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Abstract

Automated Vehicle (AV) is a trending technology being developed with the promise

to reduce traffic accidents caused by human errors. Perception plays a crucial role for

Automated Driving Systems (ADS) to make safe decisions. However, local sensory

data is insufficient to capture comprehensive information for ADS due to occlusion

and limited perception range. Vehicle-to-vehicle (V2V) communication technology

provides an alternative solution by enabling vehicles to exchange perception information

(referred to as Collective Perception or CP), increasing environment awareness for

all vehicles in the network, and thus improving driving safety. In this research,

we demonstrate the safety benefits of CP through the simulation of three driving

scenarios in the Carla simulator. We use pose graph optimization (PGO) to fuse high-

level sensory data between the local sensor and the data coming from the V2V network

to reduce state estimation uncertainty. After that, a connected ADS was developed

to make driving decisions based on the fused information to prevent potential traffic

hazards. We show that the time-to-collision (TTC) metrics between the ego vehicle

and unconnected road users (URU) are improved for all three scenarios compared to

the baseline, indicating that CP can improve safety for AV in the simulated scenarios.
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Chapter 1

Introduction

1.1 Motivation

Automated Vehicles (AV) is a trending technology that has attracted lots of attention

in recent years. According to the National Highway Traffic Safety Administration

(NHTSA), human drivers were responsible for 94 percent of 2,189,000 crashes between

2005 and 2007, where recognition errors, decision errors, and performance errors

accounted for 41%, 33%, and 11% of crashes, respectively [1]. Automated Driving

Systems (ADS) are being developed and have the potential to gradually replace

human drivers and reduce traffic accidents in the near future.

Perception plays a crucial role for ADS to make safe driving decisions; inaccurate

or failed perception of the state of the environment can lead to severe outcomes.

Robust ADS relies on fusing different types of sensors to gather a comprehensive

state estimation of the environment to make safe driving decisions because each type

of sensor has its own strengths and weaknesses. For example, an RGB camera is

a cheap solution to provide high-resolution color and spatial information, which is

useful for detecting and localizing objects such as pedestrians, vehicles, and traffic

signs, but the quality of the camera image is largely dependent on illumination

and weather conditions [2] [3]. Radar is not affected by illumination and weather

conditions and can measure the depth information and the speed of objects at great
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distances, but the emission of radio signals can interfere with other systems, and it is

low in data resolution and prone to false detection of metal objects [3] [4] [2]. LiDAR

features accurate range measurements for objects under 200 meters, large field-of-view

(FOV), and less interference against illumination and weather conditions compared

to cameras, but has a low vertical resolution, sparse point measurement along with

distance, poor detection of dark objects, and is expensive [2] [3] [4] [5].

However, even with sensor fusion to maximize the perception coverage, there

still exist difficulties using only local sensory data, such as occlusion and limited

perception range. Adding multiple sensors can help but is not sufficient to overcome

these limitations and may significantly increase the cost of AVs. Vehicle-to-vehicle

(V2V) communication technology provides an alternative solution to this problem by

sharing each vehicle’s perception information with other nearby vehicles to increase

the perception capabilities of all vehicles in the network. The literature shows that as

traffic density increases, the local sensors’ effective FOV (eFOV) drops quickly due to

occlusion. Instead, by sharing perception information, the collective FOV (cFOV) of

each vehicle from V2V communication can be significantly increased, even for a small

market penetration rate [6]. Therefore, sharing perception is a cost-effective solution

to increase environment awareness as more AVs start to join the V2V network.

The technology of sharing perception through the V2V network with other vehicles

is referred to as collective perception, collaborative perception, or cooperative perception

in the literature [7] [8] [9] [5] [6]. Here for consistency, we call it collective perception

(CP) for the rest of the thesis. Automated vehicles with information sharing capability

are called connected automated vehicles (CAVs) for this thesis. CAVs can potentially

have a much larger perception range than non-connected AVs with a large communication

range, and they suffer less from occlusion, which enables early detection of unconnected

road users (URU), such as pedestrians and unconnected vehicles (UV) and gives more
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reaction time for the decision module to handle. Therefore, our research hypothesis

is that CP can potentially improve safety for AVs.

1.2 Objective

The goal of this research is to demonstrate the safety benefits provided by CP to

CAV compared with UVs. To do that, we conduct simulation-based experiments to

get the safety measurements according to the RAND Corporation [10]. We designed

three simple scenarios where the detection of URU is challenging for local sensors due

to occlusion and sensor range limit. However, with the help of a nearby CAV, the

potential obstacle state can be received through V2V communication and gives the

ego vehicle enough time to take action and improve safety.

For our implementation of CP, we use high-level fusion and assume no communication

delay. We use pose graph optimization (PGO) to fuse the local sensory data and the

data coming from the V2V network and reduce the state estimation uncertainty. After

that, a simple constant velocity predictor is applied to predict the future trajectory

of the URUs and check for possible collision between the ego vehicle and URU. An

emergency stop maneuver is issued based on the detection of a future collision. We

implement these scenarios using the Carla simulator [11] and measure the safety by

time-to-collision metrics. See Figure 1.1 for an illustration of our concept.

Our contributions for this work are summarized in the following:

� We designed three custom scenarios that exposed the limitation of local sensory

data, i.e. occlusion and limited perception range. These limitations can potentially

cause traffic accidents.

� We proposed a sensor fusion framework based on PGO to fuse information from
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Figure 1.1: Illustration of Collective Perception. In the cartoon, two CAVs are GPS
enabled, and they can share data with each other through V2V communication. Both
vehicles are perceiving the same URU that falls in the FOV and perception range;
at the same time, indicated by the purple arrow and green arrow, which denotes an
indirect encounter. The two CAVs can also perceive each other, as shown in the
blue line segment, which denotes a direct encounter. The CAVs also have odometry
sensors to constrain their consecutive poses, as shown in gray lines. The fusion process
estimates the surrounding state by considering all sensor measurements coming from
all connected CAVs, taking advantage of observation redundancy. Future trajectories
between CAV and URU are predicted (shown in orange dashed arrows) based on the
state estimation to detect possible hazards and improve safety.

local sensory data and information from the V2V network.

� We demonstrate that it is possible to reduce the state estimation uncertainty

and improve the safety of AVs using CP.
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1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we discuss the background

and related works. In Chapter 3, we talk about the details of our methodology and

the experiment design. In Chapter 4, we demonstrate the results and interpret the

data. In Chapter 5, we conclude our work based on the results and talk about possible

future works.
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Chapter 2

Background

In this chapter, we review the literature to provide background information for this

research. First, we introduce the background of CP in Section 2.1. Then we briefly

talk about Simultaneous Localization and Mapping (SLAM) in Section 2.2, as it

forms the basis of our CP sensor fusion method. After that, the background for

safety evaluation is discussed in Section 2.3. Finally, the simulators related to our

experiment are discussed in Section 2.4.

2.1 Collective Perception

In the earlier project Ko-PER [12], the Cooperative Awareness Message (CAM) and

Cooperative Perception Message (CPM) were defined for each connected vehicle and

road infrastructure to communicate sensor information. The CAM contains the state

of the CAV, including the position, orientation, speed, the state of headlights, the

actuation of brakes, etc. The CPM, on the other hand, includes the information of

the dynamic objects perceived by the CAV or connected road infrastructure. ETSI

is working on a standardization of CP service, including CAM and CPM [7].

Perception data coming from multiple observers with uncertainty needs to be fused

and transformed into a fixed coordinate frame. If the same object is observed by

multiple observers, data redundancy also becomes an issue since each observation is
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corrupted by the accumulated uncertainty with the noise of the sensor and the noise

introduced by the observer’s own state estimation. Therefore, to fully utilize CPM

and CAM, an effective data fusion method is needed.

In the work proposed by Rauch et al.[9], a high-level fusion architecture for merging

CPM and CAM is developed, where the object lists received from other connected

vehicles are transformed into the local coordinate system, and the temporal alignment

of the fusion is addressed by predicting the vehicle state to the current time using an

augmented state unscented Kalman filter with a constant turn rate and acceleration

motion model. Two approaches were tested for spatial alignment: linearizing the

transformation function and unscented transformation (UT). The author shows that

UT has a superior performance in reducing spatial uncertainty.

Gunther et al. [13] proposed environmental perception message (EPM) and a

high-level fusion framework, where the EPM contains the information from local

perception sensors and is shared through the V2X network with other CAVs. The

author then demonstrated a collision avoidance application between two CAVs, with

safety measured by the time-to-collision (TTC) metric. However, in their application,

the vehicles were driven by human drivers, and the scenario involves only static

obstacle avoidance.

More recently, Godoy et al. proposed a grid-based fusion framework for CPM,

where the environment is modelled as an occupancy grid, and sensor measurements

from CAVs are fused in the occupancy grid with uncertainties. After that, a particle

filter is used to evolute the occupancy grid for object tracking [14]. Yuan et al.

proposed FPV-RCNN, a keypoint-based deep learning fusion framework for CPM,

which involves bounding box matching and keypoint selection for compressing CPM

and addressing data association [15]. In the work published by Yoon et al., a
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covariance intersection-based fusion scheme is proposed that not only considers the

local FOV but also accounts for each vehicle’s own state estimation. Besides, the

Bhattacharyya distance filter is used for solving data association, and eventually, a

single state estimation is derived for each vehicle [16].

In recent work, an Intelligent Road Side Unit (IRSU) and a CAV platform has been

developed and demonstrated for safety. In their design, the IRSU with cameras and

LiDAR is used to monitor road traffic conditions and broadcast the CP services to the

surrounding CAV to extend the perception capability. The author then demonstrated

through three experiments the improved VRU awareness for connected vehicles, and

it is possible for IRSU perception as the only source for CAV navigation to interact

with pedestrians on the road [5].

As mentioned in chapter 1, Huang et al. defined the FOV for ego-only perception

as effective Field-of-view (eFOV) and the FOV for CP as collective Field-of-view

(cFOV). The author shows that due to the occlusion of surrounding vehicles, the

eFOV drops quickly as the traffic density increases, but the cFOV provides 95% more

coverage with only a 30% market penetration rate (MPR) [6].

2.2 SLAM

Previous works in Section 2.1 reviewed multiple CP fusion frameworks. Graph-based

Simultaneous Localization and Mapping (SLAM), on the other hand, can be an

alternative way to model the CP fusion process, in which the poses of the CAV are

modeled as vertices, and the sensor measurements represent edges that constraint the

connected poses. Then the goal is to find the pose configurations that are consistent

with the measurements as a non-linear least squares problem [17].
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In the robotics field, SLAM aims to solve the mapping of the environment and

localization of the robot at the same time, allowing robots to perform navigation-

related tasks in GPS-denied environments. The map is a representation of the

environment model, and it consists of landmarks that can be observed by the sensors

of the robot. A comprehensive review of the SLAM problems was published by

Cadena et al. [18]. In their work, the typical modern SLAM systems are divided

into a front-end, which performs feature extraction and data-association tasks, and

a back-end, which takes the information from the front-end and estimates the robot

poses and the map by a Maximum a Posterior (MAP). The formulation of the back-

end is described below:

Let X be the set of unknown variables, including the robot poses and the locations

of the landmarks, and let Z = {zk : k = 1, ...,m} be the set of independent sensor

measurements. We have a non-linear measurement model hk(·) that maps a set of

variables Xk ⊆ X to a measurement zk with some random noise ϵk:

zk = hk(Xk) + ϵk (2.1)

The goal is to find an optimal set X∗ that maximizes the posterior P (X|Z) such

that:

X∗ =argmax
X

p(X|Z) = argmax
X

p(Z|X)p(X)

= argmax
X

p(X)
m∏︂
k=1

p(zk|Xk)

= argmin
X

− log

(︄
p(X)

m∏︂
k=1

p(zk|Xk)

)︄
(2.2)

The measurement likelihood can be written as:

p(zk|Xk) ∝ exp

(︃
−1

2
||hk(Xk)− zk||2Ωk

)︃
(2.3)
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And the prior can be written as:

p(X) ∝ exp

(︃
−1

2
||h0(X)− z0||2Ω0

)︃
(2.4)

where Ωk represents the covariance matrix of the measurement k, assuming the

measurement follows a Gaussian noise. Notation ||e||2Ω = eTΩ−1e denotes the Mahalanobis

distance with covariance matrix Ω.

Substitute Equation (2.3) and (2.4) into (2.2), our objective becomes:

X∗ = argmin
X

m∑︂
k=0

||hk(Xk)− zk||2Ωk
(2.5)

subjects to error function:

F (X) =
m∑︂
k=0

||hk(Xk)− zk||2Ωk
(2.6)

To solve the non-linear least squares problem (2.5) using standard techniques like

Gauss-Newton or Levenberg-Marquardt algorithms, one needs to approximate the

error function F (X) by first-order Taylor expansion at an initial guess of X, and

update X using an approximated linear solution from the error function [18] [17]. The

approximation of the error function assumes that variableX is in the Euclidean space,

but it is not true for SLAM, and this can lead to sub-optimal solutions [17]. Kummerle

et al. [19] proposed a general framework (G2O) to solve non-linear least squares

problems for SLAM, which represents the rotation component of the pose variables

in over-parameterized non-Euclidean group SO(2) or SO(3), and defined a non-linear

operator to perform pose composition between different representations and avoid

the problem of breaking the over-constraint of the graph. G2O also utilizes multiple

domain knowledge to accelerate the optimization, such as utilizing the sparsity of the

pose graph and optimizing for modern CPU architectures.
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For CP scenarios, one needs to consider multiple robots running SLAM in the same

environment. Kim et al. proposed a probabilistic formulation of the multi-robot

SLAM based on pose graphs, where the robot poses are connected by odometry

measurements [20]. A direct encounter occurs when one robot observes another

robot; an indirect encounter occurs when two robots observe the same part of the

environment; both encounters [21] introduce additional constraints between local

pose graphs of the robots. Since the relative pose between robots is unknown at

the beginning, Kim et al. introduced anchor nodes that represent the offset of each

robot’s trajectory w.r.t. a global frame, and the poses are transformed to the global

frame using the anchor nodes. This way, the pose graph can be solved using an

incremental smoothing and mapping (iSAM) algorithm [22].

Since AVs are commonly equipped with GPS and IMU sensors, which can provide

global localization and orientation estimation with some degree of uncertainty, the

initialization is not a significant concern for AV. In addition, GPS and IMU data

can also be fused into the CP by adding extra edges between the pose vertices and a

virtual origin vertex [23]. Combining GPS and IMU data with Graph-based SLAM,

where GPS and IMU are integrated into state estimation in long-distance localization,

is proved to be robust against visual odometry drift [24].

2.3 Safety Evaluation

The goal of this work is to demonstrate a safety improvement of CP for AV. However,

the definition of AV safety is not clear. In this section, we review the literature

regarding safety evaluation in AV.

The RAND Corporation defined safety as “the overall ability of a vehicle to operate

without harm to passengers or other road users within the roadway ecosystem.”
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[10]. They stated that the traditional approach for measuring vehicle safety based

on exposure rates is problematic because the accumulation of vehicle miles traveled

(VMT) is insufficient for AV to draw statistical evidence. They proposed a safety

framework consisting of Setting, Stages and Measures. Settings refers to the context

in which the AV operates, including simulations, closed courses, and public roads.

Stages refers to life stages in which AV measurements can be acquired, including

Development, Demonstration, and Deployment. During Development and Demonstration

stages, simulated scenarios are developed and improved using data collected from

human-driven vehicles, AV on simulation, AV on closed courses, and AV on public

road experiences.

The categories of measures mentioned in the RAND Safety Framework begin with

Standards, Processes, Procedures and Design of AV, followed by Leading Measures

and Lagging Measures [10]. The Leading Measures serve as surrogates for Lagging

measures and are not directly associated with safety outcomes; Lagging measures

involve the actual crashes and their outcomes. Roadmanship is a Leading Measure

that characterizes whether the AV interacts well with other road users without creating

hazards. Examples of Roadmanship include near misses or near crashes, rapid acceleration

or deceleration, time-to-collision (TTC), etc.

Responsibility Sensitive Safety (RSS) is a safety model proposed by Mobileye.

RSS falls into the category of Roadmanship of the Leading Measures. The model

formalizes five common rules that involve longitudinal and lateral safety, right-of-

way, and limited perception visibility and provides formal proof for verification of

these rules [25]. Kim et al. determined the variables of the RSS model for a variable

focus function camera, and the safety distance and response time were derived [26].

Khayatian et al. proposed a generic version of the RSS model for CAVs to enable

Cooperative Driving, capable of detecting and resolving deadlocks in a decentralized
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manner [27].

We will be using the TTC as the main safety measure for our research based on

the scenarios we designed. TTC is defined as the time until a collision between a

leading and a following vehicle if the speed of the following vehicle is faster than the

speed of the leading vehicle [28] [29].

For a 2D plane, there is no concept of leading and following vehicles, and the

collision is based on estimated trajectories between two vehicles. Hou et al. [30]

proposed new algorithms for computing TTC in a 2D plane, and for simplicity, we

will be using the circle algorithm. The circle algorithm models each vehicle’s shape as

a circle and a collision between two vehicles can be detected if the distance between

the centers is smaller than the sum of the radii, assuming two vehicles are moving on

a straight line at constant velocities, as illustrated in Figure 2.1.
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Figure 2.1: The circle algorithm [30] models vehicles as circles, and the collision
between two vehicles can be detected if the distance between the centers of two
circles equals the sum of their radii. Here, we assume two vehicles are moving in
straight lines at constant velocities, so their TTC can be obtained by finding the time
at which the two circles intersect.

Given the locations, velocities and lengths of two vehicles, their TTC can be

obtained by solving the following equation and taking the smaller root of t:

[xi + vxit− (xj + vxjt)]
2 + [yi + vyit− (yj + vyjt)]

2 = (ri + rj)
2 (2.7)

where
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xi, yi :location of the object i

xj, yj :location of the object j

vxi, vyi :velocity of the object i

vxj, vyj :velocity of the object j

ri, rj :radii of the objects i and j

t :TTC between two objects i and j

If there is no solution, the two vehicles will not collide with each other based on the

motion assumptions. Note that Equation (2.7) is modified from the original formula

in [30], omitting the acceleration terms because the vehicles are moving at constant

velocities in our experiment.

2.4 Simulators

Simulation is crucial for evaluating AV performance during the Development and

Demonstration stages, without causing actual damage to the public, according to the

RAND Safety Framework [10]. In this section, we review some existing simulators

and discuss their pros and cons for the use case of CP and safety evaluation.

Simulation of Urban Mobility (SUMO) is a well-known 2D open-source traffic

simulator. It is designed for simulating large road networks with different demand

models [31]. The benefits for SUMO come with its speed and the design for traffic

networks. It is capable of simulating large volumes of vehicles at the same time,

supporting flexible network format for building and importing, and providing multiple

car-following models and lane-changing models for realistic traffic flow simulation.

SUMO also comes with a variety of safety evaluation metrics, including surrogate

safety measures like TTC, headway, break times, etc. However, in SUMO, there is no
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straightforward way to allow an ADS to manipulate a vehicle using a steering wheel,

throttle, brake, gear shifting, etc. In addition, sensors such as camera, LiDAR, radar

and IMU are not implemented in SUMO. Therefore AV cannot be easily simulated.

Figure 2.2: A screenshot of the SUMO simulator [31]

Carla is an open-source simulator built on Unreal Engine, and it was designed

as a scalable 3D simulation platform for autonomous driving [11]. Carla features a

realistic rendering of lights, high-quality sensor rendering and physics computation

and provides both Python and C++ API for manipulating vehicles, pedestrians,

and virtual world states. Multiple weather conditions and sensor imperfections are

simulated, allowing for the development and testing of robust ADSs and Computer

Vision algorithms. Carla also supports ground truth generation using semantic sensors

and depth sensors, suitable for synthetic datasets for machine learning systems. The

drawbacks of Carla in the CP field consist of two aspects. Firstly, the rendering

capability of Carla is limited to a single GPU for the server-side, while the computation

of the client-side can be distributed to multiple machines due to the one-server-

to-multiple-client architecture, having multiple CAVs with cameras and LiDARs

simulated at the same virtual world leads to a performance bottleneck. Secondly,
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Carla has a built-in TrafficManager for simulating traffic flow, which is not as realistic

as SUMO. Therefore, Carla supports using SUMO in Co-simulation mode instead, in

which SUMO is responsible for traffic flow simulation, and Carla for rendering the

3D scene and generating sensor data. This solution has been used in existing works

such as OpenCDA [32].

For the purpose of this research, we will be using the Carla simulator as our testing

environment, which is more than sufficient for our purpose because we only consider a

maximum of two CAVs, and do not require precise background traffic flow simulation.

Besides, the semantic camera provides a simple way to simulate occlusion in our

experiment, which we will be discussing in Chapter 3.

The Carla simulator also comes with an open benchmark called the Carla Autonomous

Driving Challenge [33] (the Challenge). The Challenge is developed to evaluate

the driving proficiency of ADS under different simulated environment and weather

conditions. Participants need to follow the pre-defined routes to drive a vehicle from

a starting location to a destination, facing a selection of 10 traffic scenarios defined by

NHTSA Pre-crash Scenario Topology [34]. The background traffic flow is generated

dynamically using the TrafficManager from Carla, and it is possible to select a group

of background vehicles as CAVs to provide useful CP, which allows us to evaluate our

ADS in relatively realistic driving environments.

Our preliminary test involved modifying an existing ADS called Pylot [35] to add

CP implementation and using the modified Pylot to run the public testing routes

in the Challenge and see if there is any safety improvement with CP. We recorded

the driving data and developed a data visualizer for inspecting the behaviour of the

agent during each route to understand the reason for infractions, see Figure 2.4.

However, after the preliminary test, we found that the Challenge is not suitable for
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(a)

(b)

Figure 2.3: Carla Autonomous Driving Challenge [33] Screenshots

our purpose. Firstly, the Challenge is not solely designed to evaluate safety. Metrics

like route completion are also considered in the overall driving score, but failure to

complete a route can happen randomly due to the interference of background traffic

and decrease the final score. Besides, actual collisions are involved in the Challenge,

making our TTC metric not suitable for measuring safety. Since the environment

is dynamic, agents are not expected to encounter the same traffic situations at each

episode with the same route. Each episode may be terminated early depending on

certain conditions, such as the blocking of an agent by obstacles. These problems

make a statistical comparison between agents difficult without a significant amount
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Table 2.1: NHTSA Pre-crash Scenarios in the Challenge

Scenario Available CP can help Description

1 Yes No Control loss

2 No No Lead vehicle deceleration

3 Yes Yes Unexpected obstacle avoidance

4 Yes Yes Expected obstacle avoidance

5 No Yes Lane changing for slow leading vehicle

6 No Yes Vehicle passing on opposite lane

7 No Yes Crossing intersection with vehicle running red light

8 No Yes Unprotected left turn

9 No Yes Right turn with crossing traffic

10 No Yes Crossing at unsignalized intersection

of driving mileage. By preliminary analysis, some of the scenarios are related to

limited perception and can potentially benefit from CP. However, among the 10 pre-

defined scenarios claimed by the Challenge, only 3 scenarios are available in the public

testing routes, and 2 of them can potentially take advantage of CP. The summary of

the scenarios based on our preliminary analysis is shown in Table 2.1.
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Figure 2.4: A screenshot of the Visualizer. We developed the visualizer for inspecting
the recorded driving data during the Carla Autonomous Driving Challenge. The
figure shows a bird’s-eye view of the traffic situation centered at the top of the ego
vehicle, the two blue line segments for the FOV, and the yellow circle indicates the
communication range between the ego vehicle and the surrounding CAVs. Orange
dots and lines represent the detected position and predicted future trajectories of the
nearby obstacles. Blue dots denote the local waypoints, and gray dots denote the
global waypoints. Finally, the connectivity between CAVs is shown in purple.
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Chapter 3

Methodology

3.1 Information Fusion Framework

We introduce our CP information fusion framework based on PGO in this section.

For simplicity, we only consider the 2D coordinate system. Unlike normal SLAM

problems, here, the mapping of the environment is not of our concern. Instead, the

unconnected road users (URU, i.e. pedestrians and unconnected vehicles) can be

interpreted as “moving landmarks.”

We assume that a CAV is equipped with a global localization system such as GPS

and IMU to provide its global pose estimation with uncertainty and a camera to detect

an object that falls into its Field-of-view (FOV) and detection distance without being

occluded by obstacles. We also assume that the odometry measurement of the vehicle

is also available between each pair of poses of a CAV. This may be achieved using

wheel odometry or visual odometry.

Given the available information, we formulate the CP sensor fusion as pose graph

similar to Kim et al. [20], where a vertex represents an unknown variable, including

the pose of the CAV and the pose of URU; an edge represents the constraint between

two variables. The only difference is that we do not use anchor node [20]; instead,

the measurement between each pose and the origin is provided by the GPS and IMU.
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In the AV situation, a direct encounter is defined as one CAV detecting another

CAV, and an indirect encounter is defined as multiple CAVs detecting the same URU.

We define an unknown variable set X that contains the origin o of the global

coordinates and R trajectories of objects of interest (CAVs and URUs):

X = {o}
⋃︂

{xr
i}

Mr−1,R−1
i=0,r=0 (3.1)

where each object r has a set of trajectory length of size Mr.

The odometry measurement set is defined as:

Z = {ur
i}

R−2,Mr−1
i=0,r=0 (3.2)

The GPS measurement set is defined as:

G = {grj}
R−1,Mr−1
j=0,r=0 (3.3)

The encounter measurement set is defined as:

C = {ck}N−1
k=0 (3.4)

where ur
i , g

r
j , and ck represent the odometry, GPS, and encounter measurements

respectively, and each measurement is assumed to be independent. The factor graph

[36] in Figure 3.1 is used to illustrate the relations of the variables and their measurement

constraints.

The problem of estimating the CAV trajectories and URU trajectory given the

sensor measurements and the pose priors can be defined as a Maximum a Posterior
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Figure 3.1: Factor Graph illustrating the relation of variables and corresponding
measurement constraints in time sequence. The blue circle denotes the unknown
variable, and a black dot on an edge denotes the measurement constraint. p is the
prior of the origin o, each pose variable is constrained to the origin by GPS and
IMU measurement g, two consecutive pose variables are constrained by an odometry
measurement u. If an encounter occurs, the two corresponding object poses are
constrained by a perception measurement c (red line).

(MAP) problem [18] same as Equation (2.2).

We define our objective function as:

X∗ = argmin
X

∑︂
ur
i∈Z, xr

i ,x
r
i+1∈X

||xr
i+1 ⊖ xr

i − ur
i ||2Ωu

+
∑︂

gri ∈G,xr
i∈X

||xr
i ⊖ o− gri ||2Ωg

+
∑︂

ck∈C,Xr
i ,X

s
i ∈X

||xs
i ⊖ xr

i − ck||2Ωc
(3.5)
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where the notation ⊖ is for the inverse pose composition operator [37], and Ωz, Ωg

and Ωk are the covariance matrices for odometry, GPS, and camera, respectively. We

assume the data association (k, i, r, s) is known.

To solve Equation (3.5), we use the CSparse solver from the G2O framework since

the CSparse solver is claimed to be faster for small graphs compared to CHOLMOD

and PCG [38] [19]. To keep the graph size small, starting from the second vertex, we

add a new vertex and a new edge for each CAV and URU every 10 simulation steps

and only keep the 50 most recent vertices for each CAV and URU in the graph. For

simplicity, we assume the simulation steps are synchronized for all CAVs, or CAVs

will miss their encounters with each other or the URU. Also, we assume that there is

no communication delay between CAVs.

3.2 Implementation Approach

After getting the fused perception information using the fusion framework discussed

in Section 3.1, the perception information and the state of the vehicle are then passed

to the ADS to generate safe steering, throttle, and brake commands for the AV to

drive to the destination.

For the ADS, we use the generic modular system, which separates the driving

task into several sub-problems, and each sub-problem is solved independently by a

specific module [2]. Our system consists of a detection module, localization module,

data fusion module, object prediction module, planning module, and control module.

Figure 3.2 shows the system diagram of the ADS.

The detection and localization measurements are generated using the ground truth

states from the simulator and add independent Gaussian noise to simulate the effect
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Figure 3.2: System Diagram for our connected ADS. The ADS consists of six sub-
modules: detection, localization, data fusion, prediction, planning, and control, and
the sub-modules form a computation pipeline, in which the output of one module is
passed into the next module, indicated by the arrows. Outside the connected ADS
are different components that belong to the simulated world, which provide input
sensory data and generated state transition based on the output of the connected
ADS. Additional detection and localization information will be provided to the data
fusion module in CAM and CPM, in the perspective of CAV.

of sensor uncertainty. The effect of camera occlusion is realized by attaching the

semantic camera to the same location and orientation as the imaginary RGB camera

of the CAV (the semantic camera is provided by the Carla simulator). When an

object is located within the FOV and detection distance, we project the object pose

to the camera plane in pixel coordinate and check in the semantic image whether the

projected pixel belongs to the same category of the target object. In our experiment,

this simple approach is sufficient to simulate occlusion and demonstrate the effectiveness

of CP. See Figure 3.3 for a demonstration of this procedure.

Once the states of the CAVs and URUs are fused and optimized, a decision needs to

be made for the ego vehicle to avoid any potential hazard outcomes. In the planning

module, the decision is based on predicting the future trajectories of the ego vehicle

and the URU to a time horizon given their state estimation. If an overlap between

the future trajectories is found, then a stop command will be given to the ego vehicle
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Figure 3.3: Illustration of simulated detection. We do not use real object detection
algorithms in our experiment. To simulate the effect of occlusion, we attach a semantic
camera to the same location as the imaginary camera for detection. Both the semantic
camera and the detection camera have the same intrinsic matrix K. We project the
pose of the target on the camera pixel coordinate x(u, v, 1)T = K(y, z, x)T , and check
whether the pixel in the semantic image belongs to the same category of the target.

to prevent potential traffic accidents; otherwise, the ego vehicle will proceed with its

original path.

The Carla simulator has several virtual towns that can be used as testing environments.

Each town has a set of pre-defined waypoints of the roads for vehicles to navigate.

The path from a starting point to a destination can be easily generated using the

high-level GlobalRoutePlanner from Carla API. In the control module, we use PID

controllers to control the steering wheel, throttle, and brake of vehicles to follow a set

of waypoints. The incoming waypoints can be used directly as the future trajectory of
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the ego vehicle. For URU, we use a simple constant velocity predictor in the prediction

module, which is sufficient because in our experiment URUs are pre-configured to

move in a straight line at a constant speed for simplicity.

3.3 Experiment Design

As mentioned before, the AV local detection sensor is limited in the maximum

detection range and occlusion. Since we have not found a public benchmark that suits

our purpose, we built three custom scenarios based on a subset of the NHTSA pre-

crash topology [34] as our benchmark. The selected scenarios are all vision obscured-

related, so they can possibly have been affected by extended perception capability

to improve safety. For each custom scenario, we add an additional CAV as a CP

provider. We test each custom scenario independently to demonstrate the safety

benefits.

Custom Scenario 1 Pedestrian crash with prior vehicle maneuver.

The ego vehicle (indicated by the pink dashed arrow) performs a maneuver

(right turn) in a T-junction from the right-hand side, while a pedestrian (path

shown by the orange dashed arrow) located in the blinded area is pre-configured

to walk across the road when the ego vehicle approaches. The future trajectories

between the ego vehicle and the pedestrian are intersected, indicating that the

pedestrian will be hit if the ego vehicle does not stop at a sufficient distance. At

the same time, a CAV (path shown by the green dashed arrow) is driving from

the left-hand side, capable of perceiving the pedestrian’s location and informing

the ego vehicle if their distance is within the communication range. As shown

in Figure 3.4.

Custom Scenario 2 Pedestrian crash without prior vehicle maneuver.
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Figure 3.4: Custom Scenario 1. On the right-hand side, the black car is the ego
vehicle operated by our connected ADS. The dashed arrows in pink, orange and
green represent the moving trajectories of the ego vehicle, pedestrian, and the CAV,
respectively. When the ego vehicle is doing a right turn, the pedestrian will start
crossing the road, which leads to the potential accident that the ego vehicle needs
to avoid. The ego vehicle will come to a full brake upon detecting the pedestrian.
The detection of the pedestrian will happen earlier from the CAV’s point of view.
Therefore, with the CP from the CAV, the ego vehicle will stop at an earlier time,
thus increasing the TTC to the pedestrian.

The scenario is similar to Custom Scenario 1, except that the ego vehicle is

driving straight (no maneuver), while a pedestrian is occluded by a truck instead

of a wall. The pedestrian will start walking across the road when the ego vehicle

approaches at a certain distance so that both will collide if the ego vehicle

does not brake at a sufficient distance. A CAV is approaching in the opposite

direction, detecting the pedestrian’s location and informing the ego vehicle if

they are within the communication range, as shown in Figure 3.5.
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(a)

(b)

Figure 3.5: Custom Scenario 2 (in different views). The dashed arrows in pink, orange,
and green represent the moving trajectories of the ego vehicle, pedestrian, and the
CAV, respectively. The pedestrian will start to cross the road if the ego vehicle is close
enough, leading to a potential traffic accident. The ego vehicle will brake immediately
upon the detection of the pedestrian. In Figure 3.5a, the pedestrian is invisible to the
ego vehicle due to occlusion but is visible from the CAV’s point of view. Therefore,
with CP from the CAV, the ego vehicle will stop at an earlier time than using a local
sensor only. This will increase the TTC between the ego vehicle and the pedestrian.
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Custom Scenario 3 Left turn across path from opposite directions at signalized

junctions.

The scenario is intended to demonstrate an object that is far beyond the

maximum perception distance of the local sensor. In this scenario, an unconnected

vehicle (UV, indicated by the orange dashed arrow) is driving from the far end

of the road at a constant speed of 100 km/h. The ego vehicle is approaching

the intersection at an initial speed of 50 km/h and attempting to make a left

turn while being prepared to yield to the UV because the UV will enter the

intersection at roughly the same time. The initial distance between UV and ego

vehicle at the beginning is around 120 meters. There is no occlusion between

the ego vehicle and the UV, but due to the limited perception range, the UV

will not be perceived by the local sensor from the ego vehicle until they are

close enough. At the same time, a CAV is driving in the right lane 45 meters

ahead of the ego vehicle, and it is capable of perceiving the UV earlier than the

ego vehicle, thus can alert the danger of the fast driving UV approaching. As

shown in Figure 3.6.

For the experiment, we conduct a comparative study between the baseline and

the connected ADS using the method discussed in Section 3.2. The baseline is

implemented in the same way as the connected ADS, except that the communication

with the CAV is disabled. For each custom scenario, we use the baseline and the

connected ADS to drive the ego vehicle, respectively and repeat the simulation 30

times for each method. The TTC value is computed at each simulation step using

the circle algorithm discussed in Section 2.3.

For statistical comparison between simulation episodes, we use two aggregate

indicators: Time Exposed Time-to-collision (TET) and Time Integrated Time-to-

collision (TIT) [29] [39]. TET is defined for object r as follows:
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Figure 3.6: Custom Scenario 3. The dashed arrows in pink, orange, and green
represent the moving trajectories of the ego vehicle, UV, and the CAV, respectively.
The UV is driving at a constant velocity of 100 km/h. The ego vehicle has an initial
velocity of 50 km/h and will attempt to make a left turn at the intersection. Both
the UV and the ego vehicle will enter the intersection at roughly the same time, and
the ego vehicle needs to stop and yield to the UV if the UV is detected. The stopping
location of the ego vehicle depends on the timing of detection. In the meantime,
a CAV driving on the right lane ahead of the ego vehicle can provide an extended
detection range, allowing early detection of the UV and increased TTC.

TETr =
T∑︂
t=0

δr(t) ·∆k, (3.6)

δr(t) =

{︄
1 ∀ 0 < TTCr(t) ≤ TTC∗,

0 otherwise

where ∆K denotes the time duration for two simulation steps. In our case, it is set

to 0.01 since we are using a constant interval of 0.01 seconds for simulation steps. The

TTC* denotes the threshold that distinguishes safe and unsafe conditions between
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the objects, and we choose the value of 2.0 seconds according to Zhang et al. [29].

Similarly, TIT is defined for object r as follows:

TITr =
T∑︂
t=0

[︃
1

TTCr(t)
− 1

TTC∗

]︃
·∆k, (3.7)

∀ 0 <TTCr(t) ≤ TTC∗

The unit of both metrics is seconds. TET aggregates the total time duration

that is exposed in unsafe situations determined by the TTC* threshold, whereas TIT

aggregates levels of unsafe situations during the simulation as the final indicator.

We use both metrics for a more comprehensive comparison, and the mean and the

standard deviation for both TET and TIT will be computed for 30 repetitions for our

statistical significance test between the baseline and the CP method.
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Chapter 4

Result and Interpretation

In this chapter, we present the experimental details, including parameter selection,

results, and interpretations.

4.1 Parameter Selection

In the experiment, we set the communication range to 300 meters, as this is the

operational range for commonly used DSRC based radios for V2V communication

[7]. The maximum perception distance is set to 100 meters [40], and the FOV of the

camera is 110 degrees.

We also simulate sensor measurements by adding independent zero-mean Gaussian

noise to the GPS, IMU, and odometry sensors. The standard deviation for the GPS

sensor is set to σGPS,lon = 1.08 meters and σGPS,lat = 0.94 meters [41]; for the IMU

sensor is σIMU,θ = 0.0021 degrees [42]. For visual odometry, the noise standard

deviation is set to σOdom,x = 0.003 meters, σOdom,y = 0.007 meters and σOdom,yaw = 0.2

degrees [43] in the ego vehicle’s local coordinate system. To clarify, the coordinate

systems for the ego vehicle and the GPS are shown in Figure 4.1.

We do not know the appropriate noise model for the camera detector, so we assume

that it is also a zero-mean Gaussian noise, and we study the effect of different standard
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Figure 4.1: Coordinate Systems. The origin o of the GPS coordinate is shown in the
figure, and the local coordinate system of the vehicle camera is denoted by the red,
green, and blue axes, with a rotation angle θ to the GPS coordinate o.

deviations of perception noise to the state estimation of URU. The metric we used

here is Absolute Trajectory Error (ATERMSE) of the URU in global coordinates [44].

The detection noise standard deviation varies from 0.1 meters to 1.0 meters, and the

results are shown in Figure 4.2. Note that here we only consider the URU localization

accuracy because our custom scenarios are only designed to avoid collisions between

the ego vehicle and URU, and the CAV is only used for providing CP.

Since the baseline uses the raw GPS, IMU, and the camera sensory data directly

and does not attempt to reduce uncertainty, transforming the URU from a local sensor

coordinate to a global coordinate will lead to accumulated error. The CP approach, on

the other hand, fuses the GPS, IMU, odometry, and perception data from both the ego

vehicle and CAV and applies equation (2.5) to reduce the uncertainty jointly; thus, it

can lead to reduced uncertainty in the URU state estimation. From Figure 4.2, we can

see that the CP approach outperforms the baseline by a large margin. However, the
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Figure 4.2: URU Localization Accuracy. The figure compares the difference between
the baseline, Raw CP (un-fused CP) and CP method in localizing URU with different
standard deviations of the camera detector. Raw CP has roughly the same ATE as
the baseline, which is expected because both methods do not attempt to reduce
localization error. The Raw CP curve shows a smaller variation compared to the
baseline because the effect of Raw CP is equivalent to averaging two independent
episodes of the baseline. CP outperforms both the baseline and Raw CP by a
large margin, but the differences start to diminish as the detection uncertainty
increases. This happened because the increased detection uncertainty level reduces
the confidence in the corresponding measurement constraint during optimization.
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difference between the two approaches gradually diminishes as the σcam grows. This

decrease is because increasing σcam affects the covariance matrix Ωk in equation (2.5),

making the estimation less constrained by the perception measurement. Eventually,

the URU localization accuracy will arrive at roughly the same level as the baseline

for the same value of σcam. Therefore, for the fusion between CAVs to show benefit

in increasing localization accuracy, the camera perception uncertainty needs to be

reasonably small.

We also conducted an ablation study to see the effect of PGO in reducing the

localization error compared to CP using un-fused raw sensory data (Raw CP). The

result in Figure 4.2 indicates that CP still outperforms Raw CP, and Raw CP has

similar performance as the baseline. This is not surprising because the CAV has the

same sensor uncertainty as the ego vehicle, and the effect of Raw CP is equivalent to

averaging the localization errors for two independent episodes of the baseline.

4.2 Safety

We choose σcam = 0.1 for evaluating the designed scenarios for fewer false positive

alerts of collision that may interfere with normal driving behaviour of the ego vehicle

because our approach does not consider false positive filtering. The comparison is

made between the baseline, CP, and Raw CP, and in the end, we compute the TET

and TIT metrics discussed in Section 3.2.

In all scenarios shown in Figures 4.3, 4.5, and 4.7, the TTC value is not measurable

at the beginning of the simulation according to Equation (2.7) because there is no

chance that an ego vehicle will collide with the URU based on their states at that

time. Starting from a certain time during the simulation, the future paths between

the ego vehicle and the URU intersect, so TTC becomes measurable. The decreasing
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Figure 4.3: Scenario 1 Safety. The Figure shows a comparison of TTC between the
ego vehicle and the URU as a result of using different state estimation methods. The
baseline here represents the worst situation when the TTC reached its lowest level at
around 1.2 seconds. This happened because the URU was not visible due to occlusion
at the beginning of the right turn, and there wasn’t enough time for the ego vehicle
to take action to reduce its speed. CP outperforms the baseline because, for the same
situation, the CAV is capable of detecting the URU and informing the ego vehicle to
reduce its speed early. The Raw CP has an even better TTC in this case because it
did not attempt to optimize the URU pose, and that can lead to higher uncertainty
in the URU localization and trigger the emergent brake earlier than CP.
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of TTC indicates that the two objects are approaching each other until the ego

vehicle realizes the danger and issues the emergent brake maneuver; as a consequence,

the TTC starts rising. Eventually, TTC becomes un-measurable as the ego vehicle

successfully reduces its speed to zero. Note that in all scenarios, we deliberately

pre-configure the settings of the scene so that there is no actual collision involved.

Because we use a Leading Measure TTC to measure safety, it makes sense only before

the crash happens; see Section 2.3 for an explanation of Leading Measure and Lagging

Measures. We do not consider situations after the crash since those will be quantified

using Lagging Measures, as discussed in Section 2.3.

In Scenarios 1 and 2, the CP approach always stays above the baseline, indicating

that CP is safer for the ego vehicle and the URU than the baseline because, with CP,

the ego vehicle can perceive the URU when the local sensor is occluded by obstacles

(walls for scenario 1 and the truck for scenario 2), which gives extra reaction time for

the ego vehicle to make emergent stop maneuver and thus can reduce the speed of

the vehicle to prevent a collision.

In scenario 3, the TTC curve for the baseline is close to linear and drops at roughly

a constant rate because the URU is approaching the ego vehicle at the constant speed

when the ego vehicle is stopping at the intersection. After the ego vehicle completely

stops, the TTC quickly becomes un-measurable at around 2.9 seconds. Note that

there is no TTC curve for CP in this scenario because the ego vehicle stopped with

its heading parallel to the trajectory of the URU (See Figure 4.8b), and there was no

intersection between the predicted trajectories of both vehicles, indicating that there

is no chance a collision could occur if both vehicles continue following their current

trajectories. Although there is no occlusion between the ego vehicle and the URU in

scenario 3, detection of the URU is still not possible since the URU is located beyond

the maximum perception range. When the URU is perceived, the driving speed of
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the URU is too fast, and there is very little time for the ego vehicle to brake. On

the other hand, with the help of the CAV ahead, the URU can be perceived earlier,

allowing extra time for the ego vehicle to reduce its speed. Therefore, in scenario 3,

CP still outperforms the baseline in terms of TTC.

The ablation study between CP and Raw CP for all three scenarios is conducted.

We can see that Raw CP outperforms CP in Figure 4.3, and in Figure 4.5, Raw CP

has roughly the same performance. In Figure 4.7, the TTC is not measurable for Raw

CP because the vehicle stopped at the intersection with its heading parallel to the

trajectory of the URU, which is the same as CP. The fact that Raw CP has a worse

localization accuracy than CP but sometimes shows better TTC curves than CP is

contradictory, and it may reflect that our experiment design is not comprehensive.

Specifically, the emergent stop maneuver could be triggered much earlier than it

should due to false positive detection in the Raw CP agent, and we do not consider

the consequences of this misbehaviour to safety.

For the purpose of this research, we conduct statistical significance tests between

the baseline and CP, using the aggregate metrics TET and TIT for all three scenarios.

We do not compare the baseline and Raw CP due to time constraints. The means and

standard deviations for the metrics are listed in Table 4.1 for 30 independent runs.

Because there are significant differences in standard deviations between the baseline

and the CP approach, we use the Welch t-test. Our null hypothesis is µBaseline ≤ µCP,

and the alternative hypothesis is µBaseline > µCP, we use the significant level 0.05.

The Welch T-test statistics, the P-values, and the decisions are listed in Table 4.2.

Note that in the first two scenarios, the standard deviation for CP is larger than

the standard deviation of the baseline for both TET and TIT, but for scenario 3

they show the opposite trend. Our explanation is that the URU was detected by
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the CAV before a direct encounter occurred in the first two scenarios, and it was

the detection from the CAVs that triggered the emergency stop for the ego vehicle.

The relative localization for the URU and the ego vehicle has not been refined by

the direct encounter, which leads to a larger amount of uncertainty in the timing of

issuing the emergency stop maneuver in CP compared to the baseline. For scenario

3, the direct encounter occurred at the beginning of the episode before detecting the

URU; therefore, the localization for the URU was more accurate than the baseline,

which makes the standard deviations smaller in the CP than the baseline.

Table 4.1: Safety Aggregate Indicators

Scenarios
TET (Mean/Std) (Sec) TIT (Mean/Std) (Sec)

Baseline CP Baseline CP

1 0.207/0.009 0.071/0.095 0.027/0.002 0.009/0.012

2 0.645/0.027 0.225/0.181 0.191/0.020 0.028/0.033

3 0.802/0.294 0.017/0.090 2.701/3.686 0.002/0.012

Table 4.2: Welch T-test

Scenarios
TET TIT

Test stat P-value Decision Test stat P-value Decision

1 7.609 9.761e-9 Reject 7.837 4.132e-9 Reject

2 12.343 1.211e-13 Reject 22.706 1.197e-27 Reject

3 13.758 7.740e-16 Reject 3.942 0.0002 Reject

As shown in Table 4.2, all test results lead to a strong rejection of the null

hypothesis with P-values way smaller than our pre-selected significant level. Therefore,

we conclude that there is significant evidence that the CP approach is safer than the

baseline for the three scenarios we designed, using TET and TIT as evaluation metrics.
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(a) (b)

(c) (d)

Figure 4.4: Custom scenario 1. The top figures 4.4a and 4.4b are the bird’s-eye views
of the ego vehicles using the semantic camera images, where the ego vehicles are
the dark blue cars at the center of the images, and the URUs (i.e., the pedestrians)
are marked in red. The semantic images show the states where the ego vehicles
were completely stopped for the URUs. We can see that in Figure 4.4a, the baseline
agent was stopped at a distance slightly closer to the URU than the CP agent in
Figure 4.4b, which leads to a higher risk in terms of a smaller value of TTC for the
baseline than CP. The bottom two figures, 4.4c and 4.4c, are the corresponding state
estimations of the environments for the two methods. Within the bottom two figures,
pink triangles and green triangles denote the camera poses of the ego vehicle and
the CAV, respectively, and the pink lines and the green lines denote the detection
measurement with respect to each camera. Blue lines show the direct encounter
between the ego vehicle and the CAV. Gray lines connect the two cameras’ poses for
the odometry measurements. Orange dots show the URU observations. The Cyan
line denotes the predicted trajectory of the URU. Finally, the red circle denotes the
predicted collision location.
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Figure 4.5: Scenario 2 Safety. The Figure shows a comparison of TTC between
ego vehicle and URU as a result of using different state estimation methods. The
baseline here represents the worst situation when the TTC reached its lowest level at
around 1.1 seconds. Because the URU is occluded by the red truck as the ego vehicle
is passing through, as shown in Figure 3.5, and when the URU is visible, the ego
vehicle does not have sufficient braking time. Both CP and Raw CP have roughly
the same values in TTC, and both of them outperform the baseline because, for the
same situation, there was a CAV capable of detecting the URU, and informing the
ego vehicle to reduce its speed early.
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(a) (b)

(c) (d)

Figure 4.6: Custom scenario 2. The top figures 4.6a and 4.6b are the bird’s-eye views
of the ego vehicles using the semantic camera images, where the ego vehicles are the
dark blue cars at the center of the images, and the URUs (i.e., the pedestrians) are
marked in red. The dark blue trucks beside the ego vehicles are static and only used
to block the detection of the URUs in the ego vehicle’s points of view. We can see
that in Figure 4.6a, the baseline agent stopped at a distance much closer to the URU
than the CP agent in Figure 4.6b. This leads to a higher risk in terms of a smaller
value of TTC for the baseline than CP. The bottom two figures, 4.6c and 4.6c, are
the corresponding state estimations of the environments of the two methods. Within
the bottom two figures, pink triangles and green triangles denote the camera poses
of the ego vehicle and the CAV, respectively, and the pink lines and green lines for
the detection measurement with respect to each camera. Blue lines show the direct
encounter between the ego vehicle and the CAV. Gray lines connect the two cameras’
poses for the odometry measurements. Orange dots indicate the URU observations.
The cyan line denotes the predicted trajectory of the URU. Finally, the red circle
denotes the predicted collision location.
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Figure 4.7: Scenario 3 Safety. The Figure shows the TTC curve of the baseline in
scenario 3. The curve is roughly linear because the URU is approaching to the ego
vehicle at a constant speed when the ego vehicle is stopped at the intersection in
Figure 3.6. When the URU passes through, there is no chance for a collision between
the ego vehicle and the URU. Both the CP agent and the Raw CP agent were able
to stop early enough without entering the intersection so that the heading direction
of the ego vehicle is parallel to the trajectory of the URU (see Figure 4.8b), and the
TTC is not measurable in this situation.
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Figure 4.8: Custom scenario 3. The top figures 4.8a and 4.8b are the bird’s-eye views
of the ego vehicles using the semantic camera images, where the ego vehicles are the
dark blue cars at the center of the images, and the NVs are also the dark blue cars
in front of the ego vehicles. We can see that in Figure 4.8a, the baseline agent has
entered the intersection and stopped at a distance very close to the UV. This is a
dangerous behaviour and may lead to a traffic accident. Compared to the baseline,
the CP agent did not enter the intersection, as shown in Figure 4.8b. The bottom two
figures, 4.8c and 4.8c, are the corresponding state estimations of the environments of
the two methods. Within the bottom two figures, pink triangles and green triangles
denote the camera poses of the ego vehicle and the CAV, respectively, and the pink
lines and green lines denote the detection measurement with respect to each camera.
Blue lines show the direct encounter between the ego vehicle and the CAV. Gray lines
connect the two camera’s poses for the odometry measurements. Orange dots show
the URU observations. The cyan line denotes the predicted trajectory of the URU.
Finally, the red circle denotes the predicted collision location.
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Chapter 5

Conclusion

In this research, we focused on the safety aspect of CP on AV. We formulate the

high-level CP sensor fusion as a PGO problem to reduce the sensor uncertainty, and

we use the fused information to estimate the state of the ego vehicle and the URU.

The potential future collision can be predicted based on the state estimation, and

an emergency stop maneuver is generated to avoid a possible hazard between the

ego vehicle and the URU. We designed three scenarios where local sensor capability

is limited due to occlusion and maximum range to demonstrate the benefits of CP.

A baseline agent without CP is compared to the CP agent. Time-to-collision is

computed between the ego vehicle and the URU for the baseline and CP, and aggregate

safety indicators TET and TIT are also computed to conduct statistical significance

tests. Both TTC and the Welch T-test show evidence that CP outperforms the

baseline for all three scenarios indicating that CP can improve safety based on our

custom scenarios, because CP extended the perception range of the ego vehicle,

enables early detection of potential hazards for extra reaction time, and reduces the

TTC between the ego vehicle and the URU.

There are still limitations in our research. Firstly, our implementation of the ADS

is naive in the sense that it does not consider false alarm filtering, and it treats

every occurrence of the predicted collision as an absolute signal of danger, even if the
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prediction was not reliable. This could lead to overly cautious driving behaviour. In

practice, an AV that stops too often during driving could have a very safe TTC with

front-end vehicles and pedestrians, but rear-end collisions become a larger threat,

and it may cause traffic congestion. Besides, the AV driving behaviour is affected by

only a single CAV in our designed scenarios, which is not realistic in evaluating the

safety. In future work, we need to consider a more dynamic environment with realistic

traffic flow and use a more comprehensive safety evaluation method, such as RSS [25].

The formulation of PGO in high-level CP sensor fusion provides a framework to

reduce sensor uncertainty using GPS, IMU, odometry, and the cameras of multiple

CAVs all at the same time, making the coordinate transform of detected objects

between different CAVs more robust against localization uncertainty. However, the

localization performance of this method needs to be studied and compared with other

works, such as [8] [14] [15] and [16] mentioned in Section 2.1, to understand the

strengths and weaknesses of our proposed method. It is also possible to extend our

work by considering unknown data association, the existence of communication delay

between CAVs, and using a real camera for detecting objects. These problems can

be studied in future research.
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