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Abstract

The core annular flow (CAF) theory is used to model the parallel flow of fluids of different phases.

CAF theory has been applied to a lot of industrial applications from bitumen hydro transport to

sub-aqueous drag reduction. Here we consider the extension of core annular flow theory to the

study of the adiabatic section of heat pipes as heat pipes deal with the two-phase flow of fluids

in parallel, flowing in opposite direction. We aim to develop a first-principles estimate of the

conditions necessary to maximize the (counter) flow of liquid and vapor and, which by extension,

maximizes the axial flow of heat. This work investigates a model of the heat pipe in both planar

geometry and cylindrical geometry. Moreover, both the geometries considered the heat pipes either

containing or devoid of a wick. In these two respective cases, the peripheral return flow of liquid

is driven by capillarity and by gravity. Our model can predict velocity profiles and the appropriate

pressure gradient ratio (vapor-to-liquid). We further obtain estimates for the optimum thickness

of the liquid layer which is required to obtain the maximum mass flow rate. In the case of wick

based heat pipe when the liquid flow occurs via capillary pumping, there is a minimum surface

tension below which the wick cannot supply a sufficient flow of liquid. We have characterized this

critical point in terms of e.g. the viscosity ratio, the density ratio, and the wick depth, porosity, and

permeability. We have compared the pressure gradient ratio (vapor-to-liquid) obtained from our

model to experimental data from Shafahi et al. (2010). One inconsistency that our model contains

is that the interface is assumed to be flat insofar as using the shear-stress boundary condition but

curved insofar as supporting the capillary pressure required by the heat pipe to drive the flow of

liquid. We have explored this discrepancy addressed in chapter 2 by using the perturbation theory

in chapter 3. Chapter 3 considers two-phase flow in a porous medium extending infinitely and
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curved meniscus at the liquid-vapor interface. Using such a model we have preserved the essential

features required to study the effect of a curved interface. Chapter 3 shows the effect of using

a deflected interface in the porous medium on the velocity profiles. Finally, we characterize the

magnitude of the effect of using a curved interface for liquid vapor parallel flow in the porous

medium when compared against the model considering a flat interface.

Keywords: Core-annular flow, Capillary pumping, Perturbation theory
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Chapter 1

Introduction

Core annular flows are internal flows where a core of viscous liquid is surrounded by a sheathing
layer of lower viscosity, be it liquid or gas, e.g. air (Ooms et al. 2007). Ooms et al. (2007) used
theoretical methods to show that if there is a significant pressure difference over a horizontal pipe,
then there is a balance between the buoyancy force and hydrodynamics force on the core. The
balance of these forces makes the core annular flow possible (Ooms et al. 2007). The same study
showed that when there is a decrease in the pressure difference and an increase of buoyancy, the
eccentricity of the core increases. In core annular flow, when the viscous liquid does not make
direct contact with the boundaries of the confining geometry (e.g. the inner surface of a pipeline),
drag is reduced.

Advances in core annular flow theory have encouraged many in the scientific and engineering
communities to develop numerous technologies for industrial and engineering applications. For
example, core annular flow theory is used in lubricated flows as the pumping pressures are balanced
by wall shear stresses in the water on the periphery.

Water-lubricated technology helps in the transportation of heavy viscous oils. Oil companies
have been using water as a lubricant for the transportation of oil since 1904 (Isaacs & Speed 1904
in US Patent No. 759374). Lubricated flows are effective if the oil to be transported has high
viscosity, and this is the reason why pipeline companies used the emulsification of oil to increase
its viscosity (Dos et al. 2007, Joseph et al. 1995, Joseph et al. 1997, Gruncell et al. 2013) but
emulsification also led to higher energy requirement for the pumping operation. Core annular flow
theory is also used in the transportation of bitumen froth. The bitumen is extracted from mined
oilsands. A hot water extraction process is used to separate bitumen as froth from sand, and the
extracted bitumen froth self-lubricates in a pipe flow. A detailed study was done by Syncrude
Canada Ltd. (Sanders et al. 2004) on the lubricated transport of bitumen froth.

In a similar study, Busse et al. (2013) presents an investigation considering two immiscible
fluids for a variety of steady, laminar internal flows (i.e. Couette flow, symmetric channel flow,
pressure-driven channel flow and pipe flow). In this work, the fluid with lower dynamic viscosity
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forms an infinite layer of constant thickness, and acts as a lubricant for the second liquid flowing
over the first liquid. If the air layer is too thin, then it plays a modest role in reducing the overall
shear stress. Busse et al. (2013) considered the first fluid to be gas and considered two different
assumptions. In the Couette flow cases, a constant shear rate developed in the gas layer. In the
pressure-driven cases, it was assumed that the pressure gradient in gas and liquid was equal. As
a consequence, in Couette flow and pressure-driven cases, the net mass flow rate of gas was more
than zero which, begs the question of how a constant mass flow rate in gas is maintained. The
second assumption was that the mass flow rate in the gas layer is zero. However, in both cases,
Busse et al. (2013) considered an optimal superhydrophobic surface to achieve a trapped air layer.

The investigation by Busse et al. (2013) compares the zero mass flow rate in the gas layer with
the conventional assumptions of equal pressure gradients in gas and liquid. They derived analytic
solutions to the velocity profiles for all the cases. With the results in hand, it was found that in the
Couette flow cases, the presence of a gas layer reduces the shear rate, and thus the velocity of the
liquid layer is much higher. Whereas, the mass flow rate of the gas layer is zero, then the shear rate
in the liquid reduces for high viscosity contrasts of liquid and air and increases for lower viscosity
contrasts. In addition, counter-current flow develops in the part of the gas layer that is closer to
the wall. In the pressure-driven cases, it was found that the velocity profile of the gas layer takes
the same form as it would if the whole channel or pipe were filled with gas. Busse et al. (2013)
also focused on presenting upper limits to drag reduction, bearing in mind that the main reason to
discuss the flow of liquid over gas is to reduce drag.

Busse et al. (2013) showed that in the Couette flow cases, even with a thin layer of gas in
the zero-mass flow rate case, the drag reduction is less compared to the case of constant shear
rate. In the pressure-driven cases for constant gas, layer thickness leads to the blockage of the
cross-sectional area of the pipe or channel which results in drag-increasing effects. However, in
pressure-driven cases with even a thick gas layer leading to blockage of the cross-sectional area of
the pipe, a high drag reduction can be achieved with a high viscosity contrast between liquid and
gas. There is a limit of the gas layer thickness after which the drag keeps increasing. The gas layer
thickness limit is higher in the channel flow with equal pressure gradients than the other flow cases
considered by Busse et al. (2013), as the lubrication effects of the gas are substantial. Since, there
is an upper limit to gas layer thickness, there is also a lower limit to how thin a gas layer can be. In
the Couette flow and pressure driven case, the drag reduction under a zero-mass flow rate in the gas
layer is higher than the case in which an equal pressure gradient in liquid and gas is maintained.
The two effects of the gas layers are that the gas layer provides lubrication for the liquid layer in
some cases and leads to blockage in other cases. Therefore, Busse et al. (2013) also studied the
optimum gas layer thickness required for achieving a higher mass flow rate.

Busse et al. (2013) also investigated the slip length of a laminar flow of a liquid over an air
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layer (i.e. two immiscible liquids) where the air layer has a zero mass flow rate downstream (i.e.
stationary). They found that if the profile of the velocity can be measured theoretically, the slip
length at the wall can also be computed. Two approaches were considered. The first one considered
the bottom of the roughness and the second considered the top of the roughness, which is the
liquid−gas interface. The second approach gave misleading results, and there were two concerns
regarding this approach: first, that the presence of surface roughness would give a positive slip
length as there was a positive mean stream-wise velocity near the top of the roughness, and second,
that the coating of superhydrophobic surfaces has the drawback of decreasing the cross-sectional
area of the channel. Therefore, to find and compare the apparent slip length, the wall must be
smooth, and the bottom of the gas layer must be the wall.

The assumptions made by Busse et al. (2013) showed that, in the channel flow, the air layer is
either immobile or flows downstream along with the liquid. The gas layer flows because a constant
shear is applied along its upper surface. The latter assumption is the more reasonable one, but
from a practical point of view, it remains to address of how the air layer was held in place, as the
authors considered a “perfect” hydrophobic surface when micro-roughness is not required. They
also pointed out that the gas layer flows with the liquid but never discussed replenishing the gas
layer.

Drag reduction is no less important in the context of external (vs. internal) flow. In considering
such a scenario and the possibility of a liquid flowing over an air-encapsulated solid object (e.g. a
sphere), the mechanism for drag reduction is the same as before, i.e. the momentum transfer
across the air-water interface, which generates an internal circulation of air within the plastron
(McHale et al. 2011). McHale et al. (2011) demonstrated an optimum air layer that reduces the
drag on a compound object. They showed that if the air layer becomes too thin, then there is no
momentum transfer at the air-water interface generating internal circulation in the plastron and the
drag increases as it would if the solid object was in direct contact with water, whereas, if the air
layer is too thick the drag is depressed by a greater proportion. There is a need to retain this air
layer for drag reduction, and this can be achieved with the help of high surface roughness of the
wall. Such surfaces are known as “superhydrophobic surfaces”, and are structures which have a
certain roughness and the potential to retain the air layer at the surface.

The air trapped within the microstructures of superhydrophobic surfaces is seen in many insects
that can breathe underwater. The thin layer of air trapped in the microstructure which is in contact
with the surrounding fluid corresponds to a three-phase configuration also known as “Cassie-Baxter
state”. When the object is submerged in water, the air can be displaced by the pressure fluctuations
of the water, low dissolved gas concentrations, and shear stress. Therefore, it is essential to recover
this air layer when the object is submerged in water (McHale et al. 2011).

There have been numerous studies exploring how the plastron layer can be replenished, which
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we have divided into three categories. The first approach is to generate the gas/vapor in the original
location by some chemical treatment. These chemical treatments include photoelectric water split-
ting, and film boiling and also by electrolysis Lee & Kim(2011) have demonstrated the recovery
of plastron using electrolysis on Pt/Au-coated silicon pillars. The second approach is to supply
gas/air continuously to the plastron. The continuous supply of air is done when the plastron is
connected to an air reservoir or by injecting gas bubbles into the boundary layer of the flow. The
third approach is to saturate the water with the dissolved gas, which achieves plastron recovery by
diffusion through the liquid and mass transfer through the interface. Panchanathan et al. (2018)
discussed a method of catalytic decomposition of hydrogen peroxide to replenish the air layer.
Hydrogen peroxide decomposes into water and oxygen at room temperature, and the authors used
textured surfaces to test plastron recovery. Another study about retaining the gas layer underwa-
ter was carried out by Forsberg et al. (2011). Water in contact with the rough surface is in two
states: one where the surface is completely wet, and another where the surface is partially wet.
Forsberg et al. (2011) investigated the effect of water pressure on the gas layer trapped by the su-
perhydrophobic surfaces, because the gas layer gets washed away if the water pressure is too high.
They used theoretical means and assumed a linear dependence between the volume of air and the
water pressure to calculate the pressure required to collapse or wash the air entirely from the solid
surface; they also performed an experiment to support their theory. Similarly, Ling et al. (2016)
studied the mean velocity profiles of the boundary layers of the superhydrophobic surfaces.

The work presented in the current manuscript builds on the findings of Busse et al. (2013) in
which we explore a case characterized by an equal and opposite counterflow of vapor and liquid.
This counterflow is the first major difference with the Busse et al. (2013) study, made possible,
respectively, by evaporation and condensation which occur at the opposite ends of a control vol-
ume. To this end, we will explore ideas from core annular flow theory, the flows that arise within
the adiabatic section of heat pipes.

1.0.1 Heat pipes

heat pipes are passive devices that are used to transmit heat over several centimetres or metres
depending upon the electronic equipment such as heat recovery in buildings, aerospace equipment,
laptops, mobile etcetera. Of the different known heat transfer devices, heat pipes are the most
effective passive device. One of the greatest advantages of using a heat pipe is that it can transport
heat over a considerable distance through a small cross-sectional area without any external power
supply. Furthermore, the design and manufacture of heat pipes is quite simple.
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History of heat pipes

Perkin′s tube, invented in 1836, was the predecessor of heat pipes. The design was quite close to
the heat pipe we use today, i.e. a closed tube containing a small quantity of water operating as a
two-phase cycle. The heat pipe was introduced in 1944 by Gaugler, from the General Motor Cor-
poration in the US (patent No. 2350348). The idea proposed by Gaugler was that liquid evaporates
generating vapor, the vapor travels below the point of evaporation and that is the condenser. The
condensate is returned to the evaporator by capillary pressure provided by the use of a sintered iron
wick. In 1964, Grover started working on heat pipes in the Los Alamos National Laboratory in
New Mexico. Two years later, Grover filed a patent on behalf of the US Atomic Energy Commis-
sion and established that heat pipes can be regarded as synergistic engineering structures having a
thermal conductivity higher than any known material.

In 1965, Cotter published theoretical results and design tools recognizing heat pipes as a ther-
mal device. heat pipes were used in space applications as they can operate in microgravitational
fields. heat pipes and thermosyphons have also been used in energy saving applications, and there-
fore the industrial community is actively involved in their research, development, and commercial-
ization (Dobran et al. 1989, Huang et al. 2017, Nguyen et al. 2000).

Heat pipe operations

A heat pipe can be of any size and shape but can be best understood by considering a cylindrical
geometry. The main components of a heat pipe are the container, the wick structure and a small
amount of working fluid. The working fluid could be water, acetone, methanol, ammonia, or
sodium, and the heat pipe works on the operating temperature of the working fluid. Heat is applied
externally to the evaporator section of the pipe where the vaporization of the fluid takes place;
where the heat is conducted through the pipe wall and the wick structure. The vapor pressure that
develops causes the vapor to flow to the condenser section where it condenses, releasing the latent
heat of vaporization. Due to the presence of the wick, capillary pressure is created which pumps
the liquid back to the evaporator section. The circulation of fluid between the condenser and the
evaporator continues as long as there is capillary pressure inside the heat pipe.

The generation of capillary pressure inside a heat pipe takes place due to the wick structure.
The menisci formed at the liquid-vapor interface are highly curved in the evaporator section and flat
in the condenser section. The surface tension of the fluid and the curved structure of the interface
gives rise to capillary pressure.

5



Types of heat pipes

There are different types of heat pipes. A given heat pipe can have multiple condensers, evapora-
tors, and adiabatic sections. Gravitational, centrifugal, electrostatic, osmotic and cappilary forces
can be used to return the liquid from the condenser to the evaporator. Simple heat pipes are gener-
ally made in the shape of circular cylinders.

One of the most common heat pipes is a thermosyphon, a simple, closed, wickless heat pipe
assisted by gravity in which the condenser section is located above the evaporator section. The
liquid travels with the help of gravity to the evaporator section. A thermosyphon is sensitive to
the liquid fill volume. The more liquid volume, the better the heat transfer up to a specific limit.
Sometimes a wick structure is used in a thermosyphon to postpone flooding and to improve the
contact between the wall and the liquid.

Another common heat pipe is a conventional heat pipe also known as a capillary driven heat
pipe. A capillary driven heat pipe consists of a sealed cylindrical container, working fluid and a
wick. The purpose of the wick is to return the condensate to the evaporator. The wick creates a
capillary force at the liquid-vapor interface which drives the liquid to the evaporator section where
it changes into vapor and travels to the condenser section due to the high vapor pressure in the evap-
orator section. The latent heat of vaporization is removed from the condenser, which condenses
the vapor back to liquid. One of the limitations of a capillary driven heat pipe is the capillary limit
which occurs when the wick cannot return enough liquid to the evaporator to keep it saturated,
and the evaporator wall experiences a sudden increase in temperature. Capillary driven heat pipes
are used in notebooks, laptops, and other computers to dissipate heat from the processors. Many
other heat pipes come in all shapes and sizes depending upon their usage, for example, annular
heat pipes, vapor chambers, rotating, gas loaded, loop, capillary pumping loops, pulsating, micro
and miniature, inverted meniscus, monogroove and non-conventional.

Effects of working fluids, container materials, and wick designs

The working fluid of a good heat pipe should have high thermal conductivity, high latent heat,
and high surface tension. The temperature range, boiling point and melting point should also be
considered when choosing the working fluid. Before choosing a container, the compatibility of
the working fluid, container and wick should be considered. The longevity of a heat pipe depends
upon the container which ensures the content material does not react chemically with the working
fluid. The content material should also be able to withstand the operating temperature. Generally,
containers are metallic cases which are made using materials such as copper, stainless steel and
aluminium. However, lightweight heat pipes used in electronic devices or aircraft applications de-
mand aluminium alloys; their heat pipe containers are therefore made from beryllium-based alloys,
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epoxy-impregnated carbon fibers, etc (Dancy et al. 1978, Fries et al. 1991, Corman et al. 1977).
Non-metallic heat pipes are made up of ceramic containers to increase the rigidity depending upon
the requirements: Jones at al. (2003). The wick design is also an essential factor for generating
capillary pressure. Small pores are required to generate large capillary pressure, while large pores
are preferred to ease the flow of liquid. These are the reasons that led to the development of many
different types of optimized wick designs. Simple construction, installation and cost are the major
factors for wick design. In order to design a wick, three important properties should be kept in
mind:

• Minimum capillary radius: When a large capillary pressure difference is required, this pa-
rameter should be small.

• Permeability: This parameter measures the resistance of a wick to the axial flow of fluid.
A low permeability wick increases the thermal conductivity of wick region (Elnagger et
al. 2013). But a small permeability may also impede the liquid flow along the length of the
adiabatic section. Therefore a wick has to be selected which has a permeability that balances
capillary action with viscous drag.

• Effective thermal conductivity: If the effective thermal conductivity of a heat pipe is large,
there is a small temperature drop across the wick which enhaces the performance of a heat
pipe (Hui et al. 1999, Ochs et al. 2008).

1.0.2 Limitations of heat pipes

heat pipes are steady operation devices. Therefore, the functioning of a heat pipe has several
operating limits. These operating limits are defined by physical phenomena such as the entrainment
limit, capillary limit, sonic limit, boiling limit, frozen limit and start up limit. Other physical
phenomenas are vapor pressure and condenser effects.

The capillary limit affects the dry out limit and occurs when the evaporator section does not
have enough liquid pumped into it. This limit occurs when the capillary pressure drops are less
than the liquid and vapor pressure drops. Because gravity is the driving force in a thermosyphon,
the capillary limit is never reached. The sonic limit occurs when the vapor velocity becomes more
than the speed of sound. The boiling limit occurs when the wick in the evaporator section dries
out due to extended boiling. When the droplets of liquid enter the vapor phase owing to interfacial
shear, then the entrainment limit comes into the picture. If the entrainment limit is reached, the
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evaporator will dry out. The flooding limit occurs in large thermosyphons and is dependent on the
liquid fill ratio. Faghri. (2016) has presented all the different types of limits in detail.

1.0.3 Modelling the adiabatic section of heat pipes

With the above explanation of the application, operation, and limitations of the heat pipe in mind,
we used core annular flow theory to model the adiabatic section of a heat pipe. Because we are
only modelling the adiabatic section of a heat pipe, some of the limits mentioned above are not
our concern. The previous research by Busse et al. (2013), McHale et al. (2011), and McHale
et al. (2010), discussed the gas layer in contact with the solid layer. In a heat pipe, however,
the liquid layer is in contact with the solid wall, and this orientation is a major difference in our
study. Before beginning our discussion of the heat pipe model, it is necessary to understand some
physical phenomena of a liquid-vapor interface:

• Surface tension: When there is contact between liquid and another liquid, a solid, or a gas,
then there is a formation of a thin film at the boundaries between the different phases. When
liquid molecules are surrounded by the same liquid molecules, they experience the same
force of attraction on every side, resulting in the formation of the film. Nevertheless, when
the liquid molecules are near the liquid-vapor interface, they experience a molecular attrac-
tion towards the liquid, and this molecular attraction is greater than the force of the vapor
molecules. Therefore, the liquid tends to take the shape of the minimum area under tension.
If there is an increase in the liquid’s surface area, the liquid to liquid molecular forces is
decreased. Surface tension is defined as the work required to increase the surface area of the
liquid.

• Contact angle: After defining surface tensions for the three mediums at each interface, the
contact angle is defined from the force balance of the surface tensions of the three phases at
the boundary line. The value of the contact angle tells us about the wetting property of the
solid material used. The contact angle gives us a sense of whether the material is hydrophilic
or hydrophobic, information which can be used to select the wick material. Hydrophilic
materials are often selected for the wick.

• Capillary pumping: The wick structure gives rise to capillary pressure which eventually
creates a pressure difference at both the ends of the heat pipe. The pressure difference created
at the ends of the heat pipe helps to pump the liquid from the condenser to the evaporator
and provides the circulation of the fluid.
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• Capillary pressure: When we talk about heat pipe, the term ′capillarity′ often comes into
the picture. Capillarity measures the flow of liquid under its own surface tension flows. As
mentioned above when discussing heat pipes, the capillary pressure difference is something
that causes the flow in a heat pipe. Capillary pressure is generated when there is a difference
in curvature at the liquid- vapor interface and the existence of surface tension.

• Mass Flow rate: A heat pipe is a self-sufficient device. At steady state the mass flow rate of
liquid is equal and opposite to the mass flow rate of vapor. In our analysis, we have satisfied
the equal and opposite mass flow rate condition inside the heat pipe. The model presented in
this work focuses on the maximum mass flow rate, which maximizes the axial heat transfer.
We have also presented some limits to the pressure gradients inside a heat pipe.

In this thesis, we have presented mathematical modeling to study the flow in the adiabatic
section of heat pipes in four different geometries. Mathematical modeling is an art of representing
physical problems mathematically by sorting out the whole spectrum of effects that play a role
and making a judicious selection of including the relevant effects and neglecting the small effects.
In our mathematical model we have adopted core annular flow theory for liquid-vapor flow for
a planar geometry as was done by Busse et al. (2013). The first mathematical model presented
was the planar geometry of a heat pipe devoid of a wick. The model shows the functioning of
a heat pipe in a planar geometry, and the flow of liquid and vapor in the adiabatic section. Our
flow in vapor and liquid is considered laminar and is within all the limits of the heat pipe that
were mentioned above. As mass flow rates are derived by using velocity, we have presented the
velocity profiles after maintaining the equal and opposite mass flow rates in liquid and vapor. All
our equations are non-dimensionalized using appropriate parameters. The equation of equal and
opposite mass flow rate allows us to express the ratio of pressure gradients of vapor and liquid.
We found that that the ratio of pressure gradients depends on the ratio of viscosity and the ratio
of density. Therefore, we get a solution space for a heat pipe′s density ratio and viscosity ratio.
Finally, we have investigated the optimum liquid layer thickness required to obtain the maximum
mass flow rate. It seems logical that increasing the liquid volume will increase the mass flow rate,
but one concern arises: an aggressive increase in the liquid fill ratio chokes the vapor area, which
results in a lower mass flow rate.

With a similar analogy to heat pipes devoid of a wick, we can reintroduce the wick-based heat
pipe for a planar geometry. Accordingly, there are a few more variables and parameters introduced
in this model. With the introduction of the wick, permeability and porosity come into the picture.

Permeability has been discussed above in the heat pipes section 1.0.1. We have used the
Karmen-Cozeny equation to define permeability. The wick we have used is a screen type wick,
and we have modified permeability to be suitable for screen type wicks. Due to the relation be-
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tween permeability, porosity and the wire diameter used, we have used the relationship between
permeability of the wick diameter and wire thickness in the wick. Porosity is defined as the ratio
of the percentage of empty space with the total volume. Therefore, porosity can also be related to
the wire thickness and the spacing between the wires. These two relationships help us to reduce
the total number of parameters introduced due to the wick.

In our models, we have avoided considering a flooded wick, because we do not have an inter-
face which could give rise to capillarity in case of a flooded heat pipe. Moreover, we have a surface
tension driven flow; therefore, we need interface curvature formed due to the contact of all three
phases (liquid, vapor, and wick).

Taking the path of having a non-flooded porous medium, we provide room for the vapor phase
to enter the porous medium and then form an interface inside of it. Therefore, we now have
two interfaces. The first interface is the usual liquid-vapor interface formed inside the porous
medium. The second interface is the porous medium and the free medium interface; this introduces
a boundary condition which has some new parameters and is discussed in chapter one. Thus, our
solution space in wick-based geometry has a few new variables.

Following the same way as we did in wickless geometry, we have defined the governing equa-
tions that will drive the flow. The governing equations are different than the wickless case as we
must deal with Darcy′s law due to the flow in the porous medium. However, we have used the
Brinkmann equation for flow in a porous medium, and the reason for this is explained in section
2 of chapter 2. Keeping all this in mind in the case of planar geometry with wick, we have main-
tained the equal and opposite mass flow rates in liquid and vapor, and we have shown and plotted
the velocity profiles expressions. Furthermore, we have again shown the optimum liquid fill ratio
by changing all the new variables present due to the porous medium. The optimum mass flow rates
have been plotted with respect to the liquid fill ratio.

In regard to the pressure gradient ratio for vapor and liquid, we get an expression by using
the equal and opposite mass flow rate equation. However, the expression of the ratio of pressure
gradients must satisfy the wick constraints and bring surface tension and contact angle into the
picture. The constraints and their derivation for our model have been discussed in detail in section
2 of chapter 2. Thus, the presence of these constraints sets a limit on the derived ratio of pressure
gradients and we obtain the correct solution space, i.e., the suitable viscosity ratio and density ratio
to drive the flow inside a heat pipe.

Finally, we have shown how the solution space changes by changing the surface tension and
the contact angle. As the flow inside a heat pipe is a surface tension driven flow, we have shown
different solution sets with the help of a plot containing isolines for different surface tension values.
Similarly, different contact angles also play an essential role in driving the flow of liquid; therefore,
we have shown isolines with different contact angles containing the respective solutions sets.
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We have borrowed some of the ideas from the planar geometry devoid of a wick to model
the flow of a cylindrical thermosyphon. The introduction of a cylindrical geometry comes with
some additional algebraic challenges. We have used the equations and boundary conditions to
express the velocity profiles of liquid and vapor inside a thermosyphon. However, a thermosyphon
is placed at an angle, rather than horizontally, to use the force of gravity for the flow of liquid. We
have shown the model placed in a horizontal position to avoid the complications of the angle.

We have again shown the optimum fill ratio required to have a maximum mass flow rate. Again,
we have derived an expression for the ratio of pressure gradients in terms of the density and viscos-
ity ratio. The introduction of cylindrical geometry gave us the idea of modelling a capillary driven
heat pipe which has a cylindrical shape as is the case with most conventional heat pipes.

Following the model for the adiabatic section of the thermosyphon, we must realize that a
conventional capillary driven heat pipe includes a wick and has a cylindrical shape. Section 3 of
chapter 2 presents a theoretical model of a heat pipe containing a wick. The presence of a wick
and the cylindrical structure together introduces new complications other than those we had in
the planar wick-based model. The presence of the wick and the cylindrical Brinkman equation
together results in a governing equation which is different than all the above cases, and we arrive
at the solution using Bessel′s function of the first kind.

Solving the governing equations and the boundary conditions involved which are the same
as we had in the planar wick−based geometry but are now in cylindrical coordinates we get the
velocity expressions for liquid and vapor. We have satisfied the equal and the opposite mass flow
rate conditions and the obtained theoretical expressions were plotted to show the velocity profiles
for the liquid and vapor phases. We have shown the optimum fill ratio with different parameters
involved due to the introduction of a porous medium.

Finally, as in the case of planar geometry, we have obtained the limit for the pressure gradient
ratio depending upon the wick geometry. Due to the complications associated with the cylindrical
geometry, we have not provided the expressions for the pressure gradient ratio. The obtained
pressure gradient ratio limit was plotted with the surface plot of all the pressure gradient ratios
obtained by solving the mass flow rate equation. We also provided isolines for various surface
tension and contact angles, showing the solution space.

1.0.4 Robustness

We have compared the results of our model with an experimental investigation of a heat pipe done
by Shafahi et al. (2008). Shafahi et al. (2010) studied the thermal performance of a cylindrical
heat pipe using nanofluids. They found that introducing nanoparticles into the liquid increases the
thermal performance of the heat pipe. They also found that the smaller the size of the particles,
the better the effect of the temperature gradient of a heat pipe. Shafahi et al. (2008) used the
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parameters from another theoretical and experimental study done by Vafai et al. (1998). Vafai et
al. (1998) presented a two-dimensional analytical model of low-temperature cylindrical heat pipes.
They showed the solution for liquid-vapor interfacial hydrodynamic coupling and considered non-
Darcian transport in the wick. They provided the velocity profiles, pressure distributions and the
heat pipe capillary limit.

We have used the results obtained by Shafahi et al. (2010) for the case of zero concentration of
nano−particles in the liquid to validate our model. We used the same parameters for the length of
the adiabatic section, and the same temperature, type of liquid, liquid fill ratio and wick properties
to obtain the pressure gradient ratio that they obtained. We got similar values for the pressure
gradient ratio proposed in chapter 2.

1.0.5 Limitations of our model

The work presented in chapter 2 was the modelling of liquid−vapor counterflow in a heat pipe
using core annular flow theory. One inconsistency that our model contains is that the interface
is assumed to be flat insofar as applying a shear stress boundary condition but curved insofar
as supporting the capillary pressure required to drive the flow of liquid. A heat pipe unassisted
by gravity requires capillary pumping and requires the radius of curvature of the liquid−vapor
interface to be larger at the evaporator end than it is at the condenser end. This difference gives
rise to a difference in capillary pressure between the condenser section and the evaporator section
that supports the flow of liquid (and vapor). Our heat pipe model ignores any kind of interface
deflection and surface chemistry effects.

In chapter 3 we present a work which substantiates our model presented in chapter 2 about
using a flat interface instead of a deflected interface. Chapter 3 will show the effect of using a
deflected interface on the velocity profiles in the porous medium. The physical model considered in
chapter 3 is simplified slightly but retains the essential features which are required to determine the
effect of a deflected interface. We have used perturbation theory to solve the problem considered
in chapter 3.

Solving a perturbation problem is predicated on the idea that we have in chapter 2 a fairly
good model which describes a phenomenon, but if we want to improve the model, we have to
include some aspects or effects which were previously ignored, even if the effects in question are
relatively small. The adding of new effects will lead to change in model and makes the equations
more complex and difficult to solve. To quantify the small effect in a model, we introduce a
small positive dimensionless parameter Φ. In general terms, the physical meaning of Φ depends
on the problem but is always the ratio between two inherent length scales, time scales, or other
characteristic quantities of the problem.

An improved model is only the next step in the modelling hierarchy but not the exact model
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and “an exact solution of an approximate model is not better than an approximate solution of an
exact model" (Rienstra & Sjoerd. 2018). Once we have the accepted approximate solutions, we
can increase the complexity of the model to study the significance of effects in more efficient
way. Formalizing the method of utilizing the systematic approach of adding the small effects
in the model is the central aim of any perturbation problem. “perturbation methods"(Rienstra
& Sjoerd. 2018). In this fashion, we recall the following quote due to David Crighton: David
Crighton(1994) called ”Asymptotics − an indispensable complement to thought, computation,
and experiment in applied mathematical modeling”.

In chapter 3, we have considered the liquid and vapor flow only inside a porous medium as
our focus lies within the porous medium where there is the formation of an interface. Therefore,
for simplicity, we have the entire domain in the porous medium where both the porous medium
and the vapor phase extends infinitely. The liquid has a finite thickness and is in contact with the
wall, and the vapor flows on top of the liquid and extends infinitely, whereas in chapter 2 the vapor
layer is also finite. In chapter 3, we have avoided maintaining an equal and opposite mass flow rate
as the vapor layer extends infinitely. Rather, we have maintained an equal and opposite pressure
gradient in the liquid and vapor phase. We use square wires instead of circular wires in our porous
medium because, in the case of square wires, only the vertical position of the triple point changes,
whereas with circular wires, both the vertical and horizontal position of the triple point changes.
The change in vertical and horizontal positions of the triple point makes the volume conservation
of the liquid displaced due to the meniscus below and under the flat interface very complex.

We have presented an expression for an interface which depends upon the horizontal spacing
between two wires. We have shown that the deflection of the interface depends upon the pressure
difference. Increasing the pressure difference up to a certain limit increases the interface deflection.
Similarly, decreasing the surface tension or using a fluid with less surface tension also increases
the interface deflection. We have plotted the interface deflection for the same values of parameters
used in chapter 2, except for the liquid fill ratio. The liquid fill ratio is taken to be different because
of some mathematical complications that occur while solving the governing equations.

The interface boundary conditions are satisfied at a deflected interface and therefore linearized.
Now we perturb our solutions, i.e., our velocities with a small parameter of Φ. We assumed
a perturbation based solution to the governing equation for liquid and vapor, which is given by
the Brinkman equation. Firstly, we equated only the zeroth−order solution of the small param-
eter, which depicts some similarity with our model presented in chapter 2. The reason why the
zeroth−order solution is similar to the solutions in chapter 2 is that it has its interface bound-
ary condition satisfied at a flat interface which is the height of the liquid layer. Then we solved
by equating the higher−order terms of the small parameters. To be precise, we only considered
first−order terms and ignored all the higher-order terms of the small parameter. The solution to
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the governing equation and the boundary conditions required both a Fourier and a Taylor series
transformation. The method for the solution was elaborated on in chapter 3. The composite solu-
tion takes into account the deflected interface; therefore, we compared the leading order solution,
which is the zeroth−order, having all the boundary conditions satisfied at the flat interface with the
composite solution.

The velocity profile for composite solutions depends upon the horizontal distance between the
two wires. We have presented the velocity profiles for composite solutions for different horizon-
tal positions. Finally, we have shown the interface deflection corresponding to the difference in
velocity for different values of liquid layer thickness.

In chapter 3, we found that there is a discontinuity of the velocity at the interface. This is
because the boundary conditions at the interface are linearized, and the higher−order terms of the
small parameter are ignored in the first−order solution, which accounts for the composite solu-
tion. The discontinuity between the velocity at the interface increases as the interface deflection
increases. We have also shown the velocity difference between the leading order solution and the
composite solution, corresponding to the interface deflection. It was shown that the velocity differ-
ence is more significant only at the interface but is negligible at all other positions of the domain.
Therefore, we determined that the results obtained in chapter 2 considering a flat interface are not
of limited value. The analysis shown in chapter 3 can also be done using circular wires by simply
removing the extra volume of wires.
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Chapter 2

Core annular flow theory as applied to the
adiabatic section of heat pipes

2.1 Abstract

Core annular flow theory is used to model the parallel flow of fluids of different phases and has
been used to describe drag reduction in the context of internal flows bounded by superhydrophobic
surfaces. The work presented here is an extension of core annular flow theory to the study of the
adiabatic section of heat pipes. Our aim is to develop a first-principles estimate of the conditions
necessary to maximize the (counter) flow of liquid and vapor and, by extension, the axial flow of
heat. Both planar and axisymmetric geometries are examined as are heat pipes containing versus
being devoid of a wick. In the wick versus no-wick cases, the peripheral return flow of liquid is
respectively driven by capillarity and by gravity. Our model is used to predict velocity profiles and
the flux-maximizing pressure gradient ratio (vapor-to-liquid). We further obtain estimates for the
optimum thickness of the liquid layer. Note finally that when the liquid flow occurs via capillary
pumping, there is a minimum surface tension below which the wick cannot supply a sufficient flow
of liquid. We characterize this critical point in terms of the properties of the working fluid and of
the wick.

2.2 Introduction

Core annular flows are internal flows where a core of viscous liquid is surrounded by a sheathing
layer of lower viscosity, be this liquid or gas e.g. air (Ooms et al. 2007). Because the viscous liquid
does not then make direct contact with the boundaries of the confining geometry (e.g. the inner
surface of a pipeline), drag is reduced. This realization has been used to positive effect in, say,
the transport of heavy oils where the addition of a thin layer of water along the inner surface of
the pipeline results in a nontrivial drop in the overall shear stress (Joseph et al. 1995, Joseph et
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al. 1997, Gruncell et al. 2013).
More recently, there has emerged a significant interest in the prospect of depressing drag using

superhydrophobic surfaces, which support a continuous layer of air and thereby separate the solid
from the (aqueous) liquid. This scenario has been explored in the context of flows characterized as
either external (McHale et al. 2010, McHale et al. 2011) or internal (e.g. Panchanathan et al. 2018).
Of particular relevance to this study is the theoretical investigation by Busse et al. (2013), which
defined, for a variety of steady, laminar internal flows (i.e. Couette flow, symmetric channel flow,
pressure-driven channel flow and pipe flow), upper limits to the overall drag reduction. Whatever
the flow type, such upper limits are associated with a air layer of intermediate thickness. If the air
layer is too thin, then it plays a modest role in reducing the overall shear stress. If, by contrast,
the air layer is too thick, insufficient cross-sectional area is available for the flowing liquid and the
drag must again increase.

One of the limitations associated with Busse et al. (2013) is that the air layer is assumed to
either (i) have no net downstream flow, or, (ii) to flow owing to the shear force imposed by the
overlying liquid. The latter assumption is the more reasonable one but, from a practical point of
view, it begs the question of how the air layer is replenished. Although alternatives to upstream
injection have been considered (e.g. Panchanathan et al. 2018 examine the possibility of chemical
re- action), further research is needed to optimize such schemes at scales ranging from lab-on-a-
chip designs to large-scale marine vessels.

Extending the work of Busse et al. (2013), we explore below the non-core annular flow sce-
nario of an equal and opposite counterflow of vapor and liquid. This counterflow, representing the
first major difference with Busse et al.’s study, is made possible by evaporation and condensation,
which occur at the far ends of the control volume. To this end, we have in mind studying, in
generic terms, the flows that arise within the adiabatic section of heat pipes. heat pipes are “ther-
mal superconductors” in that they can readily (and passively) transfer heat by exploiting phase
change. Owing to their versatility and low maintenance costs, they have found application every-
where from aerospace (Shukla et al. 2015) to electronics (Pastukhov et al. 2003) to nuclear power
generation (Hampel et al. 1989) to building heat recovery (Gan et al. 1998). The key components
of a heat pipe are illustrated schematically in figure 2.1 and consist of a working fluid within a
closed container, the hot end of which is the evaporator and the cold end of which is the condenser.
Working fluid evaporated in the evaporator flows as a vapor along the central core of the heat pipe.
Between the evaporator and the condenser is the adiabatic section, which is often longer than the
other two sections combined (Qu et al. 2008). In other designs, the adiabatic section is instead
omitted e.g. that of Zhu & Vafai (1998), which includes vertical and horizontal wick structures.
Working fluid evaporated in the evaporator flows as a vapor along the central core of the heat pipe.
Upon reaching the opposite end, condensation occurs and the resulting liquid flows back to the
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evaporator. Oftentimes (and as explored in sections 3 and 5 below), a wick is included along the
heat pipe inner surface in order to facilitate this return flow of liquid, i.e. by capillary pumping
(Reay et al. 2013, Zohuri 2011, Peterson 1994, Faghri et al. 2012). At steady state, the mass flow
rates of the liquid and the vapor must be equal in magnitude. However, because ρv� ρl , where
ρv and ρl are the densities of vapor and liquid respectively, uv� ul where uv and ul respectively
indicate the vapor and liquid flow velocities.

With the above description in mind, we now identify the second major difference with the
work of Busse et al. (2013), namely that the vapor layer appears in the core rather than along the
periphery. Corresponding to this change of orientation, our focus is not on drag minimization by
the lubrication of a more viscous fluid with a less viscous fluid. Rather, and with reference to a
parameter space that considers liquid/vapor fluid properties and geometric parameters, we look to
identify the point of maximum mass flow rate, which corresponds also to the point of maximum
axial heat transfer.

For simplicity, the above calculation is first completed by neglecting, similar to Busse et
al. (2013), McHale et al. (2011) and McHale et al. (2010), the role of surface micro-topography. In
this instance, our heat pipe is actually more properly considered as a thermosyphon where liquid
flows owing not to capillary pumping but rather to the pull of gravity. Thereafter, we consider a
screen-type wick structure within the heat pipe and so model the flow of liquid as one that (i) is
driven by capillarity, and, (ii) occurs through a porous medium. This calculation step represents
the third major difference with the work of Busse et al. (2013); it introduces a number of new
variables, geometric and otherwise, for characterizing the porous medium.

The rest of the manuscript is organized as follows: In sections II and III, we present the calcu-
lations related to a heat pipe with a rectilinear geometry. Because heat pipes much more typically
feature a circular cross-section, we extend our model to a cylindrical geometry in sections IV and
V. Finally, in section VI, we summarize key findings and offer ideas for future work.

2.3 Planar geometry, no wick

This section presents calculations for a heat pipe devoid of an internal wick structure. We impicitly
assume, therefore, that the liquid flow is driven by gravity, the body force term being incorporated
into the pressure gradient term in the governing equations to follow. Technically speaking, this ren-
ders our heat pipe into a thermosyphon, although we will avoid this terminology here and thereby
maintain a consistent nomenclature throughout the exposition. Figure 2.1 shows the (planar) ge-
ometry of a heat pipe without a wick structure.
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Figure 2.1 – Heat pipe geometry (no wick). The liquid vapor interface is not separated by a wall.

2.3.1 Governing equations and solutions

The governing equations are given by the Poiseuille flow equations where we assume an incom-
pressible, steady and laminar flow in both phases. This latter assumption is made for convenience,
but is not essential. In other words, the equations to be presented below can be recast assuming
e.g. a vapor velocity satisfying a modified form of von Kármán’s law of the wall. We avoid fol-
lowing this path here: assuming a turbulent vapor flow renders the algebra more tedious without
adding much additional physical insight. With the above assumptions to hand, the Poisseulle flow
equations for liquid and vapor read as follows:

µv
d2

dz2 uv =
d pv

dx
≡ πv < 0 0 < z < H−δ (2.1)

µl
d2

dz2 ul =
d pl

dx
≡ πl > 0 H−δ < z < H (2.2)

where uv and ul are the velocities for vapor and liquid, respectively, πv and πl are the pressure
gradients in the vapor and liquid, respectively, and µv and µl are the corresponding dynamic vis-
cosities. Moreover, πv and πl are, respectively, the pressure gradients in the vapor and liquid. In the
heat pipe context, these can be related to the axial heat flux and the temperatures of the evaporator
and condenser using the methodology outlined in Appendix B. Complementing (2.1) and (2.2),
the standard no slip boundary condition is applied at the upper surface, z = H, and a symmetrical
boundary condition is applied along the heat pipe axis, z = 0. At the interface between the liquid
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and vapor, the viscous shear stress must be continuous i.e.

µv

(
duv

dz

)
z=H−δ

= µl

(
dul

dz

)
z=H−δ

(2.3)

Moreover,
uv(z = H−δ ) = ul(z = H−δ ) . (2.4)

Finally, a global mass balance equation must be satisfied by which

− ṁv = ṁl where ṁv = ρv

∫ H−δ

0
uvdz (2.5)

and ṁl = ρl

∫ H

H−δ

uldz

The above equations are non-dimensionlized using H, µv and πv as characteristic variables.
Thus, we define

z∗ =
z
H
, u∗v =

µv

H2πv
uv and u∗l =

µv

H2πv
ul,

where stars indicate non-dimensional variables. With benefit of the above characteristic variables,
laminar flow conditions apply provided

Re = u∗v
ρvH3πv

µ2
v

<∼ 2100

in which Re is the Reynolds number. By the same token, the vapor flow can be considered incom-
pressible provided

Ma = u∗v
H2πv

µv

√
γRT

M

<∼ 0.3

where Ma is the Mach number, γ is the ratio of specific heats, R is the universal gas constant, T

is the absolute temperature and M is the molar mass. A corollary of assuming low Ma and low
Re is that the entrainment limit defined Kemme (1968) is never reached. Using the above non-
dimensional variables, the previously specified governing equations and boundary conditions may
be rewritten as

d2

dz∗2
u∗v = 1 (2.6)

d2

dz∗2
u∗l =

cµ

cp
(2.7)

u∗l (z
∗ = 1) = 0 (2.8)(

du∗v
dz∗

)
z∗=0

= 0 (2.9)
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Figure 2.2 – Pressure gradient ratio, cp, as determined from (2.15) versus cµ and δ

H with cρ = 10−4.

cµ

(
du∗v
dz∗

)
z∗=1− δ

H

=

(
du∗l
dz∗

)
z∗=1− δ

H

(2.10)

u∗v

(
z∗ = 1− δ

H

)
= u∗l

(
z∗ = 1− δ

H

)
(2.11)

where cp =
πv
πl

< 0 is the pressure gradient ratio and cµ = µv
µl

is the dynamic viscosity ratio. Solu-
tions to (2.6) and (2.7) respectively read as follows:

u∗v =
1
2

z∗2− cµ

[
δ

H
+

δ 2

2H2

(
1− 1

cp

)]
− 1

2
+

δ

H
(2.12)

and

u∗l =
cµ

2cp
z∗2 + cµ

[
1− δ

H

(
1− 1

cp

)
−

cµ

cp

]
z∗+

cµ

[
δ

H

(
1− 1

cp

)
−1+

1
2cp

] (2.13)

2.3.2 Evaluation of cp

The solutions prescribed by (2.12) and (2.13) are incomplete because they rely on cp whose value
is determined from (2.5). Expressing (2.5) using non-dimensional variables, we require that

cρ

∫ 1− δ

H

0
u∗vdz∗+

∫ 1

1− δ

H

u∗l dz∗ = 0 (2.14)
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Figure 2.3 – (a) Composite velocity profiles for various cµ with cρ = 10−4 and δ

H = 0.08. (b) Composite
velocity profiles for various cρ with cµ = 2× 10−2 and δ

H = 0.08. The inset shows the
velocity profile in the liquid section.

where the density ratio is defined as cρ = ρv
ρl

. Applying (2.12) and (2.13) in (2.14) and solving
(2.14) with the help of Newton-Raphson iterative root solver, yields the following solution for cp

in terms of cµ , cρ and δ/H:

cp =
cµ

(
δ

H

)2 [(
δ

H

)
(3cρ −2)−3cρ

]
D

(2.15)

where

D =

(
δ

H

)3 (
6cµcρ −3cµ −2cρ

)
+(

δ

H

)2 (
−12cµcρ +3cµ +6cρ

)
+

δ

H
6cρ

(
cµ −1

)
+2cρ

Figure 2.2 shows cp versus δ

H and cµ for fixed cρ . It can be seen that |cp| increases with δ

H :
as the liquid layer thickness increases, we require a smaller (larger) pressure gradient to drive the
liquid (vapor) flow, which has the effect of increasing |cp|. By similar reasoning, |cp| increases
with cµ (and also cρ ). Once cp is known, liquid and vapor velocity profiles may be computed
from (2.12) and (2.13). Figure 2.3 a shows the composite velocity profiles for fixed cρ = 10−4 and
various cµ . Corresponding results with cµ fixed and cρ variable are shown in figure 2.3 b. Note that
the curves in figures 3 a,b corresponding to different cµ and cρ nearly overlap, a consequence of the
manner in which the governing equations have been non-dimensionalized. Figures 3 a,b confirm
that the vapor velocity is much larger than that of the liquid, this due to the fact that −ṁv = ṁl but
ρv� ρl and hence cρ � 1.
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Figure 2.4 – (a)−ṁv = ṁl versus δ

H for various cρ with cµ = 2×10−2. The thick red solid line connects

the maxima of the individual curves and thereby defines
(

δ

H

)
opt

whose variation with cρ

is shown in (b). (c) cp versus δ

H for the same cρ considered in (a). Stars indicate
(

δ

H

)
opt

.

2.3.3 Optimum liquid layer thickness

For fixed cρ and cµ , we expect the mass flow rate,−ṁv = ṁl to be a non-monotone function of δ/H

c.f. Busse et al. (2013). If the liquid layer is too thin or too thick, a large drag will be experienced
in the liquid and vapor, respectively. In turn, this large drag will limit the mass of fluid that can be
moved in the axial direction. Our hypothesis is confirmed by inspection of figure 2.4 a which shows
−ṁv = ṁl as a function of δ

H for various cρ with fixed cµ . Each curve exhibits a global maximum
corresponding to an optimal value for the (non-dimensional) liquid layer thickness,

(
δ

H

)
opt

. The

variation of
(

δ

H

)
opt

with cρ is exhibited in figure 2.4 b. Note that
(

δ

H

)
opt

is a monotone increasing

function of the density ratio: as the liquid density increases relative to the vapor, we require a lesser
depth of liquid to achieve maximal axial transport of fluid and, in the heat pipe context, of heat.
Extracting data from figure 2.4 b, figure 2.4 c shows the variation of cp with δ

H where we have now
specifically highlighted those optimum values for the non-dimensional liquid layer thickness as
determined from the preceding analysis. The figure confirms that maximal transport is associated
with small values of the pressure gradient ratio. As we shall show in the next section, larger values
of cp arise by forcing the liquid to flow through a wick.

2.4 Planar geometry, wick

A limitation of the studies by McHale et al. (2010) and Busse et al. (2013) is that they assume
a “perfect” plastron layer, i.e. a surface-attached air layer that is supported without reference to
surface microstructure. This omission is nontrivial because any such microstructural layer is ex-
pected to influence the flow. As a first step towards rectifying the above limitation, we build on
the analysis of section 2 by specifically considering an idealized peripheral wick, which is, in real
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Figure 2.5 – Heat pipe geometry (with screen type wick). Schematic not to scale.

heat pipes, responsible for the capillary pumping of liquid from the condenser to the evaporator.
Our wick is idealized in that, although it is of screen type, we ignore the contribution of the fibers
aligned with the axis of the heat pipe. A further idealization in our analysis is to assume that the
curvature of the liquid-vapor interface is sufficiently modest to allow an order-one linearization
of inter-facial boundary conditions. In actual fact, capillary pumping requires that the radius of
curvature of the vapor-liquid interface is lager at the evaporator end than it is at the condenser end.
This difference gives rise to a difference in capillary pressure between the condenser section and
the evaporator section that supports the flow of liquid (and vapor). Figure 2.5 shows the geometry
of the porous medium and the alignment of the wires comprising the screen type wick.

2.4.1 Governing equations and boundary conditions

By assumption, and consistent with figure 2.5, vapor is present in the porous medium and also
the free medium whereas liquid is present only in the porous medium. We assume that flow in
the porous medium (whether liquid or vapor) is governed by the Brinkman equation. Brinkman’s
equation is derived from Darcy’s law but includes a viscous shear dissipative term (Durlofsky
& Brady 1987). Letting the velocity of vapor and liquid in the porous medium be represented,
respectively, by Uv and Ul , the (dimensional) governing equations now read

µv

ε

d2

dz2Uv−
µv

κ
Uv = πv (2.16)
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µl

ε

d2

dz2Ul−
µl

κ
Ul = πl (2.17)

Here ε and κ are, respectively, the porosity and permeability of the porous medium. The associated
boundary conditions are given by

Uv(z = H−∆) = uv(z = H−∆) (2.18)(
dUv

dz

)
z=H−∆

− ε

(
duv

dz

)
z=H−∆

− αε√
κ

Uv(z = H−∆) = 0 (2.19)

Uv(z = H−δ ) =Ul(z = H−δ ) (2.20)

cµ

(
dUv

dz

)
z=H−δ

=

(
dUl

dz

)
z=H−δ

(2.21)

Ul(z = H) = 0 (2.22)

(
duv

dz

)
z=0

= 0 (2.23)

where ∆ is the thickness of the porous medium exhibited in figure 2.5. As with the analysis of
section 2, (2.18-2.23) include a no slip top boundary condition and a shear-free bottom boundary
condition. Also familiar from our previous analysis are boundary conditions specifying a conti-
nuity of fluid velocity and of shear stress at the liquid-vapor interface, z = H− δ (Stallery 1970).
Along the boundary, z = H−∆, between the porous medium and the free medium, (2.19) specifies
an Ochoa-Tapia & Whittaker (1995)-type boundary condition that describes the shear stress ex-
erted by the flowing vapor. (2.19) accounts for the momentum transport at the boundary between
a porous medium and free medium. Here, α is a non-dimensional, O(1) coefficient that charac-
terizes the excess stress along z=H−∆. For convenience, we set α = 1 in the discussion to follow.

The above governing equations are non dimentionalized using the same characteristic variables
as in section 2.1. Thus (2.1, 2.16-2.17) can be re-written as

d2u∗v
dz∗2

= 1 (2.24)

1
ε

d2U∗v
dz∗2

− H2

κ
U∗v = 1 (2.25)

1
ε

d2U∗l
dz∗2

− H2

κ
U∗l =

cµ

cp
(2.26)
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Analogously, the boundary conditions become

U∗v

(
z∗ = 1− ∆

H

)
= u∗v

(
z∗ = 1− ∆

H

)
(2.27)

(
dU∗v
dz∗

)
z∗=1− ∆

H

− ε

(
du∗v
dz∗

)
z∗=1− ∆

H

−αε
H√
κ

U∗v

(
z∗ = 1− ∆

H

)
= 0 (2.28)

U∗v

(
z∗ = 1− δ

H

)
=U∗l

(
z∗ = 1− δ

H

)
(2.29)

cµ

(
dU∗v
dz

)
z∗=1− δ

H

=

(
dU∗l
dz

)
z∗=1− δ

H

(2.30)

U∗l (z
∗ = 1) = 0 (2.31)

(
du∗v
dz

)
z∗=0

= 0 (2.32)

The general solutions for the vapor and liquid velocities are given by

u∗v =−z∗2 +az∗+b (2.33)

U∗v = Aexp
(√

εH√
κ

z∗
)
+Bexp

(
−
√

εH√
κ

z∗
)
− κ

H2 (2.34)

U∗l = A′ exp
(√

εH√
κ

z∗
)
+B′ exp

(
−
√

εH√
κ

z∗
)
−

κcµ

H2cp
(2.35)

The constants a, b, A, B, A′ and B′ are evaluated using (2.27-2.32). As before, the model is closed
by insisting that, for the steady flows of interest here, there is an equal and opposite mass flow of
liquid (to the evaporator) and vapor (to the condenser), i.e.

0 = cρ

[∫ 1− ∆

H

0
u∗vdz∗+

∫ 1− δ

H

1− ∆

H

U∗v dz∗
]
+
∫ 1

1− δ

H

U∗l dz∗ (2.36)

Given the additional dynamics associated with the porous media flow, the list of key independent
parameters is now longer than in section 2.3.1 in that it includes cµ , cρ , δ

H , ∆

H , H√
κ

, and ε . Each
of these seven variables influences the value of cp, which appears in (2.35) and is determined
from (2.36). Owing to the expanded list of independent variables, we do not attempt to derive
an analytical solution for cp but rather compute this pressure gradient ratio numerically. To this
end, representative values for most of the independent variables mentioned above are selected
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Figure 2.6 – (a) Composite velocity profiles for various cρ with cµ = 2× 10−2, δ

H = 0.08, ∆

H = 0.15,
ε = 0.9 and H√

κ
= 5766. (b) Composite velocity profiles for various ε with cρ = 10−4,

cµ = 2×10−2, δ

H = 0.08, ∆

H = 0.15 and H√
κ
= 5766. The inset shows the velocity profile

in the liquid section.

with reference to the experimental values presented in the primarily-analytical work of Shafahi et
al. (2010).

Figure 2.6 a is the analogue of figure 2.3 b; it shows composite velocity profiles for different cρ

and cµ = 2×10−2. Figure 6 b is similar but considers the impact of changing the porosity, ε . As
expected, increasing ε causes Ul (and, by extension, |Uv|) to likewise increase.

2.4.2 Optimum liquid layer thickness

As with the analysis of section 2.3.3, we wish to estimate the optimum liquid layer thickness,(
δ

H

)
opt

whereby the axial transport of mass (and heat) is maximized. Figure 2.7 a shows the

variation of −ṁv = ṁl with the liquid layer thickness for various cρ . Unlike in figure 2.4 a, mass
flow rates very close to maximal are realized over a broad range of δ

H . From a practical point of
view, this observation is positive: it suggests that the heat pipes in question will perform at very
close to their optimal level even if the liquid fill ratio is above or below the value prescribed by(

δ

H

)
opt

. The maximum mass flow rates prescribed by figure 2.7 a are smaller than those reported

in figure 2.4 a, this a consequence of restricting the liquid flow to occur only within the wick.
Figure 2.7 b shows

(
δ

H

)
opt

vs. cρ . As before,
(

δ

H

)
opt

increases with the density ratio. Figure 2.7 c

shows cp versus δ

H for different cρ where the stars indicate the optimum liquid layer thickness
as determined from figure 2.7 a. Figures 2.8 and 2.9 are similar to figure 2.7, but consider the
variation of −ṁv = ṁl with δ

H for various ∆

H and ε , respectively. Note that, in contrast to figure
7 b, the variation of

(
δ

H

)
opt

exhibited in figure 8 b and 9 b is non-monotone: when ∆/H increases,

more and more of the vapor must flow through a porous medium. As a result the maximum mass
flow rate is eventually associated with smaller

(
δ

H

)
opt

. Similarly, as ε → 1 there is more available
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Figure 2.7 – (a) −ṁv = ṁl versus δ

H for various cρ with cµ = 2×10−2, ∆

H = 0.15, ε = 0.9 and H√
κ
=

5766. The thick red solid line connects the maxima of the individual curves and thereby
defines

(
δ

H

)
opt

whose variation with cρ is shown in (b). (c) cp versus δ

H for the same cρ

considered in (a). Stars indicate
(

δ

H

)
opt

.

pore space for the liquid to flow as a result of which the maximum mass flow rate is, after a period,
realized for smaller

(
δ

H

)
opt

.

2.4.3 The capillary pumping limit

Our analysis has so far assumed that whatever gradients of pressure are necessary to drive the
flow of liquid can be accommodated by capillarity. In actuality, there are limits to the difference
of liquid pressure that may be experienced between the evaporator- and condenser-ends of the
adiabatic section of a heat pipe. These limits are related to the deflection of the liquid-vapor
interface, which is, in turn, a function of the surface tension, σ , and the geometric details of
the screen type wick. To illustrate this point, consider figure 2.10, which shows a representative
axial pressure variation from the evaporator section to the condenser section. For reference, we
suppose that x = 0 corresponds to the boundary between the condenser and the adiabatic section.
At this location, the capillary pressure is given by ∆pcond ≡ pv0− pl0 where pv0 ≡ pv(x = 0) and
pl0 ≡ pl(x = 0). Consistent with the previous discussion, Khrustalev et al. (1994), Zhang et al.

27



Figure 2.8 – (a) −ṁv = ṁl versus δ

H for various ∆

H with cρ = 10−4, cµ = 2× 10−2, ε = 0.9 and
H√
κ
= 5766. The thick red solid line connects the maxima of the individual curves and

thereby defines
(

δ

H

)
opt

whose variation with ∆

H is shown in (b). (c) cp versus δ

H for the

same ∆

H considered in (a). Stars indicate
(

δ

H

)
opt

. In panel (a), note that the vertical axis

does not start from zero.

(2007) and Shafahi et al. (2010), we assume, in the adiabatic section, linear variations of pressure
in both phases such that pv(x = L) = πvL+ pv0 and pl(x = L) = πlL+ pl0 = πlL+ pv0−∆pcond

(recall that πv < 0). Here L is the axial length of the adiabatic section as shown in figure 2.10. The
capillary pressure at x = L is given by

∆pevap = (πv−πl)L+∆pcond (2.37)

In order that a stable meniscus form, and with reference to figure 2.11, we require that the
meniscus deformation associated with ∆pevap satisfy Revap ≥ Revap,min. Here Revap = σ/∆pevap is
the meniscus radius of curvature measured at x = L whose minimum possible value is given by the
solution of

4R2
evap,min +4Revap,minDcosθ +D2 = β

2 (2.38)

where θ is the contact angle, β is the center-to-center distance between adjacent wires comprising
the porous medium and D is the wire diameter. Note that Revap,min is associated with the maximum
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Figure 2.9 – (a) −ṁv = ṁl versus δ

H for various ε with cρ = 10−4, cµ = 2× 10−2, ∆

H = 0.15 and
H√
κ
= 5766. The thick red solid line connects the maxima of the individual curves and

thereby defines
(

δ

H

)
opt

whose variation with ε is shown in (b). (c) cp versus δ

H for the

same ε considered in (a). Stars indicate
(

δ

H

)
opt

. In panel (a), note that the vertical axis

does not start from zero.

Figure 2.10 – Axial pressure variation for the liquid and vapor phases. The vapor pressure drops from
the evaporator to the condenser and the liquid pressure drops from condenser to evaporator.

possible pressure drop, ∆pevap,max, measured at x = L. Note, furthermore, that Revap can be related
to the geometric details of the wires comprising the wick by adapting the analysis of Flynn & Bush
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Figure 2.11 – Geometry of the meniscus at the adiabatic-evaporator end.

(2008), i.e.

Revap =
β

2sinφevap

[
1− D

β
sin
(
θ +φevap

)]
(2.39)

where, consistent with figure 2.11, φevap is defined as the angle that the meniscus makes with the
horizontal.

Figure 2.12 – The pressure gradient ratio, cp, as determined from (2.36) versus cµ and δ

H with
cρ = 10−4, ∆

H = 0.15, ε = 0.9, H√
κ
= 5766. The curved surface shows the limiting value

prescribed by (2.36) and the flat surface shows the solution of (2.44) where we have as-
sumed θ = 0◦, Σ = 1015 and ∆pcond

πvL = 3043. Physically-admissible solutions are those
located below the intersection of the two surfaces.

Ostensibly, (2.38)-(2.39) introduce two new geometric variables, β and D. However, β and
D can be related to other, previously defined variables such as ε and κ using the Kozeny-Carman
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equation (Peterson 1994) and the geometric expression for porosity, i.e.

β =

√
πκϒ

4

(
1− ε

ε3

)
, D = (1− ε)

√
κϒ

ε3 (2.40)

Here ϒ is an O(102) constant that is here taken to be 100 for simplicity (Zohuri 2011).
On the basis of the above analysis, it can be shown that the maximum possible value for the

liquid-vapor pressure difference at x = L which is realized when φ achieves its maximum value, is
given by

∆pevap,max

πvL
=

−2Σε3/2sinφevap,max

2(1− ε)sin
(
φevap,max +θ

)
−
√

π (1− ε)
(2.41)

where the non-dimensional surface tension is given by

Figure 2.13 – (a) Regime diagram showing the solution space for various θ with cρ = 10−4, ∆

H = 0.15,
ε = 0.9, H√

κ
= 5766, Σ = 1015 and ∆pcond

πvL = 3043. Physically-admissible solutions are
those located above each curve. (b) As in panel (a) but considering the influence of Σ with
θ = 90◦.

Σ =
2σ

|πv|L
√

κϒ
(2.42)

and φevap,max can be obtained by combining (2.38) and (2.39). Finally, substituting (2.41) into
(2.37) yields, after non-dimensionalizing,

cp ≤
[

1+
∆pcond

πvL
+

2Σε3/2sinφevap,max

2(1− ε)sin
(
φevap,max +θ

)
−
√

π (1− ε)

]−1 (2.43)
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For fixed σ , (2.43) prescribes the largest possible ratio of pressure gradients that will facilitate
capillary pumping. For the special case when θ = 0◦, the wick is perfectly hydrophilic, the mini-
mum value for Revap prescribed by (2.38) is Revap,min =

1
2(β −D) and, from (2.39), we determine

that φevap,max = 90◦. In this circumstance, (2.43) can be simplified to

cp ≤

(
1+

∆pcond

πvL
+

Σε
3
2

1− ε− 1
2

√
π(1− ε)

)−1

(2.44)

Figure 2.14 – Axisymmetric flow in a heat pipe, devoid of a wick.

Similar to figure 2.2, a surface plot showing the variation of cp with respect to δ

H and cµ is pre-
sented in figure 2.12. Also included in this figure is a horizontal plane corresponding to the θ = 0◦

limit for cp prescribed by (2.44) where we have selected ∆pcond
πvL = 3043 and Σ = 1015 (Shafahi et

al. 2010, Zhu & Vafai. 1999). Physically-acceptable solutions arise only below the intersection of
the two surfaces exhibited in figure 2.12.

Figure 2.12 highlights the importance of the limiting curve corresponding to the intersection
of the surfaces derived from the solutions to (2.36) and (2.44). Examples of such limiting curves
are shown for different values of θ and Σ in figures 2.13 a,b, respectively. Physically-admissible
combinations of cµ and δ/H appear strictly above each of the curves in question. Thus the solution
space broadens with increasing Σ: larger Σ is associated with larger surface tension and this is
obviously advantageous for flows that are driven by capillarity. In a similar vein, larger values of
the contact angle are more straightforward to accommodate given the meniscus/wire geometries
exhibited schematically in figure 2.11. Hence, the solution space broadens with increasing θ .

2.5 Axisymmetric flow, no wick

Whereas the planar geometry case covered in sections 2 and 3 admits relatively straightforward
solutions, it must be acknowledged that virtually all heat pipes are constructed with a cylindrical
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geometry. As such, and for the remainder of our manuscript, we shall consider the case of an
axisymmetric flow. Here, similar to section 2, we ignore the complication of an interior wick. In
section 5, this simplification is relaxed and we pursue an analysis similar to that just completed in
section 3.

2.5.1 Governing equations

With reference to the schematic of figure 2.14, the governing equations now read as follows:

µv

r
d
dr

(
r

duv

dr

)
=

d pv

dx
≡ πv < 0 (2.45)

µl

r
d
dr

(
r

dul

dr

)
=

d pl

dx
≡ πl > 0 (2.46)

Here, obviously, we have assumed axisymmetric Poiseuille flow devoid of swirl. The standard no-
slip boundary condition is applied at the interior wall, r =R, and a symmetrical boundary condition
is applied along the pipe axis r = 0. Along the interface between liquid and vapor, the velocity and
shear stress must be continuous. In solving (2.45) and (2.46), a global mass balance equation must
again be satisfied by which

− ṁv = ṁl where ṁv = ρv

∫ R−δ

0
uvrdr (2.47)

and ṁl = ρl

∫ R

R−δ

ulrdr

and factors of 2π have been omitted for algebraic convenience. The equations given above are
non-dimensionlized using R, µv and πv. Thus, we define

r∗ =
r
R
, u∗v =

µv

R2πv
uv and u∗l =

µv

R2πv
ul

and we find that
1
r∗

d
dr∗

(
r∗

du∗v
dr∗

)
= 1 (2.48)

1
r∗

d
dr∗

(
r∗

du∗l
dr∗

)
=

cµ

cp
(2.49)

with corresponding boundary conditions

u∗l (r
∗ = 1) = 0 (2.50)(

du∗v
dr∗

)
r∗=0

= 0 (2.51)

u∗v

(
r∗ = 1− δ

R

)
= u∗l

(
r∗ = 1− δ

R

)
(2.52)
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Figure 2.15 – The pressure gradient ratio, cp, as determined from (2.57) versus cµ and δ

R with cρ =
10−4.

cµ

(
du∗v
dr∗

)
r∗=1− δ

R

=

(
du∗l
dr∗

)
r∗=1− δ

R

(2.53)

Solutions to (2.48) and (2.49) respectively read as follows:

u∗v =
r∗2

4
+b (2.54)

u∗l =
r∗2

4
+a′ lnr∗+b′ (2.55)

The constants b, a′ and b′ can be determined using (2.50-2.53).

2.5.2 Evaluation of cp and determination of the optimum liquid layer thick-
ness

Equations (2.54) and (2.55) are incomplete because they rely on cp whose value is determined
from (2.47). Expressing (2.47) using non-dimensional variables, we require that

cρ

∫ 1− δ

R

0
u∗vr∗dr∗+

∫ 1

1− δ

R

u∗l r∗dr∗ = 0 (2.56)

Applying (2.54) and (2.55) in (2.56) yields, after some algebra, the following solution for cp in
terms of cµ , cρ and δ/R:

cp =
N

D
(2.57)
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where

N =4cµ

[(
1− δ

R

)4 (
cρ −1

)
ln
(

1− δ

R

)
+

1
2

[(
3−2cρ

) δ

R

2

+
(
3−2cρ

) δ

R
+ cρ −1

]
δ

R

(
2− δ

R

)]

and

D =4
[

1− δ

R

]2
[

cµ

(
1− δ

R

)2 (
cρ −1

)
ln
(

1− δ

R

)
+

1
2

(
cµ −

cρ

2

)(
δ

R

)2

+
(cρ

2
− cµ

)
δ

R
−

cρ

4

]

Figure 2.15 shows cp versus δ

R and cµ for fixed cρ . Similar trends arise as in the rectilinear case

Figure 2.16 – (a) −ṁv = ṁl versus δ

R for various cρ with cµ = 2× 10−2. The thick red solid line

connects the maxima of the individual curves and thereby defines
(

δ

R

)
opt

whose variation

with cρ is shown in (b). (c) cp versus δ

R for the same cρ considered in (a). Stars indicate(
δ

R

)
opt.

examined in figure 2.2. Once cp is known, liquid and vapor velocity profiles may be computed
from (2.12) and (2.13). The velocity profiles obtained for an axisymmetric geometry are similar
to the velocity profiles for planar geometry and therefore not shown here. Figure 2.16 a confirms
that the mass flow rate, −ṁv = ṁl , exhibits a qualitatively similar variation with the liquid layer
thickness as exhibited in figure 2.4 a. In turn, the variation of

(
δ

R

)
opt

with cρ is exhibited in figure

2.16 b and the variation of cp with δ

R is exhibited in figure 2.16 c.
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2.6 Axisymmetric geometry, wick

We turn finally to the case of an axisymmetric geometry containing a screen-type wick. Figure
2.17 shows the cross-sectional profile relevant to this problem.

Figure 2.17 – Cross-sectional view of a cylindrical heat pipe containing a peripheral wick of thickness
∆ inside of which is a liquid layer of thickness δ .

2.6.1 Governing equations and boundary conditions

Considering the vapor and liquid flow through the wick, (2.16) and (2.17) must now be replaced
with their axisymmetric counterparts, i.e.

µv

ε

1
r

d
dr

(
r

dUv

dr

)
− µv

κ
Uv =

d pv

dx
≡ πv < 0 (2.58)

µl

ε

1
r

d
dr

(
r

dUl

dr

)
− µl

κ
Ul =

d pl

dx
≡ πl > 0 (2.59)

where, as before, velocities represented by an upper-case letter are measured inside the wick.
Equations (2.58-2.59) are to be solved in conjunction with (2.45) subject to the following boundary
conditions:

Uv(r = R−∆) = uv(r = R−∆) (2.60)(
dUv

dr

)
r=R−∆

− ε

(
duv

dr

)
r=R−∆

− αε√
κ

Uv(r = R−∆) = 0 (2.61)

Uv(r = R−δ ) =Ul(r = R−δ ) (2.62)
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cµ

(
dUv

dr

)
r=R−δ

=

(
dUl

dr

)
r=R−δ

(2.63)

Ul(r = R) = 0 (2.64)

The above equations may be non-dimentionalized using a similar procedure to section (2.1). Thus
we define

u∗v =
(

µv

R2πv

)
uv, u∗l =

(
µv

R2πv

)
ul,

U∗v =

(
µv

R2πv

)
Uv, U∗l =

(
µv

R2πv

)
Ul

and r∗ = r
R . The governing equations therefore consist of (2.48) plus

r∗2
d2Uv∗

dr∗2
+ r∗

dU∗v
dr∗
− εR2

κ
r∗2U∗v = r∗2 (2.65)

r∗2
d2U∗l
dr∗2

+ r∗
dU∗l
dr∗
− εR2

κ
r∗2U∗l =

cµ

cp
r∗2 (2.66)

Analogously, the boundary conditions may be rewritten as

U∗v

(
r∗ = 1− ∆

R

)
= u∗v

(
r∗ = 1− ∆

R

)
(2.67)

(
dU∗v
dr∗

)
r∗=1−∆

R

− ε

(
du∗v
dr∗

)
r∗=1−∆

R

−αε
R√
κ

U∗v

(
r∗ = 1− ∆

R

)
= 0

(2.68)

U∗v

(
r∗ = 1− δ

R

)
=U∗l

(
r∗ = 1− δ

R

)
(2.69)

cµ

(
dU∗v
dr

)
r∗=1− δ

R

=

(
dU∗l
dr

)
r∗=1− δ

R

(2.70)

U∗l (r
∗ = 1) = 0 (2.71)

The general solution for uv is given by (2.54). Meanwhile, the general solutions to (2.65) and
(2.66) involve modified Bessel functions, i.e.

U∗v = AI0

(
r∗
√

εR2

κ

)
+BK0

(
r∗
√

εR2

κ

)
−
(

εR2

κ

)−1

(2.72)

U∗l = A′I0

(
r∗
√

εR2

κ

)
+B′K0

(
r∗
√

εR2

κ

)
−

cµ

cp

(
εR2

κ

)−1

(2.73)

The constants b, A, B, A′ and B′ are evaluated using (2.67-2.71). Similar to before, the model is
closed, and the value of cp determined, by enforcing
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0 = cρ

[∫ 1−∆

R

0
u∗vr∗dr∗+

∫ 1− δ

R

1−∆

R

U∗v r∗dr∗
]
+
∫ 1

1− δ

R

U∗l r∗dz∗ (2.74)

Moreover, the list of key independent variables now reads as follows: cµ , cρ , δ

R , ∆

R , R√
κ

and ε .
Solving the above equations yields velocity profiles (not shown) that are qualitatively similar to
those of figure 2.6.

2.6.2 Optimum liquid layer thickness

Figure 2.18 – (a) −ṁv = ṁl versus δ

H for various cρ with cµ = 2× 10−2, ∆

R = 0.15, ε = 0.9 and
R√
κ
= 5766. The thick red solid line connects the maxima of the individual curves and

thereby defines
(

δ

R

)
opt

whose variation with cρ is shown in (b). (c) cp versus δ

R for the

same cρ considered in (a). Stars indicate
(

δ

R

)
opt

.

As with the analysis performed in sections 2.3.3, 2.4.2 and 2.5.2, we wish to estimate the opti-
mum liquid layer thickness,

(
δ

R

)
opt

whereby the axial transport of mass (and heat) is maximized.

Consistent with figure 2.16 a, figure 2.18 a shows the variation of −ṁv = ṁl with the liquid layer
thickness for different cρ . As before, we note that

(
δ

R

)
opt

increases with the density ratio, a fact

also made clear in figure 2.18 b. However, we observe in figure 2.18 b larger values for
(

δ

R

)
opt

than in figure 2.16 b, this a consequence of restricting the liquid flow to occur only within the
wick. Figure 2.18 c is analogous to figure 2.16 c and shows cp versus δ

R for different cρ where the
stars indicate the optimum liquid layer thickness as determined from figure 2.18 b. Figures 2.19
and 2.20 are similar to figure 2.18, but consider the variation of −ṁv = ṁl with δ

R for various ∆

R

and ε , respectively.
A unifying characteristic of figures 2.18 a, 2.19 a and 2.20 a that sets them apart from figures

2.7 a, 2.8 a and 2.9 a, respectively, is the appearance of distinct maxima that arise for well-defined
values of the liquid layer thickness. Note also that the curves of 2.18 b, 2.19 b, which respectively
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show the variation of
(

δ

R

)
opt

with cρ and ∆/R are monotone. By contrast, and consistent with the

discussion of section II C, the curve of figure 2.20 b exhibits non-monotone behavior.

Figure 2.19 – (a) −ṁv = ṁl versus δ

R for various ∆

R with cρ = 10−4, cµ = 2× 10−2, ε = 0.9 and
R√
κ
= 5766. The thick red solid line connects the maxima of the individual curves and

thereby defines
(

δ

R

)
opt

whose variation with ∆

R is shown in (b). (c) cp versus δ

R for the

same ∆

R considered in (a). Stars indicate
(

δ

R

)
opt

.

Figure 2.20 – (a) −ṁv = ṁl versus δ

R for various ε with cρ = 10−4, cµ = 2× 10−2, ∆

R = 0.15 and
R√
κ
= 5766. The thick red solid line connects the maxima of the individual curves and

thereby defines
(

δ

R

)
opt

whose variation with ε is shown in (b). (c) cp versus δ

R for the

same ε considered in (a). Stars indicate
(

δ

R

)
opt

.

2.6.3 The capillary pumping limit

Similar to figure 2.12 for the case of a planar heat pipe with a wick, a surface plot showing the
variation of cp with respect to δ

R and cµ is presented in figure 2.21. Also included is a horizontal
plane which considers the limit for cp given by (2.44). The analogue to figure 2.13 a,b is figure
2.22 a,b. It shows, on the basis of the intersection of surfaces such as those from figure 2.21, the
range of cµ and δ

R that are conducive to capillary pumping.
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Figure 2.21 – The pressure gradient ratio, cp, as determined from (2.74) versus cµ and δ

R with
cρ = 10−4, ∆

R = 0.15, ε = 0.9, R√
κ
= 5766. The curved surface shows the limiting value

prescribed by (2.74) and the flat surface shows the limiting value prescribed by (2.44)
where we have assumed θ = 0◦, Σ = 1015 and ∆pcond

πvL = 3043. Physically-admissible solu-
tions are those located below the intersection of the two surfaces.

2.6.4 Comparison with the results of Zhu & Vafai (1999) and Shafahi et
al. (2010)

The axisymmetric geometry considered in section V.A provides the most straightforward opportu-
nity for comparing the predictions of our model with related results reported in the literature. To
this end, we pay particular attention to the investigations conducted by Zhu & Vafai (1999) and
Shafahi et al. (2010). Focusing first of all on the latter study, their figure 3 indicates a predicted
pressure gradient ratio of cp = −0.0011 for a heat pipe characterized by a flooded wick having a
permeability of κ = 1.5×10−9 m2. Adopting this value here (as compared to the more permeable
wick implicitly considered in figures 2.6-2.9, 2.12, 2.13 and 2.18-2.22) and matching other inde-
pendent parameters besides, we predict a pressure gradient ratio of similar scale, i.e. cp =−0.0012.

The comparison with the earlier results of Zhu & Vafai (1999) is somewhat more involved as it
requires an estimation of the maximum possible heat flux as calculated in the capillary limit where
Revap = Revap,min (and, with reference to equation (2.38), θ = 0◦). Zhu & Vafai’s analytical model
is predicated on some different assumptions than we consider here. For instance, they solve the
liquid flow problem using a generalized momentum equation (Vafai et al. 1981) that includes a
Forchheimer term. As a result, the capillary limit is realized at a different wick permeability in
Zhu & Vafai’s model vs. our own. All other parameters are the same and we therefore consider
ε = 0.9, δ/R = ∆/R = 0.08, where the heat pipe inner radius measures R = 9.4 mm. In turn, we
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Figure 2.22 – (a) Regime diagram showing the solution space for various θ with cρ = 10−4, ∆

R = 0.15,
ε = 0.9, R√

κ
= 5766, Σ = 1015 and ∆pcond

πvL = 3043. Physically-admissible solutions are
those located above each curve. (b) As in panel (a) but considering the influence of Σ with
θ = 90◦.

suppose a heat pipe operating temperature of 63◦C and a liquid pressure gradient of |1000|Pa/m.
With the above variables to hand, our model predicts a maximum heat flux of 1.35 kW. This value
compares favorably to the corresponding value of 1.30 kW recovered from the complete model
curve of figure 9 of Zhu & Vafai (1999).

Although it would obviously be helpful to expand upon the comparison between our model
predictions vs. those reported by other researchers, the relatively close agreements reported above
are encouraging. They suggest that the modeling approach adopted here is not unreasonable even
though we have focused our attention solely on the heat pipe adiabatic section.

2.7 Conclusions

In this work, we have adapted core annular flow theory to describe the anti-parallel flow of liquid
and vapor that arises, for instance, inside of a heat pipe. Key to our analysis is to enforce a
mass balance by which −ṁv = ṁl , which applies once steady conditions are realized. The mass
balance requirement imposes a restriction on the vapor-to-liquid pressure gradient ratio, whose
value, determined from equations like (2.14) or (2.56), depends on the density and viscosity ratios.

Broadly speaking, our work is motivated by Busse et al. (2013) who studied internal flows lu-
bricated by a surface-attached air bubble or plastron. Busse et al. (2013) developed an expression
for the drag-minimizing plastron thickness. Our interest concerns not drag minimization per se but
rather a maximization of the axial flow of mass (and, in the heat pipe context, of heat). To this
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end, and for the flows illustrated schematically in figures 2.1, 2.5, 2.14 and 2.17, we determine the
optimal liquid layer thickness as a function of the vapor-to-liquid density ratio and, where, appli-
cable, the depth and porosity of the porous media constituting the peripheral wick. Calculations
are performed for four configurations: planar, no wick (section II); planar, with wick (section III);
axisymmetric, no wick (section IV); axisymmetric, with wick (section V). Not surprisingly, the
optimal liquid layer thickness runs larger in cases with a wick where the liquid flow is more con-
strained. Of course, when the liquid flow (and part of the vapor flow) is through a wick, additional
variables are important to the flow dynamics e.g. the wick permeability, porosity and thickness.
Such considerations were avoided in McHale et al. (2011) and Busse et al. (2013) because they
considered an idealized plastron layer i.e. one supported along the solid surface without benefit of
a porous medium or network of hydrophobic structures.

Finally, we perform an analysis to find the minimum pressure gradient ratio required to support
the capillary pumping of liquid from the condenser to the evaporator see – eg. (2.43) and (2.44).
The analysis in question employs the Young-Laplace equation at the scale of the wick microstruc-
ture and considers, therefore, the diameter of, and spacing between, the wires that comprise the
(screen-type) wick. Equations (2.43) and (2.44), which define the limiting pressure gradient ratio
as a function of the contact angle, θ , and the surface tension, σ , are therefore applicable to both
of the planar and cylindrical geometries. In either case, we find that increasing θ or σ serves to
facilitate capillary pumping and thereby broaden the range of admissible viscosity ratios and liquid
layer thicknesses – see e.g. figures 2.13 and 2.22.

One small inconsistency embedded into our model derivation is that the interface is assumed
to be flat insofar as applying a shear stress boundary condition, but curved insofar as supporting
a capillary pressure that ultimately drives the liquid flow. This inconsistency is expected to be
most significant when the interface deflection relative to the liquid layer depth is comparatively
large. It remains to address the above inconsistency e.g. by incorporating the geometric details of
a deflected interface in equation sets such as (2.16, 2.17, 2.20, 2.21) or (2.58, 2.59, 2.62, 2.63)
using a perturbation analysis. An analysis along these lines is underway and shall be the topic of a
forthcoming study.

An additional topic for further study that relates specifically to heat pipe design/operation is
to extend the analyses summarized herein beyond the adiabatic section. One might ask, for in-
stance, whether the optimum liquid layer depths predicted by the present model are sufficient to
avoid performance-killing phenomena like evaporator-end dry out. Making reference to the heat
pipe evaporator and condenser would necessarily entail a detailed consideration of not only phase
change but also surface chemical effects (section 2.4.3). For example, some heat pipes are designed
specifically to exploit drop-wise condensation and film-wise evaporation, both of which have been
associated with increase of heat pipe performance (Daniel et al. 2001, Cheng et al. 2012). Whereas
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these kinds of details do not influence the adiabatic section-centric results reported upon above,
they would be potentially significant if the optimization were extended to include all three sections
of the heat pipe.
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2.10 Appendix A: Variable definitions

Table 1 shows the variables used in the analysis of sections II-V.

Symbol Meaning (unit, if applicable)
L Length of the adiabatic section (m)
H Thickness of the symmetrical part of heat pipe (m)
uv Velocity of vapor (m/s)
ul Velocity of liquid (m/s)
δ Thickness of the liquid layer (m)
πv Pressure gradient in vapour phase (kg/(m2s2))
πl Pressure gradient in liquid phase (kg/(m2s2))
µl Viscosity in liquid phase (m2/s)
µv Viscosity in vapour phase (m2/s)
µev Effective viscosity in vapour phase (m2/s)
µel Effective viscosity in liquid phase (m2/s)
ρl Density in liquid phase (kg/m3)
ρv Density in vapour phase (kg/m3)
cµ = µv

µl
Viscosity ratio

cρ = ρv
ρl

Density ratio
cp =

πv
πl

Pressure gradient ratio
∆ Thickness of the complete porous medium (m)
ε Porosity
κ Permeability (m2)
β Distance between center of two wires in a wick (m2)
D Diameter of the wick (m2)
ṁv Mass flow rate in vapour phase (kg/s)
ṁl Mass flow rate in liquid phase (kg/s)

Table 2.1 – Variable definitions
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2.11 Appendix B: Temperature and pressure relation

Our analysis requires specification of the liquid and vapor pressure gradients in order that ve-
locity profiles and, by extension, optimum liquid layer thicknesses may be determined. From a
pragmatic point of view, however, pressure gradients are less accessible than is the temperature
difference between the evaporator and condenser. In this appendix, we provide insight into how
such a temperature difference may inform πv. With πv to hand, the counterpart πl may be estimated
as soon as cp is known.

Recall, first of all, that a linear pressure variation is assumed so that

πv =
1
L
[pv(x = L)− pv(x = 0)] . (2.75)

The pressures that appear in the numerator of (2.75) may be replaced with temperatures using the
Magnus equation (Alduchov et al. 1996). Assuming water as the working fluid, the correlation in
question reads as follows:

pv(x) = 0.61094exp
[

17.625Tv(x = 0)
Tv(x)+243.04

]
, (2.76)

where Tv indicates the vapor temperature measured along the interior of the heat pipe. From (2.75),
it is evident that Tv(x = 0) and Tv(x = L) are required and, for this purpose, we must consider the
connection between this pair of interior temperatures and the corresponding exterior temperatures,
which we shall respectively denote as Text(x = 0) and Text(x = L). To wit,

Tv(x = L) = Text(x = L)−Q(Rshell +Rwick) , (2.77)

Tv(x = 0) = Text(x = 0)+Q(Rshell +Rwick) , (2.78)

where Rshell is the thermal resistance due to (conductive) heat transfer through the wall (or shell) of
the heat pipe and Rwick is the thermal resistance due to heat transfer through the wick. Furthermore,
and to a good approximation, the heat flux, Q, is given by

Q =
Tshell(x = L)−Tshell(x = 0)

2(Rshell +Rwick)+Raxial
. (2.79)

Note that in many cases of practical interest, the thermal resistance, Raxial, associated with heat
transfer along the length of the heat pipe is much smaller than either of Rshell or Rwick. We expect,
therefore, only a modest difference between pv(x = L) and pv(x = 0), which, in turn, explains the
small value of πv (relative to πl).
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Chapter 3

Perturbation Theory Applied to a Two
Phase Flow

3.1 Introduction

The work presented in the chapter 2 focussed on liquid-vapor counterflow using core annular flow
theory. One inconsistency that our model contains is that the interface is assumed to be flat insofar
as applying a shear stress boundary condition, but curved insofar as supporting a capillary pressure
that ultimately drives the liquid flow. A heat pipe not assisted by gravity requires capillary pumping
and that the radius of curvature of the liquid-vapor interface is lager at the evaporator end than it
is at the condenser end. This difference gives rise to a difference in capillary pressure between the
condenser section and the evaporator section that supports the flow of liquid (and vapor). Our heat
pipe model ignores any kind of interface deflection and surface chemistry effects.

To address this discrepancy of assuming a flat interface versus assuming a deflected interface,
this chapter presents a follow-up work to our existing model presented in chapter one. In this work,
we assume that there is a small deflection at the interface and use perturbation theory to account
for the small disturbance at the interface. The perturbation theory applied to the current problem
gives an idea of whether or not we can use a flat interface at liquid and vapor interface in a porous
medium.

For simplicity, we have the entire domain in the porous medium and extends till infinity. The
liquid has a finite thickness and is in contact with the wall, and the vapor flows on top of the liquid
and continues till infinity whereas, in chapter 2 the liquid and vapor layer were finite. An equal and
opposite pressure gradient is maintained in liquid and vapor whereas, an equal and opposite mass
flow rate in liquid and vapor was maintained in chapter 2. We are using square wires instead of
circular wires in our porous medium because using circular wires changes the horizontal position of
the triple point along with the vertical position whereas in square wires only the vertical position of
the triple point changes. But we used circular wires in chapter 2. The rest of the work is organized
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Figure 3.1 – Liquid layer has a finite thickness and vapor layer has infinite thickness.

as follows: Section 3.2 shows the meniscus deflection. Section 3.3 shows the solutions to the
leading order solution and composite solution after applying the perturbation theory. Section 3.3.2
shows the percentage difference in the velocity profiles after using a deflected interface. Finally,
the conclusion discusses the results and the advantage of this analysis.

3.2 Deflection at the liquid-vapor interface

This section provides information about the liquid-vapor interface deflection to support the capil-
lary pressure. Our entire analysis focusses on one single cell to study the interface deflection. Once
the problem is solved for one cell, the approach is similar for all the other cells too. The wires con-
sidered in our problem are square wires rather than cylindrical. Considering square wires makes
the derivation of meniscus shape easy without changing the essential physics of the deflected inter-
face as the horizontal position of the triple point does not change. Unlike, in our previous analysis
the interface height is dependent on x and is no more a constant z = δ . Figure 3.1 shows the
deflection of the interface.

Meniscus is given by η(x) = δ (1+ t ′
δ

f (x)), here f (x) and t ′� δ measures the deflection of
the interface in a manner to be clarified below. The deflection in the meniscus is due to a pressure
difference between the two phases therefore, using Young-Laplace equation we find the complete
expression for η(x)

∆p
σ

=
ηxx

(1+η2
x )

3
2

(3.1)

Figure 3.2 shows the interface is symmetrical around x = 0. Using this fact while integrating
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Figure 3.2 – Meniscus deflection and the triple point

(3.1) gives,

η(x) =− σ

∆p

(
1−
(

∆p
σ

x
)2
) 1

2

+δ − t ′+
σ

∆p
(3.2)

where t ′ is defined in figure 3.2. Rearranging the above result yields

η = δ +
t ′

δ
δ

 σ

t ′∆p
− σ

t ′∆p

(
1−
(

∆p
σ

x
)2
) 1

2

−1

 (3.3)

or, more simply,
η = δ +Φδ f (x) (3.4)

Here, Φ≡ t ′
δ

and f (x) is given by

f (x) =

 σ

t ′∆p
− σ

t ′∆p

(
1−
(

∆p
σ

x
)2
) 1

2

−1

 (3.5)

The function η(x) shown in (3.2) describes a circular arc with radius of curvature R = σ/∆P. The
input parameters in our problem are β , D, σ and ∆p.

By using the volume conservation under the deflected interface to the volume under an unde-
flected interface in one single cell, we can evaluate t ′. (3.6) gives the volume conservation equation
where β

2 −
D
2 , is the x value at the triple point. Here wires are arranged in a square grid pattern,

where β is the center to centre distance between two wires and D is the length of each side of the
square wires as shown in figure 3.1.
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Figure 3.3 – Deflection of the menisus η(x) within one single cell with δ = 0.0006m, β = 1.4×
10−4m, D = 4× 10−4m, σ = 0.0662Nm−1, ∆p = 390Pa. The two squares indicate the
cross sectional view of the wires.

∫ ( β

2−
D
2

)
0

η(x)dx = δ

(
β

2
− D

2

)
(3.6)

Combining (3.3) and (3.6), it can be shown that

t ′ =
1
4

σ

∆p2 (β −D)

−4σ arcsin
(

∆p(β −D)

2σ

)
−∆p(β −D)

√4σ2− (β −D)2
∆p2

σ2 −4


(3.7)

(3.7) gives the expression of t ′ in terms of the independent variables β , D, σ and ∆p.
In order that a stable meniscus form and with reference to figure 3.2, we require that the menis-

cus deflection satisfy the condition given by

R >
β −D

2
(3.8)

Here R = σ/∆p is the meniscus radius of curvature. Hereby, we encounter another difference
compared to chapter 2. In chapter 2 we used circular wires therefore, R could be related to the
geometric details of the porous medium and also the surface chemistry, i.e. the contact angle, θ .

Figure 3.3 shows the deflection of the meniscus in one single cell. The values for the variables
β = 1.4× 10−4m, D = 4× 10−4m, σ = 0.0662Nm−1 have been obtained from chapter one. The
value for δ is taken to be 0.0006m unlike in chapter 2 where δ = 0.0007m. We chose the value
for the pressure difference between the liquid and vapor ∆p = 390Pa, which falls within the range
of values given in the experimental investigation of Shafahi et. al (2010). ∆p = 390Pa is chosen
to satisfy (3.8) and gives a 5% deflection of the interface. The percentage interface deflection
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increases by increasing ∆p. But increasing ∆p more than a threshold value for a given edge-
length and distance between the wires shifts the interface upwards near the triple point so that the
meniscus is no longer in contact with the wires on both sides.

3.3 Liquid and vapor present in porous medium

This section involves the introduction of perturbation theory to solve the liquid-vapor counter flow
present in an infinite porous medium.

3.3.1 Governing Equations

We again assume an incompressible, steady and laminar flow in both phases. By assumption,
and consistent with figure 3.1, vapour and liquid are present in the porous medium. We assume
that flow in the porous medium (whether liquid or vapor) is governed by the Brinkman equation
(Durlofsky & Brady 1987). Brinkman’s equation is derived from Darcy’s law but includes a vis-
cous shear dissipative term. With the above assumptions to hand the velocity of vapour and liquid
in the porous medium are represented, respectively, by Uv and Ul and the (dimensional) governing
equations now read

µl

ε

(
d2Ul

dx2 +
d2Ul

dz2

)
− µl

κ
Ul =

d pl

dx
(3.9)

µv

ε

(
d2Uv

dx2 +
d2Uv

dz2

)
− µv

κ
Uv =

d pv

dx
(3.10)

where d pv
dx and d pl

dx are the pressure gradients in the vapour and liquid respectively, µv and µl are the
corresponding dynamic viscosities. ε is the porosity and κ is the permeability. The permeability
is given by the Carmen-Kozeny equation, i.e.

κ =
D2ε3

100(1− ε)2 (3.11)

A no-slip boundary condition is maintained at the lower wall z = 0, given by (3.12). A far-field
boundary condition is maintained at z→ ∞ given by (3.13). A velocity and shear stress matching
boundary condition (3.14) and (3.15) is maintained at the liquid vapor interface.

Ul(z = 0) = 0 (3.12)

dUv

dz
|(z→∞)= 0 (3.13)

Ul(z = δ (1+Φ f (x))) =Uv(z = δ (1+Φ f (x))) (3.14)
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µl
dUl

dz
|(z=δ (1+Φ f (x)))= µv

dUv

dz
|(z=δ (1+Φ f (x))) (3.15)

The problem assumes a deflection at the interface. Keeping this assumption in mind and using
the results obtained in section 3.2 we can assume a perturbation based solution in terms of small
disturbance Φ = t ′

δ
. Thus, the perturbed velocity for Ul and Uv is shown in (3.16) and (3.17)

respectively.

Ul =Ul0 +ΦUl1 +H.O.T (3.16)

Uv =Uv0 +ΦUv1 +H.O.T (3.17)

where, ’H.O.T’ represents higher order terms of Φ. Plugging in (3.16) and (3.17) in the governing
equations (3.9) and (3.10) gives

(
µl

ε

(
d2Ul0

dx2 +
d2Ul0

dz2

)
− µl

κ
Ul0

)
+Φ

(
µl

ε

(
d2Ul1

dx2 +
d2Ul1

dz2

)
− µl

κ
Ul1

)
+H.O.T =

d pl

dx
(3.18)

(
µv

ε

(
d2Uv0

dx2 +
d2Uv0

dz2

)
− µv

κ
Uv0

)
+Φ

(
µv

ε

(
d2Uv1

dx2 +
d2Uv1

dz2

)
− µv

κ
Uv1

)
+H.O.T =

d pv

dx
(3.19)

Meanwhile plugging in (3.16) and (3.17) in the no-slip and far-field boundary conditions gives

Ul0(z = 0)+ΦUl1(z = 0)+H.O.T = 0 (3.20)

dUv0

dz
|(z→∞)+Φ

dUv1

dz
|(z→∞)+H.O.T = 0 (3.21)

Using Taylor-series expansion the matching boundary condition (3.14) can be written as

Ul(z = δ )+Φδ f
dUl

dz
|(z=δ )+H.O.T =Uv(z = δ )+Φδ f

dUv

dz
|(z=δ )+H.O.T (3.22)

Substituting (3.16) and (3.17) in (3.22) gives

Ul0(z = δ )+Φ

(
Ul1(z = δ )+δ f

dUl0

dz
|(z=δ )

)
+H.O.T = (3.23)

Uv0(z = δ )+Φ

(
Uv1(z = δ )+δ f

dUv0

dz
|(z=δ )

)
+H.O.T

Similarily after applying Taylor-series and substituting (3.16) and (3.17) in the shear-stress bound-
ary condition (3.15) gives
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µl

(
dUl0

dz
|(z=δ )+Φ

(
dUl1

dz
|(z=δ )+δ f

d2Ul0

dz2 |(z=δ )

)
+H.O.T

)
= (3.24)

µv

(
dUv0

dz
|(z=δ )+Φ

(
dUv1

dz
|(z=δ )+δ f

d2Uv0

dz2 |(z=δ )

)
+H.O.T

)
Leading order Solution

The leading order solution is obtained by equating the zeroth order of the small parameter Φ in left
hand side and right hand side of (3.18) and (3.19). The governing equations are independent of x

and are given by
µl

ε

(
d2Ul0

dz2

)
− µl

κ
Ul0 =

d pl

dx
(3.25)

µv

ε

(
d2Uv0

dz2

)
− µv

κ
Uv0 =

d pv

dx
(3.26)

The boundary conditions are again obtained by equating the zeroth order of Φ in the no-slip
boundary condition (3.20), the far field boundary condition (3.21), matching boundary condition
(3.22) and shear stress boundary condition (3.24)

Ul0(z = 0) = 0 (3.27)

dUv0

dz
|(z→∞)= 0 (3.28)

Ul0(z = δ ) =Uv0(z = δ ) (3.29)

µl
dUl0

dz
|(z=δ )= µv

dUv0

dz
|(z=δ ) (3.30)

Solving (3.25) and (3.26) gives the following respective solutions:

Ul0 = Aexp
(√

ε

κ
z
)
+Bexp

(
−
√

ε

κ
z
)
− κ

µl

d pl

dx
0 < z < δ (3.31)

Uv0 = aexp
(√

ε

κ
z
)
+bexp

(
−
√

ε

κ
z
)
− κ

µv

d pv

dx
δ < z < ∞ (3.32)

Using the far field boundary condition the vapor velcity expression becomes

Uv0 = bexp
(
−
√

ε

κ
z
)
− κ

µv

d pv

dx
(3.33)
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Figure 3.4 – Velocity profile with H = 0.0094m, δ = 0.0006m, D = 1.4× 10−4m, β = 4× 10−4m,
σ = 0.0662Nm−1, ∆p = 390Pa, d pv

dx = 1.11Pa/m.

The constants A, B and b are determined using (3.27)-(3.30). The theoretical expressions for these
constants are shown in (3.34), (3.35) and (3.36).

A =
κ

µl

[
(−µlπv +µvπl)exp

(√
ε

κ
δ

)
+πl (µl−µv)

]
[
(µl +µv)exp

(
2
√

ε

κ
δ

)
+µl−µv

] (3.34)

B =
κ

µl
exp
(√

ε

κ
δ

)[
πl (µl +µv)exp

(√
ε

κ
δ

)
+µl

d pv
dx −µv

d pl
dx

]
[
(µl +µv)exp

(
2
√

ε

κ
δ

)
+µl−µv

] (3.35)

b =
κ

µv
exp
(√

ε

κ
δ

)[(
µl

d pv
dx −µv

d pl
dx

)
exp
(

2
√

ε

κ
δ

)
+2exp

(√
ε

κ
δ

)
µv

d pl
dx +µl

d pv
dx −µv

d pl
dx

]
[
(µl +µv)exp

(
2
√

ε

κ
δ

)
+µl−µv

]
(3.36)

Figure 3.4 shows the velocity profile for the leading order solution. The height of the domain
chosen to represent the velocity profile is H = 0.0094m. The values for all the variables except for
δ are again obtained from chapter 2. The velocity profile is non-dimensionlized using δ , µv and
d pv
dx as characteristic variables. Thus, we define

u∗v =
µv

δ 2 d pv
dx

Uv and u∗l =
µv

δ 2 d pv
dx

Ul,

where stars indicate non-dimensional variables. In a similar spirit, z∗ = z/δ .
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First order Solution

The governing equations for the first order solution is obtained by equating order one terms of the
small parameter ’Φ’ in (3.18) and (3.19)

µl

ε

(
d2Ul1

dx2 +
d2Ul1

dz2

)
− µl

κ
Ul1 = 0 (3.37)

µv

ε

(
d2Uv1

dx2 +
d2Uv1

dz2

)
− µv

κ
Uv1 = 0 (3.38)

The order one governing equations are Helmholtz equations (Rees et al. 2004). In order to solve
the Helmholtz equations we seek a solution of Uv1 by assuming the solution in the form given
below:

Uv1 = X(x)Z(z) (3.39)

Substituting (3.39) in (3.38) we get

Z′′

Z
+

X ′′

X
− ε

κ
= 0 (3.40)

Equation (3.40) can also be written as

Z′′

Z
− ε

κ
=−X ′′

X
= λ

2 (3.41)

where λ is an eigen-value. From (3.41) we get the following two equations

Z′′−
(

ε

κ
+λ

2
)

Z = 0 (3.42)

X ′′+λ
2X = 0 (3.43)

Solving the eigen-value problem (3.42) for Z(z) gives

Z =C1λ exp
(√(

ε

κ
+λ 2

)
z
)
+C2λ exp

(
−
√(

ε

κ
+λ 2

)
z
)

(3.44)

Solving (3.43) for X(x) gives

X =C3λ cos(λx)+C4λ sin(λx) (3.45)

The full solution for Uv1 is therefore

Uv1 =

[
C1λ exp

(√
ε

κ
+λ 2z

)
+C2λ exp

(
−
√

ε

κ
+λ 2z

)]
[C3λ sin(λx)+C4λ cos(λx)] (3.46)
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Reducing the number of constants by dividing all the constants with C2λ we get the vapor velocity
expression given below

Uv1 =

[
c1λ exp

(√
ε

κ
+λ 2z

)
+ exp

(
−
√

ε

κ
+λ 2z

)]
[c2λ sin(λx)+ c3λ cos(λx)] (3.47)

Similiarily, the velocity expression for liquid is given by

Ul1 =

[
c4λ exp

(√
ε

κ
+λ 2z

)
+ exp

(
−
√

ε

κ
+λ 2z

)]
[c5λ sin(λx)+ c6λ cos(λx)] (3.48)

Now replacing
λ → λn =

nπ

L
(3.49)

here L = β−D
2 , again reminding ourselves that our focus is only a single cell so our interest length

is the free distance between two wires and n is an integer with values from 0 to ∞. We can write
the eigen-values in terms of n. The sin terms are dropped as the meniscus is symmetrical about
x = 0 and the final solution will be summation for all values of n.

Uv1 =
∞

∑
n=0

[
c1n exp

(√
ε

κ
+
(nπ

L

)2
z

)
+ exp

(
−
√

ε

κ
+
(nπ

L

)2
z

)][
c3ncos

(nπx
L

)]
(3.50)

Ul1 =
∞

∑
n=0

[
c4n exp

(√
ε

κ
+
(nπ

L

)2
z

)
+ exp

(
−
√

ε

κ
+
(nπ

L

)2
z

)][
c6ncos

(nπx
L

)]
(3.51)

The boundary conditions are also obtained by equating the order one of the small parameter in
(3.20), (3.21), (3.23) and (3.24) revealing that

Ul1(z = 0) = 0 (3.52)

dUv1

dz
|(z→∞)= 0 (3.53)

(
Ul1(z = δ )+δ f

dUl0

dz
|(z=δ )

)
=

(
Uv1(z = δ )+δ f

dUv0

dz
|(z=δ )

)
(3.54)

µl

(
dUl1

dz
|(z=δ )+δ f

d2Ul0

dz2 |(z=δ )

)
= µv

(
dUv1

dz
|(z=δ )+δ f

d2Uv0

dz2 |(z=δ )

)
(3.55)

Using the no-slip boundary condition (3.52) we get

∞

∑
n=0

(c4n +1)c6ncos
(nπx

L

)
= 0 (3.56)
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The only non-trivial solution to (3.56) is c4n = −1. Applying the far field boundary condition

(3.53) to (3.50), we note that exp
(√

ε

κ
+
(nπ

L

)2z
)
→ ∞ therefore c1n = 0. Thus, our velocity

expression simplifies to the equations given below:

Uv1 =
∞

∑
n=0

[
exp

(
−
√

ε

κ
+
(nπ

L

)2
z

)][
c3ncos

(nπ

L
x
)]

(3.57)

Ul1 =
∞

∑
n=0

[
−2sinh

(√
ε

κ
+
(nπ

L

)2
z

)](
c6ncos

(nπ

L
x
))

(3.58)

The remaining constants c3n and c6n are evaluated using (3.54) and (3.55) which make reference
to the leading order solution. The leading order solution does not depend upon n or x therefore is
straightforward to incorporate. Rearranging and substituting (3.31) and (3.32) in (3.54) gives

Ul1(z = δ )−Uv1(z = δ ) = (3.59)

δ f (x)

−κ (µl−µv)

µlµv

√
ε

κ

[
(µlπv0−µlπl0)exp

(
2δ

√
ε

κ

)
+2exp

(
δ

√(
ε

κ

))
µvπl0 +µlπv0−µvπl0

]
[
(µl +µv)exp

(
2δ

√
ε

κ

)
+µl−µv

]


Substituting (3.57) and (3.58) in (3.59)

∞

∑
n=0
−2sinh

(
δ

√
ε

κ
+λ 2

)
c6ncos(λx)−

∞

∑
n=0

expδ

(
−
√

ε

κ
+λ 2

)
c3ncos(λx) (3.60)

= δ f (x)

−κ (µl−µv)

µlµv

√
ε

κ

[
(µlπv0−µlπl0)exp

(
2
√

ε

κ
δ

)
+2exp

(√(
ε

κ

)
δ

)
µvπl0 +µlπv0−µvπl0

]
[
(µl +µv)exp

(
2
√

ε

κ
δ

)
+µl−µv

]


(3.60) involves f (x) which can, for purposes of solving for c3n and c6n, be written in terms of its
constituent Fourier components, i.e.

f (x) =
∞

∑
n=0

ancos
(nπx

L

)
(3.61)

where
a0 =

1
2L

∫ L

−L
f (x)dx (3.62)

and
an =

1
L

∫ L

−L
f (x)cos

(nπx
L

)
dx (3.63)
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Now substituting f (x) in (3.60) we get

∞

∑
n=0
−2sinh

(
δ

√
ε

κ
+
(nπ

L

)2
)

c6ncos
(nπx

L

)
−

∞

∑
n=0

exp

(
−δ

√
ε

κ
+
(nπ

L

)2
)

c3ncos
(nπx

L

)
=

(3.64)−κ (µl−µv)

µlµv

√
ε

κ

[
(µlπv0−µlπl0)exp

(
2δ

√
ε

κ

)
+2exp

(
δ

√
ε

κ

)
µvπl0 +µlπv0−µvπl0

]
[
(µl +µv)exp

(
2δ

√
ε

κ

)
+µl−µv

]


δ

(
∞

∑
n=0

ancos
(nπx

L

))

Similarily, the shear-stress boundary condition (3.55) for the first order solution is rearranged
as shown below

µl
dUl1

dz
|(z=δ )−µv

dUv1

dz
|(z=δ )= (3.65)−2ε exp

(
δ

√
ε

κ

)[(−µlπv0 +µlπl0)exp
(

δ

√
ε

κ

)
+πl0 (µl−µv)

]
[
(µl +µv)exp

(
2δ

√
ε

κ

)
+µl−µv

]
δ

(
∞

∑
n=0

ancos
(nπx

L

))

Substituting (3.57), (3.58) and (3.61) in (3.65) we get

µv

(√
ε

κ
+
(nπ

L

)2
)

∞

∑
n=0

exp

(
−δ

√
ε

κ
+
(nπ

L

)2
)

c3ncos
(nπx

L

)
− (3.66)

µl

∞

∑
n=0

2

√
ε

κ
+
(nπ

L

)2
cosh

(
δ

√
ε

κ
+
(nπ

L

)2
)

c6ncos
(nπx

L

)

= δ

−2δε exp
(√

ε

κ

)[(−µlπv0 +µlπl0)exp
(

δ

√
ε

κ

)
+πl0 (µl−µv)

]
[
(µl +µv)exp

(
2δ

√
ε

κ

)
+µl−µv

]
( ∞

∑
n=0

ancos
(nπx

L

))

The coefficients c3n and c6n are calculated with reference to the factors of an that appear on
the RHS of (3.64) and (3.66). Now by multiplying by cos(mπx/L), where m is again the set of all
positive integers and then integrating and exploiting trigonometric orthogonality, it can be shown
that
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c3n =−
δ

L
exp

(
δ

√(nπ

L

)2
+

ε

κ

)[
cosh

(
δ

√(nπ

L

)2
+

ε

κ

)
µl

√(nπ

L

)2
+

ε

κ
(3.67)−κ (µl−µv)

µlµv

√
ε

κ

[
(µlπv0−µlπl0)exp

(
2δ

√
ε

κ

)
+2exp

(
δ

√(
ε

κ

))
µvπl0 +µlπv0−µvπl0

]
[
(µl +µv)exp

(
2δ

√
ε

κ

)
+µl−µv

]
×

sinh

(
δ

√(nπ

L

)2
+

ε

κ

)2ε exp
(√

ε

κ
δ

)[(−µlπv0 +µlπl0)exp
(√

ε

κ
δ

)
+πl0 (µl−µv)

]
[
(µl +µv)exp

(
2
√

ε

κ
δ

)
+µl−µv

]
×

1√(nπ

L

)2
+ ε

κ

1(
cosh

(
δ

√(nπ

L

)2
+ ε

κ

)
µl + sinh

(
δ

√(nπ

L

)2
+ ε

κ

)
µv

) ∫ L

−L
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Using the constants and summation for all integer values of n the composite velocity solution given
by (3.16) and (3.17) is plotted in figure 3.5. The solution is plotted for various x.

There is a discontinuity at the interface in the velocity profile. This is because the matching
boundary condition and the shear stress boundary condition for the composite solution is linearized
and is an approximation by neglecting the higher order terms of the small number in (3.23) and
(3.24). The discontinuity becomes smaller as the interface deflection becomes smaller and also
as x changes. The position of x where the difference between the leading order solution and the
composite solution is least, is given by

x1 =

√
∆pt ′ (2σ − t ′∆P)

∆p
(3.69)

The equation given by (3.69) is the horizontal position where η(x) becomes equal to δ . The
position x1 is also the location where the volume of liquid displaced by the meniscus from x = 0
to x1 is equal to the volume of liquid under the meniscus measured from x1 to the triple point.
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Figure 3.5 – Composite velocity profile with H = 0.0094m, δ = 0.0006m, κ = 1.5×10−8m2, ε = 0.9,
σ = 0.0662Nm−1, ∆p = 390Pa and d pv

dx = 1.11Pa/m. x1 represents the horizontal position
where η(x) is equal to δ and is given by (3.69). The red curve represents the leading order
solution.

3.3.2 Percentage velocity difference with percentage increase in interface
deflection

This section shows an analysis involving the percentage interface deflection with the percentage
velocity difference between the base solution and the composite solution. Figure 3.6 shows the
percentage deflection (as evaluated for different ∆p spanning a range 0.01 Pa to 395 Pa) plotted for
different δ/β . The interface deflection is measured at x = 0 and so corresponds to a maximum de-
flection in the interval−1

2(β−D)< x < 1
2(β−D). Meanwhile, the velocity difference is evaluated

at x = 0 and z = δ . More precisely, the percentage velocity difference is given by U−U0
U f ar− f ield

× 100
where U0 is the base solution, U is the composite solution and U f ar− f ield is the far-field velocity.
The percentage interface deflection is given by δ−ηmin

δ
×100.

Figure 3.6 shows that the percent velocity difference typically exceeds the percent interface
deflection. This result gives us the impression that even for a very small interface deflection we en-
counter a large change in the velocity, therefore the results obtained in chapter one by assuming a
flat interface are of limited value. It is important to highlight, however, that the velocities in Figure
3.6 are measured at z = δ where the difference between the leading order solution and composite
solution is greatest, therefore we can see a large change in velocity. However, when the velocity is
measured at a different vertical position the difference between the leading order solution and the
composite solution is often negligible as can be seen in figure 3.7. Figure 3.7 shows that the ve-
locity difference is ussually small for different values of z but becomes comparatively large when
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z approaches δ = 0.0006m. Figure 3.8 is a 2-dimensional plot which shows that the velocity dif-
ference rises only when the vertical position approaches the interface but at other vertical positions
the velocity differnce is negligible.

Figure 3.6 – Velocity difference versus the interface deflection for various δ with β = 4× 10−4m,
D = 1.4×10−4m, σ = 0.0662Nm−1. Velocities are being measured at z = δ .

Figure 3.7 – Surface plot representing velocity difference with interface deflection and z with H =
0.0094m, δ = 0.0006m, β = 4×10−4m, D = 1.4×10−4m and σ = 0.0662Nm−1.
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Figure 3.8 – Velocity difference versus z with H = 0.0094m, δ = 0.0006m, β = 4×10−4m, D = 1.4×
10−4m, σ = 0.0662Nm−1 and ∆p = 390Pa. The inset plot shows the velocity differnce in
the liquid section.

Figure 3.9 – Meniscus deflection for circular wires.

3.4 Conclusion

In this work, we have adapted perturbation theory to model the liquid-vapor flow in a porous
medium. The key to our analysis is that we have considered pressure gradient of liquid and vapor
to be equal and opposite i.e, d pv

dx =−d pl
dx unlike the consideration of equal and opposite mass flow

rate i.e, −ṁv = ṁl in chapter 2. The reason for considering equal and opposite pressure gradients
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is that we have taken an infinite domain to represent our problem hence, we cannot evaluate mass
flow rate for the vapor phase.

We have performed our analysis by considering the deflected interface. To this end we have
shown the schematic in figure 3.1 of section 3.2 which shows the liquid-vapor interface that is
deflected from δ and is a function of x. This section shows the expression for the interface which
is a circular arc given by (3.3).

In section 3.3 we use perturbation theory in our governing equations for liquid and vapor flow.
Moreover, the matching and shear stress boundary conditions are maintained at η(x) rather than δ .
Figure 3.4 shows the velocity profile for the leading order solution. Figure 3.5 shows the composite
solution after applying the perturbation theory and ignoring the higher-order terms of the smallness
parameter. The difference between the composite velocity profile and the leading order velocity
profile is less when x is given by (3.69) corresponding to the horizontal position where η(x) is
equal to δ and is shown in figure 3.5.

Finally in section 3.3.2, figure 3.6 shows the interface deflection and the velocity difference
for different δ . Figure 3.7 shows the velocity difference with interface deflection at different z and
δ = 0.0006m. Figure 3.7 and 3.8 confirms that the velocity difference arises only when the vertical
position approaches z = δ but at other vertical positions the velocity difference is small. Thus, we
have reported the inconsistency appearing in chapter one and the significance of the assumption
considered.

We have considered square wires instead of the circular wires to avoid the tedious work pertain-
ing to circular wires while maintaining the volume conservation given in (3.6) when not only the
z−coordinate of the triple point changes but also the x−coordinate as shown in figure 3.9. How-
ever, this analysis can also be performed for circular wires by removing the extra volume of the
circular wires that comes into the picture while applying volume conservation. Figure 3.9 shows
the interface deflection for circular wires.

62



Chapter 4

Summary and Conclusion

Core annular flow theory (CAF) can be adapted to model a two-phase flow. In Core annular flows,
the core of a viscous liquid is surrounded by a layer of fluid with lower viscosity. As the layer of
fluid with high viscosity does not make contact with the solid boundary, there is drag reduction.
Core annular flow theory is used in lubricated flows for the transportation of bitumen forth in the
oil companies (Joseph et al. 1995, Joseph et al. 1997, Gruncell et al. 2013).

The interest to depress drag led to the introduction of a superhydrophobic surface that retains
the continuous air layer and separates the liquid layer with the solid layer. Numerous studies
were performed to retain the air layer (Lee & Kim(2011), Panchanathan et al. (2018), Forsberg
et al. (2011) and Forsberg et al. (2011) etcetera). Busse et al. (2013) provided the study about
lubricated flows by the surface-attached gas layer. They also showed the velocity profiles and
optimized thickness for the gas layer required to minimize the drag. The upper limits to drag
reduction depends upon the width of the air layer. In core annular flows, the thickness of the air
layer plays a significant role. If the air layer is too thin, then there is a modest reduction of overall
shear stress. If the air layer is too thick, then the cross-sectional area for the flow of liquid is
choked.

In this thesis, we have adopted the core annular flow (CAF) theory to model the adiabatic
section of heat pipes. Unlike Busse et al. (2013) we aimed to maximize the flow of liquid, and
thereby increase the heat flux. The necessary condition that is satisfied inside a heat pipe is the
mass flow rate equation. This is because the heat pipe is a self-sufficient device, and no external
pumping is required.

The operation and functioning of heat pipes, as well as previous studies, are discussed in the
introductory section. Chapter 2 presents the model for the adiabatic section of wickless heat pipes
in planar geometry, heat pipes with a wick in planar geometry which deals with few additional
variables due to the presence of wick, thermosyphons which are again wickless heat pipes but
in cylindrical geometry, and capillary driven heat pipes, which are wick based heat pipes again
in cylindrical geometry. In our model, we have considered the antiparallel flow of liquid and
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vapor. We have maintained an equal and opposite mass flow rate in liquid and vapor at steady-state
conditions.

Section 2 of chapter 2 presents the model and the results for the planar geometry devoid of
a wick. The velocity profiles are obtained by solving the governing equations with the help of
boundary conditions. We have presented the expressions for the velocity profiles in terms of the
fill ratio, viscosity ratio, and density ratio. Moreover, Figure 3 in Chapter 2 shows that the velocity
of the vapor is larger than the velocity of the liquid. The large vapor velocity can be explained by
the fact that the density of the vapor is a few orders of magnitude smaller than the density of the
liquid, and to maintain equal and opposite mass flow rate conditions, the velocity of the vapor layer
increases. In the case of a wickless heat pipe, the velocity profiles depend on viscosity ratios and
density ratios. We have also presented velocity profiles representing the family of various viscosity
ratios and density ratios in Figure 3 a. As the viscosity ratio increases, the liquid is dragged by the
vapor and the velocity of liquid decreases to maintain mass flow rate condition. Similarly, as shown
in Figure 3 b, as the density ratio increases, the velocity of liquid increases as well.

Section 3 of chapter 2 presents the results for the planar geometry of the adiabatic section of
the heat pipe containing a wick. The presence of a wick supports the flow of liquid. Considering a
wick or superhydrophobic surface were avoided by McHale et al. (2011) and Busse et al. (2013),
as they considered a perfect plastron layer without referring to a superhydrophobic surface. A wick
structure refers to the porous medium; therefore, we used the Brinkman equation for the flow of
fluid inside the porous medium. We used the Brinkman equation rather than the Darcy equation
because the Brinkman equation describes the dissipation of kinetic energy by viscous shear, like
the Navier-Stokes equations, and is an extension of Darcy′s law. The Brinkman equation is well-
suited for modeling fast flow in porous media. The Brinkman equation models the transitions
between slow flow in porous media governed by Darcy′s law and fast flow in channels described
by the Navier-Stokes equations. The Brinkman equation computes both velocity and pressure, but
we are specifying pressure. The presence of a wick gave rise to two more boundary conditions due
to the porous and free medium interface and the liquid-vapor interface inside the porous medium.
The presence of a wick structure allowed us to represent the velocity profile for different porosities,
viscosity ratios, and density ratios. We saw similar behavior in the velocity profiles for different
viscosity ratios and different density ratios. In the heat pipe with a wick, we saw an inflection
point in the vapor layer present inside the porous medium. Figure 6 b shows the velocity profiles
with different porosity, and suggests that with an increase in porosity, the liquid layer’s velocity
increases as there is more room for the liquid to flow.

Section 3 of chapter 2 models a wickless heat pipe in cylindrical geometry. Conventional heat
pipes usually have cylindrical shapes; therefore, we have presented the model for a thermosyphon,
which is a gravity-assisted heat pipe. We have derived the expressions for velocity profiles. The
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velocity profiles show similar behaviors as those in Section 2, and therefore we have not presented
the figures. We have derived an expression for the pressure gradient ratio required to drive the flow
in the adiabatic section. Section 4 of chapter 2 shows a capillary-driven heat pipe, the modeling
of a heat pipe in a cylindrical geometry. The presence of the wick structure introduces a porous
medium; therefore, our governing equation is the Brinkman equation in cylindrical coordinates.
The solution to the Brinkman equation in cylindrical coordinates is in the form of Bessel’s equation
of the first kind. The velocity profiles show a similar trend as we saw in the planar geometry.

In the case of wickless heat pipes, we presented the parameters required to increase the mass
flow rate inside a heat pipe. We provided the optimum liquid fill ratio to obtain the highest mass
flow rate. In the case of a heat pipe with a wick, the liquid fill ratio, density ratio, and the viscosity
ratio influence the maximum mass flow rate. To this end, we cannot increase the liquid fill ratio too
agressively as it will choke the vapor core. Therefore, we need an optimum fill ratio. Figures 4 a
and 16 a show the maximum mass flow rate and the optimum liquid fill ratio with various density
ratios. As the density ratio increases, the optimum liquid fill ratio increases. The rise in the density
ratio decreases the density of the liquid, and to maintain the equal and opposite mass flow rate, the
thickness of the liquid layer increases.

Likewise, we have presented the maximum mass flow rates for wick-based heat pipes. In the
wick-based heat pipe, the liquid-vapor interface is inside the porous medium. For a fixed density
ratio and viscosity ratio, the maximum mass flow rates were non-monotone functions of the liquid
fill ratio, as shown in figures 7 a, 8 a and 9 a of chapter 2. One main difference between the wickless
heat pipe and the wick-based heat pipe is that maximized mass flow rates occur for a broad range
of liquid layer thicknesses. This is because of the presence of porous medium which restricts the
liquid flow and the liquid layer thickness increases. After the liquid layer has attained a threshold
value the mass flow rate decreases drastically as more increase in liquid layer thickness increases
the drag in the liquid and vapor. Wick-based heat pipes give us room to characterize the maximum
mass flow rate in terms of wick geometry characteristics. Figure 7 b shows that with an increase in
density ratio, the optimum liquid layer thickness increases. Figure 8 b shows that with an increase
in the porous layer thickness, the optimum fill ratio increases, but is a non-monotone curve. When
the porous medium increases, ∆/H increases, more and more of the vapor must flow through a
porous medium. As a result the maximum mass flow rate is eventually associated with smaller(

δ

H

)
opt

. We have also shown the optimum liquid layer thickness for different porosities. Figure

9 b shows the optimum fill ratio with different porosities which is a non-monotone curve. The non-
monotone behavior in figure 9 b occurs because the vapor layer present inside the porous medium
gets enough room to flow. When ε → 1, the liquid has enough room to flow just like the vapor,
and therefore more space is available for the liquid to flow, and the maximum mass flow rate is
achieved for a smaller liquid fill ratio.
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For heat pipes devoid of a wick, the condition of equal and opposite mass flow rate allowed
us to relate the pressure gradient ratio of vapor and liquid with the liquid fill ratio, density ratios,
and viscosity ratios. We have presented the results showing the behavior of the pressure gradient
ratio required to drive the flow of fluid inside a heat pipe. Figures 2 and 15 show the pressure
gradient ratio plotted against the fill ratio and the viscosity ratio. We have provided expressions
for the pressure gradient ratios and the plots showing the pressure gradient ratio with the liquid fill
ratio and viscosity ratio. It can be seen in Figures 2 and 15 of chapter 2 that with an increase in
the viscosity ratio, the magnitude of the pressure gradient ratio increases. Because as, the liquid
becomes less viscous, we require a lower pressure gradient in the liquid phase to maintain the mass
flow rate. Similarly, with an increase in the liquid fill ratio, the magnitude of the pressure gradient
ratio decreases because the increase in the liquid fill ratio reduces the vapor area, and requires a
higher pressure gradient inside the vapor to maintain the mass flow rate.

In the case of wick-based heat pipes, the pressure gradient ratio depends on the wick properties
like porosity, permeability and also the thickness of the wick. In a wick-based heat pipe, the pres-
sure gradients required to drive the flow are accommodated by capillarity. The pressure gradient
ratio is characterized by the surface chemistry effects and the surface tension of the fluid. Section
2 c in chapter 2 shows the analysis of the pressure gradient ratio using the mass flow rate equation.
Finally, we performed an analysis to find the minimum pressure gradient ratio required to sup-
port the capillary pumping of liquid from the condenser to the evaporator (e.g. equations (43) and
(44)). The analysis in question employs the Young-Laplace equation at the scale of the wick mi-
crostructure, which takes into account the diameter of the wires and the spacing between the wires
that comprise the (screen-type) wick. Equations (43) and (44), which define the limiting pressure
gradient ratio as a function of the contact angle and the surface tension, are therefore applicable
to both planar and cylindrical geometries. In either case, we found that increasing the surface ten-
sion or contact angle facilitates capillary pumping and thereby broadens the range of admissible
viscosity ratios and liquid layer thicknesses (e.g. Figures 13 and 22). The analysis to evaluate the
limit considers the surface chemistry effects. We have presented our results for a contact angle of
0◦. Unlike the wickless heat pipes, the pressure gradient ratios obtained from the mass flow rate
equation have a limit. Figures 12 and 21 show the surface plot for the pressure gradient ratio. The
planar plot gives the limit for the pressure gradient ratio. The values of liquid fill ratio and viscosity
ratios appearing below the planar plot are the feasible solutions and will drive the flow inside a heat
pipe. We have also presented the expression for the ratio of pressure gradients and the limit to the
pressure gradient ratio which, depends upon the surface chemistry effects and surface tension. In
addition, we have shown the figures for the pressure gradient ratio corresponding to the optimum
liquid layer analysis. Larger values of the contact angles accommodate the meniscus between the
wires; therefore, an increase in contact angle broadens the solution space. The increase in surface
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tension also increases the solution space because a capillary driven heat pipe is a surface tension
driven flows.

The results obtained from our model are compared to an experimental investigation by Shafahi
et al. (2008). The values for temperature, porosity, permeability, density, and viscosity used in
chapter 2 were obtained from Shafahi et al. (2008). The pressure gradient ratio of vapor to liquid
obtained in chapter 2 is verified from the ratio of pressure gradient of vapor to liquid obtained for
the zero concentration of nano-particles in Shafahi et al. (2008).

There is, however, one discrepancy associated with our model: the liquid-vapor interface is
assumed to be flat in-so-far as considering a shear-stress boundary condition and curved insofar as
considering a capillary driven heat pipe. The discrepancy increases when the interface deflection
increases. The discrepancy opened room for us to perform another analysis that shows the extent
of the inconsistency and whether it is accurate to assume a flat liquid-vapor interface.

Chapter 3 analyses a deflected interface inside a porous medium. The discrepancy of using a flat
interface versus a deflected interface has been explored in follow-up work to chapter 2. Chapter
3 uses the perturbation theory to model the fluid flow inside a porous medium with a deflected
interface.

In chapter 3, we considered an infinite porous medium with a finite liquid layer and an infinite
vapor layer, whereas chapter 2 considered a finite vapor layer. The analysis in chapter 3 maintains
an equal and opposite pressure gradient in liquid and vapor. We could not maintain an equal and
opposite mass flow rate in chapter 3 because the vapor layer extends infinitely. The analysis in
chapter 3 uses square wires instead of circular wires. The horizontal and vertical position of the
triple point changes with circular wires, whereas with square wires only the vertical position of
the triple point changes. All the assumptions considered in chapter 3 are made with a view to
simplifying the perturbation problem.

The analysis in question employs the Young-Laplace equation at the scale of the wick mi-
crostructure and therefore considers the diameter of, and spacing between, the wires that comprise
the (screen-type) wick. We have presented the expression for the interface curvature depending
on the horizontal position and a small number. The small number Φ is defined as the the ratio
of the interface deflection to the thickness of the lower layer. Our interface is a circular function
with the radius of curvature given by the Young-Laplace equation σ/∆P. The condition for a
stable meniscus is different in chapter 3 as compared to chapter 2. chapter 2 considered surface
chemistry effects, while in chapter 3, the presence of square wires eliminated any reference to the
contact angle. Section 1 of chapter 3 mentions the condition for the meniscus stability in the case
of a square wire. The interface deflection increases with the increase in pressure difference and
decreases with an increase in surface tension. We have taken the values of all the variables from
chapter 2, except for the liquid layer thickness which is 0.0006m, because the liquid layer thickness
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of 0.0007m leads to some mathematical complications in the solution of the perturbation problem
using Fourier transformation. Using the above parameters, we get an interface deflection of 5%.
Figure 2 of chapter 3 represents the interface deflection. After increasing the pressure difference
to a limit for a given set of values to the parameters, the meniscus is no longer in touch with the
wires on the sides and it shifts upwards. Similarly, if we decrease the surface tension value to a
certain limit the meniscus no longer touches the wires on both sides and it shifts upwards. Chapter
3 shows the pressure gradient value when the meniscus is no longer in touch with the square wires.

Section 3 of chapter 3 shows the governing equations for flow in a porous medium for liquid
and vapor. The governing equation is the Brinkman equation, maintaining an equal and opposite
pressure gradient for liquid and vapor. The governing equation is assumed to have a perturbation-
based solution. We have considered only the first-order terms of the small parameter introduced for
perturbation, ignoring all the higher-order terms of the small parameter. As usual, we satisfied a no-
slip boundary condition at the lower wall and a far-field boundary condition for vapor. The shear-
stress and matching boundary conditions are satisfied at the curved interface shown in Section 2,
rather than at the liquid layer thickness, which is at the flat interface.

The governing equations are solved along with the boundary conditions by equating the small
parameter’s zeroth-order terms. Referencing to chapter 2, our interest lies at the liquid-vapor in-
terface inside the porous medium. The interface boundary conditions are linearized using Taylor’s
series and truncating the higher-order terms of the small parameter, and we get the solution as if
the interface boundary conditions were satisfied at the flat interface. The zeroth-order terms of the
small parameter in the boundary conditions, along with the governing equations, are straightfor-
ward and share some similarities with the original problem shown in chapter 2. We have shown
the velocity plots for the base solution.

To complete the solution for the perturbation problem, we need to evaluate the first-order solu-
tions, which are given by equating the first-order terms of the small parameter from the governing
equation and boundary conditions. The first order governing equations are given by the solution of
the Helmholtz equation. The linearization of the interface boundary conditions shows that the first-
order solutions depend on the horizontal position between the wires and the vertical position. We
have presented the expressions for the constants appearing after solving the Helmholtz equation in
terms of the known parameters and the base solution. We have demonstrated velocity profiles for
the composite solution at different horizontal positions.

The base solution overlaps the composite solution in the x position where the interface curva-
ture is equal to the flat interface. The equation of the horizontal coordinate x is presented in chapter
3, which depends upon the pressure difference, surface tension, and maximum deviation of the in-
terface from the flat interface. We have shown the velocity profiles for the composite solution for
different x and the base solution which is close the composite solution for the particular x position
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where the interface curvature cuts the unperturbed interface. The velocity profiles at different x

positions have some discontinuity at the interface. The discontinuity at different x positions in-
creases as the interface deflection increases. From x = 0 to x = L, the discontinuity decreases until
the position where the interface deflection becomes equal to the flat interface and then increases
again until x = L.

Finally, we have characterized the velocity difference between the base solution and the com-
posite solution. We performed the analysis of measuring the difference between the base solution
and the composite solution to determine the effect of using the curved interface. The difference
between the velocities is calculated at the interface and has been plotted for different interface de-
flections that can be accommodated in the adiabatic section and the pressure difference required
has been adopted from Shafahi et al. (2010). Figure 6 in chapter 3 shows the interface deflection
versus the velocity difference for various liquid layer thicknesses. The velocity difference is higher
for the larger thickness of the liquid layer and gives a minimal interface deflection, whereas for the
smaller liquid layer thickness, we get a small velocity difference for higher interface deflection.

The discontinuity at the interface occurs because of the way we have linearized our boundary
conditions at the interface by ignoring all the higher-order terms of the small parameters. The
inclusion of the higher-order terms of the small parameters at the interface will make our problem
closer to the base solution.

One thing of note is that the velocity difference in Figure 6 is only shown at the interface.
Having regard to Figure 5 of chapter 3, the discontinuity of the velocity can be seen at the interface.
Therefore, the velocity difference is more significant at the interface. However, if we measure the
velocity difference at different vertical positions there is no discontinuity. There is a negligible
velocity difference between the base solution and the composite solution. To prove this statement,
we have shown the surface plot in Figure 7 of chapter 3, which shows the velocity difference
with different interface deflections at different vertical positions. Figure 7 suggests that there is a
negligible velocity difference at all vertical positions, but that it increases when the vertical position
approaches the interface. Similarly, Figure 8 shows a two-dimensional plot showing the velocity
difference at different vertical positions. It can be concluded from the results obtained in chapter
3 that the results from chapter 2 have some value, when considering a flat interface rather than a
curved interface.

The applicability of the perturbation problem to a finite vapor layer poses further complica-
tions. We use the Helmholtz equation for our first order governing equation, the solution of which
involves summation for all positive integers. The presence of two-phase gives two governing
equations of second order and is 2-dimensional. There are six constants involved, and to reduce
complexity, an infinite domain imposes a far-field boundary condition, which reduces the constants
involved. The presence of a finite vapor layer will save the constant. Another complication is using
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a finite porous medium with the rest of the vapor in the free medium. The velocity of vapor in the
free medium will be given by the Navier-Stokes equation. The perturbation problem can be ap-
plied to the heat pipe model presented in chapter 2, which will avoid the discrepancy of using a flat
interface for the shear-stress boundary condition and a curved interface for the capillary pressure.

The problem considered in chapter 3 can be improved further by using circular wires instead
of square wires to find an interface curvature that considers the surface chemistry effects. Also, to
discover an expression for the curved interface, we will use the volume conservation of the liquid
layer by excluding the extra volume of the wires that arises due to the change in the horizontal
position of the triple point. Finally, we can use the same analysis of using perturbation theory by
ignoring all the higher-order terms for a finite vapor layer, as we saw in chapter 2.

Some improvements that we can incorporate into our model are to assume a non-linear pres-
sure variation in liquid and vapor phase along the adiabatic section rather than a linear pressure
variation. Our original model also assumed cµ and cρ as constant, but cµ and cρ can vary with the
temperature, and temperature varies along the length of the heat pipe.

As future work, a real heat pipe involves a condenser section and evaporator section. We can
extend our study to understand the phase changes in these sections. For instance, we can consider
drop-wise condensation and film-wise evaporation which increases the performance of the heat
pipe. Including such details do not change the results obtained above for the adiabatic section. We
can use an expanded CAF type model for a real heat pipe where two-phase internal flows occur
in the adiabatic section, and phase changes take place in the evaporator and the condenser section.
Our model has shown the flow inside the adiabatic section and we can decide our liquid fill ratio
to achieve maximum heat flux. We can extend this analysis to see whether the obtained optimum
fill ratio is sufficient so that the evaporator dry out limit is not reached.
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