploit the vertex shader in the hardware-accelerated 

volume rendering pipeline. Based on the observation of different box-plane inter­

section cases, the generation of proxy polygons can be moved from the CPU to the 

GPU. The intersection between a proxy plane and the bounding box of the vol­

ume has five different cases, ranging from 3 intersection points to 6 , as illustrated 

at Figure 3.2. Let n ■ (x, y,z)  =  d represent a plane, where n is the normalized 

plane normal and d is the signed distance between the origin and the plane, and let 

Vi +  Aei'j represent the edge E, j  from vertex V) to V), where e,y =  V) — Vi, then the
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Figure 3.2: The intersection cases between a proxy plane and the volume bounding 
box.

intersection between the plane and the edge can be computed by

—1 , otherwise.
(3.2)

If Ai'j € [0,1], there is a valid intersection; otherwise, no intersection.

The edges of the volume bounding box are checked following a specific order, 

so that the intersection points can be obtained as a sequence that forms a valid 

polygon. If  Vq is the front vertex (the one closest to the viewpoint) and V7 is the 

back vertex (the one farthest from the viewpoint), then the edges are divided into 

six groups, as shown in Figure 3.3 marked w ith different colors. For a given plane 

parallel to the viewport that does intersect w ith the bounding box, there is exactly 

one intersection point for each of the three groups (red, blue and green), and at 

most one intersection point for each of the other three groups (yellow, cyan and 

purple). The six intersection points P0 to P5  are computed in the way described 

in Table 3.1. For the other seven pairs of front and back vertices, the only extra 

computation is to map each vertex to the corresponding vertex in this case, which 

can be implemented as a simple table lookup.

In Rezk-Salama and Kolb's method [80], the coordinates of a sample point in
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V2

Figure 3.3: The traversal of the bounding box edges.

Table 3.1: The computation of the intersection points.

Point Checked Edges Intersection Position
P0  The red edges:

E0,i, Ei,4 and £4,7

Px The yellow edge: £ 4 ,5

Pa The green edges:
Eo,2, £ 2,5 and  £ 5,7

The cyan edge: E2 , 6

The blue edges:
Eo,3/ E3,6 and E6,7

The purple edge: £ 3 , 4

^ i , j '

where ( /,; )  € {(0 ,1 ), (1 ,4 ), (4 ,7 )} A A(// € [0,1] 
f 3 i/5, A1 / 5  e [0 , 1 ];
\  P0, otherwise.
K j '
where ( /,; )  € {(0 ,2 ), (2 ,5), (5 ,7 )} A A1<;- e [0,1] 

^2,6/ ^2,6 €  [0, 1];
P3, otherwise.

where (1, j)  € {(0 ,3 ), (3 ,6 ), (6 ,7 )}  A \ j  e [0,1] 
^3 ,4 / ^3 , 4  € [0 , 1 ];
P4, otherwise._________________________

the world coordinate system are required to be the same as the coordinates of the 

corresponding sample point in the texture coordinate system. However, this is not 

true for most cases, where the size of the volume in the data coordinate system or 

the world coordinate system is not the same as that in the texture coordinate sys­

tem. In MedVis, the box-plane intersection test is carried out in the data coordinate 

sy stem . S in ce  ty p ic a lly  th e  tex tu re co o rd in a tes  n e e d  to  be n o rm a liz e d  to  a ra n g e  be­

tween [0 , 1 ], a conversion of the valid intersection points' coordinates is required. 

If  the point Pfc intersects the edge Ei;y at the proportional position then each
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coordinate of the resulting texture-space intersection point P'k is obtained by:

where p denotes either x, y or z; B denotes the volume bounding box; and Bp 

denotes the length of B in the p-direction. The coordinates of P'k are then scaled 

and translated in order to sample near the center of the cubic region formed by 

eight adjacent voxels in the texture memory.

One enhancement with respect to the rendering speed is also incorporated: the 

sample interval is adjusted based on the size of the volume in the world coordinate 

system and the distance from the viewpoint to the volume. This idea of adaptive 

sample interval is like level-of-detail (LOD) in mesh simplification. The sample 

interval is calculated by:

where S denotes the constant initial sample interval; F ^  1 denotes the predefined 

interval scale factor; Bx, By, and Bz denote the length of the volume bounding box B 

in the x, y, and z-direction respectively; and max(d) denotes the distance between 

the farthest vertex of B and the view plane.

Now that the proxy polygons are generated, one can then perform texture map­

ping. The fragment shader performs two texture lookups per fragment to attach 

the textures onto the proxy polygons. The first texture lookup gets the scalar value 

associated with the sample point from a 3D texture that holds the volumetric data. 

The hardware does the trilinear interpolation automatically for every sample. The 

second texture lookup uses the scalar value to get the corresponding color from 

a 2D texture that encodes the transfer function. Then, the textured polygons are 

written into the framebuffer from back to front to produce the final image. The 

dataflow between the CPU and the GPU is illustrated in Figure 3.4.

The vertex program and the fragment program are both written in Cg, a high- 

le v e l shading language developed by N VID IA . To exploit the most powerful profile 

supported by a graphics card, the shader programs are compiled at runtime in­

stead of at compile time. Rezk-Salama and Kolb's method requires at least OpenGL 

NV_vertex_program 3.0 profile to compile. However, to accommodate graphics cards 

with different vertex processing capabilities, the amount of work assigned to the 

vertex shader should vary from card to card. The more capable the programmable

Pk-P ~  ' eitj.p  >  0 ;
1  A,- j, ^  0 *

(3.3)

max(rf)

(3.4)
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2. Transfer Functions

Figure 3.4: The dataflow between the CPU and the GPU.

graphics hardware is, the larger the amount of processing are moved from the 

CPU to the vertex shader. Currently, the vertex program has variations for all the 

OpenGL vertex program profiles supported by the Cg compiler. The fragment pro­

gram only requires OpenGL ARB fragment program profile or OpenGL NV_texture_shader 

and NV_register_combiners profile to compile, which are supported by all graphics 

cards that have fragment shader programmability. Therefore, theoretically the pro­

posed GPU-based volume rendering program can be executed on any computer 

with a programmable graphics card.

Gradient Opacity Mapping

Gradient opacity mapping can help amplify the boundaries between different ma­

terials, which can be used together w ith scalar color mapping in the classification 

of the volume. The gradient g  at every voxel is evaluated using finite difference 

method. If the voxel does not lie on the volume boundary, its gradient is calculated
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by the central difference:

f { x  +  \ A x , y , z ) ~  f ( x - \ A x , y r z)
8x = A x

f { x , y  +  |A y ,z ) — f { x , y  — |  Ay,z)
g , = ----------------------- A j ---------------------- <3'5)

f ( x ,  y, z +  \  Az) -  f ( x ,  y , z -  \  A z )
* z = ---------------------- A i -----------------------

where f ( x ,  y, z ) denotes a function that returns the scalar value at volume location 

(x, y, z). If the voxel is on the volume boundary, then at least one of its three gra­

dient components needs to be calculated by the forward or backward difference. 

For instance, if the voxel is located at the bottom-left vertex of the back face of 

the volume, all of its three gradient components are calculated using the forward 

difference.

f ( x  +  A x , y , z ) - f ( x , y , z )  

g x ~  A i
_ f ( x ,  y  +  Ay, z) — f ( x ,  y, z)

~ ----------------- A j ---------------  ( 3 ' 6 )

f ( x , y , z + A z ) - f ( x , y , z )
g z ~  Az

In  another extreme case when the voxel is located at the top-right vertex of the 

front face of the volume, all of its three gradient components are calculated using 

the backward difference:

f ( x , y , z )  - f { x -  A x . y . z )  
g x ~  A i

f ( x , y , z ) - f { x , y - A y , z )
~  A y

f { x , y , z ) —f ( x , y , z  — A z )  
g z ~  A i

After the three components of a gradient g  are evaluated, the magnitude ||g|| is 

mapped to an opacity value a 1. Now, the final opacity of a voxel is ct' x  a,  where oc 

is the opacity value obtained from the scalar opacity mapping. When the gradient 

opacity mapping is incorporated, the transfer function moves from ID  to 2D do­

main. When integrated with the GPU-based volume rendering, like the ID  case, the 

2D transfer function is also encoded in a 2D texture. The s-coordinate corresponds 

to the scalar value and the t-coordinate corresponds to the gradient magnitude. 

Each pixel of the 2D texture stores the quantized RGBA color associated with the 

corresponding scalar-gradient pair.
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3.2.2 Stereo Rendering

Stereo rendering takes advantage of the binocular parallax, the horizontal difference 

in the position of one object seen by each eye. The brain merges the two slightly 

different 2D images. Therefore, if the rendering system generates the two images 

based on each eye's viewing positions and delivers each image to the correspond­

ing eye, the user can experience stereopsis. As pointed out by Hodges [41], there 

are two ways to present the left and right images: time parallel and time m ulti­

plexed. Time parallel methods display the two images simultaneously on a single 

display or two separate displays. In the one-display case, the stereopsis is gener­

ated either by interlacing the images inside the display (e.g., the D TI Virtual Win­

dow) or by exploiting some external optical devices (e.g., the dual-projector polar­

ized passive stereo display). In  the two-display case, i.e., the H M D , the generation 

of stereo images is much easier. Since each small display is very close to both eyes, 

each eye can only see the images shown on the display right in front of it. When 

the two images are displayed separately, no extra work is needed for delivering the 

correct images for each eye. Time multiplexed methods display the two images al­

ternately on a single display. W ith a pair of shutter glasses, the frequency of which 

is synchronized w ith the display, at every time point, the currently displayed im ­

age is always delivered to the corresponding eye. When the alternate images are 

displayed in sequence at 120 H z or more, the user can see a flicker-free 3D image.

Focal PointScreen Parallax
Eye AngleLeft Eye

Right Eye

Figure 3.5: Stereo rendering.

For both methods, the most important task is to generate the correct left and 

right images based on the binocular parallax. When a virtual object is observed 

through a display (or screen), the binocular parallax can be considered as an effect
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of the screen parallax. Figure 3.5 illustrates how the screen parallax occurs. The 

same point of the object is projected for each eye's respective viewing direction, 

which results in two different footprints on the screen (or view plane in the world 

coordinate system). To find the exact two positions that a point of the object is 

projected to, the eye positions, the eye separation distance and the eye focal point 

need to be obtained first. Based on this information, the left and right screen foot­

prints of an object can be calculated. The average eye separation distance is 6.35 

cm. Alternatively, the eye angle can also be used to control the amount of parallax, 

since the relative position of the virtual object to the view plane(s) can be easily 

calculated. In MedVis, we use the eye angle to control the amount of the screen 

parallax.

In practice, two virtual cameras are used to simulate the eyes in the world co­

ordinate system. For such time-parallel systems as the HM D, which uses two dis­

plays, when each camera is positioned along the corresponding eye's viewing di­

rection, a simple perspective projection to each of the two view planes (yellow line 

segments in Figure 3.5) can generate the correct left and right images. For other 

time-parallel systems with one display and time-multiplexed systems, the left and 

right images share the same view plane (blue line segment in Figure 3.5). In this 

case, an additional oblique projection is performed to project the images from each 

camera's respective view plane to the shared view plane.

3.3 Hardware Setup

3.3.1 Desktop Version

In the desktop configuration MedVis runs on a consumer PC with an autostereo­

scopic display. The current configuration uses an 18-inch DTI autostereo display 

(on the left) to deliver glassless stereoscopic imagery and a normal display (on the 

right) to display the control interface, as shown in Figure 3.6.

As mentioned in Section 2.3.2, the DTI 3D display developed by Dimension 

T ech n o log ies tak es a d v a n ta g e  o f  screen  parallax to  gen erate  stereop sis. A  sp ecia l 

illumination plate is placed behind an LCD screen, so that the strips of the left and 

right eye images are interlaced across the screen. Once the plate is illuminated, the 

space before the screen is divided into alternate left eye and right eye zones the so 

called sweet spot. When the user's left and right eyes are positioned in the left eye
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Figure 3.6: MedVis desktop hardware setup.

and right eye zones respectively, the left eye can only see through the odd columns 

of the LCD screen and the right eye can only see through the even columns. Hence, 

each half of the pair of stereo images is delivered to the corresponding eye. As for 

interaction, a 2D mouse is used to manipulate the volume or the control panel. 

Since this version only requires to add one autostereoscopic display to a normal 

PC setup, it can easily fit on a radiologist's workplace.

3.3.2 Immersive CAVE Version

Our CAVE is a 10' x 10' x 8 ' cube w ith rear-projected front, right and left walls, as 

shown in Figure 3.7. The CAVE version runs on a cluster, where each cluster node 

handles one of the three walls.

A Microsoft joystick (Figure 3.8) or InterSense motion tracker is used for navi­

gation or interaction. The current configuration employs an InterSense IS-900 (Fig­

ure 3.9), a 6 -DOF (degree of freedom) inertial-acoustic motion tracking system. A  

head tracker is placed on the user's head or the shutter glasses, and a tracked wand 

with 4 buttons is used by the user as a controller.
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Figure 3.7: MedVis CAVE hardware setup.

(a) Head tracker. (b) Wand.
Figure 3.8: Microsoft
force feedback joystick. Figure 3.9: InterSense IS-900.

3.4 Interaction M odalities

MedVis supports several types of interaction that helps analyze the medical vol­

umetric data, such as real-time manipulation of the transfer functions and trans­

formation of the displayed volume. Although the basic concepts remain the same 

from  th e  d e sk to p  in teraction  m o d e  to  th e  CA VE in teraction  m o d e , th ere  is  so m e  

difference between them.
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3.4.1 Desktop Interaction

In  the desktop interaction mode, the transfer functions can be adjusted through a 

2D widget, and for all the transfer function changes, the volume-rendered images 

are updated correspondingly in realtime. The style of the widget resembles the one 

used in VolView. Figure 3.10 shows the control panel.

Scalar Opacity Mapping:
E*s tfew Qptlon 

takrw Mapper Typo; 3D Texture Mapper (CgHtftftesduHon)

SemplngOfctance(urtt! voxel):

Scalar Color Mapping:

■ r m i* F ir r
0  r w w w rm u w r r Gradient Opacity Mapping:

Figure 3.10: The desktop control panel.

The middle region of the control panel holds the transfer function editor. The 

top part of the widget controls the scalar opacity mapping. Its background shows 

the log-based histogram of the current scalar data. The foreground is the piecewise 

linear opacity transfer function represented as a combination of lines and spheres. 

The spheres are the control points that actually determine the shape of the transfer 

function. Once a control point is selected, it is highlighted by changing its color 

from blue to red and enlarging the radius. Once the control point loses focus, the 

color and size are back to normal. Except for the two control points at the ends, 

other control points can be added, deleted and moved u s in g  a mouse to ch a n g e  

the scalar opacity mapping. The end control points can only be moved upward or 

downward and cannot be deleted for a transfer function to exist.

The middle part controls the scalar color mapping. The color representation 

is based on the Hue, Saturation and Value (HSV) model. Below the histogram,
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which is defined the same as in the scalar opacity mapping, is a color bar that 

displays the current color transfer function. Once a control point is selected, the 

palette right below the color bar is enabled and the user can change the color for 

the current selected scalar value. Like in the scalar opacity mapping, except the two 

control points on the ends, other control points can be added, deleted and moved 

horizontally using a mouse to change the scalar color mapping.

The bottom part controls the gradient opacity mapping. Its background is the 

log-based histogram of the gradients computed from the current scalar data. The 

control points can be moved by a mouse but cannot be deleted nor added. The 

use of the gradient opacity mapping is optional, which can be turned on/off at any 

time.

Four interaction styles for transforming the displayed volume (e.g., rotation, 

panning, etc.) are supported: joystick camera, joystick actor, trackball camera and 

trackball actor. A mouse is used to simulate a joystick or trackball. The joystick 

styles perform transformation based on the position of the mouse, while the track­

ball styles perform transformation based on the magnitude of the mouse motion. 

The joystick-camera and trackball-camera styles normally guarantee a higher ren­

dering speed than the other two, because they move the camera instead of trans­

forming the volume. The volume can be re-sliced along the current viewing di­

rection and the slices are displayed in a separate window. Figure 3.11(a) shows 

the slice viewer with slices generated from the pelvic volume displayed in Fig­

ure 3.11(b). Those interactions are defined in the InTml framework [29] to guar­

anty easy re-targeting to other VEs. InTml is an XML-based language developed 

at the University of Alberta for the description of complex VR application systems 

that allow to create formal model of interaction that is hardware-independent and 

component-based, allowing for easy re-targeting and code re-use.

3.4.2 CAVE Interaction

In the CAVE interaction mode, the transfer function editor is a 3D extension of the 

2D widget used in the desktop interaction mode. Figure 3.12 shows the 3D transfer 

function editor. The bottom part controls the scalar opacity mapping and the top 

part controls the scalar RGB color mapping. The 3D palette contains three regions 

(from left to right): the hue/saturation display, the value display and the color 

preview display.
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(a) (b)

Figure 3.11: Re-slicing along the current viewing direction.

Figure 3.12: The CAVE control panel.

Although the appearance of the editor changes, the operations on the transfer 

fu n c tio n s  rem a in  s im ila r  to  th o se  in  th e  d e sk to p  in tera c tio n  m o d e . H o w e v e r , a s  the 

widget is placed in a 3D environment, the interaction is a little more complicated 

than the 2D case. A  wand (or joystick) is used instead of a 2D mouse. A  red line 

is drawn from the wand's position and along its direction. This red line serves as 

a 3D pointer, like the idea employed by Zhang et al. [123]. This 3D pointer is used
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to manipulate the editor or the displayed volume. A  thin bounding box of the

transfer function editor is updated whenever the position of the editor changes. 

The point on the editor that the 3D pointer is aiming at is determined by the inter­

section between the bounding box and the infinite red line. The interaction style 

for transforming the displayed volume resembles the joystick-camera style in the 

desktop interaction mode.

3.5 Software Architecture

MedVis is built using several open-source toolkits and follows the object-oriented 

programming paradigm. Figure 3.13 gives a high-level block diagram of the vi­

sualization pipeline. Medical data acquired from CT or M RI is usually stored in 

DICO M  format. The D ICO M  image series are read in memory by the reader and or­

ganized in an internal structure, which is then passed to the renderer. The interactor 

handles user input and exchanges states w ith the renderer to adjust the rendered 

images. The rest of this section describes the underlying software architecture of 

MedVis in detail.

3.5.1 Toolkits Used

Different toolkits are integrated together to support basic visualization and inter­

action, upon which more sophisticated techniques and algorithms are applied. A ll 

the toolkits are cross-platform and widely used in their respective areas.

The Insight Toolkit

The Insight Toolkit (ITK) is an application programming interface (API) for image 

processing, especially the segmentation and registration of medical images [1 2 0 ]. 

M ultiple registration methods and segmentation algorithms are supported. The

DICOM
Series

►  R^der Renderer - * ^ 2 .
Jpf

►-Interactor ^

Figure 3.13: MedVis's visualization pipeline.
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data processing pipeline of ITK  supports not only an automatic updating mech­

anism that causes a filter to execute if and only if its input or its internal state 

changes, but also streaming, the ability to automatically break data into smaller 

pieces, process the pieces one by one, and reassemble the processed data into a fi­

nal result [70]. Images with DICOM format are read via the GDCM library (part 

of ITK) and then treated as ITK internal images. Besides the support for reading 

DICOM-format images, the ITK pipeline can be seamlessly connected to the VTK  

(the Visualization Toolkit) pipeline. As such, ITK is chosen as the interface between 

the DICOM format and MedVis's visualization classes.

The Visualization Toolkit

The Visualization Toolkit (VTK) is an open source C++ class library for 3D graphics 

and visualization [91]. VTK is well-known for its powerful rendering capability: 

Its rendering model supports 2D, polygonal, volumetric, and texture-based ap­

proaches that can be used in any combination [90]. Some of its design concepts 

are the same as ITK, such as the separation of data objects and process objects, au­

tomatic updating mechanism. In addition, object factories and virtual functions are 

largely utilized to maximize the portability and extensibility, which makes adding 

new rendering classes (or classes of other purposes) very convenient. Although 

VTK does not depend on any graphical user interface (GUI), it can be easily in­

tegrated with many existing G UI toolkits such as Qt, Tk and MFC. Due to VTK's 

well-structured visualization pipeline and extensibility, it is chosen as a basic visu­

alization layer, upon which the MedVis's rendering model is built.

The Gimp Toolkit

The Gimp Toolkit (GTK+) is a multi-platform toolkit for creating graphical user in­

terfaces, which offers a complete set of 2D widgets [31]. The desktop interface of 

MedVis is built on it as VTK does not provide any GUI. With vtkgtk, an interface for 

using VTK within a GTK+ widget in the X Window system [34], VTK's rendering 

output can be redirected into a GtkDrawingArea widget, therefore, a VTK render 

window can be embedded into a GTK+ render window. GTK+ passes the received 

user input signal (e.g., clicking a mouse button or pressing a key) to VTK's interac­

tor, where the actual processing takes place. We have extended vtkgtk to work in 

the Windows environment and added new functions.
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VR Juggler

VR Juggler is a virtual platform for the creation and execution of immersive appli­

cations, which provides a VR system-independent operating environment [6]. It 

provides the abstraction of the hardware via the kernel interface and the abstrac­

tion of the graphics API via the draw manager. With a proper configuration file, 

VR Juggler can automatically handle the correct projections for each w all in the 

CAVE and the synchronization between each cluster node. The CAVE interface of 

MedVis is built on it. As MedVis's visualization model is based on VTK's pipeline, 

v jVTK  [9] is employed to enable the use of VTK within VR Juggler.

The Virtual Reality Peripheral Network

The Virtual Reality Peripheral Network (VRPN) provides a device-independent and 

network-transparent interface to VR peripherals [100]. It supports many devices, 

including Microsoft joysticks and InterSense motion trackers. VR Juggler has a 

VRPN driver that can act as an client and access the states of VR peripherals through 

a VRPN server that runs separately from VR Juggler applications. Therefore, VRPN 

is used together w ith VR Juggler to provide a uniform hardware interface for Med­

Vis's CAVE edition.

CMake

CMake is an open source build manager for software projects that allows develop­

ers to specify build parameters in a simple configuration file [64]. This file is then 

used by CMake to generate native makefiles or workspaces for compilers or inte­

grated development environments (IDE) under various operating systems, such as 

Microsoft Visual Studio under Windows or the GNU Compiler Collection (GCC) 

under Linux. We use CMake to generate platform and compiler-dependent project 

files for compiling MedVis in different environments, which enhances the portabil­

ity of MedVis.

3.5.2 MedVis Kernel Module

The kernel module deals with all VR setup-independent operations. The opera­

tions, together with the data structures that they are applied to, are encapsulated 

in classes.
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The D ICO M  volumes are represented by the vtkDICOMVolume class, which 

also takes care of rendering the volume into a 3D scene. Figure 3.14 illustrates 

the structure of the vtkDICOMVolume class. The classes represented by the green 

boxes are VTK's classes and those represented by the yellow boxes are MedVis's 

kernel classes2. vtkDICOMVolume inherits VTK's vtkVolume. Besides the map­

pers that vtkVolume supports, vtkDICOMVolume has two additional rendering 

options: vtkVolmeTextureMapper3DCg, which implements the GPU-based object- 

order volume rendering algorithm described in Section 3.2.1, and vtkVolumeR- 

ayCastMapper w ith vtkVolumeRayCastJitteredCompositeFunction, which imple­

ments the ray casting algorithm w ith jittered sample intervals described in Sec­

tion 3.2.1.

vtkDICOMVolume vtkVolumeTextureMapper3DCg

vtkVolumeReyCaitJitteredCompoiiteFunctlon

Figure 3.14: The vtkDICOMVolume class.

The manipulation of the transfer functions is carried out via a set of histogram 

classes, as shown in Figure 3.15. The vtkHistogram class provides basic back­

ground histogram rendering, and foreground transfer function rendering and in­

teraction . Its th ree su b c la sse s , v tk C o lo rH isto g ra m , vtkOpacityHistogram and vtk- 

GradientOpacityHistogram, control the specific rendering and interaction require­

ments for their respective transfer functions through their own interactor style 

classes.

2 A ll the subsequent figures that illustrate MedVis's classes follow  the same mode of representa­
tion.
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vtkDICOMVolume

vtkColorMappingFunction

vtkColorHistogram
\  / 1

vtkHistogram

vtkOpacityMappingFunction ^  ^.ytkOpacityHistogram

t
vtkGradientOpacityMappingFunction^— ^vtkGradlentOpacityHlstogram

Figure 3.15: The histogram classes.

The vtkDICOMVolume and the histogram classes are connected by several trans­

fer function classes. For instance, the color mapping of vtkDICOMVolume is con­

trolled by vtkColorFIistogram via vtkColorMappingFunction. Whenever the vtk­

ColorMappingFunction is changed, the active mapper of vtkDICOMVolume up­

dates the rendering output accordingly.

3.5.3 MedVis Desktop Interface Module

The desktop interface module exports the kernel functions to the PC-based VR sys­

tems, like autostereoscopic displays. The time-parallel stereo rendering is imple­

mented by dividing the display window into a left viewport and a right viewport 

and placing a virtual camera into each viewport. Generating the correct images for 

each viewport is done in the vtkStereoRenderWindowInteractor class, as shown in 

Figure 3.16. The classes represented by the blue boxes are Me Vi's desktop interface 

classes. This class also handles the synchronization of the interaction in the two 

viewports. The four interaction styles mentioned in Section 3.4.1 can be switched 

at runtime via the vtkStereoInteractorStyleSwitch class.
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Figure 3.16: The vtkStereoRenderWindowInteractor class.

The desktop G U I is built upon GTK+. The vtkGtkStereoRenderWindowInter- 

actor class embeds a vtkRenderWindow w ith two viewports (left and right) into a 

GTK+ window. As shown in Figure 3.17, it is a subclass of the vtkStereoRender- 

Windowlnteractor, which synchronizes the interaction in the two viewports, and 

the vtkGtkRenderWindowInteractor, which actually connects the kernel rendering 

output w ith GTK+'s drawing area and passes the user input signals intercepted by 

GTK+ to the kernel.

Figure 3.17: The vtkGtkStereoRenderWindowInteractor class.

The abstraction of a high-level GUI class, together w ith the multiple inheri-
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tance, facilitates the addition of basic interaction functions without modification to 

the kernel module and subclasses that provide specific interactions. W ith the same 

concept, the kernel histogram classes are extended to form a GTK+-style trans­

fer function editor. For instance, the relationship between the vtkGtkColorHis- 

togram class and its superclasses is illustrated in Figure 3.18. The slice viewer 

is implemented in the vtkGtkSliceViewer2 class (Figure 3.19) w ith the vtkGtklm - 

ageViewer2  class displaying the current selected slice.

vtlcHUtogram

vtkColorHistogram

Figure 3.18: The vtkGtkColorHis- Figure 3 .1 9 ; The vtkGtkSlice-
togram class. Viewer2  class.

3.5.4 MedVis CAVE Interface Module

The CAVE interface module extends the kernel visualization pipeline into the im ­

mersive VE, CAVE. MedVis's CAVE G UI is built upon VR Juggler and vjVTK. VR  

Juggler uses the application object instead of the traditional mainO function, and the 

VR Juggler kernel schedules the application by calling the object's interface meth-

Figure 3.20: The vtkVRJApp class.
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ods. MedVis's CAVE application interface is defined in the vtkVRJApp class. The 

relationship between vtkVRJApp and its superclasses is illustrated in Figure 3.20. 

The classes represented by the gray, brown and orange boxes are MedVis's CAVE 

interface classes, vjVTK classes and VR Juggler classes respectively.

The base application object interface is defined in the vrj::App class, which is in 

charge of initializing an application and invoking the frame functions during the 

kernel frame loop. vrj::App's subclass vrj::GlApp defines the draw manager inter­

face that allows the rendering of OpenGL graphics. The VTKApp_mixin class cre­

ates a VTK rendering environment w ith derived vtkRenderWindow, vtkRenderer 

and vtkCamera classes. The VTKApp class, derived from both vrj::GlApp and 

VTKApp_mixin, renders a VTK scene into the VTK context setup by VTKApp_mixin 

in the VR Juggler draw manager. The vtkVRJApp class utilizes the interfaces and 

functions provided by VTKApp, and connects the MedVis's rendering classes and 

interaction classes together to work correctly in the CAVE environment.

The vtkVRJDICOMVolume class (Figure 3.21), derived from vtkDICOMVol- 

ume, uses vtkVRJVolumeTextureMapper3DCg to provide the hardware-accelerated 

volume rendering. The vtkVRJVolumeTextureMapper3DCg class inherits all the 

functions and properties of vtkVolumeTextureMapper3DCg except that the head 

position is now determined by a position proxy that transfers the position data 

captured in real world to VR Juggler-based applications.

vtkDICOMVolume vtkVolumeTextureMapper3DCg

Figure 3.21: The vtkVRJDICOMVolume class.

The transfer function editor in the CAVE is a 3D widget that provides the user 

interface for real-time modification of the transfer functions. The structure of the 

vtkVRJTransferFunctionEditor class is shown in Figure 3.22. The vtkVRJOpaci- 

tyHistogram class controls the editing of the opacity mapping, while the vtkVR-

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



JColorHistogram class, together w ith the vtkVRJColorSelection class that holds 

the color palette, controls the editing of the RGB color mapping. The vtkVR- 

JOpacityHistogram and vtkVRJColorHistogram classes both have a common su­

perclass, vtkVRJHistogram, which serves a basic interface between MedVis kernel 

histogram classes and VR Juggler. Their the other respective superclasses (vtkOpac- 

ityHistogram and vtkColorHistogram) are the classes that actually provide the spe­

cific interaction cababilities.

vtkColorSelection

vtkHistogram vtkColorHistogram

vtkOpadtyHistogram

Figure 3.22: The vtkVRJTransferFunctionEditor class.
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Chapter 4

Performance and Results

4.1 System Performance for Rendering

The system is tested on a dual-core 2.0GHz computer running Windows XP with 

a 256MB-memory N V ID IA  GeForce 7800 GTX graphics card. The data used for 

testing is a medium-size (512x512x181) CT-scan of the pelvic region.

Table 4.1: The rendering times using different acceleration techniques.
Viewport Size Rendering Time (unit: second)

(unit: pixel) Without 13' With 0' Tex' 1.0 Tex' 1.15 Tex 1.0 Tex 1.15
2 0 0 x2 0 0 0.172 0.125 0.031 0.016 0.015 0.015
300x300 0.422 0.281 0.031 0.016 0.015 0.015
400x400 0 . 6 8 8 0.484 0.031 0.016 0.015 0.015
500x500 1.078 0.750 0.047 0.031 0.031 0.015
600x600 1.641 1.125 0.047 0.031 0.031 0.016
700x700 2.078 1.562 0.062 0.047 0.047 0.031
800x800 2.704 2.187 0.062 0.047 0.047 0.031
900x900 3.391 2.469 0.078 0.062 0.062 0.047

1 0 0 0 x1 0 0 0 4.312 3.062 0.094 0.078 0.078 0.047

Software-based ray casting provides high quality images, but only with small 

viewports or for small data sets it can maintain an acceptable rendering speed, 

even with the proposed ^'-acceleration. With the transfer functions shown at Fig­

ure 4.2(g), the rendering times using software ray casting with both early ray termi­

nation and /J'-acceleration and with only early ray termination are enumerated in 

the first two columns of Table 4.1. Figure 4.1(a) depicts the two cases' performance 

curves with respect to the viewport size. The x-axis is the size of the viewport in 

pixels and the y-axis is the rendering speed in hertz. The dark gray line denotes 

the performance of the method without ^'-acceleration, and the other line denotes
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Figure 4.1: The comparison of the rendering speeds using different acceleration 
techniques.

the performance of the one with ^'-acceleration. On the average, software ray cast­

ing with both early ray termination (r=0 .0 2 ) and ^'-acceleration (T'=0 . 6  and /= 0 .1 ) 

takes 28% less time than that with only early ray termination (P=0.02). The result­

ing images are shown in Figure 4.2(a)(b). There is no noticeable difference between
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(e) Tex' F  =  1.0.

Scalar Opacity Mapping: 

1.0

(f) Tex' F =  1.15.

-3024
Scalar Color Mapping: 

1.0

1831

-3024 1831

(g) Transfer functions.

Figure 4.2: Volume rendering results of a CT-scanned pelvic region in MedVis.
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these two images.

High-quality images and interactive rendering speed are both achieved by ex­

ploiting the processing power of the GPU. The rendering times under four different 

conditions are enumerated in Table 4.1. Tex' 1.0 denotes no acceleration; Tex' 1.15 

denotes adaptive sample interval w ith interval scale factor F=1.15; Tex 1.0 denotes 

only with vertex shader acceleration; Tex 1.15 denotes with both acceleration tech­

niques and F=1.15. Figure 4.1(b) gives a comparison of the performance curves 

under the four different conditions. In all cases, the rendering speed decreases as 

the viewport grows, but even for the 1 0 0 0 x1 0 0 0  viewport the rendering times are 

below 0 . 1  second, i.e., the rendering speeds are above the psycho-physical lim it of 

10 Hz. With only adaptive sample interval enabled, when F=1.15, we get an av­

erage 33% speedup. With only vertex shader acceleration enabled, the algorithm's 

performance is almost the same as Tex' 1.15. With both acceleration techniques en­

abled, when F=1.15, an average 53% speedup is achieved with respect to the Tex' 

1.0 case and an average 28% speedup is achieved with respect to the Tex' 1.15 case. 

Since stereo rendering is necessary, the actual rendering time is doubled. However, 

an interactive frame rate is still maintained. Stereo volume rendering of this data

20

N
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0 J------------------ ■--------- ,--------- .--------- .---------■--------- .--------- .---------=--------- .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sample interval (unit: voxel)

Figure 4.3: The rendering speed of MedVis's GPU-based algorithm with different 
sample intervals.
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(a) s =  0.1.

(d) s =  0.4.

(g) a =  0.7.

(j) s =  1.0.

(b) s =  0.2. (c) s =  0.3.

(e) s =  0.5. (f) s =  0.6.

(h) s =  0.8.

Scalar Opacity Mapping:

(i) s =  0.9.

3024

Scalar Color Mapping: 

1.0

(k) Transfer functions.

Figure 4.4: Volume rendering results of a CT-scanned pelvic region in MedVis w ith  
different sample intervals.
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set into two 512x512 viewports using our method with F=1.0 has an average frame 

rate of 17Hz. If F=1.15, the average frame rate is about 33Hz. The final images 

are shown in Figure 4.2(c)-(f), together with the images produced by software ray 

casting. From these images, no significant difference can be observed between the 

image quality of image-order methods and that of object-order methods, as long as 

the original data set is at high resolution.

Normally, the rendering speed increases as the sample interval increases. Fig­

ure 4.3 depicts the change of the rendering speed with respect to the sample in­

terval (from 0.1 to 1.0). The data is collected based on MedVis's GPU-based al­

gorithm with only inside-vertex-shader polygon generation acceleration enabled.

The x-axis is the sample interval in voxels and the y-axis is the rendering speed in 

hertz. The applied transfer functions are shown in Figure 4.4(k). When s=0.1, the 

rendering speed is lowest, i.e., 0.453 second to render a single image; but when s 

decreases to 0.9 or 1.0, the rendering speed increases to 21.28 Hz, which is about 10 

times faster than s=0.1. However, the image quality decreases as well, as shown in 

Figure 4.4(a)-(j). There are noticeable differences when s increases from 0.1 to 0.3. 

However, there is no noticeable difference when s increases from 0.3 to 1.0. This in­

dicates that when sample interval has reached a threshold (not necessarily a large 

threshold), an even larger sample interval can be used to enhance the rendering 

speed with almost no degradation of the image quality. The gradient opacity map­

ping is applied in addition to the scalar color-opacity mapping. This enables the 

extraction of material boundaries. At Figure 4.4, the skin (a blue thin 3D surface) is 

separated from other tissues.

4.2 Results for the Desktop Version

Figure 4.5 shows the rendering result of a CT-scanned abdomen (data size: 512x512x333) 

in MedVis desktop version. The left and right images shown in Figure 3.6 are 

merged together to form a 3D image. The user can observe the rendered volume 

from any position, either inside the volume or outside the volume by transforming 

the volume with a 2D mouse. The transfer functions and other control parameters 

can be adjusted by the user using a 2D mouse at runtime, and the changes to the 

volume are applied in realtime.
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Figure 4.5: Stereo volume rendering of a CT-scanned abdomen in the MedVis desk­
top version.

4.3 Results for the CAVE Version

Figure 4.6(a)(b) show the rendering results of an MRI-scanned heart in MedVis 

CAVE version. M ultiple users can stay in the CAVE simultaneously to analyze the 

data. The displayed volume can be transformed using the wand, or the user can 

walk around to observe the data from different directions. The transfer function 

editor (shown in Figure 4.6(a)) can be turned on /o ff (shown/hidden) at any time, 

and it can be dragged by the wand to be placed in a convenient position. Like in 

the desktop version, the changes of the transfer functions are applied to the volume 

in realtime, i.e., the user can get the visual feedback of the influence of the current 

transfer functions immediately. Figure 4.6(b) shows the visually segmented heart.
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(b)

Figure 4.6: Volume rendering of an MRI-scanned heart in the MedVis CAVE ver­
sion.
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Chapter 5

Conclusion and Future Work

This thesis presents the Medical Visualizer, a VR system for visualizing volumetric 

medical data in various VR systems, ranging from non-immersive to immersive 

systems. Our main goal is to provide radiologists more help in understanding 

the data produced by CT and MRL Real-time high-quality stereo volume render­

ing and interactive manipulation of the color and transparency classifications are 

supported for effectively analyzing the fine details in the data sets. Several vol­

ume rendering acceleration techniques are proposed for medical data visualiza­

tion. /3'-acceleration enhances the rendering speed of software-based ray casting 

using voxels' opacity information, while vertex shader proxy polygon generation 

and adaptive sample interval improve the performance of traditional hardware- 

accelerated object-order volume rendering. Remarkable speedups are observed 

from experiments on average-size medical data sets. In addition, since only an 

autostereoscopic display and a standard PC are required, MedVis desktop version 

can be easily incorporated into radiologists's daily workflow for pre-surgical plan­

ning or diagnosis. With MedVis CAVE version, radiologists can explore the vol­

umetric data sets in a more natural way and easily get a better understanding of 

the 3D structure. The VR setup-dependent functions are separated from the ker­

nel module, which only deals with volume rendering and interactive classification. 

The user interface modules handle stereo rendering and the connection between 

th e  G U I an d  th e  k ern el m o d u le . D u e  to  th e m o d u la r  d es ig n , MedVis is a lso  eas­

ily  extensible to other virtual environment modalities, and new functions can be 

incorporated rapidly.
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5.1 Future Work

What is now required is to perform a user study to demonstrate the advantages of 

our system relative to the traditional film-based approach. This is key for accept­

ability of this system in the radiology community as we are competing with a well 

established practice and it is up to us to prove that this approach does improve the 

effectiveness of radiologists to analyze their data sets. Furthermore, we are also 

exploring more efficient and effective rendering algorithms using GPU clusters to 

handle larger and larger data sets produced by doppler M RI and temporal CT. In 

addition, based on modular design concept, we w ill extend MedVis to work in 

other VR setups (e.g., with haptic feedback) that may provide more help to radiol­

ogists in understanding the data sets.
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Appendix A

Cg Code

A .l Vertex Shader Code

void  V_ComputingPolygons( 
int2 p o s : POSITION, 
uniform float dPlaneStart, 
uniform float4x4 modelViewProj, 
uniform float frontlndex, 
uniform float dPlanelncr, 
uniform float3 vecVertices[ll], 
imiform float nSequence[64], 
uniform float vl[24], 
uniform float v2[24], 
out float4 v er tex : POSITION, 
out float3 texCoordO : TEXCOORDO)

f
float dPlaneDist = dPlaneStart + pos.y * dPlanelncr;
float3 position;
float3 vecV l, vecV2, vecDir;
float denom, lambda;
int i = 0, v id x l, vidx2;
for (i = 0; i < 4; i++)

(
vid x l = int(nSequence[int(frontIndex * 8 + v l[p os.x  * 4 + i])]);
vidx2 = int(nSequence[int(frontIndex * 8 + v2[pos.x * 4 + i])]);
vecV l = vecVertices[vidxl];
vecV2 = vecVertices[vidx2];
vecDir = vecV2 - vecVl;
denom  = dot(vecDir, vecVertices[8]);
lambda =

(denom  != 0)?(dPlaneDist - dot(vecV l, vecVertices[8]))/denom:-1.0; 
if (lambda >= 0.0 && lambda <= 1.0)
I

position = vecV l + lambda * vecDir;
break;
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vertex = mul(modelViewProj, float4(position, 1.0)); 
if (vecDir.x == 0)

texCoordO.x = (vecV l.x == vecVertices[0].x)?l:0;
else

texCoordO.x = (vecDir.x > 0)?lambda:(l - lambda); 
if (vecDir.y == 0)

texCoordO.y = (vecV l.y == vecVertices[0].y)?l:0;
else

texCoordO.y = (vecDir.y > 0)?lambda:(l - lambda); 
if (vecDir.z == 0)

texCoordO.z = (vecV l.z == vecVertices[0].z)?l:0;
else

texCoordO.z = (vecDir.z > 0)?lambda:(l - lambda); 
texCoordO = texCoordO * vecVertices[9] + vecVertices[10];

A.2 Fragment Shader Code

void  F_Sampling(
float3 texCoordO: TEXCOORDO, 
out float4 color : COLOR, 
uniform  sampler3D volum e : TEXO, 
uniform  sam pler2D colorLookup : TEX1)

(

color = tex2D(colorLookup, tex3D(volum e, texCoordO).ar);
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Appendix B

GPU-Based Volume Rendering

B.l vtkVolumeTextureMapper3DCg.h

class vtkVolumeTextureM apper3DCg: public vtkVolumeTextureMapper3D 1 
public:

virtual vo id  Initialize()
virtual v o id  Render (vtkRenderer* ren, vtkVolume* vol);

static const float V_START_INDICES[24]; 
static const float V_END_INDICES[24]; 
static const float N_SEQUENCE[64];

protected:

virtual vo id  ComputePolygonsParameters(vtkRenderer* ren, 
vtkVolume* vol, float vertices[][3], float tCoordScale[3], 
float tCoordOffset[3], double plane[4], double &minDistance, 
double &stepSize, int &frontIndex);

virtual v o id  ComputePolygonsFP(vtkRenderer* ren, vtkVolume* vol); 
virtual vo id  Com putePolygonsVPFPl (vtkRenderer* ren, vtkVolume* vol); 
virtual vo id  ComputePolygonsVPFP2(vtkRenderer* ren, vtkVolume* vol); 
virtual vo id  ComputePolygonsVPFP3(vtkRenderer* ren, vtkVolume* vol); 
virtual vo id  ComputePolygonsVPFP4(vtkRenderer* ren, vtkVolume* vol);

virtual int UpdateVolumes(); 
virtual int UpdateColorLookup (vtkVolume* vol); 
virtual void  RenderFP(vtkRenderer* ren, vtkVolume* vol); 
virtual vo id  RenderVPFP(vtkRenderer* ren, vtkVolume* vol); 
void RenderOneIndependentNoShadeVPFP(vtkRenderer* ren, 

vtkVolume* vol);

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



void  SetupOneIndependentTextures(vtk Volume* vol);
void  Setup3DTextureParameters(vtkVolumeProperty* property);
void  RenderPolygonsfvtkRenderer* ren, vtkVolume* vol);

private:

B.2 vtkVolumeTextureMapper3DCg.cxx

void  vtkVolumeTextureMapper3DCg::Initialize()
(

if (this->RenderMethod >= VPFPl_CG_METHOD)

(
if (this->RenderMethod == VPFPl_CG_METHOD)

this->CGVertexProgram = cgCreateProgram(this->CGContext,
CG_SOURCE, vtkVolumeTextureMapper3DCg_OneComponentBasicV, 
this->CGVertexProfile, "V_Passthrough", NULL); 

else if (this->RenderMethod == VPFP2_CG_METHOD)
this->CGVertexProgram = cgCreateProgram(this->CGContext,

CG_SOURCE, vtkVolumeTextureMapper3DCg_OneComponentV2, 
this->CGVertexProfile, "V_ComputingPolygons", NULL); 

else if (this->RenderMethod == VPFP3_CG_METHOD)
this->CGVertexProgram = cgCreateProgram(this->CGContext,

CG_SOURCE, vtkVolumeTextureMapper3DCg_OneComponentV3, 
this->CGVertexProfile, "V_ComputingPolygons", NULL); 

else if (this->RenderMethod == VPFP4_CG_METHOD)
this->CGVertexProgram = cgCreateProgram(this->CGContext,

CG_SOURCE, vtkVolumeTextureMapper3DCg_OneComponentV4, 
this->CGVertexProfile, ”V_ComputingPolygons", NULL);

this->CGFragmentProgram = cgCreateProgram(this->CGContext,
CG_SOURCE, vtkVolumeTextureMapper3DCg_OneComponentNoShadeF, 
this->CGFragmentProfile, "F_Sampling", NULL);

if (this->RenderMethod == VPFP4_CG_METHOD)
(

CGparameter CGparameter_nSequence =
cgGetNamedParameter(this->CGVertexProgram, "nSequence"); 

cgGLSetParameterArraylf(CGparameter_nSequence, 0, 64, 
vtkVolumeTextureMapper3DCg::N_SEQUENCE);

CGparameter CGparameter_vl =
cgGetNamedParameter(this->CGVertexProgram, "vl");
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cgGLSetParameterArraylf(CGparameter_vl, 0 ,24 ,
vtkVolumeTextureMapper3DCg::V_START_INDICES); 

CGparameter CGparameter_v2 =
cgGetNamedParameter(this->CGVertexProgram, "v2"); 

cgGLSetParameterArraylf(CGparameter_v2,0 ,24,
vtkVolumeTextureMapper3DCg::V_END_INDICES);

void  vtkVolumeTextureMapper3DCg::Render(vtkRenderer* ren, 
vtkVolume* vol)

if (this->RenderM ethod == FP_CG_METHOD) 
this->RenderFP(ren, vol); 

else if (this->RenderMethod >= VPFPl_CG_METHOD) 
this->RenderVPFP(ren, vol);

void  vtkVolumeTextureMapper3DCg::RenderVPFP(vtkRenderer* ren, 
vtkVolume* vol)

I
glAlphaFunc(GL_GREATER, (GLclampf)0); 
glEnable(GL_ALPHA_TEST);

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

int com ponents = this->GetInput()->GetNumberOfScalarComponents(); 
sw itch (components)

1

case 1:
if (!vol->GetProperty()->GetShade())

this->RenderOneIndependentNoShadeVPFP(ren, vol); 
break; 

default: 
break;

vtkgI::ActiveTextureARB(vtkgl::TEXTUREl_ARB);
glDisable(GL_TEXTURE_2D);
glDisable(vtkgl::TEXTURE_3D_EXT);

vtkgl::ActiveTextureARB(vtkgl::TEXTUREO_ARB);
glDisable(GL_TEXTURE_2D);
glDisable(vtkgl: :TEXTURE_3D_EXT);
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void vtkVolumeTextureMapper3DCg::RenderOneIndependentNoShadeVPFP( 
vtkRenderer* ren, vtkVolume* vol)

(

cgGLLoadProgram(this->CGVertexProgram);
cgGLBindProgram(this->CGVertexProgram);

CGparameter CGparameter_modelViewProj =
cgGetNamedParameter(this->CGVertexProgram, "modelViewProj"); 

cgGLSetStateMatrixParameter(CGparameter_modelViewProj,
CG_GL_MODELVIEW_PROJECTION_MATRIX, CG_GL_MATRIX_IDENTITY);

cgGLEnableProfile(this->CGVertexProfile);

cgGLLoadProgram(this->CGFragmentProgram);
cgGLBindProgram(this->CGFragmentProgram);
cgGLEnableProfile(this->CGFragmentProfile);

this->CGTex3DParameter_volume =
cgGetNamedParameter(CGFragmentProgram, "volume"); 

this->CGTex2DParameter_colorLookup =
cgGetNamedParameter(CGFragmentProgram, "colorLookup");

cgGLEnableTextureParameter(this->CGTex3DParameter_volume);
cgGLEnableTextureParameter(this->CGTex2DParameter_colorLookup);

this->SetupOneIndependentTextures(vol); 
this->RenderPolygons(ren, vol);

cgGLDisableTextureParameter(this->CGTex3DParameter_volume);
cgGLDisableTextureParameter(this->CGTex2DParameter_colorLookup);

cgGLDisableProfile(this->CGFragmentProfile);
cgGLDisableProfile(this->CGVertexProfile);

}

void vtkVolumeTextureMapper3DCg::RenderPolygons(vtkRenderer* ren, 
vtkVolume* vol)

1

vtkRenderWindow* ren Win = ren->GetRenderWindow();

if (this->RenderM ethod >= VPFP2_CG_METHOD)

(
if (this->RenderM ethod == VPFP2_CG_METHOD) 

this->ComputePolygonsVPFP2(ren, vol); 
else if (this->RenderMethod == VPFP3_CG_METFIOD) 

this->ComputePolygonsVPFP3(ren, vol);

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



else if (this->RenderMethod == VPFP4_CG_METHOD) 
this->ComputePolygonsVPFP4(ren, vol);

for (int i = this->NumberOfPolygons -1; i >= 0; i-)
I

if (i % 64 == 1)
1

glFlush();
glFinish();

1

if (renWin->CheckAbortStatus()) 
return; 

gIBegin(GL_POLYGON); 
for (int j = 0 ; j < 6 ; j++) 

glVertex2f(j, i); 
glEnd();
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