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Abstract

Current state-of-the-art algorithms for trick-taking card games use a process

called determinization. Determinization is a technique that allows the appli-

cation of perfect information state evaluation algorithms to imperfect infor-

mation games. It involves a two-step process in which a perfect information

variant of the game state is sampled from the player’s information set and

then solved using an algorithm like minimax search.

The majority of recent work related to determinization has focused on

addressing some of the theoretical flaws tied to using perfect information tech-

niques to play imperfect information games. However, these works have largely

neglected another important part of the equation: inference. Inference involves

estimating the state probability distribution of an information set using state

information like past opponent actions. It lets players of trick-taking card

games predict which cards opponents are holding based on the cards that

have been played so far. Inference is crucial for the performance of algorithms

that use determinization because it allows states to be sampled according to

a better estimate of the true state probability distribution in the information

set. This results in improved estimates for action values.

In this thesis, I investigate inference in trick-taking card games. In par-

ticular, I present a technique that uses past actions to predict hidden state

information like the locations of individual cards. I show that deep learning can

be useful for handling the larger input feature spaces associated with a richer

state representation, and lastly, I explain how to combine these predictions to
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estimate the probability distribution of states within an information set and

improve determinized search techniques — leading to a new state-of-the-art in

computer Skat.
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Chapter 1

Introduction

The long term goal of many artificial intelligence (AI) researchers is to develop

agents that can seamlessly interact with and solve general problems in the

real world. The real world is complex, so this is a lofty ambition that modern

algorithms seem distant from achieving. Nevertheless, historical progress has

been remarkable. AI researchers have advanced the field by developing new

techniques that enable intelligent decision-making in successively more difficult

tasks. Many have used games as an application domain because games provide

a controlled environment for studying decision-making.

As computer agents successfully play more complicated games, their un-

derlying algorithms can be applied to more complicated practical problems.

For instance, Monte Carlo Tree Search [Bro+12] (MCTS) was originally devel-

oped to play Go, but has since been applied by the European Space Agency to

develop a state-of-the-art algorithm for planning the interplanetary trajecto-

ries of spacecraft [HI15]. In another recent example, OpenAI applied Proximal

Policy Optimization [Sch+17] (PPO) to the popular multiplayer game DOTA

2. Later, they found that the same algorithm could be used to control robotic

hands with unprecedented dexterity [Ope18].

Historically, prominent examples of success for AI in games has mostly

been achieved in the two-player perfect information domain — where all game

state information is visible to all players. Algorithms are able to perform for-

ward simulation to evaluate potential moves while considering every response

available to the opponent; in small games they can simulate all the way to the
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end of the game while calculating all possible outcomes for each of their avail-

able actions. The main challenge in these domains is developing algorithms

that can play larger games with many possible actions per decision point and

many decision points before the outcome is decided. Landmark achievements

have led to algorithms able to play successively larger games at a high level.

These include the solving of Checkers [Sch+07] and superhuman play in Chess

[CHH02], Backgammon [Tes95], Othello [Bur97], and Go [Sil+16; Sil+17b]. In

a recent monumental success, the AlphaGo Zero algorithm [Sil+17b] surpassed

the human level of play in Go, Chess, and Shogi through self-play without any

human knowledge. Go is considered the most difficult two-player perfect in-

formation game for AI, and AlphaGo Zero’s performance has led many to

proclaim AI supremacy in perfect information games.

Imperfect information games are more complex than perfect information

games because players must account for the probability distribution over op-

ponents’ private information. For instance, in most card games, which are

very popular among human players, players must consider the private cards

of their opponents to make good decisions. As such, different algorithms are

necessary for good performance in these games.

Many widely-used techniques for imperfect information games, like Coun-

terfactual Regret Minimization [Zin+08] in poker, look to solve the game in

its entirety before real play. This works well for smaller variants of poker,

but the computation becomes intractable in larger ones. In larger games, the

standard approach is to construct an abstraction that reduces the size of the

game and reason about decision-making on the smaller version. This can lead

to situations where performance in the original game is sacrificed to reduce

the size and complexity of the abstracted version of the game [Zin+08].

In trick-taking card games like Contract Bridge or Skat, good abstractions

are difficult to construct. Grouping certain cards together, for instance, is

challenging because the outcome of an action often depends on the precise

holdings of each player. Current state-of-the-art algorithms instead implement

a two-step process called determinization, which samples a perfect information

version of the state and then solves for, or estimates, the best action as if
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playing a perfect information game. This approach has proven effective, but

there are limitations [Lon+10]. First, the best action in the perfect information

variant of the game is not guaranteed to be the best in the real game. Most

recent prior work in trick-taking card games has focused on this problem, but

there is another important issue that must be accounted for. That is, the

perfect information states that are consistent with the player’s knowledge of

the state are not all equally likely, given what has happened in the game so

far. Opponent actions can reveal additional information about the cards in

their hand; players perform inference by adjusting their beliefs about opponent

cards based on this information. Good human players perform inference to gain

an edge on their opponents, but current state-of-the-art computer players only

partially consider it.

In this thesis, I investigate inference in trick-taking card games. I show that

past actions can be used to predict fine-grained information like the locations

of individual cards. Previous table-based methods for inference use limited

representations of the full state. Incorporating action history into the state

representation can be beneficial for card location prediction but leads to a large

input feature space. However, I show how to learn an abstraction of this large

feature space that leads to better card location predictions using deep neural

networks. Finally, I show that combining card location predictions leads to an

estimate of the likelihood of each determinized state. These estimates can be

used to improve the playing strength of current state-of-the-art determinized

search techniques in the domain of Skat.

The rest of this thesis is organized as follows. First, the background re-

quired to understand this work is provided, including notations, definitions,

and the rules of Skat. Next, previous work on imperfect information games,

and specifically trick-taking card games, is explained. From there, I describe

a novel technique for predicting the locations of individual cards in Skat that

leverages action history from the cardplay phase. This is followed by a section

explaining how to use card location probabilities to perform state inference

and make better decisions in existing algorithms for trick-taking card games.

In both sections, I provide experimental results that show the effectiveness of

3



these contributions in Skat. Next, I propose and test extensions to individual

card location prediction. I finish with conclusions and ideas for future research.
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Chapter 2

Background

This chapter provides the background material necessary to understand the

contents of the rest of this thesis. It combines terminology from game theory

and heuristic search. It also introduces trick-taking card games and explains

Skat — the principal application domain of this work.

2.1 Imperfect Information Games

Perfect information games like Tic-Tac-Toe, Chess, or Go are games in which

the precise state is visible to all players. This means that a player can choose

actions specific to each possible node in the game tree.

As an example, Figure 2.1 shows the game tree for The Sharing Game. The

game involves 2 players deciding how they will split 2 dollars. Both players

want to end the game with the largest share possible. Player 1 gets to choose

the first action and must offer Player 2 a deal. The deal can be one of three

P1

P2

(2, 0)

Accept

(0, 0)

Reject

Keep

P2

(1, 1)

Accept

(0, 0)

Reject

Share
P2

(0, 2)

Accept

(0, 0)

Reject

Give

Figure 2.1: Game tree for The Sharing Game. Player 2 knows the exact state
of the game and can therefore specify an action at every node.
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options: Player 1 gets to Keep both dollars, the players Share the dollars

evenly, or Player 1 can Give both dollars to Player 2. Player 2 can then look

at the deal and decide whether or not to Accept or Reject it; Player 2 is free

to choose a different action depending on which deal they are offered.

Decision making in imperfect information games is fundamentally different

than in perfect information games due to the presence of information sets:

sets of states that are indistinguishable to the player to move. Players must

decide how to act in information sets rather than cherry-picking actions in

individual states. Simple simultaneous move games like Rock-Paper-Scissors

are considered imperfect information because players are unable to “see” the

move of their opponent before taking an action. Figure 2.2 shows the game

tree for Rock-Paper-Scissors : a simple game with a single decision point for

each player, where both players can choose to play either R, P , or S. Player 1

starts by choosing an action, but that action is not observed by Player 2. This

means that Player 2’s strategy cannot be different for any of the 3 possible

states that form the information set in the game tree. In other words, Player

2 cannot choose R every time Player 1 chooses S and S every time Player 1

chooses P . However, Player 2 must consider the result of taking an action in

any of the possible states in the information set to build a good strategy.

P1

(0, 0)

R

(−1, 1)

P

(1,−1)

S

R

(1,−1)

R

(0, 0)

P

(−1, 1)

S

P

(−1, 1)

R

(1,−1)

P

(0, 0)

S

S

P2

Figure 2.2: Game tree for Rock-Paper-Scissors. Player 2 cannot distinguish
between states inside the information set (dotted rectangle) and must play the
same strategy for all 3 states.
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2.2 Trick-Taking Card Games

Trick-taking card games are a special class of imperfect information games.

They are played in various formats around the world, and many variants have

annual international tournaments for professional players. Some of the many

examples are Skat, Contract Bridge, Hearts, and Spades.

After a random deal, play typically starts with a bidding phase in which

players compete to see which of them will declare the scoring and winning

conditions for that game. Cardplay follows bidding and consists of several

tricks in which players each play a card in clockwise order. After each player

has played a card, the trick is completed and belongs to the player who played

the highest ranked card according to game-specific rules. The trick winner

typically “leads” the next trick by playing the first card. In many trick-taking

card games, players are forced to “follow suit” by playing a card in the same

suit as the trick leader if they have one — otherwise any card can be played.

Several properties of trick-taking card games are interesting to AI re-

searchers. Many are played in teams, and successful agents are required to

cooperate with another player. Players reveal hidden information with every

move. This provides opportunities for all players; they can try to infer the

remaining cards of the player who made the move. Players can be forced to

play specific cards in certain situations, and other players must identify when

this is the case. Players can also choose to play moves that will force other

players to reveal information about their hands with their follow-up actions.

Furthermore, a player can deceive opponents by taking actions that cause the

opponent to hold incorrect beliefs about the card distribution. A bit like bluff-

ing in poker, this can change which actions the opponent takes in later tricks

— possibly allowing the player to win from an otherwise losing position.

2.2.1 Skat

Though particularly popular in Germany, Skat is a 3-player trick-taking card

game that is played competitively in clubs and tournaments worldwide. Each

player is dealt 10 cards from a 32-card deck, and the remaining two (called
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the skat) are dealt face down. Players earn points by winning games, which

can be broken down into two main phases: bidding and cardplay.

In the bidding phase, players make successively higher bids to see who will

become the soloist for the game. Playing as the soloist means playing against

the other two players during cardplay and carrying the risk of losing double

the amount of possible points gained by a win. The soloist has the advantage

of being able to pick up the skat and discard 2 of their 12 cards. The soloist

then declares which of the possible game types will be played. These are

summarized in Table 2.1. Standard rules include suit games (where the 4 jacks

and a suit chosen by the soloist form the trump suit), grands (where only the

4 jacks are trump), and nulls (where there are no trump cards and the soloist

must lose every trick to win). In suit and grand games, players get points for

winning tricks containing certain cards during the cardplay phase. Aces, tens,

kings, queens, and jacks are worth 11, 10, 4, 3, and 2 card points respectively.

Unless otherwise stated, the soloist must get 61 out of the possible 120 card

points to win suit or grand games.

The score gained or lost by the soloist depends on the game’s base value

and a variety of multipliers. Jacks are ranked by suit in the following order:

clubs, spades, hearts, diamonds. Base values are multiplied by k + 1, where

k is determined by the player having (or not having) the top k jacks in their

hand. Additional multipliers can be gained by declaring one or more of the

game type modifiers listed in Table 2.2. The game value (base × multiplier) is

also the highest possible bid the soloist can have made without automatically

losing.

Cardplay consists of 10 tricks in which the trick leader (either the player

to the left of the dealer in the first trick or the player who won the previous

trick) plays the first card. Play continues clockwise around the table until each

player has played. Players may not pass and must play a card from the same

suit as the leader if they can — otherwise the player is “void” in that suit

and any card can be played. The winner of the trick is the player who played

the highest card in the led suit or the highest trump card. Play continues

until there are no cards remaining, at which point the outcome of the game is

8



Table 2.1: Skat game type descriptions.

Type Value Trumps Win Condition

Diamonds 9 Jacks and Diamonds ≥ 61 card points

Hearts 10 Jacks and Hearts ≥ 61 card points

Spades 11 Jacks and Spades ≥ 61 card points

Clubs 12 Jacks and Clubs ≥ 61 card points

Grand 24 Jacks ≥ 61 card points

Null 23 No trump losing all tricks

Table 2.2: Skat game type modifiers.

Modifier Description

Schneider ≥90 card points for soloist

Schwarz soloist wins all tricks

Schneider Announced soloist loses if card points < 90

Schwarz Announced soloist loses if opponents win a trick

Hand soloist does not pick up the skat

Ouvert soloist plays with hand exposed

decided. Players typically play “lists” of 36 or 48 games before declaring the

player who amassed the highest score as the overall winner. Many of the details

of this complex game have been omitted because they are not required to help

understand this work. For a more in-depth explanation about the rules of Skat

I refer interested readers to https://www.pagat.com/schafk/skat.html.

One of the main challenges with developing search-based algorithms that

can play Skat at a level on par with human experts is the number and size of the

information sets in the game. For instance, the information set of a player who

is leading the first trick as a defender contains over 42 million possible states.

Other challenges include playing cooperatively with a partner on defense to

defeat the soloist. This requires players to infer their partner’s cards, and

human experts resort to intricate signalling patterns to share information.

9
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2.3 Extensive Form Games

When studying decision-making in games, it helps to have explicit represen-

tations of a game’s key aspects. A finite extensive form game is a formal

description of a game commonly used in game theory. The representation

that an extensive form game provides is flexible; both perfect and imperfect

information games can be modelled. An extensive form game G is described

by the following tuple:

G = ⟨N,A,H,Z, ρ, σ, u, I⟩ (2.1)

N is the set of players and H is the set of non-terminal states in the game.

In extensive form games, states are equivalent to histories because a game state

is defined as the history of all actions taken from an initial state. Z is the set

of terminal histories. H ∩ Z = ∅ and H ∪ Z = S is the set of all states in the

game. Z corresponds to the set of leaf nodes in a game tree. Given h, j ∈ S,

h ⊑ j is used to denote that h is a prefix history to j. This means that h is

visited on the path to j. Utility function ui : Z → R gives a real-valued payoff

to player i given that the game ends at state z ∈ Z. ρ : H → N is a function

that defines which player is to move in state h ∈ H.

A(h) is the set of actions available in state h. σ : H × A→ S is the state

transition function that maps a non-terminal state and action to a new state.

For all h1, h2 ∈ H and a1, a2 ∈ A if σ(h1, a1) = σ(h2, a2) then h1 = h2 and

a1 = a2.

Information Sets I ∈ I are partitions of non-terminal states that players

cannot tell apart. They satisfy the following constraints: ∀h, j ∈ I, ρ(h) = ρ(j)

and A(h) = A(j). The player ρ(h) knows that the current state of the game is

part of I, but is unable to tell h from j. ∀I ∈ I, |I| = 1 in a perfect information

game.

2.4 Strategies

Also referred to as their policy, a player i’s strategy πi determines how they

choose actions in information sets. πi(I) is a probability distribution over
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A(I) and πi(I, a) is the probability of taking action a in information set I.

A strategy profile π = ⟨π0, π1, ..., πn−1⟩, is a tuple consisting of a strategy for

each player, and π−i is the tuple of strategies for the opponents of player i.

Strategy profiles lead to reach probabilities ηπ(h) which indicate the like-

lihood of reaching state h given that players play according to π. Reach

probabilities can be conditioned on having already reached a prefix; ηπ(z|h) is

the probability of reaching z under π given that h was reached.

2.4.1 Values

The standard utility function u in extensive form games assigns real-numbered

payoffs to every player in terminal game states. However, it can be useful to

quantify “how beneficial” a non-terminal state is to each player given that they

are collectively following a strategy profile. Values allow a player to compare

strategies based on the utility of possible terminal histories in non-terminal

states and ultimately decide which actions should be taken throughout the

game.

The expected value, given strategy profile π, for each available action can

be calculated at non-terminal state h ∈ H using:

vi(π, h, a) =
∑

z∈Z,h·a⊏z

ηπ(z)ui(z) (2.2)

State values can be computed by weighing the sum of action values by the

probability of taking each action under the player’s current strategy πi:

vi(π, h) =
∑

a∈A(h)

πi(h, a)vi(π, h, a) (2.3)

This definition extends to information set values by considering the reach

probability of state h ∈ I given that the player is in information set I.

vi(π, I) =
∑
h∈I

η(h|I)vi(π, h). (2.4)

Calculating values requires significant computation in large games and can

become intractable. In these situations, there are several techniques for es-

timating values designed so that AI players can play larger games without

having to compute exact values.
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2.5 Solving Imperfect Information Games

Solving an imperfect information game amounts to computing a Nash equilib-

rium. A Nash equilibrium exists for every finite extensive form game [Nas50];

it is a strategy profile in which every player’s strategy is a best-response to the

rest of the strategy profile. Optimal play consists of playing a specific strategy

from the equilibrium profile. Assuming that other players play according to

the equilibrium profile, deviations can not result in an increase in utility for

any player. Equilibriums are not unique and strategies from one equilibrium

profile are not guaranteed to be a best-response to strategies from another in

many scenarios.

Despite recent advances, modern algorithms are unable to solve the largest

games in practice. As a result, algorithms have been designed to find solutions

that approximate optimal play.

2.5.1 Counterfactual Regret Minimization

There is a well-known connection between minimizing the online learning con-

cept of regret in a self-play domain and approximating a Nash equilibrium

[Zin+08]. Regret can be informally understood as the amount of increased

utility that a player would have received had they played optimal actions;

reducing regret allows a player to play better, and if regret becomes small

enough for both players in a two-player game, then that strategy profile is

an approximate Nash equilibrium. However, regret minimization requires sig-

nificant time and space, and traditional algorithms do not scale well to large

games like Poker.

Counterfactual Regret Minimization [Zin+08] (CFR) is an algorithm for

finding sufficiently good approximate solutions in two-player zero-sum imper-

fect information games. Counterfactual regret is the standard concept of regret

applied to counterfactual values. Counterfactual values (Equation 2.6) are sim-

ilar to the values defined in Equation 2.3, but they capture that player i played

with the intention of reaching state h instead of following π (i.e. ηπi (h) = 1).

The key idea is that counterfactual regret can be minimized independently at
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each information set by controlling only πi(I). As it turns out, minimizing

counterfactual regret at each information set minimizes overall regret as well.

vci (π, h, a) =
∑

z∈Z,h·a⊏z

ηπ−i(h)η
π(z|h)ui(z) (2.5)

vci (π, h) =
∑

a∈A(h),h⊏z

πi(h, a)v
c
i (π, h, a) (2.6)

Recent algorithms based on CFR have led to superhuman play in Heads

Up No-Limit Texas Hold’em. DeepStack [Mor+17] uses continual re-solving

which is a depth-limited search where terminal counterfactual values can be

estimated at non-terminal nodes using a neural network. Libratus [BS17]

applies an abstraction-based approach early in the game, and then switches to

an approach similar to continual re-solving, called nested sub-game solving, at

later decision points.

2.5.2 CFR in Trick-Taking Card Games

Due to its recent success and strong theoretical guarantees, the CFR family of

algorithms is the state-of-the-art for many imperfect information games. CFR

has variants designed to tackle different challenges across games, but none

have been successfully applied to trick-taking card games. Trick-taking card

games are challenging for CFR-based algorithms in both the theoretical and

practical sense.

Many of CFR’s theoretical guarantees, such as upper bounds on regret,

no longer apply to 3-player or non-zero sum games. In general, CFR does

not produce equilibrium strategy profiles for 3-player games. Furthermore,

Nash equilibria only guarantee that a single player cannot profit by changing

their strategy, so the possibility of the other two players deviating makes the

notion of optimal play more complicated in the first place. Despite the lack

of theoretical guarantees, CFR has been shown to perform well in practice in

small 3 player games [SGS13].

In practice, the size of trick taking card games poses a significant issue.

DeepStack uses counterfactual value predictions made for each possible holding

for the opponent. In Texas Hold’Em, player hands contain only 2 private cards

13



— yielding
(
52
2

)
= 1, 326 possible holdings. Many of these holdings can then

be grouped together effectively using domain knowledge. In trick-taking card

games, player hands typically contain many more cards. In Skat for instance,

there are
(
32
10

)
= 64, 512, 240 possible hands per player. The game’s branching

factor further complicates matters. At the beginning of the cardplay phase,

there can be up to 2.04×1025 terminal histories leading from each information

set; this is several orders of magnitude larger than any previous successful

application of CFR [Mor+17], and thus likely too large for sample-based CFR

variants such as Outcome Sampling Monte-Carlo CFR [Lan+09].

Finding a good abstraction for Skat and other trick-taking card games may

be the key to successfully applying CFR but is challenging for its own reasons.

Grouping cards or hands together in trick-taking card games is difficult be-

cause the rules of the game dictate that the presence of a single card in one

opponent’s hand instead of the other’s can completely change the result of the

game. Learning abstractions with Regression CFR [Wau+15] is a possibility

but is also challenging because of the sheer number and size of information

sets. Determining which actions generalize across which information sets is

complex because of the aforementioned effect of single cards. Differing sets of

legal actions across information sets also poses a challenge.

2.6 Determinization, Evaluation, and Inference

So far, previous work has been unable to overcome the challenges discussed

in the previous section required for applying CFR to trick-taking card games.

Instead, the state of the art consists of less theoretically-sound algorithms for

approximating action values. These algorithms are typically online (the strat-

egy is computed at runtime rather than pre-computed and stored on disk) and

have low time and space requirements; their performance is good in practice

because they scale to the size of many common trick-taking card games.

To approximate action values in large imperfect information games, these

algorithms start by sampling states from the information set. The sampled

states are subsequently used by an evaluation component to approximate move
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values for the information set. This process is known as determinization.

Determinized techniques do not use reach probabilities of terminal histories

to calculate Monte Carlo estimates of values. Instead, they use an evaluation

component that, given a determinized state, produces a terminal history con-

sistent with that state and returns its utility. This allows estimates to be

computed online with low time and space requirements.

Despite limited performance guarantees, determinization can work well in

practice and is considered the state-of-the-art in some domains [FB13]. Good

performance requires sampling states according to the true distribution of

states in the information set: η(s|I). If states are not chosen according to

η(s|I), significant error can be introduced to the resulting action values —

regardless of evaluation accuracy. In this work, inference is defined as a tool

designed to help approximate η(s|I) so that estimated action values in I are

as accurate as possible.
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Chapter 3

Determinized Evaluation
Techniques

Current state-of-the-art algorithms for trick-taking card games rely on deter-

minization. In this process, perfect information states consistent with the

observed information are sampled from the player’s information set and then

evaluated. This approach is theoretically-flawed, but remains relevant because

of its undeniable success in certain domains. Much of the recent work in this

area has focused on lessening the impact of these flaws and improving the ac-

curacy of state evaluations. This chapter provides an in-depth review on these

evaluation techniques.

3.1 Perfect Information Monte-Carlo

Perfect Information Monte Carlo (PIMC) search [Lev89] has been success-

fully applied to popular trick-taking card games like Contract Bridge [Gin01],

Skat [Bur+09], Hearts and Spades [Stu08; SW06]. PIMC is a straightforward

technique for computing estimates of action values in an information set.

At its core, PIMC determinizes a state that is consistent with the history of

the game and the player to move’s private information. Every action available

to the player is then evaluated by making the move and then solving a perfect

information variant of the rest of the game with a standard search algorithm

like minimax. This process is repeated n times, with values for each action

summed over each iteration.
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PIMC(InfoSet I, int n)
for a ∈ A(I) do

v[a] = 0
end
for j ∈ {1..n} do

s← Sample(I)
for a ∈ A(I) do

v[a]← v[a] + PerfectInfoVal(s, a)
end

end
return argmaxav[a]

Algorithm 1: PIMC search.

Game-specific rules are used to sample states consistent with the informa-

tion set. In trick-taking card games for instance, some candidate states can

be eliminated through reasoning about each player’s void suits. In the basic

algorithm, consistent states are drawn at uniform random, but many practical

implementations try to sample from a better estimate of η(s|I). Algorithm 1

shows a generic implementation of PIMC.

3.1.1 Criticisms

PIMC has been heavily criticized over the years because it doesn’t capture im-

portant imperfect information elements of the game tree. Russell and Norvig

[RN16] call PIMC “averaging over clairvoyance” because the approach makes

the full state observable to all players. This leads to forward search using

actions that would not normally be taken under uncertainty. Frank and

Basin [FB98] highlight two key problems with PIMC: strategy fusion and non-

locality.

Strategy fusion occurs when a player reasons as if they can use a strategy

that makes state-specific decisions in every state — regardless of information

set structure. Recall that the key distinction between perfect information and

imperfect information games in the extensive form is the presence of non-trivial

information sets I ∈ I. Two states h, j ∈ I are indistinguishable to the player

who is choosing an action in I. Allowing player i to use a strategy πi where

17



πi(h) ̸= πi(j) during simulation leads to inaccurate action value estimates in

the real game. Thus, strategies computed with this technique will never take

actions related to bluffing, gaining or hiding information from opponents, or

sending information to teammates — all of which are considered hallmarks of

imperfect information gameplay.

The second issue identified by Frank and Basin, non-locality, stems from

the property that a node’s value is computed solely based on the values of

its children. This fact is used by the perfect information search component of

PIMC to compute the action values for each determinized state. However, this

structure is not actually present in imperfect information game trees. Values

of nodes in imperfect information game trees can depend on other parts of the

tree.

Figure 3.1 shows a contrived example of a non-local dependency. This

two-player game starts with a coin flip that is observed by Player 1 only.

After observing the result of the flip, Player 1 can choose to “play” or “pass”.

Choosing to pass gives Player 1 an automatic victory if the result of the initial

flip was tails. Player 2 cannot observe the result of the coin flip because, if

Player 1 decides to play the game, their job is to guess it. However, Player 2

should reason that Player 1 would never choose to play if the result of the flip

was tails — making a guess of heads the optimal action in this information

set. PIMC, however, will return equal action values for H and T .

3.1.2 Success

Despite all of the criticism, PIMC has remained relevant because it is still

among the state-of-the-art algorithms for some games. It’s easy to implement

and understand, it can give reasonable estimates quickly, and it scales to rel-

atively large games like Skat. Furthermore, it seems that strategy fusion and

non-locality only cause severe errors in PIMC under certain conditions — un-

der others, PIMC performs well. In Long et al. [Lon+10] the authors seek

to understand under which conditions PIMC succeeds and fails. They show

empirical evidence which suggests that for some classes of games, including

trick-taking card games, “PIMC will not suffer large losses in comparison to a

18



C

P1

(−1, 1)

Pass

P2

(1,−1)

T

(−1, 1)

H

Play

H P1

P2
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Figure 3.1: An example of non-locality. C is a chance node where a coin is
flipped. If the result is heads (H) the game proceeds in the left half of the tree.
Although P2 can not distinguish between nodes in their information set, P2
can determine that the best action is always to guess H because if the initial
flip revealed tails, P1 would have chosen to pass.

game-theoretic solution.”

Long et al. study the effects of 3 different properties on the performance

of PIMC against a game-theoretic solution: leaf correlation, disambiguation

factor, and bias. Leaf correlation measures how likely sibling terminal nodes

are to have the same utility. It describes how much a player can affect their

payoff in the final actions of the game. Disambiguation factor reveals the rate

at which information set sizes shrink as actions are taken and more information

becomes public. Bias describes how often parts of the game tree favor one

player over another.

Their findings suggest that games with a relatively high disambiguation

factor are favorable for PIMC; trick-taking card games fit this category. This

may be because, as more information is revealed, the game becomes closer

to a perfect information game. Leaf correlation also has a significant effect

on PIMC. When leaf correlation is low, PIMC performs poorly; when it is

high, PIMC performs well. Bias, on the other hand, was found to have a

minimal effect on the performance of PIMC. The authors go on to explain

that trick-taking card games exhibit high leaf correlation and a moderately

high disambiguation factor — explaining PIMC’s historical success in Skat

and Bridge.
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3.1.3 Inference in PIMC

Ginsberg’s bridge-playing GIB [Gin01] was the first successful application of

PIMC in a trick-taking card game. GIB appears to perform some state infer-

ence in that it samples “a set D of deals consistent with both the bidding and

play”, but details regarding the inference are absent from the paper.

Kermit [Bur+09; FB13] uses a table-based procedure that takes opponent

bids or declarations into account to infer the likelihood of states within an

information set. Unlike this work, Kermit does not use the sequence of actions

during the cardplay phase for further inference — only marginalizing over its

own private cards and those that have already been played.

3.2 Information Set Monte Carlo Tree Search

Another category of methods based on Monte Carlo Tree Search (MCTS) keep

statistics about action values and visit counts at interior nodes of the game

tree. They use these values to select which actions should be taken to advance

the search. This is the main distinction from PIMC, where action values are

only kept at the root node and the search is advanced by solving for the

minimax value.

Combining MCTS methods with Deep Learning [LBH15] led to ground-

breaking results in perfect information games. In particular, AlphaGo Zero

far surpassed human-level play in Go, Chess, and Shogi [Sil+16; Sil+17a;

Sil+17b] — a feat previously considered many years away for AI.

Like PIMC, MCTS is an anytime algorithm; value estimates can be com-

puted given any amount of time available. Naturally, estimates typically be-

come more accurate given more time. MCTS has been traditionally used in

only perfect information games, but extensions have been designed for games

with imperfect information as well.

3.2.1 UCT

The upper confidence bound for trees (UCT) [KS06] was the catalyst for a

series of successful MCTS applications. It treats each node in the game tree
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as a multi-armed bandit problem — calculating the node’s value using the

UCB1 algorithm [ACF02] shown in Equation 3.1.

Vj = X̄j + c

√
lnn

nj

(3.1)

X̄j is the current estimate of the expected value of node j. n is the number

of times j’s parent has been been visited, and nj is the number of times that

j has been selected from its parent. c is a scalar that must be tuned to reach

a problem-specific optimal value. During forward simulation, the maximum-

valued child node argmaxjVj is chosen to advance the state of the game. The

main idea of UCB1 is that value estimates of infrequently taken actions are

inaccurate. The choice of c determines how aggressively the algorithm will

“explore” actions before trusting these estimates.

Cowling, Powley, and Whitehouse [CPW12] call trick-taking card games

subset-armed bandit problems. This means that the set of legal actions is not

the same at every node, so issues like over-exploring rare actions can be an

issue. The authors suggest either replacing n with the number of times the

parent was reached and action j was available, or keeping separate statistics

for each possible subset of actions in an information set.

3.2.2 Determinized UCT

Determinized UCT is the most straightforward extension of MCTS to imper-

fect information games. As with other determinized approaches, it starts by

sampling a state from the root information set. This state becomes the ground

truth for forward simulation and each player’s legal moves are determined by

it. Actions are chosen according to UCB1 (modified for subset-armed bandits),

and statistics are kept for every node (fully-observable state) in the tree. The

algorithm returns the action taken the most during simulation as its estimate

for the best move.

This algorithm is only slightly different than PIMC and although it does not

use minimax, it should converge to the same result after enough simulations.

Determinized UCT suffers from the same theoretical issues with strategy fusion
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and non-locality as PIMC because move statistics are kept at fully-observable

nodes.

Determinized UCT was applied to Skat [SBH08], but its performance falls

short of PIMC players. Sturtevant [Stu08] also applied UCT to Hearts —

yielding a new state-of-the-art at the time.

3.2.3 SO- and MO- ISMCTS

Single-Observer Information Set MCTS (SO-ISMCTS) [CPW12] is an attempt

to reduce errors caused by strategy fusion by keeping statistics at the informa-

tion set level. That is, nodes in the tree on a given iteration are information

sets consistent with a determinized state for that iteration rather than fully

determinized states. This means value estimates are expectations over all pos-

sible states in an information set. The idea is that this prevents the algorithm

from cherry-picking actions for individual states.

Multi-Observer ISMCTS (MO-ISMCTS) extends SO-ISMCTS to handle

games with partially observable moves. The algorithm maintains a tree for

each player in the game, with edges only occurring when that specific player

chooses an action. The trees are descended simultaneously, and the algorithm

proceeds in the same fashion as SO-ISMCTS.

Furtak and Buro [FB13] argue that ISMCTS introduces new issues of its

own while trying to reduce errors from strategy fusion. For instance, the

player leaks private information to their playout adversaries by only sampling

states consistent with the player’s private information. Allowing the strate-

gies of playout adversaries to adapt across roll-outs biases the action value

estimates with this information. The search returns the move values assuming

the opponent will react perfectly to your hand — leading to the same fun-

damental issues as PIMC. One suggested remedy is sampling both consistent

and inconsistent states, but this makes the search space intractable for many

applications.
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3.2.4 Inference in ISMCTS

As with other determinized techniques, variants of ISMCTS can be improved

using inference to estimate the state probability distribution and sample more

realistic states from information sets.

Baier et al. [Bai+18] use a different type of inference to bias MCTS results.

They propose a method for biasing MCTS that boosts the scores of nodes

reached by following actions judged likely to be played by humans according

to a supervised model. This focuses the algorithm on certain states in the

game tree that are deemed more likely, given that the player is playing with

humans. Playing like a human can have other advantages as well; in games

where cooperation is required, a player that uses human conventions may fare

better than one that does not. However, this approach still assumes that η(s|I)

is a uniform random distribution, so the resulting action values are susceptible

to error because unlikely states may be determinized in the first place.

3.3 Imperfect Information Monte-Carlo

Furtak and Buro [FB13] take a different approach to avoiding strategy fusion

errors and implement a recursive variant of PIMC — resulting in the current

state-of-the-art player for Skat.

Imperfect Information Monte Carlo (IIMC), seen in Algorithm 2, consists

of a top-level player that uses of a lower-level player to finish games for action

value estimates. The top-level player samples a state from the current informa-

tion set and then specifies the first action that will be taken by the lower-level

player. The lower-level player takes the action and then proceeds to finish the

game (against copies of itself) given the underlying state that was previously

sampled. The lower-level player’s policy must be fixed, or IIMC has the same

information-leaking problem as ISMCTS. The utility obtained at the terminal

state is returned to the top-level player, where it is used to estimate the value

of the initial action. This process is repeated for every action a ∈ A(I) using

n sampled states from I.

IIMC partially resolves strategy fusion by forcing the player to simulate the
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IIMC(InfoSet I, int n, Player p)
for a ∈ A(I) do

v[a] = 0
end
for i ∈ {1..n} do

s← Sample(I)
for a ∈ A(I) do

v[a]← v[a] + FinishedGameValue(s, a, p)
end

end
return argmaxav[a]

FinishedGameValue(State s, Action a, Player p)
s = MakeMove(s, a)
while s is non-terminal do

s = MakeMove(s, ComputeMove(p, ToInfoSet(s)))
end
return u(s)

Algorithm 2: IIMC search.

first action at the information set level, and then advancing the state before

the lower-level player plays out the rest of the game. However, if the lower-

level player uses an algorithm like PIMC, then the same theoretical issues bias

the utilities returned to the top-level.

IIMC’s playing strength and decision-making speed are greatly influenced

by which lower-level player is used. Using a PIMC lower-level player (RecPIMC)

was shown to select actions 20× slower than a standard PIMC player in Skat,

but achieved a new state-of-the-art in playing strength [FB13]. Faster, weaker

lower-level players like XSkat1 can be used. Although this leads to much

stronger play than regular XSkat, it was shown to perform significantly worse

compared to using a PIMC lower-level player [FB13].

3.3.1 Inference in IIMC

Furtak and Buro [FB13] use bidding and declaration information for inference

in both the top-level and the lower-level player in their RecPIMC implementa-

1XSkat is a free software Skat program written by Gunter Gerhardt (www.xskat.de). It
uses a large set of hand-designed rules and can play games very quickly.
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tions for Skat. However, this idea could be extended further by incorporating

action history from the cardplay phase to make the estimates of η(s|I) more

accurate.

Since RecPIMC significantly outperformed IIMC with weaker lower-level

players like XSkat, it is reasonable to assume that further improving the lower-

level player will lead to another increase in performance. Better top-level

sampling should also be beneficial to performance if it can lead to more realistic

states passed to lower-level players for evaluation.

3.4 Inference and Better Determinization

These notable contributions improve state evaluation quality, but fail to ade-

quately capture the effect of action history on information set state distribu-

tions. As previously mentioned, a bad estimate of η(s|I) leads to inaccurate

action values. The authors of these contributions have identified this issue, but

little action has been taken to improve inference for determinized evaluation

techniques.

Cowling, Powley, and Whitehouse [CPW12] say that inference is essential

for optimal play and that it helps reduce errors that are the result of non-

locality. Furtak and Buro [FB13] also mention that lack of an inference module

is hurting their results as a result of non-locality. In the remainder of this

thesis, I present and validate a novel approach for improving inference in this

domain.
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Chapter 4

Estimating State Probabilities

Previous work in trick-taking card games uses table-based methods for infer-

ence. This works well if the state representation is small enough that there is

sufficient data corresponding to every table entry. However, as representations

grow larger and the amount of training data for each representation declines,

table-based approaches become more prone to overfitting and more difficult

to work with in practice. Excluding or abstracting parts of the state is an

option, but doing so may sacrifice predictive power. An approach that is able

to generalize across similar states with a sufficient, yet reasonable, amount of

data allows for more state information to be considered, which results in better

predictions.

In trick-taking card games like Skat, card history has a significant impact

on η(s|I). Ignoring it for inference is unthinkable to even a beginner human

player, but it has not been incorporated in previous work because it makes

the state too large for table-based techniques. This chapter presents a novel

technique for inferring η(s|I) using card history in trick-taking card games.

4.1 Individual Card Distributions

Deep Learning [LBH15] can be used to learn complex representations of the

input feature space suitable for certain classification tasks. Models can be

trained to approximate functions with large input feature sets — large enough

to represent the full state in a game like Skat. However, learning to predict the

correct state directly is not feasible when information sets contain potentially
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millions of states. This section describes a technique that estimates proba-

bilities for the locations of individual cards and uses that to estimate η(s|I)

instead.

4.1.1 Estimating Card Location Distributions with Deep
Neural Networks

Given input features describing information set I, we can independently pre-

dict the location of each individual card c ∈ C by modelling it as a multi-class

classification task. Given a feature set ϕ(I), L(ϕ(I)) is a real |C| × l matrix,

where l is the number of possible card locations (e.g., |C| = 32 and l = 4 in

Skat because a card is located either in hand 1, 2, 3, or the skat). Each row

L(ϕ(I))c is a probability distribution over the possible locations of card c.

Input features provide the classifier with obvious information like which

cards have already been revealed or are in the player’s hand, but also with

more subtle information like which suits opponents have revealed as void. The

goal of the classifier is to uncover subtleties and interactions between input

features that can help reveal likely locations for the remaining of the cards.

4.1.2 Computing State Probabilities

If individual card predictions are accurate, they can be used to estimate η(s|I).

Formally, individual card location probabilities are used to predict state proba-

bilities by applying Equation 4.1. By assuming independence and multiplying

the probabilities of each card c’s true location in state s ∈ I, I provide a mea-

sure for each state that can be normalized into a probability distribution for

states in the information set:

η(s|I) ∝
∏
c∈C

L(ϕ(I))c,loc(c,s) (4.1)

Here loc(c, s) is the true location of card c in state s.

This process is computationally expensive in early tricks where the in-

formation sets are relatively large. However, only a single forward pass is

performed per information set, so the performance bottleneck is multiplying

the card probabilities for each state and normalizing the distribution.
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Figure 4.1: Inference network architecture.

4.2 Application to Skat

Disregarding some notable exceptions, modern learning techniques tend to

benefit from good hand-engineered features, and in the case of neural net-

works, considerable network design efforts. This section describes a successful

approach to feature engineering and network design in Skat, but it can be

adapted to other games using domain-specific knowledge.

4.2.1 Network Design

Figure 4.1 details the network architecture. Predictions are always made in

view of the player to move. I train a separate network for each game type

(suit, grand, null). Regardless of the game type, there are 32 total cards

in Skat that can be in any of 4 potential locations (3 hands and the skat).

Each network has the same overall structure. I use dropout [Sri+14] of 0.8

on layers 2, 3, and 4 and early-stopping [Pre98] on a validation set to reduce

overfitting. Table 4.1 lists all hyperparameters used during training. Hidden

layers use ELU activations [CUH15], and softmax is applied to each individual

card output.
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Table 4.1: Inference network training hyper-parameters.

Parameter Value

Dropout 0.8

Batch Size 32

Optimizer ADAM

Learning Rate (LR) 10−4

LR Exponential Decay 0.96/107 batches

One practical insight for training this type of classifier is that learning is

simpler when the full targets are used, rather than attempting to predict only

the unknown elements. In Skat for example, this means predicting the full

32-card configuration from the beginning of the cardplay phase.

Adapting individual card inference to other trick-taking card games sim-

ply requires training a neural network with game-specific input features and

an appropriate output size. As explained in Equation 4.1, network output

size must be defined by the number of cards |C| and the number of possible

locations for each card l according to the rules of the game.

4.2.2 Feature Engineering

Various input features, listed in Table 4.2, are used to represent the infor-

mation set of the player to move. Lead cards are the first cards played in

a trick, and sloughed cards are those that are played when a player cannot

follow suit but also does not trump. Void suits indicate when players’ ac-

tions have shown they cannot possibly have a suit in their hand. Bidding

features are broken down into type and magnitude. Type indicates a guess as

to which game type the opponent intended to play had they won the bidding

with their highest bid. This is computed by checking if the bid is a multiple

of each game type’s base value. Magnitude buckets the bid into 1 of 5 ranges

that are intended to capture which hand multiplier the opponent may pos-

sess. Domain knowledge is used to construct ranges that group different base

game values with the same multiplier together. The exact ranges used are
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Table 4.2: Inference network input features.

Feature Width

Player Hand 32

Skat 32

Played Cards (Player, Opponent 1&2) 32*3

Lead Cards (Opponent 1&2) 32*2

Sloughed Cards (Opponent 1&2) 32*2

Void Suits (Opponent 1&2) 5*2

Max Bid Type (Opponent 1&2) 6*2

Max Bid Magnitude (Opponent 1&2) 5*2

Current Trick 32

Soloist 3

Trump Suit 5

Total 360

18..24, 27..36, 40..48, 50..72, and > 72. These ranges contain some unavoid-

able ambiguity because some bids are divisible by multiple game values, but

bid multiplier is a strong predictor for the locations of the jacks in particular.

The soloist and trump suit features indicate which player is the soloist and

which suit is trump for the current game, respectively. All features are one-

hot encoded. Network output is used as described in Equation 4.1 to compute

probabilities for individual states and build an estimate of η(s|I).

4.2.3 Training

Networks are trained by minimizing the average cross-entropy across individual

card outputs on a training set of example states. Cross-entropy, H, between

two discrete probability distributions p and q is defined as:

H(p, q) = −
∑
x

p(x) log q(x) (4.2)

If H is the objective function used for training, p is derived from the under-

lying perfect information state of an example information set, and it has zero

probability mass everywhere except the true location of each card c ∈ C in
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Table 4.3: Training and validation set sizes (in millions of states) for each
game type.

Game Type Grand Suit Null

Training 24.6 66.3 2.2

Validation 5.8 14.3 0.5

that state. This means that only one term in H is non-zero for every card. q

is the softmax distribution output by the network given ϕ(I). Averaging H

over all cards yields CE.

CE = −Ec∈C [logL(ϕ(I))c,loc(c,s)] (4.3)

Training data consists of example states, randomly sampled at a rate of

1/3, from approximately 20 million games played by humans on a popular Skat

server [DOS18]. Omitting some states is necessary for improving generalization

because states from the same game are highly correlated. The data is extracted

from only the first 9 tricks because the last trick has only one possible action

and is therefore not a decision point. Training and validation set sizes are

listed in Table 4.3. Set sizes are imbalanced between game types because

some games are played more frequently than others, but balancing them is

unnecessary because a separate network is trained for each game type.

Networks are trained for a maximum of 10 epochs over their correspond-

ing training sets, but early-stopping activates earlier in each case. This may

indicate that the datasets are larger than necessary. Each epoch takes approx-

imately 10 hours for the largest dataset (suit games) — meaning the training

process is relatively slow. This is mainly because the datasets are several hun-

dred gigabytes uncompressed, so batches need to be uncompressed on demand.

The training process uses Python Tensorflow [Aba+16].

4.3 Card Prediction Performance

This section describes how I evaluate the performance of individual card in-

ference models. It includes the definition of some baselines and a description
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of two metrics used for evaluation. I will refer to the deep neural network

described in Section 4.2 as Deep from this point forward.

4.3.1 Baselines

The first baseline, Uniform, can be considered as a lower-bound on inference

performance. After accounting for all played cards, all cards in the player to

move’s hand, the skat (if known), and any opponent void suits, it treats all

unknown cards as uniformly distributed between possible locations. Individual

card distributions are computed from the normalized frequencies of each card’s

location over all states in the player to move’s information set.

Kermit uses the table-based inference technique employed by Kermit’s

SD version (“Soloist/defender inference”) described in [Bur+09]. It estimates

η(s|I) given the limited context of actions taken in the bidding, discard, and

declaration phases of Skat.

Logistic uses softmax regression on the feature set described above to

make predictions about the locations of individual cards. It is implemented

in Tensorflow as a densely-connected network with no hidden layers. This

baseline is included to help determine if a deep learning approach is warranted

for this task. Logistic uses the same feature set as Deep; all input features

are one-hot encoded and thus already prepared for this type of learning. With

360 input features and 32× 4 = 128 outputs, this model contains 46,080 total

weights — far less than the 1.84 million weights used in Deep. Moreover, this

model is simpler, more interpretable, easier to train, and faster to use, so Deep

must provide a substantial performance boost to be considered justifiable.

4.3.2 Average Cross-Entropy of Card Predictions

The first evaluation metric I use to measure prediction performance comes

from the objective function used for training: CE. As in training, lower CE is

better. It indicates that more information has either been revealed or inferred

by the model. CE will naturally start higher and decrease rapidly as more

cards are played because logL(ϕ(I))c,loc(c,s) should be close to 0 when loc(c, s) is

already known. Therefore, I calculate and report CE independently for every
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possible number of cards known to the player to move during the cardplay

phase.

Figure 4.2 shows CE of output distributions from Uniform, Logistic, and

Deep calculated on an independent test set. The results are split by game type

and whether or not the player knows the contents of the skat.

Not knowing the contents of the skat increases uncertainty because there

is an additional potential location for unknown cards. When the skat is not

known, Deep and Logistic’s inference capabilities outperform Uniform. How-

ever, when the skat is known, it seems that the inference capabilities of both

models is limited in comparison. This could be because any opponent void

suit indicates the exact location of all remaining unknown cards in that suit;

they must be in the other opponent’s hand if the skat is known. This neu-

tralizes inference capabilities because much of the information that could be

inferred is instead directly revealed to the player. Nevertheless, both models

still outperform the baseline over most of the game in all game types.

Logistic performs relatively well compared to Uniform and Deep during the

early stages of the game. Part of this performance can be explained by the

quality of the engineered feature set. That being said, the effect of representa-

tion learning is shown by the overall superior performance of Deep. Logistic’s

performance rapidly deteriorates toward the end of the game when the model

must account for complex interactions between the input features. Learned

representations of these features seem to be providing Deep with additional

predictive power in this case.

The difference between Deep and Logistic is smaller in null games. This

may be due to the relatively small training set size for this game type. Null is

the rarest game type and the outcome of null games is often decided before all

cards have been played — making a sufficient amount of training data for a

deep neural network difficult to obtain. The logistic model generally requires

less data and is easier to train effectively, but fails in comparison to the more

complex deep model when there is sufficient data.

A larger CE than Uniform is observed in some instances. This indicates

that a model is not accounting for cards that have been revealed, or is making
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(a) Grand

(b) Suit

(c) Null

Figure 4.2: Average CE, split by game type, number of unknown cards, and
whether the player knows the skat (left) or not (right).
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predictions that are consistently worse than randomly assigning the locations

of the remaining unknown cards. For Deep, this only occurs at the end of

null games when almost all cards have been revealed. Possible reasons for this

include the aforementioned lack of training data for null games and the fact

that the models are not trained on example states from the final trick of the

game.

4.3.3 True State Sampling Ratio

To test how well combining the location probabilities of individual cards ap-

proximates η(s|I), I compare the probability of sampling the true state from

the estimated distribution and the probability of uniformly randomly sam-

pling it from the information set. This comparison provides the True State

Sampling Ratio (TSSR) which conveys how many times more likely the true

state will be selected, compared to uniform random sampling.

TSSR =
η(s∗|I)
1/|I|

= η(s∗|I) · |I| (4.4)

η(s∗|I) is the probability the true state is sampled in the estimated distribu-

tion, and |I| is the number of states in the current information set. Sampling

the true state with a higher probability should lead to performance improve-

ments in determinized evaluation techniques.

TSSR is calculated for each baseline and each trick, with defender and

soloist and game types separated. Like CE, TSSR is evaluated using only the

first 9 tricks. Each card number (0 through 26), role (defender or soloist), and

game type were evaluated for each algorithm on samples from 3,000 games

from holdout sets of games previously played by humans.

Figure 4.3 shows the average value of TSSR for each model as well as a

strict upper bound for TSSR dubbed the Oracle. The Oracle predicts the

true world’s probability to be 1.0, so its TSSR value is equivalent to |I|. The

value of TSSR is markedly impacted by both game type and player role.

For all models, TSSR is larger for defender compared to soloist. This is

due to the declarer choosing the game that fits their cards, making inference

much easier for the defender. Furthermore, soloists know the locations of
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Soloist Defender

(a) Grand

(b) Suit

(c) Null

Figure 4.3: Average TSSR after Card Number cards have been player for Deep,
Logistic, Kermit, and Oracle inference. Data is separated by game type and
whether the player to move is the soloist (left) or a defender (right).

36



more cards to begin with because they know the skat — meaning that there

is less potential for inference in the first place. As more private information is

revealed throughout the game, TSSR decreases exponentially along with the

number of states per information set. This rapidly increases the probability

of selecting the true state with a random guess and equalizes the inference

capabilities of all algorithms by the end of the game.

For Logistic and Kermit, TSSR reaches its peak in early tricks and de-

creases over time. Deep, however, peaks around tricks 3-5, and performs

consistently better in the middle of the game. This can be attributed to the

successful inclusion of more state information as input for prediction. With

the exception of the very first trick for grand and suit defender games, Deep

performs considerably better compared to all other inference techniques tested.

In terms of the likelihood of sampling the true state, Deep is the strongest

of all algorithms considered. The other two algorithms perform similarly well,

with Logistic having the edge as soloist, and Kermit having the edge as de-

fender. This is likely due to how Kermit’s inference leverages the additional

information of the soloist’s game declaration when on defense. Furthermore,

Kermit’s poor performance as the soloist suggests that defender bidding in-

formation is far from sufficient for good inference as the soloist. These results

clearly show the benefit of using card history for inference, and suggest that

learned representations of the input features are providing a considerable boost

to inference performance.

37



Chapter 5

Combining Inference With
Search

The previous chapter demonstrates a technique for performing inference based

on action history in trick-taking card games. However, the technique I pre-

sented is more compelling if it can be used to improve the performance of AI

players. In this chapter, I show how to apply cardplay inference to improve

determinized search in the application domain of Skat, and I test the tour-

nament performance of several different inference techniques in head-to-head

matchups.

5.1 Improving Determinized Evaluation

This section lists the modifications needed to supplement existing determinized

evaluation techniques with individual card inference. In general, the approach

consists of estimating η(s|I) at each information set independently. This re-

quires a single forward pass of the network to compute L(I), followed by a

series of multiplications to compute Equation 4.1. The result must be normal-

ized into a probability distribution over s ∈ I before states can be sampled.

5.1.1 PIMC+

Algorithm 3 shows the modifications necessary to estimate η(s|I) using indi-

vidual card inference and apply the result to PIMC. ProbabilityEstimate

implements Equation 4.1. I call this specific method of biasing sampling PIMC+
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PIMC+(InfoSet I, int n)
for a ∈ A(I) do

v[a] = 0
end
for s ∈ I do

p[s]← ProbabilityEstimate(s, I)
end
p← Normalize(p)
for i ∈ {1..n} do

s← Sample(I, p)
for a ∈ A(I) do

v[a]← v[a] + PerfectInfoVal(s, a)
end

end
return argmaxav[a]

Algorithm 3: PIMC with individual card inference.

to differentiate from previous inference techniques; biasing sampling in PIMC

is not a new idea in itself.

Although this approach requires extra computation every time the player

is to move, this subtle modification to PIMC has the potential to significantly

improve playing strength by forcing the algorithm to evaluate more likely

states. Furthermore, it does not increase decision-making time beyond what

is considered reasonable by humans. The maximum number of states in an

information set in Skat (approximately 42 million) is manageable in approxi-

mately 2 seconds per move on a single core of an IntelR⃝ Core
TM

i7-8700K and

our current implementation could easily be parallelized.

5.1.2 RecPIMC+

Applying the same idea to IIMC, or Recursive PIMC in particular, is straight-

forward. Algorithm 4 shows how individual card inference can be applied in

both the top-level and lower-level players.

RecPIMC is the state-of-the-art algorithm for Skat, but the amount of time

it takes per decision makes it too slow for play with humans if the algorithm is

running on commodity hardware. In Section 5.2.4, I show that incorporating

individual card inference into RecPIMC and optimizing sampling leads to a
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RecPIMC+(InfoSet I, int n, int m)

for a ∈ A(I) do
v[a] = 0

end
for s ∈ I do

p[s]← ProbabilityEstimate(s, I)
end
for i ∈ {1..n} do

s← Sample(I)
for a ∈ A(I) do

v[a]← v[a] + FinishedGameValue(s, a,m)

end

end
return argmaxav[a]

FinishedGameValue(State s, Action a, int n)
s = MakeMove(s, a)
while s is non-terminal do

s = MakeMove(s, PIMC+(ToInfoSet(s), n))
end
return u(s)

Algorithm 4: Recursive PIMC with individual card inference.

new state-of-the-art for Skat cardplay tournament performance.

5.2 Experiments

I measure the effect of using inference in determinized search-based card play-

ers using each of the baselines explained in Section 4.3.1. Performance is mea-

sured using by playing Skat tournaments and observing the resulting scores

under the Fabian-Seeger rule set.

Tournaments are structured so that pairwise comparisons can be made

between players. Two players play 5,000 matches in each matchup, and each

match consists of two games. All matchups use the same set of games for

each game type. Each player gets a chance as the soloist against two copies of

the other player as defenders. The games start at the cardplay phase — with

bidding, discard, and declaration previously performed by human players on

the DOSKV server. These games are from a separate set than those used for

40



training and validation, and I calculate and report results separately for each

of Skat’s game types.

I test for statistical significance between mean player scores using the

Wilcoxon signed-rank test [WKW70] with significance level 0.05. Data are

paired because each game is replayed with the soloist and defender roles re-

versed. The games come from a randomly-selected holdout set, and scores

are measured on a ratio scale. Therefore, none of the test’s assumptions are

violated.

5.2.1 PIMC Cardplay Tournaments

I present results from tournaments where all players use PIMC for evaluation

and only vary in how they select states to evaluate in this section. Uniform

represents the simplest way to estimate η(s|I), so it should be considered as

a true baseline for PIMC. Kermit is considered the state-of-the-art for PIMC-

based Skat players. In all matchups, one standard deviation is no more than

0.7, 0.55, and 0.53 tournament points per game for suit, grand, and null games

respectively.

Table 5.1 shows results from each tournament type. The positive effect

of my sampling technique is clearly shown in all game types, with the point

difference between Deep and Kermit always statistically significant. Deep’s

cardplay tournament performance is an exciting result considering that Ker-

mit was already judged as comparable to expert human players [Bur+09].

Additionally, a per-game tournament point increase of more than 3 in suit

games and 4 in null games means that the gap between the two players is

substantial. To provide some context to the magnitude of this difference, con-

sider that Ron Link, a world champion caliber Skat player, outperforms other

expert players at the Edmonton Skat Club by an average of approximately 4.1

tournament points per game [Lin18].

Each player’s average time per move is reported in Table 5.2. This data

was calculated on a separate set of 1000 games using a single machine to

control for hardware differences. Deep’s move time statistics suggest that the

increase in performance comes at a significant cost; it is roughly 8× slower
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Grand Suit Null

n = 80 n = 160 n = 320 n = 80 n = 160 n = 320 n = 80 n = 160 n = 320

Kermit vs. Uniform

P1 39.72 39.26 39.28 24.05 23.23 22.94 17.30 16.65 17.17

P2 37.57 37.77 37.75 17.23 18.00 18.11 10.68 11.09 10.77

∆ 2.15 1.49 1.53 6.82 5.23 4.83 6.62 5.56 6.40

Logistic vs. Uniform

P1 39.61 39.39 39.12 22.61 22.44 22.17 17.10 16.96 16.90

P2 37.73 37.45 37.92 20.14 19.39 19.60 10.82 10.68 10.57

∆ 1.88 1.94 1.20 2.47 3.05 2.57 6.28 6,28 6.33

Deep vs. Uniform

P1 40.17 40.01 39.39 24.16 23.87 23.80 18.40 17.89 18.43

P2 36.46 35.81 36.46 16.14 16.15 15.98 7.98 8.23 7.72

∆ 3.71 4.20 2.93 8.02 7.72 7.82 10.42 9.66 10.71

Logistic vs. Kermit

P1 38.51 38.53 38.08 18.73 18.66 19.11 12.93 13.13 13.23

P2 38.47 37.38 38.28 21.87 21.25 20.91 12.71 12.36 12.04

∆ 0.04 1.15 -0.20 -3.14 -2.59 -1.80 0.22 0.77 1.19

Deep vs. Kermit

P1 38.46 38.68 38.84 20.59 20.31 20.73 14.17 14.17 14.31

P2 36.92 36.46 36.32 17.59 17.69 17.42 9.87 9.65 9.34

∆ 1.54 2.22 2.52 3.00 2.62 3.31 4.30 4.52 4.97

Deep vs. Logistic

P1 38.66 38.38 38.71 22.50 21.96 21.82 13.92 13.85 13.33

P2 36.85 37.05 36.57 16.85 16.81 16.82 10.09 9.83 10.31

∆ 1.81 1.33 2.14 5.65 5.15 5.00 3.83 4.02 3.02

Table 5.1: Tournament points/game for PIMC players. Separated by game
type, and number of states evaluated per legal action.

than Kermit when evaluating 320 states. In practice, 2.43 seconds per action

is still within the range that is suitable for play with humans, but games with

larger information sets than Skat could pose a problem. Section 5.2.3 shows

an approximation technique designed to alleviate this issue.

Uniform’s performance reiterates that some type of inference is undoubt-

edly beneficial to PIMC players in all game types, but the effect of inference in

grand games is less noticeable in general. This may be due to a bias introduced

from the test set being generated by human players and is discussed further

in Section 5.2.2.

The tournaments between Deep and Logistic suggest that the complex
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Table 5.2: Average time (in seconds) taken per action by PIMC players on an
IntelR⃝ Core

TM

i7-8700K processor.

Num States 80 160 320

Deep 2.26 2.31 2.42

Logistic 2.24 2.32 2.43

Kermit 0.09 0.17 0.32

Uniform 0.08 0.14 0.27

interactions learned between input features help the predictive power of the

resulting inference model, which, in turn, causes a substantial increase in play-

ing strength. For suit and null games in particular, it seems that Deep has

learned important representations of the input features that the linear model

was unable to capture.

Results for matches between Kermit and Logistic show that Kermit’s count-

based approach may be more robust, in this case, than attempting logistic re-

gression with such a high-dimensional feature space. Logistic seems to perform

particularly poorly in suit games — perhaps due to an inability to sufficiently

capture the relationships between input features such as which cards have been

played and which suit is trump. The Logistic player performs similarly to Ker-

mit in the other game types; however, Kermit’s inference does not account for

actions made in the cardplay phase. Considering its performance in terms

of CE and TSSR, Logistic performs worse than expected in the tournament

setting. This indicates that small performance increases in these metrics can

lead to large differences in practical playing strength.

These results suggest that decomposing η(s|I) into a product of individual

card-location probabilities (Equation 4.1) is a useful approximation. It allows

for more state information to be considered when making predictions and

the results in a better approximation of η(s|I) than shown in previous work.

Furthermore, knowing where cards lie allows a search-based player to spend

more of its budget on likely states. From the tournament results, it is clear

that this has a positive effect on performance.
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Table 5.3: Soloist win percentage across all matchups for each game type.
Human denotes the actual soloist wining percentage from the original games.

Game Type Grand Suit Null

Deep 93.14 81.01 62.93

Logistic 92.63 78.99 61.72

Kermit 92.04 78.52 61.13

Uniform 93.32 77.96 58.99

Human 93.23 80.08 62.62

5.2.2 Game Type Effects

Tournament results are reported separately for each of Skat’s game types be-

cause each one has a unique set of rules and a large discrepancy in tournament

points earned by winning. Differences in rules mean that, for inference pur-

poses, an action in one game type may have completely different implications

than the same action in a different game type.

With the exception of the row labelled “Human”, which represents the

actual win rate of the games played on the DOSKV server, Table 5.3 shows

the overall win rate of each player in the set of all head-to-head matches

detailed in Section 5.2.1. This table is not intended for pairwise comparison

between players. There are two important insights related to game type effects

found in this table: grand games have a higher soloist win percentage and null

games seem the most difficult to win consistently.

As seen from the Human player data in Table 5.3, conservative human play

may be the main cause of inference seeming less important in grands. In Skat,

grand games are worth more than any other game type. They offer a hefty

reward when won, but a 2× penalty when lost. If human players are unwilling

to take such a risk, then they will only bid on and declare grand games when

they are relatively easy to win. This leads to a set of games that are biased;

good players won’t benefit as much from superior play. The games are too easy

for the soloist and too hard for the defenders for skill to make a difference.

A somewhat related explanation can be made for the surprising difficulty
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all tested players seem to have playing null games as the soloist. Null games

have one of the smallest base values for winning or losing in Skat, and they

have no possibility of additional multipliers. So when players gamble on the

contents of the skat and bid too high relative to their hand, they will often play

null games because they are the cheapest to lose. Winning these is notoriously

difficult because the soloist’s hand would typically contain cards tailored to-

ward the suit or grand game that they intended to play, whereas a null requires

completely different cards.

5.2.3 Scaling to Larger Games

In games with large information sets, estimating probabilities for the entire

set of states may become intractable. However, because PIMC is easily par-

allelizable, information sets must contain hundreds of millions or billions of

states before this becomes a problem in practice. In such cases, applying indi-

vidual card inference is still possible by uniformly sampling a subset of states

J without replacement and estimating η(s|I) as if I = J .

If the subset is small enough, the initial sampling step has the potential to

reduce the time taken to estimate η(s|I) so that it is negligible compared to the

time takes to evaluate the states that are eventually sampled. One drawback

is that high probability states could be missed completely — especially if the

initial subset is too small.

In Skat, the largest information sets in the cardplay phase contain just

over 42 million states. The number of states per information set is highest

at the beginning of cardplay and decays sharply as the game progresses and

more information is revealed; by the end of third trick there are at most 16

unknown card and only
(
16
7

)(
9
2

)
= 411, 840 states in the largest information

sets. Thus, approximating η(s|I) can save time while only having an effect

in the early stages of games. It makes sense to save time estimating η(s|I)

early in the game because—even with a probability estimate for every state in

the information set—sampling the true state as part of a relatively small set

for evaluation is highly unlikely when information sets are large. This process

enables sampling a set of states that are deemed more likely through inference
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Grand Suit Null

n = 80 n = 160 n = 320 n = 80 n = 160 n = 320 n = 80 n = 160 n = 320

Deep500k vs. Deep

P1 37.47 36.88 37.08 18.63 18.83 18.72 11.25 10.75 11.25

P2 37.31 37.01 37.11 18.5 18.41 18.19 11.35 11.37 11.34

∆ 0.16 -0.13 -0.03 0.13 0.42 0.53 -0.10 -0.62 -0.09

Deep500k vs. Kermit

P1 38.50 38.75 38.64 20.62 20.48 20.49 14.11 14.14 14.63

P2 36.75 36.54 36.55 17.7 17.47 17.65 9.77 9.74 9.01

∆ 1.75 2.21 2.09 2.92 3.01 2.84 4.34 4.40 5.62

Deep100k vs. Deep

P1 37.29 36.74 37.36 18.51 18.85 18.58 11.06 10.95 10.48

P2 37.64 37.21 37.02 18.97 18.46 18.55 11.39 11.30 11.71

∆ -0.35 -0.47 0.34 -0.46 0.39 0.03 -0.33 -0.35 -1.23

Deep100k vs. Kermit

P1 38.35 38.64 38.74 20.60 20.49 20.65 13.97 13.87 14.35

P2 37.09 36.87 36.52 17.72 17.55 17.45 10.15 9.86 9.68

∆ 1.26 1.77 2.22 2.88 2.94 3.20 3.82 4.01 4.67

Deep100k vs. Deep500k

P1 37.11 37.07 37.22 18.77 18.30 18.16 10.98 11.38 11.05

P2 37.57 37.14 37.19 18.78 18.73 18.71 11.38 11.04 11.24

∆ -0.46 -0.07 0.03 -0.01 -0.43 -0.55 -0.40 0.34 -0.19

Log500k vs. Logistic

P1 38.58 38.44 38.16 20.73 20.35 20.48 12.59 12.49 12.47

P2 38.66 38.64 38.47 20.69 20.72 20.35 13.05 13.10 12.84

∆ -0.08 -0.20 -0.31 0.04 -0.37 0.13 -0.46 -0.61 -0.37

Log500k vs. Kermit

P1 38.46 38.24 38.13 18.94 18.76 18.89 12.57 13.09 13.09

P2 38.39 38.42 38.16 21.45 21.37 21.19 13.22 12.45 12.39

∆ 0.07 -0.18 -0.03 -2.51 -2.61 -2.30 -0.65 0.64 0.70

Log100k vs. Logistic

P1 38.81 38.23 38.03 20.69 20.58 20.42 12.71 12.52 12.36

P2 38.24 38.04 38.01 20.76 20.25 20.25 12.66 12.85 12.72

∆ 0.57 0.19 0.02 -0.07 0.33 0.17 0.05 -0.33 -0.36

Log100k vs. Kermit

P1 38.51 38.46 38.28 18.62 18.90 19.05 13.16 12.96 12.68

P2 38.15 37.7 38.18 21.83 21.12 20.98 12.23 12.48 12.61

∆ 0.36 0.76 0.10 -3.21 -2.22 -1.93 0.93 0.48 0.07

Log100k vs. Log500k

P1 38.72 38.47 38.33 20.66 20.77 20.46 13.02 13.12 12.72

P2 38.38 38.05 38.06 20.71 20.13 20.18 12.56 12.36 12.39

∆ 0.34 0.42 0.27 -0.05 0.64 0.28 0.46 0.76 0.33

Table 5.4: Tournament points/game for subset-sampling PIMC players sepa-
rated by game type and number of states evaluated.
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Table 5.5: Average time (in seconds) taken per action by subset-sampling
players on an IntelR⃝ Core

TM

i7-8700K processor.

Num States 80 160 320

Logistic500k 0.16 0.22 0.35

Logistic100k 0.10 0.17 0.30

Deep500k 0.16 0.22 0.35

Deep100k 0.10 0.16 0.30

without slowing the player down catastrophically in large games.

Table 5.4 shows the effect of sampled subset size on tournament perfor-

mance. Players *500k and *100k sample subsets with a maximum size of

500,000 and 100,000 states respectively. It turns out that sampling at most

100k states is sufficient for good performance in Skat with PIMC. Sampling

more states does not consistently lead to significant improvement in tourna-

ment performance, and subset-sampling players perform comparably against

Kermit as well. Experimenting with less states is unnecessary for PIMC play-

ers because the time spent estimating η(s|I) with 100,000 states is negligible

when compared to the PIMC state evaluations that follow. Table 5.5 shows

that the time per action taken by the players that sample at most 100,000

states is similar to what was reported for Kermit in Table 5.2.

5.2.4 RecPIMC Cardplay Tournaments

Furtak and Buro [FB13] implemented a RecPIMC version of Kermit (RecK-

ermit) and demonstrated that it was the state-of-the-art for computer Skat.

Although it may be too computationally expensive for play against humans on

commodity hardware, RecKermit was shown to be far stronger than regular

Kermit in the tournament setting. Furthermore, it was shown that RecK-

ermit’s workload is easily parallelizable — to the point where average move

times can be reduced to a few seconds on 32 cores.

RecDeep is a modified version of RecKermit, in which Kermit’s inference

is replaced with individual card inference in both the top-level and lower-level
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Grand Suit Null

n = 80 n = 160 n = 320 n = 80 n = 160 n = 320 n = 80 n = 160 n = 320

RecDeep 39.19 38.99 38.45 20.81 20.95 21.96 13.41 13.21 11.76

RecKermit 38.93 39.2 38.65 19.16 18.70 18.55 10.69 10.37 9.37

∆ 0.26 -0.21 -0.20 1.65 2.25 3.41 2.72 2.84 2.39

Table 5.6: Tournament points/game for subset-sampling RecPIMC players
separated by game type and number of states evaluated. RecDeep is the new
state-of-the-art for Skat cardplay.

players. The top-level player estimates η(s|I) using a maximum of 100,000

states and the lower-level player estimates it using a maximum of 10,000.

Table 5.6 shows the average tournament points per game of each recursive

player over 2500 matches for each game type and number of states evalu-

ated. Top-level players evaluate n states and lower-level players evaluate 10.

Standard deviations are 0.94, 0.78, and 0.76 in grand, suit, and null games

respectively.

Although there is no significant difference in average tournament points

per game observed for grands, RecDeep is significantly better in suit and null

games. The lack of a difference in grand games can be explained by following

the same logic as in Section 5.2.2. These results confirm that individual card

inference has advanced the state-of-the-art in computer Skat cardplay.

A potential disadvantage of incorporating individual card inference into

RecPIMC is that it increases the already expensive runtime cost of the algo-

rithm — even when using a subset of states to estimate η(s|I). Table 5.7 shows

the time taken per action of each recursive player using a single core. The cor-

responding move times reported for RecKermit in Furtak and Buro [FB13]

differ because they are computed using 32 cores. The cost of estimating η(s|I)

Table 5.7: Average time (in seconds) taken per action by RecPIMC players
on an IntelR⃝ Core

TM

i7-8700K processor.

Num States 80 160 320

RecKermit 77.56 157.02 254.82

RecDeep 112.69 211.00 388.19
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is substantially larger than in the PIMC case. Although the lower-level player

estimates the distribution using only 10,000 states, it requires a forward pass

of the network for each action taken by the lower-player. This amounts to

nm + 1 forward passes to evaluate n top-level states with m actions remain-

ing in the game as opposed to 1 in the PIMC case. However, this overhead

could be reduced by batching forward passes from different lower-level play-

ers together. k threads simultaneously making lower-level player evaluations

reduces the number of forward passes by a factor of k.
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Chapter 6

Extensions to Individual Card
Prediction

In this chapter, I propose and evaluate two possible extensions to the individ-

ual card location prediction algorithm discussed in Chapter 4. After empirical

evaluation in the tournament setting, both proposed extensions lead to neg-

ative results, but their motivation is clear and the lessons learned provide a

starting point for future work.

6.1 Accounting For Sequences

The models presented thus far do not use all available state information to

make predictions. Although attempts at feature engineering seem to help,

information related to the full action history is still lost during abstraction.

In particular, important temporal information like when particular cards or

tricks occur in relation to others is abstracted to reduce the network input

size. A better representation of sequences could help capture this information,

and may remove the need for domain knowledge in this approach altogether.

6.1.1 Flat Trick History Feature

The most basic approach to including the full action history is to simply encode

it as a set of 32-card one-hot encoded actions concatenated together. There

are 10 tricks, but only the first 9 form a decision point which means this leads

to an additional 32 × 26 = 832 input features. With enough training data, it
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Figure 6.1: Inference network architecture with flat trick history module to
capture sequential dependencies across cards and tricks.

may be possible to learn good representations from these raw inputs.

Due to its length, I provide the entire cardplay history (padded with zeros

for future moves) as a separate input to the network. This helps reduce the

total number of weights in the network and maintains a better balance between

this feature and the rest of the input features. The input is fed through 4

separate hidden layers that reduce its dimensionality to 32, at which point it

is concatenated with the rest of the state input features and fed through the

rest of the network.

This approach significantly increases both the size of the input feature

set and the number of weights required for the network, so it must result in

large improvements for it to be considered worthwhile. It also has a significant

impact on the physical size of states in the training set and massively increases

training time by creating an I/O bottleneck.

After training, I observed no significant difference in CE (evaluated on

106 states) between using the flat trick history feature or not. Learning from

raw input, especially about aspects that are difficult to capture using hand-

engineered features, is an attractive prospect, but this basic technique proved

unable to do so. Next, I show further empirical evidence confirming that this

feature does not improve inference quality by evaluating its performance in
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Grand Suit Null

n = 80 n = 160 n = 320 n = 80 n = 160 n = 320 n = 80 n = 160 n = 320

DeepHist 37.06 36.75 36.89 18.71 18.74 18.14 11.58 11.29 10.76

Deep 37.50 37.35 37.54 18.18 18.31 18.51 11.07 10.99 11.02

∆ -0.44 -0.60 -0.65 0.53 0.43 -0.37 0.51 0.30 -0.26

Table 6.1: Effect of including flat trick history on tournament points/game.

the tournament setting.

6.1.2 Tournament Results

DeepHist represents the proposed extension to Deep where the flat trick

history feature is concatenated with the rest of the features from Table 4.2 This

is the only difference between the two models. Average tournament points per

game after 5,000 matches for each game type are shown in Table 6.1. One

standard deviation amounts to 0.71, 0.56, and 0.53 tournament points per

game for grand, suit, and null games respectively.

Due to differences between player tournament points being smaller than

one standard deviation in all cases, it is clear that the additional cardplay

history component did not improve performance much. This suggests that the

module is not worth the additional training and space costs that it incurs.

Forward passes of the network are also slower, but this has little impact on

the final player’s speed in this setting because only a single pass is made for

any information set.

Sequential dependencies between cards and tricks could be better rep-

resented using a different network architecture. Specialized machinery for

sequential learning like recurrent neural networks (RNNs) could potentially

model dependencies that this approach does not. Although the engineered

features are well-designed for this specific task, they are domain-specific and

lead to predictions made on an abstraction of the information set rather than

the actual information set. Replacing them with representations learned from

raw input would make the overall approach to inference more general, and

could also lead to performance improvements by avoiding information loss
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Sinkhorn(Matrix L, List rowSums, List colSums, int k)
for k iterations do

L ∗= reduceSum(L, axis = 1)/colSums
L ∗= reduceSum(L, axis = 0)/rowSums

end

Algorithm 5: Generalized Sinkhorn-Knopp. colSums and rowSums are the
desired sums for each column and row in matrix L.

through abstraction. This would be done by removing engineered state fea-

tures related to which actions have been taken in the past and replacing them

with representations learned from the raw sequences of actions in the game

thus far.

6.2 Adding Structure to Network Output

In this framework, it is possible to enforce structure on network output to

capture game-specific elements. For instance, some structure has already been

enforced by using the softmax operator on the rows of L. This constrains the

probability masses so that the sum for each card adds up to 1. In Skat, states

are structured such that each player starts with 10 cards in their hand, and

the remaining 2 cards are in the skat.

6.2.1 Sinkhorn-Knopp Algorithm

Sinkhorn’s Theorem states that any n×n matrix with strictly positive entries

can be scaled such that all rows and columns sum to 1. The matrix can be

scaled by iteratively scaling columns and then rows until convergence. This

is called the Sinkhorn-Knopp matrix scaling algorithm [Sin64; SK67], and is

shown in Algorithm 5. Sinkhorn-Knopp has also been used as a distance

metric for input features in machine learning [Cut13] and as a smooth optimal

transport loss for generative models [GPC17].

The algorithm and its convergence guarantees generalize to any m×n ma-

trix that is (r, c)-scalable. That is, if a matrix M can be scaled such that∑
j Mi,j = ri and

∑
i Mi,j = ci given r ∈ Rm and c ∈ Rn, then it is scal-
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able using Sinkhorn-Knopp. This generalization makes it possible to take a

positive 32 × 4 matrix (the output from the inference network for Skat) and

scale it so that all rows sum to 1 and the columns sum to 10, 10, 10, and 2

respectively. See [Ide16] and [CK18] for more details regarding convergence

proofs for generalized Sinkhorn-Knopp.

By deciding on a fixed number of iterations, k, Sinkhorn-Knopp can be im-

plemented as part of a deep neural network. All operations are differentiable,

so libraries that provide automatic differentiation like Tensorflow make im-

plementation simple. Hyperparameter k should be tuned to problem-specific

requirements while considering that using more iterations slightly increases

computational demands but can reduce the scaling error of the final matrix.

6.2.2 Training Results

To test whether applying Sinkhorn-Knopp helps enforce structure on the out-

put distributions of a neural network and whether or not enforcing structure

helps the final model, I implemented the same model presented in Section 4.2

with k = 10 Sinkhorn-Knopp iterations performed on the output distribution.

Table 6.2a shows how well state structure is implicitly captured by the

original Logistic and Deep models, respectively. Deep appears to learn more

about state structure implicitly in all game types.

LogisticSink and DeepSink represent the proposed extension to Logis-

tic and Deep, and their rows in Table 6.2b shows the extension’s effect on

output structure. The expectations and standard deviations are computed by

summing over the columns of L using a test set of 106 example states.

Implementing an iterative Sinkhorn operator leads to output distributions

that appear to account for the structural information enforced by the algo-

rithm. The standard deviations for the expected number of cards in the op-

ponents’ hands and the skat (when it is not known) are significantly lower —

showing that output distributions have been successfully constrained to the

desired structure by the Sinkhorn operator. However, this does not appear

to lead to any significant differences in CE, and it is unclear whether or not

applying such constraints is beneficial to the model in practice. Next, I em-
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Grand Suit Null

Known Unknown Known Unknown Known Unknown

Opp. Skat Opp. Skat Opp. Skat Opp. Skat Opp. Skat Opp. Skat

Logistic

µ 10.000 2.000 10.001 1.998 10.000 2.000 10.000 1.999 10.001 1.999 10.007 1.986

σ 0.587 0.009 0.617 0.395 0.470 0.004 0.546 0.440 0.660 0.038 0.648 0.389

Deep

µ 10.000 2.000 9.970 2.059 9.999 2.001 9.983 2.033 9.997 2.006 10.005 1.991

σ 0.333 0.008 0.323 0.225 0.314 0.008 0.324 0.209 0.388 0.051 0.440 0.265

(a) Expected number of cards for original models.

Grand Suit Null

Known Unknown Known Unknown Known Unknown

Opp. Skat Opp. Skat Opp. Skat Opp. Skat Opp. Skat Opp. Skat

LogisticSink

µ 10.000 2.000 10.002 1.994 10.000 2.000 10.004 1.992 10.000 2.000 10.003 1.995

σ 0.068 0.009 0.074 0.031 0.067 0.003 0.086 0.041 0.067 0.016 0.078 0.039

DeepSink

µ 9.999 2.001 9.998 2.003 10.000 2.001 9.998 2.004 10.000 2.001 10.002 1.995

σ 0.057 0.008 0.083 0.023 0.054 0.008 0.084 0.025 0.056 0.010 0.073 0.023

(b) Expected number of cards after k = 10 iterations of Sinkhorn-Knopp.

Table 6.2: Mean and standard deviation for the expected number of cards in
opponent hands and skat for inference models.

pirically test whether or not applying the Sinkhorn operator leads to better

sampling distributions for determinized state evaluators in a practical tourna-

ment setting.

6.2.3 Tournament Results

Table 6.3 shows the effect of using the generalized Sinkhorn algorithm to struc-

ture network outputs on tournament points per game. One standard deviation

amounts to 0.72, 0.56, and 0.53 tournament points per game in grand, suit,

and null games respectively.

Score differences between Logistic and LogisticSink are smaller than one

standard deviation. This suggests virtually no difference between the players.

Although DeepSink seems to outperform Deep when fewer states are sampled

for evaluation, the extra structure provided by Sinkhorn does not appear to
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Grand Suit Null

n = 80 n = 160 n = 320 n = 80 n = 160 n = 320 n = 80 n = 160 n = 320

LogisticSink vs Logistic

P1 38.27 38.30 38.15 20.73 20.55 20.56 12.82 12.74 12.71

P2 38.37 38.00 38.07 20.56 20.16 20.20 12.55 12.24 12.51

∆ -0.10 0.30 0.08 0.17 0.39 0.36 0.27 0.50 0.20

LogisticSink vs Kermit

P1 38.73 38.29 38.35 18.90 19.11 19.32 12.47 13.13 13.36

P2 38.03 38.21 37.97 21.42 20.97 20.85 12.93 12.10 12.11

∆ 0.70 0.08 0.38 -2.52 -1.86 -1.53 -0.46 1.03 1.25

DeepSink vs. Deep

P1 37.73 37.37 37.03 19.21 18.11 18.72 11.57 11.36 10.96

P2 37.20 36.89 36.79 18.18 18.81 18.55 10.82 10.81 10.95

∆ 0.53 0.48 0.24 1.03 -0.70 0.17 0.75 0.55 0.01

DeepSink vs Kermit

P1 38.89 38.59 38.50 20.87 20.25 20.60 14.11 14.3 14.19

P2 36.76 36.50 36.39 17.57 17.78 17.58 9.85 9.32 9.33

∆ 2.13 2.09 2.11 3.30 2.47 3.02 4.26 4.98 4.86

Table 6.3: Effect of structured output on tournament points/game.

consistently improve tournament performance. Performance of the Sinkhorn

models against Kermit is also roughly the same as their non-Sinkhorn coun-

terparts. In this case, it seems that the structure learned implicitly from the

training examples is enough, and that minimizing CE or TSSR may be more

important than explicitly enforcing a specific structure on output distributions.
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Chapter 7

Conclusion

In this thesis, I have shown that individual card inference trained using su-

pervised learning can improve the performance of determinized algorithms

in trick-taking card games considerably. This may not come as a surprise

to seasoned Contract Bridge or Skat players as they routinely draw a lot of

information regarding the whereabouts of remaining cards from past tricks.

However, this thesis demonstrates how to do this using modern learning tech-

niques. It shows how neural networks trained from human data can be used to

predict fine-grained information like the locations of individual cards, and how

to incorporate such predictions into current state-of-the-art search techniques

for trick-taking card games — improving the current state-of-the-art Skat AI

system significantly in the process.

This result is exciting and opens the door for future improvements. Playing

strength could be increased by further improving inference so that the model

can adjust to individual opponents and partners. State probability distribu-

tions could be smoothed to account for opponents who often make mistakes

or those that play clever moves to confuse inference. A better technique for

modelling sequential dependencies could substantially improve the techniques

described in this work. Not only would it capture interactions between cards

and when exactly they were played better than the engineered features pre-

sented in this work, but it could remove the need for domain knowledge in this

task altogether.

Ultimately, determinized evaluation techniques are limited by their theo-
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retical flaws and more theoretically-sound techniques should also be explored

in future work. Although most of its guarantees no longer hold in 3-player

or non-zero sum games, handcrafting or somehow learning a suitable abstrac-

tion so that a CFR-based technique can be applied is another promising but

challenging avenue.
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