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Abstract

Language models are a fundamental component of natural language processing (NLP)

systems. Numerous successful deployments of modern artificial intelligence systems

are based on language models, including GPT-4 and ChatGPT. In practice, they

are often trained with the teacher forcing objective, where the goal is to predict the

next token given the context. One problem with this objective is that it suffers from

inconsistency between training and inference, which leads to compounding errors

during the inference phase. Reinforcement learning (RL) is considered a promising

approach to address these issues. However, it is usually difficult to design reward

functions for language models. Previous attempts at designing reward functions are

typically sparse and handcrafted for a specific task only.

In this thesis, we propose a task-agnostic approach that derives a step-wise reward

function directly from a model trained with the teacher forcing objective. Our work

shows that under a common assumption, language models are trained to implicitly

capture the rewards. This simple connection allows us to derive a reward function

from any pre-trained language models. The derived reward functions can be used to

conduct reinforcement learning for language modeling. We conduct experiments on

different sequence-to-sequence tasks, including dialogue and paraphrase generation.

Empirical results show that the model trained with our reward function outperforms

self-training and reward regression methods on both tasks, confirming the effectiveness

of our derivation.
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Chapter 1

Introduction

1.1 Motivation

Language models have been widely used in natural language processing (NLP) tasks,

such as machine translation [1], dialogue generation [2], and summarization [3]. The

goal of a language model is to learn the probability distribution of a sequence of words.

With the rise of deep learning, this is usually achieved by training a neural network. In

recent years, the Transformer [1] has become the dominant architecture for language

modeling. The Transformer is a self-attention based model that can capture long-

range dependencies in a sequence and compute in parallel. It has achieved state-of-

the-art performance on many NLP tasks [4, 5].

Such models are often trained to predict the next token given the context. This is

known as teacher forcing. It has been widely applied in multiple literature [1, 6, 7].

However, there are two main issues with this practice:

• Teacher-forcing training is data-hungry because parallel datasets are usually

expensive to obtain. On the other hand, there are numerous unlabeled, non-

parallel datasets available. This poses an urge to efficiently exploit non-parallel

data.

• Teacher forcing introduces a discrepancy between training and inference because

the model learns to predict the next word based on the partial groundtruth
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reference during training, whereas in inference the model predicts the next word

based on its self-generated previous words. This undesired discrepancy is known

as exposure bias [8–11].

1.2 Main challenges

Several methods have been proposed to address the problems above individually.

For the first problem, a straightforward method is to generate pseudo-parallel sen-

tences for data augmentation, such as self-training [12], sequence-level knowledge

distillation [13], and back-translation [14]. However, the exposure bias remains in

such cases.

To address the second problem, the model should consider its self-generated sen-

tences during training. Common solutions are often based on reinforcement learning

(RL). In text generation, however, there does not exist a naturally defined reward

function for RL. Researchers have proposed various heuristic scores as the reward,

such as BLEU for translation [15] and ROUGE for summarization [16]. These re-

ward functions are task-specific and not generalizable to other tasks. Further, these

rewards require parallel data, failing to address the first problem; they are typically

sparse (only non-zero at the end of a sentence), making RL training difficult.

As seen, there is no existing method that can address both problems simultane-

ously. The goal of this work is to address both in one framework with a learned,

dense reward function that does not require human preference annotations.

1.3 Contributions of this thesis

In this thesis, we propose a novel framework to address the above two problems

simultaneously. Specifically, we reveal that language models trained with teacher

forcing are naturally reward functions. We explain the equations to induce a reward

function for RL training. With the equation, we can easily induce a reward function
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from an off-the-shelf language model without any parameter tuning.

Our method is task-agnostic and does not require handcrafted engineering or

heuristics. Further, our reward function provides dense (step-wise) training signals,

which makes RL training much easier than sparse rewards. Additionally, the reward

function derived from the language model does not directly participate in the genera-

tion, which allows the model to explore based on its own prediction and thus alleviates

the exposure bias.

We conduct experiments on dialogue generation and paraphrase generation. We

first train a language model with teacher forcing and then apply RL on the same

model based on our induced reward function with unlabeled data. The empirical

results suggest that our method leads to better performance compared with several

baselines, including self-training and task-specific heuristic reward learning, on both

tasks. This confirms the effectiveness and generality of our framework.

To summarize, the main contributions of this thesis are as follows:

• We propose a novel framework to address the two problems of teacher-forcing

training simultaneously. Our framework is task-agnostic and does not require

handcrafted engineering or heuristics.

• We reveal that language models trained with teacher forcing are naturally re-

ward functions. We give out the equations to induce a reward function for RL

training.

• We conduct experiments on dialogue generation and paraphrase generation.

The empirical results suggest that our method leads to better performance

compared with several baselines on both tasks.

1.4 Thesis structure

In this chapter, we introduce the motivation and contributions of this thesis. The

rest of the thesis is organized as follows:
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• Chapter 2 introduces the background of this thesis, including the Transformer,

language modeling, and reinforcement learning. In particular, we start with the

history of language models. We illustrate the development of language models

from the traditional n-gram models to the modern neural language models,

with a focus on the Transformer models. In addition, we will also introduce the

background of reinforcement learning, including the Markov decision process

and policy gradient. The chapter ends with a brief literature review. The

details are postponed to later chapters.

• Chapter 3 describes the detailed derivation of the reward function from the

language model. We first present the formulation of the language modeling

task as a Markov decision process. Then, we present the common assumption

that we borrow from the inverse reinforcement learning literature. We show

our main argument that the language model trained with teacher forcing is a

reward function. The chapter ends with the overall algorithm of our framework.

• Chapter 4 presents the empirical results of our framework on dialogue generation

and paraphrase generation. We first introduce the datasets and evaluation

metrics. Then, we present the experimental results and analysis. We also

conduct ablation studies to verify the effectiveness of our framework.

• Finally, Chapter 5 concludes this thesis. We discuss the limitations of our

framework. Moreover, we provide an outlook for potential future work arising

from our framework.
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Chapter 2

Background

In this chapter, we will first illustrate language models in Section 2.1. We will show

the development of language models with a focus on neural network-based ones,

starting with the recurrent neural network. We will see the origin of the attention

mechanism in recurrent models, which leads to the well-known Transformer models.

We will finish this section with a discussion of two different branches of autoregressive

Transformers: the encoder–decoder and decoder-only architectures.

In Section 2.2, we will introduce the concepts in reinforcement learning. We will see

how language modeling is depicted in the framework of the Markov decision process,

the foundation of reinforcement learning. We will show policy gradient methods are

well-suited for language model training. We finish this section with a discussion

of different approaches to text generation beyond language modeling with teacher

forcing.

2.1 Language models

Language models have been extensively studied in the past few decades. The under-

lying mathematical foundation was first developed by Markov [17], who introduced

the concept of n-gram. The n-gram models are based on the Markov assumption,

which assumes that the probability of a word only depends on the previous n − 1

words. Shannon [18] applied the n-gram model to approximate the probability of
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English sentences.

The n-gram models are simple and efficient, but they suffer from the curse of

dimensionality. Specifically, the number of possible n-grams grows exponentially with

the size of the vocabulary.

The turning point of language models is the introduction of neural networks pro-

posed by Bengio and Bengio [19], aimed to solve the curse of dimensionality problem.

However, they only used simple feed-forward neural networks, which are incompetent

to model longer sentences. In the following years, recurrent neural networks were

introduced to model longer contexts. Recently, more advanced models like Trans-

former [1] have achieved great success.

2.1.1 Definition

Language models are used to estimate the probability of sentences. The probability

of a sentence is the product of the conditional probability of each word given the

previous words in the sentence. Building a language model is essentially modeling

the conditional probability of the next word given the previous words.

Formally, given a sentence y = (y1, y2, . . . , yT ), the probability of the sentence is

defined as:

P (y) =P (y1)
T∏︂
t=2

P (yt|y1, y2, . . . , yt−1) (2.1)

≈P̂ LM(y1)
T∏︂
t=2

P̂ LM(yt|y<t), (2.2)

where y<t = (y1, y2, . . . , yt−1) is the previous words of the word yt. The language

model P̂ LM(yt|y<t) outputs the conditional probability for a given word yt based on

the previous words y<t.

2.1.2 N-gram language models

The n-gram language models are based on the Markov assumption, which assumes

that the probability of a word only depends on the previous n−1 words. The n-gram
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language models are defined as:

P̂ LM(yt|y<t) =

{︄
P (y≤t) if t ≤ n

P (yt|yt−n, yt−n+1, . . . , yt−1) if t > n,
(2.3)

where we simply cut off the early prefix of the sentence if the length of the sentence

is greater than n.

To train such a model, we need to estimate the probability of each n-gram, which

can be achieved by counting the number of occurrences of the n-gram in the training

data and normalizing it by the number of occurrences of the previous n − 1 words.

For example, the probability of the word yt given the previous n − 1 words y<t can

be estimated as:

P̂ LM(yt|y<t) =
C(yt−n+1, yt−n+2, . . . , yt−1, yt)

C(yt−n+1, yt−n+2, . . . , yt−1)
, (2.4)

where C(·) is the counting function given the training data.

The n-gram language models are simple and intuitive. However, they suffer from

the curse of dimensionality. For example, if we have a vocabulary of size V , the

number of possible n-grams is V n. It is usually infeasible to estimate the probability

of all possible n-grams given the limited amount of training data. This causes the n-

gram language models to perform poorly on unseen n-grams because the probability

of unseen n-grams is always zero.

2.1.3 Neural network-based language models

The feed-forward neural network for language modeling

The neural network-based language models are first introduced by Bengio and Ben-

gio [19]. They used a simple feed-forward neural network to model the conditional

probability of the next word given the previous words. The neural network-based

language models are defined as:

P̂ LM(yt|y<t) = softmax(Woht + bo), (2.5)
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where Wo and bo are the output weight matrix and bias vector. The vectorial repre-

sentation ht, also known as the hidden state, is computed as:

ht = tanh(Whf(y<t) + bh), (2.6)

where f is the feature function that maps the previous words to a vectorial represen-

tation. The matrix Wh and vector bh are the hidden weight matrix and bias vector

for the input layer.

Although the feed-forward neural network language models solve the curse of di-

mensionality problem, they suffer from the long-term dependency problem. Specifi-

cally, the feed-forward neural network language models can only access the previous

words within the sliding window and ignore all the other words.

The recurrent neural network for language modeling

The recurrent neural network is then proposed to be the backbone of language models

as it is designed to handle sequential data [20]. The general idea is to capture the

information of all the previous words through the hidden state. The hidden state is

updated at each time step and is passed to the next time step. The recurrent neural

network-based language models are defined as:

ht =f(ht−1, yt−1), (2.7)

P̂ LM(yt|y<t) =softmax(Woht + bo), (2.8)

where f is the recurrent function that updates the hidden state ht based on the

previous hidden state ht−1 and the previous word yt−1. The parameters Wo and bo

are the output weight matrix and bias vector.

The choice of f is crucial for the performance of the recurrent neural network. The

straightforward choice is the simple recurrent unit [21], defined as:

ht = tanh(Wxhyt−1 +Whhht−1 + bh). (2.9)
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The simple recurrent unit suffers from the vanishing gradient problem [22], caused

by the repeated multiplication of the weight matrix Whh in the recurrent function.

To address this issue, a common choice is the long short-term memory [23]. It

enhances the hidden state ht by maintaining another variable ct. The whole function

f is formally defined as:

it =σ(Wxiyt−1 +Whiht−1 + bi), (2.10)

ft =σ(Wxfyt−1 +Whfht−1 + bf ), (2.11)

ot =σ(Wxoyt−1 +Whoht−1 + bo), (2.12)

c̃t =tanh(Wxcyt−1 +Whcht−1 + bc), (2.13)

ct =ft ⊙ ct−1 + it ⊙ c̃t, (2.14)

ht =ot ⊙ tanh(ct), (2.15)

where all W and b are the weight matrices and bias vectors. σ is the sigmoid function

and ⊙ is the element-wise multiplication. it, ft, ot, c̃t, ct, and ht are the input

gate, forget gate, output gate, cell input, cell state, and hidden state at time step

t, respectively. yt−1 is the input word at time step t. These computations can be

visualized in Figure 2.1.

The intuition of the long short-term memory cells is to make the model itself choose

to remember or forget. The forget gate ft controls the amount of information to be

forgotten from the previous cell state ct−1. The input gate it controls the amount of

information to be added to the cell state ct. The output gate ot controls the amount

of information to be output from the cell state ct.

Conditional language modeling

One of the tasks of interest in natural language processing is conditional language

modeling. One example is the translation task, where the generated text is con-

ditioned on the given source language [24]. Formally, conditional language models

additionally consider a set of conditioning variables x in addition to the partial se-
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X +

σ σ tanh

X

σ +

tanh

ct-1

ht-1

yt

ht

ct

Figure 2.1: The long short-term memory cell. Every yellow cell indicates a neural
network layer with the labeled activation function. The green cells are element-wise
operations solely. The arrows indicate the flow of information.

quence y<t. The conditional language models are defined as:

P (y|x) ≈
T∏︂
t=1

P̂ LM(yt|y<t,x), (2.16)

where x is the condition variable. Wo and bo are the output weight matrix and bias

vector.

This formulation comes in handy when the task naturally has a source sentence and

a target sentence. Take machine translation as an example: the condition variable

x can be the original language to be translated, and the target sentence y<t is the

already translated part.

The conditional language models are usually built with the encoder–decoder frame-

work [6, 25]. The encoder is responsible for encoding the source sentence into a single

vectorial representation. The decoder then decrypts the representation into the target
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sentence. The general encoder–decoder framework works in the following way:

c = Encoder(x), (2.17)

ht = f(ht−1, yt−1, c). (2.18)

The Encoder function is usually a neural network. The vector c is the representa-

tion of the source sentence. The hidden state ht is the hidden state of the decoder at

time step t. The function f is the recurrent function that updates the hidden state

ht based on the previous hidden state ht−1, the previous word yt−1, and the source

representation c.

The attention mechanism for conditional language modeling

Although the conditional language model with long short-term memory is able to

capture the long-term dependency, they still suffer from the problem of information

bottleneck caused by the fixed-length hidden state. The fixed-step hidden state is not

able to capture all the information in the source sentence due to the compression loss

from the sequence x to a single vector c. To address this issue, the attention mecha-

nism is introduced to the recurrent neural network [24]. The attention mechanism is

defined as:

st = Encoder(x<t), (2.19)

et,i = a(ht−1, si), (2.20)

αt,i =
exp(et,i)∑︁T
k=1 exp(et,k)

, (2.21)

ct =
T∑︂
i=1

αt,isi, (2.22)

ht = f(ht−1, yt−1, ct). (2.23)

As shown in the above equations, the attention mechanism computes a set of

attention weights αt,i for each word si in the source sentence. The attention weights

are computed based on the previous hidden state ht−1 and the source representation
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X1 X2 XT

y1 y2 yT

c

s1 s2 sT

hTh2h1

X1 X1 X1

y1 y2 yT

s1 s2 sT

hTh2h1

cTc2c1

Figure 2.2: The encoder–decoder architecture without (left) and with (right) the
attention mechanism.

si. The attention weights are then used to compute the context vector ct. The context

vector ct is a weighted sum of the source representation si. The context vector ct is

then used to update the hidden state ht. This practice significantly reduces the

information bottleneck problem.

In Figure 2.2, we visualize the difference of encoder–decoder networks with and

without the attention mechanism. The left part of Figure 2.2 shows the encoder–

decoder network without the attention mechanism. In this case, the decoder only

has access to the last hidden state of the encoder. The single vector c is then used

by every time step of the decoder. The right part of Figure 2.2 shows the encoder–

decoder network with the attention mechanism. In this case, the attention mechanism

generates a sequence of context vectors ct for each time step of the decoder. This

enables the decoder to decide which source words to focus on at each time step. This

practice is hence named “attention”.
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The vanilla Transformer model for language modeling

The long short-term memory with the attention mechanism can capture the infor-

mation of the previous words more effectively. However, a key limitation of the

recurrent neural network is the sequential computation. In other words, for each step

t, the model needs to use the previously generated ht−1 to compute ht. This recur-

rence is undesired for modern highly parallelized training. To address this issue, the

Transformer model is introduced [1] to replace the recurrent neural network with the

attention mechanism.

The vanilla Transformer model is composed of two parts: the encoder and the

decoder. The encoder is a stack of L identical encoder layers, while the decoder is a

stack of L decoder layers. For each encoder layer, there are two sub-layers: the multi-

head self-attention layer and the feed-forward layer. The multi-head self-attention

layer is used to capture the long-term dependency.

The decoder layer is similar to the encoder layer. The major architectural difference

is that the decoder layer has an additional multi-head attention layer, which is used

to capture the dependency between the source sentence and the target sentence. In

addition, the attention pattern in this layer is masked to prevent the decoder from

attending to future words.

We will present the details of the multi-head self-attention layer and the multi-head

attention layer in the next chapter.

Encoder–decoder and decoder-only Transformer models

Although the original Transformer was proposed to be an encoder–decoder model,

a recent trend is to use the decoder-only Transformer model for language modeling.

A representative is the GPT family [5, 26]. The decoder-only Transformer model

is able to achieve comparable or even better performance than the encoder–decoder

Transformer model.

It is worth noting that the decoder-only Transformer model can be used for both
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conditional and non-conditional language modeling. It is straightforward to see the

application of the non-conditional case, where the decoder-only Transformer model

is used to generate the next word given the previous words. For the conditional case,

the decoder-only Transformer model can be used to generate the next word given the

previous words and the source sentence. The source sentence and target sentences are

concatenated as the input to the decoder-only Transformer model. They are usually

separated by a special token. The decoder-only Transformer model is able to capture

the dependency between the source sentence and the target sentence, just as the

encoder–decoder Transformer model does. More surprisingly, even when the model

is solely trained on the non-conditional datasets, it turns out that the decoder-only

Transformer model can generate the desired target sentence by “prompting”. For

example, let the task be English–German translation. If one wants to translate “I

like to eat apples” to German, then simply showing a prompt “The translation of ‘I

like to eat apples’ is” to the model may be enough for the model to generate “Ich

esse gerne Äpfel” by completing the prompt.

Due to the success of the decoder-only Transformer model on both conditional and

non-conditional tasks, we will not discriminate between the two types of tasks and

focus on the non-conditional formulation in this thesis for the simplicity of our theory.

It is easy to extend our theory to the conditional case.

2.2 Reinforcement learning

We include the background of reinforcement learning because it is a powerful tool for

solving sequential decision-making problems. In this section, we will introduce the

basic concepts of reinforcement learning and the policy gradient method. We will

finish this section by explaining how the policy gradient methods can be applied to

the language modeling problem.
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2.2.1 Markov decision process

The reinforcement learning problem is formulated as a Markov decision process. An

episodic Markov decision process is a tuple (S,A, T ,R, H), where S is the state space,

A is the action space, T is the transition probability, R is the reward function, and

H is the horizon length. At each time step t, the agent observes the state st ∈ S and

takes an action at ∈ A. The agent then receives a reward rt ∈ R and transits to the

next state st+1 ∈ S according to the transition probability T (st+1|st, at). The goal

of the agent is to maximize the expected cumulative reward E[
∑︁H

t=0 rt]. The horizon

length H is used to determine the maximum length of the episode.

2.2.2 Policy

The policy π is a function that maps the state st to the action at. The policy can be

either deterministic or stochastic. The deterministic policy is defined as π : S → A,

whereas the stochastic policy is defined as π : S ×A → ∆|A|−1. The stochastic policy

is usually parameterized by a neural network, which takes the state st as the input

and outputs a probability distribution over the action space A. The action is then

sampled from the probability distribution.

With the policy, the agent can take actions in the environment. This is called

a rollout process used to collect trajectories. A trajectory is a sequence of state–

action pairs (s0, a0, r0), (s1, a1, r0), . . . , (sH , aH , rH). The rollout starts from the initial

state s0 and ends at the terminal state sH . The trajectory is collected following the

procedure below:

s0 ∼ S0, (2.24)

at ∼ π(st), (2.25)

st+1 ∼ T (st+1|st, at), (2.26)

rt ∼ R(rt|st, at). (2.27)

This procedure is illustrated in Figure 2.3. The gray cell is the environment that
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Figure 2.3: The rollout process. Adapted from [29].

the learning agent could not control. Instead, the agent learns to make optimal

decisions by interacting with the environment. This is achieved by finding a good

policy π, represented by the green cell. In this figure, we omit the implementation

of the policy. In practice, the implementation is quite flexible. The simple solution

could directly use a neural network to generate an action given the state as the input.

The policy can also be implemented with a value function and a policy function,

which is called the actor-critic method [27]. It is worth noting that the policy can be

implemented without actually modeling a probability over actions. One example is

the deep Q-learning [28] algorithm, where the actions are chosen greedily with respect

to the action-value function.

2.2.3 Value equations and Bellman equation

The value function is used to evaluate the goodness of a state or a state–action pair.

The state-value function vπ(st) is defined as the expected cumulative reward starting
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from the state st and following the policy π:

vπ(st) = Eπ

[︃ H∑︂
i=t

ri

⃓⃓⃓
st

]︃
. (2.28)

In addition to the state-value function, the action-value function is also defined as

the expected cumulative reward starting from the state st, taking any action at and

following the policy π afterward:

qπ(st, at) = Eπ

[︃ H∑︂
i=t

ri

⃓⃓⃓
st, at

]︃
. (2.29)

The value functions can be computed recursively by the Bellman equation:

vπ(st) = Eπ

[︃
rt +

H∑︂
i=t+1

ri

⃓⃓⃓
st

]︃
(2.30)

= Eπ

[︃
rt + vπ(st+1)

⃓⃓⃓
st

]︃
. (2.31)

For the action-value function, we also have:

qπ(st, at) = Eπ

[︃
rt +

H∑︂
i=t+1

ri

⃓⃓⃓
st, at

]︃
(2.32)

= Eπ

[︃
rt + qπ(st+1, at+1)

⃓⃓⃓
st, at

]︃
. (2.33)

One interesting property of the value functions is that they satisfy the following

equations:

vπ(st) =
∑︂
at∈A

π(at|st)qπ(st, at), (2.34)

qπ(st, at) = rt +
∑︂

st+1∈S

T (st+1|st, at)vπ(st+1). (2.35)

These equations provide the critical property of the value functions. By construct-

ing the value functions, we can evaluate the goodness of any given policy π in a

principled way.
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2.2.4 Policy gradient

The goal of the agent is to find the optimal policy π∗ that maximizes the expected

cumulative reward E[
∑︁H

t=0 rt]. The policy gradient is a class of methods that directly

optimize the policy π to maximize the expected cumulative reward. It is based on

the following equation:

∇θJ(θ) = Eπ

[︃ H∑︂
t=0

∇θ log π(at|st)(qπ(st, at)− b(st))

]︃
, (2.36)

where b(st) is the baseline function only depending on the state st.

The simplest policy gradient method is the REINFORCE algorithm [30], where

the baseline function is set to zero and qπ(st, at) is replaced by the empirical return

Gt =
∑︁H

i=t ri from a single rollout. Unlike other advanced algorithms like actor–

critic methods [27] or proximal policy optimization [31], this implementation does

not require the value function to be computed. The only trainable parameters are

the parameters of the policy π.

2.3 Text generation

Besides training a language modeling using the teacher forcing objective that teaches

the model to predict the next word given the previous words, there are many other

methods for text generation. In this section, we will introduce several categories of

text generation methods beyond language modeling trained with teacher forcing.

2.3.1 Text generation using reinforcement learning

Interestingly, the language modeling problem can be easily formulated as a reinforce-

ment learning problem. We can design the state space S as the history of the tokens

generated so far. The action space A is the vocabulary of the language. The tran-

sition function T is a function that concatenates the new token to its context. The

language model can then serve as a policy π that maps the state st to the probability
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distribution over the action space A.

This formulation has been extensively used in text generation. For instance,

Sokolov et al. [32] and Kreutzer et al. [33] leverage the bandit-structured predic-

tion framework for text generation with BLEU as the heuristically defined reward.

Bahdanau et al. [34] and Shen et al. [35] utilize different variants of policy gradient

for RL training. However, these methods are task-specific and suffer from the prob-

lem of sparse rewards where most of the feedback is zero. More importantly, these

approaches require labeled data to calculate the reward and cannot utilize unlabeled

data. To address this, Wu et al. [36] propose to learn a reward regression model on

the labeled dataset and perform RL on the unlabeled data with the learned reward.

As mentioned, such a method is still task-specific because it requires the human

heuristics of the task to define the proper reward function.

To summarize, reinforcement learning is a promising approach for text generation

by treating the language model as a policy. However, the reward function is a critical

component that is missing. In addition, they can hardly be applied to unlabeled

data because they require groundtruth text to compute the reward. These drawbacks

prevent the reinforcement learning methods from being widely used in text generation.

2.3.2 Text generation with unlabeled data

There are vastly available unlabeled data (e.g., the crawled web text) unused in

conditional language modeling, as it requires human annotations for source–target

pairs. In this section, we will introduce several methods that can utilize unlabeled

data for text generation.

Semi-supervised training. A popular paradigm for using unlabeled data is semi-

supervised learning, which uses the unlabeled data as a supplement to enhance per-

formance based on the labeled data solely. Two popular semi-supervised learning

methods are self-training [37, 38] and back-translation [14]. Both methods first train
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a model on the labeled data and then generate pseudo-labeled pairs for the unlabeled

sentences. The difference is that self-training generates pseudo-labeled pairs from

source to target, whereas back-translation generates from target to source.

However, such methods cannot efficiently utilize the data because of the lack of

exploration. Specifically, they do not let the model generate possible sentences during

training. Additionally, the exposure bias issue remains because they are trained with

the teacher-forcing objective.

Unsupervised training. There exists some work that trains the model on unla-

beled data solely. For example, Lample et al. [39] propose a framework that trains

a machine translation model using the monolingual data only. However, such meth-

ods are strongly task-specific and do not generalize well. Most importantly, they are

not able to achieve comparable results to the supervised or semi-supervised methods.

Given the inferior performance, we do not consider them in this thesis.

2.3.3 Other text generation methods

A line of work uses the generative adversarial network (GAN) [40] to alleviate the issue

of exposure bias. For example, Yu et al. [41] and Guo et al. [42] propose to use GAN-

style training to generate text similar to the training set in an on-the-fly manner. This

practice reduces the discrepancy between training and inference because GAN sends

its own generation as inputs rather than using groundtruth sentences during training.

Shi et al. [43] further formulate the adversarial training using the IRL interpretation.

These GAN-style methods are different from ours in two main ways. First, GAN-

style training requires labeled corpora and thus cannot be directly applied to semi-

supervised learning on unlabeled datasets. Second, GAN-style training involves the

optimization of an adversarial objective, making the training unstable, e.g., suffering

from mode collapse [40].

Search is also a popular way to replace teacher forcing. The Learning to Search
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(L2S) framework [44, 45] enables the model to search for a better score during learning

and is widely applied to text generation. For example, Wiseman and Rush [46]

propose to optimize the beam search results through training. Li et al. [47] develop an

unsupervised learning approach to text generation based on local search. In addition

to the L2S framework, Leblond et al. [48] leverage the Monte Carlo tree search [49,

50] to select better tokens in a step from the sampled generation. These methods are

different from ours since they need either heuristically defined scoring functions or

labeled data, limiting their methods to certain tasks or to the supervised paradigm.

However, given the success of these methods, we consider the search-based approach

an interesting future extension of our work.

The intuition behind our work is also related to imitation learning methods in gen-

eral. Typically, these methods aim to obtain a good policy given a dataset containing

state–action pairs. The easiest approach is behavior cloning [51], which greedily im-

itates the demonstration. Similar to the exposure bias, behavior cloning also faces

the problem of compounding errors [52]. SMILe [52] and DAgger [53] mitigate the

problem by querying an expert. In text generation, Du and Ji [54] empirically verify

that imitation learning methods are helpful. Recently, Pang and He [55] frame the

text generation task as an offline reinforcement learning problem, which learns from

a dataset containing tuples of state, action, and reward. Compared with our method,

these approaches rely on labeled sentence pairs and cannot effectively make use of

unlabeled datasets.
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Chapter 3

Language models learn reward
functions implicitly

3.1 Overview

In this chapter, we build a simple connection between the teacher forcing objective and

reward learning for text generation. We first introduce the Transformer architecture,

which is the foundation of our approach. We then formally present how to formulate

text generation as a Markov decision process. Finally, we derive a reward function

from a language model trained by teacher forcing.

3.2 Neural architecture

As discussed in Section 2.1, we use the Transformer architecture to model the con-

ditional probability of a sequence y = (y1, · · · , yT ) given a source sequence x =

(x1, · · · , xS). Specifically, we choose a well-known pre-trained model, T5 [56], as our

base model. T5 is a Transformer encoder–decoder model with a vocabulary size of

32,000. We use the pre-trained T5 model as initialization for all settings.

The critical component of the Transformer architecture is the attention mechanism.

Different from the recurrent neural network-based models introduced in Section 2.1.3,

the attention mechanism in Transformer allows parallel computation within every

attention layer. For each layer, the attention mechanism consists of three parts:

the query Q, the key K, and the value V . The attention mechanism computes the
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attention weights between the query and the key, and then the weighted sum of the

value is the output of the attention layer. The attention weights are computed as

follows:

Attention(Q,K, V ) = softmax

(︃
QKT

√
dk

)︃
V, (3.1)

where dk is the dimension of the key.

The attention mechanism in Transformer is further improved by the multi-head

design, which computes multiple attention patterns in parallel. The output is the

concatenation of the result from each head, formally defined as follows:

MultiHead(Q,K, V ) = Concat(head1, · · · , headh)W
O, (3.2)

where each head is defined as follows:

headi = Attention(QWQ
i , KWK

i , V W V
i ). (3.3)

The multi-head attention is important to the Transformer architecture. It allows

the model to capture different attention patterns in different representation subspaces

and recombine them together. The multi-head attention is used in both the encoder

and the decoder of the Transformer architecture. However, they are used in different

ways.

In the encoder, the multi-head attention is used to capture the relationship between

the source sequence itself, which is known as the self-attention mechanism.

In the decoder, there are two multi-head attention layers. The first one is the self-

attention layer, similar to which in the encoder. One key difference is that it requires

the causal mask on the attention patterns to prevent the model from seeing the future

tokens. This is because the decoder is auto-regressive and can only see the previous

tokens during inference. The second one is the encoder–decoder attention layer, used

to capture the relationship between the source sequence and the target sequence. The

query is generated from the previous self-attention layer in the decoder, and the key

and the value are from the last encoder layer.
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Figure 3.1: The Transformer architecture. The layer normalizations, activation func-
tions, and residual connections are omitted for simplicity. Adapted from [1].

Besides the multi-head attention layers, the Transformer encoder and decoder also

contain feed-forward layers. The feed-forward layer is a two-layer fully-connected

network with a ReLU activation function in between. The feed-forward layer is used

to transform the representation of the multi-head attention layer. The feed-forward

layer is used in both the encoder and the decoder. In addition, layer normalization

and residual connection are applied to coordinate these layers.

In summary, the Transformer architecture is illustrated in Figure 3.1. The yellow

cells are self-attention layers, where they only attend to the sentences within the

encoder or the decoder. The green cells are encoder–decoder attention layers, where

they attend to the outputs of the encoder modify the representation of the decoder.

The blue cells are feed-forward layers. All layer normalizations, activation functions,

and residual connections are omitted for simplicity.
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3.3 Model training and inference

In this section, we will introduce the typical training procedure for the Transformer

architecture. The training is usually called teacher forcing. The teacher forcing

training is a supervised learning method. It requires the groundtruth y of the target

sequence corresponding to the source sentence x. The model is trained to maximize

the log-likelihood of the groundtruth sequence. The log-likelihood for each sentence

is defined as follows:

max
θ
{−LTF(θ;x,y) = logPθ(y|x) =

T∑︂
t=1

logPθ(yt|y<t,x)}, (3.4)

where θ is the parameters of the transformer model.

During inference, the model is used to generate the target sequence token by token.

The model generates the next token based on the previous tokens. There are different

ways to generate the next token. The most common way is to use the greedy search.

The greedy search chooses the token with the highest probability as the next token,

which is expressed as follows:

yt = argmax
y∈V

Pθ(y|y<t,x). (3.5)

After the next token is generated, it is concatenated with the previous tokens y<t

to be y<t+1. The process is repeated until the end-of-sentence token is generated.

As shown in Chapter 1, this long-standing practice has been shown to be prob-

lematic. It usually requires reinforcement learning to improve the performance of the

model. However, given the reward functions are not easy to design, the reinforcement

learning methods are not widely used in the text generation tasks. In the next chap-

ter, we will introduce our method to automatically learn a proper reward model for

language models.
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3.4 Our method and procedure

Our approach trains the language model on non-parallel data with reinforcement

learning, whose foundation is the Markov decision process. In this section, we first

introduce the Markov decision process formulation for text generation. Then we

describe our method to derive the reward function from a language model trained by

teacher forcing. Finally, we describe the policy gradient method used in RL training

with our induced reward function.

3.4.1 RL formulation of text generation

Text generation as a Markov decision process (MDP). We formulate the

text generation process as an (undiscounted) MDP, which can be represented as a

tuple (S,A, T , r). At every step, a decision a ∈ A is made based on its state s ∈ S.

The transition dynamic T (s′|s, a) is the probability of the next state being s′, given

the current state s and the action a. A function r : S × A → R defines the reward

based on a state and an action.

Typically, the decision making is assisted by a policy π, which is a predicted distri-

bution over actions and is trained to maximize the expected total reward, also known

as an action value function:

qπ(s, a) := E
at∼π(·|st)

st+1∼T (·|st,at)

[︄
H∑︂
t=1

r(st, at)|s1 = s, a1 = a

]︄
, (3.6)

where H is the number of steps. Theoretical results show that the optimal policy π∗

satisfies the Bellman optimality equation:

qπ
∗
(s, a) = r(s, a) +

∑︂
s′∈S

T (s′|s, a)max
a′

qπ
∗
(s′, a′). (3.7)

For text generation, the MDP state can be defined as the partial generated se-

quence y<t := (y1, · · · , yt−1), and the action as the next token yt in the vocabulary V .

The transition dynamic T (·|s, a) here is deterministic, since every state–action pair

(y<t, yt) leads to a unique state y<t+1 for the next step.
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In previous RL-based text generation, there lacks a naturally defined reward func-

tion r(s, a). While researchers have applied various heuristics as the reward [34, 35],

they suffer from several shortcomings (e.g., sparsity and task specificity) as mentioned

in Chapter 1. To address these problems, we propose to induce a reward function for

text generation tasks in a principled approach by inverse reinforcement learning.

Inverse Reinforcement Learning (IRL). The goal of IRL is to learn a reward

function r(s, a). Especially, we wish the resulting action value function q computed by

Eqn. (3.6) could satisfy q(s, a) ≥ q(s, a′) for every a′ ∈ A and every (s, a) pair in the

training set D. In other words, the decisions in D are made greedily by argmaxa q(s, a)

given any state s. Unfortunately, Ng and Russell [57] show that this is an ill-posed

problem since the desirable reward function r is not unique. Therefore, we follow a

common assumption [58–60] to resolve the ambiguity:

Assumption 1 Given an action value function q, the policy π takes the form of

πq(a|s) := exp(q(s, a))/
∑︁

a′ exp(q(s, a
′)).

In traditional IRL [58–60], reward learning is difficult and this assumption does

not directly yield a reward function due to the stochastic state transition T (s′|s, a).

However, our insight is that the transition is deterministic for text generation tasks,

and thus we may utilize Assumption 1 to induce an action value function q, and then

a reward function r, from some learned policy π, as explained in the next part.

3.4.2 Teacher forcing recovers IRL

One of our main contributions is that we show the seemingly complicated reward

learning in Section 3.4.1 can be recovered by teacher forcing, the de facto common

practice of supervised text generation. Our discovery leads to a convenient approach

that derives a step-wise reward function simply from general language models, without

the need for task-specific heuristics. This makes RL more general for text generation,

and our step-wise reward largely simplifies RL training.
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Maximum likelihood estimation (MLE) for IRL. Following Assumption 1, we

let the policy πqω(·|s) ∝ exp(qω(s, ·)), where qω is a parameterized action value func-

tion. Under such a policy, the probability of each trajectory τ := ((s1, a1), . . . , (s|τ |, a|τ |))

in the dataset is given by the trajectory distribution P πqω . The likelihood of the

dataset is given by

PIRL(D|ω) :=
∏︂
τ∈D

P πqω (τ). (3.8)

Teacher-forcing training. For text generation, the standard teacher-forcing train-

ing is to minimize the loss:

LTF(ω;D) := −
∑︂
y∈D

|y|∑︂
t=1

log pω(yt|y<t), (3.9)

where the predicted probability of the next token being v is pω(v|y<t) =
exp(fω(y<t,v))∑︁

v′∈V exp(fω(y<t,v′))

for the logit function fω with parameters ω. In language model training, an addi-

tional input x may be added to the conditional probabilities but is omitted here for

simplicity.

The below theorem shows their equivalence up to an additional constant.

Theorem 2 Suppose the value function q in Eqn. (3.8) and the language model f in

Eqn. (3.9) have the same parametrization ω, we have

LTF(ω;D) = − logPIRL(D|ω) + const . (3.10)

Proof.

For the MLE of IRL under Assumption 1, the Ionescu–Tulcea theorem [61] asserts

that there exists a unique trajectory distribution P π
µ satisfying

P π
µ (s1) = µ(s1),

P π
µ (s1, a1, . . . , st, at) = P π

µ (s1, a1, . . . , st)π(at|st),

P π
µ (s1, a1, . . . , st, at, st+1) = P π

µ (s1, a1, . . . , st, at)T (st+1|st, at)
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for any t ≥ 1, given the initial state distribution µ, transition probability T , and

policy π.

The likelihood can thus be factorized by the multiplication of µ, T , and π:

PIRL(D|ω) =
∏︂
τ∈D

P πqω
µ (τ) =

∏︂
τ∈D

[︃
µ(s1)πqω(a1|s1)

|τ |∏︂
t=2

T (st|st−1, at−1)πqω(at|st)
]︃
.

As mentioned, text generation has a deterministic transition, i.e., T (s′|s, a) = 1 for

the next state s′ = s+ [a]. Taking the µ terms out, we have

− logPIRL(D|ω) = − log
∏︂
τ∈D

|τ |∏︂
t=1

πqω(at|st)− log
∏︂
τ∈D

µ(s1), (3.11)

where the second term is a constant in terms of ω. In Section 3.4.1, text generation

is modeled as an MDP with st = y<t and at = yt. Therefore, the first term of

Eqn. (3.11) is the same as Eqn. (3.9) under the parametrization πqω = pω, concluding

the equivalence between MLE for IRL and the teacher-forcing training of a language

model.

Inducing the reward function. Theorem 2 shows that language model training

with teacher forcing actually learns an IRL model. Thus, we may derive a reward

function assuming the action value function is well trained:

r(s, a) = qω(s, a)−
∑︂
s′∈S

T (s′|s, a)max
a′∈A

qω(s
′, a′) = fω(s, a)−max

a′∈A
fω(s+ [a], a′),

(3.12)

where the first equality is due to the Bellman optimality condition (3.7); the second

equality is due to the parametrization of qω = fω and the deterministic transition

T (s′|s, a) = 1 for s′ being the concatenation of the prefix s and token a.

Remark 3 It is easy to notice that fω(s, ·) may be arbitrarily shifted by a constant

cs without changing πω. This also shifts the derived reward r(s, a) by cs − cs+[a].

However, it does not affect the optimal policy. We will prove this in Theorem 5 after

introducing policy gradient methods.
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Figure 3.2: The process of deriving the reward function.

Our use of the Bellman optimality condition is different from classic RL, where the

reward is well-defined and the action value function is thus learned [29]. Instead, we

induce the underlying reward assuming the action value function is known (given by

Assumption 1). Figure 3.2 shows the whole process of our derivation.

In real-world applications, the learned action value function might be imperfect; in

this case, we may bound the error of our induced reward with the following theorem.

Theorem 4 Let r∗ be an underlying true reward function and q∗ be the corresponding

optimal value function. Given an approximate value function q, we denote by r the

reward function derived from Eqn. (3.12). Then, we must have ∥r − r∗∥∞ bounded

by O(∥q − q∗∥∞). Here, ∥ · ∥∞ takes the maximum absolute value over all s ∈ S and

a ∈ A.
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Proof. For any s ∈ S and a ∈ A, we have

|r(s, a)− r∗(s, a)|

=|q(s, a)− q∗(s, a) + max
a′

q∗(s+ [a], a′)−max
a′

q(s+ [a], a′)| (3.13)

≤|q(s, a)− q∗(s, a)|+ |max
a′

q∗(s+ [a], a′)−max
a′

q(s+ [a], a′)| (3.14)

≤max
s′,a′
|q(s′, a′)− q∗(s′, a′)|+max

s′
|max

a′
q∗(s′, a′)−max

a′
q(s′, a′)| (3.15)

≤max
s′,a′
|q(s′, a′)− q∗(s′, a′)|

+max
s′

max{max
a′

q∗(s′, a′)−max
a′

q(s′, a′)),max
a′

q(s′, a′)−max
a′

q∗(s′, a))} (3.16)

≤max
s′,a′
|q(s′, a′)− q∗(s′, a′)|

+max
s′

max{max
a′

(q∗(s′, a′)− q(s′, a′)),max
a′

(q(s′, a′)− q∗(s′, a′))} (3.17)

≤2max
s′,a′
|q(s′, a′)− q∗(s′, a′)| (3.18)

=2∥q − q∗∥∞. (3.19)

Here, Eqn. (3.13) is from the Bellman equation; Eqn. (3.14) follows the triangle

inequality; and Eqn. (3.15) generalizes certain s and a to all possible s′ ∈ S, a′ ∈ A.

Eqn. (3.16) discusses two possible cases: whether maxa′ q(s
′, a′) ≥ maxa′ q

∗(s′, a′) or

not. Eqn. (3.17) is because −maxa′ q(s
′, a′) ≤ −q(s′, a′′) for any a′′ ∈ A. Eqn. (3.18)

merges all the maximum operation, and Eqn. (3.19) is the definition of the infinity

norm.

Since the last equation does not depend on s and a, we conclude ∥r − r∗∥∞ is

bounded by O(∥q − q∗∥∞).

3.4.3 Periodically synchronized behavior policy

In text generation, a neural network can be viewed as a policy π that predicts the word

distribution given the state of a decoding step. The reward induced from Section 3.4.2

can be used to improve the policy through RL. To stabilize training, we propose a

variant of off-policy policy gradient methods [62] with a periodically synchronized

behavior policy.
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Our RL training adopts the off-policy REINFORCE [30] as the backbone of our al-

gorithm. Let πφ be the model policy (i.e., the model’s prediction) to be optimized, and

πb be the behavior policy (i.e., the sampling distribution during training). Through

importance sampling, the gradient of the expected total reward with respect to φ can

be obtained by the off-policy policy gradient theorem [62]

∇φ E
πφ

[︃∑︂
t

r(st, at)

]︃
= E

πb

[︃∑︂
t

ρtq̂r(st, at)∇φ log πφ(at|st)
]︃
, (3.20)

where ρt := πφ(at|st)/πb(at|st) is the importance weight, and q̂r(st, at) :=
∑︁

i≥t r(si, ai)

is the total reward of the trajectory. In practice, off-policy REINFORCE (πφ ̸= πb) is

more exploratory than the on-policy one (πφ = πb), since the model policy πφ would

become more concentrated during optimization and does not explore much, whereas

πb is typically chosen to cover more trajectories. However, Degris et al. [62] adopt a

fixed behavior policy πb, which does not perform exploitation according to the current

model policy. The lack of exploitation might lead to less informative training.

To balance exploration and exploitation, we would like the behavior policy to be

close to the model policy but stay exploratory at the same time. We thus propose a

periodically updating schedule, where the behavior policy is frozen for a long period

to encourage exploration but keeps track of the current model policy to enhance

exploitation. Particularly, we synchronize the behavior policy with the model policy

for every k gradient updates of the latter (e.g., k = 5000). Our remedy is a simple

method overcoming the instability of REINFORCE. It shares a common ground with

a number of policy gradient methods like the proximal policy optimization (PPO) [31],

especially in that both methods involve multiple updates with a fixed behavior policy.

As the main contribution of this paper is reward induction, we resort to this simple

fix and leave the mathematical connection as an interesting future direction.

Algorithm 1 summarizes our approach. Our implementation is able to execute the

loops in parallel, which speeds up the training process. Our periodically synchronized

behavior policy further enables us to parallelize sampling and model updates to reduce
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the awaiting time.

3.4.4 Application to semi-supervised learning

Our approach naturally aligns with the paradigm of semi-supervised learning, as it

involves training a language model to induce the reward function, which requires (at

least a small volume of) parallel data Dp. Additionally, we assume there is a non-

parallel dataset Du containing input sentences only for RL training with the induced

reward.

Our semi-supervised approach consists of two stages. We first train a language

model fω on the parallel dataset Dp to induce the reward function r by Eqn. (3.12).

The procedure is described in Section 3.4.2. The reward function then facilitates RL

training on the non-parallel dataset Du, which is shown in Algorithm 1.

As mentioned in Remark 3, the reward r(s, a) can be arbitrarily shifted by cs−cs+[a].

We show that this shift does not affect the optimal policy.

Theorem 5 Suppose r′(s, a) = r(s, a) + cs − cs+[a]. Then the learned policies under

r′(s, a) and r(s, a) are the same.

Proof. By Eqn. (3.6), function q returns the expected total reward. In Algo-

rithm 1, we sample it by

q̂r
′

t (st, at) :=r′(st, at) + r′(st+1, at+1) + · · ·+ r′(s|τ |, a|τ |)

=r(st, at) + cst −�
��cst+1 + r(st+1, at+1) +�

��cst+1 − cst+2 + · · ·+ r(s|τ |, a|τ |) +�
��cs|τ |

=cst + r(st, at) + r(st+1, at+1) + · · ·+ r(s|τ |, a|τ |) =: q̂r(st, at) + cst .

The last line suggests the constant plays a role as the baseline in policy gradient,

which is shown to be irrelevant to the optimal policy [29].

3.5 Summary

We propose a novel approach to reward induction for RL training of conditional

language modeling. Our approach is based on a common assumption in inverse re-
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Algorithm 1: Our algorithm

Input: A non-parallel dataset Du, learned logit (value) function fω, policy
πφ with the initial parameter φ, total update steps U , and
synchronizing period k

Output: A policy πφ parameterized by φ
begin

for i← 1...U do
if i ≡ 0 (mod k) then

πb ← πφ ; ▷ Behavior policy update

Sample a source sentence x ∈ Du

Construct the initial state s← (x, [BOS]) ; ▷ [BOS] is the

beginning token

Sample a trajectory τ from the behavior policy πb

q̂rh+1 ← 0 and g ← 0
for t← |τ |...1 do

if t = |τ | then
rt ← fω(st, at) ; ▷ Termination step, no st+1

else
rt ← fω(st, at)−maxa′ fω(st+1, a

′) ; ▷ By Eqn. (3.12)

q̂rt ← rt + q̂rt+1 ; ▷ Accumulating rewards

ρt ← πφ(at|st)/πb(at|st) ; ▷ Importance weight

g ← g + ρtq̂
r
t∇φ log πφ(at|st) ; ▷ By Eqn. (3.20)

φ← φ+ ηg ; ▷ Gradient ascent

return πφ

inforcement learning. We provide a principled way to induce the reward function

from a learned logit function. We further propose a simple yet effective remedy to

the instability of REINFORCE. Finally, we integrate our approach into the paradigm

of semi-supervised learning. The experiment results will be presented in the next

chapter.
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Chapter 4

Results and discussion

4.1 Datasets description

Dialogue generation. We adopt two widely used datasets, DailyDialog [63] and

OpenSubtitles [64], for the dialogue experiment. The DailyDialog dataset is con-

structed from English dialogues crawled from the Internet, whereas the OpenSubtitles

dataset is constructed from movie subtitles based on IMDB identifiers. A dialogue

session is split into single-turn context–response pairs in our experiment. For semi-

supervised learning, we use the smaller dataset, DailyDialog, as the parallel corpus

Dp, and the larger dataset, OpenSubtitles, as the non-parallel corpus Du (i.e., we only

retain the context sentence in the OpenSubtitles dataset). This follows the common

setup for semi-supervised learning, where the unlabeled dataset is larger than the

labeled one.

It should be emphasized that a recent study [65] shows more than 20% of test sam-

ples are identical to some training samples in both DailyDialog and OpenSubtitles.

This results in meaningless comparison and inflated performance of previous methods,

e.g., a BLEU4 of 11.01 in AdaLabel [66] and 14.61 in DialogBERT [67]. Therefore,

we use the deduplicated datasets in [65], containing 60K/6.5K/7K samples for train-

ing/validation/test in DailyDialog and 1M non-parallel samples in OpenSubtitles.

Although our scores will be lower than previous inflated ones, we follow the correct

setting for research.
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We use BLEU scores [15] as main evaluation metrics, which are widely used in

dialogue generation [65]. Following previous work [65], we lowercase all sentences and

tokenize them with the NLTK library [68].

Paraphrase generation. We follow previous studies [69–71] and use the Quora

Question Pair dataset1 for the paraphrasing experiment. The Quora dataset is orig-

inally designed for paraphrase classification, containing both paraphrase and non-

paraphrase pairs. The paraphrase pairs naturally form a parallel dataset for the gen-

eration purpose; following the common practice [71], we split it into 124K/4K/20K

samples for training/validation/test. The non-paraphrase pairs, containing 510K sen-

tences, are discarded in previous work, but we are able to utilize them in a semi-

supervised manner.

We use the standard iBLEU score [72] as the main evaluation metric with an

involvement af Self-BLEU (SBLEU) penalty, as the paraphrasing task requires using

different lexicons. As introduced, the iBLEU score is calculated as (1−α) BLEU −α

SBLEU. We follow the previous work and set α to 0.1 [69–71]. For clarity, we also

report BLEU and S-BLEU scores in our experiment.

4.1.1 Settings and competing methods

For each task, we first fine-tune a T5-Base model [56] on the parallel data by Eqn. (3.9).

Then we apply our proposed method to induce the reward and further train the model

by Algorithm 1 on the non-parallel data. We compare our approach with the following

semi-supervised methods.

Self-Training. We apply the supervised model to the non-parallel dataset and

generate pseudo-target sentences, which are used to continue training the model. This

is a commonly used semi-supervised approach in text generation literature [37, 38].

R-Regression. Wu et al. [36] propose a reward regression (R-Regression) ap-

1https://www.kaggle.com/c/quora-question-pairs
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proach, where the reward is defined as the BLEU score. Since their reward is the

same as the evaluation metric, such a method may achieve higher BLEU scores with-

out actually improving the generation quality. By contrast, our reward is induced in a

principled way and is agnostic to evaluation metrics. In our experiment, we replicate

the R-regression method, which constitutes a controlled comparison to our approach,

as the only difference is the reward function.

4.1.2 Implementation details

For all experiments, we initialize the model with T5-Base [56] provided by Hugging-

Face [73]. We use the label smoothing [74] with a coefficient of 0.1. We use the

Adam [75] optimizer with (β1, β2) = (0.9, 0.999). Each batch contains around 32K

tokens.

For all conventional language model training, the learning rate is scheduled accord-

ing to the original Transformer [1] with the warm-up steps set as 4000. For all RL

training, we drop the warm-up phase and set the maximum learning rate to 1e − 5.

We set the synchronizing period k to 5000. The reward of our method is scaled down

by 100 times. We apply the reward clipping trick [28] to bound the reward within

[−1, 1] to stabilize the training.

For inference, we follow previous work and use greedy decoding in the dialogue gen-

eration task and use beam search with a beam size of 5 in the paraphrase generation

task.

All the experiments are done on either 4×NVIDIA A100 or 4×NVIDIA V100.

4.2 Evaluation metrics

In this section, we introduce the evaluation metrics used in our experiments. We

use BLEU [15] as the main evaluation metric for both tasks. We use iBLEU [72] in

addition for the paraphrase generation task to address the issue of copying the input

sentence.
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4.2.1 BLEU

BLEU [15] is a widely used metric for evaluating the quality of machine translation.

It measures the n-gram overlap between the generated text and the reference text.

The BLEU score is defined as follows:

BLEU = BP · exp

(︄
N∑︂

n=1

wn log pn

)︄
, (4.1)

where N is the maximum n-gram order, pn is the precision of n-grams, and wn is the

weight of n-grams. The brevity penalty (BP) is defined as BP = min
(︂
1, output length

reference length

)︂
.

Arguably, BLEU may not be a perfect metric for evaluating dialogue generation

because it does not consider the semantic similarity between the generated text and

the reference text. However, we argue that BLEU is still a reasonable metric statisti-

cally because the generated text and the reference text should be similar in terms of

choices of words and phrases in a certain dialogue context. Also, BLEU is a widely

used metric for evaluating dialogue generation, and it is still the main metric for

dialogue generation in the recent literature [47, 65, 67].

4.2.2 iBLEU

iBLEU [72] is a variant of BLEU that considers the similarity between the generated

text and the input text. It is defined as follows:

iBLEU = (1− α) · BLEU− α · SBLEU, (4.2)

where SBLEU is the BLEU score between the generated text and the input text. α

is a hyperparameter that controls the trade-off between the quality of the generated

text and the similarity between the generated text and the input text.

The intuition behind iBLEU is that the generated text should not be similar to

the input text to avoid copying. However, the generation should be similar to the

target text to ensure that the generated text is relevant to the input text. Therefore,
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Method BLEU2↑ BLEU4↑

Parallel DailyDialog

AdaLabel† [66] 6.72 2.29

DialogBERT† [67] 5.42 2.16

T5-Base [56] 8.96 3.69

+ Parallel OpenSubtitles

[T5-Base] Fully Supervised 8.75 3.06

+ Non-Parallel OpenSubtitles

[T5-Base] Self-Training 9.10 3.73

[T5-Base] R-Regression 10.34 4.18

[T5-Base] Ours 11.02 4.30

Table 4.1: The results of dialogue generation. ↑/↓The higher/lower, the better.
†Quoted from [65] on deduplicated dialogue datasets.

we use iBLEU for evaluating paraphrase generation.

4.2.3 Main results

Results of dialogue generation. Table 4.1 shows the results of the dialogue gen-

eration task. We notice that our fine-tuned T5-Base model [56] has already outper-

formed dedicated methods, AdaLabel [66] and DialogBERT [67]. This is consistent

with the findings of [65, 76] in that the alleged “state-of-the-art” dialogue systems

do not outperform standard pretrained language models on deduplicated datasets,

highlighting the importance of working with the correct setting.

We then apply semi-supervised learning (Self-Training, R-Regression, and our ap-

proach) with the non-parallel OpenSubtitles dataset. We achieve higher performance

than T5-Base trained only on parallel DailyDialog. Interestingly, the fully supervised

model—trained on both parallel DailyDialog and parallel OpenSubtitles—does not
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Method BLEU4↑ SBLEU4↓ iBLEU4↑

Copy 29.88 100.0 16.89

Parallel Quora Generation

Dagger‡ [54] 28.42 66.98 18.88

RL-NN‡ [78] 20.98 40.52 14.83

T5-Base [56] 30.83 44.77 23.27

+ Non-Parallel Quora Generatoin

LTSL§ [69] 29.25 71.25 19.20

[T5-Base] Self-Training 31.39 48.02 23.44

[T5-Base] R-Regression 30.77 44.23 23.27

[T5-Base] Ours 31.47 45.43 23.78

Table 4.2: The results of paraphrase generation. ↑/↓The higher/lower, the better.
‡Quoted from [47]. §Quoted from [69]. “Copy” refers to directly copying the input
sentence.

achieve high performance, even lower than the one trained with DailyDialog only.

It is noticed that the OpenSubtitles dataset is noisy [77], which likely causes the

performance degradation. This signifies the need of semi-supervised learning.

Among semi-supervised approaches, RL-based methods (R-Regression and ours)

are generally better than Self-Training. This is within our expectation because Self-

Training learns from its own generation and may be overconfident, whereas RL ap-

proaches are able to explore different parts of the data space, being a more effective

way of semi-supervised learning.

Moreover, our approach outperforms RL with R-Regression, where the reward is

the only difference. The controlled experiment confirms that the reward induced from

models trained with teacher forcing is effective for RL training. It is also worth noting

that R-Regression uses the evaluation metric as the reward, and thus may deliberately

improve the metric rather than text quality. By contrast, our reward is induced in
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Figure 4.1: The distributions of token-level estimation of future rewards (q̂rt in Algo-
rithm 1) on the DailyDialog validation set. The BLEU score of a sentence is shared
among tokens in the same sentence.

a principled manner and is agnostic to evaluation metrics, and our approach still

achieves higher performance even with such a disadvantage.

In general, our approach achieves the best performance in both metrics. In par-

ticular, it significantly improves DailyDialog-trained T5-Base by +2.06 (+23.0%) in

BLEU2 and +0.61 (+16.5%) in BLEU4. It also outperforms the second-best method,

R-Regression, by 0.68 (+6.6%) in BLEU2 and 0.12 (+2.9%) in BLEU4, verifying the

effectiveness of our approach.

Results of paraphrase generation. The results of paraphrase generation are

shown in Table 4.2. As seen, directly copying the input already achieves a high BLEU

score against the reference. iBLEU addresses this by penalizing the Self-BLEU score

(against input) and is considered the main metric.

We consider another semi-supervised baseline LTSL [69]. It performs retrieval-

based paraphrase expansion and meta optimization, thus being task specific. We

see that LTSL has an extremely high Self-BLEU, suggesting the generated para-

phrase largely resembles the input. It achieves a lower iBLEU score than other semi-

supervised approaches.

We also see that RL approaches generally achieve lower Self-BLEU than Self-

Training. This is because Self-Training learns from its own predictions, which overlap

the input more than groundtruth paraphrases do (Self-BLEU of groundtruth: 29.87);
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Sparse Method BLEU2↑ BLEU4↑

- Self-Training [13] 9.10 3.73

Yes
R-Regression [36] 9.45 3.73

Induced-R 9.75 3.99

No
R-Regression [36] 10.34 4.18

Induced-R 11.02 4.30

Table 4.3: Dialogue generation with sparse reward.

as a result, Self-BLEU increases to 48.02 from 44.77 of T5-Base. By contrast, RL

learns by exploring different possible paraphrases and is able to retain low Self-BLEU.

Overall, our approach achieves the highest BLEU and a reasonably low Self-BLEU,

yielding the best iBLEU among all competing methods. The results are consistent

with Table 4.1, showing the generality of our approach.

4.2.4 Analyses

Step-wise reward. In Figure 4.1, we show the distributions of different reward

functions. As seen, the BLEU score is mostly concentrated at 0, providing little

information for training. R-Regression consequently suffers from a similar problem,

as it is trained by the groundtruth BLEU scores. The distribution of our induced

reward, on the other hand, has the lowest peak and is the most wide-spreading one.

We conduct another analysis to show the importance of step-wise rewards for RL

training. We compare our approach with a sparse reward function that defers all

rewards to the end of a sentence. In other words, the last step’s reward is the sum of

our step-wise rewards, whereas all previous steps have a reward of 0. This constitutes

a rigorous analysis, as the total reward and thus the training objective are the same

in both cases. Results in Table 4.3 and Table 4.4 show that our step-wise reward

outperforms the sparse reward in all cases. This suggests our approach serves as a
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Sparse Method BLEU4↑ SBLEU↓ iBLEU4↑

- Self-Training [13] 31.39 48.11 23.44

Yes
R-Regression [36] 30.78 44.32 23.27

Induced-R 31.28 45.22 23.63

No
R-Regression [36] 30.77 44.23 23.27

Induced-R 31.47 45.43 23.78

Table 4.4: Paraphrase generation with sparse reward.

meaningful credit assignment of the total reward, which is beneficial for RL training.

The effect of the synchronizing period. We analyze the effect of the synchro-

nizing period k introduced in Section 3.4.3. In Figure 4.2, we see that the training

is unstable if k = 1 (on-policy), in which case the model generates uninformative

and meaningless sentences (illustrated in Appendix 4.2.5). When k = 1000, the per-

formance increases quickly at the beginning, but it starts to decrease with further

training. We hypothesize that this is due to the lack of exploration (Section 3.4.3).

When k is infinitely large (the behavior policy is fixed), the performance grows slowly

and stops improving after a certain number of steps. Based on this analysis, we

choose k = 5000 to balance exploitation and exploration. Although the experiment

is conducted only on DailyDialog due to the limit of time and resources, we directly

apply the setting to other experiments, showing the robustness of our approach.

Data efficiency. In Figure 4.3, we analyze data efficiency by sampling different

numbers of data points from the non-parallel corpus. As shown, our method con-

sistently outperforms self-training, even with only 0.1% (the leftmost points) of the

training set. Additionally, the performance of our method quickly increases with

more data, whereas self-training grows slowly. This is expected because RL training

explores different parts of the sentence space and learns from their rewards, whereas
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Figure 4.2: The learning curves by choosing different values of k. Scores are measured
on the validation set of DailyDialog. Training is terminated when the BLEU4 score
drops below 3.5.

self-training only learns from the single generated sentence by the model itself given

an input.

We also investigate how performance changes according to the size of the parallel

dataset, which reflects the quality of the learned policy. Results are shown in Fig-

ure 4.4. Our approach consistently outperforms competing methods in all settings.

The results show that a high-quality fω indeed leads to better performance, but our

model is still robust when fω is trained with limited data. Notably, our method

drops by 6.8% when having 10% of the parallel data, whereas R-Regression drops by

10.6%. This show that our reward induction approach utilizes the parallel data more

effectively.
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Figure 4.3: Trends of self-training and our method given different sizes of the non-
parallel data. Scores are measured on the DailyDialog test set.

4.2.5 Case study

We demonstrate several cases from the generation of different models. These cases

come from the DailyDialog validation set.

Examples of generated dialogue responses. In the first case of Table 4.5, we

show a phenomenon that previous methods tend to generate short and meaningless

responses. On the other hand, our method usually generates more informative sen-

tences and makes the conversation more natural and human-like.

We also find that previous methods tend to generate sentences with inconsistent

or even conflicting semantics. In the second case in Table 4.5, for example, both Self-

Training and R-Regression reply “I got engaged” but the next sentences are illogical.
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Figure 4.4: Results of different methods given different sizes of the parallel data.
Scores are measured on the DailyDialog test set.

This implies that previous methods may generate low-quality sentences even if they

have seemingly decent BLEU scores. By contrast, our model generates a more proper

response.

On-policy degeneration. In Section 3.4.3, we mention that if k = 1 (on-policy),

the generation will become deterministic and uninformative. We show such cases in

Table 4.6. The responses are generated by the first save (1000 updates) of the model

in the experiment.

For both cases, the model replies “I’ll have to think about it” at the end of the

sentences. In fact, most of the generated responses end with this phrase, which

is redundant and meaningless. This phenomenon is likely to be a result of over-

deterministic and insufficient exploration of the on-policy update. If the behavior

policy becomes more deterministic of a certain phrase, it will have a smaller chance to

explore other hypotheses. Hence, it will enhance the preferred responses and become

even more deterministic. On the contrary, our periodically synchronized behavior

policy keeps to be exploratory and does not have the degeneration problem as shown

in Table 4.1, Table 4.2, and Figure 4.2.
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Context
We can make shipment within one month from
receipt of order.

Response

Self-Training I see.

R-Regression I see.

Ours I see. I’ll have to discuss it with my manager.

Context
Where’s your girlfriend? I thought you were go-
ing out with her today.

Response

Self-Training I got engaged. We broke up last week.

R-Regression I got engaged. She told me she’s just married.

Ours
She came back from Australia last week. She is a
nice girl but there’s nothing I can do about her.

Table 4.5: Examples of generated dialogue responses.

Context
We can make shipment within one month from receipt of
order.

Response I see. I’ll have to think about it.

Context
Where’s your girlfriend? I thought you were going out
with her today.

Response
I’m sorry, but I’m not sure I’ll be able to make it. I’ll have
to think about it.

Table 4.6: Failure cases of on-policy training (k = 1).
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Chapter 5

Conclusion and future work

5.1 Conclusion

In this work, we show that a reward function can be derived from a model trained with

teacher forcing. The derivation does not rely on human heuristics for certain tasks.

Additionally, the derived reward function assigns step-wise scores and makes the RL

training easier. Our approach leads to a training algorithm in a semi-supervised

manner and utilizes both parallel and non-parallel data. We conduct experiments on

the dialogue and paraphrase generation tasks. The empirical results show that the

performance of our approach is better compared with the baselines: self-training and

reward regression. We further analyze our reward function and show the benefits of

our approach.

5.2 Future work

We also notice that Assumption 1 has a deep connection with entropy-regularized

RL [79–81]. Our approach can be easily extended to such cases in the future. In

this case, it is likely to see the connection between log probabilities from the teacher

model and the derived reward function. This connection may provide a principled

justification for using the log probabilities as the reward function in some cases.

Another interesting direction would be using the reward as an interface between

humans and the model to control the generation at a more fine-grained level. For
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example, the current language models treat data as groundtruth, but the data may

be contaminated with undesired or harmful information. For example, the sentence

“I will not listen to humans” is plausible and grammatically correct in English. Thus,

it may achieve a high language model score. However, it is not a helpful sentence to

generate as a language model. This issue becomes more important when the language

model becomes more powerful [5]. Therefore, it is necessary to align the language

model with human values through other types of training signals.

To address this, researchers have proposed to construct a reward model from hu-

man preference [82]. However, human evaluation is expensive and time-consuming.

For example, if there are n potential replies for a given context, the human evalu-

ator might need to compare all n(n − 1)/2 reply pairs. As a consequence, human

evaluation is not scalable to large-scale datasets with a limited budget. We hope

that our approach provides a way for humans to apply additional rules to the reward

function to avoid the model generating harmful information. Shortly after our work,

researchers proposed to use the feedback from large language models as the training

signals [83]. Particularly, the preferences are generated by large language models un-

der several human-written rules. The generated preferences are then used to train a

reward model. The reward model is finally used to train the language model.

Our approach may provide a way to simplify the overall pipeline mentioned above

since our approach directly derives the reward value from the output logits without

any parameter tuning. In this way, we are able to obtain a reward model while only

using the minimum human efforts – writing general rules in the form of prompts. We

leave this as a promising future direction.
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