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[A] model, if well made, shows at least how the universe might behave, but logical
errors bring us no closer to the reality of any universe. In physical theory, mathematical

rigor is of the essence.

C. Truesdell and R. Toupin. 1960
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Abstract

Ultrafiltration is a membrane separation process with many applications, including
the treating of industrial wastes and the processing of milk and juices. Academics are
also interested in ultrafiltration as a possible tool for measuring empirical coefficients
such as the ditfusion coefficient and the permeability. One particular region of an uitra-
filtration system that is not yet fully understood, and is related to a decline in the effi-
ciency, is the concentration polarization layer, which develops as the macromolecules
retained by the membrane form a highly concentrated layer that attempts to diftuse
back toward the bulk of the solution. Using the postulates of classical nonequilibrium
thermodynamics, a complete model, which accounts for the fact that a concentration
polarization layer may have properties of both a porous medium and a region undergo-
ing Brownian diffusion, has been derived and applied to several systems trom the liter-

ature.
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Notation

Boldface symbols are vectors or tensors, depending on the script (Times New
Roman signifies vectors, Arial signifies tensors). Symbols that appear only in an
appendix are not listed.

fitting parameter (used by Barry et al. [1987], Section 5.3.1)
flowcell cross-sectional area (used by Barry et al. [1987], Section 5.3.1)

flowcell cross-sectional area (used by Johnson et al. [1987], Section 4.2.5)

S N

fitting parameter (used by Barry et al. [1987], Section 5.3.1)

c,  mass fraction of the k™ component

Cp density of the kM component (used by Wijmans et al. [1985], Section 4.2.4)
¢ specific heat capacity

c, solute concentration (used by Wales [1981], Section 4.2.3)

D binary diffusivity/diffusion coefficient

D binary diffusion coefficient (used by Wales [1981], Section 4.2.3)

D

T . .
o  Phenomenological coetticient
T . .
D,  phenomenological coefficient
e specitic energy (internal and kinetic)
f friction coefficient

f* friction coetficient (used by Wales [1981], Section 4.2.3)
F*  friction force (used by Wales [1981], Section 4.2.3)

Fg  mean frictional force (used by Jonsson and Jonsson [1996], Section 4.2.1)

F,  thermodynamic force acting on the b component (used by Wijmans et al.
[1985], Section 4.2.4)

F,  body force per unit mass acting on the Kt component

F ,, mean thermodynamic force (used by Jonsson and Jonsson [1996}, Section
42.1)

F, drag force (used by Dejmek [1975], Section 4.2.2)
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3)5 g

partial specific enthalpy of the i component
internal and kinetic energy flux

mass flux of the i component (used by Wales [1981], Section 4.2.3)
mass diffusive flux of the & component
barycentric kinetic energy flux

energy flux due to conduction and diffusion

heat flux

entropy flux

internal energy flux

momentum flux

volume flux (used by Wales [1981], Section 4.2.3)
permeability

specific kinetic energy

specific kinetic energy of the diffusional flows

kinetic energy obtained by adding ke and ke,

permeability (used by Johnson et al. [1987], Section 4.2.5)
concentration polarizaton layer thickness

phenomenological coefficient

membrane permeability (used by Vilker et al. [1981], Section 5.2.2)
phenomenological coefficient

mass

mass of the & component

outward unit normal
Avogadros’ number (used by Dejmek [1975], Section 4.2.2)
thermodynamic pressure

total driving pressure

pressure (used by Wijmans et al. [1985], Section 4.2.4)
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pressure (used by Johnson et al. [1987], Section 4.2.5)

volumetric flowrate (used by Barry et al. [1996], Section 5.3.1)
volumetric flowrate (used by Johnson et al. [1987]}, Section 4.2.5)
position vector

distance from axis of rotation

specific entropy

sedimentation coefficient

partial specitic entropy of the K component

entropy

temperature

specific internal energy

specific inner energy

internal energy

superficial solvent velocity (used by Barry et al. [1996], Section 5.3.1)
unit tensor

velocity of the i component (used by Wales [1981], Section 4.2.3)
barycentric velocity

solvent volume velocity
filtrate velocity

velocity of the k'? component

mean volume velocity

volume

solute partial molar volume (used by Dejmek [1975], Section 4.2.2)

coefficient of thermal expansion

driving pressure (used by Vilker et al. [1981], Section 5.2.2)

time increment



AW* work done per unit volume
AXx  distance travelled in time At

Am  osmotic pressure difference across the membrane (used by Vilker et al. [1981],
Section 5.2.2)

n,  solvent viscosity
il solvent viscosity (used by Johnson et al. [1987], Section 4.2.5)
W, chemical potential of the kth component

i,  concentration-dependent part of the chemical potential of the kth component
(used by Wijmans et al. [1985], Section 4.2.4)

My, solute chemical potential (used by Dejmek [1975], Scction 4.2.2)

H, concentration-dependent part of the solute chemical potential (used by Dejmek
[1975], Section 4.2.2)

T osmotic pressure

osmotic pressure (used by Johnson et al. [1987], Section 4.2.5)

total mass density

p,  mass density of the k" component

pg solute density in the bulk solution

c reflection coefficient (used by Vilker et al. [1981], Section 5.2.2)

. rate of kinetic energy production per unit volume

c rate of entropy production per unit volume

o, rate of internal energy production per unit volume
o, rate of momentum production per unit volume
) specific volume

v, partial specific volume of the k" component

o angular velocity
o dissipation function
o solute volume fraction (used by Johnson et al. [1987], Section 4.2.5)



Chapter 1

Introduction

1.1 Introduction

Ultrafiltration is a membrane separation process in which a macromolecular solu-
tion is forced against a membrane that allows the solvent to pass through while retain-
ing the macromolecules on the high-pressure side (see Figure 1-1). Ultrafiltration
enjoys a variety of applications, including the purification of drinking water, the treat-
ing of industrial wastes, and the processing of milk and juices [Anselme, 1996; Mulder,
1996]. Academics are also interested in ultrafiltration as a possible tool for measuring
empirical coefficients such as the diffusion coefficient and the permeability [Shen,
1977; Jackson, 1982; Kim, 1991; Nicolas, 1995; Barry, 1996]. As the macromolecules
build up against the membrane, they form what is called a concentration polarization
layer. It is known that the presence of a concentration polarization layer is related to a
decline in the efficiency of ultrafiltration. There are three general reasons for this
decline. First, the layer offers a resistance to flow in addition to the resistance of the
membrane, due to the fact that the solvent must flow through the concentration polari-
zation layer before flowing through the membrane. Second, the layer induces an
osmotic pressure drop across the membrane, due to the high surface concentration,
which can greatly increase the driving pressure required to maintain a constant flow-
rate. Third, fouling and adsorption of the solute molecules onto the membrane surface
and within the pores can significantly increase the resistance of the membrane. In order
to maximize the efficiency of ultrafiltration, it is important to know the role each of the
three factors discussed above plays within a given system; therefore, it is important to
have a sound understanding of the fluid mechanics and thermodynamics occurring

within a concentration polarization layer.

Concentration polarization is not unique to ultrafiltration, however; it also occurs

in reverse osmosis, where the solutes being filtered are small noninteracting particles,



2
for example salts, and in compressible cake filtration, where the solutes are large col-
loids or fine clay particles. Although the basic phenomena occurring in all concentra-
tion polarization layers is essentially the same -- one component ot a binary solution
builds up against the membrane while the other component permeates through -- very
different models have been used in the past to study reverse osmosis, cake filtration
and ultrafiltration. In reverse osmosis, the layer is treated as a region undergoing crdi-
nary diffusion [Merten, 1963; Brian, 1966]. The constitutive relation used to describe

flow within the layer is Fick’s law:

J, = —-pDVe,. (L.1)

where J, is the mass diffusive flux of solute, measured with respect to the mass aver-

age velocity v; p is the total mass density of the solution; D is the binary ditfusion
coefficient; and, ¢, is the solute mass fraction. For steady-state reverse osmosis in
dead-end filtration systems, Fick’s law is sufficient to model the system. For unsteady-
state reverse osmosis, Fick’s law is combined with the solute mass balance to yield the
convective-ditfusion equation:

dc,

pa—t"~+-pv-Vc2 = V.pDVq,. (1.2)

Along with the relevant boundary and initial conditions, the convective-ditfusion equa-

tion provides a complete model of the temporal behaviour of the system.

In cake filtration, where the solute particles are very large (relative to the particle
size in reverse osmosis), it is assumed that Brownian, or Fickian, diffusion processes
are negligible and the layer is treated as a porous medium [Shirato, 1969; Tiller, 1975;
Tiller, 1980]. The constitutive relation used to describe flow within the layer is Darcy’s

law:

pvvy = —%Vp, (1.3)

or modifications of Darcy’s law such as the Shirato equation:



PV (v —v,y) = —nEVp, (1.4)

where p, is the solvent mass density; v, is the solvent partial specific volume; v, and
v, are the average velocity of the solvent and solute molecules, measured with respect
to the laboratory frame; n, is the solvent viscosity; & is the permeability of the

*porous medium”; and, p is the pressure. At steady-state, Darcy’s law or the Shirato
equation is sufficient to model the system. For unsteady-state filtration, it is usually

combined with a mass balance.

In ultrafiltration, the solute particles are intermediate between those used in reverse
osmosis and those used in cake filtration. As noted by Kozinski and Lightfoot, the con-
centration polarization layer of an ultrafiltration system behaves simultaneously as a

porous medium and a diffusion layer [Kozinski, 1972, pl032]:

The ultrafiltration of materials, like proteins, represents a situation intermediate between the purely
diffusional behavior encountered in reverse osmosis and the purely hydrodynamic nature of ordi-
nary filtration. . . . In reverse osmosis, the boundary layer is treated as an ideal dilute solution for
which the pressure gradient will be zero. . . . In mechanical filtration, the solute is deposited or pre-
cipitates at the boundary. . . . [T]he hydrodynamic resistance of this sludge layer . . . can be obtained
from conventional expressions for flow through porous media. . . . [n ultrafiltration, both effects can
be important since proteins in solution behave both as hydrodynamic particles of finite size and as

part of the continuum. . . . [[]n concentrated solutions the pressure gradient cannot be neglected.

Kozinski and Lightfoot obtained a general constitutive relation for flow within a binary
macromolecular concentration polarization layer using the Stefan-Maxwell equations
of statistical mechanics; their relation contains terms related to both the concentration
gradient and the pressure gradient. However, they did not obtain a complete model of
macromolecular concentration polarization, capable of predicting the temporal behav-
iour, and they were unable to use their constitutive relation due to “insufficient thermo-
dynamic data” [Kozinski, 1972, p1032]. Throughout the rest of their analysis, they
assumed Fick’s law applied within the layer, and employed the reverse osmosis model

to describe their system.
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Other models of ultrafiltration abound in the literature; for an extensive review of
the various theories of macromolecular concentration polarization, see the paper by
Bowen and Jenner [1995a]. However, no complete model of macromolecular concen-
tration polarization, which takes into account the dual nature of the layer, has been
developed. Most authors employ the reverse osmosis model, also called the osmotic
pressure model, to study ultrafiltration [Michaels, 1968; Goldsmith, 1971; Kozinski,
1972; Leung, 1979; Trettin, 1981; Vilker, 1981; Wales, 1981; Clifton, 1984; Jonsson,
1984; Wijmans, 1984; Barious, 1990; Nicolas, 1995; Boulanouar, 1996; Bowen,
1996a]. The osmotic pressure model yields adequate results as long as the solute parti-
cles are relatively noninteracting, so that pressure gradients may be neglected. Others
employ the cake filtration model to ultrafiltration [Jackson, 1982; Reihanian, 1983;
Chudacek, 1984; McDonogh, 1984; Iritani, 1991; McDonogh, 1992; Bowen, 1995b;
Bowen, 1996b; Mukai, 1997; Nakakura, 1997; Huisman, 1998]. The cake filtration
model yields adequate results as long as the solute particles are quite large, so that
Brownian diffusion may be neglected. Some authors have proposed combinations ot
the two models, for example the gel-polarization model, where it is assumed that a gel
or incompressible filter cake, to which Darcy’s law applies, forms on top of the mem-
brane, and on top of the gel is a diffusion layer to which Fick’s law applies [Michaels,
1968; Blatt, 1970; Porter, 1972; Dejmek, 1975; Shen, 1977; Probstein, 1978; Nakao,
1979; Trettin, 1980]. The model works in some cases; however, a distinct phase change
to a gel does not always occur in macromolecular systems [Dejmek, 1975; Coniglio,
1979; Wales, 1981; Coniglio, 1982; Clark, 1986] and, although the gelling concentra-
tion should depend only on properties of the solution, the model predicts gelling con-
centrations which vary depending on operating conditions of the filtration system, such
as the flowrate and the bulk solution concentration [Nakao, 1979; Wijmans, 1984;
Aimar, 1986]. Further, and particularly for colloidal solutes, the model tends to under-

predict the rate of permeate flux, sometimes by orders of magnitude [Blatt, 1970; Por-

ter, 1972].!

Various other modifications and combinations exist [Nakao, 1979; Doshi, 1981,

Fane, 1984; Wijmans, 1985; Aimar, 1986; Nakao, 1986; van den Berg, 1989; Nabetani,



1990; Blake, 1992; Barry, 1996; Bhattacharjee, 1996; Jonsson, 1996; Doneva, 1998].
However, none of these models allow for the fact that a macromolecular or colloidal
concentration polarization layer can sustain pressure gradients and Brownian diffusion
processes simultaneously. Exceptions are models using a “modified Darcy’s law”
[Kim, 1991; Gowman, 1997], and several force balance models [McDonogh, 1989;
Petsev, 1993; Welsch, 1995; Harmant, 1996)]. The modified Darcy’s law is a generali-
zation of Darcy’s law in that it contains an extra term related to a concentration gradi-

ent:
ok
piuv = -n—(Vp—Vrn), (1.5)
|

where 1t is the osmotic pressure. The modified Darcy’s law appears to be an improve-
ment on the constitutive relation obtained by Kozinski and Lightfoot [1972], as the
modified Darcy’s law may be used directly, given experimental measurements or theo-
retical models of the permeability and the osmotic pressure. However, until recently
[Elliott, 1999; this thesis, Section 3.1], no rigorous derivation of this equation was
available. Also, the authors using the modified Darcy’s law [Kim, 1991; Gowman,
1997] neglect the term accounting for pressure gradients, based on the results of three
articles [Wales, 1981; Wijmans, 1985; Johnson, 1987] claiming to contain proofs that

pressure gradients cannot exist within macromolecular concentration polarization lay-

-
€rs.”

! In the gel-polarization model, it is assumed that flow is governed by Fick’s law within the concentra-
tion polarization layer above the gel. Thus, the reverse osmosis model is still assumed to apply; the
only difference is that the maximum concentration within the concentration polarization layer is lim-
ited by the gelling concentration of the solute. For some smaller solutes, the model yields adequate
results; however, for large colloidal solutes, the model tends to severely underpredict the rate of per-
meate flux. [t was suggested by the originators of the theory that Fick’s law is not sufficient when
ultrafiltering colloidal particles, and that another driving force is needed to account for the rate of per-
meate flux [Blatt, 1970, p74; Porter, 1972, p238]. This additional driving force could be the pressure
gradient term in the generalization of Fick's law given by equation (7) of Kozinski and Lightfoot’s
{1972] paper or equation (3.10) of this thesis. This makes sense when we consider that, for large col-
loidal particles, the diffusion coefficient will approach zero as Brownian diffusion becomes negligible
and the particles begin to behave like a compressible filter cake or a porous medium. The pressure
gradient (Darcy’s law) term in the general expression for the diffusive flux will dominate and the con-
centration gradient (Fick’s law) term will become negligible as the solute particles approach macro-
scopic dimensions. Therefore, it is not surprising that using Fick’s law to model such systems
underpredicts the rate of permeate flux, sometimes by orders of magnitude.
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Many force balance models exist in the literature [Dejmek, 1975; Wijmans, 1985;
Johnson, 1987; McDonogh, 1989; Petsev, 1993; Welsch, 1995; Harmant, 1996; Jons-
son, 1996]. A few of these models [McDonogh, 1989; Petsev, 1993; Welsch, 1995;
Harmant, 1996] appear to obtain an expression for the mass diffusive flux which is an
improvement on Kozinski and Lightfoot’s equation, as the coefficients which were
unknown to Kozinski and Lightfoot may be obtained in these works as functions of
parameters such as ionic strength, pH and zeta-potential. However, whereas the consti-
tutive relation in Kozinski and Lightfoot’s paper was obtained by applying the bound-
ary conditions of an ultrafiltration experiment to the Stefan-Maxwell equations of
statistical mechanics, the force balances appear to be more or less intuitive construc-
tions. Thus, the equations obtained may vary depending on the authors’ interpretation
of what forces should be accounted for and how. The lack of a fundamental framework,
such as statistical mechanics or continuum mechanics, behind the force balance

approach brings with it a danger of adding confusion to the field due to a lack of con-

sistency and clarity regarding equations and assumptions.3

1.2 Thesis Goals

One measure of how well a particular phenomenon is understood is the number of
different theories proposed to explain it. As indicated in Section 1.1, many different
models of concentration polarization exist. However, the concentration polarization
layer of a binary, dead-end filtration system, from a continuum point of view, is not a
particularly complicated system. It contains continuous variations of pressure and con-
centration over macroscopic length scales, and it remains very near equilibrium over
the entire duration of the filtration process. A concentration polarization layer actually
provides a quintessential example of a system to which a continuum description of
nature, such as classical nonequilibrium thermodynamics, should apply. The develop-
ment of a complete model of concentration polarization within the general framework

of nonequilibrium thermodynamics would be very useful; being a continuum theory, it

2 See Chapter 4 for a review and critique of these theorems.
3 See Chapter 4.



would describe all concentration polarization phenomena, regardless of the type of
molecules involved. Differences in the physical nature of the particles within the sys-
tem would by accounted for by various coeflicients, such as the diffusion coefficient
and the permeability, rather than by the mathematical equations describing the system.
Such a model would also provide a clarifying and unifying influence on the field, as the
assumptions required to obtain the model, and to reduce the model to limiting cases
such as reverse osmosis and cake filtration, would be clearly enunciated. Therefore, the

goals of this thesis are:

1. To obtain a complete and general model of macromolecular or colloidal concen-
tration polarization based upon a fundamental description of a multicomponent system
away from equilibrium such as nonequilibrium thermodynamics. The development
should carefully record and justity all assumptions, in order to be certain of the systems

to which the final results apply. The complete model should do the following:

(a) Contain a constitutive relation accounting for the fact that a macromolecular
concentration polarization layer can sustain pressure gradients and Brownian

diffusion processes simultaneously.

(b) Contain a system of differential equations capable of describing the concen-
tration and pressure profiles within the concentration polarization layer as func-

tions of time.

(c) Reduce to the reverse osmosis and compressible cake filtration models as

limiting cases.

2. To review some articles that have caused confusion in the literature, in an
attempt to provide clarification and organization. The review should clearly state
which assumptions must be made in order to use various equations found in the litera-
ture, and it should point out where mistakes have been made by authors who were una-

ware of the assumptions implicit in their equations.

3. To apply the complete model to some experimental systems from the literature

in order to provide examples of how the model may be used directly, given currently
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available experimental data, and to offer explanations for some anomalous experimen-

tal results.

The specific goals of each chapter are as follows. In Chapter 2, the equations and
postulates of classical nonequilibrium thermodynamics will be used in order to obtain a
fairly general model that is capable of describing several experimental situations,
including ordinary diffusion, permeation and sedimentation experiments. The applica-
tion of the general constitutive relation to such phenomena will be reviewed, yielding
relations between various experimental coefficients. In Chapter 3, the boundary condi-
tions of a filtration experiment will be applied to the results of Chapter 2 in order to
obtain a complete model of a concentration polarization layer. In Chapter 4, a review
and critique of several theorems which have caused scme confusion in the literature
will be given, in light of the results of Chapters 2 and 3. In Chapter 5, the concentration
polarization model will be applied to various systems in the literature in order to test it

and to offer explanations for some anomalous experimental results.

1.3 Description of the System

In general, it should be possible to use the principles of classical nonequilibrium
thermodynamics to model the concentration polarization layer and membrane phase of
both dead-end and cross-flow filtration systems, thereby providing a complete, contin-
uum description of almost all filtration systems in the literature. At the present time,
though, only the concentration polarization layer within dead-end filtration systems
such as the one depicted in Figure 1-1 will be considered. All viscous flow, and there-
fore all cross-flow, is neglected. Further, the membrane phase, and any adsorption due
to membrane-solute interactions, is neglected. In principle, the solution above the
membrane should remain as one phase; however, for a stationary gel formed above the
membrane of a dead-end ultrafiltration system (no cross-flow) it is possible that the
results of this chapter are valid. If the macromolecules or colloids forming a concentra-
tion polarization layer above the membrane become highly concentrated to the point
where they undergo a phase change to a gel structure or filter cake capable of elastic

deformation, the Gibbs relation describing the system must account for all of the possi-
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ble stress/strain relationships of the elastic medium [de Groot, 1962, p333]. However,
as noted by Callen [1985, p305], “if the walls of the system impose no stress compo-
nents other than the pressure, then these stress components vanish and the formalism
reduces to the familiar form in which the volume is the only explicit mechanical prop-
erty.” Thus, the results of this chapter may apply even to a gel formed above the mem-
brane of an ultrafiltration system, so long as the viscous stress tensor may be neglected
and no shear stresses are applied to the gel (dead-end filtration with no cross-flow), and
provided that properties of the phase change from a highly viscous solution to a gel are
accounted for by various thermodynamic quantities such as the chemical potential. If
the above conditions are met, the results of this thesis should apply to all binary con-
centration polarization layers formed within dead-end fiitration systems, regardless of
the properties of the solute molecules being filtered. Typical examples of the systems
to which the model should apply are the concentration polarization layers within the
filtration systems of Vilker et al. [1981] and Boulanouar et al. [1996]. Note that, in
order to provide a complete description of the above systems, a model of the membrane
phase, which allows for the presence of a concentration polarization layer, is required.
Existing membrane transport theories assume that conditions on the membrane surface
are identical to the conditions in the bulk solution [Mason, 1990; Baranowski, 1991]. It
should not be difficult to extend these theories to allow for the pressure and concentra-
tion at the high-pressure side of the membrane to be controlled by the concentration

polarization model, rather than by properties of the bulk solution.
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Figure 1-1: Dead-end (batch) filtration system.
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Chapter 2

Theoretical Development

2.1 Introduction

In this chapter. our desire is to use the principles of nonequilibrium thermodynam-
ics to derive a constitutive equation describing the diffusive flux, as well as a system of
differential equations describing the temporal behaviour, within a certain class of sys-
tems which may be described as diffusional. In Chapter 2, our goal will be to apply this
theory to the phenomenon of concentration polarization in dead-end filtration systems;
therefore, we will keep track of and justify all assumptions made, in order to convince
ourselves of the applicability of the final results to actual experimental systems. We
will go through the derivation starting with the most fundamental equations and postu-
lates so as to be conscious of all assumptions made along the way. The first assumption
is that the system is a binary fluid which can be modelled as an isotropic, continuous
medium, made up of two superposed continuous media representing the solvent and
solute; therefore, our first step will be to present the multicomponent balance equations
of continuum mechanics. These equations, in substantial form, describe the rates of
change of mass, momentum and energy densities of a differential mass element as the

centre of mass of the element moves within the continuum.

Although we will be making further assumptions along the way, the next major
assumption will be that a mass element moving within the continuum is in a state of
local equilibrium; we will assume that the entropy of the mass element is the same
function of the local thermodynamic state as the entropy of a system in actual equilib-
rium. Combining this assumption with the balance equations of continuum mechanics
will allow us to find a balance equation describing the rate of change of entropy density
of a mass element as the centre of mass of the element moves within the continuum.
This equation will contain a term describing the rate of entropy production due to irre-

versible processes occurring within the system. This entropy production term, at con-
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stant temperature, is the product of the mass diffusive flux and various forces (external
forces and gradients in intensive variables) which cause the flux to occur; by assuming
a linear relation between the flux and the driving forces appearing in the entropy pro-
duction term, we will obtain a general constitutive relation for the diffusive flux in a
binary system. By applying the relevant boundary conditions, this equation can be
applied to many ditferent experimental situations (diffusion experiments, sedimenta-
tion experiments, permeation experiments) to yield valuable relations between experi-
mentally determinable parameters such as the diffusion coefficient and the
permeability. The local equilibrium assumption will also allow us to convert the
entropy balance equation into a balance equation describing the rate ot change of the
pressure within a mass element as the element moves within the continuum. Combin-
ing the pressure balance equation with the mass and momentum balance equations and
the constitutive relation will yield a model capable of predicting the pressure, concen-

tration and velocity profiles as functions of time within the system.

2.2 Balance Equations of Continuum Mechanics

2.2.1 Definitions

Throughout this derivation we will be using a Cartesian coordinate system, fixed in
the laboratory frame. Boldface symbols signify vectors or tensors, depending on the

script (Times New Roman signifies vectors, Arial signifies tensors). [n a binary contin-
uum the barycentric or centre of mass velocity v of a differential mass element is

defined by the relation

v = v, tCyv,, (2.6)

where v, is the velocity of the centre of mass of the Kh continuum making up the mass

clement; and, c, is the mass fraction of the ! continuum making up the mass element:

¢ = %‘, (k=1,2). Q.7)



The quantity p, is the mass density of the P continuum, and p is the total mass den-
sity:

P =P *Ps (2.8)
Dividing equation (2.8) by p and using equation (2.7) yields

¢, tey = 1. 2.9)

Next we will present the multicomponent balance equations of continuum mechanics.
For a detailed derivation of these equations, see Truesdell and Toupin [1960] or Slat-
tery [1972]; for a statistical mechanical derivation, see Irving and Kirkwood [1950]
and Bearman and Kirkwood [1958] or Hirschfelder, Curtiss and Bird [1964].

2.2.2 Mass Balance Equation

Neglecting chemical reactions, the substantial mass balance equation for the K

continuum can be written

Dck
P = -v-J, *k=12), (2.10)

where 1 refers to the solvent; 2 refers to the solute; V is the del operator; J, is the dif-

fusive flux of component & :

and, D/ Dt is the substantial derivative:

D_2,, 2
2 =S4y, 2.12)

Equation (2.10) describes the rate of change of mass fraction of component £ within a
mass element as the centre of mass of the element moves at the barycentric velocity

within the continuum. Equation (2.10) is equivalent to equation (II.13) on page 13 of



Non-Equilibrium Thermodynamics [de Groot, 1962], in the absence of chemical

reactions.

The mass balance equation for the continuum as a whole, the continuity equation,

may be written

Dv
=~ -v. p)
PD; v, (2.13)
where v is the specific volume:
v = p"'. (2.14)

Equation (2.13) describes the rate of change of the specific volume within a mass ele-
ment as the centre of mass of the element moves at the barycentric velocity within the

continuum. Equation (2.13) is equivalent to equation (II.14) on page 14 of Non-Equi-
librium Thermodynamics [de Groot, 1962].!
2.2.3 Momentum Balance Equation

Neglecting the viscous stress tensor> the substantial momentum balance equation

can be written

I Note that equation (II.14) on page 14 of Non-Equilibrium Thermodynamics [de Groot, 1962] reads
p% = V.. This is a misprint; it should read p‘% = V.v,where v = p’l is the specific volume.
The error was corrected in the 1984 edition.

2 By neglecting the viscous stress tensor, we are assuming that shear flow can be neglected and that the
flow profile is flat. Mathematically, we are assuming that the viscous stress tensor does not make a
significant contribution to the momentum balance equation; therefore, our analysis is restricted to
systems with one dimensional “plug” flow. Such an assumption is usually made in discussions of
ordinary diffusion, sedimentation and permeation [de Groot, 1962, p239; Bird, 1960, p522: Hooy-
man, 1953; Vink, 1961; Mijnlieff, 1971; McDonnell, 1980]. It is assumed in such experiments that
flow is slow enough and steady enough that velocity gradients due to *“no-slip” conditions on con-
tainer walls can be neglected. In dead-end filtration experiments, the flowcel! has macroscopic
dimensions and flowrates are extremely small. Therefore, we will assume that the velocity is constant
over a cross-section of the flowcell, and neglect the viscous term in the equation of motion. Cross-
flow filtration systems, in which viscous effects must be taken into account, are not considered in this
thesis.



p%’ = _V.J,+o,, (2.15)

where the tensorial flux J,, the hydrostatic pressure tensor, is given by

J, =pU; (2.16)

v

and, the vectorial production term 6, is given by

6, = pF, +p,F,. Q.17

The symbol p denotes the thermodynamic pressure; U is the unit tensor; and, F, is a

body force per unit mass, acting on the kh component, due to external fields (gravita-
tional, electromagnetic) or possibly due to *“long-range interactions in the system” [de
Groot, 1962, p15].

Equation (2.15) describes the rate of change of velocity (the acceleration) of a
mass element as the centre of mass of the element moves at the barycentric velocity
within the continuum. Combined with (2.17) and (2.16), equation (2.15) is equivalent
to equation (I1.19) on page 15 of Non-Equilibrium Thermodynamics [de Groot,

1962], in the absence of effects due to viscosity.

2.2.4 Energy Balance Equation

At this point we note that the energy balance equation used in Non-Equilibrium
Thermodynamics, equation (I1.28) on page 16, implicitly contains the assumption that

all body forces acting within the system are conservative. We do not wish to make such

an assumption, as the body force F, postulated to exist in Section 3.2 is not conserva-

tive in general; therefore, we will use a more general energy balance, equation (18.3-3)

of Transport Phenomena [Bird, 1960], which reduces to equation (I1.28) of Non-

Equilibrium Thermodynamics if the body forces are conservative.’

3 See Appendix A.1 on page 121.



The substantial energy balance equation can be written

D
pr = _V.Je+0e’ (2.18)
where the energy flux J, is given by
J,=J,+pU-v. (2.19)
The tlux J, appearing represents the energy tlux due to conduction and diffusion. The
energy production term G, is given by
Ge = plvl'Fl+p2v2F2 (2.20)
The energy per unit mass (the specific energy) e is given by

e = u+ke, (2.21)

where u is the specific internal energy and ke is the specific kinetic energy”

2

ke = zv". (2.22)

y—

In equation (2.22), v> denotes v - v. Equation (2.18) describes the rate of change of the

specific internal and kinetic energy e of a mass element as the centre of mass of the
element moves at the barycentric velocity within the continuum. Equation (2.18) is

equivalent to equation (18.3-3) on page 560 of Transport Phenomena [Bird, 1960], in

the absence of viscous flow.”

In the absence of chemical reactions and viscous effects, equations (2.10), (2.13),

(2.15) and (2.18) describe the rate of change of the specific mass, momentum and

4 Note that some authors [Gyarmati, 1970, p69; Miyazaki, 1996, p601] feel that equations (2.21) and
(2.22) are not exact because they appear to neglect the kinetic energy of diffusion. We are not in
agreement with this view, but feel rather that the kinetic energy of diffusion must be included as part

of u if the internal energy is to be defined correctly (see Section 2.3.2).
5 See Appendix A.l on page 121.
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energy of a mass element as the centre of mass of the element moves at the barycentric
velocity within a binary continuum. Separate substantial balance equations describing
the rate of change of the specific kinetic and internal energies can be found by manipu-
lating the mass, momentum and energy balance equations, as we will see in the next

sections.

2.2.5 Kinetic Energy Balance Equation

To find the substantial barycentric kinetic energy balance equation, we can multi-
ply equation (2.15), the substantial momentum balance equation, by v and use equa-

tions (2.16), (2.17), (B.14), (B.15) and (2.22) to yield

Dk
p'Z)Te = V.J_+c,,. (2.23)

where the kinetic energy flux J,, is given by

and, the kinetic energy production term G,, is given by

G = pU:Vv+pv-F +pyv-F;. (2.25)

Equation (2.23) describes the rate of change of the specific barycentric kinetic energy
of a mass element as the centre of mass of the element moves at the barycentric veloc-
ity within the continuum. Combined with (2.22), (2.24) and (2.25), equation (2.23) is

equivalent to equation (I1.23) on page 16 of Non-Equilibrium Thermodynamics [de

Groot, 1962], in the absence of effects due to viscosity.

2.2.6 Internal Energy Balance Equation

To find the substantial internal energy balance equation, we may first insert equa-
tion (2.21) into equation (2.18) to yield
Du . Dke

p—D-t-+pE =-V.J,+0,. (2.26)
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Inserting equations (2.19), (2.20), (2.23), (2.24) and (2.25) into equation (2.26), and
using equations (2.11) and (B.17), yields the substantial internal energy balance equa-

tion

Du

5 = -V I, *0,, (227)

where the internal energy flux J,, is given by

J,=J,, (2.28)
and the internal energy production term G, is given by
6, =-pV-v+J, -F +J,-F,. (2.29)

Equation (2.27) describes the rate of change of the specific internal energy ot a mass
element as the centre of mass of the element moves at the barycentric velocity within
the continuum. Combined with (2.28) and (2.29), equation (2.27) is equivalent to equa-
tion (11.36) on page 18 of Non-Equilibrium Thermodynamics [de Groot, 1962}, in

the absence of effects due to viscosity.

In Section 2.3, we shall write the Gibbs relation of equilibrium thermodynamics in
a form that can be used, along with the balance equations of continuum mechanics, to
obtain a balance equation describing the rate of change of the specific entropy of a
mass element as the centre of mass of the element moves at the barycentric velocity

within the continuum.

2.3 Entropy Balance Equation

2.3.1 Local Equilibrium Assumption

It is a postulate of equilibrium thermodynamics that the entropy S of a simple ther-

modynamic system in equilibrium is a first order homogeneous function of the internal

energy U, the volume ¥ and the masses M, of the components.6 Thus,
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S = S(U, V, M, M) (2.30)

for a binary system in equilibrium. In principle the entropy is only defined for systems
in equilibrium; however, it is a postulate of nonequilibrium thermodynamics that, if a

differential mass element moving at the barycentric velocity within the continuum is
sufficiently near equilibrium, we may assume that the entropy of the mass element § is
a first order homogeneous function of the same variables, the internal energy U, the

volume V' and the masses M, , as for a system in actual equilibrium. We say that such

an element is in a state of local equilibrium.7 Therefore,

S = S(U, V, M, M) (2.31)

for a mass element in local equilibrium.®

Given the local equilibrium assumption, we may apply all of the relations in
Appendix C to a mass element moving at the barycentric velocity within the contin-
uum. The first such relation we will use is the differential Gibbs relation, equation
(C.9):

D D
Ds _ 1Du pDv MZc Habc (2.32)

Dt TDt TDt T Dt T Dt’

6 See Appendix C for a review of the thermodynamic postulates and identities used in this thesis.

7 The concept of local equilibrium is an assumption, on the basis of which certain mathematical relations
describing our system may be derived. At present, there is no a priori method for determining its
range of validity; experiment must decide. However, this assumption generally turns out to be valid,
except for systems which are very far from equilibrium [de Groot, 1962, p23]. As the systems studied
in this work are not particularly far from equilibrium. we will assume that the local equilibrium
assumption holds.

$ Here, we have made the assumption that the internal energy U, the volume ¥ and the component
masses M,, M, are sufficient to completely determine the entropy of a binary mass element in local
equilibrium. In the most general case, the entropy may depend on other variables as well. Extended
irreversible thermodynamics is the study of systems in which additional variables are required to
describe the entropy; for a review of the different approaches to extended irreversible thermodynam-
ics, see the article by Nettleton and Sobolev [1995]. In liquid systems, additional variables are gener-
ally required only for systems far removed from equilibrium. As the systems studied in this work
remain quite close to equilibrium, we will assume that the independent set {U, ¥, M|, M, } is suffi-

cient.
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where s is the specific entropy (entropy per unit mass), 7' is the temperature, p is the
pressure, [, is the chemical potential of the Kb component9 and u, v and ¢, are the

specific internal energy, specific volume and mass fractions, as defined earlier. Equa-
tion (2.32) is equivalent to equation (III.16) on page 23 of Non-Equilibrium Thermo-
dynamics [de Groot, 1962].

2.3.2 Definition of Internal Energy

In the literature, we have found two different definitions of the internal energy
appearing in the differential Gibbs relation. In Section 2.2.4 we defined the specific

internal energy by the equation

e = u+ke, (2.33)
where e is the total energy per unit mass, less that due to external body forces, and ke is
the kinetic energy per unit mass:

2

ke = =v~. (2.34)

9 —

The internal energy defined by equation (2.33) is the same as that proposed by Hir-
schfelder, Curtiss and Bird in the Molecular Theory of Gases and Liquids [1964,
p654, Section 7.2¢] and is used in the differential Gibbs relation of several authors dis-
cussing nonequilibrium thermodynamics [Eckart, 1940; Bird, 1955; Landau, 1959;
Vink, 1961; Haase, 1962; Hirschfelder, 1964]. Several theorists, though, have sug-
gested that the internal energy defined by equation (2.33) is not correct because the

total kinetic energy per unit mass ke, should be the summation of the specific kinetic

energies of the components making up the system:

% Note that the chemical potential of the & component is defined on a mass basis in this work, whereas
it is usually defined on a molar basis in thermodynamics texts [Callen, 1985, p35]. Multiplying u, by

the molar mass 7 of the K component, however, yields the chemical potential as defined in Callen’s
book.
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1 2 1 2
ke, = Eclvf + Eczv; : (2.35)
Using equations (2.6) and (2.9), we may find the relation between ke, and ke:
ke, = ke + ke, (2.36)
where ke is the kinetic energy per unit mass due to diffusion:'°
ke, = L 2,1 2 2.37
e; = 2cl(vl - v) 5"2("2“’) . 2.37)

de Groot and Mazur have suggested that u is not the true internal energy because
“the internal energy should contain contributions from the thermal agitation and the
short-range molecular interactions” and not “the macroscopic kinetic energy of the

components with respect to the centre of gravity motion” [de Groot, 1962, p28].

Rather, they argue that the true specific internal energy u* should be defined by the

relation

e = u*+ke,. (2.38)

The internal energy defined by equation (2.38) is in agreement with the definition of
several other nonequilibrium thermodynamics writers [Prigogine, 1947; Gyarmati,
1970; Slattery, 1972; Baranowski, 1991; Miyazaki, 1996]. Truesdell and Toupin
[1960], in their work on continuum mechanics, thermodynamics and field theories in

general, suggest that u is the correct definition of the specific internal energy [Trues-

dell, 1960, p613]; but, they suggest that the quantity «* , which they call the “specific

10 Note that the kinetic energy of diffusion is often negligible with respect to the barycentric kinetic
energy, making the definitions of internal energy discussed above equivalent. According to Gyarmati
[1970, p54], “the kinetic energy of diffusion can in the majority of cases be neglected with respect to
the barycentric kinetic energy.” Fitts [1962, p26] suggests that ke, may be neglected in all systems in

which the local equilibrium assumption applies. However, within the concentration polarization layer
of a dead-end filtration system at a steady state in which the solute is stationary (v, = 0), the kinetic
energy of diffusion may be neglected only if the solute concentrations are low. Using equations (2.6),
(2.7), (2.8), (2.34) and (2.37), we can write ke,/ke = c,/c, . Therefore, neglecting the kinetic energy
due to diffusion with respect to the barycentric kinetic energy is valid at a steady state in which the
solute is stationary as long as ¢, « ¢, .
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inner energy”, should be used when writing the differential Gibbs relation because
“any diffusion velocities, at a given place and instant, are compatible with any values
of the local thermodynamic state.” They suggest that “Hirschfelder, Curtiss and Bird
neglect [the kinetic energy of diffusion] when they calculate [the differential Gibbs
relation]” [Truesdell, 1960, p645].

In our opinion, the quantity 4* cannot be the correct definition of the specific
internal energy which appears in the Gibbs relation, nor can ke, be the correct defini-

tion of the total specific kinetic energy. Let us consider a differential mass element
moving at the barycentric velocity within a binary system; we would like to define the
total kinetic energy of the element. The total kinetic energy of any body is that portion
of the total energy which is associated with the relative motion of the centre of mass of
the body with respect to some external reference frame. The total kinetic energy ot a
mass element should not be a summation of the kinetic energies of the individual com-
ponents within the element any more than it should be a summation of the kinetic ener-
gies of the individual molecules within the element. Further, it seems to us that the
diffusion velocities are not “compatible with any values of the local thermodynamic
state’”; rather, they are completely determined by the local thermodynamic state and the
local gradient of the thermodynamic state. Only the barycentric velocity is independent

of, and thus compatible with, all values of the local thermodynamic state.

Let us argue on a more quantitative basis by considering the following situation.
Suppose we have a box made up of two identical compartments A and B, separated by
a partition. We will denote the molecules contained within compartment A as the 4
molecules and the molecules in compartment B as the B molecules. The pressure and
temperature are held constant and no external body forces are acting on the system.
When the partition is removed, the A and B molecules will interdiffuse until equilib-
rium is reached (the number of A molecules in each compartment is the same, and the
number of B molecules in each compartment is the same). We would like to define the

specific internal energy of the system during the approach to equilibrium. One possible
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definition is that the specific internal energy contains all of the energy per unit mass e
of the diffusing molecules except for the specific kinetic energy of the components:
1 2 1 2

where ¢, ¢ are the mass fractions, and v, v, are the average local velocities ot the

A and B molecules, measured with respect to the stationary laboratory frame. Another
possible definition is that the specific internal energy contains all of the energy per unit
mass of the diffusing molecules except for the specific kinetic energy due to the centre

of mass movement:
1 2
u=e-zv (2.40)
where v = ¢, v, + cgvp is the mass average velocity.

The reason we believe that equation (2.39) defines neither the true internal energy,
nor the internal energy which should be used when deriving the Gibbs relation, is
because we did not say the A and B molecules and the could not be of the same type.
Let us suppose that they are the same type. Even though they are the same fype of mol-
ecules, the A molecules are a different set of molecules from the B molecules, and
when the partition is removed, they are going to interdiffuse until the numbers in each
compartment are the same. However, it is impossible for us to distinguish between

them, and we say that the specific internal energy of the system remains constant and

equal to e. Only the specific internal energy defined by equation (2.40) satisfies such a

requirement; therefore, u* cannot be the true specific internal energy.

2.3.3 Entropy Balance Equation

To find the substantial entropy balance equation, we may insert the substantial
internal energy, specific volume and mass fraction balance equations, (2.27), (2.13)
and (2.10), along with equations (2.28) and (2.29), into the Gibbs relation, equation
(2.32) to yield, using also equation (B.13) and the chain rule,
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p%: = _V.J+q,, (2.41)

where the entropy flux J is given by

1

and the entropy production term 6, is given by

G, = —#Jq-VT—l I.(TVET-'-Fl)—%,lz-(TVELTE-FZ). (2.43)
Equation (2.41) describes the rate of change of the specific entropy of a mass element
as the centre of mass of the element moves at the barycentric velocity within the con-
tinuum. Combined with equations (2.42) and (2.43), equation (2.41) is equivalent to
equation (II1.19) on page 24 of Non-Equilibrium Thermodynamics [deGroot, 1962],
in the absence of chemical reactions and effects due to viscosity. The form of the
entropy production term, equation (2.43), will suggest a semi-empirical (phenomeno-
logical) constitutive relation for the diffusive flux near equilibrium in a binary system
in which chemical potential gradients and external body forces exist, as we will see in

the next section.

2.4 Diffusive Flux

The expression for the rate of entropy production per unit volume obtained in the
previous section can be simplified somewhat by noting that some of the terms are not

independent. In light of equation (C.66) we may write

Vu, = -5, VT+Va,, (k=1,2), (2.44)

where s, is the partial specific entropy of the it component and the subscript T indi-

cates that the gradient is taken at constant temperature. Using equations (2.44) and
(B.13), we may separate equation (2.43) into terms that are proportional to a tempera-

ture gradient and terms that are not:
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l 1

The quantity &, appearing in equation (2.45) is the partial specific enthalpy of the Kh
component:
hy = Ts,+,, (k=1,2). (2.46)
The diffusive fluxes J, and J, are not independent. Using equations (2.11), (2.8),
(2.7) and (2.6), we may write
J+J, = 0. (2.47)

Using (2.47), equation (2.45) may be written

® =~ ), VT-J, (Vo = Vet Fy + Fy) (2.48)

where @, the dissipation function, is a measure of the energy dissipated within the sys-

tem due to irreversible processes:

® =To,. (2.49)

s

We have defined the heat flux J.' by

Combined with (2.49), equation (2.48) is equivalent to equation (IV.13) on page 33 of
Non-Equilibrium Thermodynamics [de Groot, 1962], in the absence of chemical

reactions and viscous effects.

Studying equation (2.48), we see that energy is being dissipated due to conduction

and diffusion phenomena. The dissipation function consists of the summation of a con-
ductive flux J// multiplied by the temperature gradient, and a diffusive flux J, multi-

plied by chemical potential gradients and body forces. These gradients and forces are
often called thermodynamic forces or affinities [de Groot, 1962, p25]. It is known from
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experiment that the presence of an affinity in a system will cause a flux, and many con-
stitutive equations exist in the form of a flux written as a linear function of an affinity.
Two examples are Fick’s law of diffusion, which applies to systems in which the only
affinity present is a concentration gradient, and Fourier’s law of heat conduction,
which applies to systems in which the only affinity present is a temperature gradient. It
is also known from experiment that cross-phenomena can occur; for example, the pres-
ence of a concentration gradient can give rise to a heat tlux (Dutour effect) and the

presence of a temperature gradient can give rise to a diffusive flux (Soret etfect). In

equation (2.48), there are two independent fluxes, J,' and J, , and two independent

affinities, —-;-,V T and -(Vu, -V, - F, + F,). Assuming that the tluxes and affin-

ities appearing in the entropy production term represent the actual fluxes and atfinities
occurring within the system, and noting that at equilibrium all fluxes are zero. it seems
reasonable, near equilibrium, to approximate the fluxes as linear functions of the atfin-

ities:

1
J, = -i,DITVT—L(VTul -V, - F, +Fy), (2.51)
, 1

where the scalar proportionality factors Dlr, L, D; and L q are called phenomenologi-

cal coefficients. Equations (2.51) and (2.52) are general constitutive relations describ-
ing the heat and diffusion fluxes in a binary system and are equivalent to equations
(TV.14) and (IV.15) on page 33 of Non-Equilibrium Thermodynamics [de Groot,
1962].

2.5 Complete Theory

In this section, we will obtain a set of differential equations that, given sufficient

thermodynamic and hydrodynamic data, is capable of completely determining the tem-
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poral behaviour of our system. The independent differential equations available to us

are the mass balance equations: t

Dc,

P57 = -V.-J,, (2.53)
and

p% =V.v, (2.54)

the momentum balance equation:

D

051; = -Vp+p F +p,F,, (2.55)

and the entropy balance equation:

1 H )

p%=—-;-,V-.Iq+?ll-F|+%,12-F2+—T1V-J|+7’V-J2 (2.56)

Equation (2.53) is equation (2.10); equation (2.54) is equation (2.13); equation (2.55) is
equation (2.15), combined with equations (2.16), (2.17) and (B.18); and, equation
(2.56) is equation (2.41), combined with equations (2.42), (2.43), (B.13) and the chain
rule. These equations may be supplemented by the constitutive relations, equations

(2.51) and (2.52).

Equation (2.56) is not particularly useful to us in its present form, as the entropy is
difficult to work with in practical applications. However, recall that the entropy bal-
ance equation was obtained by using the differential Gibbs relation, equation (C.9), to
replace the internal energy balance equation with a balance equation for the entropy.

We may use a similar procedure to replace the entropy balance equation with a balance

equation for the pressure. Let us choose {7, p, M|, M, } as the independent variables

'! The mass balance equations (2.10) for component | and 2 are equivalent; only one of them is an inde-
pendent equation. This may be verified by using equations (2.9) and (2.47).
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describing the entropy rather than {U, V, M|, M, }. 12 This alternative functional form
for the entropy yields equation (C.27), an expression analogous to the Gibbs relation:

D
Dt TDt p Dt Dt =Dt

where ¢, is the specific heat capacity at constant pressure and a.,, is the coefticient of

thermal expansion. Inserting equations (2.53) and (2.56) into equation (2.57), and

using equation (2.46), yields a balance equation for the pressure:

D DT

Equation (2.58) is equivalent to equation (F) of Table 18.3-1 on page 562 of Trans-
port Phenomena [Bird, 1960], in the absence of chemical reactions and viscous

flow. 13

Within the systems studied in this work, we will be assuming that mechanical equi-

librium has been reached: !4

Dv

= 2
2 - o, (2.59)

and that the temperature remains constant and uniform:

I2Note that we have implicitly made this choice already in Section 2.4 by using equation (C.66).
13 See Appendix A.2 on page 125.

14 By assuming the system has reached mechanical equilibrium, we are assuming that barycentric accel-
erations within the system are small. We do not assume these accelerations are zero, because the con-
centration polarization layers of the filtration systems studied in this work will rearrange themselves
over time, causing accelerations to occur. However, we are assuming that the acceleration term in the
momentum balance equation (2.55) can be neglected with respect to the pressure gradient and the
external body forces. de Groot notes that “in the cases of diffusion or thermal diffusion in closed ves-
sels one can safely assume that a state of mechanical equilibrium . . . is quickly realized to a sufficient
approximation” [de Groot, 1962, p44]. de Groot was considering only ordinary diffusion experiments
and not filtration, or forced diffusion, experiments; however, Haase [1969, p230] points out that in
“slow processes such as diffusion, heat conduction, slow chemical reactions, etc., . . . 'local mechani-
cal equilibrium’, i.e. the disappearance of the barycentric acceleration, is approximately satisfied, cor-
responding to the neglection of inertial forces.” Given the low flowrates used in most dead-end
filtration experiments, we will assume that barycentric accelerations and inertial forces may be
neglected.
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DT _

VT = 0. .60
D 0, T=20 (2.60)

Under these conditions, our system of independent equations, (2.53), (2.54), (2.55) and

(2.58), may be written

—=_V. 2
P5; v.-J, (2.61)
Dv _ ¢
o5 = Vv, (2.62)
0 =-Vp+p,F +p,F,, (2.63)
D '

Also, the constitutive relations (2.51) and (2.52) reduce to

J, = -L(V,-Vii, -F | + F,), (2.65)

J) = LV, -V, ~ F + F,). (2.66)

Equation (2.64) was obtained by combining equations (2.50), (2.60), (B.13) and (2.47)
with equation (2.58). Equations (2.61) through (2.66) may be used to model the behav-

iour of any system satistying the following assumptions.

In deriving the above set of differential equations we have assumed that the system
is a fluid which can be modelled as an isotropic continuum (page 19). We have
neglected chemical reactions (page 21) and viscous flow (page 22). Further, we
assumed that we can apply equilibrium thermodynamical concepts to a mass element
in local equilibrium as the element moves within the continuum (page 26), and we
assumed that the system is sufficiently near equilibrium that we can write the diffusive
flux as a linear function of the affinities (page 34). Finally, we assumed that mechani-

cal equilibrium has been reached and that the temperature is constant (page 36).

Equation (2.65), or an equivalent expression, has been used to study ordinary dif-

fusion, sedimentation and permeation experiments [Onsager, 1932; deGroot, 1952;
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Hooyman, 1953; Vink, 1961; Mijnlieff, 1971; McDonnell, 1980]. In the next few sec-
tions, we will review how nonequilibrium thermodynamics has been applied to the

above experimental situations as this will yield useful relations between the phenome-
nological coefficient L, the diffusion coefficient D, the sedimentation coefficient s and

the permeation coefficient .

2.6 Applications

2.6.1 Ordinary Diffusion

This section follows the discussion of ordinary diffusion given by Hooyman, Hol-
ton, Mazur and de Groot [1953]. In ordinary diffusion experiments pertormed to meas-
ure diffusion coefficients, it is assumed, in addition to the assumptions summarized

after equation (2.65), that there are negligible body forces acting on the system:
F, =0, (k=12). (2.67)
Using equation (2.67), we see that the momentum balance equation (2.63) reduces to

Vp = 0. (2.68)

Using equations (2.68) and (2.67), we see that the expression for the diffusive flux,

equation (2.65), reduces to

J, = —L(Vr,plll —thpz), (2.69)

where the subscripts T and p indicate that the gradient is taken at constant temperature
and pressure. At constant temperature and pressure, the Gibbs-Duhem relation, equa-

tion (C.38), may be written

plvT,pul +P2Vr,pliz =0; (2.70)

therefore, equation (2.69) becomes, using also equation (2.7),

L
Jl = —C—’,VT,pl,l,[. (271)
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Thus, in an ordinary diffusion experiment, the diftfusive flux is a linear function of the

constant temperature and pressure chemical potential gradient.

In a binary system at constant temperature and pressure, a chemical potential gra-

dient may be written, using equation (C.66),

d
Vo = (15) Ve,. 2.72)
' dcy /1 »
Inserting equation (2.72) into (2.71) yields
)
J|=—§(§?) Ve,. 2.73)
NOC /T p

Fick’s law, an empirical expression which describes flow in systems undergoing ordi-
nary diffusion, may be written [Hooyman, 1953, p1104, equation (66)]

where D is the diffusion coefficient (diffusivity). Comparing equation (2.73) with
(2.74) yields a relation between the phenomenological coetficient and the diffusion

coefficient:

9!
L= Czp(a_cl)T,p

Equation (2.75) is equivalent to equation (72) on page 1105 of the paper by Hooyman

D. (2.75)

et al. [1953].1°

Note that, by using equation (2.75), we can write the general expression for the dif-
fusive flux, equation (2.65), in terms of the more familiar diffusion coefficient rather
than the phenomenological coefficient:

o, Y

I
J, = —czp(— DV, -V, —F +F,). (2.76)
acl}T,p

15 See Appendix A.3 on page 127.
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Equation (2.76) is equivalent to equation (18.4-14), a general expression for the diffu-
sive flux in a binary system given on page 568 of Transport Phenomena [Bird, 1960],

in the absence of temperature gradients.16

Sometimes friction coefficients are used to describe ordinary diffusion experi-
ments rather than diffusion coefficients. A binary friction coefficient f may be defined
by a relation of the form [Lamm, 1957, Laity, 1959; Bearman, 1961}

flvi—=vy) = —plvnpul. (2.77)

Let us find a relation between f and L . Using equations (2.6} and (2.9), equation (2.11)

may be written, for component |,
Thus, equation (2.71) may be written
L
piea(vy—vy) = —=V, oM (2.79)
Cz '

Comparing equation (2.79) with equation (2.77) yields a relation between the friction

coefficient / and the phenomenological coefficient L :

_(pey)’

f

Note that, by using equations (2.80) and (2.78), equation (2.65) may be written in

L (2.80)

the form of a force balance:

fv,=vy) = —p1co(Vep =V, - F + F,). (2.81)

Equation (2.81) is equivalent to equation (18.4-14) of Transport Phenomena [Bird,

1960], in the absence of temperature gradio:nts.l7 The left hand side of equation (2.81)

16 See Appendix A.4 on page 127.
17 See Appendix A.4 on page 127.
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may be interpreted as a frictional force and the right hand side is the opposing thermo-
dynamic force in a system satisfying the assumptions summarized after equation
(2.65). Equations (2.76) and (2.81) are two equivalent expressions for the diffusive
flux; using equation (2.78), these equations may be combined to yield a relation

between the friction coefficient and the diffusion coefficient:

Plclcz(aul)
D = — . 2.82
f \9de T.p (2.82)

2.6.2 Permeation

This section follows the discussions of permeation given by Vink [1961], Mijnlieff
and Jaspers [1970], and McDonnell and Jamieson [1980]. In ihe nonequilibrium ther-
modynamical treatment of permeation, the membrane is thought to be a component of
the continuum, for example component 2, and the permeate is component 1. It is

assumed that component 2 is held in place,

v, =0, (2.83)

and at uniform concentration,

Ve, =0, (2.84)

F =0. (2.85)

Using equation (2.85), the momentum balance equation (2.63) reduces to

F, = YE. (2.86)
P2

Using equations (2.86), (2.85), (2.84), (2.83) and (2.78), the general expression for the
diffusive flux, equation (2.65), reduces to

Vo
Jy = cpyvy = “L(Vr,c,ul‘vr,c,l-lz*"-)e), (2.87)
- N 2
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where the subscripts T and ¢, indicate that the gradient is taken at constant tempera-

ture and concentration. At constant temperature and concentration, the Gibbs-Duhem

relation (C.38) may be written, in light of (2.9),

PVr M +p,Vy M2 T Vp. (2.88)

Therefore, equation (2.87) may be written, using equations (2.88), (2.7) and (2.8),

L

Thus, in a permeation experiment, the diffusive flux is a linear function of the constant
temperature and concentration chemical potential gradient. In a binary system with
uniform temperature and concentration, a chemical potential gradient may be written,

using equation (C.66),
VT,c:ul =v,Vp, (2.90)

where v, is the partial specific volume of component 1. By inserting equation (2.90),

equation (2.89) can be written

V)2

2

Darcy’s law, an empirical expression describing flow in porous media, can be writ-

ten [Mijnlieff, 1971, p1841, equation (13)]'®

k
piuv, = —n—le, (2.92)

where & is the permeation coefficient (permeability) of the solute molecules and 1, is

the viscosity of the solvent. Comparing equations (2.91) and (2.92) yields a relation

between the phenomenological coefficient and the permeability:

I8 Note that equation (13) of the paper by Mijnlieff and Jaspers {1971] is missing a minus sign. It is sim-
ply a misprint, though, and does not affect the rest of their paper.
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2
L= (C—’) L (2.93)
v/ My

Equation (2.93) is equivalent to equation (14) on page 1841 of the paper by Mijnlieff

and Jaspers [1971].17

Combining equations (2.75) and (2.93) yields an expression relating D to &:

d
D= —Cl—(ﬁ) £ (2.94)
T.pnl

pu; %

2.6.3 Sedimentation

In this section we will follow the discussions of sedimentation given by Mijnlieff
and Jaspers [1971] and Hooyman, Holton, Mazur and de Groot [1953]. We will be

studying that portion of a sedimenting fluid in which concentration gradients are zero:

Ve, = 0. (2.95)

In the nonequilibrium thermodynamical treatment of sedimentation, it is assumed that

the body forces F, and F, are both equal to the centrifugal force per unit mass acting
on the system:
,
F,=or, k=12), (2.96)

where @ is the angular velocity of the system and r_ is the distance from the axis of

rotation.

Using equations (2.96) and (2.8), the momentum balance equation (2.63) reduces

to

3V

Vp = por._. (2.97)

19 See Appendix A.S on page 133.
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Using equations (2.96) and (2.95), the general expression for the diffusive flux, equa-

tion (2.65), reduces to

Jy= L (VY =V ), (2.98)

where the subscripts T and ¢, indicate that the gradient is taken at constant tempera-

ture and concentration. At constant temperature and concentration, the Gibbs-Duhem

relation (C.38) may be written, in light of (2.9),

PIVr oM +P.Vr My = Vp; (2.99)

therefore, equation (2.98) can be written, using also equations (2.8) and (2.7),

J, = -£(Y£ -V, C:p.z). (2.100)

In a binary system at constant temperature and concentration, the solute chemical

potential gradient can be written, analogously to equation (2.90),

Vel = 0,9p. (2.101)

Inserting (2.101) into (2.100) yields, using also equation (2.97),

J, = -cil(l _pvar,. (2.102)

. : . . X .0
It is assumed in sedimentation experiments that the mean volume velocity v,

defined by

v’ = PIVV; + PaVyvs, (2.103)

is negligible [Hooyman, 1953, p1106]. Therefore, v, and v, are related:

vl = ——v2. (2.104)
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Inserting equation (2.104) into (2.78), and using equation (C.56), the diffusive flux J,

may be written

Jy = Zsa’r (2.105)

s = —=. (2.106)

Inserting equation (2.105) into equation (2.102) yields a relation hetween the phenom-

enological coefficient and the sedimentation coefficient

]

= — 2.107
o (1-puy)’ (2.10m

Equation (2.107) is equivalent to equation (12) on page 1840 of the paper by Mijnlieff
and Jaspers [l97l].20

Combining equations (2.107) and (2.93) yields, using (2.7),

PN .
k = ———g5. 2.108
P21 -puy)’ (2.108)

Using equations (C.56) and (2.8), we may write
(1-pvy) = pi(v;-v,). (2.109)

Inserting (2.109) into (2.108) yields a relation between the permeability 4 and the sedi-

mentation coefficient s :

(2.110)

20 See Appendix A.6 on page 134.
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Equation (2.110) is equivalent to equation (15) of the paper by Mijnlieff and Jaspers
[1971], and is frequently used to estimate the permeability from measurements of the
sedimentation coefficient [Ethier, 1986; Comper, 1989; Kim, 1991]. Combining equa-
tions (2.107) and (2.75) yields a relation between the diffusion coefficient D and the

sedimentation coefficient s :

(2.111)

D= e (aul) :
pv, (1l —pv,)ioc, T '

For very dilute macromolecular solutions, equation (2.111) reduces to the Svedberg

equation of sedimentation.?!

The results of Sections 2.6.1 through 2.6.3 are summarized in Table 2-1. All of the
entries in the table are equivalent to the phenomenological coefficient L; thus, any two
entries can be combined to obtain a relation between the two corresponding empirical
coefficients. The bottom row indicates the page at which each of the relationships to L

were presented.

Table 2-1 Phenomenological Coefficient Relations

Phenomenological Diffusion Friction Permeation Sedimentation
Coefficient Coefficient Coefficient Coefficient Coefficient
() (D) ) (k) )

o, (pl::z)2 €2\ cicy .
L (1) ""(acl)r,,,” @ == 0| G5 9| soey ©
page 39 page 40 page 43 page 45

By applying the appropriate boundary conditions to equation (2.65), and by com-
paring the resulting expression with the appropriate constitutive equation, we have

found relations between the phenomenological coefficient L , the diffusion coefficient

D, the friction coefficient f, the permeability k and the sedimentation coefficient 5.

2l See Appendix A.7 on page 135.
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The procedure used in Sections 2.6.1 through 2.6.3 may analogously be used to find
relations between D, f, k or 5 and any other coefficient for which an empirical consti-
tutive equation exists to describe flow in a system satisfying the assumptions summa-
rized after equation (2.65). Such relations are quite useful because accurate
measurements of any one of these coefficients, for example the sedimentation coeffi-
cient, will in principle allow one to calculate all of the other coefficients. Experimental
tests of these relations have been performed by several groups [Phillies, 1976; Wij-
mans, 1985; Comper, 1986]. In Chapter 5 we will test the relation between the sedi-
mentation coefficient and the diffusion coefficient using experimental data for the

protein bovine serum albumin (BSA).

In Chapter 2, we have obtained a complete model which is capable, in principle, ot
describing any system satisfying the assumptions summarized after equation (2.65). In
Chapter 3, we will make some further assumptions allowing us to obtain a complete
model of a concentration polarization layer within a dead-end filtration system. Given
the relevant boundary and initial conditions, and provided that experimental measure-
ments or theoretical models of the necessary thermodynamic and hydrodynamic coeffi-
cients are available, this model will be capable of describing the temporal behaviour of
any concentration polarization layer, regardless of the physicochemical properties of

the solute molecules.



48

References

Baranowski, B., Non-Equilibrium Thermodynamics as Applied to Membrane Trans-

port, Journal of Membrane Science, 57, p119, 1991.

Bearman, R. J. and J. G Kirkwood, Statistical Mechanics of Transport Processes. XI.
Equations of Transport in Multicomponent Systems, Journal of Chemical Physics,

28, p136, 1958.

Bearman, R. J., On the Molecular Basis of some Current Theories of Diffusion, Jour-

nal of Physical Chemistry, 65, p1961, 1961.

Bird, R. B., W. E. Stewart and E. N. Lightfoot, Transport Phenomena, John Wiley &
Sons, Inc., New York, 1960.

Bird, R. B., C. F. Curtiss and J. O. Hirschfelder, Fluid Mechanics and the Transport
Phenomena, Chemical Engineering Progress. Symposium Series, No. 16, 51, p69,

1955.

Boulanouar, I., S. Nicolas and B. Bariou, Ultrafiltration and Reverse Osmosis in
Unstirred Batch Cell of Charged Solutes (Protein, Salts) with Total Retention,
Desalination, 104, p83, 1996.

Callen, H. B., Thermodynamics and an Introduction to Thermostatics, 2" B4 John
Wiley & Sons, Inc., New York, 1985.

Comper, W. D., B. N. Preston and P. Daivis, The Approach of Mutual Diffusion Coef-
ficients to Molecular Weight Independence in Semidilute Solutions of Polydis-

perse Dextran Fractions, Journal of Physical Chemistry, 90, p128, 1986.

Comper, W. D. and O. Zamparo, Hydraulic Conductivity of Polymer Matrices, Bio-
physical Chemistry, 34, p127, 1989.



49
de Groot, S., P. Mazur and J. T. G Overbeek, Nonequilibrium Thermodynamics of the
Sedimentation Potential and Electrophoresis, Journal of Chemical Physics, 20,

p1825, 1952.

de Groot, S. and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland Publish-
ing Co., Amsterdam, 1962.

Dejmek. P., Concentration Polarization in Ultrafiltration of Macromolecules, Ph.D.

Thesis, Lund Institute of Technology, Sweden, 1975.

Eckart, C., The Thermodynamics of Irreversible Processes I1. Fluid Mixtures, Physical
Review, 58, p269, 1940.

Ethier, C. R., The Hydrodynamic Resistance of Hyaluronic Acid: Estimates from Sedi-
mentation Studies, Biorheology, 23, p99, 1986.

Fitts, D. D., Nonequilibrium Thermodynamics, McGraw-Hill, New York, 1962.

Gowman, L. M., An Experimental Study of Concentration Polarization and Diffusivity
of Hyaluronate in Dead-End Ultrafiltration, Ph.D. Thesis, University of Toronto,
Canada, 1996.

Gyarmati, 1., Non-Equilibrium Thermodynamics Field Theory and Variational Princi-
ple, Springer, New York, 1970.

Haase, R., Thermodynamics of Irreversible Processes, Addison-Wesley Publishing
Company, Great Britain, 1969.

Hirschfelder, J. O., C. F. Curtiss and R. B. Bird, Molecular Theory of Gases and Lig-
uids, John Wiley & Sons, Inc., New York, 1954, revised 1964.

Hooyman, G. J., H. Holton Jr, P. Mazur and S. R. de Groot, Thermodynamics of Irre-
versible Processes in Rotating Systems, Physica, 19, p1095, 1953.



50

Irving, J. H. and J. G Kirkwood, The Statistical Mechanical Theory of Transport Proc-
esses. [V. The Equations of Hydrodynamics, Journal of Chemical Physics, 18,
p817, 1950.

Johnson, M., R. Kamm, C. R. Ethier and T. Pedley, Scaling Laws and the Effects of
Concentration Polarization on the Permeability of Hyaluronic Acid, Physicochem-

ical Hydrodynamics, 9, p427, 1987.

Katchalsky, A. and P. F. Curran, Nonequilibrium Thermodynamics in Biophysics, Pres-
ident and Harvard University Press, USA, 1975.

Kim, A.. C. Wang, M. Johnson and R. Kamm, The Specific Hydraulic Conductivity of
Bovine Serum Albumin, Biorheology, 28, p401, 1991.

Kirkwood, J. G and B. Crawtord, Jr., The Macroscopic Equations of Transport, Jour-
nal of Physical Chemistry, 56, p1048, 1952.

Landau, L. D. and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, USA, 1959.

Laity, R. W., An Application of Irreversible Thermodynamics to the Study of Diffu-
sion, Journal of Physical Chemistry, 63, p80, 1959.

Lamm, O., The Force and Friction Conception in the Diffusion of Multicomponent

Systems, Acta Chemica Scandinavica, 11, p362, 1957.

Malvem, L. E., Introduction to the Mechanics of a Continuous Medium, Prentice-Hall,

Inc., 1969.

Mason, E. A. and H. K. Lonsdale, Statistical-Mechanical Theory of Membrane Trans-
port, Journal of Membrane Science, 51, pl, 1990.

McDonnell, M. C. and A. M. Jamieson, Application of the Porous-Sphere Hydrody-
namical Model to Dilute Polymer Solutions, Journal of Polymer Science: Polymer

Physics Edition, 18, p1781, 1980.



51

Merten, U., Flow Relationships in Reverse Osmosis, Industrial and Engineering

Chemistry Fundamentals, 2, p229, 1963.

Mijnlieff, P. F. and W. J. M. Jaspers, Solvent Permeability of Dissolved Polymer Mate-
rial. Its Direct Determination from Sedimentation Measurements, Transactions of

the Faraday Society, 67, p1837, 1971.

Miyazaki, K., K. Kitihara and D. Bedeaux, Nonequilibrium Thermodynamics of Multi-
component Systems, Physica A, 230, p600, 1996.

Nettleton, R. E. and S. L. Sobolev, Application of Extended Thermodynamics to
Chemical, Rheological and Transport Processes: A Special Survey Part 1.
Approaches and Scalar Rate Processes, Journal of Non-Equilibrium Thermody-

namics, 20, p205, 1995.

Onsager, L. and R. M. Fuoss, Irreversible Processes in Electrolytes. Diffusion, Con-
ductance, and Viscous Flow in Arbitrary Mixtures of Strong Electrolytes, Journal
of Physical Chemistry, 36, p2689, 1932.

Phillies, G. D. J., G. B. Benedek and N. A. Mazer, Diffusion in Protein Solutions at
High Concentrations: A Study by Quasielastic Light Scattering Spectroscopy,
Journal of Chemical Physics, 65, p1883, 1976.

Porter, M. C., Concentration Polarization with Membrane Ultrafiltration, /ndustrial
and Engineering Chemistry. Product Research and Development, 11, No. 3, p234,
1972.

Prigogine, I., Etude Thermodynamique Des Phenomenes Irreversibles, Dunod, Paris,
1947.

Slattery, J. C., Momentum, Energy, and Mass Transfer in Continua, McGraw-Hill,
USA, 1972.

Truesdell, C. and R. A. Toupin, The Classical Field Theories, Encyclopedia of Physics,
311, p226, 1960.



52

Vink, H., Diffusion in Porous Media, Arkiv foer Kemi, 17, p311, 1961.

Vink, H., Thermodynamic Treatment of Membrane Processes, Zeitschrift fur Physika-
lische Chemie Neue Folge, 71, p51, 1970.

Wales, M. Pressure Drop Across Polarization Layers in Ultrafiltration, American

Chemical Society. Symposium Series, 154, p159, 1981.
Whitaker, S., Introduction to Fluid Mechanics, Prentice-Hall, Inc., USA, 1968.

Wijmans, J. G, S. Nakao, J. W. A. van den Berg, F. R. Troelstra and C. A. Smolders,
Hydrodynamic Resistance of Concentration Polarization Boundary Layers in

Ultrafiltration, Journal of Membrane Science, 22, p117, 1985.



53

Chapter 3

Concentration Polarization

3.1 Introduction

[n this chapter, we will use the results of Chapter 2 in order to study the phenome-
non of concentration polarization in dead-end filtration systems. Our model will only
apply to binary concentration polarization layers formed above the membrane ot bulk
filtration systems; we will neither attempt to analyse cross-flow filtration systems, nor
the membrane phase of dead-end filtration systems, nor any adsorption layers which
arise due to membrane-solute interactions. The model could conceivably be extended
to account for the above phenomena; however, such a generalization is beyond this the-

sis, as it would require a three component system with viscous flow taken into account.

3.2 Diffusive Flux

In this section, we will apply the boundary conditions of a dead-end filtration
experiment to the general constitutive relation, equation (2.65), and use the relations
obtained in Sections 2.6.1 through 2.6.3, in order to obtain a constitutive relation capa-
ble of describing flow within a binary concentration polarization layer. We will
assume, in addition to the assumptions summarized after equation (2.66), that any body
forces acting on the solvent are negligible (gravitational effects are not significant in

ultrafiltration):

F, = 0. @3.1)

However, as noted by Kozinski and Lightfoot [1972], the solute molecules in the con-

centration polarization layer may “transmit a body force from the membrane,” causing

F, to be non-zero. Using equation (3.1), the momentum balance equation (2.63)

reduces to
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p,F, = Vp. (3.2)

Using equations (3.2) and (3.1), the general constitutive relations (2.65) and (2.66) may

be written

v
J, = —L(VTuI—VTu2+T)£), (3.3)
2
J' = <L (Vo -V, + 2 (3.4)
q q TH| TH2 P ’ :

where the subscript T indicates that the gradient is taken at constant temperature. At

constant temperature, the Gibbs-Duhem relation (C.38) may be written

PV +p,V, = Vp, (3.5)

therefore, equations (3.3) and (3.4) become, using also equations (2.8) and (2.7),

2
L

Thus, the diffusive flux J, and the heat flux J. q' within an isothermal concentration

polarization layer are linear functions of the constant temperature chemical potential

gradient. Equation (3.6) is equivalent to equation (7) of the 1972 paper by Kozinski

and Lightfoot.! Kozinski and Lightfoot were unable to use equation (7) of their paper
due to a lack of experimental data for the phenomenological coefficient; therefore, dur-
ing the rest of their analysis, they neglected pressure gradients within the concentration
polarization layer. In the following paragraphs of this section, we will show how equa-
tion (3.6) may be written in several forms that are directly usable, given thermody-

namic and hydrodynamic data currently available in the literature.

I See Appendix A.8 on page 137.
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Equation (3.6) can be written in several more useful and meaningful forms by
employing the relations summarized in Table 2-1; we will derive three different forms
below, although many others are possible. We will write equation (3.6) in terms of the
diffusion coefficient D and the permeability k first, as this will be beneficial from a
conceptual point of view. In a binary system at constant temperature, a chemical poten-

tial gradient can be written, using equation (C.66),

Vo, = ad
™ = D[Vp+(— Ve,. (3.8)
dc, T.p

Inserting equation (3.8) into equation (3.6) yields

c,\dc)

0
J, = ——L-( “‘) Ve, —L(Bl)Vp . (3.9)
T.p )

Now we may use the equations relating L to D and L to k that we obtained while study-
ing ordinary diffusion and permeation. Inserting entries (2) and (4) of Table 2-1 into
equation (3.9) yields an expression which reduces to Fick’s law in the absence of pres-
sure gradients, and to Darcy’s law for a stationary solute with no concentration gradi-

ents:

_ ¢ k
J, = —pDVc,-D—m—[Vp. (3.10)

Equation (3.10) is very appealing conceptually in that it reflects the fact that a macro-
molecular or colloidal concentration polarization layer has properties of both a region
undergoing ordinary diffusion and a porous medium. Note that, if the concentration
polarization layer contains solute particles that are large enough for Brownian, or Fick-
ian, diffusion processes to be neglected (for example fine clay particles or large col-
loids), but still contains concentration (porosity) gradients, equation (3.10) reduces to

the Shirato equation of compressible cake filtration [Shirato, 1969; Tiller, 1975;
Nakakura, 1997].2

2 See Appendix A.9 on page 141.
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We can alternatively write equation (3.6) in terms of the permeability and the
osmotic pressure gradient. Using equation (C.97), the constant temperature chemical

potential gradient may be written

Vi, =v,Vp-v, Vi, (3.11)

where T is the osmotic pressure of the solvent. Inserting equation (3.11) into equation

(3.6) yields

v
J, = —L(C—:)(Vp V1), (3.12)

Inserting entry (4) of Table 2-1 into equation (3.12) yields another possible form of

equation (3.6), written in terms of the permeability and the osmotic pressure gradient:

= (2\£ vy, _
J, = (Uljnlwp v.1). (3.13)

Note that, if the system has reached a steady state in which the solute is stationary

(v, = 0), equation (3.13) may be written, using equations (2.11), (2.6) and (2.9),

Voa =~ (Vp- V), (3.14)
m
where v, is the volume velocity of the solvent moving through the stationary solute:

Vpa = PV - (3.15)

Equation (3.14) has been used before to study flow within macromolecular concentra-
tion polarization layers and is called the modified Darcy s law [Kim, 1991; Gowman,
1997]. Equation (3.13), then, is a generalization of the modified Darcy’s law to sys-
tems in which the solute may be moving. As we will see in Section 5.2.3, some anoma-
lous results obtained while studying an ultrafiltration system of bovine serum aibumin
(BSA) [Kim, 1991] can be explained by the fact that the modified Darcy’s law was

used within a system in which the solute was not stationary.
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Although equations (3.10) and (3.13) are very appealing forms of equation (3.6), in
that equation (3.10) is a combination of Fick’s law and Darcy’s law, and equation
(3.13) is a generalization of the modified Darcy’s law, accurate measurements of the
permeability or the diffusion coefficient of macromolecules in solution are difficult to
obtain; therefore, it will be beneficial to look at one more possible form of equation

(3.6). Perhaps the easiest of the coefficients in Table 2-1 to measure is the sedimenta-
tion coefficient s. Thus, from an experimental point of view, we would like to write
equation (3.6) in terms of 5 . Inserting entry (5) of Table 2-1 into equation (3.12), and
using equations (C.56), (2.8), (2.7) and (2.14), yields a constitutive relation for the dif-
fusive flux in a binary, macromolecular concentration polarization layer, written in

terms of the sedimentation coefficient:

B I _
J, = Dl_Uzs(Vp V). (3.16)

3.3 Complete Model of Concentration Polarization

In Section 3.2 we obtained a constitutive relation, equation (3.10), applicable

within the concentration polarization layer of a dead-end filtration system, by assum-
ing, in addition to the assumptions summarized after equation (2.66), that F, is zero,
but that a non-zero body force F, arises within the system due to the restraining force

exerted by the membrane. The balance equations describing our system, (2.61) through

(2.64), may now be combined to yield

Dc,
p—Dt =-V.J, 3.17)
Dy _ g
th =V.v, (3.18)
1
Tap%E; = V~Jq'+.ll -(VThl—VTh2+EVp). (3.19)

These equations may be supplemented by the constitutive relations (3.10) and (3.7),
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J, = —pDVe, - 2%y (3.20)
1 p 1 D[nl pv .
oL
J, = _chvrul. (3.21)

Given the relevant boundary and initial conditions, along with experimental measure-
ments or theoretical models of the necessary hydrodynamic and thermodynamic coeffi-
cients, equations (3.17) through (3.21) should, in principle, be capable of completely
describing the temporal behaviour of any binary concentration polarization layer
within a dead-end filtration system, regardless of the physicochemical properties of the
solute molecules. Such a concentration polarization layer must, however, satisfy the
assumptions summarized after equation (2.66) (cross-flow systems and adsorption lay-
ers cannot be modelled by the above equations). At present. equations (3.17) through

(3.21) are quite complex and are not in a form that is suitable for direct experimental

use.3 It may be possible to considerably simplify the above system using the fact that

the density is often considered constant in ultrafiltration systems [Trettin, 1980; Vilker,

1981; Gowman, 1996], and that the Dufour effect is often negligible (L g = 0), at least
within liquid systems [Bird, 1955, p77; Bird, 1960, p566; de Groot, 1962, p279]. How-

ever, further analysis is required. Note that, within systems in which the pressure and
density may be considered constant, and in which the Dufour effect is negligibie, equa-
tions (3.17) through (3.21), along with (2.12), (2.9) and (2.7), reduce to the familiar

convective-diffusion equation:

d
% +v-Vp, = V.-DVp,. (3.22)

This completes our analysis of concentration polarization. In Chapter § we will attempt

to apply some of what we have learned to actual experimental systems.

3 Except for equation (3.20), see Section 5.3.2. In order to obtain a complete and useable model of an
experimental ultrafiltration system, a description of the membrane phase in the presence of a concen-
tration polarization layer is also required. It should not be too difficult to extend existing theories of
membrane transport [Mason, 1990; Baranowski, 1991] to allow for the presence of a concentration
polarization layer above the membrane (see Section 5.2.2).
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Chapter 4

Literature Critique

4.1 Introduction

As we discussed in Chapter 1, a macromolecular or colloidal concentration polari-
zation layer has properties of both a region undergoing ordinary diffusion and a porous
medium. Thus, pressure gradients and concentration gradients can be maintained
within the system at the same time. Further, since pressure gradients and concentration
gradients are independent driving forces for diffusive flow, a constitutive relation
describing flow within a macromolecular concentration polarization layer should con-
tain terms related to both gradients. The above sentiments were articulated quite clearly
by Kozinski and Lightfoot in 1972. “The ultrafiltration of materials, like proteins, rep-
resents a situation intermediate between the purely diffusional behaviour encountered
in reverse osmosis and the purely hydrodynamic nature of ordinary filtration. . . . [I]n
concentrated solutions the pressure gradient cannot be neglected” [Kozinski, 1972,
p1032]. In Section 3.1 we made certain assumptions allowing us to derive a constitu-
tive relation applicable within a macromolecular concentration polarization layer;
Kozinski and Lightfoot, in the first part of their 1972 paper, make essentially the same

assumptions:

1. In reverse osmosis, the boundary layer is treated as an ideal dilute solution for which the pressure
gradient will be zero. [The general constitutive relation describing flow] then simplifies to the

familiar form of Fick’s law for a binary solution.

2. In mechanical filtration, the solute is deposited or precipitates at the boundary. These restrained
solutes can now transmit an equivalent body force from the supported membrane. In addition, the
gradient in chemical potential approaches zero as the solute becomes totally immobilized. The
coefficient of the pressure gradient is now the hydrodynamic resistance of this sludge layer and can

be obtained from conventional expressions for flow through porous media.
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3. In ultrafiltration, both effects can be important since proteins in solution behave both as hydrody-
namic particles of finite size and as part of the continuum. At low levels of polarization, chemical
potentials predominate as in reverse osmosis. At high levels of polarization the protein precipitates

or gels and hydrodynamic potentials predominate as in ordinary filtration.

The most interesting condition is that of highly concentrated solutions which have not gelled. The
protein molecules may still to a degree transmit a body force from the membrane, but the chemical

potential gradient is not zero.

Note that when Kozinski and Lightfoot use the phrase *‘chemical potential” they are
speaking of the concentration-dependent part of the chemical potential only (essen-
tially the osmotic pressure). Hence the statement, “the gradient in chemical potential
approaches zero as the solute becomes totally immobilized,” refers only to the osmotic

pressure gradient. The total chemical potential gradient would not be zero in such a sit-

uation as it contains a term related to the pressure gradient.!

Kozinski and Lightfoct were unable to use their general expression for the diffu-
sive flux, due to “insutficient thermodynamic data.” Instead, they assumed ordinary
Fickian diffusion throughout the rest of their paper. Almost all subsequent analyses of
macromolecular concentration polarization either assume from the beginning that the
layer is a region undergoing “purely diffusional behavior” and employ Fick’s law or
that the layer is a region undergoing “mechanical filtration” and employ Darcy’s law.
For an extensive review of the various theories of macromolecular concentration polar-

ization, see the paper by Bowen and Jenner [1995a].

Most theories assume a priori that either Fick’s law or Darcy’s law may be applied
within the layer; however, several theorists have published papers claiming to prove
that the pressure is constant within macromolecular concentration polarization layers
[Wales, 1981; Wijmans, 1985; Johnson, 1987]. The end result has been considerable
uncertainty concerning what assumptions or equations may or may not be applied

when modelling a macromolecular concentration polarization layer. In this chapter, we

I'See Section C.4 on page 161.
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will first take a look at a recent paper which exemplifies the present state of confusion
[Jonsson, 1996], and then show how the one basic mistake made in that paper -- realiz-
ing that the pressure likely varies within macromolecular concentration polarization
layers, but using equations that are only valid within constant pressure systems -- can
also explain why several authors came to the conclusion that pressure gradients are

Z€ro.

4.2 Critique of some Theories in the Literature

4.2.1 Jonsson and Jonsson [1996]

The main goal of Jonsson and Jonsson’s paper is to derive an expression for the
steady state diffusive flux within a binary, colloidal concentration polarization layer by
performing a force balance. “Concentrating on a single particle, the force balance gives

Fff= F,f (4.1)

where F; is the mean frictional force and F o is the mean thermodynamic force on the

particle” [Jonsson, 1996, p506]. That such a force balance should exist within the layer

at steady state seems reasonable. However, problems arise when one attempts to deter-

mine the form for F " and F o The frictional force is relatively straightforward; one

may assume that, for low velocities, F, Vi is a linear function of the velocity difference

between the solute and solvent. Determining the appropriate thermodynamic force,
though, is more difficult. Jonsson and Jonsson, following Atkins [1990, p761], suggest
that the proper thermodynamic force is the constant temperature and pressure chemical
potential gradient, essentially the osmotic pressure gradient. But Atkins clearly states
that such a form for the thermodynamic force is only valid within systems at constant
temperature and pressure. So, by proposing such a thermodynamic force, Jonsson and
Jonsson are implicitly assuming that pressure gradients and temperature gradients are
zero within colloidal concentration polarization layers. This is the main mistake of
their paper, as there is no reason to assume that the pressure is constant; in fact, Jonsson

and Jonsson suggest that the pressure should drop across “stable, very concentrated”
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layers [Jonsson, 1996, p507] and entire theories of colloidal concentration polarization
have been developed under the assumption that Darcy’s law applies within the layer
[Reihanian, 1983; Chudacek, 1984; McDonogh, 1984; Iritani, 1991; McDonogh, 1992;
Bowen, 1995b; Bowen, 1996b; Mukai, 1997; Nakakura, 1997; Huisman, 1998]. As we
will see later, all of the authors attempting to prove that pressure gradients are zero in
macromolecular concentration polarization layers make a similar mistake at some

point in their derivation.

Before continuing on, we note that Jonsson and Jonsson incorrectly suggest that
their force balance is a generalization of Fick’s law. “A serious shortcoming of [Fick’s
law] is that the diffusive flow is written as (—DdC/dx) . This representation of the dif-
fusive flow can be used only for solutions with noninteracting solutes (i.e., ideai solu-
tions)” [Jonsson, 1996, p505]. The above statement is not correct, as D is in general a
function of concentration, and Fick’s law accurately describes the diffusive flow in
nonideal systems as long as external body forces are absent and the temperature and

pressure are constant [Bird, 1960, Chapter 16]. Within ideal solutions, the diffusive

flux would be written, in Jonsson and Jonsson’s notation, (-DydC/dx), where D, is

the diffusion coefficient at the dilute limit. “‘In colloidal dispersions, with long-range
interactions between the colloidal particles in the dispersion, the diffusive flow is pro-
portional to . . . the derivative of the chemical potential of the particles” [Jonsson,
1996, p505]. Certainly the above statement is correct, however, within binary systems
at constant temperature and pressure, it is no more than an alternative statement of
Fick’s law. When discussing the work of Wijmans, Nakao, van den Berg, Troelstra and
Smolders [1985], Jonsson and Jonsson erroneously state that Wijmans et a/., who
assumed that Fick’s law applied within their system, made the *“assumption that the
mass transfer due to diffusion only depends on the concentration gradient and not on
the gradient of the chemical potential” [Jonsson, 1996, p505]. Since Jonsson and Jons-
son assume constant temperature and pressure in their equations, the two assumptions
they are attempting to distinguish are, in fact, the same assumption. When Jonsson and
Jonsson use the phrase “chemical potential” they are, similarly to Kozinski and Light-

foot [1972], considering only the concentration-dependent part of the chemical poten-
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tial; therefore, when they suggest that flow is a linear function of the “derivative of the
chemical potential,” they are also suggesting that flow is a linear function of the con-
centration gradient, and the result is not a generalization of Fick’s law; it is a com-
pletely equivalent statement. This equivalence has been recognized by many authors
and the result is a “generalized Stokes-Einstein” equation, which relates the diffusion
coefficient appearing in Fick’s law to the concentration-dependent part of the chemical
potential (or, alternatively, the osmotic pressure or the activity coefficient) within a
concentrated solution [Onsager, 1932, p2759; Wijmans, 1985, p123; Bowen, 1998,
pl62; this thesis, Section 2.6.1 and equation (2.94)].

When performing a force balance in the boundary layer of a macromolecular or
colloidal filtration system, it is very important to ensure that the correct form of the

thermodynamic force is used. One way to unequivocally obtain this force is to study

the dissipation function ® = TG, which is a measure of the total energy being dissi-

pated per unit volume within the concentration polarization layer. As we saw in Sec-
tion 2.4, the dissipation function, in the most general case, consists of the summation of
the fluxes within the system muitiplied by the thermodynamic forces or affinities caus-

ing the fluxes to occur. Therefore, assuming a linear relation between the fluxes and
thermodynamic forces appearing in @ should yield, near equilibrium, the correct form
for the force balance. Such a force balance is given by equation (2.81) or, equivalently,
by equation (11.2-54) of the Molecular Theory of Gases and Liquids [Hirschfelder,
1964],2 sometimes called the Stefan-Maxwell equation [Bird, 1960, p570; Lightfoot,
1962].

That the above equations represent a force balance was recognized by Scattergood
and Lightfoot in 1968. “Each term on the left side of [the Stefan-Maxwell] equation
represents a molar force tending to move species i relative to the others and each term
on the right a “frictional” interaction or “drag” proportional to this relative motion”

[Scattergood, 1968, p1136]. Once such a general force balance has been obtained, one

2 See Appendix A.4 on page 127.
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may then apply the boundary conditions of a diffusion, permeation, sedimentation or
filtration experiment, as we saw in Sections 2.6.1 to 2.6.3 and Section 3.1, to reduce the
equation into simpler forms that apply to each particular situation. The safest method,
then, is to start with the general force balance and then determine which assumptions
may be applied to simplify the equation. This is the approach to macromolecular con-
centration polarization taken in Kozinski and Lightfoot’s 1972 paper. Choosing the
thermodynamic force thought to exist on a more or less intuitive basis, as was done in

Jonsson and Jonsson’s 1996 paper, can lead to confusion and error.

4.2.2 Dejmek [1975]

Dejmek’s thesis contains an early attempt at describing a macromolecular concen-
tration polarization layer through the use of a force balance. Although Dejmek never
came to the conclusion that pressure gradients are zero, most authors who did modelled
their approach after his; therefore, we will discuss Dejmek’s work first. Section 5.2 of
Dejmek’s thesis is called *“The Force Balance in the Boundary Layer.” In it, Dejmek
discusses the force balance that must exist at steady state within a concentration polari-

zation layer [Dejmek, 1975, p57]:

The forces acting on a stationary particle must be balanced. [n this case, the forces are the gradient
of [the] chemical potential and the hydrodynamic drag force on the particle (gravitational force is

neglected), Hartley and Crank, 1949.

dp
—P — 1 )
ix F\N 4.2)

[where] F| [is the] drag on one particle and N' [is] Avogadros’ number.

Dejmek is evidently following the force balance approach given by Hartley and
Crank in Section 8 of their discussion on ordinary diffusion [Hartley, 1949, p815]. The
most general force balance given in Hartley and Crank’s paper, though, is between a
hydrodynamic drag force and the gradient of the concentration dependent part of the
chemical potential (written in terms of activity coefficients) [Hartley, 1949, p817].
Thus, the force balance in Hartley and Crank’s paper, and therefore equation (4.2), is
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only valid in systems at constant temperature and pressure, as was recognized by Bear-

man [1961]. However, Dejmek writes [1975, p57]

In [the] absence of [an] electric field, and at constant temperature, only pressure and concentration

contribute to the potential gradient

— d
\VZ QE.,,_uJB = F|N' 4.3)

[where] Vp (is the] partial molar volume of solute and du: signifies variations of the concentra-

tion dependent part of the chemical potential of the solute.

Thus, similarly to Jonsson and Jonsson [1996], Dejmek suspects that pressure gradi-
ents exist within macromolecular concentration polarization layers, but then attempts
to employ a force balance, equation (4.2), that is only valid in constant pressure sys-

tems. As we will see in the next sections, it is a similar error which has led three ditfer-

ent authors to the conclusion that pressure gradients are zero.

4.2.3 Wales [1981]

Wales is interested in obtaining an expression for the pressure profile within a
binary concentration polarization layer of an ultrafiltration system. He attempts to per-
form an energy balance on his system; however, as with Jonsson and Jonsson in 1996

and with Dejmek in 1975, Wales employs an equation in his derivation that is only

valid within systems at constant pressure. Wales begins by defining F* as the force per

unit volume acting on component 1 due to the relative motion of the two components.
If the system is sufficiently near equilibrium, we may assume that F* is a linear func-

tion of the velocity difference (v; —v,):

F* = f*(v, -v,), “4.4)

where £* may be thought of as a type of friction coefficient and is equivalent to the
friction coefficient defined in Section 2.6.1 of this work:
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t* = f. 4.5)
Equation (4.4) is equivalent to equation (1) of Wales’ paper. During a time increment

At, the work done (per unit volume) by F* is

AW* = F*. Ax, (4.6)

where Ax is the distance component | travelled relative to component 2 in time At :

AX = (v, - vy)At. 4.7)

Assuming the only work done on the system is that due to the diffusional flows (i.e.

neglecting chemical reactions, temperature gradients and viscous flow), the total rate

of energy dissipation per unit volume ¢ may be written

® = lim AW, (4.8)
At—>0 At
or, using (4.4), (4.6) and (4.7),
2
b = (v, ~v,)" 4.9)

where (v, - v2)2 denotes (v, —v,) - (v, — v,) . Equation (4.9) is equivalent to equation

(2) of Wales’ paper.

Thus, Wales realizes that a safe way to determine the thermodynamic force in

opposition to the frictional force in a macromolecular concentration polarization layer

is to study the dissipation function ®, which is given by equation (3) of his paper:

du;
® =Yg (4.10)

where J; is the molar flux of the i component and W; is the chemical potential

(defined on a molar basis) of the ith component. Unfortunately, Wales does not derive
the above equation himself; rather, he obtains it from Chapter 9 of Nonequilibrium
Thermodynamics in Biophysics by Katchalsky and Curran [1965]. The problem is
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that Katchalsky and Curran derive their expression for the dissipation function while
working under the assumption of uniform pressure, as they show quite clearly in Sec-
tion 7.4 on page 82 of their work. They also neglect external forces, viscous effects and
assume mechanical equilibrium.? Therefore, the energy balance given in Wales’ paper
cannot be used to obtain an expression for the pressure gradient because it already con-
tains the assumption of uniform pressure. [n our notation, equation (3) of Wales’ paper

is, for a binary system,

The dissipation function Wales should have used is equation (IV.13) of Nonequilib-
rium Thermodynamics [de Groot, 1962] or equation (2.48) of this work. Equation

(2.48) may be written, under isothermal conditions,

Equation (4.12) reduces to equation (4.11) only if body forces are absent and the pres-

sure is constant.*

Before finishing our discussion of Wales’ paper, we note that Wales combines
equations (2) and (3) of his paper and then uses the Gibbs-Duhem equation, along with

some other thermodynamic identities, to yield equation (15) of his paper:

R U N

3 Note that, although Katchalsky and Curran [1965] neglect external body forces and pressure gradients
in their derivation in Chapter 7, in Chapter 9 they use their dissipation function to study sedimentation
in a centrifugal field in which pressure gradients exist. This is only valid because the external force is
conservative and the system is in mechanical equilibrium, in which case the more general dissipation
function given by equation ([V.13) of Nonequilibrium Thermodynamics [de Groot, 1962], or equa-
tion (2.48) of this work, reduces to Katchalsky and Curran’s. The chemical potential used by Katchal-
sky and Curran in such cases has been modified to include the potential associated with the
conservative body force. Such a modification is not possible in ultrafiltration, though, as the body
force acting on the solute is not conservative in general.

* See Appendix A.10 on page 142.
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where p is the pressure, D is the diffusion coefficient, &t is the osmotic pressure, C, 1S

the solute concentration, J, is the volume flux and U; is the velocity of the ith compo-

nent. Wales then asserts that the quantity in the second brackets of (4.13) is zero:

ac,
D=2 -Cy(U;-Uy) = 0. (4.14)

Thus, Wales assumes that equation (4.14), essentially Fick’s law (if solute concentra-
tions are low), is valid within the concentration polarization layer and combines equa-

tions (4.13) and (4.14) to obtain the result

dp _ _
=0 (4.15)

However, equation (4.14) is not valid, because Fick’s law may only be used within sys-
tems in which the pressure is known to be uniform [Bird, 1960, p502, footnote 1, see
also p564). In fact, had Wales used the correct dissipation function in equation (3) of
his paper, then, after combining with equation (2) and using the Gibbs-Duhem equation

and the other thermodynamic identities, equation (15) of his paper would have been a

generalization of Fick’s law to systems in which pressure gradients exist.’

4.2.4 Wijmans et al. [1985]

As discussed in the previous section, Wales in 1981 attempted to prove that pres-
sure gradients are zero in ultrafiltration concentration polarization layers through the
use of an energy balance. Wijmans, Nakao, van den Berg, Troelstra and Smolders
attempt to prove the same thing in 1985 by using a force balance. As we will see, Wij-
mans et al. make essentially the same mistake as Wales, in that the force balance used
by Wijmans et al. is only valid within systems at constant pressure, and therefore can-
not be used to derive an expression for the pressure gradient. In the section “Force Bal-

ance in the Boundary Layer” of their paper, Wijmans et al. suggest that there are

5 For example, combining equations (4.12) and (4.9), and using equations (4.5) and (2.78), yields equa-
tion (2.81), a general expression for the diffusive flux that is equivalent to equation (18.4-14) of
Transport Phenomena [Bird, 1960}, in the absence of temperature gradients.
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certain forces, F, and F|, acting on the solvent and solute, respectively, of a binary

concentration polarization layer. Equation (8) of their paper,
cofgteF, =0, (4.16)

is a force balance assumed to exist between F, and F, at steady-state, where c; is the

density of the it component. Certainly equation (4.16) may be valid, provided that the

correct expressions are used for F; and F, . Wijmans et al. suggest the following

forms:

_dug _dupgp
FO = ‘E = E+UOE;’ “4.17)

du, duj 4p

Fl = —=—

i . “'E}’ (4.18)

where 4, is the chemical potential of the i component, uf is the concentration-

dependent part of the chemical potential and v, is the partial specific volume of the i

component. Inserting equations (4.17) and (4.18) into (4.16) yields

du,  dy,

COF;+CI_dT =0. 4.19)

No argument explaining why equations (4.17) and (4.18) are the correct expres-

sions for F|, and F| is given by Wijmans et al.; rather, these equations appear to be

intuitive assumptions. Wijmans ef al. suggest that the force balance given by equation
(4.19) is valid as long as “the complete boundary layer has the properties of a Newto-
nian fluid” [Wijmans, 1985, p120]. We fail to see why such a condition is a necessary
requirement. In fact, it can be shown quite readily that the necessary requirement for

the validity of equation (4.19) is that the system be at constant pressure. The constant

temperature Gibbs-Duhem equation may be written, in Wijmans et al.’s notation,
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diy At _ dP (4.20)

o T T I
The Gibbs-Duhem equation is a tundamental relation of the thermodynamics of simple
systems; assuming that the local equilibrium assumption holds, we may be confident
that equation (4.20) is valid. Only when the pressure is constant does the Gibbs-Duhem
equation reduce to (4.19); therefore, the necessary requirement for the validity of the
force balance suggested by Wijmans et al. is that the pressure be constant. Thus, Wij-
mans et al., in accordance with Jonsson and Jonsson in 1996, Dejmek in 1975 and
Wales in 1981, realize that pressure gradients likely exist within ultrafiltration concen-
tration polarization layers, but then employ an equation which is only valid within con-
stant pressure systems. Wijmans et al.’s proof consists of assuming the validity of both
their force balance and the Gibbs-Duhem equation, and then comparing these two

equations to obtain the result

dP
&< -0, 4.21
dx 0 ( )

However, since the force balance of Wijmans et al. is only valid at constant pressure, it

cannot be used to obtain (4.21).

4.2.5 Johnson et al. [1987]

Johnson, Kamm, Ethier and Pedley’s attempt to prove that pressure gradients are
zero in macromolecular concentration polarization layers is the most recent of which
we are aware. [n conformance with all previous attempts, Johnson et al. employ an
equation that is only valid at constant pressure in their attempt to prove that pressure
gradients are zero. Johnson et al. are considering a binary concentration polarization
layer at a steady state in which the solute molecules are stationary. They suggest on
page 435, equation (19), that “a modified Darcy’s law” may be used to describe flow
within the layer:

4o m=kQ
(- = =, (4.22)
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where P is the pressure, [T is the osmotic pressure, | is the solvent viscosity, K is the

permeability, Q is the volumetric flowrate and A is the cross-sectional area of the
flowcell. We are in complete agreement with such an assumption, as a main result of
this thesis is a derivation showing that, if the solute molecules are stationary, the modi-

fied Darcy’s law is the constitutive equation that should be used to describe flow within

the concentration polarization layer.®

Johnson et al. then suggest that the following force balance, equation (20) of their

paper, also applies within the layer:

4 =8
(M) = -~ (4.23)

Johnson et al. do not derive or reference their equations (19) and (20), but appear to
state them on an intuitive basis. Equation (4.23) is not a separate force balance, but is
simply equation (4.22) without the pressure gradient term. That equation (4.23)
neglects pressure gradients can be seen by using equation (17) of Johnson ez al.’s
paper, the generalized Stokes-Einstein equation (valid in the form given by Johnson et

al. only for low solute concentrations):

D= —=—, 4.24)

where @ is the solute volume fraction. Equation (4.23) may be rearranged and written

in the form

Kdlid®
= _28es 2
A pdddx (4.25)
Combining equations (4.24) and (4.25) yields
Q_ _pi®
o A D Ix (4.26)

6 See Section 3.1.



73
Equation (4.26) is Fick’s law (within a system in which the solute concentrations are
low and the solute is stationary); therefore, since Fick’s law only applies to systems at
constant pressure [Bird, 1960, p502, footnote 1; see also p564], equations (4.26) and
(4.23) neglect pressure gradients. Johnson et al.’s proof consists of assuming the valid-
ity of both equations (4.22) and (4.23), and then comparing these two equations to

obtain the result

dP _ . 4.27)
dx

However, since equation (4.23) is only valid in the absence of pressure gradients, their

proof has no meaning.
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Chapter 5
Applications

5.1 Introduction

In Chapter 3, we used the postulates ot nonequilibrium thermodynamics to obtain a
complete model of a binary concentration polarization layer within a dead-end filtra-
tion system. Ideally, we would now like to test our model by predicting the pressure,
concentration and velocity protiles as functions of time within one or more systems
from the literature and then comparing with experimental measurements. Unfortu-
nately, we have not yet been able to make any reliable predictions as the model is still
quite complex and experimental data for all of the necessary coefficients is not availa-
ble. In this chapter, then, we will simply point out some systems in which pressure gra-
dients likely exist. Other goals of this chapter are to test the relations between the
empirical coefficients obtained in Sections 2.6.1, 2.6.2 and 2.6.3, and to offer explana-

tions for some anomalous experimental and theoretical results from the literature.

5.2 Bovine Serum Albumin (BSA)

In this section, we will first test the relation between the diffusion coefficient and
the sedimentation coefficient obtained in Section 2.6.3 using data for the protein
bovine serum albumin (BSA). Then we will discuss the models of BSA concentration
polarization used by Vilker, Colton and Smith [1981], Boulanouar, Nicolas and Bariou
[1996] and Bowen and Williams [1996b] to predict their experimental measurements,
as they provide examples of the different viewpoints which have been employed to
explain macromolecular concentration polarization. Finally, we will review the analy-
sis of Vilker et al.’s experiments given by Kim, Wang, Johnson and Kamm [1991], in

order to explain some anomalous results obtained in that paper.
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5.2.1 Empirical Coefficient Relations

In this section we will test the relation between the diffusion coefficient D and the
sedimentation coefficient s, obtained in Section 2.6.3 and summarized in Table 2-1,
for the protein bovine serum albumin (BSA). Tests of this type have been done before
[Phillies, 1976; Wik, 1982; Wijmans, 1985; Comper, 1986] yielding, for the most part,
quite satisfying results, given the difficulties inherent in making accurate measure-
ments of such coefficients. We will only test the relation between D and s because

measurements of the other coefficients in Table 2-1, particularly £, are difficult to

perform' and we were unable to find much experimental data on them.

Combining entries (2) and (5) of Table 2-1 yields a relation between D and st

¢ (a].l.l

R TR 56—1) ; (5.1)

Tp

Given that equation (5.1) reduces to the Svedberg equation of ultracentrifugation for

dilute macromolecular solutions,> we suspect that it is a valid relation; however, there
are adequate experimental measurements of D and s available, so we will test it. Dur-
ing experimental measurements of sedimentation coefficients and diffusion coeffi-
cients, the solute concentrations are kept low enough to assume that p is

approximately constant; therefore, equation (5.1) may be written, using equations (2.9)
and (2.7),

osalee),
D=——m—|— . 52
PV (1~ puvy)\dp, T,ps -2)

Before testing equation (5.2), we should write it in terms of the osmotic pressure T,

rather than the chemical potential i, as xt is the quantity usually measured in experi-

! See Section 5.3.3.
2 See Appendix A.7 on page 135.



80
ments. Differentiating equation (C.96) with respect to p,, while holding T and p con-

stant, yields

(gg_;)np - —Ul(g—;z)r' (5.3)

Inserting equations (5.3), (2.109) and (2.14) into equation (5.2) yields

D = 1—)'%0—2(%;)5. (5.4)

Scatchard et al. [1944] and Kim ez al. [199i] measured the osmotic pressure of

BSA as a function of concentration; their data is plotted on Figure 5-1. There appears

to be fairly good agreement between the measurements. Scatchard et al. used 0.15M

NaCl as the solvent, pH 7.4, 25% C; Kim et al. used an NaCl solution of unspecified
ionic strength as the solvent, pH 7.3, unspecified temperature. Also shown on Figure 5-

1 is a fit of the data using a second order polynomial:

T = (0.00156 +0.196p, + 5.90p2)x10°, (‘i”'—f) (5.5)
cm”
with p, in units of g/ cm’ . van den Berg [1989] and Comper [1989] measured the

sedimentation coefficient of BSA as a function of concentration; their data is plotted on

Figure 5-2. The agreement between the sedimentation coefficient measurements is not
as good. van den Berg used 0.125M NaCl as the solvent, pH 7.4, 20°¢C; Comper used
0.15M NacCl as the solvent, pH 7.5, 20°C. Also shownon F igure 5-2 is a fit of the data

using a second order polynomial:

= (0.0223 +0.213p, + 1.07p3)x10", G) (5.6)

i) r—

The partial specific volume v, of BSA remains constant over a wide concentration

range [Vilker, 1981, p642]; we will use the value of 0.730cm’/ g given by Comper



81
[1989, p129]. Since the solutions are fairly dilute, we will use the values of pure water

for v, and v.

The diffusion coefficient predicted using equations (5.4), (5.5) and (5.6) is plotted
on Figure 5-3, along with experimental measurements of the diffusion coefficient using
light scattering and ultracentrifuge techniques made by Phillies, Benedek and Mazer
[1976] (0.15M NaCl, pH 7.4, 25° C), Fair, Chao and Jamieson [1978] (0.13M NaCl, pH
7.4,22° C) and van den Berg and Smolders [1989] (0.1M NaCl, pH 7.4, 20° C). Equa-
tion (5.4) has been able to predict the order of magnitude of the diffusion coefficient of
BSA. Given that the data for t, s and D were obtained by several different authors
using different batches of BSA under varying conditions, we feel that the fit is quite
acceptable. Perhaps more extensive measurements of s, taken using 0.15M rather than
0.125M ionic conditions, would yield a better prediction. Note that Bowen, Mongruel
and Williams [1996a] and Bowen and Mongruel [1998], using a theoretical model of
the osmotic pressure, performed a similar test on BSA. Their prediction is in agreement
with ours, in that it overpredicts the experimental measurements of the diffusion coeffi-

cient somewhat.

5.2.2 BSA Ulrrafiltration

In 1981, Vilker, Colton and Smith measured the permeate flux and the concentra-
tion profile within a polarization layer containing 0.15M NaCl as the solvent and
bovine serum albumin (BSA) as the solute (see Figures 5-4 and 5-5). Vilker et al. used
a membrane that was highly rejecting to BSA (rejection coefficient >0.99 [Vilker,
1981, p642]) and also highly resistant to adsorption and fouling. Vilker er al. assumed
that Fick’s law applied within their system (therefore, they neglected pressure gradi-

ents):

J, = -pDVe,. (5.7)

The mass balance equation (2.10), written for component 2, is
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p— =-V.J,. (5.8)

Combining equations (5.7) and (5.8), and using equation (2.12), yields the convective-

diffusion equation:

dc,
p—a-t- +pv-Ve, = V. pDVe,. (5.9)

Vilker et al. [1981, p639] assumed that p and D were approximately constant in their
system. Thus, for the one-dimensional system in Figure 5-4 and using equation (2.7),

equation (5.9) can be written

— -v=— = D—~ (5.10)

Vilker et al. obtained an analytical solution to equation (5.10) using the boundary

conditions
0
P, = p,, allx, ¢ =0, (5.11)
py = 3, x =, alls, (5.12)
and
dap
pv = —Da—xz, x=0, alt, (5.13)

where pg is the bulk solution concentration.® Vilker e al. also used the expression

v = L,(Ap-0AT), (5.14)

to describe the permeate flux as a function of time. In equation (5.14), L,, is the mem-

brane resistance (assumed constant and equal to the resistance of pure solvent), Ap is

3 Equation (5.13) may be obtained from Fick’s law, equation (5.7), using Figure 5-4, equation (2.11) and
the boundary condition v, = 0 atx = 0.
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the driving pressure, AT is the difference in the osmotic pressure across the membrane

and o, the reflection coefficient, is a measure of the ability of the membrane to reject

solute (¢ = | in Vilkereral.’s experiments).4

Vilker et al. then used their solution to find an apparent value for D which gave
the best fit to their concentration profile measurement. This can be viewed as a test of
the assumption that pressure gradients were negligible in Vilker et al.’s system. Equa-
tions (5.10) to (5.14) have traditionally been used to study reverse osmosis systems,
where the assumption of uniform pressure appears to have been valid. If these equa-
tions apply within Vilker et al.’s system, then we would expect their prediction of the

diffusion coefficient to correspond with experimental measurements from the litera-
ture. Vilker et al.’s analysis predicts a diffusion coefficient of D = 30x10  em’/s.
Their experimental conditions (experiment K) were 0.15M NaCl as the solvent, pH
7.4, 250 C. Experimental measurements of D, using ultracentrifuge and light-scatter-

ing experiments, under conditions similar to those of Vilker et al., predict a diffusion

coefficient of between 5x10™ cm’/s and 10x10™ em’/s over the concentration
range used by Vilker et al. (see Figures 5-3 and 5-5). The discrepancy between the dif-
fusion coefficient predicted by Vilker et a/. and the measurements from ultracentrifuge

and light-scattering experiments is quite significant. Vilker et al. [1981, p644] sug-

4 Equation (5.14) appears to be a result obtained from the nonequilibrium thermodynamics of membrane
transport. To our knowledge, equations of this type have only been rigorously derived for systems in
which the solution properties on either side of the membrane are uniform. Thus, Ap and Ar are con-
sidered to be the difference in pressure and osmotic pressure between the bulk solution on either side
of the membrane. For a review of such theorems, see Baranowski [1991] or Mason and Lonsdale
[1990]. In order to account for the presence of a concentration polarization layer, these theorems
should be generalized to allow for varying properties on either side of the membrane. We will not
attempt such a development here; however, we note that the final results are likely identical except
that Ap and Ar would refer to differences in conditions between the membrane surfaces rather than
between the bulk solutions. Vilker ef al. [1981] appear to have made such an assumption in their
development.

Note that equation (5.14), when ¢ = 1, bears a resemblance to the modified Darcy’s law, equation
(3.14). These two equations should be distinguished from each other, as they were derived under dif-
ferent assumptions and apply to different physical phenomena. The modified Darcy’s law is a local
equation describing the solvent flux within a binary concentration polarization layer, whereas equa-
tion (5.14) is an integrated equation describing the permeate flux across a semipermeable membrane.
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gested that the discrepancy may have been due to “uncertainties as to the true value” of

D and due to “diffusion potential effects”. What portion of the discrepancy can be
explained by these effects is still open to question. Another possible explanation is that
pressure gradients existed within Vilker’s system, and that a more general system of
equations, such as (3.17) through (3.21), should be used to describe flow within the

concentration polarization layer rather than the convective-diffusion equation.

In 1996, Boulanouar, Nicolas and Bariou performed almost identical experiments
to those of Vilker et a/. (dead-end ultrafiltration of BSA in 0.15M NaCl, pH 7.4, 250 C,
using an inert membrane with & = 1), except that Boulanouar et al. only measured the
permeate flux as a function of time; they did not measure the concentration profile.
Boulanouar et al. used experimental data for the diffusion coefficient and attempted to
predict their permeate flow measurements by solving the convective-diffusion equation
numerically. Similarly to Vilker et al., they found that their theoretical predictions did
not match their experimental measurements. Boulanouar ez a/. attempted to explain the
discrepancy by considering the osmotic pressure. They suggested that “in the case of
charged solutes, the physicochemical properties of the solute (in particular, the osmotic

pressure) are not directly useable when strong concentration gradients occur. . . . In the

case of protein, the assumption of local variations in the environment of the BSA (H™
concentrations, etc.) which may induce local modification of the osmotic pressure, can
be reasonably advanced” [Boulanouar, 1996, p92]. Boulanouar et al. are assuming that
the osmotic pressure and other physicochemical properties of charged solutes like
BSA, obtained experimentally as functions of concentration under equilibrium condi-
tions, are no longer the same functions of concentration under nonequilibrium condi-
tions; essentially, they are claiming that the local equilibrium assumption is not valid

within concentration polarization layers.

Certainly such an explanation for the discrepancy is possible. At present, there is
no method to determine a priori the range of validity of the local equilibrium assump-
tion, as discussed in Section 2.3.1; it is left for experiment to decide. However, we feel

that the local equilibrium assumption should not be discarded until all other less drastic
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explanations for the discrepancy have been exhausted. One explanation that seems
plausible is that pressure gradients were affecting flow within the concentration polari-
zation layer. In fact, Bowen and Williams in 1996 obtained good predictive results for
the permeate flux during dead-end ultrafiltration of BSA by assuming that flow within
the layer was governed by Darcy’s law. Bowen and Williams essentially used com-
pressible cake filtration theory, which applies to concentration polarization layers in
which the solute particles are large enough to neglect Brownian diffusion processes
[Tiller, 1975). Bowen and Williams’ analysis is very interesting in that they developed
a theoretical model of particle-particle interactions allowing them to predict the
osmotic pressure and diffusion coefficient of BSA as functions of concentration
[Bowen, 1996a; Bowen, 1998]. However, the problem with their analysis is that, after
developing a very accurate model for the osmotic pressure and diffusion coefficient of
concentrated macromolecular or colloidal solutions, they failed to take diffusion into

account in their flow equations.

To summarize, Vilker ez al. [1981] and Boulanouar et al. [1996] neglected pressure
gradients in their analysis of BSA filtration, similarly to reverse osmosis theorists.
Bowen and Williams [1996b] attacked the problem from a different point of view and
neglected diffusion processes, similarly to compressible cake filtration theorists. [t
seems that Bowen and Williams’ assumption may have been more valid, as their theo-
retical analysis gave good predictions of their experimental measurements, at least for
certain pHs and ionic conditions. However, for some range of particle sizes, pHs and
ionic conditions, it will no longer be valid to neglect diffusion processes or pressure
gradients; both effects will have to be accounted for simultaneously. A more general
system of equations, such as (3.17) through (3.21), should be used to predict the tem-

poral behaviour of such systems.

5.2.3 Kim et al.’s [1991] Permeability Prediction

In 1991, Kim et al. attempted to use Vilker ez al.’s [1981] data to obtain a measure-
ment of the permeability of BSA. They assumed that the modified Darcy’s law, equa-
tion (3.14), could be used to describe flow within Vilker et al.’s system:
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k

As we saw in Section 3.2, the modified Darcy’s law is valid only if the solute velocity
v, is zero. If there had been a fixed amount of BSA placed above the membrane in
Vilker et al.’s experiments, with the rest of the bulk solution being pure solvent, as in
Gowman'’s experiments [Gowman, 1996], we would expect that over time the solute

would rearrange itself against the membrane and its velocity would become zero,

allowing the modified Darcy’s law to be used. However, in Vilker et al.’s system, the
bulk solution contained 0.1g/ cm’ BSA; therefore, the solute continually built up
against the membrane and v, never became zero. Certainly very near the membrane

we would expect the solute velocity to be near zero, since the membrane was almost
100% rejecting to BSA; however, farther up the concentration polarization layer, where
the solute concentration approaches the bulk solution concentration, the solute velocity
approaches the bulk velocity and the assumption of zero solute velocity is not valid.
The equation Kim et al. should have used when attempting to model Vilker et al.’s sys-

tem is equation (3.13):
CH\ k
J, = —(—-)— Vp-V.1). (5.16)
| v, nl( p ™)

[t was assumed by Kim e al. that pressure gradients within Vilker’s system were

zero or negligible. Thus, they reduced equation (5.15) to

Vp = V.. (5.17)

N
Vilker et al. measured the velocity v, of the filtrate leaving the system; this value was

used by Kim et al. as an approximation to v, ,. Thus, equation (5.17) can be written,

for the one-dimensional system shown in Figure 5-4,

= _i(d_“) = _i(a_ﬂ:) ap, 5.18
s n\dx/r n\9p,/ dx . ¢-18)
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Also, Vilker ez al. measured the osmotic pressure 7t as a function of BSA concentration

and they measured the solute concentration as a function of distance from the mem-

brane [Vilker, 1981]. Using the viscosity of pure water for 1, all of the factors in

equation (5.18) are known except for .

Figure 5-6 shows the prediction of & made using equation (5.18), along with a fit
of experimental data for &£ obtained by Kim et a/. from sedimentation studies [Kim,

1991, equation (13), p409]:

k= 1.6x10"p5' (1 - 1.348p,)"". (5.19)

As expected, the prediction of £ using equation (5.18) gets worse as the solute concen-

tration approaches 0.1g/ em’ , and the assumption v, = 0 becomes less valid. In their
paper, Kim et al. [1991, p407] note that the predictions of £ made using equation
(5.18) “appear to deviate from the general behavior for concentrations ~ 0.1g/m/.”" In

fact, the value of k predicted using equation (5.18) asymptotically approaches infinity

d
as the concentration approaches 0.1 g/ c¢m’ . The reason for this is that % approaches

zero as P, approaches 0.1g/ cm’ . All of the other factors in equation (5.18), v, N

and (E)aTn) , remain finite and non-zero; therefore, equation (5.18) predicts that £ will
2T

go to infinity as p, approaches the bulk concentration.

5.2.4 Kim et al.’s [1991] Pressure Measurements

Before concluding our study of BSA, we note that Kim ez al. [1991] obtained
direct measurements of the pressure profile within an ultrafiltration system using BSA
as the solute (buffered saline of unspecified ionic strength as the solvent, pH 7.3). They
placed a fixed amount of BSA solution above the membrane, on top of which was

placed a bulk solution containing pure solvent. Their experiments were run for a
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month, to allow “the concentration polarization layer to reach an equilibrium state™
[Kim, 1991, p406]. Their pressure measurements are reproduced on Figure 5-7. Study-
ing the profile, there appears to be some deviation in the pressure near the membrane;
however, these changes are insignificant compared to the overall driving pressure. The
purpose of Kim et al.’s pressure measurements was to verify the theoretical predictions
of Wales [1981], Wijmans et al. [1985] and Johnson er al. [1987] that pressure gradi-
ents are zero in macromolecular concentration polarization layers. However, as we saw
in Chapter 4, these theories are not valid. Thus, there are no theoretical reasons for

assuming that pressure gradients were zero in Kim et al.’s system.

The measurements of Kim et a/. provide evidence that any pressure drop across the
layer was negligible compared to the overall driving pressure; however, the measure-
ments do not provide evidence that pressure gradients were zero. Had Kim ez a/. used a
membrane that was highly resistant to adsorption, for example a cellulose-acetate
membrane, so that none of the pressure drop occurred across an adsorption layer or due
to an increased resistance of the membrane caused by fouling and pore occlusion, then
their experimental results would give strong evidence that the layer behaves more like
a region undergoing ordinary diffusion than like a porous medium or compressible fil-
ter cake. However, Kim er al. used a PTGC 02510 membrane (Millipore, Bedford,
MA) [Kim, 1991, p407]; these membranes are polysulfone and have *“a relatively high
non-specific binding capacity compared to other membranes such as regenerated cellu-
lose” [Leary, 1999]. It is known that polysulfone membranes tend to adsorb large quan-
tities of BSA during ultrafiltration [Nabe, 1997; Fernandez-Torres, 1998]. [f BSA
molecules were adsorbing to the surface and within the pores of the membrane used by
Kim er al., then it is possible that most of the pressure drop occurred across the adsorp-
tion layer and membrane, making it difficult to use their measurements to indicate
whether the concentration polarization layer was behaving as a region undergoing

Brownian diffusion, as a porous medium, or as some combination.
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5.3 Hyaluronate (HA)

In this section, we will review the experimental results from the ultrafiltration of
the biopolymer hyaluronate (HA) obtained by Gowman [1996], as they provide evi-
dence that pressure gradients were affecting flow within the system. We will also
attempt to predict the pressure profile in Gowman’s system. Finally, we will discuss the
HA permeability measurements of Jackson and James [1982], as they provide an
example of the different viewpoints used to explain the concentration polarization phe-

nomenon.

5.3.1 HA Ultrafiltration

In 1996, Gowman made concentration profile measurements within the polariza-
tion layer of a dead-end ultrafiltration system containing the biopolymer sodium
hyaluronate (HA) dissolved in 0.01M NaCl. In those experiments, a fixed amount of
solution was placed above the membrane; the bulk solution above the HA contained
pure solvent (see Figure 5-8). A constant flowrate was maintained within the system
until the solute rearranged itself against the membrane and became stationary (approx-
imately 40 hours). Concentration profile measurements were taken every few hours.
The experimental data obtained by Gowman is very amenable to analysis because the
system reached a steady-state in which the solute was stationary. Therefore, the modi-

fied Darcy’s law, or an equivalent expression, may be used directly to predict the

steady state pressure profile.’

On page 124 of Gowman'’s thesis, it was concluded that pressure gradients may
have existed within the concentration polarization layer. There were both theoretical

and experimental reasons for coming to such a conclusion. First, Gowman reviewed

5 Note that considerable adsorption of HA on the membrane surface and within the pores likely occurred
in Gowman'’s experiments {Gowman, 1996, p114-117]. As our model is incapable of describing
adsorption phenomena, we will assume that the adsorption had no other effect on the concentration
polarization layer than to make it behave as though it were above an inert membrane with a higher
resistance to flow (i.e. we are assuming that the adsorption layer above the membrane increased the
resistance of the membrane but did not interact with, or have any other effect on, the concentration
polarization layer).
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two theories of concentration polarization [Wijmans, 1985; Johnson, 1987] purporting
to show that pressure gradients are zero within concentration polarization layers. Wij-

mans et al. [1985] assumed that the layer was Newtonian, a condition which Gowman

believed was likely violated in her experiments.6 Also, Gowman attempted to analyse
her data while working under the assumption of zero pressure gradients, and the results
did not always appear to support such a conclusion. We will review the data analysis
given in Gowman’s thesis next and then make an attempt at predicting the pressure

protile within her system.

Gowman [1996, p25] assumed that the modified Darcy’s law, equation (3.14),

could be used to describe her steady-state data:

vy, = —hl—{;(Vp-VTn:). (5.20)

Neglecting pressure gradients, noting that Gowman'’s system was one dimensional (see

Figure 5-8) and assuming that the solvent volume velocity v, is given by

-9
=(-), (5.21)

where Q is the volumetric flowrate and A is the flowcell cross sectional area, equation

(5.20) may be written

@R

Gowman integrated equation (5.22) (equation (34) of her thesis), using c¢,(x = lf) =0
as a boundary condition, where lf is the final layer thickness, in order to predict her

experimental concentration profiles. She used experimental data for £ and t from the
literature. The result is reproduced on Figure 5-9. The concentration profile predicted

using equation (5.22) does not match the experimental data very well. One possible

6 As we saw in Chapter 4, the theories that Gowman reviewed are not valid, even within Newtonian con-
centration polarization layers.
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explanation for the discrepancy is uncertainty as to the true values of k£ and =, due to
scatter in the literature data and due to varying conditions (ionic strength, pH, molar
mass) between Gowman’s ultrafiltration experiments and the experiments performed to
measure k£ and %t . The permeability values used by Gowman were actually obtained
from measurements of the sedimentation coefficient s [Ethier, 1986]. The sedimenta-
tion measurements were performed using 0.2M NaCl as the solvent, ionic conditions
far removed from the 0.01 M NaCl solvent used by Gowman. Also, the pHs and HA
molar masses used in the sedimentation experiments varied somewhat from Gowman’s
experiments. We were unable to find any reliable sedimentation coefficient or permea-
bility measurements performed under the same ionic conditions used by Gowman;
therefore, we do not know what effect such data would have on the concentration pro-
files predicted using equation (5.22). Also, Gowman used the osmotic pressure meas-
urements of Peitzsch and Reed [1992], obtained using 0.01 M NaCl as the solvent.
Their data was quite scattered and biased toward higher HA concentrations than those
used by Gowman. Thus, it is possible that using accurate data for both ® and £ in
equation (5.22) might yield a better prediction of Gowman’s measured profile. Another
possible explanation for the discrepancy is that pressure gradients were influencing the
flow within Gowman’s system and that equation (5.20) should have been used rather
than (5.22). Before studying this possibility further, we will review Gowman’s
attempts to predict the diffusion coefficient D of HA using her experimental data, as

this will yield further evidence for the existence of non-zero pressure gradients.

To predict the diffusion coefficient, Barry, Gowman and Ethier [1996] and Gow-
man [1996] employed essentially the same method used by Vilker et al. [1981] when
predicting the diffusion coefficient of BSA.” They assumed that Fick’s law described
the diffusive flux within the system (therefore, they assumed no pressure gradients)

and obtained the convective-diffusion equation (5.9):

7 See Section 5.2.2 for a summary of Vilker et al.’s analysis.
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dc,
P3; +pv-Ve, = V.pDVc,. (5.23)
Due to the low solute concentrations used in Gowman’s experiments, it was assumed
that the density was constant [Gowman, 1996, p39]. Thus, equation (5.23) can be writ-
ten
dc,

a—t' +v-Vec, = V.DVe,. (5.24)

Gowman'’s system was one-dimensional [Barry, 1996, p4] and it was assumed that the

barycentric velocity could be approximated by

v = U(-i), (5.25)

where U is the “superficial solvent velocity™:

= Q
U =. (5.26)

Thus equation (5.24) can be written

dc, dc, d( dcz)' (5.27)

PTG R L

Equation (5.27) is equivalent to equation (1) of the paper by Barry et al. [1996] and
was solved numerically to fit for the diffusion coefficient which gave the best approxi-
mation to Gowman’s unsteady-state concentration profile measurements. This method
required the use of an assumed functional form for D since the diffusion coefficient of
HA is dependent on concentration. An alternative method, which required no assumed

form for D, was to use the steady-state data obtained by Gowman. At steady-state

dc
(v, =0, 3;2 = 0), equation (5.27) can be integrated, using c,(x =) = 0 asa

boundary condition, to yield

dc,
0 = Uc, +D$. (5.28)
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Equation (5.28) is Fick’s law (equation (5.7) with v, = 0 and v = _Ui ), and was

used by Barry et al. to obtain a direct measurement of the diffusion coefficient (see

Figure 5-10).

The data in Figure 5-10 is quite nonlinear, a result which was not expected by
Barry et al. [1996, pS]; rather, it was thought that the diffusion coefficient would fol-

low the form

D = acl, (5.29)

where a and b are constant fitting parameters. Wik and Comper [1982] and Ghosh ez

al. [1990] measured D under similar ionic conditions to those of Gowman. Their data

is plotted on Figure 5-10 as well; untfortunately, Ghosh et al.’s data yields only one
data point measured at 0.001g/ em’ [Gowman, 1996, pl18] and Wik and Comper made
measurements up to only 0.006g/ cm’ . Since Barry et al.’s prediction extends up to

0.016g/ cm’ , we are unable to make a full comparison with experimental data trom
other sources. It was suggested by Barry er al. that the nonlinearities in Figure 5-10 are
“transition points”, and the lower transition point was thought to represent a transition
of the solution from a semidilute to a homogeneous concentration regime [Barry, 1996,
p8; Gowman, 1996, pi18]. No explanation was offered for the other transition point.
Another possible explanation is that pressure gradients were affecting flow within
Gowman'’s system, and that the apparent nonlinear “transition points” in Figure 5-10
are not real, but are artifacts of using Fick’s law to describe flow within the layer rather
than the more general modified Darcy’s law or equation (3.20); we will investigate this

possibility next.

5.3.2 HA Pressure Profile

Barry et al. [1996] assumed that Fick’s law applied within the concentration polar-

ization layer:
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J, = -pDVec,, (5.30)

and hence neglected pressure gradients. Assuming significant pressure gradients
existed within Gowman'’s system, equation (3.20) can be used to describe the flow. Let

use rewrite equation (3.20) in terms of component 2 using equation (2.9):

J, = pDVe,+ 2Ly (5.31)
2 27 o, p- -

Gowman [1996] measured the flowrate, the total pressure drop and the steady-state
concentration profile. If we could obtain accurate measurements of D, k or s as a
function of HA concentration from the literature, equation (5.31), or an equivalent
expression, could be used directly to predict the steady-state pressure profile. Unfortu-
nately, reliable data, obtained under the same conditions as those in Gowman'’s experi-

ments, does not seem to exist for any of these coefficients. As we saw in Figure 5-10,
Wik and Comper [1982] measured D under similar ionic conditions to those of Gow-
man, but not over the full concentration range. Several experimentalists have measured
s over the same concentration range as Gowman, but under different ionic conditions
[Preston, 1965; Laurent, 1961; Laurent, 1960]. Jackson and James [1982] measured &
under similar ionic conditions and over a similar concentration range; however, their

results are not considered to be reliable.® Thus, data for HA is simply too inadequate to
allow for any accurate predictions. However, we will make some predictions using the
data we have, as we would like to obtain at least an estimate of the magnitude of the

pressure variations predicted by equation (5.31).

Since v, = 0 we may use the flux equation in the form of the modified Darcy’s

law, equation (3.14), rather than equation (3.20). Equation (3.14) may be written, for

the one-dimensional system shown in Figure 5-8 and rearranging for the pressure gra-

dient,

8 See Section 5.3.3.
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ap _ M a_“) ap; 2
L - Ly, - (apz = (5.32)
To obtain a pressure profile, we can integrate equation (5.32) using the boundary con-
dition p(x = lf) = p,» where p, is the driving pressure measured by Gowman, and / /;
is the height of the boundary layer, also measured by Gowman. For the permeability,
we will use a fit of sedimentation data given by Ethier [1986, equation (6), page 104]:

k= 292x10"%03",  (em?), (5.33)

For the osmotic pressure, we will use a fit of Peitzsch and Reed’s [1992] measurements

of © given by Gowman [1996, equation (11), page 10]:

2

T = 5.7x10°p, +3.34x10%p3, (‘—"2’—”5) (5.34)
cm”

For v, and p we will use the values of pure water:

v, = p_l = 1cm3/g. (5.35)

For v,, we will assume a constant value of 0.6cm’/ g [Gowman, 1996, p11]. Along

with Gowman’s measurements of v, and p,, we have enough information to predict

the pressure profile.

Note that the sedimentation coefficient measurements of the experiments analysed

by Ethier [1986] were made using 0.2M NaCl as the solvent, an ionic regime far

removed from the 0.01 M NaCl used by Gowman. Unless the sedimentation coefficient
is approximately independent of ionic strength over that range we cannot expect equa-
tion (5.32) to yield a very accurate prediction of the pressure profile. Also, Peitzsch and
Reed’s [1992] osmotic pressure measurements, although obtained under similar ionic
conditions, were biased toward a higher concentration range than that of Gowman’s

experiments [Gowman, 1996, p10]. Figure 5-11 shows the pressure profile predicted
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using equation (5.32). It is conceivable that such a profile existed in the concentration

polarization layer. It is a physically possible profile, at least.

The only reliable measurements of an empirical coefficient obtained under the
same ionic conditions as used in Gowman’s experiments that we were able to obtain
are Wik and Comper’s [1982] measurements of the diffusion coefficient. We may use
equation (5.4), along with entries (4) and (5) of Table 2-1 and equations (2.109),
(5.35), (2.14) and (2.7), to write equation (5.32) in terms of the diffusion coefficient.

This yields, for the one-dimensional system shown in Figure 5-8,

i byim), . (on)
2 D(apz)r"00+(ap2 = (5.36)

Wik and Comper measured the diffusion coefficient only up to a concentration of about
0.006g/ em’ , as shown on Figure 5-10, whereas Gowman'’s data extends up to about

0.0l6g/ em’ . It is not unreasonable to expect that the diffusion coetficient should be

roughly linear over the concentration range of Gowman'’s experiment; therefore, we

will linearly extrapolate Wik and Comper’s data to a concentration of 0.016g/ cm’

using a fit of their data obtained by Gowman [1996, equation (24), page 17]:

D = 3.3x107p,, (%) (5.37)

Certainly we cannot be sure that such an extrapolation is valid; however, we will do the
extrapolation anyway and see what equation (5.36) predicts. We will use Peitzsch and
Reed’s [1992] measurements of the osmotic pressure, which were obtained under the
same ionic conditions as in Gowman’s experiments (0.01 M NaCl). Figure 5-12 shows
the pressure profile predicted using equation (5.36). It is also a physically possible pro-
file.

Given that equation (5.31) is a combination of Fick’s law and Darcy’s law, it
would be interesting to predict the pressure profile using this equation as well; a benefit

of using equation (5.31) is that we do not require any osmotic pressure data. At steady-
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state in Gowman'’s system, v, is zero, and the diffusive flux J, may be written, using
equations (2.11), (2.6), (2.9) and (3.15),

J, = —U—'lvDa. (5.38)

Inserting equation (5.38) into (5.31) and rearranging for the pressure gradient yields,
using equations (2.9) and (5.35),

dp _ T Dap;
i k(vD“+p2 dx). (5.39)

Figure 5-13 shows the pressure profile predicted using equation (5.39). The profile has

the same general shape as that predicted using equation (5.36). We did not have to use

any T measurements in equation (5.39); however, we did have to use data for & that
was obtained under 0.2 ionic conditions and we had to extrapolate to obtain data for

D.

In Figure 5-14, we plotted the same profile as in Figure 5-12, but showing the
entire pressure axis. The changes in pressure throughout the layer are predicted to be
small compared to the overall driving pressure. This is in agreement with recent exper-
imental measurements of the pressure profile within the HA layer of Gowman'’s system
[Ethier, 1999). Most of the pressure drop in Gowman'’s system was likely due to an
increased resistance of the membrane caused by adsorption of HA on the surface of the
membrane and within the pores, as discussed by Gowman [1996, pages 114-117].
Reducing the pressure drop caused by adsorption processes, for example by using an

adsorption-resistant membrane, should yield a more pronounced pressure profile.

5.3.3 Permeability Measurements of Jackson and James [1982/

To conclude our discussion of HA ultrafiltration, we will look at the experiments
of Jackson and James [1982], as they provide a further example of the different view-
points that are used to explain the concentration polarization phenomenon in macromo-

lecular systems. Both extremes of thought are represented. One group believed that
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diffusion processes were negligible and that the layer behaved as a porous medium,
while another group suggested that pressure gradients were negligible and that only
concentration gradients existed within the layer. In our review of the application of
nonequilibrium thermodynamics to permeation in Section 2.6.2 we saw that, if one of
the components of a binary solution could be held in place and at constant concentra-
tion by a hypothetical body force, then flow within the system could be modelled using
Darcy’s law. Jackson and James attempted to use Darcy’s law to obtain a measure of
the permeability of hyaluronate (HA) by measuring the total pressure drop across an

HA matrix supported by a membrane.

Unfortunately, though the ideas presented in Section 2.6.2 are very useful from a
theoretical point of view, in that they provide a relationship between the permeability
and the sedimentation coefficient, they are impractical from an experimental point of
view, in that it would be exceedingly difficult to apply a body force necessary to elimi-
nate concentration gradients in an ultrafiltration experiment. In the experiments of
Jackson and James, no attempts were made to apply such a force; rather, it was
assumed that any concentration polarization of the HA against the membrane would
not affect the permeability measurements. As pointed out by Parker and Winlove
[1984], it is very likely that significant polarization occurred within the experiments of
Jackson and James; even at very low flowrates of solvent through a HA solution,
Parker and Winlove observed considerable concentration polarization against the

membrane. Also, the permeability measurements of Jackson and James do not agree

with permeability estimates from sedimentation studies [Ethier, 1986].9

Johnson, Kamm, Ethier and Pedley [1987], in agreement with Parker and Winlove
[1984], suggested that the concentration gradients in the experiments of Jackson and
James [1982] were not negligible. Instead, they claimed that the pressure gradients
were negligible. They asserted that the discrepancy between the permeability measure-

ments of Jackson and James and those obtained from sedimentation studies could be

9 This discrepancy could be due in part to the fact that the ionic conditions used in Jackson and James’
experiments (0.0 1M phosphate buffer) were in a regime far removed from the ionic conditions used in
the sedimentation studies (0.2M to 0.3M phosphate buffered saline).
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explained by using the modified Darcy’s law without the pressure gradient term (essen-
tially Fick’s law) to model the flow. Johnson et al. claimed that the pressure drop meas-
urements of Jackson and James were due to an osmotic pressure difference across the
membrane caused by the increased concentration. However, as we saw in Section
4.2.5, Johnson et al.’s theoretical arguments for neglecting pressure gradients are not
correct; thus, there is no theoretical reason to assume that the pressure drop across the
HA layer of Jackson and James’ experiments was zero. It seems likely that the pressure
measurements and permeability measurements of Jackson and James [1982] were the
result of the combination of three effects: a pressure drop across the HA layer itself, a
pressure drop due to an osmotic pressure difference across the membrane, and an
increased pressure drop across the membrane due to adsorption, pore occlusion and

other solute-membrane interactions.
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Figure 5-1: Osmotic pressure of bovine serum albumin (BSA). Measurements are from
Scatchard et al. [1944], (0) and Kim ez al. [1991] (A). The solid line is a fit of the data

using a second order polynomial.
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Figure 5-2: Sedimentation coefficient of bovine serum albumin (BSA). Measurements

are from Comper and Zamparo [1989], (0) and van den Berg and Smolders [1989],

(A). The solid line is a fit of the data using a second order polynomial.
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103

Bulk v=v-i)
solution ! ﬂ
of fixed '
concentration Concentration
polarization
X layer
Membrane

Figure 5-4: Schematic of the ultrafiltration system used by Vilker et al. [1981]. The

quantity v is the barycentric velocity and v, is the filtrate velocity. The bulk solution

contains a fixed concentration of solute.
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albumin (BSA) measured by Kim et al. [1991].



107

Bulk =)

solution ﬂ

containing -
pure solvent Concentration

polarization

x layer

Membrane

Figure 5-8: Schematic of the ultrafiltration system used by Gowman [1996]. The quan-
tity v is the barycentric velocity and v, is the velocity of the filtrate. The bulk solu-

tion contains pure solvent, in contrast to Vilker et al.’s [1981] system, which contained

a fixed concentration of solute (see Figure 5-4).
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Chapter 6

Conclusions

6.1 Conclusions

A complete model of a binary concentration polarization layer within a dead-end
filtration system has been derived within the framework of nonequilibrium thermody-
namics (Chapters 2 and 3). The model contains a constitutive equation relating the
mass diffusive flux to concentration gradients and pressure gradients within the layer,
as well as a system of partial differential equations describing the pressure and concen-
tration as functions of position and time. The complete model describes all concentra-
tion polarization phenomena, regardless of the physical properties of the molecules
within the layer. The constitutive relation is seen to reduce to several equations which
have been traditionally used in the study of concentration polarization (Fick’s law,
Darcy’s law, Shirato equation, modified Darcy’s law) as limiting cases. All assump-
tions have been carefully recorded and the equations obtained have been proven to be
equivalent to equations from other works where possible. All mathematic and thermo-
dynamic identities used in the theoretical development have been derived in appendi-

ces.

A brief review chapter has been included in an attempt to provide clarification
regarding some uncertainty in the literature as to the nature of a macromolecular con-
centration polarization layer (Chapter 4). The chapter contains a summary of an early
paper [Kozinski, 1972] which recognized that essentially the same phenomena occur in
all concentration polarization layers, the most general case being a macromolecular
system, which contains properties of a diffusion layer (i.e. Brownian diffusion proc-
esses) and properties of a porous medium (i.e. pressure gradients) simultaneously. Also
included is a critique of several theorems [Dejmek, 1975; Wales, 1981; Wijmans, 1985;
Johnson, 1987; Jonsson, 1996], some of which appear to prove that pressure gradients

cannot exist within macromolecular concentration polarization layers, in contradiction
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to the above view. It is seen that these theorems all contain essentially the same error
(using equations in their development that are only valid within systems at constant

pressure) which makes them invalid.

The theoretical results have been applied to several experimental systems from the
literature (Chapter 5). A relation between the diffusion coefficient and the sedimenta-
tion coefficient, sometimes called the generalized Stokes-Einstein relation [Bowen,
1998], has been tested, using experimental data for the protein bovine serum albumin
(BSA); given that the experimental data were not obtained under identical ionic condi-
tions, the prediction appears to be adequate. Some results obtained by various authors
[Vilker, 1981; Boulanouar, 1996; Bowen, 1996] in the study of BSA concentration
polarization layers were reviewed and it was concluded that both Brownian diffusion
processes and pressure gradients were likely present within the layer. Some anomalous
BSA permeability predictions [Kim, 1991] were explained by the fact that the modified
Darcy’s law was used within a system to which it did not apply. An experimental sys-
tem appearing to provide evidence that pressure gradients were negligible within a
BSA concentration polarization layer [Kim, 1991] was studied. It was concluded that
adsorption and fouling of the membrane may have increased the resistance of the mem-
brane to the point where any pressure variations across the layer were negligible rela-
tive to the overall driving pressure. An experimental study of a concentration
polarization layer containing the biopolymer hyaluronate (HA) [Gowman, 1996] was
reviewed, as it contained evidence for the existence of both Brownian diffusion proc-
esses and pressure gradients within the layer. Using the modified Darcy’s law, the
steady state pressure profile within the system was predicted. The result agreed with
recent experiments [Ethier, 1999] showing the pressure variations across the layer to be
negligible relative to the overall driving pressure. It was concluded that considerable
adsorption and fouling of the membrane occurred within the HA system as well, mak-
ing the pressure variations across the layer insignificant relative to the overall driving

pressure.
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Appendix A: Proofs and Derivations

At different places in this work, we have noted when an equation is equivalent to
an equation from another work or from another section of this work. For example, on
page 21 we noted that equation (2.10) is equivalent to equation (II.13) on page 13 of
Non-Equilibrium Thermodynamics [de Groot, 1962]. In that instance the two equa-

tions are almost identical (the only difference is that de Groot and Mazur denote the
substantial derivative by ‘%, whereas we denote it by bD-t ); however, the equations are

not always that similar. In this appendix, we will show that the equations are equivalent

in the instances where it is not so obvious.

A.1 Proof that equation (2.18) is equivalent to equation (18.3-3) of
Transport Phenomena [Bird, 1960]

In Appendix A.l, we will first show that equation (2.18) is equivalent to equation
(18.3-3) on page 560 of Transport Phenomena [Bird, 1960} and then we will show
that equation (2.18) reduces to equation (I1.28) of Non-Equilibrium Thermodynam-

ics {de Groot, 1962], if the body forces F, are conservative.

First we will prove that equation (2.18) is equivalent to equation (18.3-3) on page
560 of Transport Phenomena [Bird, 1960], in the absence of effects due to viscosity.

Equation (18.3-3) is, for a binary system,

pb%{if‘*‘%\ﬂ-} = —(V q)‘(V (-] +(n_4 -gA)+(nB gB) (A.1)
Equation (16.1-5) on page 500 is

n,=pv,. (A2)

Using the relation T = T+ pd given in the paragraph just below equation (18.3-3),
neglecting viscous effects (t = 0) and using equation (16.1-5), equation (18.3-3) can

be written



D(: 12
pB-t(U+§v)=—V-q—V-pS-v+pAvA-g_4+vaB-gB. (A.3)

Equation (2.18) is

p2 = V., +3,. (A4)

Inserting equations (2.19) through (2.22) into equation (2.18) yields

pgt(l‘+%v2) = —V-Jq—v-pU'V'f'plvl 'Fl +p2v2.F2. (A.5)

The entries in Table A-1 can be used to convert equation (A.5) to the notation used in

Transport Phenomena to yield

Df(; 12
pb-t(U+§v ) =-V-q-V-pd-vtpv, -g,+psv5 85 (A.6)

Comparing equations (A.6) and (A.3), we see that equations (2.18) and (18.3-3) are

equivalent when effects due to viscosity are neglected.

Table A-1
Notation used in Notation used in
this work Transport Phenomena

Pr. (k=1,2) p;, (i=A,B)

u

q
u

v, (k=1,2) v;, (i=4,B)

i

U
J q
S

Fk’ (k= l, 2) g,-, (i=A,B)

Now we will prove that equation (2.18) reduces to equation (I.31) on page 17 of

Non-Equilibrium Thermodynamics [de Groot, 1962], if the body forces F, are con-
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servative and viscous effects are neglected. Equation (I1.31) of Non-Equilibrium

Thermodynamics is

de_ _y.g. (A.7)
ot €
Equations (I1.32), (I1.33) and (II.35) are, respectively,
e = %v2+\y+u, (A.8)
J, = pev+P-v+Z\yk.Ik+.lq, (A.9)
k
P=pU+II. (A.10)
Equation (I1.16) is
(A.11)

Lig = a—ae .
Par ot +V-apy.

Inserting equations (11.32), (11.33) and (I1.35) into (II.31), and using equation (II.16),

yields, for a binary system in which viscous effects are negligible (I1 = 0),

d 1 2
pd—t(u+§v +\y) = —V-(Jq+pU- v+yJ, +y,d,). (A.12)
Equation (2.18) is
(A.13)

De
pb-t' =-V.J,+0,.
Inserting equations (2.19) through (2.22) into equation (2.18), and using equation

(2.11), yields

p[-l))-t(u+%v2) = _Vo.lq—V-pU.v+Jl - F, +Jz~F2+pIV-Fl+p2v-F2(A.l4)

If the F, are conservative, then they are defined by the relations
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F,=-Vy,, (k=1,2), (A.15)

—~— =0, (k=1,2), (A.16)

where v, is the potential per unit mass, independent of time, associated with F, .

Using equations (A.15) and (A.16), the last two terms on the right hand side of equa-

tion (A.14) can be written

oy oy
pv-F +pyv-F, = ‘Pl("ét_“”"v‘l/l)-oz(j,}*"”V‘Vz)- (A.17)

Using equations (2.12) and (2.7), equation (A.17) may be written

Dy Dy
p,v-F,+p,v-F, = —pc, Dt[—pcl th. (A.138)

Using the chain rule and equation (2.10), equation (A.18) may be written

D
plv-F|+p2v-F2=-p3\g—\ulV-J|—\y2V-J2, (A.19)
where v is the total specific potential energy of the mixture

Y =y, tay,. (A.20)

Inserting equation (A.19) into (A.14) yields, using also equations (A.15), (B.13) and
noting that the substantial derivative is denoted by d/dt in Non-Equilibrium Ther-

modynamics,
i, +1.2, =_V-(J,+pU-v+y J, +y,J,) (A.21)
pdt u 2v ‘V q p v "VI 1 WZ 2/ :
Comparing equations (A.21) and (A.12), we see that, for conservative body forces,

equation (2.18) is equivalent to equation (I1.31) of Non-Equilibrium Thermodynam-

ics [de Groot, 1962], in the absence of viscous effects.
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A.2 Proof that equation (2.58) is equivalent to equation (18.3-1) of
Transport Phenomena [Bird, 1960]
In Appendix A.2, we will show that equation (2.58) of this work is equivalent to
equation (F) of Table 18.3-1 on page 562 of Transport Phenomena [Bird, 1960].

Equation (F) is, for a binary system in the absence of chemical reactions and viscous

effects,
DT _ o .o . dlni\ Dp
PGy = ~(V- 0+ 80+ Us 80+ (§in7), P2
+Hy (V- Jy) + Hp(V - J) (A.22)
Equation (2.58) is
D DT
Tap—th?—pcp-b—t =VJ,~J F~Jy Fs=h\V-J -h,V-J,.  (A23)

The coefficient of thermal expansion o, is defined by equation (C.20):

- Loy 2
a, V(a;‘)p.M,‘, (A.24)

where V is the volume of a mass element in local equilibrium, and the subscript M,

indicates that the component masses are held constant. Equation (A.24) may be differ-

entiated to yield

_ 1(/dlnv )
> = It (a29)
or, equivalently,
_ 1(dlnv
o, = T T)p,xk, (A.26)

where v is the specific volume:
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vV = = (A.27)

and the subscript x, indicates that the component mole fractions are held constant.

Inserting equation (A.26) into equation (A.23), and rearranging, yields

DT _ dlnv Dp
pe, 2L = vy, v, F, +JZ.F2+(m)p'Xth Fh V- V-, (A28)

The entries in Table A-2 may be used to convert equation (A.28) to the notation used in

Transport Phenomena to yield

dln’ Dp
olnT p.x, Dt

-, DT . .
pCp'b—t = —(V'q)*'(.lg'g,;)'*'(ls'gg)"'(

+H (V- J)+Hp(V - J5).(A.29)

Comparing equations (A.29) and (A.22), we see that equations (2.58) and (F) are

equivalent, in the absence of chemical reactions and viscous etfects.

Table A-2

Notation used in Notation used in

this work Transport Phenomena
c, c

J, q

Jo, (k=12) Ji» (i=A4,B)

Je. (k=1,2) MJ;,, (i=A4,B)
Fr, (k=1,2) g. (=48

v v

he, (k=1,2) H/M, (i=A4,B)




A.3 Proof that equation (2.75) is equivalent to equation (72) of
Hooyman et al. [1953]

In Appendix A.3, we will show that equation (2.75) of this work is equivalent to
equation (72) on page 1105 of the paper by Hooyman, Holton, Mazur and de Groot
[1953]. Equation (72) of Hooyman et al.’s paper is

/O
L= mipzczl(a%l)r D. (A.30)
.p

L= c,p(%)—l D . (A31)

All of the factors appearing in equations (A.30) and (A.31) are defined in the same

manner except for the quantity ®, , a weighting factor which depends on the reference
system being used, appearing in (A.30). [n the present work, we have defined the diffu-
sional flows with respect to the barycentric velocity v, in which case @, = ¢, [Hooy-

man, 1953, page 1104]; thus, for the reference system used in this work, equation

(A.30) may be written

aul)-l

L= czp(a—cl D . (A.32)

T.p

Comparing equations (A.32) and (A.31), we see that equation (2.75) of this work is
equivalent to equation (72) of the paper by Hooyman e al. [1953].

A.4 Proof that equation (2.76) is equivalent to equation (18.4-14) of
Transport Phenomena

In Appendix A.4, we will show that equation (2.76) is equivalent to equation (18.4-
14) on page 568 of Transport Phenomena [Bird, 1960] and equation (11.2-54) on

page 718 of the Molecular Theory of Gases and Liquids [Hirschfelder, 1954]. Since
equations (2.76) and (2.81) are equivalent, the results of this appendix also apply to
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equation (2.81). Equation (18.4-14) of Transport Phenomena is, in the absence of

temperature gradients,

2

. _ (¢ 2 d @
14 _(pRT)M4 MgD 4px, [(8.\:,, MJMV«"A

08 7
-y -gp)+ (M,4 p)Vp].(A.ss)

The coefficient D, ; appearing in equation (A.33) may be replaced by the binary diffu-
sion coefficient .:,; by comparing with Fick’s law. In the absence of pressure gradi-

ents and external body forces, equation (A.33) may be written

,
;] = = _Q__.i
j, (pRT)M4 MBD4Bx4(a M)r.pvx" . (A.34)

Equation (18.4-17), Fick’s law, is

2
Jy = —(%)MAMB ATALIT (A.35)

Comparing equation (A.35) with (A.34) yields a relation between .,z and D 5

L Mx, 3 G4
‘s = 22D, (am 4)”. (A.36)

Inserting equation (A.36) into (A.33) yields

Pa Va1l
2, g8)+(MA p)Vp].(A.37)

Equation (A.37) may be written in terms of mass fractions using entry (N) of Table
16.1-1 on page 498 of Transport Phenomena:



do,
dx, = 5. (A.38)
‘ MM (9—4 + %)-
AB MA MB
Entries (B), (C) and (D) of the same table are, respectively,
Py = cyMy, (A.39)
@, ==, (A.40)
p
¢ =c ytcp. (A41)
Using equations (A.39), (A.40) and (A.41), equation (A.38) may be written
2
dx, = —2—do,. (A.42)

C2M4MB
Using equation (A.42), equation (A.37) may be written
, 3 G4\ 3 Gy Ps Vi 1
= o) () V- ia-g ¢ (- 1)) a)
0P do M, )7, PLow,M )7, " p 84785 My p P
Equation (2.76) is
9 \~!
dc, T.p

At constant temperature, the Gibbs-Duhem relation, equation (C.38), may be written

PV +p,V, = Vp. (A.45)

Inserting equation (A.45) into equation (A.44) yields, using also equations (2.7) and
(2.8),

_ (O P2 1
J, = —p(E)T’IJD[VTuI—B-(F[ —Fz)—EVp]. (A.46)

In a binary system at constant temperature, a chemical potential gradient can be writ-

ten, using equation (C.66),
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_ oy,
Vo, = v, Vp+ —) Ve,, (A47)
dc T.p

Inserting (A.47) into (A.46) yields

alJ.l -1 aul p‘) 1
J, = - (—) D[(—) Ve, - P2(F —F +(u —-)V ] A48
=G )y, Plae )y, TR TP (149

The entries in Table A-3 can be used to convert equation (A.48) to the notation used in

Transport Phenomena. Equation (A.48) then becomes

N I /AR O I L Va1
Ja = _p(a")AMA)T.p(':48[(8"3.4M4)T.pvm'r p (84-25) +(M.4-p)Vp:|. (A4

Comparing equations (A.49) and (A.43), we see that equations (2.76) and (18.4-14) are

equivalent, in the absence of temperature gradients.

Table A-3
Notation used in this work Notation used in Transport Phenomena
Jk- (k=1,2) ], (i =4, B)

Ce = P/P. (k=12) |, =p/p, (i=4,B)

ppr (K=1,2) p;. (i=A4,B)
V., (k=1,2) Vi/M,, (i=4,B)
My, (k=1,2) Gi/M,, (i=4,B)
D “4B

F,, (k=1,2) g, (i=4,B)

Next we will prove that equation (11.2-54) of the Molecular Theory of Gases and
Liquids is equivalent to equation (18.4-14) of Transport Phenomena, thereby prov-
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ing equivalence to equations (2.76) and (2.81) as well. Equation (11.2-54) is, in the

absence of temperature gradients,

nn, _  _
Z—Lzl -(Vi-V) =4
SN

i 3
J “ij

For a binary system, .;; = 0 and equation (A.50) may be written

nyny

n -.”l-)

(A.50)

(A.51)

From page 709 of the Molecular Theory of Gases and Liquids we obtain the defini-

tion

Ji = nimVi,
and from page 454 we obtain
—Vl = f’,—VO,
nm;_ nym,_
vy = 0 v, + "p ~Vy,

p=nm +nym,.

Using equations (A.52) to (A.55), equation (A.51) may be written

_p N =d,.

2.

Equation (11.2-29) on page 714 may be written, for a binary system,

" =ﬂ(al‘l|) %+(f/l_"ﬂ)éﬁ_(xl_,—n—'n‘xl—%nzxz)].

nk a—ﬁ T’par

From page 1181 we obtain

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)
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Combining equations (A.56) and (A.57), and using equations (A.55) and (A.58), yields

. _ (n 2(m11.\'/)-(m21.\./) M0 My ox; (¥, 1 dp
jo = () mra 7
N. PRT n | \ox,m, rpor \mg p or

m;nz(’il_ _ /_\:gjjl (A.59)

my  m,

The entries in Table A-4 may be used to convert equation (A.59) to the notation used in

Transport Phenomena. Equation (A.59) then becomes

5 - -
, c” 2 d Gy Vi | P

= | == IM,"M,D,px (——— ) Vx +(——-)V ——(g, - ):l .(A.60)
14 (pRT) 4 B~ AB A|: ax.-lA/!A Ip 4 M4 P p p 8,83

Comparing equations (A.60) and (A.33), we see that equation (11.2-54) ot the Molecu-
lar Theory of Gases and Liquids is equivalent to equation (18.4-14) of Transport

Phenomena, and therefore equivalent to equations (2.76) and (2.81) as well.

Table A-4

Notation used in Transport Phenomena | Notation used in Molecular Theory...
ji» (i=4,B) ji.o (i=1,2)

M;, (i=4,B) mN, (i=1,2)

p;» (i=A4,B) nm;, (i=1,2)
Vi/M,, (i=4,B) Vi/m;, (i=1,2)
Gi/M,, (i=A4,B) H/m;, (i=1,2)
Dyp “2

g. (i=A4,B) X/m;, (i=1,2)
x;, (i=A4,B) x; =n/n, (i=1,2)
¢ n/N

v a/ar
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A.S Proof that equation (2.93) is equivalent to equation (14) of Mijnlieff
and Jaspers [1971]
In Appendix A.5, we will show that equation (2.93) of this work is equivalent to
equation (14) on page 1841 of the paper by Mijnlieff and Jaspers [1971]. Equation (14)
of Mijnlieff and Jaspers’ paper is

PVo\?
k= (—-9) on,. (A61)
€
Equation (2.93) of our work is
c\2
[ = (_’) L (A.62)
LIVARLE

Rearranging equation (A.62) for the permeability £ yields, using also equation (2.7),

V,\2
k= (Pp—‘) Ln,. (A.63)

By inserting the relations in Table A-5 we may convert equation (A.63) into the nota-

tion used by Mijnlieff and Jaspers to yield

k = (pv")zgno. (A.64)

Cy

Comparing equations (A.64) and (A.61) we see that equation (2.93) of the present

work is equivalent to equation (14) of Mijnlieff and Jaspers’ paper.

Table A-§

Notation used in this work | Notation used by Mijnlieff
Vg, (k=1,2) v,, (i=0,1)

i

Pe (k=1,2) c;

i

L Q

(i=0,1)
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Table A-§

Notation used in this work | Notation used by Mijnlieff
L No

s S

A.6 Proof that equation (2.107) is equivalent to equation (12) of
Mijnlieff and Jaspers [1970]

In Appendix A.6, we will show that equation (2.107) is equivalent to equation (12)
on page 1840 of the paper by Mijnlieff and Jaspers [1970]. Equation (12) of Mijnlieff

and Jaspers’ paper is

) ¢
5 = QB—Q(1+—I)(1—pv1). (A.65)
€y €o
Equation (5) of their paper is
p=cyptec. (A.66)

Using equation (5), equation (A.65) can be written

9

P Vg
= O——(1] - ) A.67
S Qcocl(l PV|) ( )
Equation (2.107) is
ciey .
_ 2 s A.68
v, (1-pvy)’ (A65)

Rearranging for s and using equation (2.7), equation (A.68) can be written

2

- Py
s = Lp——(l -pV,). (A.69)

1P2

Using the relations in Table A-5 to convert equation (A.69) from the notation used in

this work to the notation used by Mijnlieff and Jaspers yields
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p’v
s = 0—=(1-pv). (A.70)
oy
Comparing equations (A.70) and (A.67) we see that equation (2.107) of this work is

equivalent to equation (12) of the paper by Mijnleiff and Jaspers.

A.7 Proof that equation (2.111) reduces to the Svedberg equation

In Appendix A.7, we will show that, for a dilute macromolecular solution, equation
(2.111) reduces to the Svedberg equation of ultracentrifugation. The Svedberg equa-
tion, equation (3a) of The Ultracentrifuge [Svedberg, 1940], is

RTs

M= D_(l——_l/-p_) (A.71)
Equation (2.111) is, using equation (2.9),
- o .
D = ———c‘——(ﬁ) ;. (A.72)
PV (1 -pvy)\dey /7,

We can convert the mass fraction partial derivative dc, in equation (A.72) to a mole

fraction partial derivative dx, using the definition

(A.73)

where 7, is the molar mass of the KM component. Differentiating equation (A.73)

yields, using equation (2.9),

0x, ox, ac,
= 3="0c; +3=dc; = : (A.74)

807 < ”m(C/W‘l"C/V)Z
= 12V 1 272

For very dilute solutions containing macromolecular solutes, ¢,/ 7, can be neglected

and equation (A.74) can be rearranged to yield
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’20%
dc, = ——0x,. (A.75)
7

Inserting equation (A.75) into (A.72) yields, using equation (2.7),

D= — il (%) 5. (A.76)
7PV (1 -pv,) axz T.p

For very dilute solutions, the chemical potential of the solvent may be written [Callen,

1985, p303] (see footnote 14 on page 28)

m (T, poxy) = (T, p) ~RTxy (A.77)

where u? is the chemical potential of pure solvent and R is the universal gas constant;

also, for dilute solutions, the solvent partial specific volume may be set equal to the

inverse of the solvent density

v, = p}'; (A.78)

Equation (A.77) can be differentiated to obtain

d
'z‘,(—“‘-) = _RT. (A.79)
0x, T.p

Inserting equations (A.79) and (A.78) into (A.76), and rearranging for 7, yields

RIS

h = m (A.80)

We can now use the relations in Table A-6 to convert equation (A.80) from the nota-

tion used in this work to the notation used by Svedberg [1940] to yield

RTs

= m (A.81)

Comparing equations (A.81) and (A.71), we see that, for a dilute macromolecular solu-

tion, equation (2.111) reduces to the Svedberg equation of ultracentrifugation.



Table A-6

Notation used in this work | Notation used by Svedberg
7 M

v, V

s s

A.8 Proof that Equation (3.6) is equivalent to equation (7) of Kozinski
and Lightfoot [1972]

In Appendix A.8, we will show that equation (3.6) is equivalent to equation (7) of
Kozinski and Lightfoot’s [1972] paper. Kozinski and Lightfoot obtained equation (7)
of their paper by applying the boundary conditions of an ultrafiltration experiment to
their equations (1) and (2), the Stefan-Maxwell equations. However, the equations in
Kozinski and Lightfoot’s paper contain several typographical errors which make it dif-
ficult to follow their derivation; therefore, before proving the equivalence of equations
(7) and (3.6), we will derive equation (7) from equations (1) and (2), and point out the

typographical errors, for the sake of clarity. Equations (1) and (2) of their paper are

m m
XX 1
4= 3 PN T g NN, e
j=ljzi =i Y
. ~ m
g=Nig S [EY e Ngp P Y g (A.83)
i RT TP\ RT  C.RT C,RT|® ko

where X; is the mole fraction of the i*" component; D;isa phenomenological coeffi-
cient; V; is the local velocity of the ith component; C,, is the total molar concentration;

N, is the molar flux of the i component:

N, = X,C,V,; (A.84)

m- i’
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R is the universal gas constant; T is the temperature; P is the pressure; |i; is the

chemical potential of the i component; ¥, is the partial molar volume of the i’ com-
ponent; ®; is the mass fraction of the i* component; p ; is the mass density of the ith

component; and, g; is the total body force per unit mass acting on the i component.!

For a binary system, equations (A.82) and (A.83) may be combined to yield

-~

RT _ ~ _—_
C,,.Dps(X‘NP_XPNs) = XV "+(X-‘ V™ Cm)vp

ps = ~
~Z (g, - 0.8, - 0,,) (A85)

m

where the subscripts s and p signifiy the solvent and solute, respectively; and, the

relation D, = D, was used. Using the relations

X,+X, = | (A.86)
and
@ +w, = 1, (A.87)

equation (A.85) may be written

C"ID s ~ = J)s ps(:)P
N,-X(N,+N,) = ——2lx v, Pps+(XsVs——)VP——[gs—gp] (A.88)
P RT C. c

| Note that the terms in the first parentheses of equation (A.83) are written (X,.T/i - -(.%7') in Kozinski
m
and Lightfoot’s paper. This is a typographical error, as they should be written as in equation (A.83).
The Stefan-Maxwell equations are written correctly by Lightfoot in Transport Phenomena and Liv-
ing Systems [1974] (equation (1.2.12) on page 161).
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Let us write only the y-component of equation (A.88):

_ CmDs ags
NS'V—XS(prﬁ-NSy) = ——LRT JYA(S{J_ - p

(g5, — &py] }.(A.89)

The body forces acting within the concentration polarization layer are given by equa-

tions (5) and (6) of Kozinski and Lightfoot’s paper:

gy = &, (A.90)
1 oP
= 4 —— , A.gl
gP_V gy pp ay ( )

where g, is the y-component of the acceleration due to gravity.2 [nserting equations

(A.90) and (A.91) into (A.89) yields, using the relation (:)i =p,/p,

N. - XN +N)=__C£EX(8—’1S) +XT/8-P] (A97)
sy~ AsWVpy TNy RT [f ayJr.p " fayl o

Equation (A.92) is equation (7) of Kozinski and Lightfoot’s paper.3

2 Note that equation (6) of Kozinski and Lightfoot’s paper is written g,, = g, + gg—’: This is another

typographical error, as it should be written as in equation (A.91).

c,.D -
3 Note that equation (7) of Kozinski and Lightfoot’s paper, N,, - X,(V,, - N, ) = —-'"E?.E[X,%us

+X, T/,%f] , contains two more typographical errors. The left hand side of this equation contains a sign

error and the right hand side implies the gradient of the full chemical potential (%pf) rather than the

gradient of the concentration-dependent part of the chemical potential (%‘)r o



140
Let us now prove that equation (7) is equivalent to equation (3.6) of this work.

Using equations (A.86) and (A.84), equation (A.92) can be written

D, r(3u —d
- = B35 =5 =
(V=) = 5 (%), 775 (A.93)
Equation (3.6) is
_ L

Using equations (2.11), (2.9), (2.6) and (C.66), the y-component of equation (A.94)

may be written

oy L (%) oP
(1 =) Plpzcz[ dy T.P+Dla,V]' (A.93)

We may use the relations in Table A-7 to convert equation (A.95) into the notation

used by Kozinski and Lightfoot to yield

D, r(op _
_ - S S
Vv Vo) XpRT[( 3y )t il (A-96)

Comparing equations (A.96) and (A.93), we see that equation (3.6) is equivalent to
equation (7) of the paper by Kozinski and Lightfoot [1972].

Table A-7

Notation used in this work Notation used by Kozinski
Vip: (k=1,2) Vi_v, (i =s,p)

e (k=1,2) Wi/M;, (i=s,p)

v, (k=1,2) Vi/M,;, (i=s,p)

D P

P, (k=1,2) C,XM;, (i=s,p)
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Table A-7
Notation used in this work Notation used by Kozinski
¢y, (k=1,2) w;, (i=s,p)
L )
oo == WM D x 3
mP m‘ s p p.(‘,s

a. This relation was obtained by comparing Section 2.4 of
this work with Section 1.2 of Transport Phenomena and
Living Systems [Lightfoot, 1974]. Note that D, is equiv-

alent to D, used in equation (18.4-14) of Transport Phe-
nomena [Bird, 1960].

A.9 Proof that equation (3.10) reduces to the Shirato equation

In Appendix A.9, we will show that, if the solute particles are large enough that
Brownian diffusion may be neglected, equation (3.10) reduces to the Shirato equation
of compressible cake filtration [Shirato, 1969]. The Shirato equation may be written
[Tiller, 1975, equation (4.3), page 350]

dps _ E
- = —K(q——er). (A.97)

In the absence of Brownian diffusion (D = 0), equation (3.10) may be written
J, = ——==Vp. (A.98)
l LARLY i

Using equation (2.78) and rearranging equation (A.98) for the pressure gradient yields

n v
Vp = —'k‘l(PlUl"l ‘(gl_ul)quz"z)' (A.99)
2

For a one-dimensional system we may write

v, = v[;’, v, = VZ;' and Vp = %;, (A.100)

and equation (A.99) may be written
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2 N o, (22 0,0,
Te k(plulvI P70, P,V,V; | (A.101)

The entries in Table A-8 may be used to convert equation (A.101) to the notation used
by Tiller [1975] to yield

dps _ E
- = —K(q—er). (A.102)

Comparing equations (A.102) and (A.97), we see that equation (3.10) reduces to the

Shirato equation, in the absence of Brownian diffusion.

Table A-8

Notation used in this work | Notation used by Tiller
p Ps

ny B

k K

oV q

PaV,yV, r

PV,/P,V, e

A.10 Proof that equation (4.12) reduces to equation (4.11)

In Appendix A.10, we will show that equation (4.12) reduces to equation (4.11) in

the absence of pressure gradients and external body forces. Equation (4.12) is

Assuming constant pressure and neglecting body forces, equation (A.103) may be writ-

ten, using equation (2.47),

Using equation (2.11), equation (A.104) may be written
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© = —pv- Vi =pava Vi v v (0 Vi + 02V o). (A105)
At constant temperature and pressure, the Gibbs-Duhem equation may be written,
using equation (C.38),
P Vr oty +PVr iy = 0. (A.106)

Therefore, equation (A.105) reduces to equation (4.11):

D = —pyv -V —pavy- Vi U, (A.107)
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Appendix B: Vector and Tensor Identities

In parts of this work, we used vector or tensor identities to modify an equation.

Here we show how to verify these identities, for a Cartesian coordinate system, using

index notation.! A vector v is often represented in Cartesian coordinates by

v = vitvj+vk, (B.1)

A A 0~

where v, v,, v. are the component magnitudes and /, j, £ are the unit vectors. We can

alternatively represent this vector by

vV = v X T VX, Ty, (B.2)

where v, v,, v, are the components and x,, x,, X; are the unit vectors. [n index nota-

tion, we represent this vector by a summation
v = 2vi_t,- , (B.3)
i

where i runs from | to 3. Similarly, a second order tensor T can be represented in

index notation by

yrye

T= Z T x.x. (B.4)
ij

where i and j run from | to 3 and x;x;, sometimes denoted by x; ® x;, represents the

tensor product of x; and x;.

The differential operator is, in Cartesian coordinates,

d - d - d -
V = —lxl+ 7+a'—t3x3,

I a—xzx_ (B.5)

and can be represented in index notation by

I See pages 715-742 of Transport Phenomena [Bird, 1960] for an overview of index notation and its
use in deriving vector and tensor identities.
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V= za% (B.6)

where d; represents £~ and i runs from 1 to 3. Also, the substantial time derivative
Xi

DQt can be represented by D,. Due to the definition of the dot product and the double

dot product, several relations exist between the unit vectors [Bird, 1960, p728]:

Xox =8, (B.7)

XXX = X8 (B.8)

XX = 8%, (B.9)

XXk, = 8,8, (B.10)

XX X%, = x,8,%), (B.11)

where 3, is the Kronecker delta function
l,i=j
T {O,i;tj : (B.12)

We can now verity all of the vector and tensor identities used in this work. We will
present these identities next and then verify two of them -- (B.2) and (B.3). The others
can be verified in a completely analogous manner.
Identity B.1

Viav = v-Va+aV v, (B.13)

where a is an arbitrary scalar and v is an arbitrary vector.

Identity B.2
v-22 - BL2 (B.14)

where v is an arbitrary vector and v> denotes v - v.
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Identity B.3

V-alU-v=v-V.-aU+alU:Vv, (B.15)

where a is an arbitrary scalar, v is an arbitrary vector and U is the unit tensor:
U=Y3;xx. (B.16)
LJ

Identity B.4

UVv=V.y, (B.17)
where v is an arbitrary vector and U is the unit tensor.
Identity B.S

V.-alU = Va, (B.18)

where a is an arbitrary scalar and U is the unit tensor. We will now verify identities

(B.2) and (B.3).

Verification: Identity B.2

Dv _ D1 2
v.Dt = thv , (B.19)

where v is an arbitrary vector and v’ denotes v - v. Writing the left hand side of iden-

tity (B.2) in index notation yields
Dv _ - -
vl Zvixi . D,Zvjxj
i J

= Zvi(xi -x;)Dyv;
i“J

- Y VD, (B.20)
i
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where equations (B.7) and (B.12) were used. Writing the right hand side of identity

(B.2) in index notation yields
D12 _1 - -
ot = 2D,Zvixi-2vjxj
i J
= ZD,vi(fci . .'.cj)vj
Lj

1
= >3 Dy, (B.21)
i

where equations (B.7) and (B.12) were used. Since all of the factors in (B.21) are sca-

lars, we can apply the chain rule:

Vi Vi

l 1
5_20:":"’1 ?':Z(V-D v.+v.Dv)
i i

= z"iD,"i' (B.22)
i
Comparing (B.22) with (B.20), we see that identity (B.2) is valid.

Verification: Identity B.3

Vial-v=v-V.aU+al:Vv, (B.23)

where a is an arbitrary scalar, v is an arbitrary vector and U is the unit tensor. Writing

the left hand side of identity (B.3) in index notation yields

V.al-v = Za,.;c,. . aZSJ-kijik . Zv,i,
i ik I

= Y 0x;-ay du(xx,-x)v
i

j’k’l
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i J
= zai(ii~ij)avj
iLj
= za,.av,. (B.24)
i

where (B.7), (B.8) and (B.12) were used. Writing the first term on the right hand side
of identity (B.3) in index notation yields

v-V.al = Zvifc,. . zaj.ij-azak,ik%,
; j k!

]

= zvix’- . 2 aj(xj . xk.t[)askl

i J ok

= Zvixi . Zajax,
J

i

= Y vi(x; x)0,a

hJj
= Zviaia (B.25)

where (B.7), (B.9) and (B.12) were used. Writing the second term on the right hand
side of identity (B.3) in index notation yields

alU:Vv

]

aZSijﬁtiij :za,,%kzv,},
ij k !

=a 'y 8;(xx;xx)9v,
ijok 1
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= ao.v. (B.26)
sear

where (B.10) and (B.12) were used. Since all of the factors in (B.26) and (B.25) are

scalars, we can add these two equations using the chain rule to get

v-V-aU+alU:Vv = Zviaia+ Zaaivi

= Zaiavi. (B.27)

Comparing (B.27) with (B.24), we see that identity (B.3) is valid.
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Appendix C: Thermodynamic Identities

In this work, we have used several thermodynamic identities or relations when
deriving equations. In this appendix, we will show how all of the thermodynamic iden-

tities and relations used in this work may be derived as consequences of the postulates

contained within the following two statements. '

L. The state of a simple thermodynamic system in equilibrium (or a mass element in
local equilibrium) is completely characterized by the internal energy of the system U,

the volume ¥ and the masses M, (k=1,2) of the components, and there exists a con-

tinuously differentiable, invertible function of these variables called the entropy S.

2. With the intensive properties of the system (temperature, pressure, mass fractions,

etc.) held constant, the entropy is a first order function of the mass of the system.

C.1 Gibbs Relation

From the first statement, we may write

S = S(U,V,M,, M,). (C.1)

Taking the first derivative of (C.1) yields

- (%2 as a5 as )
as (a U) V. MkdU+ (a V)U. M,‘dV+ (aMl)U v, Mszl ¥ (aMz)U v, M, dMZ , (C.2)

where the subscript M, indicates that M, and M, are held constant. The partial deriv-

atives in equation (C.2) are well defined thermodynamical quantities:

S _1
(aU)V,Mk r (€3

! In this appendix, we will make only the postulates that allow us to derive the thermodynamic relations
used in this work. For a more complete introduction to thermodynamics, see Callen [1985] or Tester
and Modell [1997].
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M) _2
(8 V) vy, T’ (€4)
05 ) My
2= = cs
(aM /U, v, M, T ( )
as _ M
(aMZ)U, v, T (©6)

where T is the temperature, p is the pressure and 1, is the chemical potential of the ih

componerlt.2 Inserting equations (C.3) to (C.6) into equation (C.2) yields the Gibbs

relation of equilibrium thermodynamics:

= Lipegy Mgy M2
ds TdU+ TdV TdM‘ TdM2~ (C.7D
The mass M of an element in local equilibrium is constant; therefore, we may divide
equation (C.7) by M to yield
)

ds = leu +Edv - “—T‘dc, - ey, (C.8)

where s, 4, v, ¢, and ¢, are specific quantities, defined in the main text. Note that the

first derivatives appearing in equation (C.8) may be replaced by other differential oper-
ators. For example, when considering the entropy of a differential mass element in

local equilibrium, we are interested in taking the substantial derivative:

D D
Ds _ 1Du +2@_ﬁ_ﬁl_&%£; (C.9)
Dt TDt TDt T Dt T Dt
or, we are interested in taking the gradient:
_ Ly, ity Mg, B2
VS TV“ + TVD T Vcl TVCz . (C.IO)

2 Note that the chemical potential is defined on a mass basis in this work, whereas it is usually defined
on a molar basis in thermodynamics texts. Multiplying u, by the molar mass 7 of the K" component
yields the chemical potential as defined by Callen [1985].
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The quantities 7, p, i1, and ,, being partial derivatives of S, are also functions of

the independent set {U, V, M\, M} :

T = T(U, V, M, M,), (C.11)
p=pU V.M, M), (C.12)
W, = u (U V,M, M), (C.13)
Wy, = W, (U, V, My, M,). (C.14)

Assuming equations (C.11) through (C.14) are invertible, we may replace U and Vin
equation (C.1) with the partial derivatives T and p to yield

S = S(T,p, M\, M,). (C.15)

Note that, if the entropy were a known function of the independent set {7, p, M, M} ,

it would be a partial differential equation and would require knowledge of two bound-
ary conditions in order to contain as much information as the entropy in the form of

equation (C.1). Taking the first derivative of equation (C.15) yields

3s 3 as s
ds = (—) dT+(— d +(—) M +( ) dM, . (C.16
9T )p, M, op/T, M, P \om UTpou, | \OMa)r oy (C.16)

The partial derivatives in equation (C.16) are, or may be related to, well defined ther-

modynamical quantities:

3y _ %

(ar),,. v, T €17
a9S _

(aMl)T,,,,M: ~ b (C.18)

(C.19)

/N
S
S (%
——
=
=
X
I
“
[N
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where C, is the heat capacity at constant pressure and s, is the partial specific entropy
of the &M component. We can relate the partial derivative (g_S) to the coefficient of

pJT, M,

thermal expansion o.,,,

1(d
= -— —
a, 3T ), 1. (C.20)

by studying the sum U+ pV - TS, called the Gibbs free energy G:

G = U+pV-TS. (C.21)

Taking the first derivative of (C.21) yields

dG = dU+ pdV + Vdp —TdS - SdT. (C.22)

Combining equation (C.22) with the Gibbs relation, equation (C.7), yields

Now we may use equation (C.23) to get

(g—j)r M B (i%)r M,‘(—%_?)p, M, i} —(% )pv Mk(aa—%)T.Mk i} _(gl;)n M, (29

Combining equations (C.20) and (C.24) yields

(——) =-Va,. (C.25)

Combining equations (C.25), (C.19), (C.18) and (C.17) with equation (C.16) yields an

expression analogous to the Gibbs relation:

S
dS = —LdT—Va,dp +s,dM, +s,dM,. (C.26)

For a binary mass element in local equilibrium, equation (C.26) may be written in

terms of the substantial derivative to yield, after dividing by M,
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Ds _ DT _%Dp,  De Doy

—_— — 2
Dt TDt p Dt SiDr 2D €27

where ¢, is the heat capacity per unit mass and p is the density of the system.

C.2 Gibbs-Duhem Relation

In order to derive the Gibbs-Duhem relation, we will study the second statement:
“With the intensive properties of the system (T, p, ¢, c,, etc.) held constant, the
entropy is a first order function of the mass of the system.”” Mathematically, this state-
ment means, for the independent set {7, p, M, M} ,

S(T,P, A'Mly A'A/IZ) = A'S(T’pv lev Mz), (C28)
or,
§' =S, (C.29)
where A is an arbitrary constant and
S = S(T,p, AM |, AM,). (C.30)

Alternatively, we may use the set {U, ¥V, M, M,} and write, noting that with the inten-

sive variables held constant, U and ¥V will be first order functions of the mass as well,

S = AS, (C.31)
where
S = S(AU, AV, AM |, AM,). (C.32)

Taking the first derivative of equation (C.31) with respect to A yields, in light of
(C.32),



(aS) dw+(as') de+( 28" ) dAM,
o U v, M, dA oAV, m, dA ale UV, M, dA

S dAM, — 4\S
+(8XM2)U‘ v )

or,

as oS as EAY
— U+ =— V+|o—— —_— M, =8§. (C34
(alU)V, M, N (al V)U, M, ¥ (alMl)U, v MZM' * (alMg)U, v, S (E39

Since A is arbitrary, we may let A = | and use equations (C.31), (C.3), (C.4), (C.5)

and (C.6) to yield the Euler relation of equilibrium thermodynamics:

5= 2U+Lr- L—lT-‘M, —%—?Mz . (C.35)

Multiplying (C.35) by T and taking the first derivative yields

TdS+SdT = dU+ pdV + Vdp - dM, - M dy, - h,dM, - Mydp,.  (C.36)

Combining equation (C.36) with equation (C.7) yields the Gibbs-Duhem relation of

equilibrium thermodynamics

For a mass element in local equilibrium, equation (C.37) may be written in terms of the

gradient operator to yield, after dividing by ¥,

psVT-Vp+p,Vu, +p,Vu, = 0. (C.38)

[n an analogous manner, we may take the first derivative of equation (C.29) to
yield, in light of (C.30),

3 Equation (C.35) may also be obtained by integrating equation (C.7), the Gibbs relation, from
{S, U, V,M|, My} to {AS, AU, AV,AM|,AM,} while holding {T,p,n,. u,} constant.
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(57 @) (55)00(#)

oS 'dAM, 2S dAM, dXS
+(awl)mm( 7 )*(awz)r,,,,‘w,( an ) (C-39)

or, since ar _ 0 and dp _ 0 because T and p are being held constant,

ar a
as as _
(ale )T » M, + (alMg)r, . M, = S. (C.40)

Since A may be any number, we may let A = 1 and use equations (C.29), (C.18) and

(C.19) to yield a relation analogous to the Euler relation*:

S = s,M, +s,M,. (C.41)

Taking the first derivative of equation (C.41) yields

dS = s, dM | + M ds| +s5,dM, + M,ds,. (C.42)

Combining equations (C.42) and (C.26) yields an equation analogous to the Gibbs-
Duhem relation:
%
For a mass element in local equilibrium, equation (C.43) may be written in terms of the
gradient operator to yield, after dividing by ¥,
4
p TVT—apr—pIVsl—p2Vsz = 0. (C.44)

In order to derive the rest of the relations used in this work, we will first reiterate
the statements made at the beginning of the appendix in a more general manner, fol-

lowing the development of Tester and Modell [1997].

4 Equation (C.41) may also be obtained by integrating equation (C.26) from {S, T, p, M|, M,} to
{AS, T, p, AM|, AM, } while holding {7, p, s|,s,} constant.
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1. “The state of a stable, single phase, [n-component] system can be specified as a con-
tinuous function of n+2 variables. . . . We are completely free to select these n+2 inde-
pendent variables from a large set of intensive and extensive properties.” Any
extensive variable B or intensive variable b may be written as a continuously differenti-

able, invertible function of the n+2 independent variables [Tester, 1997, p318].

2. With the intensive properties of the system (b, T, p, ¢, . ¢,, etc.) held constant, B is

a first order function of the mass of the system [Tester, 1997, p320].

As an example, in light of the first statement, we may choose {T, p, M, M5} asour

independent set of variables and write, for any extensive variable B of a binary system,

B = B(T,p,M|, M,), (C.45)
or, for any intensive variable b,

b =T pM,M,). (C.46)
In light of the second statement, we may write

B(T9p7 A'Mlv}\'Mz) = }\'B(Tiplest)v (C'47)

where A is an arbitrary constant. Alternatively, we may choose {7, p, c, M} as our
independent set and write, in light of the first statement,

B = B(Tspic[’M)y (C48)

and
b = b(TvpaC[aM)' (C49)
Further, since b is intensive, we may write

b(T,Pst A'A'!) = b(T9p1 c[rM)' (C'SO)

Equations (C.45), (C.48) and (C.49) are equivalent to equations (9-4), (9-5) and (9-7),
respectively, of Thermodynamics and Its Applications [Tester, 1997]. The only dif-

ference is that Tester and Modell denote extensive variables by B and intensive varia-
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bles by B; also, they use moles and mole fractions rather than masses and mass

fractions.

C.3 Partial Specific Volume

Let us choose B = V. Then we may write, in light of (C.45),

= W(T,p, M|, M>), (C.51)
and
(T, p, AM |, AM,) = AV(T, p, M|, M,). (C.52)

We may take the first derivative of (C.52) with respect to A and thenset A = | as

before to get

V=v9 M +v,M,, (C.53)

where v, and v, are partial specific volumes:

(v
v, = (a A'II)T.,". " (C.54)
aV)
= | =— ) C.55
v (aMz - (C.55)

Dividing equation (C.53) by the volume ¥ of a mass element in local equilibrium

yields

PV TPV, = 1. (C.56)

C.4 Chemical Potential

Let us choose & = |, . Then we may write, in light of equations (C.49) and (C.50),

p'[ = u[(T,P:C[,M) (C57)

and

ul(T5p’C]9}"M) = P—l(T,P,CpM)» (C58)
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We may take the first derivative of (C.58) with respect to A and thenset A = 1 as

before to yield

oy,
(m)ﬂp,c,M =0 (€59)

or, since M is not zero in general,

au,
(55)r., . =0 (C.60)

Taking the first derivative of equation (C.57) yields, using (C.60),>

_ (O, I, oM,
1= (57), 2T (5 et (5 ) 20 en

If ¢, and M are both constant in a binary system, then the masses M, and M, are con-

stant and equation (C.61) may be written

ap’l ap.l aul
~\or O Y 2
dul (aT)p' /Wde+( ap )T, Awkdp_*.(acl)rvpdcl . (C'6—)

The first two partial derivatives in equation (C.62) may be replaced by more well
defined thermodynamical quantities by using equation (C.23), along with equations

(C.18) and (C.54):

o,
(3?),, L= (C.63)
y Vi
d
(—u—l) = V. (C.64)
ap JT. M,
Inserting equations (C.63) and (C.64) into (C.62) yields
3 Note that the partial derivatives appearing in (C.61) should contain the subscript M:
a“l aul aul . . . . .
= | emm— —— — . l d =
dp, ( aT)p. . MdT+ ( 3 )ﬁ cl- Mdp + (aq)”' MdCl However, since intensive variables are inde

pendent of the mass of the system, the mass need not be considered constant and we have neglected
the subscript A in equation (C.61) and throughout the rest of this appendix.
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- oau,
dc, T.p

For a binary mass element in local equilibrium, equation (C.65) may be written in

terms of the gradient operator to yield

)
Vi, = —slVT+ulvp+(ﬂ) Ve,. (C.66)
dc, T.p

C.5 Partial Specific Entropy

Let us choose b = s, . Then we may write, in light of (C.49),

L= s/(T,poe, M. (C.67)

The first derivative of equation (C.67) may be written, analogously to equation (C.62),

! T p. M, op JT. M, de, T.p ! ‘

Let us write the partial derivatives appearing in (C.68) in more useful forms. Using

equation (C.26) we may write

(%;l)p e (%)“ Mk(ﬁ%)ﬁp,fvl (81?/{ I)TP M, (BT) My T(BM )T,p. v§C o

Similarly, using (C.26), (C.20) and (C.54),

asl _ aV(’. a‘)l
(Bp) M, _( aM, )Tp M, —( BT)p, M, (C.70)
Using equation (C.63) we may write
aS[ _ P} aul ‘3 aul
(acl)r'p - (aC[) (aT)p M, (aT)p Mk(acl) (C.71)

Inserting equations (C.71), (C.70) and (C.69) into (C.68) yields

ac, ) J
dsy = ) T ( D,) dp-(i) (_'ﬂ) de, . (C.72)
aMl T, p, M, aT Jp, M, oT p. M, acl T.p
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For a binary mass element in local equilibrium, equation (C.72) may be written in

terms of the gradient operator to yield

ISt RGN
Vs, dc, T'p.MZVT 3T oot P \3T  wl\ae npvc[. (C.73)

C.6 Enthalpy and Partial Specific Enthalpy

Let us define a function H. called the enthalpy, by the relation

H=U+pV. (C.74)
Taking the first derivative of (C.74), and using equation (C.7) to eliminate dU, yields
dH = TdS+ Vdp+ \ dM| + W,dM, . (C.75)

Taking the partial derivative of equation (C.75) with respect to M, at constant 7, p and

M iz yields, using equation (C.18),
hy = Ts,+1,, (k=12), (C.76)

where 4, is the partial specific enthalpy of the " component:

hk=(aH , (k=12),(#k). (C.77)

aA/[k)T. P, M;
Let us choose B = H. Then we may write, in light of equations (C.45) and (C.47),
H=H(T,p,M,M,), (C.78)
and
H(T,p, A\M,,AM,) = AH(T,p, M|, M,). (C.79)

We may take the first derivative of (C.79) with respect to A and thenset A = 1 as

before to obtain an Euler relation for A':

H = hM,+hM,. (C.80)
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Let us obtain a Gibbs relation and a Gibbs-Duhem relation for A . Taking the first
derivative of (C.78) yields

0 ) oH oH
dH = (—”) dT+(—H) d (—) M +( ) dM,. (C.8
0T Jp, u, apJT, M, P Mg put, ' \OMy)r g C (€.31)

We may obtain the partial derivative (%’-;) by using equations (C.75) and (C.17):
p. M,

BH‘) T(E)S )
= =Tl = =C,. C.82
(37’ b, M, T )p.m, * (C82)
We may obtain the partial derivative (aa—:,) by using equations (C.75) and (C.25):
T. M,
BH) BS) .
- =T == +V==TVo, +V. C.83
(ap T, M, oapJ)T, M, P (C.83)

Inserting equations (C.77), (C.82) and (C.83) into equation (C.81) yields a Gibbs rela-

tion for H:
df = C,dT+ V(1 -To,)dp + hjdM, + h,dM, . (C.84)
Taking the first derivative of (C.80) yields
dH = h\dM, + M dh, + hydM, + M,dh, . (C.85)
Combining (C.85) and (C.84) yields a Gibbs-Duhem relation for A :

C,dT+ V(1 - To,,)dp - Mdh, - Mydh, = 0. (C.86)

For a mass element in local equilibrium, equation (C.86) can be written in terms of the

gradient operator to yield, after dividing by V,

pchT+(l—Tap)Vp—prhl—szhz = 0. (C.87)

Let us choose b = k| . Then we may write, in light of (C.49),

hy = h(T,p,c;, M). (C.88)
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The first derivative of equation (C.88) may be written, analogously to equation (C.62),

oh dh oh
an = (58), ,47+(52), dp+(52)  der. (C89)
oT Jp. M, dp )T, M, acl T.p

Let us write the partial derivatives appearing in (C.89) in more usetul forms. Using

equation (C.84) we may write

oh, (3 oH (3 2] _ (96,
- === — == == C.90
(ar)p, M, kar),,, Mk(aM,)T, o M, \aM,)T'p,M( H)p s, \oM )r,,,, Mf )

Using (C.76), (C.70) and (C.64), we may write

) -3 o
op )T. M, ! oT Jo. M, '
Similarly, we may use (C.76) and (C.71) to write

oh, I, oM,

— C.92

(ac,)r,p (acl) T(ar)p w,((acl)—,—p (€92)

Inserting equations (C.92), (C.91) and (C.90) into (C.89) yields

dh, = c”'dT+[U'_ %%"l)p,M,Jd [(acl) T(BT) M,‘(ap'l) 'p:ldcl’(c'%)

where ¢, is the partial specific heat capacity:

a
c ( c ) (C.94)
Pv \OM )1 p M,

For a binary mass element in local equilibrium, equation (C.93) may be written in

terms of the gradient operator to yield
av,
Vhi = ¢, VT+[v, - 3?),,, Mva

13, ), Joee
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C.7 Osmotic Pressure

Considering a binary solution in which component 1 is the solvent, let us define a

function 1, called the osmotic pressure, by the relation

Comparing equation (C.96) with (C.65), we see that &t is, in general, a function of tem-
perature and concentration. Note that at equilibrium in an osmotic pressure experiment,
Tt becomes equal to the pressure difference between two sides of a semipermeable
membrane that is separating the solution on one side from pure solvent on the other
[Katchalsky, 1965, p54]. In the most general case, T may be thought of as a function of
temperature and concentration defined by equation (C.96). For a binary mass element
in local equilibrium, equation (C.96) may be written in terms of the gradient operator

to yield

Vu, = v, Vp-v Vr. (C.97)

All of the thermodynamic identities and relations used in this work have now been

derived.
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