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ABSTRACT

We study some special cases of Hamiltonian systems with fourth order poly-
nomial potentials and detail their deterministic and chaotic behavior. In particular,
for systems which are characterized by one order parameter, we introduce general-
izations of the Landau-Ginzburg model to three dimensions and include an external
weak magnetic field. For those systems that are described by two spatial param-
eters with coupling, as an example, we examine the r?y? potential problem and
apply an anharmonic phonon perturbation theory to a two-dimensional atomic lat-
tice. Exact solutions to the above deterministic systems are described in detail both
analytically and numerically. Chaotic behavior of the coupled systems is analyzed
with perturbative techniques and, by numerical analysis, demonstrated through

sequential Poincaré sections.
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CHAPTER ONE

LANDAU-GINZBURG MODEL OF UNIAXIAL
FERROMAGNETS

1.1 Introduction

Hamiltonian systems characterized by a parameter ¢ in a polynomial type potential
of the fourth order (commonly refered to as the ¢* field) arise quite frequently
in the modelling of phase transitions as well as in an anharmonic perturbation
theory of lattice vibrations. Like a vector, this parameter, in general, can have any
number of components (@1, ¢z, - .., »). In this thesis, we shall focus only on those
systems described by single-component order parameters and those described by
two-component spatial parameters; they will be referred to as the single-component
and the two-component systems, respectively. Landau [1] proposed that a free
energy expansion in even powers of an order parameter could describe second order
phase transitions in the neighborhood of a critical point. The order parameter
which distinguishes the order or the symmetry of two neighboring phases varies
continuously from zero to some finite non-zero value as the system evolves from the
disordered phase to the ordered one. When high order interaction terms beyond
the fourth order are ignored, this phenomenological free energy expansion leads
to single-component systems described exactly by the ¢* field. These systems are
highly nonlinear; nevertheless, they are deterministic. Solutions to their equations

of motion include those which are of solitary-wave type.

Systems f the ¢* field class have been studied extensively for a number of
vears. Efforts have been put in to obtain exact solutions as well as the thermody-
namic properties of these systems [2]-[4]. Krumhansl and Schrieffer [5] were among

the first to obtain exact solutions to the system whose potential is given by
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(¢* —1)?/8, while Scalapino et al. [6] sought thermodynamical propertics of a one-
dimensional Landau-Ginzburg system. These investigations were, however, aimed
at single-component systems in low dimensions, while much more interesting physics
and solutions occur in higher dimensions. Although Bishop and Krumhansl [7]
did attempt to generalize their earlier model to include two and three-dimensional
systems, they assumed a highly anistropic medium so that the order parameter

varied in one direction only. Their model therefore has limited applicability.

Generalizations to multicomponent fields can be directly related to systems
characterized by coupled parameters. For example, a metamagnet possessing two
inequivalent magnetic sublattices [8] is described by two order parameters which
can be chosen to be the z-components of the magnetizations of the two sublat-
tices. The order parameters are thus mutually coupled and, in addition, interact
with an external magnetic field. Another example is the displacement field in the
anharmonic perturbation phonon theory. Such systems lead to nonlinear coupled

equations of motion, chaos thus can be inevitable.

In this thesis, we intend to introduce generalizations of the ¢* field model to
include three-dimensional (in space) single-component systems in which the order
parameters are allowed to vary in all three directions. Also, we aim to contrast
the deterministic property of single-component systems with the chaotic bchav-
ior of coupled two-component systems. We will look at systems characterized by
single-component order parameters in the first two chapters. We will devote the
first chapter to review some of the exact solutions to the three-dimensional Landau-
Ginzburg model applied to a uniaxial ferromagnet found by Winternitz et al. [11]
and to introduce numerical techniques for the test of stability for these solutions.
The potential involved here is also a fourth order polynomial; however, it does
not form a complete square and its coefficients can be temperature- and pressure-

dependent. Therefore, this ¢* potential is different from that already examined by
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Krumhansl and Schrieffer [5]. Then, in Chapter Two, we will introduce a general-
ization of the model to include a weak magnetic field and review some of the exact
solutions found recently by Winternitz et al. [12]. By the method of numerical
analysis, we will investigate the field dependence of these solutions so as to make
comparison with those in the absence of a magnetic field. Finally, we will look
at systems characterized by two-component spatial parameters with coupling. In
Chapter Three, we will begin with the controversial z?y? potential problem. The
system is largely chaotic. A very small stable region has been found only recently
by Dahlqvist and Russberg [9]. We will examine the actual trajectories traced out
by the two-component spatial parameter F=zi+ yf and introduce perturbative
techniques to model the dynamics of the system. We will also use perturbative
analysis to explain the observed bifurcation phenomenon. In the final chapter,
Chapter Four, we will explore anharmonic perturbation theory of lattice vibrations.
The anharmonicity of the lattice eventually leads to a system described by a two-
component spatial parameter. The coupling between these components gives rise
to two nonlinear coupled equations of motion. Instead of looking at the actual tra-
jectories in real coordinate-space, we will cast the system’s chaotic motions onto
Poincaré sections with the aid of numerical techniques. We will show that whether
the system behaves chaotically is determined by the system’s energy level in relation

to the effective potential.
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1.2 The Model

The Landau model has been used extensively to study phase transitions in one-
component order-parameter systems, in particular, systems uniquely characterized
by the value of the z-component of the magnetization [8]. The frce energy F of

such systems is usually written in the form
F=an2+B4T]4+B5T)6+"', (11)

where 71, the order-parameter, determines the symmetry of the phases. For the
disordered phase (the high temperature phase), n = 0. For the ordered one (the low
temperature phase), n is non-zero and finite. The coefficients in the above expansion
are considered temperature- and pressure-dependent [1]. This model, however, is
not very realistic since it only measures the mean field property of the system and
does not take into account the spatial variation of the order parameter. To remove
this deficiency, we introduce the Landau-Ginzburg free energy expansion [10] and,
as an example, we apply this expansion to describe the free energy density f of a
uniaxial ferromagnet:

L B + !

; ZCM®+D VM|’ (1.2)

1
f=fo+§AM2+

where fj is a temperature-dependent parameter (free energy density of the nonmag-
netic phase) and the z-component of the magnetization M(7) is the order-parameter.
The coefficient A is assumed to take the form A = a(T — T,) where a > 0 and T,
is the transition (critical) temperature [1]. Hence, A changes sign at the critical
temperature T.. The coefficient B can take on an arbitrary sign; however, the
transition is of first order if B < 0 and of second order if B > 0. The coefficient
C must necessarily be positive for stability reasons. This can be deduced directly
from the Landau model [1]. The difference between the two models comes from the

last term on the right of (1.2). This gradient term measures the spatial variation
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of the order-parameter M(7); hence, the magnetic inhomogeneity of the system is
built into the model. In this chapter, we will concern ourselves only with the second

order continuous transitions. Therefore, we take B > 0.

Exact solutions of this model have been found by Winternitz et al. [11]
using the method of symmetry reduction. They have shown that their solutions
correspond to physical processes and can be classified according to their symmetry
properties. However, the thermodynamics of these solutions has not been presented.
We feel that this is crucial in determining whether a solution is physically admissible.
Therefore, in this chapter, we will first outline the method used in the publication
by Winternitz et al. and review some of their results {11]. Then, by numerical
analysis, we will obtain empirical expressions for the partition function for some of

the solutions and calculate the specific heats accordingly.

1.3 Equation of Motion

To obtain the time evolution equation for the order-parameter M(7), we make use

of the Onsager relation
oM of
M
which describes the system’s evolution toward its thermodynamic equilibrium. The

coefficient T is called the Landau-Khalathikov damping coefficient and 6 f/6M de-

(1.3)

notes the functional derivative of f with respect to M. Then, the equation of motion
for steady states is obtained by setting the time derivative on the left of (1.3) to
zero. If we consider terms only up to third order, the equation of motion is written
as

- 1 v

VIM = —=(AM + BM?). (1.4)

2D

According to the method of symmetry reduction, solutions to this equation can be

classified by their symmetry properties. It has been discovered that its solutions con-
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sist of a translationally-invariant group, a cylindrically- and a spherically-symmetric
group, and an invariant subgroup with dilation [11]. We shall focus ourselves on

the first invariant group, and in particular, look for solutions of the form
M(7) = P(§) (1.5)

£=¢(7) ==z (1.6)
Therefore, we are simply looking at the variations of the solutions in the z-direction
only and ignoring their variations in the x- and the y-directions. These particular
solutions are actually in accordance with the translational symmetry of the crystal,
which is a fundamental property of the crystal, and so they represent the most phys-
ically meaningful solutions. Assuming (1.5) and (1.6) in equation (1.4) reduces the

equation of motion to a second order differential equation [11] with one independent

variable &
d*P 1
i 5(,419 + BP?) (1.7)
which can be integrated once to give
dP\> B /_, 2A_, 4y
(df) —E(P +§'P +§) (1.8)

where « is the integration constant and is determined by the initial conditions

P&) = B

P(%) = PFo (1.9)

The constant v is then found to be expressed as

L, A B
5= ng—-z-Pg— ZP(;‘. (1.10)

Equation (1.8) can be written in a more familiar (standard elliptic) form

(%) = A(P? - P})(P? - P}) (1.11)
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where A = B/4D, P} + P} = —2A/B and P?P} = 4v/B, and can be solved by
various Jacobian elliptic functions depending on the roots of the polynomial that

appear on the right-hand side of equation (1.11):

R(P) = A(P*- P})(P*-P}) (1.12)
N (P“ + %P’ + %’-) : (1.13)

Interestingly, if any of the roots coincide, the solution is expressible in terms of
elementary functions. We look for real solutions so that P? > 0. Figure 1.1 displays
plots of P? as a function of P for all possible cases in which real solutions exist. We

shall go through this list in sequential order in the following section.

1.4 Solution

a) Trivial Solution

The most trival solutions to equation (1.11) are the constant solutions:

P =0 (1.14)

P(¢) ﬂ:\/%; (1.15)

where 4 < 0. These solutions represent the homogeneous mean fields due to the

background magnetization for T' < T,. Hence, solution (1.15) implies an homoge-

neous magnetic medium while solution (1.14) implies a non-magnetic one.

b) Solutions Corresponding to Real Roots

The conditions for the existence of real roots are 0 < v < A?/4B and A < 0. The
solutions in this case consist of elementary functions as well as Jacchian elliptic

functions.
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P2 p2 p2
P vv P / \—p
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} k [

Figure 1.1: Plots of P? as a function of P. These are the possible cases in which

real solutions exist.
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Figure 1.2: Solution of (1.16) with a plus sign.

One Quadruple Root

When 4 = 0 and vy = 0, the roots coincide as shown in Fig. 1.1a. The quadruple
root is given by £P, = +P; = 0. The solution, for A = B /4D > 0, is

+1
PO = 78e—w)

and is shown in Fig. 1.2. The solution approaches +oo at { = €. Such an unphysical

(1.16)

behavior is possibly caused by the continuum approximation. The discreteness
effect is critically affecting the solution’s behavior in a spatial extent less than the
equilibrium spacing between the atoms. However, this singularity can be taken
as an indication of saturation. The magnetization reaches its saturated value as
the plane £ = & is approached and abruptly reverses its direction as it crosses the

plane. At large distances from the plane, the magnetization falls to zero. Therefore,
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the solution best describes the occurrence of a magnetic double-layer in a non-
magnetic medium. However, the solution only exists when A = 0. By assumption,
A = o(T - T.) and a > 0. This means, the solution is physically realizable only at

the critical temperature.

Two Double Roots

If the integration constant v = A4%2/4B, A < 0 and A > 0, then the polynomial
(1.12) has twe double roots as shown in Fig. 1.1b. They are

+P =+4+P,=+ _734. (1.17)

Depending on the magnitude of P, two types of solutions are available. First, for

—P, < P < P, the solution is

P(£) = P, tanh[\/AP(€ - &)] (1.18)

where ¢ = £1. The solution is shown Fig. 1.3 for ¢ = 1. It suggests that
the magnetization saturates in two opposite directions as it moves away from the
€ = & plane. Near the plane, the magnetization reverses its direction smoothly and

continuously. The solution therefore corresponds to a domain wall.

Secondly, for P > P; or P < — Py, the real solution is given by

P(€) = ¢P, coth[y/AP,(€ - &)] (1.19)

where ¢ = +1. The solution, as shown in Fig. 1.4, is singular at the £ = §
plane and approaches a constant value at large distances. It therefore represents a
magnetic double-layer in an homogeneous background. Although (1.18) and (1.19)
are both candidate solutions to equation (1.11) at any temperature T < T, the

actual solution is determined by the initial conditions (1.9).
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Figure 1.3: Solution of (1.18) with e = 1.
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-100
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Figure 1.4: Solution of (1.19) with e = 1.
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One Double and Two Simple Roots

When v = 0 and A < 0, there exist one double and two simple real roots:

P2 = -—P2=0

—24
— 1/___ 2
+P + 5 (1.20)

For A < 0 (Fig. 1.1c), the corresponding real solutions are

€P1
P(£) = cosh[/=AP;(§ — &)

where

1, 0SP<L Py

-1, - <P<LO.
The solution for € = 1 is shown in Fig. 1.5. Magnetization is strongly localized
in one direction near the plane é = £, and decays rapidly to zero away from it.
This process corresponds to the nucleation of a magnetic center, which could be,
for example, initiated by thermal fluctuations. For A > 0 (Fig.1.1d), the solution
is expressed in terms of a trigonometric function:

EPl

PO = VAR E =& 122
where
1, P>PF;
€=
-1, P<-P.
It has a period T = 27 /+/AP, and singularities at
e
§—€o=(2n+1)m
where n = 1, 2, ---. According to Fig. 1.6, the solution suggests a periodic for-

mation of magnetic double-layers of opposite magnetizations at T < T, and the



1.2 .

1.4 Solution
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0.0

40 5'0 80
§

Figure 1.5: Solution of (1.21) with ¢ = 1.
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Figure 1.6: Solution of (1.22) with ¢ = 1.
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1.4 Solution 14

magnetization in each layer becomes saturated in the neighborhood of the layer’s

boundary.

Four Real Simple Roots

When 0 < v < A?/4B and A < 0, the roots of (1.12) are written as

1
2

—A 1 /4 A?
— —_ Sy (= _ 9
+P, + ( 3 t3 B(B 47) (1.23)
1
—A 1 /4 A2 :
- Y Bl - 92
+P, + ( 5 "5 B( 5 49| (1.24)

so that |P;| > |P] > 0. For A < 0 (Fig. 1.1e), the real solution is written in terms

of the Jacobian elliptic function [13]

P(§) = ePydn[\/=AP(€ - &), k] (1.25)

where k = (1 — Pf/P,z)% is the modulus of dn(u, k), and
1, PASPIP;

-1, -PB,<P<-P,.

The Jacobian elliptic function dn(u, k) is defined as

n

nwu

T 2r &
dn(u,k) == += > g I )

‘)
2K K Zl1+4¢™ (1.26)

cos(

where K = K(k) is the complete elliptic integral, ¢ = exp(—nK(k')/K(k)) and
k' = /1 — k? the complementary modulus {13]. As shown in Fig. 1.7, dn(u,k) 1s
periodic. Its period T can be found by setting

. {nm/-—_apz[(g ~ &) Tl} ~ os {W—_A'Ijziﬁ - 501} , (1.27)

K K
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Figure 1.7: The dn(u, k) Jacobian elliptic function.
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1.4 Solution 16

for n = 1, 2, --.. This can be satisfied only if

o 2K®)
T V=-AP)

These solutions correspond to two possible branches of ferromagnetic spin waves

(1.28)

at T < T. oscillating on top of an homogeneous background.

For A > 0 (Fig. 1.1f) and —P, < P < P, , the solution is given by another

type of Jacobian elliptic function

P(€) = Pysnly/APy(€ - &), k] (1.29)

where k = P,/B is the modulus of sn(u, k) [13]. As shown in Fig. 1.8, the Jacobian
elliptic function sn(u, k) is again periodic and is defined as

o & n—4
sn(u, k) = T4 sin[(2n — 1)%]

KT g (1.30)

n=1
where K and ¢ are defined as above [13]. Following similar steps, the period of
(1.29) is found to be T = 4K(k)//AP,. However, the solution behaves very much
like a sine wave, oscillating around the horizontal axis. Therefore, it is interpreted
as antiferromagnetic spin waves. For P > P, > P, or P < —P, < — P, the solution

is still periodic but singular [13]:

P(€) = Pysn[\/APy(€ — &), K. (1.31)
The solution has a period T = 4K/ VAP,, a modulus k = P,/P, and singularities
at
2nK
— &) = .32
forn =1, 2, ---. Then, according to Fig. 1.9, the solution can be interpreted again

as a periodic arrangement of magnetic double layers in an homogeneous mean field

background.
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Figure 1.8: The sn(u, k) Jacobian elliptic function.
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Figure 1.9: The periodic singular solution of (1.31) for P, = 1.
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¢) Two Real and Two Purely Imaginary Roots

If the integration constant 4 < 0, then there exist two real and two imaginary roots
and, for any A, they are written respectively as

ﬂ:P 1 = +r

P, = +igq (1.33)

where both r and ¢ are real and positive.

One Real Double Root and Two Purely Imaginary

Only if A > 0 and v = 0, does the polynomial (1.12) have one real double and two
purely imaginary roots (Fig. 1.1a): &P, = *+r = 0, and +P; = +iq. Then, for

A > 0, the solution is given in terms of a hyperbolic sine function:

P(¢) = g {sinbly/Ba(¢ -~ &)]} - (134)

The solution is singular at { = £y as shown in Fig. 1.10. It thus implies saturation of
the magnetization in opposite directions on each side of the plane £ = £;,. However,
the magnetization decays to zero as it moves away from £. It means that the
saturation takes place in the absence of a homogeneous background. Thus, the
solution can be regarded as a magnetic double layer in a non-magnetic sample at

T>T.

Two Simple Real and Two Purely Imaginary Roots

If ¥ # 0 but v < 0, then there exist two simple real roots and two purely imaginary

ones. Since A and A can take on arbitrary signs, there are four possibilities:

(a) &A >0, .42>0 (Fig. 1.1g),



P(¢)

20

Figure 1.10: Solution of (1.34) with a plus sign.

1.4 Solution
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50 '
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1/ cen(uk)
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=60

10 55 100
uw (x0.1)

Figure 1.11: The periodic singular solution of (1.35).
(b) A >0, A <0 (Fig. 1.1h),
(c) A <0, A>0 (Fig. 1.1i),

(d) A <0, A<O0 (Fig. 1.1j).

The roots are given as in (1.33). The solutions to (a) and (b) are of the same

form and, for P > P, or P < —P,, they are written in terms of Jacobian elliptic

P(§) = {enly/BG + F)E - DM} (1.35)

where k* = ¢?/(r* + ¢%) [13]. A sketch of the solution is shown in Fig. 1.11.

It has a period T = 4K(k)/\/A(r? + ¢?) and singularities at (§ — &) = (2n +
1)K/\/A(r? + ¢%) where n is an integer. Again, the solution represents a periodic

functions:

formation of magnetic double layers of opposite magnetizations in a homogeneous
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Figure 1.12: The cn(u, k) Jacobian elliptic solution of (1.36).

mean-field background. The real solutions corresponding to the case (c) and (d)

are also of the same form but finite. They are represented by

P(§) = ren[\/-A(r? + ¢)(§ = &o). k] (1.36)

for —P, < P < P, [13]. It has a real period T = 4K/ \/m and a modulus
k=[r?/(r* +¢?)]%. Since the solutions oscillate around the horizontal axis as shown
in Fig. 1.12, they can be interpreted as antiferromagnetic spin waves. Note that
the modulus k is limited to the range (0, 1). It can be demonstrated that for A > 0,
1/V2>k>0andfor A<0,1>k> 1/v/2. Hence, the four cases (a)-(d) exploit
the full range of k exhaustively.
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d) Solutions Corresponding to Four Purely Imaginary Roots

IfA>0,A>0and0 < v < A?/4B, the roots are all purely imaginary (Fig. 1.1k)
and given by
P, = % (1.37)

such that 0 < ¢ < s.

Two Double Roots

However, if ¥ = A?/4B, the polynomial (1.12) has two double imaginary roots:
+P, = +P;, = +/A/Bi = £q¢, and the solution is simply trigonometric

P(€) = gtan|\/Dq(€ - &)] (1.38)

with a period T = 7 /q/2S and simple poles at (£ — &) = (2r+1)7/(2¢y/D) for n =
1, 2, - - -. Therefore, the solution represents a periodic structure of magnctic layers.

Similar to a spin wave in the domain wall, the magnetization reversss its direction

smoothly and continuously in each layer.

Four Simple Roots

If 0 < v < A%/4B, the roots are given as in (1.37). The solution is singular and
periodic:

P(€) = qtn(y/Ds(§ — &), H (1.39)
where tn(u, k) is another Jacobian elliptic function and k? = 1-—-¢?/s? is the square of
the modulus [13]. The solution has a real period T = 2K (k)/s+/A and singularities
at (€ — &) = (2n + 1)K (k)/s\/A where n is an integer. According to Fig. 1.13, it
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Figure 1.13: The tn(u, k) Jacobian elliptic function.

also represents a periodic configuration of magnetic layers with magnetization that

resembles a spin wave in a domain wall.

e) Solutions Corresponding to Four Complez Roots

When A > 0 and v > A?/4B the roots are all complex (Fig. 1.1k, 1) and written as

=P = *(p+iq)
+P, = +(p-—igq) (1.40)

so that p and q are both real and positive. The solutions in this case are singular

and periodic:

P(&) = \pP*+ ¢ {tn[\/A(zo2 + ¢2)(€ — &o), kldn[\/ A(P* + ¢*)(€ — &o), k]}—l (1.41)
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Figure 1.14: The periodic singular solution of (1.41).

where k2 = p?/(p*+¢?) [13]. One of these solutions is depicted in Fig. 1.14. It has a
period T = 2K (k)//A(p? + ¢2) and singularities at (§—&) = 2nK(k)/\/A(p* + ¢%)
for any integer n. It can be interpreted as a periodic arrangement of isolated

magnetic layers in a nonmagnetic sample.

Therefore, by the method of elliptic integration, we are able to solve the
equation of motion (1.8) exactly. In addition to the temperature, the integration
constant 4 adds an extra degree of freedom to the system to admit a great variety
of solutions: homogeneous mean fields, double magnetic layers, single magnetic
layers, ferromagnetic spin waves, antiferromagnetic spin waves, domain walls, etc.
For a given temperature, many solutions are simultaneously available. However,
they do not necessarily correspond to the stable equilibria of the system. Some

may be metastable, or even unstable solutions. The solutions that can be realized
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physically would be energetically more favorable and if we interpret the situation
statistically, the solutions would correspond to higher probabilities. One way to
test the stability of a solution is to calculate its specific heat. An unstable solution
is then characterized by a negative specific heat value. To demonstrate the method
explicitly, we shall calculate the specific heats for two types of solutions, namely,
the antiferromagnetic spin waves (the sn(u, k) and the en(u, k) solutions) and the
ferromagnetic spin waves (the dn(u, k) solutions). To begin, we nced to derive an

analytic expression of the free energy for these special cases.

1.5 Free Energy

The total free energy is obtained by integrating the free energy density (1.2) over

the volume of the sample
F= / F(M, |V M[P)dz. (1.42)

If we consider only the translationally-invariant solutions (1.5) and (1.6), the above

integral is written as

{ .
F=5’l/0 {fo+%P2+§P4+DP2}d£ (1.43)

where S, and [ are the cross-sectional area and the length of the sample, respec-

tively. This integral is reduced to a much simpler form

FyN By KE)
<§J__r:) = 4K(k)(fo - 4D) + 2D/0 P*(n¢')d¢ (1.44)

if we make use of the equation of motion (1.8), scale thLe independent variable as
¢’ = £/n and assume that the length of the sample ! is an exact integral multiple
of the complete elliptic integral K (k). That is, we assume ! = 4nK (k) where n is
any positive integer. This assumption is to ensure that the longitudinal dimension
of the sample matches up with the spatial periods of the ferromagnetic or the

antiferromagnetic spin waves, so that standing waves are free to set up.
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a) The Ferromagnetic and The Antiferromagnetic Spin Waves

The free energy expression for the dn(u, k) waves can be obtained by substituting
the solution (1.25) into the integral (1.44). This integral is then expressible in closed

form [13]. The free energy per unit cross-sectional area of the sample is given by

(g%)d = 4K(k)(fo - )+ﬂ\/—BD[2K(Ic)P1 (P?+ P}E(k)] (1.45)

where E(k) is the elliptic integral of the second kind [13]. Substituting the corre-
sponding solution (1.29) or (1.36) in the integral (1.44), the free energy per unit
cross-sectional area for the sn(u, k) and the en(u, k) waves are written respectively

as

(%) = AK(k)(fo - )+fﬂ\/§b‘[1{(k)(P2 P2)+ (P?+ P})E(k)] (1.46)

and

(%) = 4K (k)(fo - ZB%) + 3\/ —BD(r2 + ¢®)[g*K (k) + (r* — ¢")E(K)]. (1.47)

It is now clear that the temperature-dependent parameter fo and the integration
constant v represent the average energy densities not associated with the waves,

they simply set the energy scale.

These free energy expressions can be converted to a dimensionless form.
Their dependence on temperature and the integration constant 7y is depicted in
Fig. 1.15-1.18, where the scaled temperature € = (T — T;)/T. has been used. For
the purpose of comparison, the horizontal axes for each wave have been scaled to
a common unit. The shapes of the curves are quite well preserved for all three
cases and are very insensitive to temperature variations. For the dn(u,k) waves,
free energy drops nonlinearly with ; whereas, the opposite is true for the sn(u, k)

waves. For the cn(u, k) waves, whether A >0o0r A <0, a local minimum is found
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Figure 1.15: A comparison of the y-dependence of the free energy for the dn(u, k)
elliptic waves at various temperatures. The lower curve represents e = —1 while the

upper overlapping curves represent € from —0.1 to —1075.

on each curve. This could be an indirect indication that in the case of dn or sn
waves, no stable solution is available for any given temperature within the allowable
range. On the contrary, in the case of cn waves, stable equilibrium states are clearly

evident. They correspond to a particular choice of periodicity of the waves.
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Figure 1.16: A comparison of the y-dependence of the free energy for the sn(u, k)
elliptic waves at various temperatures. The upper curve represents € = —1 while

the lower overlapping curves represent € from —0.1 to —10-8.
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Free Energy

Figure 1.17: A similar comparison for the cn(u, k) elliptic waves as in the previous
two figures. Here, ¢ < 0. The lower solid and the dashed curves correspond to
¢ = —1 and € = —0.1 respectively. The upper overlapping curves correspond to ¢

from —0.01 to —107S.
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Figure 1.18: A similar comparison for the cn(u, k) elliptic waves as in the previous
figure. Here, e > 0. The upper and the lower dashed curves correspond to € = 1
and ¢ = 0.1 respectively. The lower overlapping curves correspond to € r<m 0.01

to 10°6.
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1.6 Partition Functions and Specific Heats

Having derived the analytic expressions for the free energies, we next calculate
the partition function for each type of waves. Since there are two independent
parameters, temperature and period, associated with each type of solutions, we
denote the partition function of solution type Q with period A at temperature T
by Z5(T, \). Then the total partition function Zg(T') is found by summing over all

possible accessible states, in this case all possible A. Therefore,
Za(T) = D _9(NZa(T, ) (148)
A

where g()) is the density of states or the degeneracy of the solution. The dn
waves are doubly degenerate (¢ = +1), therefore ¢ = 2. However, the period A
is dependent on the roots of the polynomial (1.12) which in turn depend on the
integration constant A. Thus, the sum in (1.48) is equivalent to the sum over v and

the partition function is now written as

Za(T) = 3 9(7)Z4(T, 7). (1.49)

The integration constant 7 is a continuous parameter. Hence, in the continuum
limit, the sum is converted to an integral

“Yu

Zo(T) = [ 9(NZH(T 1)y (1.50)

/]
where v, and v, denote the lower and the upper limits of v, respectively. Finally,
for each set (T',v), the partition function Z4(T, ) is related to the Helmholtz free
energy Fa(T,v) through Fo(T,v) = —kgT In(23) whick gives

Z4(T,v) = e”PFall) (1.51)

where 8 = 1/kgT and kp is the Boltzmann constant. Substituting this expression

into (1.50), we obtain an integral relation between the total partition function and
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Figure 1.19: The partition function of the dn(u, k) elliptic solutions. The solid line

represents the empirical relation. The actual (numerical) data points are denoted

by “+.”
the Helmholtz free energy

Zo(T) = f " g(y)e TNy, (1.52)

n

Therefore, if we parametrize the energy curves in Fig. 1.15-1.18 for each temper-
ature T, and integrate as described in (1.52), we obtain the empirical partition
functions for the elliptic waves as functions of temperature. The results of such
procedures are shown in Fig. 1.19-1.22. The temperature dependence of the par-

tition functions is shown together with the corresponding empirical relations. The
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Figure 1.20: The partition function of the sn(u, k) elliptic solutions.
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Figure 1.21: The partition function of the cn(u, k) elliptic solutions for € < 0.
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Figure 1.22: The partition function of the cn(u, k) elliptic solutions for € > 0.
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partition functions so obtained are listed as follows:

In(Z4) = A/\/B - B4 +C,
In(Z.) = A/\VB - 8=+ + D,
In(Z.,) = E/B + F (for A > 0),

In(Z,)=G/B+ H (for A <0),
where the constants A, B,---, G and H are respectively —0.054, 0.304688, —18.98,
—16.89, 672.77, —11.05, 318.50 and —7.97. These expressions can then be used to
derive various thermodynamic properties of the solutions. In particular, the specific

heats at constant volume given by

(1.53)

*lnzZ
(73

are found to be
Com*" = Akp/[326%(B — §~4)3] {5 + 3/(2(B - 8~4)B1]},
Cy = 2Ekp/B (A <0),

Cer = 2Gkg/B (A > 0).
Therefore, the specific heats of the dn(u, k) and the sn(u, k) waves are of the same
form. When these specific heats are graphed according to their allowed temperature
range as in Fig. 1.23 to 1.25, we find that the specific heats for the dn(u, k) and the
sn(u, k) waves are both negative. Therefore, we have confirmed through empirical
analysis the instability of these two solutions. On the other hand, the specific heats
of c¢n(u, k) waves show a linear relation with temperature. Both specific heats are

positive within the allowable range. Thus their stability is once more confirmed.

To summarize the results of this chapter, we have reviewed the exact ana-

lytic translationally-invariant solutions to the Landau-Ginzburg model in a uniaxial
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Figure 1.23: The specific heat capacity for the dn(u,k) and the sn(u, k) elliptic

solutions.
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Figure 1.24: The specific heat capacity of the cn(u, k) elliptic solutions in the case

where € < 0.
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Figure 1.25: The specific heat capacity of the cn(u, k) elliptic solutions in the case

where € > 0.
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ferromagnet. We have demonstrated that physically meaningful solutions such as
magnetic double layers, domain wall spin waves, and nucleation of magnetic cen-
ters are direct results of the model. We have further shown that through empirical
analysis some solutions are intrinsically unstable. Specifically, we have shown from
our specific heat calculations that the cn(u, k) elliptic solutions are stable while the

dn(u, k) and the sn(u, k) elliptic solutions are unstable.



CHAPTER TWO

LANDAU-GINZBURG MODEL OF A UNIAXIAL
FERROMAGNET IN THE PRESENCE OF A
MAGNETIC FIELD

This chapter is an extension of the model used in Chapter One. Here, we include a
weak magnetic field H pointing along the direction of easy magnetization, which is
taken to be parallel to the z-axis. Then, the Landau-Ginzburg free energy exparsion
is exactly as given in (1.2) except that there is now an extra term on the right.
the Zeeman term —M - H = —MH that describes the interaction between the
magnetic field and the order-parameter M. Again, M denotes the z-component
of the magnetization M. The magnetic field H can either be positive or negative,
depending on whether it is parallel or antiparallel to the axis of easy magnetization.

With this Zeeman term, the free energy density expansion takes the form
.4 2 B 4 = 2 <Y
f=h+sM +ZM + D|VM|* -~ MH. (2.1)

The parameters fy, A, B and D have exactly the same form as assumed in the
previous chapter, that is, fy is temperature dependent, A = a(T — T¢) with a > 0,
B > 0 and D arbitrary [1]. Our intention in this chapter is to find out how the
solutions we obtained earlier are modified by the presence of this weak magnetic
field. The generalization of this model to include a weak magnetic field has been
recently investigated by Winternitz et al. [12]. Although analytic solutions were
obtained by the method of symmetry reduction, explicit behavior of the solutions
as a function of the field was not presented. Therefore, we shall follow similar steps
as in Chapter One but with the extra Zeeman term. We will first present briefly
the derivation of the equation of motion for the order-parameter M and then by

the method of symmetry reduction introduce some of the translationally-invariant

41
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solutions. We will then, using numerical analysis, look at how the weak mugnetic

field affects these solutions.

2.1 Equation of ivlotion

Making use of the Onsager relation (1.3), the equation of motion for the steady
state is given by

- 1
2Af .~ f3
VM = 55 (AM + BM* - H). (2.2)
We only consider the translationally-invariant solution.., so we assume
M = M(€) (2.3)
§ = = (2.4)

where z is just a representative independent variable for this type of reduction.

These convert the equation of motion (2.2) to an ordinary differential equation of

the form
a*M 1 3 -
z =2—D(AM+BM - H), (2.5)
which can be integrated once to give
dM\? B ([, 24 __, 4H
) = (M M- M+ 2,
(dg) 5 (M + 20 - M ) (2.6)
= AM - M) (M — Mp)}(M — Ma)}(M — M) (2.7)
= R(M) (2.8)

where ~ is the integration constant, A = B/4D and M, M2, M3 and M, arc the
roots of the fourth order polynomial on the right of (2.8). These roots are such that

the following conditions are to be satisfied simultaneously:
MMy M3My =~ (2.9)
MM Ms + MyMo M, + MiMaMy + Mo MM, = 4H/ B (2.10)
MM, + My Ms + MMy + MoMs + MaM,y + MsM, = 2A/B (2.11)
M + My, + M3+ My =0. (2.12)
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Depending on the values of these roots, solutions to the equation of motion (2.6)
can be expressed in terms of various Jacobian elliptic functions [13]. Instead of
going through the entire set of translationally-invariant solutions, we shall focus
only on those that correspond to the ferromagnetic or the antiferromagnetic spin

waves introduced in the last chapter.

2.2 The Ferromagnetic and The Antiferromagnetic Spin
Waves

When A > 0, A < 0 and the roots are real and distinct, the real and nonsingular

solutions are expressed in terms of Jacobian elliptic functions {13]:

gsn(y/ERGRE k) - B 013
o — psn(v/AKoRE, k) -
for My < Ms < M < M, < M, where k = 1/R is the modulus of sn(u, k) and
Ko = [(My — My)(M; — M3)(R - 1) = 2(M; — M)(M; - M,))/[2(R*-1)]. As shown

in Fig. 2.1, the polynomial R(M ) is asymmetric in the presence of a weak magnetic

M(§) =

field. The solutions are still periodic; however, they do not oscillate symmetrically

about the vertical axis. Their periods are given by

4K (k)

T= JRAR (2.14)
The parameters 6, 3, 4, @ and R in (2.13) are written respectively as
5§ = M(M; — M3)R + 2M,M; — My(M; + M3) (2.15)
3 = MM, — M3)+ 2M,M; — My (M, + M3)|R (2.16)
p = 2M; — M;— M;— (M, — M3)R (2.17)
a = (2M; — M; — M3)R — (M, — M3) (2.18)

R = {-2M My~ 2M,M;+ (M, + My)(M, + M3) +
(M — My)(My — Ms)(My — My)(Ms — M,)]7}
[(My — Ma)(My — M3)]™". (2.19)
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Figure 2.1: Plot of the polynomial R(M) as a function of M.

In the zero field limit, M; — —M, and M, — —M;. In that case, the above
parameters are reduced respectively to R = M; /M, p =0,6 = 2(M} - M}), 3 =0
and a = 2(M? — M})/M,. The solutions (2.13) then approach the form

M — Mysn (\/Zle, %) . (2.20)
1

Hence, we recover the antiferromagnetic spin waves obtained in Chapter One [11].
If the sign of A is reversed, real solutions exist only within two regions of M:
My <M< M;< M, <M and My < M3 < M; <M < M,. Their solutions arc of
the same form and are written in terms of the dn(u, k) Jacobian elliptic functions

(13]:
€6 Rdn(v/—DKoRE k) — 3

M= (2.21)

a — epRdn(\/—AKyRE, k)
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where the modulus k& = /1 — 1/R? and

1, My<M3<M,SM<M

o
i
]

N’

-1, M, <M< M;< M, <M.

All other parameters are defined as before. The periods of these solutions are given

by
2K (k)

v-AK,R’

In the absence of magnetic field, the solutions again reduce to the ones that we

M — eMydn (\/~BM06. k) (

with k = /1 —~ M?/M}. Finally, if A < 0 and if two distinct real roots (M, and
M,) and two complex conjugate roots (M3 and M,) exist so that M, < M, and

T = (2.23)

obtained earlier [11]

(S

.24)

M, 4 = p % iq with ¢ > 0, then the real solutions are given by

_ (Mzo — Myg)en (V=509¢, k) + Mo + My
(0 — ¢)en (\/—Amﬁ{, k) +o0+¢
for M, < M < M, where 0 = (M, — p)* + ¢%, ¢* = (M, — p)? + ¢?, the modulus
k= {[(M, — My)? — (0 — $)2)/(406)}} and its period

(2.25)

4K (k)

T = .
Do

(2.26)

In the absence of magnetic field, M; — —M; and p — 0. The solutions (2.25)

then approach the form

M — —Myen[\/—A(M? + )€, k] (2.27)

with the modulus k¥ = M, /\/M? + ¢?, which is in agreement with our earlier results
[11].
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Therefore, we have introduced the solutions corresponding to the ferromag-
netic and the antiferromagnetic spin waves in the case of a weak magnetic ficld, and
shown that these solutions behave appropriately in the zero ficld limit. However,
the solutions, in their present forms, do not lend themselves easily for comparison.
Their dependence on the magnetic field and the integration constant is implicit
through their functional relations with the roots, hence it is not obvious at all how
they evolve from their zero field limits. In order to examine how the magnetic field
affects the dynamics of the above solutions, we need to introduce the mean mag-
netization. The purpose of this quantity is two-fold. First, it is an experimentially
observable quantity, it allows us to make direct comparison with experimential re-
sults. Secondly, from intuition, since the magnet field points along the axis of casy
magnetization we expect its magnitude to increaze with that of the ficld. However,
introducing this mean quantity, we defeat the purpose of the present model, namely,
the inclusion of the Ginzburg term |V M|? to measure the magnetic inhomogeneity.
In other words, we are over-looking the local property of the solutions by concerning
ourselves only with their mean field property. Even though the mcan magnetiza-
tion represents a fair measure of the solutions’ response to the external field, we
will show later on that it does not always behave in accordance with our intuition.
This unusual behavior can only be explained if we return to the local property of
the solutions. In the next section, we shall derive analytic expressions for the mean
magnetization in the above three special cases, their dependence on the magnetic

field will then be examined by the method of numerical analysis.

2.3 Mean Magnetization

For our periodic solutions, the mean magnetization is defined as

HH.A) =~ [T M) (2.98
(=g [ M )
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where T is the period of M(£). We have indicated explicitly its dependence on the

field H and on the integration constant 7.

a) The sn(u,k) Solutions

If we substitute the solution (2.13) and its period (2.14) into the above integral,

after a change of variable u = \/AK(R¢, the mean magnetization can be written as

=7 _ =B [ 1—(ub/aB)sn?(u,k)
M = LEh 1= (@) eni(u®) du. (2.29)

Then, if we make use of the symmetry property of the Jacobian elliptic function

and the integral relation

K1 — a’sn?(u, k) a? b —a®_
| s Cf=K (Z?) + T, k) (2.30)

for k* < * < 1, derived from the integral table provided by Byrd and Friedman
[13], expression (2.29) is reduced to
_ _ 2

M= 76 + %Ig—ﬂn % k) (2.31)
where II(v, k) is the complete elliptic integral of the third kind. This expression is
valid for k? < (4?/a?) < 1. In the absence of a magnetic field, the solution oscillates
symmetrically about the horizontal axis. Therefore, we expect that its average over
its period vanishes identically. The mean magnetization (2.31) is examined by
numerical techniques, and its relation with the magnetic field is shown in Fig. 2.2.
Because M depends on both H and 7, to isolate the effect due to the magnetic field
only, we have kept v fixed at a convenient value. But once 7 is fixed, the solutions
are valid only in a finite range of H: 0 < H < H.,. Therefore, a critical field H, is
introduced beyond which the solutions cease to exist. In our case, v is chosen such

that the horizontial axis crosses the points of inflection of the polynomial (2.8) when
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Figure 2.2: Field dependence of the mean magnetization for the sn(u, k) solutions.

H = 0. Then, solving the equation R(M) = 0 and dR/dM = 0 simultancously, we
find that the critical field H. is determined by

_ 32 141
H.=2B (\/;—1) (33) . (2.32)

Fig. 2.2 explores the entire range of H. As expected, the mean magnetization is

zero in the absence of field. Its magnitude increases nonlinearly with H. This figure
also indicates that, as the field approaches its critical value, the mean magnetization
tends to saturate, however, in a direction opposite to the field. This implies that
most of the time the magnetization M(£) is antiparallel to the field over its spatial
period. Such a configuration usually requires increasing the amount of energy as H
rises, and heuace, in accordance with our earlier result, the solution is intrinsically

unstable.
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b) The cn(u,k) Soluticns

If the solution (2.25) and the period (2.26) are substituted into the integral (2.28),

the mean magnetization can be expressed as

= a3 4K 1 — [a1a2/(azaq))cn®(u, k) 0
T 4a4K / 1 — a?/acn?(u, k) du (2.33)

following a change of variable u = \/=Ac¢f. The parameters a,, a;, a; and a4
are defined respectively as ay = Myo — My¢, a; = 0 — ¢, a3 = M,¢ + M,0 and
a4 = 0 + ¢. Again, we make use of the symmetry property of the cn(u, k) elliptic
function, we divide the integral into four equal parts and convert the cn(u, k) into
the sn(u, k) functions with the help of the identity cn?(u, k) + sn?(u, k) = 1. After
rearrangement, the integral becomes

— azaq —a1a2 (K 1—a?sn¥(u,k)
= du 2.34
M = K(a3 —a?) Jo 1-—b2sn?(u,k) (2.34)

where a? and b? are given respectively by a® = a,a;/(a,a; — aza4) and b? = a2/(a? -
a3). This integral is again related to the complete elliptic integral of the third kind
II(v, k) through the integral relation (2.30). Hence, the mean magnetization finally

takes the form

7 as(azaz — 0104) ( k) (2.35)
az Kay(a} - az) 4

for k* < b® < 1. Although this expression is very 51m11a.r to (2.31), its dynamical
behavior is radically more complicated. Numerical analysis shows that not only
does it depend on the field and the integration constant, it also depends on the
temperature. Its relation with the field changes from an inversely proportional to
a proportional one as the temperature rises from below the critical temperature.
Figures 2.3 to 2.6 show this sequence of transition as the scaled temperature (¢ =
(T - T.)/T.) increases from —0.75 to —0.01. At e = —0.75, the mean magnetization
behaves just as before, it grows in a  direction opposite to H. But as ¢ climbs

up to —0.55, the mean magnetization reaches its saturation value and begins to
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reverse its direction; its magnitude diminishes with further increase in H. At higher
temperatures, e.g. ¢ = —0.45, —0.01, the magnetization tends to align itself with
the field, its mean value now rises in the direction of the field. One would natu:ally
assume that this new configuration requires considerably less energy and is therefore
energetically more favorable. We will show in the next section that this is simply
not true. Mean magnetization in this case is no longer a good measure of the
solutions’ stability, rather, this mean field property totally obscures the picture.
Contributions from the spatial variation of the solutions is so dominant that it is
possible to have a stable configuration with its mean magnetization opposite to the
field. Even though further investigation is necessary, the alignment of magnetization
with the field could mean the existence of a new phase. According to Fig. 2.3 to
2.6, the boundary between these phases does not appear to be sharp and distinct.

Therefore, a continuous phase transition is clearly evident.

¢) The dn(u,k) Solutions

Substituting the solution (2.21) and its period (2.23) into (2.28) and scaling the
variable according to u = /—AK RE, we can express the mean magnetization for

the dn(u, k) solutions as

K e5Rdn(u, k) - 3

— 1
= . 2.
M K(k) /; a - eden(u,k)du (2.36)
We now use the Gauss’ transformation (13]
_ 2
dn(u, k) = 1R (un k) (2.37)

1+ k18n2(u1, kl)
where u; = u/(1+ k), ky = (1 = k')/(1 +¥') and &’ is the complementary modulus

of k, to convert the above integrand to

1 — ¢2sn?(uy, k)
w{1—¢23n2(u1,k1)} (2.38)
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where w, 1?2 and ¢? are defined respectively as w = (e6R — f§)/(a — euR), ¥? =
k(R + B)/(e6R ~ B) and ¢* = ky(euR + a)/(epR — a). Then the mean magneti-
zation expressed as

w(l+ k) e 1—p2en®(u,. kl)dul

K(k) Jo 11— ¢2%sn?(u1, k) (2.39)

M =

is related to the incomplete elliptic integral of the third kind II'(7, b*) through the

identity

71— a’sn®(u, k) a? b -a?
2 = — — _TI(T. b 2.
L= Ll U LS (2.40)

for 0 < k < b < 1, which is also derivable from the table of elliptic integrals
provided by Byrd and Friedman [13]. Therefore, the mean magnetization takes the

final form
— w(l+ k1) YiK (k) ,, K(k)
M - I{(k)¢2 [ 1 + kl + (¢2 - ¢2)H (1 + kl,éz) (241)

for 0 < k; < ¢* < 1. Note that there are two separate regions of M in which

dn(u, k) solutions exist: 1) for My < M3 < M, < M < M), e = +1; and 2)
for M; < M < My < My < M, e = —1. In the absence of an external field,
solutions in the first region oscillate symmetrically near the horizontial line M = +1
whereas those in the second region oscillate near M = —1. Therefore, their limiting
mean values are finite, nonzero and are of opposite signs. In the presence of the
magnetic field, the polynomial (2.8) is no longer symmetrical about the vertical
axis. As a result, the waves’ amplitudes begin to change and their mean values
shift accordingly. For numerical convenience, we again chose v such that the points
of inflection of the polynomial (2.8) lie on the horizontal axis when H = 0, and
we introduce the cutoff field H,. given exactly as in (2.32). Figures 2.7 and 2.8
summarize our numerical results. These graphs show that the mean values of the
waves in both regions decrease with H, and suggest the magnetization is reluctant

to align itself with the magnetic field. It would then appear that the process requires
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Figure 2.7: Mean magnetization of dn(u, k) waves for My < Mz < M, < M < M,.

a large amount of energy, which would indicate that these are unstable phases. We

will again point out in the next section that this is not necessarily so.
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2.4 Free Energy

For completeness, we include our numerical simulations of the free energy for the
ferromagnetic and the antiferromagnetic spin waves in this section. The total free
energy is obtained by integrating its density (2.1) over the entire volume of the

sample:
Ao B vaviy 3
F=| {fo + M+ ZMY 4 DIMP - Mﬂ}d r (2.42)
For our translationally-invariant solutions, we substitute (2.3) and (2.4) into the
above expression =nd rewrite it as

{ . 2
S£=/O {fo+‘—;2M?+§M4+D(%) —MH}ds (2.43)
L

where we have taken S, and ! to be the cross-sectional area and the length of the
.ample, respectively. The gradient term in the above integrand can be replaced
immediately by the expressicn (2.6). Then, the total free energy is obtained by
direct numerical integracion. Since the solutions are periodic, the length of the
sample can be taken conveniently as the period of the solution. Qur results are
presented in Fig 2.9-2.15. In agreement with our intuition, Fig.2.5 and 2.15 show
that the sn(u, k) and the dn(u, k) (for My < M < M; < M, < M;) clliptic solutions
are indeed unstable. In both cases, an increasing amount of energy is required to
turn the magnetization against the magnetic field. The rest of the figures however
implies a very unusual behavior. namely, the free energy of the system is lowered
by misalignment of magnetization with the field. If we examine the free energy
expression (2.43) carefully, we find that this phenomenon can be understood as
a result of a competition betweer the local inhomogeneous and the mean field
properti=s of the solutions. For those solutions whose spatial periods are long, their
gradients ar:: small. Then, their free energies are dominated by their mean ficld

property. Therefore, having the magnetization antiparallel to the field increases
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the total free energy. This could be the case for the above sn(u,k) and dn{u, k)
elliptic waves. On the other hand, if the spatial period is short, then the gradient in
(2.43) takes over and makes most of its contribution to the free energy. The mean
field property in this case is irrelevant. The free energy can increasc or decrecase
regardless of whether the magnetiza:ion is parallel or antiparallel to the field. This
explains the unusual field dependence of the free energy for the en{w.k) and the

dn(u, k) (for My < Mz < M, < M < M) elliptic waves.

To summarize the results of this chapter, we have shown that the presence
of 2 weak magnetic field breaks the symmetry of the polynomial that appears in
the equation of motion. This symmetry breaking causes the elliptic wave solutions
sn(u, k) and cn(u, k) to oscillate asymmetrically about the horizontal axis and the
dn(u, k) solutions about the saturation values M = £1. We have further calculate?!

the mean magnetizations for these waves and deduced that, through numerical
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analysis, hot only are these magnetizations reluctant to aligr themselves with the
ficlds but they tend to be antiparallel to the field as the field strength increases.
These waves are interpreted as inhomogeneous phases. Furthermore, the cn(u, k)
solutions exhibit continuous phase transitions in which the magneti. ation reverses
its direction to be parallel to the field as the field passes a certain threshold value,
This could suggest that stable phases exist at a sufficiently high field. Our evidence
is however inconclusive because our model assumes only a weak magnetic field so
that the signs and values of the parameters A, B, D and v are not affected by it. This
process deserves further investigation. Finally, through our numerical simulations
of the free energy, we have shown that stable solutions exist only in the case of the
en(u- k) elliptic waves and that there are signs of competition between the local
inhoMogeneous and the mean field properties of the solutions. For those solutions
whose spatial Periods are long, their free energies are determined by their mean
field Property: whereas, for those whose spatial periods are short, their free energies
are determined by their local property. specifically, their spatial variations. In the
latter case, the mean magiztization becomes irrelevant in deciding the stability of

the solutions,



CHAPTER THREE

BIFURCATIONS AND PERTURBATIVE ANALYSIS
IN THE X2?Y? POTENTIAL PROBLEM

Ergodicity of the system given by the Hamiltonian

H==(p2 +p + %% (3.1)

N =

has been a controversy for a long time. This system has been suggested to be
associated with a simplified model of the classical Yang-Mills field which is related to
the vacuum fluctuations in quantum chromodynamics [14]. The system is also found
to be applicable to the plasma confinement problem in which a particular magnetic-
vector potential generates the unbounded z?y?- potential. Extensive studies on the
dynamics of the system were carried out by many groups over the years [14]-[23], no
evidence of stable motion had ever been reported. Following the detailed numerical
investigation using the surfaces of section by Carnegie and Percival [19], many
authors believed that the system was globally ergodic. Only recently, Dahlqvist
and Russberg [9] have demonstrated the existence of a family of stable periodic
orbits and a regular region in a Poincaré section. They have also pointed out that
because the regular region occupies a very small fraction of the acces<*ble phase
space it is very difficult to detect. In view of the important nature of this system,
in this chapter we will examine its dynamical behavior by applying perturbations

to two unstable, analytic straight-line trajectories.

There is no natural limit on the spatial extent of the motion of a particle
moving in this z2y? potential. The potential’s three-dimensional and contour plots
are shown in Fig. 3.1 and Fig. 3.2. A particle can propagate along any of the axes

to infinity. These motions correspond to the trival solutions to the problem and are

62
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2y?-potential.

Figure 3.2: Contour plot of the potential.

Figure 3.1: Three-dimensional plot of the z
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represented by the trajectories

z =0, E=:}:V2E (3.2)
and
d
y =0, 7;‘:‘ = +V2E. (3.3)

These trajectories are made up of points placed at the positions of local potential
minima. Hence, they are the most stable paths that the system is able to sustain.
Particles travelling along these paths experience no net force at all; they simply
move along at a constant velocity of magnitude V2E. Whether any physical con-
ditions exist that determine if a particle’s motion remains bounded is an important
question, because, as mentioned above, it is closely related to the plasma confine-
ment problem where charged particles are trapped by the very same potential that
ariscs from the magnetic-vector potential. We shall illustrate this derivation in scc-
tion 3.3. It is also our aim in this chapter to develop some analytic tools to shed

light on this question.

3.1 Numerical Simulations

The equations of motion corresponding to the Hamiltonian (3.1) are

d*z

pri —zy? (3.4)
and

d? -

:i;% = —yz? (3.9)

With the total energy of the system held fixed at 1/2 (for numerical convenience
but without loss of generality) for all initial conditions, the equations are integrated
using the fourth-order Runge-Kutta method with a step size 0.005. A member of

the family of stable periodic orbits mentioned earlier is found and shown in Fig 3.3.
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Figure 3.3: A stable periodic trajectory.

In addition, as shown in Fig. 3.4, we discover two straight-interval trajectories:
y ==z (3.6)

which are unstable with respect to the initial condition. Thes2 are regular (non-
chaotic) trajectories. Fig. 3.5 and Fig. 3.6 show that, for the y = z interval, z and
y are both periodic functions of time and that their periods are commensurate (the
ratio of their periods is 1:1 indeed). As shown in Fig. 3.7 and Fig. 3.8, the velocities
¢ and y are also found to have the same properties. Consequently, each of these

trajectories appears as a single point in a Poincaré section such as, for example, z

vsr(y=0,y>0)

Analytical expressions for these two unstable trajectories are readily obtain-
able. If we assume equation (3.6) for the trajectory, then the equations of motion

are reduced to

- =-I (3.7
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for both cases. Integrating this equation once, we obtain
dr\* z*
(E) =-5 +c (3.8)
where c is an integration constant. From the energy conservation E = 1/2 (22 +3*+
z%y?), for y = +z, £ = E when z = 0. This implies ¢ := E. Then, the corresponding

solution to equation (3.8) is given by
z(t) = (2E)*cn((2E)4t,1/V2) (3.9)

where cn(u, k) is the Jacobian elliptic cosine function arid k is the modulus [13].
The function is doubly periodic. It has a real pcriod as well as an imaginary one.
In this case only the real period is relevant and is given by

T 4K(1/V2)

25! (3.10)

where K (k) is the complete elliptic integral of the first kind [13]. The amplitude of

the wave therefore increases, while its period decreases with energy. At energy 1/2,
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-~

Figure 3.9: Trajectory for ro = —1.2.

T = 7.4163. This value seems to agree quite well wi‘h our numerical result (Fig.

3.5).

Changing the initial condition by a small amouwu. leads the sysiem into com-
pletely chaotic states. For convenience, we keep the initial - " .etic energy always
zero. When the initial z is increased by a small amount, inst.ad f following the
straight-line path y = z, the particle departs from it, oscillates around the y-axis
and bounces between the i-wer potential walls. This moticn is depicted in Fig. 3.9.
It oscillates around the r-axis and bounces between the potential walls on the right
as shown in Fig. 3.10, if vhe initial z is decreased instead. The unstable straight-line
intervals can be thought of as consisting of points of u stable equilibrium where the
local potential energy is at the saddle point. Infinitesimal deviations from these
straight lines cause the particle to iravel in the direction of the potential’s steepest
descent. in an attempt to achieve stable equilibrium. This explains the trajectories’

sensitive dependence on initial conditions.
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Plotting the positions and the veloci:ies of these two neighboring paths as
functions of time as in Fig. 3.11-3.18 once agai:: reveals that they are all periodie
in time: however. their periods a ~ lncommensurare. In a Poincaré section. these
trajectories appear as points scattered randomly throngh: .t the entire accessible
region and eventually become space-filling if the particle". :notion remains bounded.
Although these two chaotic trajectiories extend in two different directions, there is
a symmetry relation between thew:i. From Fig. 3.11 to Fig. 3.18. their motions
are related oy a mirror reflectior. abc.ut the straight line y = r. or more explicitly

through the transformation

Tz = —i (o.11)
Yy2. = —I) (3.12)

These graphs further show that a secor.dary period emerges as the particle departs
from the straight line path. Therefore. bifurcation is clearly evident. Although

we have assurned zero initial kinetiz energies in the above computations, we have
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rechecked and confirmed tha* the system’s behavior is not changed if non- vero values

are usaed.

3.2 Perturbative Analysis I

The above observations lead us to speculate that an infinitesimal depart-te from the
unstable straight-line paths (3.6) causes the system to follow one of su ral stablz

orbits. To test our theory. we lor - %3~ solutions to the equations of motion of the
form:

X(t) = z(t) +u(t)

Y(t) = y(t)+v(t) (3.13)

where z(t) and y(t) represem the straight-line paths, u(t) and v(t) the infinitesimal

perturbations. Substituting (3.13) into the equations of motion (3.4) and (3.5), and
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ignoring high order perturbations, we obtain the equations:

d*u

di?

a*v

ar?

= —z*(£2v +u)
= —y}(+2u+ ) (3.14)

119

where the “+" corresponds to the case y = r and the “—" the case y = ~z. In

matrix notation, these equaticn: are written as

L = —g? : (3.15)

Berause a small change in the initial conditions eventually leads the system to a
completely different trajectory, our perturbative approach is valid only for a very
short initial time-interval while the particle’s trajectory still remains in the prox-
imity of the straight-line path. These matrix equations can be diagonalized by a

similarity transformation. Note that, for the case y = z, the eigenvalues of the 2 x 2
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matrix on the right are A\; = 3 and A; = —1, and the correspondiug normalized

eigenvectors are

5 -
v and v2
L =1
72 72
respectively. For the case y = —r, its eigtnvalues are A} = 3, \;
corresponding eigenvectors are
-71 4
2 2
and V2
L 1
I v2 V2

respectively. Then equation (3.15) can be diagonalized as follows

d? u \ 1 +2 u
EE CT = —$2CT CC1
v +2 1 0]
where, for the cuvc y = z,
1 1
1
C=— ,
V2
1 -1
and, for the case y = —z, ) _
-1 1
1
C=—
V2
1 1

(3.16)

= —1 and the

(3.17)

(3.18)

The matrix CT denotes the transpose of C. With a change of basis, equations for

the case y = z are diagonalized and decoupled as

&6
T = TV
o _ ay

dt?

(3.19)

(3.20)
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We have introduced the transformed variables ¢, = (u+v)/v2 and ¢, = (u—v)/V2.
The set of equations for the case y = —z can be obtained siinply by interchanging
#, and ¢, in the above equations (3.19) and (3.20); the corresponding solutions can
be obtained in the same way. Therefore, equations (3.19) and (3.20) have captured
the dynamical symmetry of the perturbations. Substituting the Jacobian elliptic
solution (3.9) into these equations, and using the identity sn?(u, k) + cn?(u, k) = 1,

they become

& .

-(—1{;—‘ =, [snz(r, 715) - IJ o (3.21)
and

P ;

dﬁz = — [snz(r, -\%2_) - l_j o2. (3.22)

We have scaled the independent time variable as 7 = (2E)%t. Equation (3.21) is a

special case of the Jacobian form of the Lamé equation [24]

_([2311 = [n(n + 1)k*sn?(z, k) + A] Y (3.23)

az?

where n is any positive integer and A is an arbitrary constant. Equation (3.21) then

corresponds to the case n = 2 and A = —3. Its analytic solution [24] is given by
2
H ,
&(T)= r];]; (g(j__)‘r )czp(—TZ(T,.)). (3.24)

The parameters 7, and 7 must be chosen so that the following conditions are

satisfied simultaneously:

2 Isn(rp)cn(r,,)dn(r,,) + sn(r Jen(r, )dn(r,)
Z sn?(r,) — sn?(1,) =0 (3.25)

=1

and

{z_;cn(r,)ds(r,)} - Znsz(Tr) =A (3.26)

r=1

where r = 1, 2 and the prime indicates that terms with p = r are to be excluded from

the sum. In addition, the sum of the left hand sides of conditions (3.25) must also
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vanish identically. Therefore, conditions (3.25) and (3.26) represent two altogether
independent equations. In the expression (3.24), Jacobi’s Zeta, Jacobi’s Theta and
first ordc: ' heta functions have been den‘ied by Z(v), ©(v) and H(v). respectively.
The solution is a product of two factor -/ periodic functions. It can therefore be
doubly periodic. A periodic solution is indeed what we expected. Since the equation
(3.21) can be looked upon as an equation of motion of a particle moving in a
periodic attractive potential, its solutions naturally represent the periodic bound
states. What is not obvious from the equation is the double periodicity of the
solution. It implies oscillation within a periodic envelope. This indirectly gives a
theoretical confirmation of the bifurcation effects observed earlier in our numerical
simulations. Unfortunately, equation (3.22) does not correspond to any specific case
of Lamsé equation and cannot be solved straight-forwardly cither. But, since the
equation describes the motion of a particle moving in a periodié repulsive potential,
its solutions must reflect the non-periodic scattering states. If we now transform

back to our old basis, our original perturbations are given in terms of ¢, and #,:

u(t) = .+ )2
(1) = (o1- $2)/V2 (3.27)

It becomes clear now that bifurcations come from only the periodic bound states of

equation (3.21).

3.3 Perturbative Analysis II

A differential equation that describes the actuai motion of the particle can be derived
if we regard y as a function of z, i.e. y = f(z(t)). The first and the second derivatives
of y with respect to time then yield

dy _ df dz

dt  dz dt (3.28)
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and

2 - 2
dy _df Sz (dz\ LS (3.29)
dt*  dz dt? dt ) dzx?
Substituting the equations of motion (3.4) and (3.5) into (3.29), it becomes
df dz\* &2 f
_ 2 _ Y 2 ar) a’j '
et = ~Lain) + (£) 5L (3.30)

If we now put equations (3.28) and (3.30) in the conservation of energy expression
E =1/2(£* + 3%+ z%y?), we obtain a second order differential equation that governs
the particle’s trajectories:

%(2E—32f2)=1:f {i+ (%)2] [ %-- :c] . (3.31)
An analytical solution to this equation may not be easily obtainable for a general
case. However, useful information regarding the dynamical behavior of the system

can still be extracted by performing a similar p~rturbative analysis to (3.31).

Since the dynamics of the unstable stia:ght-interval trajectories (3.6) has
already been well undesstood and we have in<ced “written their -2lntions in analytic
form, it seems logical that we perturb the trz .-y once zgain with respect to
this straight-line path. Therefore, for a very short ii: <1al time interval, we look for

solutions to (3.31) of the form
y = f(z) = £z + n(z) (3.32)

where z represents the unperturbed straight-lire patiis and 7 the infinitesimal per-
turbation. Substituting (3.32) into equation (3.31) and ignoring all high order

perturbations leads o a special case of Pfaff’s equation:

d? d
2;:%(21; -~z - 23:322— —2z%n =0. (3.33)

According to the table of equations of second order provided by Murphy [25], this

equation is noi integrabl: in finite terms. But if we scale the independent variable



J.¢ Aurbative Anal' as II S0

according to z = (2E)}z and take ¢ = =%, equation (3.33) is transformed to Gauss's

hypergcometric equation(25]

dn (3 1., 1 _
(1—<)d—cz+—c{——(1+z)c}—gn 0 (3.34)

which has two independent solutions

1F4/7T 1+£iV7 3 . ]
2Fl ( 8 ) 8 v4a Q) (330)
and
chy, (BENT 3EWVT %) (3.30)
8 8

The hypergeometric function 2 Fy(a, b, ¢; () is defined conventionally as
e ab ala+1)bb+1) , -
2Fl(a,b,C,C)—1+ CC+ 2! C(C+1) Q + . (3.3‘)

The general solution to equation (3.34) is then a linear combination of (3.35) and

(3.36), which allows n(z) a wide range of dynamical behavior.

If oscillations take place arcund the z-axis with very small amplitudes and
long periods, we can determine accurately where the trajectories cross the axis with
the help of equation (3.31). If f(z) and its gradient df /dz are both very small,

equation (3.31) is reduced to
d2f _1:2
=35 (3.38)

If we take f(z) = /Zy(z) and z = v/22%/(4V/E), the equation is transformed to

d2 d

1
e —)y = 0. (3.39)

42
This is a differential equation for the Bessel functions of order 1/4 [25]. The general

solution to this equation is a linear combination of two independent Bessel functions:

) (3.40)

&

y(2) = CiJi(z) + Cod_u(
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where C, and C, are arbitrary constants to be determined by the initial conditions.
However, J_ }(z) becomes divergent at the origin; hence, a physically meaningful

solution to equation (3.38) consists of only the first term of (3.40)

f(z) = CiValy (\/%%2) : (3.41)

for £ > 0. The solution exhibits damped oscillations around the z-axis. At very
low energies, where the motion is restrictive and the amplitudes of oscillations are
small, the above solution can be applied appropriately. Then, the intersections of
the trajectories with the z-axis correspond directly to the zeros of the Bessel function
in (3.41), and these zero- are the fixed points (common points) of all trajectories

stretching along the z-axs.

We mentioned earlier that our system is closely related to the plasma con-

finement problem. The Hrmiltonian for such a syster: is given by
o eA\?
{p§4-p;+-(pz—-—c-) } (3.42)

where A = A,E with A, = zy is the magnetic vector potential derived from the

H=—
2m

magnetic induction Bo= zi — yj. The momenta p; are the canonical momenta
defined as

A;
pi = mii + . (3.43)

Since = is a cyclic coordinate, the z-compcnent of the canonical momentum is a
constant of moticn. If we demand that p, is to vanish identically, then the particle’s
velocity along the z-direction is given explicitly as

. —€ .
= —azy. (3.44)

A z2y2-potential then appears in the above Hamiltonian. Although this Hamilto-
nian resembles the one given in (3.1), the particle in this case moves in a three-

dimensional space. For this reason, its energy conservation is slightly modified.
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Since H does not depend on time explicitly, it represents the total energy of the
system. With a vanishing p,, the total energy is written as

1 2, 2, € 55 5
E = %(pr +py =i -c?.’t ) ) (340)

This energy expression neither corresponds to nor is reducible by the method of
scaling to the energy conservation in the two-dimensional case. To such a system, it
would be invaluable to determine what initial conditions give rise to bounded tra-
jectories. These relations may not be easy to derive. But, for our two-dimensional
model, armed with equation (3.31) and assuming bounded trajectories, we can at
least model the particle’s behavior near its farthermost points (turning points here-
after) of its trajectories. We do not know what determines the locations of thesc
points, »* -ve do know at these points the gradients (assuming trajectories along
the z-dir ....) dy/dz approach :n infinite value and the velocitics £ and y be-
come ininivosimally small. Using these facts in equation (3.31), we get a second
order differential equation that describes the particle’s approximate behavior necar

its turning point (z., y;):

& 2\ (dy)’
A ) -~ 2\ i (3.46)
dz? 2F - :c,y,} dz
This equation can be integrated at once to give
2
2= ~(—o k4’ + Biy + B,) (3.47)

TME — 253y}
where B; and B; are the integration constants. The constant B, is determined by

the condition that the gradient becomes infinite at (z;,w), and B, by y(z:) = y:.

Therefore, we have provided physical reasons for the unstable straight- inter-
val trajectories in the z2y%-potential problem and shown that they are expressible in
terms of Jacobian elliptic functions. Using perturbative methods on the equations of

motion, we have proven that the solutions can be doubly periodic and thus provided



3.8 Perturbative Analysis IT 83

theoretical basis for the observed bifurcations. Furthermore, applying perturbative
techniques again on the equation that describes the particle’s trajectories, we have
obtained an approximate expression for the particle’s trajectories at extremely low
energies and for those in the neighborhood of the particle’s farthermost points at
any energy. The question whether a natural bound on the motion cf the particle
exists still remains. Nevertheless, we have shown, while exact methods are not

feasible, perturbative techniques can be used to extract interesting information.



CHAPTER FOUR

CHAOS 1¥ TWO-DIMENSIONAL LATTICES

Lattice dynamics has long been considered to be intimately related to the mech-
anisms of structural phase transitions. Numerous studies have been done on the
dynamics of lattices with the incln" n of the first and the next nearest neighbor
interactions [26]-[30]. These intcractions often give rise to the nonlinear behavior
of these systems. In some cases, the lattice is placed in a spatially periodic ex-
ternal substrate potential (the Frenkel- Kontorova model). Such a model is able
to explain the dynamics of crystal growth [31]-[34] and of adsorbed atomic layers
[35]-[39]. Nonlinear modes of behavior such as solitons are often found to play
an important role in lattice dynamics. However, most studies are limited to short
range interactions and to one dimension only. In addition, although the motion of
solitons in a crystal lattice is related to the deterministic behavior of the system,
the lattice may also be capable of exhibiting stochastic or chaotic behavior due to
instability. Therefore, it will be interesting to identify what physical conditions

determine whether the nonlinear lattice behaves chaotically.

To achieve these objectives, we consider a two-dimensional monatomic lattice
with an approximation applied to the long-range interactions. The approximation
is somewhat similar to the molecular field approach, where we consider each atom
in a self-consistent field due to the atoms beyond its first nearest neighbors. These

long range interactions will appear as anharmonic terms in the effective potential.

This anbarmonic lattice offers a very good way of revealing the structural
phase transition as well as the classical transition of order into chaos. Generally

speaking, in this continuum approximation, chaotic behavior arises from a system

84
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of coupled nonlinear partial differential equations that describes the classicul dy-
namical system [40]. Chaos, in this context, means that even though a solution to
the equations exists, the state of the system in phase space is indeterministic, con-
trary to the old Newtonian physics in which, once the solution is found, the state of
the system is known at all times. In this chapter, we shall demonstrate such chaotic
behavior through a simplified two-dimensional lattice model. We will first derive
the equations of motion for the system, and then obtain its effective Hamiltonian.
The solution will be obtained by means of numerical analysis, and its dynamical

behavior displayed through sequential Poincaré sections.

4.1 The Model

We consider a monatomic two-dimensional rectangular lattice in which the atoms
are coupled to their nearest neighbors in the z- and the y-directions by springs of
different elasticities so that anisotropy is built into the model. This atomic layer is
depicted in Fig. 4.1. In addition, the spacings between the equilibrium positions of
the atoms can be unequal in different directions. This rectangular symmetry is of
great use in reducing the complexity of various analytic expressions to be derived
later on. Also, to avoid any boundary effects, we also assume the lattice to be

infinitely large.

The total potential energy of the system can be approximated by separating
it into the sum of the mean field potential UMF due to higher order coordination

spheres and the potential due to the nearest-neighbor interactions U™":
Utot = UMF + U™, (41)

The mean field potential comes from the mutual interactions among the atoms
themselves but excludes the interactions between the first nearest-neighbors. Its

purpose is two fold: i) it approximates the long-range interactions that exist within
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Figure 4.1: A two-dimensional crystal lattice.

the lattice and ii) if this potential is regarded as external, our system can be used
to describe the dynamics of adsorbed layers in which, very much like the Frenkel-
Kontorova model, our mean field potential can be looked upon as the potential
due to the substrate. The potentials in (4.1) can be expanded in powers of the
components of the atomic displacements. Once their analytic fcrms are found, the

equations of motion are readily obtainable by differentiation.

4.2 The Mean Field Potential

In the mean field approach, we look at one atom at a time and calculate the in-
teraction potential of the atom with the rest of the population (except the nearest
neighbors) when they are at their equilibrium positions. Then, the sum of these

interaction potentials over all lattice sites gives rise to the mean field potential UMF.
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If 5'is the lattice vector and #(3) the displacement of the atom at site 5, then

the interaction potential is given by
UL#(5)) = Z V(s+ u(3) — ) (4.2)
m

where V() represents the two-body restoring force potential and is a function of
the separation only. The prime in the summation on the right indicates that terms
involving the nearest neighbors are to be excluded. Denoting the cartesian compo-
nents of #(3) by ua(8),a = 1, 2, 3, we expand the interaction potential U #(3)) in

powers of the components of %(3)

ULd(3)) = Z V(5-m)+ Z V(s — M )uo(3)

2!§ a aas V(S —m)ua(é')uﬁ(g)
1 V(S
5T (sl
VER) (sl + (43)

Y2 P 5,00,35
where the sum over the components of #(5) is automatically implied. The first
order term oa the right vanishes identically since all derivatives are evaluated at

the equilibrium positions. The mean field potential is then
= Y ULa(3), (44)
g

and the force acting on the atom at site l'in the negative p-direction can be easily

shown to be

gumMr UKD
aup(l-.) B 3u,,(f) .
Using the Taylor expansion (4.3) in (4.5) and retaining terms up to the third order

(4.5)

only, we obtain

aUMF e - - - - -
™ (f) = S,atta(l) + K opua(Nugs(l) + L apyua(Dug(lu,(l). (4.6)
P
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We have introduced three symmetric tensors Spar Kpap and Lyapy to simplify the

expression. They are written as

5. = 1 0*V ()
G- 3m;8m;’
1 V(@)
Koos = 2!% am!,0m/,0my

and )

1 &v(m
. : 4.7
Loaps 3!?:7 am!,dm/,0m;0m/, (47)
where we have replaced the summation over m by m' = [ — m. Making use of

the rectangular symmetry of the lattice, many of the tensor components vanish

identically:
S;;=0, ifi#J;
Kimn =0, for all l,m,n;

Limnp =0, if any three of the indices are identical.

Expression (4.6) is therefore reduced to

3u (T) = Spotp(l) + Lppoou,(1) + 3hu,(Dug(l), (4.8)
p

where A = Lyj22; p, @ = 1, 2 but a # p. This is interpreted as the force due to the

long-range order among atoms or due to the substrate in the adsorbed layer in the

Frenkel-Kontorova model.

4.3 Nearest- Neighbor Interactions

Using the same approach and notation as before, the interaction potential of the

atom at site § due to its nearest neighbors is given by

S V(@ +#(EF +a) - 4(3) (4.9)

=1
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> 63

8,

Figure 4.2: An atom with its four nearest-neighbors.

where @; are the primitive lattice vectors. An atom and its four nearest-ncighhors

are shown in Fig. 4.2. The potential U™ is then
1 4 e —y - - -t
uyr = §ZZV(a,~+u(s+a.~)—u(§')). (4.10)
Y i=1

The factor of 1/2 on the right ensures that each interaction is counted only once.
Again, we expand the potential in powers of the cartesian components of the atomic

displacements

Unn. -
U = U""(0)+Z———aa (_,)ua(m)
=y Uq(m
1 62Unn
AT

-/ — ud
gy Ouq(m)Oug(m)

(7 Yup(rit) + -, (4.11)

where the derivatives are evaluated at the atomic equilibrium positions. We now
use the harmonic approximation, that is we retain terms only up to second order.
This means that any anharmonic terms that appear in the effective potential to be
derived later on must come from the mean field approximation we developed in the

last section. Since the expansion (4.11) is made around the equilibrium positions,
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the first order term on the right must vanish identically. Substituting (4.10) into

(4.11), and introducing the tensor

L 1PV
a7 9\ 9z,0zs Amd,

( 2
= 1 {__xaz:g (3_1: - E?X) + 6_"'[_’9.‘_/_} (4.12)

2| r?
where V(7) is taken to be central and z; are the cartesian components of 7, we

obtain

Ut = Um(0) + %E 3 ¢ [ua(3) — ual(F+ @) [up(3) — up(§'+ @) (4.13)

s =1
However, the tensor ¢.; can be simplified further by direct substitution of the
primitive lattice vectors d; and expressed in terms of the lattice constants a and b,

respectively, as

. V'(a) O
¢ = Jfori=1,2, (4.14)
o v
and _ .
viel o
: b
¢ = , for: =3, 4. (4.15)
0 V"(b)

These help to reduce the nearest-neighbor interaction potential to
U™ = U™(0) + 3 fha [ta(d) — wa(§+ @)
s
+ 3 B30 [8a(3) —ual5+ B (4.16)
s

Finally, the force acting on the atom at site I'in the negative p-direction is given by

aUnn - - - - -
20T = 2¢., [2u,,(l) —u,(l—a) —u,(I+ al)]

+263, [2unD) — u, (T &) — u,(T+ &) . (4.17)
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4.4 The Equations of Motion and The Continuum Limit

Combining (4.8) and (4.17) gives the equations of motion for the atom at site [

82u,(1) - . .
Pusl — 2t [ou(D ~ uT- @)~ T+ @)
—2¢gp [zup(r) - up(l-"‘ d3) — u,( r+ 53)]

"'Sppup(r) - Lppppui(f) - 3Au,,(f)u§(f), (4.18)

where p,a = 1, 2 and a # p. Up to this point, we have been treating [as a
discrete variable indexing different lattice sites. In addition, since we are assuming
an infinitely large lattice, (4.18) represruts a system of infinitely many coupled
equations. In order to reduce the number of equations to a managable size, we need
to go over to the continuum limit. In doing so, we regard I'as a continuous variable

and expand u,,(fi d;) and u,,(fi: @3) in a Taylor series as

aup(l) 1 a’-’u,,(l")

u (T @) = ul) £ =3 “a+ 5—7p k-
. 1
and . .
o Gu(D) 1 0%u,(l),,
Sl as) =uy(l) 3l b+-2-? T bt (4.19)

Substituting (4.19) into (4.18), replacing ) by = (zi+ yj) and ignoring high order

terms in the expansion, the equations of motion become

2"0(77) = g Bzu,,(r‘) +¢ up (7)
o2 - W R
~S,0uy(7) — L,,p,,,,uﬁ(f') 3au,(Ful(F), (4.20)

where ¢ and ( are defined as

0  2aV'(a)
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and

WVI(b) O
¢ = . (4.21)

0 262 V"(b)
For a typical two-body potential such as the Lennard-Jones potential and at a
typical equilibrium atomic spacing [41], o11 and (33 are always positive whereas 02,
and (); are of arbitrary signs. Next, we assume travelling wave-like solutions in the

form:

and
Uy = ug(E- 7 — wt) = ua(2), (4.22)

where k = (kx;+ k,,f) plays the role of the wave vector and w the angular frequency.

Upon substitution, the equations of motion take the following form:

d? 1
d:iz1 = ﬁ(sllul + Lynud + 3huguf)
and
d? 1
d:‘: = 5(522‘“2 + ngnug + 3,\u2u§) (423)

where () is defined as

Q = Ullkz- + Cllkz - mw2
and ® as
$ = opk? + C22k§ - mw?. (4.24)
These equations can be converted into a more convenient form by introducing the
dimensionless variables X, Y, T:
z = 17T,
Uy = [JX y
u, = vY. (4.25)
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Such scaling is beneficial both for physical insight and for numerical convenience.

Provided

Vi@ = pQ
and
Tz“z’“” = Tz"if”" =1, (4.26)
(4.23) can be written as
-%,)—g- = KxX -X®+DXY?
%’; ~ KyY-Y®+DYX? (4.27)
where
Kx = T—%‘—‘,KY = T2g” (4.28)
and
D= 322 _ 31'21/2/\. (4.29)

¢ Q

Therefore, we have reduced a system of infinitely many coupled equations (4.18) to
two equations of motion for each of the displacement components X and Y. How-
ever, in adopting the continuum limit, we have assumed that the lattice constants
are infinitesimally small. Hence, we have focused ourselves on only those solutions
whose spatial extent is very large in comparison with the lattice constants a and b

(i.e. we have adopted a long wave length limit).

Equations (4.27) describe a phonon-field in an infinitely large two-dimensional
lattice. Their solutions give either the time evolution or the spatial variation of the
field. Clearly, they can be looked upon as a system of two coupled anharmonic
oscillators. As pointed out earlier in section 4.3, the anharmonicity of the system,
the cubic and the coupling term in (4.27), must come from the mean field approx-

imation. Unfortunately, demanding the conditions (4.26) to be satisfied, we have
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put our model in a much restrictive form. The dynamics corresponding to equations

(4.27) represents only a subset of the solutions to the more general equations (4.23).

4.5 The Hamiltonian

We look for a Lagrangian density that generates the equations of motion (4.20).

Such a density function could have the form

2 (m (0u;\® ou (Ow\® i [Ous Sy, Liii 4
£ = 2{3(79?) -5 (%) -5 (%) -t

=1

—gwu;. (4.30)

For a continuous system, the corresponding Euler-Lagrange equations for the field

variable 7, are

3.d (dC ) oL
- =—=0. 4.31

(anp.u I, (431

It can be easily shown that, by direct substitution into (4.31), the Lagrangian
density (4.30) does correspond to equations (4.20). Taking this Lagrangian density,

the conjugate momentum densities are given by

_oL _
pl - aal - Uy
and
oL .

These naturally lead to the Hamiltonian density

H' = p1d1+p2ﬁ2—£
2 m Bu,- 2 O au,- 2 C.';' aui 2 Sii 2 Liiii 4
) 2{5(3;) % (%) +5 () e

3
+2dudul. (4.33)
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In order to obtain an effective Hamiltonian density that corresponds to the resultant
equations of motion (4.27), we again assume the travelling wave solutions (+.22) and
scale the variables according to ( 4.25 ). In addition, the amiltonian density is

also scaled as

H =¢eH. (4.34)

The purpose of scaling here is to avoid imposing extensive physical constraints on
the system. Rather, the contraints arc also shared by the scaling parameters 7, p,
v and . Therefore, the final Hamiltonian density takes the most convenicnt form
and, at the same time, the system remains appiicable to a wide range of cases.

Following these procedures, assuming ( 4.26 ) and
— =-1, (4.35)

the effective Hamiltonian density can be written as

i 2{;}2{){ . _2_%3; _ % (KXX2 + Ksz) + % (X“ + Y“) _ :192 (_\’2},'2) , (4.36)
where

Px = Mx%,

Py = My%,

My =— - (21’;;)2 + 1)
and

My = — (2n;w2 N 1) ‘ (4.37)

In the case of weak coupling, the two oscillators are essentially independent

of each other and their individual energies are best represented by

E . — ———t — — . + — . 4. 8
t 2 Q‘l 1 Q: ( 3 )
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Figure 4.3: The potential energy of the decoupled oscillators for various values of

the effective wave vector K.

where i = X, Y. A typical plot of the corresponding potential is depicted in figure
4.3. The figure shows the potential changes from a single-minimum to a double-
minimum type as the effective wave-vector K; changes from negative to positive.
This feature resembles the Landau-type free energy expansion in which the energy
profile is temperature dependent. Furthermore, the critical value K; =0 marks the
onset of chacs. Since chaos usually appears in the neighborhood of a potential peak
(separatrix), it seems reasonable to assume that chaos is present in our system only

if K; > 0.
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4.6 Numerical Analysis

We now look at the special case where we put Kx = Ky =1, D = —% and
My =My =1, (4.39)

and examine the dynamical behavior of the system. The last condition (4.39) is the
most restrictive condition in the present model. From (4.37) and (4.24), it simply
means that the outcome of the model is relevant only if the following two conditions

hold simultaneously:

onk? + anz =0 (4.40)

and

o220k + (2k2 =0 (4.41)
Whether these conditions hold crucially depends on the two-body potential. They
hold only if V'(b) and V*(a) are of opposite sign, and similarly for V’(a) and V"(b).
In addition, non-trival solutions exist only if oy, /¢y = 022/(22. Even though the
two-body potential is such that (4.40) and (4.41) can be satisfied simultaneously,
the dynamics of the model represents only those phonon modes in a very narrow
subset of & space determined by the very same conditions and, from the dispersion
relation, it corresponds to those modes in a small subset of the available vibra-
tional frequencies. To be more specific, these phonon modes lie on two straight
line intervals in the accessible k space. The straight lines pass through the origin.
Their slopes are of equal magnitude but of opposite signs. These are the limitations
that one has to bear in mind when attempting to apply the model to any physical

system.

Furthermore, from (4.24), conditions (4.40) and (4.41) imply @ = @ =

—muw?. From (4.28), setting Kx = Ky = 1 means

Su = 522 < 0. (4.42)
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Figure 4.4: Contour plot of the potential in (4.43).

But, by definition(4.7), S,, are the second derivatives of the interaction potential
U{i(8)) evaluated at the equilibrium positions in the mean field approximation.
Condition (4.42) then implies the lattice points represent unstable equilibria. Hence,
this particular choice of Kx, Ky, Mjx and My leads us to a model which possesses

intrinsic instability.

From the Hamiltonian density (4.36), the potential energy of the phonon

field is given by
V(X,Y) = %(X? +Y2) + %(X“ FYY + ixwz (4.43)

and its contour plot is shown in Figure 4.4. The potential has a barrier at the origin
and four minima, each at an energy approximately —1/3, located at (:i:\/2_/—3, :i:\/%)
Intuitively, at low energies, the particle is trapped and lies very close to the bot-
tom of the potential well. At these energy levels, coupling is weak and motion is
very restrictive. The system should behave regularly. Chaos appears only when the

energies are high enough so that the particle can escape from one well to another.
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Figure 4.5: Poincaré section at E = —0.33.

This is expected to happen in the neighborhood of the potential peak (E = 0 in

our case).

The equations of motion (4.27) were solved using the 4th order Runge- Kutta
method for the energies —0.33, —0.31, —0.275, —0.2499, —0.24, —0.05, 1, 10 and
1000. To ensure accuracy, all calculations were carried out in double precision and
the integration step was chosen to be 0.0005. The dynamical behavior of the system
is represented by Poincaré sections Py vs Y as in Fig. 4.5-4.14, where we take the

initial momenta to be positive, X = 4/2/3 and Px > 0.

Expectedly, the system exhibits regular behavior at extremely low energies
as shown in Fig. 4.5. The particle is trapped in one of the potential wells. All orbits
generated are highly regular. Bifurcation takes place at slightly elevated energies.

As indicated in Fig. 4.6, the single orbit marked “b” splits into two close loops,
separated by the separatrix labeled “s”. Evidently, this separatrix acts as a divider

for infinitely many orbits within this finite region of phase space. This is indeed
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Figure 4.6: Poincaré section at E = —0.31.

a well-known property of a strange attractor. Furthermore, within the separatrix

itself as shown in Fig. 4.7, chaos is clearly seen.

At energy —0.275, as shown in Fig. 4.8, many regular orbits break up into
randomly scattered trajectories. Chaotic structure is beginning to dominate the
picture. A chain of islands which completely encloses the regular region acts as a
boundary separating the order from the chaos. The particle is no longer trapped at
energy —0.2499. Figure 4.9 shows that it hops from one potential well to another. Its
trajectories are spread all over the two enclosed regions. The system is becomming
increasingly chaotic; regular structure is beginning to shrink. The contour of the
Poincaré map is now extended to two symmetrical but well separated ovals. This

extension manifests a possible phase transition.

At energy levels slightly below the potential peak, the system is completely
chaotic as shown in Fig. 4.11. The two ovals have merged to give a much bigger

contour, as the four symmetrical potential wells become accessible to the particle.
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Figure 4.8: Coexistence of chaotic and regular structures at £ = —0.275.
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Figure 4.10: Islands of high-order resonance from the previous figure.
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Figure 4.11: Complete chaos at E = —0.05.

This, once again, indicates another possible phase transition. Figure 4.12 shows that
regular trajectories and chains of islands are starting to reappear as the energy level
is raised beyond the peak. While the energy continues to climb upward, the regular
region expands at the expense of the chaotic one. This is clearly demonstrated in
Figures 4.13 and 4.14. The order-disorder transition seems to repeat itself but in
the reverse direction. It is therefore possible that, at extremely high energies, the
system’s behavior could become completely regular again. In fact, this transitional

cycle has been ibserved earlier by Ali and Somorjai [42].

Whether a system behaves chaotically or not depends largely on the shape
of the potential. Our Poincaré sections suggest that complete or partial chaos
exists only in the neighborhood of the irregularity in the potential which, in our
case, is the region near the potential barrier. For a smooth and regular potential,
chaos is therefore unlikely. In cur model, the depth of the potential wells depends

on the effective wave vector K which in turn depends on the long-range interaction
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Figure 4.14: Dominance of regular structure at £ = 1000.

potential and the dispersion of the medium. Therefore, it is the competition between
the long-range order and the dispersion that determines if the system is capable of
exhibiting chaotic behavior. Given such capability, chaos manifests itself only when

the system is oscillating in the irregular region of the potential.

Finally, because of the choice of parameters, we are restricted only to a
narrow range of the system’s behavior. Qur model is hence quite limited. A future
direction to take will be to investigate the case where Kx # Ky and to determine
how the system responds as Kx or Ky changes sign. This choice of K certainly
introduces an asymmetric potential, and the depths of the potential wells change
quite independently as K varies. This model can then be applied to describe the

dynamics of a stable-metastable phase transition, i.e. a first order one.
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4.7 Conclusions

In summary, we have first shown that some important one-component (scalar)
systems are deterministic and exactly solvable. Particularly, for the case i the
three-dimensional Landau-Ginzburg model applied to a ferromagnet where the z-
component of the magnetization is taken as the order parameter, the exact ana-
lytical solutions include solitary waves and correspond to physical realizations such
as domain walls, nucleation processes and magnetic double layers. We have fur-
ther shown that the presence of a weak magnetic field breaks the symmetry of the
equation of motion and also that of the solutions. The mean values of the oscil-
Jatory solutions in this case shift as the magnitude of the field varies. There are
also indications of competition between the local inhomogeneous and the mean field
properties of the solutions. The result of the competition is such that in some cases

it could be energetically more favourable to have the magnetization antiparallel to

the field.

Secondly, we have demonstrated that systems that are described by two
coupled spatial parameters are capable of exhibiting chaotic behavior. Although
exact analytic methods for nonlinear coupled equations of motion are not available
at this time, we have shown, through the z?y? potential problem, that perturbative
techniques can be used to model the approximate behavior of the system and to
extract useful information. Finally, we have shown how anharmonic perturbation
to a two-dimensional atomic lattice leads to a system with two coupled spatial
parameters. We have examined very closely the chaotic transitional behavior of the
system and found that whether chaos manifests itself depends on both the energy

level of the system and the smoothness of its effective potential.

Therefore, in this thesis, we have provided exact, perturbative and numerical

methods for quartic nonlinear Hamiltonian systems with one or two parameters.
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The specific examples chosen in this thesis serve as prototypes, they can be casily
generalized for solving problems within the same class. As is well known from
the literature on phase transitions and critical phenomena, potential systems and
phenomena which qualify for applications are extremely numerous and cover many

different areas of physics.
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