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Abstract

Industrial chemical plants are complex, highly integrated systems composed of

geographically distributed processing units, linked together by material and energy

streams. To ensure efficient operation in such integrated plants, multivariable optimal

control methods like MPC are required.

Although centralized MPC may provide the best achievable control performance,

issues such as lack of flexibility and maintainability make this approach impractical.

The general industrial practice to plant-wide MPC is to recognize the distributed

structure of the processing units to design a network of decentralized MPCs.

Decentralized controllers avoid the disadvantages associated with centralized control

at the expense of poorer plant-wide control performance. To improve the performance

of decentralized controllers, Distributed MPC (DMPC) methods have become centre

of attention in the plant-wide optimal control research community. DMPC methods

are divided into two general classes of non-coordinated and coordinated approaches.

Coordinated Distributed MPC (CDMPC) networks, which consist of distributed

controllers and a coordinator, are able to yield optimal centralized solution under

a wide range of conditions.

This work addresses systematic development of CDMPC networks for plant-wide

MPC of interconnected dynamical processes, by modifying the existing decentralized

MPC network and designing coordinator. Goal Coordination, Interaction Prediction

Coordination and Modified-Pseudo Model Coordination are the three coordination

methods studied in this thesis to alter the network of decentralized linear constrained

MPCs into CDMPC network. Convergence accuracy studies are provided for the

proposed coordination algorithms. CDMPC networks are also developed to study the

impacts of uncertainty on the CDMPC and coordinator design using an individual



chance-constrained approach. By modifying the CDMPC and coordinator in the

Goal Coordination method, it is shown that choosing efficient numerical strategies

can improve convergence performance of the coordination algorithm. A novel linear

CDMPC network, which has performance of centralized nonlinear MPC, is presented

to address the plant-wide nonlinear MPC problem. Numerical simulations are

provided to test performance of the proposed CDMPC networks.
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Chapter 1

Introduction

Chemical plants typically consist of multiple geographically distributed interacting

process units. Today’s increased competitiveness in the chemical processing industry

and the effort to achieve safe, environmentally responsible and profitable plant

operation have led to plants that are more complex and highly integrated. The added

complexities and intensified interactions are the result of using new equipment and

applying novel approaches for improving economics, safety, energy recovery, reusing

unused materials and reducing environmental impacts of the involved processes.

Efficient operation of such complex integrated plants, can be achieved by using

optimal control strategies. Centralized, decentralized and distributed control schemes,

which will be further discussed in detail, are three structures that can be adopted

for plant-wide optimal control. Distributed control arose to exploit the advantages of

both centralized and decentralized control structures, while avoiding their drawbacks.

Various distributed control schemes are available, among which coordinated distributed

control is a powerful approach that is capable of yielding maximum achievable control

performance. Significant advantages that coordinated distributed control can bring

into the realm of plant-wide optimal control, and the lack of comprehensive studies

in this context, have inspired this research work.

1
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Centralized Control Structure

In the centralized scheme, as shown in Figure 1.1, a monolithic controller is designed

to control the overall plant. In the synthesis of centralized controllers, the complete

plant model is used.

Figure 1.1: Centralized control structure

By using the complete plant model, the effects of interactions between the process

units, are taken into account in the optimization problem. Therefore, centralized

MPC produces optimal plant-wide control performance; however, despite the control

performance benefit, industrial practitioners generally consider centralized control

an unrealistic approach. In the past, one of the issues that made centralized MPC

be impractical, was the limited power of computers in solving large optimization

problems. With the advances in computer technologies and efficient optimization

algorithms, the computational issues resulting from the large size of centralized convex

optimization problems have been resolved to some extend; however, the availability of

powerful computational tools does not imply that there is no computational limitation

on the size and complexity of optimization problems. Another major drawback of

centralized structure is related to maintainability and flexibility issues. That is, if

a maintenance or a repair is required for one of the process units, then the entire

control system should be shut down. Also, tuning, managing and improving the

control performance of local processes, become difficult tasks under the centralized

control structure.
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Figure 1.2: Decentralized control structure

Decentralized Control Structure

Decentralized control structure is the industrially practiced control architecture.

As is illustrated in Figure 1.2, in this scheme, the distributed structure of

the process units has been exploited to design independent controllers for each

unit. In the decentralized scheme, the interactions between the processes are not

considered in designing the independent (local) controllers. Since instead of one

monolithic controller, N smaller controllers are used, the aforementioned issues

of the centralized scheme, are avoided in the decentralized architecture; however,

not explicitly incorporating interaction models in the controller synthesis, degrades

control performance with respect to the centralized control. In other words, the

solution produced by decentralized controllers are sub-optimal solutions. Only when

the process units are truly decoupled will the decentralized controllers produce

optimal plant-wide performance. In addition to the inherent performance loss,

if strong interactions exist between local processes, stabilizing the system with

decentralized controllers may become quite challenging (Venkat (2006), Sun and El-

Farra (2008), Stewart (2010),Christofides et al. (2013)).

Distributed Control Structure

The issues with centralized and decentralized control structures have motivated the

use of an alternative control structure, known as distributed control. In distributed

control, the goal is to improve control performance of the decentralized control
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Figure 1.3: Non-coordinated distributed control structure

network and bring it closer to the performance of centralized control, while still

benefitting from the characteristics of decentralized control structure. Appropriate

information exchange within the control network, is one of the key factors in

distributed control that leads to performance improvement. Distributed control,

is divided into two main categories of non-coordinated and coordinated distributed

control. Since the focus of this thesis is on coordinated distributed MPC, the following

discussions on the two classes of distributed control are directed towards distributed

model predictive control (DMPC).

Non-coordinated Distributed Control Structure

In the context of non-coordinated DMPC, the main idea is to improve control

performance of decentralized MPC network and bring it closer to that of centralized

MPC, by exchanging some information among local controllers and explicitly using

interaction models in the controller’s formulation. Also, depending on the distributed

method, objective function of the distributed controllers may be modified. A general

schematic representation of this control architecture is shown in Figure 1.3. The

topology of the communication network and the cost function considered in the

local MPC optimization problems have significant impact on the achieved amount of

performance enhancement. Scattolini (2009) and Christofides et al. (2013) classified

and reviewed various DMPC design algorithms. According to these two review papers,

four general classifications can be made for DMPC algorithms: 1) Fully or Partially
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connected algorithms, depending on whether any local MPC communicates with all

other local controllers or just with a given subset of other local controllers; 2) Non-

cooperative (Independent) or Cooperative, if each local MPC optimizes a local or

global cost function; 3) Non-iterative or Iterative, according to whether within each

sampling time, local controllers exchange information once or many times; and finally

4) Sequential or Parallel, depending on whether local MPC optimizations are executed

in sequence or at the same time.

DMPC algorithms are designed based on Game Theory concepts. From game

theory point of view, the iterative non-cooperative DMPC networks reach a Nash

Equilibrium 1. When iterative cooperative algorithms are used in a fully connected

convex DMPC network and a sufficient number of iterations have been concluded, the

control network can reach the centralized performance (Venkat (2006) and Rawlings

and Stewart (2008)). Performance of other flavours of DMPC without using a

coordinator, is always sub-optimal.

In the past decade, extensive research has been done on DMPC approaches.

Scattolini (2009) and Christofides et al. (2013) provided a comprehensive list of

references for various DMPC design methods. Pertaining to iterative cooperative

DMPC, the first contribution was made by Venkat (2006), and further developed

by Stewart (2010). As required by cooperative control, the interaction models were

explicitly used in the local prediction models and a centralized objective function

was used for each local controller. Venkat and Stewart proposed cooperative linear

DMPC algorithms that were able to converge to the centralized solution, after

sufficient number of iterations. In their proposed methods, the control based on any

intermediate termination of the algorithm was guaranteed to be feasible and provide

nominal closed-loop stable system.

Stewart (2010; 2011) extended the developed distributed convex DMPC strategies

in Venkat (2006) and Stewart (2010), to non-convex DMPC problems, without

1The Nash Equilibrium is a solution concept of a non-cooperative game involving multiple players,
in which each player is assumed to know the equilibrium strategies of the other players, and no
player has anything to gain by changing only his own strategy unilaterally. If each player has chosen
a strategy and no player can benefit by changing strategies while the other players keep theirs
unchanged, then the current set of strategy choices and the corresponding payoffs constitute a Nash
Equilibrium (WIKIPEDIA (2013)).
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guaranteeing convergence of the distributed algorithm to the centralized performance.

It was assumed that nonlinear dynamics lead to non-convex MPC problems. Another

featured research in cooperation-based nonlinear DMPC was done by Liu et al.

(2010b). They proposed two cooperative distributed strategies, where local controllers

were designed by Lyapunov MPC techniques (Mhaskar et al. (2006)) to ensure

closed-loop stability through explicit characterization of stability regions. In the

first strategy, the distributed Lyapunov-based MPC (LMPC) communicated in one

direction and were evaluated sequentially and non-iteratively. In the second approach,

each distributed LMPC employed a two-way communication strategy, the LMPCs

were evaluated in parallel and iteratively. Because of the non-convexity of the

optimization problems, the aforementioned cooperative iterative nonlinear DMPC

approaches cannot guarantee achieving the centralized nonlinear MPC solution;

however, the intermediate solutions produced, were feasible and resulted in closed-

loop stable plant.

Two other lines of work are also available for DMPC algorithms. The first one is

based on negotiation between agents for systems that are coupled only through the

inputs (Maestre et al. (2011)). The agents were DMPCs with local cost functions

that did not know about the dynamics of their neighbours, but could communicate

unrestrictedly with them in order to reach an agreement. Each agent communicated

with its neighbours by exchanging their calculated inputs, based on a given protocol.

At each sampling time, agents made proposals to improve an initial feasible solution

on behalf of their local cost function, state and model. The proposals were accepted

if the global cost function improved using the current solution. Closed-loop stability

was guaranteed by including terminal region obtained from the centralized problem.

The second line of work is based on using optimization concepts such as sensitivity

information and duality, to modify local MPC formulations. The DMPCs iteratively

communicate with their neighbours until overall (centralized) optimality is achieved.

Scheu and Marquardt (2011) proposed a sensitivity-based algorithm for DMPC of

linear time-invariant systems. Overall optimality was achieved by means of linear

approximation of the objective functions of neighbouring controllers within the

objective function of each local controller. Scheu and Marquardt showed convergence
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of the proposed algorithm to the centralized solution and claimed that the method

could be extended to cover nonlinear systems; however, feasibility and closed-loop

stability properties of the distributed method were not studied. Doan et al. (2011)

presented a decomposition method for DMPC of dynamically coupled linear systems,

based on Fenchel’s duality. Using the proposed algorithm, the network of distributed

controllers were able to arrive at the centralized MPC solution. The application of the

method proposed by Doan et al. was limited to quadratic programming problems only.

Also, properties such as feasibility and guaranteed closed-loop stability of intermediate

iterations were remained as open.

Coordinated Distributed Control Structure

In coordinated distributed control, the goal is to reproduce the centralized control

performance, by proper coordination of local controllers. Mathematical theory of

hierarchical multilevel systems provides the design foundation for this type of control

structure.

Three basic classes of hierarchical systems are Multistrata, Multilayer and

Multiechelon (Mesarovic et al. (1970)). The Multistrata structure considers modelling

of various aspects and phenomena involved in complex systems, that each are viewed

from a different level of abstraction. Levels of this structure are referred to as Strata.

In the Multilayer structure, the solution to complex decision-making systems is sought

in a hierarchical approach. A family of decision problems whose solution is attempted

in a sequential manner, is defined. The solution of any problem in the sequence

determines and fixes some parameters in the subsequent problem, so that the latter

is completely specified and its solution can be found. The solution of the overall

problem is obtained when each layer has successfully solved its own problem. Levels

of this hierarchy, which each describes a family of decision problems, are known as

Layers.

A system with Multiechelon or organizational hierarchy, has three characteristics:

1) the system involves a group of interacting subsystems; 2) the subsystems are

decision making units and 3) some of the decision units are influenced by other

decision units in a hierarchical manner. Each layer of this type of hierarchy is known
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Figure 1.4: Coordinated distributed control structure

as echelon. Higher echelons are responsible for relaxing the interactions among the

lower echelons, by properly accounting for the couplings and constraints, handling

uncertainties and resolving conflicting goals (Mahmoud et al. (1977)). An important

feature of this hierarchy is that, the higher echelons condition the lower level units,

but they do not completely control the decision making processes of the lower levels.

Therefore, lower level units have the freedom of selecting and calculating their own

decision variables (Mesarovic et al. (1970)).

These three hierarchical structures may be imbedded within one another.

Comprehensive discussions on various aspects of hierarchical multilevel systems can

be found in the fundamental book by Mesarovic et al. (1970).

Optimal control of interconnected dynamical processes by synchronous single rate

controllers, falls in the class of hierarchical multiechelon structure, where generally two

echelons are involved. Local controllers are in the first level and the supremal control

system (Mesarovic et al. (1970)) or the coordinator, is located at the second level.

Figure 1.4 shows the elements and communication links of these two-level structures.

In coordinated distributed control, local controllers do not use the centralized

objective function and/or centralized model. Also, instead of communicating with

each other, the local controllers in coordinated distributed systems only communicate

with the coordinator. Therefore, the communication strategy in this type of structure
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is standard, and can be regarded as one of the priorities of this structure over the

distributed control structures that do not use a coordinator.

The role of the coordinator is to manage the behaviour of local controllers by

manipulating their interactions, resolving the conflicts and adjusting the goal and

model interventions, so that the centralized control performance is achieved. The

coordinator influences local controllers through intervention parameters (Mahmoud

et al. (1977)). Another advantage of coordinated structure over those without a

coordinator, is that the former is designed to reconstruct the centralized performance,

while the latter is designed to improve the performance of decentralized control

network and guarantee feasibility and closed-loop stability properties of any solution

produced by the distributed algorithm; however, only under certain communication

topologies and conditions, the non-coordinated distributed schemes can yield the

centralized performance.

In DMPC, despite the advantages of coordinated distributed structure and the

rich literature on mathematical theory of hierarchical multilevel systems, the vast

majority of research is focused on non-coordinated DMPC methods. The first study

on coordinated DMPC was conducted by Cheng (2007), where the price-driven

coordination method was applied to solve plant-wide MPC target calculation problem.

Newton’s method was used for the price-adjustment algorithm. Marcos (2012)

extended the application of the price-driven coordination method in Cheng (2007),

to plant-wide linear MPC of interconnected dynamical processes. Marcos (2012) also

extended the prediction-driven coordination method originally employed by (Cohen

(1977)) for Linear Quadratic (LQ) control of linear continuous-time systems based

on the Interaction Prediction Coordination Principle (Mesarovic et al. (1970)), to the

plant-wide unconstrained linear MPC of interconnected discrete-time linear dynamic

systems. Marcos (2012) also addressed the problem of dual-rate DMPC, coordinated

by price-driven coordination method.
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1.1 Research Scope and Outline

Despite the ability of Coordinated DMPC (CDMPC) to enhance performance

of decentralized control system to the highest level, its capabilities have been

overshadowed by misconceptions about issues such as difficulties of coordinator

synthesis, the need to re-design the control system, feasibility and stability

considerations. This thesis intends to establish CDMPC as a promising approach

to optimal plant-wide control of interconnected dynamical processes. This work

contributes to the systematic development of coordinated distributed control

structures, to elevate the performance of decentralized MPC network to the

performance of centralized MPC. In particular, three coordination methods are used

in conjunction with decentralized linear constrained MPC, to transform the existing

decentralized control system into a CDMPC network. This thesis uses multilevel

optimization-based coordination methods to develop the two essential elements in

coordinated distributed networks, namely, the CDMPC and coordinator, for various

MPC applications.

Converting any system of decentralized MPC into CDMPC network, involves

two major tasks. First, the required modifications in the objective functions and

constraints for the optimization problem of the decentralized MPC, should be

determined. The modifications are performed by appropriate relaxation of the so-

called interaction equations. The alterations done in the decentralized MPC, establish

the connection between the CDMPC and the coordinator. The coordinator is then

synthesized to properly compensate for the relaxed interactions in the overall control

system. Mathematically, the compensation for the interaction effects is achieved by

incorporating a proper numerical strategy to solve a system of algebraic equations.

The coordination methods investigated in this thesis, are based on duality. Local

(decentralized/distributed) MPC problems addressed in this work, have convex

structures, are synchronous and single-rate, and use state-space prediction models.

It is assumed that all the states are measured. Also, the centralized MPC as

the performance benchmark, and plant’s existing decentralized constrained MPC

network are assumed to yield stable plant operation by properly tuning the prediction
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horizon, and without explicit characterization of stability regions. As required by

any distributed algorithm, whether with or without a coordinator, it is assumed that

interactions models are available.

Chapter 2 is a review of the prevailing coordination methods with the aim of

carrying them over into developing CDMPC networks. The first coordination method

studied in chapter 2, is the Goal Coordination method. Based on this method, the

existing network of linear constrained decentralized MPC are altered into CDMPC

network. The coordinator is designed by the algorithm involved in the numerical

method chosen to solve an appropriate dual optimization problem. It is shown that

the price-driven coordination method discussed in Cheng (2007) and Marcos (2012),

is a special version of the Goal Coordination approach. Interaction Prediction and

Modified Pseudo-Model Coordination methods are the other coordination approaches

studied in Chapter 2. The coordinators are designed by the numerical algorithms

used to solve portions of optimality conditions resulting from the overall control

system. Two numerical strategies, a fixed-point iteration approach and a gradient-

based algorithm, are employed to synthesize two different coordinators. The proposed

CDMPC network developed by using the Interaction Prediction method, is the

exhaustive version of the coordinated distributed scheme proposed by Marcos (2012),

that has resolved several design issues. Another highlight of chapter 2 is the first

introduction of the Modified Pseudo-Model Coordination approach in the context

of CDMPC. The three proposed CDMPC networks guarantee arriving at optimal

centralized MPC solution, upon convergence of the coordinator. Convergence

accuracy studies are provided for the proposed coordination algorithms.

To illustrate the capabilities of coordination methods in various MPC applications,

chapter 3, deals with the problem of uncertainties and their impacts on developing

CDMPC networks. To this end, the three coordination approaches are successfully

applied to a network of decentralized single chance-constrained MPC, to explicitly

account for the effects of uncertain disturbances throughout the plant. In the Goal

Coordination method, by using the method of Separated Augmented Lagrangian

Algorithms (SALA) to numerically solve the dual optimization problem, a new

coordinator with improved convergence behaviour, is proposed to address convergence
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issues of the coordination algorithm, specially in the presence of active local inequality

constraints. The use of SALA also leads to slight modifications in the objective

functions of distributed controllers.

To address the plant-wide nonlinear MPC problem, a novel linear CDMPC network

that reproduces the performance of centralized nonlinear MPC, is presented in chapter

4. In this new scheme, the Modified Pseudo-Model Coordination method and a special

linearization technique are used to convert the system of linear decentralized MPC

into linear CDMPC network. Portions of the optimality conditions for the overall

control system, which result in a system of algebraic (nonlinear) equations, are solved

numerically in the coordination layer. Thus, the coordinator is designed based on the

algorithm involved in the numerical method adopted to solve the system of equations.

Chapter 5, summarizes and concludes the thesis, and provides suggestions for

addressing the remaining challenges, further theoretical developments and new

applications.

1.2 Terms and Definitions

To avoid misunderstandings, the meanings that are assigned to some of the key terms

used throughout this thesis, are explained below.

In this work, the term control network is used to refer to a group of controllers,

responsible for controlling the plant. Depending on the context, the term plant-

wide control refers to controlling the plant by a network of controllers or a

centralized controller. Optimal plant-wide solution and optimal centralized

solution are used interchangeably and correspond to the optimal solution obtained

from a centralized controller. Similarly, optimal plant-wide performance and

centralized performance, both refer to optimal performance of a centralized

controller.

Depending on the context, the term local controller refers to individual MPC in

either decentralized or (coordinated) distributed control networks. Also, subsystem

is used interchangeably with local controller.

Local process model may interchangeably be used with Local prediction
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model, and both refer to the process model used for state prediction in the MPC

problem.

MPC stands for Model Predictive Control/Controller. The term DMPC

is the short form for Distributed MPC, and CDMPC stands for Coordinated

Distributed MPC. CDMPC network/system corresponds to a distributed network

in which DMPCs are connected to/coordinated by a coordinator. GC-DMPC,

IPC-DMPC and MPMC-DMPC refer to CDMPC network, obtained by using

Goal Coordination, Interaction Prediction Coordination and Modified Pseudo-Model

Coordination methods, respectively.

In the context of CDMPC, communication cycle denotes a two-way information

transmission between the coordinator and CDMPCs. Iteration also describes the

process of transmitting information between the coordinator and CDMPCs. In the

context of non-coordinated DMPC, communication cycle and iteration refer to the

information exchange between the distributed controllers. Thus, communication

cycles and iterations convey the same sense; the former is more of a network

terminology and the latter is indicative of a successive computational procedure.



Chapter 2

Coordination Methods for Linear
Distributed MPC

In this chapter, three CDMPC schemes are proposed for optimal control of

interconnected dynamical systems. This is the first comprehensive study of

coordination methods in the context of plant-wide MPC problem. The goal

of using CDMPC is to achieve plant-wide optimal performance by appropriately

coordinating the CDMPCs. In each of the three proposed CDMPC networks, the

plant’s already available network of decentralized MPCs is converted into a network

of coordinated distributed MPCs by performing appropriate modifications and

introducing a coordinator. The required modifications to the distributed controllers

and formulations for the coordinators are presented in detail. Performance of the

proposed CDMPC approaches is studied via case studies.

The inherent capability of model predictive control in dealing with multivariable and

constrained systems along with its many other attributes have turned this advanced

control method into an industry standard. Within a processing plant, rather than

designing a plant-wide predictive controller, MPC is most commonly applied to

individual process units or a single unit operations apparatus which, results in a

network of decentralized controllers. As discussed in Chapter 1, the flexibility and

maintainability issues, as well as the significant mismatch in complexities, time scales

14
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and nonlinearities of local process units in a plant, make solving plant-wide MPC

as a monolithic optimization problem, impractical. Thus, it would be valuable to

have methods that improve performance of existing decentralized MPC networks and

bring MPC technology to its full potential. To this end, the current chapter focuses

on the formulation and analysis of three coordination methods for distributed linear

constrained model predictive control of interconnected dynamical systems.

Since MPC has an optimization problem at its core, the toolset for solving

the plant-wide MPC problem in the context of CDMPC would be the theories

and algorithms developed for mathematical programming and control of multilevel

systems. The literature on multi-level systems abounds and several coordination

algorithms have been proposed for solving optimization problems arising in these

systems (Mesarovic et al. (1970), Lasdon (1970), Pearson (1971), Mahmoud (1977),

Haimes (1977), Singh and Titli (1978), Singh (1980), Jamshidi (1983)); however, as is

discussed in Sorenson and Koble (1984), the complicated notation, specialized jargon

and the ad hoc nature of many of the developed algorithms, make them difficult to

understand and to apply. Sorenson and Koble (1984) employed a general taxonomic

scheme originally proposed by Geoffrion (1970) and created a useful framework, in

which a representative portion of the literature on algorithms for solving optimization

problems in multilevel systems was unified into four general coordination methods

with applications in optimal control of interconnected dynamical systems.

The four general coordination methods are the Goal Coordination (GC),

Interaction Prediction Coordination (IPC), Co-State Coordination (CSC) and

Pseudo-Model Coordination (PMC). The fundamental idea underlying these

approaches is to have independent subproblems that each, in addition to local

decision variables, contain certain parameters (original problem variables, pseudo-

variables, Lagrange multipliers, co-state variables, or a combination of the above)

called coordinating variables. Subproblem solutions are achieved by temporarily fixing

the values of the coordinating variables. Based on the local solutions, a second level

of control (a coordinator) is used to update the values of coordinating variables in an

iterative manner, until a solution to the composite system is achieved (Sorenson and

Koble (1984)). Coordinating variables are defined through the process of relaxing the
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interactions between the subproblems. In all the subproblems, the set of local equality

constraints with interaction variables is re-stated in terms of one set of local and one

set of interaction constraints1. The main differences between various coordination

methods lie in how the interaction constraints are treated and how the coordinating

variables are calculated.

In the Goal Coordination method, duality theory is used to construct an

equivalent two-level problem to the primal (centralized) optimization problem of the

interconnected system. For each subsystem, the interaction constraints (complicating

constraints) are adjoined to the cost function using Lagrange multipliers. In other

words, a dual problem with respect to the complicating constraints is formed and local

constraints remain as explicit constraints in the local units. The values of estimated

Lagrange multipliers (dual variables) are iteratively improved by numerically solving

the unconstrained dual optimization problem. A characteristic feature of the dual

optimization problem is that its gradient is readily available and thus, gradient

search procedures can be used. In the context of multi-level systems optimization,

the GC approach is the most widely investigated method in the literature (e.g.,

Bauman (1966), Lasdon (1970), Pearson (1971), Singh and Titli (1978), Haimes

(1977), Bazaraa and Shetty (1979), Singh (1980), Jamshidi (1983), Leunberger (1984),

Sorenson and Koble (1984)). In most of these references, numerical unconstrained

optimization methods, such as steepest ascent, in which only the gradient information

of the dual optimization problem is needed, are used to update estimations of

Lagrange multipliers2. The use of Newton’s method, where the Hessian information

is also employed, can be traced to the work of Bauman (1966).

Similar to the GC method, in the Interaction Prediction method, the duality

principle3 is applied to augment the cost function with the interaction constraints;

however, for updating the dual variables, rather than solving the unconstrained dual

1The interaction constraints are also referred to as complicating constraints, as they contain
variables from other subsystems.

2Throughout this work Lagrange multipliers estimates are referred to as prices.
3In the IPC, CSC and MPMC methods, the Duality Principle refers to Relaxation of the problem

by penalizing certain constraints; however, the term Duality emphasizes that the desired constraints
are linearly penalized by associating penalty parameters that are dual variables, with them. In other
words, if the values of these dual variables equal the corresponding Lagrange multipliers values in
the original problem, the relaxed problem is equivalent to the original problem.
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optimization problem, an explicit satisfaction of portions of first-order optimality

conditions of the composite system is used. Through the use of predictive type

equations obtained from numerically solving optimality conditions, coordinating

variables, including the price vector, are iteratively corrected with much less

computational burden (Sorenson and Koble (1984)). The IPC method was originally

proposed by Takahara (1965) for continuous linear interconnected local systems

having quadratic performance measures. Convergence properties of the method were

investigated by Cohen et al. (1974).

The duality principle is also applied in the Co-State coordination method, but

here the dual problem is formed with respect to the local constraints and therefore

the interaction constraints remain as explicit constraints in the primal optimization

problem. This method was first proposed by Mahmoud et al. (1977). Later Cohen

(1978) criticized the work stating that unlike what had been claimed in the original

paper, the method would not produce separable local problems. Following that,

Mahmoud corrected the CSC algorithm in Mahmoud (1978). In the CSC method

three levels are used. In the first level, the subproblems are solved. The coordination

task is done based on a gradient type routine and a prediction type update in the

second and third levels, respectively. The major disadvantage of this method is that

the separability of the local problems is lost as they contain the coupling equations.

Therefore, the CSC approach cannot be regarded as a hierarchical method (Sorenson

and Koble (1984)).

In the Pseudo-Model Coordination method, pseudo-variables are substituted

for the interaction variables. The transformed interaction equations4 are then

included in the local objective functions using quadratic penalty functions and a

penalty parameter. Numerically solving the appropriate optimality conditions of the

integrated system, provides predictive update equations for the coordinating variables

including pseudo-variables. The PM Coordination approach was first proposed by

Pearson (1971). Based on his work, Singh (1975) developed a two-level algorithm

for continuous time optimal control of interconnected systems with general local

nonlinear models and linear interconnection dynamics. He also specialized the

4The equations used to define pseudo-variables are called the transformed interaction equations.
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algorithm for linear quadratic (LQ) control problems. Simmons (1976) modified

Singh’s proposed update algorithm as some terms from the optimality conditions

were missing. Also, Simmons (1976) showed that in Singh (1975), analysis of the

problem and the statement about the independence of coordination from the choice

of penalty parameter were not correct. As was discussed in Simmons (1976), only

when the penalty parameter is large enough, will the aggregate of the local problems

produce the original optimal solution; otherwise, the two-level system will produce an

approximation of the plant-wide optimization problem. Sorenson and Koble (1984)

overcame this major drawback by using convexification; wherein, the transformed

interaction equations are quadratically penalized in the local objective functions

and at the same time kept as explicit constraints. They then employed the duality

principle to form the dual problem by relaxing the linear transformed equations. In

other words, the transformed equations were appended to the the local cost functions

by associating multipliers with them. In this thesis, the method proposed by Sorenson

and Koble (1984) is referred to as the Modified Pseudo-Model Coordination (MPMC)

method.

The literature has focused on developing computational algorithms for solving

general multilevel optimization problems. As an important and common application,

many of the developed algorithms have been tailored to solve optimal control problems

for interconnected dynamical systems; however, the research on solving plant-wide

MPC problems through coordination methods has not been given enough attention.

The first attempt to do so was made by Cheng et al. (2007). They extended

the price-driven coordination method for solving resource distribution or auction

problems, proposed by Jose and Ungar (1998) and Jose and Ungar (2000), to large-

scale quadratic programming problems and in particular, to the steady-state target

calculation MPC problem. To efficiently adjust the prices, based on Newton’s method,

they proposed a price update scheme for the coordinator, in which sensitivity analysis

and active-set change identification techniques were employed. Following their work,

Marcos et al. (2008; 2009) extended the price-driven coordination method to solve

the plant-wide MPC problem for interconnected dynamical systems. As was briefly

mentioned above, in Cheng (2007) and Cheng et al. (2007), rather than incorporating
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the multilevel optimization theories and concepts, an auction-based viewpoint was

used to formulate the coordinated distributed problem. Consequently, understanding

the elements of the price-driven coordination method and its extensions to other

CDMPC applications have become very difficult. The main reason for such difficulty

is that the formulations, as well as the interpretations on the impact of the variables

and the mechanism of coordination were expressed in a different jargon than what is

common in multilevel optimization and optimal control context. From the multilevel

(hierarchical) systems viewpoint, the price-driven coordination method used in Cheng

(2007) and Marcos (2012), is a special case of the Goal Coordination approach, where

the coordinator uses Newton’s method to update the prices.

Another application of coordination-based optimization methods in solving the

plant-wide MPC problem was studied in Marcos (2012), where the IPC method in

Cohen (1977) was adopted to design a coordinated distributed unconstrained linear

MPC network. Convergence properties of the coordination algorithm and stability of

the closed-loop system were investigated. The coordinator was designed such that the

optimality conditions of the centralized problem were solved for the calculated local

control variables and predicted states. Therefore, in the coordinator, at each iteration,

by using the calculated manipulated variable changes from the local controllers, the

system of linear equations resulting from the centralized plant model was solved to

give the predicted states. The local control variable changes and the predicted states

were then used in the first-order optimality conditions of the centralized problem to

obtain the full price vector by solving the resulting system of linear equations. Then,

the obtained price vector was localized by substituting the components of the full

price vector corresponding to the ith subsystem by zeros. Although the proposed

formulation for the coordinator was correct, it contained redundant steps. Also,

since the coordinated distributed scheme was formulated for unconstrained MPC, the

effects of the limits on the local process outputs and control inputs were not taken

into account in the coordinator’s update equations.

In this chapter, according to the classification used in Sorenson and Koble (1984),

the GC, IPC and MPMC methods are employed to construct coordinated distributed

linearly constrained MPC networks. As the CDMPC will be formed by modifying
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the already available decentralized MPC configuration in the plant, and because the

Co-State Coordination method uses non-separable subproblems, this coordination

method is not considered in this thesis.

The main contributions of this chapter can be summarized as follows:

• The formulations of local MPC and coordinator for constrained linear CDMPC

network, are derived using the Goal Coordination Method. The required

modifications for converting the decentralized MPC into CDMPC are performed

by forming an appropriate dual optimization problem. The coordinator

is formulated by the numerical algorithm used to solve the resulting dual

unconstrained optimization problem. A general structure is proposed for the

coordinator, in which Newton’s method distinguishes one special version of this

general form.

• Constrained linear CDMPC and the corresponding coordinator, are formulated

using the Interaction Prediction Coordination method. The modifications in the

local controllers are the same as those in the GC method. The coordinator’s

equations are derived based on the numerical algorithm employed to solve the

appropriate portions of optimality conditions of the composite CDMPC. A

fixed-point iteration technique and gradient-based method are the two numerical

approaches used in the coordinator design. The coordinator involves very simple

update equations. Based on the proposed coordinator formulation, unlike the

method discussed by Marcos (2012), there is no need to solve the system of

equations resulting from the centralized model. Also, the distributed controllers

use the same price vector and thus, the coordinator does not need to localize

the price vector. The effects of the local inequalities on the update process have

been accounted for in the coordinator design phase.

• For the first time, the Modified Pseudo-Model Coordination method is applied

to plant-wide linear constrained MPC problem. The decentralized controllers

are converted into distributed controllers by replacing the interaction variables

with the defined pseudo-variables and forming a relaxed problem. The

coordinator is designed using the algorithm involved in the numerical method
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chosen to solve the appropriate portions of the optimality conditions for the

aggregate of CDMPC. The two numerical methods used in constructing the

coordinator are the fixed-point iteration and gradient-based methods. The

obtained coordinator equations are very simple. Also, the effects of local

inequalities on the coordinating variables have explicitly been taken into account

in the coordinator’s update equations.

It is hoped that the comprehensive study and analysis of the application of

coordination methods to linearly constrained decentralized MPC, presented in this

chapter, will be helpful in the development of new coordinated distributed schemes

for various plant-wide MPC problems including robust, stochastic, nonlinear and

asynchronous cases.

2.1 Background

Before proceeding with the main topic of this chapter, some mathematical background

and notation are presented, which will be used later in the development and analysis

of CDMPC.

2.1.1 Plant Model

In this chapter the following linearized discrete-time state-space representation of the

entire plant is used:

x(k + 1) = Ax(k) + Bu(k) (2.1a)

y(k) = Cx(k) (2.1b)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the control input vector and

y(k) ∈ Rny is the output vector, all in deviation variable form and at sampling

instant k. It is assumed that full state information is available.

Considering that the plant contains N interconnected process units, the A and B

matrices in the plant model (2.1a) can be written in the following block-wise form:
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A =



A11 . . . A1j . . . A1N

...
...

...
Ai1 . . . Aii . . . AiN

...
...

...
AN1 . . . ANj . . . ANN


and B =



B11 . . . B1j . . . B1N

...
...

...
Bi1 . . . Bii . . . BiN

...
...

...
BN1 . . . BNj . . . BNN


(2.2)

where the pair (Aii,Bii) along the diagonal of A and B, respectively, represents the

dynamics of the local process unit i. The off-diagonal pairs (Aij,Bij) models the

interaction between the local process unit i and j.

Using this block-wise decomposition of the state space matrices, the plant model

(2.1) can be re-written as:

xi(k + 1) = Aiixi(k) + Biiui(k) +
N∑
j=1
j 6=i

[Aijxj(k) + Bijuj(k)] (2.3a)

yi(k) = Ciixi(k) (2.3b)

where i = 1, . . . , N . The vectors xi(k) ∈ Rnxi , ui(k) ∈ Rnui and yi(k) ∈ Rnyi

contain the states, inputs and outputs of the local unit i at time k in deviation form,

respectively. Also,
N∑
i=1

nxi = nx,
N∑
i=1

nui = nu and
N∑
i=1

nyi = ny that is the sum of the

local variables equals the total number of plant variables, which implies that states

and control inputs are not shared between the process units.

It is assumed that the plant is controlled by a decentralized MPC network. It should

be emphasized that in this work, it is not of concern how the plant is partitioned into

local processes. The three important implications of this assumption are: 1) the

local pair (Aii,Bii) corresponds to the dynamics of local unit i; 2) the local pairs

(Aii,Bii), are controllable; 3) the existing decentralized controllers will be converted

into distributed controllers by modifying their formulations.

Also, without loss of generality and throughout this thesis, the state-space model

is used for MPC; however, the coordination methods discussed here are not limited

to MPC with state-space prediction models. Since MPC with any type of prediction

model and objective function is an optimization problem, it is expected that the same
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concepts and principles of coordination methods discussed in this work, can be used

for formulating CDMPC with other available forms of process models, such as Finite

Impulse Response (FIR), step response and transfer function models. The successful

extension of the price-driven method to coordinated distributed MPC, in which finite

step-response models were used in Marcos et al. (2008), is a good example to show

the applicability of the coordination methods to MPC with prediction models other

than state-space.

2.1.2 Plant-Wide Model Predictive Control Problem

In order to assess the accuracy of various coordination approaches in distributed

MPC, a performance benchmark is required. Although it may not be physically

realizable for the reasons previously discussed, the best achievable performance would

be obtained by solving the MPC problem for the entire plant, by using an accurate and

complete model for the entire plant. In this thesis, the solution to such a plant-wide

(centralized) MPC problem represents the maximum achievable plant performance

and is one of the performance benchmarks that is used throughout this work.

Model predictive control poses the control problem as an optimization problem,

and refers to a class of advanced model-based multivariable control algorithms that

calculate manipulated variables profiles by using a process model to optimize a

performance objective subject to constraints over a future time horizon. The first

move of the calculated optimal manipulated variables profiles are implemented in

the process and the rest are discarded. At the next control interval, based on the

receding horizon principle, the calculations are repeated using the same time horizon

and updated process measurements.

MPC is commonly formulated as a constrained quadratic programming problem.

In this work, the MPC formulation in Maciejowski (2000), in which the quadratic

objective function penalizes deviations of the predicted controlled outputs from a

reference trajectory and the control input changes5, has been used. The constraints

5Deviations of the input vector from some ideal resting values, i.e, ||Ui − U∗
i ||2S can also be

used in the objective function (Maciejowski (2000)). In this work, this term has not been included
in the MPC formulation. If this term is also present in the CDMPC schemes the coordinator’s
formulation and the modified terms in the local decentralized controllers will change to include its
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include the plant model (2.3) and linear inequality constraints, which account for

process limitations on the outputs, control inputs and control input changes. Such a

plant-wide linear constrained MPC can mathematically be described as:

min
X,∆U

N∑
i=1

[
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

]
(2.4a)

subject to

xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+

N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] +
N∑
j=1
j 6=i

[
βAijxj(k + l|k) + Bij

l∑
a=0

∆uj(k + a|k)

]

(2.4b)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(2.4c)

where 

l = 0, . . . , Hp − 1

b = 0, . . . , Hu − 1

for

{
l = 0, α = 1, β = 0

l 6= 0 α = 0, β = 1

i = 1, . . . , N

where, Hp and Hu are prediction and control horizons, respectively. The terms

CiiXi in the objective function (2.4a) and Ciixi(k + l + 1|k) in the inequality

constraints (2.4c) represent the predicted output Yi where the vector Yi ,[
yi(k + 1|k)T , . . . ,yi(k +Hp|k)T

]T
contains the predicted outputs of local unit i over

the entire prediction horizon. Similarly, Xi ,
[
xi(k + 1|k)T , . . . ,xi(k +Hp|k)T

]T
is the local predicted state vector over the prediction horizon Hp. The

matrix Cii = blkdiag(

Hp times︷ ︸︸ ︷
Cii, . . . ,Cii) is a block diagonal matrix. The vector

∆Ui ,
[
∆ui(k|k)T , . . . ,∆ui(k +Hu − 1|k)T

]T
includes the manipulated variable

effects; however, the required changes will automatically be obtained if the same procedures discussed
in this work for the coordination algorithms, are followed.
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changes for the subsystem i over the entire control horizon. The vector ri ,[
ri(k + 1|k)T , . . . , ri(k +Hp|k)T

]T
involves the pre-specified set-point trajectory. Qii

and Rii are block-wise matrices containing the weighting matrices Qii and Rii along

their diagonal. In the equality constraint (2.4b), the control input u(k + l|k) has

been expressed in terms of the control input change ∆u(k + 1|k) using the following

relation between the control input and its change (Maciejowski (2000)):

u(k + l|k) =
l∑

a=0

∆u(k + a|k) + u(k − 1) (2.5)

where for l = Hu, . . . , Hp − 1, the control input vector remains constant (i.e,

∆u(k + a|k) = 0).

Remark 2.1.1 The local process model (2.4b) is written based on three terms. These

terms distinguish the centralized, decentralized and distributed MPC. They also, play

an important role in developing different coordinated distributed methods.

The terms containing states at time k and past control inputs are referred to

as known terms, as the current states and past control inputs are available. The

terms involving the predicted states and predicted control input changes are designated

as unknown terms because the predicted states and predicted manipulated variable

changes are decision variables in the optimization problem.

Based on this classification and from the view-point of local unit i,

the first term in (2.4b), Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
includes both known and unknown local information; The second term,
N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] contains known interaction information and

the third portion,
N∑
j=1
j 6=i

[
βAijxj(k + l|k) + Bij

l∑
a=0

∆uj(k + a|k)

]
, contains unknown

interaction information.

Based on the availability of interaction information, the local process model (2.4b)

can equivalently be described by the following two systems of equations:
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xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+

N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] + vi(k + l|k)

(2.6a)

vi(k + l|k) ,
N∑
j=1
j 6=i

[
βAijxj(k + l|k) + Bij

l∑
a=0

∆uj(k + a|k)

]
(2.6b)

where the vector vi is referred to as interaction variable, since it contains the

unknown interaction information; The set of equations (2.6a) is regarded as local

dynamic equations, since all terms have either index i or is a known interaction

term. The system of equations (2.6b) describes the (local) interaction equations.

In the context of distributed optimal control, interaction equations are referred to

as the complicating constraints because they contain variables from more than one

process unit (Pearson (1971), Sorenson and Koble (1984)). The manner in which the

interaction equations are treated provides the basis of different coordinated distributed

formulations.

2.1.3 Decentralized Model Predictive Control

By performing some modifications, the available decentralized MPC can be converted

into CDMPC. This implies that the decentralized controllers also provide a

performance benchmark for assessing the performance of the distributed controllers.

In the synthesis of decentralized MPC, interaction effects are not taken into account.

That is, instead of solving the monolithic optimization problem (2.4), N smaller, fully

decoupled optimization problems are solved. Decentralized MPC is formulated as:

min
Xi,∆Ui

(CiiXi − ri)
T Qii (CiiXi − ri) + ∆UT

i Rii∆Ui

subject to
(2.7a)

xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
(2.7b)
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ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(2.7c)

Unless the process units in the plant are truly decoupled, when (2.7) is solved for

all the decentralized controllers, the aggregate of the solutions will not produce the

optimal solution of the plant-wide problem (2.4). Thus, neglecting the interactions

between the local units in the decentralized scheme yields sub-optimal plant-wide

performance. Nevertheless, the decentralized MPC approach is commonly used in

industry and it is important to investigate possible solutions for its performance

improvement.

2.2 CDMPC Problem Statement

In this thesis, the coordinated distributed model predictive controllers have the

following general form:

min
Xi,∆Ui

(CiiXi − ri)
T Qii (CiiXi − ri) + ∆UT

i Rii∆Ui + {CoT}i (2.8a)

subject to

xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+

N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] + vi(k + l|k)

(2.8b)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(2.8c)

where {CoT} stands for Coordinating Term(s) and the index i indicates that each

local controller has its own coordinating term(s). {CoT}i links the local controller to

the coordinator and therefore, it will contain some form of coordinating variables that

are to be updated by the coordinator. The interaction variables vector vi, depending

on the coordination method, is calculated either by the distributed controllers or the

coordinator.
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If {CoT}i in the objective function (2.8a) is set to zero, the aggregate of the

distributed controllers (2.8) along with the interaction equations (2.6b) will form the

plant-wide MPC problem (2.4). This relation between the distributed and plant-wide

controllers has two implications: 1) it implies that the local interaction equations in

the CDMPCs are compensated for by {CoT}i; 2) and if the correct values of {CoT}i
are found, the plant-wide performance will be achieved by the distributed controllers.

Comparing the decentralized formulation (2.7) and the distributed formulation

(2.8) shows that two modifications have been made in the decentralized controllers:

1) the coordinating terms are added to their objective functions; 2) and the known

interaction information and interaction variables vi, have been added to the local

process models6.

The above comparisons between distributed, decentralized and plant-wide MPC

indicate that these three schemes can be converted into each other by full or partial

inclusion and/or exclusion of the interaction equations. Thus, knowing the interaction

models is the major requirement in converting the decentralized controllers into

their distributed counterparts. If the interaction models are available, the CDMPC

will provide the advantage of having independent controllers and reaching optimal

plant-wide performance. In all the coordination methods discussed in this thesis,

it is assumed that the coordinator knows the interaction models (Aij,Bij), where

{∀i, j|i, j = 1, . . . , N & j 6= i}.

Treatment of interaction equations plays an important role in determining the

coordinating terms. The numerical strategy chosen to calculate the coordinating

variables involved in the {CoT}i, dictates the coordinator equations. The

coordination process is inherently an iterative scheme because of the computational

techniques used in calculation of the coordinating variables (Mahmoud (1977)).

In designing every CDMPC network, the following two questions should be

answered:

1. How are the coordinating terms {CoT}i, defined?

2. How are the coordinating variables in the {CoT}i, calculated?

6In other words, the local prediction models (2.7b) have been replaced by the dynamic equations
(2.6a).



Sec. 2.3 Goal Coordinated Distributed MPC 29

The answer to the first question dictates the modifications required in the existing

decentralized MPC, in order to convert them into CDMPC. The answer to the second

question provides the structure of the coordinator.

2.3 Goal Coordinated Distributed MPC

In this section, the GC method is applied to define the coordinating terms in linear

CDMPC and construct the coordinator. The use of the GC approach for coordinating

the DMPC, where the linking (complicating) constraints are of equality type will

result in an unconstrained dual optimization problem, which can be numerically

solved using any numerical optimization approaches. The update equations resulting

from the adopted numerical method forms the coordinator.

2.3.1 Distributed Controllers in the GC Method

To determine the {CoT}i in the distributed controllers and construct the coordinator,

first the interaction equations (2.6b) are used to form the local interaction error vector

Ei,

Ei(k + l|k) , vi(k + l|k)−
N∑
j=1
j 6=i

[
βAijxj(k + l) + Bij

l∑
a=0

∆uj(k + a)

]
(2.9)

and then Ei is written over the entire prediction horizon Hp for all of the local systems

to form the overall interaction error vector E as follows:
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E =



E1(k|k)

...
E1(k +Hp − 1|k)

...
EN(k|k)

...
EN(k +Hp − 1|k)


=



v1(k|k)−
N∑
j=2

[B1j∆uj(k|k)]

v1(k + 1|k)−
N∑
j=2

[
A1jxj(k + 1|k) + B1j

1∑
a=0

∆uj(k + a|k)

]
...

v1(k +Hp − 1|k)−
N∑
j=2

[
A1jxj(k +Hp − 1|k) + B1j

Hu−1∑
a=0

∆uj(k + a|k)

]
...

vN(k|k)−
N−1∑
j=1

[BNj∆uj(k|k)]

vN(k + 1|k)−
N−1∑
j=1

[
ANjxj(k + 1|k) + BNj

1∑
a=0

∆uj(k + a|k)

]
...

vN(k +Hp − 1|k)−
N−1∑
j=1

[
ANjxj(k +Hp − 1|k) + BNj

Hu−1∑
a=0

∆uj(k + a|k)

]


(2.10)

Next, (2.10) is re-arranged such that it is converted into the following additive

separable form:
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E =



v1(k|k)

v1(k + 1|k)

...
v1(k +Hp − 1|k)

...
− [BN1∆u1(k|k)]

−

[
AN1x1(k + 1|k) + BN1

1∑
a=0

∆u1(k|k)

]
...

−

[
AN1x1(k +Hp − 1|k) + BN1

Hu−1∑
a=0

∆u1(k + a|k)

]


︸ ︷︷ ︸

Θ1


X1

∆U1

V1


+ . . .+ (2.11a)

− [B1N∆uN(k|k)]

−

[
A1NxN(k + 1|k) + B1N

1∑
a=0

∆uN(k + a|k)

]
...

−

[
A1Nx1(k +Hp − 1|k) + B1N

Hu−1∑
a=0

∆uN(k + a|k)

]
...

vN(k|k)

vN(k + 1|k)

...
vN(k +Hp − 1|k)


︸ ︷︷ ︸

ΘN


XN

∆UN

VN



=⇒ E =
N∑
i=1

Θi

 Xi

∆Ui

Vi

 (2.11b)

In (2.11b), the overall interaction error vector E is expressed as summation of local
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matrices and variables. For each subsystem, the matrix Θi contains the interaction

models Aji and Bji and the Identity matrix I corresponding to vi. The dimension of

Θi would be (
N∑
i=1

nxi) × (2nxi + nui). More details on the elements and structure of

this matrix for a simple example, can be found in Appendix B.

Remark 2.3.1 It should be noted that, since the overall interaction error vector E

is defined as the difference between the left- and right-hand sides of the interaction

equations (2.6b) of all local units over the entire prediction horizon, the system of

equations

E =
N∑
i=1

Θi

 Xi

∆Ui

Vi

 = 0 (2.12)

is the additive separable form of the interaction dynamic constraints (2.6b).

Now the plant-wide MPC problem (2.4)7 is re-written by replacing the equality

constraints (2.4b) with (2.6a) and the additive separable form of (2.6b) as :

min
X,∆U,V

N∑
i=1

[
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

]
subject to

(2.13a)

xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+

N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] + vi(k + l|k)

(2.13b)

7Since it is assumed that the interactions models are known, the plant-wide MPC problem (2.4)
can be formed by performing the following simple modifications on the aggregate of the decentralized
controllers (2.7):

1. The local process models (2.7b) are replaced by (2.6a).

2. The interaction equations (2.6b) are included in the constraints of the decentralized
controllers.

Thus, the use of plant-wide MPC problem in defining CoTi for the distributed controllers does not
mean that in order to create the distributed controllers, a physical centralized MPC should exist.
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N∑
i=1

Θi

 Xi

∆Ui

Vi

 = 0 (2.13c)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(2.13d)

i = 1, . . . , N

In order to maintain the separable structure of the decentralized controllers, the

additively separable equality constraints (2.13c) are relaxed by associating the vector

of Lagrange multipliers p having the dimension (
N∑
i=1

nxi × 1), with them. This

relaxation results in the following problem:

min
X,∆U,V

N∑
i=1

[
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

]
+ pT

N∑
i=1

Θi

 Xi

∆Ui

Vi


(2.14a)

subject to

xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+

N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] + vi(k + l|k)

(2.14b)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(2.14c)

i = 1, . . . , N

The optimization problem (2.14) is separable, which means that its solution can

be found by solving N smaller optimization problems. This implies that in the

GC method, the {CoT}i = pTΘi

 Xi

∆Ui

Vi

 and thus, the distributed controllers (2.8)
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become:

min
Xi,∆Ui,Vi

(CiiXi − ri)
T Qii (CiiXi − ri) + ∆UT

i Rii∆Ui + pTΘi

 Xi

∆Ui

Vi

 (2.15a)

subject to

xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]

+
N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] + vi(k + l|k)

(2.15b)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(2.15c)

where the coordinating variable vector p, is the so-called price vector (Cheng (2007),

Marcos (2012)) which is determined by the coordinator and transmitted to the local

controllers. The local vector Vi ,
[
vi(k|k)T ,vi(k + 1|k)T , . . . ,vi(k +Hp − 1|k)T

]T
contains the estimated interaction effects and is determined by the local controllers,

as part of their decision variables. The constant matrix Θi involves the interaction

models. The coordinator calculates these constant matrices according to (2.11a) and

provides them to the local controllers8.

The way {CoT}i is defined dictates that same price vector should be provided to

each distributed controllers. In each controller, the price vector acts as the penalty

for violating the local part of all the interaction dynamic constraints. In other words,

the price vector penalizes the local part of the overall interaction error vector.

Now, the important question is how the correct price vector can be calculated such

that the aggregate of distributed controllers (2.14) provides the plant-wide MPC

solution (2.13). The answer to this question ultimately leads to the appropriate

coordinator structure.

8Since the process models used in this work are assumed to be time-invariant, Θi is constant.
Thus, the coordinator needs to just calculate Θi, once.
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2.3.2 Coordinator Design in the GC method

In the GC method, the solution strategy to solve (2.14) is developed by numerically

solving the dual optimization problem9. Before introducing the dual optimization

problem, in order to work with simpler notation, let the objective function of the

aggregate problem (2.14) be represented by J :

J (X,∆U,V,p) =
N∑
i=1

Ji(Xi,∆Ui,Vi,p) =

N∑
i=1

[
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

]
+ pT

N∑
i=1

Θi

 Xi

∆Ui

Vi

 (2.16)

Based on (2.14) and (2.16), the Lagrangian dual function (Pearson (1971),

Bazaraa and Shetty (1979), Leunberger (1984), Boyd and Vandenberghe (2004)) or

perturbation function (Geoffrion (1971)) ϕ(p) is defined as:

ϕ(p) , inf
X,∆U,V

{J (X,∆U,V,p)|(2.14b) & (2.14c) , i = 1, . . . , N} (2.17)

In (2.13), let the optimal value be denoted by P∗. For every value of the vector p,

the dual function ϕ(p) yields a lower bound on P∗10:

9Details on Duality can be found in many optimization textbooks (e.g., Bertsekas (1999), Boyd
and Vandenberghe (2004)). In this section, the tutorial by Vert (2006) has been used to adapt the
concepts to the problem at hand.

10Let Zi ,

 Xi

∆Ui

Vi

and (2.13) be described by the following compact form:

min
Z1,...,ZN

Jp(Z1, . . . ,ZN )

subject to

fi(Zi) = 0 and

N∑
i=1

ΘiZi = 0 and gi(Zi) ≤ 0 where i=1,. . . ,N.

Let Z̄i be any feasible point, i.e, fi(Z̄i) = 0,

N∑
i=1

ΘiZ̄i = 0, gi(Z̄i) ≤ 0 and µi ≥ 0. Thus, for all Z̄

the following inequality holds:

L(Z̄,λ,p,µ) = Jp(Z̄) +

N∑
i=1

λT
i fi(Z̄i) + pT

N∑
i=1

ΘiZ̄i +

N∑
i=1

µigi(Z̄i) ≤ Jp(Z̄)

where L is the Lagrangian. Also, ϕ(p) = inf
Z

L(Z,λ,p,µ) ≤ L(Z̄,λ,p,µ).
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ϕ(p) ≤ P∗ (2.18)

The definition of the dual function (2.17), implies that the lower bound depends

on the vector p. In order to find the value of p that yields the greatest lower bound

the following optimization problem should be solved:

max
p

ϕ(p) (2.19)

where because the nature of the vector p is of Lagrange multiplier associated with

equality constraints, there is no sign restriction for vector p and thus, (2.19) is an

unconstrained optimization.

Problem (2.19) is called the dual optimization problem. Since the dual function

can be any real value i.e., {ϕ(p) ∈ R : −∞ ≤ ϕ(p) ≤ ∞}, the infimum is found by

performing minimization. Thus, (2.19) can be written as:

max
p

min
X,∆U,V

J (X,∆U,V,p)

subject to

(2.14b) & (2.14c)

(2.20)

i = 1, . . . , N

Let the optimal value of the dual problem (2.20) be denoted by D∗. From (2.18)

it is immediately concluded that:

D∗ ≤ P∗ (2.21)

Inequality (2.21) is known as Weak Duality and the Duality Gap, which is defined as

the difference between the optimal objective function value of the dual and primal

=⇒ ϕ(p) ≤ Jp(Z̄)

Thus, for the optimal solution Z∗ that corresponds to the optimal value Jp(Z∗) = P∗, the above
inequality becomes ϕ(p) ≤ P∗.
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optimization problems, is positive, i.e., D∗ − P∗ ≥ 0. The equality D∗ = P∗ in

which the optimal value of the dual optimization problem equals the optimal value

of the original problem (before relaxation) is recognized as Strong Duality and in

this case the duality gap is zero. Unlike weak duality that always holds for any

optimization problem, strong duality can only be guaranteed to be held for convex

optimization problems that satisfy Slater’s constraint qualification condition. This

condition requires the original optimization problem be strictly feasible or in other

words, has at least one feasible point.

The above discussion indicates that in order to reach the optimal plant-wide

solution through solving the dual optimization problem, strong duality should hold.

The distributed controllers have quadratic objective functions and linear constraints

and thus, the aggregate problem (2.14) is a convex optimization problem. Also, as the

plant-wide problem (2.13) is the performance benchmark, it is assumed that it has

at least one feasible point. Therefore, strong duality holds and the optimal solution

of the plant-wide MPC problem (2.13) can equivalently be obtained by solving the

CDMPC problem (2.20).

So far, it has been shown that the dual problem (2.20) produces the optimal plant-

wide solution. The next issue is determining how solving (2.20) is related to the

coordinator design?

Solving the dual problem (2.20) may seem awkward, since its cost function is a

constrained minimization problem. A valuable characteristic of (2.20) is that its

gradient can be easily evaluated as:

J =
dL(X,∆U,V,p)

dp
= E =

N∑
i=1

Θi

 Xi

∆Ui

Vi

 (2.22)

where L is the Lagrangian of the aggregate of distributed controllers. Equation (2.22)

indicates that J depends on the local controllers solutions. Thus, if Xi, ∆Ui and Vi

are available, the gradient J is easily calculated.



Sec. 2.3 Goal Coordinated Distributed MPC 38

Similarly, the Hessian of the dual problem can be calculated as:

H =
dJ

dp
=
dE

dp
=

N∑
i=1

Θi

d

 Xi

∆Ui

Vi


dp

(2.23)

According to (2.23), the Hessian depends on the sensitivity information of the local

solutions. Therefore, if the variations of the local solutions with respect to the price

vector are known, the Hessian can be calculated using (2.23). Details for calculating

local sensitivity matrices can be found in Cheng (2007) and Marcos (2012).

Considering that the gradient information is readily available, the dual optimization

problem (2.20) can be solved using gradient methods11 (e.g., steepest ascent and

Newton’s method). Thus, the solution strategy for solving the dual problem (2.20)

involves the following general iterative scheme:

pq+1 = pq + εqSq (2.24)

where q is the iteration counter, ε is the optimal step length and S is the search

direction that includes the gradient information J and the Hessian H. The set

of equations (2.24) provides updates for the price vector p. On the other hand,

the coordinator is responsible for updating the coordinating variable vector p.

Consequently, (2.24) is the coordinator in the GC method.

The general coordinator structure (2.24) includes the two main groups of gradient

methods. One category is the first-order gradient approaches such as steepest ascent

and conjugate gradient methods. These approaches, at each iteration, use gradient

information Jq, in the search direction vector Sq. In solving the dual optimization

problem, first-order gradient methods show very slow convergence rates, particularly

when active local inequality constraints are present. Therefore, in most cases, a

significant number of communication cycles is required, which makes these approaches

impractical for on-line implementation. The problem worsens when, rather than using

a fixed step-size, the optimal εq is required to be calculated at each iteration to improve

the convergence behaviour. In the next chapter, a first-order gradient approach with

11Gradient or indirect search methods are referred to the methods that require derivatives of the
objective function to numerically solve unconstrained optimization problems (Rao (1996)).
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improved convergence performance is proposed, which converges in a finite number

iterations and does not use optimal step-size calculations.

The second category of gradient methods includes techniques that use first and

second order information in (2.24). If a Negative Definite (ND) Hessian is available,

Newton’s method will be the most efficient method for updating the price vector. In

Newton’s method, the update equation (2.24) becomes:

pq+1 = pq − εq
[
H−1

]q
Jq (2.25)

The Hessian matrix can be obtained from the local sensitivity information. For

CDMPC without local inequalities, the Hessian is usually ND and thus, the first

choice for solving the dual optimization problem would be Newton’s method. In

the presence of local inequality constraints, due to the change of local active sets,

the resulting Hessian may not be ND and a Newton-based coordinator (2.25) can

encounter convergence problems. Quasi-Newton methods (i.e., Davidon-Flethcher-

Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS)), in which the Hessian

is estimated (Rao (1996)), are other alternatives for numerically solving the dual

optimization problem. The issues with using these methods are that the procedure

for the Hessian estimation may complicate coordinator’s calculations and similar to

the Newton’s method, the estimated Hessian may cause convergence problems for the

coordination algorithm.

The iterative nature of the coordinator establishes a hierarchical two-level scheme in

which, during each sampling instant k, the coordinator and CDMPC can communicate

and exchange information until the coordinator converges. Convergence is achieved

when the optimal prices have been obtained (i.e., p = p∗) and has the following

implications:

• The value of the price vector12 becomes equal to value of the Lagrange

multipliers associated with the interaction equations in the plant-wide MPC

problem.

12The prices are estimates of the Lagrange multiplier vector associated with the equality
constraints resulting from the plant model or equivalently the Lagrange multipliers associated with
interaction equations.
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• The interaction equations are satisfied.

• The overall interaction error vector E becomes zero.

• The vector vi, provides exact estimates of local interactions.

Once the coordinator converges, the first sets of calculated optimal control moves (i.e,

ui(k|k)) are implemented at the local process unit level.

In the GC method, communication and information exchange between CDMPC

and the coordinator is performed in a systematic manner shown in Algorithm 1.

Also, the information flow in the GC method expressed by block diagrams, can be

found in Appendix A.

Algorithm 1 : Implementation of GC-DMPC network

1. Coordinator: Iteration counter q is set to 1.

2. Coordinator: Price vector p is arbitrarily initialized.

3. Coordinator: Step-size ε is chosen/calculated.

4. Coordinator: Price vector p is sent to the local controllers.

5. Local Controllers: Local optimization problems (2.15) are solved.

6. Local Controllers: Local optimal solutions Xi, ∆Ui and Vi are sent to the
coordinator 13.

7. Coordinator: If ||E|| ≤ e, algorithm stops. Otherwise, next step is taken.

8. Coordinator: The gradient matrix J (and the Hessian H) is calculated using
(2.22) (and (2.23)).

9. Coordinator and Local Controllers: If required, optimal step-size ε is calculated.

10. Coordinator: Price vector p is updated using (2.24).

11. Coordinator: Iteration counter q is increased by 1.

12. Steps 3-7 are repeated.

13If Newton’s method (2.25) is used, local sensitivity information should also be sent.
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2.3.2.1 Coordinator Convergence Accuracy

Convergence of the coordination algorithm in the GC method can be proved by

defining the following Lyapunov function14:

L(p) , D∗ − ϕ(p) (2.26)

whereD∗ is the optimal value of the dual optimization problem (2.19) and its objective

function ϕ(p) is the dual function defined in (2.17). The optimization problem (2.19)

implies that when p = p∗, the function L in (2.26) is zero and when p 6= p∗, L is

positive definite, i.e., L ≥ 0. Thus, (2.26) can be a candidate Lyapunov function.

Changes of L during the iterations (communication cycles) is expressed by:

L̇ =
dL
dq

=

(
dL
dp

)T (
dp

dq

)
(2.27)

From (2.26), taking the derivative of the Lyapunov function with respect to the price

vector yields:

dL
dp

= −dϕ(p)

dp
= −J (2.28)

where J is the gradient vector (2.22).

Also, as previously discussed, because gradient-based numerical optimization

methods are used to solve the maximization problem (2.19), in general, the

coordinator is described by the set of iterative equations (2.24). The system of

equation (2.24) implies that the rate of change of the price vector over the iterations

is in the direction of the gradient vector or is proportional to the gradient vector, that

is:

dp

dq
∝ J = ζJ (2.29)

where ζ is a positive constant.

Replacing (2.28) and (2.29) in (2.26) yield:

L̇ = −JTJ (2.30)

14Convergence proof of the coordination algorithm provided in this section, is inspired by the
convergence analysis of unfeasible coordination methods in Singh and Titli (1978).
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According to (2.30), it is clear that L̇ ≤ 0. Therefore, the price-update scheme

expressed by the ordinary differential equations (2.29) is stable, which implies that

the coordination algorithm is convergent.

2.4 Interaction Prediction Coordinated

Distributed MPC

In this section, details on determining the coordinating terms for the linear CDMPC

and the coordinator design in the IPC method are provided. The coordinator is

constructed by numerically solving portions of first-order optimality conditions of the

aggregate of the CDMPC.

2.4.1 Distributed Controllers in the IPC Approach

In the IPC method, {CoT}i is determined as in the GC method. The only difference

is that in the IPC method, vi is among the coordinating variables and consequently is

determined by the coordinator. Following the procedures of section 2.3, the linearly

constrained CDMPC becomes:

min
Xi,∆Ui

(CiiXi − ri)
T Qii (CiiXi − ri) + ∆UT

i Rii∆Ui + pTΦi

[
Xi

∆Ui

]
subject to

(2.31a)

xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]

+
N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] + vi(k + l|k)

(2.31b)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(2.31c)

i = 1, . . . , N

where the price vector p comes from the coordinator and is shared by all the local

controllers; the vector vi contains predictions of the interactions and is updated and

provided for the local controllers by the coordinator; the constant matrix Φi contains
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the information of the interaction models Aji and Bji and has the dimension of

(
N∑
i=1

nxi)× (nxi + nui). In Appendix B, the Φi matrix is built for a simple example.

It can be seen that the distributed controllers (2.31) are very similar to the

distributed controller formulation in the GC method (2.15). The two main differences

are:

1. In (2.15), the vector vi is estimated by the distributed controllers, while in

(2.31) vi is predicted by the coordinator.

2. For implementation purposes, instead of Θi, the lower dimensional matrix Φi

is used in the {CoT}i. This is because, at each communication cycle, the vector

Vi is calculated by the coordinator and thus, is temporarily fixed in value when

the CDMPCs are solving their optimization problems. This implies that, in

performing local quadratic optimizations (2.31), multiplication of the relevant

parts of pTΘi by Vi produces a constant term in the local objective functions

that does not have an impact on determining the decision variables. In other

words, in the objective function (2.31a), the priced term pTΘi

 Xi

∆Ui

Vi

 has

the same effect as pTΦi

[
Xi

∆Ui

]
; however, in the coordinator design phase,

the aggregate of the distributed controllers with the priced term pTΘi

 Xi

∆Ui

Vi


(i.e., problem (2.14)) is used so that the optimality conditions written for

the aggregate of CDMPCs be the same as the optimality conditions for the

centralized problem (2.13).

2.4.2 Coordinator Design in the IPC Method

After determining {CoT}i in the distributed controllers, the coordinator is designed

to calculate the coordinating variables p and Vi, based on the numerical solution

strategy chosen for solving portions of first-order optimality conditions resulting from

the optimization problem of aggregate of the CDMPC.

Before proceeding with synthesizing the coordinator, to work with simpler notation,
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the aggregate of the CDMPC (2.14) is written over the entire control and prediction

horizons, so that it can be re-stated in the following compact form:

min
Xi,∆Ui

N∑
i=1

[
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

]
+ pT

N∑
i=1

Θi

 Xi

∆Ui

Vi


(2.32a)

subject to

ÂiiXi + B̂ii∆Ui −Vi =

Zi︷ ︸︸ ︷
Āiixi(k) + B̄iiui(k − 1) +

N∑
j=1
j 6=i

[
Āijxj(k) + B̄ijuj(k − 1)

]
(2.32b)

Ymin
i ≤ CiiXi ≤ Ymax

i

Umini ≤ Uii∆Ui ≤ Umaxi

(2.32c)

i = 1, . . . , N

where the matrices Âii,B̂ii, Āii, B̄ii, Āij and B̄ij, are obtained by writing the local

process models over the entire prediction horizon; on the right-hand side of the

equality constraints (2.32b), the vector Zi contains known (available) information;

the inequality constraints imposed on the manipulated variable ui(k + b|k) and its

change ∆u(k+ b|k)i have been written for the whole control horizon and the vectors

Umini and Umaxi and the matrix Ui have been obtained by combining these inequalities.

Details of constructing (2.32) have been provided in the Appendix B.

It should be emphasized that re-stating the aggregate problem (2.14) as the

compact form (2.32) is done to facilitate derivation of the coordinator formulation;

however, for implementation purposes, it suffices to solve the optimization

problem of the distributed controllers (2.31) along with the coordinator’s update

equations, which will be provided shortly.

To design the coordinator in the IPC method, rather than estimating the

interaction effects by the local controller and finding the best price vector by

numerically solving the dual optimization problem, portions of optimality conditions

of the aggregate problem, are used to calculate the correct price vector p and

interaction effects vi. To do so, first the Lagrangian of the aggregate problem (2.32)
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is formed as:

L(X,∆U,V,Λ,Ω,Υ,p) =
N∑
i=1

Li(Xi,∆Ui,Vi,Λi,Ωi,Υi,p) =

N∑
i=1

[
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

]
+ pT

N∑
i=1

Θi

 Xi

∆Ui

Vi

+

N∑
i=1

ΛT
i

(
ÂiiXi + B̂ii∆Ui −Vi −Zi

)
+

N∑
i=1

[
ΩT
i,min

(
Ymin
i − CiiXi

)
+ ΩT

i,max (CiiXi −Ymax
i )

]
+

N∑
i=1

[
ΥT
i,min

(
Umini − Uii∆Ui

)
+ ΥT

i,max (Uii∆Ui − Umaxi )
]

(2.33)

where Λi, Ωi and Υi are Lagrange multipliers associated with the local dynamic

equations and inequality constraints. The vectors Λ, Ω and Υ contain the

relevant multipliers for all the local subsystems. Optimal solution of the aggregate

optimization problem (2.32) must satisfy the following optimality conditions15:{
∇ηL (X,∆U,V,Λ,Ω,Υ,p) = 0

for η = {X,∆U,V,Λ,p}
(2.34)

The conditions ∇XL = 0, ∇∆UL = 0, ∇ΛL = 0 along with the feasibility,

complementary slackness and non-negativity conditions arising from the local

15The precise statement of the necessary KKT conditions for the aggregate problem (2.32) is:

Optimality: ∇XL = 0, ∇∆UL = 0 and ∇VL = 0

Feasibilty:



∇ΛL = 0 and ∇pL = 0
Ymin − CX

CX−Ymax

Umin − U∆U

U∆U− Umax

 ≤ 0

Complementary slackness:

[
Ω
Υ

]T 
Ymin − CX
CX−Ymax

Umin − U∆U
U∆U− Umax

 = 0

Non-negativity:

[
Ω
Υ

]
≥ 0

Throughout this thesis, in order to use simpler language, wherever the term optimality conditions is
used for the coordinator design in the IPC method, it refers to the above Optimality and Feasibility
conditions included in boxes.
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inequalities are handled by the distributed controllers (2.31). The system of equations

resulting from∇pL = 0 and∇VL = 0 are used to design the coordinator. The former

yields prediction equations for the coordinating variables Vi and the latter provides

a relationship between the multipliers Λ, Ω and p.

A key idea in the IPC method is applying numerical techniques to portions of

the optimality conditions, to obtain update equations for the coordinating variables

(Sorenson and Koble (1984), Cohen and Miara (1990)). Fixed-point iteration

technique is one of the common numerical strategies used in the coordinator design

that converts the optimality conditions (2.34) into the following prediction type

update form:

∇ηL
(
Xq,∆Uq,Vq+1,Λq,Ωq,Υq,pq+1

)
= 0 (2.35)

According to (2.35), at each iteration, the coordinating variables are updated

using the current local information. In other words, the price vector and interaction

predictions (η = p,V) are simultaneously updated using the current local controllers

optimal solutions. When η = p, taking derivative of the Lagrangian (2.33) with

respect to the price vector and using the predictive form (2.35), gives:

∇pL =
N∑
i=1

Θi

 Xq
i

∆Uq
i

Vq+1
i

 = 0 (2.36)

Considering (2.12), which describes the relation between the overall interaction

error vector E (2.11b) and the interaction equations (2.6b), it is clear that (2.36)

implies:

vq+1
i (k + l|k) =

N∑
j=1
j 6=i

[
βAijx

q
j(k + l|k) + Bij

l∑
a=0

∆uqj(k + a|k)

]
(2.37)

for i = 1, . . . , N

Taking derivative of the Lagrangian (2.33) with respect to V and using the iteration
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index q based on (2.35), leads to the following set of equations:

∇VL =
N∑
i=1

∇Vi
L = 0 =⇒

pq+1

I1 · · · 0
...

. . .
...

0 · · · IN

−
Λq

1
...

Λq
N

−
 (C11

dX1

dV1
)TΩq

1,min
...

(CNN
dXN

dVN
)TΩq

N,min

+

 (C11
dX1

dV1
)TΩq

1,max
...

(CNN
dXN

dVN
)TΩq

N,max

 = 0

(2.38)

where Ii is the identity matrix with appropriate dimension.

The derivative term dXi

dVi
is calculated using the equalities in (2.32b):

dXi

dVi

= Â−1
ii (2.39)

Substituting (2.39) in (2.38) and re-arranging the terms give:

pq+1 =

Λq
1

...
Λq
N

+

 (C11Â−1
11 )TΩq

1,min
...

(CNN Â−1
NN)TΩq

N,min

−
 (C11Â−1

11 )TΩq
1,max

...

(CNN Â−1
NN)TΩq

N,max

 (2.40)

The two sets of update equations in (2.37) and (2.40) construct the coordinator in

the IPC method.

Remark 2.4.1 One approach to numerically solve a system of algebraic equations

is to use a fixed-point iteration technique. Another approach is to use gradient-based

methods. Note that there is a close relationship between numerically solving a set

of equations and unconstrained optimization. Thus, gradient-based approaches can

also be used to design the coordinator in the IPC method. In doing so, for solving

∇pL = 0 and ∇VL = 0 the steepest ascent and steepest descent16 methods can be

16From duality point of view, elements of the price vector p are the so-called dual variables, as they
are Lagrange multipliers. Dual variables are decision variables of the dual optimization problem.
In the context of CDMPC discussed in this work, the primal optimization (plant-wide MPC) is a
minimization problem and thus, the corresponding dual optimization is a maximization problem.
This implies that if the price vector is calculated by numerically solving the dual optimization
problem using a gradient-based method, the search direction will be in the direction of the gradient
vector. Consequently, in solving the set of algebraic equations ∇pL = 0 by a gradient-based method,
the same search direction is used.
In the context of duality, elements of the coordinating variable vector Vi are the so-called primal
variables, as they are the decision variables of the primal optimization problem. In this work, the
primal problem is a minimization problem. In numerically solving minimization problems by a
gradient-based method, the search direction is in the negative direction of the gradient. Likewise,
for solving ∇VL = 0 using a gradient-based method, the same search direction ( i.e. negative
direction of the gradient vector) is used.
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used, respectively, to obtain the following coordinator:

pq+1 = pq + ε1(

(∇pL)q︷ ︸︸ ︷
N∑
i=1

Θi

 Xq
i

∆Uq
i

Vq
i

)
(2.41)

Vq+1 = Vq − ε2(

(∇VL)q︷ ︸︸ ︷
pq −

Λq
1

...
Λq
N

−
 (C11Â−1

11 )TΩq
1,min

...

(CNN Â−1
NN)TΩq

N,min

+

 (C11Â−1
11 )TΩq

1,max
...

(CNN Â−1
NN)TΩq

N,max

)

(2.42)

where i = 1, . . . , N ; and ε1 and ε2 are tuning parameters (Singh and Titli (1978) and

Cohen and Miara (1990)).

Similar to the GC approach, the iterative scheme in the coordinator results in

a hierarchical structure. At every sampling interval, the coordinator (2.37 and

2.40) and distributed controllers (2.31) exchange information until the coordinator

converges. The convergence criterion used to stop the coordination algorithm is

||Vq+1 − Vq|| ≤ e17, in which e is the pre-specified error tolerance. Coordinator

convergence corresponds to the case where:

• The value of the price vector becomes equal to the value of Lagrange multipliers

associated with the interaction equations in the plant-wide MPC problem.

• The interaction equations are satisfied.

• The vector vi, yields exact values of the local interactions.

Communication between the two levels in the Interaction Prediction Coordination

method is systematically done according to Algorithm 2. Also, for more clarification

on the information flow between the coordinator and distributed controllers, a

flowchart has been provided in Appendix A.

17The criterion ||pq+1−pq|| can also be used along with or instead of ||Vq+1−Vq|| ≤ e; however,
since both these criteria correspond to the same solution, using one of them suffices.
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Algorithm 2 : Implementation of IPC-DMPC network

1. Coordinator: Iteration counter q is set to 1.

2. Coordinator: Coordinating variables p and Vi are arbitrarily initialized.

3. Coordinator: Coordinating variables are sent to the local controllers.

4. Local Controllers: Local optimization problems (2.31) are solved.

5. Local Controllers: Local optimal solutions Xi and ∆Ui and Lagrange
multipliers Λi and/or Ωi are sent to the coordinator.

6. Coordinator: Coordinating variables are updated using (2.37) and (2.40).

7. Coordinator: If ||Vq+1 −Vq|| ≤ e, algorithm stops. Else, next step is taken.

8. Coordinator: Iteration counter is increased by 1.

9. Steps 3-7 are repeated.

2.4.2.1 Coordinator Convergence Accuracy

Convergence of Coordinator Designed by Fixed-Point Iterations

In applying the IPC method in which the coordinator is obtained by fixed-point

iteration technique, to linear quadratic (LQ) control problem, Cohen (1977) showed

that the coordinator will converge, if the value of the objective function of the

aggregate problem decreases monotonously over iterations. The proof is valid only for

quadratic objective functions which fits with the MPC formulations used in this thesis.

Marcos (2012) extended the proof to unconstrained linear CDMPC and showed that

under certain conditions, the monotone decrease of the objective function is achieved.

These conditions depend on the dynamic models and weighting matrices that are

chosen off-line.

In this work, the same approach is adopted for constrained linear CDMPC, to

see if the presence of local inequalities will affect the convergence behaviour of the

coordinator. The proof is carried out by investigating if the overall objective function

decreases over any two consecutive iterations.

In the plant-wide MPC (2.4), if the predicted states in the objective function

and inequality constraints are replaced by X = S(∆U) obtained from the equality



Sec. 2.4 Interaction Prediction Coordinated Distributed MPC 50

constraint (2.4b), then problem (2.4) can be described in the following reduced space:

min
∆U

JPlantwide(S(∆U),∆U)

subject to

E∆U ≤ 0

(2.43)

where E is a constant matrix and contains the coefficients resulting from concatenating

inequality constraints.

For the aggregate of the distributed controllers (2.32), let the predicted states be

replaced by XDMPC = S̄(∆U,V). Also, assume that K is the mapping from ∆U into

V that is, V = K(∆U). Thus, problem (2.32) can be written in the reduced space

form:

min
∆U

JCDMPC(S̄(∆U,K(∆U)),∆U)

subject to

Ē∆U ≤ 0

(2.44)

Also, the aggregate of distributed controllers (2.32) will act as the plant-

wide/centralized MPC controller (2.4), if the following condition is held:

S(∆U) = S̄(∆U,K(∆U)), ∀∆U (2.45)

The two implications from (2.45) are that for all ∆U:

1. The objective functions of both plant-wide and distributed problems are equal:

JPlantwide(S(∆U),∆U) = JCDMPC(S̄(∆U,K(∆U)),∆U) (2.46)

2. The coefficient matrices in the inequality constraints (2.43) and (2.44) are equal:

E = Ē (2.47)

The Lagrangians and objective functions of (2.43) and (2.44) along with Taylor

series expansion provide the tool to quantitatively express the objective function

values over two consecutive iterations. Before proceeding further, let the second
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derivative of the plant-wide and distributed objective functions be G = d2JPlantwide

d∆U2

and F = d2JDMPC

d∆U2 , respectively. The matrix F contains the diagonal matrices Fi

obtained from second differentiation of the local objective functions.

The Lagrangian for problems (2.43) and (2.44) are:

LPlantwide = JPlantwide + χTE∆U (2.48)

LCDMPC = JCDMPC + χTE∆U (2.49)

In studying the behaviour of objective function over the iterations, some simple

yet lengthy manipulations and calculations are needed. In what follows, for more

clarification, the required procedures are described in four steps.

Step 1: Finding a relationship between ∆U∗, ∆Uq and ∆Uq+1:

The Taylor series of the derivative of Lagrangian (2.48) with respect to ∆U around

the optimal solution ∆U∗ is:

dLPlantwide
d∆U

=
dLPlantwide
d∆U

∣∣∣∣∣
∆U∗

+
d2LPlantwide
d∆U2

∣∣∣∣∣
∆U∗

(∆U−∆U∗) (2.50)

where the term dLPlantwide

d∆U

∣∣∣
∆U∗

= 0 because ∆U∗ is the solution of the the first-

order optimality condition dLPlantwide

d∆U
= 0. Also, from (2.48) it is concluded that

d2LPlantwide

d∆U2 = d2JPlantwide

d∆U2 = G. Note that the higher terms in (2.50) are zero because

the objective function is quadratic and the constraints are linear; consequently the

higher than second order derivatives are zero. Therefore, (2.50) becomes:

dLPlantwide
d∆U

= G(∆U−∆U∗) (2.51)

Similarly, the Taylor series of the derivative of Lagrangian (2.49) with respect to

∆U around the optimal solution of the aggregate problem at iteration q + 1, ∆Uq+1

is:

dLCDMPC

d∆U
=
dLCDMPC

d∆U

∣∣∣∣∣
∆Uq+1

+
d2LCDMPC

d∆U2

∣∣∣∣∣
∆Uq+1

(∆U−∆Uq+1) (2.52)

where the term dLCDMPC

d∆U

∣∣∣
∆Uq+1

= 0 because ∆Uq+1 is the solution of the the first-

order optimality condition dLCDMPC

d∆U
= 0 at iteration q + 1. Also, from (2.49) it is
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concluded that d2LCDMPC

d∆U2 = d2JCDMPC

d∆U2 = F. Note that the higher terms in (2.52) are

zero for the same reason mentioned above. Therefore, (2.52) becomes:

dLCDMPC

d∆U
= F(∆U−∆Uq+1) (2.53)

Taking the derivatives of Lagrangians (2.48) and (2.49) with respect to ∆U gives:

dLPlantwide
d∆U

=
dJPlantwide
d∆U

+ ETχ (2.54)

dLCDMPC

d∆U
=
dJCDMPC

d∆U
+ ETχ (2.55)

and from (2.46) it is concluded that dLPlantwide

d∆U
= dLCDMPC

d∆U
. Therefore, for all ∆U,

(2.51) and (2.53) are equal. Consequently, if ∆U = ∆Uq, the following relationship

will be obtained:

∆Uq −∆Uq+1 = F−1G(∆Uq −∆U∗) (2.56)

Step 2: Finding an explicit expression for dJPlantwide

d∆U

∣∣∣
∆Uq

:

From (2.46) the following holds:

dJPlantwide
d∆U

∣∣∣∣∣
∆Uq

=
dJDMPC

d∆U

∣∣∣∣∣
∆Uq

(2.57)

The Taylor series of dJDMPC

d∆U
around ∆Uq+1 is:

dJDMPC

d∆U
=
dJDMPC

d∆U

∣∣∣∣∣
∆Uq+1

+
d2JDMPC

d∆U2

∣∣∣∣∣
∆Uq+1

(∆U−∆Uq+1) (2.58)

where the remaining higher order terms are zero as the objective function is quadratic.

In order to calculate the first term in (2.58), from (2.53) and (2.55) the following

relationship is obtained:

F(∆U−∆Uq+1) =
dJCDMPC

d∆U
+ ETχ

=⇒ dJCDMPC

d∆U
= F(∆U−∆Uq+1)− ETχ (2.59)

Thus, for ∆U = ∆Uq, equation (2.59) yields:

dJCDMPC

d∆U

∣∣∣∣∣
∆Uq

= F(∆Uq −∆Uq+1)− ETχq (2.60)
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Finally, from (2.57) and (2.60), the desired expression is obtained as:

dJPlantwide
d∆U

∣∣∣∣∣
∆Uq

= F(∆Uq −∆Uq+1)− ETχq (2.61)

Step 3: Writing the Taylor series of JPlantwide around ∆Uq:

Now, the Taylor series expansion of the plant-wide objective function around ∆Uq,

is formed as:

JPlantwide(∆U) = JPlantwide(∆Uq) +
dJPlantwide
d∆U

∣∣∣∣∣
T

∆Uq

(∆U−∆Uq)

+(∆U−∆Uq)
1

2

d2JPlantwide
d∆U2

∣∣∣∣∣
T

∆Uq

(∆U−∆Uq)

(2.62)

where the remaining higher order terms are zero.

By replacing dJPlantwide

d∆U

∣∣∣∣∣
∆Uq

and d2JPlantwide

d∆U2

∣∣∣∣∣
∆Uq

by (2.62) and G, respectively, the

following expression for JPlantwide is achieved:

JPlantwide(∆U) = JPlantwide(∆Uq)

+ (∆Uq −∆Uq+1)TF(∆U−∆Uq)− (χq)TET (∆U−∆Uq)

+ (∆U−∆Uq)
G

2
(∆U−∆Uq)

(2.63)

Step 4: Calculating JPlantwide(∆Uq)− JPlantwide(∆Uq+1):

Equality (2.46) implies that studying the trends of the objective function in the

aggregate problem (2.44) over the iterations, is equivalent to studying changes of

the objective function in the plant-wide problem (2.43). Therefore, using (2.63),

the difference between the values of plant-wide objective function evaluated for the

solution obtained at iterations q and q + 118, becomes:

JPlantwide(∆Uq)− JPlantwide(∆Uq+1) =

(∆Uq −∆Uq+1)TF(∆Uq −∆Uq+1)− (χq+1)TET (∆Uq −∆Uq+1)

− (∆Uq −∆Uq+1)T
G

2
(∆Uq −∆Uq+1)

(2.64)

18Note that the coordinator updates the coordinating variables. Then using these updated values,
the solution of the aggregate problem at iteration q, i.e. ∆Uq, is calculated.
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Using (2.56), (2.64) becomes:

JPlantwide(∆Uq)− JPlantwide(∆Uq+1) =

(∆Uq −∆U∗)T (B−1G)TF(B−1G)(∆Uq −∆U∗)− (χq+1)TET (B−1G)(∆Uq −∆U∗)

− (∆Uq −∆U∗)T (B−1G)T
G

2
(B−1G)(∆Uq −∆U∗)

=⇒
JPlantwide(∆Uq)− JPlantwide(∆Uq+1) =

(∆Uq −∆U∗)T
[
(B−1G)T (F− G

2
)(B−1G)

]
(∆Uq −∆U∗)

− (χq+1)TET (B−1G)(∆Uq −∆U∗)

(2.65)

For the overall objective function of the distributed controllers, or equivalently

the objective function of the plant-wide problem, to have a decreasing trend over

the iterations, the right-hand side of (2.65) should be positive. For both plant-wide

and distributed MPC, as they are both QP, if G and Fi are positive definite, a

unique solution exists19, which means that the optimality conditions are met. Thus,

if inequality constraints exist, the non-negativity condition χq+1 ≥ 0, is satisfied.

Based on the value of χq+1 three conclusions can be made:

1. If no inequality constraints are used in the MPC controllers, χq+1 = 0

and the second term in the right-hand side of (2.65) is zero. Therefore, if

F − G
2
≥ 0, the first term in the right-hand side of (2.65) will be positive

and thus, the overall objective function will decrease over the iterations (i.e.,

JPlantwide(∆Uq) − JPlantwide(∆Uq+1) ≥ 0) and the coordination algorithm

converges. This is the same result obtained by Marcos (2012).

2. If inequality constraints are used in the MPC controllers and if they are inactive

(i.e., χq+1 = 0), similar to the case of no inequalities, the coordinator will

converge, if F− G
2
≥ 0.

3. If inequality constraints are used in the MPC controllers and if they are active

(i.e., χq+1 ≥ 0), then no conclusions can be made on the sign of the right-hand

side of (2.65) and consequently on the convergence of the coordinator.

19Before designing an MPC, this assumption is implicitly taken into account by properly choosing
the weighting matrices.
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Therefore, if local inequalities exist in the CDMPC, proving convergence of the

coordination algorithm when fixed-point iteration technique is used, cannot be done

by the above method, as it is not possible to guarantee having inactive inequalities

over the iterations at each sampling instant k.

2.4.2.2 Convergence of Coordinator Designed by Gradient-based
Algorithm

If a gradient algorithm is used to obtain the coordinator, convergence of the

coordination algorithm can be studied by defining an appropriate Lyapunov function.

Before proceeding with the prove, the following simpler notation is introduced:

1. The variables involved in the optimality conditions of the distributed controllers

(2.31) are represented by vector Zi ,
[
XT
i ,∆UT

i ,Λ
T
i ,Ω

T
i ,Υ

T
i

]T
. Consequently,

Z =
[
ZT

1 , . . .Z
T
N

]T
.

2. The coordinating variables are shown by the vector W ,

pT ,

V︷ ︸︸ ︷
VT

1 , . . . ,V
T
N

T .

3. The Lagrangian for the aggregate of the CDMPC is shown by L(Z,W).

4. The gradients of the Lagrangian with respect to the coordinating variables are

shown by the vector ∇WL ,
[
∇pL

T ,−∇VL
T
]T

.

As suggested by Singh and Titli (1978), the following Lyapunov function is defined

for the convergence proof of the gradient-based coordination algorithm:

L ,
1

2
(∇WL)T (∇WL) (2.66)

The function L is zero when W = W∗, where W∗ is the optimal centralized solution,

and positive definite (i.e., L > 0) when W 6= W∗. The derivative of L is:

L̇ =
dL
dq

= (∇WL)T
d∇WL

dq
= (∇WL)T

d∇WL

dW

dW

dq
(2.67)

The use of gradient-based methods to find W =
[
pT ,VT

]T
that solves ∇pL = 0

and ∇VL = 0, implies that the changes in W over the iterations is proportional to
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∇WL. Thus, it can be assumed that:

dW

dq
= ∇WL (2.68)

If (2.68) is used in (2.67), then the sign of L̇ will depend on the sign of d∇WL
dW

.

In order to calculate d∇WL
dW

in (2.67), optimality conditions of the aggregate of the

distributed controllers are used. The optimality conditions that the coordinator is

responsible to satisfy during the iterations, is ∇WL = S̄(Z,W) = 0, where the

function S̄ denotes that optimality conditions depend on both local and coordinating

variables. Therefore, differentiating ∇WL = S̄(Z,W) results in:

d∇WL = (∇2
WWL)dW + (∇2

WZL)dZ

=⇒ d∇WL

dW
= (∇2

WWL) + (∇2
WZL)

dZ

dW
(2.69)

Because the interaction equations are linear, at each iteration, ∇2
WWL = 0.

Therefore, (2.69) becomes:

d∇WL

dW
= (∇2

WZL)
dZ

dW
(2.70)

Also, at each iteration, optimality conditions of the local controllers are satisfied,

that is:

∇ZL = S(Z,W) = 0 (2.71)

where the function S indicates that optimality conditions of the local controllers

depend on both local and coordinating variables. Thus, differentiating (2.71) yields:

(∇2
ZZL)dZ + (∇2

ZWL)dW = 0

=⇒ dZ

dW
= −(∇2

ZZL)−1(∇2
ZWL) (2.72)

If the chosen weighting matrices in the objective functions of distributed controllers,

are positive definite and a feasible region exists, the local QP problems will have a

solution and thus, (∇2
ZZL) will be non-singular and thus, invertible.

Combining (2.67), (2.68), (2.70) and (2.72) obtains:

L̇ = −(∇WL)T (∇2
WZL)(∇2

ZZL)−1(∇2
ZWL)(∇WL) (2.73)
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From (2.73), it can be concluded that L̇ will be negative definite only if the matrix

S , (∇2
WZL)(∇2

ZZL)−1(∇2
ZWL) which is the Schur Complement of the matrix

S̄ =

[
∇2

ZZL ∇2
WZL

∇2
ZWL 0

]
20, is positive definite. Thus, if this condition is met, the

coordinator (2.41 and 2.42) will converge to the plant-wide solution.

2.5 Modified Pseudo-Model Coordinated

Distributed MPC

In this section, for the first time, the MPMC method is extended to the distributed

linear constrained MPC problem. The coordinating terms {CoT}i, are derived

and the coordinator is designed by numerically solving portions of the optimality

conditions. A different type of coordinating terms and coordinating variables appear

in the distributed controllers (2.8) because of the strategy used in dealing with the

interaction equations. Accordingly, the coordinator is designed such that it gives

updates for the resulting coordinating variables.

2.5.1 Pseudo-variables and Distributed Controllers

As was briefly mentioned in section 2.1, the main idea in the Pseudo-Model

Coordination method is definition of desirable interconnection variables and then,

penalization of deviations of these defined variables from their corresponding local

variables. This is done by defining pseudo-variables that are temporarily fixed in

value, for the unknown interaction variables xj(k + l|k) and ∆uj(k + b|k). The

pseudo-variables x̃i and ∆ũi

x̃i(k) , xi(k) (2.74a)

∆ũi(k) , ∆ui(k) (2.74b)

are introduced. These pseudo-variables are used to represent the interaction variables

in the interaction equations (2.6b). Also, it is desired that the value of each pseudo-

variable x̃i(k+ l+ 1|k) and ∆ũi(k+ b|k) be equal to the value of xi(k+ l+ 1|k) and

20Using the Lagrangian (2.33) to calculate the elements of the matrix S, it is seen that these
elements include the weighting matrices, the local and interaction models Aij and Bij , for
i, j = 1, . . . , N .
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∆ui(k + b|k), respectively. Therefore, the plant-wide optimization problem (2.4)21

can be written as:

min
Xi,∆Ui

N∑
i=1

(
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

)
(2.75a)

subject to

xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]

+
N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] + vi(k + l|k)

(2.75b)

vi(k + l|k) =
N∑
j=1
j 6=i

[
βAijx̃j(k + l|k) + Bij

l∑
a=0

∆ũj(k + a|k)

]
(2.75c)

x̃i(k + l|k) = xi(k + l|k) (2.75d)

∆ũi(k + b|k) = ∆ui(k + b|k) (2.75e)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(2.75f)

Next, the performance index (2.75a) is augmented with the transformed interaction

equations (Sorenson and Koble (1984)) (2.75d) and (2.75e), by using quadratic

penalty terms with penalty parameter ε and block-wise weighting matrices Q̄i and

R̄i. That is, in the Pseudo-Model Coordination method, the coordinating terms

are defined by relaxing these two sets of equations using quadratic penalty functions

(Pearson (1971), Singh (1975)); however, as was discussed in section 2.1, the resulting

aggregate problem is an approximation of the plant-wide problem (2.75) unless a very

large penalty parameter value is used (i.e, ε→∞). In other words, for small values

of the penalty parameter, the equivalence between the aggregate distributed local

optimization problems and the centralized problem is not retained.

21In order to design any coordinated distributed network, interaction models are required. Thus,
with the presumption of availability of the interaction models, the three centralized, distributed
and decentralized schemes can easily be converted into one another. This implies that by including
the interaction models, the already existing decentralized MPC network can be converted into the
plant-wide MPC (2.4) and there is no need to have a physical centralized MPC available.
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Sorenson and Koble (1984) overcame this drawback by keeping the transformed

equations as explicit constraints in addition to quadratically penalizing them. Then,

they formed a relaxed problem by appending the transformed interaction equations

to the objective functions of the local controllers. In the current work, the same

approach is applied to (2.75), so that the following relaxed problem is formed:

min
Xi,∆Ui

N∑
i=1

(
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

)
+

N∑
i=1

ε

2

(
||Xi − X̃i||2Q̄i

+ ||∆Ui −∆Ũi||2R̄i

)
+

N∑
i=1

(
ΓT
i (Xi − X̃i) + ΠT

i (∆Ui −∆Ũi)
)

(2.76a)

subject to

xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]

+
N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] + vi(k + l|k)

(2.76b)

vi(k + l|k) =
N∑
j=1
j 6=i

[
βAijx̃j(k + l|k) + Bij

l∑
a=0

∆ũj(k + a|k)

]
(2.76c)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(2.76d)

where X̃ = [X̃T
1 , . . . , X̃

T
N ]T and X̃i = [x̃i(k+ 1|k)T , . . . , x̃i(k+Hp− 1|k)T ]T ; similarly,

∆Ũ = [∆Ũ
T

1 , . . . ,∆Ũ
T

N ]T and ∆Ũi = [∆ũi(k|k)T , . . . ,∆ũi(k + Hu − 1|k)T ]T ; the

vectors Γi and Πi are the Lagrange multiplier vectors associated with the pseudo-

variable equations. As was stated before, the pseudo-variables x̃j(k + l + 1|k) and

∆ũj(k+ b|k) are temporarily fixed in value, which indicates that they are among the

coordinating variables and their values are determined by the coordinator. This also

implies that the set of equations (2.76c) will entirely be handled by the coordinator

as it only depends on the pseudo-variables. Optimization problem (2.76) represents
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aggregate of the following CDMPC:

min
Xi,∆Ui

(CiiXi − ri)
T Qii (CiiXi − ri) + ∆UT

i Rii∆Ui+

ε

2

(
||Xi − X̃i||2Q̄i

+ ||∆Ui −∆Ũi||2R̄i

)
+

ΓT
i (Xi − X̃i) + ΠT

i (∆Ui −∆Ũi)

(2.77a)

subject to

xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]

+
N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] + vi(k + l|k)

(2.77b)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(2.77c)

where ε
2
||Xi − X̃i||2Q̄i

, ε
2
||∆Ui −∆Ũi||2R̄i

, ΓT
i (Xi − X̃i) and ΠT

i (∆Ui −∆Ũi) are the

four coordinating terms that establish the connection between the controllers and

the coordinator; the coordinating variables Γi and Πi have a similar role as the price

vector p has in the GC and IPC Methods and thus, they shall be called prices as well;

these prices along with the pseudo-variable vectors X̃i and ∆Ũi and the interaction

variables Vi form the coordinating variables in the MPMC-DMPC.

2.5.2 Coordinator Design in the MPMC Method

Similar to the previous two coordination methods, after {CoT}i and the coordinating

variables are defined, the next step is to use an appropriate solution strategy to solve

the aggregate distributed problem (2.76). The adopted solution strategy ultimately

designs the coordinator by providing update equations for the coordinating variables.

In the MPMC method, the solution strategy is similar to the one used in the IPC

method, which means that relevant portions of optimality conditions of the aggregate

problem are solved by choosing a suitable numerical technique.

In order to make designing the coordinator simpler by using fewer variables, the

aggregate of the CDMPC (2.76) combined with interaction equations, is written over
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the entire prediction and control horizons and then re-stated in the following compact

form:

min
Xi,∆Ui

N∑
i=1

(
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

)
+

N∑
i=1

ε

2

(
||Xi − X̃i||2Q̄i

+ ||∆Ui −∆Ũi||2R̄i

)
+

N∑
i=1

(
ΓT
i (Xi − X̃i) + ΠT

i (∆Ui −∆Ũi)
)

(2.78a)

subject to

ÂiiXi + B̂ii∆Ui +
N∑
j=1
j 6=i

[
ÂijX̃j + B̂ij∆Ũj

]
=

Zi︷ ︸︸ ︷
Āiixi(k) + B̄iiui(k − 1) +

N∑
j=1
j 6=i

[
Āijxj(k) + B̄ijuj(k − 1)

] (2.78b)

Ymin
i ≤ CiiXi ≤ Ymax

i

Umini ≤ Uii∆Ui ≤ Umaxi

(2.78c)

i = 1, . . . , N

where details on obtaining the matrices containing the local and interaction models,

have been provided in Appendix B (section B.4). It should be once again emphasized

that, the compact form (2.78) is used to make deriving the coordinator’s formulation

simpler to follow. For implementation purposes, only the CDMPCs (2.77) and the

to-be-obtained coordinator are needed.

Since portions of first-order optimality conditions will be used to design the

coordinator in the MPMC approach, the first step would be to form the Lagrangian

of the aggregate problem (2.78):

L(X,∆U, X̃,∆Ũ,Λ,Ω,Υ,Γ,Π) =
N∑
i=1

Li(Xi,∆Ui, X̃i,∆Ũi,Λi,Ωi,Υi,Γi,Πi)

=
N∑
i=1

(
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

)
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+
N∑
i=1

ε

2

(
||Xi − X̃i||2Q̄i

+ ||∆Ui −∆Ũi||2R̄i

)
+

N∑
i=1

(
ΓT
i (Xi − X̃i) + ΠT

i (∆Ui −∆Ũi)
)

+
N∑
i=1

ΛT
i

ÂiiXi + B̂ii∆Ui +
N∑
j=1
j 6=i

[
ÂijX̃j + B̂ij∆Ũj

]
−Zi


+

N∑
i=1

ΩT
i,min

(
Ymin
i − CiiXi

)
+ ΩT

i,max (CiiXi −Ymax
i )

+
N∑
i=1

ΥT
i,min

(
Umini − Uii∆Ui

)
+ ΥT

i,max (Uii∆Ui − Umaxi ) (2.79)

Using (2.79), the optimality conditions22 are obtained as below:

∇ηL(X,∆U, X̃,∆Ũ,Λ,Ω,Υ,Γ,Π) = 0 (2.80)

η = {X,∆U, X̃,∆Ũ,Λ,Γ,Π}

Of the equation set (2.80), ∇XL = 0, ∇∆UL = 0, ∇ΛL = 0, along with the

feasibility, complementary slackness and non-negativity conditions resulting from the

local inequality constraints are taken into account in the optimization problem of

CDMPC (2.77). The remaining optimality conditions in (2.80) i.e., ∇X̃L = 0,

22The precise statement of the necessary KKT conditions for the aggregate problem (2.78) is:

Optimality: ∇XL = 0, ∇∆UL = 0, ∇X̃L = 0 and ∇∆ŨL = 0

Feasibilty:



∇ΛL = 0 , ∇ΓL = 0 and ∇ΠL = 0
Ymin − CX

CX−Ymax

Umin − U∆U

U∆U− Umax

 ≤ 0

Complementary slackness:

[
Ω
Υ

]T 
Ymin − CX
CX−Ymax

Umin − U∆U
U∆U− Umax

 = 0

Non-negativity:

[
Ω
Υ

]
≥ 0

Throughout this thesis, in order to use simpler language, wherever the term optimality conditions
is used for the coordinator design in the MPMC method, it refers to the above Optimality and
Feasibility conditions included in boxes.
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∇∆ŨL = 0, ∇ΓL = 0 and ∇ΠL = 0 are used to design the coordinator. The

use of fixed-point iteration method in solving the algebraic equations resulting from

the optimality conditions, produces the following iterative form of (2.80):

∇ηL(Xq,∆Uq, X̃q+1,∆Ũ
q+1

,Λq,Ωq,Υq,Γq+1,Πq+1) = 0 (2.81)

Taking the derivative of Lagrangian (2.79) with respect to the prices Ω and Π,

setting the results to zero and solving the resulting equations yield the following

update formulae for the pseudo-variables X̃ and ∆Ũ:
∇ΓL =

N∑
i=1

∇Γi
L = 0

∇ΠL =
N∑
i=1

∇Πi
L = 0

(2.82a)

=⇒
for i=1,. . . ,N :{

Xq
i − X̃q+1

i = 0

∆Uq
i −∆Ũ

q+1

i = 0

(2.82b)

=⇒
for i=1,. . . ,N :{

X̃q+1
i = Xq

i

∆Ũ
q+1

i = ∆Uq
i

(2.82c)

Similarly, taking the derivative of Lagrangian (2.79) with respect to the pseudo-

variables and iteratively solving the resulting equations yield the update formulae for

the prices as:
∇X̃L =

N∑
i=1

∇X̃i
L = 0

∇∆ŨL =
N∑
i=1

∇∆Ũi
L = 0

(2.83a)

=⇒

for i=1,. . . ,N :
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−ε(Xq
i − X̃q+1

i )Q̄i − Γq+1
i +

N∑
j=1
j 6=i

ÂT
jiΛ

q
j +

N∑
j=1
j 6=i

(CjjÂ−1
jj Âji)

TΩq
j,min

−
N∑
j=1
j 6=i

(CjjÂ−1
jj Âji)

TΩq
j,max = 0

−ε(∆Uq
i −∆Ũ

q+1

i )R̄i −Πq+1
i +

N∑
j=1
j 6=i

B̂TjiΛ
q
j +

N∑
j=1
j 6=i

(CjjÂ−1
jj B̂ji)TΩq

j,min

−
N∑
j=1
j 6=i

(CjjÂ−1
jj B̂ji)TΩq

j,max = 0

(2.83b)

=⇒

for i=1,. . . ,N :

Γq+1
i =

−ε(Xq
i − X̃q+1

i )Q̄i +
N∑
j=1
j 6=i

ÂT
jiΛ

q
j +

N∑
j=1
j 6=i

(CjjÂ−1
jj Âji)

TΩq
j,min −

N∑
j=1
j 6=i

(CjjÂ−1
jj Âji)

TΩq
j,max

Πq+1
i =

−ε(∆Uq
i −∆Ũ

q+1

i )R̄i +
N∑
j=1
j 6=i

B̂TjiΛ
q
j +

N∑
j=1
j 6=i

(CjjÂ−1
jj B̂ji)TΩq

j,min −
N∑
j=1
j 6=i

(CjjÂ−1
jj B̂ji)TΩq

j,max

(2.83c)

The sets of update equations in (2.82c) and (2.83c) along with the following iterative

form of the interaction equations (2.76) ,

for i=1,. . . ,N :

vq+1
i (k + l|k) =

N∑
j=1
j 6=i

[
βAijx̃

q+1
j (k + l|k) + Bij

l∑
a=0

∆ũq+1
j (k + a|k)

]
(2.84)

compose the coordinator for the CDMPC in the MPMC approach.

Remark 2.5.1 If gradient-based method is used to solve ∇X̃L = 0, ∇∆ŨL = 0,
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∇ΓL = 0 and ∇ΠL = 0, the coordinator will become:

Γq+1
i = Γq

i + ε1[Xq
i − X̃q

i ] (2.85)

Πq+1
i = Πq

i + ε2[∆Uq
i −∆Ũ

q

i ] (2.86)

X̃q+1
i = X̃q

i − ε3[−ε(Xq
i − X̃q

i )Q̄i − Γq
i +

N∑
j=1
j 6=i

ÂT
jiΛ

q
j

+
N∑
j=1
j 6=i

(CjjÂ−1
jj Âji)

TΩq
j,min −

N∑
j=1
j 6=i

(CjjÂ−1
jj Âji)

TΩq
j,max]

(2.87)

∆Ũ
q+1

i = ∆Ũ
q

i − ε4[−ε(∆Uq
i −∆Ũ

q

i )R̄i −Πq
i +

N∑
j=1
j 6=i

B̂TjiΛ
q
j

+
N∑
j=1
j 6=i

(CjjÂ−1
jj B̂ji)TΩq

j,min −
N∑
j=1
j 6=i

(CjjÂ−1
jj B̂ji)TΩq

j,max]

(2.88)

and (2.84)

where i = 1, . . . , N ; and ε1, ε2, ε3 and ε4 are tuning parameters.

Similar to the previous two coordination methods, the MPMC approach has a

hierarchical structure, in which at every sampling instant the proposed CDMPC

(2.77) exchange information with the coordinator, until convergence. The convergence

criterion used for the coordinator is

∣∣∣∣∣∣∣∣[ X− X̃

∆U−∆Ũ

]∣∣∣∣∣∣∣∣ ≤ e, where e is the chosen error

tolerance. When the coordinator converges, the following conditions are met:

• The values of the price vectors Γi and Πi
23 equal the value of corresponding

Lagrange multiplier associated with the transformed interaction equality

constraints.

• The transformed interaction equations are satisfied.

• The interaction equations are satisfied

• The vector vi gives exact values of local interaction effects.

23These prices give estimations for the relevant Lagrange multipliers associated with the local
transformed interaction equality constraints (2.75d) and (2.75e).
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Once the coordinator converges, the first sets of the calculated optimal control

variables ui(k|k) are implemented on the local processes.

Implementation of the MPMC-DMPC network, is systematically performed

according to Algorithm 3, and the corresponding information flow pattern can be

found in Appendix A.

Algorithm 3 : Implementation of MPMC-DMPC network

1. Coordinator: Iteration counter q is set to 1.

2. Coordinator: Coordinating variables Γi, Πi, X̃i and ∆Ũi are arbitrarily
initialized.

3. Coordinator: Coordinating variables vi are calculated using (2.84).

4. Coordinator: Coordination variables are sent to the local controllers.

5. Local Controllers: Local optimization problems (2.77) are solved.

6. Local Controllers: Local optimal solutions Xi and ∆Ui and Lagrange
multipliers Λi and/or Ωi are sent to the coordinator.

7. Coordinator: If

∣∣∣∣∣∣∣∣[ X− X̃

∆U−∆Ũ

]∣∣∣∣∣∣∣∣ ≤ e, algorithm stops. Otherwise, next step is

taken.

8. Coordinator: Pseudo-variables and prices are updated using (2.82c) and (2.83c).

9. Coordinator: Iteration counter is increased by 1.

10. Steps 3-7 are repeated.

2.5.2.1 Coordinator Convergence Study

Considering the analogies between the solution strategies used in designing the

coordinator by either fixed-point iteration or gradient-based methods in both the

IPC and MPMC approaches, the same concepts and procedures employed in section

2.4.2.2, can be used to study convergence of the coordinator in the MPMC method.

As the general results are similar, they have not been repeated in this section.
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2.6 Case Study

In this section performance of the three discussed CDMPC schemes is tested on

a process consisting of two interconnected CSTRs (Sun and El-Farra (2008)). The

process flow diagram and details on the first principle model, can be found in Chapter

4, Section 4.3.

The plant includes four states, which are the concentration and temperature

of each reactor and four manipulated variables that are the heat input rates

and inlet concentrations. This process has three steady-states among which

two are locally asymptotically stable and one is unstable at (T s1 , C
s
A1, T

s
2 , C

s
A2) =

(457.9K, 1.77kmol
m3 , 415.5K, 1.75kmol

m3 ). The control goal is to stabilize the plant around

the unstable steady-state point. It is assumed that all states are measured and

no disturbance affects the process. The following discrete-time linear state-space

description of the process has been obtained by linearizing the nonlinear model (4.42)

of Section 4.3, and discretizing the result using a sampling time of 0.005 hr:

x(k + 1) =


1.1357 6.1467 0.1852 0.6696
−0.0014 0.7954 −0.0002 0.1466
0.0704 0.2556 0.9917 1.5870
−0.0001 0.0557 −0.0005 0.8875

x(k)+


0.0000 0.0778 0.0000 0.0113
−0.0000 0.0223 −0.0000 0.0039
0.0000 0.0022 0.0000 0.0404
−0.0000 0.0007 −0.0000 0.0471

u(k)

(2.89)

where x(k) =
[
x1(k)T , x2(k)T

]T
,
[

[T̄1(k) C̄A1(k)], [T̄2(k) C̄A2(k)]
]T

. Similarly,

u(k) =
[
u1(k)T , u2(k)T

]T
,
[

[Q̄1(k), C̄A0(k)], [Q̄2(k), C̄A03(k)]
]T

. Both x and u

are in deviation variable form. The plant is assumed to consist of two local units,

each containing one of the CSTRs. Also, it is assumed that two decentralized MPC

are controlling the plant. The parameters used in the simulations are listed in Table

2.1.
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MPC 1 MPC 2

Initial Conditions x1(0) =
[
5 −1.5

]T
x2(0) =

[
−5 1.7

]T
Weighting Matrices Q11 = 5I Q22 = 5I

R11 = 15I R22 = 15I

Prediction Horizon 10 10
Control Horizon 5 5

Table 2.1: Parameters used in the CDMPC

2.6.1 Simulation Results

Simulations are performed using the proposed CDMPC schemes, centralized and

decentralized MPC and the results are compared24. In Figures 2.1 and 2.2, simulation

results for output and manipulated variable trajectories obtained by the three

coordinated methods are plotted along with the centralized MPC solution as the

performance benchmark. The results indicate that the CDMPC, in all the three

coordination methods, produce the centralized MPC solution.

For this example, the GC method encountered convergence problems when limits

on the process outputs and manipulated variables were used. Therefore, the results

are obtained for unconstrained MPC, as the main purpose of this case study, is

showing that numerical simulations agree with what is suggested by theory; however,

the consequence of not using inequality constraints in the controllers can be seen in

Figure 2.3(d), where the controllers calculated negative values for inlet concentration.

In the next chapter, a modified coordinator for the GC method will be proposed, which

does not have convergence issues in the presence of local inequalities. In Appendix

D, simulation results are provided for the constrained version of the current example.

24Throughout this thesis, simulations for the IPC and MPMC methods are carried out using
coordinators obtained by fixed-point iteration technique.
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Figure 2.3: Process output trajectories resulting from decentralized MPC

In Figure 2.3, process output trajectories resulting from the decentralized

controllers have been plotted. The simulation results show that though the two

controllers have stabilized the process around the unstable operating point, they have

produced oscillatory behaviour in the process outputs. Also, comparing with Figure

2.1, the decentralized controllers need more time to settle down the outputs. All of

these performance degradations are due to ignoring the interactions in designing the

decentralized MPC.

The number of communication cycles required for the coordinator to converge

during sampling intervals is plotted versus the simulation time in Figure 2.4.

It should be mentioned that in all the coordinated distributed simulations, the

stopping criteria of ‖E‖ ≤ 10−6 is used and no local inequalities are present. Also,

in the GC approach, Newton’s method with constant step-size of ε = 1 is used.

Clearly changing each of these factors will affect the coordinator’s convergence rate

and consequently the number of required communication cycles. But, the general

results to be concluded from Figure 2.4 are that under the same simulation conditions,

the coordinators in the IPC and the MPMC methods show very similar convergence



Sec. 2.7 Summary 72

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Time(hr)

N
u

m
b

e
r 

o
f 

C
o

m
m

u
n

ic
a
ti

o
n

 C
y
c
le

s

 

 

GC

IPC

MPMC

Figure 2.4: Number of iterations at every sampling instant vs. time

behaviour. Also, if the Hessian matrix obtained from the local sensitivity information

is negative definite, the Newton-based coordinator in the GC method, converges

significantly faster than the coordinators in the other two approaches.

2.7 Summary

In this chapter, three coordination methods, namely the GC, IPC and MPMC, have

been applied to decentralized linear constrained MPC. Accordingly, three CDMPC

schemes have successfully been developed for plant-wide MPC problem.

The common concept used in the coordination methods studied in this chapter, is

to convert the existing network of decentralized MPC into a network of CDMPC by

doing minor modifications in their optimization problems. Some form of interaction

equation relaxation is the basis for performing the required modifications. The

relaxation results in the addition of the so-called coordinating terms to the local

objective functions. The coordinating terms contain coordinating variables that

connect local controllers to the coordinator. Depending on how interaction equations

are manipulated and what form of relaxation is used, different CDMPC formulations
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are obtained.

After modifying the decentralized MPCs, the coordinator is designed by the

numerical algorithm used to solve the optimization problem resulting from the

aggregate of CDMPC. In the GC method, the coordinator update equations are

determined by the numerical method used to solve a relevant dual optimization

problem. In the IPC and MPMC methods, the numerical technique chosen to

solve portions of the optimality conditions of the aggregate CDMPC dictates the

coordinator’s formulation. Convergence of coordination algorithms for the proposed

CDMPC networks are studied. It is shown that at each sampling time, over the

communication cycles, the proposed coordinators converge and optimal plant-wide

solution is achieved.

The presented CDMPC schemes of this chapter, can be compared in terms the

following characteristics:

Ease of implementation: The three proposed CDMPC schemes are equally

easy to implement due to the simple communication strategy used in coordinated

distributed control structures.

Required tuning: The coordinator in the GC method contains a step-size as

its tuning parameter. In the IPC and MPMC methods, the coordinator designed

using the fixed-point iteration technique does not contain tuning parameters, and

the coordinator designed based on using a gradient-based method contains constant

tuning parameters.

Required computation and communication: In the GC-DMPC scheme, if

the coordinator needs to calculate optimal step-size, then within each communication

cycle, a univariate optimization should be performed. In this case, computations and

the number of iterations of the CDMPC network may considerably increase. The

required computations and communication cycles for the IPC-DMPC and MPMC-

DMPC approaches are very similar and usually less than what is needed by the

GC-DMPC network.

Handling inequality constraints: The proposed coordinator in this chapter for

the GC-DMPC cannot effectively handle active local inequality constraints. Thus,

performance of the coordination algorithm has to be improved. In Chapter 3,
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the proposed GC-DMPC scheme of Chapter 2 is modified to enhance convergence

performance of the coordinator and simulation results are provided in Appendix D.

Simulation studies indicate that the coordinator in both IPC-DMPC and MPMC-

DMPC schemes are able to effectively handle local inequality constraints

Simplicity of the coordinator: If the coordinator in the GC method can

converge using a simple first-order gradient method without the need to calculate

the optimal step-size, then the coordinator’s equations will be very simple; otherwise,

if optimal step-size has to be determined and/or other gradient methods are used,

the resulting coordinator can become relatively complex. The coordinator in the IPC

and MPMC methods, involves very simple computations and equations.

Explicit use of interaction models in the local controllers: In the

GC-DMPC and IPC-DMPC schemes, interaction models partially appear in the

objective functions of the CDMPCs due to relaxation of the interaction equations.

In the MPMC method because of using the pseudo-variables and relaxation of the

transformed interaction equations, interaction models do not appear in the CDMPC

formulations. This characteristic plays an important role in applying the MPMC

method to the plant-wide nonlinear MPC problem of dynamically interconnected

nonlinear processes, discussed in Chapter 4.

It can be concluded that only if an arbitrary constant step-size can be used

and local inequality constraints are not present, the GC-DMPC scheme that uses

a Newton-based coordinator, will have the best coordination performance; otherwise,

the IPC and MPMC methods are preferred as they involve simpler computations,

need reasonable number of communication cycles and can efficiently handle active

local inequality constraints. Also, between IPC and MPMC methods, the latter has

priority over the former because distributed controllers in the MPMC method do not

contain the interaction models.



Chapter 3

Chance-Constrained Coordinated
Distributed MPC

In this chapter, the Goal Coordination, Interaction Prediction Coordination and

Modified Pseudo-Model Coordination methods are applied to the plant-wide

chance-constrained MPC problem. The presence of uncertain disturbances in

the local process models results in uncertain predicted outputs. Therefore, the

predicted outputs are required to be held within a specified range with a given

probability. To improve the convergence behaviour of the coordinator in the

presence of local inequalities resulting from the chance-constraints, in the GC

method, the CDMPC formulation is modified and a new coordinator is designed

by using a Separated Augmented Lagrangian method. Detailed formulations for

the three probabilistic CDMPC networks are presented. The effectiveness of the

proposed coordinated distributed schemes are tested through a simulation example.

Uncertainty is an intrinsic characteristic of any process; however, traditional process

design, optimization and control problems are deterministic, as uncertainty effects

are not explicitly included in mathematical description of the processes. Therefore,

commonly, in conventional MPC design, despite the uncertainties in the real process,

a deterministic process model is used. It is clear that when discrepancies between

the real uncertain process and its model are large, the nominal MPC could result in

75
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unacceptable performance. Synthesizing an MPC such that the effects of uncertainties

are explicitly taken into account, may efficiently deal with this type of performance

degradation while assuring feasibility at a high level of control accuracy. Therefore,

for practical purposes, robust MPC strategies should be considered. On the other

hand, in the context of plant-wide MPC, performance of decentralized MPC network

can greatly be enhanced by using coordinated distributed schemes. A promising

approach to practical plant-wide MPC problem would emerge if the two concepts of

robust MPC and CDMPC are integrated to develop robust CDMPC networks.

Research on robust MPC can be categorized in two general groups. The first

category is known as Robust MPC where robust optimization techniques are used

to synthesize a robust model predictive controller. Depending on the modelling and

identification procedures, polytopic (multi-model) or structured feedback uncertainty

paradigms can be used to model the uncertain system (Kothare et al. (1996)). In such

MPC problems, the bounds on uncertainties in the process model are known. Thus, a

worst-case optimization is performed to find an optimal solution, which is feasible for

all the uncertainties within the specified range. One characteristic of Robust MPC is

that it is a conservative control strategy because of its worst-case oriented approach.

Also, most Robust MPC methods are computationally expensive and consequently

not suitable for online implementation (Kothare et al. (1996)). Examples of research

on Robust MPC can be found in Kothare et al. (1996), Bemporad and Morari (1999),

Cuzzola et al. (2002), Wan and Kothare (2003), Langson et al. (2004) and Wang and

Rawlings (2004).

In the second group of robust MPC methods, stochastic optimization techniques

are employed to solve the resulting optimization problem under uncertainty. In

stochastic optimization, the probability distributions governing the uncertain data

and parameters are known or can be estimated. The goal is to find some policy

that is feasible for all (or almost all) the possible uncertain data and optimize the

expectations of the objective function (COSP (2012)). A stochastic optimization

problem in its initial form, involves a performance index and constraints, which are

functions of uncertain parameters. This form of the problem is not solvable because

a decision should be made before knowing the realizations of the uncertain data.
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Therefore, to make the problem solvable, it is revised so that a so-called deterministic

equivalent (Kall and Wallace (1994)) is formed. The simplest way to cast an stochastic

optimization problem as a deterministic problem is to replace stochastic variables

by their expected values. Another way to generate such a deterministic equivalent

problem is known as the two-stage stochastic program with recourse1, in which first

stage decisions are made, knowing only the probability distribution for the stochastic

elements. To ensure constraint feasibility, a recourse (at a cost) to second stage

variables, which vary for different realizations of the stochastic elements, is used.

First stage decision variables are obtained by minimizing the total expected cost,

which is the sum of the known costs for the first stage decisions plus the expected cost

for the second stage decisions (Beasley (2013)).

The third approach to generate a deterministic equivalent is employing probabilistic

constraints. This methodology is known as Chance-Constrained or Probabilistic

Optimization. In this technique, the stochastic optimization problem is relaxed into

an equivalent nonlinear optimization problem. The resulting deterministic problem

can then be solved by nonlinear programming (NLP) methods (Li et al. (2008)).

Probabilistic constraints can either be defined as single/individual or joint. Single

chance constraints are satisfied independently, while joint probabilistic constraints

are required to be fulfilled simultaneously within the given probability. Single chance

constraints are simple to handle because they usually can be written in terms of the

quantile function, that is the inverse of the Cumulative Distribution Function (CDF).

This implies that if the stochastic variables have strictly increasing and continuous

CDF, the corresponding single constraints can be converted into linear inequality

constraints. Joint chance constraints correspond to multivariate CDF where no

quantile function is available. Therefore, to solve the optimization problem by an

NLP method, the multivariate (joint) CDF and its gradient should be calculated.

If the dimension of the uncertain parameters is larger than three, this would be

a computationally expensive task as it involves numerical computation of multiple

integrals (Li et al. (2008)).

1Two-stage stochastic program with recourse can be extended to Multi-stage stochastic program
with recourse (Kall and Wallace (1994)).
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Although a relatively rich literature is available for stochastic optimization

methods, there is a small literature for stochastic MPC. Probabilistic optimization

can be a powerful method for synthesizing robust MPC. One advantage of chance-

constrained MPC is that the probabilistic constraints provide a practical way to

account for the effects of uncertainties on process outputs. Optimal control inputs

are calculated such that optimal control performance is achieved, while process

outputs are held within the desired limits with a given probability. Consequently,

in comparison with the two-stage stochastic MPC, chance-constrained MPC appears

to be a more practical approach.

One of the first research studies in the context of probabilistic MPC, was done by

Schwarm and Nikolaou (1999) where uncertainties were included in the parameters

of a step-response model. They used single probabilistic constraints on the predicted

outputs. The structure of each of the output constraints was such that the product of

a random vector containing the uncertain model parameter times a vector involving

linear functions of manipulated variable changes (decision variables) was less than or

equal to a deterministic scalar. Also they assumed that the uncertain parameters were

normally distributed. They transformed the normally distributed parameters on the

left hand-side of the output constraints into standard normally distributed variables

and then converted the probabilistic constraints into equivalent linear inequality

constraints by using quantile functions. Through a high-purity distillation column

simulation study, they showed their proposed chance-constrained MPC could enhance

robustness properties of standard MPC.

Li et al. (2000) employed both model and disturbance uncertainties with

multivariate normal distributions in a Multi-Input Multi-Output (MIMO) step-

response model. In the objective function of the MPC problem, they only considered

minimization of the control moves in the future horizon. They re-wrote the process

model such that the predicted outputs were represented by a deterministic vector

plus the product of a deterministic matrix times a random vector. The random

vector contained the uncertain step-response coefficients and disturbances. Based on

the new form of the model, they wrote the inequality constraints on the predicted

outputs such that a standard normal random vector was less than or equal to a
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vector whose elements were functions of the manipulated variables. They used

joint chance constraints on these inequalities and applied a sampling method to

approximate the values of the multivariate CDFs and their gradients to be used in the

Sequential Quadratic Programming (SQP) method as the NLP solver. They applied

the proposed controller to operate a distillation column and showed that satisfactory

control performance was achieved.

Li et al. (2002) also presented their proposed chance-constrained MPC in Li et

al. (2000), for a Single-Input Single-Output (SISO) linear model with an uncertain

disturbance. They demonstrated the effectiveness of the control strategy with an

example of a tank process.

Blackmore and Ono (2009) proposed a new approach for joint chance-constrained

finite horizon MPC that did not require the evaluation of multivariate probability

densities. The objective function used for the MPC formulation was assumed to

be a function of the manipulated variables and expected values of the predicted

states. They used state-space representation of the process with uncertain normally

distributed disturbances and employed joint probabilistic constraints on the predicted

states. Rather than using a sampling approach, they employed convex risk allocation

in which they approximated the joint chance-constraints by a set of individual

constraints. They showed that a feasible solution to such an approximation was

a feasible solution to the original problem. Though this indicated that the solution to

the approximate problem with the single probabilistic constraints was conservative,

they empirically showed the introduced conservatism was small.

Chance-constrained CDMPC is an untouched topic and no solid study has yet

been reported in the literature. This work intends to initiate the study of how

uncertainties can affect developing CDMPC networks, and particularly coordinator

synthesis. As this is the very first attempt in this context, a new yet tractable,

chance-constrained MPC formulation that uses state-space models with uncertain

disturbance inputs, and single probabilistic constraints on the uncertain predicted

outputs, has been employed. In addition to a simpler MPC formulation, using

single chance-constraints provides the benefit of converting the nonlinear probabilistic

constraints into equivalent linear inequality constraints and thus, assuring convex
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CDMPC. It is assumed that a network of probabilistic decentralized MPC currently

controls the plant. The GC, IPC and MPMC methods are applied to the existing

decentralized MPC to develop chance-constrained CDMPC network. Contributions

of this chapter are:

• Using the GC method, the chance-constrained decentralized MPCs are

converted into chance-constrained CDMPCs, and the coordinator is designed

accordingly. To deal with the coordinator’s convergence issues in the presence of

local inequality constraints, an improved first-order gradient-based optimization

approach, based on augmented Lagrangian method, is suggested to solve the

resulting dual optimization problem. The chosen method for solving the

dual optimization problem results in a slight modification in the CDMPC

formulations and a new coordinator. The improved coordinator can be used

for both deterministic and probabilistic CDMPC problems.

• The Interaction Prediction Coordination approach is employed to obtain

chance-constrained CDMPC by performing modifications on the decentralized

MPC formulations. Detailed formulation for the corresponding coordinator is

presented.

• The Modified Pseudo-Model Coordination method is used to alter formulations

of the probabilistic decentralized MPC to probabilistic CDMPC and construct

the coordinator.

This chapter also aims to show how coordination methods can be adapted to various

plant-wide MPC problems other than the standard plant-wide linear constrained

MPC.

3.1 Background

In this section, the mathematical background required for constructing probabilistic

CDMPC networks and the notation used throughout this chapter, is presented.
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3.1.1 Model of the Uncertain Plant

The following linear time-invariant state-space model is used to mathematically

represent the local process models:

xi(k + 1) = Aiixi(k) + Biiui(k) + Diidi(k)+

N∑
j=1
j 6=i

[Aijxj(k) + Bijuj(k) + Dijdj(k)] (3.1a)

yi(k) = Ciixi(k) (3.1b)

where i = 1, . . . , N . The vectors xi(k) ∈ Rnxi , ui(k) ∈ Rnui , di(k) ∈ Rndi and

yi(k) ∈ Rnyi contain the states, inputs, disturbances and outputs of the local unit

i at time k in deviation form, respectively. It is assumed that the disturbances are

uncertain variables that follow multivariate normal distributions.

3.1.2 Plant-Wide Probabilistic MPC

As was discussed in the previous chapter, in order to construct a coordinated

distributed network, a performance benchmark is needed. Inspired by the limited

number of references available for probabilistic MPC, in this chapter, a probabilistic

MPC formulation is introduced using the following specifications:

• A state-space prediction model with an uncertain disturbance input vector2, is

available.

• Manipulated variable changes and deviations of the expectation of the predicted

output values from set-points are quadratically penalized in the objective

function.

• Single chance-constraints are used for process limits on the uncertain predicted

outputs.

2In order to be consistent with the CDMPC schemes presented in chapter 2, the state-space
model is used in the probabilistic MPC. On the other hand, almost all the available references for
probabilistic MPC use Input-Output models with uncertain model parameters and/or disturbances.
Only Blackmore and Ono (2009) used a state-space model in which random disturbances and model
uncertainties were assumed to be modelled by a random input vector.
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Based on the above assumptions, the following centralized chance-constrained MPC

formulation is used to represent the maximum achievable plant performance:

min
X̄,∆U

N∑
i=1

[(
CiiX̄i − ri

)T Qii

(
CiiX̄i − ri

)
+ ∆UT

i Rii∆Ui

]
subject to

(3.2a)

x̄i(k + l + 1|k) = Aiix̄i(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+ Diid̄i(k + l|k)

+
N∑
j=1
j 6=i

[
αAijx̄j(k + l|k) + Bijuj(k − 1) + Dijd̄j(k + l|k)

]
+ vi(k + l|k)

(3.2b)

vi(k + l|k) =
N∑
j=1
j 6=i

[
βAijx̄j(k + l|k) + Bij

l∑
a=0

∆uj(k + a|k)

]
(3.2c)

Pr{Cii,gxi(k + l + 1|k) ≥ ymini,g (k + l + 1)} ≥ ζLi,g,l

Pr{Cii,gxi(k + l + 1|k) ≤ ymaxi,g (k + l + 1)} ≥ ζUi,g,l
(3.2d)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)
(3.2e)

i = 1, . . . , N

where g = 1, . . . , nyi. The vector d̄i(k + l|k) contains expected values of the future

uncertain disturbances. The vector x̄i(k + l + 1|k) includes the predicted states

obtained using d̄i(k + l|k). Note that, for the constraints on the predicted outputs,

local dynamic equations (3.2b) with the uncertain disturbance vector di(k + l|k)

rather than d̄i(k + l|k), should be considered to account for the effects of uncertain

disturbances propagated to the predicted states and predicted outputs. Since the

model is linear, the predicted states and outputs will have the same distribution as

the uncertain disturbances. The constraints on the uncertain predicted outputs are

written in the single probabilistic form (3.2d), where ζLi,g and ζUi,g are the pre-specified

probability levels for each element of the predicted output vector. Cii,g corresponds

to the gth row of the Cii matrix.

The nonlinear chance-constraints (3.2d) can be converted into equivalent linear

inequality constraints using the quantile functions. Therefore, the nonlinear chance-
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constrained problem (3.2) is transformed into an equivalent Quadratic Programming

(QP) problem with linear constraints. To do so, first the centralized prediction model

is written over the entire prediction and control horizons in the following compact

form:

ÂX + B̂∆U + D̂D = Āx(k) + B̄u(k − 1) (3.3)

where the derivation details have been provided in Appendix C, section C.4. Also,

the constraints on the predicted outputs of local units can be written as:

CX ≥ Ymin

CX ≤ Ymax
(3.4)

Assuming Â is non-singular, combining (3.3) and (3.4) results in the following

inequality constraints:

CÂ−1D̂D ≤ −Ymin − CÂ−1B̂∆U + CÂ−1Āx(k) + CÂ−1B̄u(k − 1)

CÂ−1D̂D ≥ −Ymax − CÂ−1B̂∆U + CÂ−1Āx(k) + CÂ−1B̄u(k − 1)
(3.5)

In the left-hand side of the inequalities (3.5), constant matrices CÂ−1D̂ are multiplied

by the normally distributed random vector D with the expected value vector µ and

the covariance matrix Ξ, i.e D ∼ N (µ,Ξ). Thus, ξ , CÂ−1D̂D has also a normal

multivariate distribution with the expected value vector CÂ−1D̂µ and the covariance

matrix (CÂ−1D̂)Ξ(CÂ−1D̂)T . Using the following coordinate transformation (Li et

al. (2002)), ξ can be standardized:

ξ′ =
[
(CÂ−1D̂)Ξ(CÂ−1D̂)T

]− 1
2
[
ξ − CÂ−1D̂µ

]
(3.6)

where ξ′ ∼ N (0, I).

Combining (3.5) and (3.6) leads to the following inequalities:

ξ′ ≤
[
(CÂ−1D̂)Ξ(CÂ−1D̂)T

]− 1
2 ×[

−Ymin − CÂ−1B̂∆U + CÂ−1Āx(k) + CÂ−1B̄u(k − 1)− CÂ−1D̂µ
]

ξ′ ≥
[
(CÂ−1D̂)Ξ(CÂ−1D̂)T

]− 1
2 ×[

−Ymax − CÂ−1B̂∆U + CÂ−1Āx(k) + CÂ−1B̄u(k − 1)− CÂ−1D̂µ
]

(3.7)
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So far the predicted output constraints (3.4) have been written in the equivalent

form (3.7). Since the purpose of presenting the plant-wide formulation is to

provide the benchmark for the distributed control network, the inequality constraints

(3.7) should be written in terms of the local process units. When coordinate

transformation is used to convert the normally distributed random disturbances to

standard normally distributed counterparts, the term (CÂ−1D̂)Ξ(CÂ−1D̂)T requires

attention because its distributed equivalent is not (CiiÂ−1
ii D̂ii)Ξii(CiiÂ−1

ii D̂ii)
T +

N∑
j=1
j 6=i

(CijÂ−1
ij D̂ij)Ξij(CijÂ−1

ij D̂ij)
T . Thus, in (3.3), the overall model (C.4) rather than

(C.6), is used to avoid this mistake, which introduces mismatch in the formulations

of the distributed controllers by ignoring the effects of off-diagonal blocks in the

multiplication of the matrices. More explanation is provided in Appendix C, section

C.2, using a simple example. One way to correctly present this term in the distributed

form, is to first calculate G =
[
(CÂ−1D̂)Ξ(CÂ−1D̂)T

]− 1
2
; then define Gi by picking

the relevant ith rows and all their corresponding columns of G. The dimension of Gi

would be (nyiHp)×(nyHp). Considering (C.6), inequalities in (3.7) for each subsystem

become:

ξ′i ≤ fmini

ξ′i ≥ fmaxi

(3.8)

where i = 1, . . . , N . The vectors fmini and fmaxi which are functions of the predicted

manipulated vector ∆Ui, are defined as below:

fmini , Gi[−Ymin
i − CiiÂ−1

ii B̂ii∆Ui + CiiÂ−1
ii Vi

+ CiiÂ−1
ii Āiixi(k) + CiiÂ−1

ii B̄iiui(k − 1)− CiiÂ−1
ii D̂iiµi

−
N∑
j=1
j 6=i

CiiÂ−1
ii D̂ijµj +

N∑
j=1
j 6=i

CiiÂ−1
ii Āijxj(k) +

N∑
j=1
j 6=i

CiiÂ−1
ii B̄ijuj(k − 1)]

fmaxi , Gi[−Ymax
i − CiiÂ−1

ii B̂ii∆Ui + CiiÂ−1
ii Vi

+ CiiÂ−1
ii Āiixi(k) + CiiÂ−1

ii B̄iiui(k − 1)− CiiÂ−1
ii D̂iiµi

−
N∑
j=1
j 6=i

CiiÂ−1
ii D̂ijµj +

N∑
j=1
j 6=i

CiiÂ−1
ii Āijxj(k) +

N∑
j=1
j 6=i

CiiÂ−1
ii B̄ijuj(k − 1)]

(3.9)
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The relationship between the single chance-constraints (3.2d) and inequalities (3.8)

is that the probability of each element in (3.8) is equivalent to the left hand-side of the

constraints in (3.2d). That is, the probabilistic constraints (3.2d) can be described

by the following equivalent constraints:

Pr{ξ′i,g(k + l + 1|k) ≤ fmini,g (k + l + 1|k)} ≥ ζLi,g,l

Pr{ξ′i,g(k + l + 1|k) ≥ fmaxi,g (k + l + 1|k)} ≥ ζUi,g,l
(3.10)

Now by using the quantile function F−1(.), the probability constraints (3.10) can

be converted into the following linear inequality constraints:

fmini,g (k + l + 1|k) ≥ F−1(ζLi,g,l)

fmaxi,g (k + l + 1|k) ≤ F−1(1− ζUi,g,l)
(3.11)

where in the vector form these inequality constraints becomes:

fmini ≥ FL
i

fmaxi ≤ FU
i

(3.12)

where

FL
i ,

[
F−1(ζLi,1,0), F−1(ζLi,2,0), . . . , F−1(ζLi,nyi,0

), . . . , F−1(ζLi,1,Hp−1), . . . , F−1(ζLi,nyi,Hp−1)
]T

and

FU
i ,
[
F−1(1− ζUi,1,0), . . . , F−1(1− ζUi,nyi,0

), . . . , F−1(1− ζUi,1,Hp−1), . . . , F−1(1− ζUi,nyi,Hp−1)
]T

.

3.1.3 Decentralized Chance-Constrained MPC

In addition to the plant-wide probabilistic MPC, the decentralized scheme provides

another measure for performance comparison of chance-constrained CDMPC,

since coordinated distributed controllers are obtained by modifying the individual

controllers in the decentralized scheme and adding a coordinator. In the decentralized

case, the effects of interactions are not accounted for in the local process models.

Therefore, instead of solving one large optimization problem, N smaller decoupled

optimization problems are solved. The decentralized chance-constrained MPC are
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formulated as below:

min
X̄i,∆Ui

(
CiiX̄i − ri

)T Qii

(
CiiX̄i − ri

)
+ ∆UT

i Rii∆Ui

subject to
(3.13a)

x̄i(k + l + 1|k) = Aiix̄i(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+ Diid̄i(k + l|k)

(3.13b)

Pr{ξ′i,g(k + l + 1|k) ≤ fmini,g (k + l + 1|k)} ≥ ζLi,g,l

Pr{ξ′i,g(k + l + 1|k) ≥ fmaxi,g (k + l + 1|k)} ≥ ζUi,g,l
(3.13c)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)
(3.13d)

where fmini and fmaxi are defined as:

fmini ,
[
(CiiÂ−1

ii D̂ii)Ξii(CiiÂ−1
ii D̂ii)

T
]− 1

2 ×[
−Ymin

i − CiiÂ−1
ii B̂ii∆Ui + CiiÂ−1

ii Āiixi(k) + CiiÂ−1
ii B̄iiui(k − 1)− CiiÂ−1

ii D̂iiµi

]
fmaxi ,

[
(CiiÂ−1

ii D̂ii)Ξii(CiiÂ−1
ii D̂ii)

T
]− 1

2 ×[
−Ymax

i − CiiÂ−1
ii B̂ii∆Ui + CiiÂ−1

ii Āiixi(k) + CiiÂ−1
ii B̄iiui(k − 1)− CiiÂ−1

ii D̂iiµi

]
(3.14)

3.2 Chance-Constrained CDMPC Problem

Statement

The following general structure is proposed for the chance-constrained CDMPC:

min
X̄i,∆Ui

(
CiiX̄i − ri

)T Qii

(
CiiX̄i − ri

)
+ ∆UT

i Rii∆Ui + {CoT}i

subject to
(3.15a)

x̄i(k + l + 1|k) = Aiix̄i(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+ Diid̄i(k + l|k)

+
N∑
j=1
j 6=i

[
αAijx̄j(k + l|k) + Bijuj(k − 1) + Dijd̄j(k + l|k)

]
+ vi(k + l|k)

(3.15b)
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Pr{ξ′i,g(k + l + 1|k) ≤ fmini,g (k + l + 1|k)} ≥ ζLi,g,l

Pr{ξ′i,g(k + l + 1|k) ≥ fmaxi,g (k + l + 1|k)} ≥ ζUi,g,l
(3.15c)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)
(3.15d)

where the scalars fmini,g (k + l + 1|k) and fmaxi,g (k + l + 1|k) are elements of the vectors

fmini and fmaxi defined in (3.9). Similar to the previous chapter, the coordinating

terms {CoT}i, connect the local controllers to the coordinator. These terms involve

coordinating variables that are calculated and updated by the coordinator.

Comparing (3.15) with (3.13) shows that the probabilistic CDMPC is formed by

modifying the already available decentralized MPC. Once the modifications are made,

a coordinator is included. The modifications are made at two locations: 1) inclusion of

known interaction terms3 and predicted interaction vector vi in local prediction model

(3.15b); 2) inclusion of coordinating terms {CoT}i in the local objective function

(3.15a).

In each coordination method, relaxation of the interaction equations determines the

coordinating terms used in the CDMPC. The numerical strategy chosen to solve the

optimization problem resulting from the aggregate of CDMPC, leads to coordinator

synthesis.

3.3 Goal Coordinated Probabilistic DMPC

As discussed in Chapter 2, the core idea in the GC method is to first relax the

interaction equations so that a separable optimization problem is produced and

then, find the optimal solutions of the resulting separable optimization problem

by numerically solving a relevant dual optimization problem. For the chance-

constrained MPC problem, the interaction equations (3.2c) are similar to those in

the deterministic case. Therefore, the procedure in Section 2.3, is followed to form

the CDMPC and construct the coordinator. This means that, the term pTΘi

 X̄i

∆Ui

Vi


3Since the coordinator has access to the complete plant model and variables, for implementation

purposes, the known interaction terms can be calculated in the coordinator and sent to the CDMPC
as a constant vector.
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defines the {CoT}i in (3.15a), where the constant matrix Θi contains the interaction

models and is built according to (2.11b). Also, the gradient vector J and the Hessian

H, calculated by (2.22) and (2.23), are used in the coordinator’s update equations

(2.24). Therefore, applying the GC method to develop the chance-constrained

CDMPC is straightforward.

In the GC method, a key issue to be taken care of, specially considering that

probabilistic constraints are an important part of the local controllers, is coordinator’s

convergence problems in the presence of active local inequalities. As discussed in

Chapter 2, in the Newton-based coordinator, active local inequalities can destroy the

negative definiteness of the Hessian matrix, leading to poor convergence. On the

other hand, using first-order gradient-based methods can be impractically slow and

even oscillatory, specially near the optimum point4. Furthermore, both second and

first-order gradient-based approaches use step-size in their update equations. Using

an optimal step-size, which is calculated by performing a uni-variate optimization,

can improve convergence; however, at each communication cycle, inner iterations

are needed. Therefore, in what follows, rather than repeating the CDMPC and

coordinator formulations of Chapter 2, a new first-order gradient-based coordinator

with improved convergence, in the sense that it converges in finite number of

iterations, is synthesized.

To this end a numerical optimization method is required that: 1) can efficiently

solve the dual optimization problem; 2) only uses first-order gradient information;

and 3) avoids optimal step-size calculations. These are the characteristics of the

method of multipliers or the augmented Lagrangian method (Leunberger (1984),

Nocedal and Wright (2006)), which is essentially a combination of the primal-dual

and penalty methods. The main idea of this approach is to solve the constrained

optimization problem by replacing it with a sequence of simpler problems. In doing

so, the constraints to be relaxed are added to the Lagrangian by using Lagrange

multipliers and also by quadratically penalizing them. The resulting augmented

Lagrangian, which is a combination of the Lagrangian and quadratic penalty function,

is an exact penalty function. Several algorithm have been designed that iteratively

4The optimum point corresponds to p = p∗ and is achieved when ∇pϕ(p) = E = 0.
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improve the value of the approximated Lagrange multipliers using the gradient of the

augmented Lagrangian with respect to the Lagrange multipliers, which equals the

relaxed constraints. At each iteration, the penalty parameter and the estimate of

Lagrange multipliers are fixed and simpler optimizations are performed with respect

to the decision variables. Upon convergence of the algorithm, the optimal solution to

the original optimization problem is found. More details on augmented Lagrangian

methods can be found in Nocedal and Wright (2006), Hamdi and Mishra (2011) and

references therein.

If the method of multipliers is applied to the plant-wide MPC problem, the

interaction equations will be the constraints to be relaxed and quadratically penalized;

however, their squared Euclidean norm is not separable, i.e., ||
N∑
i=1

ΘiZi||2 6=

||Θ1Z1||2 + · · · + ||ΘNZN ||2. The non-separability issue is addressed by employing

the Separable Augmented Lagrangian Algorithms (SALA) proposed by Hamdi et al.

(1997). First, the additive separable form of the interaction equations (3.2c), are

replaced by the following equivalent equations:

Θi

 X̄i

∆Ui

Vi

+ ρi = 0 i = 1, . . . , N (3.16a)

N∑
i=1

ρi = 0 (3.16b)

where ρi is the allocation vector with the dimension Hp × nxi. It is clear that the

squared Euclidean norm of (3.16a) is separable. Now, the same steps discussed

in Section 2.3 can be followed. The only difference is that, the complicating

constraints (3.16a) are relaxed by associating Lagrange multipliers p with them,

and quadratically penalized using penalty parameter µ. Ultimately, the following

chance-constrained CDMPC is obtained:
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min
X̄i,∆Ui,Vi

(
CiiX̄i − ri

)T Qii

(
CiiX̄i − ri

)
+ ∆UT

i Rii∆Ui

+ pT

Θi

 X̄i

∆Ui

Vi

+ ρi

+
1

2µ

∣∣∣∣∣∣
∣∣∣∣∣∣Θi

 X̄i

∆Ui

Vi

+ ρi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(3.17a)

subject to

x̄i(k + l + 1|k) = Aiix̄i(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+ Diid̄i(k + l|k)

+
N∑
j=1
j 6=i

[
αAijx̄j(k + l|k) + Bijuj(k − 1) + Dijd̄j(k + l|k)

]
+ vi(k + l|k)

(3.17b)

Pr{ξ′i,g(k + l + 1|k) ≤ fmini,g (k + l + 1|k)} ≥ ζLi,g,l

Pr{ξ′i,g(k + l + 1|k) ≥ fmaxi,g (k + l + 1|k)} ≥ ζUi,g,l
(3.17c)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)
(3.17d)

where the last two terms in the objective function are the coordinating term {CoT}i.

The price vector p and the allocation vector ρi are the coordinating variables.

At this stage the coordinator is designed. The objective function of the aggregate

of distributed controllers (3.17) is:

J (X,∆U,V,p,ρ) =
N∑
i=1

[(
CiiX̄i − ri

)T Qii

(
CiiX̄i − ri

)
+ ∆UT

i Rii∆Ui

]

+ pT
N∑
i=1

[Θi

 X̄i

∆Ui

Vi

+ ρi] +
1

2µ

N∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣Θi

 X̄i

∆Ui

Vi

+ ρi

∣∣∣∣∣∣
∣∣∣∣∣∣
2 (3.18)

The Lagrangian dual function is defined as:

ϕ(p,ρ) , inf
X,∆U,V

{J (X,∆U,V,p,ρ)|(3.17b), (3.17c) & (3.17d), i = 1, . . . , N}

(3.19)

and the resulting dual optimization problem becomes:

max
p,ρ

ϕ(p,ρ) (3.20)
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Using the proposed algorithm in SALA5 to solve the dual optimization problem

(3.20), the following update equations for the coordinator are obtained:

pq+1 = pq +
1

µ

(
Hp

N∑
i=1

nxi

) N∑
i=1

Θi

 X̄q
i

∆Uq
i

Vq
i


(3.21)

ρq+1
i = −Θi

 X̄q
i

∆Uq
i

Vq
i

+
1(

Hp

N∑
i=1

nxi

) N∑
i=1

Θi

 X̄q
i

∆Uq
i

Vq
i

 i = 1, . . . , N
(3.22)

µq+1 = κµq (3.23)

where 0 < κ ≤ 1. It should be noted that finding the most effective value for

the penalty parameter µ improves the efficiency of SALA (Dussault et al. (2005));

however, in the current work, the simple update equation (3.23), as was suggested in

the original SALA, is used.

As expected, since SALA numerically solves the dual optimization problem, a

hierarchical structure is obtained for the coordinated distributed network. During

each sampling time, the probabilistic CDMPC (3.17) and the coordinator (3.21,3.22

and 3.23) exchange information until convergence, where:

1. The value of price vector p equals the Lagrange multipliers p∗, associated with

the equality constraints in the plant-wide MPC problem.

2. The sum of allocation vectors ρi becomes zero (
N∑
i=1

ρi = 0).

3. The interaction equality constraints are satisfied.

One of the advantages of using SALA in synthesizing the coordinator, is that

the need to calculate the optimal step-size is removed. Also, for faster convergence,

the penalty parameter can be changed; however, this value affects the coordinator’s

convergence rate, not the accuracy of coordinator’s convergence to the plant-wide

optimal solution. That is, regardless of what value µ has, the coordinator will converge

and achieve the centralized solution.
5Details on the steps involved in SALA, can be found in Hamdi et al. (1997), Dussault et al.

(2005) and Hamdi and Mishra (2011).
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It should be emphasized that the coordinator’s performance improvement presented

in this section can be employed in the deterministic CDMPC discussed in section 2.3,

as well.

Implementation of the coordinated distributed chance-constrained MPC network,

developed using SALA, can be systematically done according to Algorithm 4.

Algorithm 4 : Implementation of Probabilistic GC(SALA)-CDMPC Network

1. Coordinator: Iteration counter q is set to 1.

2. Coordinator: Price vector p is arbitrarily initialized.

3. Coordinator: Allocation vectors ρi, are initialized such that
N∑
i=1

ρ0
i = 0.

4. Coordinator: Penalty parameter µ is arbitrarily chosen.

5. Coordinator: Coordinating variables and penalty parameter are sent to the local
controllers.

6. Local Controllers: Local optimization problems (3.17) are solved.

7. Local Controllers: Local optimal solutions X̄i, ∆Ui and Vi are sent to the
coordinator.

8. Coordinator: If E =
N∑
i=1

Θi

 X̄q
i

∆Uq
i

Vq
i

 ≤ e stops. Otherwise, continue.

9. Coordinator: Coordinating variables and the penalty parameter are updated
using (3.21), (3.22) and (3.23).

10. Coordinator: Iteration counter is increased by 1.

11. Steps 5-8 are repeated.

3.4 Interaction Prediction Coordinated

Probabilistic DMPC

Considering that in the plant-wide probabilistic MPC problem (3.2), the interaction

equations are similar to the deterministic case, in applying the IPC method to

convert the probabilistic decentralized MPC into chance-constrained CDMPC, the
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coordinating term is defined the same way as in section 2.4. Accordingly, the chance-

constrained CDMPC (3.15) becomes:

min
X̄i,∆Ui

(
CiiX̄i − ri

)T Qii

(
CiiX̄i − ri

)
+ ∆UT

i Rii∆Ui + pTΦi

[
X̄i

∆Ui

]
(3.24a)

subject to

x̄i(k + l + 1|k) = Aiix̄i(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+ Diid̄i(k + l|k)

+
N∑
j=1
j 6=i

[
αAijx̄j(k + l|k) + Bijuj(k − 1) + Dijd̄j(k + l|k)

]
+ vi(k + l|k)

(3.24b)

Pr{ξ′i,g(k + l + 1|k) ≤ fmini,g (k + l + 1|k)} ≥ ζLi,g,l

Pr{ξ′i,g(k + l + 1|k) ≥ fmaxi,g (k + l + 1|k)} ≥ ζUi,g,l
(3.24c)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)
(3.24d)

where the vectors p and vi are the coordinating variables.

The coordinator in the IPC method is designed by numerically solving portions

of first-order optimality conditions for the optimization problem obtained by the

aggregate of CDMPCs. In doing so, the following compact form for the composite

CDMPC (3.24) will be used:

min
X̄i,∆Ui

(
CiiX̄i − ri

)T Qii

(
CiiX̄i − ri

)
+ ∆UT

i Rii∆Ui + pTΘi

 X̄i

∆Ui

Vi

 (3.25a)

subject to

ÂiiX̄i + B̂ii∆Ui −Vi =

Zi︷ ︸︸ ︷
Āiixi(k) + B̄iiui(k)− D̂iiD̄i +

N∑
j=1
j 6=i

[
Āijxj + B̄ijuj(k − 1)− D̂ijD̄j

]
(3.25b)

fmini ≥ FL
i

fmaxi ≤ FU
i

(3.25c)

Umini ≤ Uii∆Ui ≤ Umaxi (3.25d)

where (3.25b) is the compact form (C.6), in which the expected values are used for

the predicted states and future disturbances. The single probabilistic constraints are
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written in terms of their equivalent inequality constraints according to (3.12). Details

on obtaining the compact form for the constraints on the manipulated variables and

their changes can be found in Appendix B, Section B.3.2. The vector Zi contains all

the known terms in the local model.

The Lagrangian of problem (3.25) is then formed as:

L(X̄,∆U,V,Λ,Ω,Υ,p) =
N∑
i=1

Li(X̄i,∆Ui,Vi,Λi,Ωi,Υi,p) =

N∑
i=1

(
CiiX̄i − ri

)T Qii

(
CiiX̄i − ri

)
+ ∆UT

i Rii∆Ui + pT
N∑
i=1

Θi

 X̄i

∆Ui

Vi

+

N∑
i=1

ΛT
i

(
ÂiiX̄i + B̂ii∆Ui −Vi −Zi

)
+

N∑
i=1

ΩT
i,min

(
FL
i − fmini

)
+ ΩT

i,max

(
fmaxi − FU

i

)
+

N∑
i=1

ΥT
i,min

(
Umini − Uii∆Ui

)
+ ΥT

i,max (Uii∆Ui − Umaxi )

(3.26)

where Λ, Ω and Υ are the Lagrange multipliers associated with the relevant

constraints.

Choosing the fixed-point iteration technique to numerically solve the optimality

conditions ∇pL = 0 and ∇VL = 0, provides the update equations for

the coordinating variables p and Vi, and consequently design the coordinator.

Satisfaction of the remaining optimality conditions is taken care of by the distributed

controllers (3.24). Similar to Section 2.4, taking the derivative of the Lagrangian with

respect to the price vector yields:

∇pL =
N∑
i=1

Θi

 X̄q
i

∆Uq
i

Vq+1
i

 = 0 =⇒

vq+1
i (k + l|k) =

N∑
j=1
j 6=i

[
βAijx̄

q
j(k + l|k) + Bij

l∑
a=0

∆uqj(k + a|k)

]

for i = 1, . . . , N

(3.27)

Taking the derivative of Lagrangian with respect to the predicted interaction effects
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vi, and equaling to zero lead to the following equations:

∇VL =
N∑
i=1

∇Vi
L = 0 =⇒

pq+1

I1 · · · 0
...

. . .
...

0 · · · IN

−
Λq

1
...

Λq
N

−


(
dfmin

1

dV1
)TΩq

1,min
...

(
dfmin

N

dVN
)TΩq

N,min

+

 (
dfmax

1

dV1
)TΩq

1,max
...

(
dfmax

N

dVN
)TΩq

N,max

 = 0

(3.28)

The derivatives
df∗i
dVi

appear in (3.28) are calculated by using (3.9) as:

df∗i
dVi

= GiCiiÂ−1
ii (3.29)

Replacing (3.29) in (3.28) and re-arranging the terms result in the following update

equations for the price vector p:

pq+1 =

Λq
1

...
Λq
N

+

 (G1C11Â−1
11 )TΩq

1,min
...

(GNCNN Â−1
NN)TΩq

N,min

−
 (G1C11Â−1

11 )TΩq
1,max

...

(GNCNN Â−1
NN)TΩq

N,max

 (3.30)

During each sampling time, the probabilistic CDMPC (3.24) and the coordinator

(3.27 and 3.30) exchange information until ||Vq+1 − Vq|| ≤ e. Upon convergence,

the value of the price vector p becomes equal to the Lagrange multiplier value p∗

associated with equality constraints of the plant-wide probabilistic MPC problem.

Remark 3.4.1 If rather than fixed-point iterations, a gradient-based method is used

to numerically solve ∇pL = 0 and ∇VL = 0, the following coordinator will be

obtained:

pq+1 = pq + ε1(

(∇pL)q︷ ︸︸ ︷
N∑
i=1

Θi

 X̄q
i

∆Uq
i

Vq
i

) (3.31)

Vq+1 = Vq − ε2(

(∇VL)q︷ ︸︸ ︷
pq −

Λq
1

...
Λq
N

−
 (G1C11Â−1

11 )TΩq
1,min

...

(GNCNN Â−1
NN)TΩq

N,min

+

 (G1C11Â−1
11 )TΩq

1,max
...

(GNCNN Â−1
NN)TΩq

N,max

)

(3.32)

where i = 1, . . . , N ; and ε1 and ε2 are tuning parameters.
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3.5 Modified Pseudo-Model Chance-Constrained

CDMPC

Similar to the other two coordination methods, applying the MPMC approach to the

chance-constrained MPC problem, is a straightforward process. The pseudo-variables

x̃i(k) and ∆ũi(k) are defined using the following transformed interaction equations:

x̃i(k) = x̄i(k) (3.33a)

∆ũi(k) = ∆ui(k) (3.33b)

Following the procedures discussed in Section 2.5, the chance-constrained CDMPC

will have the following structure:

min
X̄i,∆Ui

(
CiiX̄i − ri

)T Qii

(
CiiX̄i − ri

)
+ ∆UT

i Rii∆Ui+

ε

2

(
||X̄i − X̃i||2Q̄i

+ ||∆Ui −∆Ũi||2R̄i

)
+

ΓT
i (X̄i − X̃i) + ΠT

i (∆Ui −∆Ũi)

(3.34a)

subject to

x̄i(k + l + 1|k) = Aiix̄i(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+ Diid̄i(k + l|k)

+
N∑
j=1
j 6=i

[
αAijx̄j(k + l|k) + Bijuj(k − 1) + Dijd̄j(k + l|k)

]
+ vi(k + l|k)

(3.34b)

Pr{ξ′i,g(k + l + 1|k) ≤ fmini,g (k + l + 1|k)} ≥ ζLi,g,l

Pr{ξ′i,g(k + l + 1|k) ≥ fmaxi,g (k + l + 1|k)} ≥ ζUi,g,l
(3.34c)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)
(3.34d)

where X̃i, ∆Ũi, Γi, Πi and Vi are coordinating variables.

The numerical method used in solving portions of the optimality conditions of

the aggregate of distributed controllers (3.34), dictates the coordinator formulation.

To work with a simpler problem, the aggregate problem is written in the following
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compact form:

min
X̄i,∆Ui

(
CiiX̄i − ri

)T Qii

(
CiiX̄i − ri

)
+ ∆UT

i Rii∆Ui+

ε

2

(
||X̄i − X̃i||2Q̄i

+ ||∆Ui −∆Ũi||2R̄i

)
+

ΓT
i (X̄i − X̃i) + ΠT

i (∆Ui −∆Ũi)

(3.35a)

subject to

ÂiiX̄i + B̂ii∆Ui +
N∑
j=1
j 6=i

[
ÂijX̃j + B̂ij∆Ũj

]
=

Zi︷ ︸︸ ︷
Āiixi(k) + B̄iiui(k)− D̂iiD̄i +

N∑
j=1
j 6=i

[
Āijxj + B̄ijuj(k − 1)− D̂ijD̄j

] (3.35b)

fmini ≥ FL
i

fmaxi ≤ FU
i

(3.35c)

Umini ≤ Uii∆Ui ≤ Umaxi (3.35d)

where (3.35b) is the compact form (C.11), in which the expected values are used for

the predicted states and future disturbances. The single probabilistic constraints are

written in terms of their equivalent inequality constraints according to (3.12). Details

for obtaining the compact form of the constraints for the manipulated variables and

their changes can be found in Appendix B, Section B.3.2. The vector Zi contains

known information in the local prediction models.

The Lagrangian of problem (3.35) is written as:

L(X̄,∆U, X̃,∆Ũ,Λ,Ω,Υ,Γ,Π) =
N∑
i=1

Li(X̄i,∆Ui, X̃i,∆Ũi,Λi,Ωi,Υi,Γi,Πi)

=
N∑
i=1

((
CiiX̄i − ri

)T Qii

(
CiiX̄i − ri

)
+ ∆UT

i Rii∆Ui

)
+

N∑
i=1

ε

2

(
||X̄i − X̃i||2Q̄i

+ ||∆Ui −∆Ũi||2R̄i

)
+

N∑
i=1

(
ΓT
i (X̄i − X̃i) + ΠT

i (∆Ui −∆Ũi)
)
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+
N∑
i=1

ΛT
i

ÂiiX̄i + B̂ii∆Ui +
N∑
j=1
j 6=i

[
ÂijX̃j + B̂ij∆Ũj

]
−Zi


+

N∑
i=1

ΩT
i,min

(
FL
i − fmini

)
+ ΩT

i,max

(
fmaxi − FU

i

)
+

+
N∑
i=1

ΥT
i,min

(
Umini − Uii∆Ui

)
+ ΥT

i,max (Uii∆Ui − Umaxi )

(3.36)

In designing the coordinator, the optimality conditions ∇X̃L = 0, ∇∆ŨL = 0,

∇ΓL = 0 and ∇ΠL = 0 are used to obtain the prediction equations for the

coordinating variables. The rest of the optimality conditions are handled by the

probabilistic CDMPC (3.34).

If a fixed-point iteration method is used, the update equations for the pseudo-

variables X̃ and ∆Ũ will be obtained as:
∇ΓL =

N∑
i=1

∇Γi
L = 0

∇ΠL =
N∑
i=1

∇Πi
L = 0

(3.37a)

=⇒
for i=1,. . . ,N :{

X̃q+1
i = X̄q

i

∆Ũ
q+1

i = ∆Uq
i

(3.37b)

Thus, at each communication cycle, the updated values of pseudo-variables X̃ and

∆Ũ equal the current values of local optimal decision variables.

Similarly, at each iteration, the value of the price vectors Γi and Πi are corrected

by a combination of current local Lagrange multipliers and interaction matrices along

with the applicable updated pseudo-variables, as follows:
∇X̃L =

N∑
i=1

∇X̃i
L = 0

∇∆ŨL =
N∑
i=1

∇∆Ũi
L = 0

(3.38a)

Consequently the following update equations are obtained for i=1,. . . ,N :
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Γq+1
i =

−ε(X̄q
i − X̃q+1

i )Q̄i +
N∑
j=1
j 6=i

ÂT
jiΛ

q
j +

N∑
j=1
j 6=i

(GjCjjÂ−1
jj Âji)

TΩq
j,min −

N∑
j=1
j 6=i

(GjCjjÂ−1
jj Âji)

TΩq
j,max

Πq+1
i =

−ε(∆Uq
i −∆Ũ

q+1

i )R̄i +
N∑
j=1
j 6=i

B̂TjiΛ
q
j +

N∑
j=1
j 6=i

(GjCjjÂ−1
jj B̂ji)TΩq

j,min −
N∑
j=1
j 6=i

(GjCjjÂ−1
jj B̂ji)TΩq

j,max

(3.38b)

where in order to obtain df∗

dX̃
and df∗

d∆Ũ
, the interaction term Vi in (3.9), has been

replaced by the equivalent expression
N∑
j=1
j 6=i

[
ÂijX̃j + B̂ij∆Ũj

]
.

The values of the predicted interaction vectors vi, are corrected using updated

values of the pseudo-variables in the interaction equations:

for i=1,. . . ,N :

vq+1
i (k + l|k) =

N∑
j=1
j 6=i

[
βAijx̃

q+1
j (k + l|k) + Bij

l∑
a=0

∆ũq+1
j (k + a|k)

]
(3.39)

During each sampling time k, the chance-constrained CDMPCs (3.34) communicate

with the coordinator (3.37b, 3.38b and 3.39) until the error, which is defined as∣∣∣∣∣∣∣∣[ X̄− X̃

∆U−∆Ũ

]∣∣∣∣∣∣∣∣, is equal to or less than the pre-specified tolerance e. Satisfying this

stopping criteria means that, the price vectors Γi and Πi equal Lagrange multipliers

associated with the corresponding transformed interaction equality constraints. Thus,

the values of pseudo-variables become equal to the correct values of interaction

variables and consequently, the interaction equations are satisfied.

Remark 3.5.1 If rather than fixed-point iteration method, a gradient-based method

is used to numerically solve the optimality conditions ∇ΓL = 0, ∇ΠL = 0, ∇X̃L = 0
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and ∇∆ŨL = 0, the coordinator’s update equations become:

Γq+1
i = Γq

i + ε1[X̄q
i − X̃q

i ] (3.40)

Πq+1
i = Πq

i + ε2[∆Uq
i −∆Ũ

q

i ] (3.41)

X̃q+1
i = X̃q

i − ε3[−ε(X̄q
i − X̃q

i )Q̄i − Γq
i +

N∑
j=1
j 6=i

ÂT
jiΛ

q
j

+
N∑
j=1
j 6=i

(GjCjjÂ−1
jj Âji)

TΩq
j,min −

N∑
j=1
j 6=i

(GjCjjÂ−1
jj Âji)

TΩq
j,max]

(3.42)

∆Ũ
q+1

i = ∆Ũ
q

i − ε4[−ε(∆Uq
i −∆Ũ

q

i )R̄i −Πq
i +

N∑
j=1
j 6=i

B̂TjiΛ
q
j

+
N∑
j=1
j 6=i

(GjCjjÂ−1
jj B̂ji)TΩq

j,min −
N∑
j=1
j 6=i

(GjCjjÂ−1
jj B̂ji)TΩq

j,max]

(3.43)

and (3.39)

where i = 1, . . . , N ; and ε1, ε2, ε3 and ε4 are tuning parameters.

3.6 Case Study

In order to test the performance of the proposed chance-constrained CDMPC schemes,

uncertain disturbances are used in the simulation example Section 2.6. Linearizing

the nonlinear model used in Chapter 4, Section 4.3, and discretizing the obtained

linear model with a sampling time of 0.005hr, result in the following discrete-time

state-space process model:

x(k + 1) =


1.1357 6.1467 0.1852 0.6696
−0.0014 0.7954 −0.0002 0.1466
0.0704 0.2556 0.9917 1.5870
−0.0001 0.0557 −0.0005 0.8875

x(k)+ (3.44)


0.0000 0.0778 0.0000 0.0113
−0.0000 0.0223 −0.0000 0.0039
0.0000 0.0022 0.0000 0.0404
−0.000 0.0007 −0.0000 0.0471

u(k)+ (3.45)
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MPC 1 MPC 2

Initial Conditions x1(0) =
[
5 −1.5

]T
x2(0) =

[
−5 1.7

]T
Weighting Matrices Q11 = 5I Q22 = 5I

R11 = 15I R22 = 15I

Upper Bounds ymax1 =
[
5 1.5

]T
ymax2 =

[
5 1.5

]T
umax1 =

[
5 4

]T
umax2 =

[
5 2

]T
Lower Bounds ymin1 =

[
−15 −1

]T
ymin2 =

[
−5 −1

]T
umin1 =

[
−5 −4

]T
umin2 =

[
−5 −2

]T
Prediction Horizon 10 10
Control Horizon 5 5

Table 3.1: Parameters used in the probabilistic CDMPC


−0.8070 −0.2263 0.0266 0.0064 −0.0174 0.0045
0.0105 0.0001 −0.0000 −0.0000 0.0000 −0.0000
−0.0263 −0.0073 0.0009 0.0703 −0.1912 0.0497
0.0003 0.0000 −0.0000 0.0000 0.0004 −0.0000

d(k) (3.46)

It is assumed that the six disturbances affecting the system have normal multivariate

distributions.

In each of the two local chance-constrained MPCs, the predicted temperatures and

concentrations have to be held within the desired range with the given probability

of ζUi,g,l = 0.8 and ζLi,g,l = 0.85 where i = 1, 2, g = 1, . . . , 2 × 10 and l = 0, . . . , 2 × 9.

Other parameters used in the simulations are given in Table 3.1.

Simulations are performed for the centralized probabilistic MPC and the three

proposed chance-constrained CDMPC. In order to compare simulation results of the

different schemes, the same stochastic sequence for the uncertain disturbances has

been used in all the simulation runs. MATLAB’s quadprog function with the active-

set algorithm, has been used to solve the MPC optimization problems. Also, for

the coordination methods e = 10−6 is chosen for the coordinator’s stopping criteria.

In the simulations using the GC (SALA) method, the penalty parameter was kept

constant during the coordinator’s iterations (κ = 1).
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3.6.1 Simulation Results

Figures 3.1 and 3.2 show that process outputs and control inputs trajectories

of the local subsystems, resulting from the three chance-constrained CDMPC

networks, match the centralized profiles6. Therefore, all three CDMPC schemes have

successfully achieved the plant-wide MPC performance.

To compare performance of the probabilistic CDMPC networks, in Figure 3.3,

number of communication cycles to convergence of coordination algorithm have

been plotted. The conspicuous observation that emerged from Figure 3.3 is that

in the GC method, the number of communication cycles was considerably larger in

comparison with the IPC and MPMC approaches. This is not surprising, as instead of

Newton’s method, which has quite a fast convergence rate, a first-order gradient-based

optimization method (SALA) solves the dual optimization problem7. At the expense

of increased communication cycles, the coordinator in the GC method converged in

the presence of active local inequality constraints. It should be mentioned that for

this example, Newton’s method failed to converge due to an ill-conditioned Hessian

matrix. Also, Figure 3.3 shows that number of required communication cycles in the

IPC and MPMC methods, are very close and both are significantly lower than what

is needed by the GC (SALA) approach.

6The penalty parameter of µ = 0.001 has been used in the simulation using SALA approach.
7In Appendix D, simulations results for the deterministic example of chapter 2, are presented

where the first-order gradient-based coordinator obtained using SALA, is used in the GC method.
Simulations were performed for both unconstrained and constrained CDMPC.
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Figure 3.3: Number of communication cycles

As previously discussed, the efficiency of SALA can be improved by finding the

most effective penalty parameter µ (Dussault et al. (2005)). In order to study the

effect of this parameter on the speed of the coordination algorithm, simulations with

different values of µ have been performed. Simulation results are shown in Figure

3.4. To avoid repetition, the plots for the process outputs and manipulated variables

trajectories have not been shown, but as expected, they are the same as those in

Figures 3.1 and 3.2. Figure 3.4 shows that lower values of the penalty parameters

result in faster convergence. Therefore, knowing the lowest possible value for this

parameter can help improve the coordinator’s convergence rate.

3.7 Summary

This chapter attempts to initiate the study of uncertainty impacts on developing

CDMPC networks. Among the available MPC methods that explicitly account

for the effects of uncertainty, in this chapter, chance-constrained MPC is chosen

to address the plant-wide single chance-constrained MPC problem under uncertain

disturbances. The GC, IPC and MPMC methods are used to change the existing



Sec. 3.7 Summary 106

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40.4
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

Time(hr)

N
u
m
b
er

of
C
o
m
m
u
n
ic
at
io
n
C
y
cl
es

 

 

SALA (µ = 0.001)

SALA (µ = 0.002)

SALA (µ = 0.003)

Figure 3.4: Number of communication cycles for different penalty parameter values

decentralized chance-constrained MPC network to probabilistic CDMPC network.

Detailed probabilistic CDMPC and coordinator formulations are presented. The use

of single chance-constraints in this chapter, provides the advantage of having convex

CDMPC. Therefore, the coordination methods are able to guarantee producing

optimal plant-wide probabilistic MPC solution.

One of the key features of the probabilistic MPC problem introduced in this

chapter, is that in the process models, the expected values of uncertain disturbances

are used. Therefore, both local and interaction disturbance terms are known and are

taken into account by the local dynamic equations. On the other hand, interaction

equations contain unknown interaction terms resulting from predicted states and

control input changes of other local processes. The interaction equations are similar

to those in the deterministic case. Since the starting point of developing a CDMPC

network is relaxing the interaction equations, the same procedures used in applying

the coordination methods to deterministic MPC, are employed in the probabilistic

case. In the GC method, the update equations in the coordinator remain the same

as those in the deterministic MPC, because the effects of local inequalities do not
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explicitly appear in the coordinator’s equations. On the contrary, the coordinators

in the IPC and MPMC methods, explicitly account for the impacts of active local

inequalities on the coordination process. In probabilistic CDMPC, probabilistic

constraints are parts of local inequalities. Therefore, the final update equations of

these coordinators differ from those in the deterministic MPC.

Since inequality constraints are an inherent part of probabilistic MPC, to deal

with the convergence issues of the standard gradient-based coordinator in the GC

method caused by active local inequalities, an alternative first-order gradient-based

optimization method (SALA) is used to solve the resulting dual optimization problem.

Using SALA results in a slight modification in the coordinating terms of the CDMPCs

and a new formulation for the coordinator. The proposed modified GC-DMPC can be

used for both deterministic and stochastic cases. Since a first-order gradient method

is used, convergence rate of the coordination algorithm is slower than a Newton-based

coordinator.

It should be mentioned that if uncertainties are in the model parameters, still the

important step would be to use the available stochastic information in the process

models, such that the two sets of local dynamic and interaction equations can be

formed. Once the local dynamic and interaction equations are obtained, the standard

procedures in the coordination methods can be followed to develop a probabilistic

CDMPC network.

If joint chance constraints are used in the MPC formulation, the procedures in

applying coordination methods for developing CDMPC networks will remain the

same; however, the main challenge would be if the type of multivariate probability

distribution used for the probabilistic constraints lead to a non-convex optimization

problem, as reaching optimal plant-wide performance cannot be guaranteed by

duality-based coordination methods.



Chapter 4

MPMC Method and Plant-Wide
Nonlinear MPC Problem

In this chapter, a linear CDMPC scheme1 is proposed that has the performance of

plant-wide nonlinear MPC. The Pseudo-Model Coordination method together with

an exact linearization procedure, is employed to create a linear CDMPC network

which can be used as a practical alternative to the nonlinear plant-wide constrained

MPC. The linear CDMPC network is the result of modifications performed on the

existing network of linear decentralized MPCs. Nonlinearities in the local processes,

are accounted for in the interaction equations. Therefore, in the process of relaxing the

interaction equations, the nonlinearities become part of the coordinator. Performance

of the proposed linear CDMPC scheme is investigated using a simulation case study.

Although processes are usually nonlinear, in the vast majority of MPC applications

linear models are used to predict the dynamic response of nonlinear processes

because: 1) linear model identification techniques are well-studied and easy to use;

2) linear models are able to well forecast dynamics of the process maintained in

the neighbourhood of its operating point; and 3) MPC with quadratic objective

function and linear constraints is a convex optimization problem that can be solved

1In this chapter, the term linear in linear CDMPC network is used to emphasize that the
distributed controllers are linear.
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efficiently using convex optimization methods. Despite these advantages, there are

times that linear models are not able to adequately represent the dynamics of the

process. For instance, frequent changes in the operating points, the need for having

tighter performance specifications and more rigid environmental regulations result in

cases where having better control performance requires nonlinear models to improve

the quality of the prediction.

Synthesizing nonlinear MPC usually poses two main challenges. The first challenge

is the issue of efficiently solving non-convex optimization problems, as nonlinear

models may result in a non-convex problem. Unlike convex QP, non-convex

optimization is, in general, computationally demanding and much more difficult to

solve accurately. On the other hand, on-line implementation of MPC dictates a

time limitation, as the nonlinear and often non-convex optimization problem must be

solved within each sampling period. Therefore, computationally efficient algorithms

for solving nonlinear MPC problems play an important role in making these control

problems implementable in practice (Findeisen and Allgower (2002), Cannon (2004),

Camacho and Bordons (2007)).

The second challenge in designing nonlinear MPC is stability of the closed-loop

system2. Even if the solution of finite horizon open-loop nonlinear MPC problem

is found, the calculated optimal control inputs could result in an unstable closed-

loop system (Rawlings (1999), Findeisen and Allgower (2002), Camacho and Bordons

(2007)). In the state-space framework, several methods have been proposed to

guarantee stability of the controlled system, either by using a terminal set and/or a

2Assuring a closed-loop stable system is equally important in linear MPC design. Generally,
one way to achieve a closed-loop stable system in either linear or nonlinear MPC, is to use a long
enough prediction horizon Hp; however, increasing Hp increases the size of the optimization problem.
Nowadays, because of efficient convex optimization algorithms and powerful computers, Hp can be
tuned for stability, in linear(convex) MPC. In non-convex MPC, using a long prediction horizon is
usually not practiced, since the resulting increase in the problem size may lead to computationally
intractable problem.

The second approach to ensure close-loop stability, would be to find a terminal region with an
invariance property, off-line, and then include it the MPC synthesis. In the MPC formulation, the
terminal region is usually expressed in the form of a weighted terminal penalty term in the objective
function and/or a set of terminal constraints.

In chapter 2, it is assumed that long enough prediction horizon is used; however, a terminal region
can also be obtained for the plant-wide benchmark problem and then be incorporated appropriately
in developing the CDMPC networks.
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terminal cost (Camacho and Bordons (2007), Mayne et al. (2000), Chen and Allgower

(1998)) or a Lyapunov-based MPC (Mhaskar et al. (2006)).

The quasi-infinite horizon nonlinear MPC proposed by Chen and Allgower (1998),

is one of the comprehensive nonlinear MPC design approaches where a terminal state

penalty term is added to the finite horizon quadratic objective functional and a

terminal region constraint to the inequality constraints of the standard nonlinear

MPC setup3. An off-line procedure was proposed to find the terminal region. Chen

and Allgower (1998) proved that the proposed method would guarantee asymptotic

stability of the closed-loop system independent of the performance tuning parameters

(i.e., Q, R, Hp and Hc) of the standard MPC formulation, if a feasible solution at time

t = 0 could be found. Another method for nonlinear MPC synthesis was proposed by

Mhaskar et al. (2006) that guaranteed controller feasibility and closed-loop stability.

In this method, to explicitly characterize the stability region, Lyapunov function-

based stability constraints, were used in the MPC problem formulation. The stability

constraints contained a Lyapunov function and an explicit nonlinear control law,

which was obtained off-line.

In the context of plant-wide nonlinear MPC, nonlinear cooperative-based DMPC

has been addressed in several research work, e.g., Liu et al. (2009), Liu et al. (2010a),

Stewart et al. (2011) and Chen et al. (2012); however, application of coordination

methods to the plant-wide nonlinear MPC problem is an untouched topic. One

reason is that developing linear CDMPC networks based on multilevel optimization

techniques, is a fairly new research area and thus, the more advanced variations, such

as nonlinear MPC problems, are yet to be investigated. Also, coordination methods

are based on using duality. In other words, instead of solving the primal optimization

(centralized MPC), a relaxed optimization problem (aggregate of CDMPC) that

involves estimations of Lagrange multipliers (prices), is solved. Only for convex

optimization problems, can it be guaranteed that the relaxed problem can re-produce

the solution of the primal problem. If the optimization problem is non-convex,

a duality gap may exist and the centralized solution cannot be recovered by the

3The original work was presented in the continuous time, but as stated by Findeisen and Allgower
(2002), the method is applicable to discrete-time formulations as well.
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aggregate of the CDMPC.

In order to address the duality gap issue, the non-convex MPC problem4 can be

converted into an approximate or preferably equivalent convex problem. Coordination

methods can then be applied to the approximate convex problem. One way to perform

such conversion would be to successively linearize the nonlinear dynamics about trial

points. A disadvantage of this approach is that, because the nonlinear dynamics are

approximated by linear models, approximation errors exist and the resulting linear

problem may not be equivalent to the original nonlinear problem. Another way, would

be to find a method that transforms the original problem into an equivalent convex

relaxed problem such that when solved, the convex problem produces the solution

to the (non-convex) nonlinear problem. The idea of solving an equivalent convex

problem to the primal non-convex optimization, is credited to Sorenson and Koble

(1984), based on a method proposed by Hassan and Singh (1976).

Hassan and Singh (1976) presented a two-level method for solving optimal control

problem of continuous-time nonlinear dynamic systems. The main idea was to

use a steady-state point of the system to expand the nonlinear dynamic equations

ẋ = f(x,u, t) in a Taylor series, in order to write the dynamics in a perturbed form

ẋ = Ax + Bu + D(x,u). The x and u variables in the perturbed term D(x,u) =

f(x,u, t) − Ax − Bu, were replaced by pseudo-variables. The equations defining

the pseudo-variables, were relaxed by quadratic penalty terms. The perturbed term

was iteratively compensated for at a second level by numerically solving portions of

the optimality conditions, using a fixed-point iteration method. The convergence of

the iterative algorithm was proved. In the method proposed by Hassan and Singh

(1976), the original nonlinear optimization problem was solved by independent linear

quadratic sub-problems along with prediction equations in the second level.

Sorenson and Koble (1984) adapted the above method, to their proposed unifying

framework using the MPMC approach. By applying the MPMC method to the

discrete-time nonlinear optimal control problem of interconnected systems, Sorenson

and Koble (1984) showed that their proposed Problem Manipulation Solution

4In this chapter, the term non-convex MPC refers to nonlinear MPC, in which the nonlinear
prediction model has lead to a non-convex optimization problem.
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Strategy (PMSS) approach was not only useful in understanding the coordination

methods used in solving linear optimal control problems of interconnected dynamic

systems, but also could provide conceptual basis for developing new algorithms.

The two important contributions achieved by Sorenson and Koble (1984) were, 1)

the resulting two-level problem was equivalent to the original nonlinear optimal

control problem, since in the MPMC method, in addition to quadratic penalization,

Lagrangian relaxation was used in relaxing the pseudo-variable equations. Note that,

in the original method by Hassan and Singh (1976), the resulting two-level system

was an approximation of the original problem; 2) the proposed method was explicitly

developed for optimal control of interconnected nonlinear dynamical systems.

The contribution of this chapter is in developing an equivalent linear CDMPC

network for plant-wide nonlinear MPC problem. In the context of multilevel

optimization-based CDMPC, this is the first time, a linear CDMPC network that

achieves optimal plant-wide nonlinear MPC performance, is developed. The MPMC

approach for optimal control of interconnected nonlinear systems proposed by

Sorenson and Koble (1984), is extended to the plant-wide nonlinear MPC problem.

It is assumed that the nonlinear functions in the process models are at least once

continuously differentiable. By applying a combination of an exact linearization

technique and the MPMC approach, the existing decentralized linear MPC is

converted into linear CDMPC. The coordinator is synthesized based on satisfaction

of relevant first-order optimality conditions of the aggregate of distributed controllers

using numerical methods. In addition to the benefits of CDMPC, the proposed

approach provides the significant advantage of solving QP problems in the local

controllers. Thus, substantial computational efficiency can be expected, compared

with the distributed and decentralized nonlinear MPC that have to solve (non-convex)

NLP. This chapters intends to address flexibility, maintainability and computational

issues of plant-wide nonlinear MPC problem. Since in the proposed coordinated

distributed scheme, linear CDMPCs are used, it is assumed that closed-loop stability

can be achieved by properly tuning the prediction horizon.
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4.1 Background

In this chapter, the development of CDMPC is presented for the following two types

of discrete-time nonlinear process model:

Model I:

The first type of model is assumed to be obtained by discretizing a continuous

model. Consider the following continuous-time state-space model, which is available

to mathematically represent the nonlinear plant that consists of N interconnected

processes:

dxi
dt

= fi(xi,ui,xj,uj) (4.1a)

yi = Ciixi (4.1b)

where i, j = 1, . . . , N and j 6= i. The states xi, manipulated variables ui and outputs

yi are not deviation variables. Euler’s method is used to discretize the continuous-

time model (4.1a). The resulting discrete-time nonlinear model has the following

form:

xi(k + 1) = xi(k) + ∆t fi(xi(k),ui(k),xj(k),uj(k)) (4.2a)

yi(k) = Ciixi(k) (4.2b)

where ∆t is the sampling time.

Model II:

In the second type of model, it is assumed that the discrete-time nonlinear model is

identified directly and no approximation such as Euler’s method, is used. This form

of nonlinear model is written as:

xi(k + 1) = fi(xi(k),ui(k),xj(k),uj(k)) (4.3a)

yi(k) = Ciixi(k) (4.3b)

where i, j = 1, . . . , N and j 6= i. The states xi, manipulated variables ui and outputs

yi, are not deviation variables.

In both Model I and Model II, it is assumed that all nonlinearity is limited to

the dynamics and the state-output relationship is linear.
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4.1.1 Exact Linearization of Nonlinear Plant Model

The exact linearization scheme used in Hassan and Singh (1976) and Sorenson and

Koble (1984), is essentially re-statement of the discrete-time nonlinear model by two

sets of equations. Re-stating Model I by two systems of equations can be explained

in the following steps:

1. The continuous models (4.1a) are linearized by writing Taylor series expansion

around a nominal operating point of the plant to calculate the block-wise

matrices Ac and Bc, where the superscript c stands for contiunous.

2. Using the sampling time ∆t, the obtained linear continuous model is discretized

to obtain the block-wise matrices Ad and Bd. The following decentralized linear

discrete-time model is obtained:

xi(k + 1) = Aiixi(k) + Biiui(k) (4.4)

3. Using the linear discrete-time model (4.4), the discrete-time nonlinear model

(4.1a) can be written as:

xi(k + 1) = Aiixi(k) + Biiui(k)

+ xi(k) + ∆t fi(xi(k),ui(k),xj(k),uj(k))−Aiixi(k)−Biiui(k)

(4.5)

4. The nonlinear model (4.5) is written in terms of the following two systems of

equations:

xi(k + 1) = Aiixi(k) + Biiui(k) + vi(k) (4.6a)

vi(k) = xi(k) + ∆t fi(xi(k),ui(k),xj(k),uj(k))−Aiixi(k)−Biiui(k) (4.6b)

The following steps convert Model II into the desired equivalent system of

equations:

1. The discrete-time nonlinear model is linearized by writing Taylor series

expansion around a nominal operating point, to obtain:

xi(k + 1) = Aiixi(k) + Biiui(k) (4.7)
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where Aii and Bii are the first partial derivatives ∇xi
fi and ∇ui

fi, evaluated at

xnominali and unominali , respectively.

2. Using the linear discrete-time model (4.7), the discrete-time nonlinear model

(4.3a) can be written as:

xi(k + 1) = Aiixi(k) + Biiui(k)

+ fi(xi(k),ui(k),xj(k),uj(k))−Aiixi(k)−Biiui(k)
(4.8)

3. The system of equations (4.8) can alternatively be written as:

xi(k + 1) = Aiixi(k) + Biiui(k) + vi(k) (4.9a)

vi(k) = fi(xi(k),ui(k),xj(k),uj(k))−Aiixi(k)−Biiui(k) (4.9b)

4.1.2 Plant-Wide Nonlinear MPC Problem

Similar to the previous chapters, a benchmark is needed to set the performance

goal, which leads to determining coordinating terms in the distributed controllers

and designing the coordinator. It is assumed that the nonlinear function fi, is at

least once continuously differentiable. The maximum performance is gained by the

following plant-wide nonlinear MPC problem:

min
X,∆U

N∑
i=1

[
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

]
(4.10a)

subject to

xi(k + l + 1|k) = xi(k + l|k)+

∆t fi (xi(k + l|k),∆ui(k|k), . . . ,∆ui(k + l|k),xj(k + l|k),∆uj(k|k), . . . ,∆uj(k + l|k))

(4.10b)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(4.10c)

where all the variables are in their original, and not deviation, form.

Remark 4.1.1 In the benchmark problem (4.10), the equality constraints (4.10b)

are based on using discrete-time nonlinear model (4.2a). If rather than Model I, a
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discrete-time nonlinear model is available in the form of Model II using (4.3a), the

equality constraints (4.10b) are replaced by:

xi(k + l + 1|k) =

fi (xi(k + l|k),∆ui(k|k), . . . ,∆ui(k + l|k),xj(k + l|k),∆uj(k|k), . . . ,∆uj(k + l|k))

(4.11)

4.1.3 Decentralized Linear Constrained MPC

It is assumed that the nonlinear plant is currently controlled by the following set of

decentralized linear constrained MPC:

min
X,∆U

(CiiXi − ri)
T Qii (CiiXi − ri) + ∆UT

i Rii∆Ui (4.12a)

subject to

xi(k + l + 1|k) = Ad
iixi(k + l|k) + Bd

ii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
(4.12b)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(4.12c)

The above decentralized MPC could result in serious performance degradation

because, not only the interaction effects have not been taken into account, but also

the linear models may not be able to give satisfactory prediction of the dynamic

behaviour. The CDMPC network developed in the subsequent sections, will 1)

account for the interaction effects; and 2) exactly predict the nonlinear dynamics

while using linear models in the CDMPC.

4.2 Plant-Wide Nonlinear MPC via MPMC-

DMPC

4.2.1 Exact Linearization of Local Prediction Models

In this work, for designing CDMPC networks, it is required that nonlinear discrete-

time prediction model be available in the form of either Model I or Model II. The
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existing decentralized linear MPC (4.12), use linear discrete-time prediction model

(4.12b). The goal is to re-state the prediction model in the plant-wide problem in

terms of two systems of equations, as discussed in section 4.1.1. Using (4.12b), the

prediction model (4.10b) can be re-written as:

xi(k + l + 1|k) =

Ad
iixi(k + l|k) + Bd

ii

l∑
a=0

∆ui(k + a|k) + Bd
iiui(k − 1)

+ xi(k + l|k)

+ ∆t fi (xi(k + l|k),∆ui(k|k), . . . ,∆ui(k + l|k),xj(k + l|k),∆uj(k|k), . . . ,∆uj(k + l|k))

−Ad
iixi(k + l|k)−Bd

ii

l∑
a=0

∆ui(k + a|k)−Bd
iiui(k − 1)

(4.13)

The system of equations (4.13), can alternatively be expressed by the following two

sets of equations:

xi(k + l + 1|k) = Ad
iixi(k + l|k) + Bd

ii

l∑
a=0

∆ui(k + a|k) + vi(k + l|k) (4.14a)

vi(k + l|k) = xi(k + l|k)

+ ∆t fi (xi(k + l|k),∆ui(k|k), . . . ,∆ui(k + l|k),xj(k + l|k),∆uj(k|k), . . . ,∆uj(k + l|k))

−Ad
iixi(k + l|k)−Bd

ii

l∑
a=0

∆ui(k + a|k)

(4.14b)

where all the variables are still in their original form. It should be noted that, Bd
ii

and ui(k − 1) are known. Thus, the term Bd
iiui(k − 1) in (4.12b), is a known term

and it is cancelled by its negative form in (4.13).

Remark 4.2.1 In order to be consistent with the terminology used throughout this

thesis, the set of equations (4.14b) shall still be referred to as interaction equations;

however, unlike the linear case, where the system of interaction equations only

contains the interaction terms, here these equations contain local linear and the

complete local nonlinear models. The effects of interactions are taken into account by

nonlinear portion of the interaction equations.
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Remark 4.2.2 If the discrete-time prediction model (4.11) is available, following the

same manipulations and re-arrangements, it is equivalently expressed by the following

sets of equations:

xi(k + l + 1|k) = Ad
iixi(k + l|k) + Bd

ii

l∑
a=0

∆ui(k + a|k) + vi(k + l|k) (4.15a)

vi(k + l|k) =

fi (xi(k + l|k),∆ui(k|k), . . . ,∆ui(k + l|k),xj(k + l|k),∆uj(k|k), . . . ,∆uj(k + l|k))

−Ad
iixi(k + l|k)−Bd

ii

l∑
a=0

∆ui(k + a|k)

(4.15b)

4.2.2 Pseudo-Variables and Exact Linearized Prediction
Models

As was discussed in the previous chapters, the key idea in the MPMC method is the

use of pseudo-variables for the unknown interacting variables. For the MPC problem,

the pseudo-variables are defined as:

x̃i(k + l|k) , xi(k + l|k) (4.16a)

∆ũi(k + b|k) , ∆ui(k + b|k) (4.16b)

where l = 1, . . . , Hp−1 and b = 0, . . . , Hu−1. The interaction variables are replaced by

the above pseudo-variables. It is desired that the value of x̃i(k+ l|k) and ∆ũi(k+b|k)

be equal to the value of xi(k + l|k) and ∆ui(k + b|k), respectively, which implies:

x̃i(k + l|k) = xi(k + l|k) (4.17a)

∆ũi(k + b|k) = ∆ui(k + b|k) (4.17b)

where equations (4.17) are referred to as the transformed interaction equations and

are included as equality constraints in the benchmark centralized MPC problem.

In MPC with linear dynamics, as in sections 2.5 and 3.5, the variables on the right-

hand side of the interaction equations (i.e., the interaction variables) are replaced by

the pseudo-variables. Similarly, here, the variables on the right-hand side of the
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interaction equations (i.e., both local and interaction variables), are replaced by the

pseudo-variables, which yields:

vi(k + l|k) = x̃i(k + l|k)

+ ∆t fi(x̃i(k + l|k),∆ũi(k|k), . . . ,∆ũi(k + l|k), x̃j(k + l|k),∆ũj(k|k), . . . ,∆ũj(k + l|k))

−Ad
iix̃i(k + l|k)−Bd

ii

l∑
a=0

∆ũi(k + a|k)

(4.18)

Now by replacing local process model (4.12b), by equations (4.14a) and (4.18), and

including the transformed interaction equations (4.17) in the equality constraints, the

first series of required modifications for converting the decentralized MPC to CDMPC,

are performed. These adjustments transform the decentralized linear MPC problem

(4.12) into the following nonlinear MPC problem:

min
X,∆U

(CiiXi − ri)
T Qii (CiiXi − ri) + ∆UT

i Rii∆Ui (4.19a)

subject to

xi(k + l + 1|k) = Ad
iixi(k + l|k) + Bd

ii

l∑
a=0

∆ui(k + a|k) + vi(k + l|k) (4.19b)

vi(k + l|k) = x̃i(k + l|k)

+ ∆t fi(x̃i(k + l|k),∆ũi(k|k), . . . ,∆ũi(k + l|k), x̃j(k + l|k),∆ũj(k|k), . . . ,∆ũj(k + l|k))

−Ad
iix̃i(k + l|k)−Bd

ii

l∑
a=0

∆ũi(k + a|k)

(4.19c)

x̃i(k + l|k) = xi(k + l|k) (4.19d)

∆ũi(k + b|k) = ∆ui(k + b|k) (4.19e)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(4.19f)

where the aggregate of (4.19) is equivalent to the plant-wide nonlinear MPC

benchmark problem (4.10), in which the equality constraints have been replaced by

(4.14a) and (4.18).



Sec. 4.2 Plant-Wide Nonlinear MPC via MPMC-DMPC 120

Remark 4.2.3 If the discrete-time prediction model (4.15) is available, the local

process model (4.12b) will be replaced by (4.15a) and the following form of (4.15b):

vi(k + l|k) =

fi(x̃i(k + l|k),∆ũi(k|k), . . . ,∆ũi(k + l|k), x̃j(k + l|k),∆ũj(k|k), . . . ,∆ũj(k + l|k))

−Ad
iix̃i(k + l|k)−Bd

ii

l∑
a=0

∆ũi(k + a|k)

(4.20)

4.2.3 Distributed Controllers

Following the same procedure and discussion as in section 2.5, it is possible to perform

the second series of modifications by applying the MPMC method to problem (4.19).

Ultimately, the following formulation is obtained for the CDMPC:

min
Xi,∆Ui

(CiiXi − ri)
T Qii (CiiXi − ri) + ∆UT

i Rii∆Ui+

ε

2

(
||Xi − X̃i||2Q̄i

+ ||∆Ui −∆Ũi||2R̄i

)
+

ΓT
i (Xi − X̃i) + ΠT

i (∆Ui −∆Ũi)

(4.21a)

subject to

xi(k + l + 1|k) = Ad
iixi(k + l|k) + Bd

ii

l∑
a=0

∆ui(k + a|k) + vi(k + l|k) (4.21b)

ymini (k + l + 1) ≤ Ciixi(k + l + 1|k) ≤ ymaxi (k + l + 1)

umini (k + b) ≤ ui(k + b|k) ≤ umaxi (k + b)

∆umini (k + b) ≤∆ui(k + b|k) ≤∆umaxi (k + b)

(4.21c)

where the prices Γi and Πi, the pseudo-variables X̃i and ∆Ũi and the variables

vi which contain predicted values of nonlinear and linear terms, are coordinating

variables. At each communication cycle, vi is fixed by the coordinator. Consequently,

all constraints in the local controllers are linear. This is an important feature of the

proposed CDMPC, as with linear constraints and quadratic objective function, they

become QP problems. It should be noted that, in (4.19), using interaction equations

(4.20), instead of (4.19c), will result in the same CDMPC, because local dynamic

equations (4.19b) remain the same; however, coordinator’s equations will be different.
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4.2.4 Coordinator Design

The coordinator is designed by numerically solving portions of the first-order

optimality conditions resulting form the aggregate of CDMPC (4.21). Before

proceeding further, in order to simplify coordinator design, the aggregate of CDMPC

(4.21) and the interaction equations (4.19c) are written in the following compact form:

min
Xi,∆Ui

N∑
i=1

(
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

)
+

N∑
i=1

ε

2

(
||Xi − X̃i||2Q̄i

+ ||∆Ui −∆Ũi||2R̄i

)
+

N∑
i=1

(
ΓT
i (Xi − X̃i) + ΠT

i (∆Ui −∆Ũi)
)

(4.22a)

subject to

Âd
iiXi + B̂dii∆Ui + Ãd

iiX̃i − B̂dii∆Ũi −∆tFi = Zi (4.22b)

Ymin
i ≤ CiiXi ≤ Ymax

i

Umini ≤ Uii∆Ui ≤ Umaxi

(4.22c)

i = 1, . . . , N

where details on obtaining equality constraints (4.22b) and inequality constraints

(4.22c) have been provided in Appendices E and B.3.2, respectively.

Remark 4.2.4 If the aggregate of CDMPC (4.21) and the interaction equations

(4.20) are used, instead of (4.22b), the following equations will be used in the compact

form (4.22):

Âd
iiXi + B̂dii∆Ui + Ãd

iiX̃i − B̂dii∆Ũi − Fi = 0 (4.23)

where all the matrices and vectors, except for the matrix Ãd
ii and vector Zi, are the

same as those in (4.22b). More details on obtaining (4.23), can be found in Appendix

E, section E.2.
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To obtain the optimality conditions the Lagrangian for the optimization problem

(4.22) is formed as:

L(X,∆U, X̃,∆Ũ,Λ,Ω,Υ,Γ,Π) =
N∑
i=1

Li(Xi,∆Ui, X̃i,∆Ũi,Λi,Ωi,Υi,Γi,Πi)

=
N∑
i=1

(
(CiiXi − ri)

T Qii (CiiXi − ri) + ∆UT
i Rii∆Ui

)
+

N∑
i=1

ε

2

(
||Xi − X̃i||2Q̄i

+ ||∆Ui −∆Ũi||2R̄i

)
+

N∑
i=1

(
ΓT
i (Xi − X̃i) + ΠT

i (∆Ui −∆Ũi)
)

+
N∑
i=1

ΛT
i

(
Âd
iiXi + B̂dii∆Ui + Ãd

iiX̃i − B̂dii∆Ũi −∆tFi −Zi
)

+
N∑
i=1

ΩT
i,min

(
Ymin
i − CiiXi

)
+ ΩT

i,max (CiiXi −Ymax
i )

+
N∑
i=1

ΥT
i,min

(
Umini − Uii∆Ui

)
+ ΥT

i,max (Uii∆Ui − Umaxi )

(4.24)

The optimality conditions5 are obtained by taking derivatives of the Lagrangian

(4.24) with respect to the decision variables and Lagrange multipliers, as below:

∇ηL(X,∆U, X̃,∆Ũ,Λ,Ω,Υ,Γ,Π) = 0 (4.25)

η = {X,∆U, X̃,∆Ũ,Λ,Γ,Π}

The CDMPCs (4.21), are responsible for satisfaction of the optimality conditions

resulting from when η = {Xi,∆Ui,Λi} (for i = 1, . . . , N) along with the

feasibility, complementary slackness and non-negativity conditions, resulting from

local inequality constraints. The coordinator can use fixed-point iteration to

numerically solve the remaining conditions i.e, ∇X̃L = 0, ∇∆ŨL = 0, ∇ΓL = 0

and ∇ΠL = 0. The update equations for the pseudo-variables X̃i and ∆Ũi, are the

same as those in the previous chapters, and are obtained as follows:

5More explanation can be found in the section 2.5.2.
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∇ΓL =

N∑
i=1

∇Γi
L = 0

∇ΠL =
N∑
i=1

∇Πi
L = 0

(4.26a)

=⇒
for i=1,. . . ,N :{

Xq
i − X̃q+1

i = 0

∆Uq
i −∆Ũ

q+1

i = 0

(4.26b)

=⇒
for i=1,. . . ,N :{

X̃q+1
i = Xq

i

∆Ũ
q+1

i = ∆Uq
i

(4.26c)

Similar to the previous chapters, the update equations for the prices, are obtained

by numerically solving ∇X̃L = 0 and ∇∆ŨL = 0. The key difference is that in the

previous chapters, optimality conditions result in linear algebraic equations. But,

in this chapter, because of the vector Fi which contains nonlinear functions, the

optimality conditions may lead to nonlinear algebraic equations. Therefore, usually

a system of nonlinear algebraic equations will be solved using numerical methods. In

the case of using a fixed-point iteration method, the update equations are obtained

as follows:
∇X̃L =

N∑
i=1

∇X̃i
L = 0

∇∆ŨL =
N∑
i=1

∇∆Ũi
L = 0

(4.27a)

Therefore, for i = 1, . . . , N, the following update equations are achieved:
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−ε(Xq
i − X̃q+1

i )Q̄i − Γq+1
i +

(
Ãd
ii

)T
Λq
i −∆t

N∑
j=1

∇X̃i
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1


T

Λq
j

+

(
Cii

[
Âd
ii

]−1

Ãd
ii

)T
Ωq
i,min −∆t

N∑
j=1

Cjj

[
Âd
jj

]−1

∇X̃i
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1


T

Ωq
j,min

−
(
Cii

[
Âd
ii

]−1

Ãd
ii

)T
Ωq
i,max + ∆t

N∑
j=1

Cjj

[
Âd
jj

]−1

∇X̃i
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1


T

Ωq
j,max = 0

−ε(∆Uq
i −∆Ũ

q+1

i )R̄i −Πq+1
i −

(
B̂dii
)T

Λq
i −∆t

N∑
j=1

∇∆Ũi
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1


T

Λq
j

−
(
Cii

[
Âd
ii

]−1

B̂dii
)T

Ωq
i,min −∆t

N∑
j=1

Cjj

[
Âd
jj

]−1

∇∆Ũi
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1


T

Ωq
j,min

+

(
Cii

[
Âd
ii

]−1

B̂dii
)T

Ωq
i,max + ∆t

N∑
j=1

Cjj

[
Âd
jj

]−1

∇∆Ũi
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1


T

Ωq
j,max = 0

(4.27b)

The derivative terms in (4.27b) can be replaced by the following matrices:

∇X̃i
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1

= Ac,q+1
ji (4.28a)

∇∆Ũi
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1

= Bc,q+1
ji (4.28b)

where details on obtaining Ac
ji and Bcji, have been provided in Appendix E.3. After

replacing the derivative terms in (4.27b) by the relevant matrices in (4.28), the

following re-arranged update equations are obtained for i = 1, . . . , N :
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Γq+1
i = −ε(Xq

i − X̃q+1
i )Q̄i +

(
Ãd
ii

)T
Λq
i −∆t

(
Ac,q+1
ii

)T
Λq
i −∆t

N∑
j=1
j 6=i

(
Ac,q+1
ji

)T
Λq
j

+

(
Cii

[
Âd
ii

]−1

Ãd
ii

)T
Ωq
i,min −∆t

(
Cii

[
Âd
ii

]−1

Ac,q+1
ii

)T
Ωq
i,min

−∆t
N∑
j=1
j 6=i

(
Cjj

[
Âd
jj

]−1

Ac,q+1
ji

)T
Ωq
j,min

−
(
Cii

[
Âd
ii

]−1

Ãd
ii

)T
Ωq
i,max + ∆t

(
Cii

[
Âd
ii

]−1

Ac,q+1
ii

)T
Ωq
i,max

+∆t
N∑
j=1
j 6=i

(
Cjj

[
Âd
jj

]−1

Ac,q+1
ji

)T
Ωq
j,max

Πq+1
i = −ε(∆Uq

i −∆Ũ
q+1

i )R̄i −
(
B̂dii
)T

Λq
i −∆t

(
Bc,q+1
ii

)T
Λq
i −∆t

N∑
j=1
j 6=i

(
Bc,q+1
ji

)T
Λq
j

−
(
Cii

[
Âd
ii

]−1

B̂dii
)T

Ωq
i,min −∆t

(
Cii

[
Âd
ii

]−1

Bc,q+1
ii

)T
Ωq
i,min

−∆t
N∑
j=1
j 6=i

(
Cjj

[
Âd
jj

]−1

Bc,q+1
ji

)T
Ωq
j,min

+

(
Cii

[
Âd
ii

]−1

B̂dii
)T

Ωq
i,max + ∆t

(
Cii

[
Âd
ii

]−1

Bc,q+1
ii

)T
Ωq
i,max

+∆t
N∑
j=1
j 6=i

(
Cjj

[
Âd
jj

]−1

Bc,q+1
ji

)T
Ωq
j,max

(4.29)

where in order to show how the effects of interactions are taken into account, the

summation terms have been broken into two pieces, one for j = i and one for j 6= i.

Thus far, the update equations have been obtained for all the coordinating variables

except for vi. Since in writing the compact form (4.22), the predicted interaction

terms vi, are replaced by (4.18), these variables are no longer explicitly present in

the Lagrangian (4.24). Consequently, they have not been listed among the variables

that are used to obtain the optimality conditions. Using updated pseudo-variables,
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the vector vi, is calculated by (4.18):

vq+1
i (k + l|k) = x̃q+1

i (k + l|k)+

∆t fi(̃x
q+1
i (k+l|k),∆ũq+1

i (k|k),. . .,∆ũq+1
i (k+l|k),x̃q+1

j (k+l|k),∆ũq+1
j (k|k),. . .,∆ũq+1

j (k+l|k))

−Ad
iix̃

q+1
i (k + l|k)−Bd

ii

l∑
a=0

∆ũq+1
i (k + a|k)

(4.30)

The sets of equations (4.26c), (4.29) and (4.30) form the coordinator for the

CDMPC (4.21).

Remark 4.2.5 If a gradient-based method is used to numerically solve ∇X̃L = 0,

∇∆ŨL = 0, ∇ΓL = 0 and ∇ΠL = 0, the following coordinator will result:

Γq+1
i = Γq

i + ε1(Xq
i − X̃q

i ) (4.31)

Πq+1
i = Πq

i + ε2(∆Uq
i −∆Ũ

q

i ) (4.32)

X̃q+1
i = X̃q

i − ε3(∇X̃i

N∑
i=1

Li)
q (4.33)

∆Ũ
q+1

i = ∆Ũ
q

i − ε4(∇∆Ũi

N∑
i=1

Li)
q (4.34)

and Equation (4.30)

where ε1, ε2, ε3 and ε4 are tuning parameters.

Remark 4.2.6 If instead of (4.22b), (4.23) is used in the compact form (4.22),

sampling time ∆t will not explicitly appear in the coordinator’s equations. In this

case, the following update equations are obtained for the coordinator:

Coordinator based on a fixed-point iteration method:

1) Update equations (4.26c)

2)
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Γq+1
i = −ε(Xq

i − X̃q+1
i )Q̄i +

(
Ãd
ii

)T
Λq
i −

(
Ac,q+1
ii

)T
Λq
i −

N∑
j=1
j 6=i

(
Ac,q+1
ji

)T
Λq
j

+

(
Cii

[
Âd
ii

]−1

Ãd
ii

)T
Ωq
i,min −

(
Cii

[
Âd
ii

]−1

Ac,q+1
ii

)T
Ωq
i,min

−
N∑
j=1
j 6=i

(
Cjj

[
Âd
jj

]−1

Ac,q+1
ji

)T
Ωq
j,min

−
(
Cii

[
Âd
ii

]−1

Ãd
ii

)T
Ωq
i,max +

(
Cii

[
Âd
ii

]−1

Ac,q+1
ii

)T
Ωq
i,max

+
N∑
j=1
j 6=i

(
Cjj

[
Âd
jj

]−1

Ac,q+1
ji

)T
Ωq
j,max

(4.35)

3)

Πq+1
i = −ε(∆Uq

i −∆Ũ
q+1

i )R̄i −
(
B̂dii
)T

Λq
i −

(
Bc,q+1
ii

)T
Λq
i −

N∑
j=1
j 6=i

(
Bc,q+1
ji

)T
Λq
j

−
(
Cii

[
Âd
ii

]−1

B̂dii
)T

Ωq
i,min −

(
Cii

[
Âd
ii

]−1

Bc,q+1
ii

)T
Ωq
i,min

−
N∑
j=1
j 6=i

(
Cjj

[
Âd
jj

]−1

Bc,q+1
ji

)T
Ωq
j,min

+

(
Cii

[
Âd
ii

]−1

B̂dii
)T

Ωq
i,max +

(
Cii

[
Âd
ii

]−1

Bc,q+1
ii

)T
Ωq
i,max

+
N∑
j=1
j 6=i

(
Cjj

[
Âd
jj

]−1

Bc,q+1
ji

)T
Ωq
j,max

(4.36)

4)

vq+1
i (k + l|k) =

fi(x̃
q+1
i (k + l|k),∆ũq+1

i (k|k),. . .,∆ũq+1
i (k + l|k), x̃q+1

j (k + l|k),∆ũq+1
j (k|k), . . . ,∆ũq+1

j (k + l|k))

−Ad
iix̃

q+1
i (k + l|k)−Bd

ii

l∑
a=0

∆ũq+1
i (k + a|k)

(4.37)

where i = 1, . . . , N .
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Coordinator using a gradient-based method:

Γq+1
i = Γq

i + ε1(Xq
i − X̃q

i ) (4.38)

Πq+1
i = Πq

i + ε2(∆Uq
i −∆Ũ

q

i ) (4.39)

X̃q+1
i = X̃q

i − ε3(∇X̃i

N∑
i=1

Li)
q (4.40)

∆Ũ
q+1

i = ∆Ũ
q

i − ε4(∇∆Ũi

N∑
i=1

Li)
q (4.41)

and Equation (4.37)

where i = 1, . . . , N ; Li is the Lagrangian formed by using compact form (4.22), with

(4.23) as its equality constraints.

During each sampling interval, the coordinator and CDMPC exchange information

until the coordinator converges. Upon convergence, the following conditions are met:

1. The values of the price vectors equal the value of the corresponding Lagrange

multipliers, associated with transformed interaction equations.

2. The transformed interaction equations are satisfied.

3. The interaction equations that contain the nonlinearities, are satisfied.

4. The vector vi, predicts the correct values for the nonlinear and interaction

effects.

Implementation of the proposed CDMPC network can be carried out

systematically, according to Algorithm 5.
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Algorithm 5 : Implementation of MPMC-DMPC Network for Optimal Plant-Wide
Nonlinear Control of Interconnected Dynamical Processes

1. Coordinator: Iteration counter q is set to 1.

2. Coordinator: Coordinating variables Γi, Πi, X̃i and ∆Ũi are arbitrarily
initialized.

3. Coordinator: vi is calculated using (4.30).

4. Coordinator: Coordinating variables are sent to local controllers.

5. Local Controllers: Local optimization problems (4.21) are solved.

6. Local Controllers: Local optimal solutions Xi and ∆Ui, and Lagrange
multipliers Λi and/or Ωi, are sent to the coordinator.

7. Coordinator: If

∣∣∣∣∣∣∣∣[ X− X̃

∆U−∆Ũ

]∣∣∣∣∣∣∣∣ ≤ e, algorithm stops. Otherwise, next step is

taken.

8. Coordinator: Pseudo-variables are updated using (4.26c).

9. Coordinator: Gradient matrices (4.28) are updated according to (E.7) and (E.8).

10. Coordinator: Local prices are updated using (4.29).

11. Coordinator: Iteration counter is increased by 1.

12. Steps 3 to 7 are repeated.

4.3 Case Study

In this section, the suggested CDMPC approach is applied to a case study borrowed

from Sun and El-Farra (2008). In this case study, the plant is composed of two

interconnected continuous stirred-tank reactors (CSTRs) with recycle. The schematic

diagram of the plant is shown in Figure 4.1. Three parallel exothermic irreversible

reactions A
k1−→ B, A

k2−→ U and A
k3−→ R take place in the reactors. A and B are the

reactant and desired product, respectively. R and U are the undesired byproducts.

A stream containing fresh A at flow rate F0, molar concentration CA0 and

temperature T0 along with a stream of recycled A from the second reactor at flow rate

Fr, concentration CA2 and temperature T2, are the feed stream to the first reactor.
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Figure 4.1: Interconnected CSTRs

The second reactor has also two feed streams, the output of the first reactor and an

additional pure stream of A, at flow rate F3, concentration CA03 and temperature T03.

The output of the second reactor enters a separator, that separates the unreacted A

from the products and recycles it to the first reactor. For each of the reactors, a

jacket is used to remove/provide heat. The following continuous nonlinear model has

been derived for the plant:

dT1

dt
=
F0

V1

(T0 − T1) +
Fr
V1

(T2 − T1) +
3∑
i=1

Gi(T1)CA1 +
Q1

ρcpV1

dCA1

dt
=
F0

V1

(CA0 − CA1) +
Fr
V1

(CA2 − CA1)−
3∑
i=1

Ri(T1)CA1

dT2

dt
=
F1

V1

(T1 − T2) +
F3

V2

(T03 − T2) +
3∑
i=1

Gi(T2)CA2 +
Q2

ρcpV2

dCA2

dt
=
F1

V2

(CA1 − CA2) +
F3

V2

(CA03 − CA2)−
3∑
i=1

Ri(T2)CA2

(4.42)

where for j = 1, 2, Ri(Tj) = ki0e
− Ei

RTj and Gi(Tj) = −∆Hi

ρcp
Ri(Tj). Also, Tj, CAj, Qj

and Vj are the reactor’s temperature, concentration of A, the rate of heat input to the

reactor and the reactor volume, respectively. For i = 1, 2, 3, ∆Hi, ki0 and Ei are the
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F0 = 4.998m
3

h
T0 = 300.0K k10 = 3.0× 106h−1 cp = 0.231 kJ

kgK

F1 = 39.996m
3

h
T03 = 300K k20 = 3.0× 105h−1

F3 = 30.0m
3

h
Cs
A0 = 4.0kmol

m3 k30 = 3.0× 105h−1

Fr = 34.998m
3

h
Cs
A03 = 2.0kmol

m3 E1 = 5.0× 104 kJ
kmol

V1 = 1.0m3 −∆H1 = −5.0× 104 kJ
kmol

E2 = 7.53× 104 kJ
kmol

V2 = 3.0m3 −∆H2 = −5.2× 104 kJ
kmol

E3 = 7.53× 104 kJ
kmol

R = 8.314 kJ
kmolK

−∆H3 = −5.4× 104 kJ
kmol

ρ = 1000.0 kg
m3

Table 4.1: Process parameters and steady-state values for the plant model (4.42)

enthalpies, rate constants and activation energies of the three reactions, respectively.

cp is the heat capacity and ρ is the fluid density. Parameter values for the nonlinear

model (4.42), are given in Table 4.1.

For the given process parameters, the plant with Q1 = Q2 = 0, CA0 = Cs
A0, CA03 =

Cs
A03 and a recycle ratio of r = 0.5, has two locally asymptotically stable steady-states

and an unstable one at (T s1 , C
s
A1, T2, C

s
A2) = (457.9K, 1.77kmol

m3 , 415.5K, 1.75kmol
m3 ). The

control objective is to stabilize the plant around its open-loop unstable steady-state,

to avoid high temperatures while achieving reasonable conversion. The manipulated

variables are Q1 and CA0 for the first reactor and Q2 and CA03 for the second reactor.

The nonlinear continuous model 4.42, is discretized using Euler method and a

sampling time of 0.003hr, to obtain the following discrete-time nonlinear model:

x(k + 1) = x(k) + ∆t f(x(k),u(k)) (4.43)

where x(k) =
[
x1(k)T , x2(k)T

]T
,
[

[T1(k), CA1(k)], [T2(k), CA2(k)]
]T

, u(k) =[
u1(k)T , u2(k)T

]T
,
[

[Q1(k), CA0(k)], [Q2(k), CA03(k)]
]T

and f(x(k),u(k)) ,[
[fT1(x(k),u(k)), fCA1

(x(k),u(k))], [fT2(x(k),u(k)), fCA2
(x(k),u(k))]

]T
.

It is assumed that a decentralized control network, consisting of two MPC,

controls the plant. The models used in the decentralized controllers have been

obtained by first, linearizing the nonlinear model (4.42), around the steady-sate point

(T s1 , C
s
A1, T

s
2 , C

s
A2) = (457.9K, 1.77kmol

m3 , 415.5K, 1.75kmol
m3 ). The result is the following
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Ac and Bc matrices:

Ac =


25.2 1284.3 35 0
−0.3 −45.9 0 35
13.3 0 −2.8 336.2

0 13.3 −0.1 −24.9

 and Bc =


0.0043 0 0 0

0 4.998 0 0
0 0 0.0014 0
0 0 0 10

 (4.44)

Then, the continuous model (4.44) is discretized with the chosen sampling time of

0.003hr. Ultimately, the following matrices for the discrete-time local linear models

have been obtained:

Ad
11 =

[
1.0790 3.7459
−0.0009 0.8716

]
and Bd

11 =

[
0.0000 0.0283
−0.0000 0.0140

]
Ad

22 =

[
0.9936 0.9716
−0.0003 0.9298

]
and Bd

22 =

[
0.0000 0.0147
−0.0000 0.0289

] (4.45)

Simulations have been performed for the centralized nonlinear MPC case, in which

a centralized MPC with the nonlinear prediction model (4.43), is designed to control

the two reactors. To find the global minimum at each sampling time, MATLAB’s

fmincon function with active-set algorithm has been used in the GlobalSearch class.

The maximum function evaluations and iterations have been set to 20000 and 15000,

respectively. Also, in order to avoid any approximation in the centralized optimal

solution and thus, make it comparable to the optimal solution of the CDMPC network,

rather than estimating the gradient by finite difference, the exact gradient of the

nonlinear constraints has been provided for the fmincon function.

For the CDMPC case, the network of decentralized MPC with linear model (4.45), has

been transformed into a linear constrained CDMPC network. MATLAB’s quadprog

function with the active-set algorithm, has been used to solve the local optimization

problems in the CDMPC scheme. The update equations (4.26c), (4.29) and (4.30),

have been used for the coordinator. At each iteration, the coordinator uses local

information sent by the controllers along with the derivatives of the nonlinear function

f(x̃(t),∆ũ(t)) with respect to the pseudo-variables, to update the coordinating

variables. The stopping criteria in the coordinator is chosen to be e = 10−6. The rest

of parameters used in the simulations, are listed in Table 4.2.
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MPC 1 MPC 2

Initial Conditions x1(0) =
[
462.9K 0.27kmol

m3

]T
x2(0) =

[
410.5K 3.45kmol

m3

]T
Weighting Matrices Q11 = 5I Q22 = 5I

R11 = 15I R22 = 15I

Upper Bounds umax1 =
[
5KJ
hr

8kmol
m3

]T
umax2 =

[
5KJ
hr

4kmol
m3

]T
Lower Bounds umin1 =

[
−5KJ

hr
0kmol
m3

]T
umin2 =

[
−5KJ

hr
0kmol
m3

]T
Prediction Horizon 10 10
Control Horizon 5 5

Table 4.2: Parameters used in the proposed CDMPC

4.3.1 Simulation Results

Figure 4.2, in which output trajectories for both the centralized nonlinear MPC and

CDMPC have been plotted, shows that the process outputs (states) resulting from

the coordinated distributed network matched the states obtained from the centralized

problem. Similarly, in Figure 4.3, trajectories for the optimal control inputs for the

centralized nonlinear MPC and the proposed CDMPC coincided well with each other.

Simulation results show that the CDMPC network successfully produced the

optimal solution to the centralized nonlinear MPC problem because: 1) the active-

set algorithm chosen to solve the QP problems of CDMPC, terminated successfully

at every communication cycle; and 2) as Figure 4.4 shows, during all sampling

intervals, the coordinator converged within the chosen error tolerance of e = 10−6.

Therefore, at the end of the communication cycles, optimality conditions of the overall

nonlinear control system were met and the distributed controllers calculated the

optimal centralized nonlinear MPC solution.

At each sampling interval, the number of communications between the CDMPCs

and the coordinator, until convergence, is shown in Figure 4.5. For this case study,

the coordinator found the correct values of the coordinating variables in finite and

reasonably low number of iterations.
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Figure 4.4: Norm of the error vector e, at the end of communication cycles

On the other hand, to perform the centralized nonlinear MPC simulation, large

numbers were chosen for the maximum number of function evaluations and iterations,

so that the optimization algorithm for each of the assigned solvers in the GlobalSearch

toolbox, could terminate successfully; however, choosing large numbers for the tuning

parameters of the optimization algorithm significantly prolonged the computation

time. Under the same computing conditions, the simulation for the centralized

nonlinear MPC problem took roughly three hours while the simulation for the

proposed CDMPC network completed in about 15 minutes.

The computational burdens faced in solving the centralized nonlinear MPC problem

for this fairly small case-study is indicative of how difficult and maybe impossible

solving centralized nonlinear MPC problem could be, in practice. On the contrary,

the proposed linear CDMPC approach smoothly and successfully obtained the optimal

solution to the plant-wide nonlinear MPC problem.
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Figure 4.5: Number of communication cycles

4.4 Summary

This chapter intends to contribute to the development of CDMPC networks for plants

with nonlinear dynamics. To this end, a convex MPMC-DMPC network is proposed

for a class of plant-wide (non-convex) nonlinear MPC problems, in which nonlinear

process models are at least once continuously differentiable.

Inspired by an exact linearization technique, the process models are re-stated in

terms of two sets of equations, 1) a system of linear equations that forms the local

dynamic equations; and 2) a set of nonlinear equations that creates the interaction

equations. Once the two systems of equations are formed, the MPMC method is

applied to convert the existing linear decentralized MPC network into a CDMPC

network, that has linear CDMPCs and a (nonlinear) coordinator.

The coordinator is synthesized by the numerical method used to solve portions

of first-order optimality conditions of the aggregate of CDMPCs and interaction

equations. Since the optimality conditions usually lead to nonlinear algebraic

equations, the coordinator often needs to find the solution to a system of nonlinear

equations, using an appropriate numerical method. The main difference between the
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MPMC-DMPC network for plants with linear dynamics and plants with nonlinear

dynamics is that in the former, the coordinator always solves a system of linear

algebraic equations.

Compared with the centralized and other distributed schemes, in which (non-

convex) nonlinear optimization problems are solved, the proposed CDMPC scheme,

solves a group of QP problems and a system of nonlinear equations. Considering

the availability of efficient numerical methods, solving nonlinear equations is less

challenging than solving non-convex optimization problems. Therefore, in addition to

the benefits of CDMPC networks, significant computational benefits can be expected

from the proposed scheme.



Chapter 5

Conclusions and Future Work

The focus of this thesis is on the development of CDMPC networks by using

multilevel optimization-based coordination methods, in order to upgrade the control

performance of existing decentralized MPC network to the control performance

of plant-wide MPC. Goal Coordination, Interaction Prediction Coordination and

Modified Pseudo-Model Coordination are the coordination approaches applied in this

work. Among the wide range of MPC applications, this thesis considers systematic

development of coordinated distributed networks for linear/convex MPC, individual

chance-constrained MPC and nonlinear MPC.

Since there is a small literature on CDMPC, an important challenge is in providing

a general framework wherein, regardless of type of the coordination method used,

CDMPC and the coordinator can be systematically synthesized. This challenge

is addressed in Chapter 2, where for the first time, a thorough study is carried

out on applying the GC, IPC and MPMC methods to a network of decentralized

linear constrained MPC. It is shown that the general procedure, which alters the

decentralized MPC into a CDMPC network, involves five main steps; 1) interaction

models are included in the local process models; 2) local process models are re-

stated in terms a system of local dynamic equations and a system of interaction

equations; 3) the aggregate of decentralized MPC with the modified process models,

is formed; 4) in the aggregate problem, the system of interaction equations is relaxed,

which results in formation of CDMPC; 5) the numerical strategy chosen to solve the

139
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relaxed aggregate problem, leads to synthesis of the appropriate coordinator. The

combination of CDMPC and coordinator always possesses an inherent hierarchical

structure because of the involvement of iterative procedures in numerical methods.

Following this standard procedure, three CDMPC schemes are proposed for plant-

wide linear model predictive control of interconnected dynamical systems.

The coordinator design problem for CDMPC, is mathematically viewed as

numerically solving a system of algebraic equations. In the GC-based DMPC network,

the coordinator is designed based on the algorithm of the numerical method used for

solving a dual optimization problem. The resulting coordinator implicitly accounts for

the effects of local inequality constraints on the coordination algorithm. In the IPC-

DMPC and MPMC-DMPC networks, solving portions of the optimality conditions of

the composite CDMPC (relaxed aggregate problem), by either fixed-point iterations

or gradient-based approaches, synthesizes the coordinator. The impacts of local

inequality constraints can explicitly be accounted for in the coordinator update

equations. Since in the GC method, a dual optimization problem is solved, the

resulting coordinator has different convergence behaviour in comparison with the

coordinators in the other two coordination approaches. The coordinators in the

IPC-DMPC and MPMC-DMPC schemes, have similar convergence characteristics

because of using same design strategy. For every coordination algorithm, performing

a thorough convergence study is an important yet challenging task. In chapter 2,

convergence accuracy of the three proposed coordination algorithms are studied by

showing that the numerical algorithms converge to the solution of the system of

algebraic equations used in designing the coordinators .

The proposed CDMPC networks have several important benefits. In addition

to producing a flexible and maintainable control structure, the CDMPC networks

have the performance of centralized linear MPC. Also, the coordinated distributed

networks are designed using the existing network of decentralized MPC. Therefore,

there is no need for major changes in the control structure of the plant. One limitation

of the proposed CDMPC networks is that they can only guarantee converging to

optimal plant-wide performance, if local controllers have convex structures. According

to literature, another limitation of the coordination methods used in this work, is that
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they are in the class of non-feasible multilevel optimization methods, meaning that

interaction equality constraints are satisfied only when the coordination algorithm has

converged. Therefore, solutions generated in an intermediate iteration, should not be

used (Singh et al. (1975) and Mahmoud (1977)), as they are not feasible with respect

to the centralized optimization problem. It should be noted that, if at any stage of the

coordination algorithm, CDMPCs successfully solve their optimization problem the

intermediate solutions will be feasible with respect to the distributed scheme. Thus,

if it is guaranteed that the distributed controllers provide closed-loop stable solutions,

then intermediate solutions can also be implemented; however, with the current level

of knowledge, if for any reason, the coordination algorithm terminates prematurely,

the safest action would be to switch the CDMPC network back to the decentralized

mode.

The detailed study of coordinated distributed schemes for standard linear MPC

in chapter 2, provides a general mathematical insight into developing CDMPC

networks. Considering the inherent existence of uncertainty in processes, it is

important that the controllers perform well despite the uncertainties affecting the

plant. Chapter 3 intends to address the issue of how uncertainties affect CDMPC

and coordinator design. To this end, among various design methods that explicitly

incorporate uncertainty into MPC synthesis, individual chance-constrained MPC is

chosen. Individual chance-constrained MPC is a simple yet informative approach, to

account for the impacts of normally distributed uncertain disturbances in developing

probabilistic CDMPC networks. In addition to their simplicity, single chance-

constraints can be converted into equivalent linear inequalities. Therefore, the

resulting MPC problem is convex and the proposed chance-constrained CDMPC

can guarantee achieving the optimal plant-wide solution. By using the systematic

procedure presented in chapter 2, coordination methods are applied to convert the

existing decentralized chance-constrained MPC to CDMPC.

In producing probabilistic coordinated distributed networks, it is necessary to keep

the prediction model as equality constraints. This way, the prediction models can

be re-stated by local dynamic equations and interaction dynamic equations, and the

application of coordination methods becomes straightforward. The process models
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are uncertain, as they contain uncertain parameters and/or disturbances. Therefore,

known stochastic information (expected values) is employed to convert the uncertain

process models into deterministic models. The uncertainty effects are also taken into

account by using the uncertain process models in the probabilistic constraints.

Another achievement in chapter 3, is regarding resolving convergence issues of

coordinator in the GC method, specially in the presence of active local inequality

constraints. Since inequality constraints are an integral part of chance-constrained

MPC formulation, it is important to address the convergence issues by looking for

more efficient numerical methods for solving the resulting dual optimization problem.

Inspired by the augmented Lagrangian methods and by applying the Separable

Augmented Lagrangian Algorithms, the CDMPC in the GC method is modified and

a new coordinator formulation has been obtained. In the modified coordinator, the

need for optimal step-size calculation is avoided. As expected, simulation results

showed that the new coordinator has improved convergence performance in the sense

that it can converge in finite number of iterations; however comparing with the

other two coordinated distributed schemes, the number of required iterations are

considerably higher. The proposed modified CDMPC and coordinator are applicable

to deterministic GC-DMPC networks, as well.

The proposed probabilistic CDMPC schemes pave the way to develop more

advanced robust CDMPC networks, in which other stochastic optimization methods

such as joint chance-constraints and recourse problems, and Robust optimization

methods are used. Similar to the deterministic case, the proposed probabilistic

coordinated distributed networks can only guarantee producing the optimal plant-

wide solution, if the CDMPCs have convex structure.

The final issue addressed in this work is regarding the performance limitation of

the proposed coordination methods when the CDMPC has non-convex structure.

In chapter 4, by using MPMC method, a novel CDMPC network is proposed for

processes with nonlinear dynamics that result in non-convex MPC formulations.

A useful characteristic of the MPMC approach is that instead of the interaction

equations, the linear transformed equations are relaxed. Therefore, interaction

equations which contain the nonlinearities, do not appear in the CDMPC formulation.
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This is while, in the GC and IPC method, the interaction equations are relaxed, and

portions of them appear explicitly in the objective function of CDMPC that form the

coordinating terms. By using the idea of exact linearization technique, the nonlinear

process models are re-stated by a system of linear local dynamic equations and a

system of nonlinear interaction equations. The existing linear decentralized MPC

network is then altered into a network of linear CDMPC that has the performance of

plant-wide nonlinear MPC. The coordinator design problem is viewed as numerically

solving a system of algebraic (nonlinear) equations. The system of algebraic equations

are obtained from portions of the optimality conditions for the optimization problem

resulting from aggregate of CDMPC and interaction equations.

Other than the common advantages of coordinated distributed networks, the

proposed CDMPC scheme in chapter 4, involves solving QP problems for the CDMPC

and a system of algebraic equations for the coordinator. Therefore, if an efficient

numerical method is used in solving the system of algebraic equations, significant

computational benefits will be achieved in comparison with nonlinear DMPC where

nonlinear and often non-convex optimizations must be solved. The limitation of the

proposed scheme is that it is applicable to plant-wide optimal control of systems with

interconnected nonlinear dynamics, where the nonlinear process models are at least

once continuously differentiable.

In addition to the aforementioned contributions, the studies and results obtained

in this thesis, provide grounds for more insightful comparison between coordinated

and non-coordinated DMPC methods. In both approaches, interaction models are

needed. In the CDMPC networks, complete interaction models are needed; however,

considering the amount of performance improvement achieved by coordinated

distributed methods, the effort for identifying interaction models may be completely

paid off. One of the criticisms of the CDMPC methods, is that an additional piece,

the coordinator, has to be designed and its synthesis and operation is thought to

be complicated. This is not true; as is shown throughout this thesis, the involved

mathematical and optimization concepts, make coordinator design a straightforward

and fairly simple process. The coordinator is essentially a computer program that

contains a set of algebraic equations, not a physical addition to the plant equipment.
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5.1 Directions for Future Research

Coordination methods and CDMPC networks studied in this thesis, provide an

insightful guide for further theoretical developments, addressing open issues and

exploring new applications.

An important theoretical study for the proposed CDMPC networks, concerns

convergence properties. Convergence accuracy studies in chapter 2, indicate that the

suggested coordination algorithms are convergent; however, more in-depth studies

should be carried out, to obtain detailed properties such as convergence rates and

conditions that affect convergence behaviour of the coordinator. The well-studied

convergence proofs of the numerical methods can provide a powerful tool for detailed

convergence study of coordination algorithms; for instance, contraction mapping

theorem can be used to obtain convergence properties for the coordinators in the

IPC and MPMC methods that are obtained based on fixed-point iteration technique.

Considering that coordinator is designed by the numerical algorithm used either

for solving a dual optimization problem or portions of optimality conditions, further

research is needed for possible improvements in convergence characteristics of

coordination algorithms, by using more efficient numerical methods. Solving the

dual optimization problem by SALA, to modify the CDMPC and coordinator in the

GC method, in chapter 3, is an example of such possible enhancements.

Throughout this thesis, state-space models are used in the MPC formulations. It is

assumed that full state measurements are available; however, measurements for some

variables may not be available at every sampling time and/or some states may not

be measured. Therefore, state estimation and observer design problems are needed

be addressed in developing CDMPC networks.

The use of Input-Output process models in the MPC formulations should also be

considered. It is expected that this extended application be fairly straightforward to

accomplish, since the concepts and procedures in establishing coordinated distributed

networks will remain unchanged.

The proposed individual chance-constrained CDMPC networks under uncertain

disturbances in chapter 3, have the capability of extension to the case in which
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uncertainties exist in both disturbances and model parameters. Also, joint chance-

constrained CDMPC, as a more realistic approach, should be considered. Depending

on the type of distribution function used for the probabilistic constraints, the resulting

problem may fall in the category of non-convex optimization problems. In order

to successfully apply coordination algorithms discussed in this thesis, one approach

would be to use convex approximations for the non-convex joint chance-constrained

MPC.

Another application of the studied CDMPC networks, would be in the context of

Robust CDMPC, where the known bounds on the uncertainties result in a worst-case

optimization problem for the CDMPC.

In chapters 2 and 4, an invariant terminal region can be calculated for the plant-

wide MPC problem, so that it can be included in developing the CDMPC networks. In

doing so, at each sampling time, when the coordinator converges, the obtained open-

loop solution can guarantee a closed-loop stable system. If the invariant terminal

region includes a terminal penalty term, incorporating the penalty term in the

CDMPC formulations will be challenging because this term is usually non-separable.

In addition to the approach adopted in this thesis, which is using a long enough

prediction horizon, three possible solutions to overcome the difficulty of dealing with

a non-separable terminal weighting matrix could be: 1) considering approaches for

optimization of non-separable objective function subject to independent constraints,

2) using MPC design methods that only use terminal constraints, 3) seeking for

alternative approaches for synthesizing stabilizing MPC.

Regarding the CDMPC networks proposed in this thesis, an important open issue

to be addressed concerns stability of the intermediate solutions, and studying if these

solutions can provide better performance than decentralized MPC. If these properties

are guaranteed, in the case of early termination of the coordination algorithm, the

amount of performance loss using the intermediate solutions will be less compared

with the case that the control network is switched back to the decentralized MPC

mode.

Throughout this thesis, it is assumed that all processes have similar time scales.

Consequently, one sampling period is used for sampling all the variables, and the
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CDMPCs operate simultaneously. In practice, the processes in a plant usually

have different time scales. Therefore, depending on the process dynamics, different

sampling times are used to sample different variables. Also, local controllers execute

their control calculations at different control rates and/or sampling instants. It

is important to address the issues of asynchronous CDMPC. The existence of

different time scales in a plant suggests that multilayer hierarchical structures are

embedded within the CDMPC network, which itself has a multiechelon hierarchical

structure (Mesarovic et al. (1970), Mahmoud (1977) and Scattolini (2009)). Possible

solutions to solve such problems would incorporate optimization and control theories

of multilayer systems into the coordinated distributed approaches.
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Appendix A

The following flowcharts, show the information exchange between the CDMPC and

the coordinator in the GC, IPC and MPMC methods, discussed in Chapter 2.

Before proceeding further, the known interaction portion, used in the local process

models of the CDMPC (2.15), (2.31) and (2.77) are written in a summarized vector

form, so that the obtained short form can be used in the flowcharts. To this end, the

vector vi is defined as:

vi(k + l) =
N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] (A.1)

To have vi(k+l) be compatible with the notation used for other exchanged variables

in the flowcharts, it is written over the entire prediction horizon as below:

l = 0 : vi(k) =
N∑
j=1
j 6=i

[Aijxj(k) + Bijuj(k − 1)]

l = 1 : vi(k + 1) =
N∑
j=1
j 6=i

Bijuj(k − 1)

...

l = Hp − 1 : vi(k +Hp − 1) =
N∑
j=1
j 6=i

Bijuj(k − 1)

=⇒

Vi ,


vi(k)

vi(k + 1)
...

vi(k +Hp − 1)

 =
N∑
j=1
j 6=i


Aijxj(k)

Bijuj(k − 1)
...

Bijuj(k − 1)

 (A.2)
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A.1 Information Flow in the GC Method

Coordinator:
Set of update equations (2.24)

MPC i:
Problem (2.15)

. . . . . .MPC 1 (i = 1):
Problem (2.15)

MPC N(i = N):
Problem (2.15)

Xi

∆Ui

Vi

Θi

Vi

pΘ1

V1

p

X1

∆U1

V1

XN

∆UN

VN

ΘN

VN

p

Figure A.1: Information flow in the GC-DMPC network

It should be noted that if Newton’s method is used, along with the local solutions,

local sensitivity information dXi

dp
, d∆Ui

dp
and dVi

dp
, has to be sent from local controllers

to the coordinator, as well.



Sec. A.2 Information Flow in the IPC Method 157

A.2 Information Flow in the IPC Method

Coordinator:
Set of update equations

(2.37) and (2.40)

MPC i:
Problem (2.31)

. . . . . .MPC 1 (i = 1):
Problem (2.31)

MPC N(i = N):
Problem (2.31)

Xi

∆Ui

Λi

Ωi,max

Ωi,min

Φi

p
Vi

Vi

Φ1

p
V1

V1

X1

∆U1

Λ1

Ω1,max

Ω1,min

XN
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ΛN

ΩN,max

ΩN,min

ΦN

p
VN

VN

Figure A.2: Information flow in the IPC-DMPC network
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A.3 Information Flow in the MPMC Method

Coordinator:
Set of update equations

(2.82c), (2.83c) and (2.84)

MPC i:
Problem (2.77)

. . . . . .MPC 1 (i = 1):
Problem (2.77)

MPC N(i = N):
Problem (2.77)

Xi

∆Ui

Λi

Ωi,max

Ωi,min

Γi

Πi

X̃i

∆Ũi

Vi

Vi
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∆ŨN

VN

VN

Figure A.3: Information flow in the MPMC-DMPC network
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B.1 Coefficient Matrix in the GC Method

To show how the matrix Θi is built, a simple example with three subsystems (N = 3)

is used. Prediction and control horizons are chosen to be 5 and 2, respectively. Using

(2.11a), the matrix Θi can easily be constructed as:

Θ1 =



0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 0 I
0 0 0 0 0 −B21 0 0 0 0 0 0

−A21 0 0 0 0 −B21 −B21 0 0 0 0 0

0 −A21 0 0 0 −B21 −B21 0 0 0 0 0

0 0 −A21 0 0 −B21 −B21 0 0 0 0 0

0 0 0 −A21 0 −B21 −B21 0 0 0 0 0

0 0 0 0 0 −B21 0 0 0 0 0 0

−A31 0 0 0 0 −B31 −B31 0 0 0 0 0

0 −A31 0 0 0 −B31 −B31 0 0 0 0 0

0 0 −A31 0 0 −B31 −B31 0 0 0 0 0

0 0 0 −A31 0 −B31 −B31 0 0 0 0 0



(B.1)
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Θ2 =



0 0 0 0 0 −B12 0 0 0 0 0 0

−A12 0 0 0 0 −B12 −B12 0 0 0 0 0

0 −A12 0 0 0 −B12 −B12 0 0 0 0 0

0 0 −A12 0 0 −B12 −B12 0 0 0 0 0

0 0 0 −A12 0 −B12 −B12 0 0 0 0 0

0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 0 I
0 0 0 0 0 −B32 0 0 0 0 0 0

−A32 0 0 0 0 −B32 −B32 0 0 0 0 0

0 −A32 0 0 0 −B32 −B32 0 0 0 0 0

0 0 −A32 0 0 −B32 −B32 0 0 0 0 0

0 0 0 −A32 0 −B32 −B32 0 0 0 0 0



(B.2)

Θ3 =



0 0 0 0 0 −B13 0 0 0 0 0 0

−A13 0 0 0 0 −B13 −B13 0 0 0 0 0

0 −A13 0 0 0 −B13 −B13 0 0 0 0 0

0 0 −A13 0 0 −B13 −B13 0 0 0 0 0

0 0 0 −A13 0 −B13 −B13 0 0 0 0 0

0 0 0 0 0 −B23 0 0 0 0 0 0

−A23 0 0 0 0 −B23 −B23 0 0 0 0 0

0 −A23 0 0 0 −B23 −B23 0 0 0 0 0

0 0 −A23 0 0 −B23 −B23 0 0 0 0 0

0 0 0 −A23 0 −B23 −B23 0 0 0 0 0

0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 0 I



(B.3)

B.2 Coefficient Matrix in the IPC Method

As is discussed in section 2.4, the interaction coefficient matrix used in the distributed

controllers, are the same as Θi used by the CDMPC in the GC method; however,

for implementation purposes, lower dimensional matrix Φi can be used instead. The
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only difference in the structure of this matrix in comparison with Θi, is that Φi does

not have the columns corresponding to Vi. Therefore, using the same example as in

section B.1, the Φi is written as:

Φ1 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −B21 0

−A21 0 0 0 0 −B21 −B21

0 −A21 0 0 0 −B21 −B21

0 0 −A21 0 0 −B21 −B21

0 0 0 −A21 0 −B21 −B21

0 0 0 0 0 −B21 0

−A31 0 0 0 0 −B31 −B31

0 −A31 0 0 0 −B31 −B31

0 0 −A31 0 0 −B31 −B31

0 0 0 −A31 0 −B31 −B31



(B.4)

Φ2 =



0 0 0 0 0 −B12 0

−A12 0 0 0 0 −B12 −B12

0 −A12 0 0 0 −B12 −B12

0 0 −A12 0 0 −B12 −B12

0 0 0 −A12 0 −B12 −B12

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −B32 0

−A32 0 0 0 0 −B32 −B32

0 −A32 0 0 0 −B32 −B32

0 0 −A32 0 0 −B32 −B32

0 0 0 −A32 0 −B32 −B32



(B.5)
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Φ3 =



0 0 0 0 0 −B13 0

−A13 0 0 0 0 −B13 −B13

0 −A13 0 0 0 −B13 −B13

0 0 −A13 0 0 −B13 −B13

0 0 0 −A13 0 −B13 −B13

0 0 0 0 0 −B23 0

−A23 0 0 0 0 −B23 −B23

0 −A23 0 0 0 −B23 −B23

0 0 −A23 0 0 −B23 −B23

0 0 0 −A23 0 −B23 −B23

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



(B.6)

B.3 Compact Form of Problem (2.32)

B.3.1 Equality Constraints (2.31b)

First the local process model (2.31b) is written over the prediction and control

horizons Hp and Hu:

xi(k + 1|k) = Aiixi(k) + Bii∆ui(k|k) + Biiui(k − 1)+

N∑
j=1
j 6=i

Aijxj(k) +
N∑
j=1
j 6=i

Bijuj(k − 1)+

vi(k|k)

xi(k + 2|k) = Aiixi(k + 1|k) + Bii∆ui(k + 1|k) + Bii∆ui(k|k) + Biiui(k − 1)+

N∑
j=1
j 6=i

Bijuj(k − 1)+

vi(k + 1|k)

...
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xi(k +Hu|k) = Aiixi(k +Hu − 1|k) +
Hu−1∑
a=0

Bii∆ui(k + a|k) + Biiui(k − 1)+

N∑
j=1
j 6=i

Bijuj(k − 1)+

vi(k +Hu − 1|k)

...

xi(k +Hp|k) = Aiixi(k +Hp − 1|k) +
Hu−1∑
a=0

Bii∆ui(k + a|k) + Biiui(k − 1)+

N∑
j=1
j 6=i

Bijuj(k − 1)+

vi(k +Hp − 1|k)

(B.7)

In the next step, the terms in (B.7) containing the unknown variables, are moved to

the left hand-side and then written in the following matrix form:



I 0 0 . . . 0 0 0 0
−Aii I 0 . . . 0 0 0 0

...
. . .

...
0 . . . 0 −Aii I 0 . . . 0
...

. . .
...

0 0 . . . 0 0 0 −Aii I


︸ ︷︷ ︸

Âii



xi(k + 1|k)
xi(k + 2|k)

...
xi(k +Hu|k)

...
xi(k +Hp|k)


︸ ︷︷ ︸

Xi

+



−Bii 0 0 . . . 0 0
−Bii −Bii 0 . . . 0 0

... . . .
...

−Bii −Bii −Bii . . . −Bii −Bii
... . . .

...
−Bii −Bii −Bii . . . −Bii −Bii


︸ ︷︷ ︸

B̂ii


∆ui(k|k)

∆ui(k + 1|k)
...

∆ui(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ui

−



vi(k|k)
vi(k + 1|k)

...
vi(k +Hu − 1|k)

...
vi(k +Hp − 1|k)


︸ ︷︷ ︸

Vi

=
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Aii

0
0
...

0
0


︸ ︷︷ ︸

Āii

xi(k) +



Bii

Bii

Bii
...

Bii

Bii


︸ ︷︷ ︸

B̄ii

ui(k − 1) +
N∑
j=1
j 6=i



Aij

0
0
...

0
0


︸ ︷︷ ︸

Āij

xj(k) +
N∑
j=1
j 6=i



Bij

Bij

Bij
...

Bij

Bij


︸ ︷︷ ︸

B̄ij

uj(k − 1) (B.8)

B.3.2 Inequality Constraints (2.31c)

Writing the inequality constraints on the outputs (2.31c), over the control and

prediction horizons, results in:

 ymini (k + 1)
...

ymini (k +Hp)


︸ ︷︷ ︸

Ymin
i

≤


Cii 0 0 . . . 0
0 Cii 0 . . . 0
...

. . .
...

0 0 . . . 0 Cii


︸ ︷︷ ︸

Cii

 xi(k + 1|k)
...

xi(k +Hp|k)


︸ ︷︷ ︸

Xi

≤

 ymaxi (k + 1)
...

ymaxi (k +Hp)


︸ ︷︷ ︸

Ymax
i

(B.9)

For the inequality constraints on the manipulated variables, first ui(k + b|k) is

written in terms of ∆ui(k + b|k) using (2.5):
umini (k)

umini (k + 1)
...

umini (k +Hu − 1)

 ≤


ui(k − 1) + ∆ui(k|k)
ui(k − 1) + ∆ui(k|k) + ∆ui(k + 1|k)

...
ui(k − 1) + ∆ui(k|k) + ∆ui(k + 1|k) + · · ·+ ∆ui(k +Hu − 1|k)

 ≤


umaxi (k)
umaxi (k + 1)

...
umaxi (k +Hu − 1)



(B.10)
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The set of inequalities (B.10) are re-arranged as below:
umini (k)− ui(k − 1)

umini (k + 1)− ui(k − 1)
...

umini (k +Hu − 1)− ui(k − 1)


︸ ︷︷ ︸

umin
i∗

≤


I 0 . . . 0
I I 0 . . . 0
...

. . .
...

I I I . . . I


︸ ︷︷ ︸

U∗


∆ui(k|k)

∆ui(k + 1|k)
...

∆ui(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ui

≤


umaxi (k)− ui(k − 1)

umaxi (k + 1)− ui(k − 1)
...

umaxi (k +Hu − 1)− ui(k − 1)


︸ ︷︷ ︸

umax
i∗

(B.11)

Also, the inequality constraints on the control input changes in (2.31c), are written

over the control horizon Hu: ∆umini (k)
...

∆umini (k +Hu − 1)


︸ ︷︷ ︸

umin
i∗∗

≤


I 0 . . . 0
0 I 0 . . . 0
...

. . .
...

0 0 0 . . . I


︸ ︷︷ ︸

U∗∗
i

 ∆ui(k|k)
...

∆ui(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ui

≤

 ∆umaxi (k)
...

∆umaxi (k +Hu − 1)


︸ ︷︷ ︸

umax
i∗∗

(B.12)

Finally aggregate of (B.11) and (B.12), results in the following compact form:[
umini∗
umini∗∗

]
︸ ︷︷ ︸
Umin
i

≤
[
U∗i 0
0 U∗∗i

]
︸ ︷︷ ︸

Ui

∆Ui ≤
[
umaxi∗
umaxi∗∗

]
︸ ︷︷ ︸
Umax
i

(B.13)
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B.4 Compact Form of Problem (2.78)

B.4.1 Equality Constraints (2.78b)

First the equality constraints (2.75b) and (2.75c), are combined:

xi(k + l + 1|k) = Aiixi(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+

N∑
j=1
j 6=i

[αAijxj(k + l|k) + Bijuj(k − 1)] +

N∑
j=1
j 6=i

[
βAijx̃j(k + l|k) + Bij

l∑
a=0

∆ũj(k + a|k)

] (B.14)

Then the local process model (B.14), is expanded over the prediction and control

horizons:

xi(k + 1|k) = Aiixi(k) + Bii∆ui(k|k) + Biiui(k − 1)+

N∑
j=1
j 6=i

Aijxj(k) +
N∑
j=1
j 6=i

Bijuj(k − 1)+

N∑
j=1
j 6=i

Bij∆ũj(k|k)

xi(k + 2|k) = Aiixi(k + 1|k) + Bii∆ui(k + 1|k) + Bii∆ui(k|k) + Biiui(k − 1)+

N∑
j=1
j 6=i

Bijuj(k − 1)+

N∑
j=1
j 6=i

Aijx̃j(k + 1|k) +
N∑
j=1
j 6=i

[Bij∆ũj(k + 1|k) + Bij∆ũj(k|k)]

...
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xi(k +Hu|k) = Aiixi(k +Hu − 1|k) +
Hu−1∑
a=0

Bii∆ui(k + a|k) + Biiui(k − 1)+

N∑
j=1
j 6=i

Bijuj(k − 1)+

N∑
j=1
j 6=i

Aijx̃j(k +Hu − 1|k) +
N∑
j=1
j 6=i

Hu−1∑
a=0

Bij∆ũj(k + a|k)

...

xi(k +Hp|k) = Aiixi(k +Hp − 1|k) +
Hu−1∑
a=0

Bii∆ui(k + a|k) + Biiui(k − 1)+

N∑
j=1
j 6=i

Bijuj(k − 1)+

N∑
j=1
j 6=i

Aijx̃j(k +Hp − 1|k) +
N∑
j=1
j 6=i

Hu−1∑
a=0

Bij∆ũj(k + a|k)

(B.15)

Now the terms in (B.15), which contain the unknown variables, are moved to the

left hand-side. The unknown variables are the local decision variables as well as the

pseudo-variables that are determined by the coordinator. Thus:



I 0 0 . . . 0 0 0 0
−Aii I 0 . . . 0 0 0 0

...
. . .

...
0 . . . 0 −Aii I 0 . . . 0
...

. . .
...

0 0 . . . 0 0 0 −Aii I


︸ ︷︷ ︸

Âii



xi(k + 1|k)
xi(k + 2|k)

...
xi(k +Hu|k)

...
xi(k +Hp|k)


︸ ︷︷ ︸

Xi

+



−Bii 0 0 . . . 0 0
−Bii −Bii 0 . . . 0 0

... . . .
...

−Bii −Bii −Bii . . . −Bii −Bii
... . . .

...
−Bii −Bii −Bii . . . −Bii −Bii


︸ ︷︷ ︸

B̂ii


∆ui(k|k)

∆ui(k + 1|k)
...

∆ui(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ui

+



Sec. B.4 Compact Form of Problem (2.78) 168

N∑
j=1
j 6=i


0 0 0 . . . 0 0
−Aij 0 0 . . . 0 0

0 −Aij 0 . . . 0 0
...

. . .
...

0 0 . . . 0 0 −Aij


︸ ︷︷ ︸

Âij


x̃j(k + 1|k)
x̃j(k + 2|k)
x̃j(k + 3|k)

...
x̃j(k +Hp − 1|k)


︸ ︷︷ ︸

X̃j

+

N∑
j=1
j 6=i



−Bij 0 0 . . . 0 0
−Bij −Bij 0 . . . 0 0

... . . .
...

−Bij −Bij −Bij . . . −Bij −Bij
... . . .

...
−Bij −Bij −Bij . . . −Bij −Bij


︸ ︷︷ ︸

B̂ij


∆ũj(k|k)

∆ũj(k + 1|k)
...

∆ũj(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ũj

=



Aii

0
0
...

0
0


︸ ︷︷ ︸

Āii

xi(k) +



Bii

Bii

Bii
...

Bii

Bii


︸ ︷︷ ︸

B̄ii

ui(k − 1) +
N∑
j=1
j 6=i



Aij

0
0
...

0
0


︸ ︷︷ ︸

Āij

xj(k) +
N∑
j=1
j 6=i



Bij

Bij

Bij
...

Bij

Bij


︸ ︷︷ ︸

B̄ij

uj(k − 1) (B.16)

B.4.2 Inequality Constraints (2.78c)

The matrices used in the inequality constraints (2.78c), are the same as those in

(2.32c). Therefore, they are obtained according to section B.3.2.



Appendix C

C.1 Compact Form of the Centralized Prediction

Model (3.3)

In obtaining (3.3), process model (3.1) is used for the overall system, as below:

x(k + l + 1|k) = Ax(k + l|k) + B
l∑

a=0

∆u(k + a|k) + u(k − 1) + Dd(k + l|k) (C.1)

where x ,
[
xT1 , . . . ,xTN

]T
, ∆u ,

[
∆uT1 , . . . ,∆uTN

]T
and d ,[

dT1 , . . . ,dTN
]T

. The centralized matrices A, B and D, have the following block-

wise structure:

A =



A11 . . . A1j . . . A1N

...
...

...
Ai1 . . . Aii . . . AiN

...
...

...
AN1 . . . ANj . . . ANN


, B =



B11 . . . B1j . . . B1N

...
...

...
Bi1 . . . Bii . . . BiN

...
...

...
BN1 . . . BNj . . . BNN


and

D =



D11 . . . D1j . . . D1N

...
...

...
Di1 . . . Dii . . . DiN

...
...

...
DN1 . . . DNj . . . DNN



(C.2)

Now the plant model (C.1), is written over the entire prediction and control

horizons, as below:

169
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x(k + 1|k) = Ax(k) + B∆u(k|k) + Bu(k − 1) + Dd(k|k)

x(k + 2|k) = Ax(k + 1|k) + B∆u(k + 1|k) + B∆u(k|k) + Bu(k − 1) + Dd(k + 1|k)

...

x(k +Hu|k) = Ax(k +Hu − 1|k) +
Hu−1∑
a=0

B∆u(k + a|k) + Bu(k − 1) + Dd(k +Hu − 1|k)

...

x(k +Hp|k) = Ax(k +Hp − 1|k) +
Hu−1∑
a=0

B∆u(k + a|k) + Bu(k − 1) + Dd(k +Hp − 1|k)

(C.3)

After moving the unknown terms to the left-hand side and the known terms to the

right-hand side, (C.3) becomes:



I 0 0 . . . 0 0 0 0
−A I 0 . . . 0 0 0 0

...
. . .

...
0 . . . 0 −A I 0 . . . 0
...

. . .
...

0 0 . . . 0 0 0 −A I


︸ ︷︷ ︸

Â



x(k + 1|k)
x(k + 2|k)

...
x(k +Hu|k)

...
x(k +Hp|k)


︸ ︷︷ ︸

X

+



−B 0 0 . . . 0 0
−B −B 0 . . . 0 0

... . . .
...

−B −B −B . . . −B −B
... . . .

...
−B −B −B . . . −B −B


︸ ︷︷ ︸

B̂


∆u(k|k)

∆u(k + 1|k)
...

∆u(k +Hu − 1|k)


︸ ︷︷ ︸

∆U

+


−D 0 0 . . . 0 0
0 −D 0 . . . 0 0
...

. . .
...

0 0 0 . . . 0 −D


︸ ︷︷ ︸

D̂


d(k|k)

d(k + 1|k)
...

d(k +Hp − 1|k)


︸ ︷︷ ︸

D
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A
0
0
...

0
0


︸ ︷︷ ︸

Ā

x(k) +



B
B
B
...

B
B


︸ ︷︷ ︸

B̄

u(k − 1) (C.4)

In addition to (C.3), the centralized prediction model can also be expressed in

terms of local process units, as follows:

xi(k + 1|k) = Aiixi(k) + Bii∆ui(k|k) + Biiui(k − 1)+

Diidi(k|k) +
N∑
j=1
j 6=i

Dijdj(k|k)

N∑
j=1
j 6=i

Aijxj(k) +
N∑
j=1
j 6=i

Bijuj(k − 1)+

vi(k|k)

xi(k + 2|k) = Aiixi(k + 1|k) + Bii∆ui(k + 1|k) + Bii∆ui(k|k) + Biiui(k − 1)+

Diidi(k + 1|k) +
N∑
j=1
j 6=i

Dijdj(k + 1|k)

N∑
j=1
j 6=i

Bijuj(k − 1)+

vi(k + 1|k)

...
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xi(k +Hu|k) = Aiixi(k +Hu − 1|k) +
Hu−1∑
a=0

Bii∆ui(k + a|k) + Biiui(k − 1)+

Diidi(k +Hu − 1|k) +
N∑
j=1
j 6=i

Dijdj(k +Hu − 1|k)

N∑
j=1
j 6=i

Bijuj(k − 1)+

vi(k +Hu − 1|k)

...

xi(k +Hp|k) = Aiixi(k +Hp − 1|k) +
Hu−1∑
a=0

Bii∆ui(k + a|k) + Biiui(k − 1)+

Diidi(k +Hp − 1|k) +
N∑
j=1
j 6=i

Dijdj(k +Hp − 1|k)

N∑
j=1
j 6=i

Bijuj(k − 1)+

vi(k +Hp − 1|k)

(C.5)

After re-arranging the terms in (C.5), the following compact form is obtained:



I 0 0 . . . 0 0 0 0
−Aii I 0 . . . 0 0 0 0

...
. . .

...
0 . . . 0 −Aii I 0 . . . 0
...

. . .
...

0 0 . . . 0 0 0 −Aii I


︸ ︷︷ ︸

Âii



xi(k + 1|k)
xi(k + 2|k)

...
xi(k +Hu|k)

...
xi(k +Hp|k)


︸ ︷︷ ︸

Xi

+



−Bii 0 0 . . . 0 0
−Bii −Bii 0 . . . 0 0

... . . .
...

−Bii −Bii −Bii . . . −Bii −Bii
... . . .

...
−Bii −Bii −Bii . . . −Bii −Bii


︸ ︷︷ ︸

B̂ii


∆ui(k|k)

∆ui(k + 1|k)
...

∆ui(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ui
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+


−Dii 0 0 . . . 0 0

0 −Dii 0 . . . 0 0
...

. . .
...

0 0 0 . . . 0 −Dii


︸ ︷︷ ︸

D̂ii


di(k|k)

di(k + 1|k)
...

di(k +Hp − 1|k)


︸ ︷︷ ︸

Di

+
N∑
j=1
j 6=i


−Dij 0 0 . . . 0 0

0 −Dij 0 . . . 0 0
...

. . .
...

0 0 0 . . . 0 −Dij


︸ ︷︷ ︸

D̂ij


dj(k|k)

dj(k + 1|k)
...

dj(k +Hp − 1|k)


︸ ︷︷ ︸

Dj

−



vi(k|k)
vi(k + 1|k)

...
vi(k +Hu − 1|k)

...
vi(k +Hp − 1|k)


︸ ︷︷ ︸

Vi

=



Aii

0
0
...

0
0


︸ ︷︷ ︸

Āii

xi(k) +



Bii

Bii

Bii
...

Bii

Bii


︸ ︷︷ ︸

B̄ii

ui(k − 1) +
N∑
j=1
j 6=i



Aij

0
0
...

0
0


︸ ︷︷ ︸

Āij

xj(k) +
N∑
j=1
j 6=i



Bij

Bij

Bij
...

Bij

Bij


︸ ︷︷ ︸

B̄ij

uj(k − 1) (C.6)

C.2 Distributed Equivalence of the matrix G

Through the following simple example, the elements needed to be taken into account

in localizing vectors of the form z̄ = WVz, is explained. Suppose that W, V and z

are defined as below:

W =

[
W11 W12

W21 W22

]
, V =

[
V11 V12

V21 V22

]
and z =

[
z1

z2

]
(C.7)
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The product WVz becomes:[
z̄1

z̄2

]
=

[
W11 W12

W21 W22

][
V11 V21

V12 V22

][
z1

z2

]

=

[
W11V11 + W12V12 W11V21 + W12V22

W21V11 + W22V12 W21V21 + W22V22

] [
z1

z2

]
(C.8a)

=

[
(W11V11 + W12V12)z1 + (W11V21 + W12V22)z2

(W21V11 + W22V12)z1 + (W21V21 + W22V22)z2

]
(C.8b)

Thus, in writing WVz in terms of block-martices, WiiVii+WijVij will only produce

the diagonal matrices in (C.8b), while the effect of off-diagonal parts should also been

taken into account. Therefore, as is shown in (C.8b), for this example where two

matrices are multiplied, each local variable z̄i (i = 1, 2) is expressed by the rows in

WV corresponding to the ith block times the vector z. Similarly, for cases where N

subsystems exist and/or when more than two matrices are multiplied, the end result

of the multiplication should be decomposed.

C.3 Compact form of the plant model with

pseudo-variables

The following local process model, in which interaction variables are replaced by the

pseudo-variables, is used:

x̄i(k + l + 1|k) = Aiix̄i(k + l|k) + Bii

[
l∑

a=0

∆ui(k + a|k) + ui(k − 1)

]
+ Diid̄(k + l|k)

N∑
j=1
j 6=i

[
αAijxj(k + l|k) + Bijuj(k − 1) + Dijd̄j(k + l|k)

]
+

N∑
j=1
j 6=i

[
βAijx̃j(k + l|k) + Bij

l∑
a=0

∆ũj(k + a|k)

]

(C.9)

Now, the local model (C.9) is written over the entire prediction and control

horizons:
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xi(k + 1|k) = Aiixi(k) + Bii∆ui(k|k) + Biiui(k − 1)+

Diid̄i(k|k)+

N∑
j=1
j 6=i

Aijxj(k) +
N∑
j=1
j 6=i

Bijuj(k − 1) +
N∑
j=1
j 6=i

Dijd̄j(k|k)+

N∑
j=1
j 6=i

Bij∆ũj(k|k)

xi(k + 2|k) = Aiixi(k + 1|k) + Bii∆ui(k + 1|k) + Bii∆ui(k|k) + Biiui(k − 1)+

Diid̄i(k + 1|k)+

N∑
j=1
j 6=i

Bijuj(k − 1) +
N∑
j=1
j 6=i

Dijd̄j(k + 1|k)+

N∑
j=1
j 6=i

Aijx̃j(k + 1|k) +
N∑
j=1
j 6=i

[Bij∆ũj(k + 1|k) + Bij∆ũj(k|k)]

...

xi(k +Hu|k) = Aiixi(k +Hu − 1|k) +
Hu−1∑
a=0

Bii∆ui(k + a|k) + Biiui(k − 1)+

Diid̄i(k +Hu − 1|k)+

N∑
j=1
j 6=i

Bijuj(k − 1) +
N∑
j=1
j 6=i

Dijd̄j(k +Hu − 1|k)+

N∑
j=1
j 6=i

Aijx̃j(k +Hu − 1|k) +
N∑
j=1
j 6=i

Hu−1∑
a=0

Bij∆ũj(k + a|k)

...
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xi(k +Hp|k) = Aiixi(k +Hp − 1|k) +
Hu−1∑
a=0

Bii∆ui(k + a|k) + Biiui(k − 1)+

Diid̄i(k +Hp − 1|k)+

N∑
j=1
j 6=i

Bijuj(k − 1) +
N∑
j=1
j 6=i

Dijd̄j(k +Hp − 1|k)+

N∑
j=1
j 6=i

Aijx̃j(k +Hp − 1|k) +
N∑
j=1
j 6=i

Hu−1∑
a=0

Bij∆ũj(k + a|k)

(C.10)

Equations (C.10) are re-arranged and formed into the following compact version:



I 0 0 . . . 0 0 0 0
−Aii I 0 . . . 0 0 0 0

...
. . .

...
0 . . . 0 −Aii I 0 . . . 0
...

. . .
...

0 0 . . . 0 0 0 −Aii I


︸ ︷︷ ︸

Âii



xi(k + 1|k)
xi(k + 2|k)

...
xi(k +Hu|k)

...
xi(k +Hp|k)


︸ ︷︷ ︸

Xi

+



−Bii 0 0 . . . 0 0
−Bii −Bii 0 . . . 0 0

... . . .
...

−Bii −Bii −Bii . . . −Bii −Bii
... . . .

...
−Bii −Bii −Bii . . . −Bii −Bii


︸ ︷︷ ︸

B̂ii


∆ui(k|k)

∆ui(k + 1|k)
...

∆ui(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ui

+


−Dii 0 0 . . . 0 0

0 −Dii 0 . . . 0 0
...

. . .
...

0 0 0 . . . 0 −Dii


︸ ︷︷ ︸

D̂ii


di(k|k)

di(k + 1|k)
...

di(k +Hp − 1|k)


︸ ︷︷ ︸

Di
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N∑
j=1
j 6=i


0 0 0 . . . 0 0
−Aij 0 0 . . . 0 0

0 −Aij 0 . . . 0 0
...

. . .
...

0 0 . . . 0 0 −Aij


︸ ︷︷ ︸

Âij


x̃j(k + 1|k)
x̃j(k + 2|k)
x̃j(k + 3|k)

...
x̃j(k +Hp − 1|k)


︸ ︷︷ ︸

X̃j

+

N∑
j=1
j 6=i



−Bij 0 0 . . . 0 0
−Bij −Bij 0 . . . 0 0

... . . .
...

−Bij −Bij −Bij . . . −Bij −Bij
... . . .

...
−Bij −Bij −Bij . . . −Bij −Bij


︸ ︷︷ ︸

B̂ij


∆ũj(k|k)

∆ũj(k + 1|k)
...

∆ũj(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ũj

+

N∑
j=1
j 6=i


−Dij 0 0 . . . 0 0

0 −Dij 0 . . . 0 0
...

. . .
...

0 0 0 . . . 0 −Dij


︸ ︷︷ ︸

D̂ij


dj(k|k)

dj(k + 1|k)
...

dj(k +Hp − 1|k)


︸ ︷︷ ︸

Dj

=



Aii

0
0
...

0
0


︸ ︷︷ ︸

Āii

xi(k) +



Bii

Bii

Bii
...

Bii

Bii


︸ ︷︷ ︸

B̄ii

ui(k − 1) +
N∑
j=1
j 6=i



Aij

0
0
...

0
0


︸ ︷︷ ︸

Āij

xj(k) +
N∑
j=1
j 6=i



Bij

Bij

Bij
...

Bij

Bij


︸ ︷︷ ︸

B̄ij

uj(k − 1) (C.11)



Appendix D

D.1 Deterministic CDMPC Simulation Results

using GC(SALA) Method

In this appendix, simulation results using GC(SALA), IPC and MPMC methods are

presented for both deterministic constrained and unconstrained CDMPC networks.

Parameters used in the simulations are the same as those used in section 2.6. For the

constrained CDMPC simulations, the constraints on the process inputs and outputs,

shown in table 2.1, are used.

ymax1 =
[
5 1.5

]T
ymax2 =

[
5 1.5

]T
umax1 =

[
5 4

]T
umax2 =

[
5 2

]T
ymin1 =

[
−15 −1

]T
ymin2 =

[
−5 −1

]T
umin1 =

[
−5 −4

]T
umin2 =

[
−5 −2

]T
(D.1)

Simulation Results for Unconstrained CDMPC: Process output and

manipulated input profiles for the unconstrained case are plotted in Figures 2.1 and

2.2, for the GC(Newton-based), IPC, MPMC and centralized schemes. As expected,

simulation results using GC(SALA) matches the results shown in these Figures.

The required number of communication cycles until convergence is plotted in D.1,

for the four variations of coordination algorithms. The coordinator in GC(SALA)

takes more iterations, in order to converge to the optimal centralized solution, because

a first-order gradient-based algorithm solves the unconstrained dual optimization

problem. This is while, the use of second order information (the Hessian) in the

Newton-based coordinator in the GC method, leads to very fast convergence rate.
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Figure D.1: Number of communication cycles at every sampling instant

On the other hand, the IPC and MPMC methods explicitly account for the effects of

local inequalities, in the coordinator formulation. Therefore, in addition to showing

similar convergence behaviour, number of iterations until convergence in these two

methods, are lower than what is required by the GC(SALA); however, the Newton-

based coordinator in the GC approach, still outperforms the coordinators in the IPC

and MPMC methods, obtained using fixed-point iteration method.

Simulation Results for Constrained CDMPC: Before proceeding with the

simulation results, it should be mentioned that neither steepest ascend, nor DFP

and BFGS methods, with constant step-size (0 < ε ≤ 1), were able to solve the

resulting dual optimization problem. In the steepest ascend method, in the first few

communication cycles, second norm of error vector E decreased. As the error vector

got closer to zero, no further progress was observed. Quasi-Newton methods could

not solve the convergence problem, either.

Process output and control input profiles in Figures D.2 and D.3, show that the

three coordination methods successfully yield the optimal plant-wide MPC solution.
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The number of communication cycles have been plotted in Figure D.4. As expected,

the coordinator in the GC(SALA) approach, requires more computational effort to

converge, compared with the coordinators of the IPC and MPMC methods.
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Figure D.4: Number of communication cycles at every sampling instant



Appendix E

E.1 Compact Form of Equality Constraints

(4.22b)

The aggregate of CDMPC (4.21), along with the equality constraints (4.18) are

equivalent to the plant-wide nonlinear MPC problem. To write the equality

constraints of such a composite optimization problem in a compact form, first (4.18)

and (4.21b) are combined as below:

xi(k + l + 1|k) =

Ad
iixi(k + l|k) + Bd

ii

l∑
a=0

∆ui(k + a|k)

+ x̃i(k + l|k)

+ ∆tfi (x̃i(k + l|k),∆ũi(k|k), . . . ,∆ũi(k + a|k), x̃j(k + l|k),∆ũj(k|k), . . . ,∆ũj(k + a|k))

−Ad
iix̃i(k + l|k)−Bd

ii

l∑
a=0

∆ũi(k + a|k)

(E.1)

Now, (E.1) is expanded over the prediction horizon Hp (i.e, l = 0, . . . , Hp − 1) as

184
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follows:

xi(k + 1|k) =

Ad
iixi(k) + Bd

ii∆ui(k|k)

+ xi(k)1

+ ∆tfi(x̃i(k),∆ũi(k|k), x̃j(k),∆ũj(k|k))

−Ad
iixi(k)−Bd

ii∆ũi(k|k)

xi(k + 2|k) =

Ad
iixi(k + 1|k) + Bd

ii∆ui(k + 1|k) + Bd
ii∆ui(k|k)

+ x̃i(k + 1|k)

+ ∆tfi (x̃i(k + 1|k),∆ũi(k|k),∆ũi(k + 1|k), x̃j(k + 1|k),∆ũj(k|k),∆ũj(k + 1|k))

−Ad
iix̃i(k + 1|k)−Bd

ii∆ũi(k + 1|k)−Bd
ii∆ũi(k|k)

...

xi(k +Hu|k) =

Ad
iixi(k +Hu − 1|k) + Bd

ii∆ui(k +Hu − 1|k) + · · ·+ Bd
ii∆ui(k|k)

+ x̃i(k +Hu − 1|k)

+∆tfi(̃xi(k+Hu−1|k),∆ũi(k|k),. . .,∆ũi(k+Hu−1|k),x̃j(k+Hu−1|k),∆ũj(k|k),. . .,∆ũj(k+Hu−1|k))

−Ad
iix̃i(k +Hu − 1|k)−Bd

ii∆ũi(k +Hu − 1|k)− · · · −Bd
ii∆ũi(k|k)

... (E.2)

xi(k +Hp|k) =

Ad
iixi(k +Hp − 1|k) + Bd

ii∆ui(k +Hu − 1|k) + · · ·+ Bd
ii∆ui(k|k)

+ x̃i(k +Hp − 1|k)

+∆tfi(̃xi(k+Hp−1|k),∆ũi(k|k),. . .,∆ũi(k+Hu−1|k),x̃j(k+Hp−1|k),∆ũj(k|k),. . .,∆ũj(k+Hu−1|k))

−Ad
iix̃i(k +Hp − 1|k)−Bd

ii∆ũi(k +Hu − 1|k)− · · · −Bd
ii∆ũi(k|k)

Next, the equations in (E.2) are re-arranged and put together in the following

1States at time k are known =⇒ x̃i(k|k) = xi(k).
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matrix form:



I 0 0 . . . 0 0 0 0
−Ad

ii I 0 . . . 0 0 0 0
...

. . .
...

0 . . . 0 −Ad
ii I 0 . . . 0

...
. . .

...
0 0 . . . 0 0 0 −Ad

ii I


︸ ︷︷ ︸

Âd
ii



xi(k + 1|k)
xi(k + 2|k)

...
xi(k +Hu|k)

...
xi(k +Hp|k)


︸ ︷︷ ︸

Xi

+



−Bd
ii 0 0 . . . 0 0

−Bd
ii −Bd

ii 0 . . . 0 0
... . . .

...
−Bd

ii −Bd
ii −Bd

ii . . . −Bd
ii −Bd

ii
... . . .

...
−Bd

ii −Bd
ii −Bd

ii . . . −Bd
ii −Bd

ii


︸ ︷︷ ︸

B̂d
ii


∆ui(k|k)

∆ui(k + 1|k)
...

∆ui(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ui

+


0 0 0 . . . 0 0

−I + Ad
ii 0 0 . . . 0 0

0 −I + Ad
ii 0 . . . 0 0

...
. . .

...
0 0 . . . 0 0 −I + Ad

ii


︸ ︷︷ ︸

Ãd
ii


x̃i(k + 1|k)
x̃i(k + 2|k)
x̃i(k + 3|k)

...
x̃i(k +Hp − 1|k)


︸ ︷︷ ︸

X̃i

+



Bd
ii 0 0 . . . 0 0

Bd
ii Bd

ii 0 . . . 0 0
... . . .

...
Bd
ii Bd

ii Bd
ii . . . Bd

ii Bd
ii

... . . .
...

Bd
ii Bd

ii Bd
ii . . . Bd

ii Bd
ii


︸ ︷︷ ︸

−B̂d
ii


∆ũi(k|k)

∆ũi(k + 1|k)
...

∆ũi(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ũi

−
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∆t



fi (x̃i(k),∆ũi(k|k), x̃j(k),∆ũj(k|k))

fi (x̃i(k + 1|k),∆ũi(k|k),∆ũi(k + 1|k), x̃j(k + 1|k),∆ũj(k|k),∆ũj(k + 1|k))

...

fi(̃xi(k+Hu−1|k),∆ũi(k|k),. . .,∆ũi(k+Hu−1|k),x̃j(k+Hu−1|k),∆ũj(k|k),. . .,∆ũj(k+Hu−1|k))
...

fi(̃xi(k+Hp−1|k),∆ũi(k|k),. . .,∆ũi(k+Hu−1|k),x̃j(k+Hp−1|k),∆ũj(k|k),. . .,∆ũj(k+Hu−1|k))


︸ ︷︷ ︸

Fi

=


xi(k)

0
0
...
0


︸ ︷︷ ︸
Zi

(E.3)

E.2 Compact Form of Equality Constraints (4.23)

If (4.23) is used alongside the aggregate of CDMPC (4.21), the compact form of

equality constraints in the composite optimization problem (4.22), will be obtained

as follows:

xi(k + 1|k) =

Ad
iixi(k) + Bd

ii∆ui(k|k)

+ fi(x̃i(k),∆ũi(k|k), x̃j(k),∆ũj(k|k))

−Ad
iixi(k)−Bd

ii∆ũi(k|k)

xi(k + 2|k) =

Ad
iixi(k + 1|k) + Bd

ii∆ui(k + 1|k) + Bd
ii∆ui(k|k)

+ fi (x̃i(k + 1|k),∆ũi(k|k),∆ũi(k + 1|k), x̃j(k + 1|k),∆ũj(k|k),∆ũj(k + 1|k))

−Ad
iix̃i(k + 1|k)−Bd

ii∆ũi(k + 1|k)−Bd
ii∆ũi(k|k)
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...

xi(k +Hu|k) =

Ad
iixi(k +Hu − 1|k) + Bd

ii∆ui(k +Hu − 1|k) + · · ·+ Bd
ii∆ui(k|k)

+ fi(̃xi(k+Hu−1|k),∆ũi(k|k),. . .,∆ũi(k+Hu−1|k),x̃j(k+Hu−1|k),∆ũj(k|k),. . .,∆ũj(k+Hu−1|k))

−Ad
iix̃i(k +Hu − 1|k)−Bd

ii∆ũi(k +Hu − 1|k)− · · · −Bd
ii∆ũi(k|k)

... (E.4)

xi(k +Hp|k) =

Ad
iixi(k +Hp − 1|k) + Bd

ii∆ui(k +Hu − 1|k) + · · ·+ Bd
ii∆ui(k|k)

+ fi(̃xi(k+Hp−1|k),∆ũi(k|k),. . .,∆ũi(k+Hu−1|k),x̃j(k+Hp−1|k),∆ũj(k|k),. . .,∆ũj(k+Hu−1|k))

−Ad
iix̃i(k +Hp − 1|k)−Bd

ii∆ũi(k +Hu − 1|k)− · · · −Bd
ii∆ũi(k|k)

After, re-arranging (E.4), the following matrix form, is obtained:



I 0 0 . . . 0 0 0 0
−Ad

ii I 0 . . . 0 0 0 0
...

. . .
...

0 . . . 0 −Ad
ii I 0 . . . 0

...
. . .

...
0 0 . . . 0 0 0 −Ad

ii I


︸ ︷︷ ︸

Âd
ii



xi(k + 1|k)
xi(k + 2|k)

...
xi(k +Hu|k)

...
xi(k +Hp|k)


︸ ︷︷ ︸

Xi

+



−Bd
ii 0 0 . . . 0 0

−Bd
ii −Bd

ii 0 . . . 0 0
... . . .

...
−Bd

ii −Bd
ii −Bd

ii . . . −Bd
ii −Bd

ii
... . . .

...
−Bd

ii −Bd
ii −Bd

ii . . . −Bd
ii −Bd

ii


︸ ︷︷ ︸

B̂d
ii


∆ui(k|k)

∆ui(k + 1|k)
...

∆ui(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ui

+
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0 0 0 . . . 0 0

Ad
ii 0 0 . . . 0 0

0 Ad
ii 0 . . . 0 0

...
. . .

...
0 0 . . . 0 0 Ad

ii


︸ ︷︷ ︸

Ãd
ii


x̃i(k + 1|k)
x̃i(k + 2|k)
x̃i(k + 3|k)

...
x̃i(k +Hp − 1|k)


︸ ︷︷ ︸

X̃i

+



Bd
ii 0 0 . . . 0 0

Bd
ii Bd

ii 0 . . . 0 0
... . . .

...
Bd
ii Bd

ii Bd
ii . . . Bd

ii Bd
ii

... . . .
...

Bd
ii Bd

ii Bd
ii . . . Bd

ii Bd
ii


︸ ︷︷ ︸

−B̂d
ii


∆ũi(k|k)

∆ũi(k + 1|k)
...

∆ũi(k +Hu − 1|k)


︸ ︷︷ ︸

∆Ũi

−



fi (x̃i(k),∆ũi(k|k), x̃j(k),∆ũj(k|k))

fi (x̃i(k + 1|k),∆ũi(k|k),∆ũi(k + 1|k), x̃j(k + 1|k),∆ũj(k|k),∆ũj(k + 1|k))

...

fi(̃xi(k+Hu−1|k),∆ũi(k|k),. . .,∆ũi(k+Hu−1|k),x̃j(k+Hu−1|k),∆ũj(k|k),. . .,∆ũj(k+Hu−1|k))
...

fi(̃xi(k+Hp−1|k),∆ũi(k|k),. . .,∆ũi(k+Hu−1|k),x̃j(k+Hp−1|k),∆ũj(k|k),. . .,∆ũj(k+Hu−1|k))


︸ ︷︷ ︸

Fi

=


0
0
0
...
0


︸︷︷︸
Zi

(E.5)

E.3 Derivative Calculations

At each communication cycle q, the coordinator uses updated values of the pseudo-

variables to calculate the derivatives of nonlinear functions with respect to the pseudo-

variables. In what follows, details on constructing the matrices Ac,q+1
ji and Bc,q+1

ji in

(4.28) are provided.
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The Fj vector, that contains the nonlinear functions over the prediction horizon,

is written as:

Fj =



fj(x̃i(k),∆ui(k|k), x̃j(k),∆ũj(k|k))

fj(x̃i(k + 1|k),∆ũi(k|k),∆ũi(k + 1|k),xj(k + 1|k),∆ũj(k|k),∆ũj(k + 1|k))

...

fj (̃xi(k+Hu−1|k),∆ũi(k|k),. . .,∆ũi(k+Hu−1|k),x̃j(k+Hu−1|k),∆ũj(k|k),. . .,∆ũj(k+Hu−1|k))
...

fj (̃xi(k+Hp−1|k),∆ũi(k|k),. . .,∆ũi(k+Hu−1|k),x̃j(k+Hp−1|k),∆ũj(k|k),. . .,∆ũj(k+Hu−1|k))



,



fj(k)
fj(k + 1)

...
fj(k +Hu − 1)

...
fj(k +Hp − 1)


(E.6)

where j = 1, . . . , N . Thus, the gradient matrix ∇X̃i
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1

is constructed as:

∇X̃i
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1

=
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∂fj(k)

∂x̃i(k+1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k)

∂x̃i(k+2)

∣∣∣∣∣
X̃q+1

∆Ũq+1

. . .
∂fj(k)

∂x̃i(k+Hp−1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+1)

∂x̃i(k+1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+1)

∂x̃i(k+2)

∣∣∣∣∣
X̃q+1

∆Ũq+1

. . .
∂fj(k+1)

∂x̃i(k+Hp−1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+2)

∂x̃i(k+1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+2)

∂x̃i(k+2)

∣∣∣∣∣
X̃q+1

∆Ũq+1

. . .
∂fj(k+2)

∂x̃i(k+Hp−1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

...
...

...

∂fj(k+Hu−1)

∂x̃i(k+1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+Hu−1)

∂x̃i(k+2)

∣∣∣∣∣
X̃q+1

∆Ũq+1

. . .
∂fj(k+Hu−1)

∂x̃i(k+Hp−1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

...
...

...

∂fj(k+Hp−1)

∂x̃i(k+1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+Hp−1)

∂x̃i(k+2)

∣∣∣∣∣
X̃q+1

∆Ũq+1

. . .
∂fj(k+Hp−1)

∂x̃i(k+Hp−1)

∣∣∣∣∣
X̃q+1

∆Ũq+1



=



0 0 . . . 0

Ac,k+1
ji 0 . . . 0

0 Ac,k+2
ji . . . 0

...
...

...

0 . . . Ac,k+Hu−1
ji . . . 0

...
...

...

0 0 . . . A
c,k+Hp−1
ji


︸ ︷︷ ︸

Ac,q+1
ji

(E.7)

where the dimension of Ac,q+1
ji is nxjHp × nxiHp. The superscript k + l in Ac,k+l

ji

indicates that the derivatives are calculated using the relevant updated pseudo-

variable values at the k + l time point. Similarly the gradient matrix ∇∆Ũi
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1

is formed as:

∇∆Ũi
Fj

∣∣∣∣∣
X̃q+1

∆Ũq+1

=



Sec. E.3 Derivative Calculations 192

∂fj(k)

∂∆ũi(k)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k)

∂∆ũi(k+1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

. . .
∂fj(k)

∂∆ũi(k+Hu−1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+1)

∂∆ũi(k)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+1)

∂∆ũi(k+1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

. . .
∂fj(k+1)

∂∆ũi(k+Hu−1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

...
...

...

∂fj(k+Hu−1)

∂∆ũi(k)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+Hu−1)

∂∆ũi(k+1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

. . .
∂fj(k+Hu−1)

∂∆ũi(k+Hu−1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+Hu)

∂∆ũi(k)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+Hu)

∂∆ũi(k+1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

. . .
∂fj(k+Hu)

∂∆ũi(k+Hu−1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

...
...

...

∂fj(k+Hp−1)

∂∆ũi(k)

∣∣∣∣∣
X̃q+1

∆Ũq+1

∂fj(k+Hp−1)

∂∆ũi(k+1)

∣∣∣∣∣
X̃q+1

∆Ũq+1

. . .
∂fj(k+Hp−1)

∂∆ũi(k+Hu−1)

∣∣∣∣∣
X̃q+1

∆Ũq+1



=



Bc,k
ji 0 . . . 0

Bc,k
ji Bc,k+1

ji . . . 0
...

...
...

Bc,k
ji Bc,k+1

ji . . . Bc,k+Hu−1
ji

Bc,k
ji Bc,k+1

ji . . . Bc,k+Hu−1
ji

...
...

...

Bc,k
ji Bc,k+1

ji . . . Bc,k+Hu−1
ji


︸ ︷︷ ︸

Bc,q+1
ji

(E.8)

where the dimension of Bc,q+1
ji is nxjHp × nuiHc.


