Bl e

Acquisitions and

Biblictheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or iif the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontano)

Your e Volre référence

Qur e Notre rétetence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [‘université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éteé
dactylographiées a l'aide d‘un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
aualité inférieure.

La reproduction, méme partieile,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’'auteur, SRC 1970, c¢. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

Conformance Testing of a DQDB Protocol with SMURPH

Observers

by @

Nyan Tjing Lo

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Master of Science

Department of Computing Science

Edmonton, Alberta
Spring 1993

l * l National Litrary

of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

385, rue Wellington
Ottawa (Ontario)

Your e Vuolre telérence

Our filer Nolre rétorence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN ©0-315-82010-1

Canada

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Nyan Tjing Lo
TITLE OF THESIS: Conformance Testing of 2a DQDB Protocol with SMURPH Observers
DEGREE: Master of Science

YEAR THiIS DEGREE GRANTED: 1993

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

Signed: /(’//ﬂﬂ/é

Ed

Re’r/manent Address:
35, Rahim Kajan 2
Taman Tun Dr. Ismial
60000 KL, Malaysia

Date: - 2c_ ~¢, 17

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled Conformance Testing
of a DQDB Protocol with SMURPH Observers submitted by Nyan Tjing
Lo in partial fulfillment of the requirements for the degree of Master of Science.

.
(/’"/Q’A'//\—— N
co-supervisor: P. Rudnicki
7/
co-supervisor: P. Gburzynski

,./:".'.M
examiner: 5. El-Mallah
,\‘)

external: Wi doerg—(Flectrical Engineering)

Date: _D—ec lg) ‘qq'o"

Abstract

As the number of varicus implementations of different protocols increases, validation
of these protocols becomes an important issue. Protocol validation can be fulfilled
by two main types of reachability analysis algorithms: ezhaustive state search and
random state search. FEzhaustive search attempts to explore all the possible system
states during the execution of the system. Random state exploration analyzes only
a subset of all the reachable system states. Although preferable, erhaustive search
is usually impractical when applied to complex systems which admit astronomical
number of states. Random search, currently a subject of active research, can never
yield the same confidence as an ezhaustive search, but it is always feasible. In this
thesis, we studied the feasibility of protocol validation by random state exploratioxn
technique in smurph—a software system for modeling protocols. Our interest is in
MAC (medium access control) protocols, for which validation is difficult because they
involve time-dependent properties. We conducted a case study of a MAC protocol
called Distributed Queue Dual Bus, as described in its proposed standard draft.
The protocol has been implemented in smurph and its conformance with the service
specifications of the draft was tested. Several smurph tools including observers were
used in the process and testing was extensive. Our case study concluded that smurph
is a useful tool for protocol prototyping and conformance testing of the prototype.

Acknowledgements

I wish to thank my supervisors, Pawel Gburzynski and Piotr Rudnicki for their guid-
ance, patience, and precious criticisms throughout this research. In addition, I would
like to thank the members of my examining conimittees, Ehab El-Mallah and Werner
Joerg. Their comments and suggestions were valuable in improving this work.

A heartfelt thank you to Manoj Jain for proofreading, encouragement and advice
during the writing of this thesis. Finally, I am grateful to iy parents, my brother

and my sister for their support.

Abbreviations

ACF
Al

AU
BAsize
BEtag
BOM
BOT
CD
COM
CPDU
DA
DMPDU
DQDB
DQSM
EOM
ETU
IMPDU
ITU
1IUT
LAN
LLC
MAC
MAN
Mbps
MCF
MCP

Access Control Field
Activity-Interpreter

Access Unit

Buffer Allocation Size
Beginning-End Tag

Beginning of Message

Beginning of Transmission
CountDown Counter
Continuation of Message
Common Protocol Data Unit
Destination Address

Derived MAC Protocol Data Unat
Distributed Queue Dual Bus protocol
Distributed Queue State Machine
End Of Message

Experirment Time Unit

Initial MAC Protocol Data Unit
Indivisible Time Unit
Implementation Under Test

Local Area Network

Logical Link Control

Medium Access Control
Metropolitan Area Network
Megabits per second

MAC Convergence Function
MAC Convergence Protocol

MID
MSDU
PA
PCO
PI

PL
PSR
QA
QAF
QAP
QAR
QOS
QPSX
REQ
RQSM
RSM
SA
SSM
SUT
TCP
TMPDU
TSN
VCI

Message IDentifier

MAC Service Data Unit
Pre-Arbitrated

Point Of Contrel and Observation
Protocol Identification

PAD Length

Previous Segment Received
Queved it -ated

Queisted el 2§ Function Block
Queued Aibitrated Portion
Queued Arbitrated Receive
Quality Of Service

Queued Packet and Synchronous Switch
REQuest Counter

Request Queue State Machine
Reassembly State Machine

Source Address

Single Segment Message

System Under Test

Test Coordination Procedure

Test Management Protocol Data Unit
Transmit Sequence Number
Virtual Channel Identifier

Contents

1 Introduction

1.1
1.2
1.3

2.1
2.2

3.1

Motivation .

Protocol Simulation

Thesis objectiveand Qutline

Introduction

Types of Testing
2.2.1 Duologue Matrix Theory
2.2.2 [Exhaustive Reachability Analysis
2.2.3 Random State Exploration
Conformance Testing with Observers

2.3.1 lLocal Test Method

Introduction

Conformance Testing

................................

.....................

........................

.....................

The Distributed Quzue Dual Bus Protocol

................................

-

O o -1 o O

10

11
13
15

17
17

3.2 The Dual Bus Topology
3.3 Slot Formation

.....................

3.4 Distributed Queueing Algorithm

3.4.1 A Single Priority Level
3.4.2 Three levels of Priority
3.5 The MAC services to the LLC
3.5.1 Creation of IMPDU

3.5.2 Creation of DMPDU

......................
........................

3.5.3 Reassembly process

SMURPH — An Overview

4.1 Introduction

4.3.1 Time

4.3.2 Network Topology
4.3.3 Traflic Patterns

4.3.4 Processes

.............................

4.3.5 Process Synchronization

The Implementation of DQDB in SMURPH

5.1 Introduction

5.2 Station Types

5.3 Network Configuration
5.4 Traffic definition

.............................

40
40
42

414
44
15
16

45

[|
-l
-3
—
~
-
by}
—
-
~
~
<
—
-~
<
)
~
e}
—
!
i
o
A
fo 5
”~
=

............................

5.5.1 Slotter Processes Lo o0l
5.5.2 MAC Convergence Function process
5.5.3 Queued Arbitrated Portion process
554 Monitor process L L L e e e e e e e e e e
5.5.5 Distributed Queue State Machine
5.5.6 Request Qucue State Machineo oL,
5.5.7 Transmitter process Lo
5.5.8 Quecued Arbitrated Receive process
5.5.9 Reassembly State Machine
5.6 Summary ... L Lo e e e e e

Conformance Testing of DQDB by Observers

6.1 Introduction

................................

6.2 SMURPH Observerso
63 DQDBobservers L oL
6.3.1 SlotDelay L.
6.3.2 Priority Traflic Patterns

6.33 Slot Request

V3.4 Validating Distributed Queued State Machkine
6.3.5 Validating MAC Convergence Function
6.3.6 Validating Queued Arbitrated Portion process
6.3.7 Validating Queued Arbitrated Received process
6.3.8 Request Queued State Machine Observer

6.4 Summary

.................................

49

53
56
56
58
59
59
60
61
61

7 Conclusions and Directions for Future Research
Bibliography

A The Implementation of DQDB
A.l1 Unsynchronized Slot Generator

A.2 MAC Convergence Function Block

A.3 Queued Arbitrated Portion

A.4 Monitor

...................
........................
..................................
................................
....................

........................

B The Implementation of DQDB Observers
B.1 Slot Delay

.................................

..................

B.3 DQSM Observer
B.4 MCEF Observer
B.5 RQSM Observer

.............................

..............................

..............................

..................

...........................

81

85

89
89
89
94
96
98
99

100
100
101

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

r_"-\é
b =

o

A

[S4 I }

The Local Method
The Distributed Method . .

The Dual Bus Topology . .

.......................

.......................

The Slot format of DQDB MAN
The DQSM transition diagram00,
The interaction between MCF Block and QAF Block
The Initial MAC Protocol Data Unit
The structure of CPDU Header and Trailer
The structure of MAC Convergence Protocol Header
The Derived MAC Protocol Date Unit

The QA Segment

The transition diagram of the Monitor process
The life cycleof a smurph process

The interaction between staticn processes

The safety bits
The MCEF transition diagram
The QAS transition diagram

.......................

......................

.......................

12
14

19
20
24
27
28
29
29
30

29

[P

33
42

51
53
35
57

Chapter 1

Introduction

1.1 Motivation

As the use of computer networks increases rapidly, protoco! implementations have
become the center of attention in the research community. These protocol implemen-
tations must be compatible and robust in order to achieve the goal of Open Systems
Interconnection (OSI). However, many protocol specifications have been written in
natural language, which is often ambiguous. These specifications can lead to divergent
interpretations, and result in incompatibilities in communication systems. This prob-
lem can be resolved with formal specification and validation of the comrunication
protocols.

Formal specification defines the precise description of the protocol en ities, and
thus diminishes some of the ambiguities, incompleteness and inconsistency cansed
by natural language specifications. Several formal specification languages that seem

to prevail are: finite state machines, formal grammars, Petri nets, algebraic caleuli,

high-level programming languages, abstract data types, and temporal logic [13, 31].
Although such languages can express real-time aspects such as absence of deadlocks
and livelocks, completeness, and stability, they are inadequate to address the aspects
of protocol data unit encoding [31].

The term protocol validation is used as a generic term for investigating the cor-
rectness of a protocol design [24]. Since even the same formal specification may lead
to different implementations, the necessity for a mechanism to validate protocol spec-
ifications or implementations is no longer in doubt. The two well-known approaches

to protocol validation are:

o exhaustive state search

e random state exploration (e.g. simulation)

The exhaustive approach checks all possible system states that can take place
during the execution of the system. Since exploring all the states of a complex
system can be infeasible, these methods are usually applied to simplified systems.
Random state exploration, on the other hand, analyzes only a fraction of all the
reachable states of a system, but it is always feasible. Experience shows that they
reveal the most probable behaviour of the systems [38] with no guarantee that the

implementation under test is faultless.

1.2 Protocol Simulation

The design of protocols is usually based on a systematic procedure which includes:

requirement analysis and definition, development of service specification, implemen-

tation of protocol entity and implementation testing. The two crucial assumptions

about this process are [13]:

e [t is an iterative process. The design is unlikely to be correct the first time it
is programmed, and very likely it will not be quite correct the second or third
time around either.

e Each time a design phase is completed, the designers should be convinced that it
is error-free. A manual walk-through of the code can reveal the biggest blunders,
but cannot be expected to reveal the subtle ones. Almost by definition, the
designers will overlook the unexpected cases that can cause errors.

Since error correction is expensive in the later phases of the development process,
validation should be conducted as early as possible. A legitimate approach of validat-
ing a protocol is to implement it and test the actual implementation. However, this
approach can be costly if flaws found in the implementation require the system to be
redesigned. One way of minimizing the cost is to implement a protocol specification
in a simulated environment and test that all the service properties are met before a
hardware prototype is built. Additional advantages of the simulated environment are:
the designers have complete control over the simulation, the implementations can be
modified easily, and tests which are impossible in a physical world (e.g. instantanecous
knowledge of events) can be admitted. The adequacy of the simulated environment,
however, is outside the scope of this thesis.

Several specification lazi; 1ages namely Estelle [4, 5], LOTOS [32], and SDL [23]
have been developed by CCITT and ISO for describing protocols and services. How-
ever, these languages fail to reproduce many of the activities occurring at the physical
layers. To overcome this limitation, we used smurph, a System for Modeling Unslotted
Real-time Phenomena [11]. To derive a smurph specification, the users are required

to manually translate a protocol specification into an extended finite state machine

model coded in C++. In fact, the process can be iterative. The derived specifica-
tion can be perceived as a refinement of the original protocol specification. Running
this specification is the same as executing the protocol. Given that smurph has the
capability of reflecting all the relevant communication phenomena occurring at lower
layers, can it be used to perform conformance testing on a standardized protocol?
The support of self-checking tools called observers seems promising. Wky observers?
This is because violation of global properties that involve combined actions of mul-
tiple processes cannot be detected by simply executing the specification. We need
tools which have the ability to monitor all the state transitions that occur while the
simulated system is running without affecting its performance. Indeed, the system is

unaware that it is being observed.

1.3 Thesis objective and Outline

The purpose of this work is to investigate the feasibility and usefulness of conformance
testing in smurph. This investigation is based on a case study of the Distributed
Queue Dual Bus protocol, as descrived in its proposed standard draft [14]. There
are three significant reasons for selecting the protocol as a testbed for conformance
testing. First, a detailed outline of the proposed protocol is available. Second, the
complexity of the protccol is suitable for demonstrating the difficulties of developing
and implementing observers to detect possible implementation flaws. Finally, it is
the first experiment in smurph of implementing a standardized protocol with all the
possible details.

Substantial effort had been put into manually translating the DQDB specification

into a smurph specification. One of the difficulties was in maintaining the semantics of

the protocol while writing it as smurph processes. Another problem was in designing
protocol processes such that their state transitions facilitate observers to monitor the
required behaviour of processes. Nevertheless, the design process required a number
of changes to the initial implementation of the DQDB protocol. Service properties
such as absence of deadlocks or livelocks were not tested explicitly since smurph
detects them during the execution of the DQDB specification. A number of service
specifications were validated by passive smurph observers, which were constructed
according to the models extracted manually from the draft. No errors were reported
by the observers in the investigation.

Chapter 2 reviews the techniques of conformance testing. In Chapter 3, the DQDB
protocol is presented. It includes the distributed queueing algorithm with one and
three priorities. Chapter 4 gives a brief overview of the smurph modeling environ-
ment. In Chapter 5, the implementation details of the DQDB protocol in smurph are
delineated. Chapter 6 describes smurph observers and how they are used to validate

the DQDB protocol. The last Chapter summarizes the results.

Chapter 2

Conformance Testing

2.1 Introduction

The purpose of conformance testing is to determine whether the behaviour of an
implementation of a protocol satisfies its formal specification. The given protocol
implementation is usually called the Implementation Under Test (IUT). The testing
schemes attempt to assess the static and dynamic aspects of the IUT. Static aspects
of testing focus on the validity of implementation choices regarding options and ser-
vices offered. Dynamic aspects of testing, on the other tiand, concentrate on events
sequencing and the behaviour of the IUT.

Testing is done by stimulating the IUT with a series of test inputs 2nd monitoring
the response: generated by the IUT. The observed outputs are compared with the
prospective outcomes given in the specification. A result of conformance testing is
called a verdict. A verdict can be positive or negative. A positive verdict implies that

the IUT complies with the protocol specification; whereas a negative verdict indicates

that the IUT is incorrectly implemented. Section 2.2 introduces the essentiais of
Junctional and structural testing and some of the existing techniques. A brief overview

of the methodology and framework of conformance testing with observers is presented

in section 2.3.

2.2 Types of Testing

A test suite is a collection of separate test cases thiat may be executed alone or
together. An effective test suite has a good chance of detecting potential errors of an
TUT. Generally, test suites derived for an IUT dictates the types of testing (functional
or structural) to be carried out.

Functional testing ignores the internal details of an IUT and focuses on the fol-

lowing aspects [13]:

@ Verifying that a given implementation realizes all functions of the original speci-
fication, over the full range of parameter values. Basic interconnection tests and
capability tests fall into this class. Basic interconnection tests determine whether
an IUT is capable of communicating with other IUTs. Capability tests, on the

other hand, check whether the abilities of an [UT are consistent with the static
conformance requirements.

e Verifying that a given implementation can properly reject erroneous inputs in
a way that is consistent with the original specification. The test suites selected
for this type of testing are usually a subset of the infinite set of possible test
suites.

Structural testing is relatively more complex than functional testing. It empha-
sizes the internal structure of the system. In structural testing, the three assumptions

listed below are required [13]:

e The IUT models a deterministic finite state machine with a known maximum
number of states and with a known input and output vocabulary.

o The IUT produces a response to an input signal within a known, finite amount
of time.

e The states and the 'ransitions of the IUT form a strongly connected graph:
every state in the graph is reachable from every other statc in the machine via
one or more transitions.

Both types of test can be performed by various autoinated validation techniques:

duologue matriz theory, ezhaustive reachability analysis and random state ezploration.

2.2.1 Duologue Matrix Theory

The duologue matrix theorv technique has been first introduced by West and Zafirop-
ulo [37, 40] in 1978. This approach studies the interactions between two coramunicat-
ing finite state inachines. The two machines are assumed to begin at an initial state.
Within a m.. .. "ne, a path starting from the initial state, linking several intermediate
states belure returning to the initial state is referred to as a unilogue. A duologue
exists when the two machines communicate with each other and each machine fol-
lows an un’’)gue path. Validation is done by executing the complete set of duologues
derived from all the possible combination of unilogues; the observed results are an-
alyzed. Two types of error: deadlocks and unspecified receptions can be detected
by this technique. The major drawback of this method is that it can only apply to
a protocol involving two entities. Nevertheless, its application to the CCITT X.21
recommendation demonstrated that the technique is feasible and could find errors in

practical protocols [39].

2.2.2 Exhaustive Reachability Analysis

An exhaustive reachability analysis technique attempts to explore all the reachable

system states of a protocol from a given initial state. The simplest algorithm is

presented below [36]:

1. For all possible combinations of a state i and an input j, perform the next three
steps.

2. Reset the IUT to the initial state, and then apply the appropriate inputs to the
IUT so that it arrives at state i.

3. Apply input j and verify any output received by comparing the output required
by the specification.

4. Verify that this final state matches the one required by the specification.

Although this technique tests all the reachable IUT states, it requires the [UT
to restart at the initial state after every test. This req:irement can be avoided by
deriving either multiple transition tours (28] or Unique Input and Output (UIO) [29]
sequences from the graph of reachable IUT states. A more desired approach is to
perform a tree-like exploration of the graph using either a breadth first search or a
depth first search. If a breadth first searcn is employed, all state transitions from a
given initial state are analyzed in the order that they are reached. Since all states
are reached through one of the shortest paths from the initial state, errors are easy
to interpret. If a depth first search is used, all transitions from a given initial state
are examined in the inverse order that they are reached (using a stack to hold those
states that have been generated but not yet fully explored).

A tree-like exploration method has the following drawbacks. First, it does not

reflect the actual behaviour of the system. Second, given that exploring a graph

require backtracking, all the previously reached states have to be saved. Storing
these states can be expensive. Lastly, the number of states of a complex system to
be analyzed can he enormous. Several techniques have been developed to deal with

this problem, see |16, 18, 35].

2.2.2 Random State Exploration

The random state exploration technique is simple. It can be perceived as a reduced
form of exhaustive search. Instead of systematically exploring all of the state transi-
tions, only one random transition from the current state is analyzed. Problems such
as backtracking, search sp~ce explosion and state storing are avoided, since the sys-
tem is executed in continuous sequeunces rather than in a series of disjoint sequences.
In fact, the random state search can apply to all protocols as it is independent of
the size and complexity of the system being modeled. This method has two major

disadvantages [13]:

e There is no well-defined termination. An exhaustive state exploration of the
reachable state space terminates when there are no further states to explore. In
random state exploration, there is no way of detecting when all reachable states
of the system have been visited.

e It can not guarantee the implementation is error free.

These deficiencies are of lesser importance if exhaustive search is infeasible or
impossible. Furthermore, this approach has evinced to be effective and reliable (38]
since most errors can be found by exploring only a subset of the total state space. In
this case study, we adopted the random state exploration technique since it reflects
the most probable behaviour of a system, and is more flexible (not requiring any test

sequence generation) when applied to complex systems.

10

2.3 Conformance Testing with Observers

The concept of observer, introduced in [1], can be used to supplement the validation
techniques discussed in the previous section. An observer can be either passive or
active. Active observers interact with the IUT by controlling the inputs and moni-
toring the outputs (for example, by performing exhaustive search); whereas passive
observers only monitor the IUT without interfering.

Both types of observers can be classified into two categories: local or global. Local
observers control and observe the behaviour of a layer » entities within the System
Under Test (SUT). Global observers, on the other hand, control and observe the be-
haviour of layer n entities in a system remotely from the SUT. Global observers can
be divided into three subtypes: distributed, coordinated and remote [17, 25, 26, 30].
Local observers are not suited for verifying global properties since they can not detect,
errors requiring global information. Moreover, they are unable to reveal conceivable
errors in lower layers. Global observers not only take into consideration the propaga-
tion delay between entities, but also can detect hardware errors and potential errors
in the lower layer. Detailed description of local and giobal observers can be found
in [33, 34]. Section 2.3.1 presents a framework of local test method followed by the
local observers. The concept of distribute:i test method used by global observers is
described in section 2.3.2. Section 2.3.3 discusses testing with observers in real and

simulated environment.

2.3.1 Local Test Method

With the local test method, interfaces existing above and below the IUT are exposed.

These interfaces, which are called the Points of Control and Observations (PCOs),

11

= Layer
- Upper Tester n+1
scxvice requests service responses

Test
Coordination IUT Layern
Procedures . \L T .

service requests service responses

o= Layer

. Lower Tester n-1

Figure 2.1: The Local Method

allow a test system to feed the IUT with inputs and scrutinize the IUT’s outputs. The
layer which is under test is called layer n and the layer above (below) the IUT as layer
n+1(n—1). In order to request services from the IUT, layer n + 1 (n — 1) exchanges
service primitives with the IUT at the top (bottom) interface of the JUT. Figure 2.1
shows the architecture of the local test method. Both the upper and lower tester reside
in the same system. The upper (lower) tester, which is connected to the upper (lower)
interface, controls and monitors events approximate to what the IUT perceives at its
upper (lower) interface. Testing is performed by issuing service requests to layer n—1
(n) at the lower (upper) interface and validating the service responses at the upper
(lower) interface. The Test Coordination Procedures (TCPs) connected to both the

upper and lower testers furnish the rules for cooperating between the testers during

testing,.

2.3.2 Distributed Test Method

The distinction between the local test method and the distributed test method is
that the lower interface of the IUT is not exposed. In fact, the IUT and the lower
tester are located in two separate units. They are however interconnected through a
communication medium. The lower tester is the peer entity of the IUT. The archi-
tecture of the distributed system is depicted in figure 2.2. Here, layer n conformance
is verified by issuing service requests to layer n at the upper interface of the IUT
and asserting of the service responses at the remote lower tester. The TCPs interact
with the two testers and essential information from vhem is collected. Since the lower
tester and the IUT are situated in two different systems, events perceived by them
occur at different times. This gives rise to the issues of synchronization and control at
the PCOs which must be resolved in order to achieve the test purpose. Linn suggests

several assumptions on implementing a distributed test method [17]:

e abstract test cases written for the local method are not applicable; they must
be rewritten to reflect the service primitives available to the lower interface of
the lower tester;

e the lower tester and IUT are physically separate with the implication that. they
observe the same test event at different times;

e data loss, delivery out of sequence, and data corruption are possible;
e synchronization and control are more difficult because elements of the test Sys-

tem are distributed over two systems.

Conceptually, the coordinated test method is the same as the distributed test
method except that the upper interface of the IUT is not exposed and there exists

a Test Management Protocol Data Unit (TMPDU) to maintain and coordinate the

13

P 6——-———,—]
fest

. ————
Coordination

Procedures layern layern
/P L service responses service requests

Upper Tester

Lower Tester UT
remote remote
service requests service responses
physical media

Figure 2.2: The Distributed Method

test events. The remote test method hLas no upper interface at the top of the TUT
and is often used for conformance testing of the X.25 protocol.

In general, the error detection potential of a local observer is less powerful than
a global observer. However, the complexity of employing a global observer in a
multi-entity environment restricts its proficiency. For example, an N-entity network
entails N upper testers and one lower tester. To monitor this network, the TCPs
must have the ability to synchronize and control the upper and lower testers. In
addition, the information accumulated by the TCPs mav become enormous. Neither

the coordinated test method nor the re..iote test method were considered in this

thesis.

14

2.3.3 Observers in Real and Simulated Environments

Conformance testing can be conducted in a real or a simulated environment using
either passive or active hardware (software) observers as tools.

Hardware observers can test real implementations. An example of testing an
implementation using hardware observers is a case study done by Molva et al. [2].
The aim of the experiment is to study whether passive hardware observers can detect
hardware failures in a fault tolerant medium access control protocol; an impossible
task for software observers. Hardware failures that do not have immediate effect on
the external bahaviour of the system but whose accumulation can induce errors have
been observed [2].

An experiment which used passive software observers to verify a CSMA /D with
Tree Collision Resolution (TCR) protocol implerientation was conducted by Berard
[3]. The CSMA/CD protocol is programmed using the lansf system [7]. This proto-
col can either be in uncontrolled or controlled mode to express the concept of unslotted
and slotted TCR. When in uncontrolled mode, every functioning station has access
to the bus. If a collision occurs during the uncontrolled mode, all stations switched
to controlled mode. Every station involved in the collision is recorded in a privilege

subtree. The claimed properties of controlled mode are as follows:

1. Stations transmit only when they are within the privilege subtree.

2. All stations not participating in an uncontrolled (controlled) collision success-
fully transmit during the subsequent tournament (sub-tournament).

These observers discovered that property two was violated in the initial imple-
mentation. The protocol was then re-implemented using the observer model as the

reference. No further errors were discovered by the observers.

15

Although software observers are unable to validate an implementation in the real
environment, they have several advantages: instantaneous knowledge of simulation
events, dynamic access to simulation data structures. implementations can be mod-
ified easily and cost effectively. With these benefits, software observers become a

convenient tool for protocol designing and testing.

16

Chapter 3

The Distributed Queue Dual Bus

Protocol

3.1 Introduction

With increasing demand on sharing data and other resources between Local Area
Networks (LANSs), another category of communication networks is needed to inter-
connect them. These new networks which are called Metropolitan Area Networks
(MANS), are standardized by the IEEE working group under Project 802.6. The ob-
Jectives of MANSs are to cover areas up to 100 kilometers in diameter, to provide very
high transmission rate, in the range of 50 to 150 Mbps, and to support integrated
scrvices: data, voice, and video. It is required that the access delay of the MAC
(medium access control) protocol employed in MANs should be independent of the
size of the network [19].

The Distributed Queue Dual Bus (DQDB) protocol has recently been adopted by

17

IEEE as a standard to MANs. The protocol, which is designed for the high speed
MAN environment to utilize the communication channels efficiently, is based on the
Queued Packet and Synchronous Circuit Exchange (QPSX) network proposed by
Newman et al. [20, 21, 22]. Access to the bus is controlled by a MAC (medium access
control) protocol referred to as Distributed Queueing [20], which guarantees bounded
access delay for all stations. Under light and medium load, every station has the same
share of network bandwidth. Under heavy load. almost no capacity is wasted. All
further description of the DQDB protocol presented later in the chapter is based on
the proposed standard draft [14]. Note that this draft was further refined before it
became a standard. The topology of the DQDB network is delineated in section 3.2.
Section 3.3 presents the slot format of the DQDB protocol. The distributed queueing
algorithm with one and three priorities is described in section 3.4. Finally, the MAC

services provided by the DQDB protocol is detailed.

3.2 The Dual Bus Topology

The dual bus topology was originated from the Fasnet protocol proposed by Limb et
al. [15]. The topology is adopted by the DQDB network because of its robustness and
kigh reliability. The dual bus topology consists of two unidirectional buses, a head
station at one end of each bus, and stations along the buses. The head stations are
responsible for generating slots (see section 3.3) to be used by all stations. A DQDB
network witli 4 stations labeled 0---3 is shown in figure 3.1. Conceptually, each
station has an Access Unit (AU) which performs the DQDB layer functions. Each
AU has a read port and a write port to both buses. The read port is placed ahead of

the write port so that data to be read would not be corrupted by the station’s own

18

Bus A

upsiream = downstream
1
G read write
slots
generator 0 1) 2 3
G
-
Bus B a slot

Figure 3.1: The Dual Bus Topology

transmission. The buses, denoted bus A and bus B, serve as communication channels
for any pair of stations on the network. The operation of the two buses in the network
is independent but symmetric. Referring to figure 3.1, if station 0 wishes to transmit
messages to station 2, it uses bus A. If station 2 wishes to transmit messages to station
0, it uses bus B. This implies that every station requires to know the relative position
of all other stations on the network. The events that trigger a reconfiguration of the

network are:

e relocation of a station,
e failure of a bus, or

e failure of a head station.

19

To be filled
BUSY | SL.TYPE| PSR |REQ 2 |REQ_1 |REQUO | _ by
(1 bit) (1bit) (1 bit) (1 bit) (1bit) | (1 bir) QA Segment
(52 octets)
- =
ACF

Figure 3.2: The Slot format of DQDB MAN

3.3 Slot Formation

The DQDB network is a slotted system. It provides two types of network accesses:
Queued Arbitrated (QA) and Pre-Arbitrated (PA). Pre-arbitrated access is used to
support isochronous service (such as, voice transmission), while queued arbitrated
access controls non-isochronous service. Both services use fixed length units called
slots for transmission. In this thesis, we are concerned only with the queued arbitrated
access method, as the precise operation of the other traffic is not yet specified in the
draft.

The head station of each bus generates empty slots to be used by all stations for
sending data and reserving siots. Figure 3.2 shows the slot format of DQDB. A slot
consists of two portions: an Access Control Field (ACF) and a data field. The ACF,
which is read by every station or the bus, occupies the first octet of every slot. It is
where a station can request an empty slot (on the opposite bus). The data portion
is where a station can place data to be sent to another station. The total length of a

slot is 53 octets. The function of each ACF field is as follows:

1. The BUSY bit shows the status (Empty=0, Full=1) of the current slot. This bit
is set once data is placed in this slot and hence not accessible by other stations.

2. The SL_-TYPE bit denotes whether the slot is a QA slot (SL.TYPE = 0) or a
PA slot (SL.TYPE = 1, which is reserved for future use).

3. The Previous Slot Received (PSR) bit indicates whether the data in the previous
slot has been received. If the data has reached the destination, the PSR bit of
the subsequent slot is set by the receiver. The concept is to have one or more
special stations called eraser nodes in the network. An eraser node is permitted
to buffer an occupied slot until it can see the PSR bit of the subsequent slot.
If this bit is set, the node resets the BUSY bit of the stored slot and allows it

to be reused. For more information about reuse slots, the reader is referred to
[6, 27, 41].

4. The Request field contains three bits (REQ_I where I = 0, 1, 2) which correspond
to three levels of priority. The head station of each bus initializes these request
bits to zero. If a station has data to transmit (e.g. on bus A), it sets a free
request bit of the appropriate priority on bus B. Ultimately, stations situated
near the head station (relative to the request station on bus A) will see this
request and acknowledge that an additional slot is requested on bus A.

5. The remaining two bits are reserved for future use.

3.4 Distributed Queueing Algorithm

The distributed medium access control queueing algorithm governs the access to the
slots on the DQDB bus. Every station keeps track of the current state of the network.
When a station has data to transmit, it uses the state information to access the bus.
Referring to figure 3.1, let the term forward bus denote bus A and reverse bus denote
bus B. The terms, upstream and downstream, refer to the relative position of a station
to another station on the bus. For instance, station 0 is an upstream station of station
1 on the forward bus whereas station 3 is a downstream station of station 1. Since
the operation of the protocol is symmetric, the description of the protocol is based on

the forward bus only. Section 3.4.1 presents the distributed queueing algorithm for a

21

single traffic. It details how the request and countdown counters are maintained by
the distributed queued state machine in assisting a station accesses the bus. Section
3.4.2 describes the operation of the distributed queueing algorithm with three levels
of priority. This algorithm explains how the pricrity requests generated by both the

station itself and other stations are accounted.

3.4.1 A Single Priority Level

Every station has two counters: a request (REQ) counter and a CountDown (CD)
counter for the forward bus (similarly for the reverse bus). The REQ counter of a
station keeps a record of the number of slots requested by its downstream stations.
The value of a CD counter is relevant when a station has data for transmission. It
indicates the number of empty slot a station has to bypass before it is entitled to access
one. The operation of the REQ and the CD counters is managed by the Distributed
Queue State Machine (DQSM) of a station. Each station has one machine for each
bus.

The machine has two states: idle and countdown. In both states, the DQSM
(considering the forward bus) observes the status (busy or empty) of passing slots on
the forward bus and passing requests on the reverse bus. The DQSM is in the idle
state when it has no data to transmit. When it is in the idle state:

e The REQ counter is incremented by one when the station detects a request
(REQ-0=1) on the reverse bus.

e For every empty slot (BUSY=0) passing on the forward bus, the REQ counter
is decremented by one if it is greater than zero.

The machine remains in the idle scate until it has data to send. Upon this time,

it sets the value of the CD counter to the value of the REG counter. Subsequently,

N
(]

it resets the REQ counter to zero, informs the station to send a request and enters
the countdown state. The request is sent by setting the next free REQ bit on the
reverse bus. The slot, which carries this request, propagates towards the end of the
reverse bus. Eventually, every upstream station (relative to the request station on the
forward bus) sees this request and realizes that an additional slot is requested on the
forward bus, and thus increments its REQ counter accordingly.

When in countdown state, the machine waits for its turn to access an unused slot

on the forward bus by performing the following operation:

¢ The REQ counter is incremented by one for each passing request on the reverse
bus.

e For every empty slot passing on the forward bus, if the CD counter is greater
than zero, then the CD counter is decremented by one.

o If the DQSM encounters an empty slot on the forward bus, and the CD counter
is zero, it sets the BUSY bit of the slot to one and fills the slot with its data.

e After the data is transmitted, the DQSM returns to the idle state.

The data inserted into the slot is called QA segment (see section 3.5.2). The
DQSM can only have one outstanding QA segment at a time. The DQSM transition

diagram is shown in figure 3.3.

3.4.2 Three levels of Priority

The distributed queueing protocol can be extended to several priorities by having
separate distributed queues, REQ counters and CD counters for each priority. With
three levels of priority, each station has three REQ_I (I =0, 1, 2) counters, three CD_]
(I = 0, 1, 2) counters and three DQSML.I (I = 0, 1, 2) for each bus. The operation

23

Empty Slot (forward bus) Request (reverse bus)
REQ-- REQ++
Ready to Transmit Empty Slot (forward bus)
CD :=REQ and CD counter equals 0
REQ:=0 Transmit

Issue request

Request (reverse bus) Empty Slot (forward bus)
REQ++ CD--

Figure 3.3: The DQSM transition diagram

of the counters remains much the same as before, except data of higher priority are
taken into account. Similar to the single priority, a DQSM can either be in the idle
state or the countdown state. In both states, all the DQSMs monitor the requests
passing on th.- reverse bus and the passing slots (Busy or Empty) on the forward bus.
A DQSMLI controls the operation of the REQ_I counter and the CD_I counter. Each
DQSM starts and remains in the idle state until it has data to send. While in the
idle state, the REQ.I counters operate as follows [14]:

Whenever a REQ_J passes by on reverse bus, the REQ_I counter is incremented
by one if I < J.

If a station generates a request for priority level J, the REQ_I counter is incre-
mented by one if I < J.

If an empty slot passes by on the reverse bus and 2 REQ_I counter is not equal
to zero, then the REQ_I counter is decremented by one.

When a DQSM_I has data to be transmitted on the forward bus, it shall:

1. copy REQ_I counter to CD_I counter.

2. reset REQ.I counter to zero.

3. issue a request of priority I to be sent on the reverse bus.
4

. enter the countdown state.

The DQSM_I remains in the countdown state until the data is transmitted. While

in the countdown state, the CD_I counters and the REQ_I counters are maintained

by the following actions [14]:

Whenever a REQ_J passes by on reverse bus, the REQ_I counter is incremented
by oneif I < J.

Whenever a REQ.J passes by on reverse bus, the CD_I counter is incremented
by one if J > 1.

If a station generates a request with priority level J, the CD_I counter is incre-
mented by one if I < J.

If an empty slot passes by on the forward bus and the CD_I counter is not equal
to zero, then the CD_I counter is decremented by one.

If an empty slot is received on forward bus and CD_I counter equals zero, then
the DQSM_I sets the BUSY bit of the current slot to one and occupies it with
data. Upon completing the transmission, it returns to the idl+ state.

25

Each DQSM can only have one outstanding data at a time. This priority access
control mechanism allows data of a higher priority to access the bus ahead of data of

a lower priority.

3.5 The MAC services to the LLC

The DQDB protocol provides support for transferring a Logical Link Control (LLC)
Protocol Data Unit (PDU) from one station to one or more peer stations. The
services are handled by the MAC Convergence Function (MCF) block and the Queued
Arbitrated Functien (QAF) block. A convergence function block is a function or
procedure that provides sufficient additional services to enable a layer to support the
services expected by a particular higher layer [14]. The MCF block is responsible for
the creation of IMPDU (Initial MAC Protocol Data Unit), the segmentation of the
IMPDU into fixed length units called DMPDU (Derived MAC Protocol Data Unit),
and the reassembly of the IMPDU at the destination station. The QAF block creates
a QA segment (which fills the data portion) from the DMPDU to be transmitted by
the DQSM. The detailed description on both the MCF block and the QAF block are
required in order to reassemble the IMPDU from the QA segments received at the
destination. The interaction between the MCF block and the QAF block is shown
in figure 3.4. Section 3.5.1 describes the creation of IMPDU. The formation of a QA
segment from a DMPDU is presented in section 3.5.2. The last subsection details the

reassembly process.

MSDU from LL.C
W MAC Convergence

Function Block
IMPDU Creation
IMPDU Segmented
DMPDU Creation
Another Bus DMPDU, VCi
DMPDU Access | payload_type, segment_priority
Queued
Arbitrated
A Segment =
Function QCreaﬁ‘:n DQSM
Block

V QA Segment to be transmitted

Figure 3.4: The interaction between MCF Block and QAF Block

3.5.1 Creation of IMPDU

Upon receipt of a MAC Service Data Unit (MSDU) from the LLC layer, the MCF
block of a source station encapsulates a Common Protocol Data Unit (CPDU) header,
a MAC Convergence Protocol (MCP) header, a variable length PAD field, and a
Common Protocol Data Unit trailer to the MSDU to form an Initial MAC Protocol
Data Unit (IMPDU) as depicted in figure 3.5. The PAD field ensures that the total
length of the MSDU field is a multiple of four.

27

CPDU MCP CDPU
Header Header MSDU PAD Trailer

(4octets)] (20 octets) | (0-9188) (0-3) | (4octets)

Figure 3.5: The Initial MAC Protocol Data Unit

The CPDU (common protocol data unit) header and its trailer are used to detect
the loss of QA segments during the reassembly process ai the destination. Figure 3.6
shows the general structure of the CFDU header and its trailer. Both the header and
the trailer consist of three subfields. The Beginning-End tag (BEtag) subfield, which
is set to the value of the BEtag counter (owned by the MCF block at a source station).
The BEtag counter is incremented by one (mod 256) for every new MSDU. The value
in the BEtag subfield prevents QA segments derived from different IMPDUs to be
concatenated together and should be the same for both the header and the trailer.
The Buffer Allocation (BAsize) subfield of the header is set to the length of the MCP
header, the MSDU field, and the PAD field. The same value should be inserted into
the Length subfield of the CPDU trailer.

The MCP header contains the routing information and the type of service required
for the IMPDU. It has five major fields: DA, SA, PI/PL, QOS, and Bridging. The DA
field contains the receiver address of the IMPDU. The sender address of the IMPDU
is written into the SA field. The PI/PL field is expressed with 2 subfields: a protocol
identifier and a PAD length field. The protocol identifier subfield is set to one for
LLC service. The value of the PAD length subfield is the number of octets the PAD

Reserved | BEtag BAsize Reserved BEtag | Length
(1 octet) (1 octet} (2 octets) (1 octet) | (1 octet} (2 octets)
e - -l f—
CPDU Header CPDU Trailer
Figure 3.6: The structure of CPDU Header and Trailer
DA SA PI/PL QOS Bridging
(8 octets) (8 octets) (loctet) { (1octet) (2 octets)

Figure 3.7: The structure of MAC Convergence Protocol Header

field occupied in the entire IMPDU. It can be 0, 1, 2, or 3. The remaining two fields

are reserved for future use. Figure 3.7 shows the MCP header format.

3.5.2 Creation of DMPDU

An IMPDU is further divided into one or more segmentation units. The length of
each segmentation unit is 44 octets or less. Each of these segmentation units is
concatenated with a header and a trailer to form a Derived MAC Protocol Data Unit
(DMPDU), as shown in figure 3.8. The DMPDU header consists of three subfields.

The first is the Segment Type subfield. Segment type of a segmentation unit can be:

29

S t S
egmen equence MID
Type Number
(2 bits) (4 bits) (10 bits)
DMPDU DMPDU
Segmer-. ..ion Unit .
Header Trailer
(2 octets) (44 octets) (2 octets)
Payload_Length Payload_CRC
(6 bits) (10 bits)

Figure 3.8: The Derived MAC Protocol Date Unit

Beginning of Message (BOM), Continuation Of Message (COM), End Of Message
(EOM), and Single Segment Message (SSM). If an IMPDU forms multiple DMPDUs,
the segment type of the first DMPDU is BOM, which signifies the start of a new
IMPDU transmission. All subsequent segmentation units derived from the same
IMPDU except the last segmentation unit are identified by the COM code in the
segment type subfield. The last DMPDU is identified by the EOM code, which
indicates the completion of the IMPDU transmission. The SSM as the Segment Type

30

evinces that the total length of the IMPDU is less than or equal to 44 octets.

The Sequence Nurmnber subfield and the Message Identifier (MID) subfield are used
to identify all the DMPDUs derived from the same IMPDU during the reassembly
process. The sequence number of the first DMPDU is assigned to the value of Trans-
mit Sequence Number (TSN) counter (owned by the MCF block). The TSN counter
is then incremented by one (mod 16) for each subsequent DMPDU (COM or EOM).
The MID is a ten bit subfield. Each station in the network have one or more unique
MID(s). The MID is used to provide a logical linking between segmentation units
derived from the same IMPDU. Therefore, all tiie segmentation units derived from
the same IMPDU should have the same MID, which is not currently used for sending
other IMPDUs. The MID number can be reused by the sender for the next IMPDU
transmission immediately after the EOM segmentation unit is sent. The MID subfield
of the single segment DMPDU is not assigned to any value.

The DMPDU trailer is expressed with 2 subfields: a Payload length and a Pay-
loa CRC. The Payload length subfield indicates the length of the segmentation unit
occupying the DMPDU. The value of the Payload length for the BOM and COM DM-
PDUs is always 44 octets. The Payload length of the last DMPDU is any multiple of
4 in between 4 and 44 octets. For single segment DMPDU, the value of the Payload
length is any multiple of 4 in between 28 and 44 octets inclusively. The Payload CRC
field provides error detection and error correction in the DMPDU. Figure 3.8 shows
the format of DMPDU.

The DMPDU is then passed to the Queued Arbitrated Function (QAF) block. For
each DMPDU, the MCF block informs the QAF block which bus the DMPDU should
be sent on and the priority level of the DMPDU. The DMPDU is encapsulated with
a QA segment header to form a QA segment as shown in figure 3.9. A QA segment

31

Segment QA
VCI Payload Priorty HCS Payload
(20 bits) (2 bits) (2 bits) (8 bits) (48 octets)
- QA Header ——>=

Figure 3.9: The QA Segment

header has four subfields. The first is Virtual Channel Identifier (VCI) is twenty bits
long and identifies which function block is responsible for the current QA segment
at the destination station (see sectior 3.5.3). The remaining fields are reserved for
future use. The QA segment is then passed to a DQSM (distributed queued state

machine) and is ready for transmission.

3.5.3 R. sembly process

The reassembly process takes place at the destination. Every station monitors the
passing slots on the bus. Whenever a station encounters an occupied slot (BUSY=1),
its QAF block checks the value stored in the VCI subfield of the QA segment. If this
value (all bits set to one for QA segment) is recognized by the QAF block, it examines
the segment type suhfield in the DMPDU header. The subsequent operation of the
QAF block depends on the value in the segment type subfield and is as follows:

SSM or BOM 1t inspects the receiver address in the MCP header. If it matches
the address of this station, the QA segment is copied. It records down the
Sequence Number and saves the MID onto a list (only if the value is BOM) to
receive the remaining multi-segment IMPDUs.

32

COM or EOM If the MID is currently on the list and the Sequence Number is

the expected value, the QA segment is copied. The MID is removed from the
list if the value is EOM.

The QAF block then waits for another occupied slot. Since segments are delivered
in order (unless corrupted), all the segmentation units are concatenated together to
form the original IMPDU if it is a multi-segment IMPDUs. The IMPDU is then
verified by the control information contained in the CPDU header and the CPDU
trailer. The verification process involves two steps. The first is to compare the value
in the Length subfield of the CPDU trailer against the total length of the received
IMPDU, a mismatch causes the IMPDU to be discarded. This check is to ensure that
all the DMPDUs derived from the same IMPDU are received. In the second step, the
value of the BEtag field in the CPDU header is compared against the value of the
BEtag subfield in the CPDU trailer, a mismatch causes the IMPDU to be discarded.

33

Chapter 4

SMURPH — An Overview

4.1 Introduction

Smurph has been developed at the University of Alberta by P. Gburzyriski and P.
Rudnicki. The predecessor of smurph, lansf (Local Area Network Simulation Fa-
cility) [7] is programmed in C and has been successfully applied to investigate the
performance and correctness of several protocols [8, 9, 10, 12]. Smurph, evolved from
lansf, has been programmed in C++ and runs under the Unix! operating system.
It can be viewed as an implementation of a certain executable protocol specification
language [11]. A protocol specified in smurph can be executed by the smurph sim-
ulator. The underlying details of the simulator are hidden from the user. All the
simulation-related operations, such as creating and scheduling individual events, are
maintained under a high-level interface. Furthermore, the smurph modeling environ-

ment is able to reflect all the relevant phenomena occurring in real physical channels.

'Unix is a registered trademark of AT&T Bell laboratories

34

An extensive description of smurph can be found in [11]. To start with, a sample code
of the smurph specification language is presented. Then, the fundamental concepts

of smurph are described.

4.2 A Simple Modeling Example

This section presents a part of the DQDB implementation developed in this thesis.
The DQDB specification can be expressed in terms of several interacting processes;
the code of one of these processes named Monitor (each station owns a copy of this

process) is shown below:

process Monitor (Node) {

// Local Variables Declaration

Port *MyPort;
QASegment **PktPtr;
ACF **%SlotPtr;

void setup () {
MyPort = S->PortLR;

PktPtr = &(S->PktPtrLR);
SlotPtr = &(S->SlotHdrLR);
}

states {WaitSlot, SlotStatus, SlotHeader, SlotBody};

perform {
state WaitSlot :
MyPort->wait(BOT, SlotCheck);

state SlotStatus :

if (ThePacket->TP == ACF) {
*SlotPtr = TheSlot;

35

proceed (SlotHeader);

else
proceed (SlotBody);

state SlotHeader :

if (!'(*SlotPtr)->REQ_0)
S->REQ_NOT_SET->put ();

else
S~>REQ_SET->put ();

if (!(*SlotPtr)->BUSY)
S->EMPTY_SLOT->put ();

skipto (WaitSlot);

state SlotBody :
*PktPtr = TheSegment;
S~>RX_BUS->put ();
skipto (WaitSlot);

}

The purpose of the Monitor process is to detect the arrival of a slot at one of
the read ports owned by the station and notify the appropriate processes (of this
station) according to the status of the slot. The local attributes, MyPort, PktPtr and
SlotPtr, are set by the setup function to the port connected to the forward bus, and
to the variables of the station (PktPtrLR and SlotHdrLR) . r storing the address of
the QA (Queued Arbitrated) segment and the address of the ACF (Access Control
Field) respectively. The S attribute is pointing at the station which owns this process.
Thus, S->REQ_NOT_SET, S->REQ_SET, S->EMPTY_SLOT and S->RX_BUS identifies the
mailboxes declared at the station for communication between this process and other
station processes. The possible states which the Monitor can be in at any particular

time is listed in states. Each state defines a sequence of operations in the perform

36

method. Transition from one state to another are done by invoking one of the 3
operations: wait, proceed, skipto.

When the Monitor is created, its local attributes are initialized first before enter-
ing the state WaitSlot. In this state, it issues a wait request to the associated port
specifying that it wants to be restarted by the earliest BOT (Beginning Of Transmis-
sion) event—the beginning of a slot. Note that an empty slot triggers only one BOT
whereas an occupied slot activates two BOTs: one by the ACF and the other by the
QA segment (see figure 5.2). Whenever a slot arrives, the process wakes up at state
SlotStatus. Here, the first operation is to determine what caused the BOT event.
The variable ThePacket, which belongs to the process environment (whose purpose is
to pass information related to the restarting event to the awakened process), points
to the packet which has triggered the BOT event. If it is the ACF, it proceeds to
state SlotHeader and examines the attributes of the ACF to inform the appropriate
processes (by putting a signal into the REQ_NOT_SET mailbox—if request bit is not set,
REQ_SET mailbox—if request bit is set, EMPTY_SLOT mailbox—if unused slot). The
skipto operation is called to explicitly request an ITU (time unit of smurph) delay
before control returns to state WaitSlot. This delay is necessary to ensure that the
BOT event will not be sensed by this process again. Otherwise, the process would op-
erate infinitely on the same BOT event without the simulation time ever advancing. f
the BOT is caused by an arriving QA segment, Monitor continues at state SlotBoay.
Before returning to state WaitSlot, it saves the address of the QA segment and no-
tifies the receiver process by depositing a signal in the RX_BUS mailbox. Figure 4.1

shows the transition diagram of the Monitor process.

37

[Initial Stage]

N

No delay

SlotHeader

Figure 4.1: The transition diagram of the Monitor process
4.3 The Modeling Environment

This section discusses some of the features provided by smurph for modeling dis-
tributed systems. In smurph, all the network components such as stations, links,
and packets are referred to as objects. An object is either an instance of a base
type (as class in C++) or a type derived from a base type. Objects can be fur-
ther categorized as passive or active. Passive objects are usually handled by active
objects. For example, a client (active) can remove a packet (passive) from a mes-

sage queue of a station. The client belongs to a special category of active objects

38

called Activity-Interpreters which accept activities from the station processes

(e.g- transmit a packet from a port to a link) and turn them into future events.

4.3.1 Time

Time in smurph is partitioned into equal size intervals. Each of these intervals is called
an Indivisible Time Unit (ITU). If multiple events occur in the same I'TU, one of them
is randomly chosen to be processed. The precision of time is selected by the user.
Although there is no explicit limit on this precision, the execution speed is curtailed
with a higher resolution of time. During a simulation experiment, statistical results
are gathered according to another time unit called Ezperimenter Tane Unit (ETU)—
to make the results more legible for users to analyze. An ETU can be expressed in

terms of ITUs and vice versa.

4.3.2 Network Topology

A network topology is defined in terms of a set of stations and a set of links in-
terconnected via ports. Stations, are objects belonging to type Station (defines a
station skeleton). This skeleton can be extended by adding additional characteristics
to form the actual stations. The services of a station are maintained by a collection
of processes belonging to it.

Typically, the interface between a link and a station is provided by a port. Usually,
a port is created within the context of a specific staiion. It permits the station to
start and end a packet transmission to the link. Events such as beginning or end
of packet transmissions, beginning or end of jamming signals, and collision of packet

transmissions can be detected at the port. The transmission rate attribute of a port

39

specifies the amount of time (in ITUs) required to send a single bit into the port.
A link models a communication channel such as a fiber optic carrier. It allows
stations connected to the same link to exchange packets. Smurph provides two basic

link concepts: unidirectional and bidirectional link models.

4.3.3 'Traffic Patterns

The traffic patterns (objects of type Traffic) model the distribution of traffics in a
network. There can be several traffic patterns in a single simulation experiment. Each
traffic pattern generates new messages according to a specific format and queues these
messages at the sending stations. The distribution parameters of a traffic pattern
allow the user to specify the distribution of senders or receivers (the probability of
being an intended sender or receiver), message inter-arrival time and message length.
The message inter-arrival time can either be exponentially distributed or uniformly
distributed. Similarly, length can either be exponentially distributed or uniformly
distributed. A client A/, which can be viewed as a union of all traffic patterns,

notifies a station upon arrival of a new message.

4.3.4 Processes

A smurph specification defines a collection of extended finite state machines in which
state transitions are triggered by various events generated by the network environ-
ment. A smurph process (an object of type Process) forms a finite state machine.
Thus, the behaviour of a protocol is simulated by a set of processes. Each process can
reference the variables of the station owning them. A process type has three main

components:

40

e a collection of local variables,
e a setup method, and

e a perform method.

When a process is created, local variables are initialized by the setup method.
The perform method contains the code of the process. A newly created process enters
the initial state automatically. It can then be either in the waiting state or in the
transition state. A process goes to a waiting state by invoking a wait function which
specifies the futur= events that the process wants to perceive such as, beginning of
transmission, receiving signais from other processes, etc. A process can anticipate
more than one future event by executing more than one wait request. The earliest
occurrence of one of the awaited events wakes up the process. If multiple awaited
events occur in the same ITU, one of them is randomly chosen to be processed and
the process wakes up in the corresponding state. A process is said to be in a transition
state when it is executing its code. During the transition state, no simulation time
elapses; simulation time only flows while the process is in a waiting state—as the
run-time system is processing other events. When a process is in a transition state,
variables can be manipulated, decisions can be made, new processes can be created,
signals can be sent and activities can be initiated. The life cycle of a smurph process
is shown in figure 4.2. A process can create another process and new processes are
created with the create operation. All station processes are created by an initial

root process. Termination of a process is done by invoking the terminate function.

41

[Initial State]

Trigger Completed
State

Figure 4.2: The life cycle of a smurph process
4.3.5 Process Synchronization

Process communication and synchronization in smurph is accomplished by passing
signals and exchanging messages (compound objects). The latter facility is furnished
by mailbores. Mailboxes provide dynamic and efficient communication mechanism
between processes. A mailbox is always associated with a station. A station process
can deposit a message into a mailbox, remove a message from a mailbox, peek at
the first message of a mailbox and request the status (Full, Empty, Present) of a
mailbox. The capacity of a mailbox is specified at its creation. Depending on how
it is defined and created (modified by the user), a mailbox may behave as a simple
signal passing device (capacity is less than or equal to one) or a FIFO-type storage

called queued mailbox (capacity is greater than one). New messages are not accepted

42

once a mailbox becomes full. Another way of communicating between processes is to

pass signals among themselves directly without referring to a mailbox.

43

Chapter 5

The Implementation of DQDB in
SMURPH

5.1 Introduction

This chapter describes the implementation aspects of the Distributed Queue Dual
Bus (DQDB) protocol presented in Chapter 3. The station types for building DQDB
stations are presented in section 5.2. Section 5.3 describes how the network topology
is constructed. The traffic condition is defined in section 5.4. Section 5.5 details the
operation of each station process. The summary of this chapter is presented in section

5.6. The complete DQDB source code is listed in Appendix A.

44

5.2 Station Types

The DQDB network consists of two different types of stations: regular stations (as-

sumed homogeneous), and head stations. A head station, located at the head of a

bus, behaves like a regular station and also acts as the slot generator for the bus. The

following declaration defines the two staticn types:

station Node {

Port
Mailbox
ACF
QASegment

void setup

};

station Head:
ACF
void setup

};

*PortLR, *PortRL;

*Mb.DONE, ... declaration of other mailboxes ...
*SlotHdrLR, *SlotHdrRL;

Buffer_O_LR, Buffer_1_LR, Buffer_2_LR,
Buffer_O_RL, Buffer_1_RL, Buffer_2_RL,

MacBuf_0, MacBuf_1, MacBuf_2,

*PktPtrLR, *PktPtrRL;

O {

PortLR = create Port (TRate);

PortRL = create Port (TRate);

Mb.DONE = create Mailbox (1);

-.. create other mailboxes ...
clearFlag(Buffer_O_LR.Flags, PF_full);
.. clear other buffers

}
Node {

SlHeader;
(O { Node::setup(); }

A regular station is an object belonging to type Node, which in turn is derived

from the base type Station with added attributes. The Head type inherits all the

attributes from Node type and declares one private attribute—a buffer for storing an

45

ACF (initialized by the slotter process see section 5.5.1). Each station has two ports:
oae to the forward bus (pointed to by PortLR), the other to the reverse bus (pointed to
by PortRL). Both ports are for reading data from the bus and transmitting data onto
the bus. There are 66 mailboxes created at each station for process synchronization.
These mailboxes serve as simple signal passing devices, and thus are only capable of
storing one pending signal. The variable S1otHdrLR (S1lotHdrRL) is for saving the
address of an ACF arrived at PortLR (PortRL). Within a station, there are 9 buffers:
MacBuf_I, Buffer I LR and Buffer_I_RL (I = 0, 1, 2) for storing segments from three
priorities. The MacBuf_I buffers are used to store a segmentation unit of priority
[at the MCF (MAC Convergence Function) block. Eventually, the segmentation
unit forms a QA segment and is ready to be forwarded to its destination. If it is
to be transmitted onto the forward bus, it is deposited into the Buffer_I_LR buffer;
otherwise it is stored in the Buffer_I_RL . ..ffer.

Upon the creation of a station object, its setup function creates ports and mail-
boxes. Note that all the stations have the same transmission rate (TRate—read from

a file). The function then empties all the buffers.

5.3 Network Configuration

The network configuration is defined by the following function:

initTopology () {
int NNodes;
long Seglen, BusLength;
PLink =*LinkLR, *LinkRL;
Node *Prev, *Curr;

readIn (NNodes); readIn (BusLength);

46

create Head;
for (int i=1; i<NNodes-1; i++) create Node;
create Head;

SegLen = BusLength / (NNodes-1);

LinkLR = create PLink (NNodes);

LinkRL = create PLink (NNodes);

for (Prev=NULL, i=0; i<NNodes; i++, Prev=Curr) {
TheStation = Curr = (Node*) idToStation (i);
Curr->PortLR -> connect (LinkLR);
if (i>0) Prev->PortLR -> setDTo(Curr->PortLR, SegLen) ;

}
for (i=NNodes~1; i>=0; i--, Prev=Curr) {
Curr = (Node*) idToStation (i);
CGrr->PortRL -> connect (LinkRL);
if (i<NNodes-1) Prev->PortRL -> setDTo(Curr->PortRL, Seglen) ;

The function starts with reading in the number of stations (NNodes) and the length
of a bus (BusLength). We assume that stations are uniformly distributed along the
bus, and the distance between any pair of stations is saved in SegLen. The first loop
creates two head stations and HiNodes-2 regular stations. Then two unidirectional
links (LinkLR and LinkRL) with NNodes ports are created. The NNodes ports provide
the interface between the stations and the links. The link LinkLR denotes the Jorward
bus, whereas the link LinkRL denotes the reverse bus. The next (last) loop connects
all the stations to the LinkLR (LinkRL) and assigns the distances (SegLen) between

all pairs of stations on the link.

47

5.4 Traffic definition

The traffic condition in the network is defined by the following function:

initTraffics () {
double mit, MesLen;

readIn (mit); readIn (MesLen);
UTPat = create UTraffic (SCL_off+MIT_exp+MLE_unf, mit,
MesLen, MesLen);

UTPat->addSender (); UTPat->addReceiver ();

readIn (mit);

UiTPat = create UTraffic (SCL_off+MIT_exp+MLE_unf, mit,
MesLen, MesLen);

UiTPat->addSender (); Ui1lTPat->addReceiver ();

readIn (mit);

U2TPat = create UTraffic (SCL_off+MIT_exp+MLE_unf, mit,
MesLen, MesLen);

U2TPat->addSender (); U2TPat->addReceiver ();

Three traffic patterns (pointed to by the attributes: UTPat, U1TPat and U2TPat)
are established to represent three levels of priority. All three traffic patterns are
instances of type UTraffic, which is derived from the base type Traffic with specific
format (QASegment). The procedure starts by reading in the mean message inter-
arrival time (mit) and the length of the message (MesLen). Each traffic pattern is
created with a different mean value. The parameter SCL_off permits the users to
suspend a traffic pattern from generating messages during the network configuration
phase. When the network is fully running, the users inform the suspended traffic
pattern to resume its duty. The mean inter-arrival time of all traffic patterns are

exponentially distributed and the lengths of the messages are uniformly distributed.

48

With the above declaration, all stations receive messages with equal probabilities,

and contribute the same amount of traffic to the network load.

5.5 The Protocol Code

The services of each DQDB station are basically maintained by the MAC Convergence
Function (MCF) Block and the Queued Arbitrated Function (QAF) block (see figure
3.9). Although it is possible to express both function blocks in a single process,
the code generated in this way can be difficult to debug. A rational method is to
distribute the services among sever~! interacting processes, thus exposing the real
semantics of the system. Since the operation of the MCF block is sequential, it forms
a single process. The internal structure of the process is sub-divided into a series of
states where the formation of each DMPDU (e.g. BOM, COM, EOM) is tested by
observers (see section 6.3.5). To express the QAF block in terms of processes, we take
into consideration the priority traffics and buses. According to the proposed draft
{14], six DQSMs (Distributed Queue State Machines) and six RQSMs (Request Queue
State Machines) for three priority traffics and two buses are used. Routines such as
monitoring slots, creating QA segments from DMPDUs, transmitting QA segments
and receiving QA segments form a Monitor process, a QAP {Queued Arbitrated
Portion) process, a Transmitter process and a QAR (Queued Arbitrated Receive)
process respectively. Occasionally, the QAR process creates a child process called
Reassembly Staie Machine (RSM) to reassemble the entire IMPDU from the received
QA segments. The RSM process disappears after it has completed its task. With
his layout, we are able to check the internal consistency of a station by validating

1" these processes using observers. A part of our implementation of DQDS including

49

the creation of protocol processes is listed below.

process Root {

UTraffic *UTPat, *U1TPat, *U2TPat;

initTopology(); initTraffics();

for (int i = 0; i < NStations; i++) {
TheStation = idToStation (i);
if (i == 0) create Slotter (RIGHT);
if (i == NStations-1) create Slotter (LEFT);
create MCF_Block ();
create QAS_Block (RIGHT); create QAS_Block (LEFT);
create QAR_Block (RIGHT); create QAR_Block (LEFT);
create Monitor (RIGHT); create Monitor (LEFT);
create DQSM (RIGHT, Priority_0);
create DQSM (RIGHT, Priority_1);
create DQSM (RIGHT, Priority_2);
create RQSM (RIGHT, Priority_0);
create RQSM (RIGHT, Priority_1);
create RQSM (RIGHT, Priority_2);
create Transmitter (RIGHT, Priority_0);
create Transmitter (RIGHT, Priority_1);
create Transmitter (RIGHT, Priority_2);
create DQSM (LEFT, Priority_0);
create DQSM (LEFT, Priority_1);
create DQSM (LEFT, Priority_2);
create RQSM (LEFT, Priority_0);
create RQSM (LEFT, Priority_1);
create RQSM (LEFT, Priority_2);
create Transmitter (LEFT, Priority_0);
create Transmitter (LEFT, Priority_1);
create Transmitter (LEFT, Priority_2);

50

Client

IMPDUs
QAR N creates
(forward) RSMs

a
! DMPDUs o be y
MacBuf_I dispatched on busy set PSR
is empty Y forward bus slot
QAS Monitor
(forward) an (forward)
Empty
QA slots

QA segment segment I 7
1 transmitted & send REQ_I '

DQSM_I : RQSM_I

{forward) (reverse)

REQ_I bit
Permission : set REQ_I bit
» not set
S Transmitter_[Monitor
(forward) (reverse)

Figure 5.1: The interaction between station processes

Before the create operations are invoked, the environmental attribute
TheStation is set to point to the station which wili own the processes to be cre-
ated. The parameters passed to the setup function of a process identify the bus
(RIGHT —forward) and the priority of the process. Figure 5.1 shows how the pro-
cesses interact with each other. Note that the slotter process is missing from the

diagram since it is a non-interacting process.

51

5.5.1 Slotter Processes

A slotter process, retained only by a head station, transmits ACFs (Access Control
Field) on the selected port of the head station (PortLR on forward bus and PortRL on
reverse bus) at time duration of 52 octets. Internally in smurph, an ACF is an instance
of type Packet augmented with user defined attributes: BUSY, SL_.TYPE, PSR and
REQ.I (I =0, 1, 2). The standard attributes of this type include traffic pattern (TP),
the sender and receiver addresses, the information length of the packet (ILength),
the total length of the packet(Tlength) and the status of the buffer (Flags). Upon
creation, the process initializes all the attributes of the S1Header buffer, which stores

an ACF, as follows:

1. All the user defined attributes are set to NO. A NO value means a field has not
been set yet.

2. The TP is set to SLOT to differentiate an ACF from a QA segment whose TP can
be 0, 1 or 2.

3. Both the Tlength and Ilength are set to 8 bits since an ACF carries no extra
information.

4. The receiver and sender addresses are assigned to NONE as they serve no purpose.

5. The PF-FULL code indicates the buffer is full and its content (an ACF) is ready
to be sent. The buffer is always full unless it is explicitly ~leared by the process.

ACF transmission starts in state StartSlot. When the transmission is concluded,
the slotter wakes up at state SlotDelay. Having terminated the ACF transmission,
it sets up an alarm clock for 417 + x bits [the length of a QA segment plus (1+x)
safety bits]. This period is referred to as a silence period. When the alarm clock
goes off, the process returns to state StartSlot. The whole operation is repeated.

The safety bits serve as an interval between a QA segment and a successive ACF, as

52

BOT BOT BOT

v Vv Vv

______ T l+x
ACF| 416bits , safety | ACF| QA Segment
_______ bits
.................... =
Silence
-
DQDB Bus

Figure 5.2: The safety bits

shown in Figure 5.2. This is essential to avoid a station’s transmission from colliding
with the subsequent ACF due to the local clock error. The value of x, which can
range from 0 to 1000 ITUs, is supplied by a random function. Another aspect of
introducing the safety bits is to determine whether the unsynchronize slot generators

has any effect on the protocol since slot generators are never synchronized in real

situations.

5.5.2 MAC Convergence Function process

The main task of the MCF process is to divide the newly attained IMPDU (Initial
MAC Protocol Data Unit) from the Client into one or several DMPDUs (Derived
MAC Proiocol Data Unit) and transfer them to the Queued Arbitrate Portion (QAP)
process. Note that the subfields of the CPDU (Common Protocol Data Unit) header,
the MCP (MAC Convergence Protocol) header and the CPDU trailer have not been
set (refer to figure 3.5). The local variables: MacBuf.I, Msg Len_I, BEtag.I, and

53

Tx.SeqNum_I (I = 0, 1, 2) are to identify the station’s buffers, to record the message
length of priority I, to serve as beginning-end tag counters and as transmit sequence
number counters respectively.

The MCF process consists of 9 states. The operation cycle starts in the state
WaitIMPDUs where the process suspends itself by invoking the following wait requests:

state WaitIMPDUs :
U2TPat->wait (ARRIVAL, Prior2);
UiTPat->wait (ARRIVAL, Priorl);
UTPat->wait (ARRIVAL, Prior0);

If an IMPDU of priority I arrives at the station, the MCF wakes up at state
PriorI. Having ac- ured the first 44 octets of the IMPDU the process advances
to state FDMPDU and starts setting all the su’ i 'dis in the various headers (CPDU,
MCP, DMPDU) to appropriate values. The lensth of the MSDU (MAC Service Data
Unit—IMPDU information portion) is saved in the local attribute Msg Len_I. If it is
a single segment IMPDU, the MID (Message IDentifier) subfield is set to zero and
control proceeds to state LDMPDU. Otherwise, the MID subfield is set to the sum of the
station’s serial number and the number of stations multiplied by the priority of the
IMPDU. In this case, every station has a unique MID for each traffic. The process
continues at state WaitAccess.

Knowing the priority of the DMPDU and the bus on which it is to be transmitted,
the MCF sends a signal to the proper QAP (by putting a dummy item into the
appropriate maiibox), and thus informs the QAP that the DMPDU is ready to be
fetched. Consequently, the process branches to state WaitStates and issues the

following wait requests:

e If all the MacBuf I (I = 0, 1, 2) are full, a successful fetch of a DMPDU_I by
the QAP wakes up the process. Control shifts to state DonelI.

54

No MSDUs
>[WaitMSDUs)

Arrival of 8 MSDU
>
No MSDU of First Seg. Unit
Priority I
proceed
@ FDMPDU
Arrival of pass proceed s
a MSDU of o QAT
Priority 1
WaitStates proceed LDMPDU
Received [..
No Priorit .
by QAT I I;’e& ority Last Seg, Unit

Last Seg. ; Continu= Seg.
Unit i

Figure 5.3: The MCF transition diagran

e If all the MacBuf_I are not filled, either a successful fetch of a DMPDU_I by the
QAP or the arrival of an IMPDU to be stored in MacBuf_J (where J is empty)
wakes up the process. Control continues at state PriorI.

The remaining DMPDUs of the IMPDU are acquired in state Donel. Having in-
cremented the counter;: BEtag. I and Tx_SeqNum_I, the MCF is in state CDMPDU if the
attempt to obtain the next DMPDU is successful; otherwise it is in state WaitAccess.
In the state CDMPDU, the header of a continuation DMPDU are initialized. Then, the
MCF can be in either state WaitAccess or state LDMPDU. The latter takes place when
the DMPDU is the last segment of the IMPDU. Pigure 5.3 shows the states transition

35

of the MCF process.

5.5.3 Queued Arbitrated Portion process

The QAP process is concerned with creating a QA segment from the DMPDU received
from the MCF process. Every station has two QAP processes; one on each bus
(considering forward bus here). The process starts at state WaitSignals and waits
for the ACC_I signals from the MCF. If a DMPDU of priority I is received, the process
wakes up at state AccessI (I = 0, 1, 2). In this state, the subsequent action of the

QAP depends on the status of the Buffer _I_LR buffer:

Empty The QAP stores the DMPDU, signals the MCF that it has successfully
fetched the DMPDU and cortinues to state MovetoXtmBuf. Here, it encapsu-

lates a QA Header to the DMPDU and signals the DQSM_I about the newly
created QA segment before advancing to state WaitState.

Full Control goes to state WaitStates where the process suspends iiself and waits
for the Buffer I_LR to be emptied Ly the Transmitter process or the arrival
of a DMPDU to be stored in the Buffer .J_.LR (where J is empty). Control
transfers to the state AccessI once the process wakes up.

A transition diagram of the QAP process is depicted in figure 5.4.

5.5.4 Monitor process

Each st:iio.. ~wvns two Monitor processes: one for monitoring the forward bus
(through PortLR), and the other for monitoring the reverse bus (through PortRL).
Let us consider the Monitor process of the forward bus. The process has nothing
to do until it is awakened by the BOT event at its port. In such case, the Monitor

moves to state SlotStatus to determines what activated the BOT event. If it is a QA

56

All QA segments

have been passed
>L WaitMSDUs)
to DQSMs

Arrival of a DMPDU of priority I
from MCF

Arrival of a DMPDU

Waiting for another
DMPDU_lora
buffer 1o be emptied

Transmit Buffer
I is empty

WaitStates MovetoXumBuf

Figure 5.4: The QAS transition diagram

segment, it puts a dummy item in the RX_BUS_LR mailbox of the Queued Arbitrated
Receive (QAR) process. When the BOT is triggered by an ACF, the Monitor:

e Sets the PSR = YES, if the previous QA segment is received.

e Signals the DQSM_J (Distributed Queue State Machine) on the reverse bus by
depositing a dummy item in the REQ_SET_J_RL mailbox, if the REQ.I (1 > J)
bit is set.

e Signals the RQSM.I (Request Queue State Machine) on the forward bus by
depositing 2 dummy item in the REQ_NOT_SET_I_LR mailbox, if the REQ_I bit is
not set.

e Signals all the DQSMs on the forward bus by putting a durnmy item in each of
the EMPTY_SLOT_I_LR mailbox, if the BUSY bit is not set

]
-

5.5.5 Distributed Queue State Machine

This se-.*- :.plains the implementation details of the DQSM presented in Section
3.4. Thez. are six DQSMs, one for each combination of buses and priorities, within a
station. Eacl. DQSM consists of two local attributes: REQ_cntr (request counter) and
CD_cntr (countdown counter), and interacts with several processes (see figure 5.1).
The operation of a DQSM is partitioned into 6 states (below, we are considering the

DQSM of priority 1 of the forward bus only):
WaitSignals It issues 5 requests:

1. to the REQ._SET-1_RL mailbox for a possible signal coming from the Monitor
when REQ_1 bit is set (SlotReq).

2. to the ACCESS_Q-1_LR mailbox for a possible signal coming from the QAP
when a QA segment of priority 1 is ready for transmission (CountDown).

3. to the PRI_REQ.1_RL mailbox for a possible signal coming from the Monitor
when REQ.2 bit is set (IncCntrs).

4. to the SELF PRI_1_LR mailbox for possible signal coming from the QAP
when a QA segment of priority 2 is ready for transmission (IncCntrs).

5. to the EMPTY_SLOT.1_LR mailbox for possible signal coming from the
Monitor which an empty slot is encountered (EmptySlot).

SlotReq The REQ_cntr is incremented by one.

CountDown The process sets the CD_catr to the REQ.cntr before it signals its as-
sociated RQSM process to send a request. Note that the operation of RQSM
and DQSM is independent of each other, which means that a QA segment is
permitted to be transmitted before the request is sent.

IncCntrs It increments the REQ_cntr when it is in idle state; otherwise, it incre-
ments the CD_cntr.

EmptySlot It decrements the REQ.cntr when it is in idle state; otherwise, it decre-
ments the CD_cntr. If the CD_cntr is zero, it sets the BUSY bit to YES and
advances to state PermitXtm.

58

PermitXtm It sends the TX_BUS_1_LR signal to the Transmitter process.

In state WaitSignals, an arrival of a signal from any process wakes up the
DQSM.1 and it proceeds to the state enclosed in the bracket. At other states, con-

irol returns to state WaitSignals except when control is in state EmptySlot and the

CD_cntr is zero.

5.5.6 Request Queue State Machine

The function of the RQSM is to send a request for a QA seginent generated within
the station. There are six RQSMs (buses x priorities) within the station and each
RQSMLI of the forward (reverse) bus is asscciated with a DQSM._I of the reverse
(forward) bus. Every RQSM maintains a REQM_Q_cntr (request queue) counter which
records the number of outstanding requests of its prioritv level. The operation of a

RQSM.I process starts in state WaitReqs. Then, it reacts to two signals:

@ A LOCAL_REQ signal from its associated DQSM_I (about a self-generated QA
segment) prompts the process to increment the REQM_Q_cntr.

e A REQNOT.SET signal from the Monitor triggers the process to go state
CheckReq. There, it returns to state WaitRegs if the REQM_Q_cntr is zero;
otherwise, it decrements the REQM_Q_cntr and sets the REQ_I to YES.

Having reacted to the signal, the RQSM_I returns to state WaitRegs.

5.5.7 'Transmitter process

There are six Transmitter processes (buses x priorities) within a station. Three
Transmitter processes of the forward (reverse) bus are associated with three DQSMs

of the forward (reverse) bus. The Transmitter_I transmits QA segments of priority

59

I via the PortLR (PortRL) of the station onto the forward (reverse) bus. The process
waits for a signal from its associated DQSM in state WaitTransmit. When a permis-
sion is granted by the DQSM, it waits for the EOT (End of Transmission) event to be
activated by the ACF before starting to transmit the QA segment stored in its buffer
(this is why a busy slot triggers two BOTs whereas an empty slot triggers one). Having
completed its transmission, control goes to state EPacket. Here, it invokes the stop
operation and clears its buffer. Then, it notifies the Monitor about the completion

of a QA segment transmission and signals the QAP to fetch another QA segment.

5.5.8 Queued Arbitrated Receive process

The QAR process identifies the QA segment designated to the current station and
creates multiple Reassembly State Machines (RSMs) to handle concurrent receipt
of multiple IMPDUs addressed to the station. Each RSM will administer one IM-
PDU. We assumed that all the packets are delivered in order and the packets are
not corrupted during the transmission. The attribute MID1ist comprises the MIDs
of all the IMPDUs that are being processed by the RSMs. The QAR waits for a
possible RX_BUS signal from the Monitor in state WaitPacket. Having notified by
the Monitor about an arriving QA segment, it wakes up in state CheckPktStatus.
A RSM process is only created when a QA segment is addressed to this station, the
VCI value matches the value which the QAR is programmed to handle, and the MID
is not on the MIDlist. Otherwise, the QA segment is ignored and control returns to
state WaitPacket. In the case where the QA segment is designated to this station,
the QAR informs the proper RSM about the reception of a QA segment and then
advances to state EndPacket to wait for the EMP (End of My Packet) event. Having

60

received the entire packet, it informs the Monitor to set the PSR bit on the subsequent

ACF and returns to the state WaitPacket.

5.5.9 Reassembly State Machine

The purpose of the RSM is to reassemble all the DMPDUs derived from an IMPDU (at
the source station) into the original IMPDU. This process terminates after the entire
IMPDU is reassembled. When the RSM is created, it enters state BOMPktArr and
saves the beginning-end tag value, the transmit sequence number and the length of the
MSDU of the first DMPDU. Then it advances to state NextPktArr and requests the
parent process (the QAR process) to inform him when its next QA segment arrives.
A signal from the QAR restarts the process in state CheckPktStatus. Since we are
interested only in the entire IMPDU being properly received and not the contents of
the IMPDU, the RSM compares the transmit sequence number and only accumulates
the length of the MSDU in each subsequent DMPDU. When the entire IMPDU is
received (Segment Type = EOM), control goes to state Validation and performs
the two-step verification scheme describes! in section 3.5.3. Having received the entire

IMPDU, the process terminates itself ;n state stop.

5.6 Summary
We have presented the indepth details of implementing 2 DQDB protocol in smurph.
Several aspects are essential when specifying the protocol.

1. Whenever a process is awakened by a channel event, a delay is necessary to

ensure that the event has been removed by the system. Otherwise, the process
would operate on the same event endlessly (presence of livelocks).

61

2. When a state transition occurs within a process or a statiun {from process to
process), the address of an environmental attribute (e.g. ThePaclet) has to be
saved if the object pointed to by the variable is to be referenced later.

3. If the message and packet formats are extended, it is re¢uired to include
UMessage and the packet type {e.g. QASegment) when creatiry, a traffic pattern.
For example:

traffic UTraffic (UMessage, QASegment) {
... additional attributes ...

};

4. The environmental variable NStations (indicates the number of stations pre-
sented in the network) should not be referenced before or during the configura-
tion phase since it is still being updated.

5. The process synchronization is facilitated by mailboxes. However, they are
found to be inconvenient when a parent process wishes to communicate with
one of its child processes (the total number of the children is known only during
the course of the sirnulation) as mailboxes can not be established dynamically.
The problem is resolved by implementing a signal command which permits
the parent process to send a signal to its child process(es) without referring to
a mailbox.

The presented implementation has illustrated the fundamental concepts and fa-
cilities of smurph. The formalism of smurph requires a manual translation of protocol
specifications into a set of extended finite state machines. A communication protocol
described by low level specification languages such as smurph maps closely to the
hardware details. In effect, smurph specification can be written in a one to one corre-
spondence with the real network. Thus, porting a smurph specification to the physical
world would require minor modifications. On the other hand, smurph specifications

lack formally defined semantics. Sincc cummunication protocol are usually defined

62

informally or in a formalism different from smurph, translating these specifications
to smurph specifications may neglect some of the protocol important features. The
issue is how can we ensure that a smurph specification has all the required service
properties of the original protocol specification? We show how smurph observers can
be used for that purpose.

In our case study, three DQDB networks with 16, 32 and 48 st:tions have been
considered. Stations are uniformly distributed along the bus, and have Jocal clock
errors with a maximum value of 0.6002 per 1000 ITU. Each station sends and receives
messages with equal probability. The transmission rate for every station is the same,
which in our case is 1000 ITU/bit for a 150 Mbps DQDB. The traffic density ranges

from overload to underload. The message limit is set to 50,000 in every simulation

experiment.

63

Chapter 6

Conformance Testing of DQDB by

Observers

6.1 Introduction

There are two drawbacks in systematically probing a given protocol implementation
for its correctness using a series of test suites and monitoring the outputs. First,
without any knowledge about the internal structure of the protocol implementation,
the approach may not be convincing as the inputs usually come from an infinite set.
Second, it gives no guarantee that the protocol implementation is free of deadlocks
or livelocks. We discuss some partial resolutions of these drawbacks in the context of
random state exploration.

A sound communication protocol must fulfill the basic properties: no deadlocks,
no livelocks and no message loss. In smurph, the violation of these properties can be

detected by examining the system output parameters:

64

e The simulation experiment stage (e.g. the maximum number of messages to be
received).

The global and local throughputs.

The pending events queues.
e The events processed queues.

e The number of transmitted and received messages.

In addition to the above statistics, smurpn also checks illegal operations such as
acquiring a new packet with an occupied buffer using the getPacket command, trans-
mitting multiple packets at the same port simultaneously and depositing a signal into
a full mailbox. However, these features cannot guarantee that the service properties
of the protocol are met because the internal functioning of the protocol (which in-
volve several processes) cannot be checked on the basis of the above information and
fez iures. Instead, the smurph tools called observers are used. These observers are
programmed by the users.

In this chapter, we describe how smurph observers are used to validate the be-
haviour of the DQDB protocol by random state exploration. The proposed DQDB
draft [14] mentions the following service requirements which a DQDB implementation

must support:

General Properties

e Slot delay before transmitting should be within the slots limit (see sec-

tion 6.3.1) permitted by DQDB whenever a station has a QA segment to
transmit—Progress property.

e The assembly and reassembly of IMPDUs.

Internal Properties

65

e Within a station, QA segments of higher priority should gain access to the
bus ahead of QA segments of lower priority.

e If a request asscciated with a QA segment has not been sent on the reverse
bus, access to the bus is not inhibited.

e The values of the CountDown counters and the Request counters are prop-
erly maintained.

These required service properties have been tested using smurph observers, ex-
cept the reassembly of IMPDU property (validated by the Reassembly State Machine
see section 7.5.9). Note that part of the progress property is the absence of locks.
The smurph observer model is discussed in section 6.2. Section 6.3 describes the im-
plementation of DQDB observers and then summarizes the results of the experiment
obtained by the DQDB observers. The summary of the chapter is presented in section

6.4.

6.2 SMURPH Observers

Observers are tools provided by smurph to assert the service specifications of a pro-
tocol. Unlike any other random state exploration techniques, smurph observers have
the ability to investigate both the external behaviour and the internal structure of a
protocol implementation without changing the behaviour. The operation of observers
and protocol processes is independent of each other.

Generally, each service property is administered by a single observer. In the
case of multiple service properties, several observers are desired. Resembling regular
processes, observers are defined by extended finite state machines. Unlike regular

processes, observers are not affiliated with stations. Normally, smurph observers an-

66

alyze the data structures belonging to a station whose process has just accomplished
its mission and is returning te sleep.

General events that trigger the regular processes are not perceived by observers.
Instead, observers are activated by two meta-events: a station process’ transition and
the passing of time. The first meta-event occurs when a station process arrives at
a speciiic state which is being monitored by an observer. When the station process
is still executing, the observer is unable to determine the behaviour of the process
since the transaction of the process is atomic. In fact, smurph wakes up any observer
requesting to scrutinize the current state of the process right after the process has
exhausted the list of statements in its present state and has put itself to rest. The
function by which observers request to monitor state changes of regular processes is
inspect (id, pt, pn, st, cs). The functionality of the inspect operation resembles
the wait command invoked by a regular process. The inspect operation takes 5

arguments, and their roles are as follows:

id It identifies the station(s) being observed. This parameter can be a station id,
a station object pointer or ANY. If the symbol ANY is employed here, it implies
that all the stations in the network are being monitored.

pt It indicates the type of the process.

pn It identifies the nickname of the process. Its purpose is to differentiate between
processes derived from the same type. This must be used when the process type
is inadequate to identify the process under observation.

st It defines the state of the process being monitored.

cs It is the observer state which the observer wishes to be in upon its return from
a rest.

The inspect request can be interpreted as a declaration that the observer wants

to remain suspended until the simulator awakes a regular process matching the pa-

67

rameters of the inspect command. When this happens, the observer is awaken in
the indicated staie and performs a validation procedure.

The second meta-event emerges when the observer suspends itself and requests to
be waken up after a ~ertain delay. This is done by invoking the command, time_out.

This function acts as an alarm clock, and accepts two parameters:

o The first is the number of ITUs that the observer wants to sleep.

o The second specifies the state which the observer wishes to be in once it wakes
up.

Since simulation time does not flow while the observer is performing its task, it
acquires the relevant information instantly. After the observer completes its assign-
ment, it sets the new awakening conditions before returning the control to smurph.
This interrupt has no effect on the simulation.

The root process creates observers by invoking the create function. In smurph,
it is considered illegal to create observers after the simulation has started. As a
result, observers are created together with the station processes during the protocol

initialization phase. The skeleton of the observer type is displayed below.

observer ps_obs {

. local variables ...

void setup (...) { ... };
states {s0, s1, s2, ..., sn};
perform {

state sO :

... specify waking conditiomns ...
.. sSuspends itself ...

68

state si
.. start activities ..
.. resume (s3);

state sn :

ps_obs is the name of the newly derived Observer type. The local variables, a
setup method, and a perfox"m method are the 3 main components of the Observer
type. All local variables are initialized in the setup method before observer proceeds
to state 80. In the state s0, an observer can either suspend itself (by invoking the
inspect or timeout command) or advance to another state. The resume(state)
function allows the observers to move from one state to another state. [t accepts only
one argument, which is one of the process state identifiers. The perform method
defines an extended state machine. Each state in the perform method corresponds to
a state in the machine. To terminate an observer, the terminate command is issued.

Since simulation in smurph is driven by the arriving message from outside (Client
Al) and there is no standard communication between the observers and the Client
Al, we cannot force a process to switch from one state to another state. Nevertheless,
it is possible to expose the most probable behaviour of the protocol by adjusting the

distribution parameters of the traffic patterns.

69

6.3 DQDB observers

This section presents the smurph observers Jeveloped to validate the DQDB imple-
mentation, and the test results obtained during the simulation experiment. The
service properties tested by smurph observers are: slot delay, priority traffics, re-
quest slot, and slot counters. The siot delay property ensures the system is pro-
gressing, and thus absence of locks. The rest of the properties focus on the in-
ternal structure of a station. Each service property was governed by a sepa-
rate observer; as such four observers: validate SlotDelay, validate Priority,
validate ReqBit, and validate DQSM were created. Furthermore, validate MCF,
validate GAP, validate QAR, and validate RQSM were implemented to corroborate
the internal consistency of each rotocol process (see section 5.5). Internal consistency
validation is done by comparing the expected responses of the protocol process from
the view point of observers against the actual outcomes. Any contradiction causes
the observers to print an error diagnosis. In effect, the idea applied here is similar
to the redundant principle [2]. All the observers implemented were local observers
except the validate SlotDelay observer, which was a global (distributed) observer.
Though most of the DQDB observers were performing local tests, their abilities were
not constrained. On the contrary, they were more likely to detect errors since every
station kept the current state of the network for accessing the bus. In each simulation
performed on the three networks (see chapter 5), all the observers mentioned above
were running. The observers supervised the processes belonging to a single station at
a time. Since the operation of the DQDB protocol is symmetric, the description of
the observers mentions the forwerd bus only. Appendix B contains the source codes

of the observers.

6.3.1 Slot Delay

The validate_SlotDelay observer checks whether the number of slots which a station

has to wait before receiving its requested slot is bounded according to the following

calculation:

Assume the following notation:

Let the station identifier be stat_id.

The total length of the bus is bus_len.

The slot length is slot_len.

The number of stations in the network is NStations.
The number of outstanding requests is CD_cntr.

The distance between the head station and the staticn stat_id in terms of slots
i1s n_slots.

First, the distance between the head station and the station stat_id is calculated.

Since the distance between any two neighboring station is the same, we have:

distance_bet_2_stations

bus_len / (NStations - 1)

distance_bet_head_cbser

stat_id * distance_bet_2_stationys
n_slots = distance_bet_head_obser / slot_len
see_request = n_slots + 1

slot_delay = see_request * 2 + CD_cntr
(Priority 2)

slot_delay = see_request * 2 + CD_cntr + 1 + stat_id
(Priority 1)

71

slot_delay = see_request * 2 + CD_cntr + 2 + stat_id * 2
(Priority 0)

The request of the station stat_id reaches the head station after (n_slots +
1) number of slots. The one, added to the variable see_request, is the slot which
carries the request. With three levels of priority, the value of the slot_delay for
each priority is different. The slot _4elay for priority 2 is the sum of the outstanding
requests (CD_cntr) of priority 2 a:d twice the total of see_request. For priority 1,
the slot_delay has to take into cunsideration the potential priority 2 requests queued
by the upstream stations. Similarly, the slot_delay of priority 0 has to include the
possible requests (priority 1 and priority 2) registered by the upstream stations. To
compute the slot_delay on the reverse bus, the stat_id is replaced by (NStations
- stat_id - 1). The maximum slot delay is when all the downstrean: stations have
reserved for a slot but their requests have not been served yet.

There is one instance of validate SlotDelay observer at each station (see its
code in Appendix B). Upon creziion, the observer computes the value of see_request
before it proceeds to state resume. Here, it waits until a DQSM enters the countdown
state. When this happens, the observer advances to state SetCntr. Depending on
the priority of the DQSM, the appropriate slot_delay is computed in accordance
with the method presented above. Now, whenever the Monitor process encounters
an ACF at its port, the observer wakes up in state Passingslot and increments
the attribute n_slots by one. If the DQSM arrives at state IncCntrs, the observer
increments the slot_delay in state PriReq to account for the priority request sent
by the downstream stations. Once the associated Transmitter of the DQSM starts

transmitting in state XPacket, the observer arrives at state Verify, and compares

=1
(V]

the value of n_slots against the slot_delay. If n_slots exceeds the allowed limit,
a short diagnosis is printed by the observer before returning to state resume. Note
that the observer begins recording the passing slots after the DQSM has entered
countdown state not after the request has been sent. This is because the sending of
a request and the transmitting of a QA segment are two separate issues according to
the second service property.

A problem was encountered when implementing the validate SlotDeiay ob-
server. At the beginning of the simulation, the observer detected violations of the
limit. Further analysis showed that it took approximately 248 slot times (due to prop-
agation delay) for the first ACF with or without a request to reach the end station
of a bus after the simulation had started. During this time, the head stations were
hogging onto the slots since they have not seen any request: whereas the stations,
situated in between the two head stations, which had entered the countdown state
were unable to reserve the siots as they either have not seen any ACF or their requests
are on the way to the end station. This problem was resolved by extending smurph
with 3 functions: suspend, resume and resetSPF. The suspend command allows us
to suspend the traffic generators from producing messages while the network is still
in configuration phase. Thus, no observer is activated as stations cannot enter count-
down state without messages. After the buses were saturated with ACFs (about 300
slot times later), we invoked the resume command to reinstate the suspended iraf-
fic generators. Now, a station which enters countdown state can rejuest an empty
slot without any difficulty. The resetSPF operation is usually issued right after the
resume function is called. It resets all the statistical measurements collected during
the initialization phase, and thus provides more precise performance measure.

The test results gathered during the simulation showed that QA segments of

73

priority 2 gained access to bus within the bounded limit in any situation. Nevertheless,
it was not the case for QA segments of priority 1 and priority 0 when the network
was heavily overload. To elucidate why this scenario took place, assume that station
15 wishes to send a message (priority 0) to station I8. First, station 15 requests for
an empty slot on the forward bus. When the requested empty slot is on the way to
station 15, station 10 occupied it with QA segment of higher priority before sending a
request. If this condition arises, the observer should update the slot_delay of station
15 since station 15 may have to use the empty slot acquired by station 10. However,
keeping track of which upstream stations utilize the empty slot does not help much as
in this case there is no bound for lower priority slot delays. As a result, the verdict
in this case was inconclusive unless a better solution could be found. Under heavy,

medium, and light load, a0 errors were detected by the observer.

6.3.2 Priority Traffic Patterns

To conform the priority traffic property, the validate Priority observer spies on all
the DQSMs within a station and notes down any DQSM which enters the countdown
state in state EnterCD (see its code in Appendix B). Wlenever a Transmitter process
is granted the permission to convey (state WaitTransmit), the observer proceeds to
state Verify and checks whether the QA segment is to be stored in this buffer (a
QA segment of priority I sheuld be deposited in Buffer I_LR) and to be send on the
forward bus. The observer also investigates if any of the DQSMs of higher priority
is still in the countdown mode (recorded in state EnterCD). Any violation causes the

observer to output an error message. No violation was discovered by the observer.

74

6.3.3 Slot Request

To certify the slot request property, the validate ReqBit observer monitors all the
DQSM processes. Whenever the DQSM.I arrives at state CountDown, the observer

advances to state ReqOrXtm. Here, it waits for two events:

e The RQSM.I process to enter state ReqBitSet-issues a request.

e The Transmitter_I process to attains at state XPacket-begins transmission.

For a violation to occur, the RQSM. process has to issue a request for every
QA segment in any situation (even if there are unrequested empty slots passing by)
before the transmission of the QA segment can take place. Note that this may not be
a violation under heavy load as most :iots are occupied. Any occurrence of a reverse
order proves it otherwise. Based on the test results, majority of the QA segments
were transn:itted before a request has been made when the network is under low load.

Under aeavy or medium 'oad, only a few stations which are located near the head

station exhibit such a behaviour.

6.3.4 Validating Distributed Queued State Machine

The validate DQSM observer acts as a redundant copv .. the D(SM processes. It

maintains a copy of REQ counter and CD counter for each priority. The operation

of the observer is as follows:

e Whenever the Monitor process of the reverse bus returns from the SlotHeader
state, the observer proceeds to state ACFStatus. Subsequently, it examines the
status of the request field and updates its counters accordingly.

e Whenever the QAP process proceeds to the MovetoXtmBuf state, the observer
wakes up at state SelfReq and increments its aporopriate counters if necessary.

75

e Whenever a DQSM enters state CountDown, the observer arrives at state SetCD
and operates on its CD counter.

e Whenever a DQSM prccess arrives at EmptySliot state, the observer advances
to state Verify, and compares the values of its REQ and CD counters against
the values of the REQ and CD counters of the DQSM. Unexpected values cause
the observer to print out an error disgnostics.

Recall that in ssurpk 1 aultiple events awaited by a process occur in the same
ITU, the order f jrucnssing the events is non-deterministic. It is possible that the
ACF on both k', s~ ...~ »» e at a station simultaneously. In such case, the operation
‘= be performed on the REQ and CD counters can be unpredictable. To illustrate,
assume that the slot encountered on the forwaerd bus is empty, each request subfield
of the ACF on the reverse bus is set, and the DQSM_I is in idle state and its REQ

counter is 5. Then, the DQSM_I randomly performs one of the actions listed below:
e enters state SlotReq to increment its REQ counter-priority 0 request.
e enters state IncCntrs to updates its REQ counter—hi~her priority requests.

® en’~:s state EmptySlot to decrement its REQ counter-an empty slot.

If t» decrement precedes the increment, the . ‘'ue of the REQ counter of the
observers is different from the value of the REQ counter of the DQSM.I when the
validation procedure is carried out in state Verify since the observer has already ac-
counted the requests on the reverse bus. Similarsituation can occur when the DQSM_I
is in countdown state. To overcome the problem, the observed state EmptySlct must
be reached the last. Thus, a change in smurph was required. A priority vait(events,
state, pri) command was incorporated into smurph by P. Gburzyiski. Unlike regular
wait operation, it accepts 3 arguments. The first two arguments serve the same pur-

pose as in a regular wait. The last argument, which is optional, makes it possible

76

to arrange the preference order of restarting a process if multiple events awaited by
the process occur within the same ITU. The pri argument of the smal'-st value is
processed ahead of the others. In our case, the lowest priority was assigned to state
EmptySlot of the DQSM process. When the contrc! proceeds to the EmptySlot, all
the counters would have been incremented. Hence. the observer can confirm the ac-
tion of DQSM. This alteration has no effect on the actual simulation. According to

the results gathered during the simulation, the operation of the DQSM was correctly

maintained.

6.3.5 Validating MAC Convergence Functicon

The validate MCF observer is concerned with setting the attributes of the DMPDU
(Derived MAC Protocol Data Unit), and maintaining the operation of the Tx_Seq _Num
(Transmit Sequence Nur:l. ¢) counter and the BEtag (Beginning-End tag) counter of
each priority. It can be perceived as a carbon copy of the MCF process. For each
priority, the observer has three attributes: Tx_Seq_Num counter, BEtag counter and
Msglen. The variable Msg len accumulates the MSDU (MAC Service Data Unit)
length carried in each DMPDU. Initially, all the attributes =-2 set 12 :+=. When
the MCF process arrives at st7ie FDMPDU, the observer saves the MSDU length of the
current DMPDU in Msg_len and also ratifies the value coded in the BEtag subfield.
The validation scheme takes place whenever the MCF proce. 5 makes a transition to
state WaitAccess. Here, the attributes such as MID, segment type, DA (Destination
Address), and SA (Source Address) are revealed. If the segment 1. .he last DMPDU
(EOM code), the observer compares the BEtag value of this DMPDU against the

first DMPDU (recorded). A mismatch causes the observer to print an error message.

77

The observer verified that the attributes of each DMPDU were set to the appropriate

values in the simulation.

6.3.6 Validating Queued Arbitrated Portion process

The operation of the validate.QAT observer is simple and straightforward. The
attributes, including the MID (Message IDentifier), the VCI (Virtual Channel Iden-
tifier) and Sequence Number, of a DMPDU (Derived MAC Protocol Data Unit) are
duplicated by the observer in the MCF process. Whenever the QAP process fetches a
new DMPDU, the observer analyzes the status of the DMPDU with those recorded in
the MCF process. A mismatch would indicate either the DMPDU is out of sequence
or the implementation of the QAP process is at fault. In the simulation, the QAP

process received all the DMPDUs passed to it by the MCF process orderly.

6.3.7 Validating Queued Arbitrated Received process

iue validate QAR observer examines the consistency of the QAR process. To en-
sure that the Monitor process and the QAR process are looking at the same slot,
the observer collects the relevant information when the Monitor proceeds to state
5lotBody. These data are then collated with these perceived by the QAR process in
state PktArr. In addition, the observer makes sure that the QA segment is addressed
to the current station and the MID is not presently handled by an RSM (Reassembly
State Machine) whenever the QAR process arrives at state BOMPktArr. The observer

confirmed that the QAR process was correctly implemented.

6.3.8 Request Queued State Machine G. server

The basic function of the validate RQSM observer is to attest the operation of the
RQSM.I process. Additional processes participate in the validation procedure are:
DQSM.I and Monitor of the reverse bus. Both DQSM_I and Monitor processes in-
teract with the RQSM.I by providinr the inputs (see figure 5.1). and the observer
anticipates the responses. The observer retains a copy of the REQ_Q_I (Request Queue)
counter. Whenever the DQSM_I is in CountDown state and aciiuaints the RQSM. to
send a request, the observer increments its REQ_Q_I counter. Whenever the Monitor
attains at state SlotHeader, the observer inspects the status of the REQ.I bit. In
the case where the REQ._I bit is not set, the REQ_Q.I is decr..mnented if it is > zero.
To ensure that the REQ.Q_I counter of the RQSM has the correct value, the ob-
server compares the value of the two counters before the RQSM_I returns to state
WaitReqs from state SetReqBit. However, these values may differ if priority wait
is not employed here. This can only happen if the addition (notified by DQSM.I)
and subtraction (awarded by Monitor) of the REQ_Q_I counter of the RQSM_I takes
place in the same ITU. If the RQSM_I enters state LocalReq to increment its counter
first, the two counters are equal; otherwise, they differ by one at most. Although
one might argue that this boun . is .cceptable, others might not be convinced. To
have absolute knowledge of the value of the REQ_Q_I counter, the state SetReqBit is
given the lowest priority within the RQSM. process. No errors were spotted by the

observer.

79

6.4 Summary

We have presented some details of developing smurph observers to validate a DQDB
implementation. Although there were no errors located by the observers, we came
across two important issues in the validating process. First, when the network traffic
is heavily loaded, a station may have to send a QA segment’s request before it can
transmit the QA segment since most slots are either reserved by the downstream
stations or occupied by the upstream stations. This, however, may not be a violation
of the slot request property. Second, the slot counters property was difficult to validate
as the precise sequence of events (within the DQSM process) cannot be predicted.
To deal with the difficulty, we proposed a priority wait function to be included in
smurph. This function allows us to anticipate the choice of a restarting a protocol
process that waits for several waking events. This modification has no effect on
the actual simulation. Additional features such as suspend, resume and resetSPF
were added to smurph to increase its efficiency. The suspend function permits the
users to discontinue the message generating activity and to continue after the resume
command is invoked. The resetSPF function is issued wheu the users want to ignore
all the performance measures gathered thus far in the simulation. This operation is
usually called after the network configuration phase.

When developing DQDB observers, the prominent issue is deciding what service
properties should be tested since there are no existing conformance testing standard
for the DQDB protocol. In another word, did the simulation experiment cover all
the service specifications? Since some service specifications of the implementation are
apparent (e.g. slot generator), the author felt that the service properties excerpted

from the proposed DQDB draft were the most significant requirements of the protocol.

80

Chavnter 7

Conclusions and Directions for

Future 7 -earch

In this thesis, we have investigated the feasibility of conformance testing of low-level
communication (MAC) protocols implementead in the smurph modeling environment.
Our main interest is in developing and implementing smurph observers to determine
the behaviour of the protocols by random state exploration. The chosen MAC pro-
tocol is called Distributed Queue Dual Bus, a proposed standard protocol for MANs.

The starting point of our case swudy is the proposed DQDB standard draft [14],
which gives an informal specification of the protocol (written in English with scme
mathematical notations), and implicitly defined the required service properties of the
protocol. The transformation of the specification to an extended finite state machine
model coded in C++ (smurph specification) was done manually. The derived model
can exhibit the actual behaviour of the protocol when executed by the smurph run-

time system, and thus can be scrutinized.

81

When running the DQDB implementation in smurph, the timely question to ask is:
Are the service properties required by the standard met? With the complexity of the
protocol, we did not attempt to perform a full state-space exploration, neither did we
consider proving the properties. Instead, we have relied on random-state exploration
since it is always feasible.

Some service properties, such as deadlocks or livelocks, were not tested explicitly,
but their absence can be inferred from the standard statistics collected by smurph
during the simulation experiment. To illustrate:

e The growing global throughputs contributed by all stations implies absence of
livelocks.

e The growing local throughputs at each station implies no starvation.

e The non-empty event queues implies absence of deadlocks.

Nevertheless, observing throughputs is insufficient to confirm that the service
properties consent with global or local assertions are met. In order to ensure that
these service properties are fulfilled, we are required to use observers. These ob-
servers operate independently from protocol processes. In effect, protocol processes
are unaware of the presence of observers. Although observers cannot react to regular
events which activate protocol processes, they can perceive the state transitions of
the protocol processes. This forces a careful design of protoco! processes such that
their state transitions facilitate the observation of their expected behaviour. Since
observers are derived in a different format from protocol processes, they together
result in a self-checking code.

In our case study, four observers we. ¢ implenic d to meaitn. .. four infrinal
service specifications: slot delay, prio:ity traffics, request .ict and siot counters re-

spectively. Additional observers are implemented to test the consisiency of station

processes. Several obstacles were encounte. - uring the course of implementing the
observers. To overcome them, we proposc :cveral functions: the new priority wait,
suspend, resume and resetSPF to be ii«... porated into smurph. The new wait oper-
ation allows the users to schedule the order of awaited events for a restarting process
while the process is in a suspend state. The suspend commands prevents a traffic
pattern from generating messages while in network configuration phase, whereas the
resume operation reinstates the suspended traffic pattern. The resetSPF command
provides more precise performance measure by ignoring the statistical results during
the initialization phase.

Extensive testing indicates that the protocol is correctly implemented with re-
spect to the informal service specifications. Since the smurph implementation has
been tested using observers (such observation would be very difficult to build in
hardware), it may now serve as a detailed specification for hardware implementation
of the protocol. This process not only is cost effective but also yields significant
confidence in the design.

Based on our experience, we postulate that observers be allowed to perceive events
that protocol processes respond to. However, to maintain their passive nature, they
must not be permitted to initiate activities that can generate new events. With this
modification, the expressive power of observers will increase and also the convenience
of using them:.

Given that testing an implementation in the smurph environment is by random
state exploration, can the test results ensure the corractness of the entire nrotocaol
implementation? The degree to which the protocol has been validated is still unknown
because of the nature of random state exploration technique. However, it is certain

that the search space explored was beyond the ability of a human without machine

83

assistance. An experiment by West {38] to validate the OSI Session Layer using both
exhaustive and random state exploratiun techniques shows that as the complexity of
a protocol increases, the size of the state space is such that exhaustive exploration
becomes highly redundant, and a random exploration of a subset of the state space
becomes an effective method of detecting errors. We fully support this observation.
To conclude, smurph proved to be a valuable tool in modeling a low-level com-
munication protocol in a realistic executable environment. The test results obtained
from a simulation experiment can concede substantial confidence in the quality of

the implemented protocol even though they do not insinuate the correctness of all

pro.ocol states.

84

Bibliography

(1]

(2]

[3]

(4]

(5]

(6]

(7]

J. M. Ayache, P. Azema, and M. Diaz. Observer: a concept for on-line detection for
control errors in concurrent systems. 9th Int. Symp. FTC, Madison, pages 1-8, June
1979.

J. M. Ayache, R. Molva, and M. Diaz. Observer: A run-time checking tcol for LANs.
Proc. IFIP Symposium Protocol Specification, Testing, and Verification V, pages 495—
506, 1985.

M. J. Berard. Developing CSMA/CD Protocols with LANSF Observers. Master’s
thesis, University of Alberta, 1991.

S. Budkowski and P. Dembinski. An Introduction to Estelle: A Specification Language
for Distributed Systems. Computer Networks and ISDN Systems, pages 3-2314, 1987.

J. P. Courtijat. Estelle: A powerful dialect of Estelle for OSI Protocol Description. In
Protocol Specificalion, testing, and verification, 1988.

M. W. Garrett and S. Q. Li. A Study of Slot Reuse in Dual Bus Multiple Access
Networks. IEEFE Infocom, pages 617-629, 1990.

P. Gburzytski and P. Rudnicki. A better-than-Token protocol with bounded packet
delay time for Ethernet-type LAN’s. In Symposium on the Simulation of Computer
Networks, pages 110-117, Colorado Springs, Co., August 1987, IEEE.

P. Gburzynski and P. Rudnicki. Using time to synchronize a Token Ethernet. In Pro-
ceedings of CIPS Edmonton, pages 280-288. Canadian Information Processing Society,
November 1987.

85

[9]

[10]

[11]

(12]

(13]

[14]

[15)

(16]

[17)

(18]

[19]

P. Gburzynski and P. Rudnicki. A note on the performance of ENET II. IEEE Journal
on Selected Areas in Communications, 7:424-427, April 1989.

P. Gburzynski and P. Rudnicki. A virtual token protocol for bus networks; correctness
and performance. INFOR, 27:183-205, 1989.

P. Gburzynski and P. Rudnicki. The SMURPH Protocol Modeling Environment. Tech-
nical report, University of Alberta, 1992.

P. Gburzynski, ®. Rudnicki, and W. Dobosiewicz. An Ethernet-like CSMA/CD pro-
tocol for high speed bus LANs. IEEE INFOCOM, pages 238-245, 1990.

G. J. Holzmann. Design and Validation of Computer Protocols. Penrice Hall softwares
series, 1991.

IEEE. Project 802 - Local and Metropolitan Area Networks, Proposed Standard:

Distributed Queue Dual Bus (DQDB) Subnetwork of a Metropolitan Area Network
(MAN), October 1990.

J. O. Limb and C. Flores. Description of Fasnet - a unidirectional Local Area Com-

munication Networks. Bell Systems Technical Journal, 61(7):1413-1440, September
1982.

F.J. Lin, P.M. Chu, and M.T. Liu. Protocol Verification Using Reachability Analysis,

The State Explosion Problem and Relief Strategies. ACM SIGCOMM, 17(5):215--274,
1987.

R. J. Linn. Conformance Testing for OSI Protocols. Computer Networks and ISDN
Systemns, 18:203-219, 1990.

N. F. Maxemchuk and K. Sabnani. Probabilistic Verifcation of Communication Pro-

tocols. Proc. IFIP Symposium Protocol Specification, Testing, and Verification VI,
pages 307-320, 1987.

J. F. Mollenauer. Metropolitan Area Networks: A New Application for Fiber. Pho-
tonics Spectra, pages 159-161, March 1990.

86

(20]

[21]

[22]

(23]

[24]

(28]

[26]

[27]

(28]

[29]

[30]

R. M. Newman, Z. L. Budrikis, J. L. Hullet, D. Economou, F. M. Fozdar, and R. D.
Jeffery. QPSX: A Queued Packet and Synchronous Circuit Exchange. In Proc. 8th
Int. Conf. Comp. Comm., pages 288-293, Munich, 1986.

R. M. Newman, Z. L. Budrikis, and J. L. Hullett. The QPSX MAN. IFFE Commu-
nication Magazine, 26(4):20-28, April 1988.

R. M. Newman and J. L. Hullett. Distributed Queueing: A fast and efficient packet
access protocol for QPSX. In Proc. 8ih Int. Conf. Comp. Comm., pages 234-299,
Munich, 1986.

F. Orava. Formal Semantics of SDL specifications. In Proc. IFIP Symposium of Pro-
tocol Specification, Testing, and Verification VIII, 1988.

B. Pehrson. Protocol Verification for OSI. Computer Networks and ISDN Systems,
18:185-201, 1990.

D. Rayner. Towards standardized OSI conformance tests. Proc. IFIP Symposium
Protocol Specification, Testing, and Verification V, pages 441-460, 1985.

D. Rayner. OSI Conformance Testing. Computer Networks and ISDN Systems, 14:79—
98, 1987.

M. A. Rodrigues. Erasure Node: Performance Improvements for the IEEE 802.6 MAN.
IEEFE Infocomn, pages 636-643, 1990.

B. Sarikaya, G. v. Bochmann, and E. Cerny. A Test Design Methodology for Protocol
Testing. IEEE Trans. Communications, 13(4):389-395, 1987.

Y. N. Shen, F. Lombardi, and A. T. Dahbura. Protocol conformance testing using
multiple UIO sequences. In Protoco! Specification, Testing, and Verification, pages
131-143, 1989.

G. v. Bochmann. Usage of protocol development tools: The results of a survey. Proc.
IFIP Symposiumn Protocol Specification, Testing, and Verification VII, pages 139-161,
1987.

[31]

(32]

[33]

(34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

G. v. Bochmann. Protocol Specification for OSI. Computer Networks and ISDN Sys-
tems, 18:167-184, 1990.

G. v. Bochmann and M. Deslauriers. Combining ASN1 support with the LOTOS

languages. In Proc. IFIP Symposium on Protocol Specification, testing, and verification
X, 1989.

G. v. Bochmann and R. Dssouli. Error detection with multiple observers. Proc. IFIFP
Symposium Protocol Specification, Testing, and Verification V, pages 483-494, 1985.

G. v. Bochmann and R. Dssouli. Conformance Testing with Multiple Observers. Proc.

IFIP Symposium Protocol Specification, Testing, and Verification V, pages 217-229,
1986.

G. v. Bochmann and J. R. Zhao. Reduced Reachability Analysis of Communication
Protocols: A New Approach. Proc. IFIP Symposium Protocol Specification, Testing,
and Verification VI, pages 243-254, 1986.

B. Wang and D. Hutchinson. Protocol Testing Techniques. Computer Communica-
tions, 10(2):79-87, April 1987.

C. H. West. An automated technique of communications protocol validation. IFEE
Trasaction on communications, 26(8):1271-1275, 1978.

C. H. West. Protocol Validation by Random State Exploration. Proc. IF'IP Sympostum
Protocol Specification, Testing, and Vertfication VI, pages 233-242, 1986.

C. H. West and P. Zafiropulo. Automated validation of a communications protocol:
the CCITT X.21 recommendation. IBM Journal Res. Develop., 22(1), January 1978,

P. Zafiropulo. Protocol validation by Duologue Matrix analysis. IEEE Transaction on
communications, 26(8):1187-1194, 1978,

M. Zukerman and P. G. Potter. A Protocol for Eraser Node Implementation within
the DQDB Framework. Telecom Ausiralia Report, pages 1400-1404, 1990.

38

Appendix A
The Implementation ¢f DQDB

A.1 Unsynchronized Slot Generator

void Slotter::setup (int direction) {
S->SlHeader.TP = SLOT;
3->S1Header.BUSY = S->SlHeader.SLOT_TYPE = S->SlHeader.PSR = NO;
S->S1Headex.REQ_O = S->SlHeadexr.REQ_1 = S—->S1lHeader.REQ_2 = 0;
5->S1Header.ILength = S->SlHeader.TLength = S->SlHdrLngth;
S->S1Header.Sender = S->SlHeader.Receiver = HONE;
setFlag (S->SlHeader.Flags, PF_full);
it (direction == RIGHT)
MyPort = S—>Portlhi;
else
MyPort = S->PortRL;
};

Slotter::perform {

state StartSlot:
MyPort—>transmit (S->SlHeader, SlotDelay);

state SlotDelay:
HMyPort->stop ();

Sler_time = ((SlotLngth — 1) * ITUinBIT) + toss (max_time);
Timer->wait (Slot_time, StartSlot);
};

A.2 MAC Convergence Function Block

#define WAITEVENTS(wsO, wsl, ws2, ev0, evl, ev2, stO, sti, st2) {

89

vad->wait(ev0, at0);
vsi->wait(evl, sti);
us2->wait(ev2, st2);

}

#define MCF_PRI{tp, macb} {
MCFBuffer = &(macb)
if ('tp->getPacket (MCFBuffer,FPacLen,FPacLen,FPHdrLer))
proceed (WaitStates);
else
proceed (FDMPDU);
}

#define MCF_FSeg(msg, tag, Tx, ms) {
msg = TheHessage->Length + MCFBuffer->ILength;
MCFBuffer->COM_PDU_Hdr.BAsiza = MCP_Len + msg;
HCFButfer->COM_PDU_Hdr.BEtag = tag;
MCFBuffer->DM_Hdr.Seq _Num = Tx;
ms = FDMPDU;
}

#define MCF_DONE(tp, macb, Tx, qs, ms, tag, st) {
Tx = (Tx + 1) % 18;
qs NORW;
clearFlag(macb.Flags, PF_full);
if (ms == LDMPDU) {
tag = (tag + 1) % 256 ;
proceed (st);
} else {
KCFButfer = &mach;
if (ttp->getPacket (MCFBuffer ,Minl.en,CPaclen,CPHdrLen))
proceed (WaitStates);
} else
proceed (CDMPDU);

#

}
MCF_Block: :perform {

state WaitIMPDUs:

WAITEVENTS(U2TPattern, UlTPattern, UTPattern, ARRIVAL, ARRIVAL,
ARRIVAL, Prier2, Priori, Priox0);

state Prior2:
MCF_PRI(U2TPattern,S->MacBuf_2);

90

states Priori:
HCF_PRI(U1TPattern,S->MacBuf_1);

state Prior0:
MCF_PRI(UTPattern,S->MacBuf_0);

state FDMPDU: // Set COMMON PDU Header Info
it ('GETPACKET(MCFBuffer, Minl.en, FPaclen, FPHdrlLen))
proceed (WaitStates);
else {
MCFBuffer->COM_PDU_Hdr.RSVD = O;
switch (MCFBuffer->TP) {

case 0 : HCF_FSeg(Hsg_Len_O,BEtag_cntr_U.Tx_Seq,Hum_O,Hstat_O);
break;

case 1 : HCF_FSeg(Msg_Len_0,BEtag_cntr_0,Tx_Seq_Num_O0,Mstat_O0);
break;

case 2 : MCF_FSeg(Msg _Len_0,BEtag _cntr_0,Tx_Seq Num_O,Mstat_0);
break;

}

MCFBuffer->COM_PDU_Hdr

.MCP_Rdr.DA
HCFBuffer->COM_PDU_Hdr.

MCP_Hdr.SA

MCFBuffer->Receiver;
MCFBuffer->Sender;

MCFBuffer->COM_PDU_Hdr HCP_Hdr.PI = 1;
HCFBuffer->COM_PDU_Bdr .MCP_Hdr.Pad_Len = 0;
MCFBuffexr->COM_PDU_Hdr MCP_Hdr.QOS_Delay = 0;
MCFBuffer->COM_PDU_Hdr .MCP_Hdr.GQOS_Loss = 0;
MCFBuffer->COM_PDU_Hdr MCP_Hdr.CRC_32 = O;

MCFBuffer->COM_PDU_Hdx .MCP_Hdr.Hdr_Ext = 0
MCFBuffex->COM_PDU_Hdr .MCP_Hdr.Bridging =
MCFBuffer->DM_Trl.PayLoad_Len
MCFBuffer->ILength
MCFBuffer->DM_Trl.PayLoad_CRC
if (MCFBuffer->isLast ()) {
MCFBuffer->DM_Ffldr .¥ID = 0; // Single Sement Message
MCFBuffer->DM_\'dr .Seg_Type = SSH;
proceed (LDMPDU),;

0;

MCP_Len + PHdrLngth;
0;

o+ f

}

MCFBuffer~>DM_Hdr.MID = MCFBuffer->Sender+(MCFBuffer->TP*NumSt);
MCFBuffer->DM_Hdr.Seg_Type = BOM;

proceed (WaitAccess);

}// else

state CDMPDU: // Continuation of Message
// Set Derived PDU Trailer

91

svitch (MCFBuffer->TP) {

case 0 : Mstat_O = CDMPDU;
MCFBuffer—->DM_Hdr .Seq_Num
break;

case 1 : Mstat_1 = CDMPDU;
MCFBuffer—->DH_Hdr.Seq_HNum
break;

case 2 : Mstat_2 = CDHPDU;
MCFBuffer—>DM_Hdr.Seq_Num = Tx_Seq_HNum_2;
break;

Tx_Seq_Num_O;

Tx_Seq_Num_1;

u¥%c->DM_Trl.PayLoad_Len
s er->DM_Trl.PayLoad CRC
‘“bBuﬂ:er->DH Hdr NID = Wxfne
1f (MCFBuffer->isLast{)) i /) lia:¢
MCFBuffexr->DM_Hdr.Seg_ijpe = EON;
proceed (LDMPDU);

MCFBuffer->ILength;
o;

iy

>“eander+(MCFBuffer->TP*NumSt) ;
v for Last Seg.

}
MCFBuffer—->DM_Hdr.Seg_Type = COM;
proceed (WaitAccess);

state LDMPDU:
switch (MCFBuffer->TP) { // Last Segment
case O : Matat_O = LDMPDU;
MCFBuffer—>COM_PDU_Trl.BEtag = BEtag_cntr_0;
MCFBuffer->COM_PDU_Trl.Length = MCP_Len + Msg_Len_O;
break;
case 1 : HMstat_1 = LDMPDU;
MCFBuffer—>COM_PDU_Trl.BEtag = BEtag_cntr_1;
MCFBuffer—->COM_PDU_Trl.Length = MCF_Len + Msg _Len_1;
break;
case 2 : Mstat_2 = LDMPDU,;
MCFBuffer—~>COM_PDU_Trl.BEtag = BEtag_cntr_2;
MCFBuffer—>COM_PDU_Trl.Length = MCP_Len + Msg_Len_2;
break;
>
MCFBuffer->DM_Trl.PayLoad_Len += PHdrLngth ;
MCFBuffer->COM_PDU_Trl.PAD = O; // Set Common PDU Trailer
MCFButffer->COM_PDU_Tr1l.RSVD = 0;
proceed (WaitAccess); // IMPDU Length without Hdr & Trl

state WaitAccess:
S->VCI = MCF_VCI; // Pass VCI, PaylLoad Type and etc
S->PayiLoad_Type = 0; // to Queue Arbitrated Function Block

92

S->Segment _Priority = O;

S->Hdr_Check_Seq = 0;

if (MCFBuffer->Receiver >= MCFBuffer->Sender) {
switch (MCFBuffer->TP) {

case O

case 1

case 2

} // awitch
} else {

if (S->Mb.ACC_O_LR->put () == REJECTED)

print ("\nSignal Rejected at MCF - Bus_O_A");

Qstat_0 = FILL;
break;
if (S->Mb.ACC_1_LR->put () == REJECTED)

print ("\nSignal Rejected at HNCF - Bus_1_A");

Qstat_1 = FILL;
break;
it (S->Mb.ACC_2_LR->put () == REJECTED)

print ("\nSignal Rejected at MCF - Bus_2_A");

Qstat_2 = FILL;
break;

switch (MCFBuffer->TP) {

case O

case 1

case 2 :

it (S->Mb.ACC_O_RL~->put () == REJECTED)
print ("\nSignal Rejected at MCF - Bus_O_B");
Qstat_O = FILL;
break;
if (S->Mb.ACC_O_RL->put () == REJECTED)
print (\nSignal Rejected at MCF - Bus_1_B");
Qstat_1 = FILL;
break;
i? (S->Mb.ACC_2_RL->put () == REJECTED)
print ("\nSignal Rejected at MCF - Bus_2_B");
Qstat_2 = FILL;
break;

} // switch

} // else

proceed (WaitStates);

state WaitStates:

sum = Qstat_O + (Qstat_1 + Qstat_2;

switch (sum) {

case O : proceed (WaitIMPDDUs);
break;
case 1 : if (Qstat_0 == FILL)

WAITEVEETS(S->Mb.DONE_O, U2TPattern, UiTPattern, RECEIVE,
ARRIVAL, ARRIVAL, DoneO, Prior2, Priori);

if (Qstat_1 == FILL)

93

WAITEVENTS(S~>Hb.DONE_1, U2TPattern, UTPattern, RECEIVE,
ARRIVAL, ARRIVAL, Donel, Prior2, Prior0);
if (Qstat_1 == FILL) {
WAITEVENTS(S->Mb.DONE_2, UiTPattern, UTPattern, RECEIVE,
ARRIVAL, ARRIVAL, Done2, Prior1, Prior0);
break;
case 2 : if ((Qstat_O == FILL) && (Qstat_1 == FILL))
WAITEVENTS(S->Mb.DO¥E_O, S->Mb.DONE_1, U2TPattern,
RECEIVE, RECEIVE, ARRIVAL, DoneO, Donel, Prior2);
it ((Qstat_O0 == FILL) && (Qstat_2 == FILL))
WAITEVENTS(S->Hb.DONE_O, S->Mb.DONE_2, UiTPattern,
RECEIVE, RECEIVE, ARRIVAL, Done0O, Done2, Priori);
itz ({Qstat_1 == FILL) && (Qstat_2 == FILL))
WAITEVENTS(S->Mb.DONE_i, S~->Mb.DONE_2, UTPatterm,
RECEIVE, RECEIVE, ARRIVAL, Doneil, Done2, Priox0);
break;
case 3 : WAITEVENTS(S->Mb.DONE_O, S->Mb.DONE_1, S->Mb.DONE_2, RECEIVE,
RECEIVE, RECEIVE, DoneO, Donel, Done2);
break;
} // switch

state DoneO:

HCF_DOKE(UTPattern,S->MacBuf_0,Tx_Seq_num_O,Qstat_0,Mstat_oO,
BEtag_cntxr_O0,Prior0);

state Donel:
MCF_DONE(UiTPattern,S—>MacBuf_1,Tx_Seq_num_1,Qstat_1,Mstat_1,
BEtag_cntr_1,Prior1);

state Done2:

MCF_DONE(U2TPattern,S—->MacBuf_2,Tx_Seq_num_2,Qstat_2,Mstat_2,
BEtag_cntxr_2,Prior2);

¥,

A.3 Queued Arbitrated Portion

#define QAFEVENTS(ws0, wsl, ws2, ev, st0, stl, st2) {
ws0->wait(ev, 8t0);
wsi->wait(ev, st1);
ws2->wait(ev, st2);

}

94

#define ACC(gbuf, macb, donex, wt, accq, fin, pri) {

if (gbuf->isFull()) {
donex~>srase();
wt = donex;
proceed(WaitStates);

} else {
MCFBuffer = &machb;
QABuf = gbuf;
ACCESS_Q =accq;
DONE = fin;
Priority =pri;
procesad(MovetoXtmBuf);
}

}

QAP: : pertform {

state VaitSignals:

QAFEVENTS(ACC_2,ACC_1,ACC_O,RECEIVE,Access2,Accessl,Access0);

state AccessO:
QAFACC(QAButfer_O.S—>HacBu1_O.DOHE_X,O,vt_O,ACCESS_Q_O,
S->Hb.DONE_O,Priority_0);

state Accessi:
QAFACC(QABuf!er_l,S—>HacBuf_1,DOHE,X_l.vt_i.ACCESS_Q-i,
S->Kb.DONE_1,Priority_1);

state Access2:
QAFACC(QABuf!er_2,S->Hac8ut_2.DONE‘X_Z,wt_2,ACCESS_Q_2.
S->Mb.DONE_2,Priority_2);

state WaitStates:
QAFEVENTS(wt_2,wt_1i,wt_0,RECEIVE,Access2,Access1,Access0);

state MovetoXtmBuf:
MCFButfer~->VCI = S->VCI;
MCFBuffer->PaylLoad_Type = S->PayLoad_Type;
KCFBuffer->Seg_Prio S->Segment_Priority;
MCFBuffer->Hdx_Chk S->Hdr_Check_Seq;
*QABut = =NCFBuifer;
if (ACCESS_Q->put () == REJECTED)

print (QABuf->TP,"\nSignal Rejected at QAF - Access_Q :

switch (Priority) {

95

"),

case O

case 1

case 2

} // switch

: 9t _0 = ACC_O;

break;

: wt_1 = ACC_1;

if (SELF_PRI_R_1->put () == REJECTED)

print ("\nSignal Rejected at QAF - SELF_PRI_1");
break;

1 wt.2 = ACC_2;

if (SELF_PRI_R_1i->put () == REJECTED)
print ("\nSignal Rejected at QAF - SELF_PRI_1");
if (SELF_PRI_R_2->put () == REJECTED)

print ("\nSignal Rejected at QAF - SELF_PRI_2");
break;

it (DONE->put () == REJECTED)
print ("\nSignal Rejected at QAF - Done");
proceed (WaitStates);

};

A.4 Monitor

Monitor::pexrform {

state WaitSlot:

MyPort->wait (BOT, SlotCheck);

state SlotStatus:
if (ThePacket->TP == SLOT) {

*SlotPsr

= TheSlot;

proceed (SlotHeadsr);

}

else

proceed (SlotBody);

state SlotHeader :
if (1 (*SlotPtx)->BUSY) { // Slot is Unused
if (EMPTY_SLOT_2->put () == REJECTED)

print ("\nSignal Rejected at Mtr - Empty_Slot_2");
if (EMPTY_SLOT_1i->put () == REJECTED)

print ("\nSignal Rejected at Mtr - Empty_Slot_1');
it (EMPTY_SLOT_O->put () == REJECTED)
print ("\nSignal Rejected at Mtr - Empty_Slot_0");

}

switch ((*SlotPtr)->REQ_2) {

96

case O : if (REQ_NOT_SET_2->put () == REJECTED)
print ("\nSignal Rejected at Mtr - Req_Not_2");
break;
case 1 : if (REQ_SET_2->put () == REJECTED)
print ("\nSignal Rejected at Mtr - Req_Set_1");
if (PRI_REG_1->put () == REJECTED)
print ("\nSignal Rojected at Mtr - Pri_Req_1");
if (PRI_REQ_2->put () == REJECTED)
print ("\nSignal Rejected at Mtr - Pri_Req_2");
break;

switch ((*SlotPtr)->REQ_1) {
case O : if (REQ_NOT_SET_1->put () == REJECTED)
print ("\nSignal Rejected at Mtr - Req_Not_1");
break;
case 1 : if {(REQ_SET_i->put () == REJECTED)
print ("\nSignal Rejected at Mtr - Req_Set_1");

if {PRI_REQ_1i->put () == REJECTED)
print ("\nSignal Rejected at Mtr — Pri_Req_1");
break;

}
switch ((#SlotPtr)->REQ_0) {
case O : if (REQ_NOT_SET_O->put () == REJECTED)
print ("\nSignal Rejected at Mtr - Req_Not_C");
break;
case 1 : if (REQ_SET_O->put () == REJECTED)
print ("\nSignal Rejected at Mtr - Req_Set_9");
break;
}
if (REQ_SET_PSR->nonempty ()) {
REQ_SET_PSR->erase ();
(*SlotPtr)->PSR = YES ;
b
skiptio (WaitSlot);

state SlotBod - :
*PktPtr = TheSegment; // Signal Check Pkt Status
if (RX_BUS->put () == REJECTED)
print ("\nSignal Rejected at Mtr ~ Rx_Bus");
skipto (WaitSlot);
};

97

A.5 Distributed Queue State Machine
Dgsm::perform {

state WaitSignals:
REQ_SET->wait (RECEIVE, ClotReg);
ACCESS_Q->wait(RECEIVE, CountDown, 3);
PRI_REQ->wait (RECEIVE, IncCntrs);
SELF_PRI_R->wait (RECEIVE, IncCntrs);
EMPTY_SLOT->wait (RECEIVE, EmptySlot);

state SlotReq: // Update Request Cntr - Opposite
it (REQ_catr < Max_Cntr)
(REQ_cntx)++;
proceed (WaitSignals);

state CountDown:
it (Dgsm_State == COUNTDOWN)
excptn (“Error in Dgsm at CountDown);
CD_cntr = REQ_cntr;
REQ_cntxr = 0;
Dgsm_State = COUNTDOWN;
if (LOCAL_REQ->put () == REJECTED)
print ("\nSignal Rejected at Dgsm - Local_req");
proceed (WaitSignalsa),

state IncCantrs:
if (Dgsm_State == IDLE) {
it (REQ_cntr < Max_Cntr)
(REQ_cntr)++;
} else {
if (CD_cntr < Kax_Cntr)
(CD_cntr)++;
}
proceed (WaitSignals);

state EmptySlot:
if (Dgsm_State == IDLE) { // Ho Packet to sent
if (REQ_cntr > 0)
(REQ_cntr)——;
proceed (WaitSignals);
} else { // Waiting for Empty Slot
if (Cb_cntr > 0) {
(CD_entr)-—;

S8

proceed (WaitSignals);
} else
proceed (PermitXtm);
} // End else
procesed (WaitSignals);

state PermitXtm :
(#SlotPtr)->BUSY = YES; // Signal for Transmit
if (TX_BUS->put () == REJECTED)
print ("\nSignal Rejected at Dgqem — Tx_Bus");
Dgem_State = IDLE;
proceed (WaitSignals);
}:

A.6 Request Queue State Machine

Rgsm: :perform {
state WaitReqs:
LOCAL_REQ->wait (RECEIVE, LocalReq);
REQ_NOT_SET->wait (RECEIVE, CheckReq, 1);

state LocalReq:
if (REQ_Q_cntr < Max_Cntr)
{REQ_Q_catx)++; // Packest to be sant
proceed (WaitRegs);

state CheckReq:
if (REQ_Q_cntr > 0) // Request for Empty Slot
proceed (SetRegBit);
else
proceed (WaitReqgs);

state SetRegBit:
(REQ_Q_cntr)—-;
switch (Priority) {

case 0 : (+SlotPtr)->REQ_O = YES;
break;

case 1 : (*SlotPtr)->REQ_1 = YES;
break;

case 2 : (*SlotPtr)->REQ_2 = YES;
break;

}
proceed (WaitReqs);

99

};

A.7 Transmitter

Transmitter: :perform {

state WaitTransmit: // Waiting for Permission
TX_BUS->wait (RECEIVE, XPermitted);

state XPermitted: // End of Slot Header
MyPort->wait (EOT, XPacket);

state XPacket: // Transmit QA Segment
MyPort->transmit (*QABuffer, EPacket);

state EPacket:
MyPort->stop ();
QABuffer->release ()}; // Signal Segment sent
DONE_X->put ();
proceed (WaitTransmit);

};

A.8 Queued Arbitrated Receive Block

QAR: :perform {

state WaitPacket: // Received Packet
RX_BUS->wait (RECEIVE, CheckPktStatus);

state CheckPktStatus:
if ((=QABuffer)->VCI i= MCF_VCI) // Verified VCI

excptn ("Unrecognized Virtual Channel Identifier");
MID = (#QABuffer)->DM_Hdr.MID;

if (((*QABuffer)<>DM_Hdr.Seg_Type == BOM) ||
((*QABufs- >)->DM_Hdr .Seg_Type == SSM)) {
if ((*#*QABuffer)->COM_PDU_Hdr .MCP_Hdr.DA
== TheStation~->getId())
proceed (BOMPktArr);
else
proceed (WaitPacket);
} else { // Check COM Message
it ((S->MIDList[MID]) == MID) {
i? (S~>RcvPkt[MID]->signal () == REJECTED)

100

print ("\nSignal Rejected at QAF ");
it ((s»QABuffer)->DM_Hdr.Seg_Type == EOM) {
(S->MIDList [MID]) = -1;
(S—>RcvPkt[MID]) = NULL;
}
procesd (EndPacket);

} else {
it (((*QABuffer)->Receiver == TheStation->getId ())

print("\n Error —-> Missing BOM at QAF");
proceed (EndPacket);
} else
proceed (WaitPacket);
} // else
} // end COM & EOM

state BOMPktArr: // Update Msg Iden. List
if ((*QABuffer)->DM_Hdr.Seg _Type == BOM) {
if ((S->MIDList[MID]) == -1) {
(s->MIDList [MID]) = MID;
S->RcvPkt [MID] = create RSM{Direction);
}
} olsme
create RSM(Direction);
proceed (EndPacket);

state EndPacket:
MyPort->wait (EMP, PReceived);

state PReceived:
Client->receive (ThePacket, ThePort);
it (REQ_SET_PSR->put () == REJECTED)
print ("\nSignal Rejected at QAR");
proceed (WaitPacket);
};

A.9 Reassembly State Machine
RSHM: :perform {
state BOKPktArxrx:
BEtag = (*QABuffer)->COM_PDU_Hdr.BEtag:

Rx_Seq_Num = ((#QABuffer)->DM_Hdr.Seq_Num + 1) % 16;
Msg_Len = (*QABuffer)->DM_Trl.PayLoad _Len;

101

if ((*QABuffer)->DM_Hdr.Seg_Type == SSN)
proceed (Validation);
proceed (NoxtPktArr);

state NextPktArrxr:
TheProcess->wait (SIGEAL, CheckPktStatus);

state CheckPktStatus:

if (Rx _Seq_HRum != (*QABuffer)->DM_Hdr.Seq_Num) {
print (“\n Sequence Eumber out of Sequence');
proceed (Stop);

}

Msg_Len += (#QABuffer)->DM_Trl.PayLoad_Len;

Rx_Seq_Num = (Rx_Seq_Num + 1) % 16;

if (((*QABuffer)->DM_Hdr.Seg _Type == SSM) ||

((*QABuffer)->DM_Hdr.Seg_Type == EOM))

proceed (Validation);

else
proceed (NextPktArr);

state Validation: // Verified the Message recv
Msg_Len -= (PHdrLngth * 2); // Minus COMMON PDU Hdr & Trl
// 8 bytes = 32 = 2
if (Msg_Len != (*QABuffer)->COM_PDU_Trl.Length)
print ("\n Message Length does not Match ");

iz (BEtag t= (*QABuffer)->COM_PDU_Trl.BEtag)
print {"\n BEtag does not Match ")};
proceed (Stop);

state Stop:

terminate ();

};

102

Appendix B

The Implementation of DQDB
Observers

B.1 Slot Delay

#define Dq ((Dgsm *)TheProcess)

observer SD_LR {

long see_request, n_slotsi2], slot_delay[2];

int stat_id, pivot, CD_cntr;

void setup(int);

void resetlmt();

states {Resume, SetCntxr, PriReq, PassingSlots, Verifyl};
perform;

};

void SD_LR::setup (int id) {
stat_id = id;
see_request = (isSegmentl.ength)/(long) TotalSlotTime;
for (int i=0; i<2 ; i++) {
n_slots[i] = 0;
slot_delay[i] =0;
)
CD_cntx = pivot = 0;
};

void SD_LR::resetlmt{) {
pivot = Dq->Priority;
CD_cntx = (»(Dq->CDM_cntr));
it (pivot == 0)

103

CD_cntr += (2+stat_ids*2);
if (pivot == 1)
CD_cntr += (1+stat_id);
n_slots{pivot] = 0;
slot_delay[pivot] = CD_cntr+((see_request+1)*2);

SD_LR::perform {
state Resume :

inspect(stat_id, Dqsm, DqsmA, CountDown, SetCntr);
inspect(stat_id, Dgsm, DqsmA, IncCntrs, PriReq);

inspect(stat_id, Monitor, MtrA, Slotheader, PassingSlots);

inspect(stat_id, Transmitter, XtmA, EPacket, Verify);

state SetCntrxr :
resetlmt();
proceed (Resume);

state PriReq :
if (Dgq->Dgsm_State == COUNTDOWN)
(slot_delay[Dq->Priorityl)++;
proceed (Resume);

state PassingSlots :
(n_slots[0])++;
(n_slots[1])++;
(n_slots[2])++;
proceed (Resume);

state Verify :

pivot = ((Transmitter *)TheProcess)->Prioritjy+i;

i? (n_slots[pviot] > slot_delay[pivot]) {
print (stat_id, “\nThe LR Observer at : ");
print ("\nSlot Delay exceed permitted limit\n");

}

proceed (Resume);

I

B.2 Queued Arbitrated Portion Observer

#define qap ((QAP *)TheProcess)
#detfine MCF ((MCF_Block *)TheProcess)->MCFBuffer

104

observer QAP_Obs {
QASegnent *BufPtr(6], *Buf;

int level;

void setup(int);

states {Resume, AccBus, Verify};
perform;

};

void QAP_Obs::setup (int id) {
«tat_id = id;
for (i = 0; i<6; i- ..,
BufPtr(i] = WULL;
level = O;
};

QAP_Obs: :perform {

state Resume :
inspsct(stat_id, MCF_Block, ANY, WaitAccess, AccBus);
inapect(stat_id, QAP, ARY, MovetoXtmBuf, Verify);

state AccBus
it (MCF->Receiver >= MCF->Sender)
RnfPtr (MCF->TP] = MCF;
else
BufPtr L (MCF->TP)+3] = MCF;
proceed (Resuma);

state Verify :

if (qap->QABuf->VCI !'= ((Node *)TheStation)->VCI)
print("\n Virtual Channel Identifier is incorrect");

level=C

it (qap->Direction == LEFT)
level=3;

Buf = BufPtr[(qap->QABuf->TP)+level];

BufPtr[(qap->QABuf->TP)+levell = NULL;

if ((Buf->DM_Hdr .MID !'= qap->QABuf->DM_Hdr.MID) ||
(Buf->DM_Hdr.Seg_Type '= qap~>QABuf->DM_Hdr.Seg_Type) ||
(But->DM_Hdr.Seq_HNum '= qap->QABuf~>DM_Hdr.Seq_Num))
print ("\n Wrong QASegment at QAT ");

proceed (Resume);

165

B.3 DQSM Observer

#define mtr ((Monitor =*)TheProcess)
#define Stn ((Node *)TheStation)

observer Dqsm_0Obs {
int REQ_cntr{8], CD_cntrl6], stat_id,
level, at, Dg_State_O, Dg_State_1;
void setup(int);
void UpdateCntrs(int, int);
void IncCntrs(int, int, int):
void DecCntrs(int, int);
states {Resume, ACFStatus, SelfReq, SetCD, Verify};
perform;

¥;

void Dgsm_0bs::setup (int id) {
stat_id = id;
for {int j=0; j < 6; j++) {
REQ_cntx([j] = 0;
CD_cntr[j]l = 0;
}
level = Dq_State_O = Dq_State_1 = 0;
3
void Dqsm_Obs: :UpdateCntrs (int lev, int Dq_St) {
if (Dq_St == IDLE)
(REQ_cntr{lev])++;
else
(CD_cntr{levl)++;
};
void Dgsm_0Obs::IncCntrs (int lev, int Dq_O, int Dq_1) {
it ((*(mtr->SlotPtr))->REQ_O)
(REQ_cntr[lev])++;
if ((#(mtr->SlotPtr))->REQ_1) {
(REQ_cntr[1+lev])++;
UpdateCntrs(lev, Dg_0);
}
it ((*(mtr->SlotPtr))->REQ_2) {
(REQ_cntr[2+1lev])++;
UpdateCntra(lev, Dq_0);
UpdateCntrs((lev+1), Dq_1);
}
};
void Dgsm_0Obs::DecCntrs (int lev, int Dq_St) {

106

it (Dg_St == IDLE) {
i? (REQ_cntr{lev] > 0)
(REQ_cntrilev])--;
} else {
if {CD_cntr([levl > 0)
{CD_cntr[lev])——;
h]
}:

Dgqam_Obs: perform {

state Rasume :
inspect(staz_id, Monitor, ARY, SlotHeader, ACFStatus);
inspnsenistat_id, QAP, ANY, MovetoXtmBuf, SelfReq);
insgset.{stat_id, Dgsm, ANY, CountDown, SetCD);
inspoast(ztat_id, Dqsm, ANY, EmptySlot, Verify);

state ACFStatus :
if (mtr->Directiomn == LEFT) {
if ((=(mtr~>SlotPtr))->BUSY == NO) {
DecCntrs (0, Stn->Dgsm_O_RL);
DecCntrs(1, Stn->Dgsm_1_RL);
DecCntrs(2, Stn->Dqsm_2_RL);
}
IncCntrs(3, Stn->Dgsm_O_LR, Stn->Dgsm_1_LR);
} else {
if ((#(mtr->SlotPtx))->BUSY == N0O) {
DecCntrs(3, Stn->Dgsm_O_LR);
DecCntrs (4, Stn->Dgsm_1_LR);
DecCntrs(5, Stn->Dgsm_2_LR);
}
IncCntrs(0, Stn->Dgqsm_O_RL, Stn~>Dgsm_1_RL);
}

proceed (Resume);

state SelfReq :
if (Qf->Direction == LEFT) {

level = O;

Dgq_State_0 = Stn->Dqgsm_O_RL;

Dq_State_1 = Stn->Dgsm_1i_RL;
} else {

level = 3;

Dq_State_0 = Stn->Dgsm_O_LR;

Dg_State_1 = Stn->Dgsm_1_LR;

107

switch (Qf->Priority) {
case 0 : break;
case 1 : UpdateCntrs(level, Dq_State_0);
break;
case 2 : UpdateCntrs(level, Dq_State_0);
UpdateCntrs((i+level), Dq_State_1);
break;
}

proceed (Resume);

state SetCD :
level = Dq->Priority;
if (Dg->Direction == RIGHT)
level+=3;
CD_cntr[level] = REQ_cntr{level];
REQ_cntr[levell = O;
proceed (Resumse);

state Verify :

level = Dg->Priority;

if (Dg->Direction == RIGHT)
level+=3;

if ((REQ_cntrllevell-(=*(Dg->REQM_cntr))) > 1)
print(stat_id,”\n Exror --> REQM_cntr in Dqsm");

if ((CD_cntr([level]-(#(Dgq->CDM_cntr))) > 1)
print(stat_id,"\n Error --> CD_cntr in Dgsm");

procesd (Resume);

};

B.4 MCF Observer

#define McfB (((MCF_Block #*)TheProcess)—->MCFBuffer)

observer MCF_Obs {

int cntrs (3] (4], MCP_Len, stat_id;
void setup(int);

void CheckStatus();

void UpDateTx(int, int);

void CheckBEtag(int, int, int);
states {Resume, FPacket, Verifyl}:
perform;

108

void MCF_QObs::setup (int id) {
stat_id = id;
for (j = 0; j < 3; j++)
for (k = 0; Kk < 4; Kk++)
cntrsl[jl[k] = O;
HCP_Len = 160;
};
void MCF_0Obs::UpDateTx (int lev, int Tx_catr) {
cntrs(lev] [1] += McfB->ILength;
if (cntrs{lev][3] != Tx_cntr)
print(lev, "\nTx Seq Cntr is out of order");
cntrs[lev]} 3] = (cntrs[lev](3]1+1)%16;
};
void MCF_Obs::CheckBEtag (int lev, int Msg_Len, int BEtag_cntr) {
cntrs[lev] [0] = Hsg_Len;
if (cntrs{lev][2] !'= BEtag_cntr)
print(lev,"\n BEtag Cntr is incorrect");
};
void MCF_0Obs: :CheckStatus () {
it (McfB->DM_Hdr.MID != (McfB->Sender+{(McfB->TP#NumSt)))
print ("\nMID is incorrect");
switch (McfB->TP) {
case O : UpDateTx(0, MCF->Tx_Seq_Num_0);

break;

case 1 : UpDateTx(1, MCF->Tx_Seq_Num_1);
break;

case 2 : UpDateTx(2, MCF->Tx_Seq_Num_2);
break;

} // switch
};

MCF_0bs: :perform {

state Resume
inspect(stat_id, MCF_Block, ANY, FDMPDU, FPacket);
inspect{stat_id, MCF_Block, ANY, WaitAccess, Verify);

state FPacket :
switch (McfB->TP) {
case 0 : CheckBEtag(0, Mcf->Msg_Len_0, Mcf->BEtag_cntr 0);
break;
case 1 : CheckBEtag(1, Mcf->Msg_Len_1, Mcf->BEtag_cntr_1);
break;
case 2 : CheckBEtag(2, Mcf->Msg_Len_2, Mcf->BEtag_cntr_2);

109

};

break;
}

proceed (Resume);

state Verify :
switch (McfB->DM_Hdr.Seg_ Type) {
case BOM,
SSM : if (McfB->COM_PDU_Hdr .MCP_Hdyx.DA '= McfB->Receiver)
print ("\n Receiver Address is incorrect");
it (McfB->COM_PDU_Hdr .MCP_Hdr.SA != McfB->Sender)
print ("\n Sender Address is incorrect");
if (MctB->COM_PDU_Hdr .MCP_Hdr.PI !'= 1)
print ("\n Protocol Identifier is incorrect’);
CheckStatus();
break;
case COXY : CheckStatus();
break;
case EOM : CheckStatus();
it (cntrs[MctfB~>TP] [2] != McfB->COM_PDU_Trl.BEtag)
print("\n Error --> Trl BEtag unmatch");
if (cntxs[McfB->TP1[0] != cntrs[McfB->TP1[1])
print("\n Error —--> Yassage unequal length");
cntxrs [McfB->TP] [0] += MCP_Len;
if (entrs{McfB~>TP][0] !'= McfB->COM_PDU_Trl.Length)
cntrs[Mc¥B->TP] [2] (cntrs[MctB->TP1 [2]+1)%2586;
cntrs [HctB->TP] [0] cntrs {McfB->TPJL[1] = 0;
break;

} // switch
proceed (Resume);

B.5 RQSM Observer

#define Req ((Rgsm *)TheProcess)

observer RQSM_0bs {

int Req_Q[81, ReqBit[6], stat_id, level;

void setup{int);

void SetLeveL(int, int, int, int *);

states {Resume, IncCntr, CheckCntr, CheckReq, Verifyl};
perform;

110

void RQSH_Obs: :setup (int id) {

¥

stat_id = id;

for (j=0; j < 8; j++) {
Req_Q[jl1 = 0;
ReqBit{j] YES;

}
level = Q;

void RQSM_Obs::SetLeveL (int Dir, int Pri, int Side, int lev)

};

lev = Pri;
if (Dir == Side)
lev+=3;

RQSM_Obs: :perform {

state Resume :
inspect(stat_id, Dgsm, ANY, CountDown, IncCntr);
inspect(stat_id, Rqsm, ANY, LocalReq, CheckCntr);
inspect(stat_id, Momitor, ARY, SlotHeader, CheckReq) ;
inspect(stat_id, Rqsm, ANY, SetRegBit, Verify);

state IncCntr :
SstLeveL(Dg->Direction, bg->Priority, LEFT, level);
(Req_Qllevell)++;
proceed (Resume);

state CompareREQ :
SetLeveL(Reg->Direction, Req->Priority, RIGHT, &level);
if (Req_Q[levell] != (*(Reg->REQM_Q_cntr)))
print(stat_id,"\nREQM_Q_cntr in STATE LocalReq at
proceed (Resume);

state ReqBitStatus :
SetLevelL(mtr~>Direction, O, RIGHT, level);
if ((#(mtr->SlotPtr))->REQ_0 == KO)
RegBit[level+0] = NO;

it ((¢(mtr->SlotPtr))->REQ_1 == WD)
ReqBit[lavel+i] = HO;
if ((*(mtr->SlotPtr))->REQ_2 == HNO)

ReqBit [level+2] = KO;
proceed (Resume);

state Verify :
SetLeveL(Req->Direction, Req—>Prioxrity, RIGET, level);

111

N

(Req_Qllevell)-—;

if (Req_Ql[levell] != (*(Req—>REQM_{Q_cntr)))
print(stat_id,"\nREQK_Q_cntr in STATE SetReqBit at : ");

if (RegBit[level] != ¥0O) {
print(“\n Error —-> ReqBit has been set");
ReqBit[levell = YES;

3

proceed (Resume);

};

B.6 Queued Arbitrated Receive Observer

#define Qarb (*((QAF_Recv_Block *)TheProcess)->QABuffer)
#define sg ((QASegment *)ThePacket)

observer QAR_Obs {
QASegment *BufPtr[NStations*3], *Buf;

int MList[NStations*3], stat_id, MID;

void setup(int);

states {Resume, BusySlot, PktArr, FPacket, Verifyl};
perform;

};
void QAR_Obs::setup (int id) {
stat_id = id;
for (j = 0; j<(NStations#*3); j++) {
BurPtr[jl = NULL;
MList[j] = -1;
}
};

QAR_Obs : :perform {

state Resume :
inaspect(stat_id, Monitor, ANY, SlotBedy, BusySlot);
inspect(stat_id, QAR, ANY, CheckPktStatus, PktArr);
inspect(stat_id, QAR, ANY, BOMPktArr, FPacket);
inspect(stat_id, QAR, ANY, EndPacket, Verify);

state BusySlot :
MID = sg->DM_HAr.MID;
BufPtr[MID] = sg;
it ((sg->DM_Hdr.Seg_Type == BOM) &&k
{sg->COM_PDU_Hdr .MCP_Hdr.DA == stat_id) &

112

((Stn->HIDList[HID] !'= KID))
HList[MID] = MID;
proceed (Resume);

state PktArr :
MID = Qarb->DM_Hdr.MID;
Buf = BurPtr(MID];
if ((Buf->VCI != Qarb->VCI) ||
(Buf->DM_Hdr .MID != Qarb->DM_Hdr.MID) |!
{(Buf->DH_Hdr .Seg_Type (= Qarb->DH_Bdr.Seg_Type))
print (“\n Error --> QASeg at QAR in STATE CheckStatus");
3f ((MList[MID] == MID) && (Buf->DM_Hdr.Seg Type == EQOM))
MList[MID]=-1;
proceed (Resume);

state FPacket :
MID = Qarb->DM_Hdr.MID;
if (MList {MID] !'= Stn->MIDList[MID])
print ("\n Error —--> BOM at QAR STATE FPacket");
proceed (Resume);

state Verify :
if (Qarb->Receiver '= TheStation->getId ())
print ("\n Error --> in QAR at STATE EndPacket, wrong DA");
rroceed (Resume);

};

B.7 Transmitter Observer

%detine Xtm ((Transmitter *)TheProcess)

observer Xmitter_Obs {
enum {HOE, AFT};
int stat_id, level, DqStatus(6];
void setup (int);
states {Resume, EnterCD, Verifyl};
perform;

};

void Xmitter_Obs::setup (int id) {
stat_id = id;
for (int j=0; j<6; j++)
DqStatus([j] = NON;

113

level = O;
}:

Xmitter_0Obs: :perform {

state Resume :
inspect(stat_id, Dgsm, ANY, CountDown, EntexCD);
inspect(stat_id, Transmitter, ANY, WaitTransmit, Verify);

state EnterCD :
level = Dg->Priority;
if (Dg~>Direction == RIGHT)
level+=3;
DgStatus(level] = AFT;
procesd (Resume);

state Verify :
level = O;
if (Xtm->QABuffer->TP != Xtm->Priority)
print("\n QASegment in wrong Xtm buffer.");
if (Xtm->Direction == RIGHT) {
if (Xtm->GQABuffer->Sconder >= Xtm->QABuffer->Receiver)
print(“\n QASegment should be Xtm on Bus B");
level += 3;
} else {
if (Xtm->QABuffer->Sender < Xtm->QABuffer—>Receiver)
print("\n QASegment should be Xtm on Bus A");
}
switch (Xtm->Priority) {
case 0 : if (DqStatus{level+2] == AFT)
print("\n Error --—» Xtm Pri 0 > Pri 2");
if (DqStatus[level+1] == AFT)
print("\n Error --> Xtm Pri 0 > Pri 1");
DqStatus[levell = HON;
break;
case 1 : if (DqStatus[level+2] == AFT)
print(“\n Error --> Xtm Pri 1 > Pri 2");
DqStatus{level+1] = NON;
break;
case 2 : DqStatus([level+2] = NOK;
break;
}
proceed (Resume);

};

114

